SQL

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you
agree that this license grants permission to use the contents contained herein,
including the disc, but does not give you the right of ownership to any of the
textual content in the book/disc or ownership to any of the information or
products contained in it. This license does not permit uploading of the Work
onto the Internet or on a network (of any kind) without the written consent
of the Publisher. Duplication or dissemination of any text, code, simulations,
images, etc. contained herein is limited to and subject to licensing terms for
the respective products, and permission must be obtained from the Publisher
or the owner of the content, etc., in order to reproduce or network any portion
of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to ensure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind,
express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used
in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.
The use of “implied warranty” and certain “exclusions” vary from state to state,
and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at
info@merclearning.com.

SQL

Pocket Primer

Oswald Campesato

MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

Copyright ©2022 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to,
photocopy, recording, Internet postings, or scanning, without prior permission

in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166
info@merclearning.com
www.merclearning.com

800-232-0223

O. Campesato. SQL Pocket Primer.
ISBN: 978-1-68392-814-0

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022930720
222324321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other
digital vendors. Companion files (figures and code listings) for this title are available
by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND
INFORMATION to the purchaser is to replace the disc, based on defective materials or
faulty workmanship, but not based on the operation or functionality of the product.

I'd like to dedicate this book to my parents
—may this bring joy and happiness into their lives.

CONTENTS

Preface

Chapter 1: Introduction to RDBMSs and MySQL
What is MySQL?
What about MariaDB?
Installing MySQL
Useful Links for MySQL
What is an RDBMS?
What Relationships Do Tables Have in an RDBMS?
Features of an RDBMS
What is ACID?
When Do We Need an RDBMS?
Transferring Money Between Bank Accounts
The Importance of Normalization
A Four-Table RDBMS
Detailed Table Descriptions
The Customers Table
The purchase_orders Table
The line_items Table
The item_desc Table
SQL Statements for the Impatient (Optional)
What About an Item Inventory Table?
The Role of SQL
DCL, DDL, DQL, DML, and TCL
SQL Privileges
Properties of SQL Statements
The CREATE Keyword
Data Types in MySQL
The CHAR and VARCHAR Data Types

=2
c

O© 0 ~13 O ULUUE = W WWho -

viii © CONTENTS

String-Based Data Types
FLOAT and DOUBLE Data Types
BLOB and TEXT Data Types
MySQL Database Operations
Creating a Database
Display a List of Databases
Display a List of Database Users
Dropping a Database
Exporting a Database
Renaming a Database
Show Database Tables
The INFORMATION _SCHEMA Table
The PROCESSLIST Table
SQL Formatting Tools
Summary

Chapter 2: Working with SQL and MySQL

Drop Database Tables

Create Database Tables
Manually Creating Tables for mytools.com
Creating Tables via a SQL Script for mytools.com
Creating Tables with Japanese Text
Creating Tables from the Command Line
Defining Table Attributes

Working with Aliases in SQL

Alter Database Tables with the ALTER Keyword
Add a Column to a Database Table
Drop a Column from a Database Table
Change the Data Type of a Column
What are Referential Constraints?

Combining Data for a Table Update (Optional)
Merging Data Columns in Multiple CSV Files via Pandas
Concatenating Data from Multiple CSV Files
Appending Table Data from CSV Files via SQL

Inserting Data into Database Tables
Populating Tables from Text Files

Working with Simple SELECT Statements
Duplicate Versus Distinct Rows
Unique Rows Versus Distinct Rows
The EXISTS Keyword
The LIMIT Keyword

DELETE, TRUNCATE, and DROP in SQL
SELECT, DELETE, and LIMIT Combinations
More Options for the DELETE Statement in SQL

20
21
21
22
22
22
23
23
23
24
25
27
28
29
29

31
32
32
32
34
35
36
37
38
39
39
41
41
43
44
44
45
47
48
49
51
52
53
53
54
54
55
56

CONTENTS © IX

Creating Tables from Existing Tables in SQL
Working with Temporary Tables in SQL
Creating Copies of Existing Tables in SQL

What is a SQL Index?

Types of Indexes

Creating an Index

Disabling and Enabling an Index
View and Drop Indexes

Overhead of Indexes

Considerations for Defining Indexes
When to Disable Indexes on a Table
Selecting Columns for an Index
Finding Columns Included in Indexes

Enhancing the mytools Database (Optional)

Entity Relationships

Summary

Chapter 3: Joins, Views, and Subqueries

Query Execution Order in SQL
Joining Tables in SQL
Types of SQL JOIN Statements
Examples of SQL JOIN Statements
An INNER JOIN Statement
A LEFT JOIN Statement
A RIGHT JOIN Statement
A CROSS JOIN Statement
MySQL NATURAL JOIN Statement
An INNER JOIN to Delete Duplicate Attributes
JOIN Statements on Tables with International Text
What is a View?
Creating a View
Dropping a View in SQL
Advantages of Views in SQL Statements
Views Involving a Single Table
Views Involving Multiple Tables
Updatable Views
Keys, Primary Keys, and F oreign Keys
Foreign Keys versus Primary Keys
A MySQL Example of Foreign Keys
Working with Subqueries in SQL
Two Types of Subqueries
A Subquery to Find Customers Without Purchase Orders
Subqueries with IN and NOT IN Clause
Subqueries with SOME, ALL, ANY Clause

56
57
58
58
59
59
60
60
61
61
62
62
63
63
64
65

67

67
68
68
69
71
72
72
73
73
74
75
76
77
77
77
78
78
79
79
79
80
82
82
83
85
86

X ® CONTENTS

Subqueries with the MAX() and AVG() Functions 88
Find Tallest Students in Each Classroom via a Subquery 88
SQL and Histograms 90
What are GROUP BY, ORDER BY, and HAVING Clauses? 90
Displaying Duplicate Attribute Values 92
Examples of the SQL. GROUP BY and ORDER BY Clause 92
SQL Histograms on a Table Copy 93
Combine GROUP BY and ROLLUP Clause 95
The 2021 Olympics Medals and the ROLLUP Keyword 97
The 2021 Olympics Medals and the RANK Operator 98
The PARTITION BY Clause 99
GROUP BY, HAVING, and ORDER BY Clause 100
Combined GROUP BY, HAVING, and ORDER BY Clause 101
Updating the item_desc Table from the new_items Table 102

A SQL Query Involving a Four-Table Join 102
Operations with Dates in SQL 106
Day and Month Components of Dates in SQL 107
Rounding Dates in SQL 108
Working with Date Ranges 109
Tables Containing Modification Times 110
Arithmetic Operations with Dates 111
Date Components and Date Formats 112
Finding the Week in Date Values 114
Displaying Weekly Revenue 114
Assorted SQL Operators 116
Working with Column Aliases 116
SQL Variables 117
SQL Summary Reports 118
Simple SQL Reports 119
Calculating SubTotals 122
Calculating “Running” (Cumulative) Totals 123
Summary 124
Chapter 4: Assorted SQL Functions 125
Numeric Functions in SQL 126
Calculated Columns 128
The round(), ceil(), and floor() Functions 129
SQL Queries with the rand() Function 132
Log, Exponential, and Trig Functions in SQL 132
Scalar Functions in SQL 135
Aggregate Functions in SQL 136
SQL Queries with the max() and min() Functions 138
Find Maximum Values with SQL Subqueries 139

Simplify SQL Queries Containing Subqueries 142

CONTENTS © Xi

Find Top-Ranked Numeric Values 143
Find the Second and Third Largest Values in a Column 143
Find the Top Three Values in a Column 144

Find Values with the OFFSET Keyword 145

String Functions in SQL 146

SQL Queries with the SUBSTRING() Function 148
The SUBSTRING() Function in SQL 149

Boolean Operators in SQL 150
The IN Keyword 151

Set Operators in SQL 152

AND, OR, and NOT Operators in SQL 153

Working with Arithmetic Operators 154

Arithmetic Aggregate Operators in SQL 156
Finding Average Values 157
SELECT Clauses with Multiple Aggregate Functions 158

The ORDER BY Clause in SQL 159
ORDER BY with Aggregate Functions 160

Largest Distinct Values and Frequency of Values 161

Character Functions and String Operators 163
SQL Character Functions 164
String Operators in SQL 165

The MATCH() Function and Text Search 165

CTEs and the “with” Keyword in MySQL (Version 8) 166
The with Keyword and a Recursive SQL Query 168

CTEs and the Mean, Stddev, and Z-scores 169

Linear Regression in SQL 171

Window Functions 172
Types of Window Functions in SQL 173

The SQL CASE Clause 174

Working with NULL Values in SQL 176

Miscellaneous One-Liners 179

Working with the CAST() Function in SQL 181

Summary 183

Chapter 5: NoSQL, SQLite, and Python 185

Non-Relational Database Systems 186
Advantages of Non-Relational Databases 187

What is NoSQL? 187
What is NewSQL? 188

RDBMSs Versus NoSQL: Which One to Use? 188
Good Data Types for NoSQL 188
Some Guidelines for Selecting a Database 189
NoSQL Databases 189

What is MongoDB? 190

xii © CONTENTS

Features of MongoDB 190
Installing MongoDB 190
Launching MongoDB 190
Useful Mongo APIs 191
Meta Characters in Mongo Queries 192
MongoDB Collections and Documents 193
Document Format in MongoDB 193
Create a MongoDB Collection 193
Working with MongoDB Collections 195
Find all Android Phones 195
Find All Android Phones in 2018 196
Insert a New Item (document) 196
Update an Existing Item (document) 196
Calculate the Average Price for Each Brand 197
Calculate the Average Price for Each Brand in 2019 197
Import Data with mongoimport 197
What is Fugue? 197
What is Compass? 198
What is PyMongo? 199
MySQL, SQLAlchemy, and Pandas 200
What is SQLAlchemy? 200
Read MySQL Data via SQLAlchemy 200
Export SQL Data from Pandas to Excel 202
MySQL and Connector/Python 203
Establishing a Database Connection 204
Reading Data from a Database Table 204
Creating a Database Table 205
What is SQLite? 206
SQLite Features 207
SQLite Installation 207
SQLiteStudio Installation 208

DB Browser for SQLite Installation 209
SQLiteDict (Optional) 209
Summary 211
Chapter 6: Miscellaneous Topics 213
Managing Users 214
Listing Current Users 214
Creating and Altering MySQL Users 214
Dropping MySQL Users 215
What are Roles? 216
Create Roles and Grant Privileges 216
Revoke Roles and Drop Roles 218

What is a User-Defined Function? 218

What is a Stored Procedure?
IN and OUT Parameters in Stored Procedures
A Simple Stored Procedure
What is a Stored Function?
A Simple Stored Function
What are SQL Triggers?
A Simple MySQL Trigger
MySQL Engines
What is Normalization?
What is Denormalization?
What are Schemas?
MySQL Workbench
Exporting a Schema in Workbench
Creating a Schema in Workbench
ERM and Tools
What is a Transaction?
The COMMIT and ROLLBACK Statements
The SAVEPOINT Statement
Database Optimization and Performance
Performance Tuning Considerations
SQL Query Optimization
Analyzing SQL Queries for Their Performance
Performance Tuning Tools
Cost-Based Optimizers (Optional)
Table Fragmentation
Table Partitioning
What is an EXPLAIN Plan?
Explain Analyze
Scaling an RDBMS
What is SQL Tuning?
What is Sharding?
RDBMS Support for Sharding
What is Federation?
Database Replication
Distributed Databases, Scalability, and the CAP Theorem
Master-Slave Replication
The CAP Theorem
What are Consistency Patterns?
MySQL Command Line Utilities
Database Backups, Restoring Data, and Upgrades
MySQL and JSON Data
Data Cleaning in SQL
Replace NULL with 0
Replace NULL Values with Average Value

CONTENTS © Xill

218
219
220
222
222
223
224
225
226
227
227
228
228
229
230
230
231
231
232
232
233
233
233
234
234
234
235
236
237
237
238
238
239
239
240
240
240
241
241
241
242
244
244
244

Xiv © CONTENTS

Replace Multiple Values with a Single Value 246

Handle Mismatched Attribute Values 247

Convert Strings to Date Values 248

Data Cleaning From the Command Line (Optional) 250
Working with the sed Utility 250
Working with the awk Utility 252

Next Steps 254
Summary 254
Appendix: Introduction to Probability and Statistics 257

Index 285

PREFACE

What is the Value Proposition for This Book?

This book is primarily for data scientists and machine learning engineers
who want to expand their current knowledge of SQL using MySQL as the
primary RDBMS. While this book does contain relevant information for
novices in other fields, the structure of this book differs from typical data-

base books.

In addition, this book attempts to balance depth and breadth, along with
a decent number of SQL statements to illustrate the important features of
SQL. Although it’s not possible to describe the exact set of features that
constitute basic, intermediate, and advanced SQL queries (i.e., opinions
will differ), this book contains SQL examples that belong to each of those
three groups.

At the same time, remember that some topics in the final chapter are
presented in a cursory manner, which is for two main reasons. First,
although you don’t need an in-depth understanding of every facet of sQL
and RDBMSs, it’s important that you be aware of these concepts if you plan
to become highly proficient in managing database data. In addition, you
will be in a better position to plan an itinerary for the set of topics that you
will learn at some point in the future.

Second, a full treatment of every topic in this book would significantly
increase the page count, and it's debatable whether all the additional
details would be beneficial to you as a machine learning engineer or a
data scientist.

The Target Audience

As you read in the previous section, this book is meant primarily for
machine learning engineers and data scientists who already have a basic

Xvi © PREFACE

understanding of sor, which means that they have executed some SQL
statements in a database such as MysQL. As such, they will learn more
details about sQL and MySQL so they can manage data in database tables.
Moreover, the knowledge that they gain while working with MySQL can
easily transfer to other RDBMSs such as ORACLE.

In addition, this book is intended to reach an international audience of
readers, so this book uses standard English rather than colloquial expres-
sions. As you know, many people learn by different types of imitation,
which includes reading, writing, or hearing new material. This book takes
these points into consideration in order to provide a comfortable and
meaningful learning experience for the intended readers.

What’s Different About This SQL Book?

Before delving into the differences, it’s worth noting that this book covers
many topics that you will find in database books of comparable length. At
a minimum, any RDBMS book needs to include SQL, along with examples
of how to select, delete, update, and insert data into a database table.
Other mandatory topics include an explanation of views, indexes, joining
tables, subqueries, normalization, and database schemas.

However, this book differs from generic database books because there are
topics that are relevant to this target audience, which are not necessary
for readers of generic database books. Some of those additional topics are
discussed in chapter 6 (miscellaneous topics).

Another difference is a portion of Chapter 5, which contains Python-
based code samples to access data from a MySQL table in a Pandas data
frame. A third difference is the inclusion of the appendix that contains an
introduction to probability and statistics, and a discussion of of entropy,
cross-entropy, and KL divergence. Thus, it’s the collective set of differ-
ences that differentiate this book from generic SQL books.

What Will | Learn From This Book?

The first chapter contains a short introduction to RDBMSs and MySQL,
along with information about installing MySQL. In addition, you will see
SQL statements for creating, dropping, and exporting a database. Although
other books sometimes defer these operations to later chapters, they are
easy to perform with empty or very small databases that do not contain
any critical data. Therefore, you don’t have to worry about making costly
mistakes because of a blunder in a SQL query.

PREFACE * xvii

The second chapter delves into creating database tables and various ways
to populate them with data. This chapter also describes various ways of
deleting data from database tables, followed by a discussion of indexes on
tables and why they are important.

The third chapter explains the concept of “joining” database tables, fol-
lowed by a discussion of views: what they are, what advantages they pro-
vide, and how to create them over a single table or multiple tables. You
will also learn how to work with subqueries in SQL. In addition, this chap-
ter introduces you to the notion of normalization, along with a clear and
compelling reason for adopting database normalization.

The fourth chapter is primarily about sQL functions, which involves
numeric functions such as ceil (), floor (), and random(). Aggregate
functions are also discussed, followed by string-oriented soL functions
such as the substring () function. This chapter contains an assortment
of sQL statements, some of which involve various combinations of GROUP
BY, HAVING, and ORDER BY.

The fifth chapter introduces NoSQL, followed by an overview of MongoDB,
which is a popular NosQL database. Next you will learn about sQLite,
which is an open-source RDBMS that is available on mobile devices.

Chapter six contains a diverse set of miscellaneous topics, such as nor-
malization, schemas, database optimization, and performance. Then you
will be introduced to EXPLAIN plans, SQL tuning, managing users, roles,
stored procedures, and triggers.

A Simple Way to Create the Entire mytools Database

As a convenience, Chapter 6 contains the SQL file mytools.sql that
contains all the tables that are defined in this book. Moreover, the soQL
file also contains the data for all the database tables. Of course, you can
launch the individual soL files for each of the tables if you prefer to do so
the “long way”.

You can import the complete mytools database by starting MysoL and
then issuing the following command from the command line in the direc-
tory that contains mytools.sql:

mysgl -u root -p mytools < mytools.sqgl

If you encounter issues when you launch the preceding command,
NOTE read the section in Chapter 6 regarding MySQL Workbench that
enables you to import databases and export databases.

Xxvill * PREFACE

What Do | Need to Know for This Book?

Although this is an introductory book with minimal prerequisites, obvi-
ously you will benefit from having existing knowledge of various topics.
Specifically, some knowledge of sQL will facilitate learning the sQL-related
concepts more quickly. In addition, knowledge of Java is helpful for
Appendix A, as well as some familiarity with xML and JsoN. Familiarity with
normalization will help you understand the relationships among the tables
in the fictitious application that is discussed in Chapter 1 and Chapter 2.

If you want to be sure that you can grasp the material in this book, glance
through some of the code samples to get an idea of how much is familiar to
you and how much is new for you.

Do the Companion Files Obviate the Need for This Book?

The companion files contains all the code samples to save you time and
effort from the error-prone process of manually typing code into a text
file. Furthermore, there are situations in which you might not have easy
access to the companion files. In addition, the code samples in the book
provide explanations that are not available on the companion files.

Does This Book Contain Production-Level Code Samples?

The primary purpose of the code samples in this book is to provide a
variety of SQL statements that enable you to perform common and use-
ful tasks in MySQL. Clarity has higher priority than writing more compact
code that is more difficult to understand (and possibly more prone to
bugs). If you decide to use any of the code in this book in a production
website, you ought to subject that code to the same rigorous analysis as
the other parts of your code base.

What Are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s very
important to have strong desire to learn about data analytics, along with
the motivation and discipline to read and understand the code samples.

How Do | Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is
to use Finder to navigate to Applications > Utilities and then

PREFACE ® XIX

double click on the Utilities application. Next, if you already have a
command shell available, you can launch a new command shell by typing
the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
MacBook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source hitps://cywin.
com) which simulates bash commands, or use another toolkit such as
MKS (a commercial product). Please read the online documentation that
describes the download and installation process. Note that custom aliases
are not automatically set if they are defined in a file other than the main

start-up file (such as .bash_login).

Companion Files

All of the code samples and figures in this book may be obtained by writ-
ing to the publisher at info@merclearning.com.

What Are the “Next Steps” After Finishing This Book?

The answer to this question varies, mainly because the answer depends
heavily on your objectives. If you are interested primarily in working with
structured data, then you can look for online resources that delve into
more advanced topics.

If you are primarily interested in machine learning, then you have several
options: NLP (natural language processing), deep learning, and reinforce-
ment learning (and also deep reinforcement learning).

Fortunately, you can perform an Internet search to find many resources.
One other point: the aspects of machine learning for you to learn depend
on who you are: the needs of a machine learning engineer, data scientist,
manager, student or software developer are all different.

CHAPTER

INTRODUCTION TO RDBMSs
AND MySOL

along with a quick introduction to MySQL. MySQL is used in most

of this book because it is a robust RDBMS that is available as a free
download from an ORACLE website. Current trends suggest that MySQL
will continue its dominant role for the foreseeable future. Moreover, virtually
everything that you learn about MySQL in this chapter transfers to other RD-
BMSs, such as PostgreSQL and ORACLE.

This chapter describes a fictitious website that enables users to register
themselves for the purpose of purchasing various home improvement tools
(hammers, wrenches, and so forth). Instead of SQL statements, you will learn
about the tables that are required, their relationships, and the structure of
those tables. You will also see some SQL INSERT statements for inserting data
into database tables. Although we have yet to create any database tables, these
SQL statements are intuitive and easy to grasp. Then, in Chapter 2, you will
see the SQL statements that create the tables that are discussed in this chapter.

The first part of this chapter introduces the concept of an RDBMS, and
the rationale for using an RDBMS. In particular, you will see an example of
an RDBMS with a single table, two tables, and four tables (and much larger
RDBMSs exist). This section also introduces the notion of database normali-
zation, and how it assists you in maintaining data integrity (“single source of
truth”) in an RDBMS.

The second part of this chapter describes the structure of the tables in a
four-table database that keeps track of customer purchases of home improve-
ment tools that consumers can purchase through the associated Web page.
You will also see the different relationships among pairs of tables, and how a
one-to-many relationship enables you to find all the line items that belong to a
given purchase order.

This chapter introduces you to RDBMSs and various SQL concepts,

2 ¢ SQL Pocket Primer

The third portion of this chapter contains a brief introduction to SQL and
some basic examples of SQL queries (more details are in Chapter 2). You will
also learn about the terminology for various types of SQL statements that
can be classified as DCL (Data Control Language, DDL (Data Definition
Language), DQL (Data Query Language), or DML (Data Manipulation
Language).

The fourth portion of this chapter discusses SQL data types, and the fifth
portion discusses database operations, such as creating, dropping, and renam-
ing a database in MySQL. The final portion discusses two useful built-in tables
that enable you to find the columns of a given table and the status of SQL
statements.

There are several points to keep in mind before reading this chapter. First,
the style for this chapter (and also the next chapter) is a “top-down” approach
whereby high-level details are described and then hands-on coding details
are discussed. However, you are {ree to reverse the order in which you read
the first two chapters, if you prefer a “bottom-up” approach whereby you first
learn more details regarding SQL statements and then learn about a use case
in this chapter.

Second, there is an important detail that is mentioned in the preface that
is worth repeating here: this book is primarily for data scientists who want
to increase their knowledge of SQL to manage data in a database. Although
this book can be useful for any motivated beginner, its primary purpose is
different from books that prepare readers to become database administrators
(DBAs).

Third, there is a section in the middle of this chapter that shows you the
SQL statements that create several tables, along with details of purchase
orders. This section is a preview of what you will learn in subsequent chapters,
and it’s intended primarily for readers who already have a good understanding
of SQL statements. However, if you are unfamiliar with the syntax of the SQL
statements in that section, there’s no need to worry: you can return to this
section after reading subsequent chapters that explain the details of the SQL
syntax and functionality.

WHAT IS MYSQL?

MySQL is an open source database that is portable and provides many fea-
tures that are available in commercial databases. Oracle is the steward of the
MySQL database, and you can download MySQL 8.0 from the following site:

https:/fwww.mysqgl.com/downloads/

MySQL is a highly popular database that is used by many companies,
including Amazon, Google, LinkedIn, Netflix, and Twitter. MySQL is written
in C++, whereas the user-level interaction is through SQL. Other add-ons for
MySQL can be purchased from Oracle, as well as free third-party tools are
available for monitoring and managing MySQL databases.

Introduction to RDBMSs and MySQL ¢ 3

If you prefer, MySQL also provides a GUI interface for performing data-
base-related operations. The code samples in this book have been written for
MySQL 8, which provides the following new features beyond earlier versions:

* A transactional data dictionary

e Improved support for BLOB, TEXT, GEOMETRY, and JSON data types
* Support for CTEs (common table expressions)

* Support for window functions

As you will see in Chapter 6, MySQL supports pluggable storage engines,
such as InnoDB (the most commonly used MySQL storage engine). In addi-
tion, Facebook developed an open source storage engine called MyRocks
that has better compression and performance, so it might be worth while
to explore the advantage of MyRocks over the other storage engines for
MySQL.

What about MariaDB?

MySQL began as an open source project, and retained its name after the
Oracle acquisition. Shortly thereafter, the MariaDB database was created,
which is a “fork” of the MySQL database. Although MariaDB supports all the
features of MySQL, there are important differences between MySQL and
MariaDB that you can read about online:

https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/

Installing MySQL

Download the MySQL distribution for your machine and perform the
installation procedure. After you complete the installation, log into MySQL
as root with the following command, which will prompt you for the root
password:

$ mysgl -u root -p

If you installed MySQL via a DMG file, then the root password is the
same as the password for your machine.

Useful Links for MySQL

This section contains various links that may be useful as you read the chap-
ters of this book. Although SQL is not discussed in detail until the next chapter,
the SQL links are included here for your convenience.

MySQL won the DBMS of the Year award in 2019:

https://db-engines.com/en/blog_post/S83

The following link contains the list of platforms that support MySQL.:

https:/fwww.mysqgl.com/de/support/supportedplatforms/database. html

The following link contains a comparison between SQL and MySQL.:

https:/hwww.softwaretestinghelp.com/sql-vs-mysql-vs-sql-server/

4 ¢ SQL Pocket Primer

A comparison of MySQL, Microsoft SQL Server, and PostgreSQL is avail-
able online:

https://db-engines.com/en/system/Microsoft+SQL+Server%3BMySQL%3
BPostgreSQL

The latest version of SQL is SQL:2016:

https:/len.wikipedia.org/wiki/SQL:2016

The following website contains details regarding MySQL Standards
Compliance:

https://dev.mysql.com/doc/refman/8.0/en/compatibility. html

The following website describes MySQL Extensions to Standard SQL.:

https://dev.mysql.com/doc/refman/8.0/en/extensions-to-ansi.html

The following website is a FAQ for MySQL 8.0, along with download links
for the MySQL manual in multiple formats:

https://dev.mysql.com/doc/refman/8.0/en/fags.html

WHAT IS AN RDBMS?

RDBMS is an initialism for Relational DataBase Management System.
RDBMSs store data in tables that contain labeled attributes (sometimes called
columns) that have a specific data type. Examples of an RDBMS include
MySQL, ORACLE, and IBM DB2. While an RDBMS is software that man-
ages data, a DBMS is the underlying “store” where the data resides.

Although relational databases often provide a very good solution for man-
aging data, speed and scalability might be an issue in some cases. Chapter 5
discusses NoSQL databases, such as MongoDB, that might be more suitable
for speed and scalability.

What Relationships Do Tables Have in an RDBMS?

While an RDBMS can consist of a single table, it often comprises multiple
tables that can have various types of associations with each other. For exam-
ple, when you buy various items at a food store, your receipt consists of one
purchase order that contains one or more “line items,” where each line item
indicates the details of a particular item that you purchased. This is called a
one-to-many relationship between a purchase order (which is stored in a pur-
chase orders table) and the line items (stored in a 1ine items table) for
each item that you purchased.

Another example involves students and courses: each student is enrolled
in one or more courses, which is a one-to-many relationship from students to
courses. Moreover, each course contains one or more students, so there is a
one-to-many relationship from courses to students. Hence, the students and
course tables have a many-to-many relationship.

A third example is an employees table, where each row contains informa-
tion about one employee. If each row includes the id of the manager of the
given employee, then the employees table is a self-referential table because

Introduction to RDBMSs and MySQL ¢ 5

finding the manager of the employee involves searching the employees table
with the manager’s id that is stored in the given employee record. However, if
the rows in an employees table do not contain information about an employ-
ee’s manager, then the table is not self-referential.

In addition to table definitions, a database frequently contains indexes, pri-
mary keys, and foreign keys that facilitate searching for data in tables and also
connecting a row in a given table with its logically related row (or rows) in another
table. For example, if we have the id value for a particular purchase order in the
purchase orders table, we can find all the line items (i.e., the items that were
purchased) in the line_ items table that contain the same purchase order id.

Features of an RDBMS

An RDBMS provides a convenient way to store data, often associated with
some type of application. For example, later you will see the details of a four-
table RDBMS that keeps track of tools that are purchased via a Web-based
application. From a high-level perspective, an RDBMS provides the following

characteristics:

e a database contains one or more tables
e data is stored in tables

e data records have the same structure

e well-suited for vertical scaling

e support for ACID (explained below)

Another useful concept is a logical schema that consists of the collection of
tables and their relationships (along with indexes, views, triggers, and so forth)
in an RDBMS. The schema is used for generating a physical schema, which
consists of all the SQL statements that are required to create the specified
tables and their relationships.

For example, Chapter 6 contains a SQL file mytools.sql that contains
the definition of every entity in the mytools database, as well as the directory
mytools-sql-files-20211120 that contains a SQL file for every table in the
mytools database. Moreover, Chapter 6 describes two techniques for export-
ing a MySQL database. After the tables have been generated, you can begin
inserting data and then managing the consistency of the data.

What is ACID?

ACID is an acronym for Atomicity, Consistency, Isolation, and Durability,
which refers to properties of RDBMS transactions, as summarized below.

* Atomicity means that each transaction is all-or-nothing, so if a transaction
fails, the system is rolled back to its previous state.

e Consistency means that successful transactions always result in a valid
database state.

6 * SQL Pocket Primer

e Isolation means that executing transactions concurrently or serially will
result in the state.

* Durability means that a committed transaction will remain in the same
state.

RDBMSs support ACID, whereas NoSQL databases usually do not sup-
port ACID.

WHEN DO WE NEED AN RDBMS?

The short answer is that an RDBMS is useful when we need to store records
of events that have occurred, which can be involve simple item purchases as
well as complex multi-table financial transactions.

An RDBMS allows you to define a collection of tables that contain rows of
data, where a row contains one or more attributes (informally called fields).
A row of data is a record of an event that occurred at a specific point in time,
which can involve more than one table, and can also involve some type of
transaction.

Transferring Money Between Bank Accounts

Consider a simple money transfer between two bank accounts in which
you want to transfer $100 from a savings account to a checking account. The
process involves two steps:

1. debiting (subtracting) the savings account by $100 and
2. crediting (adding) the checking account with $100.

However, if a system failure occurs after step 1 and before step 2 can be
completed, you have lost $100. Obviously, steps 1 and 2 must be treated as an
atomic transaction, which means that the transaction is successful only when
both steps have completed successfully. If the transaction is unsuccessful, the
transaction is “rolled back” so the system is returned to the state prior to trans-
ferring money between the two accounts.

As you learned earlier in this chapter, RDBMSs support ACID, which
ensures that the previous transaction (i.e., transferring money between
accounts) is treated as an atomic transaction.

Although atomic transactions are indispensable in financial systems, they
might not be as critical for other systems. For example, a database that con-
tains a lone events table in which each row contains information about a
single event that you created by some process (such as a registration form)
whenever a new event occurs in a system. Although this is conceptually simple,
notice that the following attributes are relevant for each row in the events
table: event id, event time, event title, event duration, and
event location, and possibly additional attributes.

Introduction to RDBMSs and MySQL ¢ 7

As another example, displaying a set of pictures might not show the pic-
tures in the correct order (e.g., based on their creation time). However, a fail-
ure in the event creation is not as critical as a failure in a financial system, and
displaying images in the wrong sequence will probably be rectified when the

page is refreshed.

THE IMPORTANCE OF NORMALIZATION

This section contains an introduction to the concept of normalization. As a
starting point, consider an RDBMS that stores records for the temperature of
a room during a time interval (such as a day, a week, or some other time inter-
val). We just need one device temperature table where each row contains
the temperature of a room at a specific time. In the case of the IoT (Internet
of Things), the temperature is recorded during regular time intervals (such as
minute-by-minute or hourly).

If you need to track only one room, the device temperature table
is probably sufficient. However, if you need to track multiple devices in a
room, then it's convenient to create a second table called device details
that contains attributes for each device, such as device id, device name,
device year, device price, and device warranty.

Whenever we want the details of a temperature-related event, we
need information from both tables, which consists of one row in the
device temperature table and its associated row in the device details
table. The way to perform the two-table connection is simple: each row in
the device details table contains a device id that uniquely identifies
the given row. Moreover, the same device id appears in any row of the
device_ temperature table that refers to the given device.

The preceding two-table structure is a minimalistic example of something
called database normalization, whose purpose is to reduce data redundancy in
database tables. Normalization can result in a slower performance during the
execution of some types of SQL statements (e.g., those that contain a JOIN
keyword).

If you are new to the concept of database normalization, you might be
thinking that normalization increases complexity and reduces performance
without providing tangible benefits. While this is a valid thought, the trade-off
is worthwhile because normalization enables you to maintain data consistency.

For example, suppose that every record in the purchase orders table
contains all the details of the customer who made the associated purchase. As
a result, we can eliminate the customers table. However, if we ever need to
update the address of a particular customer, we need to update all the rows
in the purchase orders table that contain that customer. By contrast, if
we maintain a customers table, then updating a customer’s address involves
changing a single row in the customers table.

8 ¢ SQL Pocket Primer

Normalization enables us to avoid data duplication so that there is a single
“source of truth” in the event that information (such as a customer’s address)
must be updated. From another perspective, data duplication means that the
same data appears in two (or possibly more) locations, and if an update is not
applied to all those locations, the database data is in an inconsistent state.
Depending on the nature of the application, the consequences of inconsistent
data can range from minor to catastrophic.

Always remember the following point: whenever you need to update the
same data that resides in two different locations, you increase the risk of a data
inconsistency, which can adversely affect the data integrity.

As another example, suppose that a site sells widgets online. At a minimum,
the associated database needs the following four tables:

® customer details
® purchase orders
®*po line items

® item desc

The preceding scenario is explored in greater detail in the next section that
specifies the attributes of each of the preceding tables.

A FOUR-TABLE RDBMS

Suppose that www.mytools.com sells tools (the details of which are not
important). For simplicity, let’s pretend that an actual website is available at
the preceding URL and it contains the following sections:

® new user register registration
* existing user log in
e input fields for selecting items for purchase (and the quantities)

For example, the registered user John Smith wants to purchase one ham-
mer, two screwdrivers, and three wrenches. The website needs to provide
users with the ability to search for products by their type (e.g., a hammer, a
screwdriver, or a wrench) and then display a list of matching products. Each
product in that list would also contain an SKU, which is an industry-standard
labeling mechanism for products (just like ISBN's for identifying books).

The preceding functionality is necessary in order to develop a website that
enables users to purchase products. However, the purpose of this section is to
describe a set of tables (and their relationships to each other) in an RDBMS,
so we will assume that the necessary Web-based features are available at our
URL.

Let’s describe a use case that contains the sequence of steps that are per-
formed on behalf of an existing customer John Smith (whose customer ID is
1000), who wants to purchase 1 hammer, 2 screwdrivers, and 3 wrenches:

Introduction to RDBMSs and MySQL * 9

Step 1: Customer John Smith (with cust_id 1000)initiates anew purchase.
Step 2: A new purchase order is created with the value 12500 for po_id.
Step 3: John Smith selects 1 hammer, 2 screwdrivers, and 3 wrenches.
Step 4: The associated prices for the items are $20.00, $16.00, and $30.00.
Step 5: The subtotals for the items are $20.00, $16.00, and $30.00.

Step 6: A 10% tax for the items is $2.00, $1.60, and $3.00.

Step 7: The total cost of this purchase order is $72.60.

There are additional steps that you could perform. For example, Step 8
would allow John Smith to remove an item, increase/decrease the quantity for
each selected item, delete items, or cancel the purchase order. Step 9 would
enable John Smith to make a payment. Once again, for the sake of simplicity,
we will assume that Step 8 and Step 9 are available in an enhanced version of
this Web application.

Note that Step 8 involves updating several of our tables with the details
of the purchase order. Step 9 creates a time stamp for the date when the
purchase order was created, as well as the status of the purchase order
(“paid” versus “pending”). The status of a purchase order is used to gen-
erated reports to display the customers whose payment is overdue (and
perhaps also send them friendly reminders). Sometimes companies have
a reward-based system whereby customers who have paid on time can col-
lect credits that can be applied to other purchases (which is essentially a
discount mechanism).

DETAILED TABLE DESCRIPTIONS

If you visualize the use case described in the previous section, you can
probably see that we need

* a table for storing customer-specific information

e a table to store purchase orders (which is somehow linked to the associ-
ated customer)

e a table that contains the details of the items and quantity that are pur-
chased (which are commonly called “line items”)

e a table that contains information about each tool (which includes the
name, the description, and the price of the tool).

Hence, the RDBMS for our website requires the following tables:

® customers
® purchase orders
® line items

® item desc

The following subsections describe the contents of the preceding tables,
along with the relationships among these tables.

10 ¢ SQL Pocket Primer

The Customers Table

Although there are different ways to specify the attributes of the custom-
ers table, you need enough information to uniquely identify each customer
in the table. By analogy, the following information (except for cust_id) is
required to send physical mail to a person:

® cust id

¢ first name

® last name

® home address
®city

® state

®zip code

We will create the customers table with the attributes in the preceding list.
Although we'll defer the discussion of keys to a later chapter, it’s obvious that we
need a mechanism for uniquely identifying every customer. In this table, notice
that the cust_id attribute uniquely identifies every customer, and therefore it’s
a key for this table. Other examples of keys for database tables include

e social security numbers for people
e student id numbers for students

e course id numbers for classes

e drivers’ licenses

Whenever we need to refer to the details of a particular customer, we will
use the associated value of cust_id to retrieve those details from the row in
the customers table that has the associated cust_id.

The preceding paragraph describes the essence of linking related tables T1
and T2 in an RDBMS: the key in T1 is stored as an attribute value in T2. If we
need to access related information in table T3, then we store the key in T2 as
an attribute value in T3.

Note that a customers table in a production system would contain addi-
tional attributes, such as the following:

title (Mr, Mrs, Ms, and so forth)
shipping address
cell phone

For the sake of simplicity, we'll use the initial set of attributes to define
the customers table. Later, you can add the new attributes to the four-table
schema to make the system more like a real system.

Suppose that the following information pertains to customer John Smith,
who has been assigned a cust_id of 1000:

Introduction to RDBMSs and MySQL ¢ 11

cust _id: 1000

first name: John

last name: Smith

home address: 1000 Appian Way
city: Sunnyvale

state: California

zip code:95959

Whenever John smith makes a new purchase, we will use the cust_id
value of 1000 to create a new row for this customer in the purchase orders
table. Then whenever we need to find the purchase orders associated with
John Smith, we simply look for the rows in the purchase orders table
whose cust_id value equals 1000.

The purchase_orders Table

When existing customers visit the website, they must log into the system,
after which they can initiate a new purchase. After they select one or more
items, the system creates a purchase order to insert as a new row in the pur-
chase orders table, and a new row in the 1ine items table for each item
that was selected. While you might be tempted to place all the customers’
details in the new row, we will identify the customer by the associated cust_
id and use this value instead.

However, we must create a new row in the customers table whenever
new users register at the website. Repeat customers are identified by an
existing cust_id that must be determined by searching the customers
table with the information that the customer types into the input fields of
the main webpage.

The customers table contains a key attribute; similarly, the purchase
orders table contains an attribute that we call po_id (you are free to use a
different string) in order to associate a purchase order for a given customer.

Keep in mind the following detail: a row with a given po_id also contains
the cust_id value of the customer (in the customers table) who initiated
the current purchase order. Although there are multiple ways to define a set of
suitable attributes, let’s use the following set of attributes for the purchase
orders table:

cust id
po_id
purchase date

For example, suppose that customer John Smith, whose cust_idis 1000,
purchases some tools on December 01, 2021. Although there are dozens of
different date formats that are supported in RDBMS, we use the YYYY-MM-DD
format (which you can change to suit your particular needs). Then the new row
for John Smith in the purchase orders looks like this, where the po id
value was arbitrarily assigned:

12 ¢ SQL Pocket Primer

cust id: 1000
po_id: 12500
purchase date: 2021-12-01

As mentioned earlier, a purchase order involves one or more items, each of
which is stored in the 1ine items table thatis discussed in the next section.

The line_items Table

As a concrete example, suppose that customer John Smith requested
1 hammer, 2 screwdrivers, and 3 wrenches in his most recent purchase
order. Each of these purchased items requires a row in the line items
table that

e is identified by a 1ine id value

e specifies the quantity of each purchased item

e contains the value for the associated po_id in the purchase orders
table

e contains the value for the associated item idin the item desc table

For simplicity, let’s assign the values 5001, 5002, and 5003 to the line
id attribute for the three new rows in the line items table that represent
the hammer, screwdriver, and wrench items in the current purchase order. A
line item row might look like the following code:

po_id: 12500

line_id: 5001

item id: 100 <= we'll discuss this soon
item count: 1

item price: 20.00

item tax: 2.00

item subtotal: 22.00

Notice there is no cust_id in the preceding line item: that’s because
of the top-down approach for retrieving data. Specifically, we start with a
particular cust_id that we use to find a list of purchase orders in the pur-
chase orders table that belong to the given cust id. For each purchase
order in the purchase_orders table, we perform a search for the associated
line items in the 1ine items table. We can repeat the preceding sequence of
steps for each customer in a list of cust_id values.

Let us return to the line item details. We need to reference each pur-
chased item by its associated identifier in the item desc table. Once again,
we arbitrarily assign item_id values of 100, 200, and 300, respectively, for the
hammer, screwdriver, and wrench items. The actual values will undoubtedly
be different in your application, so there is no special significance to the num-
bers 100, 200, and 300.

The three rows in the line items table (that belong to the same pur-
chase order) look like this (we'll look at the corresponding SQL statements
later):

Introduction to RDBMSs and MySQL * 13

po_id: 12500

line id: 5001

item id: 100

item count: 1

item price: 20.00
item tax: 2.00

item subtotal: 22.00

po_id: 12500

line id: 5002

item id: 200

item count: 2

item price: 8.00
item tax: 1.60
item subtotal: 17.60

po_id: 12500
line_id: 5003

item id: 300

item count: 3

item price: 10.00
item tax: 3.00
item subtotal: 33.00

The item_desc Table

Recall that the customers table contains information about each cus-
tomer, and a new row is created each time that a new customer creates an
account for our Web application. In a somewhat analogous fashion, the item
desc table contains information about each item (aka product) that can be pur-
chased from our website. If our website becomes popular, the contents of the
item_desc table contents are updated more frequently than the customers
table, typically in the following situations:

* A new tool (aka product) is available for purchase
* An existing tool is no longer available for purchase

Thus, the item desc table contains all the details for every tool that is
available for sale, and it’s the “source of truth” for the tools that customers
can purchase from the website. At a minimum, this table contains three
fields (we’ll discuss the SQL statement for creating and populating this
table later):

SELECT *

FROM item desc;

o - oo +
| item id | item desc | item price |
o e e — T ———— +
100	hammer	20.00
200	screwdriver	8.00
300	wrench	10.00
o o — o —— +

)

3 rows in set (0.001 sec

14 ¢ SQL Pocket Primer

There is one more important detail to discuss: if an item is no longer for
sale, can we simply drop its row from the item desc table? The answer is “no”
because we need this row to generate reports that contain information about
the items that customers purchased.

Hence, it is a good idea to add another attribute called AVATLABLE (or
something similar) that contains either 1 or 0 to indicate whether the product
is available for purchase. As a result, some of the SQL queries that involve this
table will also need to take into account this new attribute. Implementation of
this functionality is not central to the purpose of this book, and therefore it is
left as an enhancement to the reader.

SQL STATEMENTS FOR THE IMPATIENT (OPTIONAL)

Before delving into the details of a purchase order, there are two imple-
mentation detail regarding tax rates. First, do we store the tax-related details
for each product in the associated row in the line items table, or do we
calculate those values dynamically when the purchase orders are generated at
run time? For simplicity, this book follows the first option.

Second, if the tax rates can change, then you have two choices: update the
hard-coded tax rate in the application code, or create another application table
(let’s call this the TAX RATE table) that contains the current tax rate, which in
this case is 0.10). The advantage of the latter option is that you do not need to
alter the application code, and you could also define multiple rows with differ-
ent tax rates.

The following list describes the sequence of steps each time that a cus-
tomer (for convenience, let’s assume it’s John Smith) purchases one or more
items from our website:

e Step 1: Customer John Smith (with cust_id 1000) initiated a purchase.
e Step 2: The newly generated purchase order has the value 12500.

e Step 3: John Smith purchased 1 hammer, 2 screwdrivers, and 3 wrenches.
e Step 4: The cost for the three items is 20.00, 16.00, and 30.00, respectively.
* Step 5: The subtotal for the purchase order is 66.00.

* Step 6: The tax is 6.60 (a tax rate of 10%).

* Step 7: The total cost is 72.60.

As you can see, the tables customers, purchase orders, and line
items have been updated as follows:

1. customers: a row for new customer John Smith

2. purchase orders: a new row for customer John Smith
3. line_items: three new rows for the new purchase order
4

item desc: no changes to this table

Introduction to RDBMSs and MySQL ¢ 1§

We need to create the customers table, then the purchase orders
table, and then the 1ine items table, as shown in the following code:

use mytools;
DROP TABLE IF EXISTS customers;

CREATE TABLE customers (cust id INTEGER, first name

VARCHAR (20), last name VARCHAR(20), home address

VARCHAR (20), city VARCHAR(20), state VARCHAR(20), Zip_code
VARCHAR (10)) ;

INSERT INTO customers

VALUES (1000, 'John', 'Smith','123 Main
St', 'Fremont', 'CA','94123");

DROP TABLE IF EXISTS purchase_orders;

CREATE TABLE purchase orders (cust id INTEGER, po_ id
INTEGER, purchase date date);

DROP TABLE IF EXISTS line_items;

CREATE TABLE line items (po_id INTEGER, line id

INTEGER, item_id INTEGER, item_count INTEGER, item_
price DECIMAL(8,2), item tax DECIMAL(8,2), item subtotal
DECIMAL (8,2)) ;

Next, creating a new purchase order involves the following steps:

1. Insert a new row in the purchase orders table (new po_id and cur-
rent cust_id).

2. For each purchased item,

a. Insertanewrowin line_items with the po_id from Step 1.

Let’s use the data values in the previous section to write the pseudocode
that performs the preceding steps for cust_id 1000 who makes a purchase
that consists of 1 hammer, 2 screwdrivers, and 3 wrenches:

Create four new rows:
insert row into purchase orders for a new purchase order
insert row into line items for 1 hammer
insert row into line items for 2 screwdrivers
insert row into line items for 3 wrenches

Finally, here are the four SQL statements that create the required new
row in the table purchase orders and the three new rows in the table
line items:

-—- create a new purchase order:
INSERT INTO purchase orders VALUES (1000,12500, '2021-12-01");

-- line item => one hammer:
INSERT INTO line items VALUES (12500,5001,100,1,20.00,2.00,22.00);

16 ¢ SQL Pocket Primer

-- line item => two screwdrivers:
INSERT INTO line items VALUES (12500,5002,200,2,8.00,1.60,17.60);

-- line item => three wrenches:
INSERT INTO line items VALUES (12500,5003,300,3,10.00,3.00,33.00);

If you want to see the details of the newly created purchase order, here is
the SQL statement, keeping in mind that the discussion of SQL statements
and the GROUP BY clause is postponed until Chapter 3:

SELECT c.cust id, p.po id, l.line id, l.item subtotal
FROM customers c, purchase orders p, line items 1
WHERE c.cust id = p.cust id

AND p.po_id = l.po_id;

R — T R — oo +
| cust id | po id | line id | item subtotal |
o= - e e +
1000	12500	5001	22.00
1000	12500	5002	17.60
1000	12500	5003	33.20
fomm - o fomm - o +

3 rows in set (0.003 sec)

If you want to see the billable cost of the newly created purchase order, the
SQL statement is as follows:

SELECT c.cust id, p.po id, sum(l.item subtotal) AS po total
FROM customers c, purchase orders p, line items2 1

WHERE c.cust id = p.cust id

AND p.po_id = l.po id

GROUP BY c.cust id, p.po_id;

- - - +
| cust id | po id | po total |
R — R fom o +
| 1000 | 12500 | 72.60 |
tom———— o to— +

1l row in set (0.000 sec)

A variant of the preceding SQL statement includes the purchase date for
the purchase order:

SELECT c.cust id, p.po_id, p.purchase date, sum(l.item
subtotal) AS po total

FROM customers c, purchase orders p, line items2 1
WHERE c.cust id = p.cust id

AND p.po_id = l.po_id

GROUP BY c.cust_id, p.po_id, p.purchase_date;

o - o o +
| cust id | po id | purchase date | po total |
R R R — - fom o +
| 1000 | 12500 | 2021-12-01 | 72.60 |
o - o = o +

1l row in set (0.001 sec)

Introduction to RDBMSs and MySQL ¢ 17

What About an Item Inventory Table?

An item inventory table is useful for ordering new items when the
inventory level drops below a predefined value. Specifically, this table con-
tains a row for each item in the item desc table, where a row consists of an
item_id attribute and an on_hand attribute that specifies how many items
are available (“on hand”) that can be purchased.

When the inventory level of an item is low (such as 20% of capacity), one
technique involves executing a trigger (discussed in Chapter 6) that sends an
alert to a system that then generates a purchase order to re-stock the item.
Note that the “system” can be an application that automatically generates pur-
chase orders or it could be a person who initiates the necessary purchase order.

For our example, we'll make a simplifying assumption that we will always
have enough inventory available for purchase orders. However, if you are look-
ing for enhancement ideas, consider 1) adding an item inventory table
to the application that is discussed in this book or 2) adding the appropriate
attributes to the item desc table.

THE ROLE OF SQL

SQL is an acronym for Structured Query Language, which is used for man-
aging data in tables in a relational database (RDBMS). SQL is a standard lan-
guage for managing the contents of structured databases. In high-level terms,
a SQL statement to retrieve data generally involves the following:

e what data you want (SELECT)
e the table(s) where the data resides (FROM)
* constraints (if any) on the data (WHERE)

For example, suppose that a friends table contains the attributes (data-
base parlance for “fields”) 1name and fname for the last name and first name,
respectively, of a set of friends, and each row in this table contains details about
one friend.

In Chapter 2, we'll learn how to create database tables and how to popu-
late those tables with data, but for now let’s just pretend that those tasks have
already been performed. Then the SQL statement for retrieving the first and
last names of the people in the friends table is as follows:

SELECT lname, fname
FROM friends;

Suppose that the friends table also contains a height attribute, which
is a number (in centimeters) for each person in the friends table. We can
extend the preceding SQL statement to specify that we want the people (rows)
whose height attribute is less than 180:

18 ¢ SQL Pocket Primer

SELECT lname, fname
FROM friends
WHERE height < 180;

SQL provides numerous keywords that enable you to specify sophisticated
queries for retrieving data from multiple tables. Both of the preceding SQL
statements are called DML statements, which is one of the four categories of
SQL statements:

* DCL (Data Control Language

e DDL (Data Definition Language)

* DQL (Data Query Language)

e DML (Data Manipulation Language)

The following subsections provide additional information for each item in
the preceding list.

DCL, DDL, DQL, DML, and TCL

DCL is an acronym for Data Control Language, which refers to any SQL
statement that contains the keywords GRANT or REVOKE. Both of the key-
words affect the permissions that are either granted or revoked for a particu-
lar user.

DDL is an acronym for Data Definition Language, which refers to any
SQL statements that specify the following: CREATE, ALTER, DROP, RENAME,
TRUNCATE, or COMMENT. These SQL keywords are used in conjunction with
database tables and in many cases with database views (discussed later).

DQL is an acronym for Data Query Language, which refers to any SQL
statement that contains the keyword SELECT.

DML is an acronym for Data Manipulation Language, which refers to
SQL statements that execute queries against one or more tables in a database.
The SQL statements contain any of the keywords INSERT, UPDATE, DELETE,
MERGE, CALL, EXPLAIN PLAN, or LOCK TABLE. In most cases, these key-
words modify the existing values of data in one or more tables.

TCL is an acronym for Transaction Control Language, which refers to any
of the keywords COMMIT, ROLLBACK, SAVEPOINT, or SET TRANSACTION.

SQL Privileges

There are two types of privileges available in SQL, both of which are
described briefly in this section. These privileges refer to database objects such
as database tables and indexes that are discussed in greater detail in subse-
quent chapters.

System privileges involve an object of a particular type and specifies the
right to perform one or more actions on the object. Such actions include the
administrator giving users permission to perform tasks such as ALTER ANY
INDEX, ALTER ANY CACHE GROUP, CREATE/ALTER/DELETE TABLE, or
CREATE/ALTER/DELETE VIEW.

Introduction to RDBMSs and MySQL * 19

Object privileges allow users to perform actions on an object or object of
another user, such as tables, views, and indexes. Additional object privileges
are EXECUTE, INSERT, UPDATE, DELETE, SELECT, FLUSH, LOAD,
INDEX, and REFERENCES.

PROPERTIES OF SQL STATEMENTS

SQL statements and SQL functions (discussed in Chapter 4) are not case
sensitive, but quoted text is case sensitive. Here are some examples of SQL
statements that are executed from the MySQL prompt:

MySQL [mytools]> select VERSION() ;

fommm - +
| VERSION() |
omm +
| 8.0.21 |
e +

1 row in set (0.000 sec)

MySQL [mytools]> SelLeCt Version();

o +
| Version() |
B Rttt +
| 8.0.21 |
fomm e +

1l row in set (0.000 sec)

Keep in mind the following useful details regarding SQL statements:

* SQL statements are not case sensitive.

e SQL statements can be on one or more lines.

* Keywords cannot be abbreviated or split across lines.
e Clauses are usually placed on separate lines.

e Indentation is for enhancing readability.

The CREATE Keyword

In general, you will use the CREATE keyword to create a database and more
often to create tables, views, and indexes. However, the following list contains
all the objects that you can create via the CREATE statement:

® DATABASE
® EVENT

® FUNCTION
® INDEX

® PROCEDURE
® TABLE

® TRIGGER

® USER

® VIEW

20 ¢ SQL Pocket Primer

With the exception of EVENT, all the keywords in the preceding list are dis-
cussed, along with SQL statements, in various chapters of this book.

DATA TYPES IN MYSQL

This section starts with a lengthy list of data types that MySQL supports,
followed by some comments about several of the data types, all of which you
can use in table definitions:

e The BIT datatype is for storing bit values in MySQL.

e The BOOLEAN datatype stores True/False values.

* The CHAR data type is for storing fixed length strings.

* The DATE datatype is for storing date values.

e The DATETIME datatype is for storing combined date and time values.
e The DECIMAL datatype is for storing exact values in decimal format.

e The ENUM datatype is a compact way to store string values.

e The INT datatype is for storing an integer data type.

* The JSON data type is for storing JSON documents.

 The TEXT datatype is for storing text values.

* The TIME datatype is for storing time values.

* The TIMESTAMP datatype is for a wider range of date and time values.
e The TO_SECONDS datatype is for converting time to seconds.

e The VARCHAR datatype is for variable length strings.

* The XML data type provides support for XML documents.

The CHAR and VARCHAR Data Types

The cHAR type has a fixed column length whose value is declared while
creating tables, which can range from 1 to 255. CHAR values are right padded
with spaces to the specified length, and trailing spaces are removed when CHAR
values are retrieved.

By contrast, the VARCHAR type indicates variable length CHAR values whose
length can be between 1 and 2000, and it occupies the space for NULL values.

The VARCHAR? type indicates variable length CHAR values whose length can
be between 1 and 4000, but cannot occupy the space for NULL values. Hence,
VARCHAR? has better performance than VARCHAR.

String-Based Data Types

The previous bullet list contains various string types, and the latter have
been extracted and placed in a separate list below for your convenience:

® BLOB
® CHAR
® ENUM

Introduction to RDBMSs and MySQL e« 21

® SET
® TEXT
® VARCHAR

The ENUM datatype is string object that specifies a set of predefined values,
which can be used during table creation:

CREATE TABLE PIZZA (name ENUM('Small', 'Medium', 'Large'));
Query OK, 0 rows affected (0.021 sec)

DESC pizza;

o o — - +————- t———————— - +
| Field | Type | Null | Key | Default | Extra |
o o — +————— +———— o o +
| name | enum('Small', | YES | | NULL |
| | "Medium', 'Large") | | | |
o o — +————— +———— o o +

1l row in set (0.004 sec)

FLOAT and DOUBLE Data Types

Numbers in the FLOAT format are stored in four bytes and have eight deci-
mal places of accuracy. Numbers in the DOUBLE format are stored in eight

bytes and have eighteen decimal places of accuracy.

BLOB and TEXT Data Types

A BLOB is an acronym for binary large object that can hold a variable
amount of data. There are four BLOB types whose only difference is their maxi-

mum length:

® TINYBLOB

® BLOB

e MEDIUMBLOB
® LONGBLOB

A TEXT data type is a case-insensitive BLOB, and there are four TEXT types
whose difference pertains to their maximum length (all of which are non-

standard data types):

® TINYTEXT

® TEXT

® MEDIUMTEXT
® LONGTEXT

Keep in mind the following difference between BLOB types and TEXT types:
BLOB types involve case-sensitive sorting and comparisons, whereas these
operations are case-insensitive for TEXT types.

22 ¢ SQL Pocket Primer

MYSQL DATABASE OPERATIONS

There are several operations that you can perform with a MySQL database:

e Create a database
 Import/Export a database
* Drop a database

e Rename a database

You will see examples of how to perform each of the preceding bullet items
in the following subsections.

Creating a Database

Log into MySQL and execute the following SQL statement to create the
mytools database:

MySQL [mysgl]> create database mytools;
Query OK, 1 row affected (0.004 sec)

Now select the mytools database with the following command:

MySQL [(none)]> use mytools;

Reading table information for completion of table and
column names

You can turn off this feature to get a quicker startup
with -A

Database changed

Display a List of Databases

Display the existing databases by invoking the following SQL statement:

mysql> SHOW DATABASES;

The preceding command displays the following output (which might be
different for your machine):

| beans \
| information schema |
| minimal |
| mysql \
| mytools \
| performance schema |
| sys \

9 rows in set (0.002 sec)

Introduction to RDBMSs and MySQL e« 23

Display a List of Database Users

Display the list of existing users by invoking the following SQL
statement:

mysqgl> select user from mysqgl.user;

The preceding SQL statement displays the following output:

mysqgl.infoschema
mysgl.session
mysgl.sys

root

4 rows in set (0.001 sec)

Dropping a Database

Log into MySQL and invoke the following SQL statement to create, select,
and then drop the pizza database:

MySQL [(none)]> create database pizza;
Query OK, 1 row affected (0.004 sec)
MySQL [(none)]> use pizza;

Database changed

MySQL [pizza]> drop database pizza;
Query OK, 0 rows affected (0.007 sec)

Performing this task with a database that does not contain any data is
straightforward, without the loss of any data.

EXPORTING A DATABASE

Although you currently have an empty database, it’s still good to know
how the steps for exporting a database, which is handy as a backup and also
provides a simple way to create a copy of an existing database on a different
machine.

By way of illustration, let’s first create the database called minimal in
MySQL, as shown here:

MySQL [mytools]> create database minimal;
Query OK, 1 row affected (0.006 sec)

Next, invoke the mysqldump command from the command line to export
the minimal database, as shown here:

mysgldump -u username -p"password" -R minimal > minimal.sqgl

24 o SQL Pocket Primer

Notice the details of the preceding command. First, there are no interven-
ing spaces between the -p flag and the password in order to bypass a command
line prompt to enter the password. Second, make sure that you omit the quote
marks. Third, the -R flag instructs mysqldump to copy stored procedures and
functions in addition to the database data.

As a specific example, if the user is root and the password is mypassword,
then the preceding command is as follows:

mysgldump -u root -pmypassword -R minimal > minimal.sqgl

At this point, you can create tables in the minimal database and periodically
export its contents. Listing 1.1 shows the content of minimal.sql, which is
the complete description of the minimal database.

LISTING 1.1: minimal.sql

-- MariaDB dump 10.18 Distrib 10.5.8-MariaDB, for osx10.15 (x86_ 64)

—-- Host: localhost Database: minimal

-- Server version 8.0.21

/*140101 SET @OLD CHARACTER SET CLIENT=@@CHARACTER SET CLIENT */;
/*140101 SET @OLD_ CHARACTER SET RESULTS=@QCHARACTER SET RESULTS */;
/*140101 SET @OLD COLLATION CONNECTION=@@COLLATION CONNECTION */;
/*140101 SET NAMES utf8mb4 */;

/*140103 SET @OLD TIME ZONE=@@TIME ZONE */;

/*140103 SET TIME ZONE='+00:00' */;

/*140014 SET @OLD_UNIQUE CHECKS=@RUNIQUE CHECKS, UNIQUE_CHECKS=0 */;
/*140014 SET @OLD_FOREIGN_KEY CHECKS=@E@FOREIGN_KEY CHECKS, FOREIGN_KEY
CHECKS=0 */;

/*!140101 SET QOLD SQL MODE=@@SQL MODE, SQL MODE='NO AUTO VALUE ON ZERO' */;
/*140111 SET @OLD_SQL NOTES=@@SQL NOTES, SQL NOTES=0 */;

—-- Dumping routines for database 'minimal'
/*140103 SET TIME ZONE=@OLD TIME ZONE */;

/*140101 SET SQL MODE=@QOLD SQL MODE */;

/*140014 SET FOREIGN KEY CHECKS=@OLD FOREIGN KEY CHECKS */;
/*140014 SET UNIQUE CHECKS=QOLD UNIQUE CHECKS */;

/*140101 SET CHARACTER SET CLIENT=QOLD CHARACTER SET CLIENT */;
/*140101 SET CHARACTER SET RESULTS=QOLD CHARACTER SET RESULTS */;
/*140101 SET COLLATION CONNECTION=@QOLD COLLATION CONNECTION */;
/*140111 SET SQL NOTES=QOLD_SQL NOTES */;

—- Dump completed on 2021-12-23 22:44:54

RENAMING A DATABASE

Since the database is empty, it’s convenient to see how to rename a database
(and besides, it’s faster to do so with an empty database).

Introduction to RDBMSs and MySQL e 2§

Older versions of MySQL provided the RENAME DATABASE command to
rename a database; however, newer versions of MySQL have removed this
functionality to avoid security risks.

Perform the following three-step process using MySQL command line util-
ities to rename a MySQL database oLD_DB (which you need to replace with
the name of the database that you want to rename) to a new database, NEW_DB
(replaced with the actual new database name):

Step 1) Create an exported copy of database oLD_DB.
Step 2) Create a new database called NEw_DB.
Step 3) Import data from OLD_DB into NEW_DB.

Perform Step 1) by invoking the following command (see the previous section):
mysgldump -u username -p"password" -R OLD DB > OLD DB.sqgl
Perform Step 2) by invoking the following command:
mysgladmin -u username -p"password" create NEW DB
Perform Step 3) by invoking the following command:

mysgl -u username -p"password" newDbName < OLD DB.sql

Verify that everything worked correctly by logging into MySQL and select-
ing the new database:

MySQL [mysqgl]> use NEW DB;
Database changed

SHOW DATABASE TABLES

Log into MySQL and select the mytools database as described in the pre-
ceding section, and then display the tables in the mytools database with the
following command:

use mytools;
Database changed

show tables;

Fomm e +
| Tables in mytools |
Fom e +
account
courses

I \
| \
| curr exchange rate |
| currencies |
| cust history \
| customers |
| employees \

26 * SQL Pocket Primer

FRIENDS
FRIENDS2
item desc
Jjapnl
Jjapn2
Japn3
japn_emps
jsonl
line items
new items
people
people?2

purchase orders

sample
schedule
students
temp cust?2
user

user?2
user3
weather
weather?2

29 rows in set (0.001 sec)

stored in mytools.sql.

SQOL

The preceding output displays the tables in the mytools database that you
will encounter in various chapters of this book. Note that Chapter 6 contains
the SQL file mytools.sql that you can execute to generate the mytools
database that creates and populates the tables in mytools with the data that is

Now let’s switch to the mysgl database and show the list of tables in that
database:

[mytools]> use mysqgl;

Reading table information for completion of table and
column names
You can turn off this feature to get a quicker startup with -A

Database changed

MySQL

columns priv
component
db

default roles

engine cost
func
general log

global grants

[mysgl]> show tables;

Introduction to RDBMSs and MySQL o 27

| gtid executed
| help category
| help keyword
| help relation
| help topic
| innodb index stats
| innodb table stats
| password history
| plugin

| procs priv
| proxies priv
| role edges
| server cost
| servers

| slave master info

| slave relay log info

| slave worker info

| slow log

| tables priv

| time zone

| time zone leap second

| time zone name

| time zone transition

| time zone transition type
| user

33 rows in set (0.004 sec)

Although we won't explore this database, you can read the online documen-
tation for more information about the tables in this database.

THE INFORMATION_SCHEMA TABLE

The INFORMATION SCHEMA.COLUMNS table enables you to retrieve informa-
tion about the columns in a given table. Execute the following SQL statement:

desc INFORMATION SCHEMA.COLUMNS;

Some of the columns in the preceding table are as follows:

TABLE SCHEMA

TABLE NAME

COLUMN_ NAME
ORDINAL POSITION
COLUMN DEFAULT

IS NULLABLE

DATA TYPE
CHARACTER MAXIMUM LENGTH
NUMERIC PRECISION
NUMERIC SCALE
DATETIME PRECISION

We can query the preceding table to obtain more information about the
structure of the weather table that is created later in this book:

28 ¢ SQL Pocket Primer

MySQL [mytools]> desc weather;

o fom - fo——— fmm fom———— +
| Field | Type | Null | Key | Default | Extra |
fom e ——— o fo————— +————- o o +
| day | date | YES | | NULL | |
| temper | int | YES | | NULL | |
| wind | int | YES | | NULL \ \
forecast	char(20)	YES		NULL	
city	char (20)	YES		NULL	
state	char (20)	YES		NULL	
o o - +————- o o +

6 rows in set (0.001 sec)
Now invoke the following SQL statement:
SELECT COLUMN NAME, DATA TYPE, IS NULLABLE, COLUMN DEFAULT
FROM INFORMATION SCHEMA.COLUMNS
WHERE TABLE NAME = 'weather'
AND table schema = 'mytools';

The preceding SQL query generates the following output:

tom e ———— tom e ———— Fom e ———— o — +
| COLUMN NAME | DATA TYPE | IS NULLABLE | COLUMN DEFAULT |
R — R ——— Fmmm R ———————- +
city	char	YES	NULL
day	date	YES	NULL
forecast	char	YES	NULL
state	char	YES	NULL
temper	int	YES	NULL
wind	int	YES	NULL
o o o o — +

6 rows in set (0.001 sec)

THE PROCESSLIST TABLE

The PROCESSLIST table contains information about the status of SQL
statements. This information is useful when you want to see the status of table-
level or row-level locks on a table (which is outside the scope of this book).
The following SQL statement shows you an example of the contents of this

table.

MySQL [mytools]> show processlist;

e e bt et Fo—m Fo—— e Fo—— Fo————
————————— Bttt

| Id | User | Host | db | Command | Time | State

| Info

B Fo—m Fo—— Fom— Fo—— Fo—m
———————— B

| 5 | event scheduler | localhost | NULL | Daemon
empty queue | NULL

138765 | Waiting on

| 9 | root | localhost | mytools | Query | 0 | starting

| show processlist |

e e bt et Fo—m Fo—— e Fo—— Fo————
————————— Bttt

2 rows in set (0.000 sec)

Introduction to RDBMSs and MySQL * 29

SQL FORMATTING TOOLS

As you might expect, there are various formatting styles for SQL state-
ments, and you can peruse them to determine which style is most appealing to
you. The following site has an online SQL formatter:

https://codebeautify.org/sqlformatter

The following site contains 18 SQL formatters, some of which are com-
mercial and some are free:

https:/fwww.sqlshack.com/sql-formatter-tools/

The following site contains a list of SQL formatting conventions (i.e., it’s
not about formatting tools):

https://lopendatascience.com/best-practices-sql-formatting

If you work in an environment where the SQL formatting rules have already
been established, it might be interesting to compare that style with those of the
SQL formatting tools in the preceding links.

If you are a SQL beginner working on your own, it’s also worth exploring
these sites as you learn more about SQL statements throughout this book. As
you gain more knowledge about writing SQL statements, you will encounter
various styles in blog posts and the conventions that they follow for formatting
SQL statements.

SUMMARY

This chapter started with an introduction to the concept of an RDBMS,
and the rationale for using an RDBMS. In particular, you saw an example of an
RDBMS with a single table, two tables, and four tables (and there are much
larger RDBMSs).

Then you got a brief introduction to the notion of database normaliza-
tion, and how doing so will help you maintain data integrity (“single source of
truth”) in an RDBMS.

Next, you learned about the structure of the tables in a four-table database
that keeps track of customer purchases of tools through a webpage. You also
saw which tables have a one-to-many relationship so that you can find all the
line items that belong to a given purchase order.

In addition, you obtained a brief introduction to SQL and some basic exam-
ples of SQL queries (more details are in Chapter 2). You also learned about
various types of SQL statements that can be classified as DCL (Data Control
Language), DDL (Data Definition Language), DQL (Data Query Language),
or DML (Data Manipulation Language).

Next, you learned about SQL data types, and then you learned how to per-
form database operations, such as creating, dropping, and renaming a database
in MySQL. Finally, you learned about two useful built-in tables that enable you
to find the columns of a given table and the status of SQL statements.

CHAPTER

WORKING WITH SOL AND MySQL

and SQL concepts, whereas this chapter contains more details about
MySQL and illustrates various SQL statements that are necessary to
create and manage the database tables for a fictitious website.

The first part of this chapter presents various ways to create MySQL
tables, which can be performed manually, from SQL scripts, or from the
command line. You will also see how to create a MySQL table that contains
Japanese text that contains a mixture of Kanji and Hiragana. This section
also shows you how to drop and alter MySQL tables, and how to populate
MySQL tables with seed data.

The second part of this chapter contains an assortment of SQL statements
that involve the SELECT keyword. You will see SQL statements that find the
distinct rows in a MySQL table as well as the unique rows, along with using the
EXISTS and LIMIT keywords. This section also explains the differences among
the DELETE, TRUNCATE, and DROP keywords in SQL.

The third part of this chapter introduces the concept of an index, and then
shows you how to create indexes on MySQL tables, along with criteria for
defining indexes, followed by how to select columns for an index. Although the
four tables in Chapter 1 are very small enough and do not require any indexes,
it’s important to understand the purpose of indexes and how to create them.

Depending on the configuration of MySQL on your system, you might
encounter issues when you attempt to export data in a database table to a text
file or when you attempt to import CSV data into a database table. A sim-
pler alternative is to download and install MySQL Workbench (discussed in
Chapter 6) to export MySQL data or to import data into MySQL tables.

The previous chapter provided a fast-paced introduction to RDBMSs

32 ¢ SQL Pocket Primer

DROP DATABASE TABLES

You might be wondering why we're discussing how to drop a database table
when we haven’t learned how to create a table. SQL scripts, as well as com-
mand line invocations of SQL statements, will often drop a table and then re-
create the table for the following reasons:

1. The table definition needs to be modified.
2. The table data needs to be modified.
3. Both1)and?2).

Listing 2.1 shows the content of mytools drop_tables.sql that illus-
trates the syntax to drop multiple database tables (but without recreating
them).

LISTING 2.1: mytools_drop_tables.sql

USE DATABASE mytools;

-- drop tables if they already exist:
DROP TABLE IF EXISTS customers;

DROP TABLE IF EXISTS purchase orders;
DROP TABLE IF EXISTS line items;
DROP TABLE IF EXISTS item_desc;

Listing 2.1 contains four SQL statements to drop four tables if they already
exist. If they do not exist, then no error occurs. Now let’s see how to create
database tables, as discussed in the next section.

CREATE DATABASE TABLES

There are three ways to create database tables in MySQL as well as other
RDBMSs. One technique is manual (shown first); another technique (shown
second) invokes a SQL file that contains suitable SQL commands; and a third
technique involves redirecting a SQL file to the MySQL executable from the
command line.

The next section shows you how to create the four tables (described in
Chapter 1) for the Web application.

Manually Creating Tables for mytools.com

This section shows you how to manually create the four tables for the
mytools database based on the attributes (column names) that were discussed
in Chapter 1. Specifically, you will see how to create the following four tables:

® customers

® purchase orders

Working with SQL and MySQL ¢ 33

® line items

® item desc

Now log into MySQL, and after selecting the mytools database, type the
following commands to create the required tables:

MySQL [mytools]> CREATE TABLE customers (Cust_id INTEGER,
first name VARCHAR(20), last name VARCHAR(20), home address
VARCHAR (20) city VARCHAR(20), state VARCHAR (20), Zipicode
VARCHAR (10)) ;

MySQL [mytools]> CREATE TABLE purchase orders (cust id
INTEGER, po_id INTEGER, purchase date date);

MySQL [mytools]> CREATE TABLE line items (po id INTEGER,
line id INTEGER, item id INTEGER, item count INTEGER, item
price DECIMAL(8,2), item tax DECIMAL(8,2), item subtotal
DECIMAL (8,2));

MySQL [mytools]> CREATE TABLE item desc (item id INTEGER,

item desc VARCHAR(80), item price DECIMAL(S8,2));

Describe the structure of the customers table with the following
command:

MySQL [mytools]> desc customers;

tom - tom +-———— +-———- tom R et +
| Field | Type | Null | Key | Default | Extra
o o +o———— +-———- Fom— to————— +
| cust_id | int | YES | | NULL |

| first name | varchar (20) | YES | | NULL |

| last name | varchar (20) | YES | | NULL |

| home address | varchar(20) | YES | | NULL |

| city | varchar (20) | YES | | NULL |

| state | varchar (20) | YES | | NULL |

| zip_ code | varchar (10) | YES | | NULL |
o o o +-———= Fomm o +

7 rows in set (0.003 sec)

Describe the structure of the purchase_orders table with the following
command:

MySQL [mytools]> desc purchase orders;

o - +————— - o o +
| Field | Type | Null | Key | Default | Extra |
B it L o +————— +-———= tomm o +
cust id	int YES		NULL		
po_id	int	YES		NULL	
purchase date	date	YES		NULL	
o o +————— - o o +

3 rows in set (0.004 sec)

34 < SQL Pocket Primer

Describe the structure of the line items table with the following
command:

MySQL [mytools]> desc line items;

o o —— o +o———= o o +
| Field | Type | Yes | Key | Default | Extra |
o B it o o= o o +
| po_id | int | YES | | NULL |

| line id | int | YES | | NULL |

| item id | int | YES | | NULL |

| item count | int | YES | | NULL |

| item price | decimal (8,2) | YES | | NULL |

| item tax | decimal (8,2) | YES | | NULL |

| item subtotal | decimal(8,2) | YES | | NULL |

o P o o o B o ———— +
7 rows in set (0.002 sec)

Describe the structure of the item desc table with the following
command:

MySQL [mytools]> desc item desc;

tmmm e tmm e to———— +————— tmmm tm————— +
| Field | Type | Null | Key | Default | Extra |
o tomm to————— +———— tomm tomm +
item id	int	YES		NULL
item desc	varchar (80)	YES		NULL
item price	decimal(8,2)	YES		NULL
tmmm e tmm e to———— +————— tmmm tm————— +

3 rows in set (0.006 sec)

Creating Tables via a SQL Script for mytools.com

The previous section shows you a manual technique for creating data-
base tables. By contrast, Listing 2.2 shows the content of mytools create_
tables.sqgl that illustrates how to define multiple SQL statements for
creating database tables. Note that the SQL statements are identical to the
SQL statements in the previous section.

LISTING 2.2: mytools_create_tables.sql
USE DATABASE mytools;

-- drop tables if they already exist:
DROP TABLE IF EXISTS customers;

DROP TABLE IF EXISTS purchase orders;
DROP TABLE IF EXISTS lineiitems;

DROP TABLE IF EXISTS item desc;

—— these SQL statements are the same as the previous
section:

CREATE TABLE customers (cust id INTEGER, first name
VARCHAR (20) , last name VARCHAR(20), home address

Working with SQL and MySQL ¢ 35

VARCHAR (20) , city VARCHAR(20), state VARCHAR(20), zip code
VARCHAR (10)) ;

CREATE TABLE purchase_orders (cust id INTEGER, po id
INTEGER, purchase date date);

CREATE TABLE line_items (poiid INTEGER, lineiid

INTEGER, item_id INTEGER, item_count INTEGER, item_
price DECIMAL(8,2), item tax DECIMAL(8,2), item subtotal
DECIMAL (8,2));

CREATE TABLE item desc (item_id INTEGER, item_desc
VARCHAR (80), item price DECIMAL(8,2));

Listing 2.2 contains three sections. The first section selects the mytools
database, and the second section drops any of the four required tables if they
already exist. The third section contains the SQL commands to create the four
required tables.

Creating Tables with Japanese Text

Although this section is not required for any of the code samples in this
book, it's nonetheless interesting to see how easily you can create a MySQL
table with Japanese text. The Japanese text was inserted from a MacBook after
adding a Hiragana keyboard and a Katana keyboard. Perform an online search
for instructions that explain how to add these keyboards to your laptop.

Listing 2.3 shows the content of japanesel.sql that illustrates how to
create a MySQL table that is populated with Japanese text.

LISTING 2.3: japanese1.sql

use mytools;
DROP TABLE IF EXISTS japnl;

CREATE TABLE japnl

(
emp_id INT NOT NULL AUTO_ INCREMENT,
fname VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_ general ci NOT NULL,
lname VARCHAR (100) CHARACTER SET utf8 COLLATE utf8_ general ci NOT NULL,
title VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
PRIMARY KEY (emp_id)

) i

INSERT INTO japnl SET fname="{}C&", Iname="FIf|", title="_ 68";
INSERT INTO japnl SET fname="¢ 724", lname="D L W\",title="/n5H L";
INSERT INTO japnl SET fname="# A7/l K", lname="#m/R",title="RIHF";
INSERT INTO japnl SET fname="JNi", Iname="[!4", title="9T\>|";

\! echo '=> All rows in table Jjapnl:';
SELECT * FROM japnl;

\! echo '=> Rows whose lname contains 7#:';
SELECT * FROM japnl
WHERE lname LIKE '$4%';

36 ¢ SQL Pocket Primer

Listing 2.3 starts with the definition of the table japn1l that defines the
fname, lname, and title attributes as VARCHAR(100) and also specifies
ut£8 as the character set and ut£8 general ci as the collating sequence.
These extra keywords enable us to store Hiragana and Kanji characters in these
three attributes. Launch the code in Listing 2.3 from the MySQL prompt to
see the following output:

Database changed

Query OK, 0 rows affected (0.005 sec)

Query OK, rows affected, 6 warnings (0.005 sec)
Query OK, row affected (0.001 sec)

Query OK, row affected (0.001 sec)

Query OK, row affected (0.001 sec)

Query OK, row affected (0.001 sec)

o

el e

=> All rows in table japnl:

o e o —— o +
| emp id | fname | lname | title |
o e o —— o +
1 0T	EE	LbB
2 1 vHkA I’DEQS	5 &	
3	FATIIR A1	R4 F
I 4 | | % | T2 |
o o fom fom - +
4 rows in set (0.000 sec)

=> Rows whose lname matches 7:

tomm o fomm fom +

| emp id | fname | lname | title |
o o fomm - fom +

| 3 | ZI—X\‘V/I/ I\ | ﬁm/\ | Er;lﬁ‘:\: |
tm————— o fmm———— o ——— +

1l row in set (0.000 sec)

The preceding example is a rudimentary example of working with Japanese
text in a MySQL table. Chapter 4 shows you how to perform a join on the table
japnl with the table japn2, where the text in japn2 contains the English
counterpart to the text in japnl. You can also search online for other SQL-
based operations that you can perform with this data, as well as examples of
creating MySQL tables for other languages.

Creating Tables from the Command Line

The third technique for invoking a SQL file is from the command line. First
make sure that the specified database already exists (such as mytools). Next,
invoke the following command from the command line to execute the SQL
statements in employees.sqgl in MySQL:

mysql —--password=<your-password> --user=root mytools <
user.sqgl

Listing 2.4 shows the content of user.sql that illustrates how to create a
database table and populate that table with data.

Working with SQL and MySQL ¢ 37

LISTING 2.4: user.sql
USE mytools;

DROP TABLE IF EXISTS user;
CREATE TABLE user (user_id INTEGER(8), user_title VARCHAR(20));

INSERT INTO user VALUES (1000, 'Developer');

INSERT INTO user VALUES (2000, 'Project Lead');
INSERT INTO user VALUES (3000, 'Dev Manager');

INSERT INTO user VALUES (4000, 'Senior Dev Manager');

Log into MySQL with the following command from the command line:

mysqgl —--password=<your-password> —user=root

Enter the following two commands (shown in bold):

MySQL [(none)]> use mytools;

Reading table information for completion of table and
column names

You can turn off this feature to get a quicker startup with
-A

Database changed
MySQL [mytools]> desc user;

e —— fom e === o ————— t—————— +
| Field | Type | Null | Key | Default | Extra |
o o +————— +————= o - +
user id	int	YES		NULL	
user class	int	YES		NULL	
user title	wvarchar(20)	YES		NULL	
R ——————- o S R O fom +

The section in this chapter that discusses the concept of keys contains an
example of creating a table that contains a primary key of type AUTOINCREMENT,
which is incremented each time that a row is inserted into a given table.

Defining Table Attributes

You have already seen examples of table columns that use CHAR as well
as VARCHAR in their definition. In some cases, you might see a performance
improvement if you adopt the following recommendations:

* Use CHAR instead of VARCHAR for fixed-length fields.

e Use TEXT for large blocks of text such as blog posts.

e Use INT for larger numbers up to 2”32 or 4 billion.

* Use DECIMAL for currency to avoid floating point representation errors.

* Avoid storing large BLOBS, store the location of where to get the object
instead.

e Set the NOT NULL constraint where applicable to improve search
performance.

38 ¢ SQL Pocket Primer

CHAR is recommended because it enables fast random access, whereas
VARCHAR necessitates finding the end of the current string before processing
the next string.

Another point to remember is that a TEXT attribute supports Boolean
searches: using a TEXT field involves storing a pointer on disk that is used to
locate the text block.

WORKING WITH ALIASES IN SQL

An alias can be used for 1) an existing table, 2) dynamically creating a table
based on an existing table, 3) creating a view, or 4) assigning a temporary name
to an attribute of a table in a SQL statement.

You can create an alias with the A5 keyword, whose scope is limited to the
SQL statement in which it appears. The As keyword is used in multiple ways.
For example, the following SQL statement uses the As keyword as an alias for
an existing table:

SELECT emp id, mgr_ id
FROM employees AS emps;

t-—————— fom +
| emp id | mgr id |
R
1000	2000
2000	3000
3000	4000
4000	4000
fom o +

4 rows in set (0.002 sec)

Use the As keyword to create a new table based on an existing table, as
shown here:

CREATE TABLE user2 AS (SELECT * FROM user);

Use the as keyword to create a new table based on a subset of the attributes
of an existing table, as shown here:

CREATE TABLE user3 AS (SELECT user title FROM user);

Use the as keyword to create a view based on an existing table, as outlined
here:

CREATE VIEW V3 AS (SELECT ...);

Working with SQL and MySQL ¢ 39

Use the as keyword to specify aliases for table attributes, as shown here:

SELECT emp_id AS e, mgr id AS m, title AS t
FROM employees;

t————— f————— o +
| e | m | t \
R t————— o +
1000	2000	Developer
2000	3000	Project Lead
3000	4000	Dev Manager
4000	4000	Senior Dev Manager
- +————— o +
4 rows in set (0.006 sec)

Later you will see the SQL statement to create and populate the employees
table with data.

ALTER DATABASE TABLES WITH THE ALTER KEYWORD

Add

If you want to modify the columns in a table, you can use the ALTER com-
mand to add new columns, drop existing columns, or modify the data type of
an existing column. Whenever a new column is added to a database table, that
column will contain NULL values. However, you can invoke SQL statements to
populate the new column with values, as shown in the next section.

a Column to a Database Table

As a simple example, let’s create the table user2 from table user, as shown
here:

CREATE TABLE user2 AS (SELECT * FROM user);

Let’s add the character columns fname and 1name to table user2 by exe-
cuting the following SQL commands:

MySQL [mytools]>

ALTER TABLE user?2

ADD COLUMN fname VARCHAR(20) ;

Query OK, 0 rows affected (0.011 sec)
Records: 0 Duplicates: 0 Warnings: 0

MySQL [mytools]>

ALTER TABLE user?2

ADD COLUMN lname VARCHAR(20);

Query OK, 0 rows affected (0.012 sec)
Records: 0 Duplicates: 0 Warnings: 0

40 e SQL Pocket Primer

Let’s look at the structure of table user2, which contains two new columns

with NULL values:

MySQL [mytools]> desc user?2;
fom - fomm -
| Field | Type
e —— o ——
| user_ id | int

| user title | varchar (20)

| fname | varchar (20)

| lname | varchar (20)

Fomm - Fomm e

4 rows in set (0.002 sec)

Let’s look at the rows in table

+———— + — +

query:

select * from user?2;

o o tom————
| user id | user title | fname
- B ettt ettt +———————
| 1000 | Developer | NULL

| 2000 | Project Lead | NULL

| 3000 | Dev Manager | NULL

| 4000 | Senior Dev Manager | NULL
e Bt it b L et F-m—————

4 rows in set (0.001 sec)

R it Fo———— +
| Default | Extra |
fo————— +-————— +
NULL	
NULL	
NULL	
NULL	
Fo————— R +

——————— +
lname
——————— +
NULL |
NULL |
NULL |
NULL |
——————— +

How do we insert the appropriate values for the new fname and lname
attributes for each existing row? One way to update these attributes is to
issue a SQL query for each row that updates these attributes based on the

user id:

UPDATE user?2

SET fname = 'John', lname
WHERE user id = 1000;
UPDATE user?2

SET fname = 'Jane', lname
WHERE user id = 2000;
UPDATE user?2

SET fname = 'Dave', lname
WHERE user id = 3000;
UPDATE user?2

SET fname = 'Jack', lname

WHERE user id = 4000;

'Smith'

'Stone’

'Dodds"'

'Jones'

Working with SQL and MySQL e 41

We can confirm that the user2 table has been updated correctly with the
following SQL query:

select * from user?2;

t———————— Bt it E et Fo——————— Fo——————— +
| user id | user title | fname | lname |
N R - N N +
1000	Developer	John	Smith
2000	Project Lead	Jane	Stone
3000	Dev Manager	Dave	Dodds
4000	Senior Dev Manager	Jack	Jones
fom o fom———— fom———— +

4 rows in set (0.000 sec)

Unfortunately, the preceding solution is not scalable if you need to update
hundreds or thousands of rows with values for the new attributes. There are
several options available, depending on the location of the values for the new
attributes: one option involves importing data and another involves program-
matically generating SQL statements.

If you have a CSV file that contains the complete data for the table rows,
including values for the fname and 1name attributes, the solution is straight-
forward: delete the rows from the user2 table and then import the data from
the CSV file into the user2 table.

However, if the existing data is located in one CSV file and the data for the
two new attributes is located in a separate CSV file, you need to merge the
two CSV files into a single CSV file, after which you can import the CSV file
directly into the user2 table. An example of performing this task is discussed
after the following section that drops a column and changes column types.

Drop a Column from a Database Table

The following SQL statement illustrates how to drop the column str_date
from the table mytable:

ALTER TABLE mytable
DROP COLUMN str date;

Chapter 6 contains a complete example of dropping a column from a
MySQL table.

Change the Data Type of a Column

Listing 2.5 shows the content of people ages.sql that illustrates how to
change the data type of a column in a MySQL table.

42 o SQL Pocket Primer

LISTING 2.5: people_ages.sql

USE mytools;
DROP TABLE IF EXISTS people ages;
CREATE TABLE people ages (float ages DECIMAL (4,2), floor ages INT);

INSERT INTO people ages VALUES (12.3,0);
INSERT INTO people ages VALUES (45.6,0);
INSERT INTO people_ages VALUES (78.9,0);
INSERT INTO people ages VALUES (-3.4,0);

DESC people ages;

SELECT * FROM people_ages;

-- populate floor ages with FLOOR (=INT) value:
UPDATE people_ ages

SET floor ages = FLOCR (float_ages) ;

SELECT * FROM people_ ages;

-- change float ages to INT data type:

ALTER TABLE people ages CHANGE float ages int ages INT;
DESC people_ages;

SELECT * FROM people ages;

-- rows whose minimum age is less than min value:
SELECT @min value := 2;
SELECT * FROM people ages WHERE floor ages < @min value;

Listing 2.5 creates and populates the people ages table with data. The
other code in Listing 2.5 contains three SQL statements, each of which starts
with a comment statement that explains its purpose.

The first SQL statement populates the integer-valued column floor_ages
with the floor of the float ages column via the built-in FLOOR () function.

The second sQL statement alters the decimal-valued column float ages
to a column of type INT.

The third SQL statement displays the rows in the people ages table
whose floor ages value is less than min_value.

Launch the code in Listing 2.5 to see the following output:

o Fomm - +—————- +-———= Fomm——— - +
| Field | Type | Null | Key | Default | Extra |
o B +————— +-——— o to—————— +
| float ages | decimal(4,2) | YES | | NULL | |
| floor ages | int | YES | | NULL | |
o B +————— +-——— o to—————— +

o o +
| float ages | floor ages |
Hmm e R FRE R +
12.30	0
45.60	0
78.90	0
-3.40	0
o ——— o +

4 rows in set (0.000 sec)

Working with SQL and MySQL * 43

Query OK, 4 rows affected (0.001 sec)
Rows matched: 4 Changed: 4 Warnings: 0

o o +
| float ages | floor ages |
FRE e FR JE— +
12.30	12
45.60	45
78.90	78
-3.40	-4
o o +

4 rows in set (0.000 sec)

Query OK, 4 rows affected (0.014 sec)
Records: 4 Duplicates: 0 Warnings: 0

o +o———— +—————- +-————- Fom———— t—————— +
| Field | Type | Null | Key | Default | Extra |
o o t—————— +————— o to————— +
| int ages | int | YES | | NULL | |
| floor ages | int | YES | | NULL | |
o o t—————— +————— o to————— +

2 rows in set (0.001 sec)

tomm = o +
| int ages | floor ages |
FR 4o - +
12	12
46	45
79	78
-3	-4
Fom— - Fom - +

4 rows in set (0.000 sec)

o +
| @min value := 2 |
o SR +
| 2
o +

o Fo—————— +
| int ages | floor ages |
I — R _————— +
| -3 | -4 |
o o +

1 row in set (0.000 sec)

What are Referential Constraints?

Referential constraints (also called constraints) prevent the insertion of
invalid data into database tables. In general, constraints on a table are speci-
fied during the creation of the table. Here is a list of constraints that SQL
implementations support:

® CHECK

® DEFAULT

® FOREIGN KEY

44 e+ SQL Pocket Primer

e PRIMARY KEY
® NOT NULL
® UNIQUE

In case you don't already know, an orphan row in a database table is a row
without its associated parent row that’s typically stored in a separate table. An
example would be a customer in the (parent) customers table and the associ-
ated (child) rows in the purchase orders table. Note that a similar relation-
ship exists between the (parent) purchase orders table and the associated
(child) rows in the 1ine items table.

COMBINING DATA FOR A TABLE UPDATE (OPTIONAL)

This section shows you how to perform the task described in an earlier
section: how to merge two CSV files and load the result into a database table.
This section is optional because the solution involves Pandas, which has not
been discussed yet. You can skip this section with no loss of continuity, and
perhaps return to this section when you need to perform this task. There are
other ways to perform the tasks in this section.

The first subsection shows you how to merge the columns of a CSV file into
the columns of another CSV file, and then save the updated CSV file to the
file system. The second subsection shows you how to append the contents of a
CSV file to the contents of another CSV file, and then save the updated CSV
file to the file system.

Merging Data Columns in Multiple CSV Files via Pandas

Suppose that we have a CSV file called user.csv with a set of columns
and that we want to merge the columns of user. csv with columns of the csv
file user2.csv. For simplicity, let’s assume that there are no missing values in
either CSV file. In this scenario, we will create a new CSV file whose rows and
columns are from two CSV files. In other scenarios, you might need to select
only a subset of the columns from two (or more) CSV files.

Listing 2.6 shows the content of user.csv that contains the original data
for the user table, and Listing 2.7 shows the content of user2. csv that con-
tains the data for the fname and lname attributes.

LISTING 2.6: user.csv

fname, lname

id, title

1000, Developer

2000, Project Lead

3000, Dev Manager

4000, Senior Dev Manager

Working with SQL and MySQL e 45

LISTING 2.7: user2.csv

fname, lname

1000, John, Smith
2000, Jane, Stone
3000, Dave, Dodds
4000, Jack, Jones

Listing 2.8 shows the content of user_merged.py that illustrates how to
use Pandas data frames to merge two CSV files and generate a new CSV file
with the merged data.

LISTING 2.8: user_merged.py
import pandas as pd

df user = pd.read csv("user.csv")

df user2 = pd.read csv("user2.csv")
df user['fname'] = df user2['fname'].values
df user['lname'] = df user2['lname'].values

df user.to csv('user merged.csv', index=False)

Listing 2.8 contains an import statement followed by the assignment of
the contents of user.csvand user2.csv to the Pandas data frames df user
and df_user2, respectively.

The next pair of code snippets creates the columns fname and lname in
the df_users data frame and initializes their values from the corresponding
columns in the df user2 data frame.

The last code snippet in Listing 2.8 saves the updated data frame to the
CSVile user merged.csv, whichis located in the same directory as the CSV
files user.csv and user2.csv. Launch the code in Listing 2.8 to generate
the CSV file user _merged. csv, whose contents are shown in Listing 2.9.

LISTING 2.9: user_merged.csv

id, title, fname, lname

1000, Developer, John, Smith

2000, Project Lead, Jane, Stone

3000, Dev Manager, Dave, Dodds

4000, Senior Dev Manager,Jack, Jones

Note: If need be, the code in Listing 2.8 can be modified to insert the
fname values and the 1name values in the first two columns.

Concatenating Data from Multiple CSV Files

Suppose that we have two CSV files called user merged.csv and user
merged2.csv that contain the same columns, and you want to append the
rows of the latter file to the rows of the former file. For simplicity, lets also

46 ¢ SQL Pocket Primer

assume that there are no missing values in either CSV file. Listing 2.10 shows
the content of user merged.csv and Listing 2.11 shows the content of

user merged2.csv.

LISTING 2.10: user_merged.csv

id, title, fname, lname

5000, Developer, Sara, Edwards

6000, Project Lead,Beth,Woodward

7000, Dev Manager,Donald, Jackson

8000, Senior Dev Manager, Steve,Edwards

LISTING 2.11: user_merged2.csv

id, title, fname, lname

5000, Developer, Sara, Edwards

6000, Project Lead,Beth,Woodward

7000, Dev Manager,Donald, Jackson

8000, Senior Dev Manager, Steve,Edwards

Listing 2.12 shows the content of merge all data.py that illustrates
how to use Pandas data frames to concatenate the contents of two or more
CSV files in the same directory and generate a CSV file with the merged data.
This code sample generalizes the code in Listing 2.8 that concatenates only
two CSV files.

LISTING 2.12: merge_all_data.py

import glob
import os
import pandas as pd

merge the data-related files as one data frame:
df = pd.concat (map (pd.read_csv, glob.glob (os.path.join('', 'data*.csv'))))

save data frame to a CSV file:
df.to _csv('all data.csv', index=False)

Listing 2.12 contains import statements followed by initializing the Pandas
data frame df with the result of reading all the CSV files in the current direc-
tory and then concatenating their contents.

The last code snippet in Listing 2.12 saves the data frame df to the CSV
file a11 data.csv, which is located in the same directory as the other CSV
files. Launch the code in Listing 2.12 to generate the CSV file a11 data.csv,
whose contents are given in Listing 2.13.

LISTING 2.13: all_data.csv

id, title, fname, lname
id, title

1000, Developer

2000, Project Lead

Working with SQL and MySQL e 47

3000, Dev Manager

4000, Senior Dev Manager
1000, Developer

2000, Project Lead

3000, Dev Manager

4000, Senior Dev Manager
1000, Developer

2000, Project Lead

3000, Dev Manager

4000, Senior Dev Manager
1000, Developer

2000, Project Lead

3000, Dev Manager

4000, Senior Dev Manager

Appending Table Data from CSV Files via SQL

Suppose that the data in the CSV file user merged.csv has already been
inserted into table user3. We can use the following SQL statement to insert
the contents of the CSV file user merged2.csv into the table user3 as
follows:

LOAD DATA INFILE 'user merged.csv'
INTO TABLE user3
FIELDS TERMINATED BY ','
ENCLOSED BY '"!
LINES TERMINATED BY '/n';

Depending on the manner in which the MySQL server was launched, you
might encounter the following error message:

ERROR 1290 (HY000): The MySQL server is running with the --secure-
file-priv option so it cannot execute this statement

The preceding error occurs due to either of the following reasons:

e the SQL statement specified an incorrect path to the file
* no directory is specified under the --secure--file--priv variable

Select @@global.secure file priv;

B e it +
| @@global.secure file priv |
B e +
| NULL |
T +

1l row in set (0.001 sec)
Another similar query is as follows:

SHOW VARIABLES LIKE "secure file priv";

1 row in set (0.022 sec)

48 ¢ SQL Pocket Primer

If you have verified that the path to the file is correct and you still see
the same error message, then launch the following command (requires root
access):

sudo /usr/local/mysqgl/support-files/mysqgl.server restart --
secure file priv=/tmp

You might need to replace the preceding command with a command that
is specific to your system, which depends on a combination of the following:

1. the operating system (Windows/Mac/Linux)
2. the version of MySQL on your system
3. the utility that installed MySQL (brew, .dmg file, and so forth)

Perform an online search to find a solution that is specific to your MySQL
installation on your machine. Some solutions specify modifying the file
/etc/my.ini or /etc/my.cnf, neither of which exists on Mac Catalina with
MySQL 8.

Another possibility is the following SQL statement that specifies LOCAL:

LOAD DATA LOCAL INFILE "user merged.csv" INTO TABLE user3;

Unfortunately, the preceding SQL statement does not work with MySQL. 8:
you will see the following error message:

ERROR 3948 (42000): Loading local data is disabled; this
must be enabled on both the client and server sides

Fortunately, Chapter 6 contains a MySQL Workbench section that shows
you how to export tables and databases via a GUI interface, and also how to
import databases and CSV files into tables.

INSERTING DATA INTO DATABASE TABLES

In Chapter 1, you saw how to create database tables and also how to insert
data into those tables via SQL statements. For your convenience, the SQL
statements from Chapter 1 are reproduced here:

use mytools;
-—- create a new customer:
INSERT INTO customers

VALUES (1000, 'John', 'Smith','123 Main St', 'Fremont','CA','94123");

-—- create a new purchase order:
INSERT INTO purchase orders VALUES (1000,12500, '2021-12-01"');

-- line item => one hammer:
INSERT INTO line items VALUES (12500,5001,100,1,20.00,2.00,22.00);

Working with SQL and MySQL ¢ 49

-- line item => two screwdrivers:
INSERT INTO line items VALUES (12500,5002,200,2,8.00,1.60,17.60);

-- line item => three wrenches:
INSERT INTO line items VALUES (12500,5003,300,3,10.00,3.00,33.20);

You can also create a SQL file that consists of multiple SQL. INSERT state-
ments that populate one or more tables with data. In addition, you can upload
data from CSV files into database tables, which is discussed in the next section.

Populating Tables from Text Files

This section will show you how to create a database table and populate that
table with data from a CSV file. Log into MySQL, select the mytools data-
base, and invoke the following command to create the people table:

MySQL [mytools]> use mytools;

CREATE TABLE people (fname VARCHAR (20), lname VARCHAR(20),
age VARCHAR (20), gender CHAR(1l), country VARCHAR (20));

Describe the structure of the people table with the following command:

MySQL [mytools]> desc people;

Fomm o ———— - +———— o +—————— +
| Field | Type | Null | Key | Default | Extra |
tomm e ———— Fom +————— +———— o o +
fname	varchar (20)	YES		NULL	
lname	varchar (20)	YES		NULL	
age	varchar (20)	YES		NULL	
gender	char (1)	YES		NULL	
country	wvarchar(20)	YES		NULL	
o o - +———— - - +
)

5 rows in set (0.002 sec

Listing 2.14 shows the content of people. csv that contains data for insert-
ing into the people table.

LISTING 2.14: people.csv

fname, lname, age, gender, country
john, smith,30,m, usa

jane, smith, 31, £, france

jack, jones, 32,m, france

dave, stone, 33, m,italy

sara, stein, 34, f,germany

Listing 2.15 shows the content of people.sql that contains several SQL
commands for inserting data into the people table.

LISTING 2.15: people.sql

INSERT INTO people VALUES ('john','smith','30','m',6 'usa');
INSERT INTO people VALUES ('jane','smith','31','f','france');

50 ¢ SQL Pocket Primer

INSERT INTO people VALUES
INSERT INTO people VALUES
INSERT INTO people VALUES
INSERT INTO people VALUES

('jack',"'jones','32', 'm"', 'france');
('dave', 'stone','33', 'm', "italy"');
('sara', 'stein','34"','f', 'germany') ;
('eddy', 'bower','35', 'm', 'spain');

As you can see, the INSERT statements in Listing 2.15 contain data that is
located in people.csv. In Chapter 6, you will see an example of a Unix shell
script that generates SQL statements from a CSV file. Now, log into MySQL,
select the mytools database, and invoke the following command to populate
the people table:

MySQL [mysgl]> use mytools;

source people.sqgl;

Query OK, 1 row affected (0.004 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

Execute the following SQL statement to display the contents of the people
table:

MySQL [mysgl]> select * from people;

o o +————— o o —— +
| fname | lname | age | gender | country |
- - - Fomm————— o +
| john | smith | 30 | m | usa |
| jane | smith | 31 | £ | france |
| jack | jones | 32 | m | france |
| dave | stone | 33 | m | italy |
| sara | stein | 34 | £ | germany |
| eddy | bower | 35 | m | spain |
o o +————— o o —— +
6 rows in set (0.000 sec)

The second option involves manually executing each SQL statement in
Listing 2.15, which is obviously inefficient for a large number of rows. The
third option involves loading data from a CSV file into a table:

MySQL [mysgl]> LOAD DATA LOCAL INFILE 'people.csv' INTO
TABLE people;

However, you might encounter the following error (which depends on the
configuration of MySQL on your machine):

ERROR 3948 (42000): Loading local data is disabled; this
must be enabled on both the client and server sides

In general, a SQL script is preferred because it’s easy to execute multiple
times; you can also schedule SQL scripts to run as “cron” jobs.

Working with SQL and MySQL e 51

WORKING WITH SIMPLE SELECT STATEMENTS

Earlier in this chapter, you saw examples of the SELECT keyword in SQL
statements, and this section contains additional SQL statements to show you
additional ways to select subsets of data from a table. In its simplest form, a
SQL statement with the SELECT keyword looks like this:

SELECT [one-or-more-attributes]
FROM [one-or-more-tables]

Specify an asterisk (“*”) after the SELECT statement if you want to select all
the attributes of a table. For example, the following SQL statement illustrates
how to select all rows from the people table:

MySQL [mytools]> select * from people;

o o +————— o e +
| fname | lname | age | gender | country |
- - - Fo—————— o +
| john | smith | 30 | m | usa |
| jane | smith | 31 | £ | france |
| jack | jones | 32 | m | france |
| dave | stone | 33 | m | italy |
| sara | stein | 34 | £ | germany |
| eddy | bower | 35 | m | spain |
- - - Fomm————— o +
6 rows in set (0.000 sec)

Issue the following SQL statement that contains the LIMIT keyword (with
additional examples later in this chapter) if you want only the first row from
the people table:

select * from people limit 1;

- - - Fom————— o +
| fname | lname | age | gender | country |
- - - Fo—————— o +
| john | smith | 30 | m | usa |
fomm fomm fom——— Fom fom +

1l row in set (0.000 sec)

Replace the number 1 in the previous SQL query with any other posi-
tive integer to display the number of rows that you need. Incidentally, if you
replace the number 1 with the number 0, you will see 0 rows returned,

Moreover, include a WHERE keyword to specify a condition on the rows,
which will return a (possibly empty) subset of rows from the specified
table:

SELECT [one-or-more-attributes]
FROM [one-or-more-tables]
WHERE [some condition]

52 ¢ SQL Pocket Primer

For example, the following SQL statement illustrates how to display all the
attributes of the rows in the people table where the first name is john:

MySQL [mytools]> select * from people where fname = 'john';
- - - - o +

| fname | lname | age | gender | country |

e e o o Fomm e ———— +

| john | smith | 30 | m | usa |

- e +————— o o +

1 row in set (0.000 sec)

Include ORDER BY to specify the order in which you want to display the
TOWS:

SELECT *
FROM weather
ORDER BY city;

o — Fomm - Fom - - fomm———— +
| day | temper | wind | forecast | city | state |
o —— Fom - Fom - - fom———— +
| 2021-07-01 | 42 | 16 | Rain | | ca \
| 2021-08-04 | 50 | 12 | Snow | | mn \
| 2021-09-03 | 15 | 12 | Snow | chi | 11 \
| 2021-04-03 | 78 | -12 | NULL | se | wa \
| 2021-04-01 | 42 | 16 | Rain | sf | ca \
| 2021-04-02 | 45 | 3 | Sunny | sf | ca

| 2021-07-02 | 45 | -3 | Sunny | sf | ca \
| 2021-07-03 | 78 | 12 | NULL | sf | mn \
| 2021-08-06 | 51 | 32 | | sf | ca

| 2021-09-01 | 42 | 16 | Rain | sf | ca \
| 2021-09-02 | 45 | 99 | | sf | ca \
o —— Fom - Fom - - fom———— +

11 rows in set (0.003 sec)

In Chapter 3, you will learn how to use the JoIN keyword in order to
retrieve data from two tables, and in Chapter 4, you will learn how to specify
GROUP BY and HAVING in SQL statements.

Duplicate Versus Distinct Rows

Unless it’s explicitly stated, the default action for a SQL. SELECT statement
is to select all rows (which includes duplicates), as shown here:

SELECT year
FROM employees;

Working with SQL and MySQL ¢ 53

| 2020
| 2020
| 2020
| 2020
| 2020

12 rows in set (0.000 sec)

By contrast, the following SQL statement returns only a single row with the
year 2020

SELECT DISTINCT year
FROM employees;

1l row in set (0.003 sec)

Later you will learn how to use the GROUP BY clause and the HAVING clause
in SQL statements.

Unique Rows Versus Distinct Rows

The uNIQUE keyword selects a row only if that row does not have any dupli-
cates. A SQL query that contains the UNIQUE keyword returns the same result
set as a query that contains the DISTINCT keyword if and only if there are no
duplicate rows.

As a preview, the following SQL query contains a SQL subquery, which
is a topic that is discussed in detail in Chapter 3. However, the SQL query is
included in this section of the chapter so that you can compare the functional-
ity of DISTINCT versus UNIQUE. With the preceding in mind, here is the SQL
statement to find unique rows in a database table:

select city, state
from weather
where unique (select state from weather);

If you are unfamiliar with SQL subqueries, you can return to this example
after you learn about them in one of the sections in Chapter 3.

The EXISTS Keyword

The EXISTS keyword selects a row based on the existence of a particular
value in an attribute of a table. This section shows you two SQL statements
that use the EXISTS keyword: one statement involves a subquery (details are
provided in Chapter 3) and the second involves a SELECT keyword.

The purpose of showing both SQL statements is to illustrate that some-
times a SQL statement can be replaced by an equivalent SQL statement that
is much easier to understand (and might also be more efficient). For example,

5S4 ¢ SQL Pocket Primer

the following SQL statement checks for the string “abc” in the city attribute
of the weather table:

select city, state
from weather
where exists
(select city from weather where city = 'abc');
Empty set (0.001 sec)

The preceding is somewhat contrived because it can be replaced with this
simpler and intuitive SQL query:

select city, state
from weather
where city = 'abc';

The LIMIT Keyword

The LIMIT keyword limits the number of rows that are in a result set. For
example, the weather table contains 11 rows, as shown here:

SELECT COUNT (*)
FROM weather;

o +
| count (*)

fomm e —— +
I 11 |
e ———— +

1 row in set (0.001 sec)

If you want to see only three rows instead of all the rows in the weather
table, issue the following SQL query:

SELECT city,state
FROM weather ORDER
BY state, city

LIMIT 3;

- Fom————— +
| city | state |
- o +
| | ca \
| sf | ca |
| sf | ca |
- Fom————— +

3 rows in set (0.000 sec)

DELETE, TRUNCATE, AND DROP IN SQL

The following list summarizes the various ways of removing data from a
database table:

e The DELETE keyword deletes the data in a table but leaves the table intact.
e The TRUNCATE keyword is a faster way to delete the data in a table.

Working with SQL and MySQL e 55

e The TRUNCATE keyword also preserves the table structure.
¢ The DROP keyword drops the data and the table itself from a database.

Here is an example of deleting all the data from a table using the DELETE
keyword:

DELETE from customers;

However, if a database table has a large number of rows, a faster technique
is the TRUNCATE statement, as shown here:
TRUNCATE customers;

Both of the preceding SQL commands involve removing rows from a table

without dropping the table. If you want to drop the rows in a table and the
table, use the DROP statement as shown here:

DROP TABLE IF EXISTS customers;

SELECT, DELETE, and LIMIT Combinations

Another useful combination involves the SELECT and DELETE keyword
when you want to delete a row in a database table. For example, execute a SQL
statement with the SELECT keyword before you delete any rows:

SELECT *
FROM table name
WHERE lname = 'SMITH';

If the preceding SQL statement returns the row (or rows) that you want to
delete, then you can safely issue the following DELETE statement:

DELETE
FROM table name
WHERE lname = 'SMITH';

As variant of the preceding pair of SQL statements, you can also specify
the LIMIT keyword (with a suitable integer value) to limit the number of rows
that are returned:

SELECT *

FROM table name
WHERE lname = 'SMITH'
LIMIT 1;

DELETE

FROM table name
WHERE lname = 'John'
LIMIT 1;

Keep in mind the following caveat: the preceding SQL statement will
delete one row, but there is an exception. The preceding SQL query will delete
all rows whose name equals John if you specify ON DELETE CASCADE in the
table definition of the customers table.

56 ¢ SQL Pocket Primer

More Options for the DELETE Statement in SQL

The preceding section showed you how to delete all the rows in a table,
and this section shows you how to delete a subset of the rows in a table, which
involves specifying a condition for the rows that you want to drop from a table.

The following SQL statement deletes the rows in the customers table
where the first name is John:

DELETE
FROM customers
Where FNAME = 'John';

The next SQL statement deletes the rows in the customers table where
the first name is John and the rows in the purchase orders table that are
associated with John:

DELETE

FROM customers
Where FNAME = 'John'
CASCADE;

The preceding SQL statement is called a cascading delete, which is very
useful when the rows in a table have external dependencies, such as the cus-
tomers table that has a one-to-many relationship with the purchase_orders
table.

If you remove a “parent” row that appears in the customers table, youneed
to remove the “child” rows from the purchase orders table. Otherwise, you
will have “orphan” purchase orders that do not have a corresponding row in the
customers table. The final section of this chapter contains more information
about different types of relationships that can exist between tables.

CREATING TABLES FROM EXISTING TABLES IN SQL

SQL provides two ways to create new tables without an explicit list of
attributes for the new table. One technique involves a SQL statement that
contains the TEMPORARY keyword, and the second technique does not specify
the TEMPORARY keyword.

Although MySQL supports temporary tables, that support provides limited
functionality. In particular, you cannot assign values to variables nor can you
create global templates. As a side note, MySQL also supports memory-stored
tables, but such tables cannot be accessed during transactions. Furthermore,
memory-stored tables are used only for read operations.

A temporary table is useful when it’s impractical to query data that
requires a single SELECT statement with JOIN clauses. Instead, use a tempo-
rary table to store an immediate result and then process that data with other
SQL queries. However, keep in mind that the query optimizer that improves
performance of SQL statements cannot optimize SQL queries containing a
temporary table.

Working with SQL and MySQL e 57

Working with Temporary Tables in SQL

Before we create a temporary table, let’s drop the temp cust table in case

it already exists:

MySQL [mytools]> DROP TEMPORARY TABLE IF EXISTS temp cust;
Query OK, 0 rows affected, 1 warning (0.000 sec)

The following SQL statement illustrates how to create the temporary table
temp cust from the customers table:

MySQL [mytools]> CREATE TEMPORARY TABLE IF NOT EXISTS temp cust

AS

(SELECT * FROM customers) ;

Query OK, 1 row affected (0.019 sec)

Records: 1 Duplicates:

0 Warnings: 0

The following SQL statement displays the structure of temp _cust:

MySQL [mytools]> DESC temp cust;

+
|
+

| cust_id |
| first name |
| last name |
| home address |
| city |
| state |
| |
+

7 rows in set (O.

int

varchar

(
(
(
varchar (
varchar (
(

varchar

005 sec)

The temp_ cust table contains the same data as the customers table, as

shown here:

MySQL [mytools]> SELECT * FROM temp cust;

e fmmmm

| cust_id | first name

b [

| last_name | home_address

' —_—

b

e —

city |

state

-t

zip code

oo fommm
| 1000 | John

| Smith

| 123 Main St

Fremont |

CA

-+
94123 |

e fmmmm

b [

1 row in set (0.001 sec)

b

-t

In addition, you can specify an index for a temporary table, as shown

here:

CREATE TEMPORARY TABLE IF NOT EXISTS
temp_cust3 (INDEX(last_name))

ENGINE=MyISAM
AS (
SELECT first na
FROM customers
);

me, last name

58 ¢ SQL Pocket Primer

Alternatively, you can create a temporary table and specify the MySQL
engine MEMORY, as shown here:

MySQL [mytools]> CREATE TEMPORARY TABLE temp_cust4 ENGINE=MEMORY
-> as (select * from customers);

Query OK, 1 row affected (0.003 sec)

Records: 1 Duplicates: 0 Warnings: 0

However, keep in mind the following point: ENGINE=MEMORY is not sup-
ported when table contains BLOB/TEXT columns. Now that you understand
how to create tables with the TEMPORARY keyword, let’s look at the preceding
SQL statements when we omit the TEMPORARY keyword.

Creating Copies of Existing Tables in SQL

Another technique to create a copy of an existing table is to execute the
previous SQL statements without the TEMPORARY keyword, as shown here:

MySQL [mytools]> DROP TABLE IF EXISTS temp_cust2;
Query OK, 0 rows affected, 1 warning (0.008 sec)

MySQL [mytools]> CREATE TABLE IF NOT EXISTS temp_cust2
AS (SELECT * FROM customers) ;

Query OK, 1 row affected (0.028 sec)

Records: 1 Duplicates: 0 Warnings: 0

MySQL [mytools]> SELECT COUNT (*) FROM temp cust2;

fomm +
| COUNT (*)

fommm - +
I 1
e +

1l row in set (0.009 sec)

If you need to create a table that has the same structure as an existing table
but does not contain any data, you can do so with the following type of SQL
statement:

MySQL [mytools]> DROP TABLE IF EXISTS abc2;
Query OK, 0 rows affected (0.018 sec)

MySQL [mytools]> CREATE TABLE abc2 LIKE weather;
Query OK, 0 rows affected (0.025 sec)

MySQL [mytools]> SELECT * FROM abc2;
Empty set (0.001 sec)

WHAT IS A SQL INDEX?

An index is a mechanism that enables a faster retrieval of records from
database tables and therefore improves performance. An index contains an

Working with SQL and MySQL ¢ 59

entry that corresponds to each row in a table, and the index itself is stored in a
tree-like structure. SQL enables you to define one or more indexes for a table,
and some guidelines are provided in a subsequent section.

By way of analogy, the index of a book enables you to search for a word or a
term, locate the associated page number(s), and then you can navigate to one
of those pages. Clearly, the use of the book index is much fast than looking
sequentially through every page in a book.

Types of Indexes

A unique index prevents duplicate values in a column, provided that the
column is also uniquely indexed, which can be performed automatically if a
table has a primary key.

A clustered index actually changes the order of the rows in a table, and
then performs a search that is based in the key values. A table can have only
one clustered index. A clustered index is useful for optimizing DML state-
ments for tables that use the InnoDB engine (discussed briefly in chapter
six).

MySQL 8 introduced invisible indexes, but those indexes are unavailable
for the query optimizer. MySQL ensures that those indexes are kept current
when data in the referenced column are modified. You can make indexes invis-
ible by explicitly declare their visibility during table creation or via the ALTER
TABLE command, as you will see in a later section.

Creating an Index

An index on a MySQL table can be defined in two ways:

* As part of the table definition during table creation
e After the table has been created

Here is an example of creating an index on the full name attribute during
the creation of the table friend table:

DROP TABLE IF EXISTS friend table;

CREATE TABLE friendﬁtable (
friendiid int (8) NOT NULL AUTO_INCREMENT,
full name varchar (40) NOT NULL,
fname varchar (20) NOT NULL,
lname varchar (20) NOT NULL,
PRIMARY KEY (friend id), INDEX(full name)
)i

Here is an example of creating index friend lname idx on the 1name
attribute after the creation of the table friend table:

60 ¢ SQL Pocket Primer

CREATE INDEX friend lname idx ON friend table(lname);
Query OK, 0 rows affected (0.035 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can create an index on multiple columns, an example of which is shown
here:

CREATE INDEX friend lname_ fname idx ON friend table (lname, fname) ;

An index on a MySQL table can specify a maximum of 16 indexed columns,
and a table can contain a maximum of 64 secondary indexes.

Disabling and Enabling an Index

Sometimes, it’s useful to disable indexes before performing some intensive
operation, and then re-enable the indexes. The syntax for disabling an index
is here:

alter table friend table disable keys;
Query OK, 0 rows affected, 1 warning (0.004 sec)

The corresponding syntax for re-enabling an index is here:

alter table friend table enable keys;
Query OK, 0 rows affected, 1 warning (0.002 sec)

View and Drop Indexes

As you probably guessed, you can drop specific indexes as well as display
the indexes associated with a given table and also drop specific indexes. The
following SQL statement drops the specified index on the friend table
table:

DROP INDEX friend lname fname idx ON friend table;
Query OK, 0 rows affected (0.011 sec)
Records: 0 Duplicates: 0 Warnings: 0

Invoke the preceding SQL statement again, and the following error mes-
sage confirms that the index was dropped:

ERROR 1091 (42000): Can't DROP 'friend lname fname idx';
check that column/key exists

You can also issue the following SQL statement to display the indexes that
exist on the table friend table:

SHOW INDEXES FROM friend table;

| Table | Non unique | Key name | Seq_in index | Column name |
Collation | Cardinality | Sub_part | Packed | Null | Index type | Comment |
Index_comment | Visible | Expression |

Working with SQL and MySQL ¢ 61

R : oo : : —————t—

| friend table | 0 | PRIMARY | 1 | friend id | A

| 0 | NULL | NULL | | BTREE | |

| YES | NULL |

| frienditable | 1 | full name | 1 | full name | A
| 0 | NULL | NULL | | BTREE | |

| YES | NULL |

| friend table | 1 | friend lname idx | 1 | lname | A
| 0 | NULL | NULL | | BTREE | |

| YES | NULL |

B e s A o o +-=

————————— Bt i e e a at e

—————————— B e e

3 rows in set (0.005 sec)

When you define a MySQL table, you can specify that an index is invisible
with the following code snippet:

CREATE INDEX index name ON table name (column-list) INVISIBLE;

The following SQL statement displays the invisible indexes in MySQL,
which is a new feature in version 8:

SHOW INDEXES FROM friend_table
WHERE VISIBLE = 'NO';
Empty set (0.003 sec)

Overhead of Indexes

An index occupies some memory on secondary storage. In general, if you
issue a SQL statement that involves an index, that index is first loaded into
memory and then it’s utilized to access the appropriate record(s). A SQL query
that involves simply accessing (reading) data via an index is almost always more
efficient than accessing data without an index.

However, if a SQL statement updates records in one or more tables, then
all the affected indexes must be updated. As a result, there can be a perfor-
mance impact when multiple indexes are updated as a result of updating table
data. Hence, it’s important to determine a suitable number of indexes, and the
columns in each of those indexes, which can be done either by experimenta-
tion (not recommended for beginners) or via open source or commercial tools
that provide statistics regarding the performance of SQL statements when
indexes are involved.

Considerations for Defining Indexes

As you might already know;, a full table scan for large tables will likely be
computationally expensive, so consider defining an index on columns that are
referenced in the WHERE clause in your SQL statements. As a simple example,
consider the following SQL statement:

62 ¢ SQL Pocket Primer

SELECT *
FROM customers
WHERE lname = 'Smith';

If you do not have an index that starts with the lname attribute of the
customers table, then a full table scan is executed, which means every row is
checked.

Consider defining an index on attributes that appear in SQL query state-
ments that involve SELECT, GROUP BY, ORDER BY, or JOIN. As mentioned
earlier, updates to table data necessitate updates to indexes, which in turn can
result in lower performance.

When to Disable Indexes on a Table

Although you can directly insert a large volume of data into a table (or
tables), the following alternative can be more efficient:

1. Disable the indexes.
2. Insert the data.
3. Enable the indexes again.

Although the preceding approach involves rebuilding the
indexes, which is performed after Step 3, you might see a perfor-
mance improvement compared to directly inserting the table data.
Of course, you could also try both approaches and calculate the
time required to complete the data insertion.

As yet another option, it’s possible to perform a multi-row insert in MySQL,
which enables you to insert several rows with a single SQL statement, thereby
reducing the number of times the indexes must be updated. The maximum
number of rows that can be inserted via a multi-row insert depends on the
value of max allowed packet (whose default value is 4M), as described at
the following site:

https://dev.mysql.com/doc/refman/5.7/en/packet-too-large.html

Another suggestion: check the order of the columns in multi-column indexes
and compare that order with the order of the columns in each index. MySQL
will only use an index if the left-leading column is included in the index.

Selecting Columns for an Index

As mentioned in the previous section, an index of a database table is used if
an attribute in the WHERE clause is the left-most column in the definition of an
index. For example, the following SQL query specifies the 1name attribute of
the users table in the WHERE clause:

SELECT *
FROM users
WHERE Ilname = 'SMITH'

Working with SQL and MySQL ¢ 63

In the previous section, you learned that when the users table does not
have an index containing the 1name attribute, then a full table scan is exe-
cuted and the contents of the 1name attribute in every row is compared with
SMITH.

The average number of comparisons in a full table scan is n/2, where n
is the number of rows in the given table. Thus, a table containing 1,024 rows
(which is a very modest size) requires an average of 512 comparisons, whereas
a suitably defined index reduces the average number of comparisons to 10 (and
sometimes even fewer comparisons).

Based on the preceding paragraph, indexes can be useful for improving
the performance of read operations. In general, the candidates for inclu-
sion in the definition of an index are the attributes that appear in frequently
invoked SQL statements that select, join, group, or order data. However,
the space requirement for indexes is related to the number of rows in the
tables.

Furthermore, multiple indexes involve more memory, and they must be
updated after a write operation, which can incur a performance penalty. An
experienced DBA can provide you with very helpful advice regarding index
definitions. You can also experiment with the number and type of indexes and
profile your system to determine the optimal combination for your system. In
addition, use SQL monitoring tools (discussed later) to determine which SQL
operations are candidates for optimization.

Finding Columns Included in Indexes

This section contains SQL statements that are specific to MySQL: for infor-
mation about other databases (such as Oracle), perform an online search to
find the correct syntax. MySQL enables you to find columns that are included
in indexes with this SQL statement:

SHOW INDEX FROM people;

You can also query the STATISTICS table in the INFORMATION SCHEMA to
show indexes for all tables in a schema, an example of which follows:

SELECT DISTINCT TABLE NAME, INDEX NAME

FROM INFORMATION SCHEMA.STATISTICS
WHERE TABLE SCHEMA = 'mytools';

ENHANCING THE MYTOOLS DATABASE (OPTIONAL)

A reporting system is obviously important for generating financial state-
ments, billing statements, and ad hoc reports. For example, you can create an
accounts receivable table ar mytools to keep track of paid purchase orders
(and the payment date) and unpaid purchase orders (with past due 30 and past
due 60) as follows:

64 ¢ SQL Pocket Primer

use mytools;
DROP TABLE IF EXISTS ar mytools;

CREATE TABLE ar_mytools (cust_id INTEGER, po_id INTEGER, PURCH_DATE
date, PAID DATE date, PAST 30 date, PAST 60 date);

-- two rows indicate that cust_id 1000 paid for two purchase orders:
INSERT INTO ar mytools VALUES (1000, 12500,'2021-12-01"','2021-12-15",
NULL, NULL);

INSERT INTO ar mytools VALUES (1000, 12600,'2022-01-05','2022-01-10",
NULL, NULL);

You can also create SQL statements that retrieve a list of customers and
purchase order details from the ar_mytools table that contain

1. paid purchase orders (per month or a date range)
2. unpaid purchase orders that are 30 days past due
3. unpaid purchase orders that are 60 days past due

You can use the information from #1 to send customers notifications about
upcoming sales, reward points, discounts, and so forth. In addition, you can use
the information from #2 and #3 to send reminder notifications to the relevant
customers.

ENTITY RELATIONSHIPS

In Chapter 1, you were briefly introduced to several types of relationships
that can exist between a pair of tables, which are as follows:

® one-to-many
® many-to-many
o self-referential

For example, the customers table has a one-to-many relationship with the
purchase_orders table for each cust_id that makes a purchase. Similarly,
each purchase order in the purchase orders table has one or more rows
in the 1ine items table, and therefore the purchase orders table has a
one-to-many relationship with the 1ine items table.

Note that it’s possible for a customer to register on the website and never
make a purchase. In Chapter 4, you will see an example of a SQL statement
that returns all customers who have never made any purchases.

An example of a many-to-many relationship is a students table and a
courses table. Each student can enroll in one or more courses, and each
course contains one or more students. This relationship is modeled by creating
a so-called “join table” that is interposed between the students table and a
courses table.

Working with SQL and MySQL ¢ 65

The primary key for this new “join table” is the union of the primary key
for the students table and the primary key for the courses table. Thus, the
students table and the courses table both have a one-to-many relationship
with the intermediate join table.

An example of a self referential table is an employees table that con-
tains the manager of each employee. However, if the employees table
does not contain an attribute for the employee’s manager (or some coun-
terpart to this attribute), then the employees table is a not a self-refer-
ential table.

SUMMARY

This chapter introduced you to SQL and how to invoke various types of
SQL statements. You saw how to create tables manually from the SQL prompt
and also by launching a SQL script that contains SQL statements for creating
tables.

You also learned how to drop tables, along with the effect of the DELETE,
TRUNCATE, and DROP keywords in SQL statements. Next, you learned how to
invoke a SQL statement to dynamically create a new table based on the struc-
ture of an existing table.

Then you saw an assortment of SQL statements that use the SELECT key-
word. Examples of such SQL statements include finding the distinct rows in
a MySQL table, or finding unique rows containing the EX1sTS and LIMIT
keywords. Moreover, you learned about the differences among the DELETE,
TRUNCATE, and DROP keywords in SQL.

Next, you saw how to create indexes on MySQL tables, and some criteria
for defining indexes, followed by how to select columns for an index.

Furthermore, you learned about entity relationships, such as one-to-many,
that are very common in tables that have master-detail relationships, such as
customers and purchase orders. You also learned about many-to-many rela-
tionships in use cases such as students and classes that they are enrolled in.
Next, you learned about self-referential relationships, such as an employees
table that contains data for employees as well as their managers.

CHAPTER

JOINS, VIEWS, AND SUBQUERIES

tion of views, and SQL subqueries. You will also see SQL queries that

contain the SQL clauses ORDER BY, GROUP BY, and HAVING in a SQL
statement. This chapter relies on the material in Chapter 2 for creating MySQL
tables, extracting data from those tables, and creating views over tables.

The first section of this chapter shows you SQL statements with various
types of JOIN clauses on two MySQL tables, which can also be extended to
multiple tables. Then you will learn about different types of keys, such as pri-
mary keys, unique keys, and foreign keys. The second section contains date-
related examples, such as finding the year, month, and day of a date, as well as
finding the week of a date.

The third section delves into other useful SQL clauses, such as using GROUP
BY and HAVING in a SQL statement. This section shows you SQL statements
that contain the ROLLUP keyword. You will be introduced to aggregate func-
tions such as COUNT (*), MIN, MAX, and AVG, which are also discussed in
Chapter 4.

The final section discusses the concepts of one-to-many and many-to-many
relationships between pairs of tables (briefly introduced in Chapter 1), along
with some real-life scenarios. In addition, you will learn about self-referential
tables.

The major topics in this chapter involve SQL join statements, the crea-

QUERY EXECUTION ORDER IN SQL

There are many types of SQL keywords and clauses, and it’s important to
know the sequence in which these clauses can appear in a SQL statement. If
you create a SQL statement with clauses that are not in the correct order, you
will generate an error message. Instead of guessing the correct order of SQL
clauses, here is the correct execution order:

68 ¢ SQL Pocket Primer

® FROM, JOIN

® WHERE

® GROUP BY

® HAVING

® SELECT

® DISTINCT

® ORDER BY

® LIMIT, OFFSET

We already worked with the clauses SELECT, FROM, JOIN, and WHERE in
the preceding list to create basic SQL statements. The other clauses provide
extra functionality that enable you to produce sophisticated result sets that can
be used as the basis for various reports to summarize aspects of your applica-
tion and database.

JOINING TABLES IN SQL

An RDBMS whose tables are sufficiently normalized (discussed in
Chapter 6) ensures that a given data value appears in a single location. A “single
source of truth” for data is crucial whenever you need to update data values,
thereby maintaining data integrity in your RDBMS.

You also need a mechanism by which you can retrieve logically related data
that resides in multiple tables. Indeed, the JoIN family of keywords enables
you to write SQL statements that retrieve such data from multiple tables.

Keep in mind that a SQL. JOIN statement can require more execution time
to retrieve data from multiple tables than working with one denormalized table
that contains all the data values in a single table. However, try to limit a denor-
malized table to attributes that never (or rarely) need to be updated, thereby
maintaining data integrity.

If you are not convinced of the preceding statement, consider this scenario:
you have great performance in your SQL statements, but you aren’t sure if all
the data is correct. If you have mission critical data that requires 100% data
integrity, then data integrity has a higher priority than optimal performance.

Fortunately, performance issues can sometimes be addressed by perform-
ing the appropriate denormalization of relevant tables. Note that this will
involve rewriting the SQL statements that perform a JOIN of the normalized
tables so that the new SQL statements query the single denormalized database
table.

Types of SQL JOIN Statements

The JOIN keyword enables you to define various types of SQL statements
that have slightly different semantics:

¢ INNER JOIN
e LEFT OUTER JOIN

Joins, Views, and Subqueries * 69

¢ RIGHT OUTER JOIN
« CROSS JOIN
¢ SELF-JOIN

Lets suppose that table A has some (but not all) corresponding rows in
table B, and that table B has some (but not all) corresponding rows in table A.
Moreover, lets also assume that a JOIN statement specifies table A first and
then table B.

An INNER JOIN returns all rows from table A that have non-empty match-
ing rows in another table.

A LEFT JOIN returns all rows from left-side table A and either matching
rows from the right-side table B or NULL if no matching rows in right-side
table B.

A RIGHT JOIN returns all rows from right-side table B and either
matching rows from the left-side table a or NULL if no matching rows in
table A.

A CcrOSS JOINis a Cartesian or “full” product of rows from left-side table 2
and right-side table B.

A SELF JOIN joins a table to itself. A common use-case involves an
employees table that contains a manager attribute for each employee. Given
an employee in this table, find the value in the manager attribute for that
employee, and then search the employees table a second time using the man-
ager attribute.

This sequence of steps can be repeated until the top-most employee does
not have a manager (such as the CEO). Given an employee, the preceding
sequence produces the management hierarchy from the employee to the top-
most employee in a company (defined in the table).

EXAMPLES OF SQL JOIN STATEMENTS

A SQL statement with a JOIN clause is required whenever information
about an entity is stored in two (or more) tables. For example, recall that our
four-table RDBMS contains the following tables:

® customers
® purchase orders
® line items

® item desc

Lets look at the structure and the contents of the purchase orders
table and the 1ine_items table and before we execute JOIN queries on those
tables.

70 ¢ SQL Pocket Primer

desc customers;

o o +o———— e fomm = o +
| Field | Type | Null | Key | Default | Extra |
o —— Fom R +-——— Fom— o +
cust id	int	YES		NULL	
first name	varchar (20)	YES		NULL	
last name	varchar (20)	YES		NULL	
home address	varchar(20)	YES		NULL	
city	varchar (20)	YES		NULL	
state	varchar (20)	YES		NULL	
zip code	varchar (10)	YES		NULL	
oo o o o o o +

7 rows in set (0.004 sec)

select cust id, first name, last name
from customers;

o o o +
| cust id | first name | last name |
e o ————- e _—— +
| 1000 | John | Smith |
| 2000 | Jane | Jones |
o o o +

2 rows in set (0.000 sec)

Let’s look at the structure of the purchase orders table and then extract
some rows from this table based on a subset of the table attributes.

desc purchase orders;

o +—————- +—————- +-———= o +o————— +

| Field | Type | Null | Key | Default | Extra |
B it +————— t————— +-———= o o +

| cust_id | int | YES | | NULL | |

| po_id | int | YES | | NULL | |

| purchase date | date | YES | | NULL | |
o ———— R — R — e e R — +

3 rows in set (0.016 sec)

select * from purchase orders;

e R — o +

| cust id | po id | purchase date |

e e _—— +

| 1000 | 12500 | 2021-12-01 |

| 1000 | 12600 | 2022-12-03 |

| 1000 | 12700 | 2022-05-07 |

o +o————— o +

3 rows in set (0.001 sec)

desc line items;

fomm ——————- e o e o o +
| Field | Type | Null | Key | Default | Extra |
o o Fom———— +-——— o o +
po_id	int	YES		NULL	
line_ id	int	YES		NULL	
item id	int	YES		NULL	
item count	int	YES		NULL	
item price	decimal(8,2)	YES		NULL	
item tax	decimal(8,2)	YES		NULL	
item subtotal	decimal(8,2)	YES		NULL	
O - e R —— - o R —— +

7 rows in set (0.005 sec)

Joins, Views, and Subqueries ¢ 71

select po id, line id, item id from line items;

FRE I — JTE . — +
| po id | line id | item id |
A S - +
12500	5001	100
12500	5002	200
12500	5003	300
U - R — +

3 rows in set (0.003 sec)

select po id, cust id, purchase date
from purchase orders;

to—————— o Fom e +
| po id | cust id | purchase date |
+——————- o o —— +
12500	1000	2021-12-01
12600	1000	2022-12-03
12700	1000	2022-05-07
to—————— o Fom e +

3 rows in set (0.003 sec)

Now we're ready to examine different JOIN clauses involving this
pair of tables, starting with an INNER JOIN that is discussed in the next
section.

An INNER JOIN Statement

As you saw in the preceding section, the customers table contains two
customers, but only one customer has an associated purchase order, and that
customer has cust_id equal to 1000. Therefore, a SQL statement that spec-
ifies an INNER JOIN on the customers and purchase order tables will
return rows whose left-side and right-side are both non-empty and all those
rows will have a cust_id value equal to 1000. Just to confirm the preceding
statement, let’s define an INNER JOIN on the customers and purchase
order tables.

SELECT customers.cust id, customers.first name,
customers.last name, purchase orders.purchase date
FROM customers

INNER JOIN purchase orders

ON customers.cust id = purchase orders.cust id;

The result of the preceding SQL query is here, and observe that the cust_
id in all three rows equals 1000:

- o —— o ——— o +
| cust id | first name | last name | purchase date |
R R ———— R ———— R — ———— +
| 1000 | John | Smith | 2021-12-01 \
| 1000 | John | Smith | 2022-12-03

| 1000 | John | Smith | 2022-05-07 |
- o —— o ——— o +

3 rows in set (0.003 sec)

72 ¢ SQL Pocket Primer

A LEFT JOIN Statement

We know that the customer whose cust_id is 2000 does not have a corre-
sponding row in the purchase_orders table, which means that a LEFT JOIN
involving the cust_id with value 2000 will be non-null row entry on the left
side, whereas the right side will be NULL. Let’s confirm the preceding sentence
with the following LEFT JOIN statement:

SELECT customers.cust id, customers.first name,
customers.last name, purchase orders.purchase date
FROM customers

LEFT JOIN purchase orders

ON customers.cust id = purchase orders.cust id;

R — R —— - e - - +

| cust id | first name | last name | purchase date

R R ————— R ——— N —— ——— +
1000	John	Smith	2021-12-01
1000	John	Smith	2022-12-03
1000	John	Smith	2022-05-07
2000	Jane	Jones	NULL
o o - - +

4 rows in set (0.000 sec)

A RIGHT JOIN Statement
Let’s perform a RIGHT JOIN, as shown in the following SQL statement:

SELECT customers.cust id, customers.first name,
customers.last name, purchase orders.purchase date
FROM customers

RIGHT JOIN purchase orders

ON customers.cust id = purchase orders.cust id;

R — R —— - e - - +

| cust _id | first name | last name | purchase date |
Fomm - Fomm Fomm Fomm e +
| 1000 | John | Smith | 2021-12-01 \
| 1000 | John | Smith | 2022-12-03 \
| 1000 | John | Smith | 2022-05-07

Fomm Fomm fommm fommm e +

3 rows in set (0.000 sec)

Notice that there are no NULL values in the RIGHT JOIN, because every
row in the purchase orders table has a corresponding row in the left-side
customers table. If a left-side NULL appears, then the right-side table rows
are called orphans because they do not have a parent in the customers table.
Hence, we would have purchase orders but no information regarding the
customer who made that purchase. We want to ensure that there are never any
orphan rows in our tables.

If we need to delete a customer from the customers table, we must delete
the associated rows from the purchase orders table as well as the associated
rows from the line items table. Fortunately, this task is straightforward:
instead of specifying the DELETE keyword in our SQL statements, we specify

Joins, Views, and Subqueries * 73
DELETE CASCADING to delete the child rows in the purchase orders table
as well as the child rows in the 1ine items table.

A CROSS JOIN Statement

Now let’s perform a CROSS JOIN, as shown here:

SELECT customers.cust id, customers.first name,
customers.last name, purchase orders.purchase date
FROM customers

CROSS JOIN purchase orders

ON customers.cust id = purchase orders.cust id;

o - Fom - fom - +
| cust id | first name | last name | purchase date |
Fommm Fomm o ——— o +
| 1000 | John | Smith | 2021-12-01

| 1000 | John | Smith | 2022-12-03 |
| 1000 | John | Smith | 2022-05-07 \
o - Fom - fom - +

3 rows in set (0.000 sec)

Notice that the preceding output does not contain data for the customer
whose cust_id is 2000. However, we do get the correct results with the fol-
lowing SQL query:

SELECT customers.cust id, customers.first name,
customers.last name, purchase orders.purchase date
FROM customers

CROSS JOIN purchase orders
ORDER BY customers.cust id;

o o o oo +
| cust id | first name | last name | purchase date |
L — R - oo R —— - +
| 1000 | John | Smith | 2021-12-01 \
| 1000 | John | Smith | 2022-12-03 \
| 1000 | John | Smith | 2022-05-07 \
2000	Jane	Jones	2021-12-01
2000	Jane	Jones	2022-12-03
2000	Jane	Jones	2022-05-07
fom fom e fom o — +

6 rows in set (0.000 sec)

MySQL NATURAL JOIN Statement

A MySQL NATURAL JOIN is a join that performs the same task as an
INNER or LEFT JOIN, in which the ON or USING clause refers to all columns
that the tables to be joined have in common. The MySQL NATURAL JOIN is
structured in such a way that columns with the same name of associate tables

will appear once only.
Here are some guidelines for a NATURAL JOIN between two tables:

* The associated tables have one or more pairs of identically named columns.
* The columns must be the same data type.
e Do not use an ON clause in a NATURAL JOIN.

74 * SQL Pocket Primer

AN INNER JOIN TO DELETE DUPLICATE ATTRIBUTES

Two rows are duplicates if they contain the same data values, with the possi-
ble exception of an auto-incrementing primary key. For this section, lets say that
two rows are similar if they have the same value in one (or more) attributes of a
given table. Hence, the notion of duplicate rows is a special case of similar rows.
Listing 3.1 shows the content of weather.sql that creates and populates
the table weather with fictitious data values.

LISTING 3.1: weather.sql

DROP TABLE IF EXISTS weather;

CREATE TABLE weather
forecast CHAR(20),

(day DATE,
city CHAR(20),

temper INTEGER, wind INTEGER,

state CHAR(20));

INSERT INTO weather VALUES ('2021-04-01',42, 16,
INSERT INTO weather VALUES ('2021-04-02',45, 3,
INSERT INTO weather VALUES ('2021-04-03',78, -12,
INSERT INTO weather VALUES ('2021-07-01',42, 16,
INSERT INTO weather VALUES ('2021-07-02',45, -3,
INSERT INTO weather VALUES ('2021-07-03',78, 12,
INSERT INTO weather VALUES ('2021-08-04',50, 12,
INSERT INTO weather VALUES ('2021-08-06',51, 32,
INSERT INTO weather VALUES ('2021-09-01',42, 16,
INSERT INTO weather VALUES ('2021-09-02',45, 99,
INSERT INTO weather VALUES ('2021-09-03',15, 12,

'Rain', 'sf', 'ca
'Sunny','sf', 'ca
NULL, 'se', 'wa
'Rain', '', 'ca
'Sunny','sf', 'ca
NULL, 'sf', 'mn
'Snow', '', 'mn
Y, 'sf', 'ca
'Rain', 'sf', 'ca
IY, lel’ lca
'Snow', 'chi','il

Listing 3.1 starts with a DROP statement, then a CREATE statement, and
then a set of INSERT statements. Log into MySQL and execute the following
statements:

use mytools;
source weather.sql;
select * from weather;

The output from the preceding code snippet is the following (or something
similar):

select * from weather;

11 rows in set (0.000

2021-04-01
2021-04-02
2021-04-03
2021-07-01
2021-07-02
2021-07-03
2021-08-04
2021-08-06
2021-09-01
2021-09-02
2021-09-03

________ +______
temper | wind
________ +______
42 | 16
45 | 3
78 | -12
42 | 16
45 | -3
78 | 12
50 | 12
51 | 32
42 | 16
45 | 99
15 | 12

+ ______
sec)

e

—————— f-—m————t
city | state |

—————— fo——————
sf | ca |

st | ca |

se | wa \

| ca \

st | ca |

st | mn |

| mn \

st | ca |

sf | ca \

sf | ca |

chi | il \

—————— fo——————

Joins, Views, and Subqueries ® 75

To ensure that we can refresh the contents of the weather table with
the preceding rows of data, let’s create the table weather2 as a copy of the
weather table with the following SQL statements:

DROP TABLE IF EXISTS weather2;
CREATE TABLE weather2 AS (SELECT * FROM weather) ;

We can delete similar rows from the weather?2 table that have duplicate
city values with the following SQL statement:

DELETE wl
FROM weather2 wl
INNER JOIN weather2 w2
WHERE
wl.day < w2.day AND
wl.city = w2.city;
Query OK, 7 rows affected (0.003 sec)

Let’s look at the updated contents of the weather2 table to compare with
the contents of the weather table:

SELECT *

FROM weather?2;

- Fomm———— - fom - - t-m———— +
| day | temper | wind | forecast | city | state |
o —— o - - - +——————— +
| 2021-04-03 | 78 | -12 | NULL | se | wa \
| 2021-08-04 | 50 | 12 | Snow | | mn

| 2021-09-02 | 45 | 99 | | sf | ca

| 2021-09-03 | 15 | 12 | Snow | chi | 11l \
o — Fomm - Fom - - fomm———— +

4 rows in set (0.000 sec)

If you look closely at the contents of the city attribute in the weather
table, you can see that the rows containing the first five occurrences of the s£
value in the city attribute have been deleted, as well as the row with the first
occurrence of an empty string for the city attribute.

Hence, the SQL statement that deleted similar rows always deletes the all-
but-last occurrence of a subset of rows that have the same value in an attribute
of a table.

JOIN STATEMENTS ON TABLES WITH INTERNATIONAL TEXT

Earlier you saw how to create the table japn1l that contains Japanese
text. Now let’s create the table japn2 whose text is the English counter-
part to the text in japn1, and then perform a join on the tables japn1 and
Jjapn2.

Listing 3.2 shows the content of japanese2.sql that creates and popu-
lates the table japn2, and Listing 3.3 shows the content of japn_join.sql
that illustrates how to join the tables japn1 and japn2.

76 ¢ SQL Pocket Primer

LISTING 3.2: japanese2.sql

use mytools;
DROP TABLE IF EXISTS japn2;

CREATE TABLE japn2

(
emp_id INT NOT NULL AUTO INCREMENT,
fname VARCHAR(100) NOT NULL,
lname VARCHAR(100) NOT NULL,
title VARCHAR(100) NOT NULL,
PRIMARY KEY (emp id)

)i

INSERT INTO japn2 SET fname="hideki", 1lname="hiura", title="CTO";
INSERT INTO japn2 SET fname="momotaro",lname="strong",title="manager";
INSERT INTO japn2 SET fname="oswald", lname="camp",title="funloving";

INSERT INTO japn2 SET fname="tokyo", lname="japan",title="awesome!";

As you can see, Listing 3.2 contains familiar SQL statements. Let’s look at
the content of japn_join.sql that performs a join on the two tables.
LISTING 3.3: japn_join.sql
use mytools;

SELECT jl.emp id,jl.fname,jl.lname,j2.fname,j2.lname

FROM japnl jl, japn2 j2
WHERE jl.emp id = j2.emp id;

Launch the code in Listing 3.3 to see the following output:

tomm o tom e B ettt tomm +
| emp id | fname | lname | fname | lname |
Fomm o Fom fomm Fomm +
| 1| OCx | Ewm | hideki | hiura |
| 2 | A | Dl | momotaro | strong |
; 31 AXTIIR | AmR | oswald | camp |
! 4 | PN | 14 | tokyo | japan |
fomm - o fommm e fommmm - fommmm - +

4 rows in set (0.001 sec)

Now that you know how to perform a join on two MySQL tables, you are
ready to learn about creating views in SQL, which is the topic of the next
section.

WHAT IS A VIEW?

A view provides a mechanism for restricting access to the data in a table (or
tables) such that a subset (specified in the definition of the view) of the rows
are accessible to users. A view can specify data from a subset of rows, a subset
of columns, or both, which can be accessed from a single table or multiple
tables.

Joins, Views, and Subqueries ¢ 77

A view is sometimes called a virtual table because a view does not store a copy
of the data that is retrieved by the view definition: a view only returns a result set.
Note that a view is stored in the database, and you can reference a view in the
same way that you reference a table in a SQL statement. In addition, the name
of a view must be distinct from the name of all tables and all views in a database.

Creating a View

Use the clause CREATE VIEW to create a view, along with the As keyword
(discussed in Chapter 1) and the SELECT keyword, where the latter specifies
the data that is visible through the view. As a simple example, here is the defini-
tion of the view v1 that accesses all the data in the customers table:

CREATE VIEW V1 AS (SELECT * FROM customers) ;

The preceding example illustrates the syntax for creating a view: in general,
a view will access a subset of the rows and/or columns of a table, as you will see
later in this chapter.

For example, you can easily allow access only to the rows in the customers
table whose cust_id equals 1000. As another example, you can define a view
over a JOIN of the customers Hﬁﬂe,ﬂk}purchase_orders table, and the
line items table to display the purchase order details belonging to a customer.

Dropping a View in SQL

You can drop a view in SQL using the same syntax that you use for dropping
a table, as shown here:

DROP VIEW view name;
DROP VIEW viewl, view2, view3;

If you do not know whether or not the view already exists, you can use the
following syntax:

DROP VIEW IF EXISTS view name;
DROP VIEW IF EXISTS viewl, view2, view3;

The preceding syntax is useful when you invoke a SQL script that modifies
the definition of an existing view. Incidentally, you can also include such state-
ments in a SQL file.

Advantages of Views in SQL Statements

Now that you understand what views are and how to create them, here is a
list of some advantages of a view over SQL statements that directly access data
from one or more tables:

* restricted access to data (i.e., security)
e simpler queries
e abstraction of business logic

78 ¢ SQL Pocket Primer

Earlier, we briefly mentioned restricted access. For example, you might
want to prevent users from accessing sensitive information, such as a table
attribute that contains social security numbers.

A view can be a replacement for a SQL statement that involves a multi-
table join or a subquery. In fact, a view definition can consist of a combination
of tables and other view definitions. Finally, a view can “abstract” away com-
plex business logic in transactions, thereby reducing the likelihood of creating
and executing incorrect SQL queries to retrieve the desired data. In a sense,
SQL views can function as an access layer between users and database tables.

Views Involving a Single Table

The following SQL statement defines a view over the customers table:

MySQL [mytools]> CREATE VIEW V1 AS (SELECT * FROM customers);
1 row in set (0.002 sec)

Note that the data that is visible via view V1 is identical to the data that is
visible from the customers table, so view V1 does not provide any significant
advantages. If you select the data rows from view v1, you will see the same set
of rows that are selected from the customers table.

The interesting aspect of V1 is that it’s possible to insert data rows into v1
as well. However, this is not true in general; specifically, you cannot insert a
data row into a view that is defined as a join of two or more tables if there is
any ambiguity regarding the exact set of attributes in the underlying tables that
are affected.

Now examine the definition of view v2 that selects all the rows of
customers (i.e., the same as view V1), but only the attributes cust_id and
city, as defined here:

MySQL [mytools]>
CREATE VIEW V2 AS (SELECT cust id,city FROM customers) ;
1 row in set (0.002 sec)

| Tables in mytools |

Views Involving Multiple Tables

Here is an example of creating the view v3, which is defined over a join of
two tables:

MySQL [mytools]>

CREATE VIEW V3 AS

(SELECT cust id,po id FROM customers c, purchase orders p
Where c.cust id = p.cust _id);

If you select the data from the view v3, you will see a set of rows contain
the field cust_id and the field po_id. Note that the returned data set does
not necessarily “group” the rows so that all the purchase orders for each
customer are in the same block. In order to perform the latter, use GROUP BY
c.cust_idin the definition of the view v3 (discussed later).

Joins, Views, and Subqueries © 79

Updatable Views

An updatable view refers to a view in which the underlying table or tables
can be updated. If a view is based on a single table, then the view is updatable
if the underlying table is updatable. If a view is based on two or more tables,
then the view is updatable if there is no ambiguity regarding the exact rows and
tables that are affected by the update.

Moreover, an updatable view (regardless of how it’s defined) cannot contain
any of the following SQL clauses:

* Aggregate functions

¢ Group operators

* GROUP BY expressions
* JOINs

* Set operators

KEYS, PRIMARY KEYS, AND FOREIGN KEYS

A key is a value used to identify a record in a table uniquely. A key could be
a single column or combination of multiple columns. The columns in a table
that are not used to identify a record uniquely are called non-key columns. A
unique key constraint ensures that there are no duplicate rows in a table (i.e.,
all rows are unique).

A primary key is a combination of fields that uniquely identifies a row in a
table. Keep in mind that a primary key cannot have NULL values: in fact, there
is an implicit NOT NULL constraint on a primary key. Consequently, a primary
key constraint also has a unique constraint. The crucial point to remember is
this: you can define multiple unique constraint on a given table, but there can
be only one primary key on a table.

A foreign key references the primary key of another table. A foreign key
exists when a pair of tables have a master/detail relationship, such as a pur-
chase order and its line items, or a student and the list of courses in which the
student has enrolled.

Foreign Keys versus Primary Keys

Suppose that & and B are two MySQL tables. As you saw in the previous
section, a foreign key from A to B provides a mechanism for a row in table & to
reference a related row in table B. In addition, a foreign key is specified in the
definition of a primary key for a given table. A foreign key has the following
properties:

e can have a different name from its primary key

* ensures rows in one table have corresponding rows in another
* is not required to be unique (often foreign keys are not).

e can be null, even though a primary key cannot

80 ¢ SQL Pocket Primer

On the other hand, a primary key is used to identify a database record
uniquely, and it has the following properties:

e cannot be NULL

* must be unique

¢ its values should rarely be changed

* must be given a value when a new record is inserted

Lastly, a composite key is a key composed of two or more columns used to
identify a record uniquely.

A MYSQL EXAMPLE OF FOREIGN KEYS

Although the definitions of primary keys and foreign keys in the previous
section are straightforward, there are some subtle points to keep in mind when
you specify them in table definitions.

Listing 3.4 shows the content of parent child.sql that illustrates how
to specify a primary key in the tables parent tbl and child tbl and also a
foreign key in the table child tbl. Both of these tables have minimal content
so that you can focus on the foreign key portion of the code, and also easily
observe what happens when you experiment with the table definitions.

LISTING 3.4: parent_child.sql
use mytools;

DROP TABLE IF EXISTS parent tbl;
DROP TABLE IF EXISTS child tbl;
-- drop parent_tbl again: why?

DROP TABLE IF EXISTS parent tbl;

CREATE TABLE parent tbl(
Cust_id INT PRIMARY KEY,
cust name VARCHAR (30)

)

CREATE TABLE childitbl(
child id INT PRIMARY KEY,
cust id INT,
FOREIGN KEY (cust_id) REFERENCES parent tbl (cust_id)
ON DELETE SET NULL
ON UPDATE SET NULL
)i

INSERT INTO parent_tbl VALUES (100, "John Smith'");
INSERT INTO parent tbl VALUES (200, 'Jane Jones');

INSERT INTO child tbl VALUES (1200, 100)
INSERT INTO child tbl VALUES (1300, 100);
INSERT INTO child tbl VALUES (2500, 200)
INSERT INTO child tbl VALUES (2600, 200)

Joins, Views, and Subqueries ¢ 81

Listing 3.4 starts by dropping the parent tbl and child tbl tables, fol-
lowed by the creation of these two tables, and then several SQL statements
that insert data into both tables. Now launch the SQL file to see the following
output:

Database changed

ERROR 3730 (HY000) at line 2 in file: 'parent child.sql':
Cannot drop table 'parent tbl' referenced by a foreign key
constraint 'child tbl_ibfk_1' on table 'child tbl'.

Query OK, 0 rows affected (0.014 sec)
Query OK, 0 rows affected (0.005 sec)
Query OK, 0 rows affected (0.007 sec)
Query OK, 0 rows affected (0.009 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

The error message ERROR 3730 (HY000) occurs because the first attempt
to drop the table parent tbl fails due to the foreign key constraint that is
specified in the definition of the table child tbl.

Second, after the child tbl has been recreated, it’s possible to drop and
re-create the table parent tbl, which is why the parent tbl is dropped
(successfully) in the second DROP TABLE statement.

Third, do not specify NOT NULL in the definition for cust_id or you will
see this error message:

--Column 'cust id' cannot be NOT NULL: needed in a foreign
key constraint 'child tbl ibfk 1' SET NULL

Finally, keep in mind that other RDBMSs might exhibit slightly different
behavior, in which case you need to modify the SQL statements accordingly.

Here are the contents of the tables parent tbl and child tbl after you
execute the code in Listing 3.4:

MySQL [mytools]> select * from parent tbl;
- o —— +

| cust id | cust name |
T - P — +
| 100 | John Smith |
| 200 | Jane Jones |
o - +

2 rows in set (0.001 sec)

MySQL [mytools]> select * from child tbl;
tomm fom— - +

82 ¢ SQL Pocket Primer

| 2500 | 200 |
| 2600 | 200 |
tom— fom— - +
4 rows in set (0.001 sec)

WORKING WITH SUBQUERIES IN SQL

A subquery is a SQL query that is defined inside another SQL query. The
subquery is also called a nested query or inner query. In addition, there are two
types of subqueries:

e correlated subqueries (same table in inner and outer query)
* non-correlated subqueries (can return Boolean values)

One type of subquery can return a result set with zero, one, or multiple

rows; by contrast, another type of subquery can return a Boolean value. The
next section provides additional details regarding both types of subqueries.

Two Types of Subqueries

As you learned in the previous section, a correlated subquery is a sub-
query that contains a reference to a table that also appears in the outer query.
Therefore, a correlated subquery is not an independent query. Correlated sub-
queries execute the outer query before the inner query is executed. Correlated
subqueries contain SQL clauses such as EXIST, NOT EXIST, IN, and NOT IN.

By contrast, a non-correlated subquery is an independent query whose out-
put is substituted into the main query. The inner query is always executed
before the outer query in a non-correlated subquery.

In both types of subqueries, the nested query returns a (possibly empty) set
of values that is then processed by the outermost SQL query. Consequently,
there can be a performance penalty because the subquery may be evaluated
again for each row processed by the outer query, thereby increasing the execu-
tion time for the entire SQL statement.

Now that you understand the different types of subqueries, the following
SQL statement selects the day and the forecast for the day (or days) that
have the maximum temperature by means of a correlated subquery:

SELECT day, forecast
FROM weather
WHERE temper IN (
SELECT max (temper) FROM weather);

As you can see in the preceding SQL statement, a subquery enables you
to restrict the data that is queried by the main query. Although we have not
discussed the MaAX () function in SQL, the purpose of this function is intuitive:
it returns the maximum value of an attribute of a table. Similarly, MIN () and
AVG () return the minimum and average values, respectively, of an attribute of
a table. These aggregate functions are discussed again in Chapter 4.

Joins, Views, and Subqueries ¢ 83

As a second example, the following SQL statement displays the city and
state in which the temperature is above the average temperature for all cit-
ies, where the average temperature is determined by a correlated subquery:

SELECT city, state

FROM weather

WHERE temper > (SELECT AVG (temper)
FROM weather) ;

- - +
| city | state |
- o +
| se | wa |
| sf | mn |
| | mn \
| sf | ca |
+————— - +

4 rows in set (0.008 sec)

Obviously, you can replace “>” in the preceding SQL statement with “<”

or “=” or other inequalities to retrieve the appropriate subset of rows from the
weather table.

As a third example, the following SQL statement contains a correlated
subquery that appears in the SELECT clause of the outer query, which prints
the entire list of cities and states alongside the average temperature for
each city:

SELECT city, state, temper,
(SELECT AVG (temper)
FROM weather
WHERE city = w.city) AS city average
FROM weather w
ORDER BY city, state;

tm———— o o Fmm +
| city | state | temper | city average |
e R R e ———————— +
	ca	42	46.0000
	mn \ 50	46.0000	
chi	i1	15	15.0000
se	wa	78	78.0000
sf	ca	42	49.7143
sf	ca	45	49,7143
sf	ca	45	49.7143
sf	ca	51	49,7143
sf	ca	42	49,7143
sf	ca	45	49.7143
sf	mn	78	49.7143
+o———— o o o +

11 rows in set (0.000 sec)

A Subquery to Find Customers Without Purchase Orders

Subqueries are useful for finding rows in a table that do not have any rows
in a related table. Let’s look at the contents of the customers2 table that is

84 < SQL Pocket Primer
defined in the SQL script customers2. sql, which has the same structure as
the customers table, and also contains six rows of data, as shown below:

SELECT DISTINCT (cust id), first name, last name
FROM customers2;

fom fom e —— fom +
| cust id | first name | last name |
L — R - R - +
1000	John	Smith
2000	Jane	Jones
3000	Sara	Smith
4000	Dave	Dean
5000	Kenn	Knuth

t———————— o —— Fmm - +

5 rows in set (0.001 sec)

In addition, let’s review the contents of two of the attributes of the pur-
chase orders table, as shown below:

SELECT DISTINCT (po_id), cust id
FROM purchase orders;

Fomm Fomm - +
| po_id | cust_id |
e e +
12500	1000
12600	1000
12700	1000
Fomm Fomm - +

3 rows in set (0.000 sec)

As you can see, only the customer with cust_id equal to 1000 has made
any purchase orders. How do we display information about the customers who
have not made any purchase orders? The following SQL statement accom-

plishes this task:

SELECT c.cust id, c.first name, c.last name
FROM customers2 c
WHERE
NOT EXISTS (
SELECT po.cust id
FROM purchase orders po
WHERE po.cust id = c.cust id

o o —— fom - +
| cust id | first name | last name

- o — Fmm e —— +
| 2000 | Jane | Jones |
| 3000 | Sara | Smith |
| 4000 | Dave | Dean |
| 5000 | Kenn | Knuth |
o o — fom - +

4 rows in set (0.001 sec)

Joins, Views, and Subqueries ¢ 85

If you want to determine the number of customers who have not made any
purchase orders, use the code snippet SELECT count (*) instead of this code
snippet:

SELECT c.cust id, c.first name, c.last name

Now that you know how to use the ORDER BY and HAVING clause, let’s see
how to display customers without purchase orders and specify criteria such
as grouping by zip_code and by state. The answer is in the following SQL
statement:

SELECT c.cust id, c.first name, c.last name, c.zip code, c.state
FROM customers2 c
WHERE
NOT EXISTS (
SELECT po.cust id
FROM purchase orders po
WHERE po.cust id = c.cust id
)
ORDER BY zip code, state;

B fomm e ——— fom e ——— fom fom———— +
| cust id | first name | last name | zip code | state |
R — R - oo oo R +
| 4000 | Dave | Dean | 67123 | IL

| 5000 | Kenn | Knuth | 67345 | IL

| 2000 | Jane | Jones | 95015 | CA |
| 3000 | Sara | Smith | 95043 | CA |
o - Fom - Fom - e +

4 rows in set (0.000 sec)

SUBQUERIES WITH IN AND NOT IN CLAUSE

Before working with these SQL clauses, let’s review the contents of the
weather table:

select * from weather;

o Fomm————— - Fom - - t-—————— +
| day | temper | wind | forecast | city | state |
= Fomm - fom - - fom———— +
| 2021-04-01 | 42 | 16 | Rain | sf | ca

| 2021-04-02 | 45 | 3 | Sunny | sf | ca |
| 2021-04-03 | 78 | =12 | NULL | se | wa \
| 2021-07-01 | 42 | 16 | Rain | | ca

| 2021-07-02 | 45 | -3 | Sunny | sf | ca |
| 2021-07-03 | 78 | 12 | NULL | sf | mn \
| 2021-08-04 | 50 | 12 | Snow | | mn

| 2021-08-06 | 51 | 32 | | sf | ca \
| 2021-09-01 | 42 | 16 | Rain | sf | ca \
| 2021-09-02 | 45 | 99 | | sf | ca

| 2021-09-03 | 15 | 12 | Snow | chi | 11 \
= Fomm - fom - - fom———— +

11 rows in set (0.000 sec)

86 ¢ SQL Pocket Primer

Suppose that we want to retrieve the rows where the state can be either
ca, wa, or 11. One way to do so involves using multiple OR clauses in a SQL
query. However, a simpler solution involves the IN keyword, as shown here:

SELECT * FROM weather
WHERE state IN ('ca','wa',6'il");

Fomm o e et o Fom———— +—————— +
| day | temper | wind | forecast | city | state |
o — Fomm - Fom - - fomm———— +
| 2021-04-01 | 42 | 16 | Rain | sf | ca \
| 2021-04-02 | 45 | 3 | Sunny | sf | ca

| 2021-04-03 | 78 | =12 | NULL | se | wa \
| 2021-07-01 | 42 | 16 | Rain | | ca \
| 2021-07-02 | 45 | -3 | Sunny | sf | ca

| 2021-08-06 | 51 | 32 | | sf | ca \
| 2021-09-01 | 42 | 16 | Rain | sf | ca |
| 2021-09-02 | 45 | 99 | | sf | ca

| 2021-09-03 | 15 | 12 | Snow | chi | il |
Fomm o e et o Fom———— +—————— +

9 rows in set (0.003 sec)

Similarly, we can find the rows whose state is not in the preceding list by
using the NOT IN keyword, as shown here:

SELECT * FROM weather
WHERE state NOT IN ('c

a ’
= fom - fom - - fom———— +
| day | temper | wind | forecast | city | state |
o —— o - - - F——————— +
| 2021-07-03 | 78 | 12 | NULL | sf | mn \
| 2021-08-04 | 50 | 12 | Snow | | mn
o —— o - - - F——————— +

2 rows in set (0.000 sec)

The results of the preceding two queries make sense: the preceding NOT IN
query returns 2 rows, and the IN query returns 9 rows, and their sum is 11,
which equals the number of rows in the weather table.

SUBQUERIES WITH SOME, ALL, ANY CLAUSE

Before working with any of these SQL clauses, let’s first look at the data in
the friends table:

select * from friends;

+————= - - - +
| id | fname | lname | height |
=== = - e +
100	Jane	Jones	170
200	Dave	Smith	160
300	Jack	Stone	180
+————= - - - +

3 rows in set (0.000 sec)

Joins, Views, and Subqueries ¢ 87

The ALL keyword in the next SQL statement selects the 1name and fname
attributes of the rows whose 1d attribute is greater than all of the id values in
the inner SELECT statement:

SELECT id, lname, fname
FROM friends
WHERE id > ALL(SELECT 100);

(

fo—— fomm - fomm - +

| id | lname | fname |
fo——— fomm fomm——— +

| 200 | Smith | Dave |

| 300 | Stone | Jack
fo——— fomm fomm——— +
2 rows in set (0.009 sec)

As another example, the ALL keyword selects the 1name and fname attrib-
utes of the rows whose id attribute is greater than all of the id values in the
friends table. Obviously, there are no such rows, as shown here:

SELECT id, lname, fname
FROM friends

WHERE id > ALL(

SELECT id FROM friends):;
Empty set (0.001 sec)

The soME keyword selects the 1name and fname of the rows whose id
value is greater than some (at least one will suffice) of the id values in the rows
returned by the inner query, an example of which is here:

SELECT id, lname, fname
FROM friends

WHERE id > SOME (

SELECT id FROM friends);

fo——— fomm fomm——— +
| id | lname | fname |
+————= = - +
| 200 | Smith | Dave |
| 300 | Stone | Jack

+————= e = +

2 rows in set (0.002 sec)

As you can confirm, 200 and 300 are both greater than 100, but 100 is not
greater than any of the id values in the friends table.

The aNnY keyword selects the 1name and fname of the rows whose id value
is greater than any (at least one) of the id values in the rows returned by the
inner query, an example of which is here:

SELECT id, lname, fname
FROM friends

WHERE id > ANY (

SELECT id FROM friends);

88 ¢ SQL Pocket Primer

+———— - - +

| id | lname | fname |
+————= = - +

| 200 | Smith | Dave |

| 300 | Stone | Jack
+————= = - +
2 rows in set (0.000 sec)

Notice that although the result of the SOME query and the ANY query are the
same in the preceding SQL statements, in general, the result sets are different.

SUBQUERIES WITH THE MAX() AND AVG() FUNCTIONS

The following SQL statement returns two rows from the weather table
where the temperature equals the maximum value:

SELECT temper, city, state
FROM weather

WHERE temper = (SELECT MAX (temper) FROM weather);
o - o +
| temper | city | state |
fomm - fo—m - fomm - +
| 78 | se | wa |
| 78 | sf | mn |
fomm - fo—m - fomm - +

2 rows in set (0.001 sec)

The following SQL statement returns seven rows from the weather table
where the temperature is less than the average value:

SELECT temper, city, state
FROM weather
WHERE temper < (SELECT AVG (temper) FROM weather);

tm—————— o tm————— +
| temper | city | state |
o F————— t—————— +
42	sf	ca
45	sf	ca
42		ca
45	sf	ca
42	sf	ca
45	sf	ca
15	chi	il
to—————— e to————— +

7 rows in set (0.005 sec)

FIND TALLEST STUDENTS IN EACH CLASSROOM VIA A SUBQUERY

Listing 3.5 shows the content of heights.sqgl that creates the table
heights and then selects the tallest three students in each of the distinct
classrooms (i.e., 1000 and 2000) specified in the room attribute of the heights
table.

Joins, Views, and Subqueries * 89

LISTING 3.5: heights.sql
use mytools;
DROP TABLE IF EXISTS heights;

CREATE TABLE heights (id INTEGER, name CHAR(10), height
INTEGER, room INTEGER) ;

INSERT INTO heights VALUES(1, 'personl', 150, 1000);
INSERT INTO heights VALUES(2, 'person2', 180, 1000);
INSERT INTO heights VALUES(3, 'person3', 200, 1000);
INSERT INTO heights VALUES(4, 'person4', 100, 1000);
INSERT INTO heights VALUES(5, 'person5', 130, 2000);
INSERT INTO heights VALUES(6, 'person6', 100, 2000);
INSERT INTO heights VALUES(7, 'person?7', 110, 2000);
INSERT INTO heights VALUES(8, 'person8', 120, 2000);
SELECT *

FROM heights hl

WHERE 3 > (

SELECT COUNT (DISTINCT height)
FROM heights h2

WHERE h2.height > hl.height
AND hl.room = h2.room

)i

Listing 3.5 starts by creating and populating the table heights with 8 rows of
data, where 4 students are in classroom 1000 and 4 students are in classroom 2000.

The second portion of Listing 3.5 defines a SQL statement that is a corre-
lated subquery. Notice that the WHERE clause specifies the value 3 in order to
limit the number of rows that are returned by the inner SQL statement.

In Chapter 4, you will learn how to use the LIMIT keyword that limits the
number of rows that are returned by a SQL statement. However, MySQL 8
does not support the LIMIT keyword inside a subquery. Launch the code in
Listing 3.5 to see the following output:

fomm - fomm fomm o +
| id | name | height | room |
e Fomm - fomm fommm—— +
1	personl	150	1000
2	personz2	180	1000
3	person3	200	1000
5	personb	130	2000
7	person7	110	2000
8	person8	120	2000
fomm - fomm fomm o +
6 rows in set (0.000 sec)

The SQL statement returns 3 rows for room 1000 and 3 rows from room
2000, all of which are the top three tallest students in their respective class-
rooms. The nice aspect of Listing 3.5 is that you can generalize the result by
adding an arbitrary number of departments, or by changing the number of

90 ¢ SQL Pocket Primer

values that you want from each classroom, or both. Try replacing the number
3 by 1, 2, 4, 5, or any other positive integer and verify that the output of the
modified SQL statement is correct.

SQL AND HISTOGRAMS

A histogram in SQL refers to a SQL statement that displays the distribution
(i.e., frequency) of items in a database table. For example, we can display the
contents of the item desc table as follows:

select *

from item desc;

fom - o +
| item id | item desc | item price
N R - R ———— +
100	hammer	20.00
200	screwdriver	8.00
300	wrench	10.00
o ————— o — o —— +
3 rows in set (0.001 sec)

We display only the values of the item price attribute in the item desc
table as follows:

select item price
from item desc;

fom e ——— +
| item price |
R - +
| 20.00 |
| 8.00 |
| 10.00 |
fom e ——— +

3 rows in set (0.000 sec)

The next portion of this chapter contains examples of SQL statements that
specify each of the clause ORDER BY, GROUP BY, and HAVING, followed by
examples that use a combination of these SQL clauses. For simplicity, the SQL
queries in the upcoming sections are based on a single table; however, you
can generate more sophisticated reports that contain JOIN clauses that involve
multiple tables.

WHAT ARE GROUP BY, ORDER BY, AND HAVING CLAUSES?

The GroUP BY clause enables you to count items that are “grouped
together” based on the same attribute value. For example, the following SQL
statement counts the number of occurrences of the same city value in the
weather table:

SELECT city, COUNT (city)
FROM weather

Joins, Views, and Subqueries * 91

GROUP BY city;

+-———— fom - +
| city | count(city) |
t————— e +
| sf \ 7
| se \ 1|
| \ 2|
| chi | 1]
to———— R +

4 rows in set (0.003 sec)

The ORDER BY clause enables you to specify the order in which items are
displayed. For example, the following SQL statement counts the number of
occurrences of the same city name in the weather table and also orders the
output alphabetically by city name:

SELECT city, COUNT (city)
FROM weather

GROUP BY city

ORDER BY city;

e fom - +
| city | count(city) |
e fom e +
| \ 2|
| chi | 1 |
| se \ 1
| sf \ 7
Fo———— fom e +

4 rows in set (0.003 sec)

The HAVING clause enables you to specify an additional filter condition for
the result set. For example, the following SQL statement extends the previous
SQL statement by restricting the result set to cities whose count is greater than
2 in the weather table:

SELECT city, COUNT (city)
FROM weather

GROUP BY city

HAVING count(*) > 2
ORDER BY city;

t————— e +
| city | count(city) |
+-———— fom - +
| sf \ 7
tm———— Fmm +

1l row in set (0.003 sec)

A HAVING clause and a WHERE clause both filter the data in a result set,
but there is a difference. HAVING applies only to groups of data, whereas the
WHERE clause applies to individual rows.

The BAVING clause is executed before the SELECT statement, which means
that you cannot use aliases of aggregated columns in the HAVING clause.

92 ¢ SQL Pocket Primer

Displaying Duplicate Attribute Values

In a previous section, you learned how to delete duplicate rows, where two
rows are considered duplicates if they have the same attribute value. The follow-
ing SQL statement uses the HAVING keyword to display the number of duplicate
rows (i.e., rows that contain the same attribute value) in a MySQL table:

SELECT city, COUNT (*)
FROM weather

GROUP BY city

HAVING COUNT (*) > 1

+-————- fo————— +
| city | COUNT (*) |
Fmm———— Fm————————— +
| sf \ 7
| \ 2
Fmm———— Fm————————— +

2 rows in set (0.006 sec)

By contrast, recall that Chapter 2 contains a SQL statement with a sub-
query to find the unique rows in a database table.

EXAMPLES OF THE SQL GROUP BY AND ORDER BY CLAUSE

The following SQL statement displays the values of the item price
attribute in the item desc table, as well as their frequency:

SELECT item price, COUNT(1l) as frequency
FROM item desc

GROUP BY 1;

Fom— Fom +
| item price | frequency |
R ——— oo +
| 20.00 | 1|
| 8.00 | 1
| 10.00 | 1|
Fom— Fom +

3 rows in set (0.001 sec)

The following SQL statement displays the values of the item price
attribute in the item desc table, the frequency of those values, and orders
them in decreasing order:

SELECT item price, COUNT(1l) as frequency
FROM item desc

GROUP BY 1

ORDER BY item price;

Fomm Fom - +
| item price | frequency |
R ————— oo +
| 8.00 | 1
| 10.00 | 1
| 20.00 | 1|
Fomm Fom - +

3 rows in set (0.001 sec)

Joins, Views, and Subqueries ¢ 93

Yet another example of a SQL statement with the ORDER BY clause is
shown here:

SELECT item desc, item price
FROM new items

ORDER BY item price DESC;
it i EE fom - +
| item desc

\
o~ fom e —— +
| Toolbox L \ 50.00 |
| Toolbox M \ 40.00 |
Toolbox S	30.00
hammer	20.00
ballpeen	20.00
Handsaw	20.00
wrench	10.00
pliers	10.00
screwdriver	8.00
1/4 inch nails	8.00
fom fom +

10 rows in set (0.000 sec)

SQL Histograms on a Table Copy

Suppose that we want to experiment with generating histograms, but with-
out modifying the contents of the item desc table. One approach involves
the following steps:

e dynamically create a table new_items with the structure of the item
desc table

* populate new_items with the contents of the item_desc table

® insert new rows into the new_items table

The first two bullet items are handled by the following SQL statement:

CREATE TABLE new items AS (SELECT * FROM item desc);
Query OK, 3 rows affected (0.023 sec)
Records: 3 Duplicates: 0 Warnings: 0

Verify that new_items contains the same data as item_ desc via the fol-
lowing SQL statement:

MySQL [mytools]> SELECT * FROM new items;
Fomm o Fom e +

| item id | item desc | item price |
e R ——————— e —————— +
100	hammer	20.00
200	screwdriver	8.00
300	wrench	10.00
e - e —— +
3 rows in set (0.001 sec)

94 e SQL Pocket Primer

Insert new rows into the new_items table by executing the following SQL
statements:

MySQL [mytools]> INSERT INTO new_items VALUES (400, 'pliers',10.00);
Query OK, 1 row affected (0.004 sec)

MySQL [mytools]> INSERT INTO new items VALUES (500, 'ballpeen',20.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new items VALUES (600,'1/4 inch nails',8.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new items VALUES (700, 'Toolbox S',30.00);
Query OK, 1 row affected (0.002 sec)

MySQL [mytools]> INSERT INTO new_items VALUES (800, 'Toolbox M',40.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new items VALUES (900, 'Toolbox L',50.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new_items VALUES (1000, 'Handsaw',20.00);
Query OK, 1 row affected (0.004 sec)

Now display the new contents of the new_items table with the following
SQL statement:

SELECT * FROM new items;

o - fom e —— +
| item id | item desc | item price |
S e e R - +
100	hammer	20.00
200	screwdriver	8.00
100	wrench	10.00
400	pliers	10.00
500	ballpeen \ 20.00	
600	1/4 inch nails	8.00
700	Toolbox S \ 30.00	
800	Toolbox M \ 40.00	
900	Toolbox L	50.00
1000	Handsaw	20.00
- o - fom e~ +

9 rows in set (0.000 sec)

We can modify and launch the histogram-based SQL statement. Notice
the results:

SELECT item price, COUNT(1l) as frequency
FROM new items

GROUP BY 1

ORDER BY item price;
oo Fomm +
| item price | frequency |
R ———— oo +

Joins, Views, and Subqueries * 95

|
|
| 40.00
|

6 rows in set (0.000 sec)

Notice that the preceding SQL statement references the new items table
instead of the item desc table. We can obtain a similar result with the follow-
ing SQL statement:

SELECT item price as frequency, COUNT (item price)
FROM new items

GROUP BY item price

ORDER BY item price;

fom e +

| frequency | COUNT (item price) |

oo oo ———————e +

| 8.00 |

| 10.00 |

| 20.00 |

| 30.00 |

| 40.00 |

| 50.00 |

tom— Fomm +
6 rows in set (0.000 sec)

However, the following SQL statement does not work because GROUP BY
occurs affer ORDER BY, which is invalid SQL syntax:

SELECT item desc, item price as frequency
FROM new_ items

ORDER BY item price

GROUP BY item price;

If you attempt to execute the preceding SQL statement you will see the
following error:

ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'However, the
following SQL statement does not work:

SELECT item desc, item price' at line 1

COMBINE GROUP BY AND ROLLUP CLAUSE

The term rollup refers to the sum of the quantities in sub-accounts to dis-
play the combined total for those subaccounts. The general format for SQL
statements that include the ROLLUP keyword is as follows:

SELECT COL1, SUM(COLZ2)
FROM table name
GROUP BY COL1 WITH ROLLUP;

96 ¢ SQL Pocket Primer

Let’s experiment with the suM () and AvVG () aggregate functions in conjunc-
tion with the ROLLUP keyword, as shown in the following set of SQL statements.

SELECT id, SUM (height)
FROM friends
GROUP BY id WITH ROLLUP;

fomm - Fommm +
| id | SUM(height) |
Fmm———— Fomm +
100	170
200	160
300	180
NULL	510
fommm - pomm e +

4 rows in set (0.008 sec)

SELECT id, SUM(height)
FROM friends
GROUP BY id;

fomm o fomm +
| id | SUM(height) |
fo—m—- fommm o +
| 100 | 170 |
| 200 | 160 |
[300 | 180 |
fomm o fomm +

3 rows in set (0.002 sec)

SELECT id, AVG (height)
FROM friends
GROUP BY id WITH ROLLUP;

fommm - pomm e +
| id | AVG (height) |
fomm - Fommm +
| 100 | 170.0000 |
| 200 | 160.0000 |
[300 | 180.0000 |
| NULL | 170.0000 |
Fmm———— Fmmm +

4 rows in set (0.002 sec)

Although the following SQL statement is similar to the preceding SQL
statements, it’s actually invalid:

SELECT id, height
FROM friends
GROUP BY id WITH ROLLUP;

If you attempt to execute the preceding SQL statement, you will see the
following error:

ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mytools.friends.

height' which is not functionally dependent on columns in GROUP
BY clause; this is incompatible with sgl mode=only full group by

Joins, Views, and Subqueries © 97

The 2021 Olympics Medals and the ROLLUP Keyword

The examples in the previous section involved results that you probably
anticipated, whereas the next example might produce results that are more
meaningful. Specifically, we’ll construct a table that contains the number of
gold, silver, and bronze medals that the top five countries won during the 2021
Olympics in Japan.

Listing 3.6 shows the content of 01ympicsJAPN2021.csv that contains
the number of medals earned by the top 15 countries in the 2021 Olympics in

Japan.

LISTING 3.6: Olympics]APN2021.csv

Pos,Country,Gold, Silver,Bronze, Total
1,USA,39,41,33,113
2,China,38,32,18,88
3,Japan,27,14,17,58
4,UK,22,21,22,65
5,R0C,20,28,23,71
6,Aust,17,7,22,46
7,Nether,10,12,14,36
8,France, 10,12,11,33
9,Germany, 10,11,16,37
10,Italy,10,10,20,40
11,Canada, 7,6,11,24
12,Brazil, 7,6,8,21
13,NZ2,7,6,7,20
14,Cuba,7,3,5,15

15, Hungary, 6,7,7,20

Listing 3.7 shows the content of olympics.sql that drops and recreates
the table olympics, and then populates the table with the number of medals
won by the top 5 countries in Listing 3.6.

LISTING 3.7: olympics.sql
DROP TABLE IF EXISTS olympics;

CREATE TABLE olympics (pos INTEGER, country VARCHAR(20),
medal VARCHAR (20), count INTEGER) ;

INSERT INTO olympics VALUES (1,'USA', 'gold', 39);
INSERT INTO olympics VALUES (1,'USA','silver', 41);
INSERT INTO olympics VALUES (1,'USA', 'bronze', 33);

INSERT INTO olympics VALUES (2, 'CHINA', 'gold', 38);
INSERT INTO olympics VALUES (2, 'CHINA', 'silver', 32);
INSERT INTO olympics VALUES (2, 'CHINA', 'bronze', 18);

INSERT INTO olympics VALUES (3, 'JAPAN', 'gold', 27);
INSERT INTO olympics VALUES (3, 'JAPAN', 'silver', 14);
INSERT INTO olympics VALUES (3, 'JAPAN', 'bronze', 17);

98 ¢ SQL Pocket Primer

INSERT INTO olympics VALUES (4, 'UK','gold', 22);
INSERT INTO olympics VALUES (4,'UK','silver', 21);
INSERT INTO olympics VALUES (4,'UK', 'bronze', 22);

INSERT INTO olympics VALUES (5,'ROC', 'gold', 20) ;
INSERT INTO olympics VALUES (5,'ROC','silver', 28);
INSERT INTO olympics VALUES (5,'ROC', 'bronze', 23);

Execute the following SQL statement that contains the ROLLUP keyword
and displays the relative ranking of five countries, a column with the number
of medals won by each country, and one row for the total number of medals:

SELECT pos, SUM(count)
FROM olympics
GROUP BY pos WITH ROLLUP;

6 rows in set (0.000 sec)

The 2021 Olympics Medals and the RANK Operator

Since we've just finished an example that involves the medals for the 2021
Olympics, we'll use that as a segue to ranking the medal counts using the
RANK () operator, as shown in the following SQL statement:

SELECT count, medal, country,
RANK () OVER (
ORDER BY count DESC

) my rank

FROM olympics

LIMIT 10;

e = fom = fmm +
| count | medal | country | my rank
t—————— o o o +
| 41 | silver | USA \ 1 |
| 39 | gold | USA | 2 |
| 38 | gold | CHINA \ 3
33	bronze	USA	4
32	silver	CHINA	5
28	silver	ROC	6
27	gold	JAPAN \ 7	
23	bronze	ROC	8
22	gold	UK	9
22	bronze	UK	9
- - fom B +

10 rows in set (0.001 sec)

Joins, Views, and Subqueries © 99

The RANK () function is shown in bold in the SQL statement: the
expression inside the parentheses specifies which attribute to assign a
rank, and in this case, rank the attribute values in descending order. Also
notice that the last two rows both have 22 medals, which is why both rows
have a rank of 9.

THE PARTITION BY CLAUSE

The PARTITION BY clause examines the distinct values of an attribute
(which is specified in the SQL statement) in order to partition the rows of a
table into subsets such that all the rows in each subset have the same attribute
value.

The PARTITION BY clause requires the over () function and can also
specify an optional ORDER BY clause as well as an optional window function,
such as the RANK (), LEAD (), LAG (), and DENSE RANK () functions.

The dense_rank () function assigns a rank to each subset: conceptually,
the dense_rank () function is a generalization of a row-based ranking (or
sorting) of the rows in a table.

The following SQL statement illustrates how to use the PARTITION BY
clause to group countries based on their pos value, and then order the rows in
each group based on their count value in the olympics table.

SELECT pos, country, medal, count,
DENSE_RANK () OVER (PARTITION BY pos ORDER BY count DESC) AS RANKING
FROM olympics;

Fo———— o B et e it e et +
| pos | country | medal | count | RANKING |
Fo———— o B et e et Fommm - +
| 1 | Usa | silver | 41 | 1
| 1 | Usa | gold | 39 | 2
| 1 | USA | bronze | 33 | 3
| 2 | CHINA | gold | 38 | 1]
| 2 | CHINA | silver | 32 | 2
| 2 | CHINA | bronze | 18 | 31
| 3 | JAPAN | gold | 27 | 1]
| 3 | JAPAN | bronze | 17 | 2
| 3 | JAPAN | silver | 14 | 3
| 4 | UK | gold | 22 | 1]
| 4 | UK | bronze | 22 | 1]
| 4 | UK | silver | 21 | 2
| 5 | ROC | silver | 28 | 1]
| 5 | ROC | bronze | 23 | 2
| 5 | ROC | gold | 20 | 3
Fo———— o B et e et Fommm - +

15 rows in set (0.000 sec)

As you can see in the preceding result set, the rows in each partition are
displayed in decreasing order with respect to their count value.

100 ¢ SQL Pocket Primer

GROUP BY, HAVING, AND ORDER BY CLAUSE

Suppose we want to further restrict the result set from the SQL query
from an earlier section (i.e., before the PARTITION BY section) to display
only the items whose count is less than 2. We can do so with the following

SQL query:

SELECT item price, COUNT (*)
FROM new items

GROUP BY item price

HAVING COUNT (*) < 2;

tom fom +
| item price | COUNT (*) |
o fom - +
| 30.00 | 1 |
| 40.00 | 1]
| 50.00 | 1
tom fom +

3 rows in set (0.001 sec)
The HAVING keyword will not work in the following SQL statement:

SELECT frequency, COUNT (*)
FROM new items

GROUP BY item price

ORDER BY item price
HAVING COUNT (*) < 2;

The preceding SQL statement generates the following error message:

ERROR 1064 (42000): You have an error in your SQL syntax; check
the manual that corresponds to your MySQL server version for
the right syntax to use near 'HAVING COUNT (*) < 2' at line 5

Returning to the earlier SQL statement, we can be even more selective
with respect to the subtotals by using the 1N keyword, as shown in the follow-
ing SQL statement:

SELECT item price, COUNT (*)
FROM new_ items

GROUP BY item price

HAVING COUNT (*) IN (1,3);

tom fomm - +
| item price | COUNT(*) |
e fmm +
| 20.00 | 3
| 30.00 | 1
| 40.00 | 1]
| 50.00 | 1|
o fom - +

4 rows in set (0.000 sec)

Joins, Views, and Subqueries * 101

We can also modify the preceding SQL statement to exclude a specific
item price value, as shown in the following SQL statement:

SELECT item price, COUNT (*)
FROM new_ items
GROUP BY item price
HAVING item price <> 20.00;

o —— Fom - +
| item price | COUNT (*) |
R ————— oo +
8.00	2
10.00	2
30.00	1
40.00	1]
50.00	1
o fom - +

5 rows in set (0.004 sec)

COMBINED GROUP BY, HAVING, AND ORDER BY CLAUSE

This section shows you the order in which these three clauses must appear
in a SQL statement in order to execute them correctly. For example, the fol-
lowing SQL statement is incorrect:

SELECT COUNT (*)

FROM new items

GROUP BY item price

ORDER BY item price

HAVING COUNT (*) > 1;

ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'HAVING COUNT (*) > 1'
at line 5

By contrast, the following similar SQL statement is correct:

SELECT COUNT (*)
FROM new_ items
GROUP BY item price
HAVING COUNT (*) > 1
ORDER BY item price;

fommm - +
| COUNT (*)

mmmm +
I 2|
| 2|
I 3
fommm - +

3 rows in set (0.000 sec)

The difference in the preceding pair of SQL statements involves the place-
ment of the ORDER BY clause, which must appear after the HAVING keyword
in these SQL statements.

102 ¢ SQL Pocket Primer

Updating the item_desc Table from the new_items Table

Suppose that you want to update the original contents of the item desc
table with the contents of the new_items table. One way to do so is to execute
the following SQL statements:

— the first SQL statement saves the contents of item_desc:
CREATE TABLE orig item desc AS (SELECT * FROM item desc);

— drop the existing table:
DROP TABLE item desc;

— create item desc and populate with data from new item:
CREATE TABLE item desc AS (SELECT * FROM new items);

The first of the three preceding SQL statements creates a backup of the
original contents of the item desc table. This part of the code is optional and
of limited value for a table with only three rows of data. However, it can be use-
ful if the item desc table contains hundreds (or thousands) of rows of data.

If you need to restore the original contents, this SQL statement will save
you the time and effort to locate a backup of the database (which you undoubt-
edly have somewhere) to restore the original contents of the item desc table.
By contrast, you can restore the contents of the item desc table with this
SQL statement:

RENAME TABLE orig item desc TO item desc;

This concludes the portion of the chapter pertaining to executing SQL
statements with various clauses. One more observation regarding this section:
despite the simple SQL queries for a table that contains only 10 rows of data,
we have also seen other techniques that can be useful in your own tasks.

Specifically, we saw how to dynamically create the table new items to
replicate an existing table item desc, populate new items with new data
rows, and then re-create the original table item desc with the contents of the
new items table.

A SQL QUERY INVOLVING A FOUR-TABLE JOIN

In Chapter 1, you learned about a fictitious Web application that sells tools
online to customers, which involves the following four tables:

customers
purchase orders
line items
item desc

Suppose that you need a SQL query that generates a full report regarding
customer activity. Such a report involves a SQL statement that iterates through

Joins, Views, and Subqueries * 103

the customers table and for each customer, lists the purchase orders of that
customer, along with the full details of each line item that belongs to each
purchase order. The approach outlined in this section involves iterative refine-
ment of SQL statements, which can be summarized as follows:

e Start with a set of tables with a limited number of rows.

e Create a SQL statement with no join conditions (yields duplicate
rOws).

* Add J01N clauses to reduce the duplicates in the output.

* Repeat the preceding step until the desired report is generated.

Let’s perform the steps in the preceding bullet list to issue a series of SQL
statements and iteratively refine the SQL code until we arrive at the correct
SQL statement. If you prefer to skip the intermediate steps, construct your
solution and compare it with the solution at the end of this section.

The first SQL query lists the desired columns from the various tables, along
with repeated rows because the SQL statement does not specify any JOIN
conditions, as shown below:

SELECT c.cust id, p.po_id, l.item id, d.item desc
FROM customers c, purchase orders p, line items 1, item desc d;

| cust id | po_id | item id | item desc |
fommm— e Fommm— Fom - +
1000	12500	NULL	hammer
2000	12500	NULL	hammer
1000	12600	NULL	hammer
2000	12600	NULL	hammer
1000	12700	NULL	hammer
2000	12700	NULL	hammer
1000	12500	NULL	screwdriver
2000	12500	NULL	screwdriver
1000	12600	NULL	screwdriver
2000	12600	NULL	screwdriver
1000	12700	NULL	screwdriver
2000	12700	NULL	screwdriver
1000	12500	NULL	wrench
2000	12500	NULL	wrench
1000	12600	NULL	wrench
2000	12600	NULL	wrench
1000	12700	NULL	wrench
2000	12700	NULL	wrench
fommmm - fommm - fommmm - fommm o +
18 rows in set (0.001 sec)

Obviously, we want to remove the repeated rows from the preceding
result set, so let’s try the following SQL statement that also specifies a match-
ing cust_id value for the customers table and the purchase orders
table:

104 ¢ SQL Pocket Primer

SELECT c.cust id, p.po id, l.item id, d.item desc
FROM customers c, purchase orders p, line items 1, item desc d
WHERE c.cust_id = p.cust_id;

R e R o +
| cust id | po id | item id | item desc |
fommm fom R ——————— +
1000	12500	NULL	hammer
1000	12600	NULL	hammer
1000	12700	NULL	hammer
1000	12500	NULL	screwdriver
1000	12600	NULL	screwdriver
1000	12700	NULL	screwdriver
1000	12500	NULL	wrench
1000	12600	NULL	wrench
1000	12700	NULL	wrench
R e R o +

9 rows in set (0.003 sec)

The preceding SQL query has eliminated some rows and also corrected
the erroneous JOIN clause (shown in bold), but we still have duplicate
rows.

Let’s try a third SQL statement that also joins the purchase orders table
and the 1ine_ items table, as shown here:

SELECT c.cust id, p.po id, l.item id, d.item desc

FROM customers c, purchase orders p, line items 1, item desc d
WHERE c.cust id = p.cust id

AND p.po_id = l.po_id

ORDER BY c.cust id, p.purchase date, p.po id;

o t—————— o o — +
| cust id | po id | item id | item desc |
- — oo R e +
| 1000 | 12500 | 100 | hammer |
| 1000 | 12500 | 200 | hammer |
| 1000 | 12500 | 300 | hammer |
| 1000 | 12500 | 100 | screwdriver |
| 1000 | 12500 | 200 | screwdriver |
| 1000 | 12500 | 300 | screwdriver |
| 1000 | 12500 | 100 | wrench |
| 1000 | 12500 | 200 | wrench |
| 1000 | 12500 | 300 | wrench |
o t—————— o o — +

9 rows in set (0.001 sec)

Although we're closer to the correct SQL query, the preceding output
contains duplicate rows from the item desc table, so we need to join the
line items table and item desc table, as shown here:

SELECT c.cust id, p.po id, l.item id, d.item desc, d.item price
FROM customers c, purchase orders p, line items 1, item desc d
WHERE c.cust id = p.cust id

AND p.po_id = l.po_id

AND l.item id = d.item_id

ORDER BY c.cust id, p.purchase date, p.po_ id;

Joins, Views, and Subqueries * 105

Fom——————— fo————— fom———— Fmm fmm e +
| cust id | po_id | item id | item desc | item price |
Fom— Fom——— fom— Fom fom - +
1000	12500	100	hammer	20.00
1000	12500	200	screwdriver	8.00
1000	12500	300	wrench	10.00
Fom— Fom——— fom— Fom fom - +

3 rows in set (0.001 sec)

Success!

The preceding output displays the desired result. Furthermore, we can
refine the SQL query by including the number of items that were purchased
for each item in the purchase order, as shown here:

SELECT c.cust id, p.po_id, l.item id, d.item desc, d.item price,l.qty
FROM customers c, purchase orders p, line items 1, item desc d
WHERE c.cust id = p.cust id

AND p.po_id = l.po_ id

AND l.item id = d.item id

ORDER BY c.cust_id, p.purchase date, p.po_id;

o o o fom fom - +

| cust id | po id | item id | item desc | item price | gty |

Fomm e it Fomm Fomm e Fomm e e +
1000 | 12500 | 100 | hammer | 20.00 | 1

\ 1000 | 12500 | 200 | screwdriver | 8.00 | 2

\ 1000 | 12500 | 300 | wrench \ 10.00 | 3

o o o fom fom - +

3 rows in set (0.003 sec)

You can also refine the preceding SQL statement to display purchase orders
that contain specific items. For example, the following SQL statement displays
all the purchase orders that contain a hammer:

SELECT c.cust id, p.po id, l.item id, d.item desc, d.item price,l.qgty
FROM customers c, purchase orders p, line items 1, item desc d
WHERE c.cust_id = p.cust_id

AND p.po_id = l.po_id

AND l.item id = d.item id

AND d.item desc = 'hammer'

ORDER BY c.cust id, p.purchase date, p.po id;

Fom oo Hmmmmmmmm o o mmmm e to———— +
| cust id | po id | item id | item desc | item price | gty |
Fom e +-———= ——- +-———= ————e o= +
| 1000 | 12500 | 100 | hammer | 20.00 | 1

Fom to———— Fom Fom Fom +-———— +

1 row in set (0.011 sec)

The preceding SQL statement will generate more interesting results sets
when the purchase orders table contains multiple customers who have
made multiple purchases, each of which generates a row in the purchase
orders table. Later in this chapter, you will learn how to select the set of
purchase orders that are between a pair of dates.

106 ¢ SQL Pocket Primer

OPERATIONS WITH DATES IN SQL

As a simple starting point for date-related operations, the following SQL
statement illustrates how to use the Now () function to display the current date:

SELECT NOW () FROM DUAL;

o +
| NOW () |
o +
| 2021-05-11 22:05:03 |
o +

1l row in set (0.001 sec)

The following SQL statement illustrates how to use the CURRENT DATE ()
function to display the current date, which does not include the HH: :MM: SS
details:

SELECT CURRENT DATE () FROM DUAL;

o —— +
| current date() |
o ———— +
| 2021-07-29 |
o — +

1l row in set (0.003 sec)

In addition, the sYSDATE function in SQL is a function that returns the
current date as well as the current time, an example of which is shown here:

SELECT sysdate () from dual;

o +
| sysdate () |
o +
| 2021-07-15 10:12:59

o +

1l row in set (0.002 sec)

The following SQL query returns the same result as the preceding SQL
query:

SELECT sysdate () from dual;

The following SQL statement displays your time zone with an offset from

GMT:

SELECT TIMEDIFF (NOW(), UTC TIMESTAMP) ;
e +

| TIMEDIFF (NOW (), UTC_TIMESTAMP) |
o +

| =07:00:00 |
o +

1l row in set (0.005 sec)

Joins, Views, and Subqueries © 107

Day and Month Components of Dates in SQL

SQL provides day-related and month-related functions, some of which are
listed here:

® MONTHS BETWEEN
® ADD MONTHS

® NEXT DAY
® LAST DAY

® DAY

® DAYOFMONTH

In fact, SQL supports dozens of date formats, along with functions that
enable you to select different elements in date fields. For example, you can
select the day, the day of month, or the month of year from a date value. In
addition, you can determine the difference between (compatible) dates and
also the last date of a period. The default date format is DD-MON-RR

Let’s invoke some SQL queries that illustrate how to use the DAY () date
function, which is a synonym for the DAYOFMONTH () date function.

select * from weather;

11 rows in set (0.000

SELECT DAY (day)

2021-04-01
2021-04-02
2021-04-03
2021-07-01
2021-07-02
2021-07-03
2021-08-04
2021-08-06
2021-09-01
2021-09-02
2021-09-03

________ +______
temper | wind
________ +______
42 | 16
45 | 3
78 | -12
42 | 16
45 | -3
78 | 12
50 | 12
51 | 32
42 | 16
45 | 99
15 | 12

+ ______
sec)

from weather;

+ - = — — — — — + — ¥

—————— o
city | state |
—————— -
st | ca |
sf | ca |
se | wa |

| ca \
sf | ca |
sf | mn |

| mn \
sf | ca |
st | ca |
st | ca |
chi | il |
—————— -

108 ¢ SQL Pocket Primer

| 6 |
| 1|
| 2 |
| 3
11 rows in set (0.000 sec)

The following SQL query returns the same result as the preceding SQL
query:

SELECT DAYOFMONTH (day) FROM weather;

The next SQL query selects all the rows from the weather table whose day
attribute is after 2021-08-01:

SELECT *

FROM WEATHER

WHERE date(day) > '2021-08-01"
ORDER BY day;

o —— o - - - +——————— +
| day | temper | wind | forecast | city | state |
- Fomm - fom - - fom————— +
| 2021-08-04 | 50 | 12 | Snow | | mn

| 2021-08-06 | 51 | 32 | | sf | ca \
| 2021-09-01 | 42 | 16 | Rain | sf | ca

| 2021-09-02 | 45 | 99 | | st | ca \
| 2021-09-03 | 15 | 12 | Snow | chi | 11 \
- Fomm - fom - - fom————— +

5 rows in set (0.001 sec)

Rounding Dates in SQL

SQL provides the date_format () function that enables you to round a
date to a month, day, hour, or minute.
Round to the month with this SQL statement:

e +
| date format (now(),'sY-%m') |
o +
| 2021-08

e +

1 row in set (0.000 sec)

Round to the day with this SQL statement:

B ettt +
| date format (now(),'%Y-3m-5%d') |
e +
| 2021-08-27 |
o +

1l row in set (0.001 sec)

Joins, Views, and Subqueries * 109

Round to the hour with this SQL statement:

SELECT date format (now(),'%sY-%m-%d %H');

e +
| date format (now(),'%sY-%m-%d SH') |
B ettt L L +
| 2021-08-27 12

e +

1l row in set (0.000 sec)

Round to the minute with this SQL statement:

e +
| date format (now(),'%sY-%m-%d SH:%1i') |
- +
| 2021-08-27 12:57 |
e +

1l row in set (0.000 sec)

WORKING WITH DATE RANGES

The next SQL query selects all the rows from the weather table whose day
attribute is between 2021-07-01 and 2021-08-30:

SELECT *
FROM WEATHER
WHERE date (day) BETWEEN '2021-07-01' AND '2021-08-30'

ORDER BY day;

o Fomm————— - Fom - - t-—————— +
| day | temper | wind | forecast | city | state |
= Fomm - fom - - fom———— +
| 2021-07-01 | 42 | 16 | Rain | | ca

| 2021-07-02 | 45 | -3 | Sunny | sf | ca |
| 2021-07-03 | 78 | 12 | NULL | sf | mn \
| 2021-08-04 | 50 | 12 | Snow | | mn

| 2021-08-06 | 51 | 32 | | sf | ca \
= Fomm - fom - - fom———— +

5 rows in set (0.002 sec)

The next query lists the purchase orders (and associated details) that were
created between a pair of dates:

SELECT p.po_id, p.purchase date, l.item id, d.item desc, d.item price,l.qty
FROM customers c, purchase orders p, line items 1, item desc d

WHERE c.cust_id = p.cust_id

AND p.po _id = l.po id

AND l.item id = d.item_id

AND p.purchase_date BETWEEN '2021-01-01' AND '2021-01-31'

ORDER BY c.cust id, p.purchase date, p.po_id;

110 ¢ SQL Pocket Primer

fom o fom fmm e fmm fom +

| po_id | purchase date | item id | item desc | item price | gty |

fom o fom fmm e fmm fom +

| 12500 | 2021-01-12 | 100 | hammer | 20.00 | 1
12500 | 2021-01-12 | 200 | screwdriver | 8.00 | 2

| 12500 | 2021-01-12 | 300 | wrench | 10.00 | 3

fom o fom fmm e fmm fom +

3 rows in set (0.001 sec)

In the preceding query, three rows are returned because the purchase
order contains three line items (i.e., one line item for each of the three items
that were purchased), and the purchase date is between the specified date
values. The following query will return 0 rows because there are no purchase
orders that were placed prior to 2021-01-01:

SELECT p.po_id, p.purchase date, l.item id, d.item desc, d.item price,l.qty
FROM customers c, purchase orders p, line items 1, item desc d

WHERE c.cust id = p.cust id

AND p.po_id = l.po _id

AND l.item id = d.item id

AND p.purchase date < '2021-01-01"

ORDER BY c.cust_id, p.purchase date, p.po_id;

Empty set (0.001 sec)

TABLES CONTAINING MODIFICATION TIMES

A table with a date-based attribute is obviously useful for keeping track of
the creation date of a row in a table. Depending on your application require-
ments, you might also need an attribute whose value equals the time stamp
whenever the associated rows is updated.

Fortunately, MySQL supports this functionality. The table users_dates
contains the updated_at attribute that is updated to the current timestamp
whenever the contents of the associated row are modified.

CREATE TABLE users dates (
id INT(6) NOT NULL PRIMARY KEY AUTO INCREMENT,
name VARCHAR (40) NOT NULL UNIQUE,
birth date DATE NOT NULL,
created at DATETIME DEFAULT CURRENT TIMESTAMP,
updated at TIMESTAMP DEFAULT CURRENT_ TIMESTAMP ON UPDATE CURRENT

TIMESTAMP

Let’s execute some SQL statements that perform the following changes to

the users dates table:

e Insert a row into the users_dates table.

e Display the contents of the users dates table.
¢ Update the single row in the users_dates table.
* Display the contents of the users_dates.

Joins, Views, and Subqueries ¢ 111

— insert a single row:

INSERT INTO users dates values (1000, 'jane jones', '2001-07-07',
'2021-03-03", ’2051—03—03');

Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> select name,birth date,updated at from users dates;

o R it o +
| name | birth date | updated_at |
Fomm e fomm o +
| jane jones | 2001-07-07 | 2021-03-03 00:00:00 |
fomm e fomm e o +

1 row in set (0.002 sec)

— update the name:

UPDATE users_dates SET name='JANE Q JONES' WHERE name='jane jones';
Query OK, 1 row affected (0.021 sec)

Rows matched: 1 Changed: 1 Warnings: 0

— check the contents of the row:

MySQL [mytools]> select name,birth _date,updated_at from users_dates;

fom - fom o +
| name | birth date | updated at

fom e Fom - o +
| JANE Q JONES | 2001-07-07 | 2021-09-02 17:01:35 |
e Fom - e +

1 row in set (0.000 sec)

As you can see, the updated_at value in the preceding row has been set
equal to the current time stamp.

ARITHMETIC OPERATIONS WITH DATES

SQL enables you to subtract two dates (which returns a number) and also
add or subtract a number from a date. You can also perform these operations
with hours instead of days. The following two SQL queries show you how to
calculate the difference between two dates:

SELECT DATEDIFF("2021-11-25", "2021-12-17");

o +
| DATEDIFF("2021-11-25", "2021-12-17") |
e et L R +
| -22 |
o +

1l row in set (0.001 sec)

SELECT DATEDIFF("2021-12-25", "2021-11-17");

e et L R +
| DATEDIFF("2021-12-25", "2021-11-17") |
o +
| 38 |
o +

1l row in set (0.000 sec)

112 ¢ SQL Pocket Primer

The following SQL query shows you how to add a number to a date (use a
negative number to subtract from a date):

SELECT ADDDATE ("2021-11-15", INTERVAL 20 DAY);

o +
| ADDDATE ("2021-11-15", INTERVAL 20 DAY) |
e +
| 2021-12-05 \
o +

1l row in set (0.003 sec)

There are literally dozens of different date formats, along with SQL func-
tions that can convert between character strings and dates. Here are some
additional date functions in SQL:

® ADDTIME

® CURDATE

® CURRENT DATE
® CURRENT TIME
® CURRENT TIMESTAMP
® CURTIME

® DATE ADD

® DATE FORMAT
® DATE SUB

® DAYNAME

® DAYOFMONTH

® DAYOEFWEEK

® DAYOFYEAR

DATE COMPONENTS AND DATE FORMATS

A date field in a database table contains the year, month, and day for a given
date. However, you might need to access the individual components of a date,
or perhaps change the format of a given date field.

The SQL file date-fields-formats. sql shows you how to extract the year,
month, and day of the purchase date attribute of the purchase orders
table and also how to display the date values with different date formats.

SELECT YEAR (purchase date),MONTH (purchase
date) , DAY (purchase date)
FROM purchase orders;

SELECT YEAR (purchase date) as year,
MONTH (purchase date) as month,

DAY (purchase date) as day

FROM purchase orders;

SELECT cust id,

YEAR (purchase date) as year,
MONTH (purchase date) as month,
DAY (purchase date) as day

Joins, Views, and Subqueries * 113

FROM purchase orders
WHERE MONTH (purchase date) > 1
AND DAY (purchase date) < 5;

SELECT date format (purchase date, 'sm-%d-%Y')
FROM purchase orders;

SELECT date format (purchase date, '%d-%m-%y')
FROM purchase orders;

Invoke the SQL file date-field-formats. sql from the MySQL prompt,
as shown below

MySQL [mytools] > source date-fields-formats.sql;

R e T e o e et e e T +
| YEAR (purchase date) | MONTH (purchase date) | DAY (purchase date) |
o fom o +
| 2021 | 1 12 |
| 2021 | 2 | 3]
| 2021 | 7 4 |
R e T e o e et e e T +

| 01-12-2021 \
| 02-03-2021 \
| 07-04-2021 \

| 12-01-21 \
| 03-02-21
| 04-07-21 \

3 rows in set (0.000 sec)

114 ¢ SQL Pocket Primer

SQL also enables you to perform conversions between numbers and
characters, as well as conversions between dates and characters, such as the
following:

NUMBER to VARCHARZ2
VARCHARZ2 or CHAR to NUMBER
VARCHAR2 or CHAR to DATE
DATE to VARCHAR2

FINDING THE WEEK IN DATE VALUES

MySQL makes it easy to determine the week of a given date, examples of
which are as follows:

SELECT WEEK("2021-02-14") AS week;

- +
| week |
+————— +
| 7
- +

1 row in set (0.000 sec)

SELECT WEEK("2021-12-30 14:25:16") AS week;

+————— +
| week |
- +
I 52 |
- +

1l row in set (0.000 sec)

— CURDATE () is spelled with one "R":
SELECT WEEK (CURDATE ()) ;

o +
| WEEK (CURDATE ()) |
o +
| 35 |
o +

1l row in set (0.000 sec)

Displaying Weekly Revenue

Listing 3.8 shows the content of revenue.sql that illustrates how to cre-
ate a revenue table and then populate the table with some simulated data.

LISTING 3.8: revenue.sql
use mytools;
DROP TABLE IF EXISTS revenue;

CREATE TABLE revenue (rev_date DATE, revenue INT (8),
location CHAR(20));

INSERT INTO revenue VALUES ('2021-08-13', 1200, 'Chicago');
INSERT INTO revenue VALUES ('2021-08-15', 1000, 'SF'");

Joins, Views, and Subqueries ¢ 115

INSERT INTO revenue VALUES ('2021-09-17', 1300,'LA");
INSERT INTO revenue VALUES ('2021-09-18', 1800, 'LA");
INSERT INTO revenue VALUES('2021-09-18', 1400, 'Miami');
INSERT INTO revenue VALUES('2021-09-19', 2000, 'Miami');

The following SQL statement displays the total revenue based on each
location and also orders by the location:

SELECT location, SUM(revenue)
FROM revenue

GROUP BY location

ORDER BY location;

fom e ——— o —— +
| location | SUM(revenue) |
t————————— o~ +
Chicago	1200
LA	3100
Miami	3400
SF \ 1000	
o o~ +

4 rows in set (0.001 sec)

The following SQL statement displays the number of revenue rows based
on each location and also orders the results by the location:

SELECT location, COUNT (revenue) AS ItemCount
FROM revenue

GROUP BY location

ORDER BY location;

tmm————— B +
| location | ItemCount

o ——— fomm +
| Chicago | 1|
| LA \ 2 |
| Miami | 2
| SF \ 1]
o fom +

4 rows in set (0.002 sec)

However, if we want to display the revenue per week and also order by both
the revenue and the location, we can do so with the following SQL statement:

SELECT revenue, location, WEEK (rev_date) AS weekly revenue
FROM revenue

GROUP BY revenue, location, WEEK(rev date)

ORDER BY revenue, location, WEEK (rev_date);

fom fom o — +
| revenue | location | weekly revenue |
fom - fom - fom ———————— +
1000	SF \ 33	
1200	Chicago	32
1300	LA \ 37	
1400	Miami \ 37	
1800	LA \ 37	
2000	Miami	38
fom fom fom e — +

6 rows in set (0.000 sec)

116 ¢ SQL Pocket Primer

If we want to display the cumulative revenue for each week, and also order
by the location, we can do so with this SQL statement:

SELECT location, WEEK(rev _date) AS weekly revenue,
SUM (revenue) AS total sales

FROM revenue

GROUP BY location, WEEK (rev date)

ORDER BY location, WEEK (rev date);

o o - +

| location | weekly revenue | total sales |
oo e ——— e R — P — +
Chicago	32	1200
LA	37	3100
Miami	37	1400
Miami \ 38	2000	
SF \ 33	1000	
e ———— R i - +

5 rows in set (0.001 sec)

ASSORTED SQL OPERATORS

SQL enables you to display a result set in descending or ascending order.
For example, the following query displays the list of items in alphabetically
descending order based on the DEsC keyword:

SELECT item desc DESC
FROM new items;

As you can probably surmise, the following SQL query displays the list of
items in alphabetically ascending order based on the Asc keyword:

SELECT item desc ASC
FROM new items;

Working with Column Aliases

A column alias in SQL statements is a way of representing a column head-
ing, typically using a much shorter string. For example, you can specify the
strings “c¢” and “p” as aliases for the customers and purchase orders
tables. If you have two tables that start with the same letter, then you can
select a pair of letters to differentiate between those two tables. In general,
select aliases that are short, unique, and related to the name of the table that
is represented by the chosen aliases. Here is a summary of the features of
column aliases:

* Renames a column heading

e Is useful with calculations

e Immediately follows the column name

* Requires double quotation marks for text that contains spaces, special
characters, or case sensitive data

Joins, Views, and Subqueries ¢ 117

You can also specify the optional a5 keyword between the column name
and alias. Here is a very simple example of specifying the string name and comm
as column aliases:

SELECT last name AS name, commission pct comm

FROM employees;

SQL Variables

SQL enables you to define variables, as shown in the following example
that initializes an integer-valued variable and two string variables:

MySQL [mytools]> SET @counter := 10;
Query OK, 0 rows affected (0.002 sec)

MySQL [mytools]> SELECT @counter := 10;
e +
| Qcounter := 10 |
Fom +
| 10 |
e e +

1 row in set, 1 warning (0.000 sec)

MySQL [mytools]> SET @student name := "Jane Smith";
Query OK, 0 rows affected (0.000 sec)

MySQL [mytools]> SET @email := "johndoe@yahoo.com";
Query OK, 0 rows affected (0.000 sec)

The following example illustrates how to set the value of the variable maxp
equal to the maximum value in the item price attribute in the item desc

table:

SELECT @maxp := MAX(item desc.item price)
FROM item desc;

fom e e +

| @maxp := MAX(item desc.item price) |
e o _____ o ____ +

| 20.00 |
e +

1 row in set, 1 warning (0.001 sec)

The next task involves finding the average price of items in several stores
and displaying the results in decreasing order of the average price:

Fomm - B et T fom———— Fomm - +
| item id | description | price | store id |
R - I oo +
| 1 | apple | 2.45 | 1
| 2 | banana | 3.45 | 1|
| 3 | cereal | 4.20 | 2
| 4 | milk 1 liter | 3.80 | 2
| 5 | lettuce | 1.80 | 1|
Fomm Fom e e Fomm - +

118 ¢ SQL Pocket Primer

We can solve this task by performing the following steps:

e apply the avg () function to the price column
e group the values by store id
e sort via the ORDER clause

Here is the SQL query that is based on the three preceding bullet
items:

select avg(price), store id
from items

group by store id

order by avg(price);
o Fom - +

| avg(price) | store id |
= fom +
| 1.833333 | 1]
| 3.650000 | 3|
| 3.820000 | 2
o Fom - +

Earlier in this chapter, you learned how to define a SQL subquery to find the
rows in the weather table that have the maximum temperature. Alternatively,
you can initialize a variable with the maximum value and specify that variable
in the following SQL statement:

SELECT @maxl := MAX (temper) FROM weather;
SELECT day, forecast

FROM weather
WHERE temper = @maxl;

SQL SUMMARY REPORTS

A summary report is an informal term that refers to any SQL query
whose output can be a tabular display of summarized data, such as a list
of employees in a particular department. In general, a summary report can
contain multiple subsections of summarized data, such as an alphabetical list
of employees for each department, which in turn could belong to a specific
region of the country. Other examples of detailed reports include quarterly
business reports, machine utilization reports, network activity reports, or
user activity reports.

For example, the following reports vary from basic to complex, each of
which can be generated by defining suitable SQL statements:

* An alphabetical listing of employees in each division of a company

* A summary of customer purchase orders that are grouped by
customer

e A summary of student grades on a quarterly basis, alphabetized by
courses

Joins, Views, and Subqueries © 119

* A quarterly sales report by region, division, and sales people
e A company-wide summary of quarterly revenue and expenditures by
region

Enterprise-level financial systems typically contain a report-related section
that provides standard reports that are based on various options, including a
start date and an end date for a report. Those systems often provide support for
so-called ad hoc reports; i.e., custom reports that are not available as standard
reports.

Simple SQL Reports

The table in this section contains simplified details so that it’s easier to
understand the SQL statements. However, you can enhance by the inclusion
of other relevant information, such as location-related information for each
item sold (including state and city) and the name of the sales person who sold
each item. In addition to the monthly reports, you can generate weekly reports
(week-based intervals are discussed earlier in this chapter) and daily reports.

Listing 3.9 shows the content of sold items.sql that illustrates how to
create a sold items table that contains information about sold items, such as
the region where an item was sold, the quantity, the sold price, and the date
when the item was sold.

LISTING 3.9: sold_items.sql

use mytools;

DROP TABLE IF EXISTS sold_items;
CREATE TABLE sold items (region CHAR(20), gty INTEGER, sold price
DECIMAL (8,2), sold date DATE);

INSERT INTO sold items VALUES ('branchl', 1, 15.00,'2021-12-03");
INSERT INTO sold items VALUES ('branchl', 2, 10.00,'2021-12-03");
INSERT INTO sold items VALUES ('branchl', 3, 10.00,'2021-12-03");

INSERT INTO sold items VALUES ('branch2', 3, 10.00,'2021-12-01");
INSERT INTO sold items VALUES ('branch2', 2, 10.00,'2021-12-01");
INSERT INTO sold items VALUES ('branch2', 1, 10.00,'2021-12-01");

INSERT INTO sold items VALUES ('branchl', 5, 10.00,'2021-11-15");
INSERT INTO sold items VALUES ('branchl', 6, 10.00,'2021-11-15");
INSERT INTO sold items VALUES ('branchl', 8, 15.00,'2021-11-15");

INSERT INTO sold items VALUES ('branchl', 5, 15.00,'2021-11-10");
INSERT INTO sold items VALUES ('branch2', 5, 10.00,'2021-11-10");
INSERT INTO sold items VALUES ('branch3', 5, 10.00,'2021-11-10");

INSERT INTO sold items VALUES ('branchl', 5, 15.00,'2021-11-05");
INSERT INTO sold items VALUES ('branch2', 6, 10.00,'2021-11-05");
INSERT INTO soldiitems VALUES ('branch3', 8, 10.00,'2021-11-05");

120 ¢ SQL Pocket Primer

-- sold price-based list:

\! echo '=> sold price list:';
SELECT sold price

FROM sold items

ORDER BY sold price;

-- list based on region and sold price:
\! echo '=> region and sold price list:';
SELECT region, sum(sold price)

FROM sold items

GROUP BY region

ORDER BY region, sum(sold price) DESC;

-- list based on region and revenue:

\! echo '=> region and revenue list:';
SELECT region, sum(sold price*qty)

FROM sold items

GROUP BY region

ORDER BY region, sum(sold price*qgty) DESC;

-- list based on revenue and region:

\! echo '=> region and revenue list:';
SELECT sum(sold price*qty), region

FROM sold items

GROUP BY region

ORDER BY sum(sold price*qgty) DESC, region;

-- list based on date, revenue, and region:

\! echo '=> date, region, and revenue list:';

SELECT sold date, sum(sold price*qgty), region

FROM sold items

GROUP BY sold date, region

ORDER BY sold date, sum(sold price*qty) DESC, region;

Listing 3.9 contains SQL statements that are based on the material that was
covered earlier in this chapter. Now launch the code in Listing 3.9 to see the
following output:

=> sold price list:

| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |

Joins, Views, and Subqueries * 121

| 15.00 |
| 15.00 |
| 15.00 |
| 15.00 |

15 rows in set (0.000 sec)

=> region and sold price list:
Fomm o +

| region | sum(sold price) |

fom fom e JE +

| branchl | 100.00 |

| branch?2 | 50.00 |

| branch3 | 20.00 |
e - +

3 rows in set (0.001 sec)

=> region and revenue list:
t———————— e +
| region | sum(sold price*qgty) |
IS IS - +
branchl	445.00
branch?2	170.00
branch3	130.00
o o +
3 rows in set (0.002 sec)

=> region and revenue list:
o o +
| sum(sold price*qgty) | region |
e t———————— +
445.00	branchl
170.00	branch2
130.00	branch3
o fom +

3 rows in set (0.000 sec)

=> date, region, and revenue list:

o — o Fom +
| sold date | sum(sold price*qgty) | region

TR ————- I — - I — +
2021-11-05	80.00	branch3
2021-11-05	75.00	branchl
2021-11-05	60.00	branch?2
2021-11-10	75.00	branchl
2021-11-10	50.00	branch2
2021-11-10	50.00	branch3
2021-11-15	230.00	branchl
2021-12-01	60.00	branch2
2021-12-03	65.00	branchl
- o Fom +

9 rows in set (0.000 sec)

122 ¢ SQL Pocket Primer

Calculating SubTotals

Listing 3.10 shows the content of sub_totals.sql that illustrates how to
calculate subtotals for data in the numeric column amount that represents a

fictitious set of revenue figures.

LISTING 3.10: sub_totals.sql

use mytools;

DROP TABLE IF EXISTS invoices;
CREATE TABLE invoices (id INTEGER, amount INTEGER, the date

date) ;

INSERT
INSERT
INSERT

INSERT
INSERT
INSERT

SELECT

INTO
INTO
INTO

INTO
INTO
INTO

id,

invoices VALUES (1000,1000,'2021-10-01");
invoices VALUES (1000,300, '2022-11-03"');
invoices VALUES (1000,400, '2022-12-07"');

invoices VALUES (2000,2500,'2021-01-08");
invoices VALUES (3000,3600,'2022-02-09");
invoices VALUES (4000,4700,'2022-03-10");

SUM (amount) AS total amount

FROM invoices
GROUP BY id WITH ROLLUP

Listing 3.10 creates the invoices table with a set of rows, some of which
have the same id value of 1000. The subtotal for the three rows equals 1700,
which is displayed in the output below. As you can see, there is only one row
for each 1d value, whereas the code sample in the next section generates an
output row for every row in the table.

The remaining three rows have distinct 1d values, and therefore the subto-
tal for each of those rows. Launch the code in Listing 3.10 to see the following

output:

+
\
+____
\
\
\
\
\
+

|
|
3600 |
|
|

—————————— +

in set (0.000 sec)

Joins, Views, and Subqueries * 123

Calculating “Running” (Cumulative) Totals

Listing 3.11 shows the content of running totals.sql that illustrates
how to calculate cumulative totals for data in the numeric column amount that
represents a fictitious set of revenue figures.

LISTING 3.11: running_totals.sql

use mytools;
DROP TABLE IF EXISTS invoices;
CREATE TABLE invoices (id INTEGER, amount INTEGER, the date date);

INSERT INTO invoices VALUES (1000,1000,'2021-10-01");
INSERT INTO invoices VALUES (1000,300, '2022-11-03");
INSERT INTO invoices VALUES (1000,400, '2022-12-07");

INSERT INTO invoices VALUES (2000,2500,'2021-01-08");
INSERT INTO invoices VALUES (3000,3600,'2022-02-09");
INSERT INTO invoices VALUES (4000,4700,'2022-03-10");

SELECT id, the date, amount,
SUM (amount) OVER (ORDER BY id) as total sum
FROM invoices;

Listing 3.11 differs from Listing 3.10 only in the SQL statement, which in
this example generates “running” totals instead of subtotals. The key differ-
ence in this SQL statement is shown in bold in Listing 3.11. As you will see in
the output, an output row is generated for each row in the table. Launch the
code in Listing 3.11 to see the following output:

- fomm e ——— t——————— fom +
| id | the date | amount | total sum |
- fom - Fom = +
| 1000 | 2021-10-01 | 1000 | 1700 |
| 1000 | 2022-11-03 | 300 | 1700 |
| 1000 | 2022-12-07 | 400 | 1700 |
| 2000 | 2021-01-08 | 2500 | 4200 |
| 3000 | 2022-02-09 | 3600 | 7800 |
| 4000 | 2022-03-10 | 4700 | 12500 |
- fmm e —— - Fmm - +

6 rows in set (0.000 sec)

The choice of Listing 3.10 versus Listing 3.11 depends on the output that
you want to display in your report.

124 ¢ SQL Pocket Primer

SUMMARY

This chapter introduced you to the SQL Jo1N keyword on two tables, along
with examples of different types of JOIN statements. which can be extended to
multiple tables. In addition, you learned how to create views, and the advan-
tages they provide over tables.

Next, you learned about primary keys, unique keys, and foreign keys, along
with an example of defining a foreign key in one table (child tbl) that refer-
ences a primary key in another table (parent_tbl).

In addition, you saw examples of SQL statements that contain GROUP BY,
HAVING, and ORDER BY clauses, as well as well as how to use the ROLLUP
keyword in a SQL statement. Finally, you learned how to generate SQL-based
reports based on sold items in a database table.

CHAPTER

ASSORTED SOL FUNCTIONS

his chapter contains a variety of SQL topics, such as aggregate func-

tions, scalar functions, and string functions in SQL. You will also learn

how to work with dates in SQL, date ranges, date components, and the
SQL cASE statement.

The first section introduces numeric functions in SQL, such as LENGTH (),
MOD (), and ROUND () . You will also learn about logarithmic, exponential, and
trigonometric functions in SQL.

The second section contains SQL statements that illustrate how to use
aggregate functions and scalar functions in SQL, such as the max () and min ()
functions. You will see SQL statements that use the LIMIT and OFFSET key-
words that enable you to find the kth largest value in a column and a range of
values in a sorted set of numeric values. Moreover, you will learn about string
functions in SQL and how to use the substring () function.

The third section contains examples of Boolean operators and set opera-
tors, and how to use the AND, OR, and NOT operators in SQL statements. The
fourth section introduces the ORDER BY clause that is illustrated in various
SQL statements. This section also discusses the MATCH () function, along with
CTEs (common table expressions), which were introduced in MySQL 8.0.

The final portion of this chapter contains an example of linear regression in
SQL, a section about window functions, the SQL CASE statement, and how to
work with NULL values in SQL.

In some cases, the initial MySQL [mytools]> string has been omitted in
the output listings to improve readability.

126 ¢ SQL Pocket Primer

NUMERIC FUNCTIONS IN SQL

SQL provides various built-in functions that return numeric values or pro-
vide formatting features for numeric values, some of which are listed here:

® FORMAT ()

® LEN () or LENGTH ()
® MOD ()

® ROUND ()

® POSITION ()

The SQL FORMAT () function enables you to format numeric values in vari-
ous ways. For example, the following SQL statement displays the closest inte-
ger value to the decimal number 123.456:

SELECT FORMAT (123.456, O0);

B +
| FORMAT (123.456, 0) |
o +
| 123

o +

1l row in set (0.000 sec)

The following SQL statement shows you how to use the FORMAT () func-
tion to round a number to the nearest integer:

SELECT FORMAT (123.789, 0);

o +
| FORMAT (123.789, 0) |
o +
| 124 \
o +

1l row in set (0.000 sec)

If you work with decimal values that represent currency, you can round
numbers to two decimal places with this SQL statement:

SELECT FORMAT (123.789, 2);

e +
| FORMAT (123.789, 2) |
o +
| 123.79 \
o +

1l row in set (0.000 sec)

The following SQL statement illustrates how to use the LEN () function to
find the length of the strings in the item desc attribute of the new items
table:

SELECT LENGTH (item desc), item desc
FROM new items;

Assorted SQL Functions ¢ 127

Launch the preceding SQL statement to see the following output:

B it L +
| LENGTH (item desc) |
o ————— +
| 6 |
| 11 |
| 6 |
| 6 |
| 8 |
| 14 |
| 9 |
| 9 |
| 9 |
| 7
B ettt L +
10 rows in set (0.000

________________ +
item desc \
_____ 4
hammer |
screwdriver |
wrench |
pliers \
ballpeen \
1/4 inch nails |
Toolbox \
Toolbox \
Toolbox |
Handsaw |

H X ®n

As avariant of the preceding example, the following SQL statement selects
the rows in which the length of the description is between 6 and 14:

SELECT LENGTH(item_de
FROM new items

WHERE LENGTH (item des
T TS, ——
| LENGTH (item desc)

+ ___________________
6 rows in set (0.000

sc), item desc

c) > 6 AND LENGTH (item desc) < 14;
_____________ +
item desc |

screwdriver
ballpeen
Toolbox
Toolbox
Toolbox
Handsaw

H =R ®n

sec)

The MoD () function returns the integer remainder of dividing an integer
(positive or negative) by a non-zero integer, as shown here:

MySQL [mytools]> SELECT MOD(7,3);

fommm - +
| MOD(7,3) |
e +
I 1
fomm +

1l row in set (0.004 sec)

MySQL [mytools]> SELECT MOD(-7,3);

fom - +
| MOD(-=7,3) |
fommm +
| -1
fom - +

1l row in set (0.003 sec)

128 ¢ SQL Pocket Primer

SELECT MOD(7,0) ;

ommm +
| MOD(7,0) |
fommm e +
| NULL |
fommm - +

1 row in set, 1 warning (0.002 sec)

The following SQL statement illustrates how to use the POSITION () func-
tion to find the index position of the first space character in a text string (which
is 0 if the string does not contain any spaces):

SELECT emp id, POSITION(" " in title) space_ index
FROM employees;

e Fom - +

| emp id | space index |

oDl - ;

| 1000 | 0 |

| 2000 | 8 |

| 3000 | 4 |

| 4000 | 7

+————— o +

4 rows in set (0.000 sec)

The ROUND () function calculates the rounded integer value for a numeric
field (or decimal point values), an example of which is shown here:

SELECT ROUND (123.789, 2);

o +
| ROUND(123.789, 2) |
o +
| 123.79

o +

1l row in set (0.003 sec)

Calculated Columns

The SQL statements in this section show you how to calculate a percentage
of a numeric column, which is useful when you need to display tax-related val-
ues. Note that the SQL statements illustrate the ORDER BY clause (which has
an intuitive purpose) that we’ll explore in greater detail later in this chapter.
The following SQL statement calculates a tax of 8% for each item:

SELECT item price, item price*0.08 AS TAX
FROM item desc
ORDER BY item price;

fom o Fomm - +
| item price | TAX |
R ————— I — +
8.00	0.6400
10.00	0.8000
20.00	1.6000
o R +

3 rows in set (0.000 sec)

Assorted SQL Functions ¢ 129

We can calculate the item price, the tax, and the total price for each
item in the item desc table by creating a view over the item desc table and
then selecting everything from the view, as shown here:

CREATE OR REPLACE VIEW viitemidesc AS

SELECT item id, item price, item price*0.08, item price*(1.08) AS TOTAL
FROM item desc

ORDER BY item_id;

Query OK, 0 rows affected (0.004 sec)

Now select everything from the view:

select * from v_item desc;

Fmm Fom e Fomm e Fomm +
| item id | item price | item pricex0.08 | TOTAL \
Fommm e e —————— i T e +
100	20.00	1.6000	21.6000
100	10.00	0.8000	10.8000
200	8.00	0.6400	8.6400
Fmm Fom e Fomm e Fomm +

3 rows in set (0.002 sec)
The following SQL statement displays a “$” currency symbol on the left
side of each item price:

SELECT CONCAT('S', item price)
FROM item desc
ORDER BY item price;

o +
| CONCAT('S$S', item price) |
o ———————e +
| $8.00 |
| $10.00 |
| $20.00 |
o +

3 rows in set (0.003 sec)

THE ROUND(), CEIL(), AND FLOOR() FUNCTIONS

This section contains examples of rounding a number, calculating the
ceiling, and calculating the floor of a number using the functions round (),
ceil (), and floor (), respectively.

Listing 4.1 shows the content of round_values.sql that illustrates the
result of invoking the ROUND () function on various decimal values.

LISTING 4.1: round_values.sql

SELECT ROUND(7.51); -- 8

SELECT ROUND (7. 49), -7

SELECT ROUND(-7.51); -- -8

SELECT ROUND (25e-1); -- 2 The nearest even value = 2

SELECT ROUND (35e-1); -- 4 The nearest even

130 ¢ SQL Pocket Primer

-- Round to two decimal places:
SELECT ROUND (234.567, 2); -- 234.57
SELECT ROUND (234.567, =-2); -- 200

Listing 4.1 contains SQL statements that involve the ROUND () function.
For approximate numeric values, the result of the ROUND () function depends
on the C library. In fact, the ROUND() function often uses the “round to the
nearest even” rule, which means that 2.5 rounds to 2 whereas 3.5 rounds to 4.
Launch the code in Listing 4.1 to see the following output:

e +
| ROUND(7.51) |
o +
| 8 |
e +

1 row in set (0.000 sec)

o +
| ROUND(7.49) |
fomm e +
| 7
o +

1l row in set (0.000 sec)

fomm e +
| ROUND(-7.51) |
o +
I -8 |
fomm e +

1l row in set (0.002 sec)

mmm +
| ROUND (25e-1) |
fommm e +
| 2|
mmm +

1l row in set (0.000 sec)

o +
| ROUND (35e-1) |
fomm e +
| 4
o +

o +
| ROUND(234.567, 2) |
e +
| 234.57 |
o +

oo +
| ROUND(234.567, -2) |
o +
| 200 |
oo +

1l row in set (0.000 sec)

Assorted SQL Functions ¢ 131

Listing 4.2 shows the content of ceil floor.sql that illustrates the result

of invoking the ceil () function and the floor (

values.

LISTING 4.2: ceil_floor.sql

-— round up:

SELECT CEIL(4.56); -- 5

SELECT CEILING(7.83); -- 8

SELECT CEIL(-3.01); -- -4
-- round down:

SELECT FLOOR(3.99); -- 3

SELECT FLOOR(-3.01); -- -4

) function on various decimal

Listing 4.2 contains two occurrences of CEIL () to show you that the first
CEIL () function rounds up to the nearest integer, whereas the other CEIL ()
function rounds down to the nearest integer. Launch the code in Listing 4.2 to

see the following output:

fom e +

| CEIL(4.56) |

fom e +

| 5 |

Fom e +

1 row in set (0.000 sec)
o +

| CEILING(7.83) |
o +

| 8 |
o +

1l row in set (0.000 sec)
fom e +

| CEIL(-3.01) |

fom e +

| -3 |

fom e +

1l row in set (0.000 sec)
fom e +

| FLOOR(3.99) |

fom e +

| 31

fom e +

1 row in set (0.000 sec)
R Rt +

| FLOOR(-3.01) |
o +

| -4 |
o +

1l row in set (0.000 sec)

132 ¢ SQL Pocket Primer

SQL Queries with the rand() Function

The RAND () function generates a random number between 0 and 1, an
example of which is here (and invoked twice):

SELECT RAND() ;

o +
| RAND () \
o +
| 0.4952851277732152 |
o +

1l row in set (0.002 sec)

SELECT RAND() ;

- = +
| RAND () |
Fom +
| 0.13495801774315352 |
Fom +

1l row in set (0.000 sec)

The RAND () function enables you to select a random set of rows from a
table, as shown here:

SELECT *
FROM weather
ORDER BY RAND ()

LIMIT 3;

o Fom— +o———— fomm +o———— fom———— +
| day | temper | wind | forecast | city | state |
o —— o +o———— fom - +o———— fom— +
| 2021-04-03 | 78 | -12 | NULL | se | wa

| 2021-04-01 | 42 | 16 | Rain | sf | ca \
| 2021-07-01 | 42 | 16 | Rain | | ca \
o Fom— +o———— fomm +o———— fom———— +

3 rows in set (0.002 sec)

The preceding SQL statement retrieves a set of three random rows, and
obviously you can specify a different number or omit the LIMIT clause.

LOG, EXPONENTIAL, AND TRIG FUNCTIONS IN SQL

SQL supports logarithmic, exponential functions, and several trigonomet-
ric functions. If you are familiar with such functions, then the SQL statements
in this section are straightforward. If you need to use these functions and
you are unfamiliar with the underlying mathematical concepts, perform an
online search for articles that provide the necessary details. With the preced-
ing details in mind, here is a list of SQL statements involving mathematical
functions.

Assorted SQL Functions ¢ 133

B B o= +
| LN(2) | LN(5) | LN(=5) |
B B o= +
| 0.6931471805599453 | 1.6094379124341003 | NULL |
B B o= +

1l row in set, 1 warning (0.002 sec)

SELECT LOG(2), LOG(2, 250), LOG(10, 250);

1 row in set (0.001 sec)

SELECT LOG2 (250), LOG2(24567), LOG2(-23234);
R e e R e e Fommm - +

LOG2 (250) LOG2 (24567) | LOG2 (-23234)

B et B et o +
| 7.965784284662087 | 14.58443407325384 | NULL |
o o B et L +
1 row in set, 1 warning (0.000 sec)
SELECT EXP(0), EXP(2), EXP(-2);
fomm o o +
| EXP(0) | EXP(2) | EXP(-2) |
fomm o o +

1 | 7.38905609893065 | 0.1353352832366127 |
fomm o o +
1 row in set (0.001 sec)
SELECT ATAN (4), ATAN(24), ATAN(-32);
o o o +
| ATAN (4) | ATAN (24) | ATAN (-32)
o o o +
| 1.3258176636680326 | 1.5291537476963082 | -1.5395564933646284 |
o o o +
1 row in set (0.000 sec)
SELECT ATAN2 (1, 5), ATAN2 (-2, 3), ATAN(3.5, 0);
o o o +
| ATAN2 (1, 5) | ATAN2 (-2, 3) | ATAN (3.5, 0)
o o o +
| 0.19739555984988075 | -0.5880026035475675 | 1.5707963267948966
o o o +

1 row in set (0.000 sec)

SELECT COS(0), COS(1l), COS(2.5

)
o= B o +
| COS(0) | COS(1) | COS(2.5)
o= B o +
| 1] 0.5403023058681398 | -0.8011436155469337 |
o= B o +

1 row in set (0.000 sec)

134 ¢ SQL Pocket Primer

fom fom fom +
| POW(3, 2) | POW(25, 5) | POW(le, 2) |
fom - fom fom +
| 9 | 9765625 | 256

fom - fom fom +

1 row in set (0.000 sec)

SELECT POWER (3, 2), POWER (25, 5), POWER (16, 2);

fomm o Fom Fom +
| POWER (3, 2) | POWER (25, 5) | POWER(16, 2) |
fomm o Fom Fom +
\ 9 | 9765625 | 256

fomm Fom Fom +

1 row in set (0.000 sec)
Calculate the harmonic mean as follows:

SELECT COUNT (temper) / SUM(1/temper) AS harmonic
FROM weather;

o +
| harmonic |
o +
| 40.7391

o +

1l row in set (0.000 sec)
Calculate the geometric mean as follows:

SELECT EXP (SUM(LOG (temper)) / COUNT (temper)) AS geometricmean
FROM weather;

o +
| geometricmean |
o +
| 45.102493300236915 |
o +

1 row in set (0.000 sec)

SELECT RADIANS (90), RADIANS (180), RADIANS (360);
o oo oo +
| RADIANS (90) | RADIANS (180) | RADIANS (360) |
o Fomm e e +
| 1.5707963267948966 | 3.141592653589793 | 6.283185307179586
o fom fom +

4
o e +
| CONV('A', 16, 2) | CONV('G', 18, 8) |
o Fmm e +
| 1010 | 20 |
O O +

1 row in set (0.000 sec)

Assorted SQL Functions ¢ 135

SCALAR FUNCTIONS IN SQL

A scalar function returns a single value based on the input value. The fol-

lowing list contains some commonly used SQL scalar functions:

* LENGTH () : Calculates the total length of the given field (column)

* UCASE () : Converts a collection of string values to uppercase characters

* LCASE () : Converts a collection of string values to lowercase characters

 MID (): Extracts substrings from a collection of string values in a table

® SUBSTRING () : Extracts substrings from a collection of string values in a
table

® CONCAT () : Concatenates two or more strings

* RAND () : Generates a random collection of numbers of given length

* ROUND () : Calculates the rounded integer value for a number (or decimal
values)

o NOW () : Returns the current data and time

® FORMAT () : Sets the format to display a collection of values

The following SQL statement selects the first five characters of the title

attribute of the employees table:

SELECT SUBSTR(title,1,5)
FROM employees;

___________________ +
SUBSTR (title,1,5) |
___________________ +
Devel |
Proje |
Dev M |
Senio |
___________________ +
rows in set (0.001 sec)

The following SQL statement selects the characters in columns 3 through

9 of the title attribute of the employees table:

SELECT SUBSTR(title, 3,9)
FROM employees;

___________________ +
SUBSTR (title,3,9) |
___________________ +
veloper |
oject Lea |
v Manager |
nior Dev |
___________________ +

rows in set (0.000 sec)

136 ¢ SQL Pocket Primer

AGGREGATE FUNCTIONS IN SQL

An aggregate function performs operations on a collection of values to
return a single scalar value. Aggregate functions are often used with the Group
BY and HAVING clauses of the SELECT statement.

The following list contains some commonly used SQL aggregate functions
(followed by simple examples):

e AVG () : Calculates the mean of a collection of values

* COUNT () : Counts the total number of records in a specific table or view
e MAX () : Calculates the maximum of a collection of values

e MIN (): Calculates the minimum of a collection of values

e sUM () : Calculates the sum of a collection of values

One other detail to keep in mind is that except for the COUNT () function,
all the aggregate functions in the preceding list ignore NULL values.

Lets look at examples of SQL statements that contain the aggregate
functions in the preceding bullet list. First, let’s review the contents of the
new_items table that was created and populated with data in Chapter 3:

SELECT * FROM new items;

o o fom e —— +
| item id | item desc | item price |
R ———— - R — —————— +
100	hammer	20.00
200	screwdriver	8.00
100	wrench	10.00
400	pliers	10.00
500	ballpeen	20.00
600	1/4 inch nails	8.00
700	Toolbox S	30.00
800	Toolbox M	40.00
900	Toolbox L	50.00
1000	Handsaw	20.00
o o Fmm e —— +

10 rows in set (0.002 sec)

The following SQL statement illustrates how to use the MAX () function
to find the maximum value in the item price field of the new items
table:

SELECT MAX(item price) FROM new items;

Launch the preceding SQL statement to see the following output:

Fom - +
| MAX(item price) |
o +
| 50.00 |
Fom +

1l row in set (0.002 sec)

Assorted SQL Functions ¢ 137

The following SQL statement illustrates how to use the MIN () function
to find the minimum value in the item price field in the new items table:

SELECT MIN(item price) FROM new items;

Invoke the preceding SQL statement to see the following output:

o~ +
| MIN(item price) |
fmm e ——————— +
| 8.00 |
e~ +

1l row in set (0.002 sec)

The following SQL statement illustrates how to use the AvG () function to
find the average value in the item price field in the new items table:

SELECT AVG(item_price) FROM new_items;

Launch the preceding SQL statement to see the following output:

o - +
| AVG(item price) |
R — ———————e +
| 21.600000 |
fmm +

1l row in set (0.002 sec)

The following SQL statement illustrates how to use the COUNT () function
to find the number of rows in the item price field in the new items table:

SELECT COUNT (*) FROM new items;

Launch the preceding SQL statement to see the following output:

fommm - +
| COUNT (*) |
fommm - +
| 10 |
mmmm +

1l row in set (0.002 sec)

The following SQL statement illustrates how to use the suM () function to
find the sum of the values in the item price field in the new items table:

SELECT SUM(item price) FROM new items;

Launch the preceding SQL statement to see the following output:

e +
| SUM(item price) |
- +
| 216.00 |
o~ +

1l row in set (0.002 sec)

138 ¢ SQL Pocket Primer

Now that you have seen a few examples of SQL statements that contain
aggregate functions in SQL, the next section discusses scalar functions in SQL,
along with some SQL statements that use those functions.

SQL QUERIES WITH THE MAX() AND MIN() FUNCTIONS

The following SQL statement retrieves the maximum student id and the
minimum student_id from the schedule table:

SELECT max (student id), min(student id)
FROM schedule;

e~ e +
| max (student id) | min(student id) |
o e P
| 1060 | 1010 |
o — o +

1l row in set (0.001 sec)

The following SQL statement retrieves the maximum student_id and the
minimum student_id using the GROUP BY keywords for the term from the
schedule table:

SELECT max (student id), min(student id)
FROM schedule
GROUP BY term;

e~ e~ +
| max (student id) | min(student id) |
o e P
1020	1010
1020	1020
1060	1030
e~ e~ +

3 rows in set (0.002 sec)

The following SQL statement retrieves the maximum student _id and the
minimum student id using the GROUP BY clause for the term as well as the
ORDER BY clause for the term from the schedule table:

SELECT max (student id), min(student id)
FROM schedule
GROUP BY term
ORDER BY term;

o~ o +
| max (student id) | min(student id) |
= - ———
1060	1030
1020	1010
1020	1020
o~ o +

3 rows in set (0.002 sec)

Notice that the following SQL statement generates an error without the
GROUP BY keywords in the SQL statement:

Assorted SQL Functions ¢ 139

SELECT max(student id), min(student id), term FROM
schedule;

ERROR 1140 (42000): In aggregated query without GROUP BY,
expression #3 of SELECT list contains nonaggregated column
'mytools.schedule.term'; this is incompatible with sqgl
mode=only full group by

1l row in set (0.001 sec)

FIND MAXIMUM VALUES WITH SQL SUBQUERIES

This section contains examples of SQL statements that involve the MAX ()
function and SQL subqueries that contain the MaX () function. If need be, you
can replace the occurrences of MAX () with MIN () in the following SQL queries.

As a starting point, let’s look at an incorrect SQL statement that might look
as though it returns the maximum temperature in the weather table:

SELECT temper
FROM weather
WHERE temper = MAX (temper) ;
The output from the preceding SQL query is shown here:

ERROR 1111 (HY000): Invalid use of group function

Fortunately, we can find the maximum temperature in the weather table
with the following SQL query:

SELECT MAX (temper)
FROM weather;

o — +
| MAX (temper) |
o — +
| 78 |
o +

1 row in set (0.000 sec)

Another way to find the maximum temperature is with this SQL query that
does not contain a WHERE keyword:

SELECT temper

FROM weather

ORDER BY temper DESC
LIMIT 1;

The output from the preceding SQL query displays a single value, as shown
below:

1 row in set (0.000 sec)

140 ¢ SQL Pocket Primer

Modify the preceding SQL query to display the top two temperatures, as
shown here:

SELECT temper
FROM weather
ORDER BY temper
DESC LIMIT 2;

The output from the preceding SQL query displays two values, as follows:

o +
| temper |
o +
| 78 |
| 78 |
o +

2 rows in set (0.001 sec)

Notice that the previous output consists of two occurrences of the value 78.
Modify the preceding SQL query to display the top two distinct temperatures,
as shown here:

SELECT DISTINCT temper
FROM weather

ORDER BY temper

DESC LIMIT 2;

The output from the preceding SQL query displays the two largest distinct
values, as shown below:

t——————— +
| temper |
- +
| 78 |
| 51 |
- +

2 rows in set (0.001 sec)
The following SQL query displays the maximum temperature for each day:
SELECT day, MAX (temper)
FROM weather
GROUP BY day;

The output from the preceding SQL query displays a single value:

- fmm +
| day | MAX (temper)

o —— o —— +
2021-04-01	42
2021-04-02	45
2021-04-03	78
2021-07-01	42
2021-07-02	45

Assorted SQL Functions ¢ 141

2021-07-03	78
2021-08-04	50
2021-08-06	51
2021-09-01	42
2021-09-02	45
2021-09-03	15
fommm o fomm e +

11 rows in set (0.000 sec)

Since the preceding SQL query returns all the rows in the weather table,
so how do we know for certain that the maximum temperature is returned for
each day? One way to convince ourselves is to create the table weather2 as
a copy of the table weather, and insert rows with different temperatures for
the same day.

Listing 4.3 shows the content of weather2.sql that performs the steps
described in the preceding paragraph.

LISTING 4.3: weather2.sql

use mytools;

DROP TABLE IF EXISTS weather2;
CREATE TABLE weather2 AS (SELECT * FROM weather);

INSERT INTO weather2 VALUES('2021-04-01',62, 16, 'Rain', 'sf', 'ca');
INSERT INTO weather2 VALUES('2021-04-02',65, 3, 'Sunny', 'sf', 'ca');
INSERT INTO weather2 VALUES('2021-04-03',98, -12, NULL, 'se', 'wa');

SELECT COUNT (*) FROM weather2;

SELECT day, MAX (temper)
FROM weather?2
GROUP BY day;

Launch the code in Listing 4.3 to see that weather2 contains 14 rows,
whereas the final SQL query in Listing 4.3 returns only 11 rows:

source weather2.sqgl;
Database changed
Query OK, 0 rows affected (0.011 sec)

Query OK, 11 rows affected (0.010 sec)
Records: 11 Duplicates: 0 Warnings: 0

Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

fommm - +
| COUNT (*) |
fommmm - +
I 14 |
fomm +

1l row in set (0.001 sec)

142 ¢ SQL Pocket Primer

o - +
| day | MAX (temper) |
Fom e ——— o ———— +
2021-04-01	62
2021-04-02	65
2021-04-03	98
2021-07-01	42
2021-07-02	45
2021-07-03	78
2021-08-04	50
2021-08-06	51
2021-09-01	42
2021-09-02	45
2021-09-03	15
Fo—mm e ——— o ———— +

11 rows in set (0.000 sec)

As you can see, the value shown in bold is the new maximum temperature
for the date 2021-04-01, which is greater than the temperature of 42 for the
same day.

Simplify SQL Queries Containing Subqueries

In the previous section, you saw examples of the capability of subqueries
in SQL statements, and it’s important to avoid defining SQL statements with
unnecessary complexity.

For example, suppose we want to display the rows in the weather table ona
day that has the maximum temperature. We can do so with the following query:

SELECT * FROM weather
WHERE day = (
SELECT day FROM weather
WHERE temper = (
SELECT MAX (temper) FROM weather limit 1)

limit 1

) ;
Fo—————— - - o - - +
| day | temper | wind | forecast | city | state |
Fom e ———— o - o ———— o o +
| 2021-04-03 | 78 | -12 | NULL | se | wa |
- - - - - - +

1l row in set (0.000 sec)
We can simplify the preceding SQL statement with the following statement:
SELECT * FROM weather

WHERE temper = (
SELECT MAX (temper) FROM weather LIMIT 1)

LIMIT 1;
Fommm o fo————— o fom——— - +
| day | temper | wind | forecast | city | state |
o —— Fomm———— - Fo—m - - t——————— +
| 2021-04-03 | 78 | -12 | NULL | se | wa \
o — Fom———— - fom - - fom———— +

1l row in set (0.005 sec)

Assorted SQL Functions ¢ 143

However, there are some details to keep in mind. First, the two preceding
SQL statements contain the code snippet LIMIT 1 in the subqueries. This
is necessary because the WHERE temper = code snippet must be assigned a
unique value. An error occurs without the preceding code snippet. You can
confirm this detail by removing the LIMIT 1 code snippet from the SQL
statements.

The second point is that there are ¢wo rows that have the maximum tem-
perature. To find all such rows, and only rows with the maximum temperature,
the solution is shown later in this chapter in the section that discusses the IN

keyword.

FIND TOP-RANKED NUMERIC VALUES

The previous section showed you how to find the largest value in a column
of a table, whereas “top-ranked” refers to values such as the second largest or
third largest value in a column of a table, both of which are illustrated in the
next subsection.

Find the Second and Third Largest Values in a Column

The second largest temperature in the weather table is easy to find via a
SQL subquery:
SELECT MAX (temper)
FROM weather
WHERE temper < (SELECT MAX (temper) FROM weather);

The output from the preceding SQL query is here:

o — +
| MAX (temper) |
o +
| 51 |
o +

1l row in set (0.001 sec)

Incidentally, this task is sometimes given as an interview question,
and now you know how easy it is to solve this task if you understand SQL
subqueries.

You can easily modify the preceding SQL query to find the third largest
temperature with this SQL query:

SELECT MAX (temper)
FROM weather
WHERE temper < (
SELECT MAX (temper)
FROM weather
WHERE temper < (SELECT MAX (temper) FROM weather));

The output from the preceding SQL query is shown below, which returns
the value 50:

144 SQL Pocket Primer

o +
| MAX (temper) |
o +
| 50 |
e +

1l row in set (0.001 sec)

Another way to find the second largest temperature in the weather table
is shown here:
SELECT MAX (temper)
FROM weather
WHERE temper NOT IN (SELECT MAX (temper) FROM weather);

The output from the preceding SQL query is here:

o +
| MAX (temper)

o ———— +
| 51 |
e +

1l row in set (0.001 sec)

Find the Top Three Values in a Column

The largest three temperatures in the weather table are easy to find by
means of a simple SQL query that does not involve a subquery, as shown
here:

SELECT temper

FROM weather

ORDER BY temper DESC
LIMIT 3;

The output from the preceding SQL query is here. Notice that 78 appears
twice as the largest value:

o +
| temper |
- +
| 78 |
| 78 |
| 51 |
o +

3 rows in set (0.001 sec)

If you want to display the top n temperatures, simply replace the integer 3
in the preceding query with the (positive integer) n.

One other detail: The preceding SQL query returns the three largest tem-
perature values with duplicates as well. This result is correct: since the two
temperatures of 78 are “tied for first,” the temperature of 51 is the third largest
value.

Assorted SQL Functions ¢ 143§

FIND VALUES WITH THE OFFSET KEYWORD

The previous section showed you how to find the largest, second larg-
est, and third largest values using a SQL subquery, which can be cumber-
some when you're trying to find values that are further from the maximum
value. A better solution involves the LIMIT keyword to find the top k values
in a column. This section shows you how to find the following without SQL
subqueries:

e The kth largest value (and only the kth value) in a column
* Any contiguous range of values in a sort set of numbers

For example, the following SQL statement finds the fifth largest value in
the weather table:

SELECT temper

FROM weather

ORDER BY temper DESC
LIMIT 1 OFFSET 4;

o +
| temper |
- +
I 45 |
= +

1l row in set (0.174 sec)

The preceding SQL query specifies an offset of 4, which means that the
four largest values are skipped, and then the fifth largest value is selected
because the LIMIT keyword specifies the value 1.

We can modify the preceding SQL query to find any range of values, start-
ing from any position in a numerically sorted set of values. For example, the
following SQL query finds the sixth, seventh, and eighth largest values in the
weather table:

SELECT temper

FROM weather

ORDER BY temper DESC
LIMIT 3 OFFSET 5;

o +
| temper |
o +
| 45 |
| 45 |
| 42 |
o +

3 rows in set (0.000 sec)

If need be, you can manually confirm that the preceding SQL query does
return the correct set of values.

146 ¢ SQL Pocket Primer

STRING FUNCTIONS IN SQL

The following SQL statement illustrates how to use the UCASE () function
to convert the item desc values to uppercase in the item_desc field of the
table new items:

SELECT UCASE (item desc), item desc
FROM new items;

Execute the preceding SQL statement to see the following output:

o Fom e +
| UCASE (item desc) | item desc |
fom e ———— R e +
HAMMER	hammer
SCREWDRIVER	screwdriver
WRENCH	wrench
PLIERS	pliers
BALLPEEN	ballpeen
1/4 INCH NAILS	1/4 inch nails
TOOLBOX S	Toolbox S
TOOLBOX M	Toolbox M
TOOLBOX L	Toolbox L
HANDSAW	Handsaw
e o +

10 rows in set (0.004 sec)

The following SQL statement illustrates how to use the LCASE () function
to convert the item desc values to lowercase in the item desc field of the
new items table:

SELECT LCASE (item desc), item desc
FROM new_ items;

Launch the preceding SQL statement to see the following output:

o R i ittt +
| LCASE (item desc) | item desc |
fom e ——————— R — - +
hammer	hammer
screwdriver	screwdriver
wrench	wrench
pliers	pliers
ballpeen	ballpeen
1/4 inch nails	1/4 inch nails
toolbox s	Toolbox S
toolbox m	Toolbox M
toolbox 1	Toolbox L
handsaw	Handsaw
o R it it +

10 rows in set (0.001 sec)

The M1D () function extracts substrings from string values in a table. Specify
the attribute name, the start column, and an optional length:

Assorted SQL Functions ¢ 147

SELECT MID(item desc,3,4) AS short desc
FROM new items;

| short desc |

| mmer |
| rewd |
| ench |
| iers |
| llpe \
| 4 in |
| olbo |
| olbo |
| olbo |
| ndsa |

10 rows in set (0.000 sec)
The SUBSTR () function is similar to the MID () function
SELECT SUBSTRING (item desc,2,4) AS short desc

FROM new items
WHERE item price > 10;

6 rows in set (0.000 sec)

The following SQL statement illustrates how to use the CONCAT () function
to concatenate two strings:

SELECT CONCAT ("I ", "Love ", "Pizza") AS Pizzaline;

1 row in set (0.002 sec)
A more useful example of the CONCAT () function is shown here:

SELECT CONCAT (first name, " ", last _name, " ", home_ address) AS Address
FROM customers;

1 row in set (0.001 sec)

148 ¢ SQL Pocket Primer

One common task involves capitalizing the first letter of a string, which you
can accomplish by a combination of CONCAT (), UCASE (), and SUBSTRING (),
as shown here:

SELECT item desc, CONCAT (UCASE (LEFT (item desc, 1)),
SUBSTRING (item desc, 2)) AS UPPERFIRST
FROM new items;

o Rt ittt +
| item desc | UPPERFIRST |
R - R +
hammer	Hammer
screwdriver	Screwdriver
wrench	Wrench
pliers	Pliers
ballpeen	Ballpeen
1/4 inch nails	1/4 inch nails
Toolbox S	Toolbox S
Toolbox M	Toolbox M
Toolbox L	Toolbox L
Handsaw	Handsaw
o - R i +

10 rows in set (0.000 sec)
Alternatively, you can use the MID () function:

SELECT CONCAT (UCASE (MID (item desc,1,1)),MID(item desc,2))
AS descr
FROM new items;

| descr \

| Hammer

| Screwdriver
| Wrench

| Pliers

| Ballpeen
| 1/4 inch nails
| Toolbox
| Toolbox
| Toolbox
| Handsaw

HEX ®n

10 rows in set (0.001 sec)

SQL QUERIES WITH THE SUBSTRING() FUNCTION

This section shows you an assortment of SQL queries that involve either
the substr () function, the ROWID, or both. The first step involves launching
the schedule. sql script that creates the schedule table, which is displayed
in Listing 4.4.

Assorted SQL Functions ¢ 149

LISTING 4.4: schedule.sql
USE DATABASE mytools;

DROP TABLE IF EXISTS schedule;
CREATE TABLE schedule (year VARCHAR (4), term VARCHAR(10),
student id VARCHAR(20), course id VARCHAR(20));

INSERT INTO schedule VALUES)
INSERT INTO schedule VALUES)
INSERT INTO schedule VALUES)
INSERT INTO schedule VALUES)
INSERT INTO schedule VALUES) ;
INSERT INTO schedule VALUES ('2020','FALL', '1030','5050'");
)
)
)
)
)
)

('2020', "SPRING', '1010"','5010"
(
(
(
(
(
INSERT INTO schedule VALUES ('2020','FALL', '1040','6000'
(
(
(
(
(

'2020", "SPRING', '1020"','5010"
'2020', "SUMMER', '1020"', '5020"
'2020"', "SUMMER', '1020', '5030"
'2020', "FALL', '1030','5040'

’

’

’

’

’

’

INSERT INTO schedule VALUES ('2020','FALL', '1040','7000"'
INSERT INTO schedule VALUES ('2020','FALL', '1050','6000"
INSERT INTO schedule VALUES ('2020','FALL', '1050','7000"'
INSERT INTO schedule VALUES ('2020','FALL', '1060','6000"
INSERT INTO schedule VALUES ('2020','FALL', '1060','7000"

’

’

’

’

Listing 4.4 shows the schedule table is dropped (if it already exists) and
then re-created with the CREATE TABLE statement. The next portion of Listing
4.4 inserts multiple rows of data into the schedule table by invoking a set of
INSERT statements.

Next, display all the rows in the schedule table by invoking the SQL state-
ment shown in bold below:

MySQL [mytools]> select * from schedule;

to———— o ———— tmmm o ——— +
| year | term | student id | course id |
t————— fomm————— tomm - ———
| 2020 | SPRING | 1010 | 5010 \
| 2020 | SPRING | 1020 | 5010 \
| 2020 | SUMMER | 1020 | 5020 \
| 2020 | SUMMER | 1020 | 5030 \
| 2020 | FALL | 1030 | 5040 \
| 2020 | FALL | 1030 | 5050 \
| 2020 | FALL | 1040 | 6000 \
| 2020 | FALL | 1040 | 7000 |
| 2020 | FALL | 1050 | 6000 \
| 2020 | FALL | 1050 | 7000 \
| 2020 | FALL | 1060 | 6000 \
| 2020 | FALL | 1060 | 7000 \
to———— o ———— tmmm o ——— +
12 rows in set (0.001 sec)

The SUBSTRING() Function in SQL

The following SQL statement shows you how to use the substring()
function to return the left-most three characters of the term attribute:

150 ¢ SQL Pocket Primer

select substring(term,1,3) from schedule;

| SPR |
| SPR |
| SUM |
| SUM |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |

12 rows in set (0.000 sec)

The following SQL statement returns the left-most three characters of the
term attribute for the student whose student idis 1020:

select substring(term,1,3)
from schedule
where student id = 1020;

e +
| substring(term,1,3) |
e +
| SPR |
| SUM |
| SUM |
e +

3 rows in set (0.002 sec)

BOOLEAN OPERATORS IN SQL

This section contains Boolean operations in SQL, some of which you have
already seen earlier in this chapter (and perhaps in other programming lan-
guages as well):

e AND combines Boolean expressions for filtering data

* OR combines Boolean expressions for filtering data

e IN determines if a value matches any value in a list or a subquery

* BETWEEN queries data based on a range

* LIKE queries data based on a pattern

e LIMIT constrains the number of rows returned by SELECT statement
e 75 NULL checks whether a value is NULL

Here is an example of a SQL statement that contains a BETWEEN condition:

SELECT last name, salary
FROM employees
WHERE salary BETWEEN 5000 AND 6000;

The

Assorted SQL Functions ¢ 151

Here is an example of a SQL statement that contains a LIKE condition:

SELECT emp_id, title
FROM employees
WHERE title LIKE 'D%';

o Fmm +
| emp id | title \
e +
| 1000 | Developer |
| 3000 | Dev Manager |
t——————— fom +

2 rows in set (0.000 sec)

Here is an example of a SQL statement that checks for NULL values:
=> test for nulls with the IS NULL operator:
SELECT last name, manager id

FROM employees
WHERE manager id IS NULL;

IN Keyword

Here is an example of a SQL statement that contains an IN condition in
order to find rows whose manager id is in a list of values:

SELECT employee id, last name, salary, manager id
FROM employees
WHERE manager id IN (100, 101, 201);

Earlier in this chapter, you saw an example of finding the maximum tem-
perature in the weather table:

SELECT MAX (temper)
FROM weather;

Fom e ————— +
| MAX (temper) |
Fom e ———— +
| 78 |
o +

1l row in set (0.003 sec)

However, the preceding SQL query only returns the maximum tempera-
ture: it does not tell us how many rows have the maximum temperature. The
solution involves the IN keyword, as shown here:

SELECT * FROM weather
WHERE temper IN (
SELECT MAX (temper) FROM weather);

o Fom————— - fom - - o +
| day | temper | wind | forecast | city | state |
fom e ——— fom fo———— fom fo———— fo————— +
| 2021-04-03 | 78 | -12 | NULL | se | wa

| 2021-07-03 | 78 | 12 | NULL | sf | mn |
fom e ——— fom fo———— fom fo———— fo————— +

2 rows in set (0.01l1 sec)

152 ¢ SQL Pocket Primer

SET OPERATORS IN SQL

SQL supports the following set-related operators, each of which is illus-
trated later in this section via a SQL statement:

® INTERSECT
® MINUS
® UNION
® UNION ALL

Conceptually these operators work the same way as sets in mathematics.
The intersection of sets s1 and s2 is the (possibly empty) subset of elements
that are common to both s1 and s2. The difference S1 - s2 is the set of ele-
ments that are in S1 that are not in the set s2.

Similarly, the union of sets s1 and 52 is the set of elements that belong to
either s1 or s2. The UNION keyword combines rows from multiple queries
(which can involve tables or views) and the result set contains unique rows. If you
want to include duplicate rows in the result set, use UNION ALL instead of UNION.

Before we look at SQL statements that contain these keywords, let’s create
two tables, t1 and t2, and populate them with data, as shown below:

DROP TABLE IF EXISTS tl;
DROP TABLE IF EXISTS t2;

CREATE TABLE tl (id INT PRIMARY KEY);
CREATE TABLE t2 (id INT PRIMARY KEY);

INSERT INTO tl1 VALUES (1), (2), (3);
INSERT INTO t2 VALUES (2), (3), (4);

The following SQL statement returns the intersection of the rows in t1
and t2:

(SELECT id FROM t1)
INTERSECT
(SELECT id FROM t2);

The following SQL statement returns the union of t1 and t2:

(SELECT id FROM t1)

UNION
(SELECT id FROM t2);
to———t
[id |
+-———+
[1
2
[3
[4 |
fo———t

4 rows in set (0.001 sec)

Assorted SQL Functions ¢ 153
The following SQL statement returns the difference (via the MINUS key-
word) between table t1 and table t2: (i.e., t1 - t2)
SELECT id FROM t1l

MINUS
SELECT id FROM t2;

AND, OR, AND NOT OPERATORS IN SQL

SQL supports the AND, OR, and NOT operators that operate in the same fash-
ion as those operators in programming languages. Specifically, the AND operator
requires both conditions to be true, an example of which is shown here:

SELECT *

FROM employees
WHERE emp_id > 1000
AND emp id = mgr_ id;

o ———— fomm————— e +
| emp id | mgr id | title |
o +
| 4000 | 4000 | Senior Dev Manager |
= Fom————— o +

1l row in set (0.001 sec)

The OR operator returns the rows that satisfy any condition(s) in the ORr
portion of the SQL statement, an example of which is shown here:

SELECT employee id, last name, job id, salary
FROM employees

WHERE salary >= 10000

OR job id LIKE 'S$MAN%'

You can combine the OR operator with an AND operator, as shown in the
following example:

SELECT *

FROM employees

WHERE title = 'Developer'

OR emp id = 2000

OR emp id = 4000 and mgr id = 4000;

- Fomm B e ittt et +
| emp id | mgr id | title |
oo +
| 1000 | 2000 | Developer

| 2000 | 3000 | Project Lead |
| 4000 | 4000 | Senior Dev Manager |
- Fomm B e ittt et +

3 rows in set (0.000 sec)
The NOT operator requires the opposite condition to be true, as shown here:
SELECT *

FROM employees
WHERE title

154 ¢ SQL Pocket Primer

NOT IN ('SALES', 'MKTG'")
AND emp id >= 2000;

Project Lead \
Dev Manager
Senior Dev Manager |

| 3000 4000

\
+

| 2000 | 3000
\

| 4000 | 4000
+

3 rows in set (0.000 sec)

The preceding SQL statements contain >= to indicate “greater than or
equal to,” which is one type of inequality. A more extensive list of inequalities
is shown here, each of which can be used in the earlier SQL statements:

® >= gspecifies "greater than or equal to"
® > specifies "greater than"

® = specifies "equal to"

® <= specifies "less than or equal to"

® < specifies "less than"

® <> specifies "not equal to"

WORKING WITH ARITHMETIC OPERATORS

SQL allows you to use the addition (+) operator to calculate the sum of two
or more numeric values, an example of which is shown here:

SELECT 7 + 13 as my_ sum;

o +
| my sum

fom——— ¢
| 20 |
- +

1l row in set (0.000 sec)
An example of adding three numbers is here:

SELECT 7 + 13 + 25.123 as my sumZ;

o +
| my sum2 |
fomm - +
| 45.123 |
e +

1l row in set (0.000 sec)
Update an integer-valued attribute in a table, as shown here:
SELECT SALARY+10000 as newfsalary FROM EMPLOYEES;

Add a numeric value to the emp_id column using the addition operator, as
shown in this query:

Assorted SQL Functions ® 1558

SELECT emp id+10000 as new emp id
FROM employees;

Fmm +
| new emp id |
o
| 11000 |
| 12000 |
| 13000 |
| 14000 |
fom - +

4 rows in set (0.000 sec)

« >

SQL supports the arithmetic operator “-” for subtraction, as shown here:

SELECT 260-99 as Subtract;

o +
| Subtract |
o +
| 161 |
t————————— +

1 row in set (0.000 sec)
SELECT emp 1d-100 as Subtracted id FROM EMPLOYEES;

| Subtracted id |

o +
| 900 |
| 1900 |
| 2900 |
| 3900 |
fom +

4 rows in set (0.001 sec)

SQL supports the arithmetic operator “*” for multiplication, as shown
here:

SELECT 100*77 as Multiplication;

- +
| Multiplication |
- +
| 7700 |
fom e +

1l row in set (0.000 sec)
SQL supports the arithmetic operator “/” for division, as shown here:

SELECT 15/6 as Division;

o +
| Division |
o +
| 2.5000 |
tom e ———— +

1l row in set (0.000 sec)

156 ¢ SQL Pocket Primer

SQL supports the arithmetic operator “%” for modulus, as shown here:

SELECT 23%4 as result;

- +
| result |
o +
| 3
to—— +

1l row in set (0.000 sec)

SELECT emp id, emp id%3 as result FROM EMPLOYEES;

fomm fomm - +
| emp id | result |
O +
| 1000 | 1|
| 2000 | 2
| 3000 | 0 |
| 4000 | 1|
Fo—— Fomm +

4 rows in set (0.000 sec)

ARITHMETIC AGGREGATE OPERATORS IN SQL

SQL supports aggregate arithmetic functions such as max (), min (), and
avg () for finding the maximum, minimum, and average, respectively, of the
values in a numeric column. The next set of SQL queries displays the rows
in the item desc table followed by SQL statements that contain the above-
mentioned arithmetic aggregate functions.

DESC item desc;

- o +o———— +———— Fomm Fom———— +
| Field | Type | Null | Key | Default | Extra |
e o Fo———— +————= fomm fomm——— +
| itemﬁid | int | YES | | NULL | |
| item desc | varchar (80) | YES | | NULL | |
| item price | decimal(8,2) | YES | | NULL | |
S ————— e N S R R +
3 rows in set (0.017 sec)

SELECT *

FROM item desc;

fom e - s +

| item id | item desc | item price |

fom R ————— R ———— +

| 100 | hammer | 20.00

| 200 | screwdriver | 8.00 |

| 100 | wrench | 10.00 |

o o - +

3 rows in set (0.001 sec)

SELECT max (item price) as item price
FROM item desc;

Assorted SQL Functions ® 157

o —— +
| item price |
R ————— +
| 20.00 |
fom e —— +

1l row in set (0.007 sec)

SELECT max(item price) maxp, min(item price) as minp
FROM item desc;

- - +
| maxp | minp |
B - +
| 20.00 | 8.00

- - +

1l row in set (0.000 sec)

As you can see, the preceding SQL statements retrieve a single value for
the maximum and minimum of the price column of the item desc table.

However, the next set of SQL statements return the full details of the row
that contains the maximum or minimum value in the price column of the
item desc table.

SELECT *

FROM item desc

WHERE item price = (select max(item price)
FROM item desc);

- — oo R — - +

| item id | item desc | item price |

R R ——— R ————— +

| 100 | hammer | 20.00 |

fom fom e ——— fom e +

1l row in set (0.003 sec)

SELECT *

FROM item desc

WHERE item price = (SELECT min(item price)
FROM item desc);

R — s oo +

| item id | item desc | item price |

fo——— PR [N fo——— [+

| 200 | screwdriver | 8.00 |

t———————— - o —— +

1 row in set (0.001 sec)

Finding Average Values

The following SQL statement determines the average price of the items in
the item desc table:

SELECT max (item price) maxp,
avg (item price) as avgp,
min(item price) as minp

FROM item desc;

158 ¢ SQL Pocket Primer

+-——— o +———— +
| maxp | avgp | minp

R Fo— +o————- +
| 20.00 | 12.666667 | 8.00 |
Fomm———— fomm Fo———- +

1l row in set (0.000 sec)

Although you might be tempted to replace the min () or max () function
with the avg () function, the result will typically be the empty set. Indeed, how
often will the average value appear as a row? Let’s see what happens in our case:

MySQL [mytools]> SELECT * FROM item desc
WHERE item price = (SELECT avg(item price) FROM item desc);
Empty set (0.001 sec)

Note that you can also replace SELECT * FROM item_ desc with a sublist
of columns from the item desc table.

The following SQL statement calculates the average monthly temperature
of the rows in the weather table:

SELECT YEAR(day) year, MONTH (day) month, AVG (temper) average
FROM weather

WHERE MONTH (day) IN (1,2,3,4,5,6,7,8,9,10,11,12)

GROUP BY YEAR (day), MONTH (day)

ORDER BY YEAR(day), MONTH(day), AVG (temper) ;

- fom———— o +
| year | month | average |
e o o +
| 2021 | 4 | 55.0000 |
| 2021 | 7 | 55.0000 |
| 2021 | 8 | 50.5000 |
| 2021 | 9 | 34.0000 |
- t——————— Fo———————— +
4 rows in set (0.001 sec)

The first column in the preceding result set contains only the value 2021
because all the rows in the weather table consist of data from the year 2021.
However, the preceding SQL statement will work correctly with data from
multiple years.

SELECT Clauses with Multiple Aggregate Functions

This section contains SQL statements that contain the max () and min ()
functions in the sELECT clause. For example, the following SQL statement
displays the maximum difference in temperature in the weather table:

SELECT MAX (temper) - MIN(temper) as delta
FROM weather;

1 row in set (0.000 sec)

Assorted SQL Functions ¢ 159

The following SQL statement displays the maximum difference in tem-
perature during the month of April in the weather table:

SELECT MAX (temper) - MIN (temper) as delta

FROM weather
WHERE MONTH (day) = 04;

1l row in set (0.001 sec)

THE ORDER BY CLAUSE IN SQL

You have already seen SQL statements in this chapter that specify the
ORDER BY clause in order to specify the order in which the result set is dis-
played. The two options are ascending order or descending order, which can
be performed with alphabetic values or numeric values.

This section contains an assortment of SQL statements that also specify
the ORDER BY clause. For example, the following SQL statements order the
output in increasing order (the default) and then in decreasing order.

SELECT *
FROM employees
ORDER BY title;

fomm Fomm o +
| emp id | mgr id | title \
e +
3000	4000	Dev Manager
1000	2000	Developer
2000	3000	Project Lead
4000	4000	Senior Dev Manager
= Fom————— o +

4 rows in set (0.000 sec)

SELECT *
FROM employees
ORDER BY title DESC;

fomm - fomm o +
| emp id | mgr id | title |
T T +
4000	4000	Senior Dev Manager
2000	3000	Project Lead
1000	2000	Developer
3000	4000	Dev Manager
o ———— fomm————— e +

4 rows in set (0.000 sec)

Sort a table by specifying multiple columns in the ORDER BY clause, as
shown here:

SELECT *
FROM employees

160 ¢ SQL Pocket Primer

ORDER BY title, mgr id;

fomm fom o +
| emp id | mgr id | title \
e +
3000	4000	Dev Manager
1000	2000	Developer
2000	3000	Project Lead
4000	4000	Senior Dev Manager
- o o +

4 rows in set (0.000 sec)

In the preceding SQL statement, the inclusion of the mgr_id has no effect
because the rows have unique values for mgr_id and title. However, the
following SQL statements show you that the order of the attributes can make
a difference.

SELECT *

FROM weather

WHERE forecast != '' AND city != "'

ORDER BY forecast,city;

o —— fomm - fom - fom———— +
| day | temper | wind | forecast | city | state |
o —— o - - - +——————— +
| 2021-04-01 | 42 | 16 | Rain | sf | ca \
| 2021-09-01 | 42 | 16 | Rain | sf | ca

| 2021-09-03 | 15 | 12 | Snow | chi | i1l \
| 2021-04-02 | 45 | 3 | Sunny | sf | ca \
| 2021-07-02 | 45 | -3 | Sunny | sf | ca
o —— o - - - +——————— +
5 rows in set (0.001 sec)

SELECT *

FROM weather

WHERE forecast != '' AND city != "'

ORDER BY city, forecast;

o —— fomm - fom - fom———— +
| day | temper | wind | forecast | city | state |
o —— o - - - +——————— +
| 2021-09-03 | 15 | 12 | Snow | chi | 11 \
| 2021-04-01 | 42 | 16 | Rain | sf | ca

| 2021-09-01 | 42 | 16 | Rain | st | ca \
| 2021-04-02 | 45 | 3 | Sunny | sf | ca |
| 2021-07-02 | 45 | -3 | Sunny | sf | ca
o —— o - - - +——————— +

5 rows in set (0.001 sec)
Note: the ORDER BY clause must be the last in a SELECT
statement

ORDER BY with Aggregate Functions

You can also define SQL statements that combine aggregate functions with
the ORDER BY clause, as shown here:

SELECT day, temper, AVG (temper)
FROM weather

Assorted SQL Functions ¢ 161

GROUP BY day, temper
ORDER BY AVG (temper) DESC;

o — o o — +
| day | temper | AVG(temper) |
fom e —— Fomm fom e —— +
2021-04-03	78	78.0000
2021-07-03	78	78.0000
2021-08-06	51	51.0000
2021-08-04	50	50.0000
2021-04-02	45	45.0000
2021-07-02	45	45.0000
2021-09-02	45	45.0000
2021-04-01	42	42.0000
2021-07-01	42	42.0000
2021-09-01	42	42.0000
2021-09-03	15	15.0000
fom e —— Fomm fom e —— +

11 rows in set (0.003 sec)

The following SQL statement displays the maximum difference in tem-
perature during the months of August and September in the weather table,
using the GROUP BY clause and the ORDER BY clause for the month value:

SELECT MONTH (day), MAX (temper) - MIN (temper) as delta
FROM weather

WHERE MONTH (day) IN (08,09)

GROUP BY MONTH (day)

ORDER BY MONTH (day) ;

o Fo————— +
| MONTH (day) | delta |
Fmm Fmm———— +
| 8 | 1]
| 9 | 30 |
Fmm e Fmm———— +

2 rows in set (0.003 sec)

LARGEST DISTINCT VALUES AND FREQUENCY OF VALUES

In Chapter 3, you learned how to find the second largest and third larg-
est distinct values in the weather table. In this section, you will learn how to
select the three largest values in the weather table using the ORDER BY clause
instead of a subquery.

As a quick reminder, there is a difference between “select the largest
three values™ and “select the largest three distinct values.” By default, SQL
statements that select the largest values allow for duplicate values. In this sec-
tion, you will see how to write SQL statements that select distinct maximum
values.

Let’s look at some SQL statements that might seem to be the solution, but
they do not produce the desired results (i.e., distinct values). For example, the
following SQL statement is incorrect because the selected temperature values
are not selected from a list of temperatures in descending order:

162 ¢ SQL Pocket Primer

SELECT temper
FROM weather
LIMIT 3;

3 rows in set (0.001 sec)

The following SQL statement is incorrect because the selected tempera-
tures contain duplicate values:

SELECT temper

FROM weather

ORDER BY temper DESC
LIMIT 3;

3 rows in set (0.000 sec)

The following SQL statement is correct because the selected tem-
peratures are distinct and they are selected from a descending list of
temperatures:

SELECT DISTINCT (temper)
FROM weather

ORDER BY temper DESC
LIMIT 3;

3 rows in set (0.001 sec)

As an additional observation, the following SQL queries return only the
largest value instead of the top two values:

SELECT MAX (temper)
FROM weather
LIMIT 2;

SELECT MAX (DISTINCT (temper))
FROM weather
LIMIT 2;

Assorted SQL Functions ¢ 163

The following SQL statement displays the most frequently occurring value
for temper in the weather table:

SELECT temper, COUNT (*)
FROM weather

GROUP BY temper

ORDER BY COUNT (*) DESC

LIMIT 1;

= fom e —— +
| temper | COUNT(*) |
o ———— fom +
I 42 | 31
- Fom e —— +

1 row in set (0.000 sec)

The following SQL statement displays the frequency of the values in the
state attribute in the weather table:

SELECT state, occurrences

FROM (SELECT state,count(*) as occurrences
FROM weather
GROUP BY state

) T1;
- e +
| state | occurrences |
- o +
| ca | 7
| wa | 1]
| mn | 2
[11 | 1]
e o ——— +

4 rows in set (0.002 sec)

The following SQL statement is a variation of the preceding SQL statement
that also includes the LIMIT 1 clause in order to display the most frequently
occurring value in the state in attribute in the weather table:

SELECT state, occurrences

FROM (SELECT state,count(*) as occurrences
FROM weather
GROUP BY state

LIMIT 1

) T1;
t—————— - +
| state | occurrences |
- - +
| ca | 7
= o +

1l row in set (0.003 sec)

CHARACTER FUNCTIONS AND STRING OPERATORS

There are two main types of SQL functions: single-row functions that
return one result per row and multiple-row functions that return one result
per set of rows. Specifically, single-row functions in SQL will

164 ¢ SQL Pocket Primer

manipulate data items

accept arguments and return one value

act on each row that is returned

return one result per row

may modify the data type

can be nested

accept arguments that can be a column or an expression

SQL Character Functions

There two types of character functions: case-manipulation functions and
character manipulation functions. Case manipulation functions in SQL include
the following:

® LOWER
® UPPER
® INITCAP

Character manipulation functions in SQL include the following built-in
functions:

® SUBSTRING

® LENGTH

® INSTR

e LPAD | RPAD
® TRIM

® REPLACE

Following this section are some one-line examples of some of the preced-
ing built-in functions, where you need to replace my table with a suitable
table name and replace fname and phone number with attributes from your
table in your database:

Remove leading spaces:

SELECT LTRIM(fname) from my table;
Remove leading and trailing spaces:
SELECT TRIM(fname) from my table;

<

Replace “-” with a space (“7):

SELECT fname, REPLACE (phone number, '-', ' ') as p number
FROM my table;

SQL supports built-in number functions, include the following functions:

® ROUND
® TRUNC
® MOD

Assorted SQL Functions ¢ 165

An example of the built-in truncate () function (which is different from
the TRUNCATE keyword) is as follows:
-- the value 12.345 is replaced with 12:

SELECT TRUNCATE (average, 0) from my table;

String Operators in SQL

SQL supports the following string operators that perform the concatena-
tion of strings and partial matches of strings against meta characters:

e CONCAT (concatenation)
¢ LIKE operator

SELECT 'Hello' + ' ' + 'World!' AS StringConcatenated;
SELECT FIRSTNAME + ' ' + LASTNAME AS ConcatenatedName FROM STUDENTS;

SQL provides a concatenation operator that does the following:

e links columns or character strings to other columns
e is represented by two vertical bars (Il)
e creates a resultant column that is a character expression

For example, the following SQL statement concatenates the last name
field with the job_id field for each row in the employees table:

SELECT last name||job id AS "Employees"
FROM employees;

Literal character strings can be a character, a number, or a date, and they
have the following properties:

e A literal is included in the SELECT statement.
e Dates and characters must be enclosed by single quotation marks.
e Each character string is output once for each row returned.

You can also specify an alternative quote (q) operator:

e choose any delimiter
e useful for increasing readability and usability

The LIKE keyword supports the percent (%) meta character as well
as the underscore (_) meta character, where the latter matches any single

character.

THE MATCH() FUNCTION AND TEXT SEARCH

Listing 4.5 shows the content of n1p_terms. sql thatillustrates how to use
the MATCH () function to search for text in a database table.

166 ¢ SQL Pocket Primer

LISTING 4.5: nlp_terms.sql

use mytools;
DROP TABLE IF EXISTS nlp terms;

-—- create table:
CREATE TABLE nlp terms (
id INT UNSIGNED AUTO INCREMENT NOT NULL PRIMARY KEY,
nlp term VARCHAR(200),
definition TEXT,
FULLTEXT (nlp term,definition)
) ENGINE=InnoDB;

-- insert data into table:
INSERT INTO nlp terms (nlp term,definition) VALUES
('"lemmatization', 'Word Root Words'),

("nltk", 'NLP Toolkit From Stanford'),
('SpaCy', 'Very Good NLP toolkit'),
('stemming', 'Truncates Word Suffixes'),
('stopwords', 'Common Words'),

('"word2vec', 'CBoW and Skip Grams');

-- select data:
SELECT * FROM nlp terms
WHERE MATCH (nlp_ term,definition)
AGAINST ('NLP' IN NATURAL LANGUAGE MODE) ;

Listing 4.5 starts by creating and populating the table n1p terms with a set
of rows containing text, followed by a SQL statement that uses the MATCH ()
function to search for the term NLP in the n1p terms table. Launch the code
in Listing 4.5 to see the following output:

R i o +
| id | nlp term | definition |
fom = o +
|1 | nltk | NLP Toolkit From Stanford |
| 2 | SpaCy | Very Good NLP Toolkit |
fom = o +

2 rows in set (0.000 sec)

CTES AND THE “WITH” KEYWORD IN MYSQL (VERSION 8)

A common table expression (CTE) is a temporary named result set. A CTE
is defined within the execution scope of a single SELECT, INSERT, UPDATE,
DELETE, or CREATE VIEW statement.

To define a CTE, you need to specify a with statement, which is available
in MySQL 8 (but not earlier versions of MySQL). In fact, you can specify mul-
tiple blocks of SQL statements that can include various SQL keywords, such as
GROUP BY, and aggregate functions such as MIN () and Max (). Interestingly,
the with statement can be used to define recursive SQL queries (discussed
later). The definition of a CTE has three parts:

Assorted SQL Functions ¢ 167

e the with keyword
e the name the CTE
e the body of the CTE

Here is a sample syntax for constructing a single CTE, followed by a SQL
statement that references the CTE:

WITH simple name (column-list) AS (
YOUR-SQL-QUERY

)
SELECT * FROM simple name;

The following example illustrates how to define a single CTE that specifies
the emp_id attribute of the employees table, and notice that the inner SQL
statement does not contain a semi-colon:

WITH emps (emp id) AS
(
SELECT emp_id FROM employees
)
SELECT * FROM emps;

o +
| emp id |
fom ¢
| 1000 |
| 2000 |
| 3000 |
| 4000 |
o ————— +

4 rows in set (0.001 sec)

The next example shows you how to specify multiple attributes in a CTE
using a syntax that is slightly different from the preceding CTE:

WITH emps AS
(
SELECT emp id, mgr id FROM employees
)
SELECT emp_id FROM emps
WHERE emp id > 1000;

t——————— +
| emp id |
fomm————— 4
| 2000 |
| 3000 |
| 4000 |
t——————— +

3 rows in set (0.001 sec)

The next sample shows you how to construct a CTE that contains a JOIN

keyword:

168 ¢ SQL Pocket Primer

WITH purch orders AS (
SELECT cust id, po_id FROM purchase orders
)
SELECT cust_ id
FROM customers
JOIN purch orders USING (cust id);

o +
| cust id |
Fomm +
| 1000 |
| 1000 |
| 1000 |
o +

3 rows in set (0.002 sec)

You can also define a CTE that specifies multiple wITH code blocks using
the following syntax:

WITH simple namel AS (
YOUR-SQL-QUERY1

),

WITH simple name2 AS (
YOUR-SQL-QUERY2

)
SELECT * FROM simple namel JOIN simple name2 ON some-condition;

The CTE examples in this section contain a SELECT keyword, and you can
define CTE expressions with other keywords, as outlined here:

WITH ... INSERT
WITH ... UPDATE
WITH ... DELETE

Consult the online documentation for MySQL 8 for additional information
regarding CTEs.

The with Keyword and a Recursive SQL Query

The SQL file recursive.sqgl defines a recursive SQL statement that dis-
plays the integers from 1 to 6 inclusive, as follows:

WITH RECURSIVE arith seq AS
(
SELECT 1 AS x
UNION ALL
SELECT 1+x FROM arith seq WHERE x<6

)
SELECT * FROM arith seq;

6 rows in set (0.000 sec)

Assorted SQL Functions ¢ 169

CTES AND THE MEAN, STDDEV, AND Z-SCORES

Listing 4.6 shows the content of my stats data.sql that creates and
populates the table my stats_data with numeric values, followed by SQL
statements to calculate the mean, standard deviation, and z-scores of the rows
in this table.

LISTING 4.6: my_stats_data.sql

use mytools;

DROP TABLE IF EXISTS my stats data;

CREATE TABLE my stats data

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

-—- Find
\! echo

INTO
INTO
INTO
INTO
INTO
INTO

the

my stats data
my stats data
my stats data
my stats data
my stats data
my stats data

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

(
(
(
(
(
(

2
5
7
9
9
3

)
)
)
)
)
7

’

’

’

’

)

(num val INT(4)):;

’

mean with this SQL statement:

Calculate the

SELECT AVG (num val)
FROM my stats data;

mean:';

-— Find the standard deviation with this SQL statement:
'=> Calculate the standard deviation:';

SELECT STD (num val)
FROM my stats data;

\! echo

-- Find
\'! echo

the

-

z-score with this SQL statement:
Calculate the z-scores:';
WITH simple stats as

(SELECT

AVG (num_val)
STDDEV (num_va

FROM my stats data)

SELECT num val,

sd as z_score
FROM my stats data, simpl

as mean,
1) as sd

e stats;

(num_val-simple stats.mean) / simple stats.

-- Find z-scores greater than 2 with this SQL statement:

'=> Find the z-scores greater than 2:';

WITH simple stats as
(SELECT AVG (num val)

\! echo

STDDEV (num_va

FROM my stats data)

as mean,
1) as sd

170 ¢ SQL Pocket Primer

SELECT num val, (num val-simple stats.mean) / simple stats.
sd as z score

FROM my stats data, simple stats

HAVING z_score > 2;

Listing 4.6 starts by creating and then populating the my stats_data
table with data. The next portion of Listing 4.6 contains a SQL statement for
calculating the mean of the value, followed by a SQL statement that calculates
the standard deviation.

The third SQL statement defines a CTE with the mean and standard
deviation in order to calculate the standardized values of the numbers in the
my stats data table. The fourth and final SQL statement modifies the
third sQL statement by adding the following code snippet to detect (potential)
outliers:

HAVING z score > 2;

You can replace the value 2 with whatever value is appropriate for detect-
ing outliers in a database table. Note that only the fourth SQL statement is
required for detecting outliers. The other three SQL statements are included
for your convenience. Launch the code in Listing 4.6 to see the following
output:

=> Calculate the mean:

1l row in set (0.000 sec)

=> Calculate the standard deviation:

o +
| STD(num val) |
e +
| 11.658330355015108 |
o +

1 row in set (0.000 sec)

=> Calculate the z-scores:
o ————— e +

|

+
| | -0.8148679708594249
| | -0.5575412432196065
| | -=0.38599009145972757
| | -0.21443893969984865
| | =0.21443893969984865
| | 2.1872771849384565
o ————— +
6 rows in set (0.001 sec)

Assorted SQL Functions ¢ 171

=> Find the z-scores greater than 2:

tomm o
| num val | z score

tmm e —— o
| 37 | 2.1872771849384565
o o

1 row in set (0.000 sec)

LINEAR REGRESSION IN SQL

Linear regression is a standard task in statistics, and if you are a data scien-
tist or machine learning engineer, you are most likely already familiar with the
calculations to determine the slope and y-intercept of the best fitting line. If
you have forgotten some of those details, you can review them by reading the

code in this section.

Listing 4.7 shows the content of 1inear regression.sql that finds the
best fitting line for the data in the pasta_prices table.

LISTING 4.7: linear_regression.sql

use mytools;

DROP TABLE IF EXISTS pasta prices ;

CREATE TABLE pasta_prices

(kilos INT(3),

dollars INT(3));

-- approximate line: dollars = 2*kilos+3
INSERT INTO pasta prices VALUES (5,12);
INSERT INTO pasta prices VALUES (6,16);
INSERT INTO pasta_prices VALUES (7,17);
INSERT INTO pasta prices VALUES (8,20);
INSERT INTO pasta prices VALUES (9,22);
INSERT INTO pasta prices VALUES (10,23);
INSERT INTO pasta prices VALUES (11,25);
SELECT
@num = COUNT (dollars) AS Num,
@meanX := format (AVG(kilos),3) AS "XMean",
@sumX = SUM(kilos) AS "XSum",
@sumXS := SUM(kilos*kilos) AS "XSumOfSquares",
@meanY := format (AVG(dollars),3) AS "YMean",
@sumY = SUM(dollars) AS "SumOfYy",
@sumYS := SUM(dollars*dollars) AS "YSumOfSquares",
@sumXY := SUM(kilos*dollars) AS "SumOfX*y"

FROM pasta prices;

SELECT

@m := format ((@n*@sumXY - @sumX*@sumY) / (@Gnum*@sumXS - @sumX*@sumX), 3)
AS slope;
SELECT @b := format ((@meanY - @m*@meanX),3) AS intercept;
SELECT CONCAT('Y = ',@m,'X + ',@b) AS 'Least Squares Regression';
SELECT

format ((@num*@sumXY - @sumX*@sumY)

/ SQRT ((@num*@sumXS - @sumX*@sumX)
AS correlation;

*

(@num*@sum¥S

@sumY*@sumY)), 4)

172 ¢ SQL Pocket Primer

Listing 4.7 starts by creating (and populating) the table pasta prices
with two columns, where the first column contains the number of kilograms
and the second column contains the corresponding price for that number of
kilograms of pasta.

The next portion of Listing 4.7 contains a SQL statement that initializes
some standard quantities that are required for finding the best fitting line. The
second and third SQL statements calculate the slope m and intercept b, respec-
tively, of the best fitting line. The next SQL statement is for display purposes:
it displays the best fitting line in the form ¥ = m*x + b.

The final SQL statement uses the quantities from the first SQL statement
in order to calculate the correlation of the values in the my stats data table.
Launch the code in Listing 4.7 to see the following output:

1 row in set, 1 warning (0.000 sec)

Fom e +
| intercept |
Fom e +
| 2.718 |
Fom e +

1 row in set, 1 warning (0.000 sec)

o +
| Least Squares Regression |
o +
| Y =2.071X + 2.718 |
o +

Fommmmm - +
| correlation |
Fommmmm - +
| 0.9866 |
Fommmmm - +

1l row in set (0.000 sec)

WINDOW FUNCTIONS

Window functions are functions that can rank data over a specific window
or generate ranking indexes within groups. Different relational databases sup-
port different functions. Check the documentation to determine whether your
database supports the functions listed in this section. If a specific function is
not available, consider writing a stored function that implements the function-
ality that you need for your requirements.

Assorted SQL Functions ¢ 173

Types of Window Functions in SQL

One way to categorize different types of window functions is as follows:

® Aggregate Functions

e Rank-related Functions

e Statistical Functions

¢ Functions for Time Series

Aggregate functions include the SQL functions AVG, MIN, MAX, COUNT,
and sup, all of which specify a table column and then aggregate data based on
that column.

Rank-related functions include ROW NUMBER, RANK, and RANK DENSE
whose purpose is to rank data based on columns in a table or the full dataset.

Statistical functions include NTILE (to calculate percentiles, quartiles, and
medians) that can be applied to a column or the full dataset. You can think of
the NTILE function as a “binning” function that partitions data into a set of
bins (or buckets). NTILE takes an integer as an argument that represents the
number of desired bins.

Functions for Time Series include LAG and LEAD to calculate a month-over-
month rolling average.

Recall that Chapter 3 contains an example of the RANK () function regard-
ing various countries that won medals in the 2021 Olympics in Japan.

The RANK and DENSE_RANK functions in MySQL both return sequential
numbers (starting from 1) based on the order of the rows that is returned by
the ORDER BY clause. When you have two records with the same data, then
both functions give the same rank to both the rows.

However, only RANK () skips the number of positions after records with the
same rank number. For example, suppose that DENSE_RANK () returns the fol-
lowing values that contains duplicate values with no gaps:

s w NN

By contrast, the RANK () function returns the following list that contains
gaps that take into account duplicate values:

NN N

174 ¢ SQL Pocket Primer

[e)]

The outcome of sports races uses RANK-based values instead of DENSE_RANK
values. Perform an online search for detailed examples involving the RANK () ,
DENSE_RANK (), and ROW_NUMBER () functions.

If you want to learn more about window functions, a partial list of MySQL
8.x window functions is available online:

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.
html

Some examples of window functions in MySQL 8.x are available online:

hitps://dev.mysql.com/doc/refman/8.0/en/window-functions-usage.html

THE SQL CASE CLAUSE

This section shows you how to write SQL statements that contain the CASE
keyword. The SQL cask keyword superficially resembles a switch statement
in programming languages, such as C and Java, and has the following general
structure:

CASE
WHEN conditionl THEN resultl
WHEN condition2 THEN result?2

WHEN conditionN THEN resultN
ELSE result
END

Each WHEN condition is evaluated, and the first one that is TRUE will exe-
cute its corresponding code that appears after the THEN keyword. However,
if no WHEN condition is TRUE, then the code in the ELSE keyword is executed.

Listing 4.8 shows the content of case weather.sql that uses a CASE
statement to modify the values that are returned from the wind attribute of
the weather table.

LISTING 4.8: case_weather.sql
SELECT CASE WHEN wind < O THEN O
WHEN wind > 100 THEN 100
ELSE wind END
AS wind FROM weather;
Log into MySQL and execute the following statements:

use mytools;
source case weather.sqgl;

The output from the preceding code snippet looks similar to the following:

Assorted SQL Functions ¢ 178

12
32
16
99

| \
| \
| \
| \
| \
| 12 |
| \
| \
| \
| \
| 12 |

11 rows in set (0.000 sec)

As another example of the CASE statement, Listing 4.9 shows the contents
of create movies.sql that first creates amovie ratings table with a sin-
gle row.

LISTING 4.9: create_movies.sql
SELECT @stars = 3;

USE DATABASE mytools;
DROP TABLE IF EXISTS movie ratings;

CREATE TABLE movie ratings (movie id INTEGER, stars
INTEGER, movie desc VARCHAR(20));

INSERT INTO movie ratings VALUES (1000, 3, 'unrated');

Listing 4.9 involves the usual sequence of SQL statements to create the
table movie ratings and then insert a single row of data. Log into MySQL
and execute the movie ratings.sql file:

MySQL [mytools]>

source movie ratings.sql;

Database changed

Query OK, 0 rows affected (0.010 sec)
Query OK, 0 rows affected (0.009 sec)
Query OK, 1 row affected (0.001 sec)

Verify the contents of the movie ratings table:

o N —— - +
| movie id | stars | movie desc |
R —— - N — - +
| 1000 | 3 | unrated |
o fom———— fom e —— +

1l row in set (0.000 sec)

176 ¢ SQL Pocket Primer

Note the value of the movie desc attribute is unrated, which will be
updated via a CASE statement in the next code sample.

Listing 4.10 shows the content of case movies.sql that uses a CASE
statement that updates the value of the movie desc attribute of a row in the
movie_ratingstabk&

LISTING 4.10: case_movies.sql
SELECT @stars = 3;

UPDATE movie ratings

SET movie desc = CASE
WHEN stars =
WHEN stars =
WHEN stars =
WHEN stars = THEN 'great'
WHEN stars = THEN 'fantastic'
ELSE 'unknown star value' END

WHERE movie id = 1000;

THEN 'poor'
THEN 'minimal'
THEN 'decent'

g w N

Log into MySQL and execute the following statements that execute the SQL
file case movies.sql to update the lone row in the movie ratings table:

MySQL [mytools]> use mytools;

source case_movies.sql;

Database changed

Query OK, 0 rows affected (0.010 sec)

MySQL [mytools]> select * from movie ratings;

o fo————— fom e —— +
| movie id | stars | movie desc |
o ——— fo————— fom e —— +
| 1000 | 3 | decent |
o Fo—m———— fom +

As you can see in the previous output, the movie desc attribute has been
updated to the value decent.

The final example of a CASE statement shows you that NULL does not equal
NULL:

SELECT CASE WHEN NULL=NULL THEN "Chicago" ELSE "New York" END;

- +
| case when null=null then "Chicago" Else "New York" end |
B e ettt e +
| New York |
e +

1 row in set (0.000 sec)

WORKING WITH NULL VALUES IN SQL

This section shows you the difference between checking for NULL values
versus empty string (”) values. Note the following definition of a null in SQL:
it’s a value that is unavailable, unassigned, unknown, or inapplicable. Hence, a
null is not the same as a zero or a blank space.

Assorted SQL Functions ¢ 177

SQL supports the IFNull () function, which is the counterpart of the
NVL () function that’s available in Oracle databases.

SELECT IFNULL(1,0); -- returns 1
SELECT IFNULL('',1l); -- returns '’
SELECT IFNULL (NULL, 'IFNULL function');
-- returns 'IFNULL function'

The following SQL statement contains the IFNULL () function that returns
the value of workphone if it’s not null; otherwise, it returns the value of
homephone.

SELECT contactname, IFNULL (workphone, homephone) phone
FROM contacts;

Listing 4.11 shows the content of not_null.sql that uses a CASE state-
ment to modify the values that are returned from the wind attribute of the
weather table.

LISTING 4.11: not_null.sql

— select rows where forecast is not NULL:
SELECT forecast FROM weather WHERE forecast IS NOT NULL;

— select rows where forecast is not empty string '':

SELECT forecast FROM weather WHERE forecast <> '';
Log into MySQL and execute the following statements:

use mytools;
source not null.sqgl;

The output from the preceding code snippet is similar to the following:

o +
| forecast |
o ——— +
| Rain |
| Sunny |
| i \

178 ¢ SQL Pocket Primer

7 rows in set (0.001 sec)

Listing 4.12 shows the content of is null.sql that illustrates how to
select NULL values and ' ' values.

LISTING 4.12: is_null.sql

— the opposite of the queries in not null.sqgl:
SELECT * FROM weather WHERE weather.forecast IS NULL;
SELECT * FROM weather WHERE weather.forecast = '';

Log into MySQL and execute the following statements:

use mytools;
source not null.sqgl;

The output from the preceding code snippet looks similar to the following:

MySQL [mytools]> source is null.sql;

Fommm o fo————— o fom——— - +
| day | temper | wind | forecast | city | state |
o —— Fomm———— - Fo—m - - t——————— +
| 2021-04-03 | 78 | -12 | NULL | se | wa \
| 2021-07-03 | 78 | 12 | NULL | sf | mn |
o —— Fomm———— - Fo—m - - t——————— +
2 rows in set (0.000 sec)

o —— Fomm———— - Fo—m - - t——————— +
| day | temper | wind | forecast | city | state |
o — Fom———— - fom - - fom———— +
| 2021-08-06 | 51 | 32 | | sf | ca \
| 2021-09-02 | 45 | 99 | | sf | ca \
o — Fom———— - fom - - fom———— +

2 rows in set (0.000 sec)

Listing 4.13 shows the content of Null If.sql that updates the city
attribute in the weather table to NULL if the city is sf.

LISTING 4.13: Null_If-sql

UPDATE WEATHER
SET city = NULLIF(city, 'sf');

Listing 4.13 contains a simple SQL. UPDATE statement that invokes the
NULLIF statement to set the city equal to NULL if the city value is s £. Log into
MySQL and invoke the following command to display the current contents of
the weather table:

Assorted SQL Functions ¢ 179

MySQL [mytools]> select * from weather;

o —— Fomm - fom - fo————— +
| day | temper | wind | forecast | city | state |
o —— Fomm———— - Fom - - Fo——————— +
| 2021-04-01 | 42 | 16 | Rain | sf | ca |
| 2021-04-02 | 45 | 3 | Sunny | sf | ca
| 2021-04-03 | 78 | -12 | NULL | se | wa |
| 2021-07-01 | 42 | 16 | Rain | | ca |
| 2021-07-02 | 45 | -3 | Sunny | sf | ca
| 2021-07-03 | 78 | 12 | NULL | sf | mn
| 2021-08-04 | 50 | 12 | Snow | | mn
| 2021-08-06 | 51 | 32 | | sf | ca
| 2021-09-01 | 42 | 16 | Rain | sf | ca \
| 2021-09-02 | 45 | 99 | | sf | ca \
| 2021-09-03 | 15 | 12 | Snow | chi | il |
o —— Fomm———— - Fom - - o +

11 rows in set (0.000 sec)
Now launch Null If.sql to update the values in the weather table:
MySQL [mytools]> source Null If.sql;
Query OK, 7 rows affected (0.003 sec)
Rows matched: 11 Changed: 7 Warnings: 0

Display the rows in the weather table and compare the following list with

the preceding list:

MySQL [mytools]> select * from weather;

o —— o - Fo—m - - t——————— +
| day | temper | wind | forecast | city | state |
o — Fom———— - fom - - fom———— +
| 2021-04-01 | 42 | 16 | Rain | NULL | ca \
| 2021-04-02 | 45 | 3 | Sunny | NULL | ca \
| 2021-04-03 | 78 | =12 | NULL | se | wa

| 2021-07-01 | 42 | 16 | Rain | | ca \
| 2021-07-02 | 45 | -3 | Sunny | NULL | ca \
| 2021-07-03 | 78 | 12 | NULL | NULL | mn \
| 2021-08-04 | 50 | 12 | Snow | | mn

| 2021-08-06 | 51 | 32 | | NULL | ca \
| 2021-09-01 | 42 | 16 | Rain | NULL | ca

| 2021-09-02 | 45 | 99 | | NULL | ca \
| 2021-09-03 | 15 | 12 | Snow | chi | 11 \
o — Fom———— - fom - - fom———— +

11 rows in set (0.001 sec)

MISCELLANEOUS ONE-LINERS

This section contains an eclectic collection of functions that are available in
MySQL, along with short descriptions of the purpose of the functions. In most
cases, the names of the functions have intuitive names, and for those that are
not intuitive, the samples make their purpose clear.

180 ¢ SQL Pocket Primer

SELECT SUM (temper) AS total temp FROM weather;

The LEAST () function returns the smallest value in a list of values, which
can be a list of numeric values or a list of string values, as shown here:

SELECT LEAST (3, 12, 34, 8, 25);

o +
| LEAST (3, 12, 34, 8, 25) |
o +
| 3
o +

1 row in set (0.000 sec)

SELECT LEAST("abc", "def", "ghi");

ey +
| LEAST ("abc", "def", "ghi") |
B +
| abc \
B T +

1l row in set (0.000 sec)

The GREATEST () function is the counterpart to the LEAST () function that
returns the smallest value in a list of values, which can be a list of numeric val-
ues or a list of string values, as shown here:

SELECT GREATEST (3, 12, 34, 8, 25);

e +
| GREATEST (3, 12, 34, 8, 25) |
o +
| 34 |
o +

1l row in set (0.000 sec)

SELECT GREATEST ("abc", "def", "ghi");

o +
| GREATEST ("abc", "def", "ghi") |
B e e T e e +
| ghi |
- +

1l row in set (0.000 sec)

The BIN () function converts a base 10 integer to a base 2 numbers, as
shown here:

SELECT BIN(15);

pommm - +
| BIN(15) |
o +
| 1111 |
fom - +

1l row in set (0.000 sec)

The conv () function is more general than the BIN () function because it
converts an integer from one base to another base, where the two bases are
positive integers (i.e., not necessarily 10 and 2), as shown here:

Assorted SQL Functions ¢ 181

fom +
| CONV (15, 10, 2) |
o +
| 1111 |
o +

Fmm +
| CONV (15, 10, 3) |
Fo—————— +
| 120 |
Fom—————— +

1l row in set (0.000 sec)

The COALESCE () function processes a list of values that may be NULL and
returns the first non-null value; if all values are null, then the result is NULL.
The COALESCE () function and the NULLIF () are essentially a shortened form
of a CASE expression. Here is a simple example:

SELECT COALESCE (NULL, NULL, NULL, 'abc', NULL, 'def');

g +
| COALESCE (NULL, NULL, NULL, 'abc', NULL, 'def') |
o +
| abc \
gy +

The CONVERT () function converts a value into the specified datatype, an
example of which is here:

SELECT CONVERT ("2021-12-30", DATE);

B e +
| CONVERT ("2021-12-30", DATE) |
o +
| 2021-12-30 |
o +

1l row in set (0.000 sec)

The SESSION () function displays the name of the current MySQL user, an
example of which is here:

SELECT SESSION USER() ;

o +
| SESSION USER() |
s e +
| root@localhost |
B T +

1l row in set (0.000 sec)

WORKING WITH THE CAST() FUNCTION IN SQL

The cAST () function converts a value (of any type) into the specified data-
type, an example of which is here:

182 ¢ SQL Pocket Primer

SELECT CAST("2021-12-30" AS DATE) ;

e +
| CAST("2021-12-30" AS DATE) |
it e T +
| 2021-12-30

et e +

1l row in set (0.000 sec)

SELECT CAST (777 AS CHAR) ;

o +
| CAST (777 AS CHAR) |
o +
| 777 |
o +

1l row in set (0.000 sec)

Listing 4.14 shows the content of split float.sql that splits a floating
point number, stored as a string in a table, into its integer portion and its deci-
mal portion.

LISTING 4.14: split_float.sql

USE mytools;
DROP TABLE IF EXISTS split float;
CREATE TABLE split_ﬂoat (height CHAR(10));

INSERT INTO split float VALUES ("12.3");
INSERT INTO split float VALUES ("45.6");
INSERT INTO split float VALUES ("78.9");
INSERT INTO split float VALUES ("-3.4");
SELECT * FROM split float;

--this prevents the huge number in the next SQL statement:
—--DELETE

--FROM split float

--WHERE height < 0;

SELECT CAST (SUBSTRING INDEX (height, '.', 1) AS UNSIGNED) AS whole value,
CAST (SUBSTRING_INDEX (height, '.', -1) AS UNSIGNED) AS decimal value
FROM split float;

Listing 4.14 creates and populates the table split float with string val-
ues that contain decimal numbers. The last portion of Listing 4.14 contains
a SQL statement that involves the built-in CAST () function and the built-in
SUBSTRING_INDEX () function in order to extract the integer portion and the
decimal portion of the strings in the split_float table.

Launch the code in Listing 4.14 to see the following output:

MySQL [mytools]> select * from weather;

Assorted SQL Functions ¢ 183

e o +

| whole value | decimal value |

- - I — ——— +

| 12 | 3 |

| 45 | 6 |

| 78 | 9 |

| 18446744073709551613 | 4 |
o o +

4 rows in set, 1 warning (0.000 sec)

Fmmm fmm to———— fomm to———— fom———— +
| day | temper | wind | forecast | city | state |
e o o Fmm————— o o ——— +

Notice the enormous number in the bottom row: this is due to specifying
unsigned in the associated SQL statement. One solution involves deleting
rows whose height value is less than 0, which is obviously true if the height
value is for humans. Another solution involves finding the substring after the
negative sign, and then proceed with splitting the string as above. However,
it’s logical and much simpler to delete the rows whose height value is negative.

SUMMARY

This chapter started with examples of SQL statements that illustrate
numeric functions as well as logarithmic, exponential, and trigonometric func-
tions in SQL. You then learned about aggregate functions and scalar functions
in SQL, along with additional examples of the GROUP BY clause in a SQL
statement.

Next, you learned about Boolean operators and set operators, and how to
use the AND, OR, and NOT operators in SQL statements. In addition, you saw
examples of SQL statements that use the ORDER BY clause and the MATCH ()
function. Next, you learned about CTEs (common table expressions) that were
introduced in MySQL 8.0.

Finally, you learned how to perform linear regression in SQL, followed by
an overview of window functions, the SQL CASE statement, and how to work
with NULL values in SQL.

CHAPTER

NoSOL, SOLiTe, AND PYTHON

well-suited to certain types of applications. Specifically, you will learn

about NoSQL and MongoDB, which is a popular NoSQL database.
Then you will see some of the features of SQLite, SQLAlchemy, and how to
access both of them through Python scripts, followed by Python code that ac-
cesses MySQL.

The first section (which is roughly half of this chapter) introduces NoSQL,
along with Python code samples to manage data in a MongoDB collection. To
some extent, this section shows you how to perform operations in MongoDB
that are counterparts to SQL commands. You will learn how to create a data-
base in MongoDB, how to create a collection, and how to populate the collec-
tion with documents.

The second section shows you the NoSQL command for querying data
from a NoSQL collection, as well as deleting document from a collection.
You will also learn about Compass (a GUT tool for MongoDB) and PyMongo,
which is a Python distribution for working with MongoDB.

The third section returns to MySQL, where you will see how to read
MySQL data into a Pandas data frame and then save the data frame as an
Excel spreadsheet. Although we won't discuss the details of Pandas and its rich
functionality, the Pandas-related code is straightforward. If need be, you can
also find online tutorials that discuss various features of Pandas.

This chapter introduces non-relational databases whose feature sets are

The fourth section provides a short description of SQLite, which is a data-
base that is available on mobile devices, such as Android and i0S. As you can
probably surmise from its name, SQLite supports a subset of SQL. You can
invoke SQL commands in SQLite in the various ways (such as SQLiteStudio)
that are discussed in this section.

186 ¢ SQL Pocket Primer

The final section provides an overview of SQLite, which is a command line
tool for managing databases that is available on mobile devices. This section
also introduces related tools, such as SQLiteStudio (an IDE for sglite), DB
Browser, and SQLiteDict.

NON-RELATIONAL DATABASE SYSTEMS

There are several types of non-relational data stores, some of which are
listed here:

e key-value store
¢ document store
¢ wide-column stores

e graph database

The following paragraphs contain a high-level description of the data
stores in the preceding list of bullet items. Note that the details of NoSQL are
deferred until later sections in this chapter.

A key/value store is analogous to a Python dictionary or a hash table (hash
map) in Java. In abstract terms, a key can unlock a door to give you access to
the contents on the other side of that door. In the case of key/value pairs of a
key/value store, the value is the contents. The value can be anything, including
a scalar, a data structure, or a concrete instance of a class. Although key/value
stores provide limited functionality, they do provide high performance and are
convenient as an in-memory cache.

A document store focuses on managing the storage of documents, which
can involve XML, JSON, or binary formats. You can also view a document
store as a generalization of a key/value store, where the values in these pairs are
documents. In general, document stores also provide APIs to perform various
operations, such as save, delete, update, and find documents.

A wide document store provides column-based storage of name/value pairs,
which includes documents. A single column can consist of multiple columns,
somewhat analogous to a table. Row keys provide access to individual col-
umns, and columns with the same row key belong to the same row in the store.
Examples of wide document stores include Bigtable (Google) and Cassandra
(Facebook). Distributed databases include GCP (Google), Bigtable (Google),
DynamoDB (Amazon), and Azure Storage (Microsoft).

Graph databases are well-suited for more complex data models, such as
those that exist in social networks. Each node in a graph database is a record
and each edge between two nodes is a relationship between those two nodes.
Graph databases are optimized to represent complex relationships with many
foreign keys or many-to-many relationships. Unsurprisingly, the complexity of
their structure makes it correspondingly more difficult to easily access their
contents.

NoSQL, SQLite, and Python * 187

Advantages of Non-Relational Databases

A NoSQL database is designed to provide fast access to data that may be
stored in multiple locations (nodes). Important considerations include

* good scalability

e support for structured and non-structured data
e simpler updates to schemas

e Shared Nothing Architecture

Due to the last point in the preceding bullet list, a DDB (distributed data-
base) is a loosely coupled system in which each node operates on its own physi-
cal resources.

In some cases, a DDB will provide strong query abilities, whereas others
focus on key-value data representation. A homogeneous DDB involves mul-
tiple databases with the same underlying DBMS, whereas a heterogeneous
DDB involves multiple databases with different underlying DBMSs.

While distributed databases provide multiple advantages, they can also be
more complex than a centralized DBMS.

WHAT IS NOSQL?

Let’s start with a clarification: in the early days, NoSQL usually meant “not
SQL.” More recently, NoSQL has evolved to mean “not only SQL.” Moreover,
RDBMSs such as Oracle have adapted their database to include support for
non-structured data as well as semi-structured data. Nevertheless, RDBMSs
are primarily about structured data, and NoSQL databases were designed
for data types that are less structured (more about this later). In fact, some
RDBMSs, such as Oracle, added support for NoSQL to the Oracle database.

NoSQL includes the data stores and graph databases that are discussed in
the previous section. Recall that RDBMSs include the normalization of data-
base tables, whereas NoSQL data is denormalized, and JOIN operations are
typically performed in the application code. NoSQL databases enable you to
store and retrieve documents (often based on JSON) of variable length, and
you can do so without defining a schema or even a table structure. In general,
NoSQL databases do not support ACID (they lean toward eventual consist-
ency), so they tend to have high speed transactions.

SQL stores data in tabular form with labelled rows and columns. By con-
trast, NoSQL databases have a “collection” that is analogous to an RDBMS
table. A collection can contain multiple documents, where a document is anal-
ogous to a row in an RDBMS table.

Collections are not required to conform to a schema, which means that a
collection can contain unrelated documents. Although you will probably popu-
late each collection with documents that are logically related, the key point is
that you have a great deal of flexibility when making this decision.

188 ¢ SQL Pocket Primer

Moreover, its easy to add new fields to one or more documents in a col-
lection without updating a formal schema. Of course, if the documents in a
collection have a highly similar (or identical) structure, then it’s easier to insert,
update, select, or delete such documents.

What is NewSQL?

NewSQL refers to databases that provide the scalability of NoSQL data-
bases and the transactional support of relational databases. Such databases
can offer decentralized SQL support and often will provide support for
dynamic JSON. Several examples of NewSQL databases include Snowflake,
CockroachDB, and Spark SQL. More details regarding NewSQL and addi-
tional databases are available online:

https://en.wikipedia.org/wiki/NewSQL

RDBMSS VERSUS NOSQL: WHICH ONE TO USE?

Although RDBMSs and NoSQL databases can support the same types
of data (and there are many types), they have different strengths. RDBMSs
are suitable for structured data, and NoSQL databases excel in their sup-
port for unstructured data. An important advantage of NoSQL and key/value
stores is their unlimited horizontal scalability, whereas RDBMSs have vertical
expansion.

As you learned in previous chapters, RDBMSs are well-suited for data that
can be stored in a tabular form. In addition, the structure of tables (i.e., their
attributes along with their types) must be defined in advance. Furthermore,
data is accessed through SQL queries, many of which are discussed in
Chapter 2 and Chapter 4.

Some simple examples of “suitable data” include the details for customers
and purchase orders (one-to-many relationship), along with purchase orders
and line items (also a one-to-many relationship).

Another example involves students and classes whose many-to-many
relationship is replaced by a “join” table whose key is the union of 1) the attrib-
utes from the primary key for the students table and 2) the primary key for
the classes table. As a result, both the students table and the classes
table have a one-to-many relationship with the join table.

Good Data Types for NoSQL

A NoSQL database is well-suited for documents, images, audio, and video,
all of which have variable lengths (and different formats) and can be stored as

single entities without adhering to the normalization process that you will see
in Chapter 6. Although it’s certainly possible for RDBMSs to manage these
types of entities, write and read operations might require accessing different
parts of an entity from multiple tables. Recall that normalization requires a
JOIN keyword in SQL clauses that retrieve data from multiple tables, which
in turn can adversely affect performance.

NoSQL, SQLite, and Python ¢ 189

Moreover, the document model for NoSQL allows for fields to vary from
document to document, all of which can belong to the same collection. In
addition, more recent versions of MongoDB provide ACID compliance, and
in conjunction with transaction support, this functionality can give MongoDB
the look-and-feel of RDBMSs.

It is important to select the system (whenever possible) that best fits the
requirements for your application.

Some Guidelines for Selecting a Database

MongoDB might be a better choice under the following conditions:

e you need high data availability and fast, automatic, and instant data
recovery

* you work with an unstable schema

* your services are mostly cloud-based, so the native scale-out architecture
that MongoDB comes with will be suitable for your business

e the architecture provides sharding, which aligns with horizontal scaling
offered through cloud computing.

MySQL could be a better option under the following conditions:

* you are starting a business and the database is not going to scale

e the schema is fixed and its data structure will not change over time
e you want high-performance ability on a low budget

e you need a high transaction rate

e data security is the foremost priority

Of course, the preceding lists of bullet items only provide guidelines rather
than a definitive list of criteria. Before you make a decision, make sure you
perform a thorough evaluation of two types of databases based on a prioritized
list of requirements.

NoSQL Databases

The following list contains several NoSQL databases that are available for
free:

e CockroachDB
e FaunaDB

* HarperDB

¢ RethinkDB

Before you decide to adopt one of the preceding databases, compare your
list of requirements with each of these databases (and you might decide to adopt
MySQL). If two of them are viable candidates, check for blog posts that contain
a detailed comparison. If you decide to utilize an application that uses each of

190 ¢ SQL Pocket Primer

those two databases, remember that performance-related issues generally arise
when there is a high volume of data and/or many simultaneous transactions.

Now that you have an overview of some of the differences between
RDBMSs and NoSQL databases, let’s take a closer look at MongoDB, which is
the topic of the next section.

WHAT IS MONGODB?

MongoDB is a popular NoSQL database that supports NoSQL operations
on data. As a quick reminder, in an earlier chapter, you learned that an RDBMS
allows you to create databases and tables and then insert data into those tables.
By contrast, MongoDB supports the creation of databases and collections,
after which you can insert documents into the collections (discussed in more
detail shortly).

Features of MongoDB

In addition to support for many standard query types, MongoDB offers the
following features:

e sharding

* load balancing

e scalability

* schemas are optional
* support for indexes

Installing MongoDB

There are two versions of MongoDB that you can install on your machine.
The MongoDB community edition is downloadable:

https://docs.mongodb.com/manual/installation/#mongodb-community-edi-
tion-installation-tutorials

Note that on MacOS, you can use brew to install MongoDB. The MongoDB
Enterprise edition is downloadable:

https://docs.mongodb.com/manual/administration/install-enterprise/

In addition, you can use MongoDB with Docker (search online for tutorials
and instructions).

Launching MongoDB

Launch the command mongo without arguments, which then launches a
command shell and also connects to the URL mongod: //127.0.0.1:27017.

The preceding URL is the default local server, and you’re connected to the
local host through port 27017. Type the following command to find the loca-
tion of the mongo executable:

$ which mongo
/usr/local/bin/mongo

NoSQL, SQLite, and Python ¢ 191

Type mongo from a command shell in order to enter the mongo shell:
$ mongo

If everything has been set up correctly, you will see the following (or some-
thing similar):

MongoDB shell version v4.4.3

connecting to: mongodb://127.0.0.1:27017/?compressors=disab
led&gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("2c254cab-adfd-
466f-8a87-a182d801eele™) }

MongoDB server version: 4.4.3

// other details omitted for brevity

>

The mongo shell makes a connection to the test database, and you can
verify the latter by typing the following in the MongoDB command shell:

> db
Test

Display the existing MongoDB databases with this command:
> show databases
admin 0.000GB
config 0.000GB
local 0.000GB

You can also replace databases with dbs in the preceding command. Note
that admin and local are databases that are part of every MongoDB cluster.

USEFUL MONGO APIS

With MongoDB, you can create one or more databases, where each data-
base can contain one or more collections, and each collection can contain one
or more [SON-based documents.

MongoDB supports CRUD operations that include find (), insert(),
update (), and delete (), where these keywords can be suffixed with “One”
or “Many” (e.g., findOne () or findMany ()).

You can find data in a Mongo database with the following APIs:

e db.collection.find () lists all the documents in the collection.
® db.collection.findOne () lists onlythe first documentin the collection.

Insert data with these MongoDB APIs:

e db.collection.insert () creates a new document in a collection.

e db.collection.insertOne () inserts a new document in a collection.

e db.collection.insertMany () inserts several new documents in a
collection.

192 ¢ SQL Pocket Primer

Update data with these MongoDB APIs:

e db.collection.update () modifies a document in a collection.

* db.collection.updateOne () modifies asingle documentin a collection.

® db.collection.updateMany () modifies multiple documents in a
collection.

® db.collection.replaceOne () modifies a single document in a
collection.

Delete data with these MongoDB APIs:

® db.collection.remove (): Delete a single document or all documents
that match a specified filter.

® db.collection.deleteOne (): Delete, at most, a single document that
matches a specified filter even though multiple documents may match
the specified filter.

e db.collection.deleteMany (): Delete all documents that match a
specified filter.

Meta Characters in Mongo Queries

MongoDB supports these two meta characters and a lowercase switch that
you can use when you want to find substrings of a text string:

¢ $ matches the end of a line
e ~ matches the beginning of a line
® i means “ignore case”

Consider the following list of names that we will use with the preceding
bullet items:
Smithl
Smith?2
Smith3

Smith4
Smith5

The following expression does not match anything in the list (it starts with
a lowercase “s” instead of an uppercase “S”):

/smithl/
The following expression matches Smith1 in the list because of the 1 switch:
/smithl/i

The following expression matches smithl through Smith5 because ~S
matches any string that starts with a capital s:

/"S/

NoSQL, SQLite, and Python ¢ 193

The following expression matches Smith5 because /~5/ matches any
string that ends in the digit 5:

/58/

MONGODB COLLECTIONS AND DOCUMENTS

In simplified terms, think of a collection as a container-like entity that ena-
bles you to store documents. In addition, you can think of a document as a set
of name/value pairs, where the values can be simple data types (e.g., numbers
or strings) as well as arrays. Thus, MongoDB has a document-oriented data
model instead of a table-oriented data model.

MongoDB’s document-oriented model means that documents can be man-
aged in their entirety instead of splitting them into components that are stored
in different tables whose relationship must be defined, such as a one-to-many
relationship that involves a foreign key.

Instead, you create a collection and simply insert documents in that col-
lection. MongoDB provides APIs for managing the documents in a given col-
lection. the MongoDB performs a lazy creation of databases and collections,
which means that databases and collections are created after you insert the
first document.

Document Format in MongoDB

The documents in MongoDB are composed of field-and-value pairs and
have the following structure:

{
fieldl — wvaluel,
field2 — wvalue?2,
fileld3 — wvalue3,

fieldN — wvalueN

The value of a field can be any BSON datatype, including other documents,
arrays, and arrays of documents. In practice, you'll specify your documents
using the JSON format.

CREATE A MONGODB COLLECTION

Unlike an RDBMS, MongoDB does not have a CREATE command. Instead,
you need to invoke the use command to create a database, and then the
INSERT command to insert a document, after which a database is created:

use temp
Insert a document in temp

194 ¢ SQL Pocket Primer

Enter the following commands from the command line:

> use temp
switched to db temp

> db.temp.insertOne ({"fname": "John", "lname": "Smith"})
{
"acknowledged" : true,
"insertedId" : ObjectId("603dad30876da25aabd36d5£f")
}
You can also insert multiple documents, as shown here:
> docl = {"fname": "John", "lname": "Smith"}
{ "fname" : "John", "lname" : "Smith" }
> doc2 = {"fname": "Jane", "lname": "Jones"}
{ "fname" : "Jane", "lname" : "Jones" }
> doc3 = {"fname": "Dave", "lname": "Stone"}
{ "fname" : "Dave", "lname" : "Stone" }

> db.temp.insertMany ([docl,doc2,doc3])

"acknowledged" : true,

"insertedIds" : [
ObjectId("603daeeb876da25aabd36de0"),
ObjectId("603daeeb876da25aabd36d6l"),
ObjectId("603daeeb876da25aabd36de2")

}

>

> db. temp.find ()

{ " id" : ObjectId("603dad30876da25aabd36d5£f"), "fname"
"John", "lname" : "Smith" }

{ " id"™ : ObjectId("603daee5876da25aabd36d60"), "fname"
"John", "lname" : "Smith" }

{ " id" : ObjectId("603daeeb5876da25aabd36d6l"), "fname"
"Jane", "lname" : "Jones" }

{ " id" : ObjectId("603daee5876da25aabd36d62"), "fname"
"Dave", "lname" : "Stone" }

>

> db.temp.find ({fname : "Jane"})

{ " id"™ : ObjectId("603daee5876da25aabd36d6l"), "fname"
"Jane", "lname" : "Jones" }

>

Let’s create a MongoDB collection called cellphones whose documents
contain the attributes year, os, model, color, and price. Unlike an
RDBMS that requires you to define the attributes of a database table, you can
create a collection simply by inserting a document in that collection. Here is
an example of inserting a row in the cellphones collection, which will create
the cellphones collection if it does not already exist:

NoSQL, SQLite, and Python ¢ 195

> use cellphones

switched to cellphones

> db

cellphones

> db.cellphones.insert ({"year":"2017", "os" :"android", "model":
"pixel2","color":"black", "price":320})

The following document contains data for a specific cell phone in the
cellphones collection:

{

"oid" : ObjectId("600c626932e0e6419cee8la"),
"year" : "2017",

"os" : "android",

"model" : "pixel2",

"color" : "black",

"price" : 320

Invoke the following command if you want to delete the cellphones
collection:

> db.cellphones.drop ()

WORKING WITH MONGODB COLLECTIONS

This section contains a set of examples that illustrate how to use various
MongoDB APIs for managing the data in the cellphones collection that was
created in the previous section. The following sections contain code blocks that
illustrate how to use the following APIs.

find ()
insertOne ()
insertMany ()
aggregate ()

Find all Android Phones

NoSQL (and MongoDB) provide the find () function to query a collec-
tion for documents. The following query finds the Android cell phones in the
cellphones collection:

> db.cellphones.find({os: "android"}).limit (1) .pretty () {

"oid" : ObjectId("600c63cf32e0e6419cee8lab"),
"year" : "2017",

"os" : "android",

"model" : "pixel2",

"color" : "black",

"price" : 28000

196 ¢ SQL Pocket Primer

In addition to the find () function, the preceding query contains two addi-
tional functions. First, the 1imit () function is invoked to limit the number of
rows that are returned in a query. Second, the pretty () function is invoked
to display the output in a more aesthetically pleasing manner.

If you decide to omit the pretty () function in the preceding query, the
output looks like this:

> db.cellphones.find({os: "android"}).limit(1){ " id"

ObjectId("600c63cf32e0e6419cee8lab"), "year" : "2017", "os"
"android", "model" : "pixel2", "color" "black", "price"
320 }

Find All Android Phones in 2018

NoSQL (and MongoDB) allow you to list multiple comma-separated
conditions in order to specify Boolean AND logic on the specified conditions:

> db.cellphones.find({os: "android", year: "2018"}).pretty () {

"oid" : ObjectId("600c63cf32e0e6419cee8laf"),
"year" : "2018",

"os" : "android",

"model" : "pixel3",

"color" : "white",

"price" : 700

}

Insert a New Item (document)

MongoDB provides the insertOne () function to insert a single document
in a collection. An example of inserting (creating) a new document is as follows:

> db.cellphones.insertOne (
{year: "2017", os: "bmw", color: "silver",
km: 28000, price: 39000}
o
"acknowledged" : true,
"insertedId" : ObjectId("600c6bc79445pb834692e3b91")
}

Update an Existing Item (document)

MongoDB provides the update () function to update an existing docu-
ment in a collection. For example, the following query specifies the condition
that indicates the documents to be updated, and then passes the updated val-
ues as well as the set keyword:

> db.cellphones.update (

{ os: "bmw" },
{ $set: { os: "ios" }},
{ multi: true }
.)WriteResult ({ "nMatched" : 5, "nUpserted" : 0, "nModified" : 5 })

We need to use the multi parameter to update all the documents that
meet the given condition. Otherwise, only one document will be updated.

NoSQL, SQLite, and Python © 197

Calculate the Average Price for Each Brand

MongoDB provides the aggregate () function to assemble documents
into similar groups. The subsequent query does the following:

groups the documents based on brands by selecting Sos as id

specifies the aggregation function, which is $avg
specifies the field to be aggregated

oo oo

inserts a single document in a collection

Here is the query that performs the preceding list of steps:

> db.cellphones.aggregate ([
{ Sgroup: { id: "Smake", avg price: { Savg: "Sprice" }}}

1){ " id"™ : "hyundai", "avg price" : 36333.333333333336 }
{ " _id"™ : "ios", "avg price" : 47400 }
{ " id" : "android", "avg price" : 35333.333333333336 }

If you are familiar with Pandas, the syntax is similar to the groupby function.

Calculate the Average Price for Each Brand in 2019

This task is to start with the query in the preceding section and add another
condition that specifies a value of 2019 for the year:

> db.cellphones.aggregate ([
{ $match: { year: "2019" }},
{ $Sgroup: { _id: "Sos", avg price: { Savg: "Sprice" }}}

.. 1){ " _id"™ : "ios", "avg price" : 53000 }
{ " id"™ : "android", "avg price" : 42000 }
{ " id" : "ios", "avg price" : 41000 }

Import Data with mongoimport

The mongoimport utility is a command line utility that enables you to
import J[SON, CSV, or TSV files into a MongoDB database. For example,
you can import the CSV file data.csv into the mytools database with the
following command:

mongoimport —db mytools —file /tmp/data.csv

WHAT IS FUGUE?

Fugue a Python-based library that enables you to invoke SQL-like queries
against Pandas data frames via FugueSQL. Install Fugue with the following
command (specify a different version if you need to do so):

pip3.7 install fugue

Listing 5.1 shows the content of fuguel.py that illustrates how to popu-
late a Pandas data frame and then invoke various SQL commands to retrieve a
subset of the data from the Pandas data frame.

198 ¢ SQL Pocket Primer

LISTING 5.1: fugue1.py

import pandas as pd
from fugue sgl import fsql

dfl = pd.DataFrame ({'fnames': ['john', 'dave', 'sara', 'eddy'],
'"lnames': ['smith', 'stone', 'stein', 'bower'],
'ages': [30,33,34,35],
'gender': ['m','m','f','m']})

print ("=> data frame:")
print (dfl)
print ()

Example #1: select users who are older than 33:
query 1 = """

SELECT fnames, lnames, ages, gender FROM dfl
WHERE ages > 33

PRINT

wun

display the extracted data:
fsql (query 1) .run()

Listing 5.1 starts with import statements and then initializes the Pandas
data frame df1 with a set of data values. The next portion of Listing 5.1 con-
structs a query that retrieves the data values of all users who are older than 33.
Launch the code in Listing 5.1 to see the following output:

collection:
=> data frame:
fnames lnames ages gender

0 john smith 30 m

1 dave stone 33 m

2 sara stein 34 f

3 eddy bower 35 m

ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
PandasDataFrame

fnames:str|lnames:str|ages:long|gender:str

—————————— Fom

sara |stein |34 | £

eddy |bower |35 | m

Total count: 2

WHAT IS COMPASS?

MongoDB Compass is a free GUI tool for MongoDB that enables you to
manage data in a MongoDB database. In addition, you can use this GUI to
visually explore data and execute ad hoc queries. Compass is available for mul-
tiple platforms, such as Mac, Linux, and Windows. The instructions for down-
loading Compass are available online:

NoSQL, SQLite, and Python * 199

https://docs.mongodb.com/compass/master/install/
After completing the installation, launch Compass and in the “Connect to
Host” page, enter the following information:

Hostname: localhost

Port: 27107
Favorite Name: You Decide

WHAT IS PYMONGO?

PyMongo is a Python distribution for working with MongoDB via Python.
Install PyMongo on your machine with the following command:

pip3 install pymongo==3.11.2

The following website contains thorough documentation for learning how
to use PyMongo:

https://pymongo.readthedocs.io/en/stable/index.html

Listing 5.2 shows the content of pymongol.py that connects to the
mytools MongoDB database.

LISTING 5.2: pymongo1.py
import pymongo

a client instance:
myclient = MongoClient ("localhost™,27017)

connect to mytools:
db = myclient|['mytools"']

coll = db['weather']
print ("collection:")
print (coll)

Listing 5.2 starts with an import statement and then initializes the variable
my client as an instance of the MongoClient class. Next, the variable db is
initialized as the database connection to the mytools database. The remaining
code involves the variable col1, which is a reference to the weather collec-
tion, whose contents are then displayed. Launch the code in Listing 5.2 to see
the following output:

collection:

Collection (Database (MongoClient (host=['localhost:27017"'],
document class=dict, tz aware=False, connect=True),
'mytools'), 'weather')

In addition, PyMongoArrow enables you to load MongoDB result sets in
several ways: as NumPy arrays, as Pandas data frames, or as Apache Arrow
tables. Install PyMongoArrow with this command:

pip3 install pymongoarrow

200 ¢ SQL Pocket Primer

This concludes the portion of the chapter regarding MongoDB. The next
section returns to MySQL and discusses how to access a MySQL database via
SQLAlchemy and Pandas.

MYSQL, SQLALCHEMY, AND PANDAS

There are several ways to interact with a MySQL database, one of which
is via SQLAlchemy. The Python code samples in subsequent sections rely on
SQLAlchemy (which is briefly described in the next section) and Pandas.

What is SQLAlchemy?

SQLAlchemy is an ORM (Object Relational Mapping), which serves as a
“bridge” between Python code and a database. Install SQLAlchemy with this
command:

pip3 install sglalchemy

SQLAIchemy handles the task of converting Python function invocations
into the appropriate SQL statements, as well as providing support for cus-
tom SQL statements. In addition, SQLAlchemy supports multiple databases,
including MySQL, Oracle, PostgreSQL, and SQLite.

Read MySQL Data via SQLAlchemy

The previous section showed you how to install SQLAlchemy. Install
Pandas (if you haven’t done so already) with this command:

pip3 install pandas

The Pandas functionality in the code samples involve the intuitively named
read sgl () method and the related read sql query() method, both of
which read the contents of a MySQL table.

Listing 5.3 shows the content of read sql data.py that reads the con-
tents of the people table.

LISTING 5.3: read_sql_table.py

from sglalchemy import create engine
import pymysqgl
import pandas as pd

engine = create engine('mysgl+pymysqgl://root:yourpassword@l
27.0.0.1",pool recycle=3600)

dbConn = engine.connect ()

frame = pd.read sql("select * from mytools.people", dbConn);

pd.set option('display.expand frame repr', False)
print (frame)
dbConn.close ()

NoSQL, SQLite, and Python ¢ 201

Listing 5.3 starts with several import statements that are required to access
a MySQL database. The next portion of code initializes the variable engine
as a reference to MySQL, followed by dbConn, which is a database connec-
tion. Next, the variable frame is initialized with the rows in the people table.
Launch the following command in a command shell:

python3 read sql_table.py
You will see the following output:

fname lname age gender country

0 john smith 30 m usa
1 Jjane smith 31 £ france
2 Jjack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

Listing 5.4 shows the content of sql_query.py that reads the contents of
the people table.

LISTING 5.4: sql_query.py

from sglalchemy import create engine

import pymysqgl

import pandas as pd

engine = create engine ('mysgl+pymysqgl://root:yourpassword@l
27.0.0.1",pool recycle=3600)

query 1 = '"!

select * from mytools.people
Tra

print ("create dataframe from table:")
df 2 = pd.read sgl query(query 1, engine)

print ("dataframe:")
print (df 2)

Listing 5.4 starts with several import statements followed by initializing
the variable engine as a reference to a MySQL instance. Next, the variable
query_1 is defined as a string variable that specifies a SQL statement that
selects all the rows of the people table, followed by the variable df 2 (a data
frame) that returns the result of executing the SQL statement specified in the
variable query 1. The final code snippet displays the contents of the people
table. Launch the following command in a command shell:

python3 sql query.py
You will see the following output:

fname 1lname age gender country
0 Jjohn smith 30 m usa

202 ¢ SQL Pocket Primer

jane smith 31 f france
jack Jjones 32 m france
dave stone 33 m italy
sara stein 34 f germany
eddy bower 35 m spain

g w N

Launch the following Python script in a command shell:
python3 sql query.py
You will see the following output:

fname 1lname age gender country

0 john smith 30 m usa
1 Jjane smith 31 f france
2 Jjack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

EXPORT SQL DATA FROM PANDAS TO EXCEL

Listing 5.5 shows the content of sql_query_excel.py that reads the con-
tents of the people table into a Pandas data frame and then exports the latter
to an Excel file.

LISTING 5.5: sql_query_excel.py

from sglalchemy import create engine
import pymysqgl
import pandas as pd

engine = create engine ('mysgl+pymysqgl://root:yourpassword@l
27.0.0.1",pool recycle=3600)

query 1 = '"!

select * from mytools.people
rTra

print ("create dataframe from table:")
df 2 = pd.read sqgl query(query 1, engine)

print ("Contents of Pandas dataframe:")
print (df 2)

import openpyxl
print ("saving dataframe to people.xlsx")
df 2.to excel ('people.xlsx', index=False)

Listing 5.5 contains several import statements followed by the variable
engine that is initialized to an “endpoint” from which a MySQL database can
be accessed. The next code snippet initializes the variable query 1 as a string
that contains a simple SQL SELECT statement.

NoSQL, SQLite, and Python ¢ 203

Next, the variable df 2 is a Pandas data frame that initialized to the result of
invoking the SQL statement defined in the variable query 1, after which the
contents of df 2 are displayed. The final portion of code in Listing 5.5 saves
the contents of df 2 to an Excel document called people.x1sx. Launch the
following command in a command shell:

python3 sql query excel.py
The preceding command generates the following output:
Creating dataframe from table people

Contents of Pandas dataframe:
fname lname age gender country

0 john smith 30 m usa
1 jane smith 31 £ france
2 jack Jjones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
73 Jjane smith 31 £ france
74 jack Jjones 32 m france
75 dave stone 33 m italy
76 sara stein 34 f germany
77 eddy bower 35 m spain

[78 rows x 5 columns]
saving dataframe to people.xlsx

You might need to launch the previous Python script using Python 3.7
NOTE istead of Python 3.8 or Python 3.9.

The next section contains Pandas-related functionality that does not involve
any database connectivity. Since the previous portion of this chapter con-
tains Pandas-related functionality, it’s a convenient location for this material.
However, if you prefer, you can skip this section with no loss of continuity, and
proceed to the next section that discusses SQLite.

MYSQL AND CONNECTOR/PYTHON

MySQL provides a connector/Python API as another mechanism for con-
necting to a MySQL database. This section contains some simple Python code
samples that rely on connector/Python to connect to a database and retrieve
rows from a database table.

Before delving into the code samples, keep in mind that MySQL 8 uses
mysql_native_passwordinﬁeadOfcachinq_shaZ_password.Asaremﬂt
you need to specify a value for auth_plugin (which is not specified in various
online code samples). Here is the error message:

mysqgl.connector.errors.NotSupportedError: Authentication
plugin 'caching sha2 password' is not supported

The solution is highlighted in the Python code sample in the next section.

204 » SQL Pocket Primer

Establishing a Database Connection

Listing 5.6 shows the content of mysql connl.py that illustrates how to
establish a connector/Python database connection.

LISTING 5.6: mysql_conn1.py

optional for 0OS X:
import sys
sys.path.append('/usr/local/lib/python3.9/site-packages"')

import mysqgl.connector

cnx = mysgl.connector.connect (user="'root',
password="yourpassword',
host="'localhost"',
database="'employees',
auth_plugin='mysql native password')
cnx.close ()

Listing 5.6 contains an import statement in order to set the appropriate
path for Python 3.9. If the code executes correctly on your system without
these two lines of code, then you can safely delete them.

The next code snippet is an import statement, followed by initializing the
variable cnx as a database connection. Note the snippet shown in bold, which
is required for MySQL 8§ to connect to a MySQL database, as described in the
introductory portion of this section. Launch the code in Listing 5.6, and if you
don’t see any error messages, then the code worked correctly.

Reading Data from a Database Table

Listing 5.7 shows the content of mysgl_pandas.py that illustrates how to
establish a database connection and retrieve the rows in a database table.

LISTING 5.7: mysql_pandas.py

optional:

import sys

sys.path.append('/usr/local/lib/python3.9/site-packages"')

import mysqgl.connector

mydb = mysqgl.connector.connect (user="'root',
password="yourpassword',
host="'localhost"',
database="'employees',
auth_plugin='mysql native password')

mycursor = mydb.cursor ()

select all rows from the employees table:
mycursor.execute ('SELECT * FROM employees')

import pandas as pd

NoSQL, SQLite, and Python ¢ 205

populate a Pandas data frame with the data:
table rows = mycursor.fetchall ()
df = pd.DataFrame (table rows)

print ("data frame:")
print (df)

mydb.close ()

Listing 5.7 starts with the same import statement as Listing 5.6 and for
the same purpose. The next code snippet is an import statement, followed by
initializing the variable cnx as a database connection. Note the snippet shown
in bold, which is required for MySQL 8 in order to connect to a MySQL data-
base. Launch the code in Listing 5.7, and if everything worked correctly, you
will see the following output:

=> Contents of data frame:

0 1 2
0 1000 2000 Developer
1 2000 3000 Project Lead
2 3000 4000 Dev Manager
3 4000 4000 Senior Dev Manager

Creating a Database Table

Listing 5.8 shows the content of create fun_table.py that illustrates
how to establish a database connection and create a database table.

LISTING 5.8: create_fun_table.py

optional for 0OS X:
import sys
sys.path.append('/usr/local/lib/python3.9/site-packages"')

my table = (

"CREATE TABLE 'for_fun' ("

" 'dept no' char(4) NOT NULL,"

" 'dept name' varchar (40) NOT NULL,"

" PRIMARY KEY ('dept no'), UNIQUE KEY 'dept name'
('"dept name')"

") ENGINE=InnoDB")

DB_NAME = 'for fun db'

import mysgl.connector

cnx = mysgl.connector.connect (user="'root',
password="yourpassword',
host='localhost',
database="'mytools"')

cursor = cnx.cursor ()
try:
print ("Creating table {}: ".format (my table), end='")

cursor.execute (my table)

206 ° SQL Pocket Primer

except mysqgl.connector.Error as err:

if err.errno == errorcode.ER TABLE EXISTS ERROR:
print ("already exists.")
else:
print (err.msqg)
else:

print ("Table created:",my table)
cursor.close ()
cnx.close ()

Listing 5.8 starts by initializing the variable my table as a string that con-
tains a SQL statement for creating a MySQL table. The next portion of Listing
5.8 initializes the variable cnx as a connection to the mytools database, and
then initializes the variable cursor as a database cursor.

The next portion of Listing 5.8 contains a try/catch block to create the
table for fun that is specified in the string variable my table. The except
block catches the connection-related error, and displays an appropriate mes-
sage if the error occurred because the specified table already exist, or for some
other reason.

Now launch the code in Listing 5.8, and if everything worked correctly, you
will see the following output:

Creating table CREATE TABLE 'for fun' ('dept no' char (4)
NOT NULL, 'dept name' varchar (40) NOT NULL, PRIMARY
KEY ('dept no'), UNIQUE KEY 'dept name' ('dept name'))

ENGINE=InnoDB: Table created: CREATE TABLE 'for fun' (
'dept no' char(4) NOT NULL, 'dept name' varchar (40) NOT
NULL, PRIMARY KEY ('dept no'), UNIQUE KEY 'dept name'
('"dept name')) ENGINE=InnoDB

Open a command shell, and from the MySQL prompt, enter the following
command:

MySQL [mytools]> desc for fun;

- - - - - - +
| Field | Type | Null | Key | Default | Extra |
o —— o - +-————- - - +
| dept no | char (4) | NO | PRI | NULL | |
| dept name | wvarchar (40) | NO | UNI | NULL | |
R - i R —— —— T —— e +

2 rows in set (0.060 sec)

WHAT IS SQLITE?

SQLite is a light weight, portable, and open source RDBMS that is avail-
able on Windows, Linux, and MacOS, as well as Android and iOS. More infor-
mation is available online:

https:/fwww.sqlite.org

https:/fwww.sqlitetutorial.net/sqlite-commands/

NoSQL, SQLite, and Python ¢ 207
SQLite is ACID-compliant and also implements most SQL standards. Let’s
look at some features of SQLite and the installation process, both of which are

discussed in two subsections.

SQLite Features

SQLite provides several useful features, some of which are listed as follows:

e doesn’t require a separate server process or system to operate

® no system administration

* no external dependencies

* can operate in a serverless environment.

* Available in multiple platforms (Unix, Linux, Mac, and Windows)
e ACID transactions

e Full support for all features in SQL92

SQLite Installation

Download the distribution for your operating system from the following
site:

hittps:/fwww.sqlite.org/download.html

The second step is to unzip the downloaded file in a convenient location,
which we’ll assume is the directory $HOME/sqlite3 home.

Note that if you have a MacBook, then the directory that contains the
sqglite3 executable is automatically in the PATH variable. Type the following
command to see if sqlite3 is accessible:

which sqglite3

If the preceding command returns a blank line, then you need to include
the path to the bin directory where sqlite3 is located. For example, if the
preceding directory is $HOME/sqlite3_home/bin, then update the PATH
environment variable as follows:

export PATH=/$SHOME/sqglite home/bin:$PATH

The following sequence of commands shows you how to launch sqlite, open
a database, and display the contents of the employees table (which is created
in the next section). Type all the text that is displayed in bold below:

sqlite3

sglite> use sqglite3 mytools

sqlite> .open /Users/oswaldcampesato/sqlite3 mytools
sglite> .tables

employees

sgqlite> select * from employees;

1200110000 |BizDev

1100110000 |sales

100010000 | Developer

sglite> .quit

208 ¢ SQL Pocket Primer

The . open command opens existing databases and creates a new database,
as shown above. The employees table was already created in an IDE, and you
will see how to create that table (and any other table that you want) in the next
section.

Although you can perform SQL operations from the command line, just like
you can with MySQL, it’s probably easier to work with SQLite in an IDE. In
fact, a very robust IDE is SQLiteStudio, which is discussed in the next section.

SQLiteStudio Installation

SQLiteStudio is an open source IDE for SQLite that enables you to per-
form many database operations, such as creating, updating, and dropping
tables and views. Download the distribution for your operating system, and
perform the specified installation steps:

https://sqlitestudio.pl/

https://mac.softpedia.com/get/Developer-Tools/SQLite Studio.shtml

Figure 5.1 shows the structure of the employees table whose definition is
the same as the employees table in the mytools database in MySQL.

[XON) SQLiteStudio (3.3.3)
'/ % B B D BIDEROO0NHK FIBDES
‘o0 @] employees (sqlite3 mytools)
Data Constrai Indexes Triggers | DDL
B oBlEIloN 46 XEE& &9

sqlite3 my & Table name: employees WITHOUT ROWID

Unique | Check | (2% | Collate | Generated Default value

1 emp_id INTEGER (8) & @
2 mgrid INTEGER (8) @
3 title CHAR (20)

Primary | Foreign
Name Data type Ke ey

BELHOoO &x&B3

Type | Name Details.

FIGURE 5.1 The employees table.

Figure 5.2 displays a screenshot of three rows in the employees table,
where you can insert a fourth row of data in the top row that is pre-populated
with NULL values.

NoSQL, SQLite, and Python * 209

[NN) SQLiteStudio (3.3.3)
¥ 2 B BEIR B D® RO O HHE 2B DS &
[NON) (=] employees (sqlite3_mytools)

_structure [UOETEHl Constraints Indexes Triggers = DDL

Form view |
a-a @ a8 8 & %&b [edaa | %[Totlrousloaded: 3

& emp_id |mgrid | title

B i
2 1200 10000 BizDev
3 1100 10000 Sales
4 1000 10000 Developer

FIGURE 5.2 Three rows in the employees table.

DB Browser for SQLite Installation

DB Browser is an open source and visually-oriented tool for SQLite that
that enables you to perform various database-related operations, such as creat-
ing and updating files. Moreover, this tool enables you to manage data through
an interface that resembles a spreadsheet.

Download the distribution for your operating system, and perform the
specified installation steps:

https://www.macupdate.com/app/mac/38584/db-browser-for-sqlite/
download/secure

The following website contains a multitude of URLs that provide details
regarding the features of DB Browser:

https://sqlitebrowser.org

SQLiteDict (optional)

SQLiteDict is an open source tool that is a wrapper around sglite3, and it’s
available online:

https://pypi.org/project/sqlitedict/

SQLiteDict enables you to persist dictionaries to a file on the file system, as
illustrated by the code in Listing 5.9.

210 ¢ SQL Pocket Primer

LISTING 5.9: sqlitesavedict1.py
pip3 install sglitedict
from sglitedict import SgliteDict

mydict = SgliteDict('./my db.sglite', autocommit=True)
mydict['pasta'] = 'pasta'
mydict['pizza'] = 'pizza'

for key, value in mydict.iteritems() :
print ("key:",key," value:",value)

dictionary functions work:
print ("length:", len (mydict))
mydict.close ()

a client instance:
myclient = MongoClient ("localhost",27017)

Listing 5.9 contains an import statement followed by the variable mydict
that is initialized as a dictionary that includes the two strings pasta and pizza.
The next code snippet contains a loop that displays the key/value pairs of
mydict, followed by the length of the mydict dictionary. The next close snip-
pet closes the dictionary and then launches a MongoDB client at the default
port. Launch the code in Listing 5.9 to see the following output:

key: pasta value: pasta
key: pizza value: pizza
number of items: 2

As you can see, Listing 5.9 shows you how to save key/value pairs, and
Listing 5.10 illustrates how to read the contents of the file saved in Listing 5.9.

LISTING 5.10: sqlitereaddict1.py
pip3 install sqglitedict

read the contents of my db.sqglite

and note no autocommit=True

with SgliteDict('./my db.sglite') as mydict:
print ("old:", mydict['pasta'l)

mydict['pasta'] = u"more pasta"
print ("new:", mydict|['pasta'l])
mydict['pizza'] = range(10)

mydict.commit ()
this is not persisted to disk:
mydict['dish'] = u"deep dish"

open the same file again:

with SgliteDict('./my db.sglite') as mydict:
print ("pasta:",mydict['pasta'l)
this line will cause an error:
#print ("dish wvalue:",mydict['dish'])

NoSQL, SQLite, and Python ¢ 211

Listing 5.10 contains a block of code that reads the existing value of past
from mydict, updates its value, and then saves its new value. The final code
block in Listing 5.10 reads the stored contents and displays the key/value pairs.
Now launch the code in Listing 5.10 to see the following output:
old: pasta
new: more pasta

pasta: more pasta

Check the online documentation for information regarding other function-
ality that is available through sqlitedict.

SUMMARY

This chapter introduced you to non-relational databases and some of
their advantages. You learned about NoSQL and a NoSQL database called
MongoDB. You saw how to create a database in MongoDB, how to create a
collection, and how to populate the collection with documents. You also saw
how to query data from a MongoDB collection and how to delete a document
from a collection.

Next, you learned about Compass (a GUI tool for MongoDB) and PyMongo,
which is a Python distribution for working with MongoDB. You also learned
about DynamoDB, which is a NoSQL database from Amazon. Then you saw
how to read MySQL data into a Pandas data frame and then save the data
frame as an Excel spreadsheet.

In addition, you learned about SQLite, which is a command line tool for
managing databases that is available on mobile devices. Then you learned
about related tools, such as SQLiteStudio (an IDE for sqlite), DB Browser,
and SQLiteDict.

CHAPTER

MISCELLANEOUS TOPICS

his chapter contains an overview of a highly eclectic mixture of SQL

and RDBMS topics, such as normalization, schemas, performance tun-

ing, and third-party tools such as MySQL Workbench for managing
databases via a GUI interface. Although numerous topics in this chapter are
relevant to a DBA, it’s still worthwhile for you to be acquainted with these
topics.

You can treat sections in this chapter as optional if you do not have an
immediate need to acquire the information provided in those sections. Your
time will obviously be better spent focusing on the portions of this chapter that
are directly relevant to you.

The first section discusses how to manage database users: specifically, how
to create users and how to drop users. Next, you will learn about the concept
of roles in MySQL, followed by details about creating roles, granting privi-
leges, revoking roles, and dropping roles. This section also contains informa-
tion about stored procedures, stored functions, and SQL triggers.

The second section continues the explanation of normalization that was
introduced briefly in Chapter 1. You will learn about the rules for the first
three normal forms regarding tables in RDBMSs, which is most likely suffi-
cient for your needs because the third normal form is sufficient for the major-
ity of applications. You will also learn about denormalization, and why it can
improve performance. This section also introduces schemas and transactions,
which involve the keywords COMMIT, ROLLBACK, and SAVEPOINT. You will
then learn about MySQL Workbench and some of its rich set of features, such
as reverse engineering a database schema. In fact, this IDE can easily manage
the details of exporting databases, such as the mytools database, as well as
importing CSV files into database tables.

The third section introduces you to aspects of database optimization, per-
formance tuning considerations, and SQL query optimization. You will also

214 ¢ SQL Pocket Primer

learn about table fragmentation and table partitioning. In addition, you will
learn about EXPLAIN plans and how they can be useful to you.

The fourth section introduces you to scaling an RDBMS, which can involve
sharding and federation. This section also discusses MySQL caching and how
it can be disabled. In addition, you will learn about the MySQL engines that
are available.

The remaining portion of this chapter is an eclectic mix of topics: distrib-
uted databases, the CAP theorem, MySQL command line utilities, database
backups and upgrades, character sets, regular expressions, and recursion in
MySQL.

MANAGING USERS

MySQL enables you to define users with various roles (discussed later)
that specify the privileges users have with respect to a database and its tables.
There are many options for creating users, and this section describes a few
of those options. If you need additional information, you can read the online
documentation.

Listing Current Users

If you want to view the currently defined users in MySQL, the following
SQL statement displays a list of users in a MySQL instance:

mysqgl>
SELECT USER
FROM mysqgl.user;

| mysgl.infoschema |
| mysgl.session |
| mysgl.sys \
| root |

4 rows in set (0.000 sec)

Creating and Altering MySQL Users

The following SQL statements create user oswald as well as user mary in
a MySQL instance:

mysql>CREATE USER 'oswald'@'localhost' COMMENT 'Account for Oswald';
Query OK, 0 rows affected (0.047 sec)

mysql>CREATE USER 'mary'@'localhost' COMMENT 'Account for Mary';
Query OK, 0 rows affected (0.047 sec)

mysgl> ALTER USER 'mary'@'localhost'
ATTRIBUTE '{"fname":"Mary", "lname":"Smith"}';
Query OK, 0 rows affected (0.14 sec)

Miscellaneous Topics ® 215

mysqgl> ALTER USER 'mary'@'localhost'
ATTRIBUTE '{"email":"msmith@example.com"}';
Query OK, 0 rows affected (0.12 sec)

Now let’s confirm the details of the user mary by launching the following
SQL statement:

SELECT USER,

ATTRIBUTE->>"S$.fname" AS 'First Name',
ATTRIBUTE->>"S$.1lname" AS 'Last Name',
ATTRIBUTE->>"S$.email" AS 'Email',
ATTRIBUTE->>"$.comment”" AS 'Comment'
FROM INFORMATION_SCHEMA.USER ATTRIBUTES
WHERE USER='mary'

AND HOST='localhost';

o Fom e Fom e o B e +
| USER | First Name | Last Name | Email | Comment |
o Fom e Fom e o B e +
| mary | Mary | Smith | msmith@example.com | Account for Mary |
o Fom e Fom e o B e +

1 row in set (0.002 sec)

The following SQL statement enables you to view more detailed informa-
tion regarding the current MySQL users:

SELECT user, host, account locked, password expired
FROM mysqgl.user;

o fomm fom e o +
| user | host | account locked | password expired |
o o T ———— - S — +
mary	localhost	N	N
mysgl.infoschema	localhost	Y	N
mysgl.session	localhost	Y	N
mysgl.sys	localhost	Y	N
oswald	localhost	N	N

| root | localhost | N | N |
o o Fomm - o +

6 rows in set (0.000 sec)
The following SQL statement displays a list of currently logged in users:

SELECT user, host, db, command
FROM information schema.processlist;

Fmm e —— tom e ————— tom t—— +
| user | host | db | command |
o - o o +
| root | localhost | mytools | Query |
| event scheduler | localhost | NULL | Daemon |
e e o S S +

2 rows in set (0.006 sec)

Dropping MySQL Users

Dropping a MySQL user is illustrated in the following SQL statements that
create the user pasta and then drop the user pasta:

MySQL [(none)]> create user 'pasta'@'localhost';
Query OK, 0 rows affected (0.002 sec)

216 ¢ SQL Pocket Primer

MySQL [(none)]> drop user pasta;

ERROR 1396 (HYO000): Operation DROP USER failed for 'pasta'@'$'
MySQL [(none)]> drop user pasta@localhost;

Query OK, 0 rows affected (0.004 sec)

At this point you know how to list users, create users, alter users, and drop
users in MySQL. Consider this question: how do you assign different privileges
to a large set of users in an efficient manner that’s also easily managed? The
answer involves the concept of roles, which is the topic of the next section.

WHAT ARE ROLES?

Roles are named collections of privileges that can be granted to user
accounts. Each role can have a different set of privileges (specified by you) in
order to control the access rights that are granted to different users. The fol-
lowing operations can be performed with roles and users:

e create and drop roles

e grant privileges to roles

e revoke privileges from roles
e grant roles to users

¢ revoke roles from users

For example, users of a Web application typically have fewer access privi-
leges than application developers, who in turn generally have full access (i.e.,
read and write) to the tables in an underlying database. Assigning different
sets of privileges to these two groups of users is simple: create a user role and
a developer role with appropriate privileges and then grant the correct role to
each type of user.

In fact, you can assign multiple roles to a given user, which enables a more
fine-grained level of control. If need be, you can revoke one or more roles from
users whenever it’s necessary to do so.

Create Roles and Grant Privileges

This section contains simple examples of creating roles and granting privi-
leges. Lets start by creating the role developers with the following SQL
statement:

CREATE ROLE developers;
Grant the role developers to specific users as follows:

GRANT developers to Sara;
GRANT developers to Dave;

(hantINSERTIthbgefbrtﬂﬂecustomerstotherokedeveloper&

GRANT INSERT ON CUSTOMER TO developers;

Miscellaneous Topics ® 217

Grant SELECT privilege for table customers to the role developers:
GRANT SELECT ON CUSTOMER TO developers;

Grant SELECT privilege on a view to the role developers:
CREATE VIEW v_customers AS
SELECT last name, first name FROM customers;

GRANT SELECT ON v_customers TO developers;

You can also grant DELETE or UPDATE (or both) to a role. You can also cre-
ate multiple roles with a single statement, as shown here:

CREATE ROLE 'all privs', 'read privs', 'write privs';

Next, assign all privileges on all the tables and views in the mytools data-
base to the all privs role with this GRANT statement:

GRANT ALL ON mytools.* TO 'all privs';

Assign SELECT privilege on all the tables and views in the mytools data-
base to the app_read role:

GRANT SELECT ON mytools.* TO 'app read';

Next, assign INSERT, UPDATE, and DELETE privileges and exclude SELECT
privileges on all the tables and views in the mytools database to the appl
write role:

GRANT INSERT, UPDATE, DELETE ON mytools.* TO 'appl write';

MySQL [mytools]> select current role();

Fom - +
| current role() |
fom e ———— +
| NONE \
o +

1 row in set (0.002 sec)

MySQL [mytools]> select user();

o +
| user() \
o — +
| root@localhost |
e +

1 row in set (0.001 sec)

MySQL [mytools]> select user(), current date();

o — fom e +
| user() | current date() |
o e — e +
| root@localhost | 2021-06-17 |
o R it ittt +

1l row in set (0.001 sec)

218 ¢ SQL Pocket Primer

It’s also possible to grant a role the ability to grant privileges to other roles,
as shown here:

GRANT DELETE ON customers TO role-name WITH GRANT OPTION;

Revoke Roles and Drop Roles

Specify DROP ROLE to drop roles, and those roles will no longer be available
to any users that were assigned those roles:

DROP ROLE 'app read', 'app write';

MySQL [mytools]> select current role();

o +
| current role() |
fom e ———— +
| NONE \
e +

1 row in set (0.002 sec)

mysgl> SHOW GRANTS FOR 'app write';

it e +
| Grants for app write@% |
e +
| GRANT USAGE ON *.* TO 'app write'@'$' |
e +

WHAT IS A USER-DEFINED FUNCTION?

User-defined functions in SQL are similar to functions in any other pro-
gramming language that accept parameters, perform complex calculations,
and return a value. They are written to use the logic repetitively whenever
required. There are several types of SQL user-defined functions:

e Scalar Function: a function that returns a single scalar value

e Table Valued Functions: a table-valued function that returns a table as
output

e Inline: returns a table data type based on one SELECT statement

e Multi-statement: returns a tabular result-set but (unlike inline) can in-
clude multiple SELECT statements

WHAT IS A STORED PROCEDURE?

Stored procedures are subroutines for managing data in RDBMSs, and
they are stored in the database data dictionary. Some of the features of stored
procedures are as follows:

e they can only be invoked in the database
e they prevent users from accessing data directly
e they provide additional security

Miscellaneous Topics © 219

e they support imperative programming
e users are granted access to stored procedures
* access to stored procedures can be revoked

There are several important advantages to using MySQL stored procedures:

e Faster execution

¢ Greater Security

e Improved performance
* Portability

° Reusability/transparency

However, there are also some disadvantages to using MySQL stored
procedures:

e Difficult to debug

e Increased maintenance complexity

e Increased memory consumption

e Unsuitable for complex business logic

Experiment with stored procedures using best practices, and you will be in
a better position to assess how well they meet your needs and also the level of
effort required to maintain or enhance them.

IN and OUT Parameters in Stored Procedures

An IN parameter passes a value into a procedure, and any changes that the
procedure makes to IN parameters are not visible to the calling program. By
contrast, an OUT parameter passes a value from the procedure back to the call-
ing program. Finally, an INOUT parameter has these properties:

e It’s initialized by the calling program.
e It can be modified by the procedure.
e Any change in the procedure is visible to the calling program.

A simplified and more concrete syntax for stored procedures is shown here:

Delimiter //
Create Procedure myprocedure ()
BEGIN

Select column name from my table;
END//

DELIMITER ;
Call myprocedure() ;

Now let’s proceed to the next section to learn how to create a stored pro-
cedure in MySQL.

220 ¢ SQL Pocket Primer

A Simple Stored Procedure

Listing 6.1 shows the contents of storedl.sql that illustrates how to
define a stored procedure for selecting the rows in the table user.

LISTING 6.1: stored1.sql

use mytools;
\! echo '=> Rows from user via SQL Statement:';

SELECT * FROM user;
DROP PROCEDURE IF EXISTS allrows;

-— stored procedure to select rows
Delimiter //
Create Procedure allrows ()
BEGIN
SELECT * FROM user;
END//

DELIMITER ;

\! echo '=> Rows from user via Stored Procedure:';
Call allrows () ;

Listing 6.1 starts by specifying the mytools database, prints a comment
on the screen, and then executes a SQL statement displays the contents of the
user table. The next code snippet drops the allrows procedure (if it exists),
and then defines the same procedure whose code block simply displays the
contents of the table user.

This admittedly simple procedure is sufficient for confirming that the code
does return the correct set of rows. The last portion of Listing 6.1 invokes the
stored procedure. Navigate to the SQL prompt and launch the SQL script in
Listing 6.1 with the following command:

source storedl.sql;
The generated output is shown here:
Database changed

=> Rows from user via SQL Statement:
o o +

| user id | user title |
N R - +
1000	Developer
2000	Project Lead
3000	Dev Manager
4000	Senior Dev Manager
fom o +

4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.002 sec)
Query OK, 0 rows affected (0.001 sec)

Miscellaneous Topics © 221

=> Rows from user via Stored Procedure:
e o +

| user id | user title |
o R - +
1000	Developer
2000	Project Lead
3000	Dev Manager
4000	Senior Dev Manager
e o +

4 rows in set (0.000 sec)
Query OK, 0 rows affected (0.000 sec)

As you can see, the output produced by the SQL statement and the stored
procedure is the same.

Listing 6.2 shows the content of double number.sql that illustrates
how to define a stored procedure that doubles the integer-valued input
argument.

LISTING 6.2: double_number.sql

use mytools;
DROP PROCEDURE IF EXISTS double number;

DELIMITER //
CREATE PROCEDURE double number (IN N INT, INOUT result INT)
BEGIN
SET result := N * 2;
END //

DELIMITER ;

SET @result=0;

Call double number (10, @result);
SELECT @result;

Call double number (17,@result);
SELECT @result;

Listing 6.2 starts by specifying the mytools database, prints a comment
on the screen, and then drops the double number procedure (if it exists).
The next portion of Listing 6.2 defines the same procedure whose code block
doubles the value the input parameter N. The last portion of Listing 6.2 invokes
the procedure with the value 10 for N. Navigate to the SQL prompt and launch
the SQL script in Listing 6.2 with the following command:

MySQL [mytools]> source double number.sql;
The generated output is shown here:

Database changed

Query OK, 0 rows affected (0.004 sec)
Query OK, 0 rows affected (0.003 sec)
Query OK, 0 rows affected (0.000 sec)
Query OK, 0 rows affected (0.000 sec)

222 ¢ SQL Pocket Primer

fmmm +
| Qresult |
o ——— +
| 20 |
e +

1l row in set (0.000 sec)

Query OK, 0 rows affected (0.000 sec)

fmmm +
| Qresult |
o ——— +
| 34 |
e +

1l row in set (0.000 sec)

WHAT IS A STORED FUNCTION?

Stored functions are similar to stored procedures: the former is invoked
with a function call, whereas the latter is invoked via a CALL statement. In
addition, you can replace an argument of a SQL statement with a stored func-
tion. The term stored routines refers to stored procedures and stored func-
tions. Some of the features of stored functions are

e They can only be invoked in the database.
e They prevent users from accessing data directly.

A Simple Stored Function

Listing 6.3 shows the content of stored functionl.sql that illustrates
how to define and invoke a stored function in MySQL.

LISTING 6.3: stored_function1.sql

use mytools;

DROP FUNCTION IF EXISTS olympic tier;
DELIMITER //

CREATE FUNCTION olympic tier (medals INT)
RETURNS VARCHAR (20)
DETERMINISTIC
BEGIN
DECLARE medal level VARCHAR(20);

IF medals >= 30 THEN

SET medal level = 'TIER 1';
ELSEIF medals >= 20 THEN

SET medal level = 'TIER 2';
ELSE

SET medal level = 'TIER 3';
END IF;

-—- return the customer level

Miscellaneous Topics ® 223

RETURN (medal level);
END //
DELIMITER ;

SELECT country, count, olympic tier (count)
FROM olympics
ORDER BY country;

Listing 6.3 starts by specifying the mytools database, then drops the func-
tion (if it already exists), and then defines the contents of the function. This
function returns TIER 1, TIER 2, or TIER 3, depending on whether the
number of medals (an input parameter) is at least 30, at least 30, or at most 19,
respectively.

The final portion of Listing 6.3 contains a SQL statement that displays the
country, count, and the tier of the country via the stored function olympic
tier. Launch the code in Listing 6.3 from the MySQL prompt as follows:

MySQL [mytools]> source stored functionl.sql;
The preceding command will display the following output:
Database changed

Query OK, 0 rows affected (0.052 sec)
Query OK, 0 rows affected (0.002 sec)

fom fomm o +
| country | count | olympic tier (count) |
. — R —— e - +
CHINA	38	TIER 1
CHINA	32	TIER 1
CHINA	18	TIER 3
JAPAN	27	TIER 2
JAPAN	14	TIER 3
JAPAN	17	TIER 3
ROC	20	TIER 2
ROC	28	TIER 2
ROC	23	TIER 2
UK	22	TIER 2
UK	21	TIER 2 [
UK	22	TIER 2
USA	39	TIER 1
USA	41	TIER 1
USA	33	TIER 1
fom fomm o +
15 rows in set (0.001 sec)
WHAT ARE SQL TRIGGERS?

A trigger is a database object that executes when a particular event occurs
for a permanent table. If need be, you can define multiple triggers, even with
the same event, on the same table. Such triggers are executed in the order in
which the triggers were defined.

224 ¢ SQL Pocket Primer

However, you can change the order of execution via the FOLLOWS and
PRECEDES keywords. For example, if trigger a follows trigger B, then & is exe-
cuted after B; if A precedes B, then a is executed before B. You can define a
maximum of six triggers on a MySQL table, which are listed below as pairs of
before/after triggers:

® BEFORE INSERT
® AFTER INSERT
® BEFORE UPDATE
® AFTER UPDATE
® BEFORE DELETE
® AFTER DELETE

A Simple MySQL Trigger

Listing 6.4 shows the content of triggerl.sql that illustrates how to
define a trigger that updates the value of an attribute in the table average
val after one or more rows are inserted into the account table.

LISTING 6.4: trigger1.sql

use mytools;

-- 1) drop, recreate, and populate table account:

DROP TABLE IF EXISTS account;

CREATE TABLE account (acct num INT, amount DECIMAL (10,2));
INSERT INTO account VALUES (1000,1.00);

INSERT INTO account VALUES(1000,2.00);

INSERT INTO account VALUES (1000,3.00);

SELECT * FROM account;

-- 2) drop, recreate, and populate table average val:
DROP TABLE IF EXISTS average_val;

CREATE TABLE average val (average double);

INSERT INTO average val VALUES (1.00);

SELECT * FROM average_val;

-- 3) drop and redefine trigger inserted sum:

DROP TRIGGER IF EXISTS inserted_sum;

CREATE TRIGGER update table avg AFTER INSERT ON account

FOR EACH ROW SET @sum = @sum + NEW.amount;

UPDATE average val SET average = (SELECT AVG (amount) FROM account) ;
SELECT * FROM average val;

Listing 6.4 contains three sections, each of which starts with a comment
statement that describes its purpose. For example, the first section drops, rec-
reates, and populates the table account, and the second section does so for
the table average val.

The third section executes the trigger update table avg that updates
the value of the average attribute in the table average val. Launch the
SQL script in Listing 6.4 with the following command:

source triggerl.sql;

Miscellaneous Topics ® 225

The generated output from the SQL statements is shown here:

Fommmm - dmmmm - +
| acct num | amount |
e - +
1000	1.00
1000	2.00
1000	3.00
Fommmm - dmmmm - +

dommm - +
| average |
- +
| 1]
- +

Fomm e +
| average |
+-—— - +
| 2 |
- +

1l row in set (0.000 sec)

MYSQL ENGINES

The SQL scripts in this book that create MySQL tables do not specify a
database engine. However, MySQL supports several database engines, and the
two most popular engines are InnoDB and MyISAM. If you want to see the
list of engines in your instance of MySQL, enter the following SQL statement
from the SQL prompt:

MySQL [mytools]> SHOW ENGINES;

The following SQL statement displays the tables in the mytools database
and the MySQL engine for each table:

MySQL [mytools]>
SELECT TABLE NAME, ENGINE
FROM information schema.TABLES

FRIENDS InnoDB

WHERE TABLE SCHEMA = 'mytools';
o I —— I — +
| TABLE NAME | ENGINE |
R — e e — +
account	InnoDB
courses	InnoDB
curr exchange rate	InnoDB
currencies	InnoDB
cust history	InnoDB
customers	InnoDB
employees	InnoDB
\	

226 ¢ SQL Pocket Primer

FRIENDS2	InnoDB
item desc	InnoDB
japnl	InnoDB
japn2	InnoDB
japn3	MyISAM
japn_ emps	InnoDB
jsonl	InnoDB
line items	InnoDB
new items	InnoDB
people	InnoDB
people2	InnoDB
purchase orders	InnoDB
sample	InnoDB
schedule	InnoDB
students	InnoDB
temp cust2	InnoDB
user	InnoDB
user2	InnoDB
user3	InnoDB
weather	InnoDB
weather2	InnoDB
o - +

29 rows in set (0.002 sec)

Notice that the table japn3 uses the MyISaM engine, whereas the other
tables in the mytools database use the InnoDB engine.

More information regarding MySQL database engines is available online:

https://dev.mysql.com/doc/refman/S.0/en/innodb-storage-engine.html

https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html

WHAT IS NORMALIZATION?

Normalization in an RDBMS refers to a methodology for defining the
structure of tables in a way that reduces data redundancy and helps to maintain
data integrity. The way to achieve normalization involves subdividing a given
table into smaller tables when the given table contains multiple copies of the
same data.

For example, the customers table contains the information pertaining
to each customer, and each customer is assigned a unique cust_id value.
Whenever a customer makes a new purchase, a new row is inserted into the
purchase orders table that contains the cust id value of the customer
that made the purchase.

The personal details of each customer appear only once in the
customers table instead of repeating the same information in every
purchase that is made by each customer. As a result, any updates to a
customer’s personal details are made in only one location, which helps to
maintain data integrity.

Miscellaneous Topics ® 227

Edgar Codd invented the relational model in RDBMSs, which consists of
the following normal forms that are increasingly restrictive from first to sixth
normal form:

¢ INF (First Normal Form)

¢ 2NF (Second Normal Form)

¢ 3NF (Third Normal Form)

* BCNF (Boyce-Codd Normal Form)
¢ ANF (Fourth Normal Form)

¢ 5NF (Fifth Normal Form)

¢ 6NF (Sixth Normal Form)

Second normal form (2NF) is more restrictive than first normal form
(INF), and 3NF is more restrictive than 2NF, and so forth. In general, 3NF is
suitable for applications that store data in an RDBMS. The first normal form is
the minimum requirement: the attributes consist of atomic elements instead of
sets of elements. For example, the first name and last name values are stored in
different attributes. More precisely, first normal form enforces these criteria:

* 1o repeating groups in any database table
e a separate table for any set of related data
* a primary key for each set of related data

In general, the goal for applications that have an RDBMS data store is to
achieve third normal form. In addition, the remaining normal forms (fourth,
fifth, and sixth) are more advanced and they can be useful if you are an applica-
tion DBA (but not for beginners in SQL).

What is Denormalization?

Denormalization refers to converting a normalized table (or tables) to
denormalized form. Despite the importance of database normalization, some-
times you can improve the performance of an application by denormalizing a
database tables. However, determining which table (or tables) to denormalize
is an advanced topic, typically performed by a senior application DBA.

WHAT ARE SCHEMAS?

The meaning of the word schema depends on the context in which it’s used.
For example, XML includes XML schemas, which are XML documents that
describe the structure of other XML documents that “conform” to the given
XML schema.

However, in this section (and elsewhere in this book), a schema refers to an
RDBMS schema for databases. There are three types of schemas in RDBMSs,
from abstract to concrete, as shown in the following list:

228 ¢ SQL Pocket Primer

e conceptual schema
* logical schema
e physical schema

A conceptual schema is the most abstract of the three types of schema,
and it consists of high-level data constructs that involve the semantics of an
organization.

A logical schema includes entities such as tables, along with their attributes
and relationships between entities. A logical schema is also called a logical data
model, which is a data model of a specific problem. Note that a logical schema
does not contain any hardware-specific restrictions.

A physical schema includes all the objects that have been defined for a
database: tables, columns, keys, data types, validation rules, database triggers,
stored procedures, and constraints. A physical schema is a SQL script that con-
tains the complete definition of every entity (and relationships) in a database.

A physical schema is useful when you want to export a database from one
environment and recreate that database in a different environment. For exam-
ple, the SQL file mytools.sql that is available for this chapter is a physical
design of the mytools database.

MYSQL WORKBENCH

The Community Edition Workbench is a free GUI-based tool that enables
you to create new databases and manage existing databases in a GUI envi-
ronment. The Workbench supports many other features, such as performance
monitoring, reverse generating schemas for databases, database backups, and
database exports. The Workbench can be found online:

https:/lwww.mysql.com/productsiworkbench/

Note that the version of Workbench that you download must be compatible
with the version of the operating system on your machine. An earlier version of
Workbench can be found online:

https://downloads.mysql.com/archives/workbench/

The preceding website displays the version of the operating system that is
compatible for a given version of Workbench.

Exporting a Schema in Workbench

This section shows you how to export the mytools database. Before we
export a database using MySQL Workbench, let’s see how to do so from the
command line with the mysqldump utility:

mysgldump -u root -p -R mytools > mytools.sgl
However, you might encounter the following error message:

mysgldump: unknown variable 'local infile=1'

Miscellaneous Topics ® 229

You can search online and find many suggestions for resolving this error.
However, if none of those solutions solves this issue for your system, use
MySQL Workbench to export the mytools database.

The first step is to launch MySQL Workbench and then navigate to the
“Data Export” tab. For your convenience, Figure 6.2 shows a screenshot of the
screen where you can export the mytools database from MySQL Workbench.

MySQL Workbench

Administration - Data Export.

MANAGEMENT
Local instance 3306

Advanced Options...
© S Data Export i
2 Client Connections
9 Users and Privileges Obioct Seiect e
9 tatus and System Variables sy | Expor Progress
& Data Export Tables to Export
&, Data Import/Restore
& pec! Export Schema Export Schema Objects
INSTANCE 1 beans T account
B startup / Shutdown 5 minimal T courses
A server Logs 13 mysqldb T curr_exchange_rate
& Options File | mytools T currencies
S 8 O hi
e o 5 pandas ©@ [cust history
1 pasta [customers.
& Dashboard =
e ica neports i sqlpocket [customers2
i 9 sys T employees.
&\ Performance Schema Setup [fact events
[fact_table
Refresh 41 tables selected Dump Structure and Data Select Views Select Tables Unselect All
Objects to Export
° Dump Stored Procedures and Functions Dump Events Dump Triggers

No object selected Export Options

() Export to Dump Project Folder sers/oswaldcampesato/dumps/Dumy

(© Export to Self-Contained File

Create Dump in a Single Transaction (self-contained file only) Include Create Schema

Export Completed Start Export

FIGURE 6.1 Exporting themytools database.

Next, notice two labeled radio buttons near the bottom of Figure 6.1, along
with editable text fields where you can specify the export directory:

Export to Dump Project Folder
Export to Self-Contained File

If you select the first option that is listed above, then MySQL Workbench
will generate a separate SQL file for every table in the database. If you select
the second option that is listed above, then MySQL Workbench will generate
a single QL file that contains SQL statements for every table in the database.

If you wish, you can choose the first option and then the second option (the
order is irrelevant) to generate a single SQL file with all the table definitions as
well as a set of SQL files that contain a single table definition.

Creating a Schema in Workbench

MySQL Workbench can be used to create a schema for the mytools data-
base in MySQL Workbench. In fact, you can also reverse engineer a database
schema from an existing database.

Figure 6.2 shows a screenshot of some of the tables in the mytools data-
base that are visible in MySQL Workbench.

230 ¢ SQL Pocket Primer

2 cur

 cur_name VARCHAR(10) & user_id INT cust i INT
 fst_namo VARCHA
 last_namo VARCHA

 homo_address VAR

 stato VARCHAR(20)
 2ip_codo VARCHAR
E————

Qe=—{— @ w0

5 e Er .
v | mydb > fname VARCHAR(20) 7 id INT day DATE > fname VARCHAR(2(
Tbles]) [
Views. > age VARCHAR(20) Indexes wind INT ' age VARCHAR(20)
Routine Groups gender CHAR() o
v mytools ' country VARCHAR(20) city CHAR(20) > country VARCHAR(:
Lo T = =
= A s —
|- oo
< city VARCHAR(20)
e
> zip_code VARCHAR(10)

No Selection B

Columns,

FIGURE 6.2 A visual display of tables in the mytools database.

ERM and Tools

ERM is an acronym for Entity Relationship Modeling, which you can think
of as a diagram that contains entities (such as tables) and relationships between
tables (one-to-many, many-to-many, and so forth).

Entities and relationships are somewhat analogous to nouns and verbs,
respectively. For example, the tables customers, purchase orders, line
items, and item desc are entities. As you learned in Chapter 1, there is a
one-to-many relationship between the following pairs of tables:

customers and purchase orders
purchase orders and line items

An Entity Relationship Diagram (ERD) is a standard way to display the
logical structure of RDBMS tables in a visual manner. Various tools are avail-
able for creating ERDs, including the following tool for Macbooks:

https:/lwww.conceptdraw.com/How-To-Guide/erd-entity-relationship-
diagram-software-for-mac

A list of additional ERD tools, along with their description and pricing
options (many are free) is available online:

https://chartio.com/learn/databases/7-free-database-diagramming-tools-
for-busy-data-folks/

WHAT IS A TRANSACTION?

In the database world, a transaction is an atomic unit of work, which
means that a transaction only succeeds when its “components” succeed.
Otherwise, the transaction fails. Recall the example in Chapter 1 of a transac-
tion that transfers money from a savings account to a checking account: the

Miscellaneous Topics © 231

transaction is completed when both table-related updates are successful. The
SET TRANSACTION statement enables you to specify a particular lock on tables
or rows in a table, which is called the isolation level.

You can also set a READ lock or a WRITE lock on tables or sets of rows in a
table, each of which imposes restrictions on what other users can do when a
lock has been set on an object. Different RDBMSs have their own mechanism
for locking database objects.

The COMMIT and ROLLBACK Statements

Invoke the coMMIT keyword when a transaction has successfully completed
and you want to persist the result of that transaction. By contrast, the ROLLBACK
keyword restores the database to the state before you performed the most
recent transaction. If an error occurs during a COMMIT statement, it might be
necessary to roll back the transaction, re-execute the SQL statement and then
issue the COMMIT statement. If an error occurs during a ROLLBACK statement,
you can re-issue the ROLLBACK statement after the system has been restored.

The SAVEPOINT Statement

The ROLLBACK statement cancels an entire transaction. However, more
recent versions of SQL support the SAVEPOINT statement that enables you to
roll back a transaction to a specified save point in the given transaction. Hence,
you can perform partial rollbacks as well as full roll backs in SQL. In addition,
you can specify multiple SAVEPOINTSs in a SQL transaction. Here is the syntax
for a SAVEPOINT statement:

SAVEPOINT savepoint name;

Another variant involves specifying the ROLLBACK statement, as shown
here:

ROLLBACK TO SAVEPOINT savepoint name;

The SAVEPOINT statement can be useful in multi-step transactions where
the execution of a sub-task produces unfavorable results. You can roll back to
a specified SAVEPOINT and resume the execution of another portion of the
transaction.

In addition, a transaction completes with a CoMMIT if it’s successful; oth-
erwise, it completes with a ROLLBACK statement. Some databases (such as
ORACLE) also support nested transactions, which means that an on-going
transaction can execute a second transaction before the initial transaction is
completed.

Furthermore, you can release a particular SAVEPOINT via the RELEASE
SAVEPOINT statement, which removes the specified SAVEPOINT from the set
of SAVEPOINTs of the current transaction. Moreover, no commit or rollback
occurs, an error occurs if the specified SAVEPOINT does not exist. In summary,
MySQL supports the following transaction-related keywords:

232 e SQL Pocket Primer

e START TRANSACTION statements (BEGIN or BEGIN WORK are aliases)

e COMMIT (commit the current transaction)

e ROLLBACK (roll back the current transaction)

® SET autocommit (disable or enable the auto-commit for the current
transaction)

The default action is for MySQL to automatically commit changes to a
database.

DATABASE OPTIMIZATION AND PERFORMANCE

Database optimization is an important task that involves many factors, such
as manually modifying SQL statements, redefining database tables, creating
new indexes, and tuning built-in database parameters.

Optimization strategies changed from older rule-based optimization to
cost-based optimization, where the latter involves collecting statistics regard-
ing the frequency of accessing specific tables.

If you are motivated to learn about performance tuning (whether by choice
or as part of your job), some useful tips for database tuning are available online:

https://www.tecmint.com/mysql-mariadb-performance-tuning-and-
optimization/

Perform an online search and you will find many blog posts and links for
open source (as well as commercial) tools for performance tuning.

Performance Tuning Considerations

Performance tuning can involve deciding whether to keep tables in RAM
(often called “pinning” a table). Candidate tables are tables that are static (i.e.,
they change rarely or never) and are frequently accessed. One candidate is the
item desc table because this table is unaffected by any customer transac-
tions. Over a period of time, the contents of an item desc table will undergo
fewer updates and will have a decreasing number of new insertions. Hence, it’s
worth investigating if a significant performance improvement in an application
will occur if this table is pinned in RAM.

Next, collect two sets of execution times for SQL queries that involve the
item_desc table: one setis for the item_desc table “pinned” in memory, and
the other set is for the item desc table that is located on disk. Analyze those
results to see whether it’s worthwhile to pin the item desc table. Repeat the
preceding process for any other tables that are frequently accessed and are
rarely updated.

Given the emphasis on normalization in this book, it might seem ironic
or counter-intuitive that sometimes denormalizing a table can improve per-
formance. Determining whether it’s worthwhile to do so typically involves an
experienced DBA who can make an assessment and suggest feasible options.

Another scenario pertains to smaller tables: if they are frequently accessed,
consider “pinning” their contents in memory, which is obviously faster than

Miscellaneous Topics ¢ 233

searching through a table that is in secondary storage. Indexes on tables are
easy to create, but knowing which indexes will be most effective is not neces-
sarily obvious in every case.

Perform an online search and you will find an assortment of blog posts and
links for open source (as well as commercial) tools for performance tuning.

SQL QUERY OPTIMIZATION

This section provides a high-level view of query optimization. Database
optimization often refers to making changes to SQL statements so that they
will execute faster than the original SQL statements.

The following list contains various techniques for improving SQL query
performance, some of which are briefly discussed in this section:

¢ Define a suitable index (or indexes) on tables;
* Specify index hints (ex: USE INDEX)
e Analyze the JOIN order
e Simplify multi-level queries with multiple subqueries
* Execute and analyze an EXPLAIN PLAN
® execute ANALYZE TABLE
e analyze SHOW TABLE STATUS
* Denormalize a table (requires significant expertise)

Analyzing SQL Queries for Their Performance

Instead of using a trial-and-error approach, take advantage of IDEs that
provide a list of the most time-consuming SQL queries in your application.
IDEs display SQL statements in descending order of execution time, starting
from the most computationally expensive query to the least expensive query.

Useful tools for monitoring database performance are as follows:

https:/fwww.dnsstuff.com/mysql-optimize-database

https://www.solarwinds.com/database-performance-analyzer/use-cases/
mysql-optimization

https:/fwww.solarwinds.com/database-performance-monitor/integrations/
mysql-monitoring

Performance Tuning Tools

This section contains an assortment of links for performance tuning tools,
from command line tools to GUI tools, some of which are free and others
which have a free trial version.

This website provides performance tuning tips for databases:

https://haydenjames.io/mysql-performance-tuning-tips-scripts-tools/

MySQLTuner is a Perl script that you can download from Github:

https://github.com/major/MySQLTuner-perl

The Persona toolkit (command line instead of GUI) is available online:

https:/fwww.percona.com/software/database-tools/percona-toolkit

234 e« SQL Pocket Primer

Some useful tips for database tuning are available online:

https://www.tecmint.com/mysql-mariadb-performance-tuning-and-
optimization/

The Persona toolkit is available online (not available for Mac):

hittps:/fwww.percona.com/downloads/percona-toolkit/LATEST/

Cost-Based Optimizers (optional)

MySQL and other RDBMSs provide an optimizer, which determines the
most efficient way to execute a SQL query. As a side note, optimizers used to
be rule-based optimizers, but during the 1990s, there was a switch from rule-
based optimizers to cost-based optimizers.

Cost-based optimization, where the latter involves collecting “statistics”
regarding the frequency of accessing specific tables. A cost-based optimizer
can involve a table of queries that have been executed over a period of time,
which are used to determine the pattern of execution of SQL queries, thereby
providing information to the optimizer for the purpose of anticipating which
SQL queries are more likely to be executed in the future.

Table Fragmentation

Table fragmentation means that the data in a database table is stored in
non-contiguous memory. When such tables become large and are frequently
accessed, the result can be performance degradation.

There are two additional factors to consider: the column size and the col-
umns in the WHERE clause of SQL statements. You can view table size by exe-
cuting the following command from the command line:

mysglshow —-status <dbname>

Another useful SQL statement for finding indexes associated with a table
is the following:

MySQL [mytools]> show index from <table name>;

The preceding SQL statement enables you to check the indexes and their
relative cardinality.

Table Partitioning

MySQL supports database partitioning via hashing functions, which avoids
bottlenecks and can simplify maintenance. Depending on your application,
you might discover that a portion of a particular table is accessed much more
frequently than the other attributes in that table. Table partitioning refers to
placing the highly accessed portions of that table in a separate table, which
can help to keep the highly accessed table in memory. A DBA can assist in the
task of determining the most frequently accessed tasks in the tables of your
application.

Miscellaneous Topics ® 235

Remember that splitting the table into two tables involves defining a suit-
able foreign key, and most likely rewriting one or more of the SQL statements
in the application. In addition, table partitioning can be performed in conjunc-
tion with (or separate from) table sharding. If possible, use a test environment
to perform the preceding changes so that you can obtain benchmarks to com-
pare the before-and-after performance numbers.

WHAT IS AN EXPLAIN PLAN?

The EXPLAIN statement provides information about how MySQL executes
SQL statements. Specifically, MySQL provides the details of how it would
process a given SQL statement, such as how tables in the SQL statement are
joined (if any) and the order in which they are joined.

An EXPLAIN statement can be generated with various SQL statements,
such as SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

An EXPLAIN plan displays the actual order of execution of a SQL state-
ment. In addition, it’s worthwhile to execute ANALYZE TABLE <table-name>
in MySQL, an example of which is shown here:

MySQL [mytools]> ANALYZE TABLE customers;

o o - - +
| Table | Op | Msg type | Msg text |
o R — oo oo +
| mytools.customers | analyze | status | OK |
e et o o o +

1l row in set (0.005 sec)

Another useful SQL statement is SHOW TABLE STATUS, an example of
which is shown below:

o —— o - o - +-
——————————————— -t
——— e ——— o o +———=
————————————————— -
—— et o +

| Name | Engine | Version | Row format | Rows

| Avg row length | Data length | Max data length | Index
length | Data free | Auto increment | Create time |
Update time | Check time Collation |
Checksum | Create options | Comment |

oo - N —— e SR -
——————————————— et et it e
e t——————— o +-——-
————————————————— e
B Fomm +

| courses | InnoDB | 10 | Dynamic | 112 |
146 | 16384 | 0 | 0

| 0 | NULL | 2021-07-15 17:02:50 | 2021-

07-15 17:02:50 | NULL | utf8mb4 0900 ai ci | NULL
|

236 * SQL Pocket Primer

| cust history | InnoDB | 10 | Dynamic | 0 |
0 | 16384 | 0 | 0

| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4 0900 ai ci | NULL
| \ \

| customers | InnoDB | 10 | Dynamic | 1 |
16384 | 16384 | 0 | 0

| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4 0900 ai ci | NULL

// details omitted for brevity

| students | InnoDB | 10 | Dynamic | 6 |
2730 | 16384 | 0 | 0

| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4 0900 ai ci | NULL
| \ \

| user | InnoDB | 10 | Dynamic | 4 |
4096 | 16384 | 0 | 0

| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4 0900 ai ci | NULL
| \ \

| weather | InnoDB | 10 | Dynamic | 11 |
1489 | 16384 | 0 | 0

| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4 0900 ai ci | NULL
I \ \

o - - - - +-
——————————————— Bt Rt et it
——— e —— o o +———
————————————————— -
———tm to—— +

23 rows in set (0.002 sec)

EXPLAIN ANALYZE

MySQL 8.0.18 provides EXPLAIN that executes a SQL statement in order
to generate EXPLAIN output. The output contains various details, some of
which are listed here:

e Estimated execution cost

e Estimated number of returned rows

e Time to return first row

e Time (milliseconds) to return all rows (actual cost)
* Number of loops

Here is an example of a SQL statement that generates an execution plan:

MySQL [mytools]>
EXPLAIN SELECT 1;
SELECT *

FROM customers;

Miscellaneous Topics ® 237

Launch the preceding SQL statement to see the following type of output:

B f-—m———— Fom e~ - fom -
————— B it S ettt
—————— +

| id | select type | table | partitions | type | possible
keys | key | key len | ref | rows | filtered | Extra |
o fom t————— fom
————— B e e e
—————— +

| 1 | SIMPLE | NULL | NULL | NULL | NULL

| NULL | NULL | NULL | NULL | NULL | No tables used |
B e - Fmm - o ——
————— B s e
—————— +

o o Fmm e —— B i -
—fm—————— o +

| cust id | first name | last name | home address | city

| state | zip code |

O o oo o O
—fm—————— fom +

| 1000 | John | Smith | 123 Main St | Fremont
| CA | 94123 \

o - fom o~ e
—fm—m———— Fom - +

1 row in set (0.000 sec)

SCALING AN RDBMS

An RDBMS can be scaled in various ways, including the techniques in
the following list, some of which are discussed in more detail later in this
section:

* SQL tuning

¢ denormalization

e sharding

e federation

e master-slave replication

® master-master replication

You have already learned about denormalization in a previous section in
this chapter, and the following subsections discuss SQL tuning, sharding, and
federation.

What is SQL Tuning?

SQL tuning is a vast topic that is typically conducted by an experienced
DBA, and it’s primarily for improving application performance, which is often

238 ¢ SQL Pocket Primer

related to SQL statements, as well as uncovering performance bottlenecks in
applications. One technique involves simulating high loads on an application
so that you can analyze the performance of the application. Another technique
involves profiling SQL statements to track performance problems, using a tool
such as “the slow query log.”

In general, there are powerful tools available that determine which SQL
queries require the most execution time, and those SQL queries can be dis-
played in decreasing order of execution time. Potential solutions involve creat-
ing new indexes, restructuring database tables, or sometimes denormalizing
database tables.

Although SQL tuning is performed at the database level, sometimes you
might need to perform additional tuning at the application level. Specifically,
one scenario that arises with large databases (especially involving social media)
requires splitting or “sharding” a table, as discussed in the next section.

What is Sharding?

Sharding is a horizontal scaling technique that logically partitions the rows
in a table so that each partition can be stored and accessed independently of
the other partitions. For example, suppose you have a user table that contains

millions of rows and you need to support SQL operations such as SELECT,
INSERT, UPDATE, and DELETE. One way to improve the performance of such
queries is to shard the user table by the letters in the alphabet: the first shard
contains the people whose last name starts with “A,” the second shard for the
letter “B,” and so forth.

The preceding technique can refined: since there are very few people whose
last names start with “Q,” “X,” or “Z,” we can combine those three shards into
a single shard. Moreover, shards for the letters “M” and “S” are probably very
large, so that they can be further sharded. For example, the shard for “M” can
be split into the shards MA through MG, MH through MP, and MQ through
MZ, and similarly for the shard for the letter “S.” The actual splits are specific
to the actual data in your user table.

An additional advantage to sharding is that each shard works independently
of the other shards. Hence, if the shards are on different servers, then multiple
shards can be operational even if some individual shards are unavailable (per-
haps due to a power outage). By contrast, an unsharded table is all-or-nothing:
if there is a power outage, then no table data is accessible.

RDBMS Support for Sharding

MySQL as well as Oracle and PostgresSQL (and others) do not support
automatic sharding, which means that sharding must be implemented manu-
ally at the application layer. Consequently, sharding entails additional database
design decisions, and you can perform an online search to for articles and blog-
posts that provide additional information.

If you are interested in delving further into the topic of database sharding,
the following list contains several types of sharding techniques:

Miscellaneous Topics © 239

e Algorithmic Sharding

* Consistent Hash Sharding
e Linear Hash Sharding

* Range Sharding

Perform an online search to obtain more information about the sharding
techniques in the preceding list.

What is Federation?

Federation (or functional partitioning) involves splitting a database in terms
of its functionality instead of defining a monolithic database. For example, the
four-table schema that you learned about in Chapter 1 involves separate tables
for customers, purchase orders, line items, and item descriptions. In the event
that any of these tables become extremely large, they can be placed in differ-
ent locations. This technique can improve both read and write performance.
By contrast, a smaller database can be placed in memory, which can improve
so-called cache “hits.” However, there are some disadvantages to federation:

¢ ineffective for schema involving very large tables
e additional application logic is involved

* joining data from two databases is complex

* hardware and additional complexity

DATABASE REPLICATION

Database replication refers to the process of copying data from one source
to another, which effectively provides an online backup in the event of a data
loss from the primary copy of the data. Replication provides a “fail over”
capability. Otherwise, a primary system can become a single point of failure.
Database replication provides the following advantages:

e improved read performance

e replicas are a complete copy of the primary database

* modifications to the primary copy are immediately propagated to replicas

e a replica can process incoming requests if the primary database is
unavailable

A synchronous replication is typically slower yet has consistent data,
whereas an asynchronous replication is performed in “detached” mode, which
is faster but not always immediately consistent.

Incidentally, a common technique in high volume systems (such as social
media applications) involves one server to handle “read” requests and another
server to handle write, update, and delete requests. This technique works well
because the ratio of “read” requests to all other request can be 100:1 or 200:1.
Moreover, multiple servers can be allocated for “read” requests as well as mul-
tiple servers for the other types of requests.

240 * SQL Pocket Primer

There are also some disadvantages to database replication, such as higher
cost and higher bandwidth requirements.

DISTRIBUTED DATABASES, SCALABILITY, AND THE CAP THEOREM

Now that you have a grasp of MySQL and some of its features, this section
briefly discusses terminology such as distributed databases, scalable databases,
and the CAP theorem. Although it’s unlikely that you will be directly involved
in these tasks (unless you are a DBA), it’s worthwhile to have some understand-
ing of these topics. However, if there is no pressing need, feel free to treat this
section as optional.

In general, a service is scalable if its performance increases in proportion
to the additional resources that are added to that service. A service can be
database-related as well as software that is not directly coupled to a database.

A distributed database (DDB) are systems that focus on providing greater
flexibility, reducing cost, and increasing performance. A DDB comprises a group
of databases that are located in different sites, whereas a distributed database
management system (DDBMS) manages a DDB. Users are unaware of the
details (such as the location of the hardware and software) of the components
of a DDB because it’s irrelevant from the standpoint of performing their tasks.

Master-Slave Replication

The purpose of the master is to serve read operations and write operations.
In addition, the master replicates (duplicates) write operations to one or more
slaves because the slaves only perform read operations. In the event that the
master is unavailable (for whatever reason), a system can still function, but
only in read-only mode. For the system to resume write operations, the system
must either promote a slave to the status of master or provision a new master
in the system.

The CAP Theorem

CAP is an acronym for Consistency, Availability, and Partition Tolerance.
The CAP theorem states that a distributed computer system support only two
of the following three:

° Consistency means that every read receives the most recent write or an
error.

* Availability means that every request receives a response, without guar-
antee that it contains the most recent version of the information.

® Partition Tolerance means that the system continues to operate despite
arbitrary partitioning due to network failures.

Partition tolerance must be supported simply because networks are not reli-
able, and you need to decide between consistency and availability. Consistency
is a good choice if your business needs require atomic reads and writes, whereas

Miscellaneous Topics © 241

availability is a good choice if a system must continue to function even though
there are external errors.

Given the preceding points about the CAP theorem, the following state-
ment will make sense: MongoDB favors consistency over availability.

What are Consistency Patterns?

Weak consistency means that read requests might not see the most recent
write operation. A “best effort approach” can be adopted, which is true of sys-
tems such as memcached, which is in-memory key-value store. Weak consist-
ency works well for various types of real time systems, such as VoIP, video chat,
and multiplayer games.

Eventual consistency means that read requests will see the most recent
write operation after a short delay, after data is replicated asynchronously. This
type of consistency is applicable to email systems.

A third type of consistency is called strong consistency, in which read
requests see data after a write operation because data is replicated synchro-
nously. For example, an RDBMS provides strong consistency, which is also
true of systems that support transactions.

MYSQL COMMAND LINE UTILITIES

To invoke a MySQL program from the command line (that is, from your
shell or command prompt), enter the program name followed by any options
or other arguments needed to instruct the program what you want it to do. The
following commands show some sample program invocations.

The text string shell> represents the prompt for the command inter-
preter; it is not part of the text that you type at the command prompt. The
particular prompt you see depends on your command interpreter. Typical
prompts are $ for sh, ksh, or bash; % for csh or tsch, and C:\> for the
Windows command.com or cmd. exe command interpreters. Here are exam-
ples of several command line utilities:

shell> mysgl --user=root test

shell> mysgladmin extended-status variables
shell> mysglshow --help

shell> mysgldump -u root personnel

DATABASE BACKUPS, RESTORING DATA, AND UPGRADES

A DBA (database administrator) performs many important tasks, one of
which involves automatically performing database backups (e.g., via cron
jobs). Moreover, you (or someone else) need to know how to manually restore
data from a backup in cases of lost or corrupted data.

A related topic is disaster recovery, which specifies the procedure for
recovering a system in the event of a catastrophic failure and involves storing a
complete set of backups in an off-site location.

242 ¢ SQL Pocket Primer

A system administrator can help you recover deleted files and directories,
whereas a DBA can help you manually restore database data from a backup in
situations involving lost or corrupted data. However, any data or transactions
that are performed after the most recent backup will not be available.

Database upgrades can be simple for minor releases of a database, but
upgrading to a major release might involve changes to table definitions in
a database schema. In general, a test environment is set up to fully test the
upgrade, and if all goes well, the production system can be switched over to
the new release.

Depending on the amount of data in an RDBMS, a database upgrade can
be a lengthy process. In fact, some large enterprises perform an intensive test-
ing process that can require an entire year before switching the production
system to the latest database upgrade.

MYSQL AND JSON DATA

In previous chapters, you learned how to manage the contents of table con-
taining simple data types, such as CHAR, DATE, INT, and TEXT. However,
MySQL also supports JSON-based data. In fact, you can define a MySQL table
with one or more attributes of type [SON, insert JSON-based data into such
a table, and then query the table for its contents, as well as the values that are
contained in the JSON data. Although MySQL supports JSON files, there is no
index support for [SON-based data.

Listing 6.5 shows the content of customers_json.sql thatis the counter-
part to the MySQL customers table for our fictitious website, which performs
the tasks described in the preceding paragraph, as noted in the comments in
the code blocks.

LISTING 6.5: customers_json.sql
use mytools;
DROP TABLE IF EXISTS customer json;
-- a table with a JSON attribute:
CREATE TABLE customer json (
id int auto increment primary key,
customer json

)

-- insert JSON-based data into the table:
INSERT INTO customer_json(customer)

VALUES (
'{ "cust id": "1000", "first name": "John", "last name":
"Smith", "address": "123 Main Street", "city": "Fremont",

"state": "CA", "zip code": "94123"}'
) 4
(

Miscellaneous Topics © 243

'{ "cust id": "2000", "first name": "Jane", "last name":
"Jones", "address": "456 Front Street", "city": "Fremont",
"state": "CA", "zip code": "95015"}'

)

-- display the values of the first name and last name attributes:
SELECT id, customer->'S$.first name', customer->'S$.last name'
FROM customer json;

-- the JSON ARRAY () function creates arrays:
SELECT JSON_ARRAY (1000, "Deep", "Dish", "Pizza");

-- the JSON OBJECT () function creates objects:
SELECT JSON OBJECT (1000, "Deep", "Dish", "Pizza");

-- the JSON QUOTE () function quotes a string as a JSON value:
SELECT JSON QUOTE ('[1000, "Deep", "Dish", "Pizza"]');

Listing 6.5 starts by defining the table customer_ json with a customer
attribute of type Json, followed by inserting two J[SON-based strings into this
table. Next, a SQL statement retrieves the values the first name and last
name attributes, followed by three SQL statements that illustrate how to use
the JSON ARRAY (), JSON OBJECT (), and JSON QUOTE () functions. Launch
the code in Listing 6.5 to see the following output:

-- the JSON QUOTE () function quotes a string as a JSON
value:

Database changed

Query OK, 0 rows affected (0.039 sec)

Query OK, 0 rows affected (0.021 sec)

Query OK, 2 rows affected (0.005 sec)

Records: 2 Duplicates: 0 Warnings: 0

e B e +
| id | customer->'S$.first name' | customer->'S$.last name' |
o e o P — +
| 1 | "John" | "Smith" |
| 2 | "Jane" | "Jones" |
o o +

B i +
| JSON_ARRAY (1000, "Deep", "Dish", "Pizza") |
o +
| [1000, "Deep", "Dish", "Pizza"] |
B +

o +
| JSON_OBJECT (1000, "Deep", "Dish", "Pizza") |
R e +
| {"1000": "Deep", "Dish": "Pizza"} |
o +

1l row in set (0.001 sec)

244 < SQL Pocket Primer

o +
| JSON_QUOTE('[1000, "Deep", "Dish", "Pizza"]') |
o +
| "[1000, \"Deep\", \"Dish\", \"Pizza\"]" |
et +

1l row in set (0.000 sec)

In Listing 6.5, several code blocks are preceded by self-explanatory com-
ment statements that explain the purpose of the code. The only significant
difference from previous code samples is the different syntax for working with
JSON-specific data. If you want to learn more, navigate to the online docu-
mentation for more information regarding [SON-based data in MySQL.

DATA CLEANING IN SQL

This section contains several subsections that perform data cleaning tasks
in SQL. Although this section could have been placed in an earlier chapter
instead of a “miscellaneous” chapter, there is also a subsequent section that
involves cleaning data from the command line in order to perform tasks that
are not possible in Pandas or another similar type of tool. Hence, it was deemed
better to keep these two sections together and to place them in this chapter.

This section illustrates how to perform the following data cleaning tasks
that affect an attribute of a database table:

e replace NULL with 0

e replace NULL with the average value

e replace multiple values into a single value
e handle data type mismatch

e convert a string date to a date format

Replace NULL with 0

You can perform this task with either of the following SQL statements:

SELECT ISNULL(column name, 0) FROM table name
OR
SELECT COALESCE (column name, 0) FROM table name

Replace NULL Values with Average Value

This task involves two steps: first find the average of the non-NULL values of
a column in a database table, and then update the NULL values in that column
with the value that you found in the first step.

Listing 6.6 shows the content of replace null values.sql that per-
forms this pair of steps.

LISTING 6.6: replace_null_values.sql

USE mytools;
DROP TABLE IF EXISTS temperatures;
CREATE TABLE temperatures (temper INT, city CHAR(20));

Miscellaneous Topics ® 245

INSERT INTO temperatures VALUES (7 £');
INSERT INTO temperatures VALUES(NULL 'sf');
INSERT INTO temperatures VALUES (42, NULL)
INSERT INTO temperatures VALUES (NULL, 'ny');
SELECT * FROM temperatures;

SELECT @avgl := AVG(temper) FROM temperatures;
update temperatures

set temper = (Qavgl

where ISNULL (temper) ;

SELECT * FROM temperatures;

-- initialize cityl with the most frequent city value:
SELECT @cityl := (SELECT city FROM temperatures GROUP BY
city ORDER BY COUNT (*) DESC LIMIT 1);

-- update NULL city values with the value of cityl:
update temperatures

set city = (@cityl

where ISNULL (city);

SELECT * FROM temperatures;

Listing 6.6 creates and populates the table temperatures with several
rows, and then initializes the variable avg1 with the average temperature in the
temper attribute of the temperatures table. Launch the code in Listing 6.6
to see the following output:

to—————— Fo———— +
| temper | city |
o e +
78	sf
NULL	sf
42	NULL
NULL	ny
o R +

B T +
| @avgl := AVG (temper)

B +
| 60.000000000 |
B +

1 row in set, 1 warning (0.000 sec)

Query OK, 2 rows affected (0.001 sec)
Rows matched: 2 Changed: 2 Warnings: 0

tm————— o +
| temper | city |
o F————— +
78	sf
60	sf
42	NULL
60	ny
to—————— e +

4 rows in set (0.000 sec)

246 * SQL Pocket Primer

+ __
—————————— +

| @cityl := (SELECT city FROM temperatures GROUP BY city
ORDER BY COUNT (*) DESC LIMIT 1) |

+ __
—————————— +

| sf

|

+ __
—————————— +

1 row in set, 1 warning (0.000 sec)

Query OK, 1 row affected (0.000 sec)
Rows matched: 1 Changed: 1 Warnings: 0

t——————— +————— +
| temper | city |
- - +
78	sf
60	sf
42	sf
60	ny
fomm R +

4 rows in set (0.000 sec)

Replace Multiple Values with a Single Value

An example of coalescing multiple values in an attribute involves replacing
multiple strings for the state of New York (such as new_york, NewYork, and
New York) with NY. Listing 6.7 shows the content of reduce values.sql
that performs this pair of steps.

LISTING 6.7: reduce_values.sql

use mytools;

DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable (str date CHAR(15), state CHAR(20),
reply CHAR(10));

'20210915"', "New York', 'Yes');
'20211016"', 'New York', 'no');
'20220117','I1linois', 'yes"');
'20220218"', '"New York', 'No');

INSERT INTO mytable VALUES
INSERT INTO mytable VALUES
INSERT INTO mytable VALUES
INSERT INTO mytable VALUES
SELECT * FROM mytable;

-- replace yes, Yes, y, ¥Ys with Y:
update mytable

set reply = 'Y'

where upper (substr (reply,1,1)) = 'Y"';

-- replace all other values with

update mytable

set reply = 'N' where substr(reply,1,1) !'= 'Y';
SELECT * FROM mytable;

Miscellaneous Topics © 247

Listing 6.7 creates and populates the table mytable, and then replaces the
variants of the word “yes” with the letter Y in the reply attribute. The final por-
tion of Listing 6.7 replaces any string that does not start with the letter v with
the letter N. Launch the code in Listing 6.7 to see the following output:

= fom - t—————— +
| str date | state | reply |
oo e e +
20210915	New York	Yes
20211016	New York	no
20220117	Illinois	yes
20220218	New York	No
o Fom - - +

4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)
Rows matched: 2 Changed: 2 Warnings: 0

Fo——————— o - +
| str date | state | reply |
fmm o T fmm e +
20210915	New York	Y
20211016	New York	N
20220117	Illinois	Y
20220218	New York	N
tmmm e ———— o ——— o +

4 rows in set (0.001 sec)

Handle Mismatched Attribute Values

This task involves two steps: first find the average of the non-NULL values of
a column in a database table, and then update the NULL values in that column
with the value that you found in the first step.

Listing 6.8 shows the content of type mismatch.sql that performs this
pair of steps.

LISTING 6.8: type_mismatch.sql

USE mytools;

DROP TABLE IF EXISTS emp details;

CREATE TABLE emp details (emp id CHAR(15), city CHAR(20),
state CHAR(20));

'1000', 'Chicago', 'I1llinois"');
'2000', 'Seattle', 'Washington') ;
'3000', 'Santa Cruz', 'California');
'4000"', 'Boston', "Massachusetts') ;

INSERT INTO emp details VALUES
INSERT INTO emp details VALUES
INSERT INTO emp details VALUES
INSERT INTO emp details VALUES
SELECT * FROM emp details;

select emp.emp id, emp.title, det.city, det.state
from employees emp join emp details det
WHERE emp.emp id = det.emp id;

248 e+ SQL Pocket Primer

--required for earlier versions of MySQL:
--WHERE emp.emp id = cast(det.emp id as INT);

Listing 6.8 creates and populates the table emp details, followed by a
SQL JOIN statement involving the tables emp and emp details. Although
the emp_id table is defined as an INT type and a CHAR type, respectively, in the
tables emp and emp details, the code works as desired. However, in earlier
versions of MySQL, you need to use the built-in CAST () function to convert
a CHAR value to an INT value (or vice versa), as shown in the commented out
code snippet:

--WHERE emp.emp id = cast(det.emp id as INT);

Now launch the code in Listing 6.8 and you will see the following output:

o fom e —— o +

| emp id | city | state |
o o +

| 1000 | Chicago | Illinois |

| 2000 | Seattle | Washington |

| 3000 | Santa Cruz | California |

| 4000 | Boston | Massachusetts |

- Fmm e —— o — +

4 rows in set (0.000 sec)

tomm o e — o +
| emp id | title | city | state |
o oo oo +
1000	Developer	Chicago	Illinois
2000	Project Lead	Seattle	Washington
3000	Dev Manager	Santa Cruz	California
4000	Senior Dev Manager	Boston	Massachusetts
t——————— e - o +

4 rows in set (0.002 sec)

Convert Strings to Date Values

Listing 6.9 shows the content of str to date.sql that illustrates how to
populate a date attribute with date values that are determined from another
string-based attribute that contains strings for dates.

LISTING 6.9: str_to_date.sql

use mytools;

DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable (str date CHAR(15), state CHAR(20),
reply CHAR(10));

INSERT INTO mytable VALUES ('20210915', 'New York',6 'Yes');

INSERT INTO mytable VALUES('20211016','New York',6 'no'););
INSERT INTO mytable VALUES ('20220117','Illinois','yes');):
INSERT INTO mytable VALUES ('20220218', 'New York','No'););

SELECT * FROM mytable;

Miscellaneous Topics © 249

-- 1) insert date-based feature:
ALTER TABLE mytable

ADD COLUMN (real date DATE);
SELECT * FROM mytable;

-- 2) populate real date from str date:
UPDATE mytable tl
INNER JOIN mytable t2
ON tl.str date = t2.str date
SET tl.real date = DATE(t2.str date);
SELECT * FROM mytable;

-- 3) Remove unwanted features:
ALTER TABLE mytable

DROP COLUMN str_date;

SELECT * FROM mytable;

Listing 6.9 creates and populates the table mytable and displays the
contents of this table. The remainder of Listing 6.9 consists of three SQL
statements, each of which starts with a comment statement that explains its
purpose.

The first SQL statement inserts a new column real date of type DATE.
The second SQL statement populates the real date column with the values
in the str_date column that have been converted to a date value via the
DATE () function. The third SQL statement is optional: it drops the str date
column if you wish to do so. Launch the code in Listing 6.9 to see the follow-
ing output:

fomm - fomm - fomm - +
| str date | state | reply |
o e o +
20210915	New York	Yes
20211016	New York	no
20220117	Illinois	yes
20220218	New York	No
fomm - Fomm - fomm - +

4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.007 sec)
Records: 0 Duplicates: 0 Warnings: 0

fomm - Fomm - fomm - B ettt +
| str date | state | reply | real date |
B ittt fomm - fomm - fomm e +
20210915	New York	Yes	NULL
20211016	New York	no	NULL
20220117	Illinois	yes	NULL
20220218	New York	No	NULL
o o ———— - o +

4 rows in set (0.002 sec)

Query OK, 4 rows affected (0.002 sec)
Rows matched: 4 Changed: 4 Warnings: 0

250 ¢ SQL Pocket Primer

- - - o +
| str date | state | reply | real date |
Fo—mm—————— o o Fomm e ——— +
| 20210915 | New York | Yes | 2021-09-15 |
| 20211016 | New York | no | 2021-10-16

| 20220117 | Illinois | yes | 2022-01-17 |
| 20220218 | New York | No | 2022-02-18 |
o o e o +

4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.018 sec)
Records: 0 Duplicates: 0 Warnings: 0

fom e —— fo—————— fom +
| state | reply | real date |
oo e . — - +
New York	Yes	2021-09-15
New York	no	2021-10-16
Illinois	yes	2022-01-17
New York	No	2022-02-18
o fo————— fom e —— +
4 rows in set (0.000 sec)

DATA CLEANING FROM THE COMMAND LINE (OPTIONAL)

This section is marked “optional” because the solutions to tasks involve an
understanding of some Unix-based utilities. Although this book does not con-
tain details about those utilities, you can find online tutorials with examples
regarding these utilities.

This section contains several subsections that perform data cleaning tasks
that involve the command line utilities sed and awk:

* replace multiple delimiters with a single delimiter (sed)
e restructure a dataset so all rows have the same column count (awk)

Keep in mind the following point about these examples: they must be per-
formed from the command line before they can be processed in a Pandas data
frame.

Working with the sed Utility

This section contains an example of how to use the sed command line util-
ity to replace different delimiters with a single delimiter for the fields in a text
file. You can use the same code for other file formats, such as CSV files and
TSV files.

This section does not provide any details about sed beyond the code sam-
ple in this section. However, after you read the code, you will understand how
to adapt that code snippet to your own requirements (i.e., how to specify dif-
ferent delimiters).

Miscellaneous Topics ® 251

Listing 6.10 shows the content of delimiterl.txt and Listing 6.11 shows
the content of delimiterl. sh that replaces all delimiters with a comma (*,”).

>

LISTING 6.10: delimiter1.txt

1000 | Jane:Edwards”~Sales
2000 |Tom: Smith”Development
3000 |Dave:Del Ray”Marketing

LISTING 6.11: delimiter1.sh
cat delimiterl.txt | sed -e 's/:/,/' -e 's/I|/,/' —-e 's/*/,/"'

Listing 6.11 starts with the cat command line utility, which sends the con-
tents of the file delimiterl.txt “standard output,” which is the screen (by
default). However, in this example, the output of this command becomes the
input to the sed command because of the pipe (“I”) symbol.

The sed command consists of three parts, all of which are connected by
the “-e” switch. You can think of “-e” as indicating “there is more processing
to be done” by the sed command. In this example, there are three occur-
rences of “-e,” which means that the sed command will be invoked three
times.

The first code snippet is 's/:/, /", which translates into “replace each
semi-colon with a comma.” The result of this operation is passed to the next
code snippet, which is 's/ |/, /'. This code snippet translates into “replace
each pipe symbol with a comma.” The result of this operation is passed to
the next code snippet, which is *s/*/, /'. This code snippet translates into
“replace each caret symbol (“*”) with a comma.” The result of this operation is
sent to standard output, which can be redirected to another text file. Launch
the code in Listing 5.27 to see the following output:

1000, Jane, Edwards, Sales
2000, Tom, Smith, Development
3000, Dave,Del Ray,Marketing

Here are three comments to keep in mind. First, the snippet contains a
backslash because the caret symbol (“A”) is a meta character, so we need to
“escape” this character. The same is true for other meta characters (such as
“$” and “.”).

Second, you can easily extend the sed command for each new delimiter
that you encounter as a field separator in a text file: simply follow the pattern
that you see in Listing 5.27 for each new delimiter.

Third, redirect the output of delimiterl.shto the text file delimiter2.
txt by launching the following command:

./delimiterl.sh > delimiter2.txt

252 o SQL Pocket Primer
If an error occurs in the preceding code snippet, make sure that
delimiterl.sh is executable by invoking the following command:
chmod 755 delimiterl.sh

This concludes the example involving the sed command line utility, which
is a very powerful utility for processing text files. Check online for articles and
blog posts if you want to learn more about the sed utility.

Working with the awk Utility

The awk command line utility is a self-contained programming language,
with a truly impressive capability for processing text files. However, this sec-
tion does not provide details about awk beyond the code sample. If you're
interested, there are plenty of online articles that provide in-depth explana-
tions regarding the awk utility.

Listing 6.12 shows the content FixedFieldCountl.sh that illustrates
how to use the awk utility to split a string into rows that contain three strings.

LISTING 6.12: FixedFieldCount1.sh

echo "=> pairs of letters:"

echo "aa bb cc dd ee ff gg hh"

echo

echo "=> split on multiple lines:"

echo "aa bb cc dd ee ff gg hh"| awk '
BEGIN { colCount = 3 }
{
for (i=1; 1i<=NF; i++) {
printf("$s ", $i)
if(i % colCount == 0) { print "" }
}

print nu

}

Listing 6.12 shows the contents of a string, and then provides this string as
input to the awk command. The main body of Listing 6.12 is a loop that iterates
from 1 to NF, where NF is the number of fields in the input line, which in this
example equals 8. The value of each field is represented by $i: $1 is the first
field, s2 is the second field, and so forth. Note that $0 is the contents of the
entire input line (which is used in a subsequent code sample).

Next, if the value of i (which is the field position, not the contents of the
field) is a multiple of 3, then the code prints a linefeed. Launch the code in
Listing 6.12 to see the following output:

=> pairs of letters:
aa bb cc dd ee ff gg hh

=> split on multiple lines:
aa bb cc

Miscellaneous Topics ® 253

dd ee ff
gg hh

Listing 6.13 shows the content of employees.txt and Listing 6.14 shows
the content of FixedFieldCount2.sh that illustrates how to use the awk
utility in order to ensure that all the rows have the same number of columns.

LISTING 6.13: employees.txt

jane:jones:SF:
john:smith:LA:
dave:smith:NY:
sara:white:CHI:
>>>none:none:none<<<:
jane:jones:SF:john:

smith:LA:
dave:smith:NY:sara:white:
CHI:

LISTING 6.14: FixedFieldCount2.sh

cat employees.txt | awk -F":" '{printf("%s", $0)}' | awk -F':' '
BEGIN { colCount = 3 }
{
for (i=1; 1i<=NF; i++) {
printf ("%s#", $i)
if(i % colCount == 0) { print "" }

Notice that the code in Listing 6.14 is almost identical to the code in
Listing 6.13: the code snippet that is shown in bold removes the \n character
from its input that consists of the contents of employees. txt. The reason this
happens is because of this code snippet:

printf ("%s", $0)

If you want to retain the \n character after each input line, then replace the
preceding code snippet with this snippet:

printf ("%$s\n", $0)

We have now reduced the task in Listing 6.14 to the same task as Listing 6.13,
which is why the solution contains the same awk-base code block.
Launch the code in Listing 6.14 to see the following output:

1000, Jane, Edwards, Sales
jane#jones#SF#
Jjohn#smith#LA#
dave#smith#NY#
sara#white#CHI#
>>>none#nonefnone<<<#

254 e« SQL Pocket Primer

jane#jones#SF#
john#smith#LA#
dave#smith#NY#
saraftwhite#CHI#

NEXT STEPS

Although the direction that you pursue after completing this book depends
entirely on your list of objectives, you might be interested in some of the fol-
lowing topics:

e Pivot tables

e B trees

® B+ trees

¢ Hash indexes

If you have worked extensively with Excel spreadsheets, you are proba-
bly well acquainted with pivot tables. Although MySQL 8 does not provide a
PIVOT function for pivot tables, you can implement this functionality with the
CASE statement.

Alternatively, it might be simpler to use Excel to perform pivot-related
functionality and then import the results into a MySQL table. Another pos-
sibility is to use a tool such as dbForge Studio for MySQL (free trial version
available) or search for open source tools that provide support for pivot tables.

If you're interested in the implementation of indexes, then perform an
online search for articles that discuss B-trees, B+ trees, and hash indexes.

Despite the rich functionality available in MySQL, you might also need to
consider a different RDBMS if MySQL does not provide a critical feature for
your needs.

In closing, it’s worthwhile to perform online searches for tools that can
simplify your SQL-related tasks, as well as documentation or blog posts that
explain the implementation of more complex and lower-level tasks.

SUMMARY

This chapter started with an overview of managing database users: how to
create users and how to drop users. Next, you learned about roles in MySQL,
along with creating roles, granting privileges, revoking roles, and dropping
roles.

Then you got a more detailed description of normalization and an intro-
duction to entity-relationship modeling, which involves diagrams that display
entities (tables) and the relationships between tables.

Next, you learned about schemas and how to generate schemas in the
MySQL, as well as the concept of a transaction. In addition, you learned about
aspects of database optimization, performance tuning considerations, and SQL

Miscellaneous Topics ® 255

query optimization. You were introduced to database optimization and perfor-
mance tuning,

You also became familiar with ways of scaling an RDBMS, such as shard-
ing and federation. Then you learned an assortment of topics such as stored
procedures, stored functions, and triggers.

Finally, you were exposed to an assortment of miscellaneous topics, includ-
ing distributed databases, the CAP theorem, MySQL command line utilities,
database backups and upgrades, and character sets in MySQL.

APPENDIX

INTRODUCTION TO
PROBABILITY AND STATISTICS

his appendix introduces you to concepts in probability as well as an as-

I sortment of statistical terms and algorithms.

The first section of this appendix starts with a discussion of prob-
ability, how to calculate the expected value of a set of numbers (with associated
probabilities), the concept of a random variable (discrete and continuous), and
a short list of some well-known probability distributions.

The second section of this appendix introduces basic statistical concepts,
such as mean, median, mode, variance, and standard deviation, along with sim-
ple examples that illustrate how to calculate these terms. You will also learn
about the terms RSS, TSS, R"2, and F1 score.

The third section of this appendix introduces Gini Impurity, Entropy,
Perplexity, Cross-Entropy, and KL Divergence. You will also learn about skew-
ness and kurtosis.

The fourth section explains covariance and correlation matrices and how to
calculate eigenvalues and eigenvectors.

The fifth section explains PCA (Principal Component Analysis), which is a
well-known dimensionality reduction technique. The final section introduces
you to Bayes’ Theorem.

WHAT IS A PROBABILITY?

If you have ever performed a science experiment in one of your classes, you
might remember that measurements have some uncertainty. In general, we
assume that there is a correct value, and we endeavor to find the best estimate
of that value.

258 ¢ SQL Pocket Primer

When we work with an event that can have multiple outcomes, we try to
define the probability of an outcome as the chance that it will occur, which is
calculated as follows:

ploutcome) = (# of times outcome occurs)/(total number of outcomes)

For example, in the case of a single balanced coin, the probability of tossing
a head H equals the probability of tossing a tail T:

p(H) = 1/2 = p(T)

Hence, the set of probabilities associated with the outcomes {H, T} is shown
in the set P:

P ={1/2,1/2}

Some experiments involve replacement while others involve non-replace-
ment. For example, suppose that an urn contains 10 red balls and 10 green
balls. What is the probability that a randomly selected ball is red? The answer
is 10/(10+10) = 1/2. What is the probability that the second ball is also red?

The answer to the preceding question involves two scenarios with two differ-
ent answers. If each ball is selected with replacement, that means each selected
ball is returned to the urn, which in turn means that the urn always contains
10 red balls and 10 green balls. In this case, the probability of selecting a red
ball is always the same, regardless of the number of times that a ball is selected
from the urn. Hence, the answer to the preceding question is 1/2 * 1/2 = 1/4. In
fact, the probability of any event is independent of all previous events.

On the other hand, if balls are selected without replacement, then the prob-
ability is 10/20 * 9/19. Card games are also examples of selecting cards without
replacement.

One other concept is called conditional probability, which refers to the
likelihood of the occurrence of event E1 given that event E2 has occurred. A
simple example is the following statement:

“If it rains (E2), then I will carry an umbrella (E1)

>

Calculating the Expected Value

Consider the following scenario involving a well-balanced coin: whenever
a head appears, you earn $1 and whenever a tail appears, you earn $1 dollar.
If you toss the coin 100 times, how much money do you expect to earn? Since
you will earn $1 regardless of the outcome, the expected value (in fact, the
guaranteed value) is 100.

Now consider this scenario: whenever a head appears, you earn $1 and
whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how
much money do you expect to earn? You probably determined the value 50
(which is the correct answer) by making a quick mental calculation. The more
formal derivation of the value of E (the expected earning) is here:

E =100 #[1* 0.5 + 0 * 0.5] = 100 * 0.5 = 50

Introduction to Probability and Statistics © 259

The quantity 1 * 0.5 + 0 * 0.5 is the amount of money you expected to earn
during each coin toss: half the time you earn $1 and half the time you earn 0
dollars. Multiply this value by 100 to compute the expected earnings after 100
coin tosses. Note that you might never earn $50: the actual amount that you
earn can be any integer between 1 and 100 inclusive.

As another example, suppose that you earn $3 whenever a head appears,
and you lose $1.50 dollars whenever a tail appears. Then the expected earning
E after 100 coin tosses is shown here:

E =100 *[3#0.5 - 1.5*0.5] = 100 * 1.5 = 150

We can generalize the preceding calculations as follows. Let P = {p1,...,pn}
be a probability distribution, which means that the values in P are non-negative
and their sum equals 1. In addition, let R = {R1,...,Rn} be a set of rewards,
where reward Ri is received with probability pi. Then the expected value E
after N trials is shown here:

E = N * [SUM pi*Ri]

In the case of a single balanced die, we have the following probabilities:

p(1) = 1/6
p(2) = 1/6
p(3) = 1/6
p(4) = 1/6
p(5) = 1/6
p(6) = 1/6
P={1/6,1/6,1/6,1/6,1/6, 1/6}

Next, we need to know the values in the set R before we can calculate the
expected value E. As a simple example, suppose that the earnings are {1, 1, 1,
1, 1, 1} when the values 1, 2, 3, 4, 5, and 6, respectively, appear when tossing
the single die. Then after 100 trials, our expected earnings are calculated as
follows (and rounded to three decimal places):

E=100*[1+1+1+1+1+1]6=100=*1/6=16.667

As another example, suppose that the earnings are {3, 0, -1, 2, 4, -1} when
the values 1, 2, 3, 4, 5, and 6, respectively, appear when tossing the single die.
Then after 100 trials, our expected earnings are calculated as follows:

E=100*[3+0+-1+2+4+-1]/6 =100 * 3/6 = 50

In the case of two balanced dice, we have the following probabilities of
rolling 2,3, ..., or 12:

p(2) = 1/36
p(3) = 2/36

260 ° SQL Pocket Primer

p(12) = 1/36
P = (1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36)

Construct a set with values for rewards for each of the 11 possible outcomes
and then calculate the expected value.

RANDOM VARIABLES

A random variable is a variable that can have multiple values, and where
each value has an associated probability of occurrence. For example, if we let X
be a random variable whose values are the outcomes of tossing a well-balanced
die, then the values of X are the numbers in the set {1, 2, 3, 4, 5, 6}. Each of
those values can occur with equal probability (which is 1/6).

In the case of two well-balanced dice, let X be a random variable whose val-
ues can be any of the numbers in the set {2, 3, 4, . . ., 12}. Then the associated
probabilities for the different values for X are listed in the previous section.

Discrete versus Continuous Random Variables

The preceding section contains examples of discrete random variables
because the list of possible values is either finite or countably infinite (such
as the set of integers). As an aside, the set of rational numbers and the set
of algebraic numbers are also countably infinite, but the set of non-algebraic
irrational numbers and the set of real numbers are both uncountably infinite
(proofs are available online). As pointed out earlier, the associated set of prob-
abilities must form a probability distribution, which means that the probability
values are non-negative and their sum equals 1.

A continuous random variable whose values can be any number in an inter-
val, which can be an uncountably infinite number of values. For example, the
amount of time required to perform a task is represented by a continuous
random variable.

A continuous random variable also has a probability distribution that is rep-
resented as a continuous function. The constraint for such a variable is that
the area under the curve (which is sometimes calculated via a mathematical
integral) equals 1.

Well-Known Probability Distributions

There are many probability distributions, and some of the well-known
probability distributions are listed here:

e Gaussian distribution

e Poisson distribution

e Chi-squared distribution
¢ Binomial distribution

The Gaussian distribution is named after Karl F. Gauss, and it is sometimes
called the normal distribution or the Bell curve. The Gaussian distribution is

Introduction to Probability and Statistics 261

symmetric: the shape of the curve on the left of the mean is identical to the
shape of the curve on the right side of the mean. As an example, the distribu-
tion of IQ scores follows a curve that is similar to a Gaussian distribution.

The frequency of traffic at a given point in a road follows a Poisson distribu-
tion (which is not symmetric). Interestingly, if you count the number of people
who go to a public pool based on five-degree (Fahrenheit) increments of the
temperature, followed by five-degree decrements in temperature, that set of
numbers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding list
and you will find numerous articles that contain images and technical details
about these (and other) probability distributions.

This concludes the brief introduction to probability, and the next section
delves into the concepts of mean, median, mode, and standard deviation.

FUNDAMENTAL CONCEPTS IN STATISTICS

This section contains several subsections that discuss the mean, median,
mode, variance, and standard deviation. Feel free to skim (or skip) this section
if you are already familiar with these concepts. As a start point, let’s suppose
that we have a set of numbers X ={x1, ..., xn} that can be positive, negative,
integer-valued or decimal values.

The Mean

The mean of the numbers in the set X is the average of the values. For
example, if the set X consists of {-10, 35, 75, 100}, then the mean equals (-10 +
35 + 75 + 100)/4 = 50. If the set X consists of {2, 2, 2, 2}, then the mean equals
(2+2+2+2)/4 = 2. As you can see, the mean value is not necessarily one of the
values in the set.

The mean is sensitive to outliers. For example, the mean of the set of num-
bers {1, 2, 3, 4} is 2.5, whereas the mean of the set of number {1, 2, 3, 4, 1000}
is 202. Since the formulas for the variance and standard deviation involve
the mean of a set of numbers, both of these terms are also more sensitive to
outliers.

The Median

The median of the numbers (sorted in increasing or decreasing order) in
the set X is the middle value in the set of values, which means that half the
numbers in the set are less than the median and half the numbers in the set are
greater than the median. For example, if the set X consists of {-10, 35, 75, 100},
then the median equals 55 because 55 is the average of the two numbers 35
and 75. As you can see, half the numbers are less than 55 and half the numbers
are greater than 55. If the set X consists of {2, 2, 2, 2}, then the median equals 2.

By contrast, the median is much less sensitive to outliers than the mean.
For example, the median of the set of numbers {1, 2, 3, 4} is 2.5, and the
median of the set of numbers {1, 2, 3, 4, 1000} is 3.

262 ¢ SQL Pocket Primer

The Mode

The mode of the numbers (sorted in increasing or decreasing order) in the
set Xis the most frequently occurring value, which means that there can be more
than one such value. If the set X consists of {2, 2, 2, 2}, then the mode equals 2.

If X is the set of numbers {2, 4, 5, 5, 6, 8}, then the number 5 occurs twice
and the other numbers occur only once, so the mode equals 5.

If X is the set of numbers {2, 2, 4, 5, 5, 6, 8}, then the numbers 2 and 5
occur twice and the other numbers occur only once, so the mode equals 2 and
5. A set that has two modes is called bimodal, and a set that has more than two
modes is called multi-modal.

One other scenario involves sets that have numbers with the same fre-
quency and they are all different. In this case, the mode does not provide
meaningful information, and one alternative is to partition the numbers into
subsets and then select the largest subset. For example, if set X has the values
{1, 2,15, 16, 17, 25, 35, 50}, we can partition the set into subsets whose ele-
ments are in range that are multiples of ten, which results in the subsets {1, 2},
{15, 16, 17}, {25}, {35}, and {50}. The largest subset is {15, 16, 17}, so we could
select the number 16 as the mode.

As another example, if set X has the values {-10, 35, 75, 100}, then parti-
tioning this set does not provide any additional information, so it’s probably
better to work with either the mean or the median.

The Variance and Standard Deviation

The variance is the sum of the squares of the difference between the num-
bers in X and the mean mu of the set X, divided by the number of values in X,
as shown here:

variance = [SUM (xi - mu)**2]/n

For example, if the set X consists of {-10, 35, 75, 100}, then the mean
equals (=10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:

[(-10-50)#*2 + (35-50)**2 + (75-50)**2 + (100-50)**2]/4
= [60%%2 + 15%%2 + 25%%2 + 50%*2]/4
= [3600 + 225 + 625 + 2500]/4

= 6950/4 = 1,737

variance =

The standard deviation st¢d is the square root of the variance:

std = sqrt(1737) = 41.677

If the set X consists of {2, 2, 2, 2}, then the mean equals (2+2+2+2)/4 = 2,
and the variance is computed as follows:

variance = [(2-2)%*2 + (2-2)%*2 + (2-2)**2 + (2-2)*%2]/4
[#%9 4 0% 4+ 0%*2 + 0%*2]/4

Introduction to Probability and Statistics © 263

The preceding result is intuitive: since the numbers all equal 2, they do not
“vary” at all, so the variance equals 0. In addition, the standard deviation std is
the square root of the variance:

std = sqrt(0) = 0

Population, Sample, and Population Variance

The population specifically refers to the entire set of entities in a given
group, such as the population of a country, the people over 65 in the USA, or
the number of first year students in a university.

However, in many cases, statistical quantities are calculated on samples
instead of an entire population. Thus, a sample is (a much smaller) subset of
the given population. See the Central Limit Theorem regarding the distribu-
tion of the mean of a set of samples of a population (which need not be a popu-
lation with a Gaussian distribution).

If you want to learn about techniques for sampling data, here is a list of
three different techniques that you can investigate:

e Stratified sampling
e Cluster sampling
* Quota sampling

The population variance is calculated by multiplying the sample variance
by 0/(n-1), as shown here:

population variance = [n/(n-1)]*variance

Chebyshev’s Inequality

Chebyshev’s inequality provides a simple way to determine the minimum
percentage of data that lies within k standard deviations. Specifically, this ine-
quality states that for any positive integer k greater than 1, the amount of data
in a sample that lies within k standard deviations is at least 1 - 1/k**2. For
example, if k = 2, then at least 1 - 1/2%*2 = 3/4 of the data must lie within 2
standard deviations.

The interesting part of this inequality is that it has been mathematically
proven to be true; i.e., it's not an empirical or heuristic-based result. An exten-
sive description regarding Chebyshev’s inequality (including some advanced
mathematical explanations) is available online:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

What is a p-value?

The null hypothesis states that there is no correlation between a depend-
ent variable (such as y) and an independent variable (such as x). The p-value
is used to reject the null hypothesis if the p-value is small enough (< 0.005),
which indicates a higher significance. The threshold value for p is typically 1%
or 5%.

264 * SQL Pocket Primer

There is no simple formula for calculating p-values, which are values that
are always between 0 and 1. In fact, p-values are statistical quantities to evalu-
ate the null hypothesis, and they are calculated by means of p-value tables or
via spreadsheet/statistical software.

THE MOMENTS OF A FUNCTION (OPTIONAL)

The previous sections describe several statistical terms that can be viewed
from the perspective of different moments of a function.

The moments of a function are measures that provide information regard-
ing the shape of the graph of a function. In the case of a probability distribu-
tion, the first four moments are defined as follows:

¢ The mean is the first central moment.

e The variance is the second central moment.

e The skewness (discussed later) is the third central moment.
e The kurtosis (discussed later) is the fourth central moment.

More detailed information (including the relevant integrals) regarding
moments of a function is available here:
https://en.wikipedia.org/wiki/Moment_(mathematics J#Variance

What is Skewness?

Skewness is a measure of the asymmetry of a probability distribution. A
Gaussian distribution is symmetric, which means that its skew value is zero (it’s
not exactly zero, but close enough for our purposes). In addition, the skewness
of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. A left-
sided skew means that the long tail is on the left side of the curve, with the
following relationships:

mean < median < mode

A right-sided skew means that the long tail is on the right side of the curve,
with the following relationships (compare with the left-sided skew):

mode < median < mean

If need be, you can transform skewed data to a normally distributed dataset
using one of the following techniques (which depends on the specific use-case):

* Exponential transform
* Log transform
e Power transform

Perform an online search for more information regarding the preceding
transforms and when to use each of these transforms.

Introduction to Probability and Statistics © 265

What is Kurtosis?

Kurtosis is related to the skewness of a probability distribution, in the sense
that both of them assess the asymmetry of a probability distribution. The kur-
tosis of a distribution is a scaled version of the fourth moment of the distribu-
tion, whereas its skewness is the third moment of the distribution. Note that
the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related concepts,
you can perform an online search for information regarding mesokurtic, lepto-
kurtic, and platykurtic types of “excess kurtosis.”

DATA AND STATISTICS

This section contains various subsections that briefly discuss some of the
challenges and obstacles that you might encounter when working with datasets.
This section and subsequent sections introduce you to the following concepts:

e Correlation versus Causation
¢ The bias-variance tradeoff

* Types of bias

e The Central Limit Theorem
e Statistical inferences

Statistics typically involves data samples, which are subsets of observations
of a population. The goal is to find well-balanced samples that provide a good
representation of the entire population.

Although this goal can be very difficult to achieve, it’s also possible to
achieve highly accurate results with a very small sample size. For example, the
Harris poll in the USA has been used for decades to analysis political trends.
This poll computes percentages that indicate the favorability rating of political
candidates, and it’s usually within 3.5% of the correct percentage values. What's
remarkable about the Harris poll is that its sample size is a mere 4,000 people
that are from the US population, which is greater than 325,000,000 people.

Another aspect to consider is that each sample has a mean and variance,
which do not necessarily equal the mean and variance of the actual population.
However, the expected value of the sample mean and variance equal the mean
and variance, respectively, of the population.

The Central Limit Theorem

Samples of a population have an interesting property. Suppose that you take
a set of samples {S1, S3, ..., Sn} of a population and you calculate the mean of
those samples, which is {m1, m2, ..., mn}. The Central Limit Theorem gives a
remarkable result: given a set of samples of a population and the mean value
of those samples, the distribution of the mean values can be approximated by
a Gaussian distribution. Moreover, as the number of samples increases, the
approximation becomes more accurate.

266 ° SQL Pocket Primer

Correlation versus Causation

In general, datasets have some features (columns) that are more significant
in terms of their set of values, and some features only provide additional infor-
mation that does not contribute to potential trends in the dataset. For example,
the passenger names in the list of passengers on the Titanic are unlikely to
affect the survival rate of those passengers, whereas the gender of the passen-
gers is likely to be an important factor.

In addition, a pair of significant features may also be “closely coupled” in
terms of their values. For example, a real estate dataset for a set of houses
will contain the number of bedrooms and the number of bathrooms for each
house in the dataset. As you know, these values tend to increase together and
also decrease together. For instance, have you ever seen a house that has 10
bedrooms and 1 bathroom, or a house that has 10 bathrooms and 1 bedroom?
If you did find such a house, would you purchase that house as your primary
residence?

The extent to which the values of two features change is called their cor-
relation, which is a number between -1 and 1. Two “perfectly” correlated fea-
tures have a correlation of 1, and two features that are not correlated have a
correlation of 0. In addition, if the values of one feature decrease when the val-
ues of another feature increase, and vice versa, then their correlation is closer
to -1 (and might also equal -1).

The causation between two features means that the values of one feature
can be used to calculate the values of the second feature (within some margin
of error).

Keep in mind this fundamental point about machine learning models: they
can provide correlation but they cannot provide causation.

Statistical Inferences

Statistical thinking relates processes and statistics, whereas statistical infer-
ence refers to the process you use to make inferences about a population.
Those inferences are based on statistics that are derived from samples of the
population. The validity and reliability of those inferences depend on random
sampling to reduce bias. There are various metrics that you can calculate to
help you assess the validity of a model that has been trained on a particular
dataset.

STATISTICAL TERMS RSS, TSS, R*2, AND F1 SCORE

Statistics is extremely important in machine learning, so it’s not surprising
that many concepts are common to both fields. Machine learning relies on a
number of statistical quantities in order to assess the validity of a model, some
of which are listed here:

* RSS
e TSS
e R"2

Introduction to Probability and Statistics © 267

The term RSS is the “residual sum of squares” and the term TSS is the
“total sum of squares.” Moreover, these terms are used in regression models.

As a starting point so we can simplify the explanation of the preceding terms,
suppose that we have a set of points {(x1,yl), . . ., (xn,yn)} in the Euclidean
plane. In addition, let’s define the following quantities:

* (x,y) is any point in the dataset.

* y is the y-coordinate of a point in the dataset.

e y_is the mean of the y-values of the points in the dataset.
e y_hat is the y-coordinate of a point on a best-fitting line.

Just to be clear, (x,y) is a point in the dataset, whereas (x,y_hat) is the corre-
sponding point that lies on the best fitting line. With these definitions in mind,
the definitions of RSS, TSS, and R*2 are listed here (n equals the number of
points in the dataset):

RSS = (y - y_hat)**2/n
TSS = (y - y_bar)**2/n
R”2 =1 - RSS/TSS

We also have the following inequalities involving RSS, TSS, and R*2:

0 <= RSS <=TSS

0 <= RSS/TSS <=1
0<=1-RSS/TSS <=1
0<=R"2 <=1

When RSS is close to 0, then RSS/TSS is also close to zero, which means that
R72 is close to 1. Conversely, when RSS is close to TSS, then RSS/TSS is close
to 1, and R*2is close to 0. In general, a larger R*2 is preferred (i.e., the model is
closer to the data points), but a lower value of R*2 is not necessarily a bad score.

What is an F1 score?

In machine learning, an F1 score is for models that are evaluated on a
feature that contains categorical data, and the p-value is useful for machine
learning in general. An F1 score is a measure of the accuracy of a test, and it’s
defined as the harmonic mean of precision and recall. Here are the relevant
formulas, where p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive results)
r = (# of correct positive results)/(# of all relevant samples)

Fl-score = 1/[((1/r) + (1/p))/2]
= 2%[p*r]/[p+r]
The best value of an F1 score is 0 and the worst value is 0. An F1 score is

for categorical classification problems, whereas the R*2 value is typically for
regression tasks (such as linear regression).

268 * SQL Pocket Primer

GINI IMPURITY, ENTROPY, AND PERPLEXITY

These concepts are useful for assessing the quality of a machine learning
model and the latter pair are useful for dimensionality reduction algorithms.
Before we discuss the details of Gini impurity, suppose that P is a set of
non-negative numbers {pl, p2, ..., pn} such that the sum of all the numbers
in the set P equals 1. Under these two assumptions, the values in the set P
comprise a probability distribution, which we can represent with the letter p.
Now suppose that the set K contains a total of M elements, with k1 ele-
ments from class S1, k2 elements from class S2, . . ., and kn elements from class
Sn. Compute the fractional representation for each class as follows:
pl=kU/M, p2 =k2/M, ..., pn = kyM

As you can surmise, the values in the set {pl, p2, ..., pn} form a prob-
ability distribution. We're going to use the preceding values in the following
subsections.

What is the Gini Impurity?

The Gini impurity (or score) is defined as follows, where {p1,p2,..,pn}
is a probability distribution:

Gini = 1 —[pl#pl + p2#*p2 + ... + pn*pn]
=1 - SUM pi#pi (for all i, where 1<=i<=n)

Since each pi is between 0 and 1, then pi*pi <= pi, which means that
l=pl+p2+...+pn

>=pl*pl + p2*p2 + ... + pn*pn >=0

Hence Gini impurity >= 0

Since the Gini impurity is the sum of the squared values of a set of prob-
abilities, the Gini impurity cannot be negative. Hence, we have derived the
following result:

0 <= Gini impurity <=1

What is Entropy?

Entropy is a measure of the expected (“average”) number of bits required
to encode the outcome of a random variable. The calculation for the entropy
H (the letter E is reserved for Einstein’s formula) as defined via the following
formula:

H = (-1)*[pl*log p1 + p2 * log p2 + ... + pn * log pn]
= (-1)* SUM [pi * log(pi)] (for all i, where 1<=i<=n)

Calculating Gini Impurity and Entropy Values

For our first example, suppose that we have three classes: A and B and
a cluster of 10 elements with 8 elements from class A and 2 elements from

Introduction to Probability and Statistics © 269

class B. Therefore, p1 and p2 are 8/10 and 2/10, respectively. We can compute
the Gini score as follows:

Gini = 1 — [pl#pl + p2*p2]
— [64/100 + 04/100]
=1-68/100
= 32/100
=0.32

We can also calculate the entropy for this example as follows:
Entropy = (-1)*[pl * log p1 + p2 * log p2]
(~1)[0.8 * log 0.8 + 0.2 * log 0.2]
(=1)%[0.8 * (~0.322) + 0.2 * (-2.322)]
0.8 *0.322 + 0.2 * 2.322

=0.7220

For our second example, suppose that we have three classes A, B, C and a
cluster of 10 elements with 5 elements from class A, 3 elements from class B,
and 2 elements from class C. Therefore p1, p2, and p3 are 5/10, 3/10, and 2/10,
respectively. We can compute the Gini score as follows:

Gini = 1 — [pl#pl + p2#p2 + p3#p3]
—[25/100 + 9/100 + 04/100]
=1 - 38/100
= 62/100
=0.62

We can also calculate the entropy for this example as follows:

Entropy = (-1)*[pl * log p1 + p2 * log p2]
(-1)%[0.5%log0.5 + 0.3*10g0.3 + 0.2%log0.2]
= (=1)*[-1 + 0.3%(=1.737) + 0.2%(-2.322)]
=1+ 0.3%1.737 + 0.2%2.322
= 1.9855

In both examples, the Gini impurity is between 0 and 1. However, while the
entropy is between 0 and 1 in the first example, it’s greater than 1 in the second
example (which was the rationale for showing you two examples).

A set whose elements belong to the same class has a Gini impurity equal
to 0 and also its entropy equal to 0. For example, if a set has 10 elements that
belong to class S1, then

Gini = 1 — SUM pi*pi
=1-pl#pl
=1-(10/10)%(10/10)
=1-1=0

270 ¢ SQL Pocket Primer
Entropy = (-1)*SUM pi*log pi

= (-1) * pl=log pi

= (=1) * (10/10) * log(10/10)

=(-1)*1%0 =0

Multi-Dimensional Gini Index

The Gini index is a one-dimensional index that works well because the value
is uniquely defined. However, when working with multiple factors, we need
a multidimensional index. Unfortunately, the multi-dimensional Gini index
(MGI) is not unique defined. While there have been various attempts to define
an MGI that has unique values, they tend to be non-intuitive and mathemati-
cally much more complex. More information about MGI is available online:

https://link.springer.com/appendix/10.1007/978-981-13-1727-9_5

What is Perplexity?

Suppose that we have a probability distribution q, and that {x1, x2, ..., xN}
is a set of sample values that is drawn from a model whose probability distri-
bution is p. In addition, suppose that b is a positive integer (it’s usually equal
to 2). Now define the variable S as the following sum (logarithms are in base
b not 10):

S = (-I/N) * [log q(x1) + log q(x2) + . .. + log q(xN)]
= (-1/N) * SUM log q(xi)

The formula for the perplexity PERP of the model q is b raised to the
power S, as shown here:

PERP = b”S

If you compare the formula for entropy with the formula for s, you can see
that the formulas are similar, so the perplexity of a model is somewhat related
to the entropy of a model.

CROSS ENTROPY AND KL DIVERGENCE

Cross entropy is useful for understanding machine learning algorithms, and
frameworks such as TensorFlow, which supports multiple APIs that involve
cross entropy. KL divergence is relevant in machine learning, deep learning,
and reinforcement learning.

As an interesting example, consider the credit assignment problem, which
involves assigning credit to different elements or steps in a sequence. For
example, suppose that users arrive at a webpage by clicking on a previous page,
which was also reached by clicking on yet another webpage. Then, on the final
webpage, users click on an ad. How much credit is given to the first and sec-
ond webpages for the selected ad? One solution to this problem involves KL
Divergence.

Introduction to Probability and Statistics © 271

What is Cross Entropy?

The following formulas for logarithms are presented here because they are
useful for the derivation of cross entropy in this section:

*log (a*b) =loga+logb
*log(a/b)=loga-logh
e log(1/b)=(-1)*logb

In a previous section, you learned that for a probability distribution P with
values {pl, p2, ..., pn}, its entropy is H defined as follows:

H(P) = (-1)*SUM pix*log(pi)

Now let’s introduce another probability distribution Q whose values are
{ql, 2, ..., qn}, which means that the entropy H of Q is defined as follows:

H(Q) = (-1)*SUM qi*log(gi)

We can define the cross entropy CE of Q and P as follows (notice the log gi

and log pi terms and recall the formulas for logarithms in the previous section):

CE(Q.P) = SUM (pixlog qi) - SUM (pi*log pi)
= SUM (pi*log qi - pi*log pi)
= SUM pix(log qi - log pi)
= SUM pix(log qi/pi)

What is KL Divergence?

Now that entropy and cross entropy have been discussed, we can easily
define the KL Divergence of the probability distributions Q and P as follows:

KL(PIIQ) = CE(PQ) - H(P)

The definitions of entropy H, cross entropy CE, and KL Divergence in this
appendix involve discrete probability distributions P and Q. However, these
concepts have counterparts in continuous probability density functions. The
mathematics involves the concept of a Lebesgue measure on Borel sets (which
is beyond the scope of this book) that are described online:

https:/len.wikipedia.org/wiki/Lebesgue_measure

https://en.wikipedia.org/wiki/Borel_set

In addition to the KL Divergence, there is also the JS Divergence, also
called the Jenson-Shannon Divergence, which was developed by Johan Jensen
and Claude Shannon (who defined the formula for entropy). Although the JS
Divergence is based on the KL Divergence, there is an important difference:
the JS Divergence is symmetric and a true metric, whereas the KL Divergence
is neither. More information regarding JS Divergence is available online:

https://en.wikipedia.org/wiki/Jensen—Shannon_divergence

272 o SQL Pocket Primer

What’s Their Purpose?

The Gini impurity is often used to obtain a measure of the homogeneity of
a set of elements in a decision tree. The entropy of a set is an alternative to its
Gini impurity, and you will see both of these quantities used in machine learn-
ing models.

The perplexity value in NLP is one way to evaluate language models, which
are probability distributions over sentences or texts. This value provides an
estimate for the encoding size of a set of sentences.

Cross entropy is used in various methods in the TensorFlow framework, and
the KL Divergence is used in various algorithms, such as the dimensionality
reduction algorithm t-SNE. For more information about any of these terms, per-
form an online search to find online tutorials that provide detailed information.

COVARIANCE AND CORRELATION MATRICES

This section explains two important matrices: the covariance matrix and the
correlation matrix. Although these are relevant for PCA (Principal Component
Analysis) that is discussed later in this appendix, these matrices are not specific
to PCA, which is the rationale for discussing them in a separate section. If you
are familiar with these matrices, feel free to skim through this section.

The Covariance Matrix

As a reminder, the statistical quantity called the variance of a random vari-
able x is defined as follows:

variance(x) = [SUM (x — xbar)*(x — xbar)]/n

A covariance matrix C is an nxn matrix whose values on the main diagonal
are the variance of the variables X1, X2, . . ., Xn. The other values of C are the
covariance values of each pair of variables Xi and X;.

The formula for the covariance of the variables X and Y is a generalization
of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x — xbar)*(y — ybar)]/n

Notice that you can reverse the order of the product of terms (multiplica-
tion is commutative), and therefore the covariance matrix C is a symmetric
matrix:

covariance(X, Y) = covariance(Y, X)

Suppose that a CSV file contains four numeric features, all of which have
been scaled appropriately, and let’s call them x1, x2, x3, and x4. Then the covar-
iance matrix C is a 4 x 4 square matrix that is defined with the following entries
(pretend that there are outer brackets on the left side and the right side to
indicate a matrix):

Introduction to Probability and Statistics 273

cov(xl, x1) cov(xl, x2) cov(xl, x3) cov(xl, x4)
cov(x2, x1) cov(x2, x2) cov(x2, x3) cov(x2, x4)
cov(x3, x1) cov(x3, x2) ¢ V(XS x3) cov(x3, x4)
cov(x4, x1) cov(x4, x2) cov(x4, x3) cov(x4, x4)

Note that the following is true for the diagonal entries in the preceding
covariance matrix C:

var(xl, x1) = cov(x1, x1)
var(x2, x2) = cov(x2, x2)
var(x3, x3) = cov(x3, x3)
var(x4, x4) = cov(x4, x4)

In addition, C is a symmetric matrix, which is to say that the transpose of
matrix C (rows become columns and columns become rows) is identical to
the matrix C. The latter is true because (as you saw in the previous section)
cov(x, y) = cov(y, x) for any feature x and any feature y.

Covariance Matrix: An Example

Suppose we have the two-column matrix A defined as follows:

Xy
A=11 11<=6 x 2 matrix
[2 11
[3 2]
14 21
[5 31
[6 31

The mean x_bar of column x is (1+2+3+4+5+6)/6 = 3.5, and the mean
y_bar of column y is (1+1+2+2+3+3)/6 = 2. Subtract x_bar from column x and
subtract y_bar from column y and we get matrix B, as shown here:

B=1-25-11<=6 x 2 matrix
[-15-11
[-05 0O
[05 Ol
[15 11
[25 11

Let Bt indicate the transpose of the matrix B (i.e., switch columns with
rows and rows with columns), which means that Bt is a 2 x 6 matrix, as
shown here:

Bt=1-25-15-0.50.5, 1.5, 2.5|
-1 -1 0 0 1 11|

274 e+ SQL Pocket Primer

The covariance matrix C is the product of Bt and B, as shown here:

C=Bt*B=115254]|
I 4 §1

Note that if the units of measure of features x and y do not have a similar
scale, then the covariance matrix is adversely affected. In this case, the solution
is simple: use the correlation matrix, which defined in the next section.

The Correlation Matrix

As you learned in the preceding section, if the units of measure of features
x and y do not have a similar scale, then the covariance matrix is adversely
affected. The solution involves the correlation matrix, which equals the covari-
ance values cov(x,y) divided by the standard deviation stdx and stdy of x and y,
respectively, as shown here:

corr(x,y) = cov(x,y)/[stdx * stdy]

The correlation matrix no longer has units of measure, and we can use this
matrix to find the eigenvalues and eigenvectors.

Now that you understand how to calculate the covariance matrix and the
correlation matrix, you are ready for an example of calculating eigenvalues and
eigenvectors, which are the topic of the next section.

Eigenvalues and Eigenvectors

According to a well-known theorem in mathematics (whose proof you
can find online), the eigenvalues of a symmetric matrix are real numbers.
Consequently, the eigenvectors of C are vectors in a Euclidean vector space
(not a complex vector space).

Before we continue, a non-zero vector x' is an eigenvector of the matrix C if
there is a non-zero scalar lambda such that C*x' = lambda * x'.

Suppose that the eigenvalues of C are bl, b2, b3, and b4, in decreasing
numeric order from left-to-right, and that the corresponding eigenvectors of
C are the vectors wl, w2, w3, and w4. Then the matrix M that consists of the
column vectors wl, w2, w3, and w4 represents the principal components.

CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE

As a simple illustration of calculating eigenvalues and eigenvectors, sup-
pose that the square matrix C is defined as follows:

C=11 3l
13 11

Let I denote the 2 x 2 identity matrix, and let b” be an eigenvalue of C,
which means that there is an eigenvector x' such that

Introduction to Probability and Statistics ®© 275

Cxx'=b'"*x', or
(C-b*I)*x' = 0 (the right side is a 2 x 1 vector)

Since x' is non-zero, that means the following is true (where det refers to
the determinant of a matrix):

det(C-b=#I) = det 11-b 3 | = (1-b)*(1-b)-9 = 0
I3 1-bl

We can expand the quadratic equation in the preceding line to obtain

det(C-b=I) = (1-b)*(1-b) - 9
=1-2+b +b*b -9

-8 — 2«b + b*b

=b*b - 2xb - 8

Use the quadratic formula (or perform factorization by visual inspection) to
determine that the solution for det(C-b*I) = 0is b = =2 or b = 4. Next, substi-
tute b = -2 into (C-b*I)x' = 0 to obtain the following result:

1-(-2)3 [lIx1l =10l
13 1-(=2)I1x2l ol

The preceding reduces to the following identical equations:

3*xx] + 3#x2 = 0
3#xx] + 3#x2 = 0

The general solution is x1 = -x2, and we can choose any non-zero value for
x2, so let’s set x2 = 1, which yields x1 = -1. Therefore, the eigenvector [-1, 1]
is associated with the eigenvalue 2. In a similar fashion, if x' is an eigenvector
whose eigenvalue is 4, then [1, 1] is an eigenvector.

Notice that the eigenvectors [-1, 1] and [1, 1] are orthogonal because their
inner product is zero, as shown here:

(-1, 1] % [1, 1] = (~1)*1 + (1)*1 = 0

In fact, the set of eigenvectors of a square matrix (whose eigenvalues are
real) are ahways orthogonal, regardless of the dimensionality of the matrix.

Gauss Jordan Elimination (optional)

This simple technique enables you to find the solution to systems of linear
equations “in place,” which involves a sequence of arithmetic operations to
transform a given matrix to an identity matrix.

The following example combines the Gauss-Jordan elimination technique
(which finds the solution to a set of linear equations) with the “bookkeeper’s
method,” which determines the inverse of an invertible matrix (its determinant
is non-zero).

276 ¢ SQL Pocket Primer

This technique involves two adjacent matrices: the left-side matrix is the
initial matrix and the right-side matrix is an identity matrix. Next, perform vari-
ous linear operations on the left-side matrix to reduce it to an identity matrix.
The matrix on the right side equals its inverse. For example, consider the fol-
lowing pair of linear equations whose solution is x = 1 and y = 2:

2%x + 2%y = 6
4xx — 1xy = 2

Step 1: Create a 2 x 2 matrix with the coefficients of x in column 1 and
the coefficients of y in column two, followed by the 2 x 2 identity matrix, and
finally a column from the numbers on the right of the equals sign:

[2 211016l

l[4-110112l

Step 2: Add (-2) times the first row to the second row:
[2 21 1016 |

[0 -51-211-10l

Step 3: Divide the second row by 5:
[2 21 1 016 |
[0-11-2/51/51-10/5l

Step 4: Add 2 times the second row to the first row:
[2 0 1/52/51 2l
[0 -11-2/51/51-2l

Step 5: Divide the first row by 2:
[1 01-2/102/101 1l
[0 -11-2/5 1/5 |I-2l

Step 6: Multiply the second row by (-1):
[1 0 1-2/102/10 I1l
011 2/5-1/5 12l

As you can see, the left-side matrix is the 2 x 2 identity matrix, the right-
side matrix is the inverse of the original matrix, and the right-most column is
the solution to the original pair of linear equations (x=1 and y=2).

PCA (PRINCIPAL COMPONENT ANALYSIS)

PCA is a linear dimensionality reduction technique for determining the
most important features in a dataset. This section discusses PCA because its a
very popular technique that you will encounter frequently. Other techniques
are more efficient than PCA, so later on it’s worthwhile to learn other dimen-
sionality reduction techniques as well.

Introduction to Probability and Statistics © 277

Keep in mind the following points regarding the PCA technique:

* PCA is a variance-based algorithm.

* PCA creates variables that are linear combinations of the original
variables.

® The new variables are all pair-wise orthogonal.

* PCA can be a useful pre-processing step before clustering.

* PCA is generally preferred for data reduction.

PCA can be useful for variables that are strongly correlated. If most of the
coefficients in the correlation matrix are smaller than 0.3, PCA is not helpful.
PCA provides some advantages: less computation time for training a model (for
example, using only five features instead of 100 features), a simpler model, and
the ability to render the data visually when two or three features are selected.
Here is a key point about PCA:

PCA calculates the eigenvalues and the eigenvectors of the covariance (or
correlation) matrix C.

If you have four or five components, you won't be able to display them
visually, but you could select subsets of three components for visualization, and
perhaps gain some additional insight into the dataset.

The PCA algorithm involves the following sequence of steps:

1. Calculate the correlation matrix (from the covariance matrix) C of a
dataset.

2. Find the eigenvalues of C.
3. Find the eigenvectors of C.

4. Construct a new matrix that comprises the eigenvectors.

The covariance matrix and correlation matrix were explained in a previous
section. You also saw the definition of eigenvalues and eigenvectors, along with
an example of calculating eigenvalues and eigenvectors.

The eigenvectors are treated as column vectors that are placed adjacent to
each other in decreasing order (from left-to-right) with respect to their associ-
ated eigenvectors.

PCA uses the variance as a measure of information: the higher the variance,
the more important the component. In fact, PCA determines the eigenvalues
and eigenvectors of a covariance matrix (discussed in a previous section), and
constructs a new matrix whose columns are eigenvectors, ordered from left-to-
right in a sequence that matches the corresponding sequence of eigenvalues:
the left-most eigenvector has the largest eigenvalue, the next eigenvector has
the second-largest eigenvalue, and continuing in this fashion until the right-
most eigenvector (which has the smallest eigenvalue).

Alternatively, there is an interesting theorem in linear algebra: if ¢ is a sym-
metric matrix, then there is a diagonal matrix D and an orthogonal matrix p (the

278 ¢ SQL Pocket Primer

columns are pair-wise orthogonal, which means their pair-wise inner product is
zero), such that the following holds:

C =P * D * Pt (where Pt is the transpose of matrix P)

The diagonal values of D are eigenvalues, and the columns of P are the cor-
responding eigenvectors of the matrix C.

Fortunately, we can use NumPy and Pandas to calculate the mean, stand-
ard deviation, covariance matrix, correlation matrix, as well as the matrices
D and P to determine the eigenvalues and eigenvectors.

As an interesting point: any positive definite square matrix has real-valued
eigenvectors, which also applies to the covariance matrix C because it is a real-
valued symmetric matrix.

The New Matrix of Eigenvectors

The previous section described how the matrices D and P are determined.
The left-most eigenvector of D has the largest eigenvalue, the next eigenvec-
tor has the second-largest eigenvalue, and so forth. The eigenvector with the
largest eigenvalue is the principal component of the dataset. The eigenvector
with the second-largest eigenvalue is the second principal component, and so
forth. You specify the number of principal components that you want via the
n_components hyper parameter in the PCA class of Sklearn.

As a simple and minimalistic example, consider the following code block
that uses PCA for a (somewhat contrived) dataset:

import numpy as np
from sklearn.decomposition import PCA

data = np.array([[-1,-1], [-2,-11, [-3,-21, [1,11, [2,11, I3,211])
pca = PCA (n_components=2)
pca.fit (X)

Note that a trade-off here: we greatly reduce the number of components,
which reduces the computation time and the complexity of the model, but we
also lose some accuracy. However, if the unselected eigenvalues are small, we
lose only a small amount of accuracy.

Now let’s use the following notation:

* NM denotes the matrix with the new principal components.

* NMt is the transpose of NM.

* PC is the matrix of the subset of selected principal components.
e SD is the matrix of scaled data from the original dataset.

e SDt is the transpose of SD.

Then the matrix NM is calculated via the following formula:

NM = PCt * SDt

Introduction to Probability and Statistics © 279

Although PCA is a useful technique for dimensionality reduction, keep in
mind the following limitations of PCA:

® less suitable for data with non-linear relationships
® less suitable for special classification problems

A related algorithm is called Kernel PCA, which is an extension of PCA
that introduces a non-linear transformation so you can still use the PCA

approach.

WELL-KNOWN DISTANCE METRICS

There are several similarity metrics available, such as item similarity met-
rics, the Jaccard (user-based) similarity, and cosine similarity (which is used
to compare vectors of numbers). The following subsections introduce you to
these similarity metrics.

Another well-known distance metric is the so-called “taxicab” metric, which
is also called the Manhattan distance metric. Given two points A and B in a
rectangular grid, the taxicab metric calculates the distance between two points
by counting the number of “blocks” that must be traversed in order to reach B
from A (the other direction has the same taxicab metric value). For example, if
you need to travel two blocks north and then three blocks east in a rectangular
grid, then the Manhattan distance is 5.

There are various other metrics available, which you can learn about by
searching Wikipedia. In the case of NLP, the most commonly used distance
metric is calculated via the cosine similarity of two vectors, and its derived
from the formula for the inner (“dot”) product of two vectors.

Pearson Correlation Coefficient

The Pearson similarity is the Pearson coefficient between two vectors. You
are given random variables X and v, and the following terms:

std (X) = standard deviation of X
std (Y) = standard deviation of Y
cov(X,Y) = covariance of X and Y

Then the Pearson correlation coefficient rho (X, Y) is defined as follows:
rho(X,Y) = -—————————-——

The Pearson coefficient is limited to items of the same type. More informa-
tion about the Pearson correlation coefficient is available online:
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

280 ¢ SQL Pocket Primer

Jaccard Index (or Similarity)

The Jaccard similarity is based on the number of users that have rated item
A and B (the cardinality of A intersect B) divided by the number of users who
have rated either A or B (the cardinality of A union B). The Jaccard similarity is
based on unique words in a sentence and is unaffected by duplicates, whereas
the cosine similarity is based on the length of all word vectors (which changes
when duplicates are added). The choice between cosine similarity and Jaccard
similarity depends on whether word duplicates are important.

The following Python method illustrates how to compute the Jaccard simi-
larity of two sentences:

def get jaccard sim(strl, str2):
setl = set(strl.split())
set2 = set(str2.split())

set3 = setl.intersection (set?2)
(size of intersection) / (size of union):
return float (len(set3)) / (len(setl) + len(set2) - len(set3))

The Jaccard similarity can be used in situations involving Boolean values,
such as product purchases (true/false), instead of numeric values. More infor-
mation is available online:

hitps://en.wikipedia.org/wiki/Jaccard_index

Local Sensitivity Hashing (optional)

If you are familiar with hash algorithms, you know that they are algorithms
that create a hash table that associate items with a value. The advantage of hash
tables is that the lookup time to determine whether an item exists in the hash
table is constant.

Of course, it’s possible for two items to “collide,” which means that they
both occupy the same bucket in the hash table. In this case, a bucket can con-
sist of a list of items that can be searched in more or less constant time. If there
are too many items in the same bucket, then a different hashing function can
be selected to reduce the number of collisions. The goal of a hash table is to
minimize the number of collisions.

The Local Sensitivity Hashing (LSH) algorithm hashes similar input items
into the same “buckets.” In fact, the goal of LSH is to maximize the number
of collisions, whereas traditional hashing algorithms attempt to minimize the
number of collisions.

Since similar items end up in the same buckets, LSH is useful for data
clustering and nearest neighbor searches. Moreover, LSH is a dimensional-
ity reduction technique that places data points of high dimensionality closer
together in a lower-dimensional space, while simultaneously preserving the
relative distances between those data points. More details about LSH are avail-
able online:

https://en.wikipedia.org/wiki/Locality-sensitive_hashing

Introduction to Probability and Statistics 281

TYPES OF DISTANCE METRICS

Non-linear dimensionality reduction techniques can also have different dis-
tance metrics. For example, linear reduction techniques can use the Euclidean
distance metric (based on the Pythagorean theorem).

However, you need to use a different distance metric to measure the dis-
tance between two points on a sphere (or some other curved surface). In the
case of NLP, the cosine similarity metric is frequently used to measure the dis-
tance between word embeddings (which are vectors of floating point numbers
that represent words or tokens).

Distance metrics are used for measuring physical distances, and some well-
known distance metrics are listed here:

¢ Euclidean distance
e Manhattan distance
¢ Chebyshev distance

The Euclidean algorithm also obeys the “triangle inequality,” which states
that for any triangle in the Euclidean plane, the sum of the lengths of any pair
of sides must be greater than the length of the third side.

In spherical geometry, you can define the distance between two points as
the arc of a great circle that passes through the two points (always selecting the
smaller of the two arcs when they are different).

In addition to physical metrics, there are algorithms that implement the
concept of “edit distance” (the distance between strings), as listed here:

e Hamming distance

e Jaro-Winkler distance

e Lee distance

¢ Levenshtein distance

e Mahalanobis distance metric
e Wasserstein metric

The Mahalanobis metric is based on an interesting idea: given a point P
and a probability distribution D, this metric measures the number of standard
deviations that separate point P from distribution D. More information about
Mahalanobis is available online:

https:/len.wikipedia.org/wiki/Mahalanobis_distance

In the branch of mathematics called topology, a metric space is a set for
which distances between all members of the set are defined. Various metrics
are available (such as the Hausdorff metric), depending on the type of topology.

The Wasserstein metric measures the distance between two probability dis-
tributions over a metric space X. This metric is also called the “earth mover’s
metric” for the following reason: given two unit piles of dirt, it’s the measure of
the minimum cost of moving one pile on top of the other pile.

282 ¢ SQL Pocket Primer

KL Divergence bears some superficial resemblance to the Wasserstein
metric. However, there are some important differences between them.
Specifically, the Wasserstein metric has the following properties:

1. Itis a metric.
2. Itis symmetric.

3. It satisfies the triangle inequality.
The KL Divergence has the following properties:

1. Itis not a metric (it’s a divergence).
2. Itis not symmetric: KL(P,Q) != KL(Q,P).
3. It does not satisfy the triangle inequality.

Note that the JS (Jenson-Shannon) Divergence (which is based on the KL
Divergence) is a true metric, which would enable a more meaningful compari-
son with other metrics (such as the Wasserstein metric). More information is
available online:

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-
of-wasserstein-metric-compared-to-kullback-leibler-diverg

https:/len.wikipedia.org/wiki/Wasserstein_metric

WHAT IS BAYESIAN INFERENCE?

Bayesian inference is an important technique in statistics that involves sta-
tistical inference and Bayes” theorem to update the probability for a hypoth-
esis as more information becomes available. Bayesian inference is often called
“Bayesian probability,” and it's important in dynamic analysis of sequential data.

Bayes Theorem

Given two sets A and B, let’s define the following numeric values (all of
them are between 0 and 1):

P(A) = probability of being in set A

P(B) = probability of being in set B

P(Both) = probability of being in A intersect B
(
(

-0

AIB) = probability of being in A (given you're in B)

P(BIA) = probability of being in B (given you're in A)

Then the following formulas are also true:

P(AIB) = P(Both)/P(B) (#1)
P(BIA) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the
denominator to obtain these equations:

Introduction to Probability and Statistics © 283
P(B)*P(AIB) = P(Both) (#3)
P(A)*P(BIA) = P(Both) (#4)

Now set the left-side of Equations #3 and #4 equal to each another, and
that gives us this equation:

P(B)*P(AIB) = P(A)*P(BIA) (#5)
Divide both sides of #5 by P(B) to obtain this well-known equation:
P(AIB) = P(A)*P(AIB)/P(B) (#6)

Some Bayesian Terminology

In the previous section, we derived the following relationship:
P(hid) = (P(dIh) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation, as
discussed below.

First, the posterior probability is P(hld), which is the probability of hypoth-
esis h given the data d.

Second, P(dlh) is the probability of data d given that the hypothesis h was
true.

Third, the prior probability of h is P(h), which is the probability of hypoth-
esis h being true (regardless of the data).

Finally, P(d) is the probability of the data (regardless of the hypothesis)

We are interested in calculating the posterior probability of P(h|d) from the
prior probability p(h) with P(d) and P(d|h).

What is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the
highest probability, which is the maximum probable hypothesis. This can be
written as follows:

MAP (h) = max (P (h|d))
or

MAP (h) = max ((P(d|h) * P(h)) / P(d))
or

MAP (h) = max(P(d|h) * P(h))

Why Use Bayes’ Theorem?

Bayes” Theorem describes the probability of an event based on the prior
knowledge of the conditions that might be related to the event. If we know the
conditional probability, we can use Bayes’ rule to find out the reverse probabil-
ities. The previous statement is the general representation of the Bayes’ rule.

284 e+ SQL Pocket Primer

SUMMARY

This appendix started with a discussion of probability, expected values, and
the concept of a random variable. Then you learned about some basic statisti-
cal concepts, such as mean, median, mode, variance, and standard deviation.
Next, you learned about the terms RSS, TSS, R*2, and F1 score. In addi-
tion, you had an introduction to the concepts of skewness, kurtosis, the Gini
Impurity, entropy, perplexjty, Cross entropy, and KL Divergence.

Next, you learned about covariance and correlation matrices and how to
calculate eigenvalues and eigenvectors. Then you were introduced to the
dimensionality reduction technique known as PCA (Principal Component
Analysis), after which you learned about Bayes” Theorem.

A

AND, OR, and NOT operators, 153-154

Arithmetic aggregate operators
finding average values, 157-158
SELECT clause, 158-159

Arithmetic operator, 154-156

ASC keyword, 116

Atomicity, Consistency, Isolation, and

Durability (ACID), 5-6

B
Bayesian inference, 282-283
Bayes’ Theorem, 282-283
Binary large object (BLOB), 21
BIN () function, 180
Boolean operations

BETWEEN, 150

1IN, 151

IS NULL, 151

LIKE, 151
Built-in number functions, 164—-165

C

CASE keyword, 174-176

CAST () function, 181-183

CEIL () and FLOOR () function, 131

COALESCE () function, 181

COMBINED GROUP BY, HAVING, AND
ORDER BY CLAUSE, 101-102

Command line utilities, 241

COMMIT and ROLLBACK statement, 231

Common table expression (CTE)

INDEX

definition, 166
JOIN keyword, 167-168
WITH keyword, 168
mean, standard deviation, and z-scores,
169-171
recursive SQL query, 168-169
single and multiple attributes, 167
Compass, 198-199
Consistency, Availability, and Partition
Tolerance (CAP) Theorem, 240-241
CONVERT () function, 181
CONV () function, 180-181
Correlated subqueries, 82
CREATE keyword, 19-20
Cross entropy, 270-272
CTE. see Common table expression (CTE)

D
Database backups, restoring data, and
upgrades, 241-242
Database engines, 225-226
Database normalization, 7-8
Database optimization, 232
performance tuning, 232-233
Database replication, 239-240
Database tables, 25-27
attributes, 37-38
create
from command line, 36-37
with Japanese text, 35-36
manual, 32-34
via SQL script, 34-35

286 ° SQL Pocket Primer

creating tables from existing tables
creating copies of existing tables, 58
memory-stored tables, 56
temporary tables, 57-58
drop, 32
INFORMATION SCHEMA table, 27-28
PROCESSLIST table, 28
Database user management
create and alter, 214-215
drop, 215-216
list users, 214
roles
create roles and grant privileges,
216-218
revoke roles and drop roles, 218
Data cleaning
from command line, 250-254
convert strings to date values, 248-250
handle mismatched attribute values,
247-248
replace multiple values into a single
value, 246-247
replace NULL with 0, 244
replace NULL with the average value,
244-246
Data Control Language (DCL), 18
Data Definition Language (DDL), 18
Data Manipulation Language (DML), 18
Data Query Language (DQL), 18
Date-related operations
arithmetic operations, 111-112
components and formats, 112-114
CURRENT_DATE () function, 106
date format () function, 108-109
day and month-related functions,
107-108
NOW () function, 106
ranges, 109-110
SYSDATE function, 106
WEEK () function, 114-116
Denormalization, 227
DESC keyword, 116
Distance metrics, 281. See also Well-known
distance metrics
Distributed database (DDB), 240

E

Entity Relationship Diagram (ERD), 230
Entity Relationship Modeling (ERM), 230
Entity relationships, 64-65

EXPLAIN statement, 235-237

F
F1 score, 267
Fugue, 197-198

G
Gini impurity and entropy, 268-270
GREATEST () function, 180
GROUP BY clause, 90-93
and ROLLUP clause, 95-96
GROUP BY, HAVING, AND ORDER BY
CLAUSE, 100-101

H
HAVING clause, 91-92
Histogram, 90

on a table copy, 93-95

|

Index(es)
clustered index, 59
column selection, 62-63
considerations, 61-62
creation, 59-60
description, 58-59
disable indexes, 62
enable and disable, 60
finding columns, 63
invisible index, 59
overhead of, 61
unique index, 59
view and drop, 60-61

InnoDB, 3

J

Jaccard similarity, 280

JOIN statement, 68
CROSS JOIN statement, 69, 73
delete duplicate attributes, 74-75
four-table RDBMS, 69-71
INNER JOIN statement, 69, 71
LEFT JOIN statement, 69, 72
NATURAL JOIN, 73
RIGHT JOIN statement, 69, 72-73
SELF JOIN statement, 69
on tables with international text, 75-76

JSON data, 242244

K

Keys
composite key, 80
foreign key, 79

parent child.sqgl, 80-82
vs. primary keys, 79-80
non-key columns, 79
primary key, 79
KL Divergence, 270-272
Kurtosis, 265

L

LEAST () function, 180

Linear regression, 171-172

Local Sensitivity Hashing (LSH) algorithm,
280

Log, exponential, and trigonometric func-
tions, 132-134

M
MariaDB database, 3
MATCH () function and text search, 165-166
MAX () and MIN () functions, 138-139
with subqueries, 139-143
top-ranked numeric values, 143-144
Maximum a posteriori (MAP) hypothesis,
283
Money transfer between bank accounts,
RDBMS, 6-7
MongoDB
APIs, 191-192
collections and documents
aggregate () function, 197
cellphones collection, 194-195
CREATE, 193
document format, 193
find () function, 195-196
insertOne () function, 196
mongoimport utility, 197
update () function, 196
Compass, 198-199
features, 190
Fugue, 197-198
installation, 190
launch, 190-191
meta characters, 192-193
PyMongo, 199-200
Multi-dimensional Gini index (MGI), 270
Multiple-row functions, 163
MyRocks, 3
MySQL
aliases, 38-39
connector/Python API
create fun table.py, 205-206
database connection, 204

Index o 287

mysqgl pandas.py, 204-205
database operations
create, 22
display, 22-23
drop, 23
import/export, 23—-24
rename, 24-25
data types
BLOB and TEXT, 21
CHAR and VARCHAR, 20
FLOAT and DOUBLE, 21
string-based, 20-21
download, 2
installation, 3
vs. MariaDB, 3
storage engines, 3
tables (see Database tables)
useful links for, 34

N
NewSQL, 188
Non-correlated subquery, 82
Non-relational database systems
advantages, 187
document store, 186
graph databases, 186
key/value store, 186
wide document store, 186
Normalization, 226-227
NoSQL, 187-188
databases, 189-190
data types, 1858-189
vs. RDBMSs, 188
NULL values, 176-179
Numeric functions
calculated columns, 128-129
FORMAT () function, 126
LEN () function, 126-127
MOD () function, 127-128
POSITION () function, 128
ROUND () function, 128

(0]

OFFSET () keyword, 145

2021 Olympics medals in Japan
OlympicsJAPN2021.csv, 97
olympics.sqgl, 97-98
RANK () operator, 98-99
ROLLUP keyword, 98

ORDER BY clause, 91-93
with aggregate functions, 160-161

288 ¢ SQL Pocket Primer

ascending or descending order, 159-160
largest distinct values and frequency of
values, 161-163

P

PARTITION BY clause, 99

Perplexity, 270

Probability
conditional probability, 258
description, 257
expected value calculation, 258-260
random variables, 260

discrete and continuous, 260
well-known probability distributions,
260-261
PyMongo, 199-200

Q
Query execution order, 67-68

Query optimization
cost-based optimization, 234
performance tuning tools, 233-234
table fragmentation, 234
table partitioning, 234-235

R
RAND () function, 132
Relational DataBase Management System
(RDBMS), 4
ACID, 5-6
characteristics, 5
logical schema, 5
MongoDB, 189
needs, 6-7
normalization, 7-8
vs. NoSQL, 188-189
vs. tables, 4-5, 8-9
customers table, 10-11
item desc table, 13-14
line items table, 12-13
purchase orders table, 11-12
ROUND () function, 129-130
RSS, TSS, and R*2, 266-267

S
SAVEPOINT statement, 231-232
Scalable databases, 240
Scalar functions, 135
Scaling
federation, 239
sharding, 238-239

SQL tuning, 237-238
Schemas, 227-228
SESSTION () function, 181
Set operators, 152-153
Single-row functions, 163-164
Skewness, 264
SQLAlchemy and Pandas, 200-203
SQLite
DB Browser, 209
features, 207
installation, 207-208
SQLiteStudio, 208209
SQLiteDict, 209-211
SQLiteStudio, 208-209
Statistics
Bayesian inference, 282-283
Central Limit Theorem, 265
Chebyshev’s inequality, 263
correlation vs. causation, 266
covariance and correlation matrices,
272-274
Cross entropy and KL Divergence,
270-272
eigenvalues and eigenvectors, 274-275
F1 score, 267
Gauss-Jordan elimination technique,
275276
Gini impurity and entropy, 268-270
mean, median and mode, 261-262
moments of a function, 264
multi-dimensional Gini index (MGI), 270
PCA technique, 276-278
perplexity, 270
population, sample, and population vari-
ance, 263
p-value, 263-264
RSS, TSS, and R*2, 266-267
skewness and kurtosis, 264—265
statistical inference, 266
variance and standard deviation, 262-263
well-known distance metrics
Jaccard similarity, 280
Local Sensitivity Hashing (LSH) algo-
rithm, 280
Pearson correlation coefficient, 279
types, 281-282
Stored functions, 222223
Stored procedures
advantages and disadvantages, 219
double number.sql, 221-222
features, 218-219

IN and OUT parameters, 219
storedl.sql, 220-221
String functions
CONCAT () function, 147-148
LCASE () function, 146
MID () function, 146-147
SUBSTR () function, 147-150
UCASE () function, 146
String operators, 165
Structured Query Language (SQL)
ad hoc reports, 119
aggregate functions, 136-138
arithmetic aggregate operators
finding average values, 157-158
SELECT clause, 158-159
arithmetic operator, 154-156
ASC keyword, 116
BIN () function, 180
boolean operations
BETWEEN, 150
IN, 151
IS NULL, 151
LIKE, 151
built-in number functions, 164-165
CASE keyword, 174-176
CAST () function, 181-183
CEIL () and FLOOR () function, 131
character functions
case manipulation functions, 164
character manipulation functions, 164
COALESCE () function, 181
column alias, 116-117
CONVERT () function, 181
CONV () function, 180-181
CREATE keyword, 19-20
CTE (see Common table expression
(CTE))
date-related operations
arithmetic operations, 111-112
components and formats, 112-114
CURRENT DATE () function, 106
date format () function, 108-109
day and month-related functions,
107-108
NOW () function, 106
ranges, 109-110
SYSDATE function, 106
WEEK () function, 114-116
DCL and DDL, 18
DESC keyword, 116
DQL and DML, 18

Index o 289

formatting tools, 29
four-table join, 102-105
GREATEST () function, 180
LEAST () function, 180
linear regression, 171-172
log, exponential, and trigonometric func-
tions, 132-134
MATCH () function and text search,
165-166
MAX () and MIN () functions, 138-139
with subqueries, 139-143
top-ranked numeric values, 143-144
modification times, 110-111
multiple-row functions, 163
NULL values, 176-179
numeric functions
calculated columns, 128-129
FORMAT () function, 126
LEN () function, 126-127
MOD () function, 127-128
POSITION () function, 128
ROUND () function, 128
object privileges, 19
OFFSET () keyword, 145
AND, OR, and NOT operators, 153-154
ORDER BY clause
with aggregate functions, 160-161
ascending or descending order,
159-160
largest distinct values and frequency of
values, 161-163
query execution order, 67-68
RAND () function, 132
ROUND () function, 129-130
scalar functions, 135
SESSTION () function, 181
set operators, 152—-153
single-row functions, 163-164
statements, 19
string functions
CONCAT () function, 147-148
LCASE () function, 146
MID () function, 146-147
SUBSTR () function, 147-150
UCASE () function, 146
string operators, 165
summary reports, 118-119
cumulative totals, 123
sold items, 119-120
sold price, 120-121
subtotals, 122

290 ¢ SQL Pocket Primer

system privileges, 18
TCL, 18
user-defined functions, 218
variables, 117-118
window functions
aggregate functions, 173
description, 172
functions for time series, 173
RANK and DENSE_RANK functions,
173-174
rank-related functions, 173
statistical functions, 173
Subquery
to find customers without purchase
orders, 83-85
heights.sqgl, 88-90
MAX () and AVG () functions, 88
IN and NOT 1IN clause, 85-86
SOME, ALL, ANY clause, 86-88
types, 82-83
Summary reports, 118-119
cumulative totals, 123
sold items, 119-120
sold price, 120-121
subtotals, 122
System privileges, 18

T
Transaction, 230-231

Transaction Control Language (TCL), 18

Trigger, 223-225

U
User-defined functions, 218

\%

Variables, 117-118
random, 260

View
advantages, 77-78
CREATE VIEW, 77
description, 76-77
DROP VIEW, 77
multiple table, 78
single table, 78
updatable view, 79

w
Well-known distance metrics
Jaccard similarity, 280
Local Sensitivity Hashing (LSH)
algorithm, 280
Pearson correlation coefficient, 279
types, 281-282
Window functions
aggregate functions, 173
description, 172
functions for time series, 173
RANK and DENSE_RANK functions,
173-174
rank-related functions, 173
statistical functions, 173
Workbench, 228-230

