
SQL
Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you
agree that this license grants permission to use the contents contained herein,
including the disc, but does not give you the right of ownership to any of the
textual content in the book/disc or ownership to any of the information or
products contained in it. This license does not permit uploading of the Work
onto the Internet or on a network (of any kind) without the written consent
of the Publisher. Duplication or dissemination of any text, code, simulations,
images, etc. contained herein is limited to and subject to licensing terms for
the respective products, and permission must be obtained from the Publisher
or the owner of the content, etc., in order to reproduce or network any portion
of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to ensure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind,
express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used
in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.
The use of “implied warranty” and certain “exclusions” vary from state to state,
and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at
info@merclearning.com.

SQL
Pocket Primer

Oswald Campesato

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2022 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to,
photocopy, recording, Internet postings, or scanning, without prior permission
in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. SQL Pocket Primer.
ISBN: 978-1-68392-814-0

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022930720
222324321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other
digital vendors. Companion files (figures and code listings) for this title are available
by contacting info@merclearning.com. The sole obligation of Mercury Learning and
Information to the purchaser is to replace the disc, based on defective materials or
faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents
 – may this bring joy and happiness into their lives.

Contents

Preface� xv

Chapter 1: Introduction to RDBMSs and MySQL	 1
What is MySQL?	 2

What about MariaDB?	 3
Installing MySQL	 3
Useful Links for MySQL	 3

What is an RDBMS?	 4
What Relationships Do Tables Have in an RDBMS?	 4
Features of an RDBMS	 5
What is ACID?	 5

When Do We Need an RDBMS?	 6
Transferring Money Between Bank Accounts	 6

The Importance of Normalization	 7
A Four-Table RDBMS	 8
Detailed Table Descriptions	 9

The Customers Table	 10
The purchase_orders Table	 11
The line_items Table	 12
The item_desc Table	 13

SQL Statements for the Impatient (Optional)	 14
What About an Item Inventory Table?	 17

The Role of SQL	 17
DCL, DDL, DQL, DML, and TCL	 18
SQL Privileges	 18

Properties of SQL Statements	 19
The CREATE Keyword	 19

Data Types in MySQL	 20
The CHAR and VARCHAR Data Types	 20

viii • Contents

String-Based Data Types	 20
FLOAT and DOUBLE Data Types	 21
BLOB and TEXT Data Types	 21

MySQL Database Operations	 22
Creating a Database	 22
Display a List of Databases	 22
Display a List of Database Users	 23
Dropping a Database	 23

Exporting a Database	 23
Renaming a Database	 24
Show Database Tables	 25
The INFORMATION_SCHEMA Table	 27
The PROCESSLIST Table	 28
SQL Formatting Tools	 29
Summary	 29

Chapter 2: Working with SQL and MySQL	 31
Drop Database Tables	 32
Create Database Tables	 32

Manually Creating Tables for mytools.com	 32
Creating Tables via a SQL Script for mytools.com	 34
Creating Tables with Japanese Text	 35
Creating Tables from the Command Line 	 36
Defining Table Attributes	 37

Working with Aliases in SQL	 38
Alter Database Tables with the ALTER Keyword	 39

Add a Column to a Database Table	 39
Drop a Column from a Database Table	 41
Change the Data Type of a Column	 41
What are Referential Constraints?	 43

Combining Data for a Table Update (Optional)	 44
Merging Data Columns in Multiple CSV Files via Pandas	 44
Concatenating Data from Multiple CSV Files	 45
Appending Table Data from CSV Files via SQL	 47

Inserting Data into Database Tables	 48
Populating Tables from Text Files	 49

Working with Simple SELECT Statements	 51
Duplicate Versus Distinct Rows	 52
Unique Rows Versus Distinct Rows	 53
The EXISTS Keyword	 53
The LIMIT Keyword	 54

DELETE, TRUNCATE, and DROP in SQL	 54
SELECT, DELETE, and LIMIT Combinations	 55
More Options for the DELETE Statement in SQL	 56

Contents • ix

Creating Tables from Existing Tables in SQL	 56
Working with Temporary Tables in SQL	 57
Creating Copies of Existing Tables in SQL	 58

What is a SQL Index?	 58
Types of Indexes	 59
Creating an Index	 59
Disabling and Enabling an Index	 60
View and Drop Indexes	 60
Overhead of Indexes	 61
Considerations for Defining Indexes	 61
When to Disable Indexes on a Table	 62
Selecting Columns for an Index	 62
Finding Columns Included in Indexes	 63

Enhancing the mytools Database (Optional)	 63
Entity Relationships	 64
Summary	 65

Chapter 3: Joins, Views, and Subqueries	 67
Query Execution Order in SQL	 67
Joining Tables in SQL	 68

Types of SQL JOIN Statements	 68
Examples of SQL JOIN Statements	 69

An INNER JOIN Statement	 71
A LEFT JOIN Statement	 72
A RIGHT JOIN Statement	 72
A CROSS JOIN Statement	 73
MySQL NATURAL JOIN Statement	 73

An INNER JOIN to Delete Duplicate Attributes	 74
JOIN Statements on Tables with International Text	 75
What is a View?	 76

Creating a View	 77
Dropping a View in SQL	 77
Advantages of Views in SQL Statements	 77
Views Involving a Single Table	 78
Views Involving Multiple Tables	 78
Updatable Views	 79

Keys, Primary Keys, and Foreign Keys	 79
Foreign Keys versus Primary Keys	 79

A MySQL Example of Foreign Keys	 80
Working with Subqueries in SQL	 82

Two Types of Subqueries	 82
A Subquery to Find Customers Without Purchase Orders	 83

Subqueries with IN and NOT IN Clause	 85
Subqueries with SOME, ALL, ANY Clause	 86

Subqueries with the MAX() and AVG() Functions	 88
Find Tallest Students in Each Classroom via a Subquery	 88
SQL and Histograms	 90
What are GROUP BY, ORDER BY, and HAVING Clauses?	 90

Displaying Duplicate Attribute Values	 92
Examples of the SQL GROUP BY and ORDER BY Clause	 92

SQL Histograms on a Table Copy	 93
Combine GROUP BY and ROLLUP Clause	 95

The 2021 Olympics Medals and the ROLLUP Keyword	 97
The 2021 Olympics Medals and the RANK Operator	 98

The PARTITION BY Clause	 99
GROUP BY, HAVING, and ORDER BY Clause	 100
Combined GROUP BY, HAVING, and ORDER BY Clause	 101

Updating the item_desc Table from the new_items Table	 102
A SQL Query Involving a Four-Table Join	 102
Operations with Dates in SQL	 106

Day and Month Components of Dates in SQL	 107
Rounding Dates in SQL	 108

Working with Date Ranges	 109
Tables Containing Modification Times	 110
Arithmetic Operations with Dates	 111
Date Components and Date Formats	 112
Finding the Week in Date Values	 114

Displaying Weekly Revenue	 114
Assorted SQL Operators	 116

Working with Column Aliases	 116
SQL Variables	 117

SQL Summary Reports	 118
Simple SQL Reports	 119
Calculating SubTotals	 122
Calculating “Running” (Cumulative) Totals	 123

Summary	 124

Chapter 4: Assorted SQL Functions	 125
Numeric Functions in SQL	 126

Calculated Columns	 128
The round(), ceil(), and floor() Functions	 129

SQL Queries with the rand() Function	 132
Log, Exponential, and Trig Functions in SQL	 132
Scalar Functions in SQL	 135
Aggregate Functions in SQL	 136
SQL Queries with the max() and min() Functions	 138
Find Maximum Values with SQL Subqueries	 139

Simplify SQL Queries Containing Subqueries	 142

x • Contents

Find Top-Ranked Numeric Values	 143
Find the Second and Third Largest Values in a Column	 143
Find the Top Three Values in a Column	 144

Find Values with the OFFSET Keyword	 145
String Functions in SQL	 146
SQL Queries with the SUBSTRING() Function	 148

The SUBSTRING() Function in SQL	 149
Boolean Operators in SQL	 150

The IN Keyword	 151
Set Operators in SQL	 152
AND, OR, and NOT Operators in SQL	 153
Working with Arithmetic Operators	 154
Arithmetic Aggregate Operators in SQL	 156

Finding Average Values	 157
SELECT Clauses with Multiple Aggregate Functions	 158

The ORDER BY Clause in SQL	 159
ORDER BY with Aggregate Functions	 160

Largest Distinct Values and Frequency of Values	 161
Character Functions and String Operators	 163

SQL Character Functions	 164
String Operators in SQL	 165

The MATCH() Function and Text Search	 165
CTEs and the “with” Keyword in MySQL (Version 8)	 166

The with Keyword and a Recursive SQL Query	 168
CTEs and the Mean, Stddev, and Z-scores	 169
Linear Regression in SQL	 171
Window Functions	 172

Types of Window Functions in SQL	 173
The SQL CASE Clause	 174
Working with NULL Values in SQL	 176
Miscellaneous One-Liners	 179
Working with the CAST() Function in SQL	 181
Summary	 183

Chapter 5: NoSQL, SQLite, and Python	 185
Non-Relational Database Systems	 186

Advantages of Non-Relational Databases	 187
What is NoSQL?	 187

What is NewSQL?	 188
RDBMSs Versus NoSQL: Which One to Use?	 188

Good Data Types for NoSQL	 188
Some Guidelines for Selecting a Database	 189
NoSQL Databases	 189

What is MongoDB?	 190

Contents • xi

Features of MongoDB	 190
Installing MongoDB	 190
Launching MongoDB	 190

Useful Mongo APIs	 191
Meta Characters in Mongo Queries	 192

MongoDB Collections and Documents	 193
Document Format in MongoDB	 193

Create a MongoDB Collection	 193
Working with MongoDB Collections	 195

Find all Android Phones	 195
Find All Android Phones in 2018	 196
Insert a New Item (document)	 196
Update an Existing Item (document)	 196
Calculate the Average Price for Each Brand	 197
Calculate the Average Price for Each Brand in 2019	 197
Import Data with mongoimport	 197

What is Fugue?	 197
What is Compass?	 198
What is PyMongo?	 199
MySQL, SQLAlchemy, and Pandas	 200

What is SQLAlchemy?	 200
Read MySQL Data via SQLAlchemy	 200

Export SQL Data from Pandas to Excel	 202
MySQL and Connector/Python	 203

Establishing a Database Connection	 204
Reading Data from a Database Table	 204
Creating a Database Table	 205

What is SQLite?	 206
SQLite Features	 207
SQLite Installation	 207
SQLiteStudio Installation	 208
DB Browser for SQLite Installation	 209
SQLiteDict (Optional)	 209

Summary	 211

Chapter 6: Miscellaneous Topics	 213
Managing Users	 214

Listing Current Users	 214
Creating and Altering MySQL Users	 214
Dropping MySQL Users	 215

What are Roles?	 216
Create Roles and Grant Privileges	 216
Revoke Roles and Drop Roles	 218

What is a User-Defined Function? 	 218

xii • Contents

What is a Stored Procedure?	 218
IN and OUT Parameters in Stored Procedures	 219
A Simple Stored Procedure	 220

What is a Stored Function?	 222
A Simple Stored Function	 222

What are SQL Triggers?	 223
A Simple MySQL Trigger	 224

MySQL Engines	 225
What is Normalization?	 226

What is Denormalization?	 227
What are Schemas?	 227
MySQL Workbench	 228

Exporting a Schema in Workbench	 228
Creating a Schema in Workbench	 229
ERM and Tools	 230

What is a Transaction?	 230
The COMMIT and ROLLBACK Statements	 231
The SAVEPOINT Statement	 231

Database Optimization and Performance	 232
Performance Tuning Considerations	 232

SQL Query Optimization	 233
Analyzing SQL Queries for Their Performance	 233
Performance Tuning Tools	 233
Cost-Based Optimizers (Optional)	 234
Table Fragmentation	 234
Table Partitioning	 234

What is an EXPLAIN Plan?	 235
Explain Analyze	 236

Scaling an RDBMS	 237
What is SQL Tuning?	 237
What is Sharding?	 238
RDBMS Support for Sharding	 238
What is Federation?	 239

Database Replication	 239
Distributed Databases, Scalability, and the CAP Theorem	 240

Master-Slave Replication	 240
The CAP Theorem	 240
What are Consistency Patterns?	 241

MySQL Command Line Utilities	 241
Database Backups, Restoring Data, and Upgrades	 241
MySQL and JSON Data	 242
Data Cleaning in SQL	 244

Replace NULL with 0	 244
Replace NULL Values with Average Value	 244

Contents • xiii

Replace Multiple Values with a Single Value 	 246
Handle Mismatched Attribute Values	 247
Convert Strings to Date Values	 248

Data Cleaning From the Command Line (Optional)	 250
Working with the sed Utility	 250
Working with the awk Utility	 252

Next Steps	 254
Summary	 254

Appendix: Introduction to Probability and Statistics	 257

Index� 285

xiv • Contents

Preface

What is the Value Proposition for This Book?

This book is primarily for data scientists and machine learning engineers
who want to expand their current knowledge of SQL using MySQL as the
primary RDBMS. While this book does contain relevant information for
novices in other fields, the structure of this book differs from typical data-
base books.

In addition, this book attempts to balance depth and breadth, along with
a decent number of SQL statements to illustrate the important features of
SQL. Although it’s not possible to describe the exact set of features that
constitute basic, intermediate, and advanced SQL queries (i.e., opinions
will differ), this book contains SQL examples that belong to each of those
three groups.

At the same time, remember that some topics in the final chapter are
presented in a cursory manner, which is for two main reasons. First,
although you don’t need an in-depth understanding of every facet of SQL
and RDBMSs, it’s important that you be aware of these concepts if you plan
to become highly proficient in managing database data. In addition, you
will be in a better position to plan an itinerary for the set of topics that you
will learn at some point in the future.

Second, a full treatment of every topic in this book would significantly
increase the page count, and it’s debatable whether all the additional
details would be beneficial to you as a machine learning engineer or a
data scientist.

The Target Audience

As you read in the previous section, this book is meant primarily for
machine learning engineers and data scientists who already have a basic

understanding of SQL, which means that they have executed some SQL
statements in a database such as MySQL. As such, they will learn more
details about SQL and MySQL so they can manage data in database tables.
Moreover, the knowledge that they gain while working with MySQL can
easily transfer to other RDBMSs such as ORACLE.

In addition, this book is intended to reach an international audience of
readers, so this book uses standard English rather than colloquial expres-
sions. As you know, many people learn by different types of imitation,
which includes reading, writing, or hearing new material. This book takes
these points into consideration in order to provide a comfortable and
meaningful learning experience for the intended readers.

What’s Different About This SQL Book?

Before delving into the differences, it’s worth noting that this book covers
many topics that you will find in database books of comparable length. At
a minimum, any RDBMS book needs to include SQL, along with examples
of how to select, delete, update, and insert data into a database table.
Other mandatory topics include an explanation of views, indexes, joining
tables, subqueries, normalization, and database schemas.

However, this book differs from generic database books because there are
topics that are relevant to this target audience, which are not necessary
for readers of generic database books. Some of those additional topics are
discussed in chapter 6 (miscellaneous topics).

Another difference is a portion of Chapter 5, which contains Python-
based code samples to access data from a MySQL table in a Pandas data
frame. A third difference is the inclusion of the appendix that contains an
introduction to probability and statistics, and a discussion of of entropy,
cross-entropy, and KL divergence. Thus, it’s the collective set of differ-
ences that differentiate this book from generic SQL books.

What Will I Learn From This Book?

The first chapter contains a short introduction to RDBMSs and MySQL,
along with information about installing MySQL. In addition, you will see
SQL statements for creating, dropping, and exporting a database. Although
other books sometimes defer these operations to later chapters, they are
easy to perform with empty or very small databases that do not contain
any critical data. Therefore, you don’t have to worry about making costly
mistakes because of a blunder in a SQL query.

xvi • Preface

The second chapter delves into creating database tables and various ways
to populate them with data. This chapter also describes various ways of
deleting data from database tables, followed by a discussion of indexes on
tables and why they are important.

The third chapter explains the concept of “joining” database tables, fol-
lowed by a discussion of views: what they are, what advantages they pro-
vide, and how to create them over a single table or multiple tables. You
will also learn how to work with subqueries in SQL. In addition, this chap-
ter introduces you to the notion of normalization, along with a clear and
compelling reason for adopting database normalization.

The fourth chapter is primarily about SQL functions, which involves
numeric functions such as ceil(), floor(), and random(). Aggregate
functions are also discussed, followed by string-oriented SQL functions
such as the substring() function. This chapter contains an assortment
of SQL statements, some of which involve various combinations of GROUP
BY, HAVING, and ORDER BY.

The fifth chapter introduces NoSQL, followed by an overview of MongoDB,
which is a popular NoSQL database. Next you will learn about SQLite,
which is an open-source RDBMS that is available on mobile devices.

Chapter six contains a diverse set of miscellaneous topics, such as nor-
malization, schemas, database optimization, and performance. Then you
will be introduced to EXPLAIN plans, SQL tuning, managing users, roles,
stored procedures, and triggers.

A Simple Way to Create the Entire mytools Database

As a convenience, Chapter 6 contains the SQL file mytools.sql that
contains all the tables that are defined in this book. Moreover, the SQL
file also contains the data for all the database tables. Of course, you can
launch the individual SQL files for each of the tables if you prefer to do so
the “long way”.

You can import the complete mytools database by starting MySQL and
then issuing the following command from the command line in the direc-
tory that contains mytools.sql:

mysql -u root -p mytools < mytools.sql

If you encounter issues when you launch the preceding command,
read the section in Chapter 6 regarding MySQL Workbench that
enables you to import databases and export databases.

NOTE

Preface • xvii

What Do I Need to Know for This Book?

Although this is an introductory book with minimal prerequisites, obvi-
ously you will benefit from having existing knowledge of various topics.
Specifically, some knowledge of SQL will facilitate learning the SQL-related
concepts more quickly. In addition, knowledge of Java is helpful for
Appendix A, as well as some familiarity with XML and JSON. Familiarity with
normalization will help you understand the relationships among the tables
in the fictitious application that is discussed in Chapter 1 and Chapter 2.

If you want to be sure that you can grasp the material in this book, glance
through some of the code samples to get an idea of how much is familiar to
you and how much is new for you.

Do the Companion Files Obviate the Need for This Book?

The companion files contains all the code samples to save you time and
effort from the error-prone process of manually typing code into a text
file. Furthermore, there are situations in which you might not have easy
access to the companion files. In addition, the code samples in the book
provide explanations that are not available on the companion files.

Does This Book Contain Production-Level Code Samples?

The primary purpose of the code samples in this book is to provide a
variety of SQL statements that enable you to perform common and use-
ful tasks in MySQL. Clarity has higher priority than writing more compact
code that is more difficult to understand (and possibly more prone to
bugs). If you decide to use any of the code in this book in a production
website, you ought to subject that code to the same rigorous analysis as
the other parts of your code base.

What Are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s very
important to have strong desire to learn about data analytics, along with
the motivation and discipline to read and understand the code samples.

How Do I Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is
to use Finder to navigate to Applications > Utilities and then

xviii • Preface

double click on the Utilities application. Next, if you already have a
command shell available, you can launch a new command shell by typing
the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
MacBook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source https://cywin.
com) which simulates bash commands, or use another toolkit such as
MKS (a commercial product). Please read the online documentation that
describes the download and installation process. Note that custom aliases
are not automatically set if they are defined in a file other than the main
start-up file (such as .bash_login).

Companion Files

All of the code samples and figures in this book may be obtained by writ-
ing to the publisher at info@merclearning.com.

What Are the “Next Steps” After Finishing This Book?

The answer to this question varies, mainly because the answer depends
heavily on your objectives. If you are interested primarily in working with
structured data, then you can look for online resources that delve into
more advanced topics.

If you are primarily interested in machine learning, then you have several
options: NLP (natural language processing), deep learning, and reinforce-
ment learning (and also deep reinforcement learning).

Fortunately, you can perform an Internet search to find many resources.
One other point: the aspects of machine learning for you to learn depend
on who you are: the needs of a machine learning engineer, data scientist,
manager, student or software developer are all different.

Preface • xix

CHAPTER 1
INTRODUCTION TO RDBMSs
AND MySQL

This chapter introduces you to RDBMSs and various SQL concepts,
along with a quick introduction to MySQL. MySQL is used in most
of this book because it is a robust RDBMS that is available as a free

download from an ORACLE website. Current trends suggest that MySQL
will continue its dominant role for the foreseeable future. Moreover, virtually
everything that you learn about MySQL in this chapter transfers to other RD-
BMSs, such as PostgreSQL and ORACLE.

This chapter describes a fictitious website that enables users to register
themselves for the purpose of purchasing various home improvement tools
(hammers, wrenches, and so forth). Instead of SQL statements, you will learn
about the tables that are required, their relationships, and the structure of
those tables. You will also see some SQL INSERT statements for inserting data
into database tables. Although we have yet to create any database tables, these
SQL statements are intuitive and easy to grasp. Then, in Chapter 2, you will
see the SQL statements that create the tables that are discussed in this chapter.

The first part of this chapter introduces the concept of an RDBMS, and
the rationale for using an RDBMS. In particular, you will see an example of
an RDBMS with a single table, two tables, and four tables (and much larger
RDBMSs exist). This section also introduces the notion of database normali-
zation, and how it assists you in maintaining data integrity (“single source of
truth”) in an RDBMS.

The second part of this chapter describes the structure of the tables in a
four-table database that keeps track of customer purchases of home improve-
ment tools that consumers can purchase through the associated Web page.
You will also see the different relationships among pairs of tables, and how a
one-to-many relationship enables you to find all the line items that belong to a
given purchase order.

2  •  SQL Pocket Primer

The third portion of this chapter contains a brief introduction to SQL and
some basic examples of SQL queries (more details are in Chapter 2). You will
also learn about the terminology for various types of SQL statements that
can be classified as DCL (Data Control Language, DDL (Data Definition
Language), DQL (Data Query Language), or DML (Data Manipulation
Language).

The fourth portion of this chapter discusses SQL data types, and the fifth
portion discusses database operations, such as creating, dropping, and renam-
ing a database in MySQL. The final portion discusses two useful built-in tables
that enable you to find the columns of a given table and the status of SQL
statements.

There are several points to keep in mind before reading this chapter. First,
the style for this chapter (and also the next chapter) is a “top-down” approach
whereby high-level details are described and then hands-on coding details
are discussed. However, you are free to reverse the order in which you read
the first two chapters, if you prefer a “bottom-up” approach whereby you first
learn more details regarding SQL statements and then learn about a use case
in this chapter.

Second, there is an important detail that is mentioned in the preface that
is worth repeating here: this book is primarily for data scientists who want
to increase their knowledge of SQL to manage data in a database. Although
this book can be useful for any motivated beginner, its primary purpose is
different from books that prepare readers to become database administrators
(DBAs).

Third, there is a section in the middle of this chapter that shows you the
SQL statements that create several tables, along with details of purchase
orders. This section is a preview of what you will learn in subsequent chapters,
and it’s intended primarily for readers who already have a good understanding
of SQL statements. However, if you are unfamiliar with the syntax of the SQL
statements in that section, there’s no need to worry: you can return to this
section after reading subsequent chapters that explain the details of the SQL
syntax and functionality.

WHAT IS MYSQL?

MySQL is an open source database that is portable and provides many fea-
tures that are available in commercial databases. Oracle is the steward of the
MySQL database, and you can download MySQL 8.0 from the following site:

https://www.mysql.com/downloads/
MySQL is a highly popular database that is used by many companies,

including Amazon, Google, LinkedIn, Netflix, and Twitter. MySQL is written
in C++, whereas the user-level interaction is through SQL. Other add-ons for
MySQL can be purchased from Oracle, as well as free third-party tools are
available for monitoring and managing MySQL databases.

Introduction to RDBMSs and MySQL  •  3

If you prefer, MySQL also provides a GUI interface for performing data-
base-related operations. The code samples in this book have been written for
MySQL 8, which provides the following new features beyond earlier versions:

•	A transactional data dictionary
•	Improved support for BLOB, TEXT, GEOMETRY, and JSON data types
•	Support for CTEs (common table expressions)
•	Support for window functions

As you will see in Chapter 6, MySQL supports pluggable storage engines,
such as InnoDB (the most commonly used MySQL storage engine). In addi-
tion, Facebook developed an open source storage engine called MyRocks
that has better compression and performance, so it might be worth while
to explore the advantage of MyRocks over the other storage engines for
MySQL.

What about MariaDB?

MySQL began as an open source project, and retained its name after the
Oracle acquisition. Shortly thereafter, the MariaDB database was created,
which is a “fork” of the MySQL database. Although MariaDB supports all the
features of MySQL, there are important differences between MySQL and
MariaDB that you can read about online:

https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/

Installing MySQL

Download the MySQL distribution for your machine and perform the
installation procedure. After you complete the installation, log into MySQL
as root with the following command, which will prompt you for the root
password:

$ mysql -u root -p

If you installed MySQL via a DMG file, then the root password is the
same as the password for your machine.

Useful Links for MySQL

This section contains various links that may be useful as you read the chap-
ters of this book. Although SQL is not discussed in detail until the next chapter,
the SQL links are included here for your convenience.

MySQL won the DBMS of the Year award in 2019:
https://db-engines.com/en/blog_post/83
The following link contains the list of platforms that support MySQL:
https://www.mysql.com/de/support/supportedplatforms/database.html
The following link contains a comparison between SQL and MySQL:
https://www.softwaretestinghelp.com/sql-vs-mysql-vs-sql-server/

4  •  SQL Pocket Primer

A comparison of MySQL, Microsoft SQL Server, and PostgreSQL is avail-
able online:

https://db-engines.com/en/system/Microsoft+SQL+Server%3BMySQL%3
BPostgreSQL

The latest version of SQL is SQL:2016:
https://en.wikipedia.org/wiki/SQL:2016
The following website contains details regarding MySQL Standards

Compliance:
https://dev.mysql.com/doc/refman/8.0/en/compatibility.html
The following website describes MySQL Extensions to Standard SQL:
https://dev.mysql.com/doc/refman/8.0/en/extensions-to-ansi.html
The following website is a FAQ for MySQL 8.0, along with download links

for the MySQL manual in multiple formats:
https://dev.mysql.com/doc/refman/8.0/en/faqs.html

WHAT IS AN RDBMS?

RDBMS is an initialism for Relational DataBase Management System.
RDBMSs store data in tables that contain labeled attributes (sometimes called
columns) that have a specific data type. Examples of an RDBMS include
MySQL, ORACLE, and IBM DB2. While an RDBMS is software that man-
ages data, a DBMS is the underlying “store” where the data resides.

Although relational databases often provide a very good solution for man-
aging data, speed and scalability might be an issue in some cases. Chapter 5
discusses NoSQL databases, such as MongoDB, that might be more suitable
for speed and scalability.

What Relationships Do Tables Have in an RDBMS?

While an RDBMS can consist of a single table, it often comprises multiple
tables that can have various types of associations with each other. For exam-
ple, when you buy various items at a food store, your receipt consists of one
purchase order that contains one or more “line items,” where each line item
indicates the details of a particular item that you purchased. This is called a
one-to-many relationship between a purchase order (which is stored in a pur-
chase_orders table) and the line items (stored in a line_items table) for
each item that you purchased.

Another example involves students and courses: each student is enrolled
in one or more courses, which is a one-to-many relationship from students to
courses. Moreover, each course contains one or more students, so there is a
one-to-many relationship from courses to students. Hence, the students and
course tables have a many-to-many relationship.

A third example is an employees table, where each row contains informa-
tion about one employee. If each row includes the id of the manager of the
given employee, then the employees table is a self-referential table because

Introduction to RDBMSs and MySQL  •  5

finding the manager of the employee involves searching the employees table
with the manager’s id that is stored in the given employee record. However, if
the rows in an employees table do not contain information about an employ-
ee’s manager, then the table is not self-referential.

In addition to table definitions, a database frequently contains indexes, pri-
mary keys, and foreign keys that facilitate searching for data in tables and also
connecting a row in a given table with its logically related row (or rows) in another
table. For example, if we have the id value for a particular purchase order in the
purchase_orders table, we can find all the line items (i.e., the items that were
purchased) in the line_items table that contain the same purchase order id.

Features of an RDBMS

An RDBMS provides a convenient way to store data, often associated with
some type of application. For example, later you will see the details of a four-
table RDBMS that keeps track of tools that are purchased via a Web-based
application. From a high-level perspective, an RDBMS provides the following
characteristics:

•	a database contains one or more tables
•	data is stored in tables
•	data records have the same structure
•	well-suited for vertical scaling
•	support for ACID (explained below)

Another useful concept is a logical schema that consists of the collection of
tables and their relationships (along with indexes, views, triggers, and so forth)
in an RDBMS. The schema is used for generating a physical schema, which
consists of all the SQL statements that are required to create the specified
tables and their relationships.

For example, Chapter 6 contains a SQL file mytools.sql that contains
the definition of every entity in the mytools database, as well as the directory
mytools-sql-files-20211120 that contains a SQL file for every table in the
mytools database. Moreover, Chapter 6 describes two techniques for export-
ing a MySQL database. After the tables have been generated, you can begin
inserting data and then managing the consistency of the data.

What is ACID?

ACID is an acronym for Atomicity, Consistency, Isolation, and Durability,
which refers to properties of RDBMS transactions, as summarized below.

•	Atomicity means that each transaction is all-or-nothing, so if a transaction
fails, the system is rolled back to its previous state.

•	Consistency means that successful transactions always result in a valid
database state.

6  •  SQL Pocket Primer

•	Isolation means that executing transactions concurrently or serially will
result in the state.

•	Durability means that a committed transaction will remain in the same
state.

RDBMSs support ACID, whereas NoSQL databases usually do not sup-
port ACID.

WHEN DO WE NEED AN RDBMS?

The short answer is that an RDBMS is useful when we need to store records
of events that have occurred, which can be involve simple item purchases as
well as complex multi-table financial transactions.

An RDBMS allows you to define a collection of tables that contain rows of
data, where a row contains one or more attributes (informally called fields).
A row of data is a record of an event that occurred at a specific point in time,
which can involve more than one table, and can also involve some type of
transaction.

Transferring Money Between Bank Accounts

Consider a simple money transfer between two bank accounts in which
you want to transfer $100 from a savings account to a checking account. The
process involves two steps:

1.	 debiting (subtracting) the savings account by $100 and
2.	 crediting (adding) the checking account with $100.

However, if a system failure occurs after step 1 and before step 2 can be
completed, you have lost $100. Obviously, steps 1 and 2 must be treated as an
atomic transaction, which means that the transaction is successful only when
both steps have completed successfully. If the transaction is unsuccessful, the
transaction is “rolled back” so the system is returned to the state prior to trans-
ferring money between the two accounts.

As you learned earlier in this chapter, RDBMSs support ACID, which
ensures that the previous transaction (i.e., transferring money between
accounts) is treated as an atomic transaction.

Although atomic transactions are indispensable in financial systems, they
might not be as critical for other systems. For example, a database that con-
tains a lone events table in which each row contains information about a
single event that you created by some process (such as a registration form)
whenever a new event occurs in a system. Although this is conceptually simple,
notice that the following attributes are relevant for each row in the events
table: event_id, event_time, event_title, event_duration, and
event_location, and possibly additional attributes.

Introduction to RDBMSs and MySQL  •  7

As another example, displaying a set of pictures might not show the pic-
tures in the correct order (e.g., based on their creation time). However, a fail-
ure in the event creation is not as critical as a failure in a financial system, and
displaying images in the wrong sequence will probably be rectified when the
page is refreshed.

THE IMPORTANCE OF NORMALIZATION

This section contains an introduction to the concept of normalization. As a
starting point, consider an RDBMS that stores records for the temperature of
a room during a time interval (such as a day, a week, or some other time inter-
val). We just need one device_temperature table where each row contains
the temperature of a room at a specific time. In the case of the IoT (Internet
of Things), the temperature is recorded during regular time intervals (such as
minute-by-minute or hourly).

If you need to track only one room, the device_temperature table
is probably sufficient. However, if you need to track multiple devices in a
room, then it’s convenient to create a second table called device_details
that contains attributes for each device, such as device_id, device_name,
device_year, device_price, and device_warranty.

Whenever we want the details of a temperature-related event, we
need information from both tables, which consists of one row in the
device_temperature table and its associated row in the device_details
table. The way to perform the two-table connection is simple: each row in
the device_details table contains a device_id that uniquely identifies
the given row. Moreover, the same device_id appears in any row of the
device_temperature table that refers to the given device.

The preceding two-table structure is a minimalistic example of something
called database normalization, whose purpose is to reduce data redundancy in
database tables. Normalization can result in a slower performance during the
execution of some types of SQL statements (e.g., those that contain a JOIN
keyword).

If you are new to the concept of database normalization, you might be
thinking that normalization increases complexity and reduces performance
without providing tangible benefits. While this is a valid thought, the trade-off
is worthwhile because normalization enables you to maintain data consistency.

For example, suppose that every record in the purchase_orders table
contains all the details of the customer who made the associated purchase. As
a result, we can eliminate the customers table. However, if we ever need to
update the address of a particular customer, we need to update all the rows
in the purchase_orders table that contain that customer. By contrast, if
we maintain a customers table, then updating a customer’s address involves
changing a single row in the customers table.

8  •  SQL Pocket Primer

Normalization enables us to avoid data duplication so that there is a single
“source of truth” in the event that information (such as a customer’s address)
must be updated. From another perspective, data duplication means that the
same data appears in two (or possibly more) locations, and if an update is not
applied to all those locations, the database data is in an inconsistent state.
Depending on the nature of the application, the consequences of inconsistent
data can range from minor to catastrophic.

Always remember the following point: whenever you need to update the
same data that resides in two different locations, you increase the risk of a data
inconsistency, which can adversely affect the data integrity.

As another example, suppose that a site sells widgets online. At a minimum,
the associated database needs the following four tables:

•	customer_details
•	purchase_orders
•	po_line_items
•	item_desc

The preceding scenario is explored in greater detail in the next section that
specifies the attributes of each of the preceding tables.

A FOUR-TABLE RDBMS

Suppose that www.mytools.com sells tools (the details of which are not
important). For simplicity, let’s pretend that an actual website is available at
the preceding URL and it contains the following sections:

•	new user register registration
•	existing user log in
•	input fields for selecting items for purchase (and the quantities)

For example, the registered user John Smith wants to purchase one ham-
mer, two screwdrivers, and three wrenches. The website needs to provide
users with the ability to search for products by their type (e.g., a hammer, a
screwdriver, or a wrench) and then display a list of matching products. Each
product in that list would also contain an SKU, which is an industry-standard
labeling mechanism for products (just like ISBNs for identifying books).

The preceding functionality is necessary in order to develop a website that
enables users to purchase products. However, the purpose of this section is to
describe a set of tables (and their relationships to each other) in an RDBMS,
so we will assume that the necessary Web-based features are available at our
URL.

Let’s describe a use case that contains the sequence of steps that are per-
formed on behalf of an existing customer John Smith (whose customer ID is
1000), who wants to purchase 1 hammer, 2 screwdrivers, and 3 wrenches:

Introduction to RDBMSs and MySQL  •  9

Step 1: Customer John Smith (with cust_id 1000) initiates a new purchase.
Step 2: A new purchase order is created with the value 12500 for po_id.
Step 3: John Smith selects 1 hammer, 2 screwdrivers, and 3 wrenches.
Step 4: The associated prices for the items are $20.00, $16.00, and $30.00.
Step 5: The subtotals for the items are $20.00, $16.00, and $30.00.
Step 6: A 10% tax for the items is $2.00, $1.60, and $3.00.
Step 7: The total cost of this purchase order is $72.60.

There are additional steps that you could perform. For example, Step 8
would allow John Smith to remove an item, increase/decrease the quantity for
each selected item, delete items, or cancel the purchase order. Step 9 would
enable John Smith to make a payment. Once again, for the sake of simplicity,
we will assume that Step 8 and Step 9 are available in an enhanced version of
this Web application.

Note that Step 8 involves updating several of our tables with the details
of the purchase order. Step 9 creates a time stamp for the date when the
purchase order was created, as well as the status of the purchase order
(“paid” versus “pending”). The status of a purchase order is used to gen-
erated reports to display the customers whose payment is overdue (and
perhaps also send them friendly reminders). Sometimes companies have
a reward-based system whereby customers who have paid on time can col-
lect credits that can be applied to other purchases (which is essentially a
discount mechanism).

DETAILED TABLE DESCRIPTIONS

If you visualize the use case described in the previous section, you can
probably see that we need

•	a table for storing customer-specific information
•	a table to store purchase orders (which is somehow linked to the associ-

ated customer)
•	a table that contains the details of the items and quantity that are pur-

chased (which are commonly called “line items”)
•	a table that contains information about each tool (which includes the

name, the description, and the price of the tool).

Hence, the RDBMS for our website requires the following tables:

•	customers
•	purchase_orders
•	line_items
•	item_desc

The following subsections describe the contents of the preceding tables,
along with the relationships among these tables.

10  •  SQL Pocket Primer

The Customers Table

Although there are different ways to specify the attributes of the custom-
ers table, you need enough information to uniquely identify each customer
in the table. By analogy, the following information (except for cust_id) is
required to send physical mail to a person:

•	cust_id
•	first_name
•	last_name
•	home_address
•	city
•	state
•	zip_code

We will create the customers table with the attributes in the preceding list.
Although we’ll defer the discussion of keys to a later chapter, it’s obvious that we
need a mechanism for uniquely identifying every customer. In this table, notice
that the cust_id attribute uniquely identifies every customer, and therefore it’s
a key for this table. Other examples of keys for database tables include

•	social security numbers for people
•	student id numbers for students
•	course id numbers for classes
•	drivers’ licenses

Whenever we need to refer to the details of a particular customer, we will
use the associated value of cust_id to retrieve those details from the row in
the customers table that has the associated cust_id.

The preceding paragraph describes the essence of linking related tables T1
and T2 in an RDBMS: the key in T1 is stored as an attribute value in T2. If we
need to access related information in table T3, then we store the key in T2 as
an attribute value in T3.

Note that a customers table in a production system would contain addi-
tional attributes, such as the following:

title (Mr, Mrs, Ms, and so forth)
shipping_address
cell_phone

For the sake of simplicity, we’ll use the initial set of attributes to define
the customers table. Later, you can add the new attributes to the four-table
schema to make the system more like a real system.

Suppose that the following information pertains to customer John Smith,
who has been assigned a cust_id of 1000:

Introduction to RDBMSs and MySQL  •  11

cust_id: 1000
first_name: John
last_name: Smith
home_address: 1000 Appian Way
city: Sunnyvale
state: California
zip_code:95959

Whenever John Smith makes a new purchase, we will use the cust_id
value of 1000 to create a new row for this customer in the purchase_orders
table. Then whenever we need to find the purchase orders associated with
John Smith, we simply look for the rows in the purchase_orders table
whose cust_id value equals 1000.

The purchase_orders Table

When existing customers visit the website, they must log into the system,
after which they can initiate a new purchase. After they select one or more
items, the system creates a purchase order to insert as a new row in the pur-
chase_orders table, and a new row in the line_items table for each item
that was selected. While you might be tempted to place all the customers’
details in the new row, we will identify the customer by the associated cust_
id and use this value instead.

However, we must create a new row in the customers table whenever
new users register at the website. Repeat customers are identified by an
existing cust_id that must be determined by searching the customers
table with the information that the customer types into the input fields of
the main webpage.

The customers table contains a key attribute; similarly, the purchase_
orders table contains an attribute that we call po_id (you are free to use a
different string) in order to associate a purchase order for a given customer.

Keep in mind the following detail: a row with a given po_id also contains
the cust_id value of the customer (in the customers table) who initiated
the current purchase order. Although there are multiple ways to define a set of
suitable attributes, let’s use the following set of attributes for the purchase_
orders table:

cust_id
po_id
purchase_date

For example, suppose that customer John Smith, whose cust_id is 1000,
purchases some tools on December 01, 2021. Although there are dozens of
different date formats that are supported in RDBMS, we use the YYYY-MM-DD
format (which you can change to suit your particular needs). Then the new row
for John Smith in the purchase_orders looks like this, where the po_id
value was arbitrarily assigned:

12  •  SQL Pocket Primer

cust_id: 1000
po_id: 12500
purchase_date: 2021-12-01

As mentioned earlier, a purchase order involves one or more items, each of
which is stored in the line_items table that is discussed in the next section.

The line_items Table

As a concrete example, suppose that customer John Smith requested
1 hammer, 2 screwdrivers, and 3 wrenches in his most recent purchase
order. Each of these purchased items requires a row in the line_items
table that

•	is identified by a line_id value
•	specifies the quantity of each purchased item
•	contains the value for the associated po_id in the purchase_orders

table
•	contains the value for the associated item_id in the item_desc table

For simplicity, let’s assign the values 5001, 5002, and 5003 to the line_
id attribute for the three new rows in the line_items table that represent
the hammer, screwdriver, and wrench items in the current purchase order. A
line_item row might look like the following code:

po_id: 12500
line_id: 5001
item_id: 100 <= we'll discuss this soon
item_count: 1
item_price: 20.00
item_tax: 2.00
item_subtotal: 22.00

Notice there is no cust_id in the preceding line_item: that’s because
of the top-down approach for retrieving data. Specifically, we start with a
particular cust_id that we use to find a list of purchase orders in the pur-
chase_orders table that belong to the given cust_id. For each purchase
order in the purchase_orders table, we perform a search for the associated
line items in the line_items table. We can repeat the preceding sequence of
steps for each customer in a list of cust_id values.

Let us return to the line_item details. We need to reference each pur-
chased item by its associated identifier in the item_desc table. Once again,
we arbitrarily assign item_id values of 100, 200, and 300, respectively, for the
hammer, screwdriver, and wrench items. The actual values will undoubtedly
be different in your application, so there is no special significance to the num-
bers 100, 200, and 300.

The three rows in the line_items table (that belong to the same pur-
chase order) look like this (we’ll look at the corresponding SQL statements
later):

Introduction to RDBMSs and MySQL  •  13

po_id: 12500
line_id: 5001
item_id: 100
item_count: 1
item_price: 20.00
item_tax: 2.00
item_subtotal: 22.00

po_id: 12500
line_id: 5002
item_id: 200
item_count: 2
item_price: 8.00
item_tax: 1.60
item_subtotal: 17.60

po_id: 12500
line_id: 5003
item_id: 300
item_count: 3
item_price: 10.00
item_tax: 3.00
item_subtotal: 33.00

The item_desc Table

Recall that the customers table contains information about each cus-
tomer, and a new row is created each time that a new customer creates an
account for our Web application. In a somewhat analogous fashion, the item_
desc table contains information about each item (aka product) that can be pur-
chased from our website. If our website becomes popular, the contents of the
item_desc table contents are updated more frequently than the customers
table, typically in the following situations:

•	A new tool (aka product) is available for purchase
•	An existing tool is no longer available for purchase

Thus, the item_desc table contains all the details for every tool that is
available for sale, and it’s the “source of truth” for the tools that customers
can purchase from the website. At a minimum, this table contains three
fields (we’ll discuss the SQL statement for creating and populating this
table later):

SELECT *
FROM item_desc;
+---------+-------------+------------+
| item_id | item_desc | item_price |
+---------+-------------+------------+
100	hammer	20.00
200	screwdriver	8.00
300	wrench	10.00
+---------+-------------+------------+
3 rows in set (0.001 sec)

14  •  SQL Pocket Primer

There is one more important detail to discuss: if an item is no longer for
sale, can we simply drop its row from the item_desc table? The answer is “no”
because we need this row to generate reports that contain information about
the items that customers purchased.

Hence, it is a good idea to add another attribute called AVAILABLE (or
something similar) that contains either 1 or 0 to indicate whether the product
is available for purchase. As a result, some of the SQL queries that involve this
table will also need to take into account this new attribute. Implementation of
this functionality is not central to the purpose of this book, and therefore it is
left as an enhancement to the reader.

SQL STATEMENTS FOR THE IMPATIENT (OPTIONAL)

Before delving into the details of a purchase order, there are two imple-
mentation detail regarding tax rates. First, do we store the tax-related details
for each product in the associated row in the line_items table, or do we
calculate those values dynamically when the purchase orders are generated at
run time? For simplicity, this book follows the first option.

Second, if the tax rates can change, then you have two choices: update the
hard-coded tax rate in the application code, or create another application table
(let’s call this the TAX_RATE table) that contains the current tax rate, which in
this case is 0.10). The advantage of the latter option is that you do not need to
alter the application code, and you could also define multiple rows with differ-
ent tax rates.

The following list describes the sequence of steps each time that a cus-
tomer (for convenience, let’s assume it’s John Smith) purchases one or more
items from our website:

•	Step 1: Customer John Smith (with cust_id 1000) initiated a purchase.
•	Step 2: The newly generated purchase_order has the value 12500.
•	Step 3: John Smith purchased 1 hammer, 2 screwdrivers, and 3 wrenches.
•	Step 4: The cost for the three items is 20.00, 16.00, and 30.00, respectively.
•	Step 5: The subtotal for the purchase order is 66.00.
•	Step 6: The tax is 6.60 (a tax rate of 10%).
•	Step 7: The total cost is 72.60.

As you can see, the tables customers, purchase_orders, and line_
items have been updated as follows:

1.	 customers: a row for new customer John Smith
2.	 purchase_orders: a new row for customer John Smith
3.	 line_items: three new rows for the new purchase order
4.	 item_desc: no changes to this table

Introduction to RDBMSs and MySQL  •  15

We need to create the customers table, then the purchase_orders
table, and then the line_items table, as shown in the following code:

use mytools;
DROP TABLE IF EXISTS customers;
CREATE TABLE customers (cust_id INTEGER, first_name
VARCHAR(20), last_name VARCHAR(20), home_address
VARCHAR(20), city VARCHAR(20), state VARCHAR(20), zip_code
VARCHAR(10));

INSERT INTO customers
VALUES (1000,'John','Smith','123 Main
St','Fremont','CA','94123');

DROP TABLE IF EXISTS purchase_orders;
CREATE TABLE purchase_orders (cust_id INTEGER, po_id
INTEGER, purchase_date date);

DROP TABLE IF EXISTS line_items;
CREATE TABLE line_items (po_id INTEGER, line_id
INTEGER, item_id INTEGER, item_count INTEGER, item_
price DECIMAL(8,2), item_tax DECIMAL(8,2), item_subtotal
DECIMAL(8,2));

Next, creating a new purchase order involves the following steps:

1.	 Insert a new row in the purchase_orders table (new po_id and cur-
rent cust_id).

2.	 For each purchased item,
	 a.	 Insert a new row in line_items with the po_id from Step 1.

Let’s use the data values in the previous section to write the pseudocode
that performs the preceding steps for cust_id 1000 who makes a purchase
that consists of 1 hammer, 2 screwdrivers, and 3 wrenches:

Create four new rows:
  insert row into purchase_orders for a new purchase order
  insert row into line_items for 1 hammer
  insert row into line_items for 2 screwdrivers
  insert row into line_items for 3 wrenches

Finally, here are the four SQL statements that create the required new
row in the table purchase_orders and the three new rows in the table
line_items:

-- create a new purchase order:
INSERT INTO purchase_orders VALUES (1000,12500, '2021-12-01');

-- line item => one hammer:
INSERT INTO line_items VALUES (12500,5001,100,1,20.00,2.00,22.00);

16  •  SQL Pocket Primer

-- line item => two screwdrivers:
INSERT INTO line_items VALUES (12500,5002,200,2,8.00,1.60,17.60);

-- line item => three wrenches:
INSERT INTO line_items VALUES (12500,5003,300,3,10.00,3.00,33.00);

If you want to see the details of the newly created purchase order, here is
the SQL statement, keeping in mind that the discussion of SQL statements
and the GROUP BY clause is postponed until Chapter 3:

SELECT c.cust_id, p.po_id, l.line_id, l.item_subtotal
FROM customers c, purchase_orders p, line_items l
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id;
+---------+-------+---------+---------------+
| cust_id | po_id | line_id | item_subtotal |
+---------+-------+---------+---------------+
1000	12500	5001	22.00
1000	12500	5002	17.60
1000	12500	5003	33.20
+---------+-------+---------+---------------+
3 rows in set (0.003 sec)

If you want to see the billable cost of the newly created purchase order, the
SQL statement is as follows:

SELECT c.cust_id, p.po_id, sum(l.item_subtotal) AS po_total
FROM customers c, purchase_orders p, line_items2 l
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
GROUP BY c.cust_id, p.po_id;
+---------+-------+----------+
| cust_id | po_id | po_total |
+---------+-------+----------+
| 1000 | 12500 | 72.60 |
+---------+-------+----------+
1 row in set (0.000 sec)

A variant of the preceding SQL statement includes the purchase date for
the purchase order:

SELECT c.cust_id, p.po_id, p.purchase_date, sum(l.item_
subtotal) AS po_total
FROM customers c, purchase_orders p, line_items2 l
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
GROUP BY c.cust_id, p.po_id, p.purchase_date;
+---------+-------+---------------+----------+
| cust_id | po_id | purchase_date | po_total |
+---------+-------+---------------+----------+
| 1000 | 12500 | 2021-12-01 | 72.60 |
+---------+-------+---------------+----------+
1 row in set (0.001 sec)

Introduction to RDBMSs and MySQL  •  17

What About an Item Inventory Table?

An item_inventory table is useful for ordering new items when the
inventory level drops below a predefined value. Specifically, this table con-
tains a row for each item in the item_desc table, where a row consists of an
item_id attribute and an on_hand attribute that specifies how many items
are available (“on hand”) that can be purchased.

When the inventory level of an item is low (such as 20% of capacity), one
technique involves executing a trigger (discussed in Chapter 6) that sends an
alert to a system that then generates a purchase order to re-stock the item.
Note that the “system” can be an application that automatically generates pur-
chase orders or it could be a person who initiates the necessary purchase order.

For our example, we’ll make a simplifying assumption that we will always
have enough inventory available for purchase orders. However, if you are look-
ing for enhancement ideas, consider 1) adding an item_inventory table
to the application that is discussed in this book or 2) adding the appropriate
attributes to the item_desc table.

THE ROLE OF SQL

SQL is an acronym for Structured Query Language, which is used for man-
aging data in tables in a relational database (RDBMS). SQL is a standard lan-
guage for managing the contents of structured databases. In high-level terms,
a SQL statement to retrieve data generally involves the following:

•	what data you want (SELECT)
•	the table(s) where the data resides (FROM)
•	constraints (if any) on the data (WHERE)

For example, suppose that a friends table contains the attributes (data-
base parlance for “fields”) lname and fname for the last name and first name,
respectively, of a set of friends, and each row in this table contains details about
one friend.

In Chapter 2, we’ll learn how to create database tables and how to popu-
late those tables with data, but for now let’s just pretend that those tasks have
already been performed. Then the SQL statement for retrieving the first and
last names of the people in the friends table is as follows:

SELECT lname, fname
FROM friends;

Suppose that the friends table also contains a height attribute, which
is a number (in centimeters) for each person in the friends table. We can
extend the preceding SQL statement to specify that we want the people (rows)
whose height attribute is less than 180:

18  •  SQL Pocket Primer

SELECT lname, fname
FROM friends
WHERE height < 180;

SQL provides numerous keywords that enable you to specify sophisticated
queries for retrieving data from multiple tables. Both of the preceding SQL
statements are called DML statements, which is one of the four categories of
SQL statements:

•	DCL (Data Control Language
•	DDL (Data Definition Language)
•	DQL (Data Query Language)
•	DML (Data Manipulation Language)

The following subsections provide additional information for each item in
the preceding list.

DCL, DDL, DQL, DML, and TCL

DCL is an acronym for Data Control Language, which refers to any SQL
statement that contains the keywords GRANT or REVOKE. Both of the key-
words affect the permissions that are either granted or revoked for a particu-
lar user.

DDL is an acronym for Data Definition Language, which refers to any
SQL statements that specify the following: CREATE, ALTER, DROP, RENAME,
TRUNCATE, or COMMENT. These SQL keywords are used in conjunction with
database tables and in many cases with database views (discussed later).

DQL is an acronym for Data Query Language, which refers to any SQL
statement that contains the keyword SELECT.

DML is an acronym for Data Manipulation Language, which refers to
SQL statements that execute queries against one or more tables in a database.
The SQL statements contain any of the keywords INSERT, UPDATE, DELETE,
MERGE, CALL, EXPLAIN PLAN, or LOCK TABLE. In most cases, these key-
words modify the existing values of data in one or more tables.

TCL is an acronym for Transaction Control Language, which refers to any
of the keywords COMMIT, ROLLBACK, SAVEPOINT, or SET TRANSACTION.

SQL Privileges

There are two types of privileges available in SQL, both of which are
described briefly in this section. These privileges refer to database objects such
as database tables and indexes that are discussed in greater detail in subse-
quent chapters.

System privileges involve an object of a particular type and specifies the
right to perform one or more actions on the object. Such actions include the
administrator giving users permission to perform tasks such as ALTER ANY
INDEX, ALTER ANY CACHE GROUP, CREATE/ALTER/DELETE TABLE, or
CREATE/ALTER/DELETE VIEW.

Introduction to RDBMSs and MySQL  •  19

Object privileges allow users to perform actions on an object or object of
another user, such as tables, views, and indexes. Additional object privileges
are EXECUTE, INSERT, UPDATE, DELETE, SELECT, FLUSH, LOAD,
INDEX, and REFERENCES.

PROPERTIES OF SQL STATEMENTS

SQL statements and SQL functions (discussed in Chapter 4) are not case
sensitive, but quoted text is case sensitive. Here are some examples of SQL
statements that are executed from the MySQL prompt:

MySQL [mytools]> select VERSION();
+-----------+
| VERSION() |
+-----------+
| 8.0.21 |
+-----------+
1 row in set (0.000 sec)

MySQL [mytools]> SeLeCt Version();
+-----------+
| Version() |
+-----------+
| 8.0.21 |
+-----------+
1 row in set (0.000 sec)

Keep in mind the following useful details regarding SQL statements:

•	SQL statements are not case sensitive.
• SQL statements can be on one or more lines.
• Keywords cannot be abbreviated or split across lines.
• Clauses are usually placed on separate lines.
• Indentation is for enhancing readability.

The CREATE Keyword

In general, you will use the CREATE keyword to create a database and more
often to create tables, views, and indexes. However, the following list contains
all the objects that you can create via the CREATE statement:

•	DATABASE
•	EVENT
•	FUNCTION
•	INDEX
•	PROCEDURE
•	TABLE
•	TRIGGER
•	USER
•	VIEW

20  •  SQL Pocket Primer

With the exception of EVENT, all the keywords in the preceding list are dis-
cussed, along with SQL statements, in various chapters of this book.

DATA TYPES IN MYSQL

This section starts with a lengthy list of data types that MySQL supports,
followed by some comments about several of the data types, all of which you
can use in table definitions:

•	The BIT datatype is for storing bit values in MySQL.
•	The BOOLEAN datatype stores True/False values.
•	The CHAR data type is for storing fixed length strings.
•	The DATE datatype is for storing date values.
•	The DATETIME datatype is for storing combined date and time values.
•	The DECIMAL datatype is for storing exact values in decimal format.
•	The ENUM datatype is a compact way to store string values.
•	The INT datatype is for storing an integer data type.
•	The JSON data type is for storing JSON documents.
•	The TEXT datatype is for storing text values.
•	The TIME datatype is for storing time values.
•	The TIMESTAMP datatype is for a wider range of date and time values.
•	The TO_SECONDS datatype is for converting time to seconds.
•	The VARCHAR datatype is for variable length strings.
•	The XML data type provides support for XML documents.

The CHAR and VARCHAR Data Types

The CHAR type has a fixed column length whose value is declared while
creating tables, which can range from 1 to 255. CHAR values are right padded
with spaces to the specified length, and trailing spaces are removed when CHAR
values are retrieved.

By contrast, the VARCHAR type indicates variable length CHAR values whose
length can be between 1 and 2000, and it occupies the space for NULL values.

The VARCHAR2 type indicates variable length CHAR values whose length can
be between 1 and 4000, but cannot occupy the space for NULL values. Hence,
VARCHAR2 has better performance than VARCHAR.

String-Based Data Types

The previous bullet list contains various string types, and the latter have
been extracted and placed in a separate list below for your convenience:

•	BLOB
•	CHAR
•	ENUM

Introduction to RDBMSs and MySQL  •  21

•	SET
•	TEXT
•	VARCHAR

The ENUM datatype is string object that specifies a set of predefined values,
which can be used during table creation:

CREATE TABLE PIZZA(name ENUM('Small', 'Medium','Large'));
Query OK, 0 rows affected (0.021 sec)

DESC pizza;
+-------+-----------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------+------+-----+---------+-------+
| name | enum('Small', | YES | | NULL | |
| |'Medium','Large')| | | | |
+-------+-----------------+------+-----+---------+-------+
1 row in set (0.004 sec)

FLOAT and DOUBLE Data Types

Numbers in the FLOAT format are stored in four bytes and have eight deci-
mal places of accuracy. Numbers in the DOUBLE format are stored in eight
bytes and have eighteen decimal places of accuracy.

BLOB and TEXT Data Types

A BLOB is an acronym for binary large object that can hold a variable
amount of data. There are four BLOB types whose only difference is their maxi-
mum length:

•	TINYBLOB
•	BLOB
•	MEDIUMBLOB
•	LONGBLOB

A TEXT data type is a case-insensitive BLOB, and there are four TEXT types
whose difference pertains to their maximum length (all of which are non-
standard data types):

•	TINYTEXT
•	TEXT
•	MEDIUMTEXT
•	LONGTEXT

Keep in mind the following difference between BLOB types and TEXT types:
BLOB types involve case-sensitive sorting and comparisons, whereas these
operations are case-insensitive for TEXT types.

22  •  SQL Pocket Primer

MYSQL DATABASE OPERATIONS

There are several operations that you can perform with a MySQL database:

•	Create a database
•	Import/Export a database
•	Drop a database
•	Rename a database

You will see examples of how to perform each of the preceding bullet items
in the following subsections.

Creating a Database

Log into MySQL and execute the following SQL statement to create the
mytools database:

MySQL [mysql]> create database mytools;
Query OK, 1 row affected (0.004 sec)

Now select the mytools database with the following command:

MySQL [(none)]> use mytools;
Reading table information for completion of table and
column names
You can turn off this feature to get a quicker startup
with -A
Database changed

Display a List of Databases

Display the existing databases by invoking the following SQL statement:

mysql> SHOW DATABASES;

The preceding command displays the following output (which might be
different for your machine):

+--------------------+
| Database |
+--------------------+
| beans |
| information_schema |
| minimal |
| mysql |
| mytools |
| performance_schema |
| sys |
+--------------------+
9 rows in set (0.002 sec)

Introduction to RDBMSs and MySQL  •  23

Display a List of Database Users

Display the list of existing users by invoking the following SQL
statement:

mysql> select user from mysql.user;

The preceding SQL statement displays the following output:

+------------------+
| user |
+------------------+
| mysql.infoschema |
| mysql.session |
| mysql.sys |
| root |
+------------------+
4 rows in set (0.001 sec)

Dropping a Database

Log into MySQL and invoke the following SQL statement to create, select,
and then drop the pizza database:

MySQL [(none)]> create database pizza;
Query OK, 1 row affected (0.004 sec)
MySQL [(none)]> use pizza;
Database changed
MySQL [pizza]> drop database pizza;
Query OK, 0 rows affected (0.007 sec)

Performing this task with a database that does not contain any data is
straightforward, without the loss of any data.

EXPORTING A DATABASE

Although you currently have an empty database, it’s still good to know
how the steps for exporting a database, which is handy as a backup and also
provides a simple way to create a copy of an existing database on a different
machine.

By way of illustration, let’s first create the database called minimal in
MySQL, as shown here:

MySQL [mytools]> create database minimal;
Query OK, 1 row affected (0.006 sec)

Next, invoke the mysqldump command from the command line to export
the minimal database, as shown here:

mysqldump -u username -p"password" -R minimal > minimal.sql

24  •  SQL Pocket Primer

Notice the details of the preceding command. First, there are no interven-
ing spaces between the -p flag and the password in order to bypass a command
line prompt to enter the password. Second, make sure that you omit the quote
marks. Third, the -R flag instructs mysqldump to copy stored procedures and
functions in addition to the database data.

As a specific example, if the user is root and the password is mypassword,
then the preceding command is as follows:

mysqldump -u root -pmypassword -R minimal > minimal.sql

At this point, you can create tables in the minimal database and periodically
export its contents. Listing 1.1 shows the content of minimal.sql, which is
the complete description of the minimal database.

LISTING 1.1: minimal.sql

-- MariaDB dump 10.18 Distrib 10.5.8-MariaDB, for osx10.15 (x86_64)
--
-- Host: localhost Database: minimal
-- --
-- Server version	 8.0.21

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_
CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--
-- Dumping routines for database 'minimal'
--
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2021-12-23 22:44:54

RENAMING A DATABASE

Since the database is empty, it’s convenient to see how to rename a database
(and besides, it’s faster to do so with an empty database).

Introduction to RDBMSs and MySQL  •  25

Older versions of MySQL provided the RENAME DATABASE command to
rename a database; however, newer versions of MySQL have removed this
functionality to avoid security risks.

Perform the following three-step process using MySQL command line util-
ities to rename a MySQL database OLD_DB (which you need to replace with
the name of the database that you want to rename) to a new database, NEW_DB
(replaced with the actual new database name):

Step 1) Create an exported copy of database OLD_DB.
Step 2) Create a new database called NEW_DB.
Step 3) Import data from OLD_DB into NEW_DB.

Perform Step 1) by invoking the following command (see the previous section):

mysqldump -u username -p"password" -R OLD_DB > OLD_DB.sql

Perform Step 2) by invoking the following command:

mysqladmin -u username -p"password" create NEW_DB

Perform Step 3) by invoking the following command:

mysql -u username -p"password" newDbName < OLD_DB.sql

Verify that everything worked correctly by logging into MySQL and select-
ing the new database:

MySQL [mysql]> use NEW_DB;

Database changed

SHOW DATABASE TABLES

Log into MySQL and select the mytools database as described in the pre-
ceding section, and then display the tables in the mytools database with the
following command:

use mytools;
Database changed

show tables;
+--------------------+
| Tables_in_mytools |
+--------------------+
| account |
| courses |
| curr_exchange_rate |
| currencies |
| cust_history |
| customers |
| employees |

26  •  SQL Pocket Primer

| FRIENDS |
| FRIENDS2 |
| item_desc |
| japn1 |
| japn2 |
| japn3 |
| japn_emps |
| json1 |
| line_items |
| new_items |
| people |
| people2 |
| purchase_orders |
| sample |
| schedule |
| students |
| temp_cust2 |
| user |
| user2 |
| user3 |
| weather |
| weather2 |
+--------------------+
29 rows in set (0.001 sec)

The preceding output displays the tables in the mytools database that you
will encounter in various chapters of this book. Note that Chapter 6 contains
the SQL file mytools.sql that you can execute to generate the mytools
database that creates and populates the tables in mytools with the data that is
stored in mytools.sql.

Now let’s switch to the mysql database and show the list of tables in that
database:

SQL [mytools]> use mysql;
Reading table information for completion of table and
column names
You can turn off this feature to get a quicker startup with -A

Database changed

MySQL [mysql]> show tables;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| component |
| db |
| default_roles |
| engine_cost |
| func |
| general_log |
| global_grants |

Introduction to RDBMSs and MySQL  •  27

| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| password_history |
| plugin |
| procs_priv |
| proxies_priv |
| role_edges |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
33 rows in set (0.004 sec)

Although we won’t explore this database, you can read the online documen-
tation for more information about the tables in this database.

THE INFORMATION_SCHEMA TABLE

The INFORMATION_SCHEMA.COLUMNS table enables you to retrieve informa-
tion about the columns in a given table. Execute the following SQL statement:

desc INFORMATION_SCHEMA.COLUMNS;

Some of the columns in the preceding table are as follows:

TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
ORDINAL_POSITION
COLUMN_DEFAULT
IS_NULLABLE
DATA_TYPE
CHARACTER_MAXIMUM_LENGTH
NUMERIC_PRECISION
NUMERIC_SCALE
DATETIME_PRECISION

We can query the preceding table to obtain more information about the
structure of the weather table that is created later in this book:

28  •  SQL Pocket Primer

MySQL [mytools]> desc weather;
+----------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+----------+------+-----+---------+-------+
day	date	YES		NULL	
temper	int	YES		NULL	
wind	int	YES		NULL	
forecast	char(20)	YES		NULL	
city	char(20)	YES		NULL	
state	char(20)	YES		NULL	
+----------+----------+------+-----+---------+-------+
6 rows in set (0.001 sec)

Now invoke the following SQL statement:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'weather'
AND table_schema = 'mytools';

The preceding SQL query generates the following output:

+-------------+-----------+-------------+----------------+
| COLUMN_NAME | DATA_TYPE | IS_NULLABLE | COLUMN_DEFAULT |
+-------------+-----------+-------------+----------------+
city	char	YES	NULL
day	date	YES	NULL
forecast	char	YES	NULL
state	char	YES	NULL
temper	int	YES	NULL
wind	int	YES	NULL
+-------------+-----------+-------------+----------------+
6 rows in set (0.001 sec)

THE PROCESSLIST TABLE

The PROCESSLIST table contains information about the status of SQL
statements. This information is useful when you want to see the status of table-
level or row-level locks on a table (which is outside the scope of this book).
The following SQL statement shows you an example of the contents of this
table.

MySQL [mytools]> show processlist;
+----+-----------------+-----------+---------+---------+--------+------
---------+------------------+
| Id | User | Host | db | Command | Time | State
| Info |
+----+-------------+-----------+--------+---------+--------+-----------
--------+------------------+
| 5 | event_scheduler | localhost | NULL | Daemon | 138765 | Waiting on
empty queue | NULL |
| 9 | root | localhost | mytools | Query | 0 | starting
| show processlist |
+----+-----------------+-----------+---------+---------+--------+------
---------+------------------+
2 rows in set (0.000 sec)

Introduction to RDBMSs and MySQL  •  29

SQL FORMATTING TOOLS

As you might expect, there are various formatting styles for SQL state-
ments, and you can peruse them to determine which style is most appealing to
you. The following site has an online SQL formatter:

https://codebeautify.org/sqlformatter
The following site contains 18 SQL formatters, some of which are com-

mercial and some are free:
https://www.sqlshack.com/sql-formatter-tools/
The following site contains a list of SQL formatting conventions (i.e., it’s

not about formatting tools):
https://opendatascience.com/best-practices-sql-formatting
If you work in an environment where the SQL formatting rules have already

been established, it might be interesting to compare that style with those of the
SQL formatting tools in the preceding links.

If you are a SQL beginner working on your own, it’s also worth exploring
these sites as you learn more about SQL statements throughout this book. As
you gain more knowledge about writing SQL statements, you will encounter
various styles in blog posts and the conventions that they follow for formatting
SQL statements.

SUMMARY

This chapter started with an introduction to the concept of an RDBMS,
and the rationale for using an RDBMS. In particular, you saw an example of an
RDBMS with a single table, two tables, and four tables (and there are much
larger RDBMSs).

Then you got a brief introduction to the notion of database normaliza-
tion, and how doing so will help you maintain data integrity (“single source of
truth”) in an RDBMS.

Next, you learned about the structure of the tables in a four-table database
that keeps track of customer purchases of tools through a webpage. You also
saw which tables have a one-to-many relationship so that you can find all the
line items that belong to a given purchase order.

In addition, you obtained a brief introduction to SQL and some basic exam-
ples of SQL queries (more details are in Chapter 2). You also learned about
various types of SQL statements that can be classified as DCL (Data Control
Language), DDL (Data Definition Language), DQL (Data Query Language),
or DML (Data Manipulation Language).

Next, you learned about SQL data types, and then you learned how to per-
form database operations, such as creating, dropping, and renaming a database
in MySQL. Finally, you learned about two useful built-in tables that enable you
to find the columns of a given table and the status of SQL statements.

CHAPTER 2
WORKING WITH SQL AND MySQL

The previous chapter provided a fast-paced introduction to RDBMSs
and SQL concepts, whereas this chapter contains more details about
MySQL and illustrates various SQL statements that are necessary to

create and manage the database tables for a fictitious website.
The first part of this chapter presents various ways to create MySQL

tables, which can be performed manually, from SQL scripts, or from the
command line. You will also see how to create a MySQL table that contains
Japanese text that contains a mixture of Kanji and Hiragana. This section
also shows you how to drop and alter MySQL tables, and how to populate
MySQL tables with seed data.

The second part of this chapter contains an assortment of SQL statements
that involve the SELECT keyword. You will see SQL statements that find the
distinct rows in a MySQL table as well as the unique rows, along with using the
EXISTS and LIMIT keywords. This section also explains the differences among
the DELETE, TRUNCATE, and DROP keywords in SQL.

The third part of this chapter introduces the concept of an index, and then
shows you how to create indexes on MySQL tables, along with criteria for
defining indexes, followed by how to select columns for an index. Although the
four tables in Chapter 1 are very small enough and do not require any indexes,
it’s important to understand the purpose of indexes and how to create them.

Depending on the configuration of MySQL on your system, you might
encounter issues when you attempt to export data in a database table to a text
file or when you attempt to import CSV data into a database table. A sim-
pler alternative is to download and install MySQL Workbench (discussed in
Chapter 6) to export MySQL data or to import data into MySQL tables.

32  •  SQL Pocket Primer

DROP DATABASE TABLES

You might be wondering why we’re discussing how to drop a database table
when we haven’t learned how to create a table. SQL scripts, as well as com-
mand line invocations of SQL statements, will often drop a table and then re-
create the table for the following reasons:

1.	 The table definition needs to be modified.
2.	 The table data needs to be modified.
3.	 Both 1) and 2).

Listing 2.1 shows the content of mytools_drop_tables.sql that illus-
trates the syntax to drop multiple database tables (but without recreating
them).

LISTING 2.1: mytools_drop_tables.sql

USE DATABASE mytools;
-- drop tables if they already exist:
DROP TABLE IF EXISTS customers;
DROP TABLE IF EXISTS purchase_orders;
DROP TABLE IF EXISTS line_items;
DROP TABLE IF EXISTS item_desc;

Listing 2.1 contains four SQL statements to drop four tables if they already
exist. If they do not exist, then no error occurs. Now let’s see how to create
database tables, as discussed in the next section.

CREATE DATABASE TABLES

There are three ways to create database tables in MySQL as well as other
RDBMSs. One technique is manual (shown first); another technique (shown
second) invokes a SQL file that contains suitable SQL commands; and a third
technique involves redirecting a SQL file to the MySQL executable from the
command line.

The next section shows you how to create the four tables (described in
Chapter 1) for the Web application.

Manually Creating Tables for mytools.com

This section shows you how to manually create the four tables for the
mytools database based on the attributes (column names) that were discussed
in Chapter 1. Specifically, you will see how to create the following four tables:

•	customers
•	purchase_orders

Working with SQL and MySQL  •  33

•	line_items
•	item_desc

Now log into MySQL, and after selecting the mytools database, type the
following commands to create the required tables:

MySQL [mytools]> CREATE TABLE customers (cust_id INTEGER,
first_name VARCHAR(20), last_name VARCHAR(20), home_address
VARCHAR(20), city VARCHAR(20), state VARCHAR(20), zip_code
VARCHAR(10));

MySQL [mytools]> CREATE TABLE purchase_orders (cust_id
INTEGER, po_id INTEGER, purchase_date date);

MySQL [mytools]> CREATE TABLE line_items (po_id INTEGER,
line_id INTEGER, item_id INTEGER, item_count INTEGER, item_
price DECIMAL(8,2), item_tax DECIMAL(8,2), item_subtotal
DECIMAL(8,2));

MySQL [mytools]> CREATE TABLE item_desc (item_id INTEGER,
item_desc VARCHAR(80), item_price DECIMAL(8,2));

Describe the structure of the customers table with the following
command:

MySQL [mytools]> desc customers;
+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
cust_id	int	YES		NULL	
first_name	varchar(20)	YES		NULL	
last_name	varchar(20)	YES		NULL	
home_address	varchar(20)	YES		NULL	
city	varchar(20)	YES		NULL	
state	varchar(20)	YES		NULL	
zip_code	varchar(10)	YES		NULL	
+--------------+-------------+------+-----+---------+-------+
7 rows in set (0.003 sec)

Describe the structure of the purchase_orders table with the following
command:

MySQL [mytools]> desc purchase_orders;
+---------------+------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+------+------+-----+---------+-------+
cust_id	int	YES		NULL	
po_id	int	YES		NULL	
purchase_date	date	YES		NULL	
+---------------+------+------+-----+---------+-------+
3 rows in set (0.004 sec)

34  •  SQL Pocket Primer

Describe the structure of the line_items table with the following
command:

MySQL [mytools]> desc line_items;
+---------------+--------------+------+-----+---------+-------+
| Field | Type | Yes | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
po_id	int	YES		NULL	
line_id	int	YES		NULL	
item_id	int	YES		NULL	
item_count	int	YES		NULL	
item_price	decimal(8,2)	YES		NULL	
item_tax	decimal(8,2)	YES		NULL	
item_subtotal	decimal(8,2)	YES		NULL	
+---------------+--------------+------+-----+---------+-------+
7 rows in set (0.002 sec)

Describe the structure of the item_desc table with the following
command:

MySQL [mytools]> desc item_desc;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
item_id	int	YES		NULL	
item_desc	varchar(80)	YES		NULL	
item_price	decimal(8,2)	YES		NULL	
+------------+--------------+------+-----+---------+-------+
3 rows in set (0.006 sec)

Creating Tables via a SQL Script for mytools.com

The previous section shows you a manual technique for creating data-
base tables. By contrast, Listing 2.2 shows the content of mytools_create_
tables.sql that illustrates how to define multiple SQL statements for
creating database tables. Note that the SQL statements are identical to the
SQL statements in the previous section.

LISTING 2.2: mytools_create_tables.sql

USE DATABASE mytools;

-- drop tables if they already exist:
DROP TABLE IF EXISTS customers;
DROP TABLE IF EXISTS purchase_orders;
DROP TABLE IF EXISTS line_items;
DROP TABLE IF EXISTS item_desc;

—- these SQL statements are the same as the previous
section:
CREATE TABLE customers (cust_id INTEGER, first_name
VARCHAR(20), last_name VARCHAR(20), home_address

Working with SQL and MySQL  •  35

VARCHAR(20), city VARCHAR(20), state VARCHAR(20), zip_code
VARCHAR(10));

CREATE TABLE purchase_orders (cust_id INTEGER, po_id
INTEGER, purchase_date date);

CREATE TABLE line_items (po_id INTEGER, line_id
INTEGER, item_id INTEGER, item_count INTEGER, item_
price DECIMAL(8,2), item_tax DECIMAL(8,2), item_subtotal
DECIMAL(8,2));

CREATE TABLE item_desc (item_id INTEGER, item_desc
VARCHAR(80), item_price DECIMAL(8,2));

Listing 2.2 contains three sections. The first section selects the mytools
database, and the second section drops any of the four required tables if they
already exist. The third section contains the SQL commands to create the four
required tables.

Creating Tables with Japanese Text

Although this section is not required for any of the code samples in this
book, it’s nonetheless interesting to see how easily you can create a MySQL
table with Japanese text. The Japanese text was inserted from a MacBook after
adding a Hiragana keyboard and a Katana keyboard. Perform an online search
for instructions that explain how to add these keyboards to your laptop.

Listing 2.3 shows the content of japanese1.sql that illustrates how to
create a MySQL table that is populated with Japanese text.

LISTING 2.3: japanese1.sql

use mytools;
DROP TABLE IF EXISTS japn1;

CREATE TABLE japn1
(
 emp_id INT NOT NULL AUTO_INCREMENT,
 fname VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
 lname VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
 title VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
 PRIMARY KEY (emp_id)
);

INSERT INTO japn1 SET fname="ひでき", lname="日浦",title="しちお";
INSERT INTO japn1 SET fname="ももたろ", lname="つよい",title="かちょ";
INSERT INTO japn1 SET fname="オズワルド", lname="カmポ",title="悪ガキ";
INSERT INTO japn1 SET fname="東京", lname="日本",title="すごい！";

\! echo '=> All rows in table japn1:';
SELECT * FROM japn1;

\! echo '=> Rows whose lname contains カ:';
SELECT * FROM japn1
WHERE lname LIKE '%カ%';

36  •  SQL Pocket Primer

Listing 2.3 starts with the definition of the table japn1 that defines the
fname, lname, and title attributes as VARCHAR(100) and also specifies
utf8 as the character set and utf8_general_ci as the collating sequence.
These extra keywords enable us to store Hiragana and Kanji characters in these
three attributes. Launch the code in Listing 2.3 from the MySQL prompt to
see the following output:

Database changed
Query OK, 0 rows affected (0.005 sec)
Query OK, 0 rows affected, 6 warnings (0.005 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

=> All rows in table japn1:
+--------+-----------------+-----------+--------------+
| emp_id | fname | lname | title |
+--------+-----------------+-----------+--------------+
1	ひでき	日浦	しちお
2	ももたろ	つよい	かちょ
3	オズワルド	カmポ	悪ガキ
4	東京	日本	すごい！
+--------+-----------------+-----------+--------------+
4 rows in set (0.000 sec)

=> Rows whose lname matches カ:
+--------+-----------------+---------+-----------+
| emp_id | fname | lname | title |
+--------+-----------------+---------+-----------+
| 3 | オズワルド | カmポ | 悪ガキ |
+--------+-----------------+---------+-----------+
1 row in set (0.000 sec)

The preceding example is a rudimentary example of working with Japanese
text in a MySQL table. Chapter 4 shows you how to perform a join on the table
japn1 with the table japn2, where the text in japn2 contains the English
counterpart to the text in japn1. You can also search online for other SQL-
based operations that you can perform with this data, as well as examples of
creating MySQL tables for other languages.

Creating Tables from the Command Line

The third technique for invoking a SQL file is from the command line. First
make sure that the specified database already exists (such as mytools). Next,
invoke the following command from the command line to execute the SQL
statements in employees.sql in MySQL:

mysql --password=<your-password> --user=root mytools <
user.sql

Listing 2.4 shows the content of user.sql that illustrates how to create a
database table and populate that table with data.

Working with SQL and MySQL  •  37

LISTING 2.4: user.sql

USE mytools;

DROP TABLE IF EXISTS user;
CREATE TABLE user (user_id INTEGER(8), user_title VARCHAR(20));

INSERT INTO user VALUES (1000, 'Developer');
INSERT INTO user VALUES (2000, 'Project Lead');
INSERT INTO user VALUES (3000, 'Dev Manager');
INSERT INTO user VALUES (4000, 'Senior Dev Manager');

Log into MySQL with the following command from the command line:

mysql --password=<your-password> —user=root

Enter the following two commands (shown in bold):

MySQL [(none)]> use mytools;
Reading table information for completion of table and
column names
You can turn off this feature to get a quicker startup with
-A

Database changed
MySQL [mytools]> desc user;
+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
user_id	int	YES		NULL	
user_class	int	YES		NULL	
user_title	varchar(20)	YES		NULL	
+------------+-------------+------+-----+---------+-------+
3 rows in set (0.002 sec)

The section in this chapter that discusses the concept of keys contains an
example of creating a table that contains a primary key of type AUTOINCREMENT,
which is incremented each time that a row is inserted into a given table.

Defining Table Attributes

You have already seen examples of table columns that use CHAR as well
as VARCHAR in their definition. In some cases, you might see a performance
improvement if you adopt the following recommendations:

•	Use CHAR instead of VARCHAR for fixed-length fields.
•	Use TEXT for large blocks of text such as blog posts.
•	Use INT for larger numbers up to 2^32 or 4 billion.
•	Use DECIMAL for currency to avoid floating point representation errors.
•	Avoid storing large BLOBS, store the location of where to get the object

instead.
•	Set the NOT NULL constraint where applicable to improve search

performance.

38  •  SQL Pocket Primer

CHAR is recommended because it enables fast random access, whereas
VARCHAR necessitates finding the end of the current string before processing
the next string.

Another point to remember is that a TEXT attribute supports Boolean
searches: using a TEXT field involves storing a pointer on disk that is used to
locate the text block.

WORKING WITH ALIASES IN SQL

An alias can be used for 1) an existing table, 2) dynamically creating a table
based on an existing table, 3) creating a view, or 4) assigning a temporary name
to an attribute of a table in a SQL statement.

You can create an alias with the AS keyword, whose scope is limited to the
SQL statement in which it appears. The AS keyword is used in multiple ways.
For example, the following SQL statement uses the AS keyword as an alias for
an existing table:

SELECT emp_id, mgr_id
FROM employees AS emps;
+--------+--------+
| emp_id | mgr_id |
+--------+--------+
1000	2000
2000	3000
3000	4000
4000	4000
+--------+--------+
4 rows in set (0.002 sec)

Use the AS keyword to create a new table based on an existing table, as
shown here:

CREATE TABLE user2 AS (SELECT * FROM user);

Use the AS keyword to create a new table based on a subset of the attributes
of an existing table, as shown here:

CREATE TABLE user3 AS (SELECT user_title FROM user);

Use the AS keyword to create a view based on an existing table, as outlined
here:

CREATE VIEW V3 AS (SELECT ...);

Working with SQL and MySQL  •  39

Use the AS keyword to specify aliases for table attributes, as shown here:

SELECT emp_id AS e, mgr_id AS m, title AS t
FROM employees;
+------+------+--------------------+
| e | m | t |
+------+------+--------------------+
1000	2000	Developer
2000	3000	Project Lead
3000	4000	Dev Manager
4000	4000	Senior Dev Manager
+------+------+--------------------+
4 rows in set (0.006 sec)

Later you will see the SQL statement to create and populate the employees
table with data.

ALTER DATABASE TABLES WITH THE ALTER KEYWORD

If you want to modify the columns in a table, you can use the ALTER com-
mand to add new columns, drop existing columns, or modify the data type of
an existing column. Whenever a new column is added to a database table, that
column will contain NULL values. However, you can invoke SQL statements to
populate the new column with values, as shown in the next section.

Add a Column to a Database Table

As a simple example, let’s create the table user2 from table user, as shown
here:

CREATE TABLE user2 AS (SELECT * FROM user);

Let’s add the character columns fname and lname to table user2 by exe-
cuting the following SQL commands:

MySQL [mytools]>
ALTER TABLE user2
ADD COLUMN fname VARCHAR(20);
Query OK, 0 rows affected (0.011 sec)
Records: 0 Duplicates: 0 Warnings: 0

MySQL [mytools]>
ALTER TABLE user2
ADD COLUMN lname VARCHAR(20);
Query OK, 0 rows affected (0.012 sec)
Records: 0 Duplicates: 0 Warnings: 0

40  •  SQL Pocket Primer

Let’s look at the structure of table user2, which contains two new columns
with NULL values:

MySQL [mytools]> desc user2;
+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
user_id	int	YES		NULL	
user_title	varchar(20)	YES		NULL	
fname	varchar(20)	YES		NULL	
lname	varchar(20)	YES		NULL	
+------------+-------------+------+-----+---------+-------+
4 rows in set (0.002 sec)

Let’s look at the rows in table user2 by issuing the following SQL
query:

select * from user2;
+---------+--------------------+-------+-------+
| user_id | user_title | fname | lname |
+---------+--------------------+-------+-------+
1000	Developer	NULL	NULL
2000	Project Lead	NULL	NULL
3000	Dev Manager	NULL	NULL
4000	Senior Dev Manager	NULL	NULL
+---------+--------------------+-------+-------+
4 rows in set (0.001 sec)

How do we insert the appropriate values for the new fname and lname
attributes for each existing row? One way to update these attributes is to
issue a SQL query for each row that updates these attributes based on the
user_id:

UPDATE user2
SET fname = 'John', lname = 'Smith'
WHERE user_id = 1000;

UPDATE user2
SET fname = 'Jane', lname = 'Stone'
WHERE user_id = 2000;

UPDATE user2
SET fname = 'Dave', lname = 'Dodds'
WHERE user_id = 3000;

UPDATE user2
SET fname = 'Jack', lname = 'Jones'
WHERE user_id = 4000;

Working with SQL and MySQL  •  41

We can confirm that the user2 table has been updated correctly with the
following SQL query:

select * from user2;
+---------+--------------------+-------+-------+
| user_id | user_title | fname | lname |
+---------+--------------------+-------+-------+
1000	Developer	John	Smith
2000	Project Lead	Jane	Stone
3000	Dev Manager	Dave	Dodds
4000	Senior Dev Manager	Jack	Jones
+---------+--------------------+-------+-------+
4 rows in set (0.000 sec)

Unfortunately, the preceding solution is not scalable if you need to update
hundreds or thousands of rows with values for the new attributes. There are
several options available, depending on the location of the values for the new
attributes: one option involves importing data and another involves program-
matically generating SQL statements.

If you have a CSV file that contains the complete data for the table rows,
including values for the fname and lname attributes, the solution is straight-
forward: delete the rows from the user2 table and then import the data from
the CSV file into the user2 table.

However, if the existing data is located in one CSV file and the data for the
two new attributes is located in a separate CSV file, you need to merge the
two CSV files into a single CSV file, after which you can import the CSV file
directly into the user2 table. An example of performing this task is discussed
after the following section that drops a column and changes column types.

Drop a Column from a Database Table

The following SQL statement illustrates how to drop the column str_date
from the table mytable:

ALTER TABLE mytable
DROP COLUMN str_date;

Chapter 6 contains a complete example of dropping a column from a
MySQL table.

Change the Data Type of a Column

Listing 2.5 shows the content of people_ages.sql that illustrates how to
change the data type of a column in a MySQL table.

42  •  SQL Pocket Primer

LISTING 2.5: people_ages.sql

USE mytools;
DROP TABLE IF EXISTS people_ages;
CREATE TABLE people_ages (float_ages DECIMAL(4,2), floor_ages INT);

INSERT INTO people_ages VALUES (12.3,0);
INSERT INTO people_ages VALUES (45.6,0);
INSERT INTO people_ages VALUES (78.9,0);
INSERT INTO people_ages VALUES (-3.4,0);
DESC people_ages;
SELECT * FROM people_ages;

-- populate floor_ages with FLOOR (=INT) value:
UPDATE people_ages
SET floor_ages = FLOOR(float_ages);
SELECT * FROM people_ages;

-- change float_ages to INT data type:
ALTER TABLE people_ages CHANGE float_ages int_ages INT;
DESC people_ages;
SELECT * FROM people_ages;

-- rows whose minimum age is less than min_value:
SELECT @min_value := 2;
SELECT * FROM people_ages WHERE floor_ages < @min_value;

Listing 2.5 creates and populates the people_ages table with data. The
other code in Listing 2.5 contains three SQL statements, each of which starts
with a comment statement that explains its purpose.

The first SQL statement populates the integer-valued column floor_ages
with the floor of the float_ages column via the built-in FLOOR() function.

The second SQL statement alters the decimal-valued column float_ages
to a column of type INT.

The third SQL statement displays the rows in the people_ages table
whose floor_ages value is less than min_value.

Launch the code in Listing 2.5 to see the following output:

+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
| float_ages | decimal(4,2) | YES | | NULL | |
| floor_ages | int | YES | | NULL | |
+------------+--------------+------+-----+---------+-------+
2 rows in set (0.001 sec)

+------------+------------+
| float_ages | floor_ages |
+------------+------------+
12.30	0
45.60	0
78.90	0
-3.40	0
+------------+------------+
4 rows in set (0.000 sec)

Working with SQL and MySQL  •  43

Query OK, 4 rows affected (0.001 sec)
Rows matched: 4 Changed: 4 Warnings: 0

+------------+------------+
| float_ages | floor_ages |
+------------+------------+
12.30	12
45.60	45
78.90	78
-3.40	-4
+------------+------------+
4 rows in set (0.000 sec)

Query OK, 4 rows affected (0.014 sec)
Records: 4 Duplicates: 0 Warnings: 0

+------------+------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+------+------+-----+---------+-------+
| int_ages | int | YES | | NULL | |
| floor_ages | int | YES | | NULL | |
+------------+------+------+-----+---------+-------+
2 rows in set (0.001 sec)

+----------+------------+
| int_ages | floor_ages |
+----------+------------+
12	12
46	45
79	78
-3	-4
+----------+------------+
4 rows in set (0.000 sec)

+-----------------+
| @min_value := 2 |
+-----------------+
| 2 |
+-----------------+
1 row in set, 1 warning (0.000 sec)

+----------+------------+
| int_ages | floor_ages |
+----------+------------+
| -3 | -4 |
+----------+------------+
1 row in set (0.000 sec)

What are Referential Constraints?

Referential constraints (also called constraints) prevent the insertion of
invalid data into database tables. In general, constraints on a table are speci-
fied during the creation of the table. Here is a list of constraints that SQL
implementations support:

•	CHECK
•	DEFAULT
•	FOREIGN KEY

44  •  SQL Pocket Primer

•	PRIMARY KEY
•	NOT NULL
•	UNIQUE

In case you don’t already know, an orphan row in a database table is a row
without its associated parent row that’s typically stored in a separate table. An
example would be a customer in the (parent) customers table and the associ-
ated (child) rows in the purchase_orders table. Note that a similar relation-
ship exists between the (parent) purchase_orders table and the associated
(child) rows in the line_items table.

COMBINING DATA FOR A TABLE UPDATE (OPTIONAL)

This section shows you how to perform the task described in an earlier
section: how to merge two CSV files and load the result into a database table.
This section is optional because the solution involves Pandas, which has not
been discussed yet. You can skip this section with no loss of continuity, and
perhaps return to this section when you need to perform this task. There are
other ways to perform the tasks in this section.

The first subsection shows you how to merge the columns of a CSV file into
the columns of another CSV file, and then save the updated CSV file to the
file system. The second subsection shows you how to append the contents of a
CSV file to the contents of another CSV file, and then save the updated CSV
file to the file system.

Merging Data Columns in Multiple CSV Files via Pandas

Suppose that we have a CSV file called user.csv with a set of columns
and that we want to merge the columns of user.csv with columns of the CSV
file user2.csv. For simplicity, let’s assume that there are no missing values in
either CSV file. In this scenario, we will create a new CSV file whose rows and
columns are from two CSV files. In other scenarios, you might need to select
only a subset of the columns from two (or more) CSV files.

Listing 2.6 shows the content of user.csv that contains the original data
for the user table, and Listing 2.7 shows the content of user2.csv that con-
tains the data for the fname and lname attributes.

LISTING 2.6: user.csv

fname,lname
id,title
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager

Working with SQL and MySQL  •  45

LISTING 2.7: user2.csv

fname,lname
1000,John,Smith
2000,Jane,Stone
3000,Dave,Dodds
4000,Jack,Jones

Listing 2.8 shows the content of user_merged.py that illustrates how to
use Pandas data frames to merge two CSV files and generate a new CSV file
with the merged data.

LISTING 2.8: user_merged.py

import pandas as pd

df_user = pd.read_csv("user.csv")
df_user2 = pd.read_csv("user2.csv")
df_user['fname'] = df_user2['fname'].values
df_user['lname'] = df_user2['lname'].values
df_user.to_csv('user_merged.csv', index=False)

Listing 2.8 contains an import statement followed by the assignment of
the contents of user.csv and user2.csv to the Pandas data frames df_user
and df_user2, respectively.

The next pair of code snippets creates the columns fname and lname in
the df_users data frame and initializes their values from the corresponding
columns in the df_user2 data frame.

The last code snippet in Listing 2.8 saves the updated data frame to the
CSV file user_merged.csv, which is located in the same directory as the CSV
files user.csv and user2.csv. Launch the code in Listing 2.8 to generate
the CSV file user_merged.csv, whose contents are shown in Listing 2.9.

LISTING 2.9: user_merged.csv

id,title,fname,lname
1000,Developer,John,Smith
2000,Project Lead,Jane,Stone
3000,Dev Manager,Dave,Dodds
4000,Senior Dev Manager,Jack,Jones

Note: If need be, the code in Listing 2.8 can be modified to insert the
fname values and the lname values in the first two columns.

Concatenating Data from Multiple CSV Files

Suppose that we have two CSV files called user_merged.csv and user_
merged2.csv that contain the same columns, and you want to append the
rows of the latter file to the rows of the former file. For simplicity, let’s also

46  •  SQL Pocket Primer

assume that there are no missing values in either CSV file. Listing 2.10 shows
the content of user_merged.csv and Listing 2.11 shows the content of
user_merged2.csv.

LISTING 2.10: user_merged.csv

id,title,fname,lname
5000,Developer,Sara,Edwards
6000,Project Lead,Beth,Woodward
7000,Dev Manager,Donald,Jackson
8000,Senior Dev Manager,Steve,Edwards

LISTING 2.11: user_merged2.csv

id,title,fname,lname
5000,Developer,Sara,Edwards
6000,Project Lead,Beth,Woodward
7000,Dev Manager,Donald,Jackson
8000,Senior Dev Manager,Steve,Edwards

Listing 2.12 shows the content of merge_all_data.py that illustrates
how to use Pandas data frames to concatenate the contents of two or more
CSV files in the same directory and generate a CSV file with the merged data.
This code sample generalizes the code in Listing 2.8 that concatenates only
two CSV files.

LISTING 2.12: merge_all_data.py

import glob
import os
import pandas as pd

merge the data-related files as one data frame:
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', 'data*.csv'))))

save data frame to a CSV file:
df.to_csv('all_data.csv', index=False)

Listing 2.12 contains import statements followed by initializing the Pandas
data frame df with the result of reading all the CSV files in the current direc-
tory and then concatenating their contents.

The last code snippet in Listing 2.12 saves the data frame df to the CSV
file all_data.csv, which is located in the same directory as the other CSV
files. Launch the code in Listing 2.12 to generate the CSV file all_data.csv,
whose contents are given in Listing 2.13.

LISTING 2.13: all_data.csv

id,title,fname,lname
id,title
1000,Developer
2000,Project Lead

Working with SQL and MySQL  •  47

3000,Dev Manager
4000,Senior Dev Manager
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager

Appending Table Data from CSV Files via SQL

Suppose that the data in the CSV file user_merged.csv has already been
inserted into table user3. We can use the following SQL statement to insert
the contents of the CSV file user_merged2.csv into the table user3 as
follows:

LOAD DATA INFILE 'user_merged.csv'
 INTO TABLE user3
 FIELDS TERMINATED BY ','
 ENCLOSED BY '"'
 LINES TERMINATED BY '/n';

Depending on the manner in which the MySQL server was launched, you
might encounter the following error message:

ERROR 1290 (HY000): The MySQL server is running with the --secure-
file-priv option so it cannot execute this statement

The preceding error occurs due to either of the following reasons:

•	the SQL statement specified an incorrect path to the file
•	no directory is specified under the --secure--file--priv variable

Select @@global.secure_file_priv;
+---------------------------+
| @@global.secure_file_priv |
+---------------------------+
| NULL |
+---------------------------+
1 row in set (0.001 sec)

Another similar query is as follows:

SHOW VARIABLES LIKE "secure_file_priv";
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| secure_file_priv | NULL |
+------------------+-------+
1 row in set (0.022 sec)

48  •  SQL Pocket Primer

If you have verified that the path to the file is correct and you still see
the same error message, then launch the following command (requires root
access):

sudo /usr/local/mysql/support-files/mysql.server restart --
secure_file_priv=/tmp

You might need to replace the preceding command with a command that
is specific to your system, which depends on a combination of the following:

1.	 the operating system (Windows/Mac/Linux)
2.	 the version of MySQL on your system
3.	 the utility that installed MySQL (brew, .dmg file, and so forth)

Perform an online search to find a solution that is specific to your MySQL
installation on your machine. Some solutions specify modifying the file
/etc/my.ini or /etc/my.cnf, neither of which exists on Mac Catalina with
MySQL 8.

Another possibility is the following SQL statement that specifies LOCAL:

LOAD DATA LOCAL INFILE "user_merged.csv" INTO TABLE user3;

Unfortunately, the preceding SQL statement does not work with MySQL 8:
you will see the following error message:

ERROR 3948 (42000): Loading local data is disabled; this
must be enabled on both the client and server sides

Fortunately, Chapter 6 contains a MySQL Workbench section that shows
you how to export tables and databases via a GUI interface, and also how to
import databases and CSV files into tables.

INSERTING DATA INTO DATABASE TABLES

In Chapter 1, you saw how to create database tables and also how to insert
data into those tables via SQL statements. For your convenience, the SQL
statements from Chapter 1 are reproduced here:

use mytools;

-- create a new customer:
INSERT INTO customers
VALUES (1000,'John','Smith','123 Main St','Fremont','CA','94123');

-- create a new purchase order:
INSERT INTO purchase_orders VALUES (1000,12500, '2021-12-01');

-- line item => one hammer:
INSERT INTO line_items VALUES (12500,5001,100,1,20.00,2.00,22.00);

Working with SQL and MySQL  •  49

-- line item => two screwdrivers:
INSERT INTO line_items VALUES (12500,5002,200,2,8.00,1.60,17.60);

-- line item => three wrenches:
INSERT INTO line_items VALUES (12500,5003,300,3,10.00,3.00,33.20);

You can also create a SQL file that consists of multiple SQL INSERT state-
ments that populate one or more tables with data. In addition, you can upload
data from CSV files into database tables, which is discussed in the next section.

Populating Tables from Text Files

This section will show you how to create a database table and populate that
table with data from a CSV file. Log into MySQL, select the mytools data-
base, and invoke the following command to create the people table:

MySQL [mytools]> use mytools;

CREATE TABLE people (fname VARCHAR(20), lname VARCHAR(20),
age VARCHAR(20), gender CHAR(1), country VARCHAR(20));

Describe the structure of the people table with the following command:

MySQL [mytools]> desc people;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
fname	varchar(20)	YES		NULL	
lname	varchar(20)	YES		NULL	
age	varchar(20)	YES		NULL	
gender	char(1)	YES		NULL	
country	varchar(20)	YES		NULL	
+---------+-------------+------+-----+---------+-------+
5 rows in set (0.002 sec)

Listing 2.14 shows the content of people.csv that contains data for insert-
ing into the people table.

LISTING 2.14: people.csv

fname,lname,age,gender,country
john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,m,france
dave,stone,33,m,italy
sara,stein,34,f,germany

Listing 2.15 shows the content of people.sql that contains several SQL
commands for inserting data into the people table.

LISTING 2.15: people.sql

INSERT INTO people VALUES ('john','smith','30','m','usa');
INSERT INTO people VALUES ('jane','smith','31','f','france');

50  •  SQL Pocket Primer

INSERT INTO people VALUES ('jack','jones','32','m','france');
INSERT INTO people VALUES ('dave','stone','33','m','italy');
INSERT INTO people VALUES ('sara','stein','34','f','germany');
INSERT INTO people VALUES ('eddy','bower','35','m','spain');

As you can see, the INSERT statements in Listing 2.15 contain data that is
located in people.csv. In Chapter 6, you will see an example of a Unix shell
script that generates SQL statements from a CSV file. Now, log into MySQL,
select the mytools database, and invoke the following command to populate
the people table:

MySQL [mysql]> use mytools;

source people.sql;
Query OK, 1 row affected (0.004 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

Execute the following SQL statement to display the contents of the people
table:

MySQL [mysql]> select * from people;
+-------+-------+------+--------+---------+
| fname | lname | age | gender | country |
+-------+-------+------+--------+---------+
john	smith	30	m	usa
jane	smith	31	f	france
jack	jones	32	m	france
dave	stone	33	m	italy
sara	stein	34	f	germany
eddy	bower	35	m	spain
+-------+-------+------+--------+---------+
6 rows in set (0.000 sec)

The second option involves manually executing each SQL statement in
Listing 2.15, which is obviously inefficient for a large number of rows. The
third option involves loading data from a CSV file into a table:

MySQL [mysql]> LOAD DATA LOCAL INFILE 'people.csv' INTO
TABLE people;

However, you might encounter the following error (which depends on the
configuration of MySQL on your machine):

ERROR 3948 (42000): Loading local data is disabled; this
must be enabled on both the client and server sides

In general, a SQL script is preferred because it’s easy to execute multiple
times; you can also schedule SQL scripts to run as “cron” jobs.

Working with SQL and MySQL  •  51

WORKING WITH SIMPLE SELECT STATEMENTS

Earlier in this chapter, you saw examples of the SELECT keyword in SQL
statements, and this section contains additional SQL statements to show you
additional ways to select subsets of data from a table. In its simplest form, a
SQL statement with the SELECT keyword looks like this:

SELECT [one-or-more-attributes]
FROM [one-or-more-tables]

Specify an asterisk (“*”) after the SELECT statement if you want to select all
the attributes of a table. For example, the following SQL statement illustrates
how to select all rows from the people table:

MySQL [mytools]> select * from people;
+-------+-------+------+--------+---------+
| fname | lname | age | gender | country |
+-------+-------+------+--------+---------+
john	smith	30	m	usa
jane	smith	31	f	france
jack	jones	32	m	france
dave	stone	33	m	italy
sara	stein	34	f	germany
eddy	bower	35	m	spain
+-------+-------+------+--------+---------+
6 rows in set (0.000 sec)

Issue the following SQL statement that contains the LIMIT keyword (with
additional examples later in this chapter) if you want only the first row from
the people table:

select * from people limit 1;
+-------+-------+------+--------+---------+
| fname | lname | age | gender | country |
+-------+-------+------+--------+---------+
| john | smith | 30 | m | usa |
+-------+-------+------+--------+---------+
1 row in set (0.000 sec)

Replace the number 1 in the previous SQL query with any other posi-
tive integer to display the number of rows that you need. Incidentally, if you
replace the number 1 with the number 0, you will see 0 rows returned,

Moreover, include a WHERE keyword to specify a condition on the rows,
which will return a (possibly empty) subset of rows from the specified
table:

SELECT [one-or-more-attributes]
FROM [one-or-more-tables]
WHERE [some condition]

52  •  SQL Pocket Primer

For example, the following SQL statement illustrates how to display all the
attributes of the rows in the people table where the first name is john:

MySQL [mytools]> select * from people where fname = 'john';
+-------+-------+------+--------+---------+
| fname | lname | age | gender | country |
+-------+-------+------+--------+---------+
| john | smith | 30 | m | usa |
+-------+-------+------+--------+---------+
1 row in set (0.000 sec)

Include ORDER BY to specify the order in which you want to display the
rows:

SELECT *
FROM weather
ORDER BY city;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-07-01	42	16	Rain		ca
2021-08-04	50	12	Snow		mn
2021-09-03	15	12	Snow	chi	il
2021-04-03	78	-12	NULL	se	wa
2021-04-01	42	16	Rain	sf	ca
2021-04-02	45	3	Sunny	sf	ca
2021-07-02	45	-3	Sunny	sf	ca
2021-07-03	78	12	NULL	sf	mn
2021-08-06	51	32		sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-02	45	99		sf	ca
+------------+--------+------+----------+------+-------+
11 rows in set (0.003 sec)

In Chapter 3, you will learn how to use the JOIN keyword in order to
retrieve data from two tables, and in Chapter 4, you will learn how to specify
GROUP BY and HAVING in SQL statements.

Duplicate Versus Distinct Rows

Unless it’s explicitly stated, the default action for a SQL SELECT statement
is to select all rows (which includes duplicates), as shown here:

SELECT year
FROM employees;
+------+
| year |
+------+
| 2020 |
| 2020 |
| 2020 |
| 2020 |
| 2020 |
| 2020 |
| 2020 |

Working with SQL and MySQL  •  53

| 2020 |
| 2020 |
| 2020 |
| 2020 |
| 2020 |
+------+
12 rows in set (0.000 sec)

By contrast, the following SQL statement returns only a single row with the
year 2020:

SELECT DISTINCT year
FROM employees;
+------+
| year |
+------+
| 2020 |
+------+
1 row in set (0.003 sec)

Later you will learn how to use the GROUP BY clause and the HAVING clause
in SQL statements.

Unique Rows Versus Distinct Rows

The UNIQUE keyword selects a row only if that row does not have any dupli-
cates. A SQL query that contains the UNIQUE keyword returns the same result
set as a query that contains the DISTINCT keyword if and only if there are no
duplicate rows.

As a preview, the following SQL query contains a SQL subquery, which
is a topic that is discussed in detail in Chapter 3. However, the SQL query is
included in this section of the chapter so that you can compare the functional-
ity of DISTINCT versus UNIQUE. With the preceding in mind, here is the SQL
statement to find unique rows in a database table:

select city, state
from weather
where unique (select state from weather);

If you are unfamiliar with SQL subqueries, you can return to this example
after you learn about them in one of the sections in Chapter 3.

The EXISTS Keyword

The EXISTS keyword selects a row based on the existence of a particular
value in an attribute of a table. This section shows you two SQL statements
that use the EXISTS keyword: one statement involves a subquery (details are
provided in Chapter 3) and the second involves a SELECT keyword.

The purpose of showing both SQL statements is to illustrate that some-
times a SQL statement can be replaced by an equivalent SQL statement that
is much easier to understand (and might also be more efficient). For example,

54  •  SQL Pocket Primer

the following SQL statement checks for the string “abc” in the city attribute
of the weather table:

select city, state
from weather
where exists
 (select city from weather where city = 'abc');
Empty set (0.001 sec)

The preceding is somewhat contrived because it can be replaced with this
simpler and intuitive SQL query:

select city, state
from weather
where city = 'abc';

The LIMIT Keyword

The LIMIT keyword limits the number of rows that are in a result set. For
example, the weather table contains 11 rows, as shown here:

SELECT COUNT(*)
FROM weather;
+----------+
| count(*) |
+----------+
| 11 |
+----------+
1 row in set (0.001 sec)

If you want to see only three rows instead of all the rows in the weather
table, issue the following SQL query:

SELECT city,state
FROM weather ORDER
BY state, city
LIMIT 3;
+------+-------+
| city | state |
+------+-------+
	ca
sf	ca
sf	ca
+------+-------+
3 rows in set (0.000 sec)

DELETE, TRUNCATE, AND DROP IN SQL

The following list summarizes the various ways of removing data from a
database table:

•	The DELETE keyword deletes the data in a table but leaves the table intact.
•	The TRUNCATE keyword is a faster way to delete the data in a table.

Working with SQL and MySQL  •  55

•	The TRUNCATE keyword also preserves the table structure.
•	The DROP keyword drops the data and the table itself from a database.

Here is an example of deleting all the data from a table using the DELETE
keyword:

DELETE from customers;

However, if a database table has a large number of rows, a faster technique
is the TRUNCATE statement, as shown here:

TRUNCATE customers;

Both of the preceding SQL commands involve removing rows from a table
without dropping the table. If you want to drop the rows in a table and the
table, use the DROP statement as shown here:

DROP TABLE IF EXISTS customers;

SELECT, DELETE, and LIMIT Combinations

Another useful combination involves the SELECT and DELETE keyword
when you want to delete a row in a database table. For example, execute a SQL
statement with the SELECT keyword before you delete any rows:

SELECT *
FROM table_name
WHERE lname = 'SMITH';

If the preceding SQL statement returns the row (or rows) that you want to
delete, then you can safely issue the following DELETE statement:

DELETE
FROM table_name
WHERE lname = 'SMITH';

As variant of the preceding pair of SQL statements, you can also specify
the LIMIT keyword (with a suitable integer value) to limit the number of rows
that are returned:

SELECT *
FROM table_name
WHERE lname = 'SMITH'
LIMIT 1;

DELETE
FROM table_name
WHERE lname = 'John'
LIMIT 1;

Keep in mind the following caveat: the preceding SQL statement will
delete one row, but there is an exception. The preceding SQL query will delete
all rows whose name equals John if you specify ON DELETE CASCADE in the
table definition of the customers table.

56  •  SQL Pocket Primer

More Options for the DELETE Statement in SQL

The preceding section showed you how to delete all the rows in a table,
and this section shows you how to delete a subset of the rows in a table, which
involves specifying a condition for the rows that you want to drop from a table.

The following SQL statement deletes the rows in the customers table
where the first name is John:

DELETE
FROM customers
Where FNAME = 'John';

The next SQL statement deletes the rows in the customers table where
the first name is John and the rows in the purchase_orders table that are
associated with John:

DELETE
FROM customers
Where FNAME = 'John'
CASCADE;

The preceding SQL statement is called a cascading delete, which is very
useful when the rows in a table have external dependencies, such as the cus-
tomers table that has a one-to-many relationship with the purchase_orders
table.

If you remove a “parent” row that appears in the customers table, you need
to remove the “child” rows from the purchase_orders table. Otherwise, you
will have “orphan” purchase orders that do not have a corresponding row in the
customers table. The final section of this chapter contains more information
about different types of relationships that can exist between tables.

CREATING TABLES FROM EXISTING TABLES IN SQL

SQL provides two ways to create new tables without an explicit list of
attributes for the new table. One technique involves a SQL statement that
contains the TEMPORARY keyword, and the second technique does not specify
the TEMPORARY keyword.

Although MySQL supports temporary tables, that support provides limited
functionality. In particular, you cannot assign values to variables nor can you
create global templates. As a side note, MySQL also supports memory-stored
tables, but such tables cannot be accessed during transactions. Furthermore,
memory-stored tables are used only for read operations.

A temporary table is useful when it’s impractical to query data that
requires a single SELECT statement with JOIN clauses. Instead, use a tempo-
rary table to store an immediate result and then process that data with other
SQL queries. However, keep in mind that the query optimizer that improves
performance of SQL statements cannot optimize SQL queries containing a
temporary table.

Working with SQL and MySQL  •  57

Working with Temporary Tables in SQL

Before we create a temporary table, let’s drop the temp_cust table in case
it already exists:

MySQL [mytools]> DROP TEMPORARY TABLE IF EXISTS temp_cust;
Query OK, 0 rows affected, 1 warning (0.000 sec)

The following SQL statement illustrates how to create the temporary table
temp_cust from the customers table:

MySQL [mytools]> CREATE TEMPORARY TABLE IF NOT EXISTS temp_cust
 AS (SELECT * FROM customers);
Query OK, 1 row affected (0.019 sec)
Records: 1 Duplicates: 0 Warnings: 0

The following SQL statement displays the structure of temp_cust:

MySQL [mytools]> DESC temp_cust;
+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
cust_id	int	YES		NULL	NULL
first_name	varchar(20)	YES		NULL	NULL
last_name	varchar(20)	YES		NULL	NULL
home_address	varchar(20)	YES		NULL	NULL
city	varchar(20)	YES		NULL	NULL
state	varchar(20)	YES		NULL	NULL
zip_code	varchar(10)	YES		NULL	NULL
+--------------+-------------+------+-----+---------+-------+
7 rows in set (0.005 sec)

The temp_cust table contains the same data as the customers table, as
shown here:

MySQL [mytools]> SELECT * FROM temp_cust;

+---------+------------+-----------+--------------+---------+-------+----------+

| cust_id | first_name | last_name | home_address | city | state | zip_code |

+---------+------------+-----------+--------------+---------+-------+----------+

| 1000 | John | Smith | 123 Main St | Fremont | CA | 94123 |

+---------+------------+-----------+--------------+---------+-------+----------+

1 row in set (0.001 sec)

In addition, you can specify an index for a temporary table, as shown
here:

CREATE TEMPORARY TABLE IF NOT EXISTS
 temp_cust3 (INDEX(last_name))
ENGINE=MyISAM
AS (
 SELECT first_name, last_name
 FROM customers
);

58  •  SQL Pocket Primer

Alternatively, you can create a temporary table and specify the MySQL
engine MEMORY, as shown here:

MySQL [mytools]> CREATE TEMPORARY TABLE temp_cust4 ENGINE=MEMORY
 -> as (select * from customers);
Query OK, 1 row affected (0.003 sec)
Records: 1 Duplicates: 0 Warnings: 0

However, keep in mind the following point: ENGINE=MEMORY is not sup-
ported when table contains BLOB/TEXT columns. Now that you understand
how to create tables with the TEMPORARY keyword, let’s look at the preceding
SQL statements when we omit the TEMPORARY keyword.

Creating Copies of Existing Tables in SQL

Another technique to create a copy of an existing table is to execute the
previous SQL statements without the TEMPORARY keyword, as shown here:

MySQL [mytools]> DROP TABLE IF EXISTS temp_cust2;
Query OK, 0 rows affected, 1 warning (0.008 sec)

MySQL [mytools]> CREATE TABLE IF NOT EXISTS temp_cust2
 AS (SELECT * FROM customers);
Query OK, 1 row affected (0.028 sec)
Records: 1 Duplicates: 0 Warnings: 0

MySQL [mytools]> SELECT COUNT(*) FROM temp_cust2;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.009 sec)

If you need to create a table that has the same structure as an existing table
but does not contain any data, you can do so with the following type of SQL
statement:

MySQL [mytools]> DROP TABLE IF EXISTS abc2;
Query OK, 0 rows affected (0.018 sec)

MySQL [mytools]> CREATE TABLE abc2 LIKE weather;
Query OK, 0 rows affected (0.025 sec)

MySQL [mytools]> SELECT * FROM abc2;
Empty set (0.001 sec)

WHAT IS A SQL INDEX?

An index is a mechanism that enables a faster retrieval of records from
database tables and therefore improves performance. An index contains an

Working with SQL and MySQL  •  59

entry that corresponds to each row in a table, and the index itself is stored in a
tree-like structure. SQL enables you to define one or more indexes for a table,
and some guidelines are provided in a subsequent section.

By way of analogy, the index of a book enables you to search for a word or a
term, locate the associated page number(s), and then you can navigate to one
of those pages. Clearly, the use of the book index is much fast than looking
sequentially through every page in a book.

Types of Indexes

A unique index prevents duplicate values in a column, provided that the
column is also uniquely indexed, which can be performed automatically if a
table has a primary key.

A clustered index actually changes the order of the rows in a table, and
then performs a search that is based in the key values. A table can have only
one clustered index. A clustered index is useful for optimizing DML state-
ments for tables that use the InnoDB engine (discussed briefly in chapter
six).

MySQL 8 introduced invisible indexes, but those indexes are unavailable
for the query optimizer. MySQL ensures that those indexes are kept current
when data in the referenced column are modified. You can make indexes invis-
ible by explicitly declare their visibility during table creation or via the ALTER
TABLE command, as you will see in a later section.

Creating an Index

An index on a MySQL table can be defined in two ways:

•	As part of the table definition during table creation
•	After the table has been created

Here is an example of creating an index on the full_name attribute during
the creation of the table friend_table:

DROP TABLE IF EXISTS friend_table;

CREATE TABLE friend_table (
 friend_id int(8) NOT NULL AUTO_INCREMENT,
 full_name varchar(40) NOT NULL,
 fname varchar(20) NOT NULL,
 lname varchar(20) NOT NULL,
 PRIMARY KEY (friend_id),INDEX(full_name)
);

Here is an example of creating index friend_lname_idx on the lname
attribute after the creation of the table friend_table:

60  •  SQL Pocket Primer

CREATE INDEX friend_lname_idx ON friend_table(lname);
Query OK, 0 rows affected (0.035 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can create an index on multiple columns, an example of which is shown
here:

CREATE INDEX friend_lname_fname_idx ON friend_table(lname,fname);

An index on a MySQL table can specify a maximum of 16 indexed columns,
and a table can contain a maximum of 64 secondary indexes.

Disabling and Enabling an Index

Sometimes, it’s useful to disable indexes before performing some intensive
operation, and then re-enable the indexes. The syntax for disabling an index
is here:

alter table friend_table disable keys;
Query OK, 0 rows affected, 1 warning (0.004 sec)

The corresponding syntax for re-enabling an index is here:

alter table friend_table enable keys;
Query OK, 0 rows affected, 1 warning (0.002 sec)

View and Drop Indexes

As you probably guessed, you can drop specific indexes as well as display
the indexes associated with a given table and also drop specific indexes. The
following SQL statement drops the specified index on the friend_table
table:

DROP INDEX friend_lname_fname_idx ON friend_table;
Query OK, 0 rows affected (0.011 sec)
Records: 0 Duplicates: 0 Warnings: 0

Invoke the preceding SQL statement again, and the following error mes-
sage confirms that the index was dropped:

ERROR 1091 (42000): Can't DROP 'friend_lname_fname_idx';
check that column/key exists

You can also issue the following SQL statement to display the indexes that
exist on the table friend_table:

SHOW INDEXES FROM friend_table;
+--------------+------------+------------------+--------------+-------------+--

---------+-------------+----------+--------+------+------------+---------+------

---------+---------+------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name |

Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |

Index_comment | Visible | Expression |

Working with SQL and MySQL  •  61

+--------------+------------+------------------+--------------+-------------+--

 | friend_table | 0 | PRIMARY | 1 | friend_id | A

| 0 | NULL | NULL | | BTREE | |

| YES | NULL |

| friend_table | 1 | full_name | 1 | full_name | A

 | 0 | NULL | NULL | | BTREE | |

| YES | NULL |

| friend_table | 1 | friend_lname_idx | 1 | lname | A

 | 0 | NULL | NULL | | BTREE | |

| YES | NULL |

+--------------+------------+------------------+--------------+-------------+--

---------+-------------+----------+--------+------+------------+---------+-----

----------+---------+------------+

3 rows in set (0.005 sec)

When you define a MySQL table, you can specify that an index is invisible
with the following code snippet:

CREATE INDEX index_name ON table_name(column-list) INVISIBLE;

The following SQL statement displays the invisible indexes in MySQL,
which is a new feature in version 8:

SHOW INDEXES FROM friend_table
WHERE VISIBLE = 'NO';
Empty set (0.003 sec)

Overhead of Indexes

An index occupies some memory on secondary storage. In general, if you
issue a SQL statement that involves an index, that index is first loaded into
memory and then it’s utilized to access the appropriate record(s). A SQL query
that involves simply accessing (reading) data via an index is almost always more
efficient than accessing data without an index.

However, if a SQL statement updates records in one or more tables, then
all the affected indexes must be updated. As a result, there can be a perfor-
mance impact when multiple indexes are updated as a result of updating table
data. Hence, it’s important to determine a suitable number of indexes, and the
columns in each of those indexes, which can be done either by experimenta-
tion (not recommended for beginners) or via open source or commercial tools
that provide statistics regarding the performance of SQL statements when
indexes are involved.

Considerations for Defining Indexes

As you might already know, a full table scan for large tables will likely be
computationally expensive, so consider defining an index on columns that are
referenced in the WHERE clause in your SQL statements. As a simple example,
consider the following SQL statement:

62  •  SQL Pocket Primer

SELECT *
FROM customers
WHERE lname = 'Smith';

If you do not have an index that starts with the lname attribute of the
customers table, then a full table scan is executed, which means every row is
checked.

Consider defining an index on attributes that appear in SQL query state-
ments that involve SELECT, GROUP BY, ORDER BY, or JOIN. As mentioned
earlier, updates to table data necessitate updates to indexes, which in turn can
result in lower performance.

When to Disable Indexes on a Table

Although you can directly insert a large volume of data into a table (or
tables), the following alternative can be more efficient:

1.	 Disable the indexes.
2.	 Insert the data.
3.	 Enable the indexes again.

Although the preceding approach involves rebuilding the
indexes, which is performed after Step 3, you might see a perfor-
mance improvement compared to directly inserting the table data.
Of course, you could also try both approaches and calculate the
time required to complete the data insertion.

As yet another option, it’s possible to perform a multi-row insert in MySQL,
which enables you to insert several rows with a single SQL statement, thereby
reducing the number of times the indexes must be updated. The maximum
number of rows that can be inserted via a multi-row insert depends on the
value of max_allowed_packet (whose default value is 4M), as described at
the following site:

https://dev.mysql.com/doc/refman/5.7/en/packet-too-large.html
Another suggestion: check the order of the columns in multi-column indexes

and compare that order with the order of the columns in each index. MySQL
will only use an index if the left-leading column is included in the index.

Selecting Columns for an Index

As mentioned in the previous section, an index of a database table is used if
an attribute in the WHERE clause is the left-most column in the definition of an
index. For example, the following SQL query specifies the lname attribute of
the users table in the WHERE clause:

SELECT *
FROM users
WHERE lname = 'SMITH'

Working with SQL and MySQL  •  63

In the previous section, you learned that when the users table does not
have an index containing the lname attribute, then a full table scan is exe-
cuted and the contents of the lname attribute in every row is compared with
SMITH.

The average number of comparisons in a full table scan is n/2, where n
is the number of rows in the given table. Thus, a table containing 1,024 rows
(which is a very modest size) requires an average of 512 comparisons, whereas
a suitably defined index reduces the average number of comparisons to 10 (and
sometimes even fewer comparisons).

Based on the preceding paragraph, indexes can be useful for improving
the performance of read operations. In general, the candidates for inclu-
sion in the definition of an index are the attributes that appear in frequently
invoked SQL statements that select, join, group, or order data. However,
the space requirement for indexes is related to the number of rows in the
tables.

Furthermore, multiple indexes involve more memory, and they must be
updated after a write operation, which can incur a performance penalty. An
experienced DBA can provide you with very helpful advice regarding index
definitions. You can also experiment with the number and type of indexes and
profile your system to determine the optimal combination for your system. In
addition, use SQL monitoring tools (discussed later) to determine which SQL
operations are candidates for optimization.

Finding Columns Included in Indexes

This section contains SQL statements that are specific to MySQL: for infor-
mation about other databases (such as Oracle), perform an online search to
find the correct syntax. MySQL enables you to find columns that are included
in indexes with this SQL statement:

SHOW INDEX FROM people;

You can also query the STATISTICS table in the INFORMATION_SCHEMA to
show indexes for all tables in a schema, an example of which follows:

SELECT DISTINCT TABLE_NAME, INDEX_NAME
FROM INFORMATION_SCHEMA.STATISTICS
WHERE TABLE_SCHEMA = 'mytools';

ENHANCING THE MYTOOLS DATABASE (OPTIONAL)

A reporting system is obviously important for generating financial state-
ments, billing statements, and ad hoc reports. For example, you can create an
accounts receivable table ar_mytools to keep track of paid purchase orders
(and the payment date) and unpaid purchase orders (with past due 30 and past
due 60) as follows:

64  •  SQL Pocket Primer

use mytools;
DROP TABLE IF EXISTS ar_mytools;

CREATE TABLE ar_mytools (cust_id INTEGER, po_id INTEGER, PURCH_DATE
date, PAID_DATE date, PAST_30 date, PAST_60 date);

-- two rows indicate that cust_id 1000 paid for two purchase orders:
INSERT INTO ar_mytools VALUES (1000, 12500,'2021-12-01','2021-12-15',
NULL, NULL);

INSERT INTO ar_mytools VALUES (1000, 12600,'2022-01-05','2022-01-10',
NULL, NULL);

You can also create SQL statements that retrieve a list of customers and
purchase order details from the ar_mytools table that contain

1.	 paid purchase orders (per month or a date range)
2.	 unpaid purchase orders that are 30 days past due
3.	 unpaid purchase orders that are 60 days past due

You can use the information from #1 to send customers notifications about
upcoming sales, reward points, discounts, and so forth. In addition, you can use
the information from #2 and #3 to send reminder notifications to the relevant
customers.

ENTITY RELATIONSHIPS

In Chapter 1, you were briefly introduced to several types of relationships
that can exist between a pair of tables, which are as follows:

•	one-to-many
•	many-to-many
•	self-referential

For example, the customers table has a one-to-many relationship with the
purchase_orders table for each cust_id that makes a purchase. Similarly,
each purchase_order in the purchase_orders table has one or more rows
in the line_items table, and therefore the purchase_orders table has a
one-to-many relationship with the line_items table.

Note that it’s possible for a customer to register on the website and never
make a purchase. In Chapter 4, you will see an example of a SQL statement
that returns all customers who have never made any purchases.

An example of a many-to-many relationship is a students table and a
courses table. Each student can enroll in one or more courses, and each
course contains one or more students. This relationship is modeled by creating
a so-called “join table” that is interposed between the students table and a
courses table.

Working with SQL and MySQL  •  65

The primary key for this new “join table” is the union of the primary key
for the students table and the primary key for the courses table. Thus, the
students table and the courses table both have a one-to-many relationship
with the intermediate join table.

An example of a self referential table is an employees table that con-
tains the manager of each employee. However, if the employees table
does not contain an attribute for the employee’s manager (or some coun-
terpart to this attribute), then the employees table is a not a self-refer-
ential table.

SUMMARY

This chapter introduced you to SQL and how to invoke various types of
SQL statements. You saw how to create tables manually from the SQL prompt
and also by launching a SQL script that contains SQL statements for creating
tables.

You also learned how to drop tables, along with the effect of the DELETE,
TRUNCATE, and DROP keywords in SQL statements. Next, you learned how to
invoke a SQL statement to dynamically create a new table based on the struc-
ture of an existing table.

Then you saw an assortment of SQL statements that use the SELECT key-
word. Examples of such SQL statements include finding the distinct rows in
a MySQL table, or finding unique rows containing the EXISTS and LIMIT
keywords. Moreover, you learned about the differences among the DELETE,
TRUNCATE, and DROP keywords in SQL.

Next, you saw how to create indexes on MySQL tables, and some criteria
for defining indexes, followed by how to select columns for an index.

Furthermore, you learned about entity relationships, such as one-to-many,
that are very common in tables that have master-detail relationships, such as
customers and purchase orders. You also learned about many-to-many rela-
tionships in use cases such as students and classes that they are enrolled in.
Next, you learned about self-referential relationships, such as an employees
table that contains data for employees as well as their managers.

CHAPTER 3
JOINS, VIEWS, AND SUBQUERIES

The major topics in this chapter involve SQL join statements, the crea-
tion of views, and SQL subqueries. You will also see SQL queries that
contain the SQL clauses ORDER BY, GROUP BY, and HAVING in a SQL

statement. This chapter relies on the material in Chapter 2 for creating MySQL
tables, extracting data from those tables, and creating views over tables.

The first section of this chapter shows you SQL statements with various
types of JOIN clauses on two MySQL tables, which can also be extended to
multiple tables. Then you will learn about different types of keys, such as pri-
mary keys, unique keys, and foreign keys. The second section contains date-
related examples, such as finding the year, month, and day of a date, as well as
finding the week of a date.

The third section delves into other useful SQL clauses, such as using GROUP
BY and HAVING in a SQL statement. This section shows you SQL statements
that contain the ROLLUP keyword. You will be introduced to aggregate func-
tions such as COUNT(*), MIN, MAX, and AVG, which are also discussed in
Chapter 4.

The final section discusses the concepts of one-to-many and many-to-many
relationships between pairs of tables (briefly introduced in Chapter 1), along
with some real-life scenarios. In addition, you will learn about self-referential
tables.

QUERY EXECUTION ORDER IN SQL

There are many types of SQL keywords and clauses, and it’s important to
know the sequence in which these clauses can appear in a SQL statement. If
you create a SQL statement with clauses that are not in the correct order, you
will generate an error message. Instead of guessing the correct order of SQL
clauses, here is the correct execution order:

68  •  SQL Pocket Primer

•	FROM, JOIN
•	WHERE
•	GROUP BY
•	HAVING
•	SELECT
•	DISTINCT
•	ORDER BY
•	LIMIT, OFFSET

We already worked with the clauses SELECT, FROM, JOIN, and WHERE in
the preceding list to create basic SQL statements. The other clauses provide
extra functionality that enable you to produce sophisticated result sets that can
be used as the basis for various reports to summarize aspects of your applica-
tion and database.

JOINING TABLES IN SQL

An RDBMS whose tables are sufficiently normalized (discussed in
Chapter 6) ensures that a given data value appears in a single location. A “single
source of truth” for data is crucial whenever you need to update data values,
thereby maintaining data integrity in your RDBMS.

You also need a mechanism by which you can retrieve logically related data
that resides in multiple tables. Indeed, the JOIN family of keywords enables
you to write SQL statements that retrieve such data from multiple tables.

Keep in mind that a SQL JOIN statement can require more execution time
to retrieve data from multiple tables than working with one denormalized table
that contains all the data values in a single table. However, try to limit a denor-
malized table to attributes that never (or rarely) need to be updated, thereby
maintaining data integrity.

If you are not convinced of the preceding statement, consider this scenario:
you have great performance in your SQL statements, but you aren’t sure if all
the data is correct. If you have mission critical data that requires 100% data
integrity, then data integrity has a higher priority than optimal performance.

Fortunately, performance issues can sometimes be addressed by perform-
ing the appropriate denormalization of relevant tables. Note that this will
involve rewriting the SQL statements that perform a JOIN of the normalized
tables so that the new SQL statements query the single denormalized database
table.

Types of SQL JOIN Statements

The JOIN keyword enables you to define various types of SQL statements
that have slightly different semantics:

•	INNER JOIN
•	LEFT OUTER JOIN

Joins, Views, and Subqueries  •  69

•	RIGHT OUTER JOIN
•	CROSS JOIN
•	SELF-JOIN

Let’s suppose that table A has some (but not all) corresponding rows in
table B, and that table B has some (but not all) corresponding rows in table A.
Moreover, let’s also assume that a JOIN statement specifies table A first and
then table B.

An INNER JOIN returns all rows from table A that have non-empty match-
ing rows in another table.

A LEFT JOIN returns all rows from left-side table A and either matching
rows from the right-side table B or NULL if no matching rows in right-side
table B.

A RIGHT JOIN returns all rows from right-side table B and either
matching rows from the left-side table A or NULL if no matching rows in
table A.

A CROSS JOIN is a Cartesian or “full” product of rows from left-side table A
and right-side table B.

A SELF JOIN joins a table to itself. A common use-case involves an
employees table that contains a manager attribute for each employee. Given
an employee in this table, find the value in the manager attribute for that
employee, and then search the employees table a second time using the man-
ager attribute.

This sequence of steps can be repeated until the top-most employee does
not have a manager (such as the CEO). Given an employee, the preceding
sequence produces the management hierarchy from the employee to the top-
most employee in a company (defined in the table).

EXAMPLES OF SQL JOIN STATEMENTS

A SQL statement with a JOIN clause is required whenever information
about an entity is stored in two (or more) tables. For example, recall that our
four-table RDBMS contains the following tables:

•	customers
•	purchase_orders
•	line_items
•	item_desc

Let’s look at the structure and the contents of the purchase_orders
table and the line_items table and before we execute JOIN queries on those
tables.

70  •  SQL Pocket Primer

desc customers;
+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
cust_id	int	YES		NULL	
first_name	varchar(20)	YES		NULL	
last_name	varchar(20)	YES		NULL	
home_address	varchar(20)	YES		NULL	
city	varchar(20)	YES		NULL	
state	varchar(20)	YES		NULL	
zip_code	varchar(10)	YES		NULL	
+--------------+-------------+------+-----+---------+-------+
7 rows in set (0.004 sec)

select cust_id, first_name, last_name
from customers;
+---------+------------+-----------+
| cust_id | first_name | last_name |
+---------+------------+-----------+
| 1000 | John | Smith |
| 2000 | Jane | Jones |
+---------+------------+-----------+
2 rows in set (0.000 sec)

Let’s look at the structure of the purchase_orders table and then extract
some rows from this table based on a subset of the table attributes.

desc purchase_orders;
+---------------+------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+------+------+-----+---------+-------+
cust_id	int	YES		NULL	
po_id	int	YES		NULL	
purchase_date	date	YES		NULL	
+---------------+------+------+-----+---------+-------+
3 rows in set (0.016 sec)

select * from purchase_orders;
+---------+-------+---------------+
| cust_id | po_id | purchase_date |
+---------+-------+---------------+
1000	12500	2021-12-01
1000	12600	2022-12-03
1000	12700	2022-05-07
+---------+-------+---------------+
3 rows in set (0.001 sec)

desc line_items;
+---------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
po_id	int	YES		NULL	
line_id	int	YES		NULL	
item_id	int	YES		NULL	
item_count	int	YES		NULL	
item_price	decimal(8,2)	YES		NULL	
item_tax	decimal(8,2)	YES		NULL	
item_subtotal	decimal(8,2)	YES		NULL	
+---------------+--------------+------+-----+---------+-------+
7 rows in set (0.005 sec)

Joins, Views, and Subqueries  •  71

select po_id, line_id, item_id from line_items;
+-------+---------+---------+
| po_id | line_id | item_id |
+-------+---------+---------+
12500	5001	100
12500	5002	200
12500	5003	300
+-------+---------+---------+
3 rows in set (0.003 sec)

select po_id, cust_id, purchase_date
from purchase_orders;
+-------+---------+---------------+
| po_id | cust_id | purchase_date |
+-------+---------+---------------+
12500	1000	2021-12-01
12600	1000	2022-12-03
12700	1000	2022-05-07
+-------+---------+---------------+
3 rows in set (0.003 sec)

Now we’re ready to examine different JOIN clauses involving this
pair of tables, starting with an INNER JOIN that is discussed in the next
section.

An INNER JOIN Statement

As you saw in the preceding section, the customers table contains two
customers, but only one customer has an associated purchase order, and that
customer has cust_id equal to 1000. Therefore, a SQL statement that spec-
ifies an INNER JOIN on the customers and purchase_order tables will
return rows whose left-side and right-side are both non-empty and all those
rows will have a cust_id value equal to 1000. Just to confirm the preceding
statement, let’s define an INNER JOIN on the customers and purchase_
order tables.

SELECT customers.cust_id, customers.first_name,
customers.last_name, purchase_orders.purchase_date
FROM customers
INNER JOIN purchase_orders
ON customers.cust_id = purchase_orders.cust_id;

The result of the preceding SQL query is here, and observe that the cust_
id in all three rows equals 1000:

+---------+------------+-----------+---------------+
| cust_id | first_name | last_name | purchase_date |
+---------+------------+-----------+---------------+
1000	John	Smith	2021-12-01
1000	John	Smith	2022-12-03
1000	John	Smith	2022-05-07
+---------+------------+-----------+---------------+
3 rows in set (0.003 sec)

72  •  SQL Pocket Primer

A LEFT JOIN Statement

We know that the customer whose cust_id is 2000 does not have a corre-
sponding row in the purchase_orders table, which means that a LEFT JOIN
involving the cust_id with value 2000 will be non-null row entry on the left
side, whereas the right side will be NULL. Let’s confirm the preceding sentence
with the following LEFT JOIN statement:

SELECT customers.cust_id, customers.first_name,
customers.last_name, purchase_orders.purchase_date
FROM customers
LEFT JOIN purchase_orders
ON customers.cust_id = purchase_orders.cust_id;
+---------+------------+-----------+---------------+
| cust_id | first_name | last_name | purchase_date |
+---------+------------+-----------+---------------+
1000	John	Smith	2021-12-01
1000	John	Smith	2022-12-03
1000	John	Smith	2022-05-07
2000	Jane	Jones	NULL
+---------+------------+-----------+---------------+
4 rows in set (0.000 sec)

A RIGHT JOIN Statement

Let’s perform a RIGHT JOIN, as shown in the following SQL statement:

SELECT customers.cust_id, customers.first_name,
customers.last_name, purchase_orders.purchase_date
FROM customers
RIGHT JOIN purchase_orders
ON customers.cust_id = purchase_orders.cust_id;
+---------+------------+-----------+---------------+
| cust_id | first_name | last_name | purchase_date |
+---------+------------+-----------+---------------+
1000	John	Smith	2021-12-01
1000	John	Smith	2022-12-03
1000	John	Smith	2022-05-07
+---------+------------+-----------+---------------+
3 rows in set (0.000 sec)

Notice that there are no NULL values in the RIGHT JOIN, because every
row in the purchase_orders table has a corresponding row in the left-side
customers table. If a left-side NULL appears, then the right-side table rows
are called orphans because they do not have a parent in the customers table.
Hence, we would have purchase orders but no information regarding the
customer who made that purchase. We want to ensure that there are never any
orphan rows in our tables.

If we need to delete a customer from the customers table, we must delete
the associated rows from the purchase_orders table as well as the associated
rows from the line_items table. Fortunately, this task is straightforward:
instead of specifying the DELETE keyword in our SQL statements, we specify

Joins, Views, and Subqueries  •  73

DELETE CASCADING to delete the child rows in the purchase_orders table
as well as the child rows in the line_items table.

A CROSS JOIN Statement

Now let’s perform a CROSS JOIN, as shown here:

SELECT customers.cust_id, customers.first_name,
customers.last_name, purchase_orders.purchase_date
FROM customers
CROSS JOIN purchase_orders
ON customers.cust_id = purchase_orders.cust_id;
+---------+------------+-----------+---------------+
| cust_id | first_name | last_name | purchase_date |
+---------+------------+-----------+---------------+
1000	John	Smith	2021-12-01
1000	John	Smith	2022-12-03
1000	John	Smith	2022-05-07
+---------+------------+-----------+---------------+
3 rows in set (0.000 sec)

Notice that the preceding output does not contain data for the customer
whose cust_id is 2000. However, we do get the correct results with the fol-
lowing SQL query:

SELECT customers.cust_id, customers.first_name,
customers.last_name, purchase_orders.purchase_date
FROM customers
CROSS JOIN purchase_orders
ORDER BY customers.cust_id;
+---------+------------+-----------+---------------+
| cust_id | first_name | last_name | purchase_date |
+---------+------------+-----------+---------------+
1000	John	Smith	2021-12-01
1000	John	Smith	2022-12-03
1000	John	Smith	2022-05-07
2000	Jane	Jones	2021-12-01
2000	Jane	Jones	2022-12-03
2000	Jane	Jones	2022-05-07
+---------+------------+-----------+---------------+
6 rows in set (0.000 sec)

MySQL NATURAL JOIN Statement

A MySQL NATURAL JOIN is a join that performs the same task as an
INNER or LEFT JOIN, in which the ON or USING clause refers to all columns
that the tables to be joined have in common. The MySQL NATURAL JOIN is
structured in such a way that columns with the same name of associate tables
will appear once only.

Here are some guidelines for a NATURAL JOIN between two tables:

•	The associated tables have one or more pairs of identically named columns.
•	The columns must be the same data type.
•	Do not use an ON clause in a NATURAL JOIN.

74  •  SQL Pocket Primer

AN INNER JOIN TO DELETE DUPLICATE ATTRIBUTES

Two rows are duplicates if they contain the same data values, with the possi-
ble exception of an auto-incrementing primary key. For this section, let’s say that
two rows are similar if they have the same value in one (or more) attributes of a
given table. Hence, the notion of duplicate rows is a special case of similar rows.

Listing 3.1 shows the content of weather.sql that creates and populates
the table weather with fictitious data values.

LISTING 3.1: weather.sql

DROP TABLE IF EXISTS weather;

CREATE TABLE weather (day DATE, temper INTEGER, wind INTEGER,
forecast CHAR(20), city CHAR(20), state CHAR(20));

INSERT INTO weather VALUES('2021-04-01',42, 16, 'Rain', 'sf', 'ca');
INSERT INTO weather VALUES('2021-04-02',45, 3, 'Sunny','sf', 'ca');
INSERT INTO weather VALUES('2021-04-03',78, -12, NULL, 'se', 'wa');
INSERT INTO weather VALUES('2021-07-01',42, 16, 'Rain', '', 'ca');
INSERT INTO weather VALUES('2021-07-02',45, -3, 'Sunny','sf', 'ca');
INSERT INTO weather VALUES('2021-07-03',78, 12, NULL, 'sf', 'mn');
INSERT INTO weather VALUES('2021-08-04',50, 12, 'Snow', '', 'mn');
INSERT INTO weather VALUES('2021-08-06',51, 32, '', 'sf', 'ca');
INSERT INTO weather VALUES('2021-09-01',42, 16, 'Rain', 'sf', 'ca');
INSERT INTO weather VALUES('2021-09-02',45, 99, '', 'sf', 'ca');
INSERT INTO weather VALUES('2021-09-03',15, 12, 'Snow', 'chi','il');

Listing 3.1 starts with a DROP statement, then a CREATE statement, and
then a set of INSERT statements. Log into MySQL and execute the following
statements:

use mytools;
source weather.sql;
select * from weather;

The output from the preceding code snippet is the following (or something
similar):

select * from weather;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-01	42	16	Rain	sf	ca
2021-04-02	45	3	Sunny	sf	ca
2021-04-03	78	-12	NULL	se	wa
2021-07-01	42	16	Rain		ca
2021-07-02	45	-3	Sunny	sf	ca
2021-07-03	78	12	NULL	sf	mn
2021-08-04	50	12	Snow		mn
2021-08-06	51	32		sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-02	45	99		sf	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
11 rows in set (0.000 sec)

Joins, Views, and Subqueries  •  75

To ensure that we can refresh the contents of the weather table with
the preceding rows of data, let’s create the table weather2 as a copy of the
weather table with the following SQL statements:

DROP TABLE IF EXISTS weather2;
CREATE TABLE weather2 AS (SELECT * FROM weather);

We can delete similar rows from the weather2 table that have duplicate
city values with the following SQL statement:

DELETE w1
FROM weather2 w1
INNER JOIN weather2 w2
WHERE
 w1.day < w2.day AND
 w1.city = w2.city;
Query OK, 7 rows affected (0.003 sec)

Let’s look at the updated contents of the weather2 table to compare with
the contents of the weather table:

SELECT *
FROM weather2;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-03	78	-12	NULL	se	wa
2021-08-04	50	12	Snow		mn
2021-09-02	45	99		sf	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
4 rows in set (0.000 sec)

If you look closely at the contents of the city attribute in the weather
table, you can see that the rows containing the first five occurrences of the sf
value in the city attribute have been deleted, as well as the row with the first
occurrence of an empty string for the city attribute.

Hence, the SQL statement that deleted similar rows always deletes the all-
but-last occurrence of a subset of rows that have the same value in an attribute
of a table.

JOIN STATEMENTS ON TABLES WITH INTERNATIONAL TEXT

Earlier you saw how to create the table japn1 that contains Japanese
text. Now let’s create the table japn2 whose text is the English counter-
part to the text in japn1, and then perform a join on the tables japn1 and
japn2.

Listing 3.2 shows the content of japanese2.sql that creates and popu-
lates the table japn2, and Listing 3.3 shows the content of japn_join.sql
that illustrates how to join the tables japn1 and japn2.

76  •  SQL Pocket Primer

LISTING 3.2: japanese2.sql

use mytools;
DROP TABLE IF EXISTS japn2;

CREATE TABLE japn2
(
 emp_id INT NOT NULL AUTO_INCREMENT,
 fname VARCHAR(100) NOT NULL,
 lname VARCHAR(100) NOT NULL,
 title VARCHAR(100) NOT NULL,
 PRIMARY KEY (emp_id)
);

INSERT INTO japn2 SET fname="hideki", lname="hiura", title="CTO";
INSERT INTO japn2 SET fname="momotaro",lname="strong",title="manager";
INSERT INTO japn2 SET fname="oswald", lname="camp",title="funloving";
INSERT INTO japn2 SET fname="tokyo", lname="japan",title="awesome!";

As you can see, Listing 3.2 contains familiar SQL statements. Let’s look at
the content of japn_join.sql that performs a join on the two tables.

LISTING 3.3: japn_join.sql

use mytools;

SELECT j1.emp_id,j1.fname,j1.lname,j2.fname,j2.lname
FROM japn1 j1, japn2 j2
WHERE j1.emp_id = j2.emp_id;

Launch the code in Listing 3.3 to see the following output:

+--------+-----------------+-----------+----------+--------+
| emp_id | fname | lname | fname | lname |
+--------+-----------------+-----------+----------+--------+
1	ひでき	日浦	hideki	hiura
2	ももたろ	つよい	momotaro	strong
3	オズワルド	カmポ	oswald	camp
4	東京	日本	tokyo	japan
+--------+-----------------+-----------+----------+--------+
4 rows in set (0.001 sec)

Now that you know how to perform a join on two MySQL tables, you are
ready to learn about creating views in SQL, which is the topic of the next
section.

WHAT IS A VIEW?

A view provides a mechanism for restricting access to the data in a table (or
tables) such that a subset (specified in the definition of the view) of the rows
are accessible to users. A view can specify data from a subset of rows, a subset
of columns, or both, which can be accessed from a single table or multiple
tables.

Joins, Views, and Subqueries  •  77

A view is sometimes called a virtual table because a view does not store a copy
of the data that is retrieved by the view definition: a view only returns a result set.
Note that a view is stored in the database, and you can reference a view in the
same way that you reference a table in a SQL statement. In addition, the name
of a view must be distinct from the name of all tables and all views in a database.

Creating a View

Use the clause CREATE VIEW to create a view, along with the AS keyword
(discussed in Chapter 1) and the SELECT keyword, where the latter specifies
the data that is visible through the view. As a simple example, here is the defini-
tion of the view V1 that accesses all the data in the customers table:

CREATE VIEW V1 AS (SELECT * FROM customers);

The preceding example illustrates the syntax for creating a view: in general,
a view will access a subset of the rows and/or columns of a table, as you will see
later in this chapter.

For example, you can easily allow access only to the rows in the customers
table whose cust_id equals 1000. As another example, you can define a view
over a JOIN of the customers table, the purchase_orders table, and the
line_items table to display the purchase order details belonging to a customer.

Dropping a View in SQL

You can drop a view in SQL using the same syntax that you use for dropping
a table, as shown here:

DROP VIEW view_name;
DROP VIEW view1, view2, view3;

If you do not know whether or not the view already exists, you can use the
following syntax:

DROP VIEW IF EXISTS view_name;
DROP VIEW IF EXISTS view1, view2, view3;

The preceding syntax is useful when you invoke a SQL script that modifies
the definition of an existing view. Incidentally, you can also include such state-
ments in a SQL file.

Advantages of Views in SQL Statements

Now that you understand what views are and how to create them, here is a
list of some advantages of a view over SQL statements that directly access data
from one or more tables:

•	restricted access to data (i.e., security)
•	simpler queries
•	abstraction of business logic

78  •  SQL Pocket Primer

Earlier, we briefly mentioned restricted access. For example, you might
want to prevent users from accessing sensitive information, such as a table
attribute that contains social security numbers.

A view can be a replacement for a SQL statement that involves a multi-
table join or a subquery. In fact, a view definition can consist of a combination
of tables and other view definitions. Finally, a view can “abstract” away com-
plex business logic in transactions, thereby reducing the likelihood of creating
and executing incorrect SQL queries to retrieve the desired data. In a sense,
SQL views can function as an access layer between users and database tables.

Views Involving a Single Table

The following SQL statement defines a view over the customers table:

MySQL [mytools]> CREATE VIEW V1 AS (SELECT * FROM customers);
1 row in set (0.002 sec)

Note that the data that is visible via view V1 is identical to the data that is
visible from the customers table, so view V1 does not provide any significant
advantages. If you select the data rows from view V1, you will see the same set
of rows that are selected from the customers table.

The interesting aspect of V1 is that it’s possible to insert data rows into V1
as well. However, this is not true in general; specifically, you cannot insert a
data row into a view that is defined as a join of two or more tables if there is
any ambiguity regarding the exact set of attributes in the underlying tables that
are affected.

Now examine the definition of view V2 that selects all the rows of
customers (i.e., the same as view V1), but only the attributes cust_id and
city, as defined here:

MySQL [mytools]>
CREATE VIEW V2 AS (SELECT cust_id,city FROM customers);
1 row in set (0.002 sec)
+------------------+
| Tables_in_mytools |

Views Involving Multiple Tables

Here is an example of creating the view V3, which is defined over a join of
two tables:

MySQL [mytools]>
CREATE VIEW V3 AS
(SELECT cust_id,po_id FROM customers c, purchase_orders p
Where c.cust_id = p.cust_id);

If you select the data from the view V3, you will see a set of rows contain
the field cust_id and the field po_id. Note that the returned data set does
not necessarily “group” the rows so that all the purchase_orders for each
customer are in the same block. In order to perform the latter, use GROUP BY
c.cust_id in the definition of the view V3 (discussed later).

Joins, Views, and Subqueries  •  79

Updatable Views

An updatable view refers to a view in which the underlying table or tables
can be updated. If a view is based on a single table, then the view is updatable
if the underlying table is updatable. If a view is based on two or more tables,
then the view is updatable if there is no ambiguity regarding the exact rows and
tables that are affected by the update.

Moreover, an updatable view (regardless of how it’s defined) cannot contain
any of the following SQL clauses:

•	Aggregate functions
•	Group operators
•	GROUP BY expressions
•	JOINs
•	Set operators

KEYS, PRIMARY KEYS, AND FOREIGN KEYS

A key is a value used to identify a record in a table uniquely. A key could be
a single column or combination of multiple columns. The columns in a table
that are not used to identify a record uniquely are called non-key columns. A
unique key constraint ensures that there are no duplicate rows in a table (i.e.,
all rows are unique).

A primary key is a combination of fields that uniquely identifies a row in a
table. Keep in mind that a primary key cannot have NULL values: in fact, there
is an implicit NOT NULL constraint on a primary key. Consequently, a primary
key constraint also has a unique constraint. The crucial point to remember is
this: you can define multiple unique constraint on a given table, but there can
be only one primary key on a table.

A foreign key references the primary key of another table. A foreign key
exists when a pair of tables have a master/detail relationship, such as a pur-
chase order and its line items, or a student and the list of courses in which the
student has enrolled.

Foreign Keys versus Primary Keys

Suppose that A and B are two MySQL tables. As you saw in the previous
section, a foreign key from A to B provides a mechanism for a row in table A to
reference a related row in table B. In addition, a foreign key is specified in the
definition of a primary key for a given table. A foreign key has the following
properties:

•	can have a different name from its primary key
•	ensures rows in one table have corresponding rows in another
•	is not required to be unique (often foreign keys are not).
•	can be null, even though a primary key cannot

80  •  SQL Pocket Primer

On the other hand, a primary key is used to identify a database record
uniquely, and it has the following properties:

•	cannot be NULL
•	must be unique
•	its values should rarely be changed
•	must be given a value when a new record is inserted

Lastly, a composite key is a key composed of two or more columns used to
identify a record uniquely.

A MYSQL EXAMPLE OF FOREIGN KEYS

Although the definitions of primary keys and foreign keys in the previous
section are straightforward, there are some subtle points to keep in mind when
you specify them in table definitions.

Listing 3.4 shows the content of parent_child.sql that illustrates how
to specify a primary key in the tables parent_tbl and child_tbl and also a
foreign key in the table child_tbl. Both of these tables have minimal content
so that you can focus on the foreign key portion of the code, and also easily
observe what happens when you experiment with the table definitions.

LISTING 3.4: parent_child.sql

use mytools;

DROP TABLE IF EXISTS parent_tbl;
DROP TABLE IF EXISTS child_tbl;
-- drop parent_tbl again: why?
DROP TABLE IF EXISTS parent_tbl;

CREATE TABLE parent_tbl(
 cust_id INT PRIMARY KEY,
 cust_name VARCHAR(30)
);

CREATE TABLE child_tbl(
 child_id INT PRIMARY KEY,
 cust_id INT,
 FOREIGN KEY (cust_id) REFERENCES parent_tbl(cust_id)
 ON DELETE SET NULL
 ON UPDATE SET NULL
);

INSERT INTO parent_tbl VALUES (100,'John Smith');
INSERT INTO parent_tbl VALUES (200,'Jane Jones');

INSERT INTO child_tbl VALUES (1200, 100);
INSERT INTO child_tbl VALUES (1300, 100);
INSERT INTO child_tbl VALUES (2500, 200);
INSERT INTO child_tbl VALUES (2600, 200);

Joins, Views, and Subqueries  •  81

Listing 3.4 starts by dropping the parent_tbl and child_tbl tables, fol-
lowed by the creation of these two tables, and then several SQL statements
that insert data into both tables. Now launch the SQL file to see the following
output:

Database changed
ERROR 3730 (HY000) at line 2 in file: 'parent_child.sql':
Cannot drop table 'parent_tbl' referenced by a foreign key
constraint 'child_tbl_ibfk_1' on table 'child_tbl'.
Query OK, 0 rows affected (0.014 sec)
Query OK, 0 rows affected (0.005 sec)
Query OK, 0 rows affected (0.007 sec)
Query OK, 0 rows affected (0.009 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

The error message ERROR 3730 (HY000) occurs because the first attempt
to drop the table parent_tbl fails due to the foreign key constraint that is
specified in the definition of the table child_tbl.

Second, after the child_tbl has been recreated, it’s possible to drop and
re-create the table parent_tbl, which is why the parent_tbl is dropped
(successfully) in the second DROP TABLE statement.

Third, do not specify NOT NULL in the definition for cust_id or you will
see this error message:

--Column 'cust_id' cannot be NOT NULL: needed in a foreign
key constraint 'child_tbl_ibfk_1' SET NULL

Finally, keep in mind that other RDBMSs might exhibit slightly different
behavior, in which case you need to modify the SQL statements accordingly.

Here are the contents of the tables parent_tbl and child_tbl after you
execute the code in Listing 3.4:

MySQL [mytools]> select * from parent_tbl;
+---------+------------+
| cust_id | cust_name |
+---------+------------+
| 100 | John Smith |
| 200 | Jane Jones |
+---------+------------+
2 rows in set (0.001 sec)

MySQL [mytools]> select * from child_tbl;
+----------+---------+
| child_id | cust_id |
+----------+---------+
| 1200 | 100 |
| 1300 | 100 |

82  •  SQL Pocket Primer

| 2500 | 200 |
| 2600 | 200 |
+----------+---------+
4 rows in set (0.001 sec)

WORKING WITH SUBQUERIES IN SQL

A subquery is a SQL query that is defined inside another SQL query. The
subquery is also called a nested query or inner query. In addition, there are two
types of subqueries:

•	correlated subqueries (same table in inner and outer query)
•	non-correlated subqueries (can return Boolean values)

One type of subquery can return a result set with zero, one, or multiple
rows; by contrast, another type of subquery can return a Boolean value. The
next section provides additional details regarding both types of subqueries.

Two Types of Subqueries

As you learned in the previous section, a correlated subquery is a sub-
query that contains a reference to a table that also appears in the outer query.
Therefore, a correlated subquery is not an independent query. Correlated sub-
queries execute the outer query before the inner query is executed. Correlated
subqueries contain SQL clauses such as EXIST, NOT EXIST, IN, and NOT IN.

By contrast, a non-correlated subquery is an independent query whose out-
put is substituted into the main query. The inner query is always executed
before the outer query in a non-correlated subquery.

In both types of subqueries, the nested query returns a (possibly empty) set
of values that is then processed by the outermost SQL query. Consequently,
there can be a performance penalty because the subquery may be evaluated
again for each row processed by the outer query, thereby increasing the execu-
tion time for the entire SQL statement.

Now that you understand the different types of subqueries, the following
SQL statement selects the day and the forecast for the day (or days) that
have the maximum temperature by means of a correlated subquery:

SELECT day, forecast
FROM weather
WHERE temper IN (
 SELECT max(temper) FROM weather);

As you can see in the preceding SQL statement, a subquery enables you
to restrict the data that is queried by the main query. Although we have not
discussed the MAX() function in SQL, the purpose of this function is intuitive:
it returns the maximum value of an attribute of a table. Similarly, MIN() and
AVG() return the minimum and average values, respectively, of an attribute of
a table. These aggregate functions are discussed again in Chapter 4.

Joins, Views, and Subqueries  •  83

As a second example, the following SQL statement displays the city and
state in which the temperature is above the average temperature for all cit-
ies, where the average temperature is determined by a correlated subquery:

SELECT city, state
FROM weather
WHERE temper > (SELECT AVG(temper)
 FROM weather);
+------+-------+
| city | state |
+------+-------+
se	wa
sf	mn
	mn
sf	ca
+------+-------+
4 rows in set (0.008 sec)

Obviously, you can replace “>” in the preceding SQL statement with “<”
or “=” or other inequalities to retrieve the appropriate subset of rows from the
weather table.

As a third example, the following SQL statement contains a correlated
subquery that appears in the SELECT clause of the outer query, which prints
the entire list of cities and states alongside the average temperature for
each city:

SELECT city, state, temper,
 (SELECT AVG(temper)
 FROM weather
 WHERE city = w.city) AS city_average
 FROM weather w
 ORDER BY city, state;
+------+-------+--------+--------------+
| city | state | temper | city_average |
+------+-------+--------+--------------+
	ca	42	46.0000
	mn	50	46.0000
chi	il	15	15.0000
se	wa	78	78.0000
sf	ca	42	49.7143
sf	ca	45	49.7143
sf	ca	45	49.7143
sf	ca	51	49.7143
sf	ca	42	49.7143
sf	ca	45	49.7143
sf	mn	78	49.7143
+------+-------+--------+--------------+
11 rows in set (0.000 sec)

A Subquery to Find Customers Without Purchase Orders

Subqueries are useful for finding rows in a table that do not have any rows
in a related table. Let’s look at the contents of the customers2 table that is

84  •  SQL Pocket Primer

defined in the SQL script customers2.sql, which has the same structure as
the customers table, and also contains six rows of data, as shown below:

SELECT DISTINCT(cust_id), first_name, last_name
FROM customers2;
+---------+------------+-----------+
| cust_id | first_name | last_name |
+---------+------------+-----------+
1000	John	Smith
2000	Jane	Jones
3000	Sara	Smith
4000	Dave	Dean
5000	Kenn	Knuth
+---------+------------+-----------+
5 rows in set (0.001 sec)

In addition, let’s review the contents of two of the attributes of the pur-
chase_orders table, as shown below:

SELECT DISTINCT(po_id), cust_id
FROM purchase_orders;
+-------+---------+
| po_id | cust_id |
+-------+---------+
12500	1000
12600	1000
12700	1000
+-------+---------+
3 rows in set (0.000 sec)

As you can see, only the customer with cust_id equal to 1000 has made
any purchase orders. How do we display information about the customers who
have not made any purchase orders? The following SQL statement accom-
plishes this task:

SELECT c.cust_id, c.first_name, c.last_name
FROM customers2 c
WHERE
 NOT EXISTS (
 SELECT po.cust_id
 FROM purchase_orders po
 WHERE po.cust_id = c.cust_id
);
+---------+------------+-----------+
| cust_id | first_name | last_name |
+---------+------------+-----------+
2000	Jane	Jones
3000	Sara	Smith
4000	Dave	Dean
5000	Kenn	Knuth
+---------+------------+-----------+
4 rows in set (0.001 sec)

Joins, Views, and Subqueries  •  85

If you want to determine the number of customers who have not made any
purchase orders, use the code snippet SELECT count(*) instead of this code
snippet:

SELECT c.cust_id, c.first_name, c.last_name

Now that you know how to use the ORDER BY and HAVING clause, let’s see
how to display customers without purchase orders and specify criteria such
as grouping by zip_code and by state. The answer is in the following SQL
statement:

SELECT c.cust_id, c.first_name, c.last_name, c.zip_code, c.state
FROM customers2 c
WHERE
 NOT EXISTS (
 SELECT po.cust_id
 FROM purchase_orders po
 WHERE po.cust_id = c.cust_id
)
ORDER BY zip_code, state;
+---------+------------+-----------+----------+-------+
| cust_id | first_name | last_name | zip_code | state |
+---------+------------+-----------+----------+-------+
4000	Dave	Dean	67123	IL
5000	Kenn	Knuth	67345	IL
2000	Jane	Jones	95015	CA
3000	Sara	Smith	95043	CA
+---------+------------+-----------+----------+-------+
4 rows in set (0.000 sec)

SUBQUERIES WITH IN AND NOT IN CLAUSE

Before working with these SQL clauses, let’s review the contents of the
weather table:

select * from weather;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-01	42	16	Rain	sf	ca
2021-04-02	45	3	Sunny	sf	ca
2021-04-03	78	-12	NULL	se	wa
2021-07-01	42	16	Rain		ca
2021-07-02	45	-3	Sunny	sf	ca
2021-07-03	78	12	NULL	sf	mn
2021-08-04	50	12	Snow		mn
2021-08-06	51	32		sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-02	45	99		sf	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
11 rows in set (0.000 sec)

86  •  SQL Pocket Primer

Suppose that we want to retrieve the rows where the state can be either
ca, wa, or il. One way to do so involves using multiple OR clauses in a SQL
query. However, a simpler solution involves the IN keyword, as shown here:

SELECT * FROM weather
WHERE state IN ('ca','wa','il');
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-01	42	16	Rain	sf	ca
2021-04-02	45	3	Sunny	sf	ca
2021-04-03	78	-12	NULL	se	wa
2021-07-01	42	16	Rain		ca
2021-07-02	45	-3	Sunny	sf	ca
2021-08-06	51	32		sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-02	45	99		sf	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
9 rows in set (0.003 sec)

Similarly, we can find the rows whose state is not in the preceding list by
using the NOT IN keyword, as shown here:

SELECT * FROM weather
WHERE state NOT IN ('ca','wa','il');
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
| 2021-07-03 | 78 | 12 | NULL | sf | mn |
| 2021-08-04 | 50 | 12 | Snow | | mn |
+------------+--------+------+----------+------+-------+
2 rows in set (0.000 sec)

The results of the preceding two queries make sense: the preceding NOT IN
query returns 2 rows, and the IN query returns 9 rows, and their sum is 11,
which equals the number of rows in the weather table.

SUBQUERIES WITH SOME, ALL, ANY CLAUSE

Before working with any of these SQL clauses, let’s first look at the data in
the friends table:

select * from friends;
+-----+-------+-------+--------+
| id | fname | lname | height |
+-----+-------+-------+--------+
100	Jane	Jones	170
200	Dave	Smith	160
300	Jack	Stone	180
+-----+-------+-------+--------+
3 rows in set (0.000 sec)

Joins, Views, and Subqueries  •  87

The ALL keyword in the next SQL statement selects the lname and fname
attributes of the rows whose id attribute is greater than all of the id values in
the inner SELECT statement:

SELECT id, lname, fname
FROM friends
WHERE id > ALL(SELECT 100);
+-----+-------+-------+
| id | lname | fname |
+-----+-------+-------+
| 200 | Smith | Dave |
| 300 | Stone | Jack |
+-----+-------+-------+
2 rows in set (0.009 sec)

As another example, the ALL keyword selects the lname and fname attrib-
utes of the rows whose id attribute is greater than all of the id values in the
friends table. Obviously, there are no such rows, as shown here:

SELECT id, lname, fname
FROM friends
WHERE id > ALL(
SELECT id FROM friends);
Empty set (0.001 sec)

The SOME keyword selects the lname and fname of the rows whose id
value is greater than some (at least one will suffice) of the id values in the rows
returned by the inner query, an example of which is here:

SELECT id, lname, fname
FROM friends
WHERE id > SOME(
SELECT id FROM friends);
+-----+-------+-------+
| id | lname | fname |
+-----+-------+-------+
| 200 | Smith | Dave |
| 300 | Stone | Jack |
+-----+-------+-------+
2 rows in set (0.002 sec)

As you can confirm, 200 and 300 are both greater than 100, but 100 is not
greater than any of the id values in the friends table.

The ANY keyword selects the lname and fname of the rows whose id value
is greater than any (at least one) of the id values in the rows returned by the
inner query, an example of which is here:

SELECT id, lname, fname
FROM friends
WHERE id > ANY(
SELECT id FROM friends);

88  •  SQL Pocket Primer

+-----+-------+-------+
| id | lname | fname |
+-----+-------+-------+
| 200 | Smith | Dave |
| 300 | Stone | Jack |
+-----+-------+-------+
2 rows in set (0.000 sec)

Notice that although the result of the SOME query and the ANY query are the
same in the preceding SQL statements, in general, the result sets are different.

SUBQUERIES WITH THE MAX() AND AVG() FUNCTIONS

The following SQL statement returns two rows from the weather table
where the temperature equals the maximum value:

SELECT temper, city, state
FROM weather
WHERE temper = (SELECT MAX(temper) FROM weather);
+--------+------+-------+
| temper | city | state |
+--------+------+-------+
| 78 | se | wa |
| 78 | sf | mn |
+--------+------+-------+
2 rows in set (0.001 sec)

The following SQL statement returns seven rows from the weather table
where the temperature is less than the average value:

SELECT temper, city, state
FROM weather
WHERE temper < (SELECT AVG(temper) FROM weather);
+--------+------+-------+
| temper | city | state |
+--------+------+-------+
42	sf	ca
45	sf	ca
42		ca
45	sf	ca
42	sf	ca
45	sf	ca
15	chi	il
+--------+------+-------+
7 rows in set (0.005 sec)

FIND TALLEST STUDENTS IN EACH CLASSROOM VIA A SUBQUERY

Listing 3.5 shows the content of heights.sql that creates the table
heights and then selects the tallest three students in each of the distinct
classrooms (i.e., 1000 and 2000) specified in the room attribute of the heights
table.

Joins, Views, and Subqueries  •  89

LISTING 3.5: heights.sql

use mytools;

DROP TABLE IF EXISTS heights;
CREATE TABLE heights(id INTEGER, name CHAR(10), height
INTEGER, room INTEGER);

INSERT INTO heights VALUES(1,'person1', 150, 1000);
INSERT INTO heights VALUES(2,'person2', 180, 1000);
INSERT INTO heights VALUES(3,'person3', 200, 1000);
INSERT INTO heights VALUES(4,'person4', 100, 1000);
INSERT INTO heights VALUES(5,'person5', 130, 2000);
INSERT INTO heights VALUES(6,'person6', 100, 2000);
INSERT INTO heights VALUES(7,'person7', 110, 2000);
INSERT INTO heights VALUES(8,'person8', 120, 2000);

SELECT *
FROM heights h1
WHERE 3 > (
 SELECT COUNT(DISTINCT height)
 FROM heights h2
 WHERE h2.height > h1.height
 AND h1.room = h2.room
);

Listing 3.5 starts by creating and populating the table heights with 8 rows of
data, where 4 students are in classroom 1000 and 4 students are in classroom 2000.

The second portion of Listing 3.5 defines a SQL statement that is a corre-
lated subquery. Notice that the WHERE clause specifies the value 3 in order to
limit the number of rows that are returned by the inner SQL statement.

In Chapter 4, you will learn how to use the LIMIT keyword that limits the
number of rows that are returned by a SQL statement. However, MySQL 8
does not support the LIMIT keyword inside a subquery. Launch the code in
Listing 3.5 to see the following output:

+------+---------+--------+------+
| id | name | height | room |
+------+---------+--------+------+
1	person1	150	1000
2	person2	180	1000
3	person3	200	1000
5	person5	130	2000
7	person7	110	2000
8	person8	120	2000
+------+---------+--------+------+
6 rows in set (0.000 sec)

The SQL statement returns 3 rows for room 1000 and 3 rows from room
2000, all of which are the top three tallest students in their respective class-
rooms. The nice aspect of Listing 3.5 is that you can generalize the result by
adding an arbitrary number of departments, or by changing the number of

90  •  SQL Pocket Primer

values that you want from each classroom, or both. Try replacing the number
3 by 1, 2, 4, 5, or any other positive integer and verify that the output of the
modified SQL statement is correct.

SQL AND HISTOGRAMS

A histogram in SQL refers to a SQL statement that displays the distribution
(i.e., frequency) of items in a database table. For example, we can display the
contents of the item_desc table as follows:

select *
from item_desc;
+---------+-------------+------------+
| item_id | item_desc | item_price |
+---------+-------------+------------+
100	hammer	20.00
200	screwdriver	8.00
300	wrench	10.00
+---------+-------------+------------+
3 rows in set (0.001 sec)

We display only the values of the item_price attribute in the item_desc
table as follows:

select item_price
from item_desc;
+------------+
| item_price |
+------------+
| 20.00 |
| 8.00 |
| 10.00 |
+------------+
3 rows in set (0.000 sec)

The next portion of this chapter contains examples of SQL statements that
specify each of the clause ORDER BY, GROUP BY, and HAVING, followed by
examples that use a combination of these SQL clauses. For simplicity, the SQL
queries in the upcoming sections are based on a single table; however, you
can generate more sophisticated reports that contain JOIN clauses that involve
multiple tables.

WHAT ARE GROUP BY, ORDER BY, AND HAVING CLAUSES?

The GROUP BY clause enables you to count items that are “grouped
together” based on the same attribute value. For example, the following SQL
statement counts the number of occurrences of the same city value in the
weather table:

SELECT city, COUNT(city)
FROM weather

Joins, Views, and Subqueries  •  91

GROUP BY city;
+------+-------------+
| city | count(city) |
+------+-------------+
sf	7
se	1
	2
chi	1
+------+-------------+
4 rows in set (0.003 sec)

The ORDER BY clause enables you to specify the order in which items are
displayed. For example, the following SQL statement counts the number of
occurrences of the same city name in the weather table and also orders the
output alphabetically by city name:

SELECT city, COUNT(city)
FROM weather
GROUP BY city
ORDER BY city;
+------+-------------+
| city | count(city) |
+------+-------------+
	2
chi	1
se	1
sf	7
+------+-------------+
4 rows in set (0.003 sec)

The HAVING clause enables you to specify an additional filter condition for
the result set. For example, the following SQL statement extends the previous
SQL statement by restricting the result set to cities whose count is greater than
2 in the weather table:

SELECT city, COUNT(city)
FROM weather
GROUP BY city
HAVING count(*) > 2
ORDER BY city;
+------+-------------+
| city | count(city) |
+------+-------------+
| sf | 7 |
+------+-------------+
1 row in set (0.003 sec)

A HAVING clause and a WHERE clause both filter the data in a result set,
but there is a difference. HAVING applies only to groups of data, whereas the
WHERE clause applies to individual rows.

The HAVING clause is executed before the SELECT statement, which means
that you cannot use aliases of aggregated columns in the HAVING clause.

92  •  SQL Pocket Primer

Displaying Duplicate Attribute Values

In a previous section, you learned how to delete duplicate rows, where two
rows are considered duplicates if they have the same attribute value. The follow-
ing SQL statement uses the HAVING keyword to display the number of duplicate
rows (i.e., rows that contain the same attribute value) in a MySQL table:

SELECT city, COUNT(*)
FROM weather
GROUP BY city
HAVING COUNT(*) > 1
+------+----------+
| city | COUNT(*) |
+------+----------+
| sf | 7 |
| | 2 |
+------+----------+
2 rows in set (0.006 sec)

By contrast, recall that Chapter 2 contains a SQL statement with a sub-
query to find the unique rows in a database table.

EXAMPLES OF THE SQL GROUP BY AND ORDER BY CLAUSE

The following SQL statement displays the values of the item_price
attribute in the item_desc table, as well as their frequency:

SELECT item_price, COUNT(1) as frequency
FROM item_desc
GROUP BY 1;
+------------+-----------+
| item_price | frequency |
+------------+-----------+
20.00	1
8.00	1
10.00	1
+------------+-----------+
3 rows in set (0.001 sec)

The following SQL statement displays the values of the item_price
attribute in the item_desc table, the frequency of those values, and orders
them in decreasing order:

SELECT item_price, COUNT(1) as frequency
FROM item_desc
GROUP BY 1
ORDER BY item_price;
+------------+-----------+
| item_price | frequency |
+------------+-----------+
8.00	1
10.00	1
20.00	1
+------------+-----------+
3 rows in set (0.001 sec)

Joins, Views, and Subqueries  •  93

Yet another example of a SQL statement with the ORDER BY clause is
shown here:

SELECT item_desc, item_price
FROM new_items
ORDER BY item_price DESC;
+----------------+------------+
| item_desc | item_price |
+----------------+------------+
Toolbox L	50.00
Toolbox M	40.00
Toolbox S	30.00
hammer	20.00
ballpeen	20.00
Handsaw	20.00
wrench	10.00
pliers	10.00
screwdriver	8.00
1/4 inch nails	8.00
+----------------+------------+
10 rows in set (0.000 sec)

SQL Histograms on a Table Copy

Suppose that we want to experiment with generating histograms, but with-
out modifying the contents of the item_desc table. One approach involves
the following steps:

•	dynamically create a table new_items with the structure of the item_
desc table

•	populate new_items with the contents of the item_desc table
•	insert new rows into the new_items table

The first two bullet items are handled by the following SQL statement:

CREATE TABLE new_items AS (SELECT * FROM item_desc);
Query OK, 3 rows affected (0.023 sec)
Records: 3 Duplicates: 0 Warnings: 0

Verify that new_items contains the same data as item_desc via the fol-
lowing SQL statement:

MySQL [mytools]> SELECT * FROM new_items;
+---------+-------------+------------+
| item_id | item_desc | item_price |
+---------+-------------+------------+
100	hammer	20.00
200	screwdriver	8.00
300	wrench	10.00
+---------+-------------+------------+
3 rows in set (0.001 sec)

94  •  SQL Pocket Primer

Insert new rows into the new_items table by executing the following SQL
statements:

MySQL [mytools]> INSERT INTO new_items VALUES(400,'pliers',10.00);
Query OK, 1 row affected (0.004 sec)

MySQL [mytools]> INSERT INTO new_items VALUES(500,'ballpeen',20.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new_items VALUES(600,'1/4 inch nails',8.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new_items VALUES(700,'Toolbox S',30.00);
Query OK, 1 row affected (0.002 sec)

MySQL [mytools]> INSERT INTO new_items VALUES(800,'Toolbox M',40.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new_items VALUES(900,'Toolbox L',50.00);
Query OK, 1 row affected (0.001 sec)

MySQL [mytools]> INSERT INTO new_items VALUES(1000,'Handsaw',20.00);
Query OK, 1 row affected (0.004 sec)

Now display the new contents of the new_items table with the following
SQL statement:

SELECT * FROM new_items;
+---------+----------------+------------+
| item_id | item_desc | item_price |
+---------+----------------+------------+
100	hammer	20.00
200	screwdriver	8.00
100	wrench	10.00
400	pliers	10.00
500	ballpeen	20.00
600	1/4 inch nails	8.00
700	Toolbox S	30.00
800	Toolbox M	40.00
900	Toolbox L	50.00
1000	Handsaw	20.00
+---------+----------------+------------+
9 rows in set (0.000 sec)

 We can modify and launch the histogram-based SQL statement. Notice
the results:

SELECT item_price, COUNT(1) as frequency
FROM new_items
GROUP BY 1
ORDER BY item_price;
+------------+-----------+
| item_price | frequency |
+------------+-----------+
| 8.00 | 2 |
| 10.00 | 2 |

Joins, Views, and Subqueries  •  95

20.00	3
30.00	1
40.00	1
50.00	1
+------------+-----------+
6 rows in set (0.000 sec)

Notice that the preceding SQL statement references the new_items table
instead of the item_desc table. We can obtain a similar result with the follow-
ing SQL statement:

SELECT item_price as frequency, COUNT(item_price)
FROM new_items
GROUP BY item_price
ORDER BY item_price;
+-----------+-------------------+
| frequency | COUNT(item_price) |
+-----------+-------------------+
8.00	2
10.00	2
20.00	3
30.00	1
40.00	1
50.00	1
+-----------+-------------------+
6 rows in set (0.000 sec)

However, the following SQL statement does not work because GROUP BY
occurs after ORDER BY, which is invalid SQL syntax:

SELECT item_desc, item_price as frequency
FROM new_items
ORDER BY item_price
GROUP BY item_price;

If you attempt to execute the preceding SQL statement you will see the
following error:

ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'However, the
following SQL statement does not work:
SELECT item_desc, item_price' at line 1

COMBINE GROUP BY AND ROLLUP CLAUSE

The term rollup refers to the sum of the quantities in sub-accounts to dis-
play the combined total for those subaccounts. The general format for SQL
statements that include the ROLLUP keyword is as follows:

SELECT COL1, SUM(COL2)
FROM table name
GROUP BY COL1 WITH ROLLUP;

96  •  SQL Pocket Primer

Let’s experiment with the SUM() and AVG() aggregate functions in conjunc-
tion with the ROLLUP keyword, as shown in the following set of SQL statements.

SELECT id, SUM(height)
FROM friends
GROUP BY id WITH ROLLUP;
+------+-------------+
| id | SUM(height) |
+------+-------------+
100	170
200	160
300	180
NULL	510
+------+-------------+
4 rows in set (0.008 sec)

SELECT id, SUM(height)
FROM friends
GROUP BY id;
+-----+-------------+
| id | SUM(height) |
+-----+-------------+
100	170
200	160
300	180
+-----+-------------+
3 rows in set (0.002 sec)

SELECT id, AVG(height)
FROM friends
GROUP BY id WITH ROLLUP;
+------+-------------+
| id | AVG(height) |
+------+-------------+
100	170.0000
200	160.0000
300	180.0000
NULL	170.0000
+------+-------------+
4 rows in set (0.002 sec)

Although the following SQL statement is similar to the preceding SQL
statements, it’s actually invalid:

SELECT id, height
FROM friends
GROUP BY id WITH ROLLUP;

If you attempt to execute the preceding SQL statement, you will see the
following error:

ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mytools.friends.
height' which is not functionally dependent on columns in GROUP
BY clause; this is incompatible with sql_mode=only_full_group_by

Joins, Views, and Subqueries  •  97

The 2021 Olympics Medals and the ROLLUP Keyword

The examples in the previous section involved results that you probably
anticipated, whereas the next example might produce results that are more
meaningful. Specifically, we’ll construct a table that contains the number of
gold, silver, and bronze medals that the top five countries won during the 2021
Olympics in Japan.

Listing 3.6 shows the content of OlympicsJAPN2021.csv that contains
the number of medals earned by the top 15 countries in the 2021 Olympics in
Japan.

LISTING 3.6: OlympicsJAPN2021.csv

Pos,Country,Gold,Silver,Bronze,Total
1,USA,39,41,33,113
2,China,38,32,18,88
3,Japan,27,14,17,58
4,UK,22,21,22,65
5,ROC,20,28,23,71
6,Aust,17,7,22,46
7,Nether,10,12,14,36
8,France,10,12,11,33
9,Germany,10,11,16,37
10,Italy,10,10,20,40
11,Canada,7,6,11,24
12,Brazil,7,6,8,21
13,NZ,7,6,7,20
14,Cuba,7,3,5,15
15,Hungary,6,7,7,20

Listing 3.7 shows the content of olympics.sql that drops and recreates
the table olympics, and then populates the table with the number of medals
won by the top 5 countries in Listing 3.6.

LISTING 3.7: olympics.sql

DROP TABLE IF EXISTS olympics;

CREATE TABLE olympics (pos INTEGER, country VARCHAR(20),
medal VARCHAR(20), count INTEGER);

INSERT INTO olympics VALUES (1,'USA','gold', 39);
INSERT INTO olympics VALUES (1,'USA','silver', 41);
INSERT INTO olympics VALUES (1,'USA','bronze', 33);

INSERT INTO olympics VALUES (2,'CHINA','gold', 38);
INSERT INTO olympics VALUES (2,'CHINA','silver', 32);
INSERT INTO olympics VALUES (2,'CHINA','bronze', 18);

INSERT INTO olympics VALUES (3,'JAPAN','gold', 27);
INSERT INTO olympics VALUES (3,'JAPAN','silver', 14);
INSERT INTO olympics VALUES (3,'JAPAN','bronze', 17);

98  •  SQL Pocket Primer

INSERT INTO olympics VALUES (4,'UK','gold', 22);
INSERT INTO olympics VALUES (4,'UK','silver', 21);
INSERT INTO olympics VALUES (4,'UK','bronze', 22);

INSERT INTO olympics VALUES (5,'ROC','gold', 20);
INSERT INTO olympics VALUES (5,'ROC','silver', 28);
INSERT INTO olympics VALUES (5,'ROC','bronze', 23);

Execute the following SQL statement that contains the ROLLUP keyword
and displays the relative ranking of five countries, a column with the number
of medals won by each country, and one row for the total number of medals:

SELECT pos, SUM(count)
FROM olympics
GROUP BY pos WITH ROLLUP;
+------+------------+
| pos | SUM(count) |
+------+------------+
1	113
2	88
3	58
4	65
5	71
NULL	395
+------+------------+
6 rows in set (0.000 sec)

The 2021 Olympics Medals and the RANK Operator

Since we’ve just finished an example that involves the medals for the 2021
Olympics, we’ll use that as a segue to ranking the medal counts using the
RANK() operator, as shown in the following SQL statement:

SELECT count, medal, country,
RANK() OVER (
 ORDER BY count DESC
) my_rank
FROM olympics
LIMIT 10;
+-------+--------+---------+---------+
| count | medal | country | my_rank |
+-------+--------+---------+---------+
41	silver	USA	1
39	gold	USA	2
38	gold	CHINA	3
33	bronze	USA	4
32	silver	CHINA	5
28	silver	ROC	6
27	gold	JAPAN	7
23	bronze	ROC	8
22	gold	UK	9
22	bronze	UK	9
+-------+--------+---------+---------+
10 rows in set (0.001 sec)

Joins, Views, and Subqueries  •  99

The RANK() function is shown in bold in the SQL statement: the
expression inside the parentheses specifies which attribute to assign a
rank, and in this case, rank the attribute values in descending order. Also
notice that the last two rows both have 22 medals, which is why both rows
have a rank of 9.

THE PARTITION BY CLAUSE

The PARTITION BY clause examines the distinct values of an attribute
(which is specified in the SQL statement) in order to partition the rows of a
table into subsets such that all the rows in each subset have the same attribute
value.

The PARTITION BY clause requires the over() function and can also
specify an optional ORDER BY clause as well as an optional window function,
such as the RANK(), LEAD(), LAG(), and DENSE_RANK() functions.

The dense_rank() function assigns a rank to each subset: conceptually,
the dense_rank() function is a generalization of a row-based ranking (or
sorting) of the rows in a table.

The following SQL statement illustrates how to use the PARTITION BY
clause to group countries based on their pos value, and then order the rows in
each group based on their count value in the olympics table.

SELECT pos, country, medal, count,

 DENSE_RANK() OVER (PARTITION BY pos ORDER BY count DESC) AS RANKING

FROM olympics;

+------+---------+--------+-------+---------+

| pos | country | medal | count | RANKING |

+------+---------+--------+-------+---------+

| 1 | USA | silver | 41 | 1 |

| 1 | USA | gold | 39 | 2 |

| 1 | USA | bronze | 33 | 3 |

| 2 | CHINA | gold | 38 | 1 |

| 2 | CHINA | silver | 32 | 2 |

| 2 | CHINA | bronze | 18 | 3 |

| 3 | JAPAN | gold | 27 | 1 |

| 3 | JAPAN | bronze | 17 | 2 |

| 3 | JAPAN | silver | 14 | 3 |

| 4 | UK | gold | 22 | 1 |

| 4 | UK | bronze | 22 | 1 |

| 4 | UK | silver | 21 | 2 |

| 5 | ROC | silver | 28 | 1 |

| 5 | ROC | bronze | 23 | 2 |

| 5 | ROC | gold | 20 | 3 |

+------+---------+--------+-------+---------+

15 rows in set (0.000 sec)

As you can see in the preceding result set, the rows in each partition are
displayed in decreasing order with respect to their count value.

100  •  SQL Pocket Primer

GROUP BY, HAVING, AND ORDER BY CLAUSE

Suppose we want to further restrict the result set from the SQL query
from an earlier section (i.e., before the PARTITION BY section) to display
only the items whose count is less than 2. We can do so with the following
SQL query:

SELECT item_price, COUNT(*)
FROM new_items
GROUP BY item_price
HAVING COUNT(*) < 2;
+------------+----------+
| item_price | COUNT(*) |
+------------+----------+
30.00	1
40.00	1
50.00	1
+------------+----------+
3 rows in set (0.001 sec)

The HAVING keyword will not work in the following SQL statement:

SELECT frequency, COUNT(*)
FROM new_items
GROUP BY item_price
ORDER BY item_price
HAVING COUNT(*) < 2;

The preceding SQL statement generates the following error message:

ERROR 1064 (42000): You have an error in your SQL syntax; check
the manual that corresponds to your MySQL server version for
the right syntax to use near 'HAVING COUNT(*) < 2' at line 5

Returning to the earlier SQL statement, we can be even more selective
with respect to the subtotals by using the IN keyword, as shown in the follow-
ing SQL statement:

SELECT item_price, COUNT(*)
FROM new_items
GROUP BY item_price
HAVING COUNT(*) IN (1,3);
+------------+----------+
| item_price | COUNT(*) |
+------------+----------+
20.00	3
30.00	1
40.00	1
50.00	1
+------------+----------+
4 rows in set (0.000 sec)

Joins, Views, and Subqueries  •  101

We can also modify the preceding SQL statement to exclude a specific
item_price value, as shown in the following SQL statement:

SELECT item_price, COUNT(*)
 FROM new_items
 GROUP BY item_price
 HAVING item_price <> 20.00;
+------------+----------+
| item_price | COUNT(*) |
+------------+----------+
8.00	2
10.00	2
30.00	1
40.00	1
50.00	1
+------------+----------+

5 rows in set (0.004 sec)

COMBINED GROUP BY, HAVING, AND ORDER BY CLAUSE

This section shows you the order in which these three clauses must appear
in a SQL statement in order to execute them correctly. For example, the fol-
lowing SQL statement is incorrect:

SELECT COUNT(*)
FROM new_items
GROUP BY item_price
ORDER BY item_price
HAVING COUNT(*) > 1;
ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'HAVING COUNT(*) > 1'
at line 5

By contrast, the following similar SQL statement is correct:

SELECT COUNT(*)
FROM new_items
GROUP BY item_price
HAVING COUNT(*) > 1
ORDER BY item_price;
+----------+
| COUNT(*) |
+----------+
| 2 |
| 2 |
| 3 |
+----------+
3 rows in set (0.000 sec)

The difference in the preceding pair of SQL statements involves the place-
ment of the ORDER BY clause, which must appear after the HAVING keyword
in these SQL statements.

102  •  SQL Pocket Primer

Updating the item_desc Table from the new_items Table

Suppose that you want to update the original contents of the item_desc
table with the contents of the new_items table. One way to do so is to execute
the following SQL statements:

— the first SQL statement saves the contents of item_desc:
CREATE TABLE orig_item_desc AS (SELECT * FROM item_desc);

— drop the existing table:
DROP TABLE item_desc;

— create item_desc and populate with data from new_item:
CREATE TABLE item_desc AS (SELECT * FROM new_items);

The first of the three preceding SQL statements creates a backup of the
original contents of the item_desc table. This part of the code is optional and
of limited value for a table with only three rows of data. However, it can be use-
ful if the item_desc table contains hundreds (or thousands) of rows of data.

If you need to restore the original contents, this SQL statement will save
you the time and effort to locate a backup of the database (which you undoubt-
edly have somewhere) to restore the original contents of the item_desc table.
By contrast, you can restore the contents of the item_desc table with this
SQL statement:

RENAME TABLE orig_item_desc TO item_desc;

This concludes the portion of the chapter pertaining to executing SQL
statements with various clauses. One more observation regarding this section:
despite the simple SQL queries for a table that contains only 10 rows of data,
we have also seen other techniques that can be useful in your own tasks.

Specifically, we saw how to dynamically create the table new_items to
replicate an existing table item_desc, populate new_items with new data
rows, and then re-create the original table item_desc with the contents of the
new_items table.

A SQL QUERY INVOLVING A FOUR-TABLE JOIN

In Chapter 1, you learned about a fictitious Web application that sells tools
online to customers, which involves the following four tables:

customers
purchase_orders
line_items
item_desc

Suppose that you need a SQL query that generates a full report regarding
customer activity. Such a report involves a SQL statement that iterates through

Joins, Views, and Subqueries  •  103

the customers table and for each customer, lists the purchase orders of that
customer, along with the full details of each line item that belongs to each
purchase order. The approach outlined in this section involves iterative refine-
ment of SQL statements, which can be summarized as follows:

•	Start with a set of tables with a limited number of rows.
•	Create a SQL statement with no join conditions (yields duplicate

rows).
•	Add JOIN clauses to reduce the duplicates in the output.
•	Repeat the preceding step until the desired report is generated.

Let’s perform the steps in the preceding bullet list to issue a series of SQL
statements and iteratively refine the SQL code until we arrive at the correct
SQL statement. If you prefer to skip the intermediate steps, construct your
solution and compare it with the solution at the end of this section.

The first SQL query lists the desired columns from the various tables, along
with repeated rows because the SQL statement does not specify any JOIN
conditions, as shown below:

SELECT c.cust_id, p.po_id, l.item_id, d.item_desc
FROM customers c, purchase_orders p, line_items l, item_desc d;
+---------+-------+---------+-------------+
| cust_id | po_id | item_id | item_desc |
+---------+-------+---------+-------------+
1000	12500	NULL	hammer
2000	12500	NULL	hammer
1000	12600	NULL	hammer
2000	12600	NULL	hammer
1000	12700	NULL	hammer
2000	12700	NULL	hammer
1000	12500	NULL	screwdriver
2000	12500	NULL	screwdriver
1000	12600	NULL	screwdriver
2000	12600	NULL	screwdriver
1000	12700	NULL	screwdriver
2000	12700	NULL	screwdriver
1000	12500	NULL	wrench
2000	12500	NULL	wrench
1000	12600	NULL	wrench
2000	12600	NULL	wrench
1000	12700	NULL	wrench
2000	12700	NULL	wrench
+---------+-------+---------+-------------+
18 rows in set (0.001 sec)

Obviously, we want to remove the repeated rows from the preceding
result set, so let’s try the following SQL statement that also specifies a match-
ing cust_id value for the customers table and the purchase_orders
table:

104  •  SQL Pocket Primer

SELECT c.cust_id, p.po_id, l.item_id, d.item_desc
FROM customers c, purchase_orders p, line_items l, item_desc d
WHERE c.cust_id = p.cust_id;
+---------+-------+---------+-------------+
| cust_id | po_id | item_id | item_desc |
+---------+-------+---------+-------------+
1000	12500	NULL	hammer
1000	12600	NULL	hammer
1000	12700	NULL	hammer
1000	12500	NULL	screwdriver
1000	12600	NULL	screwdriver
1000	12700	NULL	screwdriver
1000	12500	NULL	wrench
1000	12600	NULL	wrench
1000	12700	NULL	wrench
+---------+-------+---------+-------------+
9 rows in set (0.003 sec)

The preceding SQL query has eliminated some rows and also corrected
the erroneous JOIN clause (shown in bold), but we still have duplicate
rows.

Let’s try a third SQL statement that also joins the purchase_orders table
and the line_items table, as shown here:

SELECT c.cust_id, p.po_id, l.item_id, d.item_desc
FROM customers c, purchase_orders p, line_items l, item_desc d
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
ORDER BY c.cust_id, p.purchase_date, p.po_id;
+---------+-------+---------+-------------+
| cust_id | po_id | item_id | item_desc |
+---------+-------+---------+-------------+
1000	12500	100	hammer
1000	12500	200	hammer
1000	12500	300	hammer
1000	12500	100	screwdriver
1000	12500	200	screwdriver
1000	12500	300	screwdriver
1000	12500	100	wrench
1000	12500	200	wrench
1000	12500	300	wrench
+---------+-------+---------+-------------+
9 rows in set (0.001 sec)

Although we’re closer to the correct SQL query, the preceding output
contains duplicate rows from the item_desc table, so we need to join the
line_items table and item_desc table, as shown here:

SELECT c.cust_id, p.po_id, l.item_id, d.item_desc, d.item_price
FROM customers c, purchase_orders p, line_items l, item_desc d
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
AND l.item_id = d.item_id
ORDER BY c.cust_id, p.purchase_date, p.po_id;

Joins, Views, and Subqueries  •  105

+---------+-------+---------+-------------+------------+
| cust_id | po_id | item_id | item_desc | item_price |
+---------+-------+---------+-------------+------------+
1000	12500	100	hammer	20.00
1000	12500	200	screwdriver	8.00
1000	12500	300	wrench	10.00
+---------+-------+---------+-------------+------------+
3 rows in set (0.001 sec)

Success!
The preceding output displays the desired result. Furthermore, we can

refine the SQL query by including the number of items that were purchased
for each item in the purchase order, as shown here:

SELECT c.cust_id, p.po_id, l.item_id, d.item_desc, d.item_price,l.qty
FROM customers c, purchase_orders p, line_items l, item_desc d
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
AND l.item_id = d.item_id
ORDER BY c.cust_id, p.purchase_date, p.po_id;
+---------+-------+---------+-------------+------------+------+
| cust_id | po_id | item_id | item_desc | item_price | qty |
+---------+-------+---------+-------------+------------+------+
1000	12500	100	hammer	20.00	1
1000	12500	200	screwdriver	8.00	2
1000	12500	300	wrench	10.00	3
+---------+-------+---------+-------------+------------+------+
3 rows in set (0.003 sec)

You can also refine the preceding SQL statement to display purchase orders
that contain specific items. For example, the following SQL statement displays
all the purchase orders that contain a hammer:

SELECT c.cust_id, p.po_id, l.item_id, d.item_desc, d.item_price,l.qty
FROM customers c, purchase_orders p, line_items l, item_desc d
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
AND l.item_id = d.item_id
AND d.item_desc = 'hammer'
ORDER BY c.cust_id, p.purchase_date, p.po_id;
+---------+-------+---------+-----------+------------+------+
| cust_id | po_id | item_id | item_desc | item_price | qty |
+---------+-------+---------+-----------+------------+------+
| 1000 | 12500 | 100 | hammer | 20.00 | 1 |
+---------+-------+---------+-----------+------------+------+
1 row in set (0.011 sec)

The preceding SQL statement will generate more interesting results sets
when the purchase_orders table contains multiple customers who have
made multiple purchases, each of which generates a row in the purchase_
orders table. Later in this chapter, you will learn how to select the set of
purchase orders that are between a pair of dates.

106  •  SQL Pocket Primer

OPERATIONS WITH DATES IN SQL

As a simple starting point for date-related operations, the following SQL
statement illustrates how to use the NOW() function to display the current date:

SELECT NOW() FROM DUAL;
+---------------------+
| NOW() |
+---------------------+
| 2021-05-11 22:05:03 |
+---------------------+
1 row in set (0.001 sec)

The following SQL statement illustrates how to use the CURRENT_DATE()
function to display the current date, which does not include the HH::MM:SS
details:

SELECT CURRENT_DATE() FROM DUAL;
+----------------+
| current_date() |
+----------------+
| 2021-07-29 |
+----------------+
1 row in set (0.003 sec)

In addition, the SYSDATE function in SQL is a function that returns the
current date as well as the current time, an example of which is shown here:

SELECT sysdate() from dual;
+---------------------+
| sysdate() |
+---------------------+
| 2021-07-15 10:12:59 |
+---------------------+
1 row in set (0.002 sec)

The following SQL query returns the same result as the preceding SQL
query:

SELECT sysdate() from dual;

The following SQL statement displays your time zone with an offset from
GMT:

SELECT TIMEDIFF(NOW(), UTC_TIMESTAMP);
+--------------------------------+
| TIMEDIFF(NOW(), UTC_TIMESTAMP) |
+--------------------------------+
| -07:00:00 |
+--------------------------------+
1 row in set (0.005 sec)

Joins, Views, and Subqueries  •  107

Day and Month Components of Dates in SQL

SQL provides day-related and month-related functions, some of which are
listed here:

•	MONTHS_BETWEEN
•	ADD_MONTHS
•	NEXT_DAY
•	LAST_DAY
•	DAY
•	DAYOFMONTH

In fact, SQL supports dozens of date formats, along with functions that
enable you to select different elements in date fields. For example, you can
select the day, the day of month, or the month of year from a date value. In
addition, you can determine the difference between (compatible) dates and
also the last date of a period. The default date format is DD-MON-RR.

Let’s invoke some SQL queries that illustrate how to use the DAY() date
function, which is a synonym for the DAYOFMONTH() date function.

select * from weather;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-01	42	16	Rain	sf	ca
2021-04-02	45	3	Sunny	sf	ca
2021-04-03	78	-12	NULL	se	wa
2021-07-01	42	16	Rain		ca
2021-07-02	45	-3	Sunny	sf	ca
2021-07-03	78	12	NULL	sf	mn
2021-08-04	50	12	Snow		mn
2021-08-06	51	32		sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-02	45	99		sf	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
11 rows in set (0.000 sec)

SELECT DAY(day) from weather;
+----------+
| DAY(day) |
+----------+
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| 3 |
| 4 |

108  •  SQL Pocket Primer

| 6 |
| 1 |
| 2 |
| 3 |
+----------+
11 rows in set (0.000 sec)

The following SQL query returns the same result as the preceding SQL
query:

SELECT DAYOFMONTH(day) FROM weather;

The next SQL query selects all the rows from the weather table whose day
attribute is after 2021-08-01:

SELECT *
FROM WEATHER
WHERE date(day) > '2021-08-01'
ORDER BY day;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-08-04	50	12	Snow		mn
2021-08-06	51	32		sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-02	45	99		sf	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
5 rows in set (0.001 sec)

Rounding Dates in SQL

SQL provides the date_format() function that enables you to round a
date to a month, day, hour, or minute.

Round to the month with this SQL statement:

SELECT date_format(now(),'%Y-%m');
+----------------------------+
| date_format(now(),'%Y-%m') |
+----------------------------+
| 2021-08 |
+----------------------------+
1 row in set (0.000 sec)

Round to the day with this SQL statement:

SELECT date_format(now(),'%Y-%m-%d');
+-------------------------------+
| date_format(now(),'%Y-%m-%d') |
+-------------------------------+
| 2021-08-27 |
+-------------------------------+
1 row in set (0.001 sec)

Joins, Views, and Subqueries  •  109

Round to the hour with this SQL statement:

SELECT date_format(now(),'%Y-%m-%d %H');
+----------------------------------+
| date_format(now(),'%Y-%m-%d %H') |
+----------------------------------+
| 2021-08-27 12 |
+----------------------------------+
1 row in set (0.000 sec)

Round to the minute with this SQL statement:

SELECT date_format(now(),'%Y-%m-%d %H:%i');
+-------------------------------------+
| date_format(now(),'%Y-%m-%d %H:%i') |
+-------------------------------------+
| 2021-08-27 12:57 |
+-------------------------------------+
1 row in set (0.000 sec)

WORKING WITH DATE RANGES

The next SQL query selects all the rows from the weather table whose day
attribute is between 2021-07-01 and 2021-08-30:

SELECT *
FROM WEATHER
WHERE date(day) BETWEEN '2021-07-01' AND '2021-08-30'
ORDER BY day;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-07-01	42	16	Rain		ca
2021-07-02	45	-3	Sunny	sf	ca
2021-07-03	78	12	NULL	sf	mn
2021-08-04	50	12	Snow		mn
2021-08-06	51	32		sf	ca
+------------+--------+------+----------+------+-------+
5 rows in set (0.002 sec)

The next query lists the purchase orders (and associated details) that were
created between a pair of dates:

SELECT p.po_id, p.purchase_date, l.item_id, d.item_desc, d.item_price,l.qty
FROM customers c, purchase_orders p, line_items l, item_desc d
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
AND l.item_id = d.item_id
AND p.purchase_date BETWEEN '2021-01-01' AND '2021-01-31'
ORDER BY c.cust_id, p.purchase_date, p.po_id;

110  •  SQL Pocket Primer

+-------+---------------+---------+-------------+------------+------+
| po_id | purchase_date | item_id | item_desc | item_price | qty |
+-------+---------------+---------+-------------+------------+------+
12500	2021-01-12	100	hammer	20.00	1
12500	2021-01-12	200	screwdriver	8.00	2
12500	2021-01-12	300	wrench	10.00	3
+-------+---------------+---------+-------------+------------+------+
3 rows in set (0.001 sec)

In the preceding query, three rows are returned because the purchase
order contains three line items (i.e., one line item for each of the three items
that were purchased), and the purchase date is between the specified date
values. The following query will return 0 rows because there are no purchase
orders that were placed prior to 2021-01-01:

SELECT p.po_id, p.purchase_date, l.item_id, d.item_desc, d.item_price,l.qty
FROM customers c, purchase_orders p, line_items l, item_desc d
WHERE c.cust_id = p.cust_id
AND p.po_id = l.po_id
AND l.item_id = d.item_id
AND p.purchase_date < '2021-01-01'
ORDER BY c.cust_id, p.purchase_date, p.po_id;
Empty set (0.001 sec)

TABLES CONTAINING MODIFICATION TIMES

A table with a date-based attribute is obviously useful for keeping track of
the creation date of a row in a table. Depending on your application require-
ments, you might also need an attribute whose value equals the time stamp
whenever the associated rows is updated.

Fortunately, MySQL supports this functionality. The table users_dates
contains the updated_at attribute that is updated to the current timestamp
whenever the contents of the associated row are modified.

CREATE TABLE users_dates (
 id INT(6) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(40) NOT NULL UNIQUE,
 birth_date DATE NOT NULL,
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 �updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_

TIMESTAMP
);

Let’s execute some SQL statements that perform the following changes to
the users_dates table:

•	Insert a row into the users_dates table.
•	Display the contents of the users_dates table.
•	Update the single row in the users_dates table.
•	Display the contents of the users_dates.

Joins, Views, and Subqueries  •  111

— insert a single row:

INSERT INTO users_dates values(1000, 'jane jones', '2001-07-07',
'2021-03-03', '2021-03-03');

Query OK, 1 row affected (0.001 sec)
MySQL [mytools]> select name,birth_date,updated_at from users_dates;

+------------+------------+---------------------+

| name | birth_date | updated_at |

+------------+------------+---------------------+

| jane jones | 2001-07-07 | 2021-03-03 00:00:00 |
+------------+------------+---------------------+

1 row in set (0.002 sec)
— update the name:

UPDATE users_dates SET name='JANE Q JONES' WHERE name='jane jones';

Query OK, 1 row affected (0.021 sec)
Rows matched: 1 Changed: 1 Warnings: 0

— check the contents of the row:

MySQL [mytools]> select name,birth_date,updated_at from users_dates;

+--------------+------------+---------------------+

| name | birth_date | updated_at |

+--------------+------------+---------------------+

| JANE Q JONES | 2001-07-07 | 2021-09-02 17:01:35 |
+--------------+------------+---------------------+

1 row in set (0.000 sec)

As you can see, the updated_at value in the preceding row has been set
equal to the current time stamp.

ARITHMETIC OPERATIONS WITH DATES

SQL enables you to subtract two dates (which returns a number) and also
add or subtract a number from a date. You can also perform these operations
with hours instead of days. The following two SQL queries show you how to
calculate the difference between two dates:

SELECT DATEDIFF("2021-11-25", "2021-12-17");
+--------------------------------------+
| DATEDIFF("2021-11-25", "2021-12-17") |
+--------------------------------------+
| -22 |
+--------------------------------------+
1 row in set (0.001 sec)

SELECT DATEDIFF("2021-12-25", "2021-11-17");
+--------------------------------------+
| DATEDIFF("2021-12-25", "2021-11-17") |
+--------------------------------------+
| 38 |
+--------------------------------------+
1 row in set (0.000 sec)

112  •  SQL Pocket Primer

The following SQL query shows you how to add a number to a date (use a
negative number to subtract from a date):

SELECT ADDDATE("2021-11-15", INTERVAL 20 DAY);
+--+
| ADDDATE("2021-11-15", INTERVAL 20 DAY) |
+--+
| 2021-12-05 |
+--+
1 row in set (0.003 sec)

There are literally dozens of different date formats, along with SQL func-
tions that can convert between character strings and dates. Here are some
additional date functions in SQL:

•	ADDTIME
•	CURDATE
•	CURRENT_DATE
•	CURRENT_TIME
•	CURRENT_TIMESTAMP
•	CURTIME
•	DATE_ADD
•	DATE_FORMAT
•	DATE_SUB
•	DAYNAME
•	DAYOFMONTH
•	DAYOFWEEK
•	DAYOFYEAR

DATE COMPONENTS AND DATE FORMATS

A date field in a database table contains the year, month, and day for a given
date. However, you might need to access the individual components of a date,
or perhaps change the format of a given date field.

The SQL file date-fields-formats.sql shows you how to extract the year,
month, and day of the purchase_date attribute of the purchase_orders
table and also how to display the date values with different date formats.

SELECT YEAR(purchase_date),MONTH(purchase_
date),DAY(purchase_date)
FROM purchase_orders;

SELECT YEAR(purchase_date) as year,
MONTH(purchase_date) as month,
DAY(purchase_date) as day
FROM purchase_orders;

SELECT cust_id,
YEAR(purchase_date) as year,
MONTH(purchase_date) as month,
DAY(purchase_date) as day

Joins, Views, and Subqueries  •  113

FROM purchase_orders
WHERE MONTH(purchase_date) > 1
AND DAY(purchase_date) < 5;

SELECT date_format(purchase_date, '%m-%d-%Y')
FROM purchase_orders;

SELECT date_format(purchase_date, '%d-%m-%y')
FROM purchase_orders;

Invoke the SQL file date-field-formats.sql from the MySQL prompt,
as shown below:

MySQL [mytools] > source date-fields-formats.sql;
+---------------------+----------------------+--------------------+
| YEAR(purchase_date) | MONTH(purchase_date) | DAY(purchase_date) |
+---------------------+----------------------+--------------------+
2021	1	12
2021	2	3
2021	7	4
+---------------------+----------------------+--------------------+
3 rows in set (0.000 sec)

+------+-------+------+
| year | month | day |
+------+-------+------+
2021	1	12
2021	2	3
2021	7	4
+------+-------+------+
3 rows in set (0.000 sec)

+---------+------+-------+------+
| cust_id | year | month | day |
+---------+------+-------+------+
| 1000 | 2021 | 2 | 3 |
| 1000 | 2021 | 7 | 4 |
+---------+------+-------+------+
2 rows in set (0.000 sec)

+--+
| date_format(purchase_date, '%m-%d-%Y') |
+--+
| 01-12-2021 |
| 02-03-2021 |
| 07-04-2021 |
+--+
3 rows in set (0.000 sec)

+--+
| date_format(purchase_date, '%d-%m-%y') |
+--+
| 12-01-21 |
| 03-02-21 |
| 04-07-21 |
+--+
3 rows in set (0.000 sec)

114  •  SQL Pocket Primer

SQL also enables you to perform conversions between numbers and
characters, as well as conversions between dates and characters, such as the
following:

NUMBER to VARCHAR2
VARCHAR2 or CHAR to NUMBER
VARCHAR2 or CHAR to DATE
DATE to VARCHAR2

FINDING THE WEEK IN DATE VALUES

MySQL makes it easy to determine the week of a given date, examples of
which are as follows:

SELECT WEEK("2021-02-14") AS week;
+------+
| week |
+------+
| 7 |
+------+
1 row in set (0.000 sec)

SELECT WEEK("2021-12-30 14:25:16") AS week;
+------+
| week |
+------+
| 52 |
+------+
1 row in set (0.000 sec)

— CURDATE() is spelled with one "R":
SELECT WEEK(CURDATE());
+-----------------+
| WEEK(CURDATE()) |
+-----------------+
| 35 |
+-----------------+
1 row in set (0.000 sec)

Displaying Weekly Revenue

Listing 3.8 shows the content of revenue.sql that illustrates how to cre-
ate a revenue table and then populate the table with some simulated data.

LISTING 3.8: revenue.sql

use mytools;

DROP TABLE IF EXISTS revenue;

CREATE TABLE revenue (rev_date DATE, revenue INT(8),
location CHAR(20));

INSERT INTO revenue VALUES('2021-08-13', 1200,'Chicago');
INSERT INTO revenue VALUES('2021-08-15', 1000,'SF');

Joins, Views, and Subqueries  •  115

INSERT INTO revenue VALUES('2021-09-17', 1300,'LA');
INSERT INTO revenue VALUES('2021-09-18', 1800,'LA');
INSERT INTO revenue VALUES('2021-09-18', 1400,'Miami');
INSERT INTO revenue VALUES('2021-09-19', 2000,'Miami');

The following SQL statement displays the total revenue based on each
location and also orders by the location:

SELECT location, SUM(revenue)
FROM revenue
GROUP BY location
ORDER BY location;
+----------+--------------+
| location | SUM(revenue) |
+----------+--------------+
Chicago	1200
LA	3100
Miami	3400
SF	1000
+----------+--------------+
4 rows in set (0.001 sec)

The following SQL statement displays the number of revenue rows based
on each location and also orders the results by the location:

SELECT location, COUNT(revenue) AS ItemCount
FROM revenue
GROUP BY location
ORDER BY location;
+----------+-----------+
| location | ItemCount |
+----------+-----------+
Chicago	1
LA	2
Miami	2
SF	1
+----------+-----------+
4 rows in set (0.002 sec)

However, if we want to display the revenue per week and also order by both
the revenue and the location, we can do so with the following SQL statement:

SELECT revenue, location, WEEK(rev_date) AS weekly_revenue
FROM revenue
GROUP BY revenue, location, WEEK(rev_date)
ORDER BY revenue, location, WEEK(rev_date);
+---------+----------+----------------+
| revenue | location | weekly_revenue |
+---------+----------+----------------+
1000	SF	33
1200	Chicago	32
1300	LA	37
1400	Miami	37
1800	LA	37
2000	Miami	38
+---------+----------+----------------+
6 rows in set (0.000 sec)

116  •  SQL Pocket Primer

If we want to display the cumulative revenue for each week, and also order
by the location, we can do so with this SQL statement:

SELECT location, WEEK(rev_date) AS weekly_revenue,
 SUM(revenue) AS total_sales
FROM revenue
GROUP BY location, WEEK(rev_date)
ORDER BY location, WEEK(rev_date);
+----------+----------------+-------------+
| location | weekly_revenue | total_sales |
+----------+----------------+-------------+
Chicago	32	1200
LA	37	3100
Miami	37	1400
Miami	38	2000
SF	33	1000
+----------+----------------+-------------+
5 rows in set (0.001 sec)

ASSORTED SQL OPERATORS

SQL enables you to display a result set in descending or ascending order.
For example, the following query displays the list of items in alphabetically
descending order based on the DESC keyword:

SELECT item_desc DESC
FROM new_items;

As you can probably surmise, the following SQL query displays the list of
items in alphabetically ascending order based on the ASC keyword:

SELECT item_desc ASC
FROM new_items;

Working with Column Aliases

A column alias in SQL statements is a way of representing a column head-
ing, typically using a much shorter string. For example, you can specify the
strings “c” and “p” as aliases for the customers and purchase_orders
tables. If you have two tables that start with the same letter, then you can
select a pair of letters to differentiate between those two tables. In general,
select aliases that are short, unique, and related to the name of the table that
is represented by the chosen aliases. Here is a summary of the features of
column aliases:

•	Renames a column heading
•	Is useful with calculations
•	Immediately follows the column name
•	Requires double quotation marks for text that contains spaces, special

characters, or case sensitive data

Joins, Views, and Subqueries  •  117

You can also specify the optional AS keyword between the column name
and alias. Here is a very simple example of specifying the string name and comm
as column aliases:

SELECT last_name AS name, commission_pct comm
FROM employees;

SQL Variables

SQL enables you to define variables, as shown in the following example
that initializes an integer-valued variable and two string variables:

MySQL [mytools]> SET @counter := 10;
Query OK, 0 rows affected (0.002 sec)

MySQL [mytools]> SELECT @counter := 10;
+----------------+
| @counter := 10 |
+----------------+
| 10 |
+----------------+
1 row in set, 1 warning (0.000 sec)

MySQL [mytools]> SET @student_name := "Jane Smith";
Query OK, 0 rows affected (0.000 sec)

MySQL [mytools]> SET @email := "johndoe@yahoo.com";
Query OK, 0 rows affected (0.000 sec)

The following example illustrates how to set the value of the variable maxp
equal to the maximum value in the item_price attribute in the item_desc
table:

SELECT @maxp := MAX(item_desc.item_price)
FROM item_desc;
+------------------------------------+
| @maxp := MAX(item_desc.item_price) |
+------------------------------------+
| 20.00 |
+------------------------------------+
1 row in set, 1 warning (0.001 sec)

The next task involves finding the average price of items in several stores
and displaying the results in decreasing order of the average price:

+---------+--------------+-------+----------+
| item_id | description | price | store_id |
+---------+--------------+-------+----------+
1	apple	2.45	1
2	banana	3.45	1
3	cereal	4.20	2
4	milk 1 liter	3.80	2
5	lettuce	1.80	1
+---------+--------------+-------+----------+

118  •  SQL Pocket Primer

We can solve this task by performing the following steps:

•	apply the avg() function to the price column
•	group the values by store_id
•	sort via the ORDER clause

Here is the SQL query that is based on the three preceding bullet
items:

select avg(price), store_id
from items
group by store_id
order by avg(price);
+------------+----------+
| avg(price) | store_id |
+------------+----------+
1.833333	1
3.650000	3
3.820000	2
+------------+----------+

Earlier in this chapter, you learned how to define a SQL subquery to find the
rows in the weather table that have the maximum temperature. Alternatively,
you can initialize a variable with the maximum value and specify that variable
in the following SQL statement:

SELECT @max1 := MAX(temper) FROM weather;
SELECT day, forecast
FROM weather
WHERE temper = @max1;

SQL SUMMARY REPORTS

A summary report is an informal term that refers to any SQL query
whose output can be a tabular display of summarized data, such as a list
of employees in a particular department. In general, a summary report can
contain multiple subsections of summarized data, such as an alphabetical list
of employees for each department, which in turn could belong to a specific
region of the country. Other examples of detailed reports include quarterly
business reports, machine utilization reports, network activity reports, or
user activity reports.

For example, the following reports vary from basic to complex, each of
which can be generated by defining suitable SQL statements:

•	An alphabetical listing of employees in each division of a company
•	A summary of customer purchase orders that are grouped by

customer
•	A summary of student grades on a quarterly basis, alphabetized by

courses

Joins, Views, and Subqueries  •  119

•	A quarterly sales report by region, division, and sales people
•	A company-wide summary of quarterly revenue and expenditures by

region

Enterprise-level financial systems typically contain a report-related section
that provides standard reports that are based on various options, including a
start date and an end date for a report. Those systems often provide support for
so-called ad hoc reports; i.e., custom reports that are not available as standard
reports.

Simple SQL Reports

The table in this section contains simplified details so that it’s easier to
understand the SQL statements. However, you can enhance by the inclusion
of other relevant information, such as location-related information for each
item sold (including state and city) and the name of the sales person who sold
each item. In addition to the monthly reports, you can generate weekly reports
(week-based intervals are discussed earlier in this chapter) and daily reports.

Listing 3.9 shows the content of sold_items.sql that illustrates how to
create a sold_items table that contains information about sold items, such as
the region where an item was sold, the quantity, the sold price, and the date
when the item was sold.

LISTING 3.9: sold_items.sql

use mytools;

DROP TABLE IF EXISTS sold_items;
CREATE TABLE sold_items (region CHAR(20), qty INTEGER, sold_price
DECIMAL(8,2), sold_date DATE);

INSERT INTO sold_items VALUES ('branch1', 1, 15.00,'2021-12-03');
INSERT INTO sold_items VALUES ('branch1', 2, 10.00,'2021-12-03');
INSERT INTO sold_items VALUES ('branch1', 3, 10.00,'2021-12-03');

INSERT INTO sold_items VALUES ('branch2', 3, 10.00,'2021-12-01');
INSERT INTO sold_items VALUES ('branch2', 2, 10.00,'2021-12-01');
INSERT INTO sold_items VALUES ('branch2', 1, 10.00,'2021-12-01');

INSERT INTO sold_items VALUES ('branch1', 5, 10.00,'2021-11-15');
INSERT INTO sold_items VALUES ('branch1', 6, 10.00,'2021-11-15');
INSERT INTO sold_items VALUES ('branch1', 8, 15.00,'2021-11-15');

INSERT INTO sold_items VALUES ('branch1', 5, 15.00,'2021-11-10');
INSERT INTO sold_items VALUES ('branch2', 5, 10.00,'2021-11-10');
INSERT INTO sold_items VALUES ('branch3', 5, 10.00,'2021-11-10');

INSERT INTO sold_items VALUES ('branch1', 5, 15.00,'2021-11-05');
INSERT INTO sold_items VALUES ('branch2', 6, 10.00,'2021-11-05');
INSERT INTO sold_items VALUES ('branch3', 8, 10.00,'2021-11-05');

120  •  SQL Pocket Primer

-- sold_price-based list:
\! echo '=> sold_price list:';
SELECT sold_price
FROM sold_items
ORDER BY sold_price;

-- list based on region and sold_price:
\! echo '=> region and sold_price list:';
SELECT region, sum(sold_price)
FROM sold_items
GROUP BY region
ORDER BY region, sum(sold_price) DESC;

-- list based on region and revenue:
\! echo '=> region and revenue list:';
SELECT region, sum(sold_price*qty)
FROM sold_items
GROUP BY region
ORDER BY region, sum(sold_price*qty) DESC;

-- list based on revenue and region:
\! echo '=> region and revenue list:';
SELECT sum(sold_price*qty), region
FROM sold_items
GROUP BY region
ORDER BY sum(sold_price*qty) DESC, region;

-- list based on date, revenue, and region:
\! echo '=> date, region, and revenue list:';
SELECT sold_date, sum(sold_price*qty), region
FROM sold_items
GROUP BY sold_date, region
ORDER BY sold_date, sum(sold_price*qty) DESC, region;

Listing 3.9 contains SQL statements that are based on the material that was
covered earlier in this chapter. Now launch the code in Listing 3.9 to see the
following output:

=> sold_price list:
+------------+
| sold_price |
+------------+
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |
| 10.00 |

Joins, Views, and Subqueries  •  121

| 15.00 |
| 15.00 |
| 15.00 |
| 15.00 |
+------------+
15 rows in set (0.000 sec)

=> region and sold_price list:
+---------+-----------------+
| region | sum(sold_price) |
+---------+-----------------+
branch1	100.00
branch2	50.00
branch3	20.00
+---------+-----------------+
3 rows in set (0.001 sec)

=> region and revenue list:
+---------+---------------------+
| region | sum(sold_price*qty) |
+---------+---------------------+
branch1	445.00
branch2	170.00
branch3	130.00
+---------+---------------------+
3 rows in set (0.002 sec)

=> region and revenue list:
+---------------------+---------+
| sum(sold_price*qty) | region |
+---------------------+---------+
445.00	branch1
170.00	branch2
130.00	branch3
+---------------------+---------+
3 rows in set (0.000 sec)

=> date, region, and revenue list:
+------------+---------------------+---------+
| sold_date | sum(sold_price*qty) | region |
+------------+---------------------+---------+
2021-11-05	80.00	branch3
2021-11-05	75.00	branch1
2021-11-05	60.00	branch2
2021-11-10	75.00	branch1
2021-11-10	50.00	branch2
2021-11-10	50.00	branch3
2021-11-15	230.00	branch1
2021-12-01	60.00	branch2
2021-12-03	65.00	branch1
+------------+---------------------+---------+
9 rows in set (0.000 sec)

122  •  SQL Pocket Primer

Calculating SubTotals

Listing 3.10 shows the content of sub_totals.sql that illustrates how to
calculate subtotals for data in the numeric column amount that represents a
fictitious set of revenue figures.

LISTING 3.10: sub_totals.sql

use mytools;
DROP TABLE IF EXISTS invoices;
CREATE TABLE invoices (id INTEGER, amount INTEGER, the_date
date);

INSERT INTO invoices VALUES (1000,1000,'2021-10-01');
INSERT INTO invoices VALUES (1000,300, '2022-11-03');
INSERT INTO invoices VALUES (1000,400, '2022-12-07');

INSERT INTO invoices VALUES (2000,2500,'2021-01-08');
INSERT INTO invoices VALUES (3000,3600,'2022-02-09');
INSERT INTO invoices VALUES (4000,4700,'2022-03-10');

SELECT id, SUM(amount) AS total_amount
FROM invoices
GROUP BY id WITH ROLLUP

Listing 3.10 creates the invoices table with a set of rows, some of which
have the same id value of 1000. The subtotal for the three rows equals 1700,
which is displayed in the output below. As you can see, there is only one row
for each id value, whereas the code sample in the next section generates an
output row for every row in the table.

The remaining three rows have distinct id values, and therefore the subto-
tal for each of those rows. Launch the code in Listing 3.10 to see the following
output:

+------+--------------+
| id | total_amount |
+------+--------------+
1000	1700
2000	2500
3000	3600
4000	4700
NULL	12500
+------+--------------+
5 rows in set (0.000 sec)

Joins, Views, and Subqueries  •  123

Calculating ÒRunningÓ (Cumulative) Totals

Listing 3.11 shows the content of running_totals.sql that illustrates
how to calculate cumulative totals for data in the numeric column amount that
represents a fictitious set of revenue figures.

LISTING 3.11: running_totals.sql

use mytools;
DROP TABLE IF EXISTS invoices;
CREATE TABLE invoices (id INTEGER, amount INTEGER, the_date date);

INSERT INTO invoices VALUES (1000,1000,'2021-10-01');
INSERT INTO invoices VALUES (1000,300, '2022-11-03');
INSERT INTO invoices VALUES (1000,400, '2022-12-07');

INSERT INTO invoices VALUES (2000,2500,'2021-01-08');
INSERT INTO invoices VALUES (3000,3600,'2022-02-09');
INSERT INTO invoices VALUES (4000,4700,'2022-03-10');

SELECT id, the_date, amount,
 SUM(amount) OVER (ORDER BY id) as total_sum
FROM invoices;

Listing 3.11 differs from Listing 3.10 only in the SQL statement, which in
this example generates “running” totals instead of subtotals. The key differ-
ence in this SQL statement is shown in bold in Listing 3.11. As you will see in
the output, an output row is generated for each row in the table. Launch the
code in Listing 3.11 to see the following output:

+------+------------+--------+-----------+
| id | the_date | amount | total_sum |
+------+------------+--------+-----------+
1000	2021-10-01	1000	1700
1000	2022-11-03	300	1700
1000	2022-12-07	400	1700
2000	2021-01-08	2500	4200
3000	2022-02-09	3600	7800
4000	2022-03-10	4700	12500
+------+------------+--------+-----------+
6 rows in set (0.000 sec)

The choice of Listing 3.10 versus Listing 3.11 depends on the output that
you want to display in your report.

124  •  SQL Pocket Primer

SUMMARY

This chapter introduced you to the SQL JOIN keyword on two tables, along
with examples of different types of JOIN statements. which can be extended to
multiple tables. In addition, you learned how to create views, and the advan-
tages they provide over tables.

Next, you learned about primary keys, unique keys, and foreign keys, along
with an example of defining a foreign key in one table (child_tbl) that refer-
ences a primary key in another table (parent_tbl).

In addition, you saw examples of SQL statements that contain GROUP BY,
HAVING, and ORDER BY clauses, as well as well as how to use the ROLLUP
keyword in a SQL statement. Finally, you learned how to generate SQL-based
reports based on sold items in a database table.

CHAPTER 4
ASSORTED SQL FUNCTIONS

This chapter contains a variety of SQL topics, such as aggregate func-
tions, scalar functions, and string functions in SQL. You will also learn
how to work with dates in SQL, date ranges, date components, and the

SQL CASE statement.
The first section introduces numeric functions in SQL, such as LENGTH(),

MOD(), and ROUND(). You will also learn about logarithmic, exponential, and
trigonometric functions in SQL.

The second section contains SQL statements that illustrate how to use
aggregate functions and scalar functions in SQL, such as the max() and min()
functions. You will see SQL statements that use the LIMIT and OFFSET key-
words that enable you to find the kth largest value in a column and a range of
values in a sorted set of numeric values. Moreover, you will learn about string
functions in SQL and how to use the substring() function.

The third section contains examples of Boolean operators and set opera-
tors, and how to use the AND, OR, and NOT operators in SQL statements. The
fourth section introduces the ORDER BY clause that is illustrated in various
SQL statements. This section also discusses the MATCH() function, along with
CTEs (common table expressions), which were introduced in MySQL 8.0.

The final portion of this chapter contains an example of linear regression in
SQL, a section about window functions, the SQL CASE statement, and how to
work with NULL values in SQL.

In some cases, the initial MySQL [mytools]> string has been omitted in
the output listings to improve readability.

126  •  SQL Pocket Primer

NUMERIC FUNCTIONS IN SQL

SQL provides various built-in functions that return numeric values or pro-
vide formatting features for numeric values, some of which are listed here:

•	FORMAT()
•	LEN() or LENGTH()
•	MOD()
•	ROUND()
•	POSITION()

The SQL FORMAT() function enables you to format numeric values in vari-
ous ways. For example, the following SQL statement displays the closest inte-
ger value to the decimal number 123.456:

SELECT FORMAT(123.456, 0);
+--------------------+
| FORMAT(123.456, 0) |
+--------------------+
| 123 |
+--------------------+
1 row in set (0.000 sec)

The following SQL statement shows you how to use the FORMAT() func-
tion to round a number to the nearest integer:

SELECT FORMAT(123.789, 0);
+--------------------+
| FORMAT(123.789, 0) |
+--------------------+
| 124 |
+--------------------+
1 row in set (0.000 sec)

If you work with decimal values that represent currency, you can round
numbers to two decimal places with this SQL statement:

SELECT FORMAT(123.789, 2);
+--------------------+
| FORMAT(123.789, 2) |
+--------------------+
| 123.79 |
+--------------------+
1 row in set (0.000 sec)

The following SQL statement illustrates how to use the LEN() function to
find the length of the strings in the item_desc attribute of the new_items
table:

SELECT LENGTH(item_desc), item_desc
FROM new_items;

Assorted SQL Functions  •  127

Launch the preceding SQL statement to see the following output:

+-------------------+----------------+
| LENGTH(item_desc) | item_desc |
+-------------------+----------------+
6	hammer
11	screwdriver
6	wrench
6	pliers
8	ballpeen
14	1/4 inch nails
9	Toolbox S
9	Toolbox M
9	Toolbox L
7	Handsaw
+-------------------+----------------+
10 rows in set (0.000 sec)

As a variant of the preceding example, the following SQL statement selects
the rows in which the length of the description is between 6 and 14:

SELECT LENGTH(item_desc), item_desc
FROM new_items
WHERE LENGTH(item_desc) > 6 AND LENGTH(item_desc) < 14;
+-------------------+-------------+
| LENGTH(item_desc) | item_desc |
+-------------------+-------------+
11	screwdriver
8	ballpeen
9	Toolbox S
9	Toolbox M
9	Toolbox L
7	Handsaw
+-------------------+-------------+
6 rows in set (0.000 sec)

The MOD() function returns the integer remainder of dividing an integer
(positive or negative) by a non-zero integer, as shown here:

MySQL [mytools]> SELECT MOD(7,3);
+----------+
| MOD(7,3) |
+----------+
| 1 |
+----------+
1 row in set (0.004 sec)

MySQL [mytools]> SELECT MOD(-7,3);
+-----------+
| MOD(-7,3) |
+-----------+
| -1 |
+-----------+
1 row in set (0.003 sec)

128  •  SQL Pocket Primer

SELECT MOD(7,0);
+----------+
| MOD(7,0) |
+----------+
| NULL |
+----------+
1 row in set, 1 warning (0.002 sec)

The following SQL statement illustrates how to use the POSITION() func-
tion to find the index position of the first space character in a text string (which
is 0 if the string does not contain any spaces):

SELECT emp_id, POSITION(" " in title) space_index
FROM employees;
+--------+-------------+
| emp_id | space_index |
+--------+-------------+
1000	0
2000	8
3000	4
4000	7
+--------+-------------+
4 rows in set (0.000 sec)

The ROUND() function calculates the rounded integer value for a numeric
field (or decimal point values), an example of which is shown here:

SELECT ROUND(123.789, 2);
+-------------------+
| ROUND(123.789, 2) |
+-------------------+
| 123.79 |
+-------------------+
1 row in set (0.003 sec)

Calculated Columns

The SQL statements in this section show you how to calculate a percentage
of a numeric column, which is useful when you need to display tax-related val-
ues. Note that the SQL statements illustrate the ORDER BY clause (which has
an intuitive purpose) that we’ll explore in greater detail later in this chapter.
The following SQL statement calculates a tax of 8% for each item:

SELECT item_price, item_price*0.08 AS TAX
FROM item_desc
ORDER BY item_price;
+------------+--------+
| item_price | TAX |
+------------+--------+
8.00	0.6400
10.00	0.8000
20.00	1.6000
+------------+--------+
3 rows in set (0.000 sec)

Assorted SQL Functions  •  129

We can calculate the item_price, the tax, and the total price for each
item in the item_desc table by creating a view over the item_desc table and
then selecting everything from the view, as shown here:

CREATE OR REPLACE VIEW v_item_desc AS
SELECT item_id, item_price, item_price*0.08, item_price*(1.08) AS TOTAL
FROM item_desc
ORDER BY item_id;
Query OK, 0 rows affected (0.004 sec)

Now select everything from the view:

select * from v_item_desc;
+---------+------------+-----------------+---------+
| item_id | item_price | item_price*0.08 | TOTAL |
+---------+------------+-----------------+---------+
100	20.00	1.6000	21.6000
100	10.00	0.8000	10.8000
200	8.00	0.6400	8.6400
+---------+------------+-----------------+---------+
3 rows in set (0.002 sec)

The following SQL statement displays a “$” currency symbol on the left
side of each item price:

SELECT CONCAT('$', item_price)
FROM item_desc
ORDER BY item_price;
+-------------------------+
| CONCAT('$', item_price) |
+-------------------------+
| $8.00 |
| $10.00 |
| $20.00 |
+-------------------------+
3 rows in set (0.003 sec)

THE ROUND(), CEIL(), AND FLOOR() FUNCTIONS

This section contains examples of rounding a number, calculating the
ceiling, and calculating the floor of a number using the functions round(),
ceil(), and floor(), respectively.

Listing 4.1 shows the content of round_values.sql that illustrates the
result of invoking the ROUND() function on various decimal values.

LISTING 4.1: round_values.sql

SELECT ROUND(7.51); -- 8
SELECT ROUND(7.49); -- 7
SELECT ROUND(-7.51); -- -8

SELECT ROUND(25e-1); -- 2 The nearest even value = 2
SELECT ROUND(35e-1); -- 4 The nearest even

130  •  SQL Pocket Primer

-- Round to two decimal places:
SELECT ROUND(234.567, 2); -- 234.57
SELECT ROUND(234.567, -2); -- 200

Listing 4.1 contains SQL statements that involve the ROUND() function.
For approximate numeric values, the result of the ROUND() function depends
on the C library. In fact, the ROUND() function often uses the “round to the
nearest even” rule, which means that 2.5 rounds to 2 whereas 3.5 rounds to 4.
Launch the code in Listing 4.1 to see the following output:

+-------------+
| ROUND(7.51) |
+-------------+
| 8 |
+-------------+
1 row in set (0.000 sec)

+-------------+
| ROUND(7.49) |
+-------------+
| 7 |
+-------------+
1 row in set (0.000 sec)

+--------------+
| ROUND(-7.51) |
+--------------+
| -8 |
+--------------+
1 row in set (0.002 sec)

+--------------+
| ROUND(25e-1) |
+--------------+
| 2 |
+--------------+
1 row in set (0.000 sec)

+--------------+
| ROUND(35e-1) |
+--------------+
| 4 |
+--------------+
1 row in set (0.000 sec)

+-------------------+
| ROUND(234.567, 2) |
+-------------------+
| 234.57 |
+-------------------+
1 row in set (0.000 sec)

+--------------------+
| ROUND(234.567, -2) |
+--------------------+
| 200 |
+--------------------+
1 row in set (0.000 sec)

Assorted SQL Functions  •  131

Listing 4.2 shows the content of ceil_floor.sql that illustrates the result
of invoking the ceil() function and the floor() function on various decimal
values.

LISTING 4.2: ceil_floor.sql

-- round up:
SELECT CEIL(4.56); -- 5
SELECT CEILING(7.83); -- 8
SELECT CEIL(-3.01); -- -4

-- round down:
SELECT FLOOR(3.99); -- 3
SELECT FLOOR(-3.01); -- -4

Listing 4.2 contains two occurrences of CEIL() to show you that the first
CEIL() function rounds up to the nearest integer, whereas the other CEIL()
function rounds down to the nearest integer. Launch the code in Listing 4.2 to
see the following output:

+------------+
| CEIL(4.56) |
+------------+
| 5 |
+------------+
1 row in set (0.000 sec)

+---------------+
| CEILING(7.83) |
+---------------+
| 8 |
+---------------+
1 row in set (0.000 sec)

+-------------+
| CEIL(-3.01) |
+-------------+
| -3 |
+-------------+
1 row in set (0.000 sec)

+-------------+
| FLOOR(3.99) |
+-------------+
| 3 |
+-------------+
1 row in set (0.000 sec)

+--------------+
| FLOOR(-3.01) |
+--------------+
| -4 |
+--------------+
1 row in set (0.000 sec)

132  •  SQL Pocket Primer

SQL Queries with the rand() Function

The RAND() function generates a random number between 0 and 1, an
example of which is here (and invoked twice):

SELECT RAND();
+--------------------+
| RAND() |
+--------------------+
| 0.4952851277732152 |
+--------------------+
1 row in set (0.002 sec)

SELECT RAND();
+---------------------+
| RAND() |
+---------------------+
| 0.13495801774315352 |
+---------------------+
1 row in set (0.000 sec)

The RAND() function enables you to select a random set of rows from a
table, as shown here:

SELECT *
FROM weather
ORDER BY RAND()
LIMIT 3;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-03	78	-12	NULL	se	wa
2021-04-01	42	16	Rain	sf	ca
2021-07-01	42	16	Rain		ca
+------------+--------+------+----------+------+-------+
3 rows in set (0.002 sec)

The preceding SQL statement retrieves a set of three random rows, and
obviously you can specify a different number or omit the LIMIT clause.

LOG, EXPONENTIAL, AND TRIG FUNCTIONS IN SQL

SQL supports logarithmic, exponential functions, and several trigonomet-
ric functions. If you are familiar with such functions, then the SQL statements
in this section are straightforward. If you need to use these functions and
you are unfamiliar with the underlying mathematical concepts, perform an
online search for articles that provide the necessary details. With the preced-
ing details in mind, here is a list of SQL statements involving mathematical
functions.

Assorted SQL Functions  •  133

SELECT LN(2), LN(5), LN(-5);
+--------------------+--------------------+--------+
| LN(2) | LN(5) | LN(-5) |
+--------------------+--------------------+--------+
| 0.6931471805599453 | 1.6094379124341003 | NULL |
+--------------------+--------------------+--------+
1 row in set, 1 warning (0.002 sec)

SELECT LOG(2), LOG(2, 250), LOG(10, 250);
+--------------------+-------------------+-------------------+
| LOG(2) | LOG(2, 250) | LOG(10, 250) |
+--------------------+-------------------+-------------------+
| 0.6931471805599453 | 7.965784284662087 | 2.397940008672037 |
+--------------------+-------------------+-------------------+
1 row in set (0.001 sec)

SELECT LOG2(250), LOG2(24567), LOG2(-23234);
+-------------------+-------------------+--------------+
| LOG2(250) | LOG2(24567) | LOG2(-23234) |
+-------------------+-------------------+--------------+
| 7.965784284662087 | 14.58443407325384 | NULL |
+-------------------+-------------------+--------------+
1 row in set, 1 warning (0.000 sec)

SELECT EXP(0), EXP(2), EXP(-2);
+--------+------------------+--------------------+
| EXP(0) | EXP(2) | EXP(-2) |
+--------+------------------+--------------------+
| 1 | 7.38905609893065 | 0.1353352832366127 |
+--------+------------------+--------------------+
1 row in set (0.001 sec)

SELECT ATAN(4), ATAN(24), ATAN(-32);
+--------------------+--------------------+---------------------+
| ATAN(4) | ATAN(24) | ATAN(-32) |
+--------------------+--------------------+---------------------+
| 1.3258176636680326 | 1.5291537476963082 | -1.5395564933646284 |
+--------------------+--------------------+---------------------+
1 row in set (0.000 sec)

SELECT ATAN2(1, 5), ATAN2(-2, 3), ATAN(3.5, 0);
+---------------------+---------------------+--------------------+
| ATAN2(1, 5) | ATAN2(-2, 3) | ATAN(3.5, 0) |
+---------------------+---------------------+--------------------+
| 0.19739555984988075 | -0.5880026035475675 | 1.5707963267948966 |
+---------------------+---------------------+--------------------+
1 row in set (0.000 sec)

SELECT COS(0), COS(1), COS(2.5);
+--------+--------------------+---------------------+
| COS(0) | COS(1) | COS(2.5) |
+--------+--------------------+---------------------+
| 1 | 0.5403023058681398 | -0.8011436155469337 |
+--------+--------------------+---------------------+
1 row in set (0.000 sec)

134  •  SQL Pocket Primer

SELECT POW(3, 2), POW(25, 5), POW(16, 2);
+-----------+------------+------------+
| POW(3, 2) | POW(25, 5) | POW(16, 2) |
+-----------+------------+------------+
| 9 | 9765625 | 256 |
+-----------+------------+------------+
1 row in set (0.000 sec)

SELECT POWER(3, 2), POWER(25, 5), POWER(16, 2);
+-------------+--------------+--------------+
| POWER(3, 2) | POWER(25, 5) | POWER(16, 2) |
+-------------+--------------+--------------+
| 9 | 9765625 | 256 |
+-------------+--------------+--------------+
1 row in set (0.000 sec)

Calculate the harmonic mean as follows:

SELECT COUNT(temper) / SUM(1/temper) AS harmonic
FROM weather;
+----------+
| harmonic |
+----------+
| 40.7391 |
+----------+
1 row in set (0.000 sec)

Calculate the geometric mean as follows:

SELECT EXP(SUM(LOG(temper)) / COUNT(temper)) AS geometricmean
FROM weather;
+--------------------+
| geometricmean |
+--------------------+
| 45.102493300236915 |
+--------------------+
1 row in set (0.000 sec)

SELECT RADIANS(90), RADIANS(180), RADIANS(360);
+--------------------+-------------------+-------------------+
| RADIANS(90) | RADIANS(180) | RADIANS(360) |
+--------------------+-------------------+-------------------+
| 1.5707963267948966 | 3.141592653589793 | 6.283185307179586 |
+--------------------+-------------------+-------------------+
1 row in set (0.000 sec)

SELECT CONV('A', 16, 2), CONV('G', 18, 8);
+------------------+------------------+
| CONV('A', 16, 2) | CONV('G', 18, 8) |
+------------------+------------------+
| 1010 | 20 |
+------------------+------------------+
1 row in set (0.000 sec)

Assorted SQL Functions  •  135

SCALAR FUNCTIONS IN SQL

A scalar function returns a single value based on the input value. The fol-
lowing list contains some commonly used SQL scalar functions:

•	LENGTH(): Calculates the total length of the given field (column)
•	UCASE(): Converts a collection of string values to uppercase characters
•	LCASE(): Converts a collection of string values to lowercase characters
•	MID(): Extracts substrings from a collection of string values in a table
•	SUBSTRING(): Extracts substrings from a collection of string values in a

table
•	CONCAT(): Concatenates two or more strings
•	RAND(): Generates a random collection of numbers of given length
•	ROUND(): Calculates the rounded integer value for a number (or decimal

values)
•	NOW(): Returns the current data and time
•	FORMAT(): Sets the format to display a collection of values

The following SQL statement selects the first five characters of the title
attribute of the employees table:

SELECT SUBSTR(title,1,5)
FROM employees;
+-------------------+
| SUBSTR(title,1,5) |
+-------------------+
| Devel |
| Proje |
| Dev M |
| Senio |
+-------------------+
4 rows in set (0.001 sec)

The following SQL statement selects the characters in columns 3 through
9 of the title attribute of the employees table:

SELECT SUBSTR(title,3,9)
FROM employees;
+-------------------+
| SUBSTR(title,3,9) |
+-------------------+
| veloper |
| oject Lea |
| v Manager |
| nior Dev |
+-------------------+
4 rows in set (0.000 sec)

136  •  SQL Pocket Primer

AGGREGATE FUNCTIONS IN SQL

An aggregate function performs operations on a collection of values to
return a single scalar value. Aggregate functions are often used with the GROUP
BY and HAVING clauses of the SELECT statement.

The following list contains some commonly used SQL aggregate functions
(followed by simple examples):

•	AVG(): Calculates the mean of a collection of values
•	COUNT(): Counts the total number of records in a specific table or view
•	MAX(): Calculates the maximum of a collection of values
•	MIN(): Calculates the minimum of a collection of values
•	SUM(): Calculates the sum of a collection of values

One other detail to keep in mind is that except for the COUNT() function,
all the aggregate functions in the preceding list ignore NULL values.

Let’s look at examples of SQL statements that contain the aggregate
functions in the preceding bullet list. First, let’s review the contents of the
new_items table that was created and populated with data in Chapter 3:

SELECT * FROM new_items;
+---------+----------------+------------+
| item_id | item_desc | item_price |
+---------+----------------+------------+
100	hammer	20.00
200	screwdriver	8.00
100	wrench	10.00
400	pliers	10.00
500	ballpeen	20.00
600	1/4 inch nails	8.00
700	Toolbox S	30.00
800	Toolbox M	40.00
900	Toolbox L	50.00
1000	Handsaw	20.00
+---------+----------------+------------+
10 rows in set (0.002 sec)

The following SQL statement illustrates how to use the MAX() function
to find the maximum value in the item_price field of the new_items
table:

SELECT MAX(item_price) FROM new_items;

Launch the preceding SQL statement to see the following output:

+-----------------+
| MAX(item_price) |
+-----------------+
| 50.00 |
+-----------------+
1 row in set (0.002 sec)

Assorted SQL Functions  •  137

The following SQL statement illustrates how to use the MIN() function
to find the minimum value in the item_price field in the new_items table:

SELECT MIN(item_price) FROM new_items;

Invoke the preceding SQL statement to see the following output:

+-----------------+
| MIN(item_price) |
+-----------------+
| 8.00 |
+-----------------+
1 row in set (0.002 sec)

The following SQL statement illustrates how to use the AVG() function to
find the average value in the item_price field in the new_items table:

SELECT AVG(item_price) FROM new_items;

Launch the preceding SQL statement to see the following output:

+-----------------+
| AVG(item_price) |
+-----------------+
| 21.600000 |
+-----------------+
1 row in set (0.002 sec)

The following SQL statement illustrates how to use the COUNT() function
to find the number of rows in the item_price field in the new_items table:

SELECT COUNT(*) FROM new_items;

Launch the preceding SQL statement to see the following output:

+----------+
| COUNT(*) |
+----------+
| 10 |
+----------+
1 row in set (0.002 sec)

The following SQL statement illustrates how to use the SUM() function to
find the sum of the values in the item_price field in the new_items table:

SELECT SUM(item_price) FROM new_items;

Launch the preceding SQL statement to see the following output:

+-----------------+
| SUM(item_price) |
+-----------------+
| 216.00 |
+-----------------+
1 row in set (0.002 sec)

138  •  SQL Pocket Primer

Now that you have seen a few examples of SQL statements that contain
aggregate functions in SQL, the next section discusses scalar functions in SQL,
along with some SQL statements that use those functions.

SQL QUERIES WITH THE MAX() AND MIN() FUNCTIONS

The following SQL statement retrieves the maximum student_id and the
minimum student_id from the schedule table:

SELECT max(student_id), min(student_id)
FROM schedule;
+-----------------+-----------------+
| max(student_id) | min(student_id) |
+-----------------+-----------------+
| 1060 | 1010 |
+-----------------+-----------------+
1 row in set (0.001 sec)

The following SQL statement retrieves the maximum student_id and the
minimum student_id using the GROUP BY keywords for the term from the
schedule table:

SELECT max(student_id), min(student_id)
FROM schedule
GROUP BY term;
+-----------------+-----------------+
| max(student_id) | min(student_id) |
+-----------------+-----------------+
1020	1010
1020	1020
1060	1030
+-----------------+-----------------+
3 rows in set (0.002 sec)

The following SQL statement retrieves the maximum student_id and the
minimum student_id using the GROUP BY clause for the term as well as the
ORDER BY clause for the term from the schedule table:

SELECT max(student_id), min(student_id)
FROM schedule
GROUP BY term
ORDER BY term;
+-----------------+-----------------+
| max(student_id) | min(student_id) |
+-----------------+-----------------+
1060	1030
1020	1010
1020	1020
+-----------------+-----------------+
3 rows in set (0.002 sec)

Notice that the following SQL statement generates an error without the
GROUP BY keywords in the SQL statement:

Assorted SQL Functions  •  139

SELECT max(student_id), min(student_id), term FROM
schedule;
ERROR 1140 (42000): In aggregated query without GROUP BY,
expression #3 of SELECT list contains nonaggregated column
'mytools.schedule.term'; this is incompatible with sql_
mode=only_full_group_by
1 row in set (0.001 sec)

FIND MAXIMUM VALUES WITH SQL SUBQUERIES

This section contains examples of SQL statements that involve the MAX()
function and SQL subqueries that contain the MAX() function. If need be, you
can replace the occurrences of MAX() with MIN() in the following SQL queries.

As a starting point, let’s look at an incorrect SQL statement that might look
as though it returns the maximum temperature in the weather table:

SELECT temper
FROM weather
WHERE temper = MAX(temper);

The output from the preceding SQL query is shown here:

ERROR 1111 (HY000): Invalid use of group function

Fortunately, we can find the maximum temperature in the weather table
with the following SQL query:

SELECT MAX(temper)
FROM weather;
+-------------+
| MAX(temper) |
+-------------+
| 78 |
+-------------+
1 row in set (0.000 sec)

Another way to find the maximum temperature is with this SQL query that
does not contain a WHERE keyword:

SELECT temper
FROM weather
ORDER BY temper DESC
LIMIT 1;

The output from the preceding SQL query displays a single value, as shown
below:

+--------+
| temper |
+--------+
| 78 |
+--------+
1 row in set (0.000 sec)

140  •  SQL Pocket Primer

Modify the preceding SQL query to display the top two temperatures, as
shown here:

SELECT temper
FROM weather
ORDER BY temper
DESC LIMIT 2;

The output from the preceding SQL query displays two values, as follows:

+--------+
| temper |
+--------+
| 78 |
| 78 |
+--------+
2 rows in set (0.001 sec)

Notice that the previous output consists of two occurrences of the value 78.
Modify the preceding SQL query to display the top two distinct temperatures,
as shown here:

SELECT DISTINCT temper
FROM weather
ORDER BY temper
DESC LIMIT 2;

The output from the preceding SQL query displays the two largest distinct
values, as shown below:

+--------+
| temper |
+--------+
| 78 |
| 51 |
+--------+
2 rows in set (0.001 sec)

The following SQL query displays the maximum temperature for each day:

SELECT day, MAX(temper)
FROM weather
GROUP BY day;

The output from the preceding SQL query displays a single value:

+------------+-------------+
| day | MAX(temper) |
+------------+-------------+
2021-04-01	42
2021-04-02	45
2021-04-03	78
2021-07-01	42
2021-07-02	45

Assorted SQL Functions  •  141

2021-07-03	78
2021-08-04	50
2021-08-06	51
2021-09-01	42
2021-09-02	45
2021-09-03	15
+------------+-------------+
11 rows in set (0.000 sec)

Since the preceding SQL query returns all the rows in the weather table,
so how do we know for certain that the maximum temperature is returned for
each day? One way to convince ourselves is to create the table weather2 as
a copy of the table weather, and insert rows with different temperatures for
the same day.

Listing 4.3 shows the content of weather2.sql that performs the steps
described in the preceding paragraph.

LISTING 4.3: weather2.sql

use mytools;

DROP TABLE IF EXISTS weather2;
CREATE TABLE weather2 AS (SELECT * FROM weather);

INSERT INTO weather2 VALUES('2021-04-01',62, 16, 'Rain', 'sf', 'ca');
INSERT INTO weather2 VALUES('2021-04-02',65, 3, 'Sunny','sf', 'ca');
INSERT INTO weather2 VALUES('2021-04-03',98, -12, NULL, 'se', 'wa');

SELECT COUNT(*) FROM weather2;

SELECT day, MAX(temper)
FROM weather2
GROUP BY day;

Launch the code in Listing 4.3 to see that weather2 contains 14 rows,
whereas the final SQL query in Listing 4.3 returns only 11 rows:

source weather2.sql;
Database changed
Query OK, 0 rows affected (0.011 sec)

Query OK, 11 rows affected (0.010 sec)
Records: 11 Duplicates: 0 Warnings: 0

Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

+----------+
| COUNT(*) |
+----------+
| 14 |
+----------+
1 row in set (0.001 sec)

142  •  SQL Pocket Primer

+------------+-------------+
| day | MAX(temper) |
+------------+-------------+
2021-04-01	62
2021-04-02	65
2021-04-03	98
2021-07-01	42
2021-07-02	45
2021-07-03	78
2021-08-04	50
2021-08-06	51
2021-09-01	42
2021-09-02	45
2021-09-03	15
+------------+-------------+
11 rows in set (0.000 sec)

As you can see, the value shown in bold is the new maximum temperature
for the date 2021-04-01, which is greater than the temperature of 42 for the
same day.

Simplify SQL Queries Containing Subqueries

In the previous section, you saw examples of the capability of subqueries
in SQL statements, and it’s important to avoid defining SQL statements with
unnecessary complexity.

For example, suppose we want to display the rows in the weather table on a
day that has the maximum temperature. We can do so with the following query:

SELECT * FROM weather
 WHERE day = (
 SELECT day FROM weather
 WHERE temper = (
 SELECT MAX(temper) FROM weather limit 1)
 limit 1
);
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
| 2021-04-03 | 78 | -12 | NULL | se | wa |
+------------+--------+------+----------+------+-------+
1 row in set (0.000 sec)

We can simplify the preceding SQL statement with the following statement:

SELECT * FROM weather
 WHERE temper = (
 SELECT MAX(temper) FROM weather LIMIT 1)
 LIMIT 1;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
| 2021-04-03 | 78 | -12 | NULL | se | wa |
+------------+--------+------+----------+------+-------+
1 row in set (0.005 sec)

Assorted SQL Functions  •  143

However, there are some details to keep in mind. First, the two preceding
SQL statements contain the code snippet LIMIT 1 in the subqueries. This
is necessary because the WHERE temper = code snippet must be assigned a
unique value. An error occurs without the preceding code snippet. You can
confirm this detail by removing the LIMIT 1 code snippet from the SQL
statements.

The second point is that there are two rows that have the maximum tem-
perature. To find all such rows, and only rows with the maximum temperature,
the solution is shown later in this chapter in the section that discusses the IN
keyword.

FIND TOP-RANKED NUMERIC VALUES

The previous section showed you how to find the largest value in a column
of a table, whereas “top-ranked” refers to values such as the second largest or
third largest value in a column of a table, both of which are illustrated in the
next subsection.

Find the Second and Third Largest Values in a Column

The second largest temperature in the weather table is easy to find via a
SQL subquery:

SELECT MAX(temper)
FROM weather
WHERE temper < (SELECT MAX(temper) FROM weather);

The output from the preceding SQL query is here:

+-------------+
| MAX(temper) |
+-------------+
| 51 |
+-------------+
1 row in set (0.001 sec)

Incidentally, this task is sometimes given as an interview question,
and now you know how easy it is to solve this task if you understand SQL
subqueries.

You can easily modify the preceding SQL query to find the third largest
temperature with this SQL query:

SELECT MAX(temper)
FROM weather
WHERE temper < (
 SELECT MAX(temper)
 FROM weather
 WHERE temper < (SELECT MAX(temper) FROM weather));

The output from the preceding SQL query is shown below, which returns
the value 50:

144  •  SQL Pocket Primer

+-------------+
| MAX(temper) |
+-------------+
| 50 |
+-------------+
1 row in set (0.001 sec)

Another way to find the second largest temperature in the weather table
is shown here:

SELECT MAX(temper)
FROM weather
WHERE temper NOT IN (SELECT MAX(temper) FROM weather);

The output from the preceding SQL query is here:

+-------------+
| MAX(temper) |
+-------------+
| 51 |
+-------------+
1 row in set (0.001 sec)

Find the Top Three Values in a Column

The largest three temperatures in the weather table are easy to find by
means of a simple SQL query that does not involve a subquery, as shown
here:

SELECT temper
FROM weather
ORDER BY temper DESC
LIMIT 3;

The output from the preceding SQL query is here. Notice that 78 appears
twice as the largest value:

+--------+
| temper |
+--------+
| 78 |
| 78 |
| 51 |
+--------+
3 rows in set (0.001 sec)

If you want to display the top n temperatures, simply replace the integer 3
in the preceding query with the (positive integer) n.

One other detail: The preceding SQL query returns the three largest tem-
perature values with duplicates as well. This result is correct: since the two
temperatures of 78 are “tied for first,” the temperature of 51 is the third largest
value.

Assorted SQL Functions  •  145

FIND VALUES WITH THE OFFSET KEYWORD

The previous section showed you how to find the largest, second larg-
est, and third largest values using a SQL subquery, which can be cumber-
some when you’re trying to find values that are further from the maximum
value. A better solution involves the LIMIT keyword to find the top k values
in a column. This section shows you how to find the following without SQL
subqueries:

•	The kth largest value (and only the kth value) in a column
•	Any contiguous range of values in a sort set of numbers

For example, the following SQL statement finds the fifth largest value in
the weather table:

SELECT temper
FROM weather
ORDER BY temper DESC
LIMIT 1 OFFSET 4;
+--------+
| temper |
+--------+
| 45 |
+--------+
1 row in set (0.174 sec)

The preceding SQL query specifies an offset of 4, which means that the
four largest values are skipped, and then the fifth largest value is selected
because the LIMIT keyword specifies the value 1.

We can modify the preceding SQL query to find any range of values, start-
ing from any position in a numerically sorted set of values. For example, the
following SQL query finds the sixth, seventh, and eighth largest values in the
weather table:

SELECT temper
FROM weather
ORDER BY temper DESC
LIMIT 3 OFFSET 5;
+--------+
| temper |
+--------+
| 45 |
| 45 |
| 42 |
+--------+
3 rows in set (0.000 sec)

If need be, you can manually confirm that the preceding SQL query does
return the correct set of values.

146  •  SQL Pocket Primer

STRING FUNCTIONS IN SQL

The following SQL statement illustrates how to use the UCASE() function
to convert the item_desc values to uppercase in the item_desc field of the
table new_items:

SELECT UCASE(item_desc), item_desc
FROM new_items;

Execute the preceding SQL statement to see the following output:

+------------------+----------------+
| UCASE(item_desc) | item_desc |
+------------------+----------------+
HAMMER	hammer
SCREWDRIVER	screwdriver
WRENCH	wrench
PLIERS	pliers
BALLPEEN	ballpeen
1/4 INCH NAILS	1/4 inch nails
TOOLBOX S	Toolbox S
TOOLBOX M	Toolbox M
TOOLBOX L	Toolbox L
HANDSAW	Handsaw
+------------------+----------------+
10 rows in set (0.004 sec)

The following SQL statement illustrates how to use the LCASE() function
to convert the item_desc values to lowercase in the item_desc field of the
new_items table:

SELECT LCASE(item_desc), item_desc
FROM new_items;

Launch the preceding SQL statement to see the following output:

+------------------+----------------+
| LCASE(item_desc) | item_desc |
+------------------+----------------+
hammer	hammer
screwdriver	screwdriver
wrench	wrench
pliers	pliers
ballpeen	ballpeen
1/4 inch nails	1/4 inch nails
toolbox s	Toolbox S
toolbox m	Toolbox M
toolbox l	Toolbox L
handsaw	Handsaw
+------------------+----------------+
10 rows in set (0.001 sec)

The MID() function extracts substrings from string values in a table. Specify
the attribute name, the start column, and an optional length:

Assorted SQL Functions  •  147

SELECT MID(item_desc,3,4) AS short_desc
FROM new_items;
+------------+
| short_desc |
+------------+
| mmer |
| rewd |
| ench |
| iers |
| llpe |
| 4 in |
| olbo |
| olbo |
| olbo |
| ndsa |
+------------+
10 rows in set (0.000 sec)

The SUBSTR() function is similar to the MID() function:

SELECT SUBSTRING(item_desc,2,4) AS short_desc
FROM new_items
WHERE item_price > 10;
+------------+
| short_desc |
+------------+
| amme |
| allp |
| oolb |
| oolb |
| oolb |
| ands |
+------------+
6 rows in set (0.000 sec)

The following SQL statement illustrates how to use the CONCAT() function
to concatenate two strings:

SELECT CONCAT("I ", "Love ", "Pizza") AS PizzaLine;
+--------------+
| PizzaLine |
+--------------+
| I Love Pizza |
+--------------+
1 row in set (0.002 sec)

A more useful example of the CONCAT() function is shown here:

SELECT CONCAT(first_name, " ", last_name, " ", home_address) AS Address
FROM customers;
+------------------------+
| Address |
+------------------------+
| John Smith 123 Main St |
+------------------------+
1 row in set (0.001 sec)

148  •  SQL Pocket Primer

One common task involves capitalizing the first letter of a string, which you
can accomplish by a combination of CONCAT(), UCASE(), and SUBSTRING(),
as shown here:

SELECT item_desc, CONCAT(UCASE(LEFT(item_desc, 1)),
SUBSTRING(item_desc, 2)) AS UPPERFIRST
FROM new_items;
+----------------+----------------+
| item_desc | UPPERFIRST |
+----------------+----------------+
hammer	Hammer
screwdriver	Screwdriver
wrench	Wrench
pliers	Pliers
ballpeen	Ballpeen
1/4 inch nails	1/4 inch nails
Toolbox S	Toolbox S
Toolbox M	Toolbox M
Toolbox L	Toolbox L
Handsaw	Handsaw
+----------------+----------------+
10 rows in set (0.000 sec)

Alternatively, you can use the MID() function:

SELECT CONCAT(UCASE(MID(item_desc,1,1)),MID(item_desc,2))
AS descr
FROM new_items;
+----------------+
| descr |
+----------------+
| Hammer |
| Screwdriver |
| Wrench |
| Pliers |
| Ballpeen |
| 1/4 inch nails |
| Toolbox S |
| Toolbox M |
| Toolbox L |
| Handsaw |
+----------------+
10 rows in set (0.001 sec)

SQL QUERIES WITH THE SUBSTRING() FUNCTION

This section shows you an assortment of SQL queries that involve either
the substr() function, the ROWID, or both. The first step involves launching
the schedule.sql script that creates the schedule table, which is displayed
in Listing 4.4.

Assorted SQL Functions  •  149

LISTING 4.4: schedule.sql

USE DATABASE mytools;

DROP TABLE IF EXISTS schedule;
CREATE TABLE schedule (year VARCHAR(4), term VARCHAR(10),
student_id VARCHAR(20), course_id VARCHAR(20));

INSERT INTO schedule VALUES ('2020','SPRING','1010','5010');
INSERT INTO schedule VALUES ('2020','SPRING','1020','5010');
INSERT INTO schedule VALUES ('2020','SUMMER','1020','5020');
INSERT INTO schedule VALUES ('2020','SUMMER','1020','5030');
INSERT INTO schedule VALUES ('2020','FALL', '1030','5040');
INSERT INTO schedule VALUES ('2020','FALL', '1030','5050');
INSERT INTO schedule VALUES ('2020','FALL', '1040','6000');
INSERT INTO schedule VALUES ('2020','FALL', '1040','7000');
INSERT INTO schedule VALUES ('2020','FALL', '1050','6000');
INSERT INTO schedule VALUES ('2020','FALL', '1050','7000');
INSERT INTO schedule VALUES ('2020','FALL', '1060','6000');
INSERT INTO schedule VALUES ('2020','FALL', '1060','7000');

Listing 4.4 shows the schedule table is dropped (if it already exists) and
then re-created with the CREATE TABLE statement. The next portion of Listing
4.4 inserts multiple rows of data into the schedule table by invoking a set of
INSERT statements.

Next, display all the rows in the schedule table by invoking the SQL state-
ment shown in bold below:

MySQL [mytools]> select * from schedule;
+------+--------+------------+-----------+
| year | term | student_id | course_id |
+------+--------+------------+-----------+
2020	SPRING	1010	5010
2020	SPRING	1020	5010
2020	SUMMER	1020	5020
2020	SUMMER	1020	5030
2020	FALL	1030	5040
2020	FALL	1030	5050
2020	FALL	1040	6000
2020	FALL	1040	7000
2020	FALL	1050	6000
2020	FALL	1050	7000
2020	FALL	1060	6000
2020	FALL	1060	7000
+------+--------+------------+-----------+
12 rows in set (0.001 sec)

The SUBSTRING() Function in SQL

The following SQL statement shows you how to use the substring()
function to return the left-most three characters of the term attribute:

150  •  SQL Pocket Primer

select substring(term,1,3) from schedule;
+---------------------+
| substring(term,1,3) |
+---------------------+
| SPR |
| SPR |
| SUM |
| SUM |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |
| FAL |
+---------------------+
12 rows in set (0.000 sec)

The following SQL statement returns the left-most three characters of the
term attribute for the student whose student_id is 1020:

select substring(term,1,3)
from schedule
where student_id = 1020;
+---------------------+
| substring(term,1,3) |
+---------------------+
| SPR |
| SUM |
| SUM |
+---------------------+
3 rows in set (0.002 sec)

BOOLEAN OPERATORS IN SQL

This section contains Boolean operations in SQL, some of which you have
already seen earlier in this chapter (and perhaps in other programming lan-
guages as well):

•	AND combines Boolean expressions for filtering data
•	OR combines Boolean expressions for filtering data
•	IN determines if a value matches any value in a list or a subquery
•	BETWEEN queries data based on a range
•	LIKE queries data based on a pattern
•	LIMIT constrains the number of rows returned by SELECT statement
•	IS NULL checks whether a value is NULL

Here is an example of a SQL statement that contains a BETWEEN condition:

SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 5000 AND 6000;

Assorted SQL Functions  •  151

Here is an example of a SQL statement that contains a LIKE condition:

SELECT emp_id, title
FROM employees
WHERE title LIKE 'D%';
+--------+-------------+
| emp_id | title |
+--------+-------------+
| 1000 | Developer |
| 3000 | Dev Manager |
+--------+-------------+
2 rows in set (0.000 sec)

Here is an example of a SQL statement that checks for NULL values:

=> test for nulls with the IS NULL operator:
SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL;

The IN Keyword

Here is an example of a SQL statement that contains an IN condition in
order to find rows whose manager_id is in a list of values:

SELECT employee_id, last_name, salary, manager_id
FROM employees
WHERE manager_id IN (100, 101, 201);

Earlier in this chapter, you saw an example of finding the maximum tem-
perature in the weather table:

SELECT MAX(temper)
FROM weather;
+-------------+
| MAX(temper) |
+-------------+
| 78 |
+-------------+
1 row in set (0.003 sec)

However, the preceding SQL query only returns the maximum tempera-
ture: it does not tell us how many rows have the maximum temperature. The
solution involves the IN keyword, as shown here:

SELECT * FROM weather
 WHERE temper IN (
 SELECT MAX(temper) FROM weather);
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
| 2021-04-03 | 78 | -12 | NULL | se | wa |
| 2021-07-03 | 78 | 12 | NULL | sf | mn |
+------------+--------+------+----------+------+-------+
2 rows in set (0.011 sec)

152  •  SQL Pocket Primer

SET OPERATORS IN SQL

SQL supports the following set-related operators, each of which is illus-
trated later in this section via a SQL statement:

•	INTERSECT
•	MINUS
•	UNION
•	UNION ALL

Conceptually these operators work the same way as sets in mathematics.
The intersection of sets S1 and S2 is the (possibly empty) subset of elements
that are common to both S1 and S2. The difference S1 - S2 is the set of ele-
ments that are in S1 that are not in the set S2.

Similarly, the union of sets S1 and S2 is the set of elements that belong to
either S1 or S2. The UNION keyword combines rows from multiple queries
(which can involve tables or views) and the result set contains unique rows. If you
want to include duplicate rows in the result set, use UNION ALL instead of UNION.

Before we look at SQL statements that contain these keywords, let’s create
two tables, t1 and t2, and populate them with data, as shown below:

DROP TABLE IF EXISTS t1;
DROP TABLE IF EXISTS t2;

CREATE TABLE t1 (id INT PRIMARY KEY);
CREATE TABLE t2 (id INT PRIMARY KEY);

INSERT INTO t1 VALUES (1),(2),(3);
INSERT INTO t2 VALUES (2),(3),(4);

The following SQL statement returns the intersection of the rows in t1
and t2:

(SELECT id FROM t1)
INTERSECT
(SELECT id FROM t2);

The following SQL statement returns the union of t1 and t2:

(SELECT id FROM t1)
UNION
(SELECT id FROM t2);
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
+----+
4 rows in set (0.001 sec)

Assorted SQL Functions  •  153

The following SQL statement returns the difference (via the MINUS key-
word) between table t1 and table t2: (i.e., t1 - t2)

SELECT id FROM t1
MINUS
SELECT id FROM t2;

AND, OR, AND NOT OPERATORS IN SQL

SQL supports the AND, OR, and NOT operators that operate in the same fash-
ion as those operators in programming languages. Specifically, the AND operator
requires both conditions to be true, an example of which is shown here:

SELECT *
FROM employees
WHERE emp_id > 1000
AND emp_id = mgr_id;
+--------+--------+--------------------+
| emp_id | mgr_id | title |
+--------+--------+--------------------+
| 4000 | 4000 | Senior Dev Manager |
+--------+--------+--------------------+
1 row in set (0.001 sec)

The OR operator returns the rows that satisfy any condition(s) in the OR
portion of the SQL statement, an example of which is shown here:

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
OR job_id LIKE '%MAN%'

You can combine the OR operator with an AND operator, as shown in the
following example:

SELECT *
FROM employees
WHERE title = 'Developer'
OR emp_id = 2000
OR emp_id = 4000 and mgr_id = 4000;
+--------+--------+--------------------+
| emp_id | mgr_id | title |
+--------+--------+--------------------+
1000	2000	Developer
2000	3000	Project Lead
4000	4000	Senior Dev Manager
+--------+--------+--------------------+
3 rows in set (0.000 sec)

The NOT operator requires the opposite condition to be true, as shown here:

SELECT *
FROM employees
WHERE title

154  •  SQL Pocket Primer

NOT IN ('SALES', 'MKTG')
AND emp_id >= 2000;
+--------+--------+--------------------+
| emp_id | mgr_id | title |
+--------+--------+--------------------+
2000	3000	Project Lead
3000	4000	Dev Manager
4000	4000	Senior Dev Manager
+--------+--------+--------------------+
3 rows in set (0.000 sec)

The preceding SQL statements contain >= to indicate “greater than or
equal to,” which is one type of inequality. A more extensive list of inequalities
is shown here, each of which can be used in the earlier SQL statements:

•	>= specifies "greater than or equal to"
•	> specifies "greater than"
•	= specifies "equal to"
•	<= specifies "less than or equal to"
•	< specifies "less than"
•	<> specifies "not equal to"

WORKING WITH ARITHMETIC OPERATORS

SQL allows you to use the addition (+) operator to calculate the sum of two
or more numeric values, an example of which is shown here:

SELECT 7 + 13 as my_sum;
+--------+
| my_sum |
+--------+
| 20 |
+--------+
1 row in set (0.000 sec)

An example of adding three numbers is here:

SELECT 7 + 13 + 25.123 as my_sum2;
+---------+
| my_sum2 |
+---------+
| 45.123 |
+---------+
1 row in set (0.000 sec)

Update an integer-valued attribute in a table, as shown here:

SELECT SALARY+10000 as new_salary FROM EMPLOYEES;

Add a numeric value to the emp_id column using the addition operator, as
shown in this query:

Assorted SQL Functions  •  155

SELECT emp_id+10000 as new_emp_id
FROM employees;
+------------+
| new_emp_id |
+------------+
| 11000 |
| 12000 |
| 13000 |
| 14000 |
+------------+
4 rows in set (0.000 sec)

SQL supports the arithmetic operator “-” for subtraction, as shown here:

SELECT 260-99 as Subtract;
+----------+
| Subtract |
+----------+
| 161 |
+----------+
1 row in set (0.000 sec)

SELECT emp_id-100 as Subtracted_id FROM EMPLOYEES;
+---------------+
| Subtracted_id |
+---------------+
| 900 |
| 1900 |
| 2900 |
| 3900 |
+---------------+
4 rows in set (0.001 sec)

SQL supports the arithmetic operator “*” for multiplication, as shown
here:

SELECT 100*77 as Multiplication;
+----------------+
| Multiplication |
+----------------+
| 7700 |
+----------------+
1 row in set (0.000 sec)

SQL supports the arithmetic operator “/” for division, as shown here:

SELECT 15/6 as Division;
+----------+
| Division |
+----------+
| 2.5000 |
+----------+
1 row in set (0.000 sec)

156  •  SQL Pocket Primer

SQL supports the arithmetic operator “%” for modulus, as shown here:

SELECT 23%4 as result;
+--------+
| result |
+--------+
| 3 |
+--------+
1 row in set (0.000 sec)

SELECT emp_id, emp_id%3 as result FROM EMPLOYEES;
+--------+--------+
| emp_id | result |
+--------+--------+
1000	1
2000	2
3000	0
4000	1
+--------+--------+
4 rows in set (0.000 sec)

ARITHMETIC AGGREGATE OPERATORS IN SQL

SQL supports aggregate arithmetic functions such as max(), min(), and
avg() for finding the maximum, minimum, and average, respectively, of the
values in a numeric column. The next set of SQL queries displays the rows
in the item_desc table followed by SQL statements that contain the above-
mentioned arithmetic aggregate functions.

DESC item_desc;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
item_id	int	YES		NULL	
item_desc	varchar(80)	YES		NULL	
item_price	decimal(8,2)	YES		NULL	
+------------+--------------+------+-----+---------+-------+
3 rows in set (0.017 sec)

SELECT *
FROM item_desc;
+---------+-------------+------------+
| item_id | item_desc | item_price |
+---------+-------------+------------+
100	hammer	20.00
200	screwdriver	8.00
100	wrench	10.00
+---------+-------------+------------+
3 rows in set (0.001 sec)

SELECT max(item_price) as item_price
FROM item_desc;

Assorted SQL Functions  •  157

+------------+
| item_price |
+------------+
| 20.00 |
+------------+
1 row in set (0.007 sec)

SELECT max(item_price) maxp, min(item_price) as minp
FROM item_desc;
+-------+------+
| maxp | minp |
+-------+------+
| 20.00 | 8.00 |
+-------+------+
1 row in set (0.000 sec)

As you can see, the preceding SQL statements retrieve a single value for
the maximum and minimum of the price column of the item_desc table.

However, the next set of SQL statements return the full details of the row
that contains the maximum or minimum value in the price column of the
item_desc table.

SELECT *
FROM item_desc
WHERE item_price = (select max(item_price)
 FROM item_desc);
+---------+-----------+------------+
| item_id | item_desc | item_price |
+---------+-----------+------------+
| 100 | hammer | 20.00 |
+---------+-----------+------------+
1 row in set (0.003 sec)

SELECT *
FROM item_desc
WHERE item_price = (SELECT min(item_price)
 FROM item_desc);
+---------+-------------+------------+
| item_id | item_desc | item_price |
+---------+-------------+------------+
| 200 | screwdriver | 8.00 |
+---------+-------------+------------+
1 row in set (0.001 sec)

Finding Average Values

The following SQL statement determines the average price of the items in
the item_desc table:

SELECT max(item_price) maxp,
 avg(item_price) as avgp,
 min(item_price) as minp
FROM item_desc;

158  •  SQL Pocket Primer

+-------+-----------+------+
| maxp | avgp | minp |
+-------+-----------+------+
| 20.00 | 12.666667 | 8.00 |
+-------+-----------+------+
1 row in set (0.000 sec)

Although you might be tempted to replace the min() or max() function
with the avg() function, the result will typically be the empty set. Indeed, how
often will the average value appear as a row? Let’s see what happens in our case:

MySQL [mytools]> SELECT * FROM item_desc
 WHERE item_price = (SELECT avg(item_price) FROM item_desc);
Empty set (0.001 sec)

Note that you can also replace SELECT * FROM item_desc with a sublist
of columns from the item_desc table.

The following SQL statement calculates the average monthly temperature
of the rows in the weather table:

SELECT YEAR(day) year, MONTH(day) month, AVG(temper) average
FROM weather
WHERE MONTH(day) IN (1,2,3,4,5,6,7,8,9,10,11,12)
GROUP BY YEAR(day), MONTH(day)
ORDER BY YEAR(day), MONTH(day), AVG(temper);
+------+-------+---------+
| year | month | average |
+------+-------+---------+
2021	4	55.0000
2021	7	55.0000
2021	8	50.5000
2021	9	34.0000
+------+-------+---------+
4 rows in set (0.001 sec)

The first column in the preceding result set contains only the value 2021
because all the rows in the weather table consist of data from the year 2021.
However, the preceding SQL statement will work correctly with data from
multiple years.

SELECT Clauses with Multiple Aggregate Functions

This section contains SQL statements that contain the max() and min()
functions in the SELECT clause. For example, the following SQL statement
displays the maximum difference in temperature in the weather table:

SELECT MAX(temper) - MIN(temper) as delta
FROM weather;
+-------+
| delta |
+-------+
| 63 |
+-------+
1 row in set (0.000 sec)

Assorted SQL Functions  •  159

The following SQL statement displays the maximum difference in tem-
perature during the month of April in the weather table:

SELECT MAX(temper) - MIN(temper) as delta
FROM weather
WHERE MONTH(day) = 04;
+-------+
| delta |
+-------+
| 36 |
+-------+
1 row in set (0.001 sec)

THE ORDER BY CLAUSE IN SQL

You have already seen SQL statements in this chapter that specify the
ORDER BY clause in order to specify the order in which the result set is dis-
played. The two options are ascending order or descending order, which can
be performed with alphabetic values or numeric values.

This section contains an assortment of SQL statements that also specify
the ORDER BY clause. For example, the following SQL statements order the
output in increasing order (the default) and then in decreasing order.

SELECT *
FROM employees
ORDER BY title;
+--------+--------+--------------------+
| emp_id | mgr_id | title |
+--------+--------+--------------------+
3000	4000	Dev Manager
1000	2000	Developer
2000	3000	Project Lead
4000	4000	Senior Dev Manager
+--------+--------+--------------------+
4 rows in set (0.000 sec)

SELECT *
FROM employees
ORDER BY title DESC;
+--------+--------+--------------------+
| emp_id | mgr_id | title |
+--------+--------+--------------------+
4000	4000	Senior Dev Manager
2000	3000	Project Lead
1000	2000	Developer
3000	4000	Dev Manager
+--------+--------+--------------------+
4 rows in set (0.000 sec)

Sort a table by specifying multiple columns in the ORDER BY clause, as
shown here:

SELECT *
FROM employees

160  •  SQL Pocket Primer

ORDER BY title, mgr_id;
+--------+--------+--------------------+
| emp_id | mgr_id | title |
+--------+--------+--------------------+
3000	4000	Dev Manager
1000	2000	Developer
2000	3000	Project Lead
4000	4000	Senior Dev Manager
+--------+--------+--------------------+
4 rows in set (0.000 sec)

In the preceding SQL statement, the inclusion of the mgr_id has no effect
because the rows have unique values for mgr_id and title. However, the
following SQL statements show you that the order of the attributes can make
a difference.

SELECT *
FROM weather
WHERE forecast != '' AND city != ''
ORDER BY forecast,city;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-01	42	16	Rain	sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-03	15	12	Snow	chi	il
2021-04-02	45	3	Sunny	sf	ca
2021-07-02	45	-3	Sunny	sf	ca
+------------+--------+------+----------+------+-------+
5 rows in set (0.001 sec)

SELECT *
FROM weather
WHERE forecast != '' AND city != ''
ORDER BY city,forecast;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-09-03	15	12	Snow	chi	il
2021-04-01	42	16	Rain	sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-04-02	45	3	Sunny	sf	ca
2021-07-02	45	-3	Sunny	sf	ca
+------------+--------+------+----------+------+-------+
5 rows in set (0.001 sec)
Note: the ORDER BY clause must be the last in a SELECT
statement

ORDER BY with Aggregate Functions

You can also define SQL statements that combine aggregate functions with
the ORDER BY clause, as shown here:

SELECT day, temper, AVG(temper)
FROM weather

Assorted SQL Functions  •  161

GROUP BY day, temper
ORDER BY AVG(temper) DESC;
+------------+--------+-------------+
| day | temper | AVG(temper) |
+------------+--------+-------------+
2021-04-03	78	78.0000
2021-07-03	78	78.0000
2021-08-06	51	51.0000
2021-08-04	50	50.0000
2021-04-02	45	45.0000
2021-07-02	45	45.0000
2021-09-02	45	45.0000
2021-04-01	42	42.0000
2021-07-01	42	42.0000
2021-09-01	42	42.0000
2021-09-03	15	15.0000
+------------+--------+-------------+
11 rows in set (0.003 sec)

The following SQL statement displays the maximum difference in tem-
perature during the months of August and September in the weather table,
using the GROUP BY clause and the ORDER BY clause for the month value:

SELECT MONTH(day), MAX(temper) - MIN(temper) as delta
FROM weather
WHERE MONTH(day) IN (08,09)
GROUP BY MONTH(day)
ORDER BY MONTH(day);
+------------+-------+
| MONTH(day) | delta |
+------------+-------+
| 8 | 1 |
| 9 | 30 |
+------------+-------+
2 rows in set (0.003 sec)

LARGEST DISTINCT VALUES AND FREQUENCY OF VALUES

In Chapter 3, you learned how to find the second largest and third larg-
est distinct values in the weather table. In this section, you will learn how to
select the three largest values in the weather table using the ORDER BY clause
instead of a subquery.

As a quick reminder, there is a difference between “select the largest
three values” and “select the largest three distinct values.” By default, SQL
statements that select the largest values allow for duplicate values. In this sec-
tion, you will see how to write SQL statements that select distinct maximum
values.

Let’s look at some SQL statements that might seem to be the solution, but
they do not produce the desired results (i.e., distinct values). For example, the
following SQL statement is incorrect because the selected temperature values
are not selected from a list of temperatures in descending order:

162  •  SQL Pocket Primer

SELECT temper
FROM weather
LIMIT 3;
+--------+
| temper |
+--------+
| 42 |
| 45 |
| 78 |
+--------+
3 rows in set (0.001 sec)

The following SQL statement is incorrect because the selected tempera-
tures contain duplicate values:

SELECT temper
FROM weather
ORDER BY temper DESC
LIMIT 3;
+--------+
| temper |
+--------+
| 78 |
| 78 |
| 51 |
+--------+
3 rows in set (0.000 sec)

The following SQL statement is correct because the selected tem-
peratures are distinct and they are selected from a descending list of
temperatures:

SELECT DISTINCT(temper)
FROM weather
ORDER BY temper DESC
LIMIT 3;
+--------+
| temper |
+--------+
| 78 |
| 51 |
| 50 |
+--------+
3 rows in set (0.001 sec)

As an additional observation, the following SQL queries return only the
largest value instead of the top two values:

SELECT MAX(temper)
FROM weather
LIMIT 2;

SELECT MAX(DISTINCT(temper))
FROM weather
LIMIT 2;

Assorted SQL Functions  •  163

The following SQL statement displays the most frequently occurring value
for temper in the weather table:

SELECT temper, COUNT(*)
FROM weather
GROUP BY temper
ORDER BY COUNT(*) DESC
LIMIT 1;
+--------+------------+
| temper | COUNT(*) |
+--------+------------+
| 42 | 3 |
+--------+------------+
1 row in set (0.000 sec)

The following SQL statement displays the frequency of the values in the
state attribute in the weather table:

SELECT state, occurrences
FROM (SELECT state,count(*) as occurrences
 FROM weather
 GROUP BY state
) T1;
+-------+-------------+
| state | occurrences |
+-------+-------------+
ca	7
wa	1
mn	2
il	1
+-------+-------------+
4 rows in set (0.002 sec)

The following SQL statement is a variation of the preceding SQL statement
that also includes the LIMIT 1 clause in order to display the most frequently
occurring value in the state in attribute in the weather table:

SELECT state, occurrences
FROM (SELECT state,count(*) as occurrences
 FROM weather
 GROUP BY state
 LIMIT 1
) T1;
+-------+-------------+
| state | occurrences |
+-------+-------------+
| ca | 7 |
+-------+-------------+
1 row in set (0.003 sec)

CHARACTER FUNCTIONS AND STRING OPERATORS

There are two main types of SQL functions: single-row functions that
return one result per row and multiple-row functions that return one result
per set of rows. Specifically, single-row functions in SQL will

164  •  SQL Pocket Primer

•	manipulate data items
•	accept arguments and return one value
•	act on each row that is returned
•	return one result per row
•	may modify the data type
•	can be nested
•	accept arguments that can be a column or an expression

SQL Character Functions

There two types of character functions: case-manipulation functions and
character manipulation functions. Case manipulation functions in SQL include
the following:

•	LOWER
•	UPPER
•	INITCAP

Character manipulation functions in SQL include the following built-in
functions:

•	SUBSTRING
•	LENGTH
•	INSTR
•	LPAD | RPAD
•	TRIM
•	REPLACE

Following this section are some one-line examples of some of the preced-
ing built-in functions, where you need to replace my_table with a suitable
table name and replace fname and phone_number with attributes from your
table in your database:

Remove leading spaces:

SELECT LTRIM(fname) from my_table;

Remove leading and trailing spaces:

SELECT TRIM(fname) from my_table;

Replace “-” with a space (“ ”):

SELECT fname, REPLACE(phone_number, '-', ' ') as p_number
FROM my_table;

SQL supports built-in number functions, include the following functions:

•	ROUND
•	TRUNC
•	MOD

Assorted SQL Functions  •  165

An example of the built-in truncate() function (which is different from
the TRUNCATE keyword) is as follows:

-- the value 12.345 is replaced with 12:

SELECT TRUNCATE (average, 0) from my_table;

String Operators in SQL

SQL supports the following string operators that perform the concatena-
tion of strings and partial matches of strings against meta characters:

•	CONCAT (concatenation)
•	LIKE operator

SELECT 'Hello' + ' ' + 'World!' AS StringConcatenated;
SELECT FIRSTNAME + ' ' + LASTNAME AS ConcatenatedName FROM STUDENTS;

SQL provides a concatenation operator that does the following:

•	links columns or character strings to other columns
•	is represented by two vertical bars (||)
•	creates a resultant column that is a character expression

For example, the following SQL statement concatenates the last_name
field with the job_id field for each row in the employees table:

SELECT last_name||job_id AS "Employees"
FROM employees;

Literal character strings can be a character, a number, or a date, and they
have the following properties:

•	A literal is included in the SELECT statement.
•	Dates and characters must be enclosed by single quotation marks.
•	Each character string is output once for each row returned.

You can also specify an alternative quote (q) operator:

•	choose any delimiter
•	useful for increasing readability and usability

The LIKE keyword supports the percent (%) meta character as well
as the underscore (_) meta character, where the latter matches any single
character.

THE MATCH() FUNCTION AND TEXT SEARCH

Listing 4.5 shows the content of nlp_terms.sql that illustrates how to use
the MATCH() function to search for text in a database table.

166  •  SQL Pocket Primer

LISTING 4.5: nlp_terms.sql

use mytools;
DROP TABLE IF EXISTS nlp_terms;

-- create table:
CREATE TABLE nlp_terms (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 nlp_term VARCHAR(200),
 definition TEXT,
 FULLTEXT (nlp_term,definition)
) ENGINE=InnoDB;

-- insert data into table:
INSERT INTO nlp_terms (nlp_term,definition) VALUES
 ('lemmatization','Word Root Words'),
 ('nltk', 'NLP Toolkit From Stanford'),
 ('SpaCy', 'Very Good NLP toolkit'),
 ('stemming', 'Truncates Word Suffixes'),
 ('stopwords', 'Common Words'),
 ('word2vec', 'CBoW and Skip Grams');

-- select data:
SELECT * FROM nlp_terms
 WHERE MATCH (nlp_term,definition)
 AGAINST ('NLP' IN NATURAL LANGUAGE MODE);

Listing 4.5 starts by creating and populating the table nlp_terms with a set
of rows containing text, followed by a SQL statement that uses the MATCH()
function to search for the term NLP in the nlp_terms table. Launch the code
in Listing 4.5 to see the following output:

+----+----------+---------------------------------+
| id | nlp_term | definition |
+----+----------+---------------------------------+
| 1 | nltk | NLP Toolkit From Stanford |
| 2 | SpaCy | Very Good NLP Toolkit |
+----+----------+---------------------------------+
2 rows in set (0.000 sec)

CTES AND THE ÒWITHÓ KEYWORD IN MYSQL (VERSION 8)

A common table expression (CTE) is a temporary named result set. A CTE
is defined within the execution scope of a single SELECT, INSERT, UPDATE,
DELETE, or CREATE VIEW statement.

To define a CTE, you need to specify a with statement, which is available
in MySQL 8 (but not earlier versions of MySQL). In fact, you can specify mul-
tiple blocks of SQL statements that can include various SQL keywords, such as
GROUP BY, and aggregate functions such as MIN() and MAX(). Interestingly,
the with statement can be used to define recursive SQL queries (discussed
later). The definition of a CTE has three parts:

Assorted SQL Functions  •  167

•	the with keyword
•	the name the CTE
•	the body of the CTE

Here is a sample syntax for constructing a single CTE, followed by a SQL
statement that references the CTE:

WITH simple_name(column-list) AS (
 YOUR-SQL-QUERY
)
SELECT * FROM simple_name;

The following example illustrates how to define a single CTE that specifies
the emp_id attribute of the employees table, and notice that the inner SQL
statement does not contain a semi-colon:

WITH emps(emp_id) AS
(
 SELECT emp_id FROM employees
)
SELECT * FROM emps;
+--------+
| emp_id |
+--------+
| 1000 |
| 2000 |
| 3000 |
| 4000 |
+--------+
4 rows in set (0.001 sec)

The next example shows you how to specify multiple attributes in a CTE
using a syntax that is slightly different from the preceding CTE:

WITH emps AS
(
 SELECT emp_id, mgr_id FROM employees
)
SELECT emp_id FROM emps
WHERE emp_id > 1000;
+--------+
| emp_id |
+--------+
| 2000 |
| 3000 |
| 4000 |
+--------+
3 rows in set (0.001 sec)

The next sample shows you how to construct a CTE that contains a JOIN
keyword:

168  •  SQL Pocket Primer

WITH purch_orders AS (
 SELECT cust_id, po_id FROM purchase_orders
)
SELECT cust_id
FROM customers
JOIN purch_orders USING(cust_id);
+---------+
| cust_id |
+---------+
| 1000 |
| 1000 |
| 1000 |
+---------+
3 rows in set (0.002 sec)

You can also define a CTE that specifies multiple WITH code blocks using
the following syntax:

WITH simple_name1 AS (
 YOUR-SQL-QUERY1
),
WITH simple_name2 AS (
 YOUR-SQL-QUERY2
)
SELECT * FROM simple_name1 JOIN simple_name2 ON some-condition;

The CTE examples in this section contain a SELECT keyword, and you can
define CTE expressions with other keywords, as outlined here:

WITH ... INSERT ...
WITH ... UPDATE ...
WITH ... DELETE ...

Consult the online documentation for MySQL 8 for additional information
regarding CTEs.

The with Keyword and a Recursive SQL Query

The SQL file recursive.sql defines a recursive SQL statement that dis-
plays the integers from 1 to 6 inclusive, as follows:

WITH RECURSIVE arith_seq AS
(
 SELECT 1 AS x
 UNION ALL
 SELECT 1+x FROM arith_seq WHERE x<6
)
SELECT * FROM arith_seq;
+------+
| x |
+------+
| 1 |
| 2 |
| 3 |

Assorted SQL Functions  •  169

| 4 |
| 5 |
| 6 |
+------+
6 rows in set (0.000 sec)

CTES AND THE MEAN, STDDEV, AND Z-SCORES

Listing 4.6 shows the content of my_stats_data.sql that creates and
populates the table my_stats_data with numeric values, followed by SQL
statements to calculate the mean, standard deviation, and z-scores of the rows
in this table.

LISTING 4.6: my_stats_data.sql

use mytools;

DROP TABLE IF EXISTS my_stats_data;
CREATE TABLE my_stats_data (num_val INT(4));

INSERT INTO my_stats_data VALUES (2);
INSERT INTO my_stats_data VALUES (5);
INSERT INTO my_stats_data VALUES (7);
INSERT INTO my_stats_data VALUES (9);
INSERT INTO my_stats_data VALUES (9);
INSERT INTO my_stats_data VALUES (37);

-- Find the mean with this SQL statement:
\! echo '=> Calculate the mean:';
SELECT AVG(num_val)
FROM my_stats_data;

-- Find the standard deviation with this SQL statement:
\! echo '=> Calculate the standard deviation:';
SELECT STD(num_val)
FROM my_stats_data;

-- Find the z-score with this SQL statement:
\! echo '=> Calculate the z-scores:';
WITH simple_stats as
 (SELECT AVG(num_val) as mean,
 STDDEV(num_val) as sd
 FROM my_stats_data)
SELECT num_val, (num_val-simple_stats.mean) / simple_stats.
sd as z_score
FROM my_stats_data, simple_stats;

-- Find z-scores greater than 2 with this SQL statement:
\! echo '=> Find the z-scores greater than 2:';
WITH simple_stats as
 (SELECT AVG(num_val) as mean,
 STDDEV(num_val) as sd
 FROM my_stats_data)

170  •  SQL Pocket Primer

SELECT num_val, (num_val-simple_stats.mean) / simple_stats.
sd as z_score
FROM my_stats_data, simple_stats
HAVING z_score > 2;

Listing 4.6 starts by creating and then populating the my_stats_data
table with data. The next portion of Listing 4.6 contains a SQL statement for
calculating the mean of the value, followed by a SQL statement that calculates
the standard deviation.

The third SQL statement defines a CTE with the mean and standard
deviation in order to calculate the standardized values of the numbers in the
my_stats_data table. The fourth and final SQL statement modifies the
third SQL statement by adding the following code snippet to detect (potential)
outliers:

HAVING z_score > 2;

You can replace the value 2 with whatever value is appropriate for detect-
ing outliers in a database table. Note that only the fourth SQL statement is
required for detecting outliers. The other three SQL statements are included
for your convenience. Launch the code in Listing 4.6 to see the following
output:

=> Calculate the mean:
+--------------+
| AVG(num_val) |
+--------------+
| 11.5000 |
+--------------+
1 row in set (0.000 sec)

=> Calculate the standard deviation:
+--------------------+
| STD(num_val) |
+--------------------+
| 11.658330355015108 |
+--------------------+
1 row in set (0.000 sec)

=> Calculate the z-scores:
+---------+----------------------+
| num_val | z_score |
+---------+----------------------+
2	-0.8148679708594249
5	-0.5575412432196065
7	-0.38599009145972757
9	-0.21443893969984865
9	-0.21443893969984865
37	2.1872771849384565
+---------+----------------------+
6 rows in set (0.001 sec)

Assorted SQL Functions  •  171

=> Find the z-scores greater than 2:
+---------+--------------------+
| num_val | z_score |
+---------+--------------------+
| 37 | 2.1872771849384565 |
+---------+--------------------+
1 row in set (0.000 sec)

LINEAR REGRESSION IN SQL

Linear regression is a standard task in statistics, and if you are a data scien-
tist or machine learning engineer, you are most likely already familiar with the
calculations to determine the slope and y-intercept of the best fitting line. If
you have forgotten some of those details, you can review them by reading the
code in this section.

Listing 4.7 shows the content of linear_regression.sql that finds the
best fitting line for the data in the pasta_prices table.

LISTING 4.7: linear_regression.sql

use mytools;

DROP TABLE IF EXISTS pasta_prices ;
CREATE TABLE pasta_prices (kilos INT(3), dollars INT(3));

-- approximate line: dollars = 2*kilos+3
INSERT INTO pasta_prices VALUES (5,12);
INSERT INTO pasta_prices VALUES (6,16);
INSERT INTO pasta_prices VALUES (7,17);
INSERT INTO pasta_prices VALUES (8,20);
INSERT INTO pasta_prices VALUES (9,22);
INSERT INTO pasta_prices VALUES (10,23);
INSERT INTO pasta_prices VALUES (11,25);

SELECT
 @num := COUNT(dollars) AS Num,
 @meanX := format(AVG(kilos),3) AS "XMean",
 @sumX := SUM(kilos) AS "XSum",
 @sumXS := SUM(kilos*kilos) AS "XSumOfSquares",
 @meanY := format(AVG(dollars),3) AS "YMean",
 @sumY := SUM(dollars) AS "SumOfY",
 @sumYS := SUM(dollars*dollars) AS "YSumOfSquares",
 @sumXY := SUM(kilos*dollars) AS "SumOfX*Y"
 FROM pasta_prices;

SELECT
 @m := format((@n*@sumXY - @sumX*@sumY) / (@num*@sumXS - @sumX*@sumX),3)
 AS slope;

SELECT @b := format((@meanY - @m*@meanX),3) AS intercept;

SELECT CONCAT('Y = ',@m,'X + ',@b) AS 'Least Squares Regression';

SELECT
 format((@num*@sumXY - @sumX*@sumY)
 / SQRT((@num*@sumXS - @sumX*@sumX) * (@num*@sumYS - @sumY*@sumY)),4)
 AS correlation;

172  •  SQL Pocket Primer

Listing 4.7 starts by creating (and populating) the table pasta_prices
with two columns, where the first column contains the number of kilograms
and the second column contains the corresponding price for that number of
kilograms of pasta.

The next portion of Listing 4.7 contains a SQL statement that initializes
some standard quantities that are required for finding the best fitting line. The
second and third SQL statements calculate the slope m and intercept b, respec-
tively, of the best fitting line. The next SQL statement is for display purposes:
it displays the best fitting line in the form Y = m*X + b.

The final SQL statement uses the quantities from the first SQL statement
in order to calculate the correlation of the values in the my_stats_data table.
Launch the code in Listing 4.7 to see the following output:

+-----+-------+------+---------------+--------+--------+---------------+----------+
| Num | XMean | XSum | XSumOfSquares | YMean | SumOfY | YSumOfSquares | SumOfX*Y |
+-----+-------+------+---------------+--------+--------+---------------+----------+
| 7 | 8.000 | 56 | 476 | 19.286 | 135 | 2727 | 1138 |
+-----+-------+------+---------------+--------+--------+---------------+----------+
1 row in set, 8 warnings (0.000 sec)

+-------+
| slope |
+-------+
| 2.071 |
+-------+
1 row in set, 1 warning (0.000 sec)

+-----------+
| intercept |
+-----------+
| 2.718 |
+-----------+
1 row in set, 1 warning (0.000 sec)

+--------------------------+
| Least Squares Regression |
+--------------------------+
| Y = 2.071X + 2.718 |
+--------------------------+
1 row in set (0.000 sec)

+-------------+
| correlation |
+-------------+
| 0.9866 |
+-------------+
1 row in set (0.000 sec)

WINDOW FUNCTIONS

Window functions are functions that can rank data over a specific window
or generate ranking indexes within groups. Different relational databases sup-
port different functions. Check the documentation to determine whether your
database supports the functions listed in this section. If a specific function is
not available, consider writing a stored function that implements the function-
ality that you need for your requirements.

Assorted SQL Functions  •  173

Types of Window Functions in SQL

One way to categorize different types of window functions is as follows:

•	Aggregate Functions
•	Rank-related Functions
•	Statistical Functions
•	Functions for Time Series

Aggregate functions include the SQL functions AVG, MIN, MAX, COUNT,
and SUM, all of which specify a table column and then aggregate data based on
that column.

Rank-related functions include ROW_NUMBER, RANK, and RANK_DENSE
whose purpose is to rank data based on columns in a table or the full dataset.

Statistical functions include NTILE (to calculate percentiles, quartiles, and
medians) that can be applied to a column or the full dataset. You can think of
the NTILE function as a “binning” function that partitions data into a set of
bins (or buckets). NTILE takes an integer as an argument that represents the
number of desired bins.

Functions for Time Series include LAG and LEAD to calculate a month-over-
month rolling average.

Recall that Chapter 3 contains an example of the RANK() function regard-
ing various countries that won medals in the 2021 Olympics in Japan.

The RANK and DENSE_RANK functions in MySQL both return sequential
numbers (starting from 1) based on the order of the rows that is returned by
the ORDER BY clause. When you have two records with the same data, then
both functions give the same rank to both the rows.

However, only RANK() skips the number of positions after records with the
same rank number. For example, suppose that DENSE_RANK() returns the fol-
lowing values that contains duplicate values with no gaps:

1
2
2
2
3
4
5

By contrast, the RANK() function returns the following list that contains
gaps that take into account duplicate values:

1
2
2
2

174  •  SQL Pocket Primer

5
6
7

The outcome of sports races uses RANK-based values instead of DENSE_RANK
values. Perform an online search for detailed examples involving the RANK(),
DENSE_RANK(), and ROW_NUMBER() functions.

If you want to learn more about window functions, a partial list of MySQL
8.x window functions is available online:

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.
html

Some examples of window functions in MySQL 8.x are available online:
https://dev.mysql.com/doc/refman/8.0/en/window-functions-usage.html

THE SQL CASE CLAUSE

This section shows you how to write SQL statements that contain the CASE
keyword. The SQL CASE keyword superficially resembles a switch statement
in programming languages, such as C and Java, and has the following general
structure:

CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 ...
 WHEN conditionN THEN resultN
 ELSE result
END

Each WHEN condition is evaluated, and the first one that is TRUE will exe-
cute its corresponding code that appears after the THEN keyword. However,
if no WHEN condition is TRUE, then the code in the ELSE keyword is executed.

Listing 4.8 shows the content of case_weather.sql that uses a CASE
statement to modify the values that are returned from the wind attribute of
the weather table.

LISTING 4.8: case_weather.sql

SELECT CASE WHEN wind < 0 THEN 0
 WHEN wind > 100 THEN 100
 ELSE wind END
AS wind FROM weather;

Log into MySQL and execute the following statements:

use mytools;
source case_weather.sql;

The output from the preceding code snippet looks similar to the following:

Assorted SQL Functions  •  175

+------+
| wind |
+------+
| 16 |
| 3 |
| 0 |
| 16 |
| 0 |
| 12 |
| 12 |
| 32 |
| 16 |
| 99 |
| 12 |
+------+
11 rows in set (0.000 sec)

As another example of the CASE statement, Listing 4.9 shows the contents
of create_movies.sql that first creates a movie_ratings table with a sin-
gle row.

LISTING 4.9: create_movies.sql

SELECT @stars = 3;

USE DATABASE mytools;
DROP TABLE IF EXISTS movie_ratings;

CREATE TABLE movie_ratings (movie_id INTEGER, stars
INTEGER, movie_desc VARCHAR(20));

INSERT INTO movie_ratings VALUES(1000, 3, 'unrated');

Listing 4.9 involves the usual sequence of SQL statements to create the
table movie_ratings and then insert a single row of data. Log into MySQL
and execute the movie_ratings.sql file:

MySQL [mytools]>
source movie_ratings.sql;
Database changed
Query OK, 0 rows affected (0.010 sec)
Query OK, 0 rows affected (0.009 sec)
Query OK, 1 row affected (0.001 sec)

Verify the contents of the movie_ratings table:

select * from movie_ratings;
+----------+-------+------------+
| movie_id | stars | movie_desc |
+----------+-------+------------+
| 1000 | 3 | unrated |
+----------+-------+------------+
1 row in set (0.000 sec)

176  •  SQL Pocket Primer

Note the value of the movie_desc attribute is unrated, which will be
updated via a CASE statement in the next code sample.

Listing 4.10 shows the content of case_movies.sql that uses a CASE
statement that updates the value of the movie_desc attribute of a row in the
movie_ratings table.

LISTING 4.10: case_movies.sql

SELECT @stars = 3;

UPDATE movie_ratings
SET movie_desc = CASE
 WHEN stars = 1 THEN 'poor'
 WHEN stars = 2 THEN 'minimal'
 WHEN stars = 3 THEN 'decent'
 WHEN stars = 4 THEN 'great'
 WHEN stars = 5 THEN 'fantastic'
 ELSE 'unknown star value' END
WHERE movie_id = 1000;

Log into MySQL and execute the following statements that execute the SQL
file case_movies.sql to update the lone row in the movie_ratings table:

MySQL [mytools]> use mytools;
source case_movies.sql;
Database changed
Query OK, 0 rows affected (0.010 sec)
MySQL [mytools]> select * from movie_ratings;
+----------+-------+------------+
| movie_id | stars | movie_desc |
+----------+-------+------------+
| 1000 | 3 | decent |
+----------+-------+------------+

As you can see in the previous output, the movie_desc attribute has been
updated to the value decent.

The final example of a CASE statement shows you that NULL does not equal
NULL:

SELECT CASE WHEN NULL=NULL THEN "Chicago" ELSE "New York" END;
+--+
| case when null=null then "Chicago" Else "New York" end |
+--+
| New York |
+--+
1 row in set (0.000 sec)

WORKING WITH NULL VALUES IN SQL

This section shows you the difference between checking for NULL values
versus empty string (‘’) values. Note the following definition of a null in SQL:
it’s a value that is unavailable, unassigned, unknown, or inapplicable. Hence, a
null is not the same as a zero or a blank space.

Assorted SQL Functions  •  177

SQL supports the IFNull() function, which is the counterpart of the
NVL() function that’s available in Oracle databases.

SELECT IFNULL(1,0); -- returns 1
SELECT IFNULL('',1); -- returns ''
SELECT IFNULL(NULL,'IFNULL function');
-- returns 'IFNULL function'

The following SQL statement contains the IFNULL() function that returns
the value of workphone if it’s not null; otherwise, it returns the value of
homephone.

SELECT contactname, IFNULL(workphone, homephone) phone
FROM contacts;

Listing 4.11 shows the content of not_null.sql that uses a CASE state-
ment to modify the values that are returned from the wind attribute of the
weather table.

LISTING 4.11: not_null.sql

— select rows where forecast is not NULL:
SELECT forecast FROM weather WHERE forecast IS NOT NULL;

— select rows where forecast is not empty string '':
SELECT forecast FROM weather WHERE forecast <> '';

Log into MySQL and execute the following statements:

use mytools;
source not_null.sql;

The output from the preceding code snippet is similar to the following:

+----------+
| forecast |
+----------+
| Rain |
| Sunny |
| Rain |
| Sunny |
| Snow |
| |
| Rain |
| |
| Snow |
+----------+
9 rows in set (0.000 sec)

+----------+
| forecast |
+----------+
| Rain |
| Sunny |
| Rain |

178  •  SQL Pocket Primer

| Sunny |
| Snow |
| Rain |
| Snow |
+----------+
7 rows in set (0.001 sec)

Listing 4.12 shows the content of is_null.sql that illustrates how to
select NULL values and '' values.

LISTING 4.12: is_null.sql

— the opposite of the queries in not_null.sql:
SELECT * FROM weather WHERE weather.forecast IS NULL;
SELECT * FROM weather WHERE weather.forecast = '';

Log into MySQL and execute the following statements:

use mytools;
source not_null.sql;

The output from the preceding code snippet looks similar to the following:

MySQL [mytools]> source is_null.sql;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
| 2021-04-03 | 78 | -12 | NULL | se | wa |
| 2021-07-03 | 78 | 12 | NULL | sf | mn |
+------------+--------+------+----------+------+-------+
2 rows in set (0.000 sec)

+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
| 2021-08-06 | 51 | 32 | | sf | ca |
| 2021-09-02 | 45 | 99 | | sf | ca |
+------------+--------+------+----------+------+-------+
2 rows in set (0.000 sec)

Listing 4.13 shows the content of Null_If.sql that updates the city
attribute in the weather table to NULL if the city is sf.

LISTING 4.13: Null_If.sql

UPDATE WEATHER
SET city = NULLIF(city, 'sf');

Listing 4.13 contains a simple SQL UPDATE statement that invokes the
NULLIF statement to set the city equal to NULL if the city value is sf. Log into
MySQL and invoke the following command to display the current contents of
the weather table:

Assorted SQL Functions  •  179

MySQL [mytools]> select * from weather;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-01	42	16	Rain	sf	ca
2021-04-02	45	3	Sunny	sf	ca
2021-04-03	78	-12	NULL	se	wa
2021-07-01	42	16	Rain		ca
2021-07-02	45	-3	Sunny	sf	ca
2021-07-03	78	12	NULL	sf	mn
2021-08-04	50	12	Snow		mn
2021-08-06	51	32		sf	ca
2021-09-01	42	16	Rain	sf	ca
2021-09-02	45	99		sf	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
11 rows in set (0.000 sec)

Now launch Null_If.sql to update the values in the weather table:

MySQL [mytools]> source Null_If.sql;
Query OK, 7 rows affected (0.003 sec)
Rows matched: 11 Changed: 7 Warnings: 0

Display the rows in the weather table and compare the following list with
the preceding list:

MySQL [mytools]> select * from weather;
+------------+--------+------+----------+------+-------+
| day | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
2021-04-01	42	16	Rain	NULL	ca
2021-04-02	45	3	Sunny	NULL	ca
2021-04-03	78	-12	NULL	se	wa
2021-07-01	42	16	Rain		ca
2021-07-02	45	-3	Sunny	NULL	ca
2021-07-03	78	12	NULL	NULL	mn
2021-08-04	50	12	Snow		mn
2021-08-06	51	32		NULL	ca
2021-09-01	42	16	Rain	NULL	ca
2021-09-02	45	99		NULL	ca
2021-09-03	15	12	Snow	chi	il
+------------+--------+------+----------+------+-------+
11 rows in set (0.001 sec)

MISCELLANEOUS ONE-LINERS

This section contains an eclectic collection of functions that are available in
MySQL, along with short descriptions of the purpose of the functions. In most
cases, the names of the functions have intuitive names, and for those that are
not intuitive, the samples make their purpose clear.

180  •  SQL Pocket Primer

SELECT SUM(temper) AS total_temp FROM weather;

The LEAST() function returns the smallest value in a list of values, which
can be a list of numeric values or a list of string values, as shown here:

SELECT LEAST(3, 12, 34, 8, 25);
+-------------------------+
| LEAST(3, 12, 34, 8, 25) |
+-------------------------+
| 3 |
+-------------------------+
1 row in set (0.000 sec)

SELECT LEAST("abc", "def", "ghi");
+----------------------------+
| LEAST("abc", "def", "ghi") |
+----------------------------+
| abc |
+----------------------------+
1 row in set (0.000 sec)

The GREATEST() function is the counterpart to the LEAST() function that
returns the smallest value in a list of values, which can be a list of numeric val-
ues or a list of string values, as shown here:

SELECT GREATEST(3, 12, 34, 8, 25);
+----------------------------+
| GREATEST(3, 12, 34, 8, 25) |
+----------------------------+
| 34 |
+----------------------------+
1 row in set (0.000 sec)

SELECT GREATEST("abc", "def", "ghi");
+-------------------------------+
| GREATEST("abc", "def", "ghi") |
+-------------------------------+
| ghi |
+-------------------------------+
1 row in set (0.000 sec)

The BIN() function converts a base 10 integer to a base 2 numbers, as
shown here:

SELECT BIN(15);
+---------+
| BIN(15) |
+---------+
| 1111 |
+---------+
1 row in set (0.000 sec)

The CONV() function is more general than the BIN() function because it
converts an integer from one base to another base, where the two bases are
positive integers (i.e., not necessarily 10 and 2), as shown here:

Assorted SQL Functions  •  181

SELECT CONV(15, 10, 2);
+-----------------+
| CONV(15, 10, 2) |
+-----------------+
| 1111 |
+-----------------+
1 row in set (0.000 sec)

SELECT CONV(15, 10, 3);
+-----------------+
| CONV(15, 10, 3) |
+-----------------+
| 120 |
+-----------------+
1 row in set (0.000 sec)

The COALESCE() function processes a list of values that may be NULL and
returns the first non-null value; if all values are null, then the result is NULL.
The COALESCE() function and the NULLIF() are essentially a shortened form
of a CASE expression. Here is a simple example:

SELECT COALESCE(NULL, NULL, NULL, 'abc', NULL, 'def');
+--+
| COALESCE(NULL, NULL, NULL, 'abc', NULL, 'def') |
+--+
| abc |
+--+

The CONVERT() function converts a value into the specified datatype, an
example of which is here:

SELECT CONVERT("2021-12-30", DATE);
+-----------------------------+
| CONVERT("2021-12-30", DATE) |
+-----------------------------+
| 2021-12-30 |
+-----------------------------+
1 row in set (0.000 sec)

The SESSION() function displays the name of the current MySQL user, an
example of which is here:

SELECT SESSION_USER();
+----------------+
| SESSION_USER() |
+----------------+
| root@localhost |
+----------------+
1 row in set (0.000 sec)

WORKING WITH THE CAST() FUNCTION IN SQL

The CAST() function converts a value (of any type) into the specified data-
type, an example of which is here:

182  •  SQL Pocket Primer

SELECT CAST("2021-12-30" AS DATE);
+----------------------------+
| CAST("2021-12-30" AS DATE) |
+----------------------------+
| 2021-12-30 |
+----------------------------+
1 row in set (0.000 sec)

SELECT CAST(777 AS CHAR);
+-------------------+
| CAST(777 AS CHAR) |
+-------------------+
| 777 |
+-------------------+
1 row in set (0.000 sec)

Listing 4.14 shows the content of split_float.sql that splits a floating
point number, stored as a string in a table, into its integer portion and its deci-
mal portion.

LISTING 4.14: split_float.sql

USE mytools;
DROP TABLE IF EXISTS split_float;
CREATE TABLE split_float (height CHAR(10));

INSERT INTO split_float VALUES ("12.3");
INSERT INTO split_float VALUES ("45.6");
INSERT INTO split_float VALUES ("78.9");
INSERT INTO split_float VALUES ("-3.4");
SELECT * FROM split_float;

--this prevents the huge number in the next SQL statement:
--DELETE
--FROM split_float
--WHERE height < 0;

SELECT CAST(SUBSTRING_INDEX(height, '.', 1) AS UNSIGNED) AS whole_value,
 CAST(SUBSTRING_INDEX(height, '.', -1) AS UNSIGNED) AS decimal_value
FROM split_float;

Listing 4.14 creates and populates the table split_float with string val-
ues that contain decimal numbers. The last portion of Listing 4.14 contains
a SQL statement that involves the built-in CAST() function and the built-in
SUBSTRING_INDEX() function in order to extract the integer portion and the
decimal portion of the strings in the split_float table.

Launch the code in Listing 4.14 to see the following output:

MySQL [mytools]> select * from weather;
+--------+
| height |
+--------+
| 12.3 |
| 45.6 |

Assorted SQL Functions  •  183

| 78.9 |
| -3.4 |
+--------+
4 rows in set (0.000 sec)

+----------------------+---------------+
| whole_value | decimal_value |
+----------------------+---------------+
12	3
45	6
78	9
18446744073709551613	4
+----------------------+---------------+	
4 rows in set, 1 warning (0.000 sec)	
+------------+--------+------+----------+------+-------+	
day	temper
+------------+--------+------+----------+------+-------+

Notice the enormous number in the bottom row: this is due to specifying
unsigned in the associated SQL statement. One solution involves deleting
rows whose height value is less than 0, which is obviously true if the height
value is for humans. Another solution involves finding the substring after the
negative sign, and then proceed with splitting the string as above. However,
it’s logical and much simpler to delete the rows whose height value is negative.

SUMMARY

This chapter started with examples of SQL statements that illustrate
numeric functions as well as logarithmic, exponential, and trigonometric func-
tions in SQL. You then learned about aggregate functions and scalar functions
in SQL, along with additional examples of the GROUP BY clause in a SQL
statement.

Next, you learned about Boolean operators and set operators, and how to
use the AND, OR, and NOT operators in SQL statements. In addition, you saw
examples of SQL statements that use the ORDER BY clause and the MATCH()
function. Next, you learned about CTEs (common table expressions) that were
introduced in MySQL 8.0.

Finally, you learned how to perform linear regression in SQL, followed by
an overview of window functions, the SQL CASE statement, and how to work
with NULL values in SQL.

CHAPTER 5
NoSQL, SQLite, AND PYTHON

This chapter introduces non-relational databases whose feature sets are
well-suited to certain types of applications. Specifically, you will learn
about NoSQL and MongoDB, which is a popular NoSQL database.

Then you will see some of the features of SQLite, SQLAlchemy, and how to
access both of them through Python scripts, followed by Python code that ac-
cesses MySQL.

The first section (which is roughly half of this chapter) introduces NoSQL,
along with Python code samples to manage data in a MongoDB collection. To
some extent, this section shows you how to perform operations in MongoDB
that are counterparts to SQL commands. You will learn how to create a data-
base in MongoDB, how to create a collection, and how to populate the collec-
tion with documents.

The second section shows you the NoSQL command for querying data
from a NoSQL collection, as well as deleting document from a collection.
You will also learn about Compass (a GUI tool for MongoDB) and PyMongo,
which is a Python distribution for working with MongoDB.

The third section returns to MySQL, where you will see how to read
MySQL data into a Pandas data frame and then save the data frame as an
Excel spreadsheet. Although we won’t discuss the details of Pandas and its rich
functionality, the Pandas-related code is straightforward. If need be, you can
also find online tutorials that discuss various features of Pandas.

The fourth section provides a short description of SQLite, which is a data-
base that is available on mobile devices, such as Android and iOS. As you can
probably surmise from its name, SQLite supports a subset of SQL. You can
invoke SQL commands in SQLite in the various ways (such as SQLiteStudio)
that are discussed in this section.

186  •  SQL Pocket Primer

The final section provides an overview of SQLite, which is a command line
tool for managing databases that is available on mobile devices. This section
also introduces related tools, such as SQLiteStudio (an IDE for sqlite), DB
Browser, and SQLiteDict.

NON-RELATIONAL DATABASE SYSTEMS

There are several types of non-relational data stores, some of which are
listed here:

•	key-value store
•	document store
•	wide-column stores
•	graph database

The following paragraphs contain a high-level description of the data
stores in the preceding list of bullet items. Note that the details of NoSQL are
deferred until later sections in this chapter.

A key/value store is analogous to a Python dictionary or a hash table (hash
map) in Java. In abstract terms, a key can unlock a door to give you access to
the contents on the other side of that door. In the case of key/value pairs of a
key/value store, the value is the contents. The value can be anything, including
a scalar, a data structure, or a concrete instance of a class. Although key/value
stores provide limited functionality, they do provide high performance and are
convenient as an in-memory cache.

A document store focuses on managing the storage of documents, which
can involve XML, JSON, or binary formats. You can also view a document
store as a generalization of a key/value store, where the values in these pairs are
documents. In general, document stores also provide APIs to perform various
operations, such as save, delete, update, and find documents.

A wide document store provides column-based storage of name/value pairs,
which includes documents. A single column can consist of multiple columns,
somewhat analogous to a table. Row keys provide access to individual col-
umns, and columns with the same row key belong to the same row in the store.
Examples of wide document stores include Bigtable (Google) and Cassandra
(Facebook). Distributed databases include GCP (Google), Bigtable (Google),
DynamoDB (Amazon), and Azure Storage (Microsoft).

Graph databases are well-suited for more complex data models, such as
those that exist in social networks. Each node in a graph database is a record
and each edge between two nodes is a relationship between those two nodes.
Graph databases are optimized to represent complex relationships with many
foreign keys or many-to-many relationships. Unsurprisingly, the complexity of
their structure makes it correspondingly more difficult to easily access their
contents.

NoSQL, SQLite, and Python  •  187

Advantages of Non-Relational Databases

A NoSQL database is designed to provide fast access to data that may be
stored in multiple locations (nodes). Important considerations include

•	good scalability
•	support for structured and non-structured data
•	simpler updates to schemas
•	Shared Nothing Architecture

Due to the last point in the preceding bullet list, a DDB (distributed data-
base) is a loosely coupled system in which each node operates on its own physi-
cal resources.

 In some cases, a DDB will provide strong query abilities, whereas others
focus on key-value data representation. A homogeneous DDB involves mul-
tiple databases with the same underlying DBMS, whereas a heterogeneous
DDB involves multiple databases with different underlying DBMSs.

While distributed databases provide multiple advantages, they can also be
more complex than a centralized DBMS.

WHAT IS NOSQL?

Let’s start with a clarification: in the early days, NoSQL usually meant “not
SQL.” More recently, NoSQL has evolved to mean “not only SQL.” Moreover,
RDBMSs such as Oracle have adapted their database to include support for
non-structured data as well as semi-structured data. Nevertheless, RDBMSs
are primarily about structured data, and NoSQL databases were designed
for data types that are less structured (more about this later). In fact, some
RDBMSs, such as Oracle, added support for NoSQL to the Oracle database.

NoSQL includes the data stores and graph databases that are discussed in
the previous section. Recall that RDBMSs include the normalization of data-
base tables, whereas NoSQL data is denormalized, and JOIN operations are
typically performed in the application code. NoSQL databases enable you to
store and retrieve documents (often based on JSON) of variable length, and
you can do so without defining a schema or even a table structure. In general,
NoSQL databases do not support ACID (they lean toward eventual consist-
ency), so they tend to have high speed transactions.

SQL stores data in tabular form with labelled rows and columns. By con-
trast, NoSQL databases have a “collection” that is analogous to an RDBMS
table. A collection can contain multiple documents, where a document is anal-
ogous to a row in an RDBMS table.

Collections are not required to conform to a schema, which means that a
collection can contain unrelated documents. Although you will probably popu-
late each collection with documents that are logically related, the key point is
that you have a great deal of flexibility when making this decision.

188  •  SQL Pocket Primer

Moreover, it’s easy to add new fields to one or more documents in a col-
lection without updating a formal schema. Of course, if the documents in a
collection have a highly similar (or identical) structure, then it’s easier to insert,
update, select, or delete such documents.

What is NewSQL?

NewSQL refers to databases that provide the scalability of NoSQL data-
bases and the transactional support of relational databases. Such databases
can offer decentralized SQL support and often will provide support for
dynamic JSON. Several examples of NewSQL databases include Snowflake,
CockroachDB, and Spark SQL. More details regarding NewSQL and addi-
tional databases are available online:

https://en.wikipedia.org/wiki/NewSQL

RDBMSS VERSUS NOSQL: WHICH ONE TO USE?

Although RDBMSs and NoSQL databases can support the same types
of data (and there are many types), they have different strengths. RDBMSs
are suitable for structured data, and NoSQL databases excel in their sup-
port for unstructured data. An important advantage of NoSQL and key/value
stores is their unlimited horizontal scalability, whereas RDBMSs have vertical
expansion.

As you learned in previous chapters, RDBMSs are well-suited for data that
can be stored in a tabular form. In addition, the structure of tables (i.e., their
attributes along with their types) must be defined in advance. Furthermore,
data is accessed through SQL queries, many of which are discussed in
Chapter 2 and Chapter 4.

Some simple examples of “suitable data” include the details for customers
and purchase orders (one-to-many relationship), along with purchase orders
and line items (also a one-to-many relationship).

Another example involves students and classes whose many-to-many
relationship is replaced by a “join” table whose key is the union of 1) the attrib-
utes from the primary key for the students table and 2) the primary key for
the classes table. As a result, both the students table and the classes
table have a one-to-many relationship with the join table.

Good Data Types for NoSQL

A NoSQL database is well-suited for documents, images, audio, and video,
all of which have variable lengths (and different formats) and can be stored as
single entities without adhering to the normalization process that you will see
in Chapter 6. Although it’s certainly possible for RDBMSs to manage these
types of entities, write and read operations might require accessing different
parts of an entity from multiple tables. Recall that normalization requires a
JOIN keyword in SQL clauses that retrieve data from multiple tables, which
in turn can adversely affect performance.

NoSQL, SQLite, and Python  •  189

Moreover, the document model for NoSQL allows for fields to vary from
document to document, all of which can belong to the same collection. In
addition, more recent versions of MongoDB provide ACID compliance, and
in conjunction with transaction support, this functionality can give MongoDB
the look-and-feel of RDBMSs.

It is important to select the system (whenever possible) that best fits the
requirements for your application.

Some Guidelines for Selecting a Database

MongoDB might be a better choice under the following conditions:

•	you need high data availability and fast, automatic, and instant data
recovery

•	you work with an unstable schema
•	your services are mostly cloud-based, so the native scale-out architecture

that MongoDB comes with will be suitable for your business
•	the architecture provides sharding, which aligns with horizontal scaling

offered through cloud computing.

MySQL could be a better option under the following conditions:

•	you are starting a business and the database is not going to scale
•	the schema is fixed and its data structure will not change over time
•	you want high-performance ability on a low budget
•	you need a high transaction rate
•	data security is the foremost priority

Of course, the preceding lists of bullet items only provide guidelines rather
than a definitive list of criteria. Before you make a decision, make sure you
perform a thorough evaluation of two types of databases based on a prioritized
list of requirements.

NoSQL Databases

The following list contains several NoSQL databases that are available for
free:

•	CockroachDB
•	FaunaDB
•	HarperDB
•	RethinkDB

Before you decide to adopt one of the preceding databases, compare your
list of requirements with each of these databases (and you might decide to adopt
MySQL). If two of them are viable candidates, check for blog posts that contain
a detailed comparison. If you decide to utilize an application that uses each of

190  •  SQL Pocket Primer

those two databases, remember that performance-related issues generally arise
when there is a high volume of data and/or many simultaneous transactions.

Now that you have an overview of some of the differences between
RDBMSs and NoSQL databases, let’s take a closer look at MongoDB, which is
the topic of the next section.

WHAT IS MONGODB?

MongoDB is a popular NoSQL database that supports NoSQL operations
on data. As a quick reminder, in an earlier chapter, you learned that an RDBMS
allows you to create databases and tables and then insert data into those tables.
By contrast, MongoDB supports the creation of databases and collections,
after which you can insert documents into the collections (discussed in more
detail shortly).

Features of MongoDB

In addition to support for many standard query types, MongoDB offers the
following features:

•	sharding
•	load balancing
•	scalability
•	schemas are optional
•	support for indexes

Installing MongoDB

There are two versions of MongoDB that you can install on your machine.
The MongoDB community edition is downloadable:

https://docs.mongodb.com/manual/installation/#mongodb-community-edi-
tion-installation-tutorials

Note that on MacOS, you can use brew to install MongoDB. The MongoDB
Enterprise edition is downloadable:

https://docs.mongodb.com/manual/administration/install-enterprise/
In addition, you can use MongoDB with Docker (search online for tutorials

and instructions).

Launching MongoDB

Launch the command mongo without arguments, which then launches a
command shell and also connects to the URL mongod://127.0.0.1:27017.

The preceding URL is the default local server, and you’re connected to the
local host through port 27017. Type the following command to find the loca-
tion of the mongo executable:

$ which mongo
/usr/local/bin/mongo

NoSQL, SQLite, and Python  •  191

Type mongo from a command shell in order to enter the mongo shell:

$ mongo

If everything has been set up correctly, you will see the following (or some-
thing similar):

MongoDB shell version v4.4.3
connecting to: mongodb://127.0.0.1:27017/?compressors=disab
led&gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("2c254ca6-adf4-
466f-8a87-a182d801ee0e") }
MongoDB server version: 4.4.3
// other details omitted for brevity
>

The mongo shell makes a connection to the test database, and you can
verify the latter by typing the following in the MongoDB command shell:

> db
Test

Display the existing MongoDB databases with this command:

> show databases
admin 0.000GB
config 0.000GB
local 0.000GB

You can also replace databases with dbs in the preceding command. Note
that admin and local are databases that are part of every MongoDB cluster.

USEFUL MONGO APIS

With MongoDB, you can create one or more databases, where each data-
base can contain one or more collections, and each collection can contain one
or more JSON-based documents.

MongoDB supports CRUD operations that include find(), insert(),
update(), and delete(), where these keywords can be suffixed with “One”
or “Many” (e.g., findOne() or findMany()).

You can find data in a Mongo database with the following APIs:

•	db.collection.find() lists all the documents in the collection.
•	db.collection.findOne() lists only the first document in the collection.

Insert data with these MongoDB APIs:

•	db.collection.insert() creates a new document in a collection.
•	db.collection.insertOne() inserts a new document in a collection.
•	db.collection.insertMany() inserts several new documents in a

collection.

192  •  SQL Pocket Primer

Update data with these MongoDB APIs:

•	db.collection.update() modifies a document in a collection.
•	db.collection.updateOne() modifies a single document in a collection.
•	db.collection.updateMany() modifies multiple documents in a

collection.
•	db.collection.replaceOne() modifies a single document in a

collection.

Delete data with these MongoDB APIs:

•	db.collection.remove(): Delete a single document or all documents
that match a specified filter.

•	db.collection.deleteOne(): Delete, at most, a single document that
matches a specified filter even though multiple documents may match
the specified filter.

•	db.collection.deleteMany(): Delete all documents that match a
specified filter.

Meta Characters in Mongo Queries

MongoDB supports these two meta characters and a lowercase switch that
you can use when you want to find substrings of a text string:

•	$ matches the end of a line
•	^ matches the beginning of a line
•	i means “ignore case”

Consider the following list of names that we will use with the preceding
bullet items:

Smith1
Smith2
Smith3
Smith4
Smith5

The following expression does not match anything in the list (it starts with
a lowercase “s” instead of an uppercase “S”):

/smith1/

The following expression matches Smith1 in the list because of the i switch:

/smith1/i

The following expression matches Smith1 through Smith5 because ^S
matches any string that starts with a capital S:

/^S/

NoSQL, SQLite, and Python  •  193

The following expression matches Smith5 because /^5/ matches any
string that ends in the digit 5:

/5$/

MONGODB COLLECTIONS AND DOCUMENTS

In simplified terms, think of a collection as a container-like entity that ena-
bles you to store documents. In addition, you can think of a document as a set
of name/value pairs, where the values can be simple data types (e.g., numbers
or strings) as well as arrays. Thus, MongoDB has a document-oriented data
model instead of a table-oriented data model.

MongoDB’s document-oriented model means that documents can be man-
aged in their entirety instead of splitting them into components that are stored
in different tables whose relationship must be defined, such as a one-to-many
relationship that involves a foreign key.

Instead, you create a collection and simply insert documents in that col-
lection. MongoDB provides APIs for managing the documents in a given col-
lection. the MongoDB performs a lazy creation of databases and collections,
which means that databases and collections are created after you insert the
first document.

Document Format in MongoDB

The documents in MongoDB are composed of field-and-value pairs and
have the following structure:

{
 field1 → value1,
 field2 → value2,
 field3 → value3,
 ...
 fieldN → valueN
}

The value of a field can be any BSON datatype, including other documents,
arrays, and arrays of documents. In practice, you’ll specify your documents
using the JSON format.

CREATE A MONGODB COLLECTION

Unlike an RDBMS, MongoDB does not have a CREATE command. Instead,
you need to invoke the use command to create a database, and then the
INSERT command to insert a document, after which a database is created:

use temp
Insert a document in temp

194  •  SQL Pocket Primer

Enter the following commands from the command line:

> use temp
switched to db temp
> db.temp.insertOne({"fname": "John", "lname": "Smith"})
{
	 "acknowledged" : true,
	 "insertedId" : ObjectId("603dad30876da25aabd36d5f")
}

You can also insert multiple documents, as shown here:

> doc1 = {"fname": "John", "lname": "Smith"}
{ "fname" : "John", "lname" : "Smith" }

> doc2 = {"fname": "Jane", "lname": "Jones"}
{ "fname" : "Jane", "lname" : "Jones" }

> doc3 = {"fname": "Dave", "lname": "Stone"}
{ "fname" : "Dave", "lname" : "Stone" }

> db.temp.insertMany([doc1,doc2,doc3])
{
	 "acknowledged" : true,
	 "insertedIds" : [
		 ObjectId("603daee5876da25aabd36d60"),
		 ObjectId("603daee5876da25aabd36d61"),
		 ObjectId("603daee5876da25aabd36d62")
]
}
>
> db.temp.find()
{ "_id" : ObjectId("603dad30876da25aabd36d5f"), "fname" :
"John", "lname" : "Smith" }
{ "_id" : ObjectId("603daee5876da25aabd36d60"), "fname" :
"John", "lname" : "Smith" }
{ "_id" : ObjectId("603daee5876da25aabd36d61"), "fname" :
"Jane", "lname" : "Jones" }
{ "_id" : ObjectId("603daee5876da25aabd36d62"), "fname" :
"Dave", "lname" : "Stone" }
>
> db.temp.find({fname : "Jane"})
{ "_id" : ObjectId("603daee5876da25aabd36d61"), "fname" :
"Jane", "lname" : "Jones" }
>

Let’s create a MongoDB collection called cellphones whose documents
contain the attributes year, os, model, color, and price. Unlike an
RDBMS that requires you to define the attributes of a database table, you can
create a collection simply by inserting a document in that collection. Here is
an example of inserting a row in the cellphones collection, which will create
the cellphones collection if it does not already exist:

NoSQL, SQLite, and Python  •  195

> use cellphones
switched to cellphones
> db
cellphones
> db.cellphones.insert({"year":"2017","os":"android","model":
"pixel2","color":"black","price":320})

The following document contains data for a specific cell phone in the
cellphones collection:

{
 "_id" : ObjectId("600c626932e0e6419cee81a7"),
 "year" : "2017",
 "os" : "android",
 "model" : "pixel2",
 "color" : "black",
 "price" : 320
}

Invoke the following command if you want to delete the cellphones
collection:

> db.cellphones.drop()

WORKING WITH MONGODB COLLECTIONS

This section contains a set of examples that illustrate how to use various
MongoDB APIs for managing the data in the cellphones collection that was
created in the previous section. The following sections contain code blocks that
illustrate how to use the following APIs.

find()
insertOne()
insertMany()
aggregate()

Find all Android Phones

NoSQL (and MongoDB) provide the find() function to query a collec-
tion for documents. The following query finds the Android cell phones in the
cellphones collection:

> db.cellphones.find({os: "android"}).limit(1).pretty(){
 "_id" : ObjectId("600c63cf32e0e6419cee81ab"),
 "year" : "2017",
 "os" : "android",
 "model" : "pixel2",
 "color" : "black",
 "price" : 28000
}

196  •  SQL Pocket Primer

In addition to the find() function, the preceding query contains two addi-
tional functions. First, the limit() function is invoked to limit the number of
rows that are returned in a query. Second, the pretty() function is invoked
to display the output in a more aesthetically pleasing manner.

If you decide to omit the pretty() function in the preceding query, the
output looks like this:

> db.cellphones.find({os: "android"}).limit(1){ "_id" :
ObjectId("600c63cf32e0e6419cee81ab"), "year" : "2017", "os"
: "android", "model" : "pixel2", "color" "black", "price"
: 320 }

Find All Android Phones in 2018

NoSQL (and MongoDB) allow you to list multiple comma-separated
conditions in order to specify Boolean AND logic on the specified conditions:

> db.cellphones.find({os: "android", year: "2018"}).pretty(){
 "_id" : ObjectId("600c63cf32e0e6419cee81af"),
 "year" : "2018",
 "os" : "android",
 "model" : "pixel3",
 "color" : "white",
 "price" : 700
}

Insert a New Item (document)

MongoDB provides the insertOne() function to insert a single document
in a collection. An example of inserting (creating) a new document is as follows:

> db.cellphones.insertOne(
... {year: "2017", os: "bmw", color: "silver",
... km: 28000, price: 39000}
...){
 "acknowledged" : true,
 "insertedId" : ObjectId("600c6bc79445b834692e3b91")
}

Update an Existing Item (document)

MongoDB provides the update() function to update an existing docu-
ment in a collection. For example, the following query specifies the condition
that indicates the documents to be updated, and then passes the updated val-
ues as well as the set keyword:

> db.cellphones.update(
... { os: "bmw" },
... { $set: { os: "ios" }},
... { multi: true }
...)WriteResult({ "nMatched" : 5, "nUpserted" : 0, "nModified" : 5 })

We need to use the multi parameter to update all the documents that
meet the given condition. Otherwise, only one document will be updated.

NoSQL, SQLite, and Python  •  197

Calculate the Average Price for Each Brand

MongoDB provides the aggregate() function to assemble documents
into similar groups. The subsequent query does the following:

1.	 groups the documents based on brands by selecting $os as id
2.	 specifies the aggregation function, which is $avg
3.	 specifies the field to be aggregated
4.	 inserts a single document in a collection

Here is the query that performs the preceding list of steps:

> db.cellphones.aggregate([
... { $group: { _id: "$make", avg_price: { $avg: "$price" }}}
...]){ "_id" : "hyundai", "avg_price" : 36333.333333333336 }
{ "_id" : "ios", "avg_price" : 47400 }
{ "_id" : "android", "avg_price" : 35333.333333333336 }

If you are familiar with Pandas, the syntax is similar to the groupby function.

Calculate the Average Price for Each Brand in 2019

This task is to start with the query in the preceding section and add another
condition that specifies a value of 2019 for the year:

> db.cellphones.aggregate([
... { $match: { year: "2019" }},
... { $group: { _id: "$os", avg_price: { $avg: "$price" }}}
...]){ "_id" : "ios", "avg_price" : 53000 }
{ "_id" : "android", "avg_price" : 42000 }
{ "_id" : "ios", "avg_price" : 41000 }

Import Data with mongoimport

The mongoimport utility is a command line utility that enables you to
import JSON, CSV, or TSV files into a MongoDB database. For example,
you can import the CSV file data.csv into the mytools database with the
following command:

mongoimport —db mytools —file /tmp/data.csv

WHAT IS FUGUE?

Fugue a Python-based library that enables you to invoke SQL-like queries
against Pandas data frames via FugueSQL. Install Fugue with the following
command (specify a different version if you need to do so):

pip3.7 install fugue

Listing 5.1 shows the content of fugue1.py that illustrates how to popu-
late a Pandas data frame and then invoke various SQL commands to retrieve a
subset of the data from the Pandas data frame.

198  •  SQL Pocket Primer

LISTING 5.1: fugue1.py

import pandas as pd
from fugue_sql import fsql

df1 = pd.DataFrame({'fnames': ['john', 'dave', 'sara', 'eddy'],
 'lnames': ['smith','stone','stein','bower'],
 'ages': [30,33,34,35],
 'gender': ['m','m','f','m']})

print("=> data frame:")
print(df1)
print()

Example #1: select users who are older than 33:
query_1 = """
SELECT fnames, lnames, ages, gender FROM df1
WHERE ages > 33
PRINT
"""

display the extracted data:
fsql(query_1).run()

Listing 5.1 starts with import statements and then initializes the Pandas
data frame df1 with a set of data values. The next portion of Listing 5.1 con-
structs a query that retrieves the data values of all users who are older than 33.
Launch the code in Listing 5.1 to see the following output:

collection:
=> data frame:
 fnames lnames ages gender
0 john smith 30 m
1 dave stone 33 m
2 sara stein 34 f
3 eddy bower 35 m

ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
ANTLR runtime and generated code versions disagree: 4.8!=4.9
PandasDataFrame
fnames:str|lnames:str|ages:long|gender:str
----------+----------+---------+----------
sara |stein |34 |f
eddy |bower |35 |m
Total count: 2

WHAT IS COMPASS?

MongoDB Compass is a free GUI tool for MongoDB that enables you to
manage data in a MongoDB database. In addition, you can use this GUI to
visually explore data and execute ad hoc queries. Compass is available for mul-
tiple platforms, such as Mac, Linux, and Windows. The instructions for down-
loading Compass are available online:

NoSQL, SQLite, and Python  •  199

https://docs.mongodb.com/compass/master/install/
After completing the installation, launch Compass and in the “Connect to

Host” page, enter the following information:

Hostname: localhost
Port: 27107
Favorite Name: You Decide

WHAT IS PYMONGO?

PyMongo is a Python distribution for working with MongoDB via Python.
Install PyMongo on your machine with the following command:

pip3 install pymongo==3.11.2

The following website contains thorough documentation for learning how
to use PyMongo:

https://pymongo.readthedocs.io/en/stable/index.html
Listing 5.2 shows the content of pymongo1.py that connects to the

mytools MongoDB database.

LISTING 5.2: pymongo1.py

import pymongo

a client instance:
myclient = MongoClient("localhost",27017)

connect to mytools:
db = myclient['mytools']

coll = db['weather']
print("collection:")
print(coll)

Listing 5.2 starts with an import statement and then initializes the variable
my client as an instance of the MongoClient class. Next, the variable db is
initialized as the database connection to the mytools database. The remaining
code involves the variable coll, which is a reference to the weather collec-
tion, whose contents are then displayed. Launch the code in Listing 5.2 to see
the following output:

collection:
Collection(Database(MongoClient(host=['localhost:27017'],
document_class=dict, tz_aware=False, connect=True),
'mytools'), 'weather')

In addition, PyMongoArrow enables you to load MongoDB result sets in
several ways: as NumPy arrays, as Pandas data frames, or as Apache Arrow
tables. Install PyMongoArrow with this command:

pip3 install pymongoarrow

200  •  SQL Pocket Primer

This concludes the portion of the chapter regarding MongoDB. The next
section returns to MySQL and discusses how to access a MySQL database via
SQLAlchemy and Pandas.

MYSQL, SQLALCHEMY, AND PANDAS

There are several ways to interact with a MySQL database, one of which
is via SQLAlchemy. The Python code samples in subsequent sections rely on
SQLAlchemy (which is briefly described in the next section) and Pandas.

What is SQLAlchemy?

SQLAlchemy is an ORM (Object Relational Mapping), which serves as a
“bridge” between Python code and a database. Install SQLAlchemy with this
command:

pip3 install sqlalchemy

SQLAlchemy handles the task of converting Python function invocations
into the appropriate SQL statements, as well as providing support for cus-
tom SQL statements. In addition, SQLAlchemy supports multiple databases,
including MySQL, Oracle, PostgreSQL, and SQLite.

Read MySQL Data via SQLAlchemy

The previous section showed you how to install SQLAlchemy. Install
Pandas (if you haven’t done so already) with this command:

pip3 install pandas

The Pandas functionality in the code samples involve the intuitively named
read_sql() method and the related read_sql_query() method, both of
which read the contents of a MySQL table.

Listing 5.3 shows the content of read_sql_data.py that reads the con-
tents of the people table.

LISTING 5.3: read_sql_table.py

from sqlalchemy import create_engine
import pymysql
import pandas as pd

engine = create_engine('mysql+pymysql://root:yourpassword@1
27.0.0.1',pool_recycle=3600)
dbConn = engine.connect()
frame = pd.read_sql("select * from mytools.people", dbConn);

pd.set_option('display.expand_frame_repr', False)
print(frame)
dbConn.close()

NoSQL, SQLite, and Python  •  201

Listing 5.3 starts with several import statements that are required to access
a MySQL database. The next portion of code initializes the variable engine
as a reference to MySQL, followed by dbConn, which is a database connec-
tion. Next, the variable frame is initialized with the rows in the people table.
Launch the following command in a command shell:

python3 read_sql_table.py

You will see the following output:

 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

Listing 5.4 shows the content of sql_query.py that reads the contents of
the people table.

LISTING 5.4: sql_query.py

from sqlalchemy import create_engine
import pymysql
import pandas as pd
engine = create_engine('mysql+pymysql://root:yourpassword@1
27.0.0.1',pool_recycle=3600)

query_1 = '''
select * from mytools.people
'''

print("create dataframe from table:")
df_2 = pd.read_sql_query(query_1, engine)

print("dataframe:")
print(df_2)

Listing 5.4 starts with several import statements followed by initializing
the variable engine as a reference to a MySQL instance. Next, the variable
query_1 is defined as a string variable that specifies a SQL statement that
selects all the rows of the people table, followed by the variable df_2 (a data
frame) that returns the result of executing the SQL statement specified in the
variable query_1. The final code snippet displays the contents of the people
table. Launch the following command in a command shell:

python3 sql_query.py

You will see the following output:

 fname lname age gender country
0 john smith 30 m usa

202  •  SQL Pocket Primer

1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

Launch the following Python script in a command shell:

python3 sql_query.py

You will see the following output:

 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
5 eddy bower 35 m spain

EXPORT SQL DATA FROM PANDAS TO EXCEL

Listing 5.5 shows the content of sql_query_excel.py that reads the con-
tents of the people table into a Pandas data frame and then exports the latter
to an Excel file.

LISTING 5.5: sql_query_excel.py

from sqlalchemy import create_engine
import pymysql
import pandas as pd

engine = create_engine('mysql+pymysql://root:yourpassword@1
27.0.0.1',pool_recycle=3600)

query_1 = '''
select * from mytools.people
'''

print("create dataframe from table:")
df_2 = pd.read_sql_query(query_1, engine)

print("Contents of Pandas dataframe:")
print(df_2)

import openpyxl
print("saving dataframe to people.xlsx")
df_2.to_excel('people.xlsx', index=False)

Listing 5.5 contains several import statements followed by the variable
engine that is initialized to an “endpoint” from which a MySQL database can
be accessed. The next code snippet initializes the variable query_1 as a string
that contains a simple SQL SELECT statement.

NoSQL, SQLite, and Python  •  203

Next, the variable df_2 is a Pandas data frame that initialized to the result of
invoking the SQL statement defined in the variable query_1, after which the
contents of df_2 are displayed. The final portion of code in Listing 5.5 saves
the contents of df_2 to an Excel document called people.xlsx. Launch the
following command in a command shell:

python3 sql_query_excel.py

The preceding command generates the following output:

Creating dataframe from table people
Contents of Pandas dataframe:
 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 m france
3 dave stone 33 m italy
4 sara stein 34 f germany
..
73 jane smith 31 f france
74 jack jones 32 m france
75 dave stone 33 m italy
76 sara stein 34 f germany
77 eddy bower 35 m spain

[78 rows x 5 columns]
saving dataframe to people.xlsx

You might need to launch the previous Python script using Python 3.7
instead of Python 3.8 or Python 3.9.

The next section contains Pandas-related functionality that does not involve
any database connectivity. Since the previous portion of this chapter con-
tains Pandas-related functionality, it’s a convenient location for this material.
However, if you prefer, you can skip this section with no loss of continuity, and
proceed to the next section that discusses SQLite.

MYSQL AND CONNECTOR/PYTHON

MySQL provides a connector/Python API as another mechanism for con-
necting to a MySQL database. This section contains some simple Python code
samples that rely on connector/Python to connect to a database and retrieve
rows from a database table.

Before delving into the code samples, keep in mind that MySQL 8 uses
mysql_native_password instead of caching_sha2_password. As a result,
you need to specify a value for auth_plugin (which is not specified in various
online code samples). Here is the error message:

mysql.connector.errors.NotSupportedError: Authentication
plugin 'caching_sha2_password' is not supported

The solution is highlighted in the Python code sample in the next section.

NOTE

204  •  SQL Pocket Primer

Establishing a Database Connection

Listing 5.6 shows the content of mysql_conn1.py that illustrates how to
establish a connector/Python database connection.

LISTING 5.6: mysql_conn1.py

optional for OS X:
import sys
sys.path.append('/usr/local/lib/python3.9/site-packages')

import mysql.connector

cnx = mysql.connector.connect(user='root',
 password='yourpassword',
 host='localhost',
 database='employees',
 auth_plugin='mysql_native_password')
cnx.close()

Listing 5.6 contains an import statement in order to set the appropriate
path for Python 3.9. If the code executes correctly on your system without
these two lines of code, then you can safely delete them.

The next code snippet is an import statement, followed by initializing the
variable cnx as a database connection. Note the snippet shown in bold, which
is required for MySQL 8 to connect to a MySQL database, as described in the
introductory portion of this section. Launch the code in Listing 5.6, and if you
don’t see any error messages, then the code worked correctly.

Reading Data from a Database Table

Listing 5.7 shows the content of mysql_pandas.py that illustrates how to
establish a database connection and retrieve the rows in a database table.

LISTING 5.7: mysql_pandas.py

optional:
import sys
sys.path.append('/usr/local/lib/python3.9/site-packages')

import mysql.connector

mydb = mysql.connector.connect(user='root',
 password='yourpassword',
 host='localhost',
 database='employees',
 auth_plugin='mysql_native_password')

mycursor = mydb.cursor()

select all rows from the employees table:
mycursor.execute('SELECT * FROM employees')

import pandas as pd

NoSQL, SQLite, and Python  •  205

populate a Pandas data frame with the data:
table_rows = mycursor.fetchall()
df = pd.DataFrame(table_rows)

print("data frame:")
print(df)

mydb.close()

Listing 5.7 starts with the same import statement as Listing 5.6 and for
the same purpose. The next code snippet is an import statement, followed by
initializing the variable cnx as a database connection. Note the snippet shown
in bold, which is required for MySQL 8 in order to connect to a MySQL data-
base. Launch the code in Listing 5.7, and if everything worked correctly, you
will see the following output:

=> Contents of data frame:
 0 1 2
0 1000 2000 Developer
1 2000 3000 Project Lead
2 3000 4000 Dev Manager
3 4000 4000 Senior Dev Manager

Creating a Database Table

Listing 5.8 shows the content of create_fun_table.py that illustrates
how to establish a database connection and create a database table.

LISTING 5.8: create_fun_table.py

optional for OS X:
import sys
sys.path.append('/usr/local/lib/python3.9/site-packages')

my_table = (
 "CREATE TABLE 'for_fun' ("
 " 'dept_no' char(4) NOT NULL,"
 " 'dept_name' varchar(40) NOT NULL,"
 " PRIMARY KEY ('dept_no'), UNIQUE KEY 'dept_name'
('dept_name')"
 ") ENGINE=InnoDB")

DB_NAME = 'for_fun_db'

import mysql.connector
cnx = mysql.connector.connect(user='root',
 password='yourpassword',
 host='localhost',
 database='mytools')
cursor = cnx.cursor()

try:
 print("Creating table {}: ".format(my_table), end='')
 cursor.execute(my_table)

206  •  SQL Pocket Primer

except mysql.connector.Error as err:
 if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:
 print("already exists.")
 else:
 print(err.msg)
else:
 print("Table created:",my_table)

cursor.close()

cnx.close()

Listing 5.8 starts by initializing the variable my_table as a string that con-
tains a SQL statement for creating a MySQL table. The next portion of Listing
5.8 initializes the variable cnx as a connection to the mytools database, and
then initializes the variable cursor as a database cursor.

The next portion of Listing 5.8 contains a try/catch block to create the
table for_fun that is specified in the string variable my_table. The except
block catches the connection-related error, and displays an appropriate mes-
sage if the error occurred because the specified table already exist, or for some
other reason.

Now launch the code in Listing 5.8, and if everything worked correctly, you
will see the following output:

Creating table CREATE TABLE 'for_fun' ('dept_no' char(4)
NOT NULL, 'dept_name' varchar(40) NOT NULL, PRIMARY
KEY ('dept_no'), UNIQUE KEY 'dept_name' ('dept_name'))
ENGINE=InnoDB: Table created: CREATE TABLE 'for_fun' (
'dept_no' char(4) NOT NULL, 'dept_name' varchar(40) NOT
NULL, PRIMARY KEY ('dept_no'), UNIQUE KEY 'dept_name'
('dept_name')) ENGINE=InnoDB

Open a command shell, and from the MySQL prompt, enter the following
command:

MySQL [mytools]> desc for_fun;
+-----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+-------+
| dept_no | char(4) | NO | PRI | NULL | |
| dept_name | varchar(40) | NO | UNI | NULL | |
+-----------+-------------+------+-----+---------+-------+
2 rows in set (0.060 sec)

WHAT IS SQLITE?

SQLite is a light weight, portable, and open source RDBMS that is avail-
able on Windows, Linux, and MacOS, as well as Android and iOS. More infor-
mation is available online:

https://www.sqlite.org
https://www.sqlitetutorial.net/sqlite-commands/

NoSQL, SQLite, and Python  •  207

SQLite is ACID-compliant and also implements most SQL standards. Let’s
look at some features of SQLite and the installation process, both of which are
discussed in two subsections.

SQLite Features

SQLite provides several useful features, some of which are listed as follows:

•	doesn’t require a separate server process or system to operate
•	no system administration
•	no external dependencies
•	can operate in a serverless environment.
•	Available in multiple platforms (Unix, Linux, Mac, and Windows)
•	ACID transactions
•	Full support for all features in SQL92

SQLite Installation

Download the distribution for your operating system from the following
site:

https://www.sqlite.org/download.html
The second step is to unzip the downloaded file in a convenient location,

which we’ll assume is the directory $HOME/sqlite3_home.
Note that if you have a MacBook, then the directory that contains the

sqlite3 executable is automatically in the PATH variable. Type the following
command to see if sqlite3 is accessible:

which sqlite3

If the preceding command returns a blank line, then you need to include
the path to the bin directory where sqlite3 is located. For example, if the
preceding directory is $HOME/sqlite3_home/bin, then update the PATH
environment variable as follows:

export PATH=/$HOME/sqlite_home/bin:$PATH

The following sequence of commands shows you how to launch sqlite, open
a database, and display the contents of the employees table (which is created
in the next section). Type all the text that is displayed in bold below:

sqlite3
sqlite> use sqlite3_mytools
sqlite> .open /Users/oswaldcampesato/sqlite3_mytools
sqlite> .tables
employees
sqlite> select * from employees;
1200|10000|BizDev
1100|10000|Sales
1000|10000|Developer
sqlite> .quit

208  •  SQL Pocket Primer

The .open command opens existing databases and creates a new database,
as shown above. The employees table was already created in an IDE, and you
will see how to create that table (and any other table that you want) in the next
section.

Although you can perform SQL operations from the command line, just like
you can with MySQL, it’s probably easier to work with SQLite in an IDE. In
fact, a very robust IDE is SQLiteStudio, which is discussed in the next section.

SQLiteStudio Installation

SQLiteStudio is an open source IDE for SQLite that enables you to per-
form many database operations, such as creating, updating, and dropping
tables and views. Download the distribution for your operating system, and
perform the specified installation steps:

https://sqlitestudio.pl/
https://mac.softpedia.com/get/Developer-Tools/SQLiteStudio.shtml
Figure 5.1 shows the structure of the employees table whose definition is

the same as the employees table in the mytools database in MySQL.

FIGURE 5.1  The employees table.

Figure 5.2 displays a screenshot of three rows in the employees table,
where you can insert a fourth row of data in the top row that is pre-populated
with NULL values.

NoSQL, SQLite, and Python  •  209

FIGURE 5.2  Three rows in the employees table.

DB Browser for SQLite Installation

DB Browser is an open source and visually-oriented tool for SQLite that
that enables you to perform various database-related operations, such as creat-
ing and updating files. Moreover, this tool enables you to manage data through
an interface that resembles a spreadsheet.

Download the distribution for your operating system, and perform the
specified installation steps:

https://www.macupdate.com/app/mac/38584/db-browser-for-sqlite/
download/secure

The following website contains a multitude of URLs that provide details
regarding the features of DB Browser:

https://sqlitebrowser.org

SQLiteDict (optional)

SQLiteDict is an open source tool that is a wrapper around sqlite3, and it’s
available online:

https://pypi.org/project/sqlitedict/
SQLiteDict enables you to persist dictionaries to a file on the file system, as

illustrated by the code in Listing 5.9.

210  •  SQL Pocket Primer

LISTING 5.9: sqlitesavedict1.py

pip3 install sqlitedict

from sqlitedict import SqliteDict

mydict = SqliteDict('./my_db.sqlite', autocommit=True)
mydict['pasta'] = 'pasta'
mydict['pizza'] = 'pizza'

for key, value in mydict.iteritems():
 print("key:",key," value:",value)

dictionary functions work:
print("length:",len(mydict))
mydict.close()

a client instance:
myclient = MongoClient("localhost",27017)

Listing 5.9 contains an import statement followed by the variable mydict
that is initialized as a dictionary that includes the two strings pasta and pizza.
The next code snippet contains a loop that displays the key/value pairs of
mydict, followed by the length of the mydict dictionary. The next close snip-
pet closes the dictionary and then launches a MongoDB client at the default
port. Launch the code in Listing 5.9 to see the following output:

key: pasta value: pasta
key: pizza value: pizza
number of items: 2

As you can see, Listing 5.9 shows you how to save key/value pairs, and
Listing 5.10 illustrates how to read the contents of the file saved in Listing 5.9.

LISTING 5.10: sqlitereaddict1.py

pip3 install sqlitedict

read the contents of my_db.sqlite
and note no autocommit=True
with SqliteDict('./my_db.sqlite') as mydict:
 print("old:", mydict['pasta'])
 mydict['pasta'] = u"more pasta"
 print("new:", mydict['pasta'])
 mydict['pizza'] = range(10)
 mydict.commit()
 # this is not persisted to disk:
 mydict['dish'] = u"deep dish"

open the same file again:
with SqliteDict('./my_db.sqlite') as mydict:
 print("pasta:",mydict['pasta'])
 # this line will cause an error:
 #print("dish value:",mydict['dish'])

NoSQL, SQLite, and Python  •  211

Listing 5.10 contains a block of code that reads the existing value of past
from mydict, updates its value, and then saves its new value. The final code
block in Listing 5.10 reads the stored contents and displays the key/value pairs.
Now launch the code in Listing 5.10 to see the following output:

old: pasta
new: more pasta
pasta: more pasta

Check the online documentation for information regarding other function-
ality that is available through sqlitedict.

SUMMARY

This chapter introduced you to non-relational databases and some of
their advantages. You learned about NoSQL and a NoSQL database called
MongoDB. You saw how to create a database in MongoDB, how to create a
collection, and how to populate the collection with documents. You also saw
how to query data from a MongoDB collection and how to delete a document
from a collection.

Next, you learned about Compass (a GUI tool for MongoDB) and PyMongo,
which is a Python distribution for working with MongoDB. You also learned
about DynamoDB, which is a NoSQL database from Amazon. Then you saw
how to read MySQL data into a Pandas data frame and then save the data
frame as an Excel spreadsheet.

In addition, you learned about SQLite, which is a command line tool for
managing databases that is available on mobile devices. Then you learned
about related tools, such as SQLiteStudio (an IDE for sqlite), DB Browser,
and SQLiteDict.

CHAPTER 6
MISCELLANEOUS TOPICS

This chapter contains an overview of a highly eclectic mixture of SQL
and RDBMS topics, such as normalization, schemas, performance tun-
ing, and third-party tools such as MySQL Workbench for managing

databases via a GUI interface. Although numerous topics in this chapter are
relevant to a DBA, it’s still worthwhile for you to be acquainted with these
topics.

You can treat sections in this chapter as optional if you do not have an
immediate need to acquire the information provided in those sections. Your
time will obviously be better spent focusing on the portions of this chapter that
are directly relevant to you.

The first section discusses how to manage database users: specifically, how
to create users and how to drop users. Next, you will learn about the concept
of roles in MySQL, followed by details about creating roles, granting privi-
leges, revoking roles, and dropping roles. This section also contains informa-
tion about stored procedures, stored functions, and SQL triggers.

The second section continues the explanation of normalization that was
introduced briefly in Chapter 1. You will learn about the rules for the first
three normal forms regarding tables in RDBMSs, which is most likely suffi-
cient for your needs because the third normal form is sufficient for the major-
ity of applications. You will also learn about denormalization, and why it can
improve performance. This section also introduces schemas and transactions,
which involve the keywords COMMIT, ROLLBACK, and SAVEPOINT. You will
then learn about MySQL Workbench and some of its rich set of features, such
as reverse engineering a database schema. In fact, this IDE can easily manage
the details of exporting databases, such as the mytools database, as well as
importing CSV files into database tables.

The third section introduces you to aspects of database optimization, per-
formance tuning considerations, and SQL query optimization. You will also

214  •  SQL Pocket Primer

learn about table fragmentation and table partitioning. In addition, you will
learn about EXPLAIN plans and how they can be useful to you.

The fourth section introduces you to scaling an RDBMS, which can involve
sharding and federation. This section also discusses MySQL caching and how
it can be disabled. In addition, you will learn about the MySQL engines that
are available.

The remaining portion of this chapter is an eclectic mix of topics: distrib-
uted databases, the CAP theorem, MySQL command line utilities, database
backups and upgrades, character sets, regular expressions, and recursion in
MySQL.

MANAGING USERS

MySQL enables you to define users with various roles (discussed later)
that specify the privileges users have with respect to a database and its tables.
There are many options for creating users, and this section describes a few
of those options. If you need additional information, you can read the online
documentation.

Listing Current Users

If you want to view the currently defined users in MySQL, the following
SQL statement displays a list of users in a MySQL instance:

mysql>
SELECT USER
FROM mysql.user;
+------------------+
| user |
+------------------+
| mysql.infoschema |
| mysql.session |
| mysql.sys |
| root |
+------------------+
4 rows in set (0.000 sec)

Creating and Altering MySQL Users

The following SQL statements create user oswald as well as user mary in
a MySQL instance:

mysql>CREATE USER 'oswald'@'localhost' COMMENT 'Account for Oswald';
Query OK, 0 rows affected (0.047 sec)

mysql>CREATE USER 'mary'@'localhost' COMMENT 'Account for Mary';
Query OK, 0 rows affected (0.047 sec)

mysql> ALTER USER 'mary'@'localhost'
ATTRIBUTE '{"fname":"Mary", "lname":"Smith"}';
Query OK, 0 rows affected (0.14 sec)

Miscellaneous Topics  •  215

mysql> ALTER USER 'mary'@'localhost'
ATTRIBUTE '{"email":"msmith@example.com"}';
Query OK, 0 rows affected (0.12 sec)

Now let’s confirm the details of the user mary by launching the following
SQL statement:

SELECT USER,
ATTRIBUTE->>"$.fname" AS 'First Name',
ATTRIBUTE->>"$.lname" AS 'Last Name',
ATTRIBUTE->>"$.email" AS 'Email',
ATTRIBUTE->>"$.comment" AS 'Comment'
FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
WHERE USER='mary'
AND HOST='localhost';
+------+------------+-----------+--------------------+------------------+
| USER | First Name | Last Name | Email | Comment |
+------+------------+-----------+--------------------+------------------+
| mary | Mary | Smith | msmith@example.com | Account for Mary |
+------+------------+-----------+--------------------+------------------+
1 row in set (0.002 sec)

The following SQL statement enables you to view more detailed informa-
tion regarding the current MySQL users:

SELECT user, host, account_locked, password_expired
FROM mysql.user;
+------------------+-----------+----------------+------------------+
| user | host | account_locked | password_expired |
+------------------+-----------+----------------+------------------+
mary	localhost	N	N
mysql.infoschema	localhost	Y	N
mysql.session	localhost	Y	N
mysql.sys	localhost	Y	N
oswald	localhost	N	N
root	localhost	N	N
+------------------+-----------+----------------+------------------+
6 rows in set (0.000 sec)

The following SQL statement displays a list of currently logged in users:

SELECT user, host, db, command
FROM information_schema.processlist;
+-----------------+-----------+---------+---------+
| user | host | db | command |
+-----------------+-----------+---------+---------+
| root | localhost | mytools | Query |
| event_scheduler | localhost | NULL | Daemon |
+-----------------+-----------+---------+---------+
2 rows in set (0.006 sec)

Dropping MySQL Users

Dropping a MySQL user is illustrated in the following SQL statements that
create the user pasta and then drop the user pasta:

MySQL [(none)]> create user 'pasta'@'localhost';
Query OK, 0 rows affected (0.002 sec)

216  •  SQL Pocket Primer

MySQL [(none)]> drop user pasta;
ERROR 1396 (HY000): Operation DROP USER failed for 'pasta'@'%'
MySQL [(none)]> drop user pasta@localhost;
Query OK, 0 rows affected (0.004 sec)

At this point you know how to list users, create users, alter users, and drop
users in MySQL. Consider this question: how do you assign different privileges
to a large set of users in an efficient manner that’s also easily managed? The
answer involves the concept of roles, which is the topic of the next section.

WHAT ARE ROLES?

Roles are named collections of privileges that can be granted to user
accounts. Each role can have a different set of privileges (specified by you) in
order to control the access rights that are granted to different users. The fol-
lowing operations can be performed with roles and users:

•	create and drop roles
•	grant privileges to roles
•	revoke privileges from roles
•	grant roles to users
•	revoke roles from users

For example, users of a Web application typically have fewer access privi-
leges than application developers, who in turn generally have full access (i.e.,
read and write) to the tables in an underlying database. Assigning different
sets of privileges to these two groups of users is simple: create a user role and
a developer role with appropriate privileges and then grant the correct role to
each type of user.

In fact, you can assign multiple roles to a given user, which enables a more
fine-grained level of control. If need be, you can revoke one or more roles from
users whenever it’s necessary to do so.

Create Roles and Grant Privileges

This section contains simple examples of creating roles and granting privi-
leges. Let’s start by creating the role developers with the following SQL
statement:

CREATE ROLE developers;

Grant the role developers to specific users as follows:

GRANT developers to Sara;
GRANT developers to Dave;

Grant INSERT privilege for table customers to the role developers:

GRANT INSERT ON CUSTOMER TO developers;

Miscellaneous Topics  •  217

Grant SELECT privilege for table customers to the role developers:

GRANT SELECT ON CUSTOMER TO developers;

Grant SELECT privilege on a view to the role developers:

CREATE VIEW v_customers AS
SELECT last_name, first_name FROM customers;
GRANT SELECT ON v_customers TO developers;

You can also grant DELETE or UPDATE (or both) to a role. You can also cre-
ate multiple roles with a single statement, as shown here:

CREATE ROLE 'all_privs', 'read_privs', 'write_privs';

Next, assign all privileges on all the tables and views in the mytools data-
base to the all_privs role with this GRANT statement:

GRANT ALL ON mytools.* TO 'all_privs';

Assign SELECT privilege on all the tables and views in the mytools data-
base to the app_read role:

GRANT SELECT ON mytools.* TO 'app_read';

Next, assign INSERT, UPDATE, and DELETE privileges and exclude SELECT
privileges on all the tables and views in the mytools database to the appl_
write role:

GRANT INSERT, UPDATE, DELETE ON mytools.* TO 'appl_write';

MySQL [mytools]> select current_role();
+----------------+
| current_role() |
+----------------+
| NONE |
+----------------+
1 row in set (0.002 sec)

MySQL [mytools]> select user();
+----------------+
| user() |
+----------------+
| root@localhost |
+----------------+
1 row in set (0.001 sec)

MySQL [mytools]> select user(), current_date();
+----------------+----------------+
| user() | current_date() |
+----------------+----------------+
| root@localhost | 2021-06-17 |
+----------------+----------------+
1 row in set (0.001 sec)

218  •  SQL Pocket Primer

It’s also possible to grant a role the ability to grant privileges to other roles,
as shown here:

GRANT DELETE ON customers TO role-name WITH GRANT OPTION;

Revoke Roles and Drop Roles

Specify DROP ROLE to drop roles, and those roles will no longer be available
to any users that were assigned those roles:

DROP ROLE 'app_read', 'app_write';

MySQL [mytools]> select current_role();
+----------------+
| current_role() |
+----------------+
| NONE |
+----------------+
1 row in set (0.002 sec)

mysql> SHOW GRANTS FOR 'app_write';
+---------------------------------------+
| Grants for app_write@% |
+---------------------------------------+
| GRANT USAGE ON *.* TO 'app_write'@'%' |
+---------------------------------------+

WHAT IS A USER-DEFINED FUNCTION?

User-defined functions in SQL are similar to functions in any other pro-
gramming language that accept parameters, perform complex calculations,
and return a value. They are written to use the logic repetitively whenever
required. There are several types of SQL user-defined functions:

•	Scalar Function: a function that returns a single scalar value
•	Table Valued Functions: a table-valued function that returns a table as

output
•	Inline: returns a table data type based on one SELECT statement
•	Multi-statement: returns a tabular result-set but (unlike inline) can in-

clude multiple SELECT statements

WHAT IS A STORED PROCEDURE?

Stored procedures are subroutines for managing data in RDBMSs, and
they are stored in the database data dictionary. Some of the features of stored
procedures are as follows:

•	they can only be invoked in the database
•	they prevent users from accessing data directly
•	they provide additional security

Miscellaneous Topics  •  219

•	they support imperative programming
•	users are granted access to stored procedures
•	access to stored procedures can be revoked

There are several important advantages to using MySQL stored procedures:

•	Faster execution
•	Greater Security
•	Improved performance
•	Portability
•	Reusability/transparency

However, there are also some disadvantages to using MySQL stored
procedures:

•	Difficult to debug
•	Increased maintenance complexity
•	Increased memory consumption
•	Unsuitable for complex business logic

Experiment with stored procedures using best practices, and you will be in
a better position to assess how well they meet your needs and also the level of
effort required to maintain or enhance them.

IN and OUT Parameters in Stored Procedures

An IN parameter passes a value into a procedure, and any changes that the
procedure makes to IN parameters are not visible to the calling program. By
contrast, an OUT parameter passes a value from the procedure back to the call-
ing program. Finally, an INOUT parameter has these properties:

•	It’s initialized by the calling program.
•	It can be modified by the procedure.
•	Any change in the procedure is visible to the calling program.

A simplified and more concrete syntax for stored procedures is shown here:

Delimiter //
Create Procedure myprocedure()
BEGIN
 Select column_name from my_table;
END//

DELIMITER ;
Call myprocedure();

Now let’s proceed to the next section to learn how to create a stored pro-
cedure in MySQL.

220  •  SQL Pocket Primer

A Simple Stored Procedure

Listing 6.1 shows the contents of stored1.sql that illustrates how to
define a stored procedure for selecting the rows in the table user.

LISTING 6.1: stored1.sql

use mytools;
\! echo '=> Rows from user via SQL Statement:';

SELECT * FROM user;

DROP PROCEDURE IF EXISTS allrows;

-- stored procedure to select rows
Delimiter //
Create Procedure allrows()
BEGIN
 SELECT * FROM user;
END//

DELIMITER ;

\! echo '=> Rows from user via Stored Procedure:';
Call allrows();

Listing 6.1 starts by specifying the mytools database, prints a comment
on the screen, and then executes a SQL statement displays the contents of the
user table. The next code snippet drops the allrows procedure (if it exists),
and then defines the same procedure whose code block simply displays the
contents of the table user.

This admittedly simple procedure is sufficient for confirming that the code
does return the correct set of rows. The last portion of Listing 6.1 invokes the
stored procedure. Navigate to the SQL prompt and launch the SQL script in
Listing 6.1 with the following command:

source stored1.sql;

The generated output is shown here:

Database changed
=> Rows from user via SQL Statement:
+---------+--------------------+
| user_id | user_title |
+---------+--------------------+
1000	Developer
2000	Project Lead
3000	Dev Manager
4000	Senior Dev Manager
+---------+--------------------+
4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.002 sec)
Query OK, 0 rows affected (0.001 sec)

Miscellaneous Topics  •  221

=> Rows from user via Stored Procedure:
+---------+--------------------+
| user_id | user_title |
+---------+--------------------+
1000	Developer
2000	Project Lead
3000	Dev Manager
4000	Senior Dev Manager
+---------+--------------------+
4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.000 sec)

As you can see, the output produced by the SQL statement and the stored
procedure is the same.

Listing 6.2 shows the content of double_number.sql that illustrates
how to define a stored procedure that doubles the integer-valued input
argument.

LISTING 6.2: double_number.sql

use mytools;
DROP PROCEDURE IF EXISTS double_number;

DELIMITER //
CREATE PROCEDURE double_number(IN N INT, INOUT result INT)
BEGIN
 SET result := N * 2;
END //

DELIMITER ;
SET @result=0;
Call double_number(10,@result);
SELECT @result;
Call double_number(17,@result);
SELECT @result;

Listing 6.2 starts by specifying the mytools database, prints a comment
on the screen, and then drops the double_number procedure (if it exists).
The next portion of Listing 6.2 defines the same procedure whose code block
doubles the value the input parameter N. The last portion of Listing 6.2 invokes
the procedure with the value 10 for N. Navigate to the SQL prompt and launch
the SQL script in Listing 6.2 with the following command:

MySQL [mytools]> source double_number.sql;

The generated output is shown here:

Database changed
Query OK, 0 rows affected (0.004 sec)
Query OK, 0 rows affected (0.003 sec)
Query OK, 0 rows affected (0.000 sec)
Query OK, 0 rows affected (0.000 sec)

222  •  SQL Pocket Primer

+---------+
| @result |
+---------+
| 20 |
+---------+
1 row in set (0.000 sec)

Query OK, 0 rows affected (0.000 sec)

+---------+
| @result |
+---------+
| 34 |
+---------+
1 row in set (0.000 sec)

WHAT IS A STORED FUNCTION?

Stored functions are similar to stored procedures: the former is invoked
with a function call, whereas the latter is invoked via a CALL statement. In
addition, you can replace an argument of a SQL statement with a stored func-
tion. The term stored routines refers to stored procedures and stored func-
tions. Some of the features of stored functions are

•	They can only be invoked in the database.
•	They prevent users from accessing data directly.

A Simple Stored Function

Listing 6.3 shows the content of stored_function1.sql that illustrates
how to define and invoke a stored function in MySQL.

LISTING 6.3: stored_function1.sql

use mytools;

DROP FUNCTION IF EXISTS olympic_tier;
DELIMITER //

CREATE FUNCTION olympic_tier(medals INT)
RETURNS VARCHAR(20)
DETERMINISTIC
BEGIN
 DECLARE medal_level VARCHAR(20);

 IF medals >= 30 THEN
 SET medal_level = 'TIER 1';
 ELSEIF medals >= 20 THEN
 SET medal_level = 'TIER 2';
 ELSE
 SET medal_level = 'TIER 3';
 END IF;
 -- return the customer level

Miscellaneous Topics  •  223

 RETURN (medal_level);
END //
DELIMITER ;

SELECT country, count, olympic_tier(count)
FROM olympics
ORDER BY country;

Listing 6.3 starts by specifying the mytools database, then drops the func-
tion (if it already exists), and then defines the contents of the function. This
function returns TIER 1, TIER 2, or TIER 3, depending on whether the
number of medals (an input parameter) is at least 30, at least 30, or at most 19,
respectively.

The final portion of Listing 6.3 contains a SQL statement that displays the
country, count, and the tier of the country via the stored function olympic_
tier. Launch the code in Listing 6.3 from the MySQL prompt as follows:

MySQL [mytools]> source stored_function1.sql;

The preceding command will display the following output:

Database changed
Query OK, 0 rows affected (0.052 sec)
Query OK, 0 rows affected (0.002 sec)

+---------+-------+---------------------+
| country | count | olympic_tier(count) |
+---------+-------+---------------------+
CHINA	38	TIER 1
CHINA	32	TIER 1
CHINA	18	TIER 3
JAPAN	27	TIER 2
JAPAN	14	TIER 3
JAPAN	17	TIER 3
ROC	20	TIER 2
ROC	28	TIER 2
ROC	23	TIER 2
UK	22	TIER 2
UK	21	TIER 2
UK	22	TIER 2
USA	39	TIER 1
USA	41	TIER 1
USA	33	TIER 1
+---------+-------+---------------------+
15 rows in set (0.001 sec)

WHAT ARE SQL TRIGGERS?

A trigger is a database object that executes when a particular event occurs
for a permanent table. If need be, you can define multiple triggers, even with
the same event, on the same table. Such triggers are executed in the order in
which the triggers were defined.

224  •  SQL Pocket Primer

However, you can change the order of execution via the FOLLOWS and
PRECEDES keywords. For example, if trigger A follows trigger B, then A is exe-
cuted after B; if A precedes B, then A is executed before B. You can define a
maximum of six triggers on a MySQL table, which are listed below as pairs of
before/after triggers:

•	BEFORE INSERT
•	AFTER INSERT
•	BEFORE UPDATE
•	AFTER UPDATE
•	BEFORE DELETE
•	AFTER DELETE

A Simple MySQL Trigger

Listing 6.4 shows the content of trigger1.sql that illustrates how to
define a trigger that updates the value of an attribute in the table average_
val after one or more rows are inserted into the account table.

LISTING 6.4: trigger1.sql

use mytools;

-- 1) drop, recreate, and populate table account:
DROP TABLE IF EXISTS account;
CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
INSERT INTO account VALUES(1000,1.00);
INSERT INTO account VALUES(1000,2.00);
INSERT INTO account VALUES(1000,3.00);
SELECT * FROM account;

-- 2) drop, recreate, and populate table average_val:
DROP TABLE IF EXISTS average_val;
CREATE TABLE average_val (average double);
INSERT INTO average_val VALUES(1.00);
SELECT * FROM average_val;

-- 3) drop and redefine trigger inserted_sum:
DROP TRIGGER IF EXISTS inserted_sum;
CREATE TRIGGER update_table_avg AFTER INSERT ON account
FOR EACH ROW SET @sum = @sum + NEW.amount;
UPDATE average_val SET average = (SELECT AVG(amount) FROM account);
SELECT * FROM average_val;

Listing 6.4 contains three sections, each of which starts with a comment
statement that describes its purpose. For example, the first section drops, rec-
reates, and populates the table account, and the second section does so for
the table average_val.

The third section executes the trigger update_table_avg that updates
the value of the average attribute in the table average_val. Launch the
SQL script in Listing 6.4 with the following command:

source trigger1.sql;

Miscellaneous Topics  •  225

The generated output from the SQL statements is shown here:

+----------+--------+
| acct_num | amount |
+----------+--------+
1000	1.00
1000	2.00
1000	3.00
+----------+--------+
3 rows in set (0.000 sec)

+---------+
| average |
+---------+
| 1 |
+---------+
1 row in set (0.000 sec)

+---------+
| average |
+---------+
| 2 |
+---------+
1 row in set (0.000 sec)

MYSQL ENGINES

The SQL scripts in this book that create MySQL tables do not specify a
database engine. However, MySQL supports several database engines, and the
two most popular engines are InnoDB and MyISAM. If you want to see the
list of engines in your instance of MySQL, enter the following SQL statement
from the SQL prompt:

MySQL [mytools]> SHOW ENGINES;

The following SQL statement displays the tables in the mytools database
and the MySQL engine for each table:

MySQL [mytools]>
SELECT TABLE_NAME, ENGINE
FROM information_schema.TABLES
WHERE TABLE_SCHEMA = 'mytools';
+--------------------+--------+
| TABLE_NAME | ENGINE |
+--------------------+--------+
account	InnoDB
courses	InnoDB
curr_exchange_rate	InnoDB
currencies	InnoDB
cust_history	InnoDB
customers	InnoDB
employees	InnoDB
FRIENDS	InnoDB

226  •  SQL Pocket Primer

FRIENDS2	InnoDB
item_desc	InnoDB
japn1	InnoDB
japn2	InnoDB
japn3	MyISAM
japn_emps	InnoDB
json1	InnoDB
line_items	InnoDB
new_items	InnoDB
people	InnoDB
people2	InnoDB
purchase_orders	InnoDB
sample	InnoDB
schedule	InnoDB
students	InnoDB
temp_cust2	InnoDB
user	InnoDB
user2	InnoDB
user3	InnoDB
weather	InnoDB
weather2	InnoDB
+--------------------+--------+
29 rows in set (0.002 sec)

Notice that the table japn3 uses the MyISAM engine, whereas the other
tables in the mytools database use the InnoDB engine.

More information regarding MySQL database engines is available online:
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html

WHAT IS NORMALIZATION?

Normalization in an RDBMS refers to a methodology for defining the
structure of tables in a way that reduces data redundancy and helps to maintain
data integrity. The way to achieve normalization involves subdividing a given
table into smaller tables when the given table contains multiple copies of the
same data.

For example, the customers table contains the information pertaining
to each customer, and each customer is assigned a unique cust_id value.
Whenever a customer makes a new purchase, a new row is inserted into the
purchase_orders table that contains the cust_id value of the customer
that made the purchase.

The personal details of each customer appear only once in the
customers table instead of repeating the same information in every
purchase that is made by each customer. As a result, any updates to a
customer’s personal details are made in only one location, which helps to
maintain data integrity.

Miscellaneous Topics  •  227

Edgar Codd invented the relational model in RDBMSs, which consists of
the following normal forms that are increasingly restrictive from first to sixth
normal form:

•	1NF (First Normal Form)
•	2NF (Second Normal Form)
•	3NF (Third Normal Form)
•	BCNF (Boyce-Codd Normal Form)
•	4NF (Fourth Normal Form)
•	5NF (Fifth Normal Form)
•	6NF (Sixth Normal Form)

Second normal form (2NF) is more restrictive than first normal form
(1NF), and 3NF is more restrictive than 2NF, and so forth. In general, 3NF is
suitable for applications that store data in an RDBMS. The first normal form is
the minimum requirement: the attributes consist of atomic elements instead of
sets of elements. For example, the first name and last name values are stored in
different attributes. More precisely, first normal form enforces these criteria:

•	no repeating groups in any database table
•	a separate table for any set of related data
•	a primary key for each set of related data

In general, the goal for applications that have an RDBMS data store is to
achieve third normal form. In addition, the remaining normal forms (fourth,
fifth, and sixth) are more advanced and they can be useful if you are an applica-
tion DBA (but not for beginners in SQL).

What is Denormalization?

Denormalization refers to converting a normalized table (or tables) to
denormalized form. Despite the importance of database normalization, some-
times you can improve the performance of an application by denormalizing a
database tables. However, determining which table (or tables) to denormalize
is an advanced topic, typically performed by a senior application DBA.

WHAT ARE SCHEMAS?

The meaning of the word schema depends on the context in which it’s used.
For example, XML includes XML schemas, which are XML documents that
describe the structure of other XML documents that “conform” to the given
XML schema.

However, in this section (and elsewhere in this book), a schema refers to an
RDBMS schema for databases. There are three types of schemas in RDBMSs,
from abstract to concrete, as shown in the following list:

228  •  SQL Pocket Primer

•	conceptual schema
•	logical schema
•	physical schema

A conceptual schema is the most abstract of the three types of schema,
and it consists of high-level data constructs that involve the semantics of an
organization.

A logical schema includes entities such as tables, along with their attributes
and relationships between entities. A logical schema is also called a logical data
model, which is a data model of a specific problem. Note that a logical schema
does not contain any hardware-specific restrictions.

A physical schema includes all the objects that have been defined for a
database: tables, columns, keys, data types, validation rules, database triggers,
stored procedures, and constraints. A physical schema is a SQL script that con-
tains the complete definition of every entity (and relationships) in a database.

A physical schema is useful when you want to export a database from one
environment and recreate that database in a different environment. For exam-
ple, the SQL file mytools.sql that is available for this chapter is a physical
design of the mytools database.

MYSQL WORKBENCH

The Community Edition Workbench is a free GUI-based tool that enables
you to create new databases and manage existing databases in a GUI envi-
ronment. The Workbench supports many other features, such as performance
monitoring, reverse generating schemas for databases, database backups, and
database exports. The Workbench can be found online:

https://www.mysql.com/products/workbench/
Note that the version of Workbench that you download must be compatible

with the version of the operating system on your machine. An earlier version of
Workbench can be found online:

https://downloads.mysql.com/archives/workbench/
The preceding website displays the version of the operating system that is

compatible for a given version of Workbench.

Exporting a Schema in Workbench

This section shows you how to export the mytools database. Before we
export a database using MySQL Workbench, let’s see how to do so from the
command line with the mysqldump utility:

mysqldump -u root -p -R mytools > mytools.sql

However, you might encounter the following error message:

mysqldump: unknown variable 'local_infile=1'

Miscellaneous Topics  •  229

You can search online and find many suggestions for resolving this error.
However, if none of those solutions solves this issue for your system, use
MySQL Workbench to export the mytools database.

The first step is to launch MySQL Workbench and then navigate to the
“Data Export” tab. For your convenience, Figure 6.2 shows a screenshot of the
screen where you can export the mytools database from MySQL Workbench.

FIGURE 6.1  Exporting the mytools database.

Next, notice two labeled radio buttons near the bottom of Figure 6.1, along
with editable text fields where you can specify the export directory:

Export to Dump Project Folder
Export to Self-Contained File

If you select the first option that is listed above, then MySQL Workbench
will generate a separate SQL file for every table in the database. If you select
the second option that is listed above, then MySQL Workbench will generate
a single SQL file that contains SQL statements for every table in the database.

If you wish, you can choose the first option and then the second option (the
order is irrelevant) to generate a single SQL file with all the table definitions as
well as a set of SQL files that contain a single table definition.

Creating a Schema in Workbench

MySQL Workbench can be used to create a schema for the mytools data-
base in MySQL Workbench. In fact, you can also reverse engineer a database
schema from an existing database.

Figure 6.2 shows a screenshot of some of the tables in the mytools data-
base that are visible in MySQL Workbench.

230  •  SQL Pocket Primer

FIGURE 6.2  A visual display of tables in the mytools database.

ERM and Tools

ERM is an acronym for Entity Relationship Modeling, which you can think
of as a diagram that contains entities (such as tables) and relationships between
tables (one-to-many, many-to-many, and so forth).

Entities and relationships are somewhat analogous to nouns and verbs,
respectively. For example, the tables customers, purchase_orders, line_
items, and item_desc are entities. As you learned in Chapter 1, there is a
one-to-many relationship between the following pairs of tables:

customers and purchase_orders
purchase_orders and line_items

An Entity Relationship Diagram (ERD) is a standard way to display the
logical structure of RDBMS tables in a visual manner. Various tools are avail-
able for creating ERDs, including the following tool for Macbooks:

https://www.conceptdraw.com/How-To-Guide/erd-entity-relationship-
diagram-software-for-mac

A list of additional ERD tools, along with their description and pricing
options (many are free) is available online:

https://chartio.com/learn/databases/7-free-database-diagramming-tools-
for-busy-data-folks/

WHAT IS A TRANSACTION?

In the database world, a transaction is an atomic unit of work, which
means that a transaction only succeeds when its “components” succeed.
Otherwise, the transaction fails. Recall the example in Chapter 1 of a transac-
tion that transfers money from a savings account to a checking account: the

Miscellaneous Topics  •  231

transaction is completed when both table-related updates are successful. The
SET TRANSACTION statement enables you to specify a particular lock on tables
or rows in a table, which is called the isolation level.

You can also set a READ lock or a WRITE lock on tables or sets of rows in a
table, each of which imposes restrictions on what other users can do when a
lock has been set on an object. Different RDBMSs have their own mechanism
for locking database objects.

The COMMIT and ROLLBACK Statements

Invoke the COMMIT keyword when a transaction has successfully completed
and you want to persist the result of that transaction. By contrast, the ROLLBACK
keyword restores the database to the state before you performed the most
recent transaction. If an error occurs during a COMMIT statement, it might be
necessary to roll back the transaction, re-execute the SQL statement and then
issue the COMMIT statement. If an error occurs during a ROLLBACK statement,
you can re-issue the ROLLBACK statement after the system has been restored.

The SAVEPOINT Statement

The ROLLBACK statement cancels an entire transaction. However, more
recent versions of SQL support the SAVEPOINT statement that enables you to
roll back a transaction to a specified save point in the given transaction. Hence,
you can perform partial rollbacks as well as full roll backs in SQL. In addition,
you can specify multiple SAVEPOINTs in a SQL transaction. Here is the syntax
for a SAVEPOINT statement:

SAVEPOINT savepoint_name;

Another variant involves specifying the ROLLBACK statement, as shown
here:

ROLLBACK TO SAVEPOINT savepoint_name;

The SAVEPOINT statement can be useful in multi-step transactions where
the execution of a sub-task produces unfavorable results. You can roll back to
a specified SAVEPOINT and resume the execution of another portion of the
transaction.

In addition, a transaction completes with a COMMIT if it’s successful; oth-
erwise, it completes with a ROLLBACK statement. Some databases (such as
ORACLE) also support nested transactions, which means that an on-going
transaction can execute a second transaction before the initial transaction is
completed.

Furthermore, you can release a particular SAVEPOINT via the RELEASE
SAVEPOINT statement, which removes the specified SAVEPOINT from the set
of SAVEPOINTs of the current transaction. Moreover, no commit or rollback
occurs, an error occurs if the specified SAVEPOINT does not exist. In summary,
MySQL supports the following transaction-related keywords:

232  •  SQL Pocket Primer

•	START TRANSACTION statements (BEGIN or BEGIN WORK are aliases)
•	COMMIT (commit the current transaction)
•	ROLLBACK (roll back the current transaction)
•	SET autocommit (disable or enable the auto-commit for the current

transaction)

The default action is for MySQL to automatically commit changes to a
database.

DATABASE OPTIMIZATION AND PERFORMANCE

Database optimization is an important task that involves many factors, such
as manually modifying SQL statements, redefining database tables, creating
new indexes, and tuning built-in database parameters.

Optimization strategies changed from older rule-based optimization to
cost-based optimization, where the latter involves collecting statistics regard-
ing the frequency of accessing specific tables.

If you are motivated to learn about performance tuning (whether by choice
or as part of your job), some useful tips for database tuning are available online:

https://www.tecmint.com/mysql-mariadb-performance-tuning-and-
optimization/

Perform an online search and you will find many blog posts and links for
open source (as well as commercial) tools for performance tuning.

Performance Tuning Considerations

Performance tuning can involve deciding whether to keep tables in RAM
(often called “pinning” a table). Candidate tables are tables that are static (i.e.,
they change rarely or never) and are frequently accessed. One candidate is the
item_desc table because this table is unaffected by any customer transac-
tions. Over a period of time, the contents of an item_desc table will undergo
fewer updates and will have a decreasing number of new insertions. Hence, it’s
worth investigating if a significant performance improvement in an application
will occur if this table is pinned in RAM.

Next, collect two sets of execution times for SQL queries that involve the
item_desc table: one set is for the item_desc table “pinned” in memory, and
the other set is for the item_desc table that is located on disk. Analyze those
results to see whether it’s worthwhile to pin the item_desc table. Repeat the
preceding process for any other tables that are frequently accessed and are
rarely updated.

Given the emphasis on normalization in this book, it might seem ironic
or counter-intuitive that sometimes denormalizing a table can improve per-
formance. Determining whether it’s worthwhile to do so typically involves an
experienced DBA who can make an assessment and suggest feasible options.

Another scenario pertains to smaller tables: if they are frequently accessed,
consider “pinning” their contents in memory, which is obviously faster than

Miscellaneous Topics  •  233

searching through a table that is in secondary storage. Indexes on tables are
easy to create, but knowing which indexes will be most effective is not neces-
sarily obvious in every case.

Perform an online search and you will find an assortment of blog posts and
links for open source (as well as commercial) tools for performance tuning.

SQL QUERY OPTIMIZATION

This section provides a high-level view of query optimization. Database
optimization often refers to making changes to SQL statements so that they
will execute faster than the original SQL statements.

The following list contains various techniques for improving SQL query
performance, some of which are briefly discussed in this section:

•	Define a suitable index (or indexes) on tables;
•	Specify index hints (ex: USE INDEX)
•	Analyze the JOIN order
•	Simplify multi-level queries with multiple subqueries
•	Execute and analyze an EXPLAIN PLAN

•	execute ANALYZE TABLE
•	analyze SHOW TABLE STATUS
•	Denormalize a table (requires significant expertise)

Analyzing SQL Queries for Their Performance

Instead of using a trial-and-error approach, take advantage of IDEs that
provide a list of the most time-consuming SQL queries in your application.
IDEs display SQL statements in descending order of execution time, starting
from the most computationally expensive query to the least expensive query.

Useful tools for monitoring database performance are as follows:
https://www.dnsstuff.com/mysql-optimize-database
https://www.solarwinds.com/database-performance-analyzer/use-cases/

mysql-optimization
https://www.solarwinds.com/database-performance-monitor/integrations/

mysql-monitoring

Performance Tuning Tools

This section contains an assortment of links for performance tuning tools,
from command line tools to GUI tools, some of which are free and others
which have a free trial version.

This website provides performance tuning tips for databases:
https://haydenjames.io/mysql-performance-tuning-tips-scripts-tools/
MySQLTuner is a Perl script that you can download from Github:
https://github.com/major/MySQLTuner-perl
The Persona toolkit (command line instead of GUI) is available online:
https://www.percona.com/software/database-tools/percona-toolkit

234  •  SQL Pocket Primer

Some useful tips for database tuning are available online:
https://www.tecmint.com/mysql-mariadb-performance-tuning-and-

optimization/
The Persona toolkit is available online (not available for Mac):
https://www.percona.com/downloads/percona-toolkit/LATEST/

Cost-Based Optimizers (optional)

MySQL and other RDBMSs provide an optimizer, which determines the
most efficient way to execute a SQL query. As a side note, optimizers used to
be rule-based optimizers, but during the 1990s, there was a switch from rule-
based optimizers to cost-based optimizers.

Cost-based optimization, where the latter involves collecting “statistics”
regarding the frequency of accessing specific tables. A cost-based optimizer
can involve a table of queries that have been executed over a period of time,
which are used to determine the pattern of execution of SQL queries, thereby
providing information to the optimizer for the purpose of anticipating which
SQL queries are more likely to be executed in the future.

Table Fragmentation

Table fragmentation means that the data in a database table is stored in
non-contiguous memory. When such tables become large and are frequently
accessed, the result can be performance degradation.

There are two additional factors to consider: the column size and the col-
umns in the WHERE clause of SQL statements. You can view table size by exe-
cuting the following command from the command line:

mysqlshow –status <dbname>

Another useful SQL statement for finding indexes associated with a table
is the following:

MySQL [mytools]> show index from <table_name>;

The preceding SQL statement enables you to check the indexes and their
relative cardinality.

Table Partitioning

MySQL supports database partitioning via hashing functions, which avoids
bottlenecks and can simplify maintenance. Depending on your application,
you might discover that a portion of a particular table is accessed much more
frequently than the other attributes in that table. Table partitioning refers to
placing the highly accessed portions of that table in a separate table, which
can help to keep the highly accessed table in memory. A DBA can assist in the
task of determining the most frequently accessed tasks in the tables of your
application.

Miscellaneous Topics  •  235

Remember that splitting the table into two tables involves defining a suit-
able foreign key, and most likely rewriting one or more of the SQL statements
in the application. In addition, table partitioning can be performed in conjunc-
tion with (or separate from) table sharding. If possible, use a test environment
to perform the preceding changes so that you can obtain benchmarks to com-
pare the before-and-after performance numbers.

WHAT IS AN EXPLAIN PLAN?

The EXPLAIN statement provides information about how MySQL executes
SQL statements. Specifically, MySQL provides the details of how it would
process a given SQL statement, such as how tables in the SQL statement are
joined (if any) and the order in which they are joined.

An EXPLAIN statement can be generated with various SQL statements,
such as SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

An EXPLAIN plan displays the actual order of execution of a SQL state-
ment. In addition, it’s worthwhile to execute ANALYZE TABLE <table-name>
in MySQL, an example of which is shown here:

MySQL [mytools]> ANALYZE TABLE customers;
+-------------------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+-------------------+---------+----------+----------+
| mytools.customers | analyze | status | OK |
+-------------------+---------+----------+----------+
1 row in set (0.005 sec)

Another useful SQL statement is SHOW TABLE STATUS, an example of
which is shown below:

+-----------------+--------+---------+------------+------+-
---------------+-------------+-----------------+-----------
---+-----------+----------------+---------------------+----
-----------------+------------+--------------------+-------
---+----------------+---------+
| Name | Engine | Version | Row_format | Rows
| Avg_row_length | Data_length | Max_data_length | Index_
length | Data_free | Auto_increment | Create_time |
Update_time | Check_time | Collation |
Checksum | Create_options | Comment |
+-----------------+--------+---------+------------+------+-
---------------+-------------+-----------------+-----------
---+-----------+----------------+---------------------+----
-----------------+------------+--------------------+-------
---+----------------+---------+
| courses | InnoDB | 10 | Dynamic | 112 |
146 | 16384 | 0 | 0
| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4_0900_ai_ci | NULL
| | |

236  •  SQL Pocket Primer

| cust_history | InnoDB | 10 | Dynamic | 0 |
0 | 16384 | 0 | 0
| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4_0900_ai_ci | NULL
| | |
| customers | InnoDB | 10 | Dynamic | 1 |
16384 | 16384 | 0 | 0
| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4_0900_ai_ci | NULL
| | |

// details omitted for brevity
| students | InnoDB | 10 | Dynamic | 6 |
2730 | 16384 | 0 | 0
| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4_0900_ai_ci | NULL
| | |
| user | InnoDB | 10 | Dynamic | 4 |
4096 | 16384 | 0 | 0
| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4_0900_ai_ci | NULL
| | |
| weather | InnoDB | 10 | Dynamic | 11 |
1489 | 16384 | 0 | 0
| 0 | NULL | 2021-07-15 17:02:50 | 2021-
07-15 17:02:50 | NULL | utf8mb4_0900_ai_ci | NULL
| | |
+-----------------+--------+---------+------------+------+-
---------------+-------------+-----------------+-----------
---+-----------+----------------+---------------------+----
-----------------+------------+--------------------+-------
---+----------------+---------+
23 rows in set (0.002 sec)

EXPLAIN ANALYZE

MySQL 8.0.18 provides EXPLAIN that executes a SQL statement in order
to generate EXPLAIN output. The output contains various details, some of
which are listed here:

•	Estimated execution cost
•	Estimated number of returned rows
•	Time to return first row
•	Time (milliseconds) to return all rows (actual cost)
•	Number of loops

Here is an example of a SQL statement that generates an execution plan:

MySQL [mytools]>
EXPLAIN SELECT 1;
SELECT *
FROM customers;

Miscellaneous Topics  •  237

Launch the preceding SQL statement to see the following type of output:

+----+-------------+-------+------------+------+----------
-----+------+---------+------+------+----------+----------
------+
| id | select_type | table | partitions | type | possible_
keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+----------
-----+------+---------+------+------+----------+----------
------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL
| NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------------+------+----------
-----+------+---------+------+------+----------+----------
------+
1 row in set, 1 warning (0.003 sec)

+---------+------------+-----------+--------------+--------
-+-------+----------+
| cust_id | first_name | last_name | home_address | city
| state | zip_code |
+---------+------------+-----------+--------------+--------
-+-------+----------+
| 1000 | John | Smith | 123 Main St | Fremont
| CA | 94123 |
+---------+------------+-----------+--------------+--------
-+-------+----------+
1 row in set (0.000 sec)

SCALING AN RDBMS

An RDBMS can be scaled in various ways, including the techniques in
the following list, some of which are discussed in more detail later in this
section:

•	SQL tuning
•	denormalization
•	sharding
•	federation
•	master-slave replication
•	master-master replication

You have already learned about denormalization in a previous section in
this chapter, and the following subsections discuss SQL tuning, sharding, and
federation.

What is SQL Tuning?

SQL tuning is a vast topic that is typically conducted by an experienced
DBA, and it’s primarily for improving application performance, which is often

238  •  SQL Pocket Primer

related to SQL statements, as well as uncovering performance bottlenecks in
applications. One technique involves simulating high loads on an application
so that you can analyze the performance of the application. Another technique
involves profiling SQL statements to track performance problems, using a tool
such as “the slow query log.”

In general, there are powerful tools available that determine which SQL
queries require the most execution time, and those SQL queries can be dis-
played in decreasing order of execution time. Potential solutions involve creat-
ing new indexes, restructuring database tables, or sometimes denormalizing
database tables.

Although SQL tuning is performed at the database level, sometimes you
might need to perform additional tuning at the application level. Specifically,
one scenario that arises with large databases (especially involving social media)
requires splitting or “sharding” a table, as discussed in the next section.

What is Sharding?

Sharding is a horizontal scaling technique that logically partitions the rows
in a table so that each partition can be stored and accessed independently of
the other partitions. For example, suppose you have a user table that contains
millions of rows and you need to support SQL operations such as SELECT,
INSERT, UPDATE, and DELETE. One way to improve the performance of such
queries is to shard the user table by the letters in the alphabet: the first shard
contains the people whose last name starts with “A,” the second shard for the
letter “B,” and so forth.

The preceding technique can refined: since there are very few people whose
last names start with “Q,” “X,” or “Z,” we can combine those three shards into
a single shard. Moreover, shards for the letters “M” and “S” are probably very
large, so that they can be further sharded. For example, the shard for “M” can
be split into the shards MA through MG, MH through MP, and MQ through
MZ, and similarly for the shard for the letter “S.” The actual splits are specific
to the actual data in your user table.

An additional advantage to sharding is that each shard works independently
of the other shards. Hence, if the shards are on different servers, then multiple
shards can be operational even if some individual shards are unavailable (per-
haps due to a power outage). By contrast, an unsharded table is all-or-nothing:
if there is a power outage, then no table data is accessible.

RDBMS Support for Sharding

MySQL as well as Oracle and PostgresSQL (and others) do not support
automatic sharding, which means that sharding must be implemented manu-
ally at the application layer. Consequently, sharding entails additional database
design decisions, and you can perform an online search to for articles and blog-
posts that provide additional information.

If you are interested in delving further into the topic of database sharding,
the following list contains several types of sharding techniques:

Miscellaneous Topics  •  239

•	Algorithmic Sharding
•	Consistent Hash Sharding
•	Linear Hash Sharding
•	Range Sharding

Perform an online search to obtain more information about the sharding
techniques in the preceding list.

What is Federation?

Federation (or functional partitioning) involves splitting a database in terms
of its functionality instead of defining a monolithic database. For example, the
four-table schema that you learned about in Chapter 1 involves separate tables
for customers, purchase orders, line items, and item descriptions. In the event
that any of these tables become extremely large, they can be placed in differ-
ent locations. This technique can improve both read and write performance.
By contrast, a smaller database can be placed in memory, which can improve
so-called cache “hits.” However, there are some disadvantages to federation:

•	ineffective for schema involving very large tables
•	additional application logic is involved
•	joining data from two databases is complex
•	hardware and additional complexity

DATABASE REPLICATION

Database replication refers to the process of copying data from one source
to another, which effectively provides an online backup in the event of a data
loss from the primary copy of the data. Replication provides a “fail over”
capability. Otherwise, a primary system can become a single point of failure.
Database replication provides the following advantages:

•	improved read performance
•	replicas are a complete copy of the primary database
•	modifications to the primary copy are immediately propagated to replicas
•	a replica can process incoming requests if the primary database is

unavailable

A synchronous replication is typically slower yet has consistent data,
whereas an asynchronous replication is performed in “detached” mode, which
is faster but not always immediately consistent.

Incidentally, a common technique in high volume systems (such as social
media applications) involves one server to handle “read” requests and another
server to handle write, update, and delete requests. This technique works well
because the ratio of “read” requests to all other request can be 100:1 or 200:1.
Moreover, multiple servers can be allocated for “read” requests as well as mul-
tiple servers for the other types of requests.

240  •  SQL Pocket Primer

There are also some disadvantages to database replication, such as higher
cost and higher bandwidth requirements.

DISTRIBUTED DATABASES, SCALABILITY, AND THE CAP THEOREM

Now that you have a grasp of MySQL and some of its features, this section
briefly discusses terminology such as distributed databases, scalable databases,
and the CAP theorem. Although it’s unlikely that you will be directly involved
in these tasks (unless you are a DBA), it’s worthwhile to have some understand-
ing of these topics. However, if there is no pressing need, feel free to treat this
section as optional.

In general, a service is scalable if its performance increases in proportion
to the additional resources that are added to that service. A service can be
database-related as well as software that is not directly coupled to a database.

A distributed database (DDB) are systems that focus on providing greater
flexibility, reducing cost, and increasing performance. A DDB comprises a group
of databases that are located in different sites, whereas a distributed database
management system (DDBMS) manages a DDB. Users are unaware of the
details (such as the location of the hardware and software) of the components
of a DDB because it’s irrelevant from the standpoint of performing their tasks.

Master-Slave Replication

The purpose of the master is to serve read operations and write operations.
In addition, the master replicates (duplicates) write operations to one or more
slaves because the slaves only perform read operations. In the event that the
master is unavailable (for whatever reason), a system can still function, but
only in read-only mode. For the system to resume write operations, the system
must either promote a slave to the status of master or provision a new master
in the system.

The CAP Theorem

CAP is an acronym for Consistency, Availability, and Partition Tolerance.
The CAP theorem states that a distributed computer system support only two
of the following three:

•	Consistency means that every read receives the most recent write or an
error.

•	Availability means that every request receives a response, without guar-
antee that it contains the most recent version of the information.

•	Partition Tolerance means that the system continues to operate despite
arbitrary partitioning due to network failures.

Partition tolerance must be supported simply because networks are not reli-
able, and you need to decide between consistency and availability. Consistency
is a good choice if your business needs require atomic reads and writes, whereas

Miscellaneous Topics  •  241

availability is a good choice if a system must continue to function even though
there are external errors.

Given the preceding points about the CAP theorem, the following state-
ment will make sense: MongoDB favors consistency over availability.

What are Consistency Patterns?

Weak consistency means that read requests might not see the most recent
write operation. A “best effort approach” can be adopted, which is true of sys-
tems such as memcached, which is in-memory key-value store. Weak consist-
ency works well for various types of real time systems, such as VoIP, video chat,
and multiplayer games.

Eventual consistency means that read requests will see the most recent
write operation after a short delay, after data is replicated asynchronously. This
type of consistency is applicable to email systems.

A third type of consistency is called strong consistency, in which read
requests see data after a write operation because data is replicated synchro-
nously. For example, an RDBMS provides strong consistency, which is also
true of systems that support transactions.

MYSQL COMMAND LINE UTILITIES

To invoke a MySQL program from the command line (that is, from your
shell or command prompt), enter the program name followed by any options
or other arguments needed to instruct the program what you want it to do. The
following commands show some sample program invocations.

The text string shell> represents the prompt for the command inter-
preter; it is not part of the text that you type at the command prompt. The
particular prompt you see depends on your command interpreter. Typical
prompts are $ for sh, ksh, or bash; % for csh or tsch, and C:\> for the
Windows command.com or cmd.exe command interpreters. Here are exam-
ples of several command line utilities:

shell> mysql --user=root test
shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump -u root personnel

DATABASE BACKUPS, RESTORING DATA, AND UPGRADES

A DBA (database administrator) performs many important tasks, one of
which involves automatically performing database backups (e.g., via cron
jobs). Moreover, you (or someone else) need to know how to manually restore
data from a backup in cases of lost or corrupted data.

A related topic is disaster recovery, which specifies the procedure for
recovering a system in the event of a catastrophic failure and involves storing a
complete set of backups in an off-site location.

242  •  SQL Pocket Primer

A system administrator can help you recover deleted files and directories,
whereas a DBA can help you manually restore database data from a backup in
situations involving lost or corrupted data. However, any data or transactions
that are performed after the most recent backup will not be available.

Database upgrades can be simple for minor releases of a database, but
upgrading to a major release might involve changes to table definitions in
a database schema. In general, a test environment is set up to fully test the
upgrade, and if all goes well, the production system can be switched over to
the new release.

Depending on the amount of data in an RDBMS, a database upgrade can
be a lengthy process. In fact, some large enterprises perform an intensive test-
ing process that can require an entire year before switching the production
system to the latest database upgrade.

MYSQL AND JSON DATA

In previous chapters, you learned how to manage the contents of table con-
taining simple data types, such as CHAR, DATE, INT, and TEXT. However,
MySQL also supports JSON-based data. In fact, you can define a MySQL table
with one or more attributes of type JSON, insert JSON-based data into such
a table, and then query the table for its contents, as well as the values that are
contained in the JSON data. Although MySQL supports JSON files, there is no
index support for JSON-based data.

Listing 6.5 shows the content of customers_json.sql that is the counter-
part to the MySQL customers table for our fictitious website, which performs
the tasks described in the preceding paragraph, as noted in the comments in
the code blocks.

LISTING 6.5: customers_json.sql

use mytools;

DROP TABLE IF EXISTS customer_json;

-- a table with a JSON attribute:
CREATE TABLE customer_json (
 id int auto_increment primary key,
 customer json
);

-- insert JSON-based data into the table:
INSERT INTO customer_json(customer)
VALUES (
 '{ "cust_id": "1000", "first_name": "John", "last_name":
"Smith", "address": "123 Main Street", "city": "Fremont",
"state": "CA", "zip_code": "94123"}'
),
(

Miscellaneous Topics  •  243

 '{ "cust_id": "2000", "first_name": "Jane", "last_name":
"Jones", "address": "456 Front Street", "city": "Fremont",
"state": "CA", "zip_code": "95015"}'
);

-- display the values of the first_name and last_name attributes:
SELECT id, customer->'$.first_name', customer->'$.last_name'
FROM customer_json;

-- the JSON_ARRAY() function creates arrays:
SELECT JSON_ARRAY(1000, "Deep", "Dish", "Pizza");

-- the JSON_OBJECT() function creates objects:
SELECT JSON_OBJECT(1000, "Deep", "Dish", "Pizza");

-- the JSON_QUOTE() function quotes a string as a JSON value:
SELECT JSON_QUOTE('[1000, "Deep", "Dish", "Pizza"]');

Listing 6.5 starts by defining the table customer_json with a customer
attribute of type JSON, followed by inserting two JSON-based strings into this
table. Next, a SQL statement retrieves the values the first_name and last_
name attributes, followed by three SQL statements that illustrate how to use
the JSON_ARRAY(), JSON_OBJECT(), and JSON_QUOTE() functions. Launch
the code in Listing 6.5 to see the following output:

-- the JSON_QUOTE() function quotes a string as a JSON
value:
Database changed
Query OK, 0 rows affected (0.039 sec)
Query OK, 0 rows affected (0.021 sec)
Query OK, 2 rows affected (0.005 sec)
Records: 2 Duplicates: 0 Warnings: 0

+----+--------------------------+-------------------------+
| id | customer->'$.first_name' | customer->'$.last_name' |
+----+--------------------------+-------------------------+
| 1 | "John" | "Smith" |
| 2 | "Jane" | "Jones" |
+----+--------------------------+-------------------------+
2 rows in set (0.093 sec)

+---+
| JSON_ARRAY(1000, "Deep", "Dish", "Pizza") |
+---+
| [1000, "Deep", "Dish", "Pizza"] |
+---+
1 row in set (0.000 sec)

+--+
| JSON_OBJECT(1000, "Deep", "Dish", "Pizza") |
+--+
| {"1000": "Deep", "Dish": "Pizza"} |
+--+
1 row in set (0.001 sec)

244  •  SQL Pocket Primer

+---+
| JSON_QUOTE('[1000, "Deep", "Dish", "Pizza"]') |
+---+
| "[1000, \"Deep\", \"Dish\", \"Pizza\"]" |
+---+
1 row in set (0.000 sec)

In Listing 6.5, several code blocks are preceded by self-explanatory com-
ment statements that explain the purpose of the code. The only significant
difference from previous code samples is the different syntax for working with
JSON-specific data. If you want to learn more, navigate to the online docu-
mentation for more information regarding JSON-based data in MySQL.

DATA CLEANING IN SQL

This section contains several subsections that perform data cleaning tasks
in SQL. Although this section could have been placed in an earlier chapter
instead of a “miscellaneous” chapter, there is also a subsequent section that
involves cleaning data from the command line in order to perform tasks that
are not possible in Pandas or another similar type of tool. Hence, it was deemed
better to keep these two sections together and to place them in this chapter.

This section illustrates how to perform the following data cleaning tasks
that affect an attribute of a database table:

•	replace NULL with 0
•	replace NULL with the average value
•	replace multiple values into a single value
•	handle data type mismatch
•	convert a string date to a date format

Replace NULL with 0

You can perform this task with either of the following SQL statements:

SELECT ISNULL(column_name, 0) FROM table_name
OR
SELECT COALESCE(column_name, 0) FROM table_name

Replace NULL Values with Average Value

This task involves two steps: first find the average of the non-NULL values of
a column in a database table, and then update the NULL values in that column
with the value that you found in the first step.

Listing 6.6 shows the content of replace_null_values.sql that per-
forms this pair of steps.

LISTING 6.6: replace_null_values.sql

USE mytools;
DROP TABLE IF EXISTS temperatures;
CREATE TABLE temperatures (temper INT, city CHAR(20));

Miscellaneous Topics  •  245

INSERT INTO temperatures VALUES(78,'sf');
INSERT INTO temperatures VALUES(NULL,'sf');
INSERT INTO temperatures VALUES(42,NULL);
INSERT INTO temperatures VALUES(NULL,'ny');
SELECT * FROM temperatures;

SELECT @avg1 := AVG(temper) FROM temperatures;
update temperatures
set temper = @avg1
where ISNULL(temper);
SELECT * FROM temperatures;

-- initialize city1 with the most frequent city value:
SELECT @city1 := (SELECT city FROM temperatures GROUP BY
city ORDER BY COUNT(*) DESC LIMIT 1);

-- update NULL city values with the value of city1:
update temperatures
set city = @city1
where ISNULL(city);
SELECT * FROM temperatures;

Listing 6.6 creates and populates the table temperatures with several
rows, and then initializes the variable avg1 with the average temperature in the
temper attribute of the temperatures table. Launch the code in Listing 6.6
to see the following output:

+--------+------+
| temper | city |
+--------+------+
78	sf
NULL	sf
42	NULL
NULL	ny
+--------+------+
4 rows in set (0.000 sec)

+----------------------+
| @avg1 := AVG(temper) |
+----------------------+
| 60.000000000 |
+----------------------+
1 row in set, 1 warning (0.000 sec)

Query OK, 2 rows affected (0.001 sec)
Rows matched: 2 Changed: 2 Warnings: 0

+--------+------+
| temper | city |
+--------+------+
78	sf
60	sf
42	NULL
60	ny
+--------+------+
4 rows in set (0.000 sec)

246  •  SQL Pocket Primer

+--
----------+
| @city1 := (SELECT city FROM temperatures GROUP BY city
ORDER BY COUNT(*) DESC LIMIT 1) |
+--
----------+
| sf
|
+--
----------+
1 row in set, 1 warning (0.000 sec)

Query OK, 1 row affected (0.000 sec)
Rows matched: 1 Changed: 1 Warnings: 0

+--------+------+
| temper | city |
+--------+------+
78	sf
60	sf
42	sf
60	ny
+--------+------+
4 rows in set (0.000 sec)

Replace Multiple Values with a Single Value

An example of coalescing multiple values in an attribute involves replacing
multiple strings for the state of New York (such as new_york, NewYork, and
New_York) with NY. Listing 6.7 shows the content of reduce_values.sql
that performs this pair of steps.

LISTING 6.7: reduce_values.sql

use mytools;
DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable (str_date CHAR(15), state CHAR(20),
reply CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');
INSERT INTO mytable VALUES('20211016','New York','no');
INSERT INTO mytable VALUES('20220117','Illinois','yes');
INSERT INTO mytable VALUES('20220218','New York','No');
SELECT * FROM mytable;

-- replace yes, Yes, y, Ys with Y:
update mytable
set reply = 'Y'
where upper(substr(reply,1,1)) = 'Y';

-- replace all other values with
update mytable
set reply = 'N' where substr(reply,1,1) != 'Y';
SELECT * FROM mytable;

Miscellaneous Topics  •  247

Listing 6.7 creates and populates the table mytable, and then replaces the
variants of the word “yes” with the letter Y in the reply attribute. The final por-
tion of Listing 6.7 replaces any string that does not start with the letter Y with
the letter N. Launch the code in Listing 6.7 to see the following output:

+----------+----------+-------+
| str_date | state | reply |
+----------+----------+-------+
20210915	New York	Yes
20211016	New York	no
20220117	Illinois	yes
20220218	New York	No
+----------+----------+-------+
4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)
Rows matched: 2 Changed: 2 Warnings: 0

+----------+----------+-------+
| str_date | state | reply |
+----------+----------+-------+
20210915	New York	Y
20211016	New York	N
20220117	Illinois	Y
20220218	New York	N
+----------+----------+-------+
4 rows in set (0.001 sec)

Handle Mismatched Attribute Values

This task involves two steps: first find the average of the non-NULL values of
a column in a database table, and then update the NULL values in that column
with the value that you found in the first step.

Listing 6.8 shows the content of type_mismatch.sql that performs this
pair of steps.

LISTING 6.8: type_mismatch.sql

USE mytools;
DROP TABLE IF EXISTS emp_details;
CREATE TABLE emp_details (emp_id CHAR(15), city CHAR(20),
state CHAR(20));

INSERT INTO emp_details VALUES('1000','Chicago','Illinois');
INSERT INTO emp_details VALUES('2000','Seattle','Washington');
INSERT INTO emp_details VALUES('3000','Santa Cruz','California');
INSERT INTO emp_details VALUES('4000','Boston','Massachusetts');
SELECT * FROM emp_details;

select emp.emp_id, emp.title, det.city, det.state
from employees emp join emp_details det
WHERE emp.emp_id = det.emp_id;

248  •  SQL Pocket Primer

--required for earlier versions of MySQL:
--WHERE emp.emp_id = cast(det.emp_id as INT);

Listing 6.8 creates and populates the table emp_details, followed by a
SQL JOIN statement involving the tables emp and emp_details. Although
the emp_id table is defined as an INT type and a CHAR type, respectively, in the
tables emp and emp_details, the code works as desired. However, in earlier
versions of MySQL, you need to use the built-in CAST() function to convert
a CHAR value to an INT value (or vice versa), as shown in the commented out
code snippet:

--WHERE emp.emp_id = cast(det.emp_id as INT);

Now launch the code in Listing 6.8 and you will see the following output:

+--------+------------+---------------+
| emp_id | city | state |
+--------+------------+---------------+
1000	Chicago	Illinois
2000	Seattle	Washington
3000	Santa Cruz	California
4000	Boston	Massachusetts
+--------+------------+---------------+		
4 rows in set (0.000 sec)		
+--------+--------------------+------------+---------------+		
emp_id	title	city
+--------+--------------------+------------+---------------+		
1000	Developer	Chicago
2000	Project Lead	Seattle
3000	Dev Manager	Santa Cruz
4000	Senior Dev Manager	Boston
+--------+--------------------+------------+---------------+
4 rows in set (0.002 sec)

Convert Strings to Date Values

Listing 6.9 shows the content of str_to_date.sql that illustrates how to
populate a date attribute with date values that are determined from another
string-based attribute that contains strings for dates.

LISTING 6.9: str_to_date.sql

use mytools;
DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable (str_date CHAR(15), state CHAR(20),
reply CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');
INSERT INTO mytable VALUES('20211016','New York','no'););
INSERT INTO mytable VALUES('20220117','Illinois','yes'););
INSERT INTO mytable VALUES('20220218','New York','No'););

SELECT * FROM mytable;

Miscellaneous Topics  •  249

-- 1) insert date-based feature:
ALTER TABLE mytable
ADD COLUMN (real_date DATE);
SELECT * FROM mytable;

-- 2) populate real_date from str_date:
UPDATE mytable t1
 INNER JOIN mytable t2
 ON t1.str_date = t2.str_date
SET t1.real_date = DATE(t2.str_date);
SELECT * FROM mytable;

-- 3) Remove unwanted features:
ALTER TABLE mytable
DROP COLUMN str_date;
SELECT * FROM mytable;

Listing 6.9 creates and populates the table mytable and displays the
contents of this table. The remainder of Listing 6.9 consists of three SQL
statements, each of which starts with a comment statement that explains its
purpose.

The first SQL statement inserts a new column real_date of type DATE.
The second SQL statement populates the real_date column with the values
in the str_date column that have been converted to a date value via the
DATE() function. The third SQL statement is optional: it drops the str_date
column if you wish to do so. Launch the code in Listing 6.9 to see the follow-
ing output:

+----------+----------+-------+
| str_date | state | reply |
+----------+----------+-------+
20210915	New York	Yes
20211016	New York	no
20220117	Illinois	yes
20220218	New York	No
+----------+----------+-------+
4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.007 sec)
Records: 0 Duplicates: 0 Warnings: 0

+----------+----------+-------+-----------+
| str_date | state | reply | real_date |
+----------+----------+-------+-----------+
20210915	New York	Yes	NULL
20211016	New York	no	NULL
20220117	Illinois	yes	NULL
20220218	New York	No	NULL
+----------+----------+-------+-----------+
4 rows in set (0.002 sec)

Query OK, 4 rows affected (0.002 sec)
Rows matched: 4 Changed: 4 Warnings: 0

250  •  SQL Pocket Primer

+----------+----------+-------+------------+
| str_date | state | reply | real_date |
+----------+----------+-------+------------+
20210915	New York	Yes	2021-09-15
20211016	New York	no	2021-10-16
20220117	Illinois	yes	2022-01-17
20220218	New York	No	2022-02-18
+----------+----------+-------+------------+
4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.018 sec)
Records: 0 Duplicates: 0 Warnings: 0

+----------+-------+------------+
| state | reply | real_date |
+----------+-------+------------+
New York	Yes	2021-09-15
New York	no	2021-10-16
Illinois	yes	2022-01-17
New York	No	2022-02-18
+----------+-------+------------+
4 rows in set (0.000 sec)

DATA CLEANING FROM THE COMMAND LINE (OPTIONAL)

This section is marked “optional” because the solutions to tasks involve an
understanding of some Unix-based utilities. Although this book does not con-
tain details about those utilities, you can find online tutorials with examples
regarding these utilities.

This section contains several subsections that perform data cleaning tasks
that involve the command line utilities sed and awk:

•	replace multiple delimiters with a single delimiter (sed)
•	restructure a dataset so all rows have the same column count (awk)

Keep in mind the following point about these examples: they must be per-
formed from the command line before they can be processed in a Pandas data
frame.

Working with the sed Utility

This section contains an example of how to use the sed command line util-
ity to replace different delimiters with a single delimiter for the fields in a text
file. You can use the same code for other file formats, such as CSV files and
TSV files.

This section does not provide any details about sed beyond the code sam-
ple in this section. However, after you read the code, you will understand how
to adapt that code snippet to your own requirements (i.e., how to specify dif-
ferent delimiters).

Miscellaneous Topics  •  251

Listing 6.10 shows the content of delimiter1.txt and Listing 6.11 shows
the content of delimiter1.sh that replaces all delimiters with a comma (“,”).

LISTING 6.10: delimiter1.txt

1000|Jane:Edwards^Sales
2000|Tom:Smith^Development
3000|Dave:Del Ray^Marketing

LISTING 6.11: delimiter1.sh

cat delimiter1.txt | sed -e 's/:/,/' -e 's/|/,/' -e 's/\^/,/'

Listing 6.11 starts with the cat command line utility, which sends the con-
tents of the file delimiter1.txt “standard output,” which is the screen (by
default). However, in this example, the output of this command becomes the
input to the sed command because of the pipe (“|”) symbol.

The sed command consists of three parts, all of which are connected by
the “-e” switch. You can think of “-e” as indicating “there is more processing
to be done” by the sed command. In this example, there are three occur-
rences of “-e,” which means that the sed command will be invoked three
times.

The first code snippet is 's/:/,/', which translates into “replace each
semi-colon with a comma.” The result of this operation is passed to the next
code snippet, which is 's/|/,/'. This code snippet translates into “replace
each pipe symbol with a comma.” The result of this operation is passed to
the next code snippet, which is 's/\^/,/'. This code snippet translates into
“replace each caret symbol (“^”) with a comma.” The result of this operation is
sent to standard output, which can be redirected to another text file. Launch
the code in Listing 5.27 to see the following output:

1000,Jane,Edwards,Sales
2000,Tom,Smith,Development
3000,Dave,Del Ray,Marketing

Here are three comments to keep in mind. First, the snippet contains a
backslash because the caret symbol (“^”) is a meta character, so we need to
“escape” this character. The same is true for other meta characters (such as
“$” and “.”).

Second, you can easily extend the sed command for each new delimiter
that you encounter as a field separator in a text file: simply follow the pattern
that you see in Listing 5.27 for each new delimiter.

Third, redirect the output of delimiter1.sh to the text file delimiter2.
txt by launching the following command:

./delimiter1.sh > delimiter2.txt

252  •  SQL Pocket Primer

If an error occurs in the preceding code snippet, make sure that
delimiter1.sh is executable by invoking the following command:

chmod 755 delimiter1.sh

This concludes the example involving the sed command line utility, which
is a very powerful utility for processing text files. Check online for articles and
blog posts if you want to learn more about the sed utility.

Working with the awk Utility

The awk command line utility is a self-contained programming language,
with a truly impressive capability for processing text files. However, this sec-
tion does not provide details about awk beyond the code sample. If you’re
interested, there are plenty of online articles that provide in-depth explana-
tions regarding the awk utility.

Listing 6.12 shows the content FixedFieldCount1.sh that illustrates
how to use the awk utility to split a string into rows that contain three strings.

LISTING 6.12: FixedFieldCount1.sh

echo "=> pairs of letters:"
echo "aa bb cc dd ee ff gg hh"
echo

echo "=> split on multiple lines:"
echo "aa bb cc dd ee ff gg hh"| awk '
BEGIN { colCount = 3 }
{
 for(i=1; i<=NF; i++) {
 printf("%s ", $i)
 if(i % colCount == 0) { print "" }
 }
 print ""
}
'

Listing 6.12 shows the contents of a string, and then provides this string as
input to the awk command. The main body of Listing 6.12 is a loop that iterates
from 1 to NF, where NF is the number of fields in the input line, which in this
example equals 8. The value of each field is represented by $i: $1 is the first
field, $2 is the second field, and so forth. Note that $0 is the contents of the
entire input line (which is used in a subsequent code sample).

Next, if the value of i (which is the field position, not the contents of the
field) is a multiple of 3, then the code prints a linefeed. Launch the code in
Listing 6.12 to see the following output:

=> pairs of letters:
aa bb cc dd ee ff gg hh

=> split on multiple lines:
aa bb cc

Miscellaneous Topics  •  253

dd ee ff
gg hh

Listing 6.13 shows the content of employees.txt and Listing 6.14 shows
the content of FixedFieldCount2.sh that illustrates how to use the awk
utility in order to ensure that all the rows have the same number of columns.

LISTING 6.13: employees.txt

jane:jones:SF:
john:smith:LA:
dave:smith:NY:
sara:white:CHI:
>>>none:none:none<<<:
jane:jones:SF:john:
smith:LA:
dave:smith:NY:sara:white:
CHI:

LISTING 6.14: FixedFieldCount2.sh

cat employees.txt | awk -F":" '{printf("%s", $0)}' | awk -F':' '
BEGIN { colCount = 3 }
{
 for(i=1; i<=NF; i++) {
 printf("%s#", $i)
 if(i % colCount == 0) { print "" }
 }
}
'

Notice that the code in Listing 6.14 is almost identical to the code in
Listing 6.13: the code snippet that is shown in bold removes the \n character
from its input that consists of the contents of employees.txt. The reason this
happens is because of this code snippet:

printf("%s", $0)

If you want to retain the \n character after each input line, then replace the
preceding code snippet with this snippet:

printf("%s\n", $0)

We have now reduced the task in Listing 6.14 to the same task as Listing 6.13,
which is why the solution contains the same awk-base code block.

Launch the code in Listing 6.14 to see the following output:

1000,Jane,Edwards,Sales
jane#jones#SF#
john#smith#LA#
dave#smith#NY#
sara#white#CHI#
>>>none#none#none<<<#

254  •  SQL Pocket Primer

jane#jones#SF#
john#smith#LA#
dave#smith#NY#
sara#white#CHI#

NEXT STEPS

Although the direction that you pursue after completing this book depends
entirely on your list of objectives, you might be interested in some of the fol-
lowing topics:

•	Pivot tables
•	B trees
•	B+ trees
•	Hash indexes

If you have worked extensively with Excel spreadsheets, you are proba-
bly well acquainted with pivot tables. Although MySQL 8 does not provide a
PIVOT function for pivot tables, you can implement this functionality with the
CASE statement.

Alternatively, it might be simpler to use Excel to perform pivot-related
functionality and then import the results into a MySQL table. Another pos-
sibility is to use a tool such as dbForge Studio for MySQL (free trial version
available) or search for open source tools that provide support for pivot tables.

If you’re interested in the implementation of indexes, then perform an
online search for articles that discuss B-trees, B+ trees, and hash indexes.

Despite the rich functionality available in MySQL, you might also need to
consider a different RDBMS if MySQL does not provide a critical feature for
your needs.

In closing, it’s worthwhile to perform online searches for tools that can
simplify your SQL-related tasks, as well as documentation or blog posts that
explain the implementation of more complex and lower-level tasks.

SUMMARY

This chapter started with an overview of managing database users: how to
create users and how to drop users. Next, you learned about roles in MySQL,
along with creating roles, granting privileges, revoking roles, and dropping
roles.

Then you got a more detailed description of normalization and an intro-
duction to entity-relationship modeling, which involves diagrams that display
entities (tables) and the relationships between tables.

Next, you learned about schemas and how to generate schemas in the
MySQL, as well as the concept of a transaction. In addition, you learned about
aspects of database optimization, performance tuning considerations, and SQL

Miscellaneous Topics  •  255

query optimization. You were introduced to database optimization and perfor-
mance tuning.

You also became familiar with ways of scaling an RDBMS, such as shard-
ing and federation. Then you learned an assortment of topics such as stored
procedures, stored functions, and triggers.

Finally, you were exposed to an assortment of miscellaneous topics, includ-
ing distributed databases, the CAP theorem, MySQL command line utilities,
database backups and upgrades, and character sets in MySQL.

APPENDIX

INTRODUCTION TO
PROBABILITY AND STATISTICS

This appendix introduces you to concepts in probability as well as an as-
sortment of statistical terms and algorithms.

The first section of this appendix starts with a discussion of prob-
ability, how to calculate the expected value of a set of numbers (with associated
probabilities), the concept of a random variable (discrete and continuous), and
a short list of some well-known probability distributions.

The second section of this appendix introduces basic statistical concepts,
such as mean, median, mode, variance, and standard deviation, along with sim-
ple examples that illustrate how to calculate these terms. You will also learn
about the terms RSS, TSS, R^2, and F1 score.

The third section of this appendix introduces Gini Impurity, Entropy,
Perplexity, Cross-Entropy, and KL Divergence. You will also learn about skew-
ness and kurtosis.

The fourth section explains covariance and correlation matrices and how to
calculate eigenvalues and eigenvectors.

The fifth section explains PCA (Principal Component Analysis), which is a
well-known dimensionality reduction technique. The final section introduces
you to Bayes’ Theorem.

WHAT IS A PROBABILITY?

If you have ever performed a science experiment in one of your classes, you
might remember that measurements have some uncertainty. In general, we
assume that there is a correct value, and we endeavor to find the best estimate
of that value.

258  •  SQL Pocket Primer

When we work with an event that can have multiple outcomes, we try to
define the probability of an outcome as the chance that it will occur, which is
calculated as follows:

p(outcome) = (# of times outcome occurs)/(total number of outcomes)

For example, in the case of a single balanced coin, the probability of tossing
a head H equals the probability of tossing a tail T:

p(H) = 1/2 = p(T)

Hence, the set of probabilities associated with the outcomes {H, T} is shown
in the set P:

P = {1/2, 1/2}

Some experiments involve replacement while others involve non-replace-
ment. For example, suppose that an urn contains 10 red balls and 10 green
balls. What is the probability that a randomly selected ball is red? The answer
is 10/(10+10) = 1/2. What is the probability that the second ball is also red?

The answer to the preceding question involves two scenarios with two differ-
ent answers. If each ball is selected with replacement, that means each selected
ball is returned to the urn, which in turn means that the urn always contains
10 red balls and 10 green balls. In this case, the probability of selecting a red
ball is always the same, regardless of the number of times that a ball is selected
from the urn. Hence, the answer to the preceding question is 1/2 ∗ 1/2 = 1/4. In
fact, the probability of any event is independent of all previous events.

On the other hand, if balls are selected without replacement, then the prob-
ability is 10/20 ∗ 9/19. Card games are also examples of selecting cards without
replacement.

One other concept is called conditional probability, which refers to the
likelihood of the occurrence of event E1 given that event E2 has occurred. A
simple example is the following statement:

“If it rains (E2), then I will carry an umbrella (E1).”

Calculating the Expected Value

Consider the following scenario involving a well-balanced coin: whenever
a head appears, you earn $1 and whenever a tail appears, you earn $1 dollar.
If you toss the coin 100 times, how much money do you expect to earn? Since
you will earn $1 regardless of the outcome, the expected value (in fact, the
guaranteed value) is 100.

Now consider this scenario: whenever a head appears, you earn $1 and
whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how
much money do you expect to earn? You probably determined the value 50
(which is the correct answer) by making a quick mental calculation. The more
formal derivation of the value of E (the expected earning) is here:

E = 100 ∗[1 ∗ 0.5 + 0 ∗ 0.5] = 100 ∗ 0.5 = 50

Introduction to Probability and Statistics  •  259

The quantity 1 ∗ 0.5 + 0 ∗ 0.5 is the amount of money you expected to earn
during each coin toss: half the time you earn $1 and half the time you earn 0
dollars. Multiply this value by 100 to compute the expected earnings after 100
coin tosses. Note that you might never earn $50: the actual amount that you
earn can be any integer between 1 and 100 inclusive.

As another example, suppose that you earn $3 whenever a head appears,
and you lose $1.50 dollars whenever a tail appears. Then the expected earning
E after 100 coin tosses is shown here:

E = 100 ∗[3 ∗ 0.5 − 1.5 ∗ 0.5] = 100 ∗ 1.5 = 150

We can generalize the preceding calculations as follows. Let P = {p1,…,pn}
be a probability distribution, which means that the values in P are non-negative
and their sum equals 1. In addition, let R = {R1,…,Rn} be a set of rewards,
where reward Ri is received with probability pi. Then the expected value E
after N trials is shown here:

E = N ∗ [SUM pi∗Ri]

In the case of a single balanced die, we have the following probabilities:

p(1) = 1/6
p(2) = 1/6
p(3) = 1/6
p(4) = 1/6
p(5) = 1/6
p(6) = 1/6
P = { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

Next, we need to know the values in the set R before we can calculate the
expected value E. As a simple example, suppose that the earnings are {1, 1, 1,
1, 1, 1} when the values 1, 2, 3, 4, 5, and 6, respectively, appear when tossing
the single die. Then after 100 trials, our expected earnings are calculated as
follows (and rounded to three decimal places):

E = 100 ∗ [1 + 1 + 1 + 1 + 1 + 1]/6 = 100 ∗ 1/6 = 16.667

As another example, suppose that the earnings are {3, 0, −1, 2, 4, −1} when
the values 1, 2, 3, 4, 5, and 6, respectively, appear when tossing the single die.
Then after 100 trials, our expected earnings are calculated as follows:

E = 100 ∗ [3 + 0 + −1 + 2 + 4 + −1]/6 = 100 ∗ 3/6 = 50

In the case of two balanced dice, we have the following probabilities of
rolling 2, 3, … , or 12:

p(2) = 1/36
p(3) = 2/36
...

260  •  SQL Pocket Primer

p(12) = 1/36
P = {1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36}

Construct a set with values for rewards for each of the 11 possible outcomes
and then calculate the expected value.

RANDOM VARIABLES

A random variable is a variable that can have multiple values, and where
each value has an associated probability of occurrence. For example, if we let X
be a random variable whose values are the outcomes of tossing a well-balanced
die, then the values of X are the numbers in the set {1, 2, 3, 4, 5, 6}. Each of
those values can occur with equal probability (which is 1/6).

In the case of two well-balanced dice, let X be a random variable whose val-
ues can be any of the numbers in the set {2, 3, 4, . . . , 12}. Then the associated
probabilities for the different values for X are listed in the previous section.

Discrete versus Continuous Random Variables

The preceding section contains examples of discrete random variables
because the list of possible values is either finite or countably infinite (such
as the set of integers). As an aside, the set of rational numbers and the set
of algebraic numbers are also countably infinite, but the set of non-algebraic
irrational numbers and the set of real numbers are both uncountably infinite
(proofs are available online). As pointed out earlier, the associated set of prob-
abilities must form a probability distribution, which means that the probability
values are non-negative and their sum equals 1.

A continuous random variable whose values can be any number in an inter-
val, which can be an uncountably infinite number of values. For example, the
amount of time required to perform a task is represented by a continuous
random variable.

A continuous random variable also has a probability distribution that is rep-
resented as a continuous function. The constraint for such a variable is that
the area under the curve (which is sometimes calculated via a mathematical
integral) equals 1.

Well-Known Probability Distributions

There are many probability distributions, and some of the well-known
probability distributions are listed here:

•	Gaussian distribution
•	Poisson distribution
•	Chi-squared distribution
•	Binomial distribution

The Gaussian distribution is named after Karl F. Gauss, and it is sometimes
called the normal distribution or the Bell curve. The Gaussian distribution is

Introduction to Probability and Statistics  •  261

symmetric: the shape of the curve on the left of the mean is identical to the
shape of the curve on the right side of the mean. As an example, the distribu-
tion of IQ scores follows a curve that is similar to a Gaussian distribution.

The frequency of traffic at a given point in a road follows a Poisson distribu-
tion (which is not symmetric). Interestingly, if you count the number of people
who go to a public pool based on five-degree (Fahrenheit) increments of the
temperature, followed by five-degree decrements in temperature, that set of
numbers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding list
and you will find numerous articles that contain images and technical details
about these (and other) probability distributions.

This concludes the brief introduction to probability, and the next section
delves into the concepts of mean, median, mode, and standard deviation.

FUNDAMENTAL CONCEPTS IN STATISTICS

This section contains several subsections that discuss the mean, median,
mode, variance, and standard deviation. Feel free to skim (or skip) this section
if you are already familiar with these concepts. As a start point, let’s suppose
that we have a set of numbers X ={x1, ..., xn} that can be positive, negative,
integer-valued or decimal values.

The Mean

The mean of the numbers in the set X is the average of the values. For
example, if the set X consists of {−10, 35, 75, 100}, then the mean equals (−10 +
35 + 75 + 100)/4 = 50. If the set X consists of {2, 2, 2, 2}, then the mean equals
(2+2+2+2)/4 = 2. As you can see, the mean value is not necessarily one of the
values in the set.

The mean is sensitive to outliers. For example, the mean of the set of num-
bers {1, 2, 3, 4} is 2.5, whereas the mean of the set of number {1, 2, 3, 4, 1000}
is 202. Since the formulas for the variance and standard deviation involve
the mean of a set of numbers, both of these terms are also more sensitive to
outliers.

The Median

The median of the numbers (sorted in increasing or decreasing order) in
the set X is the middle value in the set of values, which means that half the
numbers in the set are less than the median and half the numbers in the set are
greater than the median. For example, if the set X consists of {−10, 35, 75, 100},
then the median equals 55 because 55 is the average of the two numbers 35
and 75. As you can see, half the numbers are less than 55 and half the numbers
are greater than 55. If the set X consists of {2, 2, 2, 2}, then the median equals 2.

By contrast, the median is much less sensitive to outliers than the mean.
For example, the median of the set of numbers {1, 2, 3, 4} is 2.5, and the
median of the set of numbers {1, 2, 3, 4, 1000} is 3.

262  •  SQL Pocket Primer

The Mode

The mode of the numbers (sorted in increasing or decreasing order) in the
set X is the most frequently occurring value, which means that there can be more
than one such value. If the set X consists of {2, 2, 2, 2}, then the mode equals 2.

If X is the set of numbers {2, 4, 5, 5, 6, 8}, then the number 5 occurs twice
and the other numbers occur only once, so the mode equals 5.

If X is the set of numbers {2, 2, 4, 5, 5, 6, 8}, then the numbers 2 and 5
occur twice and the other numbers occur only once, so the mode equals 2 and
5. A set that has two modes is called bimodal, and a set that has more than two
modes is called multi-modal.

One other scenario involves sets that have numbers with the same fre-
quency and they are all different. In this case, the mode does not provide
meaningful information, and one alternative is to partition the numbers into
subsets and then select the largest subset. For example, if set X has the values
{1, 2, 15, 16, 17, 25, 35, 50}, we can partition the set into subsets whose ele-
ments are in range that are multiples of ten, which results in the subsets {1, 2},
{15, 16, 17}, {25}, {35}, and {50}. The largest subset is {15, 16, 17}, so we could
select the number 16 as the mode.

As another example, if set X has the values {−10, 35, 75, 100}, then parti-
tioning this set does not provide any additional information, so it’s probably
better to work with either the mean or the median.

The Variance and Standard Deviation

The variance is the sum of the squares of the difference between the num-
bers in X and the mean mu of the set X, divided by the number of values in X,
as shown here:

variance = [SUM (xi − mu)∗∗2] / n

For example, if the set X consists of {−10, 35, 75, 100}, then the mean
equals (−10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:

variance = [(−10−50)∗∗2 + (35−50)∗∗2 + (75−50)∗∗2 + (100−50)∗∗2]/4
 = [60∗∗2 + 15∗∗2 + 25∗∗2 + 50∗∗2]/4
 = [3600 + 225 + 625 + 2500]/4
 = 6950/4 = 1,737

The standard deviation std is the square root of the variance:

std = sqrt(1737) = 41.677

If the set X consists of {2, 2, 2, 2}, then the mean equals (2+2+2+2)/4 = 2,
and the variance is computed as follows:

variance = [(2−2)∗∗2 + (2−2)∗∗2 + (2−2)∗∗2 + (2−2)∗∗2]/4
 = [0∗∗2 + 0∗∗2 + 0∗∗2 + 0∗∗2]/4
 = 0

Introduction to Probability and Statistics  •  263

The preceding result is intuitive: since the numbers all equal 2, they do not
“vary” at all, so the variance equals 0. In addition, the standard deviation std is
the square root of the variance:

std = sqrt(0) = 0

Population, Sample, and Population Variance

The population specifically refers to the entire set of entities in a given
group, such as the population of a country, the people over 65 in the USA, or
the number of first year students in a university.

However, in many cases, statistical quantities are calculated on samples
instead of an entire population. Thus, a sample is (a much smaller) subset of
the given population. See the Central Limit Theorem regarding the distribu-
tion of the mean of a set of samples of a population (which need not be a popu-
lation with a Gaussian distribution).

If you want to learn about techniques for sampling data, here is a list of
three different techniques that you can investigate:

•	Stratified sampling
•	Cluster sampling
•	Quota sampling

The population variance is calculated by multiplying the sample variance
by n/(n−1), as shown here:

population variance = [n/(n−1)]∗variance

ChebyshevÕs Inequality

Chebyshev’s inequality provides a simple way to determine the minimum
percentage of data that lies within k standard deviations. Specifically, this ine-
quality states that for any positive integer k greater than 1, the amount of data
in a sample that lies within k standard deviations is at least 1 − 1/k∗∗2. For
example, if k = 2, then at least 1 − 1/2∗∗2 = 3/4 of the data must lie within 2
standard deviations.

The interesting part of this inequality is that it has been mathematically
proven to be true; i.e., it’s not an empirical or heuristic-based result. An exten-
sive description regarding Chebyshev’s inequality (including some advanced
mathematical explanations) is available online:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

What is a p-value?

The null hypothesis states that there is no correlation between a depend-
ent variable (such as y) and an independent variable (such as x). The p-value
is used to reject the null hypothesis if the p-value is small enough (< 0.005),
which indicates a higher significance. The threshold value for p is typically 1%
or 5%.

264  •  SQL Pocket Primer

There is no simple formula for calculating p-values, which are values that
are always between 0 and 1. In fact, p-values are statistical quantities to evalu-
ate the null hypothesis, and they are calculated by means of p-value tables or
via spreadsheet/statistical software.

THE MOMENTS OF A FUNCTION (OPTIONAL)

The previous sections describe several statistical terms that can be viewed
from the perspective of different moments of a function.

The moments of a function are measures that provide information regard-
ing the shape of the graph of a function. In the case of a probability distribu-
tion, the first four moments are defined as follows:

•	The mean is the first central moment.
•	The variance is the second central moment.
•	The skewness (discussed later) is the third central moment.
•	The kurtosis (discussed later) is the fourth central moment.

More detailed information (including the relevant integrals) regarding
moments of a function is available here:

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance

What is Skewness?

Skewness is a measure of the asymmetry of a probability distribution. A
Gaussian distribution is symmetric, which means that its skew value is zero (it’s
not exactly zero, but close enough for our purposes). In addition, the skewness
of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. A left-
sided skew means that the long tail is on the left side of the curve, with the
following relationships:

mean < median < mode

A right-sided skew means that the long tail is on the right side of the curve,
with the following relationships (compare with the left-sided skew):

mode < median < mean

If need be, you can transform skewed data to a normally distributed dataset
using one of the following techniques (which depends on the specific use-case):

•	Exponential transform
•	Log transform
•	Power transform

Perform an online search for more information regarding the preceding
transforms and when to use each of these transforms.

Introduction to Probability and Statistics  •  265

What is Kurtosis?

Kurtosis is related to the skewness of a probability distribution, in the sense
that both of them assess the asymmetry of a probability distribution. The kur-
tosis of a distribution is a scaled version of the fourth moment of the distribu-
tion, whereas its skewness is the third moment of the distribution. Note that
the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related concepts,
you can perform an online search for information regarding mesokurtic, lepto-
kurtic, and platykurtic types of “excess kurtosis.”

DATA AND STATISTICS

This section contains various subsections that briefly discuss some of the
challenges and obstacles that you might encounter when working with datasets.
This section and subsequent sections introduce you to the following concepts:

•	Correlation versus Causation
•	The bias-variance tradeoff
•	Types of bias
•	The Central Limit Theorem
•	Statistical inferences

Statistics typically involves data samples, which are subsets of observations
of a population. The goal is to find well-balanced samples that provide a good
representation of the entire population.

Although this goal can be very difficult to achieve, it’s also possible to
achieve highly accurate results with a very small sample size. For example, the
Harris poll in the USA has been used for decades to analysis political trends.
This poll computes percentages that indicate the favorability rating of political
candidates, and it’s usually within 3.5% of the correct percentage values. What’s
remarkable about the Harris poll is that its sample size is a mere 4,000 people
that are from the US population, which is greater than 325,000,000 people.

Another aspect to consider is that each sample has a mean and variance,
which do not necessarily equal the mean and variance of the actual population.
However, the expected value of the sample mean and variance equal the mean
and variance, respectively, of the population.

The Central Limit Theorem

Samples of a population have an interesting property. Suppose that you take
a set of samples {S1, S3, …, Sn} of a population and you calculate the mean of
those samples, which is {m1, m2, …, mn}. The Central Limit Theorem gives a
remarkable result: given a set of samples of a population and the mean value
of those samples, the distribution of the mean values can be approximated by
a Gaussian distribution. Moreover, as the number of samples increases, the
approximation becomes more accurate.

266  •  SQL Pocket Primer

Correlation versus Causation

In general, datasets have some features (columns) that are more significant
in terms of their set of values, and some features only provide additional infor-
mation that does not contribute to potential trends in the dataset. For example,
the passenger names in the list of passengers on the Titanic are unlikely to
affect the survival rate of those passengers, whereas the gender of the passen-
gers is likely to be an important factor.

In addition, a pair of significant features may also be “closely coupled” in
terms of their values. For example, a real estate dataset for a set of houses
will contain the number of bedrooms and the number of bathrooms for each
house in the dataset. As you know, these values tend to increase together and
also decrease together. For instance, have you ever seen a house that has 10
bedrooms and 1 bathroom, or a house that has 10 bathrooms and 1 bedroom?
If you did find such a house, would you purchase that house as your primary
residence?

The extent to which the values of two features change is called their cor-
relation, which is a number between −1 and 1. Two “perfectly” correlated fea-
tures have a correlation of 1, and two features that are not correlated have a
correlation of 0. In addition, if the values of one feature decrease when the val-
ues of another feature increase, and vice versa, then their correlation is closer
to −1 (and might also equal −1).

The causation between two features means that the values of one feature
can be used to calculate the values of the second feature (within some margin
of error).

Keep in mind this fundamental point about machine learning models: they
can provide correlation but they cannot provide causation.

Statistical Inferences

Statistical thinking relates processes and statistics, whereas statistical infer-
ence refers to the process you use to make inferences about a population.
Those inferences are based on statistics that are derived from samples of the
population. The validity and reliability of those inferences depend on random
sampling to reduce bias. There are various metrics that you can calculate to
help you assess the validity of a model that has been trained on a particular
dataset.

STATISTICAL TERMS RSS, TSS, R^2, AND F1 SCORE

Statistics is extremely important in machine learning, so it’s not surprising
that many concepts are common to both fields. Machine learning relies on a
number of statistical quantities in order to assess the validity of a model, some
of which are listed here:

•	RSS
•	TSS
•	R^2

Introduction to Probability and Statistics  •  267

The term RSS is the “residual sum of squares” and the term TSS is the
“total sum of squares.” Moreover, these terms are used in regression models.

As a starting point so we can simplify the explanation of the preceding terms,
suppose that we have a set of points {(x1,y1), . . . , (xn,yn)} in the Euclidean
plane. In addition, let’s define the following quantities:

•	(x,y) is any point in the dataset.
•	y is the y-coordinate of a point in the dataset.
•	y_ is the mean of the y-values of the points in the dataset.
•	y_hat is the y-coordinate of a point on a best-fitting line.

Just to be clear, (x,y) is a point in the dataset, whereas (x,y_hat) is the corre-
sponding point that lies on the best fitting line. With these definitions in mind,
the definitions of RSS, TSS, and R^2 are listed here (n equals the number of
points in the dataset):

RSS = (y − y_hat)∗∗2/n
TSS = (y − y_bar)∗∗2/n
R^2 = 1 − RSS/TSS

We also have the following inequalities involving RSS, TSS, and R^2:

0 <= RSS <= TSS
0 <= RSS/TSS <= 1
0 <= 1 − RSS/TSS <= 1
0 <= R^2 <= 1

When RSS is close to 0, then RSS/TSS is also close to zero, which means that
R^2 is close to 1. Conversely, when RSS is close to TSS, then RSS/TSS is close
to 1, and R^2 is close to 0. In general, a larger R^2 is preferred (i.e., the model is
closer to the data points), but a lower value of R^2 is not necessarily a bad score.

What is an F1 score?

In machine learning, an F1 score is for models that are evaluated on a
feature that contains categorical data, and the p-value is useful for machine
learning in general. An F1 score is a measure of the accuracy of a test, and it’s
defined as the harmonic mean of precision and recall. Here are the relevant
formulas, where p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive results)
r = (# of correct positive results)/(# of all relevant samples)

F1-score = 1/[((1/r) + (1/p))/2]
 = 2∗[p∗r]/[p+r]

The best value of an F1 score is 0 and the worst value is 0. An F1 score is
for categorical classification problems, whereas the R^2 value is typically for
regression tasks (such as linear regression).

268  •  SQL Pocket Primer

GINI IMPURITY, ENTROPY, AND PERPLEXITY

These concepts are useful for assessing the quality of a machine learning
model and the latter pair are useful for dimensionality reduction algorithms.

Before we discuss the details of Gini impurity, suppose that P is a set of
non-negative numbers {p1, p2, …, pn} such that the sum of all the numbers
in the set P equals 1. Under these two assumptions, the values in the set P
comprise a probability distribution, which we can represent with the letter p.

Now suppose that the set K contains a total of M elements, with k1 ele-
ments from class S1, k2 elements from class S2, . . ., and kn elements from class
Sn. Compute the fractional representation for each class as follows:

p1 = k1/M, p2 = k2/M, . . ., pn = kn/M
As you can surmise, the values in the set {p1, p2, …, pn} form a prob-

ability distribution. We’re going to use the preceding values in the following
subsections.

What is the Gini Impurity?

The Gini impurity (or score) is defined as follows, where {p1,p2,…,pn}
is a probability distribution:

Gini = 1 – [p1∗p1 + p2∗p2 + . . . + pn∗pn]
 = 1 – SUM pi∗pi (for all i, where 1<=i<=n)

Since each pi is between 0 and 1, then pi∗pi <= pi, which means that
1 = p1 + p2 + . . . + pn
 >= p1∗p1 + p2∗p2 + . . . + pn∗pn >= 0
Hence Gini impurity >= 0

Since the Gini impurity is the sum of the squared values of a set of prob-
abilities, the Gini impurity cannot be negative. Hence, we have derived the
following result:

0 <= Gini impurity <= 1

What is Entropy?

Entropy is a measure of the expected (“average”) number of bits required
to encode the outcome of a random variable. The calculation for the entropy
H (the letter E is reserved for Einstein’s formula) as defined via the following
formula:

H = (−1)∗[p1∗log p1 + p2 ∗ log p2 + . . . + pn ∗ log pn]
 = (−1)∗ SUM [pi ∗ log(pi)] (for all i, where 1<=i<=n)

Calculating Gini Impurity and Entropy Values

For our first example, suppose that we have three classes: A and B and
a cluster of 10 elements with 8 elements from class A and 2 elements from

Introduction to Probability and Statistics  •  269

class B. Therefore, p1 and p2 are 8/10 and 2/10, respectively. We can compute
the Gini score as follows:

Gini = 1 – [p1∗p1 + p2∗p2]
 = 1 – [64/100 + 04/100]
 = 1 − 68/100
 = 32/100
 = 0.32

We can also calculate the entropy for this example as follows:

Entropy = (−1)∗[p1 ∗ log p1 + p2 ∗ log p2]
 = (−1)∗[0.8 ∗ log 0.8 + 0.2 ∗ log 0.2]
 = (−1)∗[0.8 ∗ (−0.322) + 0.2 ∗ (−2.322)]
 = 0.8 ∗ 0.322 + 0.2 ∗ 2.322
 = 0.7220

For our second example, suppose that we have three classes A, B, C and a
cluster of 10 elements with 5 elements from class A, 3 elements from class B,
and 2 elements from class C. Therefore p1, p2, and p3 are 5/10, 3/10, and 2/10,
respectively. We can compute the Gini score as follows:

Gini = 1 – [p1∗p1 + p2∗p2 + p3∗p3]
 = 1 – [25/100 + 9/100 + 04/100]
 = 1 − 38/100
 = 62/100
 = 0.62

We can also calculate the entropy for this example as follows:

Entropy = (−1)∗[p1 ∗ log p1 + p2 ∗ log p2]
	 = (−1)∗[0.5∗log0.5 + 0.3∗log0.3 + 0.2∗log0.2]
	 = (−1)∗[−1 + 0.3∗(−1.737) + 0.2∗(−2.322)]
	 = 1 + 0.3∗1.737 + 0.2∗2.322
	 = 1.9855

In both examples, the Gini impurity is between 0 and 1. However, while the
entropy is between 0 and 1 in the first example, it’s greater than 1 in the second
example (which was the rationale for showing you two examples).

A set whose elements belong to the same class has a Gini impurity equal
to 0 and also its entropy equal to 0. For example, if a set has 10 elements that
belong to class S1, then

Gini = 1 – SUM pi∗pi
	 = 1 − p1∗p1
	 = 1 – (10/10)∗(10/10)
	 = 1 – 1 = 0

270  •  SQL Pocket Primer

Entropy = (−1)∗SUM pi∗log pi
	 = (−1) ∗ p1∗log pi
	 = (−1) ∗ (10/10) ∗ log(10/10)
	 = (−1)∗1∗0 = 0

Multi-Dimensional Gini Index

The Gini index is a one-dimensional index that works well because the value
is uniquely defined. However, when working with multiple factors, we need
a multidimensional index. Unfortunately, the multi-dimensional Gini index
(MGI) is not unique defined. While there have been various attempts to define
an MGI that has unique values, they tend to be non-intuitive and mathemati-
cally much more complex. More information about MGI is available online:

https://link.springer.com/appendix/10.1007/978-981-13-1727-9_5

What is Perplexity?

Suppose that we have a probability distribution q, and that {x1, x2, ..., xN}
is a set of sample values that is drawn from a model whose probability distri-
bution is p. In addition, suppose that b is a positive integer (it’s usually equal
to 2). Now define the variable S as the following sum (logarithms are in base
b not 10):

S = (−1/N) ∗ [log q(x1) + log q(x2) + . . . + log q(xN)]
 = (−1/N) ∗ SUM log q(xi)

The formula for the perplexity PERP of the model q is b raised to the
power S, as shown here:

PERP = b^S

If you compare the formula for entropy with the formula for S, you can see
that the formulas are similar, so the perplexity of a model is somewhat related
to the entropy of a model.

CROSS ENTROPY AND KL DIVERGENCE

Cross entropy is useful for understanding machine learning algorithms, and
frameworks such as TensorFlow, which supports multiple APIs that involve
cross entropy. KL divergence is relevant in machine learning, deep learning,
and reinforcement learning.

As an interesting example, consider the credit assignment problem, which
involves assigning credit to different elements or steps in a sequence. For
example, suppose that users arrive at a webpage by clicking on a previous page,
which was also reached by clicking on yet another webpage. Then, on the final
webpage, users click on an ad. How much credit is given to the first and sec-
ond webpages for the selected ad? One solution to this problem involves KL
Divergence.

Introduction to Probability and Statistics  •  271

What is Cross Entropy?

The following formulas for logarithms are presented here because they are
useful for the derivation of cross entropy in this section:

•	log (a ∗ b) = log a + log b
•	log (a / b) = log a − log b
•	log (1 / b) = (−1) ∗ log b

In a previous section, you learned that for a probability distribution P with
values {p1, p2, …, pn}, its entropy is H defined as follows:

H(P) = (−1)∗SUM pi∗log(pi)

Now let’s introduce another probability distribution Q whose values are
{q1, q2, …, qn}, which means that the entropy H of Q is defined as follows:

H(Q) = (−1)∗SUM qi∗log(qi)

We can define the cross entropy CE of Q and P as follows (notice the log qi
and log pi terms and recall the formulas for logarithms in the previous section):

CE(Q,P) = SUM (pi∗log qi) − SUM (pi∗log pi)
	 = SUM (pi∗log qi − pi∗log pi)
	 = SUM pi∗(log qi − log pi)
	 = SUM pi∗(log qi/pi)

What is KL Divergence?

Now that entropy and cross entropy have been discussed, we can easily
define the KL Divergence of the probability distributions Q and P as follows:

KL(P||Q) = CE(P,Q) − H(P)

The definitions of entropy H, cross entropy CE, and KL Divergence in this
appendix involve discrete probability distributions P and Q. However, these
concepts have counterparts in continuous probability density functions. The
mathematics involves the concept of a Lebesgue measure on Borel sets (which
is beyond the scope of this book) that are described online:

https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Borel_set
In addition to the KL Divergence, there is also the JS Divergence, also

called the Jenson-Shannon Divergence, which was developed by Johan Jensen
and Claude Shannon (who defined the formula for entropy). Although the JS
Divergence is based on the KL Divergence, there is an important difference:
the JS Divergence is symmetric and a true metric, whereas the KL Divergence
is neither. More information regarding JS Divergence is available online:

https://en.wikipedia.org/wiki/Jensen–Shannon_divergence

272  •  SQL Pocket Primer

WhatÕs Their Purpose?

The Gini impurity is often used to obtain a measure of the homogeneity of
a set of elements in a decision tree. The entropy of a set is an alternative to its
Gini impurity, and you will see both of these quantities used in machine learn-
ing models.

The perplexity value in NLP is one way to evaluate language models, which
are probability distributions over sentences or texts. This value provides an
estimate for the encoding size of a set of sentences.

Cross entropy is used in various methods in the TensorFlow framework, and
the KL Divergence is used in various algorithms, such as the dimensionality
reduction algorithm t-SNE. For more information about any of these terms, per-
form an online search to find online tutorials that provide detailed information.

COVARIANCE AND CORRELATION MATRICES

This section explains two important matrices: the covariance matrix and the
correlation matrix. Although these are relevant for PCA (Principal Component
Analysis) that is discussed later in this appendix, these matrices are not specific
to PCA, which is the rationale for discussing them in a separate section. If you
are familiar with these matrices, feel free to skim through this section.

The Covariance Matrix

As a reminder, the statistical quantity called the variance of a random vari-
able X is defined as follows:

variance(x) = [SUM (x – xbar)∗(x – xbar)]/n

A covariance matrix C is an nxn matrix whose values on the main diagonal
are the variance of the variables X1, X2, . . ., Xn. The other values of C are the
covariance values of each pair of variables Xi and Xj.

The formula for the covariance of the variables X and Y is a generalization
of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)∗(y – ybar)]/n

Notice that you can reverse the order of the product of terms (multiplica-
tion is commutative), and therefore the covariance matrix C is a symmetric
matrix:

covariance(X, Y) = covariance(Y, X)

Suppose that a CSV file contains four numeric features, all of which have
been scaled appropriately, and let’s call them x1, x2, x3, and x4. Then the covar-
iance matrix C is a 4 × 4 square matrix that is defined with the following entries
(pretend that there are outer brackets on the left side and the right side to
indicate a matrix):

Introduction to Probability and Statistics  •  273

cov(x1, x1) cov(x1, x2) cov(x1, x3) cov(x1, x4)
cov(x2, x1) cov(x2, x2) cov(x2, x3) cov(x2, x4)
cov(x3, x1) cov(x3, x2) cov(x3, x3) cov(x3, x4)
cov(x4, x1) cov(x4, x2) cov(x4, x3) cov(x4, x4)

Note that the following is true for the diagonal entries in the preceding
covariance matrix C:

var(x1, x1) = cov(x1, x1)
var(x2, x2) = cov(x2, x2)
var(x3, x3) = cov(x3, x3)
var(x4, x4) = cov(x4, x4)

In addition, C is a symmetric matrix, which is to say that the transpose of
matrix C (rows become columns and columns become rows) is identical to
the matrix C. The latter is true because (as you saw in the previous section)
cov(x, y) = cov(y, x) for any feature x and any feature y.

Covariance Matrix: An Example

Suppose we have the two-column matrix A defined as follows:

	 x y
A = | 1 1 | <= 6 × 2 matrix
	 | 2 1 |
	 | 3 2 |
	 | 4 2 |
	 | 5 3 |
	 | 6 3 |

The mean x_bar of column x is (1+2+3+4+5+6)/6 = 3.5, and the mean
y_bar of column y is (1+1+2+2+3+3)/6 = 2. Subtract x_bar from column x and
subtract y_bar from column y and we get matrix B, as shown here:

B = | −2.5 −1 | <= 6 × 2 matrix
 | −1.5 −1 |
 | −0.5     0 |
 | 0.5       0 |
 | 1.5       1 |
 | 2.5       1 |

Let Bt indicate the transpose of the matrix B (i.e., switch columns with
rows and rows with columns), which means that Bt is a 2 × 6 matrix, as
shown here:

Bt = |−2.5 −1.5 −0.5 0.5, 1.5, 2.5|
 |−1 −1 0 0 1 1 |

274  •  SQL Pocket Primer

The covariance matrix C is the product of Bt and B, as shown here:

C = Bt ∗ B = | 15.25 4 |
 | 4 8 |

Note that if the units of measure of features x and y do not have a similar
scale, then the covariance matrix is adversely affected. In this case, the solution
is simple: use the correlation matrix, which defined in the next section.

The Correlation Matrix

As you learned in the preceding section, if the units of measure of features
x and y do not have a similar scale, then the covariance matrix is adversely
affected. The solution involves the correlation matrix, which equals the covari-
ance values cov(x,y) divided by the standard deviation stdx and stdy of x and y,
respectively, as shown here:

corr(x,y) = cov(x,y)/[stdx ∗ stdy]

The correlation matrix no longer has units of measure, and we can use this
matrix to find the eigenvalues and eigenvectors.

Now that you understand how to calculate the covariance matrix and the
correlation matrix, you are ready for an example of calculating eigenvalues and
eigenvectors, which are the topic of the next section.

Eigenvalues and Eigenvectors

According to a well-known theorem in mathematics (whose proof you
can find online), the eigenvalues of a symmetric matrix are real numbers.
Consequently, the eigenvectors of C are vectors in a Euclidean vector space
(not a complex vector space).

Before we continue, a non-zero vector x' is an eigenvector of the matrix C if
there is a non-zero scalar lambda such that C∗x' = lambda ∗ x'.

Suppose that the eigenvalues of C are b1, b2, b3, and b4, in decreasing
numeric order from left-to-right, and that the corresponding eigenvectors of
C are the vectors w1, w2, w3, and w4. Then the matrix M that consists of the
column vectors w1, w2, w3, and w4 represents the principal components.

CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE

As a simple illustration of calculating eigenvalues and eigenvectors, sup-
pose that the square matrix C is defined as follows:

C = | 1 3 |
 | 3 1 |

Let I denote the 2 × 2 identity matrix, and let b’ be an eigenvalue of C,
which means that there is an eigenvector x' such that

Introduction to Probability and Statistics  •  275

C∗ x' = b' ∗ x', or
(C−b∗I)∗x' = 0 (the right side is a 2 × 1 vector)

Since x' is non-zero, that means the following is true (where det refers to
the determinant of a matrix):

det(C−b∗I) = det |1−b 3 | = (1−b)∗(1−b)−9 = 0
 |3 1−b|

We can expand the quadratic equation in the preceding line to obtain

det(C−b∗I) = (1−b)∗(1−b) − 9
 = 1 − 2∗b + b∗b − 9
 = −8 − 2∗b + b∗b
 = b∗b − 2∗b − 8

Use the quadratic formula (or perform factorization by visual inspection) to
determine that the solution for det(C-b∗I) = 0 is b = −2 or b = 4. Next, substi-
tute b = −2 into (C−b∗I)x' = 0 to obtain the following result:

|1−(−2) 3 | |x1| = |0|
|3 1−(−2)| |x2| |0|

The preceding reduces to the following identical equations:

3∗x1 + 3∗x2 = 0
3∗x1 + 3∗x2 = 0

The general solution is x1 = -x2, and we can choose any non-zero value for
x2, so let’s set x2 = 1, which yields x1 = −1. Therefore, the eigenvector [−1, 1]
is associated with the eigenvalue −2. In a similar fashion, if x' is an eigenvector
whose eigenvalue is 4, then [1, 1] is an eigenvector.

Notice that the eigenvectors [−1, 1] and [1, 1] are orthogonal because their
inner product is zero, as shown here:

[−1, 1] ∗ [1, 1] = (−1)∗1 + (1)∗1 = 0

In fact, the set of eigenvectors of a square matrix (whose eigenvalues are
real) are always orthogonal, regardless of the dimensionality of the matrix.

Gauss Jordan Elimination (optional)

This simple technique enables you to find the solution to systems of linear
equations “in place,” which involves a sequence of arithmetic operations to
transform a given matrix to an identity matrix.

The following example combines the Gauss-Jordan elimination technique
(which finds the solution to a set of linear equations) with the “bookkeeper’s
method,” which determines the inverse of an invertible matrix (its determinant
is non-zero).

276  •  SQL Pocket Primer

This technique involves two adjacent matrices: the left-side matrix is the
initial matrix and the right-side matrix is an identity matrix. Next, perform vari-
ous linear operations on the left-side matrix to reduce it to an identity matrix.
The matrix on the right side equals its inverse. For example, consider the fol-
lowing pair of linear equations whose solution is x = 1 and y = 2:

2∗x + 2∗y = 6
4∗x − 1∗y = 2

Step 1: Create a 2 × 2 matrix with the coefficients of x in column 1 and
the coefficients of y in column two, followed by the 2 × 2 identity matrix, and
finally a column from the numbers on the right of the equals sign:

| 2 2 | 1 0 | 6|
| 4 −1 | 0 1 | 2|

Step 2: Add (−2) times the first row to the second row:
| 2 2 | 1 0 |6 |
| 0 −5 | −2 1 |−10|

Step 3: Divide the second row by 5:
| 2 2 | 1 0 |6 |
| 0 −1 | −2/5 1/5 |−10/5|

Step 4: Add 2 times the second row to the first row:
| 2 0 | 1/5 2/5 | 2|
| 0 −1 | −2/5 1/5 |−2|

Step 5: Divide the first row by 2:
| 1 0 | −2/10 2/10 | 1|
| 0 −1 | −2/5 1/5 |−2|

Step 6: Multiply the second row by (−1):
| 1 0 | −2/10 2/10 |1|
| 0 1 | 2/5 −1/5 |2|

As you can see, the left-side matrix is the 2 × 2 identity matrix, the right-
side matrix is the inverse of the original matrix, and the right-most column is
the solution to the original pair of linear equations (x=1 and y=2).

PCA (PRINCIPAL COMPONENT ANALYSIS)

PCA is a linear dimensionality reduction technique for determining the
most important features in a dataset. This section discusses PCA because it’s a
very popular technique that you will encounter frequently. Other techniques
are more efficient than PCA, so later on it’s worthwhile to learn other dimen-
sionality reduction techniques as well.

Introduction to Probability and Statistics  •  277

Keep in mind the following points regarding the PCA technique:

•	PCA is a variance-based algorithm.
•	PCA creates variables that are linear combinations of the original

variables.
•	The new variables are all pair-wise orthogonal.
•	PCA can be a useful pre-processing step before clustering.
•	PCA is generally preferred for data reduction.

PCA can be useful for variables that are strongly correlated. If most of the
coefficients in the correlation matrix are smaller than 0.3, PCA is not helpful.
PCA provides some advantages: less computation time for training a model (for
example, using only five features instead of 100 features), a simpler model, and
the ability to render the data visually when two or three features are selected.
Here is a key point about PCA:

PCA calculates the eigenvalues and the eigenvectors of the covariance (or
correlation) matrix C.

If you have four or five components, you won’t be able to display them
visually, but you could select subsets of three components for visualization, and
perhaps gain some additional insight into the dataset.

The PCA algorithm involves the following sequence of steps:

1.	 Calculate the correlation matrix (from the covariance matrix) C of a
dataset.

2.	 Find the eigenvalues of C.
3.	 Find the eigenvectors of C.
4.	 Construct a new matrix that comprises the eigenvectors.

The covariance matrix and correlation matrix were explained in a previous
section. You also saw the definition of eigenvalues and eigenvectors, along with
an example of calculating eigenvalues and eigenvectors.

The eigenvectors are treated as column vectors that are placed adjacent to
each other in decreasing order (from left-to-right) with respect to their associ-
ated eigenvectors.

PCA uses the variance as a measure of information: the higher the variance,
the more important the component. In fact, PCA determines the eigenvalues
and eigenvectors of a covariance matrix (discussed in a previous section), and
constructs a new matrix whose columns are eigenvectors, ordered from left-to-
right in a sequence that matches the corresponding sequence of eigenvalues:
the left-most eigenvector has the largest eigenvalue, the next eigenvector has
the second-largest eigenvalue, and continuing in this fashion until the right-
most eigenvector (which has the smallest eigenvalue).

Alternatively, there is an interesting theorem in linear algebra: if C is a sym-
metric matrix, then there is a diagonal matrix D and an orthogonal matrix P (the

278  •  SQL Pocket Primer

columns are pair-wise orthogonal, which means their pair-wise inner product is
zero), such that the following holds:

C = P * D * Pt (where Pt is the transpose of matrix P)

The diagonal values of D are eigenvalues, and the columns of P are the cor-
responding eigenvectors of the matrix C.

Fortunately, we can use NumPy and Pandas to calculate the mean, stand-
ard deviation, covariance matrix, correlation matrix, as well as the matrices
D and P to determine the eigenvalues and eigenvectors.

As an interesting point: any positive definite square matrix has real-valued
eigenvectors, which also applies to the covariance matrix C because it is a real-
valued symmetric matrix.

The New Matrix of Eigenvectors

The previous section described how the matrices D and P are determined.
The left-most eigenvector of D has the largest eigenvalue, the next eigenvec-
tor has the second-largest eigenvalue, and so forth. The eigenvector with the
largest eigenvalue is the principal component of the dataset. The eigenvector
with the second-largest eigenvalue is the second principal component, and so
forth. You specify the number of principal components that you want via the
n_components hyper parameter in the PCA class of Sklearn.

As a simple and minimalistic example, consider the following code block
that uses PCA for a (somewhat contrived) dataset:

import numpy as np
from sklearn.decomposition import PCA
data = np.array([[-1,-1], [-2,-1], [-3,-2], [1,1], [2,1], [3,2]])
pca = PCA(n_components=2)
pca.fit(X)

Note that a trade-off here: we greatly reduce the number of components,
which reduces the computation time and the complexity of the model, but we
also lose some accuracy. However, if the unselected eigenvalues are small, we
lose only a small amount of accuracy.

Now let’s use the following notation:

•	NM denotes the matrix with the new principal components.
•	NMt is the transpose of NM.
•	PC is the matrix of the subset of selected principal components.
•	SD is the matrix of scaled data from the original dataset.
•	SDt is the transpose of SD.

Then the matrix NM is calculated via the following formula:

NM = PCt * SDt

Introduction to Probability and Statistics  •  279

Although PCA is a useful technique for dimensionality reduction, keep in
mind the following limitations of PCA:

•	less suitable for data with non-linear relationships
•	less suitable for special classification problems

A related algorithm is called Kernel PCA, which is an extension of PCA
that introduces a non-linear transformation so you can still use the PCA
approach.

WELL-KNOWN DISTANCE METRICS

There are several similarity metrics available, such as item similarity met-
rics, the Jaccard (user-based) similarity, and cosine similarity (which is used
to compare vectors of numbers). The following subsections introduce you to
these similarity metrics.

Another well-known distance metric is the so-called “taxicab” metric, which
is also called the Manhattan distance metric. Given two points A and B in a
rectangular grid, the taxicab metric calculates the distance between two points
by counting the number of “blocks” that must be traversed in order to reach B
from A (the other direction has the same taxicab metric value). For example, if
you need to travel two blocks north and then three blocks east in a rectangular
grid, then the Manhattan distance is 5.

There are various other metrics available, which you can learn about by
searching Wikipedia. In the case of NLP, the most commonly used distance
metric is calculated via the cosine similarity of two vectors, and it’s derived
from the formula for the inner (“dot”) product of two vectors.

Pearson Correlation Coefficient

The Pearson similarity is the Pearson coefficient between two vectors. You
are given random variables X and Y, and the following terms:

std(X) = standard deviation of X
std(Y) = standard deviation of Y
cov(X,Y) = covariance of X and Y

Then the Pearson correlation coefficient rho(X,Y) is defined as follows:

 cov(X,Y)
rho(X,Y) = -------------
 std(X)*std(Y)

The Pearson coefficient is limited to items of the same type. More informa-
tion about the Pearson correlation coefficient is available online:

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

280  •  SQL Pocket Primer

Jaccard Index (or Similarity)

The Jaccard similarity is based on the number of users that have rated item
A and B (the cardinality of A intersect B) divided by the number of users who
have rated either A or B (the cardinality of A union B). The Jaccard similarity is
based on unique words in a sentence and is unaffected by duplicates, whereas
the cosine similarity is based on the length of all word vectors (which changes
when duplicates are added). The choice between cosine similarity and Jaccard
similarity depends on whether word duplicates are important.

The following Python method illustrates how to compute the Jaccard simi-
larity of two sentences:

def get_jaccard_sim(str1, str2):
 set1 = set(str1.split())
 set2 = set(str2.split())
 set3 = set1.intersection(set2)
 # (size of intersection) / (size of union):
 return float(len(set3)) / (len(set1) + len(set2) − len(set3))

The Jaccard similarity can be used in situations involving Boolean values,
such as product purchases (true/false), instead of numeric values. More infor-
mation is available online:

https://en.wikipedia.org/wiki/Jaccard_index

Local Sensitivity Hashing (optional)

If you are familiar with hash algorithms, you know that they are algorithms
that create a hash table that associate items with a value. The advantage of hash
tables is that the lookup time to determine whether an item exists in the hash
table is constant.

Of course, it’s possible for two items to “collide,” which means that they
both occupy the same bucket in the hash table. In this case, a bucket can con-
sist of a list of items that can be searched in more or less constant time. If there
are too many items in the same bucket, then a different hashing function can
be selected to reduce the number of collisions. The goal of a hash table is to
minimize the number of collisions.

The Local Sensitivity Hashing (LSH) algorithm hashes similar input items
into the same “buckets.” In fact, the goal of LSH is to maximize the number
of collisions, whereas traditional hashing algorithms attempt to minimize the
number of collisions.

Since similar items end up in the same buckets, LSH is useful for data
clustering and nearest neighbor searches. Moreover, LSH is a dimensional-
ity reduction technique that places data points of high dimensionality closer
together in a lower-dimensional space, while simultaneously preserving the
relative distances between those data points. More details about LSH are avail-
able online:

https://en.wikipedia.org/wiki/Locality-sensitive_hashing

Introduction to Probability and Statistics  •  281

TYPES OF DISTANCE METRICS

Non-linear dimensionality reduction techniques can also have different dis-
tance metrics. For example, linear reduction techniques can use the Euclidean
distance metric (based on the Pythagorean theorem).

However, you need to use a different distance metric to measure the dis-
tance between two points on a sphere (or some other curved surface). In the
case of NLP, the cosine similarity metric is frequently used to measure the dis-
tance between word embeddings (which are vectors of floating point numbers
that represent words or tokens).

Distance metrics are used for measuring physical distances, and some well-
known distance metrics are listed here:

•	Euclidean distance
•	Manhattan distance
•	Chebyshev distance

The Euclidean algorithm also obeys the “triangle inequality,” which states
that for any triangle in the Euclidean plane, the sum of the lengths of any pair
of sides must be greater than the length of the third side.

In spherical geometry, you can define the distance between two points as
the arc of a great circle that passes through the two points (always selecting the
smaller of the two arcs when they are different).

In addition to physical metrics, there are algorithms that implement the
concept of “edit distance” (the distance between strings), as listed here:

•	Hamming distance
•	Jaro–Winkler distance
•	Lee distance
•	Levenshtein distance
•	Mahalanobis distance metric
•	Wasserstein metric

The Mahalanobis metric is based on an interesting idea: given a point P
and a probability distribution D, this metric measures the number of standard
deviations that separate point P from distribution D. More information about
Mahalanobis is available online:

https://en.wikipedia.org/wiki/Mahalanobis_distance
In the branch of mathematics called topology, a metric space is a set for

which distances between all members of the set are defined. Various metrics
are available (such as the Hausdorff metric), depending on the type of topology.

The Wasserstein metric measures the distance between two probability dis-
tributions over a metric space X. This metric is also called the “earth mover’s
metric” for the following reason: given two unit piles of dirt, it’s the measure of
the minimum cost of moving one pile on top of the other pile.

282  •  SQL Pocket Primer

KL Divergence bears some superficial resemblance to the Wasserstein
metric. However, there are some important differences between them.
Specifically, the Wasserstein metric has the following properties:

1.	 It is a metric.
2.	 It is symmetric.
3.	 It satisfies the triangle inequality.

The KL Divergence has the following properties:

1.	 It is not a metric (it’s a divergence).
2.	 It is not symmetric: KL(P,Q) != KL(Q,P).
3.	 It does not satisfy the triangle inequality.

Note that the JS (Jenson-Shannon) Divergence (which is based on the KL
Divergence) is a true metric, which would enable a more meaningful compari-
son with other metrics (such as the Wasserstein metric). More information is
available online:

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-
of-wasserstein-metric-compared-to-kullback-leibler-diverg

https://en.wikipedia.org/wiki/Wasserstein_metric

WHAT IS BAYESIAN INFERENCE?

Bayesian inference is an important technique in statistics that involves sta-
tistical inference and Bayes’ theorem to update the probability for a hypoth-
esis as more information becomes available. Bayesian inference is often called
“Bayesian probability,” and it’s important in dynamic analysis of sequential data.

Bayes Theorem

Given two sets A and B, let’s define the following numeric values (all of
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you’re in B)
P(B|A) = probability of being in B (given you’re in A)

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the
denominator to obtain these equations:

Introduction to Probability and Statistics  •  283

P(B)∗P(A|B) = P(Both) (#3)
P(A)∗P(B|A) = P(Both) (#4)

Now set the left-side of Equations #3 and #4 equal to each another, and
that gives us this equation:

P(B)∗P(A|B) = P(A)∗P(B|A) (#5)
Divide both sides of #5 by P(B) to obtain this well-known equation:
P(A|B) = P(A)∗P(A|B)/P(B) (#6)

Some Bayesian Terminology

In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) ∗ P(h)) / P(d)

There is a name for each of the four terms in the preceding equation, as
discussed below.

First, the posterior probability is P(h|d), which is the probability of hypoth-
esis h given the data d.

Second, P(d|h) is the probability of data d given that the hypothesis h was
true.

Third, the prior probability of h is P(h), which is the probability of hypoth-
esis h being true (regardless of the data).

Finally, P(d) is the probability of the data (regardless of the hypothesis)
We are interested in calculating the posterior probability of P(h|d) from the

prior probability p(h) with P(d) and P(d|h).

What is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the
highest probability, which is the maximum probable hypothesis. This can be
written as follows:

MAP(h) = max(P(h|d))

or

MAP(h) = max((P(d|h) * P(h)) / P(d))

or

MAP(h) = max(P(d|h) * P(h))

Why Use BayesÕ Theorem?

Bayes’ Theorem describes the probability of an event based on the prior
knowledge of the conditions that might be related to the event. If we know the
conditional probability, we can use Bayes’ rule to find out the reverse probabil-
ities. The previous statement is the general representation of the Bayes’ rule.

284  •  SQL Pocket Primer

SUMMARY

This appendix started with a discussion of probability, expected values, and
the concept of a random variable. Then you learned about some basic statisti-
cal concepts, such as mean, median, mode, variance, and standard deviation.
Next, you learned about the terms RSS, TSS, R^2, and F1 score. In addi-
tion, you had an introduction to the concepts of skewness, kurtosis, the Gini
Impurity, entropy, perplexity, cross entropy, and KL Divergence.

Next, you learned about covariance and correlation matrices and how to
calculate eigenvalues and eigenvectors. Then you were introduced to the
dimensionality reduction technique known as PCA (Principal Component
Analysis), after which you learned about Bayes’ Theorem.

A
AND, OR, and NOT operators, 153–154
Arithmetic aggregate operators

finding average values, 157–158
SELECT clause, 158–159

Arithmetic operator, 154–156
ASC keyword, 116
Atomicity, Consistency, Isolation, and

Durability (ACID), 5–6

B
Bayesian inference, 282–283
Bayes’ Theorem, 282–283
Binary large object (BLOB), 21
BIN() function, 180
Boolean operations
BETWEEN, 150
IN, 151
IS NULL, 151
LIKE, 151

Built-in number functions, 164–165

C
CASE keyword, 174–176
CAST() function, 181–183
CEIL() and FLOOR() function, 131
COALESCE() function, 181
COMBINED GROUP BY, HAVING, AND

ORDER BY CLAUSE, 101–102
Command line utilities, 241
COMMIT and ROLLBACK statement, 231
Common table expression (CTE)

definition, 166
JOIN keyword, 167–168
WITH keyword, 168
mean, standard deviation, and z-scores,

169–171
recursive SQL query, 168–169
single and multiple attributes, 167

Compass, 198–199
Consistency, Availability, and Partition

Tolerance (CAP) Theorem, 240–241
CONVERT() function, 181
CONV() function, 180–181
Correlated subqueries, 82
CREATE keyword, 19–20
Cross entropy, 270–272
CTE. see Common table expression (CTE)

D
Database backups, restoring data, and

upgrades, 241–242
Database engines, 225–226
Database normalization, 7–8
Database optimization, 232

performance tuning, 232–233
Database replication, 239–240
Database tables, 25–27

attributes, 37–38
create

from command line, 36–37
with Japanese text, 35–36
manual, 32–34
via SQL script, 34–35

INDEX

286  •  SQL Pocket Primer

creating tables from existing tables
creating copies of existing tables, 58
memory-stored tables, 56
temporary tables, 57–58

drop, 32
INFORMATION_SCHEMA table, 27–28
PROCESSLIST table, 28

Database user management
create and alter, 214–215
drop, 215–216
list users, 214
roles

create roles and grant privileges,
216–218

revoke roles and drop roles, 218
Data cleaning

from command line, 250–254
convert strings to date values, 248–250
handle mismatched attribute values,

247–248
replace multiple values into a single

value, 246–247
replace NULL with 0, 244
replace NULL with the average value,

244–246
Data Control Language (DCL), 18
Data Definition Language (DDL), 18
Data Manipulation Language (DML), 18
Data Query Language (DQL), 18
Date-related operations

arithmetic operations, 111–112
components and formats, 112–114
CURRENT_DATE() function, 106
date_format() function, 108–109
day and month-related functions,

107–108
NOW() function, 106
ranges, 109–110
SYSDATE function, 106
WEEK() function, 114–116

Denormalization, 227
DESC keyword, 116
Distance metrics, 281. See also Well-known

distance metrics
Distributed database (DDB), 240

E
Entity Relationship Diagram (ERD), 230
Entity Relationship Modeling (ERM), 230
Entity relationships, 64–65
EXPLAIN statement, 235–237

F
F1 score, 267
Fugue, 197–198

G
Gini impurity and entropy, 268–270
GREATEST() function, 180
GROUP BY clause, 90–93

and ROLLUP clause, 95–96
GROUP BY, HAVING, AND ORDER BY

CLAUSE, 100–101

H
HAVING clause, 91–92
Histogram, 90

on a table copy, 93–95

I
Index(es)

clustered index, 59
column selection, 62–63
considerations, 61–62
creation, 59–60
description, 58–59
disable indexes, 62
enable and disable, 60
finding columns, 63
invisible index, 59
overhead of, 61
unique index, 59
view and drop, 60–61

InnoDB, 3

J
Jaccard similarity, 280
JOIN statement, 68
CROSS JOIN statement, 69, 73
delete duplicate attributes, 74–75
four-table RDBMS, 69–71
INNER JOIN statement, 69, 71
LEFT JOIN statement, 69, 72
NATURAL JOIN, 73
RIGHT JOIN statement, 69, 72–73
SELF JOIN statement, 69
on tables with international text, 75–76

JSON data, 242–244

K
Keys

composite key, 80
foreign key, 79

 Index  •  287

parent_child.sql, 80–82
vs. primary keys, 79–80

non-key columns, 79
primary key, 79

KL Divergence, 270–272
Kurtosis, 265

L
LEAST() function, 180
Linear regression, 171–172
Local Sensitivity Hashing (LSH) algorithm,

280
Log, exponential, and trigonometric func-

tions, 132–134

M
MariaDB database, 3
MATCH() function and text search, 165–166
MAX() and MIN() functions, 138–139

with subqueries, 139–143
top-ranked numeric values, 143–144

Maximum a posteriori (MAP) hypothesis,
283

Money transfer between bank accounts,
RDBMS, 6–7

MongoDB
APIs, 191–192
collections and documents
aggregate() function, 197
cellphones collection, 194–195
CREATE, 193
document format, 193
find() function, 195–196
insertOne() function, 196
mongoimport utility, 197
update() function, 196

Compass, 198–199
features, 190
Fugue, 197–198
installation, 190
launch, 190–191
meta characters, 192–193
PyMongo, 199–200

Multi-dimensional Gini index (MGI), 270
Multiple-row functions, 163
MyRocks, 3
MySQL

aliases, 38–39
connector/Python API
create_fun_table.py, 205–206
database connection, 204

mysql_pandas.py, 204–205
database operations

create, 22
display, 22–23
drop, 23
import/export, 23–24
rename, 24–25

data types
BLOB and TEXT, 21
CHAR and VARCHAR, 20
FLOAT and DOUBLE, 21
string-based, 20–21

download, 2
installation, 3
vs. MariaDB, 3
storage engines, 3
tables (see Database tables)
useful links for, 3–4

N
NewSQL, 188
Non-correlated subquery, 82
Non-relational database systems

advantages, 187
document store, 186
graph databases, 186
key/value store, 186
wide document store, 186

Normalization, 226–227
NoSQL, 187–188

databases, 189–190
data types, 188–189
vs. RDBMSs, 188

NULL values, 176–179
Numeric functions

calculated columns, 128–129
FORMAT() function, 126
LEN() function, 126–127
MOD() function, 127–128
POSITION() function, 128
ROUND() function, 128

O
OFFSET() keyword, 145
2021 Olympics medals in Japan
OlympicsJAPN2021.csv, 97
olympics.sql, 97–98
RANK() operator, 98–99
ROLLUP keyword, 98

ORDER BY clause, 91–93
with aggregate functions, 160–161

288  •  SQL Pocket Primer

ascending or descending order, 159–160
largest distinct values and frequency of

values, 161–163

P
PARTITION BY clause, 99
Perplexity, 270
Probability

conditional probability, 258
description, 257
expected value calculation, 258–260
random variables, 260

discrete and continuous, 260
well-known probability distributions,

260–261
PyMongo, 199–200

Q
Query execution order, 67–68
Query optimization

cost-based optimization, 234
performance tuning tools, 233–234
table fragmentation, 234
table partitioning, 234–235

R
RAND() function, 132
Relational DataBase Management System

(RDBMS), 4
ACID, 5–6
characteristics, 5
logical schema, 5
MongoDB, 189
needs, 6–7
normalization, 7–8
vs. NoSQL, 188–189
vs. tables, 4–5, 8–9
customers table, 10–11
item_desc table, 13–14
line_items table, 12–13
purchase_orders table, 11–12

ROUND() function, 129–130
RSS, TSS, and R^2, 266–267

S
SAVEPOINT statement, 231–232
Scalable databases, 240
Scalar functions, 135
Scaling

federation, 239
sharding, 238–239

SQL tuning, 237–238
Schemas, 227–228
SESSION() function, 181
Set operators, 152–153
Single-row functions, 163–164
Skewness, 264
SQLAlchemy and Pandas, 200–203
SQLite

DB Browser, 209
features, 207
installation, 207–208
SQLiteStudio, 208–209

SQLiteDict, 209–211
SQLiteStudio, 208–209
Statistics

Bayesian inference, 282–283
Central Limit Theorem, 265
Chebyshev’s inequality, 263
correlation vs. causation, 266
covariance and correlation matrices,

272–274
Cross entropy and KL Divergence,

270–272
eigenvalues and eigenvectors, 274–275
F1 score, 267
Gauss-Jordan elimination technique,

275–276
Gini impurity and entropy, 268–270
mean, median and mode, 261–262
moments of a function, 264
multi-dimensional Gini index (MGI), 270
PCA technique, 276–278
perplexity, 270
population, sample, and population vari-

ance, 263
p-value, 263–264
RSS, TSS, and R^2, 266–267
skewness and kurtosis, 264–265
statistical inference, 266
variance and standard deviation, 262–263
well-known distance metrics

Jaccard similarity, 280
Local Sensitivity Hashing (LSH) algo-

rithm, 280
Pearson correlation coefficient, 279
types, 281–282

Stored functions, 222–223
Stored procedures

advantages and disadvantages, 219
double_number.sql, 221–222
features, 218–219

 Index  •  289

IN and OUT parameters, 219
stored1.sql, 220–221

String functions
CONCAT() function, 147–148
LCASE() function, 146
MID() function, 146–147
SUBSTR() function, 147–150
UCASE() function, 146

String operators, 165
Structured Query Language (SQL)

ad hoc reports, 119
aggregate functions, 136–138
arithmetic aggregate operators

finding average values, 157–158
SELECT clause, 158–159

arithmetic operator, 154–156
ASC keyword, 116
BIN() function, 180
boolean operations
BETWEEN, 150
IN, 151
IS NULL, 151
LIKE, 151

built-in number functions, 164–165
CASE keyword, 174–176
CAST() function, 181–183
CEIL() and FLOOR() function, 131
character functions

case manipulation functions, 164
character manipulation functions, 164

COALESCE() function, 181
column alias, 116–117
CONVERT() function, 181
CONV() function, 180–181
CREATE keyword, 19–20
CTE (see Common table expression

(CTE))
date-related operations

arithmetic operations, 111–112
components and formats, 112–114
CURRENT_DATE() function, 106
date_format() function, 108–109
day and month-related functions,

107–108
NOW() function, 106
ranges, 109–110
SYSDATE function, 106
WEEK() function, 114–116

DCL and DDL, 18
DESC keyword, 116
DQL and DML, 18

formatting tools, 29
four-table join, 102–105
GREATEST() function, 180
LEAST() function, 180
linear regression, 171–172
log, exponential, and trigonometric func-

tions, 132–134
MATCH() function and text search,

165–166
MAX() and MIN() functions, 138–139

with subqueries, 139–143
top-ranked numeric values, 143–144

modification times, 110–111
multiple-row functions, 163
NULL values, 176–179
numeric functions

calculated columns, 128–129
FORMAT() function, 126
LEN() function, 126–127
MOD() function, 127–128
POSITION() function, 128
ROUND() function, 128

object privileges, 19
OFFSET() keyword, 145
AND, OR, and NOT operators, 153–154
ORDER BY clause

with aggregate functions, 160–161
ascending or descending order,

159–160
largest distinct values and frequency of

values, 161–163
query execution order, 67–68
RAND() function, 132
ROUND() function, 129–130
scalar functions, 135
SESSION() function, 181
set operators, 152–153
single-row functions, 163–164
statements, 19
string functions
CONCAT() function, 147–148
LCASE() function, 146
MID() function, 146–147
SUBSTR() function, 147–150
UCASE() function, 146

string operators, 165
summary reports, 118–119

cumulative totals, 123
sold items, 119–120
sold price, 120–121
subtotals, 122

290  •  SQL Pocket Primer

system privileges, 18
TCL, 18
user-defined functions, 218
variables, 117–118
window functions

aggregate functions, 173
description, 172
functions for time series, 173
RANK and DENSE_RANK functions,

173–174
rank-related functions, 173
statistical functions, 173

Subquery
to find customers without purchase

orders, 83–85
heights.sql, 88–90
MAX() and AVG() functions, 88
IN and NOT IN clause, 85–86
SOME, ALL, ANY clause, 86–88
types, 82–83

Summary reports, 118–119
cumulative totals, 123
sold items, 119–120
sold price, 120–121
subtotals, 122

System privileges, 18

T
Transaction, 230–231
Transaction Control Language (TCL), 18
Trigger, 223–225

U
User-defined functions, 218

V
Variables, 117–118

random, 260
View

advantages, 77–78
CREATE VIEW, 77
description, 76–77
DROP VIEW, 77
multiple table, 78
single table, 78
updatable view, 79

W
Well-known distance metrics

Jaccard similarity, 280
Local Sensitivity Hashing (LSH)

algorithm, 280
Pearson correlation coefficient, 279
types, 281–282

Window functions
aggregate functions, 173
description, 172
functions for time series, 173
RANK and DENSE_RANK functions,

173–174
rank-related functions, 173
statistical functions, 173

Workbench, 228–230

