

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. All trademarks that appear or are otherwise referred to in this
work belong to their respective owners. Neither Morgan Kaufmann Publishers nor the authors and other
contributors of this work have any relationship or affiliation with such trademark owners nor do such
trademark owners confirm, endorse or approve the contents of this work. Readers, however, should contact
the appropriate companies for more information regarding trademarks and any related registrations.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission
of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:
phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also
complete your request online via the Elsevier homepage (http://elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Harrington, Jan L.
  Relational database design and implementation : clearly explained /
Jan L. Harrington.—3rd ed.
    p. cm.
  Rev. ed of: Relational database design clearly explained, 1998.
  Includes bibliographical references and index.
  ISBN 978-0-12-374730-3
  1. Relational databases.  2.  Database design.  I.  Harrington, Jan L.
Relational database design clearly explained.  II.  Title.
  QA76.9.D26H38 2009
  005.75’6—dc22	 2009022380

ISBN: 978-0-12-374730-3

For information on all Morgan Kaufmann publications,

visit our Web site at www.mkp.com or
www.elsevierdirect.com

Printed in the United States of America

09  10  11  12  13    5  4  3  2  1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

My favorite opening line for the database courses I teach is “Probably the most misun-
derstood term in all of business computing is database, followed closely by the word
relational.” At that point, some students look a bit smug because they are absolutely,
positively sure that they know what a database is and that they also know what is means
for a database to be “relational.” Unfortunately, the popular press, with the help of some
PC software developers, long ago distorted the meaning of both terms, which led many
businesses to think that designing a database is a task that could be left to any clerical
worker who had taken a one-week course on using database software. As you will see
throughout this book, however, nothing could be further from the truth.

xv

Preface to the Third Edition

Note: The media has given us a number of nonsense computer terms such as telephone modem
(we’re modulating an analog signal, not a telephone), software program (the two words mean
pretty much the same thing), and cable modem and DSL modem (they’re not modems; they
don’t modulate and demodulate analog signals; they are more properly termed codecs that code
and decode digital signals). It’s all in an attempt to make computer jargon easier for people to
understand, but it has generally had the effect of introducing misunderstandings.

This book is intended for anyone who has been given the responsibility for designing
or maintaining a relational database. It will teach you how to look at the environment
your database serves and to tailor the design of the database to the environment. It will
also teach you how to design the database so it provides accurate and consistent data,
avoiding the problems that are common to poorly designed databases. In addition, you
will learn about design compromises that you might choose to make in the interest of
database application performance and the consequences of making such choices.

If you are a college instructor, you may choose to use this book as a text in an under-
graduate database management course. I’ve been doing that for a number of years (along
with SQL Clearly Explained, this book’s companion volume) and find that students learn
from it quite well. They appreciate the straightforward language rather than a text that
forces them to struggle with overly academic sentence structures. They also like the many
real-world examples that appear throughout the book.

Changes in the Third Edition
The core of this book—Parts II and III, the bulk of the content of the previous editions—
remains mostly unchanged from the second edition. Relational database theory has been
relatively stable for more than 30 years (with the exception of the addition of sixth
normal form) and requires very little updating from one edition to the next, although

xvi Preface to the Third Edition

it has been seven years since the second edition appeared. The major changes are the
discussions of fifth and sixth normal forms. The first two case studies in Part III have
been updated; the third case study is new.

The chapter on object-relational databases has been removed from this edition, as well
as object-relational examples in the case studies. There are two reasons for this. First,
support for objects within a relational environment has largely been provided as a part
of the SQL standard rather than as changes to underlying relational database theory.
Second, the direction that SQL’s object-relational capabilities have taken since the
second edition appeared involves a number of features that violate relational design
theory, and presenting them in any depth in this book would be more confusing than
helpful.

By far the biggest change, however, is the addition of the new Parts I and IV. Part I
contains three chapters that provide a context for database design. Database require-
ments don’t magically appear at the point an organization needs a database, although
looking at the previous editions of this book, you might think they did. Chapter 1
presents several organizational aspects of database management, including the hardware
architectures on which today’s databases run, and a look at service-oriented architecture
(SOA), an information systems technique in which databases, like other IT functions,
become services provided throughout an organization.

Chapter 2 provides an overview of several systems analysis methods to show you how
organizations arrive at database requirements. In Chapter 3 you’ll discover why we care
about good database design. (It really does matter!)

Part IV provides an overview of a variety of database implementation issues that you
may need to consider as you design a relational database. The topics include concurrency
control (keeping the database consistent while multiple users interact with it at the same
time), data warehousing (understanding issues that may arise when your operational
database data are destined for data mining), data quality (ensuring that data are as
accurate and consistent as possible), and XML (understanding how today’s databases
support XML).

The addition of Parts I and IV also make this book better suited for use as a
textbook in a college course. When I used the second edition as a text in my classes,
I added supplementary readings to cover that material. It’s nice to have it all in once
place!

The material about older data models that was presented in Chapter 3 in the second
edition has been moved into an appendix. None of the material in the body of the book
depends on it any longer. You can read it if you are interested in knowing what preceded
the relational data model, but you won’t lose anything significant in terms of relational
databases if you skip it.

xviiPreface to the Third Edition

What You Need to Know
When the first edition of this book appeared in 1999, you needed only basic computer
literacy to understand just about everything the book discussed. The role of networking
in database architectures has grown so much in the past decade that in addition to
computer literacy, you now need to understand some basic network hardware and soft-
ware concepts (e.g., the Internet, interconnection devices such as routers and switches,
and servers).

Note: It has always been a challenge to decide whether to teach students about systems
analysis and design before or after database management. Now we worry about where
a networking course should come in the sequence. It’s tough to understand databases
without networking, but at the same time, some aspects of networking involve
database issues.

As always, getting this book onto paper involved an entire cast of characters, all of whom
deserve thanks for their efforts. First are the people at Morgan Kaufmann:

n	 Rick Adams, my editor of many years. (His official title is Senior Acquisitions
Editor).

n	 Heather Scherer, Rick’s capable assistant
n	 Marilyn Rash, the project manager. We’ve worked together on a number of

books over many years and it’s always a pleasure.
n	 Eric DeCicco, the designer of the wonderful cover.
n	 The folks who clean up after me: Debbie Prato, copyeditor, and Samantha

Molineaux, proofreader.
n	 Ted Laux, the indexer.
n	 Greg deZam-O’Hare and Sarah Binns who pulled it all together at the end.

A special thanks goes out to my colleague, Dr. Craig Fisher, who is a well-known expert
on data quality. He provided me with a wealth of resources on that topic, which he
thinks should be a part of everyone’s IT education.

JLH

xix

Acknowledgments

®

IPart

Introduction

The first part of this book deals with the organizational environment
in which databases exist. In it you will find discussions about various
hardware and network architectures on which databases operate and
an introduction to database management software. You will also learn
about alternative processes for discovering exactly what a database
needs to do for an organization.

Can you think of a business that doesn’t have a database that’s stored
on a computer? Maybe you can’t, but I know of one: a small used
paperback bookstore. A customer brings in used paperbacks and
receives credit for them based on their condition and, in some cases,
the subject matter of the books. That credit can be applied to purchas-
ing books from the store at approximately twice what the store pays
to acquire the books. The books are shelved by general type (for
example, mystery, romance, and nonfiction), but otherwise they are
not categorized. The store doesn’t have a precise inventory of what is
on its shelves.

To keep track of customer credits, the store has a 4 × 6 card for each
customer on which employees write a date and an amount of credit.
The credit amount is incremented or decremented, based on a cus-
tomer’s transactions. The cards themselves are stored in two long steel
drawers that sit on a counter. (The cabinet from which the drawers
were taken is nowhere in evidence.) Sales slips are written by hand,
and cash is kept in a drawer. (Credit card transactions are processed
by a stand-alone terminal that uses a phone line to dial up the process-
ing bank for card approval.) The business is small, and their system
seems to work, but it certainly is an exception.

Although this bookstore doesn’t have a computer or a database, it does
have data. In fact, like a majority of businesses today, it relies on data
as the foundation of what it does. The bookstore’s operations require
the customer credit data; it couldn’t function without it.

Data form the basis of just about everything an organization that deals
with money does. (It’s possible to operate a business using bartering
and not keep any data, but that certainly is a rarity.) Even a Girl Scout
troop selling cookies must store and manipulate data. The troop needs

3

1Chapter

The Database Environment

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

4 CHAPTER 1  The Database Environment

to keep track of how many boxes of each type of cookie have been
ordered and by whom. They also need to manage data about money:
payments received, payments owed, amount kept by the troop,
amount sent to the national organization. The data may be kept on
paper, but they still exist, and manipulation of those data is central
to the group’s functioning. In fact, just about the only business that
doesn’t deal with data is a lemonade stand that gets its supplies from
Mom’s kitchen and never has to pay Mom back. The kids take the
entire gross income of the lemonade stand without having to worry
about how much is profit.

Data have always been part of businesses. Until the mid-twentieth
century, those data were processed manually. Because they were stored
on paper, retrieving data was difficult, especially if the volume of data
was large. In addition, paper documents tended to deteriorate with
age. Computers changed that picture significantly, making it possible
to store data in much less space, to retrieve data more easily, and,
usually, to store it more permanently.

The downside to the change to automated data storage and retrieval
was the need for specialized knowledge on the part of those who set
up the computer systems. In addition, it costs more to purchase the
equipment needed for electronic data manipulation than it does to
purchase some file folders and file cabinets. Nonetheless, the ease of
data access and manipulation that computing has brought to business
has outweighed most other considerations.

Defining a Database
Nearly 30 years ago, when I first started working with databases, I
would begin a college course I was teaching in database management
with the sentence “There is no term more misunderstood and misused
in all of business computing than database.” Unfortunately, that is still
true to some extent, and we can still lay much of the blame on com-
mercial software developers. In this section we’ll explore why that is
so and provide a complete definition for a database.

Lists and Files
A portion of the data used in a business is represented by lists of
things. For example, most of us have a contact list that contains
names, addresses, and phone numbers. Businesspeople also com-
monly work with planners that list appointments. In our daily lives,

5Defining a Database

we have shopping lists of all kinds, as well as “to do” lists. For many
years, we handled these lists manually, using paper, day planners, and
a pen. It made sense to many people to migrate these lists from paper
to their PCs.

Software that helps us maintain simple lists stores those lists in files,
generally one list per physical file. The software that manages the list
typically lets you create a form for data entry, provides a method of
querying the data based on logical criteria, and lets you design output
formats. List management software can be found not only on desktop
and laptop computers but also on our handheld computing devices.
Unfortunately, list management software has been marketed under
the name “database” since the advent of PCs. People have therefore
come to think of anything that stores and manipulates data as data-
base software. Nonetheless, a list handled by a manager is not a
database.

Note: For a more in-depth discussion of the preceding issue, see the first
section of Appendix A.

Databases
There is a fundamental concept behind all databases: There are things
in a business environment, about which we need to store data, and
those things are related to one another in a variety of ways. In fact, to
be considered a database, the place where data are stored must contain
not only the data but also information about the relationships between
those data. We might, for example, need to relate our customers to
the orders they place with us and our inventory items to orders for
those items.

The idea behind a database is that the user—either a person working
interactively or an application program—has no need to worry about
how data are physically stored on disk. The user phrases data manipu-
lation requests in terms of data relationships. A piece of software
known as a database management system (DBMS) then translates
between the user’s request for data and the physical data storage.

Why, then, don’t the simple “database” software packages (the list
managers) produce true databases? Because they can’t represent rela-
tionships between data, much less use such relationships to retrieve
data. The problem is that list management software has been marketed

6 CHAPTER 1  The Database Environment

for years as “database” software, and many purchasers do not under-
stand exactly what they are purchasing. Making the problem worse is
that a rectangular area of a spreadsheet is also called a “database.” As
you will see later in this book, a group of cells in a spreadsheet is even
less of a database than a stand-alone list. Because this problem of
terminology remains, confusion about exactly what a database
happens to be remains as well.

Data “Ownership”
Who “owns” the data in your organization? Departments? IT? How
many databases are there? Are there departmental databases, or is
there a centralized, integrated database that serves the entire organiza-
tion? The answers to these questions can determine the effectiveness
of a company’s database management.

The idea of data ownership has some important implications. To see
them, we must consider the human side of owning data. People con-
sider exclusive access to information a privilege and are often proud
of their access: “I know something you don’t know.” In organizations
where small databases have cropped up over the years, the data in a
given database are often held in individual departments that are reluc-
tant to share that data with other organizational units.

One problem with these small databases is that they may contain
duplicated data that are inconsistent. A customer might be identified
as “John J. Smith” in the marketing database but as “John Jacob
Smith” in the sales database. It also can be technologically difficult to
obtain data stored in multiple databases. For example, one database
may store a customer number as text, while another stores it as an
integer. An application will be unable to match customer numbers
between the two databases. In addition, attempts to integrate the data
into a single, shared data store may run into resistance from the data
“owners,” who are reluctant to give up control of their data.

In yet other organizations, data are held by the IT department, which
carefully doles out access to those data as needed. IT requires supervi-
sor signatures on requests for accounts and limits access to as little
data as possible, often stating requirements for system security. Data
users feel as if they are at the mercy of IT, even though the data are
essential to corporate functioning.

The important psychological change that needs to occur in either of
the preceding situations is that data belong to the organization and

7Data “Ownership”

that they must be shared as needed throughout the organization
without unnecessary roadblocks to access. This does not mean that an
organization should ignore security concerns but that, where appro-
priate, data should be shared readily within the organization.

Service-Oriented Architecture
One way to organize a company’s entire information systems func-
tions is service-oriented architecture (SOA). In an SOA environment, all
information systems components are viewed as services that are pro-
vided to the organization. The services are designed so they interact
smoothly, sharing data easily when needed.

An organization must make a commitment to implement SOA.
Because services need to be able to integrate smoothly, information
systems must be designed from the top down. (In contrast, organiza-
tions with many departmental databases and applications have grown
from the bottom up.) In many cases, this may mean replacing most
of an organization’s existing information systems.

SOA certainly changes the role of a database in an organization in that
the database becomes a service provided to the organization. To serve
that role, a database must be designed to integrate with a variety of
departmental applications. The only way for this to happen is for the
structure of the database to be well documented, usually in some form
of data dictionary. For example, if a department needs an application
program that uses a customer’s telephone number, application pro-
grammers first consult the data dictionary to find out that a telephone
number is stored with the area code separate from the rest of the
phone number. Every application that accesses the database must use
the same telephone number format. The result is services that can
easily exchange data because all services are using the same data
formats.

Shared data also place restrictions on how changes to the data diction-
ary are handled. Changes to a departmental database affect only that
department’s applications, but changes to a database service may affect
many other services that use the data. An organization must therefore
have procedures in place for notifying all users of data when changes
are proposed, giving the users a chance to respond to the proposed
change and deciding whether the proposed change is warranted. As
an example, consider the effect of a change from a five- to nine-digit
zip code for a bank. The CFO believes that there will be a significant
savings in postage if the change is implemented. However, the trans-

8 CHAPTER 1  The Database Environment

parent windows in the envelopes used to mail paper account state-
ments are too narrow to show the entire nine-digit zip code. Envelopes
with wider windows are very expensive, so expensive that making the
change will actually cost more than leaving the zip codes at five digits.
The CFO was not aware of the cost of the envelopes; the cost was
noticed by someone in the purchasing department.

SOA works best for large organizations. It is expensive to introduce
because typically organizations have accumulated a significant number
of independent programs and data stores that will need to be replaced.
Just determining where all the data are stored, who controls the data,
which data are stored, and how those data are formatted can be daunt-
ing tasks. It is also a psychological change for those employees who
are used to owning and controlling data.

Organizations undertake the change to SOA because in the long run
it makes information systems easier to modify as corporate needs
change. It does not change the process for designing and maintaining
a database, but it does change how applications programs and users
interact with it.

Database Software: DBMSs
A wide range of DBMS software is available today. Some, such as
Microsoft Access1 (part of the Windows Microsoft Office suite), are
designed for single users only.2 The largest proportion of today’s
DBMSs, however, are multiuser, intended for concurrent use by many
users. A few of those DBMSs are intended for small organizations,
such as FileMaker Pro3 (cross-platform, multiuser) and Helix4 (Macin-
tosh multiuser). Most, however, are intended for enterprise use. You
may have heard of DB25 or Oracle,6 both of which have versions for
small businesses but are primarily intended for large installations
using mainframes. As an alternative to these commercial products,

1http://office.microsoft.com/en-us/access/default.aspx
2It is possible to “share” an Access database with multiple users, but Microsoft never
intended the product to be used in that way. Sharing an Access database is known
to cause regular file corruption. A database administrator working in such an envi-
ronment once told me that she had to rebuild the file “only once every two or three
days.”
3www.filemaker.com
4www.qsatoolworks.com
5www.306.ibm.com/software/data/db2/alphablox
6www.oracle.com

9Database Software: DBMSs

many businesses have chosen to use open source products such as
MySQL.7

For the most part, enterprise-strength DBMSs are large, expensive
pieces of software. (The exception to the preceding sentence, of course,
is open-source products.) They require significant training and exper-
tise on the part of whoever will be implementing the database. It is
not unusual for a large organization to employ one or more people
to handle the physical implementation of the database along with a
team (or teams) of people to develop the logical structure of the data-
base. Yet more teams may be responsible for developing application
programs that interact with the database and provide an interface for
those who cannot, or should not, interact with the database directly.

Regardless of the database product you choose, you should expect to
find the following capabilities:

■	 A DBMS must provide facilities for creating the structure of the
database. Developers must be able to define the logical structure of
the data to be stored, including the relationships among data.

■	 A DBMS must provide some way to enter, modify, and delete data.
Small DBMSs typically focus on form-based interfaces; enterprise-
level products begin with a command-line interface. The most com-
monly used language for interacting with a relational database (the
type we are discussing in this book) is SQL (originally called Struc-
tured Query Language), which has been accepted throughout much
of the world as a standard data manipulation language for relational
databases.

■	 A DBMS must also provide a way to retrieve data. In particular, users
must be able to formulate queries based on the logical relationships
among the data. Smaller products support form-based querying,
while enterprise-level products support SQL. A DBMS should
support complex query statements using Boolean algebra (the AND,
OR, and NOT operators) and should also be able to perform at least
basic calculations (for example, computing totals and subtotals) on
data retrieved by a query.

■	 Although it is possible to interact with a DBMS either with basic
forms (for a smaller product) or at the SQL command line (for

7See www.mysql.com. The “community” version of the product is free but does not
include any technical support; an enterprise version includes technical support and
therefore is fee-based.

10 CHAPTER 1  The Database Environment

enterprise-level products), doing so requires some measure of spe-
cialized training. A business usually has employees who must
manipulate data but don’t have the necessary expertise, can’t or
don’t want to gain the necessary expertise, or shouldn’t have direct
access to the database for security reasons. Application developers
therefore create programs that simplify access to the database for
such users. Most DBMSs designed for business use provide some
way to develop such applications. The larger the DBMS, the more
likely it is that application development requires traditional pro-
gramming skills. Smaller products support graphic tools for
“drawing” forms and report layouts.

■	 A DBMS should provide methods for restricting access to data. Such
methods often include creating user names and passwords specific
to the database and tying access to data items to the user name.
Security provided by the DBMS is in addition to security in place
to protect an organization’s network.

Database Hardware Architecture
Because databases are almost always designed for concurrent access
by multiple users, database access has always involved some type of
computer network. The hardware architecture of these networks has
matured along with more general computing networks.

Centralized
Originally network architecture was centralized, with all processing
done on a mainframe. Remote users—who were almost always located
within the same building or at least the same office park—worked
with dumb terminals that could accept input and display output but
had no processing power of their own. The terminals were hard-wired
to the mainframe (usually through some type of specialized control-
ler) using coaxial cable, as in Figure 1.1. During the time that the
classic centralized architecture was in wide use, network security also
was not a major issue. The Internet was not publicly available, the
World Wide Web did not exist, and security threats were predomi-
nantly internal.

Centralized database architecture in the sense we have been describing
is rarely found today. Instead, those organizations that maintain a
centralized database typically have both local and remote users con-
necting using PCs, LANs, and a WAN of some kind. As you look at

11Database Hardware Architecture

Figure 1.2, keep in mind that although the terminals have been
replaced with PCs, the PCs are not using their own processing power
when interacting with the database. All processing is still done on the
mainframe.

From the point of view of an IT department, the centralized architec-
ture has one major advantage: control. All the computing is done on
one computer to which only IT has direct access. Software manage-
ment is easier because all software resides and executes on one
machine. Security efforts can be concentrated on a single point of
vulnerability. In addition, mainframes have the significant processing
power to handle data-intensive operations.

n  Figure 1-1  Classic centralized database architecture.

12 CHAPTER 1  The Database Environment

One drawback to a centralized database architecture is network per-
formance. Because the terminals (or PCs acting as terminals) do not
do any processing on their own, all processing must be done on the
mainframe. The database needs to send formatted output to the ter-
minals, which consumes more network bandwidth than would
sending only the data.

A second drawback to centralized architecture is reliability. If the
database goes down, the entire organization is prevented from doing
any data processing.

The mainframes are not gone, but their role has changed as client/
server architecture has become popular.

n  Figure 1-2  A modern centralized database architecture including LAN and WAN connections.

13Database Hardware Architecture

Client/Server
Client/server architecture shares the data processing chores between a
server—typically a high-end workstation—and clients, which are
usually PCs. PCs have significant processing power and are therefore
capable of taking raw data returned by the server and formatting it for
output. Application programs are stored and executed on the PCs.
Network traffic is reduced to data manipulation requests sent from the
PC to the database server and raw data returned as a result of that
request. The result is significantly less network traffic and theoretically
better performance.

Today’s client/server architectures exchange messages over local area
networks (LANs). Although a few older Token Ring LANs are still in
use, most of today’s LANs are based on Ethernet standards. As an
example, take a look at the small network in Figure 1-3. The database

n  Figure 1-3  Small LAN with network-accessible database server.

14 CHAPTER 1  The Database Environment

runs on its on server (the database server), using additional disk
space on the network attached storage device. Access to the database
is controlled not only by the DBMS itself but by the authentication
server.

A client/server architecture is similar to the traditional centralized
architecture in that the DBMS resides on a single computer. In fact,
many of today’s mainframes actually function as large, fast servers.
The need to handle large data sets still exists, although the location of
some of the processing has changed.

Because a client/server architecture uses a centralized database server,
it suffers from the same reliability problems as the traditional central-
ized architecture: If the server goes down, data access is cut off.
However, because the “terminals” are PCs, any data downloaded to a
PC can be processed without access to the server.

Distributed
Not long after centralized databases became common—and before the
introduction of client/server architecture—large organizations began
experimenting with placing portions of their databases at different
locations, with each site running a DBMS against part of the entire
data set. This architecture is known as a distributed database. (For an
example, see Figure 1-4.) It is different from the WAN-using central-
ized database in Figure 1-2 in that there is a DBMS and part of the
database at each site as opposed to having one computer doing all of
the processing and data storage.

A distributed database architecture has several advantages:

■	 The hardware and software placed at each site can be tailored to the
needs of the site. If a mainframe is warranted, then the organization
uses a mainframe. If smaller servers will provide enough capacity,
then the organization can save money by not needing to install
excess hardware. Software, too, can be adapted to the needs of the
specific site. Most current distributed DBMS software will accept
data manipulation requests from any DBMS that uses SQL. There-
fore, the DBMSs at each site can be different.

■	 Each site keeps that portion of the database that contains the data
that it uses most frequently. As a result, network traffic is reduced
because most queries stay on a site’s LAN rather than having to use
the organization’s WAN.

15Database Hardware Architecture

■	 Performance for local queries is better because there is no time lag
for travel over the WAN.

■	 Distributed databases are more reliable than centralized systems. If
the WAN goes down, each site can continue processing using its
own portion of the database. Only those data manipulation opera-
tions that require data not on site will be delayed. If one site goes
down, the other sites can continue to process using their local data.

Despite the advantages, there are reasons why distributed databases
are not widely implemented:

■	 Although performance of queries involving locally stored data is
enhanced, queries that require data from another site are relatively
slow.

n  Figure 1-4  Distributed database architecture.

16 CHAPTER 1  The Database Environment

■	 Maintenance of the data dictionary (the catalog of the structure of
the database) becomes an issue: Should there be a single data dic-
tionary or a copy of it at each site? If the organization keeps a single
data dictionary, then any changes made to it will be available to the
entire database. However, each time a remote site needs to access
the data dictionary, it must send a query over the WAN, increasing
network traffic and slowing down performance. If a copy of the data
dictionary is stored at each site, then changes to the data dictionary
must be sent to each site. There is a significant chance that at times
the copies of the data dictionary will become out of sync.

■	 Some of the data in the database will exist at more than one site.
This introduces a number of problems in terms of ensuring that the
duplicated copies remain consistent, some of which may be serious
enough to prevent an organization from using a distributed archi-
tecture. (You will read more about this problem in Chapter 15.)

■	 Because data are traveling over network media not owned by the
company (the WAN), security risks are increased.

The Web
The need for Web sites to interact with database data has introduced
yet another alternative database architecture. The Web server that
needs the data must query the database, accept the results, and format
the result with HTML tags for transmission to the end user and display
by the user’s Web browser. Complicating the picture is the need to
keep the database secure from Internet intruders.

Figure 1-5 provides an example of how a Web server affects the hard-
ware on a network when the Web server must communicate with a
database server. For most installations, the overriding concern is secu-
rity. The Web server is isolated from the internal LAN, and a special
firewall is placed between the Web server and the database server. The
only traffic allowed through that firewall is traffic to the database
server from the Web server and from the database server to the Web
server.

Some organizations prefer to isolate an internal database server from
a database server that interacts with a Web server. This usually means
that there will be two database servers. The database server that inter-
acts with the Web server is a copy of the internal database that is
inaccessible from the internal LAN. Although more secure than the
architecture in Figure 1-5, keeping two copies of the database means

17Database Hardware Architecture

that those copies must be reconciled at regular intervals. The database
server for Web use will become out of date as soon as changes are
made to the internal database, and there is the chance that changes to
the internal database will make portions of the Web-accessible data-
base invalid or inaccurate. Retail organizations that need live, inte-
grated inventory for both physical and Web sales cannot use the
duplicated architecture. You will see an example of such an organiza-
tion in Chapter 14.

Remote Access
Adding to whatever architecture we’ve chosen for our database hard-
ware, we often have to accommodate remote users. Salespeople,
agents in the field, telecommuters, executives on vacation—all may

n  Figure 1-5  The placement of a database server in a network when a Web server interacting
with the database is present.

18 CHAPTER 1  The Database Environment

have the need to access a database that is usually available only over
a LAN. Initially, remote access involved using a phone line and a
modem to dial into the office network. Today, however, the Internet
(usually with the help of a VPN—a virtual private network) provides
cheaper and faster access, along with serious security concerns.

As you can see in Figure 1-6, the VPN creates a secure encrypted tunnel
between the business’s internal network and the remote user.8 The
remote user must also pass through an authentication server before
being granted access to the internal LAN. Once authenticated, the
remote user has the same access to the internal LAN—including the
database server—as if he or she were present in the organization’s
offices.

Other Factors in the Database
Environment
Choosing hardware and software to maintain a database and then
designing and implementing the database itself was once enough to
establish a database environment. Today, however, security concerns
loom large, coupled with government regulations on the privacy of
data. In addition, a new database is unlikely to be the first database
in an organization that has been in business for a while; the new
database may need to interact with an existing database that cannot
be merged into the new database. In this section, we’ll briefly consider
how those factors influence database planning.

Security
Before the Internet, database management was fairly simple in that
we were rarely concerned about security. A user name and password
were enough to secure access to a centralized database. The most sig-
nificant security threats were internal—from employees who either
corrupted data by accident or purposely exceeded their authorized
access.

Most DBMSs provide some type of internal security mechanism.
However, that layer of security is not enough today. Adding a database
server to a network that has a full-time connection to the Internet
means that database planning must also involve network design.

8To be totally accurate, there are two kinds of VPNs. One uses encryption from
end-to-end (user to network and back). The other encrypts only the Internet portion
of the transmission

19Other Factors in the Database Environment

Authentication servers, firewalls, and other security measures therefore
need to be included in the plans for a database system.

There is little benefit to the need for added security. The planning time
and additional hardware and software increase the cost of implement-
ing the database. The cost of maintaining the database also increases

n  Figure 1-6  Using a VPN to secure remote access to a database.

20 CHAPTER 1  The Database Environment

as network traffic must be monitored far more than when we had
classic centralized architectures. Unfortunately, there is no alternative.
Data is the lifeblood of almost every modern organization, and it must
be protected.

The cost of a database security breach can be devastating to a business.
The loss of trade secrets, the release of confidential customer informa-
tion—even if the unauthorized disclosure of data doesn’t cause any
problems, security breaches can be a public relations nightmare,
causing customers to lose confidence in the organization and convinc-
ing them to take their business elsewhere.

Government Regulations and Privacy
Until the past 10 years or so, decisions about what data must be
secured to maintain privacy has been left up to the organization
storing the data. In the United States, however, that is no longer the
case for many types of data. Government regulations determine who
can access the data and what they may access. The following are some
of the U.S. laws that may affect owners of databases.

■	 Health Insurance Portability and Accountability Act (HIPAA): HIPAA is
intended to safeguard the privacy of medical records. It restricts the
release of medical records to the patient alone (or the parent/
guardian in the case of those under 18) or to those the patient has
authorized in writing to retrieve records. It also requires the standard-
ization of the formats of patient records so they can be transferred
easily among insurance companies and the use of unique identifiers
for patients. (The Social Security number may not be used.) Most
importantly for database administrators, the law requires that secu-
rity measures be in place to protect the privacy of medical records.

■	 Family Educational Rights and Privacy Act (FERPA): FERPA is designed
to safeguard the privacy of educational records. Although the U.S.
federal government has no direct authority over private schools, it
does wield considerable power over funds that are allocated to
schools. Therefore, FERPA denies federal funds to those schools that
don’t meet the requirements of the law. It states that parents have
a right to view the records of children under 18 and that the records

Note: Because database security is so vitally important, Chapter 16 is
devoted entirely to this topic.

21Other Factors in the Database Environment

of older students (those 18 and over) cannot be released to anyone
but the student without the written permission of the student.
Schools therefore have the responsibility to ensure that student
records are not disclosed to unauthorized people, increasing the
need for secure information systems that store student
information.

■	 Children’s Online Privacy Protection Act: Provisions of this law govern
which data can be requested from children (those under 13) and
which of those data can be stored by a site operator. It applies to
Web sites, “pen pal services,” e-mail, message boards, and chat
rooms. In general, the law aims to restrict the soliciting and disclo-
sure of any information that can be used to identify a child—
beyond information required for interacting with the Web
site—without approval of a parent or guardian. Covered informa-
tion includes first and last name, any part of a home address, e-mail
address, telephone number, Social Security number, or any combi-
nation of the preceding. If covered information is necessary for
interaction with a Web site—for example, registering a user—the
Web site must collect only the minimally required amount of infor-
mation, ensure the security of that information, and not disclose it
unless required to do so by law.

Legacy Databases
Many businesses keep their data “forever.” They never throw anything
out, nor do they delete electronically stored data. For a business that
has been using computing since the 1960s or 1970s, this typically
means that old database applications are still in use. We refer to such
databases that use pre-relational data models as legacy databases. The
presence of legacy databases presents several challenges to an organi-
zation, depending on the need to access and integrate the older data.

If legacy data are needed primarily as an archive (either for occasional
access or retention required by law), then a company may choose to
leave the database and its applications as they stand. The challenge in
this situation occurs when the hardware on which the DBMS and
application programs run breaks down and cannot be repaired. The
only alternative may be to recover as much of the data as possible and
convert it to be compatible with newer software.

Businesses that need legacy data integrated with more recent data must
answer the question “Should the data be converted for storage in the

22 CHAPTER 1  The Database Environment

current database, or should intermediate software be used to move
data between the old and the new as needed?” Because we are typically
talking about large databases running on mainframes, neither solu-
tion is inexpensive.

The seemingly most logical alternative is to convert legacy data for
storage in the current database. The data must be taken from the legacy
database and reformatted for loading into the new database. An orga-
nization can hire one of a number of companies that specialize in data
conversion, or it can perform the transfer itself. In both cases, a major
component of the transfer process is a program that reads data from
the legacy database, reformats them as necessary so that they match
the requirements of the new database, and then loads them into the
new database. Because the structure of legacy databases varies so much
among organizations, the transfer program is usually custom-written
for the business using it.

Just reading the procedure makes it seem fairly simple, but keep in
mind that because legacy databases are old, they often contain “bad
data” (data that are incorrect in some way). Once bad data get into a
database, it is very difficult to get rid of them. Somehow, the problem
data must be located and corrected. If there is a pattern to the bad
data, that pattern must be identified to prevent any more bad data
from getting into the database. The process of cleaning the data can
therefore be the most time-consuming part of data conversion. None-
theless, it is still far better to spend the time cleaning the data as they
come out of the legacy database than attempting to find and correct
the data once they get into the new database.

The bad data problem can be compounded by missing mandatory
data. If the new database requires that data be present (for example,
requiring a zip code for every order placed in the United States) and
some of the legacy data are missing the required values, there must be
some way to “fill in the blanks” and provide acceptable values. Sup-
plying values for missing data can be handled by conversion software,
but application programs that use the data must then be modified to
identify and handle the instances of missing data.

Data migration projects also include the modification of application
programs that ran solely using the legacy data. In particular, it is likely
that the data manipulation language used by the legacy database is
not the same as that used by the new database.

Some very large organizations have determined that it is not cost effec-
tive to convert data from a legacy database. Instead, they choose to

23For Further Reading

use some type of middleware that moves data to and from the legacy
database in real time as needed. An organization that has a widely
used legacy database can usually find middleware. IBM markets soft-
ware that translates and transfers data between IMS (the legacy
product) and DB2 (the current, relational product). When such an
application does not exist, it will need to be custom-written for the
organization.

Note: One commonly used format for transferring data from one database to
another is XML, which you will read more about in Chapter 18.

For Further Reading
Berson, Alex. Client/Server Architecture, 2nd ed. McGraw-Hill, 1996.
Chong, Raul F., Xiamei Wang, Michael Dang, and Dwaine R. Snow.

Understanding DB2: Learning Visually with Examples, 2nd ed. IBM
Press, 2008.

Erl, Thomas. SOA Principles of Service Design. Prentice Hall, 2007.
Feller, Jesse. FileMaker Pro 10 in Depth. Que, 2009.
Greenwald, Rick, Robert Stackowiak, and Jonathan Stern. Oracle

Essentials: Oracle Database 11g. O’Reilly Media, 2007.
Kofler, Michael. The Definitive Guide to MySQL 5, 3rd ed. Apress, 2005.
McDonald, Matthew. Access 2007: The Missing Manual. Pogue Press,

2006.
McGrew, P. C., and W. D. McDaniel. Wresting Legacy Data to the Web

& Beyond: Practical Solutions for Managers & Technicians. McGrew
& Daniel Group, Inc., 2001.

As you will see when you read Parts Two and Three of this book, a
large measure of what constitutes the “right” or “correct” database
design for an organization depends on the needs of that organization.
Unless you understand the meaning and uses of data in the database
environment, you can’t produce even an adequate database design.

The process of discovering the meaning of a database environment
and the needs of the users of that data is known as systems analysis. It
is part of a larger process that involves the creation of an information
system from the initial conception all the way through the evaluation
of the newly implemented system. Although a database designer may
indeed be involved in the design of the overall system, for the most
part the database designer is concerned with understanding how the
database environment works and therefore in the result of the systems
analysis.

Many database design books pay little heed to how the database
requirements come to be. Sometimes they seem to appear out of thin
air, although clearly that is not the case. A systems analysis is an
important part of the database design process, and it benefits a data-
base designer to be familiar with how an analysis is conducted and
what it produces. In this chapter you will be introduced to a classic
process for conducting a systems analysis. The final section of the
chapter provides an overview of two alternative methods.

The intent of this chapter is not to turn you into a systems analyst—it
would take a college course and some years of on-the-job experience
to do that—but to give you a feeling of what happens before the data-
base designer goes to work.

25

2Chapter

Systems Analysis and
Database Requirements

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

26 CHAPTER 2  Systems Analysis and Database Requirements

Dealing with Resistance to Change
Before we look at systems analysis methodologies, we must first con-
sider one very important factor: A new system, or modifications to an
existing system, may represent a significant change in the work envi-
ronment, something we humans usually do not accept easily. We tend
to become comfortable in the way we operate, and change creates
some level of discomfort (how uneasy, of course, depends on the
individual).

Even the best-designed and -implemented information system will be
useless if users don’t accept it. This means that as well as determining
the organization’s data management needs, those in charge of system
change must be very sensitive to how users react to modifications.

The simplest way to handle resistance to change is to understand that
if people have a stake in the change, then they will be personally
invested in seeing that the change succeeds. Many of the needs assess-
ment techniques that you read about in this chapter can foster that
type of involvement. Ask the users what they need, and then really
listen to what they are saying. Show the users how you are implement-
ing what they need. For those requests that you can’t satisfy, explain
why they aren’t feasible. Users who feel that they matter, that their
input is valued, are far more likely to support procedural changes that
may accompany a new information system.

The are a number of theoretical models for managing change, includ-
ing the following:1

ADKAR: ADKAR is a model created with international input. Its five
components make up its acronym:

■	 Awareness: Make users aware of why there must be a change.

■	 Desire: Involve and educate users so they have a desire to be part of
the change process.

■	 Knowledge: Educate users and system development personnel in the
process of making the change.

■	 Ability: Ensure that users and system development personnel have
the skills necessary to implement the change. This may include
training IT staff in using new development tools and training users
to use the new system.

1For a good overview of change management, see http://home.att.net/∼nickols/change.
htm.

27The Structured Design Life Cycle

■	 Reinforcement: Continued follow-up after the system is imple-
mented to ensure that the new system continues to be used as
intended.

Unfreeze–Change–Refreeze: This is a three-stage model with the follow-
ing components:

■	 Unfreezing: Overcoming inertia by getting those who will be
affected by the change to understand the need for change and
to take steps to accept it.

■	 Change: Implementing the change, recognizing that users may
be uneasy with new software and procedures.

■	 Refreeze: Taking actions to ensure that users are as comfortable
with the new system as they were with the one it replaced.

The Structured Design Life Cycle
The classic method for developing an information system is known
as the structured design life cycle. It works best in environments where
it is possible to specify the requirements before the system is devel-
oped because they are fairly well known. Typically, the process includes
the following activities:

1.	 Conduct a needs assessment to determine what the new or modified
system should do. (This is the portion of the process typically
known as a systems analysis.)

2.	 Assess the feasibility of implementing the new/modified system.

3.	 Generate a set of alternative plans for the new/modified system.
(At this point, the team involved with designing and developing
the system usually prepares a requirements document, which contains
specifications of the requirements of the system, the feasibility
analysis, and system development alternatives.)

4.	 Evaluate the alternatives and choose one for implementation.

5.	 Design the system.

6.	 Develop and test the system.

7.	 Implement the system.

8.	 Evaluate the system.

The reason the preceding process is called a “cycle” is that when you
finish Step 7, you go right back to Step 1 to modify the system to

28 CHAPTER 2  Systems Analysis and Database Requirements

handle any problems identified in the evaluation (see Figure 2-1). If
no problems were found during the evaluation, then you wait awhile
and evaluate again. However, the process is also sometimes called the
waterfall method because the project falls from one step to another, like
the waterfall in Figure 2-2. Database designers are typically involved
in Steps 1 through 5. The database design itself takes place during Step
5, but that process cannot occur until the preceding steps are
completed.

Conducting the Needs Assessment
Many systems analysts believe that the needs assessment is the most
important part of the systems development process. No matter how
well developed, even the best information system is useless if it doesn’t

Assess Needs

Generate
Alternatives

Evaluate Alternatives
and
Choose SolutionDesign

Develop and Test

Implement

Evaulate

Analyze Feasibility

Start here

Proceed
this w

ay

n  Figure 2-1  The traditional systems development life cycle.

29Conducting the Needs Assessment

meet the needs of its organization. A system that isn’t used is just a
waste of money.

A systems analyst has many tools and techniques available to help
identify the needs of a new or modified information system,
including:

■	 Observation: To conduct an observation, the systems analyst watches
employees without interference. This allows users to demonstrate
how they actually use the current system (be it automated or
manual).

■	 Interviewing: The systems analyst interviews employees at various
levels in the organizational hierarchy. This process allows employ-
ees to communicate what works well with the current system and
what needs to be changed. During the interviews, the analyst
attempts to identify the differences among the perceptions of man-
agers and those who work for them.

Sometimes a systems analyst will discover that what actually occurs
isn’t what is supposed to be standard operating procedure. If there is
a difference between what is occurring and the way in which things
“should” happen, then either employee behavior will need to change
or procedures will need to change to match employee behavior. It’s

Assess Needs

Analyze Feasibility

Generate Alternatives

Evaluate Alternatives and Choose Solution

Design

Develop and Test

Implement

Evaluate

n  Figure 2-2  The waterfall view of the traditional systems development life cycle.

30 CHAPTER 2  Systems Analysis and Database Requirements

not the systems analyst’s job to make the choice but only to document
what is occurring and to present alternative solutions.

Occasionally observations and interviews can expose informal pro-
cesses that may or may not be relevant to a new system. Consider what
happened to a systems analyst who was working on a team that was
developing an automated system for a large metropolitan library
system. (This story is based on an incident that actually occurred in
the 1980s.) The analyst was assigned to interview staff of the mobile
services branch, the group that provided bookmobiles as well as indi-
vidualized service to housebound patrons. The process in question
was book selection and ordering.

Here’s how it was supposed to happen: Each week, the branch received
a copy of a publication called Publishers Weekly. This magazine, which
is still available, not only documents the publishing trade but also
lists and reviews forthcoming media (primarily books). The librarians
(four adult librarians and one children’s librarian) were to go through
the magazine and place a check mark next to each book the branch
should order. Once a month, the branch librarian was to take the
marked-up magazine to the central order meeting with all the other
branch librarians in the system. All books with three or more checks
were to be ordered, although the branch librarian was to exercise her
own judgment and knowledge of the branch patrons to help make
appropriate choices.

The preceding is what the systems analyst heard from the branch
librarian. The five librarians, however, told a different story. At one
point they concluded that the branch librarian wasn’t exercising any
judgment at all but was simply ordering all books with three checks.
There was only one children’s librarian, and therefore children’s books
almost never received three checks. Few children’s books were being
ordered.

To test their theory, the librarians placed four check marks next to a
significantly inappropriate title—a coffee table book that was too
heavy for many of their elderly patrons to handle and that exceeded
the branch’s price limit—and waited to see what happened. The coffee
table book was ordered, so they thought that no professional judg-
ment was being used at the order meeting.

The librarians therefore took the situation into their own hands. When
the branch librarian returned from the order meeting, she gave the
copy of the Publishers Weekly to one of the clerks, who created cards

31Conducting the Needs Assessment

for each ordered book. The cards were to be matched to the new books
when they arrived. However, the librarians arranged for the clerk to
let them see the cards as soon as they were made. The librarians
removed books that shouldn’t be ordered and added those that had
been omitted (primarily children’s books). The clerk then phoned the
changes to the order department.

What should the analyst have done? The process was clearly broken,
and it appeared that the branch librarian wasn’t doing her job. The
librarians had arranged things so the branch functioned well, but they
were circumventing SOP and were probably putting their jobs in
jeopardy by doing so. This was a case of “the end justifies the means.”
No one was being harmed, and the branch patrons were being helped.
How should the analyst have reported her findings? Should she have
exposed what was really happening, or should she simply have docu-
mented how the procedure was supposed to work? What would happen
when the ordering process was automated and there were no longer
any centralized order meetings? There would be no order cards held
at the branch and no opportunity for the librarians to correct the book
order.

This was a very delicate situation because if it were exposed, either the
branch librarian or the other librarians (or both) would face signifi-
cant problems. A systems analyst’s job is to observe, interview, and
record, not to intervene in employee relations. The book-ordering
process would be changing anyway with an automated system. If the
librarians had to continue to work around the branch librarian, they
would need to change their informal process as well. Therefore, the
best strategy for the analyst probably was to remove herself from
the personnel problems and report the process as it was supposed
to work.

In cases where informal procedures do not violate SOP, an analyst can
feel free to report what is actually occurring. This will help in tailoring
the new information system to the way in which the business actually
operates.

■	 Questionnaires: The systems analyst prepares questionnaires to be
completed by employees. Like interviews, questionnaires give the
systems analyst information about what is working currently and
what needs to be fixed. The drawback to questionnaires, however,
is that they are limited by the questions asked—even if they include
open-ended questions—and may miss important elements of what
a system needs to do.

32 CHAPTER 2  Systems Analysis and Database Requirements

■	 Focus groups: The systems analyst conducts a focus group to hear
from employees who don’t use the system directly and those who
may not be employees but who use the system in some way. For
example, accountants may not use the payroll system directly but
may receive output from that system as input to the accounting
system. A focus group can give them a forum to express how well
the input meets their needs and how it might be changed to better
suit them. A retail firm that sells through a Web site may conduct
a focus group for customers to find out what changes should be
made to the catalog and shopping cart interfaces.

A focus group can be a double-edged sword. The members of the
focus group are not privy to many of the constraints under which
a business operates and the limitations of technology. Their sugges-
tions may be impractical. The analyst conducting the focus session
needs to be careful not to make promises to group members that
can’t be kept. Participants in a focus group can have their expecta-
tions raised so high that those expectations can never be met, creat-
ing disappointment and disaffection with the business.

■	 Brainstorming sessions: When employees know that something isn’t
right with the current system but are unable to articulate how it
should be changed, a brainstorming session allows people to toss
about ideas that may or may not be feasible. The intent is to stimu-
late everyone’s thinking about the needs of a new or modified
system without being critical.

The results of the needs assessment are collected into a requirements
document. At this point in the process, the needs identified by the
analyst are expressed in general terms. For example, the requirements
document might include a call for a new Web site shopping cart that
allowed users to check out on one page rather than three. The fact that
the redesigned Web page needs to include the customer’s area code as
a separate piece of data isn’t documented at this point.

Assessing Feasibility
Once the operational requirements of a new system have been docu-
mented, the systems analyst turns to assessing the feasibility of the
required system. There are three types of feasibility that systems ana-
lysts consider:

1.	 Operational feasibility: Is it possible to develop a system that
will fit within the organization’s way of doing business, or are
any of the business process changes required unrealistic?

33Assessing Feasibility

2.	 Technical feasibility: Does the technology exist to implement a
system to meet the organization’s needs?

3.	 Financial feasibility: Are the costs of implementing the system
in a range that the organization is able and willing to pay?

Operational feasibility looks at whether it makes sense for the company
to change any part of its operating procedures to accommodate a new
system. If payroll employees currently enter data from time cards by
hand, a change to a machine-readable system is operationally feasible.
The procedure for entering hours worked changes slightly, but the
employees will still use some sort of time card, and payroll employees
will still be processing the data. In contrast, consider the situation
where a new system would require all purchase requisitions to be
placed using an online form. However, some offices in remote loca-
tions do not have Internet access, so it is not feasible to shut down
paper-based requisitions entirely.

Operational feasibility also relies to a large extent on an organization’s
and its employees’ willingness to change. Assume, for example, that
insurance company representatives currently fill out paper forms when
making a sale at a customer’s home. The company would like to
replace the paper with laptops that use wireless connections to
exchange data with the home office. Certainly, this is a reasonable
choice given the way in which the company operates, but if many of
the salespeople are resistant to working with a laptop, then a project
to introduce the laptops may fail. Sometimes the introduction of new
technology, especially in a manufacturing environment, is crucial to
maintaining a company’s competitive position and therefore its ability
to stay in business. Employees who are resistant to the new technology
(either unwilling or unable to be retrained) may need to be laid off
to ensure that the company survives.

Technological feasibility is relatively easy to assess. Can the necessary
technology be purchased? If not, is it possible to develop that technol-
ogy in a reasonable amount of time and at a reasonable cost? Con-
sider, for example, the situation of a rural library cooperative in the
mid-1980s. Most library information systems used minicomputers.
However, the rural cooperative was interested in a client/server archi-
tecture with small servers at each library. Before proceeding, the coop-
erative needed to determine whether such a system actually existed or
whether one was soon to become available.2

2The final decision was to become beta-testers for the first client/server hardware/
software combination. Although the cooperative did have to deal with some bugs
in the system, it cost less than it would have otherwise.

34 CHAPTER 2  Systems Analysis and Database Requirements

Financial feasibility means asking the question “Can we afford it?”
Often the answer is “We can’t afford not to do it.” In such a situation,
an organization will spend as much as it can to implement a new
information system.

Because no specific system alternative has been selected at this point,
financial feasibility assessment is often very general. It can be con-
ducted in-house, or an outside firm can be hired to conduct the analy-
sis. The analysis includes market research to describe the market,
its size, and typical customers as well as competition in the market-
place. From those data the analyst can estimate demand for the com-
pany’s product and generate an estimate of revenue. In addition to
hardware and software costs, the cost estimates include facility
expenses (rental, construction, and so on), financing (loan costs), and
personnel expenses (hiring, training, salaries, and so on). The result
is a projection of how a new information system will affect the bottom
line of the company. As with the needs assessment, the results of the
feasibility analysis are presented as part of the requirements
document.

One thing to keep in mind during a feasibility analysis is that the
systems analyst—whether an employee of the company contemplat-
ing a new system or an employee of an outside firm hired specifically
to conduct the analysis—will not be making the decision as to whether
an entire project will proceed. The decision is made by the organiza-
tion’s management.

Generating Alternatives
The third section in the system requirements document is a list of two
or more system design alternatives for an organization to consider.
Often they will be distinguished by cost (low cost, medium cost, and
high cost). However, the first alternative is almost always “Do nothing;
keep the current system.”

A low-cost alternative generally takes advantage of as much existing
facilities, hardware, and software as possible. It may rely more on
changing employee behavior than installing new technology.

A moderate-cost alternative includes some new hardware and soft-
ware purchases, some network modification, and some changes in
employee behavior. It may not, however, include the top-of-the-line
hardware or software. It may also use off-the-shelf software packages
rather than custom-programmed applications. Employee training

35Evaluating and Choosing an Alternative

may include sending users to take classes offered by hardware and
software vendors.

The high-cost solution usually includes the best of everything. Hard-
ware and software are top-of-the-line and include a significant amount
of excess capacity. Custom programming is included where appropri-
ate. Employee training includes on-site seminars tailored specifically
to the organization.

Evaluating and Choosing an Alternative
Evaluating alternatives involves assigning numeric values to the costs
and the benefits of each alternative. Some costs are easy to quantify,
especially the cost of hardware and prepackaged software. Labor can
be estimated relatively accurately as well. However, assigning dollar
values to the benefits of a systems development project can be difficult
because they are often intangible. For example, when a system is being
designed to generate an increase in sales volume, the amount of
increase is by its very nature an estimate. Increased customer satisfac-
tion and better employee attitudes are difficult to measure. The impacts
on system maintenance costs and future system development costs are
at best only estimates.

Note: Doing nothing may not be the cost-free alternative that it at first
appears to be. When doing nothing means losing customers because they
can’t order online, then doing nothing has a negative cost.

The analyst completes the requirements document by adding the cost/
benefit analyses of the proposed alternatives and then presents it to
company management. Although the requirements document typi-
cally includes specific groups of hardware, software, and labor for each
alternative, management may decide to use part of one alternative (for
example, existing hardware) and part of another (for example, cus-
tom-written application programs).

Once company management agrees to the project and its specifica-
tions, the requirements document can become a contract between IT
and management, defining what IT will provide and what manage-
ment should expect. The more seriously all parties view the document
as a contract, the more likely the system development project is to
succeed.

36 CHAPTER 2  Systems Analysis and Database Requirements

Creating Design Requirements
The alternative chosen by an organization is usually expressed as a
general strategy such as “Implement a new Web site backed by an
inventory database.” Although many of the exact requirements of the
database were collected during the systems analysis phase of the life
cycle, company management doesn’t really care about the details of
which specific data will be in the database. The system that they chose
has been specified as a series of outputs, the details of which may not
have been designed yet.

Therefore, the first job in the design phase is to document exactly what
data should be in the database and the details of application pro-
grams. This is the time when user interfaces are designed and an
organization begins to build its data dictionary. Once the data speci-
fications are in place, actual database design can begin.

Alternative Analysis Methods
As mentioned at the beginning of this chapter, the structured design
life cycle works best when the requirements of an information system
can be specified before development of the system begins. However,
that is not always possible. In some cases, users need the system
developer to produce something to which they can react. They may
not be able to articulate their needs in the abstract, but they can indi-
cate whether an existing piece of software works for them, and if it
does not, how the software should be changed to better meet their
needs.

Prototyping
Prototyping is a form of systems development that is particularly appro-
priate in situations where the exact requirements of an information
system aren’t known in advance. Often the potential users know that
help is needed, but can’t articulate exactly what they want. The
developer therefore begins by creating a shell for the system consisting
of user interface components but not the programs or databases
behind them—the prototype.

The developer shows the users the prototype and gets their feedback.
Then, based on their comments, the developer refines the prototype.
The next version shown to the users may include user interface changes
and some of the background programming. The entire process can be
summarized as follows:

37Alternative Analysis Methods

1.	 Get a general idea of what the new information system
should do.

2.	 Create a prototype.
3.	 Let the users react to the prototype.
4.	 Refine the prototype based on user input.
5.	 Return to step 3.
6.	 Repeat as many times as necessary until the users are satisfied.

A prototype may be missing some of the features of the final system.
For example, initial programming may not include some of the secu-
rity features or integrity controls that are likely to appear in the pro-
duction product.

A prototype may be enhanced until it becomes the final system (evo-
lutionary prototyping). In contrast, the prototype may be discarded once
the system requirements have been determined and the final system
has been developed from scratch (throwaway prototyping). The latter is
particularly useful when the code underlying the prototype has become
difficult to follow (and thus maintain) because of the many changes
that have been made during the prototyping process. Throwaway
prototyping is also a very fast form of system development because it
doesn’t have to be “clean.”

Prototyping, however, can have several drawbacks. First, users may
become confused between a prototype and a production system. They
may expect the prototype to be a functioning whole and are therefore
frustrated and disappointed when it isn’t. Second, prototyping doesn’t
include an analysis phase and relies solely on interaction between the
users and the system developers to identify system requirements.
Requirements that management may want to add to the system may
not be included; users may leave out necessary system functions.
Finally, prototyping may be expensive if the costs for developing the
prototype are not controlled.

Database designers are usually involved after the first prototype is
developed and users have responded to it. The database design is
created to provide whatever is needed to generate the outputs in the
prototype and changes as the prototype is refined. The flexibility of
relational database design is an enormous help to this methodology
because of the ease in modifying the database structure.

Note: You will see an example of prototyping used in the case study in
Chapter 13.

38 CHAPTER 2  Systems Analysis and Database Requirements

Spiral Methodology
The spiral methodology of systems analysis and design, which employs
prototyping in a more formal way than the prototyping method, uses
a gradual process in which each cycle further refines the system, bring-
ing it closer to the desired end point. As you can see in Table 2-1, the
methodology has four broad stages, each of which represents one trip
around the spiral. The same type of activities is performed in each
quadrant during each cycle. As you examine the table, also look at
Figure 2-3. The activity numbers in the table correspond to the
numbers on the spiral in the illustration.

Notice that there are no specific activities listed for Quadrant 2 in any
of the cycles. Systems analysis occurs in this quadrant, using the same
techniques that are used to gather information for needs assessment
in the traditional systems life cycle.

The spiral model is intended to address a perceived failing in the
traditional system design cycle: analysis of the risk of the project.
Although the traditional systems life cycle includes a feasibility analy-
sis, there is no specific provision for looking at the chances that the
system development project will succeed.

Because there are prototype systems created during every cycle, data-
base designers may be involved from throughout the entire process,
depending on the characteristics of each prototype. The flexibility of
a database design to change during the iterative development process
becomes essential so that the database can be refined just as the other
parts of the new system.

Object-Oriented Analysis
Object-oriented analysis is a method for viewing the interaction of data
and manipulations of data that is based on the object-oriented pro-
gramming paradigm. The traditional systems life cycle looks at the
outputs the system requires and then assembles the database so that
it contains the data needed to produce those outputs. Documentation
reflects the “input-process-output” approach such that the inputs are
identified to achieve a specified output; the process of translating the
inputs into desired outputs is where the database and the programs
that manipulate the database are found. Where the traditional systems
analysis life cycle considers data and data manipulation two distinct
parts of the system, object-oriented analysis focuses on units (classes)
that combine data and procedures.

39Alternative Analysis Methods

Table 2-1  The Steps in the Spiral Systems Analysis and Design Methodology

Cycle Quadrant Specific Activities

1 Quadrant 1: Plan Next Phases 	 1.	 Requirements Plan; Life Cycle Plan

Quadrant 2: Determine Objectives, Abstractions, and
Constraints

Quadrant 3: Evaluate Alternatives; Identify, Resolve Risks 	 2.	 Risk Analysis
	 3.	 Prototype #1

Quadrant 4: Design, Verify Next-Level Product 	 4.	 Concept of Operation

2 Quadrant 1: Plan Next Phases 	 5.	 Development plan

Quadrant 2: Determine Objectives, Abstractions, and
Constraints

Quadrant 3: Evaluate Alternatives; Identify, Resolve Risks 	 6.	 Risk Analysis
	 7.	 Prototype #2

Quadrant 4: Design, Verify Next-Level Product 	 8.	 Simulations
	 9.	 System Requirements
10.	 Requirements Validation

3 Quadrant 1: Plan Next Phases 11.	 Integration and Test Plan

Quadrant 2: Determine Objectives, Abstractions, and
Constraints

Quadrant 3: Evaluate Alternatives; Identify, Resolve Risks 12.	 Risk Analysis
13.	 Prototype #3

Quadrant 4: Design, Verify Next-Level Product 14.	 Models
15.	 System Design
16.	 Design Validation and Verification

4 Quadrant 1: Plan Next Phases 17.	 Determine Process Objectives,
Alternatives, and constraints.

18.	 Evaluate Process Alternatives, Modify,
Resolve Product Risks

19.	 Design, Verify Next-Level Process Plans

Quadrant 2: Determine Objectives, Abstractions, and
Constraints

Quadrant 3: Evaluate Alternatives; Identify, Resolve Risks 20.	 Risk Analysis
21.	 Operational Prototype

Quadrant 4: Design, Verify Next-Level Product 22.	 Benchmarks
23.	 Detailed design
24.	 Code
25.	 Unit test
26.	 Integration and test
27.	 Acceptance test
28.	 Implementation

40 CHAPTER 2  Systems Analysis and Database Requirements

Although a complete discussion of object-oriented concepts is well
beyond the scope of this book, a small example might help to make
the distinction between the traditional and object-oriented analysis
clearer. Assume that you are developing a system that will provide an
employee directory of a company. Both forms of analysis begin with
the requirements, such as the ability to search for employees in the
directory and the ability to update employee information. Then the
two approaches diverge.

Traditional analysis indicates the specifics of the application programs
that will provide the updating and searching capabilities. The database
specifications include the data needed to support those applications.
The requirements document might contain something like Figure 2-4.
The database itself won’t have been designed, but when it is, an
employee might be represented something like Figure 2-5.

In contrast, object-oriented analysis specifies both the data and the
procedures together. Figure 2-6 contains a graphic representation of
the employee directory environment. The rectangle labeled Employee

Start here

7

12

11

17

6

5 4

3

2

10

9

8

16

15

14

13

18

19

20

21

22

23

24

25

26

27
28

1

Determine Objectives,
Abstractions, and
Constraints

Evaluate Alternatives,
Identify, Reduce Risks

Plan Next Phases

Design, Verify
Next-Level Product

n  Figure 2-3  The spiral systems analysis and design methodology (numbers refer to Table 2-1).

41Alternative Analysis Methods

%NAME prepare_online_directory
%DEFINITION
Format and display an electronic version of the employee directory

%NAME prepare_print_directory
%DEFINITION
Format a directory for hard copy output

%NAME search_for_employee
%DEFINITION
Find an employee using the format "Last name, first name"

%NAME update_employee_information
%DEFINITION
Insert, modify, and delete employee information

n  Figure 2-4  Requirements for the employee directory.

Employee

employee_id
first_name
last_name

street_address
city

state
zip

birthdate
ssn

home_phone
office number

office_extension
e_mail

n  Figure 2-5  A graphic representation
of the data describing an employee for
the employee directory.

Employee

AllEmployees

total_employees

findEmployee
displayDirectory

printDirectory

employee_id
first_name
last_name

street_address
city

state
zip

birthdate
ssn

home_phone
office number

office_extension
e_mail

getNewID
createEmployee

getName
displayDrectoryEntry

n  Figure 2-6  A graphic representation of
the object-oriented approach to the employee
directory.

42 CHAPTER 2  Systems Analysis and Database Requirements

is a class representing a single employee. The middle section of the
rectangle contains the data that describe an employee for the directory.
The bottom portion lists the things that an employee object (an
instance of the class containing actual data) knows how to do.

The rectangle labeled AllEmployees is a class that gathers together all
of the employee objects (an aggregation). Procedures that are to be
performed on all of the employees are part of this class. Diagrams of
this type form the basis of an object-oriented requirements document
and system design.

Object-oriented analysis is well suited for large projects, especially
those where requirements are likely to change as the system is being
designed and developed. As object-oriented software development has
replaced structured programming, object-oriented systems analysis
has become increasingly popular.

For Further Reading
Arnowitz, Jonathan, Michael Arent, and Nevin Berger. Effective Proto

typing for Software Makers. Morgan Kaufmann, 2006.
Boehm, B. “A Spiral Model of Software Development and Enhance

ment.” IEEE Computer 21(5), 61–72, 1988.
Clegg, Brian, and Paul Birch. Instant Creativity: Techniques to Ignite

Innovation & Problem Solving. Kogan Page, 2007.
Kendall, Kenneth E., and Julie E. Kendall. Systems Analysis and Design,

7th ed. Prentice Hall, 2007.
Kock, Ned Florencio. Systems Analysis & Design Fundamentals: A Business

Process Redesign Approach. Sage Publications, 2006.
Krueger, Richard A. Focus Groups: A Practical Guide for Applied Research,

4th ed. Sage Publications, 2008.
Luecke, Richard. Managing Change and Transition. Harvard Business

School Press, 2003.
Shoval, Peretz. Functional and Object Oriented Analysis and Design: An

Integrated Methodology. IGI Global, 2006.
Whitten, Jeffrey. Systems Analysis and Design Methods, 7th ed. McGraw-

Hill/Irwin, 2005.

IIPart

Database Design Theory

Part II of this book considers the theoretical aspects of relational data-
base design. You will read about identifying data relationships in your
database environment, the details of the relational data model, and
how to translate data relationships into a well-designed relational
database that avoids most of the problems associated with bad designs.

Many of today’s businesses rely on their database systems for accurate,
up-to-date information. Without those repositories of mission-critical
data, most businesses are unable to perform their normal daily trans-
actions, much less create summary reports that help management
make strategic corporate decisions. To be useful, the data in a database
must be accurate, complete, and organized in such a way that data can
be retrieved when needed and in the format desired.

Well-written database application programs—whether they execute
locally, run over a local area network, or feed information to a Web
site—are fundamental to timely and accurate data retrieval. However,
without a good underlying database design, even the best program
cannot avoid problems with inaccurate and inconsistent data.

Effects of Poor Database Design
To make it a bit clearer why the design of a database matters so much,
let’s take a look at a business that has a very bad design and the prob-
lems that the poor design brings. The business is named Antique
Opticals and DVDs (called Antique Opticals for short by its regular
customers).

Note: Remember the definition of a database that was presented in
Chapter 1. As you will see, the data storage used by Antique Opticals
and DVDs isn’t precisely a database.

Back in the early 1980s, when most people were just discovering vid-
eotapes, Mark Watkins and Emily Stone stumbled across a fledgling
technology known as the laser disc. There were several competing
formats, but by 1986 the industry had standardized on a 12-inch silver
platter on which either 30 or 60 minutes of video and audio could be

45

3Chapter

Why Good Design Matters

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

46 CHAPTER 3  Why Good Design Matters

recorded. Although the market was still small, it was at that time that
Watkins and Stone opened the first incarnation of their business,
originally named Lasers Only, to sell and rent laser discs. Some of its
income came from sales and rentals directly from its single retail store,
but the largest part of its revenue came from mail-order sales.

The appearance of DVDs in 1995 put a quick end to the release of
new laser discs. The last new title was released in 2000, but the number
of new titles had decreased significantly even before that time. Watkins
and Stone saw their business dwindling rapidly in the late 1990s. They
soon realized that if they were to stay in business, they had to change
their merchandise focus. Laser discs were now the “antiques” of the
optical media world, with DVDs—and most recently Blu-ray high-
definition discs—the current technology.

Antique Opticals and DVDs now sells and rents DVDs and Blu-ray
discs from the retail store. It also sells used laser discs that it purchases
from individuals. The company has a primitive Web site for mail-order
sales. The current catalog is updated weekly and uploaded to the site,
where users place orders. However, the catalog is not integrated with
any live data storage. An employee must take the order from the Web
site and then shop for the customer. As a result, customers occasion-
ally do not receive their entire order when ordered items have been
sold at the retail store. This is particularly true in the case of used laser
discs, where the quantity in stock is rarely more than one per title.

In 1990, when the store began its mail-order business, Watkins created
a “database” to handle the orders and sales. Customers were (and still
are) enticed to order titles before the official release date by offering
a 15 to 20 percent discount on preorders. (All titles are always dis-
counted 10 percent from the suggested retail price.) The mail-order
database (which has evolved into today’s Web order database) there-
fore needed to include a way to handle backorders so that preordered
items could be shipped as soon as they came into the store.

At the time we visit Antique Opticals, it is still using the software that
Watkins created. The primary data entry interface is a form like that
in Figure 3-1. Customer numbers are created by combining the cus-
tomer’s zip code, the first three letters of his or her last name, and a
three-digit sequence number. For example, if Stone lives in zip code
12345 and she is the second customer in that zip code with a last
name beginning with STO, then her customer number is 12345STO002.
The sequence numbers ensures that no two customer numbers will
have the same number.

47Unnecessary Duplicated Data and Data Consistency

When a new title comes into the store, an employee searches the
database to find all those who have preordered that title. The employee
prints a packing slip from the stored data and then places an X in the
“item shipped” check box.

At first glance, Antique Opticals’ software seems pretty simple and
straightforward. So it should work just fine, right? (This is assuming
we ignore the issue of integration with the Web site.) Well, it worked
fine for a while, but as the business expanded, problems began to
arise.

Unnecessary Duplicated Data
and Data Consistency
The Antique Opticals database has a considerable amount of unneces-
sary duplicated data. For example, a customer’s name, address, and
phone number are duplicated for every item the customer orders; a
merchandise item’s title is duplicated every time the item is ordered.

What is the problem with this duplication? When you have duplicated
data in this way, the data should be the same throughout the database.
In other words, every order for a given customer should have the same

Customer number Order date:

Item shipped?

First name

Last name

Street

City, State Zip

Phone

Item number Title

Price

n  Figure 3-1  The data entry form used by Antique Opticals and DVDs for their mail-order business.

48 CHAPTER 3  Why Good Design Matters

name, address, and phone number, typed exactly the same way. Every
order for a single title should have the exact same title, typed exactly
the same way. We want the duplicated data to be consistent through-
out the database.

As the database grows larger, this type of consistency is very difficult
to maintain. Most business-oriented database software is case sensitive,
in that it considers upper- and lowercase letters to be different char-
acters. In addition, no one is a perfect typist. A difference in capitaliza-
tion or even a single mistyped letter will cause database software to
consider two values to be distinct.

When an Antique Opticals employee performs a search to find all the
people who have ordered a specific title, the database software will
retrieve only those orders that match the title entered by the employee
exactly. For example, assume that a movie named Summer Days is
scheduled to be released soon. In some orders, the title is stored cor-
rectly as “Summer Days,” but in others it is stored as “summer days”
or even “sumer days.” When an employee searches for all the people
to whom the movie should be shipped, the orders for “summer days”
and “sumer days” will not be retrieved. Those customers will not
receive their orders, causing disgruntled customers and probably lost
business.

The current Antique Opticals software has no way to ensure that
duplicated data are entered consistently. There are, however, two solu-
tions. The first is to eliminate as much of the duplicated data as pos-
sible. (As you will see, it is neither possible nor desirable to eliminate
all of it.) The second is to provide some mechanism for verifying that
when data must be duplicated, they are entered correctly. A well-
designed database will do both.

Note: Unnecessary duplicated data also take up extra disk space, but given
that disk space is relatively inexpensive today, that isn’t a major reason for
getting rid of redundant data.

Data Insertion Problems
When operations first began, the Lasers Only staff generated the
catalog of forthcoming titles by hand. By 1995, however, Stone real-
ized that this was a very cumbersome process and thought it would
be much better if the catalog could be generated from the database.

49Data Deletion Problems

“Why not get a list of forthcoming titles from the database and have
a database program generate the entire catalog?” Stone discovered,
however, that it could not be done from the existing database, for two
reasons.

First, the database did not contain all of the information needed for
the catalog, in particular a synopsis of all the content of the disc. This
problem could be remedied by adding that information to the data-
base, but doing so would only exacerbate the problem with unneces-
sary duplicated data if the company were to include the summary with
every order. If the summary was included only once, how would the
company know which order contained the summary?

Second, and by far more important, there is no way to enter data about
a title unless someone has ordered it. This presents a very large Catch-
22. The company couldn’t insert data about a title unless it had been
ordered at least once, but customers won’t know that it is available to
be ordered without seeing it in the catalog. But the catalog can’t
contain data about the new title until someone can get the data into
the database, and that can’t happen until the title has been ordered.

Note: This problem is more formally known as an “insertion anomaly,” and
you will learn about it more formally throughout this book.

Antique Opticals solved the problem by creating a second database
for forthcoming titles from which the catalog can be generated. Unfor-
tunately, the second database produced problems of its own, in par-
ticular because it introduced yet another source of duplicated data.
The catalog database and the orders database do not communicate to
verify that duplicated data are consistent, creating another potential
source of errors in the orders database.

Data Deletion Problems
Antique Opticals also has problems when it comes to deleting data.
Assume, for example, that a customer orders only one item. After the
order has been processed, the item is discontinued by the manufac-
turer. Antique Opticals therefore wants to delete all references to the
item from its database because the item is no longer available.

When the orders containing the item are deleted, information about
any customer who has ordered only that item is also deleted. No other

50 CHAPTER 3  Why Good Design Matters

orders remain in the database for that customer. Antique Opticals will
be unable to e-mail that customer any more catalogs and must hope
that the customer visits the Web site without being contacted by the
company. A very real potential exists that Antique Opticals has lost
that individual as a customer.

Note: This problem is more formally known as a “deletion anomaly.” It, too,
will be discussed in greater depth throughout this book.

Meaningful Identifiers
The Antique Opticals orders database has another major problem:
those customer numbers. It is very tempting to code meaning into
identifiers, and it usually works well until the values on which the
identifiers are based change.

Consider what happens when an Antique Opticals customer moves.
The person’s customer number must change. At that point, there will
be orders for the same customer with two different customer numbers
in the same database.

If a customer who has moved since first ordering from the store calls
and asks for a list of all items he or she has on order, the first thing
the employee who answers the telephone does is ask the customer for
his or her customer number. The customer, of course, provides the
current value, which means that anything ordered under the old cus-
tomer number will be missed during a search. The customer may
assume that titles ordered under the old customer number are not on
order. As a result, the customer may place another order, causing two
copies of the same item to be shipped. Antique Opticals is then faced
with another disgruntled customer who has to go to the trouble of
returning the duplicate and getting the second charge removed from
his or her credit card.

In this chapter we look at the basis for all database systems: the rela-
tionships between elements in the database environment. The formal
term for expressing data relationships to a DBMS is a data model. The
relational data model, which you will learn about in this book, is just
such a formal structure. However, the underlying relationships in
a database are independent of the data model and therefore also
independent of the DBMS you are using. Before you can design a
database for any data model, you need to be able to identify data
relationships.

51

4Chapter

Entities and
Relationships

Relational Database Design and Implementation
Copyright © 2009 by Academic Press. Inc. All rights of reproduction in any form reserved.

Note: Most DBMSs support only one data model. Therefore, when you
choose a DBMS, you are also choosing your data model.

Entities and Their Attributes
An entity is something about which we store data. A customer is an
entity, as is a merchandise item stocked by Antique Opticals. Entities
are not necessarily tangible. For example, a concert or a doctor’s
appointment is an entity.

Entities have data that describe them (their attributes). For example, a
customer entity is usually described by a customer number, first name,
last name, street, city, state, zip code, and phone number. A concert
entity might be described by a title, date, location, and name of the
performer.

When we represent entities in a database, we actually store only the
attributes. Each group of attributes that describes a single real-world

52 CHAPTER 4  Entities and Relationships

Customer #0985

Jane
Doe

185 Main Street

This
 To

wn

ST

11111

(555) 555-1111
5555 1111 2222 3333

12/02

Customer #1212

JohnDoe

89 West Ave.

This Town
11111

ST

(555) 555-2222

55
55

 2
22

2
33

33
 4

44
4

11/01

Customer #0081

Sam
Smith

22
88

 N
or

th
Roa

d

This Town
ST

1111

(555) 555-3333

5555 3333 4444 5555

5555 4444 5555 6666

06/02

Customer #0525

Sally

Smith

2525 South Street
This Town ST

11111

(555) 555-4444

10/01

n  Figure 4-1  Instances of a customer entity in a database.

occurrence of an entity acts to represent an instance of an entity. For
example, in Figure 4-1, you can see four instances of a customer entity
stored in a database. If we have 1000 customers in our database, there
will be 1000 collections of customer attributes.

53Entities and Their Attributes

Entity Identifiers
The only purpose for putting the data that describe an entity into a
database is to retrieve the data at some later date. This means that we
must have some way of distinguishing one entity from another so that
we can always be certain that we are retrieving the precise entity we
want. We do this by ensuring that each entity has some attribute values
that distinguish it from every other entity in the database (an entity
identifier).

Assume, for example, that Antique Opticals has only two customers
named John Smith. If an employee searches for the items John Smith
has ordered, which John Smith will the DBMS retrieve? In this case, the
answer is both of them. Because there is no way to distinguish between
the two customers, the result of the query will be inaccurate. Antique
Opticals solved the problem by creating customer numbers that were
unique. That is indeed a common solution to identifying instances of
entities where there is no simple unique identifier suggested by the data
itself.

Another solution would be to pair the customer’s first name and last
name with his or her telephone number. This combination of data
values (a concatenated identifier) would also uniquely identify each
customer. There are, however, two drawbacks to doing so this. First,
the identifier is long and clumsy; it would be easy to make mistakes
when entering any of the parts. Second, if the customer’s phone
number changes, then the identifier must also change. As you read in
Chapter 3, changes made in an entity identifier can cause serious
problems in a database.

Some entities, such as invoices, come with natural identifiers (the
invoice number). We assign unique, meaningless numbers to others,
especially accounts, people, places and things. Still others require
concatenated identifiers.

Note: Keep in mind that we are not making any statements about how the
instances are physically stored. What you see in Figure 4-1 is purely a
conceptual representation.

Note: We will examine the issue of what makes a good unique identifier
more closely in Chapter 5 when we discuss “primary keys.”

54 CHAPTER 4  Entities and Relationships

When we store an instance of an entity in a database, we want the
DBMS to ensure that the new instance has a unique identifier. This is
an example of a constraint on a database, a rule to which data must
adhere. The enforcement of a variety of database constraints helps us
to maintain data consistency and accuracy.

Single-Valued versus Multivalued Attributes
Because we are eventually going to create a relational database, the
attributes in our data model must be single-valued. This means that
for a given instance of an entity, each attribute can have only one
value. For example, a customer entity allows only one telephone
number for each customer. If a customer has more than one phone
number and wants all of them in the database, then the customer
entity cannot handle them. The existence of more than one phone
number turns the phone number attribute into a multivalued attribute.
Because an entity in a relational database cannot have multivalued
attributes, you must handle those attributes by creating an entity to
hold them.

Note: While it is true that the entity-relationship model of a database is
independent of the formal data model used to express the structure of the
data to a DBMS, we often make decisions on how to model the data based
on the requirement of the formal data model we will be using. Removing
multivalued attributes is one such case. You will also see an example of this
when we deal with many-to-many relationships between entities.

Note: There is no way to avoid using the telephone number as part of the
entity identifier in the telephone number entity. As you will come to
understand as you read this book, in this particular case there is no harm in
using it in this way.

In the case of the multiple phone numbers, we could create a phone
number entity. Each instance of the entity would include the customer
number of the person to whom the phone number belonged along
with the telephone number. If a customer had three phone numbers,
then there would be three instances of the phone number entity for
the customer. The entity’s identifier would be the concatenation of the
customer number and the telephone number.

55Entities and Their Attributes

What is the problem with multivalued attributes? Multivalued attri-
butes can cause problems with the meaning of data in the database,
significantly slow down searching, and place unnecessary restrictions
on the amount of data that can be stored.

Assume, for example, that you have an employee entity with attributes
for the name and birth dates of dependents. Each attribute is allowed
to store multiple values, as in Figure 4-2, where each gray blob repre-
sents a single instance of the employee entity. How will you associate
the correct birth date with the name of the dependent to which it
applies? Will it be by the position of a value stored in the attribute
(i.e., the first name is related to the first birth date, and so on)? If so,
how will you ensure that there is a birth date for each name and a
name for each birth date? How will you ensure that the order of the
values is never mixed up?

Employee #0985

Jack, Jenny, John

1-1-00, 6-25-06, 10-2-04
Employee #1212

Penny, Paul, Peter

12-4-97, 2-27-08, 6-6-00

Employee #0081

David, Darla, Debbie

7-2-02, 7-2-02, 8-1-07

Employee #0525

Amber, April, Anthony

12-12-00, 1-9-98, 6-6-04

n  Figure 4-2  Entity instances containing multivalued attributes.

56 CHAPTER 4  Entities and Relationships

When searching a multivalued attribute, a DBMS must search each
value in the attribute, most likely scanning the contents of the attri-
bute sequentially. A sequential search is the slowest type of search
available.

In addition, how many values should a multivalued attribute be able
to store? If you specify a maximum number, what will happen when
you need to store more than the maximum number of values? For
example, what if you allow room for 10 dependents in the employee
entity just discussed and you encounter an employee with 11 depen-
dents? Do you create another instance of the employee entity for that
person? Consider all the problems that doing so would create, particu-
larly in terms of the unnecessary duplicated data.

Note: Although it is theoretically possible to write a DBMS that will store an
unlimited number of values in an attribute, the implementation would be
difficult and searching much slower than if the maximum number of values
were specified in the database design.

As a general rule, if you run across a multivalued attribute, this is a
major hint that you need another entity. The only way to handle
multiple values of the same attribute is to create an entity in which
you can store multiple instances, one for each value of the attribute
(for example, Figure 4-3). In the case of the employee entity, we would
need a dependent entity that could be related to the employee entity.
There would be one instance of the dependent entity related to an
instance of the employee entity for each of an employee’s dependents.
In this way, there is no limit to the number of an employee’s depen-
dents. In addition, each instance of the dependent entity would
contain the name and birth date of only one dependent, eliminating
any confusion about which name was associated with which birth
date. Searching would also be faster because the DBMS could use fast
searching techniques on the individual dependent entity instances
without resorting to the slow sequential search.

Avoiding Collections of Entities
When you first begin to work with entities, you may find the nature
of an entity to be somewhat confusing. Consider, for example, the
merchandise inventory handled by Antique Opticals. Is “inventory”

57Entities and Their Attributes

Employee #0985

Jack

1-1-00

Employee #0985

Jenny

6-25-06

Employee #0985

John

10-2-04

Employee #0081

David

7-2-02

Employee #0081

Darla

8-1-07

Employee #0081

Debbie

7-2-02

Employee #1212

Penny

6-6-00

Employee #1212

Paul

2-27-08

Employee #1212

Peter

12-4-97

Employee #0525

Amber

12-2-00

Employee #0525

April

1-9-88

Employee #0525

Anthony

6-6-04

n  Figure 4-3  Using multiple instances of an entity to handle a multivalued attribute.

58 CHAPTER 4  Entities and Relationships

an entity? No. Inventory is a collection of the merchandise items
handled by the store. The entity is actually the merchandise item.
Viewing all of the instances of the merchandise item entity as a whole
provides the inventory.

To make this a bit clearer, consider the attributes you would need if
you decided to include an inventory entity: merchandise item number,
item title, number in stock, retail price, and so on. But because you
are trying to describe an entire inventory with a single entity, you need
multiple values for each of those attributes. As you read earlier,
however, attributes cannot be multivalued. This tells you that inven-
tory cannot stand as an entity. It must be represented as a collection
of instances of a merchandise item entity.

As another example, consider a person’s medical history maintained
by a doctor. Like an inventory, a medical history is a collection of
more than one entity. A medical history is made up of appointments
and the events that occur during those appointments. Therefore, the
history is really a collection of instances of appointment entities and
medical treatment entities. The “history” is an output that a database
application can obtain by gathering the data stored in the underlying
instances.

Documenting Entities and Their Attributes
Entity-relationship (ER) diagrams (ERDs) provide a way to document
the entities in a database along with the attributes that describe them.
There are actually several styles of ER diagrams. Today there are three
major methods: the Chen model (named after the originator of ER
modeling, Dr. Peter P.S. Chen), Information Engineering (IE, or
“crows feet”), and Unified Modeling Language (UML).

If you are not including object-oriented concepts in a data model, it
really doesn’t matter which you use, as long as everyone who is using
the diagram understands the symbols. However, UML is specifically
intended for the object-oriented environment and is usually the choice
when objects are included.

All three diagramming styles use rectangles to represent entities. Each
entity’s name appears in the rectangle and is expressed in the singular,
as in

59Entities and Their Attributes

The original Chen model has no provision for showing attributes on
the ER diagram itself. However, many people have extended the model
to include the attributes in ovals:

The entity’s identifier is underlined (id_numb).

Note: An alternative to the Chen style of diagramming, which does include
the attribute ovals, is the Information Engineering style, which grew out of
the work of James Martin and Clive Finkelstein.

The IE and UML styles of ER diagramming include the attributes in
the rectangle with the entity:

60 CHAPTER 4  Entities and Relationships

n  Figure 4-4  Major entities and their attributes for the Antique Opticals database.

Because the IE and UML approaches tend to produce a less-cluttered
diagram and because they are the more flexible styles, we will be using
IE for most of the diagrams in this book, although you will be intro-
duced to elements of the Chen style and the UML style throughout
this chapter.

Entities and Attributes for Antique Opticals
The major entities and their attributes for the Antique Opticals data-
base can be found in Figure 4-4. As you will see, the design will require
additional entities as we work with the relationships between those
already identified. In particular, there is no information in Figure 4-4
that indicates which items appear on which orders and no informa-
tion about which used laser discs are purchased by the store during a
single transaction. This occurs because the missing information is a
part of the logical relationships between customers, orders, purchases,
and items.

61Domains

Note: The entities in Figure 4-4 and the remainder of the diagrams in this
book were created with a special type of software known as a computer-
aided software engineering (CASE) tool. CASE tools provide a wide range of
data and systems modeling assistance. You will find more details on how
CASE tools support the database design process in Chapter 11.

Figure 4-4 demonstrates some of the choices made for the Antique
Opticals database. Notice, for example, that there is only one entity for
merchandise items, yet the store carries new DVDs, new high-definition
DVDs, and used laser discs. The item_type attribute distinguishes the
three types of merchandise. Because all merchandise items are stored
as the same type of entity, queries such as “Show me Star Wars IV in
any format” will be easy to perform using just the item name, and
queries such as “Do you have a used Star Wars IV laser disc?” will be
easy to satisfy using both the title of the item and its type.

Domains
Each attribute has a domain, an expression of the permissible values
for that attribute. A domain can be very small. For example, a T-shirt
store might have a size attribute for its merchandise items with the
values L, XL, and XXL comprising the entire domain. In contrast, an
attribute for a customer’s first name, being very long might be specified
only as “text” or “human names.”

A DBMS enforces a domain through a domain constraint. Whenever a
value is stored in the database, the DBMS verifies that it comes from
the attribute’s specified domain. Although in many cases we cannot
specify small domains, at the very least the domain assures us that we
are getting data of the right type. For example, a DBMS can prevent a
user from storing 123 × 50 in an attribute whose domain is currency
values. Most DBMSs also provide fairly tight domain checking on date
and time attributes, which can help you avoid illegal dates such as
February 30.

Documenting Domains
The common formats used for ER diagrams do not usually include
domains on the diagrams themselves but store the domains in an
associated document (usually a data dictionary, something you will
learn more about later in this book). However, the version of the Chen

62 CHAPTER 4  Entities and Relationships

method that includes attributes can also include domains underneath
each attribute. Notice in Figure 4-5 that three of the domains are fairly
general (integer and character), while the domain for the telephone
number attribute includes a very specific format. Whether a domain
can be constrained in this way depends on the DBMS.

n  Figure 4-5  Indicating domains on an ER diagram.

Note: There is no specific syntax for indicating domains. However, if you
know which DBMS you will be using, consider using the column data types
supported by that product as domains in an ERD to simplify the later
conversion to the DBMS’s representation.

Practical Domain Choices
The domains that Antique Opticals chooses for its attributes should
theoretically be independent of the DBMS that the company will use.
In practical terms, however, it makes little sense to assign domains
that you cannot implement. Therefore, the database designer working
for Antique Opticals takes a look at the DBMS to see what data types
are supported.

Most relational DBMSs that use SQL as their query language provide
the following among their data types, any of which can be assigned
as a domain to an attribute:

n	 CHAR: A fixed-length string of text, usually up to 256 characters

63Domains

n	 VARCHAR: A variable-length string of text, usually up to 256
characters

n	 INT: An integer, the size of which varies depending on the operating
system

n	 DECIMAL and NUMERIC: Real numbers, with fractional portions
assigned to the right of the decimal point. When you assign a real
number domain, you must specify how many digits the number
can contain (including the decimal point) and how many digits
should be to the right of the decimal point (the value’s precision).
For example, currency values usually have a precision of two, so a
number in the format XXX.XX might have a domain of DECIMAL
(6,2).

n	 DATE: A date

n	 TIME: A time

n	 DATETIME: The combination of a date and a time

n	 BOOLEAN: A logical value (true or false)

Many current DBMSs also support a data type known as a BLOB (binary
large object), which can store anything binary, such as a graphic.

Choosing the right domain can make a big difference in the accuracy
of a database. For example, a U.S. zip code is made up of five or nine
digits. Should an attribute for a zip code therefore be given a domain
of INT? The answer is no, for two reasons. First, it would be nice to
be able to include the hyphen in nine-digit zip codes. Second, and
more important, zip codes in the Northeast begin with a zero. If they
are stored as a number, the leading zero disappears. Therefore, we
always choose a CHAR domain for zip codes. Since we never do arith-
metic with zip codes, nothing is lost by using character rather than
numeric storage.

By the same token, it is important to choose domains of DATE and
TIME for chronological data. As an example, consider what would
happen if the dates 01/12/2009 and 08/12/2008 were stored as char-
acters. If you ask the DBMS to choose which date comes first, the
DBMS will compare the character strings in alphabetical order and
indicate that 01/12/2009 comes first, because 01 alphabetically pre-
cedes 08. The only way to get character dates to order correctly is to
use the format YYYY/MM/DD, a format that is rarely used anywhere
in the world. However, if the dates were given a domain of DATE,

64 CHAPTER 4  Entities and Relationships

then the DBMS would order them properly. The DBMS would also be
able to perform date arithmetic, finding the interval between two dates
or adding constants (for example, 30 days) to dates.

Basic Data Relationships
Once you have a good idea of the basic entities in your database
environment, your next task is to identify the relationships among
those entities. There are three basic types of relationships that you may
encounter: one-to-one (1 : 1), one-to-many (1 : M), and many-to-many
(M : N or M : M).

Before examining each type, you should keep one thing in mind: The
relationships that are stored in a database are between instances of
entities. For example, an Antique Opticals customer is related to the
items that he or she orders. Each instance of the customer entity is
related to instances of the specific items ordered (see Figure 4-6).

When we document data relationships, such as when we draw an ER
diagram, we show the types of relationships among entities. We are
showing the possible relationships that are allowable in the database.
Unless we specify that a relationship is mandatory, there is no require-
ment that every instance of every entity must be involved in every
documented relationship. For example, Antique Opticals could store
data about a customer without the customer having any orders to
which it is related.

One-to-One Relationships
Consider, for a moment, an airport in a small town, where both the
airport and the town are described in a database of small-town air-
ports. Each of these might be represented by an instance of a different
type of entity. The relationship between the two instances can be
expressed as “The airport is located in one and only one town, and
the town has one and only one airport.”

This is a true one-to-one relationship because at no time can a single
airport be related to more than one town, and no town can be related
to more than one airport. (Although there are municipalities that have
more than one airport, the towns in the database are too small for
that to ever happen.)

If we have instances of two entities (A and B) called Ai and Bi, then a
one-to-one relationship exists if at all times Ai is related to no instances

65Basic Data Relationships

Customer #0985

12/15/00

$75.90

(555) 555-2222

Customer #1212

JohnDoe

89 West Ave.

This Town
11111

ST

55
55

 2
22

2
33

33
 4

44
4

11/01

Customer #0985

Jane
Doe

185 Main Street

This
 T

ow
n

ST

11111

(555) 555- 1111

5555 1111 2222 3333
12/02

05/12/00

$110.00

Customer #0985

Customer #0985
10/10/00

$92.65

Customer #1212

07/09/00

$85.25
Customer #1212

10/15/00

186.00

n  Figure 4-6  Relationships between instances of entities in a database.

66 CHAPTER 4  Entities and Relationships

of entity B or one instance of entity B, and Bi is related to no instances
of entity A or one instance of entity A.

True one-to-one relationships are very rare in business. For example,
assume that Antique Opticals decides to start dealing with a new dis-
tributor of DVDs. At first, the company orders only one specialty title
from the new distributor. If we peered inside the database, we would
see that the instance of the distributor entity was related to just the
one merchandise item instance. This would then appear to be a one-
to-one relationship. However, over time, Antique Opticals may choose
to order more titles from the new distributor, which would violate the
rule that the distributor must be related to no more than one mer-
chandise item. (This is an example of a one-to-many relationship,
which is discussed in the next section of this chapter.)

By the same token, what if Antique Opticals created a special credit
card entity to hold data about the credit cards that customers use to
place orders? Each order can be charged to only one credit card. Thus,
there would seem to be a one-to-one relationship between an instance
of an order entity and an instance of a credit card entity. However, in
this case we are really dealing with a single entity. The credit card
number and the credit card’s expiration date can become attributes
of the order entity. Given that only one credit card is allowed per
order, the attributes are not multivalued, and no separate entity is
needed.

If you think you are dealing with a one-to-one relationship, look at it
very carefully. Be sure that you are not really dealing with a special
case of a one-to-many relationship or two entities that should really
be one.

One-to-Many Relationships
The most common type of relationship is a one-to-many relationship.
(In fact, most relational databases are constructed from the rare one-
to-one relationship and numerous one-to-many relationships.) For
example, Antique Opticals typically orders many titles from each dis-
tributor, and a given title comes from only one distributor. By the
same token, a customer places many orders, but an order comes from
only one customer. If we have instances of two entities (A and B), then
a one-to-many relationship exists between two instances (Ai and Bi) if
Ai is related to zero, one, or more instances of entity B and Bi is related
to zero or one instance of entity A.

67Basic Data Relationships

Other one-to-many relationships include that between a daughter and
her biological mother. A woman may have zero, one, or more biologi-
cal daughters; a daughter can have only one biological mother. As
another example, consider a computer and its CPU. A CPU may not
be installed in any computer, or it may be installed in at most one
computer. A computer may have no CPU, one CPU, or more than one
CPU.

Our previous example of Antique Opticals and the distributor from
which it ordered only one title is actually a one-to-many relationship
where the “many” is currently “one.” Remember that when we are
specifying data relationships, we are indicating possible relationships
and not necessarily requiring that all instances of all entities partici-
pate in every documented relationship. There is absolutely no require-
ment that a distributor be related to any merchandise item, much less
one or more merchandise items. (It might not make much sense to
have a distributor in the database from which the company does not
order, but there is nothing to prevent data about that distributor from
being stored.)

Many-to-Many Relationships
Many-to-many relationships are also very common. There is, for example,
a many-to-many relationship between an order placed by an Antique
Opticals customer and the merchandise items carried by the store. An
order can contain multiple items, and each item can appear on more
than one order. The same is true of the orders placed with distributors.
An order can contain multiple items and each item can appear on
more than one order.

A many-to-many relationship exists between entities A and B if for
two instances of those entities (Ai and Bi) Ai can be related to zero,
one, or more instances of entity B and Bi can be related to zero, one,
or more instances of entity A.

Many-to-many relationships present two major problems to a data-
base’s design. These issues and the way in which we solve them are
discussed later in the next major section, of this chapter (“Dealing
with Many-to-Many Relationships”).

Weak Entities and Mandatory Relationships
In our discussion of types of data relationships, we have defined those
relationships by starting each with “zero,” indicating that the partici-

68 CHAPTER 4  Entities and Relationships

pation by a given instance of an entity in a relationship is optional.
For example, Antique Opticals can store data about a customer in its
database before the customer places an order. Therefore, an instance
of the customer entity does not have to be related to any instances of
the order entity.

However, the reverse is not true in this database. An order must be
related to a customer. Without a customer, an order cannot exist. An
order is therefore an example of a weak entity, one that cannot exist in
the database unless a related instance of another entity is present and
related to it. An instance of the customer entity can be related to zero,
one, or more orders. However, an instance of the order entity must
be related to one and only one customer. The “zero” option is not
available to a weak entity. The relationship between an instance of the
order entity and an instance of the customer entity is therefore a man-
datory relationship.

Identifying weak entities and their associated mandatory relationships
can be very important for maintaining the consistency and integrity
of the database. Consider the effect, for example, of storing an order
without knowing the customer to which it belongs. There would be
no way to ship the item to the customer, and the company would lose
business.

By the same token, we typically specify the relationship between an
order and the order lines (the specific items on the order) as manda-
tory because we don’t want to allow an order line to exist in the
database without it being related to an order. (An order line is mean-
ingless without knowing the order to which it belongs.)

In contrast, we can allow a merchandise item to exist in a database
without indicating the supplier from which is comes (assuming that
there is only one source per item). This lets us store data about new
items before we have decided on a supplier. In this case, the relation-
ship between a supplier and an item is not mandatory (often described
as zero-to-many rather than one-to-many).

Documenting Relationships
The Chen and UML methods of drawing ER diagrams have very dif-
ferent ways of representing relationships, each of which has its advan-
tages in terms of the amount of information it provides and its
complexity.

69Basic Data Relationships

n  Figure 4-7  Using the Chen method
with relationship diamonds and arrows.

n  Figure 4-8  A Chen ER diagram using
letters and numbers rather than arrows to
show relationships.

n  Figure 4-9  Adding inverse
relationships to a Chen method
ER diagram.

The Chen Method
The Chen method uses diamonds for relationships and lines with
arrows to indicate the relationships between entities. For example, in
Figure 4-7 you can see the relationship between an Antique Opticals
customer and an order. The single arrow pointing toward the customer
entity indicates that an order belongs to at most one customer. The
double arrow pointing toward the order entity indicates that a cus-
tomer can place one or more orders. The word within the relationship
diamond gives some indication of the meaning of the relationship.

There are two alternative styles within the Chen method. The first
replaces the arrows with numbers and letters (see Figure 4-8). A “1”
indicates that an order comes from one customer. The “M” (or an “N”)
indicates that a customer can place many orders. The second alterna-
tive addresses the problem of trying to read the relationship in both
directions when the name of the relationship is within the diamond.
“Customer places order” makes sense, but “order places customer”
does not. To solve the problem, this alternative removes the relation-
ship name from the diamond and adds both the relationship and its
inverse to the diagram, as in Figure 4-9. This version of the diagram
can be read easily in either direction: “A customer places many orders”
and “An order is placed by one customer.”

70 CHAPTER 4  Entities and Relationships

There is one major limitation to the Chen method of drawing ER
diagrams: There is no obvious way to indicate weak entities and man-
datory relationships. For example, an order should not exist in the
database without a customer. Therefore, order is a weak entity and its
relationship with a customer is mandatory.

IE Style Diagrams
The IE diagramming style exchanges simplicity in line ends for added
information. As a first example, consider Figure 4-10. This is the same
one-to-many relationship we have been using to demonstrate the
Chen method ER diagrams. However, in this case, the ends of the lines
(which look a little like a bird’s foot and are often called “crows feet”)
indicate which relationships are mandatory.

The double line below the customer entity means that each order is
related to one and only one customer. Because zero is not an option,
the relationship is mandatory. In contrast, the 0 and the crow’s foot
connected to the order entity mean that a customer may have zero,
one, or more orders.

There are four symbols used at the ends of lines in an IE diagram:

||: One and one only (mandatory relationship)
0|: Zero or one
>1: One or more (mandatory relationship)
>0: Zero, one, or more

Although we often see the symbols turned 90 degrees, as they are in
Figure 4-10, they are actually readable if viewed sideways as in the
preceding list. An IE method ER diagram often includes attributes
directly on the diagram. As you can see in Figure 4-10, entity identifiers
are marked with an asterisk.

UML Style Diagrams
UML notation for entity relationships is very similar to IE notation.
However, the symbols at the ends of lines are replaced by numeric
representations of the type of relationship (see Figure 4-11). There are
four possible relationships:

1: One and only one (mandatory)
1…*: One or more (mandatory)
0…1: Zero or one
0…*: Zero, one, or more

n  Figure 4-10  A one-to-many
relationship using the IE method.

71Basic Data Relationships

Basic Relationships for Antique Opticals
The major entities in the Antique Opticals database are diagrammed
in Figure 4-12. You read the relationships in the following way:

n	 One customer can place zero, one, or more orders. An order comes
from one and only one customer.

n	 The store may make many purchases of used discs from one
customer. A purchase transaction comes from one and only one
customer.

n  Figure 4-11  A many-to-many
relationship using UML notation.

n  Figure 4-12  The major entities and the relationships between them in the Antique Opticals
database.

72 CHAPTER 4  Entities and Relationships

n	 An order has one or more items on it. An item can appear in zero,
one, or more orders.

n	 A purchase is made up of one or more items. An item can be pur-
chased zero, one, or more times.

n	 An actor appears in zero, one, or more items. An item has zero, one,
or more actors in it. (There may occasionally be films that feature
animals rather than human actors; therefore, it is probably unwise
to require that every merchandise item be related to at least one
actor.)

n	 Each item has zero, one, or more producers. Each producer is
responsible for zero, one, or more items. (Although in practice you
would not store data about a producer unless that producer was
related to an item, leaving the relationship between a producer and
an item as optional means that you can store producers without
items if necessary.)

n	 Each item comes from zero or one distributor. Each distributor
supplies zero, one, or more items.

The major thing to notice about this design is that there are four many-
to-many relationships: order to item, purchase to item, actor to item,
and producer to item. Before you can map this data model to a rela-
tional database, they must be handled in some way.

Dealing with Many-to-Many Relationships
As you read earlier, there are problems with many-to-many relation-
ships. The first is fairly straightforward: The relational data model
cannot handle many-to-many relationships directly; it is limited to
one-to-one and one-to-many relationships. This means that you must
replace the many-to-many relationships that you have identified in
your database environment with a collection of one-to-many relation-
ships if you want to be able to use a relational DBMS.

The second, however, is a bit more subtle. To understand it, consider
the relationship between an order a customer places with Antique
Opticals and the merchandise items on the order. There is a many-to-
many relationship between the order and the item because each order
can be for many items and each item can appear on many orders
(typically orders from different customers). Whenever a customer
orders an item, the number of copies of the item varies, depending
on how many copies the customer needs. (Yes, typically people order

73Dealing with Many-to-Many Relationships

only one copy of a movie, but we need to allow them to order as many
as they want.)

Now the question: Where should we store the quantity being ordered?
It cannot be part of the order entity because the quantity depends on
which item we are talking about. By the same token, the quantity
cannot be part of the item entity because the quantity depends on the
specific order.

This scenario is known as relationship data—data that apply to the
relationship between two entities rather than to the entities them-
selves. Relationships, however, cannot have attributes. We therefore
must have some entity to represent the relationship between the two,
an entity to which the relationship data can belong.

Composite Entities
Entities that exist to represent the relationship between two or more
other entities are known as composite entities. As an example of how
composite entities work, consider once again the relationship between
an order placed by an Antique Opticals customer and the items on
that order.

What we need is an entity that tells us that a specific title appears on
a specific order. If you look at Figure 4-13, you will see three order
instances and three merchandise item instances. The first order for
customer 0985 (Order #1) contains only one item (item 09244). The
second order for customer 0985 (Order #2) contains a second copy
of item 09244 as well as item 10101. Order #3, which belong to cus-
tomer 1212, also has two items on it (item 10101 and item 00250).

There are five items ordered among the three orders. The middle of
the diagram therefore contains five instances of a composite entity we
will call a “line item” (think of it as a line item on a packing slip).
The line item entity has been created solely to represent the relation-
ship between an order and a merchandise item.

Each order is related to one line item instance for each item in the
order. In turn, each item is related to one line item instance for each
order on which it appears. Each line item instance is related to one
and only one order, and it is also related to one and only one mer-
chandise item. As a result, the relationship between an order and its
line items is one-to-many (one order has many line items), and the
relationship between an item and the orders on which it appears is

74 CHAPTER 4  Entities and Relationships

one-to-many (one merchandise item appears in many line items). The
presence of the composite entity has removed the original many-to-
many relationship.

If necessary, the composite entity can be used to store relationship
data. In the preceding example, we might include an attribute for the
quantity ordered, a flag to indicate whether it has been shipped, and
a shipping date.

Documenting Composite Entities
In some extensions of the Chen method for drawing ER diagrams, the
symbol for a composite entity is the combination of the rectangle used
for an entity and the diamond used for a relationship:

05/02/00

$29.95

Order #1
Customer #0985

Order #2
Customer #0985

05/18/00
$119.94

Order #3
Customer #1212

02/18/00

$119.94

Item #09244
Die Hard
$29.95

Item #10101
Gone with the Wind

$89.99

Item #00250

Flowers for Algernon
$29.95

Customer #0985
Item # 09244

Customer #0985
Item #10101

Customer #0985
Item # 09244

Customer #1212
Item #00250

Customer #1212
Item #10101

n  Figure 4-13  Using instances of composite entities to change many-to-many relationships into one-to-many relationships.

75Dealing with Many-to-Many Relationships

The IE and UML styles, however, have no special symbol for a com-
posite entity.

Resolving Antique Opticals’
Many-to-Many Relationships
To eliminate Antique Opticals’ many-to-many relationships, the data-
base designer must replace each many-to-many relationship with a
composite entity and two one-to-many relationships. As you can see
in Figure 4-14, the four new entities are as follows:

n	 Order item: An instance of the order item entity represents one item
appearing on one order. Each order can have many “order items,”
but an ordered item must appear on one and only one order. By
the same token, an ordered item contains one and only one item,
but the same item can appear in many order item instances, each
of which is related to a different order.

n	 Purchase item: An instance of the purchase item entity represents
one used laser disc purchased from one customer as part of a pur-
chase of one or more discs. Many items can be purchased during a
single transaction, but each item purchased is purchased during
only one transaction. The purpose of the purchase item entity is
therefore the same as the order item entity: to represent specific
items in a single transaction.

n	 Performance: The performance entity represents one actor appearing
in one film. Each performance is for one and only one film, although
a film can have many performances (one for each actor in the film).
Conversely, an actor is related to one performance for each film in
which he or she appears, although each performance is in one and
only one film.

n	 Production: The production entity represents one producer working
on one film. A producer may be involved in many productions,
although each production relates to one and only one producer.
The relationship with the item indicates that each film can be pro-
duced by many producers but that each production relates to only
one item.

76 CHAPTER 4  Entities and Relationships

Because composite entities exist primarily to indicate a relationship
between two other entities, they must be related to both of their parent

n  Figure 4-14  The complete ER diagram for the Antique Opticals database.

Note: If you find sorting out the relationships in Figure 4-14 a bit difficult,
keep in mind that if you rotate the up-and-down symbols 90 degrees, you
will actually be able to read the relationships.

77Data Modeling versus Data Flow

entities. This is why the relationship between each composite entity
in Figure 4-14 and its parents is mandatory.

Relationships and Business Rules
In many ways, database design is as much an art as a science. Exactly
what is the “correct” design for a specific business depends on the
business rules; what is correct for one organization may not be correct
for another. For example, assume that you are creating a database for
a small establishment that has more than one store. One of the things
you are being asked to model in the database is an employee’s sched-
ule. Before you can do that, you need to determine the relationship
between an employee and a store. Is it one-to-many or many-to-
many? Does an employee always work in one store—in which case
the relationship is one-to-many—or can an employee divide his or
her time among stores, which would mean a many-to-many relation-
ship? This is not a matter of a correct or incorrect database design but
an issue of how the business operates.

Data Modeling versus Data Flow
One of the most common mistakes people make when they begin
data modeling is confusing data models with data flows. A data flow
shows how data are handled within an organization, including who
handles the data, where the data are stored, and what is done to the
data. In contrast, a data model depicts the internal, logical relationships
between the data, without regard to who is handling the data or what
is being done with it.

Data flows are often documented in data flow diagrams (DFDs). For
example, Figure 4-15 shows a top-level data flow diagram for Antique
Opticals. The squares with drop shadows represent the people who
are handling the data. Simple rectangles with numbers in them rep-
resent processes, or things that are done with the data. A place where
data are stored (a data store) appears as two parallel lines—in this
example containing the words “Main database.” The arrows on the
lines show the direction in which data pass from one place to another.

Data flow diagrams are often exploded to show more detail. For
example, Figure 4-16 contains an explosion of the “Take order” process
from Figure 4-15. You can now see that the process of taking an order
involves two major steps: getting customer information and getting
item information.

78 CHAPTER 4  Entities and Relationships

Each of the processes in Figure 4-16 can be exploded even further to
show additional detail (see Figures 4-17 and 4-18). At this point, the
diagrams are almost detailed enough so that an application designer
can plan an application program.

Where do the database and the ER diagram fit into all of this? The
entire ER diagram is buried inside the “Main database.” In fact, most
CASE software allows you to link your ER diagram to a database’s
representation on a data flow diagram. Then, you can simply double-
click on the database representation to the ER diagram into view.

There are a few guidelines for keeping data flows and data models
separate:

n	 A data flow shows who uses or handles data. A data model
does not.

n	 A data flow shows how data are gathered (the people or other
sources from which they come). A data model does not.

n	 A data flow shows operations on data (the process through
which data are transformed). A data model does not.

Employee

3.2

store in

store in

Take Order

3.1*

Main Database

prepares

Customer

Ship Order

takesplaces

receives

n  Figure 4-15  A top-level data flow diagram for Antique Opticals.

79Data Modeling versus Data Flow

n	 A data model shows how entities are interrelated. A data flow
does not.

n	 A data model shows the attributes that describe data entities.
A data flow does not.

The bottom line is this: A data model contains information about the
data being stored in the database (entities, attributes, and entity rela-
tionships). If data about an entity are not going to be stored in the
database, then that entity should not be part of the data model. For
example, although the Antique Opticals data flow diagram shows the
employee who handles most of the data, no data about employees are
going to be stored in the database. Therefore, there is no employee
entity in the ER diagram.

Employee

records

records

store in

store in

3.1.2*

Get Items
Ordered

3.1.1*

Get
Customer

Information

Main Database

validate in
provides

provides

Customer

n  Figure 4-16  An explosion of the “Take order” process from Figure 4-15.

80 CHAPTER 4  Entities and Relationships

Schemas
A completed entity-relationship diagram represents the overall, logical
plan of a database. In database terms, it is therefore known as a schema.
This is how the people responsible for maintaining the database will
see the design. However, users (both interactive users and application
programs) may work with only a portion of the logical schema. And
both the logical schema and the users’ views of the data are at the
same time distinct from the physical storage.

The underlying physical storage, which is managed by the DBMS, is
known as the physical schema. It is for the most part determined by the
DBMS. (Only very large DBMSs give you any control over physical
storage.) The beauty of this arrangement is that both database design-

if new
customer

if existing
customer

store in 3.1.1.4
3.1.1.3

Create
New

Customer

3.1.1.1

3.1.1.2

Get
Customer
Number

Validate
Number

Get Other
Customer

Information

Main Database

check

provides

search in

Customer

n  Figure 4-17  An explosion of the “Get customer information” process from Figure 4-14.

81Schemas

ers and users do not need to be concerned about physical storage,
greatly simplifying access to the database and making it much easier
to make changes to both the logical and physical schemas.

Because there are three ways to look at a database, some databases
today are said to be based on a three-schema architecture (see Figure
4-19). Systems programmers and other people involved with manag-
ing physical storage deal with the physical schema. Most of today’s
relational DBMSs provide very little control over the file structure used
to store database data. However, DBMSs designed to run on main-
frames to handle extremely large datasets do allow some tailoring of
the layout of internal file storage.

get
shipping

date

store in

stores

validates

check in

provides

performs

Customer

Main Database

records

Employee

receives

3.2.2.3

Indicate
Shipping

Date

3.2.2.4

Store
Ordered
Item Info

3.1.2.1

Get Item ID

3.1.2.2

Verify
Stock/Shipping

n  Figure 4-18  An explosion of the “Get items ordered” process from Figure 4-16.

82 CHAPTER 4  Entities and Relationships

Data designers, database administrators, and some application pro-
grammers are aware of and use the logical schema. End users who
work interactively and application programmers who are creating
database applications for them work with the user view of the
database.

Throughout most of this book we will focus on the design of the
logical schema. You will also learn how to create and use database
elements that provide users with limited portions of the database.

Physical Schema
(disk storage)

DBMS

Logical Schema

User view
User view

User view

n  Figure 4-19  Three-schema architecture.

Note: DBMSs based on earlier data models were more closed tied to their
physical storage than relational DBMSs. Therefore, systems programmers
were able to specify physical file structures to a much greater extent. An
overview of the older database models can be found in Appendix A.

83For Further Reading

For Further Reading
The entity-relationship model was developed by Peter P. S. Chen. If
you want to learn more about its early forms and how the model has
changed, see the following:

Chen, P. “The Entity-Relationship Model: Toward a Unified View of
Data.” ACM Transactions on Database Systems 1(1), 1976.

Chen, P. The Entity-Relationship Approach to Logical Database Design. QED
Information Sciences, Data Base Monograph Series, No. 6, 1977.

Chen, P. Entity-Relationship Approach to Information Modeling. E-R
Institute, 1981.

The original work that described the Information Engineering
approach can be found in the following:

Finkelstein, Clive. An Introduction to Information Engineering. Addison-
Wesley, 1989.

Martin, James. Information Engineering, Book I: Introduction; Book II:
Planning and Analysis; Book III: Design and Construction. Prentice Hall,
1989.

For information on the Unified Modeling Language, see the
following:

Chonoles, Michael Jessie, and James A. Schardt. UML 2 for Dummies.
For Dummies Press, 2003.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Addison-Wesley Professional, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell, 2nd ed. O’Reilly
Media, 2005.

For more in-depth coverage of ER modeling, see any of the
following:

Baqui, Skiha, and Richard Earp. Database Design Using Entity-Relationship
Diagrams. Auerbach, 2003.

Batini, Carlo, Stefano Ceri, and Shamkant B. Navathe. Conceptual
Database Design: An Entity-Relationship Approach. Addison-Wesley,
1991.

Earp, Richard. Database Design Using Entity-Relationship Diagrams. Taylor
& Frances, 2007.

Thalheim, Bernhard. Entity-Relationship Modeling: Foundations of Database
Technology. Springer, 2000.

Once you have a completed ER diagram, you can translate that con-
ceptual logical schema into the formal data model required by your
DBMS. Today, most new database installations are based on the rela-
tional data model. We call databases that adhere to that model rela-
tional databases.

Note: The older data models that are described in Appendix A are still
in use in many legacy database systems. However, it is extremely rare
to find a business creating a new one. On the other hand, the object-
oriented data model is still quite current, and although it has not
replaced the relational data model and does not appear to be doing
so, some new installations use either object-oriented or a combination
of relational and object-oriented.

A relational database is one whose logical structure is made up of
nothing but a collection of “relations.” Although you may have read
somewhere that a relational database has “relationships between files”
nothing could be further from the truth. In this chapter, you will learn
exactly what a relational database is and how relations provide repre-
sentations of data relationships.

85

5Chapter

The Relational Data Model

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

Note: Remember from Chapter 4 that we said that a DBMS isolates database
users from physical storage. A logical data model therefore has absolutely
nothing to do with how the data are stored in files on disk.

The relational data model is the result of the work of one man: Edgar
(E.F.) Codd. During the 1960s, Dr. Codd, although trained as a
mathematician, worked with existing data models. His experience led
him to believe that they were clumsy and unnatural ways of represent-
ing data relationships. He therefore went back to mathematical set

86 CHAPTER 5  The Relational Data Model

theory and focused on the construct known as a relation. He extended
that concept to produce the relational database model, which he
introduced in a paper in 1970.

Customer Number First Name Last Name Phone
0001 Jane Doe (555) 555-1111
0002 John Doe (555) 555-2222
0003 Jane Smith (555) 555-3333
0004 John Smith (555) 555-4444

n  Figure 5-1  A simple Customer relation.

Note: You will find the citations for Codd’s original paper and his other
writings on the relational data model in the “For Further Reading” section at
the end of this chapter.

Note: E.F. Codd was born in England in 1923 and later migrated to the
United States, where he did most of his work on the relational data model at
the IBM’s Watson Research Center. He died in 2003.

Understanding Relations
In mathematical set theory, a relation is the definition of a table with
columns (attributes) and rows (tuples). (The word table is used synony-
mously with relation in the relational data model.) The definition
specifies what will be contained in each column of the table, but does
not include data. When you include rows of data, you have an instance
of a relation, such as the small Customer relation in Figure 5-1.

At first glance, a relation looks much like a flat file or a rectangular
portion of a spreadsheet. However, because it has its underpinnings
in mathematical set theory, a relation has some very specific charac-
teristics that distinguish it from other rectangular ways of looking at
data. Each of these characteristics forms the basis of a constraint that
will be enforced by the DBMS.

Columns and Column Characteristics
A column in a relation has the following properties.

n	 A name that is unique within the table: Two or more tables within the
same relational database schema may have columns with the same

87Understanding Relations

names—in fact, as you will see shortly, in some circumstances this
is highly desirable—but a single table must have unique column
names. When the same column name appears in more than one
table and tables that contain that column are used in the same
manipulation operation, you qualify the name of the column by
preceding it with the name of its table and a period:

customer.customer_number

n	 A domain: The values in a column are drawn from one and only one
domain. As a result, relations are said to be column homogeneous. In
addition, every column in a table is subject to a domain constraint.
Depending on your DBMS the domain constraint may be as simple
as a data type, such as integers or dates. Alternatively, your DBMS
may allow you to create your own, very specific, domains that can
be attached to columns.

n	 There are no “positional concepts”: In other words, the columns can
be viewed in any order without affecting the meaning of the data.

Rows and Row Characteristics
A row in a relation has the following properties.

n	 Only one value at the intersection of a column and row: A relation
does not allow multivalued attributes.

n	 Uniqueness: There are no duplicate rows in a relation.

n	 A primary key: A primary key is a column or combination of
columns with a value that uniquely identifies each row. As long as
you have unique primary keys, you also have unique rows. We will
look at the issue of what makes a good primary key in great depth
in the next major section of this chapter.

n	 There are no positional concepts: The rows can be viewed in any
order without affecting the meaning of the data.

Note: For the most part, DBMSs do not enforce the unique row
constraint automatically. However, as you will see shortly, there is
another way to obtain the same effect.

Types of Tables
A relational database works with two types of tables. Base tables are
relations that are actually stored in the database. These are the tables

88 CHAPTER 5  The Relational Data Model

that make up your schema. However, relational operations on tables
produce additional tables as their result. Such tables, which exist only
in main memory, are known as virtual tables. Virtual tables may not
be legal relations—in particular, they may have no primary key—but
because virtual tables are never stored in the database, this presents
no problem in terms of the overall design of the database.

The use of virtual tables benefits a DBMS in several ways. First, it
allows the DBMS to keep intermediate query tables in main memory
rather than storing them on disk, enhancing query performance.
Second, it allows tables that violate the rules of the relational data
model to exist in main memory without affecting the integrity of the
database. Third, it helps avoid fragmentation of database files and disk
surfaces by avoiding repeated write, read, and delete operations on
temporary tables.

Note: SQL, the language used to manage most relational databases, also
supports “temporary base tables.” Although called base tables, temporary
tables are actually virtual tables in the sense that they exist only in main
memory for a short time and are never stored in the physical database.

A Notation for Relations
You will see instances of relations throughout this book used as exam-
ples. However, we do not usually include data in a relation when
documenting that relation. One common way to express a relation is
as follows:

relation_name (primary_key, non_primary_key_column …)

For example, the Customer relation that you saw in Figure 5-1 would
be written as:

customers (customer_numb, first_name last_name, phone)

The preceding expression is a true relation, an expression of the struc-
ture of a relation. It correctly does not contain any data. (As mentioned
earlier, when data are included, you have an instance of a relation.)

Primary Keys
As you have just read, a unique primary key makes it possible to
uniquely identify every row in a table. Why is this so important? The

89Primary Keys

issue is the same as with entity identifiers: You want to be able to
retrieve every single piece of data you put into a database.

As far as a relational database is concerned, you should need only
three pieces of information to retrieve any specific bit of data: the
name of the table, the name of the column, and the primary key of
the row. If primary keys are unique for every row, then we can be sure
that we are retrieving exactly the row we want. If they are not unique,
then we are retrieving only some row with the primary key value, which
may not be the row that contains the data for which we are
searching.

Along with being unique, a primary key must not contain the value
null. Null is a special database value meaning “unknown.” It is not
the same as a zero or a blank. If you have one row with a null primary
key, then you are actually all right. However, the minute you introduce
a second one, you have lost the property of uniqueness. We therefore
forbid the presence of nulls in any primary key columns. This con-
straint, known as entity integrity, will be enforced by a DBMS whenever
data are entered or modified.

Selecting a good primary key can be a challenge. As you may remem-
ber from Chapter 4, some entities have natural primary keys, such as
purchase order numbers. These are arbitrary, meaningless, unique
identifiers that a company attaches to the orders it sends to vendors
and are therefore ideal primary keys.

Primary Keys to Identify People
What about a primary key to identify people? The first thing that pops
into your mind might be a Social Security number (or, for those
outside the United States, a national identification number). Every
person in the United States is supposed to have a Social Security
number. Parents apply for them in the hospital where a baby is born,
right? And because they are assigned by the U.S. government, they
must be unique, right? Unfortunately, the answer to both questions
is “no.”

The Social Security Administration has been known to give everyone
in an entire town the same Social Security number; over time, the
numbers may be reused. However, these are minor problems com-
pared to a Social Security number being null.

Consider what happens at a college that uses Social Security numbers
as student numbers when international students enroll. Upon entry

90 CHAPTER 5  The Relational Data Model

into the country, the international students do not have Social Security
numbers. Because primary keys cannot be null, the international stu-
dents cannot sign up for classes or even enroll in the college until they
have a Social Security number.

The college’s solution is to give them “fake” numbers in the format
999-99-XXXX, where XXXX is some number currently not in use. Then,
when the student receives a “real” Social Security number from the
government, the college supposedly replaces the fake value with the
real one. Sometimes, however, the process does not work. A graduate
student ended up with his first semester’s grades being stored under
the fake Social Security number but the rest of his grades under his
real number. (Rather than changing the original data, someone created
an entire new transcript for the student.) When the time came to audit
his transcript to see if he had satisfied all of his graduation require-
ments, he was told that he was missing an entire semester’s worth of
courses.

This example leads us to two important desirable qualities of primary
keys:

n	 A primary key should be some value that is highly unlikely
ever to be null.

n	 A primary key value should never change.

In addition, there is significant concern about security problems that
can arise from the use of Social Security numbers as identifiers in a
database. The danger of identity theft has made it risky to share a
national identifier. Many U.S. state governments, for example, have
mandated that publicly supported organizations use something other
than the Social Security number as a customer/client/student ID to
help protect individual privacy.

Although Social Security numbers initially look like good natural
identifiers, you will be much better off in the long run using arbitrary
numbers for people—such as student numbers or account numbers—
rather than relying on Social Security numbers.

Avoiding Meaningful Identifiers
It can be very tempting to code meaning into a primary key. For
example, assume that Antique Opticals wants to assign codes to its
distributors rather than giving them arbitrary distributor numbers.
Someone might create codes such as TLC for The Laser Club and JS

91Primary Keys

for Jones Services. At first, this might seem like a good idea. The codes
are short, and by looking at them you can figure out which distributor
they reference.

But what happens if one of the companies changes its name? Perhaps
Jones Services is renamed Jones Distribution House. Do you change
the primary key value in the distributor table? Do you change the code
so that it reads JDH? If the distributor table were all that we cared
about, that would be the easy solution.

However, consider that the table that describes merchandise items
contains the code for the distributor so that Antique Opticals can
know which distributor provides the item. (You’ll read a great deal
more about this concept in the next major section of this chapter.) If
you change the distributor code value in the distributor table, you
must change the value of the code for every merchandise item that
comes from that distributor. Without the change, Antique Opticals
will not be able to match the code to a distributor and get information
about the distributor. It will appear that the item comes from a non-
existent distributor!

Note: This is precisely the same problem you read about in Chapter 3
concerning Antique Opticals’ identifiers for its customers.

Meaningful primary keys tend to change and therefore introduce the
potential for major data inconsistencies between tables. Resist the
temptation to use them at all costs. Here, then, is yet another property
of a good primary key:

n	 A primary key should avoid using meaningful data: Use arbitrary
identifiers or concatenations of arbitrary identifiers wherever
possible.

It is not always possible to use completely meaningless primary keys.
You may find, for example, that you need to include dates or times in
primary keys to distinguish among events. The suggestion that you
should not use meaningful primary keys is therefore not a hard and
fast rule but a guideline you should follow whenever you can.

Concatenated Primary Keys
Some tables have no single column in which the values never
duplicate. As an example, look at the sample order items table in

92 CHAPTER 5  The Relational Data Model

Figure 5-2. Because there is more than one item on an order and
because the same item can appear on more than one order, order
numbers are repeated. Therefore, neither column by itself can serve as
the table’s primary key. The combination of an order number and an
item number, however, is unique. We can therefore concatenate the
two columns that form the table’s primary key.

It is true that you could also concatenate all three columns in the table
and still ensure a unique primary key. However, the quantity column
is not necessary to ensure uniqueness and therefore should not be
used. We now have some additional properties of a good primary key:

n	 A concatenated primary key should be made up of the
smallest number of columns necessary to ensure the
uniqueness of the primary key.

n	 Whenever possible, the columns used in a concatenated
primary key should be meaningless identifiers.

All-Key Relations
It is possible to have a table in which every column is part of the primary
key. As an example, consider a library book catalog. Each book title
owned by a library has a natural unique primary key: the ISBN (Inter-
national Standard Book Number). Each ISBN is assigned to one or more
subject headings in the library’s catalog, and each subject heading is
also assigned to one or more books. We therefore have a many-to-many
relationship between books and subject headings.

A relation to represent this relationship might be:

subject_catalog (isbn, subject_heading)

All we need to do is pair a subject heading with a book identifier. No
additional data are needed. Therefore, all columns in the table become
part of the primary key.

Order Number Item Number Quantity
10991 0022 1
10991 0209 2
10991 1001 1
10992 0022 1
10992 0486 1
10993 0209 1
10993 1001 2
10994 0621 1

n  Figure 5-2  A sample
order items table.

93Representing Data Relationships

There is absolutely no problem with having all-key relations in a
database. In fact, they occur whenever a database design contains a
composite entity that has no relationship data. They are not necessar-
ily errors, and you can use them wherever needed.

Representing Data Relationships
In the preceding section we alluded to the use of identifiers in more
than one relation. This is the one way in which relational databases
represent relationships between entities. To make this concept clearer,
take a look at the three tables in Figure 5-3.

Each table in the illustration is directly analogous to the entity by the
same name in the Antique Opticals ER diagram. The Orders table (the
order entity) is identified by an order number, an arbitrary unique

Items
Item
Number Title

Distributor
Number Price

1001 Gone with the Wind 002 39.95
1002 Star Wars: Special Edition 002 59.95
1003 Die Hard 004 29.95
1004 Bambi 006 29.95

Orders
Order
Number

Customer
Number

Order
Date

11100 0012 12/18/09
11101 0186 12/18/09
11102 0056 12/18/09

Order Items
Order
Number Item Number Quantity Shipped?
11100 1001 1 Y
11100 1002 1 Y
11101 1002 2 Y
11102 1002 1 N
11102 1003 1 N
11102 1001 1 N

n  Figure 5-3  Three relations from the Antique Opticals database.

94 CHAPTER 5  The Relational Data Model

primary key assigned by Antique Opticals. The Items table (the item
entity) is identified by an item number, which could be another arbi-
trary unique identifier or a UPC.

The third table—Order Items (the order items entity)—tells the
company which items are part of which order. As you saw earlier in
this chapter, this table requires a concatenated primary key because
multiple items can appear on multiple orders. The selection of the
primary key, however, has more significance than simply uniquely
identifying each row. It also represents a relationship between the
order items, the orders on which they appear, and the items being
ordered.

The item number column in the order items relation is the same as
the primary key of the item table. This indicates a one-to-many rela-
tionship between the two tables. By the same token, there is a one-to-
many relationship between the orders and order items tables because
the order number column in the order items table is the same as the
primary key of the orders table.

When a table contains a column (or concatenation of columns) that
is the same as the primary key of a table, the column is called a foreign
key. The matching of foreign key values to primary key values repre-
sents data relationships in a relational database. As far as the user of
a relational database is concerned, there are no structures that show
relationships other than the matching column’s values.

Note: This is why the idea that relational databases have “relationships
between files” is so absurd. The relationships in a relational database are
between logical constructs—tables—and nothing else. Such structures
make absolutely no assumptions about physical storage.

Foreign keys may be part of a concatenated primary key, or they
may not be part of their table’s primary key at all. Consider, for
example, a pair of simple Antique Opticals customers and orders
relations:

customers (customer_numb, first_name, last_name,
phone)

orders (order_numb, customer_numb, order_date)

The customer number column in the orders table is a foreign key that
matches the primary key of the customers table. It represents the one-

95Representing Data Relationships

to-many relationship between customers and the orders they place.
However, the customer number is not part of the primary key of its
table but is a non-key attribute that is nonetheless a foreign key.

Technically, foreign keys need not have values unless they are part of
a concatenated primary key; they can be null. However, in this particu-
lar database, Antique Opticals would be in serious trouble if customer
numbers were null: There would be no way to know which customer
placed an order!

A relational DBMS uses the relationships indicated by matching data
between primary and foreign keys. For example, assume that an
Antique Opticals employee wanted to see what titles had been ordered
on order number 11102. First, the DBMS identifies the rows in the
order items table that contain an order number of 11102. Then, it
takes the items number from those rows and matches them to the
item numbers in the items table. In the rows where there are matches,
the DBMS retrieves the associated data.

Referential Integrity
The procedure described in the preceding paragraph works very well—
unless for some reason there is no order number in the orders table
to match a row in the order items table. This is a very undesirable situ-
ation because you can’t ship the ordered items if you don’t know
which customer placed the order.

This relational data model therefore enforces a constraint called refer-
ential integrity, which states that every non-null foreign key value must
match an existing primary key value. Of all the constraints on a relational
database, this is probably the most important because it ensures the
consistency of the cross-references among tables.

Referential integrity constraints are stored in the database and enforced
automatically by the DBMS. As with all other constraints, each time a
user enters or modifies data, the DBMS checks the constraints and
verifies that they are met. If the constraints are violated, the data
modification will not be allowed.

Foreign Keys and Primary Keys in the Same Table
Foreign keys do not necessarily need to reference a primary key in a
different table; they need only reference a primary key. As an example,
consider the following employee relation:

96 CHAPTER 5  The Relational Data Model

employee (employee_ID, first_name, last_name,
department, manager_ID)

A manager is also an employee. Therefore, the manager ID, although
named differently from the employee ID, is actually a foreign key that
references the primary key of its own table. The DBMS will therefore
always ensure that whenever a user enters a manager ID, that manager
already exists in the table as an employee.

Views
The people responsible for developing a database schema and those
who write application programs for use by technologically unsophis-
ticated users typically have knowledge of and access to the entire
schema, including direct access to the database’s base tables. However,
it is usually undesirable to have end users working directly with base
tables, primarily for security reasons.

The relational data model therefore includes a way to provide end
users with their own window into the database, one that hides the
details of the overall database design and prohibits direct access to the
base tables.

The View Mechanism
A view is not stored with data. Instead, it is stored under a name in
the database itself along with a database query that will retrieve its
data. A view can therefore contain data from more than one table,
selected rows, and selected columns.

Note: Although a view can be constructed in just about any way that you
can query a relational database, many views can be used for data display. As
you will learn in Chapter 10, only views that meet a strict set of rules can be
used to modify data.

The real beauty of storing views in this way, however, is that whenever
the user includes the name of the view in a data manipulation lan-
guage statement, the DBMS executes the query associated with the
view name and recreates the view’s table. This means that the data in
a view will always be current.

A view table remains in main memory only for the duration of the
data manipulation statement in which it was used. As soon as the user

97The Data Dictionary

issues another query, the view table is removed from main memory
to be replaced by the result of the most recent query. A view table is
therefore a virtual table.

Note: Some end user DBMSs give the user the ability to save the contents of
a view as a base table. This is a particularly undesirable feature, as there are
no provisions for automatically updating the data in the saved table
whenever the tables on which it was based change. The view table
therefore will quickly become out of date and inaccurate.

Why Use Views?
There are three good reasons to include views in the design of a
database:

n	 As mentioned earlier, views provide a significant security mecha-
nism by restricting users from viewing portions of a schema to
which they should not have access.

n	 Views can simplify the design of a database for technologically
unsophisticated users.

n	 Because views are stored as named queries, they can be used to store
frequently used, complex queries. The queries can then be executed
by using the name of the view in a simple query.

Like other structural elements in a relational database, views can be
created and destroyed at any time. However, because views do not
contain stored data but only specification of a query that will generate
a virtual table, adding or removing view definitions has no impact on
base tables or the data they contain. Removing a view will create prob-
lems only when that view is used in an application program and the
program is not modified to work with a different view or base table.

The Data Dictionary
The structure of a relational database is stored in the database’s data
dictionary or catalog. The data dictionary is made up of a set of relations
that are identical in properties to the relations used to hold data. They
can be queried using the same tools used to query data-handling rela-
tions. No user can modify the data dictionary tables directly. However,
data manipulation language commands that create, modify, and
destroy database structural elements work by modifying rows in data
dictionary tables.

98 CHAPTER 5  The Relational Data Model

You will typically find the following types of information in a data
dictionary:

n	 Definitions of the columns that make up each table
n	 Integrity constraints placed on relations
n	 Security information (which user has the right to perform

which operation on which table)
n	 Definitions of other database structure elements, such as views

(discussed further in Chapter 8) and user-defined domains

When a user attempts to access data in any way, a relational DBMS
first goes to the data dictionary to determine whether the database
elements the user has requested are actually part of the schema. In
addition, the DBMS verifies that the user has the access right to what-
ever he or she is requesting.

When a user attempts to modify data, the DBMS also goes to the data
dictionary to look for integrity constraints that may have been placed
on the relation. If the data meet the constraints, then the modification
is permitted. Otherwise the DBMS returns an error message and does
not make the change.

Because all access to a relational database is through the data diction-
ary, relational DBMSs are said to be data dictionary driven. The data in
the data dictionary are known as metadata: data about data.

Sample Data Dictionary Tables
The precise tables that make up a data dictionary depend somewhat
on the DBMS. In this section you will see one example of a typical
way in which a DBMS might organize its data dictionary.

The linchpin of the data dictionary is actually a table that documents
all the data dictionary tables (often named syscatalog, the first few rows
of which can be found in Figure 5-4). From the names of the data
dictionary tables, you can probably guess that there are tables to store
data about base tables, their columns, their indexes, and their foreign
keys.

The syscolumn table describes the columns in each table (including the
data dictionary tables). In Figure 5-5, for example, you can see a
portion of a syscolumn table that describes the Antique Opticals mer-
chandise item table.

Keep in mind that these data dictionary tables have the same structure
and must adhere to the same rules as base tables. They must have

99A Bit of History

non-null unique primary keys, and they must enforce referential integ-
rity among themselves.

A Bit of History
When Codd published his paper describing the relational data model
in 1970, software developers were bringing databases based on older
data models to market. The software was becoming relatively mature
and was being widely installed. Although many theorists recognized
the benefits of the relational data model, it was some time before
relational systems actually appeared.

IBM had a working prototype of its System R by 1976. This product,
however, was never released. Instead, the first relational DBMS to
feature SQL—an IBM development—was Oracle, released by the
company of the same name in 1977. IBM didn’t actually market a
relational DBMS until 1981, when it released SQL/DS.

Oracle debuted on minicomputers running UNIX. SQL/DS ran under
VM (often specifically using CMS on top of VM) on IBM mainframes.

creator tname dbspace tabletype ncols Primary_key

SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

SYSTABLE
SYSCOLUMN
SYSINDEX
SYSIXCOL
SYSFOREIGNKEY
SYSKCOL
SYSFILE
SYSDOMAIN
SYSUSERPERM
SYTSTABLEPERM
SYSCOLPERM

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

12
14
8
5
8
4
3
4
10
11
6

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

n  Figure 5-4  A portion of a syscatalog table.

creator

DBA
DBA
DBA
DBA
DBA

cname

item_numb
title
distributor_numb
release_date
retail_price

tname

items
items
items
items
items

coltype

integer
varchar
integer
date
numeric

nulls

N
Y
Y
Y
Y

length

4
60
4
6
8

Inprimarykey

Y
N
N
N
N

Colno

1
2
3
4
5

n  Figure 5-5  Selected rows from a syscolumn table.

100 CHAPTER 5  The Relational Data Model

There was also a crop of early products that were designed specifically
for PCs, the first of which was dBase II, from a company named
Ashton-Tate. Released in 1981, the product ran on IBM PCs and
Apple II+s.

Note: It is seriously questionable whether dBase was ever truly a “relational”
DBMS. However, most consumers saw it as such, and it is therefore
considered the first relational product for PCs.

Oracle was joined by a large number of competing products in the
UNIX market, including Informix and Ingres. Oracle has been the
biggest winner in this group because it now runs on virtually every
OS/hardware platform combination imaginable and has scaled well
(down to PCs and up to mainframes). Prior to the widespread deploy-
ment of mySQL as a database server for Web sites, it was safe to say
that there were more copies of Oracle running on computers than any
other DBMS.

The PC market for relational DBMSs has been flooded with products.
As often happens with software, the best has not necessarily become
the most successful. In 1983, Microrim released its R:BASE product,
the first truly relational product for a PC. With its support for standard
SQL, a powerful integrity rule facility, and a capable programming
language, R:BASE was a robust product. It succumbed, however, to the
market penetration of dBASE. The same can be said for Paradox (origi-
nally a Borland product and later purchased by Corel) and FoxPro (a
dBase-compatible product originally developed by Fox Software).

dBase faded from prominence after being purchased by Borland in
1991. FoxPro, dBase’s major competitor, was purchased by Microsoft
in 1992. It, too, has faded from the small computer DBMS market.
Instead, the primary end user desktop DBMS for Windows today is
Access, first released by Microsoft in 1993.

Note: You may be wondering why no newer products are mentioned in the
preceding discussion. That is because, for the most part, there haven’t been
any major new relational DBMSs released in some time. A DBMS is a
complex product for a software developer to create. Added to that, once an
organization has invested time and money in purchasing, installing, and
writing applications for a specific product, it is unlikely to want to change as
long as the current product can be made to work. The barriers to entry into
the DBMS software market are very high for a new product.

101For Further Reading

For Further Reading
If you want to follow the history of Codd’s specifications for relational
databases, consult the following:

Codd, E. F. “A Relational Model of Data for Large Shared Databanks.”
Communications of the ACM 13(6), 377–387, 1970.

Codd, E. F. “Extending the Relational Model to Capture More Meaning.”
Transactions on Database Systems 4(4), 397–434, 1979.

Codd, E. F. “Relational Database: A Practical Foundation for
Productivity.” Communications of the ACM. 25(2), 109–117, 1982.

Codd, E. F. “Is Your DBMS Really Relational?” Computerworld, October
14: ID/1-1D/9, 1983.

Codd, E. F. The Relational Data Model, Version 2. Addison-Wesley, 1990.

There are also literally hundreds of books that discuss the details of
specific relational DBMSs. After you finish reading this book, you may
want to consult one or more books that deal with your specific product
to help you learn to develop applications using that product’s tools.

Another title of interest is:

Lightstone, Sam S., Toby J. Teorey, and Tom Nadeau. Physical Database
Design: The Database Professional’s Guide to Exploiting Views, Storage
and More. Morgan Kaufmann, 2007.

Given any pool of entities and attributes, you can group them into
relations in many ways. In this chapter, you will be introduced to the
process of normalization, through which you create relations that avoid
most of the problems that arise from bad relational design.

There are at least two ways to approach normalization. The first is to
work from an ER diagram. If the diagram is drawn correctly, then there
are some simple rules you can use to translate it into relations that will
avoid most relational design problems. The drawback to this approach
is that it can be difficult to determine whether your design is correct.
The second approach is to use the theoretical concepts behind good
design to create your relations. This is a bit more difficult than working
from an ER diagram, but it often results in a better design.

In practice, you may find it useful to use a combination of both
approaches. First, create an ER diagram and use it to design your rela-
tions. Then, check those relations against the theoretical rules for good
design and make any changes necessary to meet the rules.

Translating an ER Diagram into Relations
An ER diagram in which all many-to-many relationships have been
transformed into one-to-many relationships through the introduction
of composite entities can be translated directly into a set of relations.
To do so:

n	 Create one table for each entity.

n	 For each entity that is only at the “one” end of one or more relation-
ships and not at the “many” end of any relationship, create a single-
column primary key, using an arbitrary unique identifier if no
natural primary key is available.

103

6Chapter

Normalization

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

104 CHAPTER 6  Normalization

n	 For each entity that is at the “many” end of one or more relation-
ships, include the primary key of each parent entity (those at the
“one” end of the relationships) in the table as foreign keys.

n	 If an entity at the “many” end of one or more relationships has a
natural primary key (for example, an order number or an invoice
number), use that single column as the primary key. Otherwise,
concatenate the primary key of its parent with any other column or
columns needed for uniqueness to form the table’s primary key.

Following these guidelines, we end up with the following tables for
the Antique Opticals database:

Customer (customer_numb, customer_first_name,
customer_last_name, customer_street,
customer_city, customer_state, customer_zip,
customer_phone)

Distributor (distributor_numb, distributor_name,
distributor_street, distributor_city,
distributor_state, distributor_zip,
distributor_phone, distributor_contact_person,
contact_person_ext)

Item (item_numb, item_type, title, distributor_numb,
retail_price, release_date, genre, quant_in_stock)

Order (order_numb, customer_numb, order_date,
credit_card_numb, credit_card_exp_date,
order_complete?, pickup_or_ship?)

Order item (order_numb, item_numb, quantity,
discount_percent, selling_price, line_cost,
shipped?, shipping_date)

Purchase (purchase_date, customer_numb,
items_received?, customer_paid?)

Purchase item (purchase_date, customer_numb,
item_numb, condition, price_paid)

Actor (actor_numb, actor_name)
Performance (actor_numb, item_numb, role)
Producer (producer_name, studio)
Production (producer_name,item_numb)

Note: You will see these relations reworked a bit throughout the remainder
of the first part of this book to help illustrate various aspects of database
design. However, the preceding is the design that results from a direct
translation of the ER diagram.

105Normal Forms

Normal Forms
The theoretical rules that the design of a relation meet are known as
normal forms. Each normal form represents an increasingly stringent
set of rules. Theoretically, the higher the normal form, the better the
design of the relation. As you can see in Figure 6-1, there are six nested
normal forms, indicating that if a relation is in one of the higher, inner
normal forms, it is also in all of the normal forms below it.

In most cases, if you can place your relations in third normal form
(3NF), then you will have avoided most of the problems common to
bad relational designs. The three higher normal forms—Boyce-Codd,
fourth normal form (4NF), and fifth normal form (5NF)—handle
special situations that arise only occasionally. However, the situations
that these normal forms handle are conceptually easy to understand
and can be used in practice if the need arises.

Fifth
Normal
Form

Fourth
Normal Form

Boyce-Codd Normal Form

Third Normal Form

Second Normal Form

First Normal Form

n  Figure 6-1  Nested normal forms.

106 CHAPTER 6  Normalization

In recent years, sixth normal form has been added to relational data-
base design theory. It is not precisely a more rigorous normal form
than fifth normal form, although it uses the same principles to trans-
form relations from one form to another. You will be introduced to
it briefly at the end of this chapter.

Note: In addition to the normal forms in Figure 6-1 and sixth normal
form, another normal form—domain/key normal form—which is
of purely theoretical importance, has not been used as a practical
design objective.

First Normal Form
A table is in first normal form (1NF) if it meets the following
criteria:

1.	 The data are stored in a two-dimensional table.
2.	 There are no repeating groups.

The key to understanding 1NF, therefore, is understanding the nature
of a repeating group of data.

Understanding Repeating Groups
A repeating group is an attribute that has more than one value in each
row of a table. For example, assume that you were working with an
employee relation and needed to store the names and birth dates of
the employees’ children. Because each employee can have more than
one child, the names of the children and their birth dates each form
a repeating group.

Note: A repeating group is directly analogous to a multivalued attribute in
an ER diagram.

There is actually a very good reason why repeating groups are not
permitted. To see what might happen if they were used, take a look
at Figure 6-2, an instance of an employee table containing repeating
groups. Notice that there are multiple values in a single row in both
the children’s names and the children’s birth dates columns. This
presents two major problems:

107First Normal Form

n	 There is no way to know exactly which birth date belongs to which
child. It is tempting to say that we can associate the birth dates with
the children by their positions in the list, but there is nothing to
ensure that the relative positions will always be maintained.

n	 Searching the table is very difficult. If, for example, we want to know
which employees have children born before 2005, the DBMS will
need to perform data manipulation to extract the individual dates
themselves. Given that there is no way to know how many birth
dates there are in the column for any specific row, the processing
overhead for searching becomes even greater.

The solution to these problems, of course, is to get rid of the repeating
groups altogether.

Emp# First Last Children’s Names Children’s Birthdates

1001 Jane Doe Mary, Sam 1/9/02, 5/15/04

1002 John Doe Lisa, David 1/9/00, 5/15/01

1003 Jane Smith John, Pat, Lee, Mary 10/5/04, 10/12/00, 6/6/2006, 8/21/04

1004 John Smith Michael 7/4/06

1005 Jane Jones Edward, Martha 10/21/05, 10/15/99

n  Figure 6-2  A table with repeating groups.

Note: The table in Figure 6-2 is not a legal relation because it contains those
repeating groups. Therefore, we should not call it a relation.

Handling Repeating Groups
There are two ways to get rid of repeating groups to bring a table into
conformance with the rules for first normal form: a right way and a
wrong way. We will look first at the wrong way so you will know what
not to do.

In Figure 6-3 you can see a relation that handles repeating groups by
creating multiple columns for the multiple values. This particular
example includes three pairs of columns for a child’s name and birth
date. The relation in Figure 6-3 does meet the criteria for first normal
form. The repeating groups are gone, and there is no problem identify-
ing which birth date belongs to which child. However, the design has
introduced several problems of its own, as follows:

108 CHAPTER 6  Normalization

n	 The relation is limited to three children for any given employee.
This means that there is no room to store Jane Smith’s fourth child.
Should you put another row for Jane Smith into the table? If so,
then the primary key of this relation can no longer be just the
employee number. The primary key must include one child’s name
as well.

n	 The relation wastes space for people who have less than three chil-
dren. Given that disk space is one of the least expensive elements
of a database system, this is probably the least of the problems with
this relation.

n	 Searching for a specific child becomes very clumsy. To answer the
question “Does anyone have a child named Lee?,” the DBMS must
construct a query that includes a search of all three child name
columns because there is no way to know in which column the
name might be found.

The right way to handle repeating groups is to create another table
(another entity) to handle multiple instances of the repeating group.
In the example we have been using, we would create a second table
for the children, producing something like Figure 6-4.

Neither of the two new tables contains any repeating groups, and this
form of the design avoids all the problems of the preceding solution:

n	 There is no limit to the number of children that can be stored
for a given employee. To add another child, you simply add
another row to the table.

n	 There is no wasted space. The children table uses space only
for data that are present.

n	 Searching for a specific child is much easier because children’s
names are found in only one column.

Emp# First Last
Child
Name 1

Child
Bdate 1

Child
Name 2

Child
Bdate 2

Child
Name 3

Child
Bdate 3

1001 Jane Doe Mary 1/1/02 Sam 5/15/04

1002 John Doe Lisa 1/1/00 David 5/15/01

1003 Jane Smith John 10/5/04 Pat 10/12/00 Lee 6/6/06

1004 John Smith Michael 7/4/06

1005 Joe Jones Edward 10/21/05 Martha 10/15/99

n  Figure 6-3  A relation handling repeating groups in the wrong way

109First Normal Form

Problems with First Normal Form
Although first normal form relations have no repeating groups, they
usually have many other problems. To examine the most typical, we
will look at the table underlying the data entry form in Chapter 3.
(This table comes from Antique Opticals’ original data management
system rather than the new and improved design you saw earlier in
this chapter.) Expressed in the notation for relations that we have been
using, the relation is:

orders (customer_numb, first_name, last_name, street,
city, state, zip, phone, order_numb, order_date,
item_numb, title, price, has_shipped?)

The first thing we need to do is determine the primary key for this
table. The customer number alone will not be sufficient because the
customer number repeats for every item ordered by the customer. The
item number will also not suffice because it is repeated for every order
on which it appears. We cannot use the order number because it is
repeated for every item on the order. The only solution is a concate-
nated key, in this example, the combination of the order number and
the item number.

Employee

Emp# First Last
1001 Jane Doe
1002 John Doe
1003 Jane Smith
1004 John Smith
1005 Joe Jones

Children
1001 Mary 1/1/02
1001 Sam 5/15/04
1002 Lisa 1/1/00
1002 David 5/15/01
1003 John 10/5/04
1003 Pat 10/12/00
1003 Lee 6/6/06
1003 Mary 8/21/04
1004 Michael 7/4/06
1005 Edward 10/21/05
1005 Martha 1015/99

n  Figure 6-4  The correct way to handle
a repeating group.

110 CHAPTER 6  Normalization

Given that the primary key is made up of the order number and the
item number, there are two important things we cannot do with this
relation:

1.	 We cannot add data about a customer until the customer places at
least one order because without an order and an item on that order,
we do not have a complete primary key.

2.	 We cannot add data about a merchandise item we are carrying
without that item being ordered. There must be an order number
to complete the primary key.

The preceding are insertion anomalies, situations that arise when you
are prevented from inserting data into a relation because a complete
primary key is not available. (Remember that no part of a primary key
can be null.)

Note: To be strictly correct, there is a third insertion anomaly in the orders
relation. You cannot insert an order until you know one item on the order. In
a practical sense, however, no one would enter an order without there
being an item ordered.

Insertion anomalies are common in first normal form relations that
are not also in any of the higher normal forms. In practical terms, they
occur because there are data about more than one entity in the rela-
tion. The anomaly forces you to insert data about an unrelated entity
(for example, a merchandise item) when you want to insert data about
another entity (such as a customer).

First normal form relations can also cause problems when data are
deleted. Consider, for example, what happens if a customer cancels
the order of a single item:

n	 In cases where the deleted item was the only item on the
order, you lose all data about the order.

n	 In cases where the order was the only order on which the item
appeared, you lose data about the item.

n	 In cases where the deleted item was the item ordered by a
customer, you lose all data about the customer.

These deletion anomalies occur because part of the primary key of a row
becomes null when the merchandise item data are deleted, forcing
you to remove the entire row. The result of a deletion anomaly is the
loss of data that you would like to keep. In practical terms, you are

111Second Normal Form

forced to remove data about an unrelated entity when you delete data
about another entity in the same table.

Note: Moral to the story: More than one entity in a table is a bad thing.

There is a final type of anomaly in the orders relation that is not related
to the primary key: a modification, or update, anomaly. The order rela-
tion has a great deal of unnecessary duplicated data—in particular,
information about customers. When a customer moves, then the cus-
tomer’s data must be changed in every row, for every item on every
order ever placed by the customer. If every row is not changed, then
data that should be the same are no longer the same. The potential
for these inconsistent data is the modification anomaly.

Second Normal Form
The solution to anomalies in a first normal form relation is to break
down the relation so there is one relation for each entity in the 1NF
relation. The orders relation, for example, will break down into four
relations (customers, items, orders, and line items). Such relations are
in at least second normal form (2NF).

In theoretical terms, second formal form relations are defined as
follows:

1.	 The relation is in first normal form.
2.	 All non-key attributes are functionally dependent on the

entire primary key.

The new term in the preceding is functionally dependent, a special rela-
tionship between attributes.

Understanding Functional Dependencies
A functional dependency is a one-way relationship between two attri-
butes such that at any given time, for each unique value of attribute
A, only one value of attribute B is associated with it through the rela-
tion. For example, assume that A is the customer number from the
orders relation. Each customer number is associated with one cus-
tomer first name, one last name, one street address, one city, one state,
one zip code, and one phone number. Although the values for those
attributes may change, at any moment, there is only one.

112 CHAPTER 6  Normalization

We can therefore say that first name, last name, street, city, state, zip,
and phone are functionally dependent on the customer number. This
relationship is often written:

Customer_numb -> first_name, last_name, street, city,
state, zip, phone

and read “customer number determines first name, last name, street,
city, state, zip, and phone.” In this relationship, customer number is
known as the determinant (an attribute that determines the value of
other attributes).

Notice that the functional dependency does not necessarily hold in
the reverse direction. For example, any given first or last name may be
associated with more than one customer number. (It would be unusual
to have a customer table of any size without some duplication of
names.)

The functional dependencies in the orders table are:

Customer_numb −> first_name, last_name, street, city,
state, zip, phone

Item_numb −> title, price
Order_numb −> customer_numb, order_date
Item_numb + order_numb −> has_shipped?

Notice that there is one determinant for each entity in the relation and
the determinant is what we have chosen as the entity identifier. Notice
also that when an entity has a concatenated identifier, the determinant
is also concatenated. In this example, whether an item has shipped
depends on the combination of the item and the order.

Using Functional Dependencies to Reach 2NF
If you have correctly identified the functional dependencies among
the attributes in a database environment, then you can use them to
create second normal form relations. Each determinant becomes the
primary key of a relation. All the attributes that are functionally depen-
dent on it become non-key attributes in the relation.

The original orders relation should be broken into the following four
relations:

Customer (customer_numb, first_name, last_name,
street, city, state, zip, phone)

Item (item_numb, title, price)

113Second Normal Form

Order (order_numb, customer_numb, order_date)
Order items (order_numb, item_numb, has_shipped?)

Each of these should in turn correspond to a single entity in your ER
diagram.

Note: When it comes to deciding what is driving database design—
functional dependencies or entities—it is really a “chicken and egg” situation.
What is most important is that there is consistency between the ER diagram
and the functional dependencies you identify in your relations. It makes no
difference whether you design by looking for functional dependencies or for
entities. In most cases, database design is an iterative process in which you
create an initial design, check it, modify it, and check it again. You can look
at either functional dependencies and/or entities at any stage in the
process, checking one against the other for consistency.

The relations we have created from the original orders relation have
eliminated the anomalies present in the original:

n	 It is now possible to insert data about a customer before the
customer places an order.

n	 It is now possible to insert data about an order before we
know an item on the order.

n	 It is now possible to store data about merchandise items
before they are ordered.

n	 Line items can be deleted from an order without affecting
data describing that item, the order itself, or the merchandise
item.

n	 Data describing the customer are stored only once, and
therefore any change to those data needs to be made only
once. A modification anomaly cannot occur.

Problems with 2NF Relations
Although second normal form eliminates problems from many rela-
tions, you will occasionally run into relations that are in second
normal form yet still exhibit anomalies. Assume, for example, that
each new DVD title that Antique Opticals carries comes from one
distributor and that each distributor has only one warehouse that has
only one phone number. The following relation is therefore in second
normal form:

114 CHAPTER 6  Normalization

Item (item_numb, title, distrib_numb,
warehouse_phone_number)

For each item number, there is only one value for the item’s title,
distributor, and warehouse phone number. However, there is one
insertion anomaly: You cannot insert data about a distributor until
you have an item from that distributor. There is one deletion anomaly:
If you delete the only item from a distributor, you lose data about the
distributor. There is also a modification anomaly: The distributor’s
warehouse phone number is duplicated for every item the company
gets from that distributor. The relation is in second normal form but
not third.

Third Normal Form
Third normal form is designed to handle situations like the one you
just read about in the preceding section. In terms of entities, the item
relation does contain two entities: the merchandise item and the dis-
tributor. That alone should convince you that the relation needs to be
broken down into two smaller relations, both of which are now in
third normal form:

Item (item_numb, distrib_numb)
Distributor (distrib_numb, warehouse_phone_number)

The theoretical definition of third normal form says:

1.	 The relation is in second normal form.
2.	 There are no transitive dependencies.

The functional dependencies found in the original relation are an
example of a transitive dependency.

Transitive Dependencies
A transitive dependency exists when you have the following functional
dependency pattern:

A B and B C; therefore A C→ → →

This is precisely the case with the original items relation. The only
reason that the warehouse phone number is functionally dependent
on the item number is because the distributor is functionally depen-
dent on the item number and the phone number is functionally
dependent on the distributor. The functional dependencies are really:

115Third Normal Form

Item_numb −> distrib_numb
Distrib_numb −> warehouse_phone_number

There are two determinants in the original items relation, each of
which should be the primary key of its own relation. However, it is
not merely the presence of the second determinant that creates the
transitive dependency. What really matters is that the second determi-
nant is not a candidate key for the relation.

Consider for example, this relation:

Item (item_numb, UPC, distrib_numb, price)

The item number is an arbitrary number that Antique Opticals assigns
to each merchandise item. The UPC is an industry-wide code that is
unique to each item as well. The functional dependencies in this
relation are:

Item_numb −> UPC, distrib_numb, price
UPC −> item_numb, distrib_numb, price

Is there a transitive dependency here? No, because the second deter-
minant is a candidate key. (Antique Opticals could have just as easily
used the UPC as the primary key.) There are no insertion, deletion, or
modification anomalies in this relation; it describes only one entity:
the merchandise item.

A transitive dependency therefore exists only when the determinant
that is not the primary key is not a candidate key for the relation. In
the items table we have been using, for example, the distributor is a
determinant but not a candidate key for the table. (There can be more
than one item coming from a single distributor.)

When you have a transitive dependency in a 2NF relation, you should
break the relation into two smaller relations, each of which has one
of the determinants in the transitive dependency as its primary key.
The attributes determined by the determinant become non-key attri-
butes in each relation. This removes the transitive dependency—and
its associated anomalies—and places the relation in third normal
form.

Note: Transitive dependencies take their name from the transitive property
in mathematics, which states that if a > b and b > c, then a > c.

116 CHAPTER 6  Normalization

Boyce-Codd Normal Form
For most relations, third normal form is a good design objective. Rela-
tions in that state are free of most anomalies. However, occasionally
you run into relations that exhibit special characteristics where anom-
alies still occur. Boyce-Codd normal form (BCNF), fourth normal
form (4NF), and fifth normal form (5NF) were created to handle such
special situations.

Note: A second normal form relation that has no transitive dependencies is,
of course, automatically in third normal form.

Note: If your relations are in third normal form and do not exhibit the special
characteristics that BCNF, 4NF, and 5NF were designed to handle, then they
are automatically in 5NF.

The easiest way to understand BCNF is to start with an example.
Assume that Antique Opticals decides to add a relation to its database
to handle employee work scheduling. Each employee works one or
two 4-hour shifts a day at the store. During each shift, an employee
is assigned to one station (a place in the store, such as the front desk
or the stockroom). Only one employee works a station during the
given shift.

A relation to handle the schedule might be designed as follows:

Schedule (employee_ID, date, shift, station,
worked_shift?)

Given the rules for the scheduling (one person per station per shift),
there are two possible primary keys for this relation:

employee_ID + date + shift or date + shift +
station

The functional dependencies in the relation are:

employee_ID + date + shift −> station, worked_shift?
date + shift + stations −> employee_ID,

worked_shift?

Keep in mind that this holds true only because there is only one
person working each station during each shift.

117Fourth Normal Form

This schedule relation exhibits overlapping candidate keys. (Both can-
didate keys have date and shift in common.) Boyce-Codd normal
form was designed to deal with relations that exhibit this characteris-
tic. To be in Boyce-Codd normal form, a relation must meet the fol-
lowing rules:

1.	 The relation must be in third normal form.
2.	 All determinants must be candidate keys.

BCNF is considered to be a more general way of looking at 3NF
because it includes those relations with the overlapping candidate
keys. The sample schedule relation we have been considering does
meet the criteria for BCNF because the two determinants are indeed
candidate keys.

Fourth Normal Form
Like BCNF, fourth normal form was designed to handle relations that
exhibit a special characteristic that does not arise too often. In this
case, the special characteristic is something known as a multivalued
dependency.

As an example, consider the following relation:

movie info (title, star, producer)

A given movie can have more than one star; it can also have more
than one producer. The same star can appear in more than one movie;
a producer can also work on more than one movie (for example, see
the instance in Figure 6-5). The relation must therefore include all
columns in its key.

ProducerStarTitle

Great Film
Great Film
Great Film
Great Film
Boring Movie
Boring Movie

Lovely Lady
Handsome Man
Lovely Lady
Handsome Man
Lovely Lady
Precocious Child

Money Bags
Money Bags
Helen Pursestrings
Helen Pursestrings
Helen Pursestrings
Helen Pursestrings

n  Figure 6-5  A relation
with a multivalued
dependency.

Note: There is very little difference between the two candidate keys as far as
the choice of a primary key is concerned. In cases like this, you can choose
either one.

118 CHAPTER 6  Normalization

Because there are no non-key attributes, this relation is in BCNF.
Nonetheless, the relation exhibits anomalies:

n	 You cannot insert the stars of a movie without knowing at least one
producer.

n	 You cannot insert the producer of a movie without knowing at least
one star.

n	 If you delete the only producer from a movie, you lose information
about the stars.

n	 If you delete the only star from a movie, you lose information about
its producers.

n	 Each producer’s name is duplicated for every star in the movie. By
the same token, each star’s name is duplicated for each producer of
the movie. These unnecessary duplicated data form the basis of a
modification anomaly.

There are at least two unrelated entities in this relation: one that
handles the relationship between a movie and its stars and another
that handles the relationship between a movie and its producers. In a
practical sense, that is the cause of the anomalies. (Arguably, there are
also movie, star, and producer entities involved.)

However, in a theoretical sense, the anomalies are caused by the pres-
ence of a multivalued dependency in the same relation, which must
be eliminated to get to fourth normal form. The rules for fourth
normal form are:

1.	 The relation is in Boyce-Codd normal form.
2.	 There are no multivalued dependencies.

Multivalued Dependencies
A multivalued dependency exists when for each value of attribute A,
there exists a finite set of values of both attribute B and attribute C
that are associated with it. Attributes B and C, however, are indepen-
dent of each other. In the example that we have been using, there is
just such a dependency. First, for each movie title, there is a group of
actors (the stars) who are associated with the movie. For each title,
there is also a group of producers who are associated with it. However,
the actors and the producers are independent of one another.

119Fifth Normal Form

The multivalued dependency can be written:

title > star→

title > producer→

and read “title multidetermines star and title multidetermines
producer.”

Note: At this point, do not let semantics get in the way of database theory.
Yes, it is true that producers fund the movies in which the actors are
starring, but in terms of database relationships, there is no direct connection
between the two.

Note: To be strictly accurate, a functional dependency is a special case of a
multivalued dependency, where what is being determined is one value
rather than a group of values.

To eliminate the multivalued dependency and bring this relation into
fourth normal form, you split the relation, placing each part of the
dependency in its own relation:

movie_stars (title, star)
movie_producers (title, producer)

With this design, you can independently insert and remove stars and
producers without affecting the other. Star and producer names also
appear only once for each movie with which they are involved.

Fifth Normal Form
Fifth normal form—also known as projection-join normal form—is
designed to handle a general case of a multivalued dependency,
known as a join dependency. Before we can consider 5NF, we must
therefore look at the relational algebra operations project and join.

Note: Relational algebra is a set of operations used to manipulate and
extract data from relations. Each operation performs a single manipulation
of one or two tables. To complete a query, a DBMS uses a sequence of
relational algebra operations; relational algebra is therefore procedural. It is
not used directly by people using a database but instead is a tool used by
the DBMS.

120 CHAPTER 6  Normalization

Projections and Joins
When you split relations during the normalization process, you are
actually creating a relational algebra projection. Join combines tables
on matching attributes and is used extensively in queries to match
data based on primary and foreign keys.

Projection
The project operation creates a subset of any relation by extracting
specified columns. It makes no provision for choosing rows: You get
all of them. The theoretical project operation removes duplicate rows
so that the result is a legal relation.

As an example, consider the following relation that you saw earlier in
this chapter:

Item (item_numb, UPC, distrib_numb, price)

We can make a number of projections, all of which are legal
relations:

(item_numb, UPC)
(item_numb, distrib_numb)
(item_numb, price)
(UPC, distrib_numb)
(UPC, price)
(distrib_numb, price)
(item_numb, UPC, distrib_numb)
(item_numb, UPC, price)
(UPC, distrib_numb, price)

Equi-Join
In its most common form, a join forms new rows when data in the
two source tables match. Because we are looking for rows with equal
values, this type of join is known as an equi-join (or a natural equi-join).
As an example, consider the two tables in Figure 6-6. Notice that the
customer number column is the primary key of the customers table
and that the same column is a foreign key in the orders table. The
customer number column in orders therefore serves to relate orders
to the customers to which they belong.

Assume that you wanted to see the names of the customers who placed
each order. To do so, you must join the two tables, creating combined
rows wherever there is a matching customer number. In database
terminology, we are joining the two tables “over” the customer
number. The result table can be found in Figure 6-7.

121Fifth Normal Form

An equi-join can begin with either source table. (The result should be
the same regardless of the direction in which the join is performed.)
The join compares each row in one source table with the row in the
second. For each row in the first source table that matches data in the
second source table in the column or columns over which the join is
being performed a new row is placed in the result table.

Customers
customer_numb first_name last_name

001 Jane Doe
002 John Doe
003 Jane Smith
004 John Smith
005 Jane Jones
006 John Jones

Orders
order_numb customer_numb order_date order_total

1001 002 10/10/09 250.85
1002 002 2/21/10 125.89
1003 003 11/15/09 1567.99
1004 004 11/22/09 180.92
1005 004 12/15/09 565.00
1006 006 11/22/09 25.00
1007 006 10/8/09 85.00
1008 006 12/29/09 109.12

n  Figure 6-6  Two tables with a primary key-foreign key relationship.

Result Table
customer_numb first_name last_name order_numb order_date order_total

002 John Doe 1001 10/10/09 250.65

002 John Doe 1002 2/21/10 125.89

003 Jane Smith 1003 11/15/09 1597.99

004 John Smith 1004 11/22/09 180.92

004 John Smith 1005 12/15/09 565.00

006 John Jones 1006 11/22/09 25.00

006 John Jones 1007 10/8/09 85.00

006 John Jones 1008 12/29/09 109.12

n  Figure 6-7  The joined table.

122 CHAPTER 6  Normalization

Assuming that we are using the customers table as the first source
table, producing the result table in Figure 6-7 might therefore proceed
conceptually as follows:

1.	 Search orders for rows with a customer number of 001. Because
there are now matching rows in orders, do not place a row in the
result table.

2.	 Search orders for rows with a customer number of 002. There are
two matching rows in orders. Create two new rows in the result
table, placing the same customer information at the end of each
row in orders.

3.	 Search orders for rows with a customer number of 003. There is
one matching row in orders. Place one new row in the result table.

4.	 Search orders for rows with a customer number of 004. There are
two matching rows in orders. Place two rows in the result table.

5.	 Search orders for rows with a customer number of 005. There are
no matching rows in orders. Therefore, do not place a row in the
result table.

6.	 Search orders for rows with a customer number of 006. There
are three matching rows in orders. Place three rows in the result
table.

Notice that if a customer number does not appear in both tables, then
no row is placed in the result table. This behavior categorizes this type
of join as an inner join.

Understanding 5NF
Now that you know how the project and join operations work, we can
take a look at fifth normal form. As an example, consider the following
relation:

Selections (customer_numb, series, item_numb)

This relation represents various series of discs, such as Spider-man or
Rambo. Customers place orders for a series; when a customer orders
a series, he or she must take all items in that series. Determining fifth
normal form becomes relevant only when this type of rule is in place.
If customers could request selected titles from a series, then the rela-
tion would be fine. Because it would be all-key, it would automatically
fall through the normal form rules to 5NF.

123Fifth Normal Form

To make the problems with this table under the preceding rule clearer,
consider the instance of the relation in Figure 6-8. Because this table
is all-key, it is automatically in fourth normal form. However, there is
a great deal of unnecessary duplicated data in this relation. For
example, the item numbers are repeated for every customer that orders
a given series. The series name is also repeated for every item in the
series and for every customer ordering that series. This relation is
therefore prone to modification anomalies.

There is also a more subtle issue: Under the rules of this relation, if
customer 2180 orders the first Harry Potter movie and indicates that
he or she would like more movies in the series, then the only way to
put that choice in the table is to add rows for all five Harry Potter
movies. You may be forced to add rows that you don’t want to add
and introduce data that aren’t accurate.

Customer
Number Series

Item
Number

1005 Star Wars 2090
1005 Star Wars 2091
1005 Star Wars 2092
1005 Star Wars 4689
1005 Star Wars 4690
1005 Star Wars 4691
1010 Harry Potter 3200
1010 Harry Potter 3201
1010 Harry Potter 3202
1010 Harry Potter 3203
1010 Harry Potter 3204
2180 Star Wars 2090
2180 Star Wars 2091
2180 Star Wars 2092
2180 Star Wars 4689
2180 Star Wars 4690
2180 Star Wars 4691

n  Figure 6-8  A relation in 4NF but not 5NF.

Note: There is no official term for the preceding anomaly. It is precisely the
opposite of the insertion anomalies described earlier in this chapter,
although it does involve a problem with inserting data.

124 CHAPTER 6  Normalization

By the same token, if a customer doesn’t want one item in a series,
then you must remove from the table all the rows for that customer
for that series. If the customer still wants the remaining items in the
series, then you have a deletion anomaly.

As you might guess, you can solve the problem by breaking the table
into two smaller tables, eliminating the unnecessary duplicated data
and the insertion and deletion anomalies:

series_subscription (customer_numb, series)
series_content (series, item_numb)

The official definition for 5NF is:

1.	 The relation is in fourth normal form.
2.	 All join dependencies are implied by the candidate keys.

A join dependency occurs when a table can be put together correctly
by joining two or more tables, all of which contain only attributes
from the original table. The original selections relation does have a
join dependency because it can be created by joining the series
subscription and series content relations. The join is valid only
because of the rule that requires a customer to order all of the items
in a series.

A join dependency is implied by candidate keys when all possible
projections from the original relation that form a join dependency are
candidate keys for the original relation. For example, the following
projections can be made from the selections relation:

A: (customer_numb, series)
B: (customer_numb, item_numb)
C: (series, item_numb)

We can regenerate the selections relation by combining any two of the
preceding relations. Therefore, the join dependencies are A + B, A +
C, B + C, and A + B + C. Like other relational algebra operations, the
join theoretically removes duplicate rows, so although the raw result
of the join contains extra rows, they will be removed from the result,
producing the original table.

Note: One of the problems with 5NF is that as the number of columns in a
table increases, the number of possible projections increases exponentially.
It can therefore be very difficult to determine 5NF for a large relation.

125Sixth Normal Form

However, each of the projections is not a candidate key for the selec-
tions relation. All three columns from the original relation are required
for a candidate key. Therefore, the relation is not in 5NF. When we
break down the selections relation into series_selections and
series_content, we eliminate the join dependencies, ensuring that the
relations are in 5NF.

Sixth Normal Form
Normalization theory has been very stable for nearly 40 years.
However, in the late 1990s, C.J. Date, one of the foremost experts in
database theory, proposed sixth normal form, particularly to handle
situations in which there is temporal data. However, this is not techni-
cally a project-join normal form like the others we discussed earlier
in this chapter.

Consider the following relation:

customers (ID, valid_interval, street, city, state,
zip, phone)

The intent of this relation is to maintain a history of a customer’s
location and when they were valid (starting date to ending date).
Depending on the circumstances, there may be a great deal of dupli-
cated data in this relation (for example, if only the phone number
changed) or very little (for example, if there is a move to a new state
with a new phone number). Nonetheless, there is only one functional
dependency in the relation:

ID valid_interval street, city, state, zip, phone+ →)

There are no transitive dependencies, no overlapping candidate keys,
no multivalued dependencies, and all join dependencies are implied
by the candidate key(s). The relation is therefore in fifth normal form.

Sixth normal form was created to handle the situation where temporal
data vary independently to avoid unnecessary duplication. The result
is tables that cannot be decomposed any further; in most cases, the
tables include the primary key and a single non-key attribute. The sixth
normal form tables for the sample customers relation would be as
follows:

street_addresses (ID, valid_interval, street)
cities (ID, valid_interval, city)
states (ID, valid_interval, state)

126 CHAPTER 6  Normalization

zip_codes (ID, valid_interval, zip)
phone_numbers (ID, valid_interval, phone)

The resulting tables eliminate the possibility of redundant data but
introduce some time-consuming joins to find a customer’s current
address or to assemble a history for a customer.

Going to sixth normal form may also introduce the need for a circular
inclusion constraint. There is little point in including a street address
for a customer unless a city, state, and zip code exist for the same date
interval. The circular inclusion constraint would therefore require that
if a row for any given interval and any given customer ID exists in any
of street_addresses, cities, states, or zip_codes, matching rows must
exist in all of those tables. Today’s relational DBMSs do not support
circular inclusion constraints, nor are they included in the current SQL
standard. If such a constraint is necessary, it will need to be enforced
through application code.

For Further Reading
There are many books available that deal with the theory of relational
databases. You can find useful supplementary information in the
following:

Chapple, Mike. “Database Normalization Basics”; available at http://
databases.about.com/od/specificproducts/a/normalization.htm

Date, C. J. “On DN/NF Normal Form”; available at www.dbdebunk.com/
page/page/621935.htm

Date, C. J., Hugh Darwen, and Nikos Lorentzos. Temporal Data and the
Relational Model. Morgan Kaufmann, 2002.

Earp, Richard. Database Design Using Entity-Relationship Diagrams. Taylor
& Frances, 2007.

Halpin, Terry, and Tony Morgan. Information Modeling and Relational
Databases, 2nd ed. Morgan Kaufmann, 2008.

Hillyer, Mike. “An Introduction to Database Normalization”; available
at http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html

Olivé, Antoni. Conceptual Modeling of Information Systems. Springer,
2007.

Pratt, Philip J., and Joseph J. Adamski. Concepts of Database Management,
6th ed. Course Technology, 2007.

Ritchie, Colin. Database Principles and Design, 3rd ed. Cengage Learning
Business Press, 2008.

Wise, Barry. “Database Normalization and Design Techniques”; avail
able at www.barrywise.com/2008/01/database-normalization-and-
design-techniques/

How long are you willing to wait for a computer to respond to your
request for information? 30 seconds? 10 seconds? 5 seconds? In truth,
we humans aren’t very patient at all. Even five seconds can seem like
an eternity when you’re waiting for something to appear on the screen.
A database that has a slow response time to user queries usually means
that you will have dissatisfied users.

Slow response times can be the result of any number of problems.
You might be dealing with a client workstation that isn’t properly
configured, a poorly written application program, a query involving
multiple join operations, a query that requires reading amounts of
data from disk, a congested network, or even a DBMS that isn’t robust
enough to handle the volume of queries submitted to it.

One of the duties of a database administrator (DBA) is to optimize
database performance (also known as performance tuning). This
includes modifying the design—where possible—to avoid perfor-
mance bottlenecks, especially involving queries.

For the most part, a DBMS takes care of storing and retrieving data
based on a user’s commands without human intervention. The strat-
egy used to process a data manipulation request is handled by the
DBMS’s query optimizer, a portion of the program that determines the
most efficient sequence of relational algebra operations to perform a
query.

Although most of the query optimizer’s choices are out of the hands
of a database designer or application developer, you can influence the
behavior of the query optimizer and also optimize database perfor-

127

7Chapter

Database Structure and
Performance Tuning

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

128 CHAPTER 7  Database Structure and Performance Tuning

mance to some extent with database design elements. In this chapter
you will be introduced to several such techniques.

Joins and Database Performance
In Chapter 6 we discussed the use of joins as part of the theory of
relational database design. Joins, however, can also have a major
impact on query performance. The extent of the impact depends on
your DBMS and how it implements a join.

From a relational algebra point of view, a join can be implemented
using two other operations: product and restrict. As you will see, this
sequence of operations requires the manipulation of a great deal of
data and, if used by a DBMS, can result in very slow query
performance.

The restrict operation retrieves rows from a table by matching each
row against logical criteria (a predicate). Those rows that meet the
criteria are placed in the result table, and those that do not meet the
criteria are omitted. Restrict, which was originally called select, cannot
choose columns; you get every column in the table.

Note: The confusion with the term select arises because the SQL query
command is also “select.” The SQL select is a command that triggers many
relational algebra operations, some of which are determined by the DBMS
rather than the user.

The product operation (the mathematical Cartesian product) makes
every possible pairing of rows from two source tables. In Figure 7-1,
for example, the product of the customer and order tables that you
saw in Chapter 6 produces a result table with 48 rows (6 customers
times the 8 orders). The customer number column appears twice
because it is part of both source tables.

Note: Although 48 rows might not seem like a lot, consider the size of a
product table created from tables with 1000 or even 10,000 rows! The
manipulation of a table of this size can tie up a lot of disk I/O and CPU time.

In some rows, the customer number is the same. These are the rows
that should be included in a join. We can therefore apply a restrict

129Joins and Database Performance

customer_numb
(customer)
001
001
001
001
001
001
001
001
002
002
002
002
002
002
002
002
003
003
003
003
003
003
003
003
004
004
004
004
004
004
004
004
005
005
005
005
005
005
005
005
006
006
006

006
006

006
006
006

first_name
Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane
John
John
John
John
John
John
John
John
Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane
John
John
John
John
John
John
John
John
Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane
John
John
John
John
John
John
John
John

last_name
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones

Customer_numb
(order)
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006

order_numb
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008

Order_date
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09

Order_total
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90

n  Figure 7-1  The product of the customer and order tables.

130 CHAPTER 7  Database Structure and Performance Tuning

predicate to the product table to end up with the same table provided
by the join you saw in Chapter 6. The predicate’s logical condition
can be written:

customer.customer_numb = order.customer_numb

The rows that are chosen by this predicate appear in boldface in Figure
7-2; those eliminated by the predicate are in regular type. Notice that
the boldface rows are exactly the same as those in the result table of
the join from Chapter 6.

Note: Although this may seem like a highly inefficient way to implement a
join, it is actually quite flexible, in particular because the relationship
between the columns over which the join is being performed doesn’t have
to be equal. A user could just as easily request a join where the value in
table A is greater than the value in table B.

Because of the processing overhead created when performing joins in
this way, some database designers make a conscious decision to leave
tables unnormalized. For example, if Antique Opticals always accessed
the line items at the same time it accessed order information, then a
designer might choose to combine the order item and order data into
one table, knowing full well that the unnormalized relation exhibits
anomalies. The benefit is that the retrieval of order information will
be faster than if it were split into two tables.

Should you leave unnormalized relations in your database to achieve
better retrieval performance? In this author’s opinion, there is rarely
any need to do so. First, not all DBMSs implement a join in this way.
Before you decide not to normalize tables, investigate how your DBMS
performs a join. In addition, there are ways to prepare SQL queries
(in particular, using uncorrelated subqueries) that can produce the
same result as a join but without actually performing the join. That
being the case, it does not seem worth the problems that unnormal-
ized relations present to leave them in the database. Careful writing
of retrieval queries can provide performance that is nearly as good as
that of retrieval from unnormalized relations.

Note: For a complete discussion of writing SQL queries to avoid joins, see
the author’s book SQL Clearly Explained, also published by Morgan
Kaufmann.

131Joins and Database Performance

customer_numb
(customer)
001
001
001
001
001
001
001
001
002
002
002
002
002
002
002
002
003
003
003
003
003
003
003
003
004
004
004
004
004
004
004
004
005
005
005
005
005
005
005
005
006
006
006
006
006
006
006
006

first_name
Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane
John
John
John
John
John
John
John
John
Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane
John
John
John
John
John
John
John
John
Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane
John
John
John
John
John
John
John
John

last_name
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Doe
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones
Jones

Customer_numb
(order)
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006
002
002
003
004
004
006
006
006

order_numb
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008
1001
1002
1003
1004
1005
1006
1007
1008

Order_date
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09
10/10/09
2/21/10
11/15/09
11/22/09
12/15/09
10/8/09
11/12/09
12/29/09

Order_total
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90
250.65
125.89
1597.99
180,92
565.00
25.00
85.00
125.90

n  Figure 7-2  The product of the customer and orders tables after applying a restrict predicate.

132 CHAPTER 7  Database Structure and Performance Tuning

Indexing
Indexing is a way of providing a fast access path to the values of a
column or a concatenation of columns. New rows are typically added
to the bottom of a table, resulting in a relatively random order of the
values in any given column. Without some way of ordering the data,
the only way the DBMS can search a column is by sequentially scan-
ning each row from top to bottom. The larger a table becomes, the
slower a sequential search will be.

Note: On average, in a table of N rows, a sequential search will need to
examine N/2 rows to find a row that matches a query predicate. However,
the only way for the DBMS to determine that no rows match the predicate
is to examine all N rows. A table with 1000 rows requires on average looking
at 500 rows; an unsuccessful search requires consulting all 1000 rows.
However, the fast searching techniques provided by indexes require looking
at about six rows to find a matching row; an unsuccessful search requires
consulting about ten rows.

The alternative to indexing for ordering the rows in a table is sorting.
A sort physically alters the position of rows in a table, placing the rows
in order starting with the first row in the table. Most SQL implementa-
tions do sort the virtual tables that are created as the result of queries
when directed to do so by the SQL query. However, SQL provides no
way to sort base tables, and there is good reason for this. Regardless
of the sorting method used, as a table grows large (hundreds of thou-
sands to millions of rows), sorting takes a very long time.

Keeping a table in sorted order also means that on average half of the
rows in the table will need to be moved to make room for a new row.
In addition, searching a sorted base table takes longer than searching
an index, primarily because the index search requires less disk access.
The overhead in maintaining indexes is far less than that required to
sort base tables whenever a specific data order is needed.

The conceptual operation of an index is diagrammed in Figure 7-3.
(The different weights of the lines have no significance other than to
make it easier for you to follow the crossed lines.) This illustration
shows Antique Opticals’ item relation and an index that provides fast
access to rows in the table based on the item’s title. The index itself
contains an ordered list of keys (the titles) along with the locations of
the associated rows in the item table. The rows in the item table are

133Indexing

Title A
Title B
Title C

Title D
Title E
Title F

Title G

Title H
Title I
Title J

Title A’s data

Title G’s data

Title B’s data

Title H’s data

Title F’s data

Title D’s data

Title J’s data

Title E’s data

Title I’s data
Title C’s data

Index Merchandise Item Table

n  Figure 7-3  Indexing.

in relatively random order. However, because the index is in alpha-
betical order by title, it can be searched quickly to locate a specific
title. Then the DBMS can use the information in the index to go
directly to the correct row or rows in the item table, thus avoiding a
slow sequential search of the base table’s rows.

Once you have created an index, the DBMS’s query optimizer will use
the index whenever it determines that using the index will speed up
data retrieval. You never need to access the index again yourself unless
you want to delete it.

When you create a primary key for a table, the DBMS automatically
creates an index for that table, using the primary key column or
columns in the primary key as the index key. The first step in inserting
a new row into a table is therefore verification that the index key (the
primary key of the table) is unique in the index. In fact, uniqueness
is enforced by requiring the index entries to be unique, rather than by
actually searching the base table. This is much faster than attempting
to verify uniqueness directly on the base table because the ordered
index can be searched much more rapidly than the unordered base
table.

Deciding Which Indexes to Create
You have no choice as to whether the DBMS creates indexes for your
primary keys; you get them whether you want them or not. In addi-
tion, you can create indexes on any column or combination of columns
you want. However, before you jump headfirst into creating indexes
on every column in every table, you must consider some trade-offs:

134 CHAPTER 7  Database Structure and Performance Tuning

n	 Indexes take up space in the database. Given that disk space is rela-
tively inexpensive today, this is usually not a major drawback.

n	 When you insert, modify, or delete data in indexed columns, the
DBMS must update the index as well as the base table. This may
slow down data modification operations, especially if the tables
have a lot of rows.

n	 Indexes definitely speed up access to data.

The trade-off is therefore generally between update speed and retrieval
speed. A good rule of thumb is to create indexes for foreign keys and
for other columns that are used frequently for queries that apply cri-
teria to data. If you find that update speed is severely affected, you
may choose at a later time to delete some of the indexes you created.

Also avoid indexes on columns that contain nondiscriminatory data.
Nondiscriminatory columns have only a few values throughout the
entire table, such as Boolean columns that contain only true and false.
Gender (male or female) is also nondiscriminatory. Although you
may search on a column containing nondiscriminatory data—for
example, a search for all open orders—an index will not provide much
performance enhancement because the DBMS must examine so many
keys to complete the query.

Clustering
The slowest part of a DBMS’s actions is retrieving data from or writing
data to a disk. If you can cut down on the number of times the DBMS
must read from or write to a disk, you can speed up overall database
performance. The trick to doing this is understanding that a database
must retrieve an entire disk page of data at one time.

The size of a page varies from one computing platform to another; it
can be anywhere from 512 bytes to 4 K, with 1 K being typical on a
PC. Data always travel to and from disk in page-sized units. Therefore,
if you store data that are often accessed together on the same disk page
(or pages that are physically close together), you can speed up data
access. This process is known as clustering and is available with many
large DBMSs (for example, Oracle).

Note: The term clustering has another meaning in the SQL standard. It refers
to groups of catalogs (which in turn are groups of schemas) manipulated by
the same DBMS. The use of the term in this section, however, is totally
distinct from the SQL meaning.

135Partitioning

In practice, a cluster is designed to keep together rows related by
matching primary and foreign keys. To define the cluster, you specify
a column or columns on which the DBMS should form the cluster
and the tables that should be included. Then, all of the rows that
share the same value of the column or columns on which the
cluster is based are stored as physically close together as possible. As
a result, the rows in a table may be scattered across several disk pages,
but matching primary and foreign keys are usually on the same disk
page.

Clustering can significantly speed up join performance. However, just
as with indexes, there are some trade-offs to consider when contem-
plating creating clusters:

n	 Because clustering involves physical placement of data in a file, a
table can be clustered on only one column or combination of
columns.

n	 Clustering can slow down performance of operations that
require a scan of the entire table because clustering may mean that
the rows of any given table are scattered throughout many disk
pages.

n	 Clustering can slow down insertion of data.

n	 Clustering can slow down modifying data in the columns on which
the clustering is based.

Partitioning
Partitioning is the opposite of clustering. It involves the splitting of
large tables into smaller ones so that the DBMS does not need to
retrieve as much data at any one time. Consider, for example, what
happens to Antique Opticals’ order and order items tables over time.
Assuming that the business is reasonably successful, those tables
(especially order items) will become very large. Retrieval of data from
those tables will therefore begin to slow down. It would speed up
retrieval of open orders if filled orders and their items could be sepa-
rated from open orders and their items.

There are two ways to partition a table: horizontally and vertically.
Horizontal partitioning involves splitting the rows of a table between
two or more tables with identical structures. Vertical partitioning
involves dividing the columns of a table and placing them in two or
more tables linked by the original table’s primary key. As you might
expect, there are advantages and disadvantages to both.

136 CHAPTER 7  Database Structure and Performance Tuning

Horizontal Partitioning
Horizontal partitioning involves creating two or more tables with
exactly the same structure and splitting rows between those tables.
Antique Opticals might use this technique to solve the problem with
the order and order items tables becoming increasingly large. The
database design might be modified as follows:

open_order (order_numb, customer_numb, order_date)
open_order_items (order_numb, item_numb, quantity,

shipped?)
filled_order (order_numb, customer_numb, order_date)
filled_order_items (order_numb, item_numb, quantity,

shipped?)

Whenever all items in an open order have shipped, an application
program deletes rows from the open order and open order items table
and inserts them into the filled order and filled order items table. The
open order and open order items tables remain relatively small, speed-
ing up both retrieval and modification performance. Although retrieval
from filled order and filled order lines will be slower, Antique Opticals
uses those tables much less frequently.

The drawback to this solution occurs when Antique Opticals needs to
access all of the orders and/or order items at the same time. A query
whose result table includes data from both sets of open and filled
tables must actually be two queries connected by the union operator.
(The union operation creates one table by merging the rows of two
tables with the same structure.) Performance of such a query will be
worse than that of a query of either set of tables individually. None-
theless, if an analysis of Antique Opticals’ data access patterns reveals
that such queries occur rarely and that most retrieval involves the open
set of tables, then the horizontal partitioning is worth doing.

The only way you can determine whether horizontal partitioning will
increase performance is to examine the ways in which your database
applications access data. If there is a group of rows that are accessed
together significantly more frequently than the rest of the rows in a
table, then horizontal partitioning may make sense.

Vertical Partitioning
Vertical partitioning involves creating two or more tables with selected
columns and all rows of a table. For example, if Antique Opticals

137For Further Reading

accesses the titles and prices of their merchandise items more fre-
quently than the other columns in the item table, the item table might
be partitioned as follows:

 item_titles (item_numb, title, price)
 item_details (item_numb, distributor, release_date,

. . .)

The benefit of this design is that the rows in the smaller item titles
table will be physically closer together; the smaller table will take up
fewer disk pages and thus support faster retrieval.

Queries that require data from both tables must join the tables over
the item number. Like most joins, this will be a relatively slow opera-
tion. Therefore, vertical partitioning makes sense only when there is
a highly skewed access pattern from the columns of a table. The more
often a small, specific group of columns is accessed together, the more
vertical partitioning will help.

For Further Reading
Atonini, Christian. Troubleshooting Oracle Performance. Apress, 2008.
Delaney, Kalen, Sunil Agarwal, Craig Freedman, Ron Talmage, and

Adam Machanic. Inside Microsoft SQL Server 2005: Query Tuning and
Optimization. Microsoft Press, 2007.

Harrison, Guy. Oracle SQL High-Performance Tuning. Prentice Hall PTR,
2000.

IBM Redbooks. A Deep Blue View of DB2 Performance. IBM.com/
Redbooks, 2006.

Mittra, Sitansu S. Database Performance Tuning and Optimization.
Springer, 2002.

Schwartz, Baron, Peter Zaitsev, Vadim Tkachenko, Jeremy Zawony, Arien
Lentz, and Derek Balling. High Performance MySQL: Optimization,
Backups, Replication, and More. O’Reilly, 2008.

Tow, Dan. SQL Tuning. O’Reilly, 2003.

In October 1985, E.F. Codd published a series of two articles in the
computer industry weekly Computerworld. The first article laid out 12
criteria to which a “fully relational” database should adhere. The
second article compared current mainframe products to those 12
rules, producing a flurry of controversy over whether it was important
that database management systems (DBMSs) be theoretically rigorous
or that they simply work effectively.

139

8Chapter

Codd’s Rules for Relational
Database Design

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

Note: If you have read Appendix A, you will be aware of a product based on
the simple network data model called IDMS/R. When Codd rated IDMS/R—
which at the time was being marketed as a relational DBMS—it met
none (0) of his 12 rules. DB/2, IBM’s flagship relational product, met 10 of
the rules.

To help you understand the issues raised and why Codd’s rules for
relational databases for the most part make sense, in this chapter we
will look at those criteria along with the implications of their imple-
mentation. Should you then choose not to adhere to one or more
of the rules, you will be doing so with full understanding of the
consequences. In some cases, the consequences are minimal; in
others they may significantly affect the integrity of the data that is in
a database.

140 CHAPTER 8  Codd’s Rules for Relational Database Design

Rule 1: The Information Rule
The first criterion for databases deals with the data structures that are
used to store data and represent data relationships:

All information in a relational database is represented explicitly at
the logical level in exactly one way—by values in tables.

The purpose of this rule is to require that relations (two-dimensional
tables) be the only data structure used in a relational database. There-
fore, products that require hard-coded links between tables are not
relational.

At the time Codd’s article was published, one of the most widely used
mainframe products was IDMS/R, a version of IDMS that placed a
relational-style query language on top of a simple network database.
The simple network data model requires data structures, such as point-
ers or indexes, to represent data relationships. Therefore, IDBMS/R,
although being marketed as relational, was not relational according
to the very first rule of a relational database. It was this product that
was at the heart of the “who cares about rules if my product works”
controversy.

Regardless of which side you take in this particular argument, there
are two very good reasons why creating a database from nothing but
tables is a good idea:

n	 Logical relationships are very flexible. In a simple network or hierarchi-
cal database, the only relationships that can be used for retrieval are
those that have been predetermined by the database designer who
wrote the schema. However, because a relational database repre-
sents its relationships through matching data values, the join opera-
tion can be used to implement relationships on the fly—even those
that a database designer may not have anticipated.

n	 Relational database schemas are very flexible. You can add, modify, and
remove individual relations without disturbing the rest of the
schema. In fact, as long as you are not changing the structure of
tables currently being used, you can modify the schema of a live
database. However, to modify the schema of a simple network or
hierarchical database, you must stop all processing of data and
regenerate the entire schema. In many cases, modifying the database
design also means recreating all the physical files (using a dump
and load process) to correspond to the new design.

141Rule 2: The Guaranteed Access Rule

When Codd originally wrote his rules, databases couldn’t store images.
Today, many DBMSs store images in a variety of formats or store the
path names (or URL) to images in external files. Technically, path
names or URLs to external files are pointers to something other than
tables and therefore would seem to cause a DBMS to violate this rule.
However, the spirit of the rule is that relationships between entities—
the logical relationships in the database—are represented by matching
data values, without the use of pointers of any kind to indicate entity
connections.

Note: DBMSs that require you to specify “relationships between files”
when you design a database fail this first rule. If you have read
Appendix A, you know that a number of PC-only products work in
this way and that although they are marketed as relational, they really
use the simple network data model. Keep in mind that the ER
diagrams for simple networks and 3NF relational databases are
identical. The differences come in how the relationships between the
entities are represented. In a simple network, it is with hard-coded
relationships; in a relational database, it is with primary key–foreign
key pairs.

Note: This is not the only rule that needs to be stretched a bit to
accommodate graphics in a database environment. See also Rule 5 later
in this chapter.

Rule 2: The Guaranteed Access Rule
Given that the entire reason we put data into a database is to get the
data out again, we must be certain that we can retrieve every single
piece of data:

Each and every datum (atomic value) in a relational database is
guaranteed to be logically accessible by resorting to a combination
of table name, primary key value, and column name.

This rule states that you need to know only three things to locate a
specific piece of data: the name of the table, the name of the column,
and the primary key of the row containing the data.

142 CHAPTER 8  Codd’s Rules for Relational Database Design

There is no rule in this set of 12 rules that specifically states that each
row in a relation must have a unique primary key. However, a relation
cannot adhere to the guaranteed access rule unless it does have unique
primary keys. Without unique primary keys, you will be able to retrieve
some row with the primary key value used in a search but not neces-
sarily the exact row you want. Some data may therefore be inaccessible
without the ability to uniquely identify rows.

Early relational databases did not require primary keys at all. You
could create and use tables without primary key constraints. Today,
however, SQL will allow you to create a table without a primary key
specification, but most DBMSs will not permit you to enter data into
that table.

Note: With today’s DBMSs, the definition of a table name can mean many
things. For example, if you are working with IBM’s DB/2, a table name is the
table creator’s loginName.tableName. If you are working with Oracle, then a
complete table name may include a catalog name, a schema name, and an
Oracle owner name, as well as the name of the individual table.

Note: A DBMS that requires “relationships between files” cannot adhere to
this rule because you must specify the file in which the data reside to locate
the data.

Rule 3: Systematic Treatment of Null Values
As you know, null is a special database value that means “unknown.”
Its presence in a database brings special problems during data retrieval.
Consider, for example, what happens if you have an employees’ rela-
tion that contains a column for salary. Assume that the salary is null
for some portion of the rows. What, then, should happen if someone
queries the table for all people who make more than $60,000 a year?
Should the rows with null be retrieved, or should they be left out?

When the DBMS evaluates a null against the logical criterion of salary
value greater than 60,000, it cannot determine whether the row con-
taining the null meets the criteria. Maybe it does, and maybe it doesn’t.
For this relation, we say that relational databases use three-valued logic.
The result of the evaluation of a logical expression is true, false, or
maybe. Codd’s third rule therefore deals with the issue of nulls:

143Rule 4: Dynamic Online Catalog Based on the Relational Model

Null values (distinct from the empty character string or a string of
blank characters or any other number) are supported in the fully
relational DBMS for representing missing information in a
systematic way, independent of data type.

First, a relational DBMS must store the same value for null in all
columns and rows where the user does not explicitly enter data values.
The value used for null must be the same, regardless of the data type
of the column. Note that null is not the same as a space character or
zero; it has its own distinct ASCII or UNICODE value. However, in
most cases when you see a query’s result table on the screen, nulls do
appear as blank.

Second, the DBMS must have some consistent, known way of han-
dling those nulls when performing queries. Typically, you will find
that rows with nulls are not retrieved by a query, such as the salary
greater than 60,000 example, unless the user explicitly asks for rows
with a value of null. Most relational DBMSs today adhere to a three-
valued logic truth table to determine retrieval behavior when they
encounter nulls.

The inclusion of nulls in a relation can be extremely important. They
provide a consistent way to distinguish between valid data such as a
0 and missing data. For example, there is a big difference between the
balance in an account payable being 0 and being unknown. The
account with 0 is something we like to see; the account with an
unknown balance could be a significant problem.

Note: The concept of unknown values is not unique to relational databases.
Regardless of the data model it uses, a DBMS must contend with the
problem of how to behave when querying against a null.

Rule 4: Dynamic Online Catalog Based
on the Relational Model
In Chapter 5, you read about relational database data dictionaries.
Codd very clearly specifies that those dictionaries (which he calls cata-
logs) should be made up of nothing but relations:

The database description is represented at the logical level in the
same way as ordinary data so that authorized users can apply the
same relational language to the interrogation as they apply to
regular data.

144 CHAPTER 8  Codd’s Rules for Relational Database Design

One advantage of using the same data structures for the data diction-
ary as for data tables is that you have a consistent way to access all
elements of the database. You need to learn only one query language.
This also simplifies the DBMS itself, since it can use the same mecha-
nism for handling data about the database (metadata) as it can data
about the organization.

When you purchase a DBMS, it comes with its own way of handling
a data dictionary There is rarely anything you can do to change it
Therefore, the major implication of this particular rule comes in select-
ing relational software: You want to look for something that has a data
dictionary that is made up of nothing but tables.

Note: Because of the way in which their schemas were implemented, it was
rare for a pre-relational DBMS to have an online data dictionary.

Rule 5: The Comprehensive Data
Sublanguage Rule
A relational database must have some language that can maintain
database structural elements, modify data, and retrieve data. Codd
included the following rule that describes his ideas about what such
a language should do:

A relational system may support several languages and various
modes of terminal use (for example, fill-in-the-blank mode).
However, there must be at least one language whose statements are
expressible, per some well-defined syntax, as character strings and
that is comprehensive in supporting all of the following items:

n  Data definition
n  View definition
n  Data manipulation (interactive and by program)
n  Integrity constraints
n  Transaction boundaries (begin, commit, and roll back)

The current SQL language does meet all of these rules. (Versions earlier
than SQL-92 did not include complete support for primary keys and
referential integrity.) Given that most of today’s relational DBMSs use
SQL as their primary data manipulation language, there would seem
to be no issue here.

145Rule 7: High-Level Insert, Update, Delete

However, a DBMS that does not support SQL but uses a graphic lan-
guage would technically not meet this rule. Nonetheless, there are
several products today whose graphic language can perform all the
tasks that Codd has listed without a command-line syntax. Such
DBMSs might not be theoretically “fully relational,” but since they can
perform all the necessary relational tasks, you lose nothing by not
having the command-line language.

Note: Keep in mind the time frame in which Codd was writing. In 1985,
the Macintosh—whose operating system legitimized the graphic user
interface—was barely a year old. Most people still considered the GUI-
equipped computers to be little more than toys.

Rule 6: The View Updating Rule
As you will read more about in Chapter 10, some views can be used
to update data. Others—those created from more than one base table
or view, those that do not contain the primary keys of their base tables,
and so on—cannot be used for updating. Codd’s sixth rule speaks only
about those that meet the criteria for updatability:

All views that are theoretically updatable are also updatable by the
system.

This rule simply means that if a view meets the criteria for updatabil-
ity, a DBMS must be able to handle that update and propagate the
updates back to the base tables.

Note: DBMSs that used pre-relational data models included constructs
similar in concept to views. For example, CODASYL DBMSs included
“subschemas,” which allowed an application programmer to construct a
subset of a schema to be used by a specific end user or by an application
program.

Rule 7: High-Level Insert, Update, Delete
Codd wanted to ensure that a DBMS could handle multiple rows of
data at a time, especially when data were modified. Therefore, his
seventh rule requires that a DBMS’s data manipulation be able to
insert, update, and delete more than one row with a single command:

146 CHAPTER 8  Codd’s Rules for Relational Database Design

The capability of handling a base relation or a derived relation as
a single operand applies not only to the retrieval of data but also to
the insertion, update, and deletion of data.

SQL provides this capability for today’s relational DBMSs. What does
it bring you? Being able to modify more than one row with a single
command simplifies data manipulation logic. Rather than having to
scan a relation row by row to locate rows for modification, for example,
you can specify logical criteria that identify rows to be affected and
then let the DBMS find the rows for you.

Rule 8: Physical Data Independence
One of the benefits of using a database system rather than a file pro-
cessing system is that a DBMS isolates the user from physical storage
details. The physical data independence rule speaks to this issue:

Applications and terminal activities remain logically unimpaired
whenever any changes are made in either storage representation or
access methods.

This means that you should be able to move the database from one
disk volume to another, change the physical layout of the files, and
so on, without any impact on the way in which application programs
and end users interact with the tables in the database.

Most of today’s DBMSs give you little control over the file structures
used to store data on a disk. (Only the very largest mainframe systems
allow systems programmers to determine physical storage structures.)
Therefore, in a practical sense, physical data independence means that
you should be able to move the database from one disk volume or
directory to another without affecting the logical design of the data-
base, and therefore the application programs and interactive users
remain unaffected. With a few exceptions, most of today’s DBMSs do
provide physical data independence.

Note: Pre-relational DBMSs generally fail this rule to a greater or lesser
degree. The older the data model, the closer it was tied to its physical data
storage. The trade-off, however, is performance. Hierarchical systems are
much faster than relational systems when processing data in tree traversal
order. The same can be said for a CODASYL database. When traversing in
set order, access will be faster than row-by-row access within a relational
database. The trade-off is flexibility to perform ad hoc queries, something
at which relational systems excel.

147Rule 10: Integrity Independence

Rule 9: Logical Data Independence
Logical data independence is a bit more subtle than physical data
independence. In essence, it means that if you change the schema—
perhaps adding or removing a table or adding a column to a table—
then other parts of the schema that should not be affected by the
change remain unaffected:

Application programs and terminal activities remain logically
unimpaired when information-preserving changes of any kind that
theoretically permit unimpairment are made to the base tables.

As an example, consider what happens when you add a table to a
database. Since relations are logically independent of one another,
adding a table should have absolutely no impact on any other table.
To adhere to the logical data independence rule, a DBMS must ensure
that there is indeed no impact on other tables.

On the other hand, if you delete a table from the database, such a
modification is not “information preserving.” Data will almost cer-
tainly be lost when the table is removed. Therefore, it is not necessary
that application programs and interactive users be unaffected by the
change.

Rule 10: Integrity Independence
Although the requirement for unique primary keys is a corollary to an
earlier rule, the requirement for non-null primary keys and for refer-
ential integrity is very explicit:

Integrity constraints specific to a particular relational database
must be definable in the relational data sublanguage and storable
in the catalog, not in the application programs.

A minimum of the following two integrity constraints must be
supported:

1.	 Entity integrity: No component of a primary key is allowed to
have a null value.

2.	 Relational integrity: For each distinct non-null foreign key value
in a relational database, there must exist a matching primary
key value from the same domain.

Notice that the rule requires that the declaration of integrity constraints
must be a part of whatever language is used to define database structure.
In addition, integrity constraints of any kind must be stored in a data
dictionary that can be accessed while the database is being used.

148 CHAPTER 8  Codd’s Rules for Relational Database Design

When IBM released its flagship relational database DB/2, one of the
two things users complained about was the lack of referential integrity
support. IBM, and other DBMS vendors for that matter, omitted ref-
erential integrity because it slows down performance. Each time you
modify a row of data, the DBMS must go to the data dictionary, search
for an integrity rule, and perform the test indicated by the rule, all
before performing an update. A referential integrity check of a
single column can involve two or more disk accesses, all of which
take more time than simply making the modification directly to the
base table.

However, without referential integrity, the relationships in a relational
database very quickly become inconsistent. Retrieval operations there-
fore do not necessarily retrieve all data because the missing cross-
references cause joins to omit data. In that case, the database is
unreliable and virtually unusable. (Yes, IBM added referential integrity
to DB/2 fairly quickly!)

Note: One solution to the problem of a DBMS not supporting referential
integrity was to have application programmers code the referential integrity
checks into application programs. This certainly works, but it puts the
burden of integrity checking in the wrong place. It should be an integral
part of the database rather than left up to an application programmer.

Note: Most DBMSs that used pre-relational data models provided some
types of integrity constraints, including domain constraints, unique entity
identifiers, and required values (non-null). CODASYL could also enforce
mandatory relationships, something akin to referential integrity.

Rule 11: Distribution Independence
As you will remember from Chapter 1, a distributed database is a
database where the data are stored on more than one computer. The
database is therefore the union of all its parts. In practice, the parts
are not unique but contain a great deal of duplicated data. Nonethe-
less, according to Rule 11:

A relational DBMS has distribution independence.

In other words, a distributed database must look like a centralized
database to the user. Application programs and interactive users

149Rule 12: Nonsubversion Rule

should not be required to know where data are stored, including the
location of multiple copies of the same data.

DBMS vendors have been working on distributed DBMS software
since the late 1970s. However, current relational DBMS truly meet this
rule. Even the most sophisticated distributed DBMS software requires
that the user indicate some location information when retrieving data.

Rule 12: Nonsubversion Rule
The final rule could also be called the “no cheating” rule:

If a relational system has a low-level (single-record-at-a-time)
language, that low-level language cannot be used to subvert or
bypass the integrity rules or constraints expressed in the higher
level relational language (multiple-records-at-a-time).

Many DBMS products during the 1980s had languages that could
directly access rows in tables separate from SQL, which operates on
multiples rows at a time. This rule states that there must be no way to
use that direct-access language to get around the constraints stored in
the data dictionary. The integrity rules must be observed without
exception.

As a complete data manipulation language, SQL contains statements
that allow you to insert, modify, delete, and retrieve data. However,
to a database designer, the portions of SQL that support the creation
of database structural elements are of utmost importance. In this
chapter you will be introduced to the SQL commands that you will
use to create and maintain the tables, views, indexes, and other struc-
ture that make up a relational database.

The actual file structure of a database is implementation dependent,
as is the procedure needed to create a database file. Therefore, the
discussion in this chapter assumes that the necessary database files are
already in place.

151

9Chapter

Using SQL to Implement
a Relational Design

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

Note: You will see extensive examples of the use of the syntax presented in
this chapter at the end of each of the three case studies that follow in this
book.

Database Structure Hierarchy
The elements that describe the structure of an SQL:2006-compliant
database are arranged in a hierarchy, which appears in Figure 9-1. The
smallest units with which the DBMS works—columns and rows—
appear in the center. These in turn are grouped into tables and views.

The tables and views that comprise a single logical database are col-
lected into a schema. Multiple schemas are grouped into catalogs,
which can then be grouped into clusters. A catalog usually contains

152 CHAPTER 9  Using SQL to Implement a Relational Design

information describing all the schemas handled by one DBMS. Catalog
creation is implementation dependent and therefore not part of the
SQL standard.

Prior to SQL-92, clusters often represented database files, and the
clustering of database elements into files was a way to increase data-
base performance by placing data accessed together in the same physi-
cal file. The SQL-92 and beyond concept of a cluster, however, is a
group of catalogs that are accessible using the same connection to a
database server.

Columns
and Rows

Ta

bles and Views

Schemas

Catalogs

Clusters

n  Figure 9-1  The SQL:2006 database structure hierarchy.

Note: SQL is a dynamic language. The standard was updated in 1999, 2003,
and 2006.

In current versions of SQL, none of the groupings of database ele-
ments are related to physical storage structures. If you are working
with a centralized mainframe DBMS, you may find multiple catalogs
stored in the same database file. However, on smaller or distributed

153Database Structure Hierarchy

systems, you are likely to find one catalog or schema per database file
or to find a catalog or schema divided among multiple files.

Clusters, catalogs, and schemas are not required elements of a data-
base environment. In a small installation where there is one collection
of tables serving a single purpose, for example, it may not even be
necessary to create a schema to hold them.

Naming and Identifying Structural Elements
The way in which you name and identify database structural elements
is in some measure dictated by the structure hierarchy:

n	 Column names must be unique within the table.
n	 Table names must be unique within the schema.
n	 Schema names must be unique within their catalog.
n	 Catalog names must be unique within their cluster.

When a column name appears in more than one table in a query, the
user must specify the table from which a column should be taken
(even if it makes no difference which table is used). The general form
for qualifying duplicate column names is:

table_name.column_name

If an installation has more than one schema, then a user must also
indicate the schema in which a table resides:

schema_name.table_name.column_name

This naming convention means that two different schemas can include
tables with the same name.

By the same token, if an installation has multiple catalogs, a user
will need to indicate the catalog from which a database element
comes:

catalog_name.schema_name.table_name.column_name

The names that you assign to database elements can include the
following:

n	 Letters
n	 Numbers
n	 Underscores (_)

SQL names can be up to 128 characters long. They are not case sensi-
tive. (In fact, many SQL command processors convert names to all

154 CHAPTER 9  Using SQL to Implement a Relational Design

upper- or lowercase before submitting a SQL statement to a DBMS for
processing.)

Note: Some DBMSs also allow pound signs (#) and dollar signs ($) in element
names, but neither is recognized by SQL queries, so their use should be
avoided.

Schemas
To a database designer, a schema represents the overall, logical design
of a complete database. As far as SQL is concerned, however, a schema
is nothing more than a container for tables, views, and other structural
elements. It is up to the database designer to place a meaningful group
of elements within each schema.

A schema is not required to create tables and views. In fact, if you are
installing a database for an environment in which there is likely to be
only one logical database, then you can just as easily do without one.
However, if more than one database will be sharing the same DBMS
and the same server, then organizing database elements into schemas
can greatly simplify the maintenance of the individual databases.

Creating a Schema
To create a schema, you use the CREATE SCHEMA statement. In its
simplest form it has the syntax:

CREATE SCHEMA schema_name

as in:

CREATE SCHEMA antiqueOpticals

Note: Some SQL command processors require a semicolon at the end of
each statement. However, that end-of-statement marker is not a part of
the SQL standard and you may encounter DBMSs that do not use it. The
examples in this chapter do not include the trailing semicolon, but be
aware that your specific DBMS may need it.

By default, a schema belongs to the user who created it (the user ID
under which the schema was created). The owner of the schema is the

155Schemas

only user ID that can modify the schema unless the owner grants that
ability to other users.

To assign a different owner to a schema, you add an AUTHORIZA-
TION clause:

CREATE SCHEMA schema_name AUTHORIZATION
owner_user_ID

For example, to assign the Antique Opticals’ schema to the user ID
DBA, someone could use:

CREATE SCHEMA antiqueOpticals AUTHORIZATION dba

When creating a schema, you can also create additional elements at
the same time. To do so, you use braces to group the CREATE state-
ments for the other elements, as in:

CREATE SCHEMA schema_name AUTHORIZATION
owner_user_id { // other CREATE statements go
here }

This automatically assigns the elements with the braces to the schema.

Identifying the Schema You Want to Use
One of the nicest things about a relational database is that you can
add or delete database structural elements at any time. There must
therefore be a way to specify a current schema for new database ele-
ments after the schema has been created initially with the CREATE
SCHEMA statement.

One way to do this is with the SET SCHEMA statement:

SET SCHEMA schema_name

To use SET SCHEMA, the user ID under which you are working must
have authorization to work with that schema.

Alternatively, you can qualify the name of a database element with
the name of the schema. For example, if you are creating a table, then
you would use something like:

CREATE TABLE schema_name.table_name

For those DBMSs that do not support SET SCHEMA, this is the only
way to attach new database elements to a schema after the schema has
been created.

156 CHAPTER 9  Using SQL to Implement a Relational Design

Domains
As you know, a domain is an expression of the permitted values for a
column in a relation. When you define a table, you assign each column
a data type (example, character or integer) that provides a broad
domain. A DBMS will not store data that violate that constraint.

The SQL-92 standard introduced the concept of user-defined domains,
which can be viewed as user-defined data types that can be applied to
columns in tables. (This means you have to create a domain before
you can assign it to a column!)

Domains can be created as part of a CREATE SCHEMA statement,
which has the following syntax:

CREATE DOMAIN domain_name data_type CHECK
(expression_to_validate_values)

The CHECK clause is actually a generic way of expressing a condition
that the data must meet. It can include a SELECT to validate data
against other data stored in the database, or it can include a simple
logical expression. In that expression, the keyword VALUE represents
the data being checked.

For example, if Antique Opticals wanted to validate the price of a disc,
someone might create the following domain:

CREATE DOMAIN price numeric (6,2) CHECK (VALUE >=
19.95)

After creating this domain, a column in a table can be given the data
type of price. The DBMS will then check to be certain that the value
in that column is always greater than or equal to 19.95. (We will leave
a discussion of the data type used in the preceding SQL statement until
we cover creating tables in the next section of this chapter.)

The domain mechanism is very flexible. Assume, for example, that you
want to ensure that telephone numbers are always stored in the format
XXX-XXX-XXXX. A domain to validate that format might be created as:

CREATE DOMAIN telephone char (12) CHECK (SUBSTRING
(VALUE FROM 4 FOR 1 = ‘-’) AND SUBSTRING (VALUE
FROM 8 FOR 1 = ‘-’))

You can use the CREATE DOMAIN statement to give a column a
default value. For example, the following statement sets up a domain
that holds either Y or N and defaults to Y:

157Tables

CREATE DOMAIN boolean char (1) DEFAULT = ‘Y’ CHECK
(UPPER(VALUE) = ‘Y’ OR UPPER(VALUE) = ‘N’)

Tables
The most important structure within a relational database is the table.
As you know, tables contain just about everything, including business
data and the data dictionary. SQL divides tables into three
categories:

n	 Permanent base tables: Permanent base tables are tables whose con-
tents are stored in the database and remain permanently in the
database unless they are explicitly deleted.

n	 Global temporary tables: Global temporary tables are tables for
working storage that are destroyed at the end of an SQL session.
The definitions of the tables are stored in the data dictionary, but
their data are not. The tables must be loaded with data each time
they are going to be used. Global temporary tables can be used only
by the current user, but they are visible to an entire SQL session
(either an application program or a user working with an interactive
query facility).

n	 Local temporary tables: Local temporary tables are similar to global
temporary tables. However, they are visible only to the specific
program module in which they are created.

Temporary base tables are subtly different from views, which assemble
their data by executing an SQL query. You will read more about this
difference and how temporary tables are created and used later in this
chapter.

Most of the tables in a relational database are permanent base tables.
You create them with the CREATE TABLE statement:

CREATE TABLE table_name { column1_name
column1_data_type column1_constraints, column2_name
column2_data_type column2_constraints,
… table_constraints)

The constraints on a table include declarations of primary and foreign
keys. The constraints on a column include whether values in the
column are mandatory, as well as other constraints you may decide
to include in a CHECK clause.

158 CHAPTER 9  Using SQL to Implement a Relational Design

Column Data Types
Each column in a table must be given a data type. Although data types
are somewhat implementation dependent, most DBMSs that support
SQL include the following predefined data types:

n	 INTEGER (abbreviated INT): A positive or negative whole number.
The number of bits occupied by the value is implementation depen-
dent. In most cases, integers are either 32 or 64 bits.

n	 SMALLINT: A positive or negative whole number. A small integer
is usually half the size of a standard integer. Using small integers
when you know you will need to store only small values can save
space in the database.

n	 NUMBER: A fixed-point positive or negative number. A numeric
value has a whole number portion and a fractional portion. When
you create it, you must specify the total length of the number
(including the decimal point) and how many of those digits will
be to the right of the decimal point (its precision). For example:

NUMERIC (6,2)

creates a number in the format XXX.XX. The DBMS will store exactly
two digits to the right of the decimal point.

n	 DECIMAL: A fixed-point positive or negative number. A decimal
number is similar to a numeric value. However, the DBMS may
store more digits to the right of the decimal point than you specify.
Although there is no guarantee that you will get the extra precision,
its use can provide more accurate results in computations.

n	 REAL: A “single-precision” floating point value. A floating point
number is expressed in the format:

XX,XXXXX * 10YY

where YY is the power to which 10 is raised. Because of the way
computers store floating point numbers, a real number may not be
an exact representation of a value but only a close approximation.
The range of values that can be stored is implementation depen-
dent, as is the precision. You therefore cannot specify a size for a
real number column.

n	 DOUBLE PRECISION (abbreviated DOUBLE): A “double-precision”
floating point number. The range and precision of double-precision
values are implementation dependent, but generally both will be
greater than single-precision real numbers.

159Tables

n	 FLOAT: A floating point number for which you can specify the
precision. The DBMS will maintain at least the precision that you
specify. (It may be more.)

n	 BIT: Storage for a fixed number of individual bits. You must indicate
the number of bits, as in:

BIT (n)

where n is the number of bits. (If you do not, you will have room
for only one bit.)

n	 BIT VARYING: Storage for a varying number of bits up to a specified
maximum, as in:

BIT VARYING (n)

where n is the maximum number of bits. In some DBMSs, columns
of this type can be used to store graphic images.

n	 DATE: A date.

n	 TIME: A time.

n	 TIMESTAMP: The combination of a date and a time.

n	 CHARACTER (abbreviated CHAR): A fixed-length space to hold a
string of characters. When declaring a CHAR column, you need to
indicate the width of the column:

CHAR (n)

where n is the amount of space that will be allocated for the column
in every row. Even if you store less than n characters, the column
will always take up n bytes—or n * 2 bytes if you are storing
UNICODE characters—and the column will be padded with blanks
to fill up empty space. The maximum number of characters allowed
is implementation dependent.

n	 CHARACTER VARYING (abbreviated VARCHAR): A variable-length
space to hold a string of characters. You must indicate the maximum
width of the column:

VARCHAR (n)

but the DBMS stores only as many characters as you insert, up to
the maximum n. The overall maximum number of characters
allowed is implementation dependent.

160 CHAPTER 9  Using SQL to Implement a Relational Design

n	 INTERVAL: A date or time interval. An interval data type is followed
by a qualifier that specifies the size of the interval and optionally
the number of digits. For example:

INTERVAL YEAR INTERVAL YEAR (n) INTERVAL MONTH
INTERVAL MONTH (n) INTERVAL YEAR TO MONTH
INTERVAL YEAR (n) TO MONTH INTERVAL DAY INTERVAL
DAY (n) INTERVAL DAY TO HOUR INTERVAL DAY (n) TO
HOUR INTERVAL DAY TO MINUTE INTERVAL DAY (n) TO
MINUTE INTERVAL MINUTE INTERVAL MINUTE (n)

In the preceding example, n specifies the number of digits. When
the interval covers more than one date-time unit, such as YEAR TO
MONTH, you can specify a size for only the first unit. Year-month
intervals can include days, hours, minutes, and/or seconds.

n	 BOOLEAN: A true/false value.

n	 BLOB (Binary Large Object): A block of binary code (often a graphic)
stored as a unit and retrievable only as a unit. In many cases, the
DBMS cannot interpret the contents of a BLOB (although the appli-
cation that created the BLOB can do so). Because BLOB data are
stored as undifferentiated binary, BLOB columns cannot be searched
directly. Identifying information about the contents of a BLOB must
be contained in other columns of the table using data types that
can be searched.

In Figure 9-2 you will find bare-bones CREATE TABLE statements for
the Antique Opticals database. These statements include only column
names and data types. SQL will create tables from statements in this
format, but because the tables have no primary keys, many DBMSs
will not allow you to enter data.

Default Values
As you are defining columns, you can designate a default value for
individual columns. To indicate a default value, you add a DEFAULT
keyword to the column definition, followed by the default value. For
example, in the orders relation, the order date column defaults to the
current system date. The column declaration is therefore written:

order_date date DEFAULT CURRENT_DATE

Notice that this particular declaration is using the SQL value
CURRENT_DATE. However, you can place any value after DEFAULT
that is a valid instance of the column’s data type.

161Not Null Constraints

NOT NULL CONSTRAINTS
The values in primary key columns must be unique and not null. In
addition, there may be columns for which you want to require a value.
You can specify such columns by adding NOT NULL after the column
declaration.

Since the Antique Opticals database wants to ensure that an order date
is always entered, the complete declaration for that column in the
orders table is:

order_date date NOT NULL DEFAULT CURRENT_DATE

Primary Keys
There are two ways to specify a primary key:

n	 Add a PRIMARY KEY clause to a CREATE TABLE statement. The
keywords PRIMARY KEY are followed by the names of the primary
key column or columns, surrounded by parentheses.

n	 Add the keywords PRIMARY KEY to the declaration of each column
that is part of the primary key. Use a CONSTRAINT clause if you
want to name the primary key constraint.

In Figure 9-3 you will find the CREATE TABLE statement for the
Antique Opticals database including both PRIMARY KEY and CON-
STRAINT clauses. Notice that in those tables that have concatenated
primary keys, all the primary key columns have been included in a
PRIMARY KEY clause.

Foreign Keys
As you know, a foreign key is a column (or combination of columns)
that is exactly the same as the primary of some table. When a foreign
key value matches a primary key value, we know that there is a logical
relationship between the database objects represented by the match-
ing rows.

One of the major constraints on a relation is referential integrity,
which states that every non-null foreign key must reference an existing
primary key value. To maintain the integrity of the database, it is vital
that foreign key constraints be stored within the database’s data dic-
tionary so that the DBMS can be responsible for enforcing those
constraints.

162 CHAPTER 9  Using SQL to Implement a Relational Design

CREATE TABLE customer
(customer_numb int,
customer_first_name varchar (15),
customer_last_name varchar (15),
customer_street varchar (30),
customer_city varchar (15),
customer_state char (2),
customer_zip char (10),
customer_phone char (12))

CREATE TABLE distributor
(distributor_numb int,
distributor_name varchar (15),
distributor_street varchar (30),
distributor_city varchar (15),
distributor_state char (2),
distributor_zip char (10),
distributor_phone char (12),
distributor_contact_person varchar (30),
contact_person_ext char (5))

CREATE TABLE item
(item_numb int,
item_type varchar (15),
title varchar (60),
distributor_numb int,
retail_price numeric (6,2),
release_date date,
genre varchar (20),
quant_in_stock int)

CREATE TABLE order
order_numb int ,
customer_numb int,
order_date date,
credit_card_numb char (16),
credit_card_exp_date char (5),
order_complete char (1),
pickup_or_ship char (1))

n  Figure 9-2  Initial CREATE TABLE statements for the Antique Opticals database.

163Not Null Constraints

CREATE TABLE order_line
(order_numb int,
item_numb int,
quantity int,
discount_percent int,
selling_price numeric (6,2),
line_cost numeric (7,2),
shipped char (1),
shipping_date date)

CREATE TABLE purchase
(purchase_date date,
customer_numb int,
items_received char (1),
customer_paid char (1))

CREATE TABLE purchase_item
(purchase_date date,
customer_numb int,
item_numb int,
condition char (15),
price_paid numeric (6,2))

CREATE TABLE actor
(actor_numb int,
actor_name varchar (60))

CREATE TABLE performance
(actor_numb int,
item_numb int,
role varchar (60))

CREATE TABLE producer
(producer_name varchar (60),
studio varchar (40))

CREATE TABLE production
(producer_name varchar (60),
item_numb int)

n  Figure 9-2  Cont’d

164 CHAPTER 9  Using SQL to Implement a Relational Design

CREATE TABLE customer
(customer_numb int PRIMARY KEY,
customer_first_name varchar (15),
customer_last_name varchar (15),
customer_street varchar (30),
customer_city varchar (15),
customer_state char (2),
customer_zip char (10),
customer_phone char (12))

CREATE TABLE distributor
(distributor_numb int PRIMARY KEY,
distributor_name varchar (15),
distributor_street varchar (30),
distributor_city varchar (15),
distributor_state char (2),
distributor_zip char (10),
distributor_phone char (12),
distributor_contact_person varchar (30),
contact_person_ext char (5))

CREATE TABLE item
(item_numb int CONSTRAINT item_pk PRIMARY KEY,
item_type varchar (15),
title varchar (60),
distributor_numb int,
retail_price numeric (6,2),
release_date date,
genre varchar (20),
quant_in_stock int)

CREATE TABLE order
(order_numb int,
customer_numb int,
order_date date,
credit_card_numb char (16),
credit_card_exp_date char (5),
order_complete char (1),
pickup_or_ship char (1)
PRIMARY KEY (order_numb))

CREATE TABLE order_line
(order_numb int,

n  Figure 9-3  CREATE TABLE statements for the Antique Opticals database including primary key declarations.

165Not Null Constraints

item_numb int,
quantity int,
discount_percent int,
selling_price numeric (6,2),
line_cost numeric (7,2),
shipped char (1),
shipping_date date
PRIMARY KEY (order_numb, item_numb))

CREATE TABLE purchase
(purchase_date date,
customer_numb int,
items_received char (1),
customer_paid char (1)
PRIMARY KEY (purchase_date, customer_numb))

CREATE TABLE purchase_item
(purchase_date date,
customer_numb int,
item_numb int,
condition char (15),
price_paid numeric (6,2)
PRIMARY KEY (purchase_date, customer_numb, item_numb))

CREATE TABLE actor
(actor_numb int PRIMARY KEY,
 actor_name varchar (60))

CREATE TABLE performance
(actor_numb int,
item_numb int,
role varchar (60)
PRIMARY KEY (actor_numb, item_numb))

CREATE TABLE producer
(producer_name varchar (60) CONSTRAINT producer_pk PRIMARY KEY,
studio varchar (40))

CREATE TABLE production
(producer_name varchar (60),
item_numb int
PRIMARY KEY (producer_name, item_numb))

n  Figure 9-3  Cont’d

166 CHAPTER 9  Using SQL to Implement a Relational Design

To specify a foreign key for a table, you add a FOREIGN KEY
clause:

FOREIGN KEY foreign_key_name (foreign_key_columns)
REFERENCES primary_key_table
(primary_key_columns) ON UPDATE update_option ON
DELETE delete_option

Each foreign key–primary key reference is given a name. This makes
it possible to identify the reference at a later time—in particular, so
you can remove the reference if necessary.

Note: Some DBMSs, such as Oracle, do not support the naming of foreign
keys, in which case you would use preceding syntax without the name.

The names of the foreign key columns follow the name of the foreign
key. The REFERENCES clause contains the name of the primary key
table being referenced. If the primary key columns are named in the
PRIMARY KEY clause of their table, then you don’t need to list the
primary key columns. However, if the columns are not part of a
PRIMARY KEY clause, you must list the primary key columns in the
REFERENCES clause.

The final part of the FOREIGN KEY specification indicates what should
happen with a primary key value being referenced by a foreign key
value that is updated or deleted. Three options apply to both updates
and deletions and there is one additional option for each:

n	 SET NULL: Replace the foreign key value with null. This isn’t
possible when the foreign key is part of the table’s primary key.

n	 SET DEFAULT: Replace the foreign key value with the
column’s default value.

n	 CASCADE: Delete or update all foreign key rows.
n	 NO ACTION: On update, make no modifications of foreign

key values.
n	 RESTRICT: Do not allow deletions of primary key rows.

The complete declarations for the Antique Opticals database tables,
which include foreign key constraints, can be found in Figure 9-4.
Notice that although there are no restrictions on how to name foreign
keys, the foreign keys in this database have been named to indicate
the tables involved. This makes them easier to identify if you need to
delete or modify a foreign key at a later date.

167Not Null Constraints

CREATE TABLE customer
(customer_numb int PRIMARY KEY,
customer_first_name varchar (15),
customer_last_name varchar (15),
customer_street varchar (30),
customer_city varchar (15),
customer_state char (2),
customer_zip char (10),
customer_phone char (12))

CREATE TABLE distributor
(distributor_numb int PRIMARY KEY,
distributor_name varchar (15),
distributor_street varchar (30),
distributor_city varchar (15),
distributor_state char (2),
distributor_zip char (10),
distributor_phone char (12),
distributor_contact_person varchar (30),
contact_person_ext char (5))

CREATE TABLE item
(item_numb int CONSTRAINT item_pk PRIMARY KEY,
item_type varchar (15),
title varchar (60),
distributor_numb int,
retail_price numeric (6,2),
release_ date date,
genre varchar (20),
quant_in_stock int)

CREATE TABLE order
(order_numb int,
customer_numb int,
order_date date,
credit_card_numb char (16),
credit_card_exp_date char (5),
order_complete char (1),
pickup_or_ship char (1)
PRIMARY KEY (order_numb)
FOREIGN KEY order2customer (customer_numb)
REFERENCES customer

ON UPDATE CASCADE
ON DELETE RESTRICT)

n  Figure 9-4  The complete CREATE TABLE statements for the Antique Opticals database.

168 CHAPTER 9  Using SQL to Implement a Relational Design

 CREATE TABLE order_line
(order_numb int,
item_numb int,
quantity int,
discount_percent int,
selling_price numeric (6,2),
line_cost numeric (7,2),
shipped char (1),
shipping_date date
PRIMARY KEY (order_numb, item_numb)
FOREIGN KEY order_line2item (item_numb)
REFERENCES item

ON UPDATE CASCADE
ON DELETE RESTRICT

FOREIGN KEY order_line2order (order_numb)
REFERENCES order

ON UPDATE CASCADE
ON DELETE CASCADE)

CREATE TABLE purchase
(purchase_date date,
customer_numb int,
items_received char (1),
customer_paid char (1)
PRIMARY KEY (purchase_date, customer_numb)
FOREIGN KEY purchase2customer (customer_numb)
REFERENCES customer

ON UPDATE CASCADE)
ON DELETE RESTRICT)

CREATE TABLE purchase_item
(purchase_date date,
customer_numb int,
item_numb int,
condition char (15),
price_paid numeric (6,2)
PRIMARY KEY (purchase_date, customer_numb, item_numb)
FOREIGN KEY purchase_item2purchase (purchase_date, customer_numb

ON UPDATE CASCADE
ON DELETE CASCADE

FOREIGN KEY purchase_item2item (item_numb)

n  Figure 9-4  The complete CREATE TABLE statements for the Antique Opticals database—Cont’d

169Not Null Constraints

REFERENCES item
ON UPDATE CASCADE
ON DELETE RESTRICT)

CREATE TABLE actor
(actor_numb int PRIMARY KEY,
actor_name varchar (60))

CREATE TABLE performance
(actor_numb int,
item_numb int,
role varchar (60)
PRIMARY KEY (actor_numb, item_numb)
FOREIGN KEY performance2actor (actor_numb)
REFERENCES actor

ON UPDATE CASCADE
ON DELETE CASCADE

FOREIGN KEY performance2item (item_numb)
REFERENCES item

ON UPDATE CASCADE
ON DELETE CASCADE)

CREATE TABLE producer
(producer_name varchar (60) CONSTRAINT producer_pk PRIMARY KEY,
studio varchar (40))

CREATE TABLE production
(producer_name varchar (60),
item_numb int
PRIMARY KEY (producer_name, item_numb)
FOREIGN KEY production2producer (producer_name)
REFERENCES producer

ON UPDATE CASCADE
ON DELETE CASCADE

FOREIGN KEY production2item
REFERENCES item

ON UPDATE CASCADE
ON DELETE CASCADE)

n  Figure 9-4  Cont’d

170 CHAPTER 9  Using SQL to Implement a Relational Design

Additional Column Constraints
There are additional constraints that you can place on columns in a
table beyond primary and foreign key constraints. These include
requiring unique values and predicates in CHECK clauses.

Requiring Unique Values
If you want to ensure that the values in a non-primary key column
are unique, then you can use the UNIQUE keyword. UNIQUE verifies
that all non-null values are unique. For example, if you were storing
Social Security numbers in an employees table that used an employee
ID as the primary key, you could also enforce unique Social Security
numbers with:

ssn char (11) UNIQUE

The UNIQUE clause can also be placed at the end of the CREATE
TABLE statement, along with the primary key and foreign key specifi-
cations. In that case, it takes the form:

UNIQUE (column_names)

Check Clauses
The CHECK clause to which you were introduced earlier in the chapter
in the “Domains” section can also be used with individual columns
to declare column-specific constraints. To add a constraint, you place
a CHECK clause after the column declaration, using the keyword
VALUE in a predicate to indicate the value being checked.

For example, to verify that a column used to hold true-false values is
limited to T and F, you could write a CHECK clause as:

CHECK (UPPER(VALUE) = ‘T’ OR UPPER(VALUE) = ‘F’)

Views
As you saw in Chapter 5, views provide a way to give users a specific
portion of a larger schema with which they can work. Before you
actually can create views, there are two things you should consider:
which views you really need and whether the views can be used for
updating data.

Deciding Which Views to Create
Views take up very little space in a database, occupying only a few
rows in a data dictionary table. That being the case, you can feel free
to create views as needed.

171Views

A typical database might include the following views:

n	 One view for every base that is exactly the same as the base table but
with a different name. Then you prevent end users from seeing the
base tables and do not tell the end users the table names; you give
end users access to only the views. This makes it harder for end users
to gain access to the stored tables because they do not know their
names. However, as you will see in the next section, it is essential for
updating that there be views that do not match the base tables.

n	 One view for each primary key–foreign key relationship over which
you join frequently. If the tables are large, the actual syntax of the
statement may include methods for avoiding the join operation but
still combining the tables.

n	 One view for each complex query that you issue frequently.

n	 Views as needed to restrict user access to specific columns and rows.
For example, you might recreate a view for a receptionist that shows
employee office numbers and telephone extensions but leaves out
home address, telephone number, and salary.

View Updatability Issues
A database query can apply any operations supported by its DBMS’s
query language to a view, just as it can to base tables. However, using
views for updates is a much more complicated issue. Given that views
exist only in main memory, any updates made to a view must be
stored in the underlying base tables if the updates are to have any
effect on the database.

Not every view is updatable, however. Although the rules for view
updatability vary from one DBMS to another, you will find that most
DBMSs share the following restrictions:

n	 A view must be created from no more than one base table or
view.

n	 If the source of the view is another view, then the source view
must also adhere to the rules for updatability.

n	 A view must be created from only one query. Two or more
queries cannot be assembled into a single view table using
operations such as union.

n	 The view must include the primary key columns of the base
table.

n	 The view must include all columns specified as not null
(columns requiring mandatory values).

172 CHAPTER 9  Using SQL to Implement a Relational Design

n	 The view must not include any groups of data. It must include
the original rows of data from the base table rather than rows
based on values common to groups of data.

n	 The view must not remove duplicate rows.

Creating Views
To create a view whose columns have the same name as the columns
in the base tables from which it is derived, you give the view a name
and include the SQL query that defines its contents:

CREATE VIEW view_name AS SELECT . . .

For example, if Antique Opticals wanted to create a view that included
action films, the SQL is written:

CREATE VIEW action_films AS SELECT item_numb,
title FROM item WHERE genre = ‘action’

If you want to rename the columns in the view, you include the view’s
column names in the CREATE VIEW statement:

CREATE VIEW action_films (identifier, name) AS SELECT
item_numb, title FROM item WHERE genre =
‘action’

The preceding statement will produce a view with two columns
named identifier and name. Note that if you want to change even one
column name, you must include all the column names in the paren-
theses following the view name. The DBMS will match the columns
following SELECT with the view column names by their position in
the list.

Views can be created from any SQL query, including those that perform
joins, unions, and grouping. For example, to simplify looking at cus-
tomers and their order totals, Antique Opticals might create a view
like the following:

CREATE VIEW sales_summary AS SELECT customer_numb,
order. order_numb, order.order_date,  SUM
(selling_price) FROM order_line JOIN order GROUP
BY customer_number, orders.order_date, orders.
order_numb

The view table will then contain grouped data along with a computed
column.

173Temporary Tables

Temporary Tables
A temporary table is a base table that is not stored in the database but
instead exists only while the database session in which it was created
is active. At first glance, this may sound like a view, but views and
temporary tables are rather different:

n	 A view exists only for a single query. Each time you use the name
of a view, its table is recreated from existing data.

n	 A temporary table exists for the entire database session in which it
was created.

n	 A view is automatically populated with the data retrieved by the
query that defines it.

n	 You must add data to a temporary table with SQL INSERT
commands.

n	 Only views that meet the criteria for view updatability can be used
for data modifications.

n	 Because temporary tables are base tables, all of them can be
updated.

n	 Because the contents of a view are generated each time the view’s
name is used, a view’s data are always current.

n	 The data in a temporary table reflect the state of the database at the
time the table was loaded with data. If the data from which the
temporary table was loaded are modified after the temporary table
has received its data, then the contents of the temporary table may
be out of sync with other parts of the database.

If the contents of a temporary table become outdated when source
data change, why use a temporary table at all? Wouldn’t it be better
simply to use a view whose contents are continually regenerated? The
answer lies in performance. It takes processing time to create a view
table. If you are going to use data only once during a database session,
then a view will actually perform better than a temporary table because
you don’t need to create a structure for it. However, if you are going
to be using the data repeatedly during a session, then a temporary
table provides better performance because it needs to be created only
once. The decision therefore results in a trade-off: Using a view repeat-
edly takes more time but provides continuously updated data; using
a temporary table repeatedly saves time, but you run the risk that the
table’s contents may be out of date.

174 CHAPTER 9  Using SQL to Implement a Relational Design

Creating Temporary Tables
Creating a temporary table is very similar to creating a permanent base
table. You do, however, need to decide on the scope of the table. A
temporary table may be global, in which case it is accessible to the
entire application program that created it. Alternatively, it can be local,
in which case it is accessible only to the program module in which it
was created.

To create a global temporary table, you add the keywords GLOBAL
TEMPORARY to the CREATE TABLE statement:

CREATE GLOBAL TEMPORARY TABLE (remainder of CREATE
statement)

By the same token, you create a local temporary table with:

CREATE LOCAL TEMPORARY TABLE (remainder of CREATE
statement)

For example, if Antique Opticals was going to use the order summary
information repeatedly, it might create the following temporary table
instead of using a view:

CREATE GLOBAL TEMPORARY TABLE
order_summary (customer_numb int, order_numb
int, order_date date, order_total numeric
(6,2), PRIMARY KEY (customer_numb, order_numb)

Loading Temporary Tables with Data
To place data in a temporary table, you use one or more SQL INSERT
statements. For example, to load the order summary table created in
the preceding section, you could type:

INSERT INTO order_summary SELECT customer_numb,
order.order_numb, order.order_date, SUM
(selling_price) FROM order_line JOIN order GROUP
BY customer_number, orders.order_date, orders.
order_numb

You can now query and manipulate the order_summary table just as
you would a permanent base table.

Disposition of Temporary Table Rows
When you write embedded SQL (SQL statements coded as part of a
program written in a high-level language such as C++ or Java), you

175Creating Indexes

have control over the amount of work that the DBMS considers to be
a unit (a transaction). Although we will cover transactions in depth in
Chapter 15, at this point you need to know that a transaction can end
in one of two ways: It can be committed (its changes made permanent),
or it can be rolled back (its changes undone).

By default, the rows in a temporary table are purged whenever a trans-
action is committed. You can, however, instruct the DBMS to retain
the rows by including ON COMMIT PRESERVE ROWS to the end of
the table creation statement:

CREATE GLOBAL TEMPORARY TABLE order_summary
(customer_numb int, order_numb int, order_date
date, order_total numeric (6,2), PRIMARY KEY
(customer_numb, order_numb ON COMMIT PRESERVE
ROWS))

Because a rollback returns the database to the state it was in before
the transaction begins, a temporary table will also be restored to its
previous state (with or without rows).

Creating Indexes
As you read in Chapter 7, an index is a data structure that provides a
fast access path to rows in a table based on the value in one or more
columns (the index key). Because an index stores key values in order,
the DBMS can use a fast search technique to find the values rather
than being forced to search each row in an unordered table
sequentially.

You create indexes with the CREATE INDEX statement:

CREATE INDEX index_name ON table_name
(index_key_columns)

For example, to create an index on the title column in Antique Opti-
cals’ item table, you could use:

CREATE INDEX item_title_index ON item (title)

By default, the index will allow duplicate entries and keeps the entries
in ascending order (alphabetical, numeric, or chronological, which-
ever is appropriate). To require unique indexes, add the keyword
UNIQUE after CREATE:

CREATE UNIQUE INDEX item_title_index ON item
(title)

176 CHAPTER 9  Using SQL to Implement a Relational Design

To sort in descending order, insert DESC after the column whose sort
order you want to change. For example, Antique Opticals might want
to create an index on the order date in the order relation in descending
order so that the most recent orders are first:

CREATE INDEX order_order_date_index ON order
(order_date DESC)

If you want to create an index on a concatenated key, include all the
columns that should be part of the index key in the column list. For
example, the following creates an index organized by actor and item
number:

CREATE INDEX actor_actor_item_index ON actor
(actor_numb, item_numb)

Although you do not need to access an index directly unless you
want to delete it from the database, it helps to give indexes names that
will tell you something about their tables and key columns. This
makes it easier to remember them should you need to get rid of the
indexes.

Modifying Database Elements
With the exception of tables, database elements are largely unchange-
able. When you want to modify them, you must delete them from the
database and create them from scratch. In contrast, just about every
characteristic of a table can be modified without deleting the table
using the ALTER TABLE statement.

Adding Columns
To add a new column to a table, use the ALTER TABLE statement with
the following syntax:

ALTER TABLE table_name ADD column_name
column_data_type column_constraints

For example, if Antique Opticals wanted to add a telephone number
column to the producer table, they would use:

ALTER TABLE producer ADD producer_phone char (12)

To add more than one column at the same time, simply separate the
clauses with commas:

177Modifying Database Elements

ALTER TABLE producer ADD producer_phone char (12),
ADD studio_street char (30), ADD studio_city char
(15), ADD studio_state char (2), ADD studio_zip
char (10)

Adding Table Constraints
You can add table constraints such as foreign keys at any time. To do
so, include the new constraint in an ALTER TABLE statement:

ALTER TABLE table_name ADD table_constraint

Assume, for example, that Antique Opticals created a new table named
“states” and included in it all the two-character U.S. state abbrevia-
tions. The company would then need to add references to that table
from the customer, distributor, and producer tables:

ALTER TABLE customer ADD FOREIGN KEY customer2states
(customer_state) REFERENCES states (state_name)

ALTER TABLE distributor ADD FOREIGN KEY
distributor2states (distributor_state) REFERENCES
states (state_name)

ALTER TABLE producer ADD FOREIGN KEY producer2states
(studio_state) REFERENCES states (state_name)

When you add a foreign key constraint to a table, the DBMS verifies
that all existing data in the table must meet that constraint. If the data
do not, the ALTER TABLE statement will fail.

Modifying Columns
You can modify columns by changing any characteristic of the column,
including the data type, size, and constraints.

Changing Column Definitions
To replace a complete column definition, use the MODIFY command
with the current column name and the new column characteristics.
For example, to change the customer number in Antique Opticals’
customer table from an integer to a character column, use:

ALTER TABLE customer MODIFY customer_numb char (4)

When you change the data type of a column, the DBMS will attempt
to convert any existing values to the new data type. If the current values
cannot be converted, then the table modification will not be per-

178 CHAPTER 9  Using SQL to Implement a Relational Design

formed. In general, most columns can be converted to characters.
However, conversions from a character data type to numbers, dates,
and/or times require that existing data represent legal values in the
new data type.

Given that the DBMS converts values whenever it can, changing a
column data type may seem like a simple change, but it isn’t. In this
particular example, the customer number is referenced by foreign keys,
and therefore the foreign key columns must be modified as well. You
need to remove the foreign key constraints, change the foreign key
columns, change the primary key column, and then add the foreign
key constraints back to the tables that contain the foreign keys. Omit-
ting the changes to the foreign keys will make it impossible to add
any rows to those foreign key tables because integer customer numbers
will never match character customer numbers. Moral to the story:
Before changing column characteristics, consider the effect of those
changes on other tables in the database.

Changing Default Values
To add or change a default value only (without changing the data type
or size of the column), include the DEFAULT keyword:

ALTER TABLE order_line MODIFY discount_percent
DEFAULT 0

Changing Null Status
To switch between allowing nulls and not allowing nulls without
changing any other characteristics, add NULL or NOT NULL as
appropriate:

ALTER TABLE customer MODIFY customer_zip NOT NULL

or

ALTER TABLE customer MODIFY customer_zip NULL

Changing Column Constraints
To modify a column constraint without changing any other column
characteristics, include a CHECK clause:

ALTER TABLE item MODIFY retail_price CHECK (VALUE >=
12.95)

179Deleting Database Elements

Deleting Table Elements
You can also delete structural elements from a table as needed, without
deleting the entire table.

n	 To delete a column:

ALTER TABLE order_line DELETE line_cost

n	 To delete a CHECK table constraint (a CHECK that has been
applied to an entire table rather than to a specific column):

ALTER TABLE customer DELETE CHECK

n	 To remove the UNIQUE constraint from one or more
columns:

ALTER TABLE item DELETE UNIQUE (title)

n	 To remove a table’s primary key:

ALTER TABLE customer DELETE PRIMARY KEY

Although you can delete a table’s primary key, keep in mind that if
you do not add a new one, you will not be able to modify any data
in that table.

n	 To delete a foreign key:

ALTER TABLE item DELETE FOREIGN KEY item2distributor

Renaming Table Elements
You can rename both tables and columns.

n	 To rename a table, place the new table name after the RENAME
keyword:

ALTER TABLE order_line RENAME line_item

n	 To rename a column, include both the old and new column
names, separated by the keyword TO:

ALTER TABLE item RENAME title TO item_title

Deleting Database Elements
To delete a structural element from a database, you “drop” the element.
For example, to delete a table you would type:

DROP TABLE table_name

180 CHAPTER 9  Using SQL to Implement a Relational Design

Dropping a table (or any database structural element, for that matter)
is irrevocable. In most cases, the DBMS will not bother to ask you,
“Are you sure?” but will immediately delete the structure of the table
and all of its data if it can. A table deletion will fail, for example, if it
has foreign keys referencing it and one or more of the foreign key
constraints contain ON DELETE RESTRICT. Dropping a table or view
will also fail if the element being dropped is currently in use by
another user.

Note: There is one exception to the irrevocability of a delete. If an element is
deleted during a program-controlled transaction and the transaction is
rolled back, the deletion will be undone. Undoing transactions is covered in
Chapter 15.

You can remove the following elements from a database with the
DROP statement:

n	 Tables
n	 Views

DROP VIEW view_name

n	 Indexes

DROP INDEX index_name

n	 Domains

DROP DOMAIN domain_name

A CASE (computer-aided software engineering) tool is a software
package that provides support for the design and implementation of
information systems. By integrating many of the techniques used to
document a system design—including the data dictionary, data flows,
and entity relationships—CASE software can increase the consistency
and accuracy of a database design. They can also ease the task of creat-
ing the diagrams that accompany a system design.

many CASE tools are on the market. The actual “look” of the diagrams
is specific to each particular package. However, the examples presented
in this chapter are typical of the capabilities of most CASE tools.

181

10Chapter

Using CASE Tools
for Database Design

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

Note: The specific CASE software used in Chapters 11 through 13 is Mac
A&D by Excel Software (www.excelsoftware.com). (There’s also a Windows
version.) Other such packages that are well suited to database design
include Visio (www.microsoft.com) and Visible Analyst (www.visible.com).

A word of warning is in order about CASE tools before we proceed
any further: A CASE tool is exactly that—a tool. It can document a
database design, and it can provide invaluable help in maintaining
the consistency of a design. Although some current CASE tools can
verify the integrity of a data model, they cannot design the database
for you. There is no software in the world that can examine a database
environment and identify the entities, attributes, and relationships
that should be represented in a database. The model created with
CASE software is therefore only as good as the analysis of the database
environment provided by the people using the tool.

182 CHAPTER 10  Using CASE Tools for Database Design

CASE Capabilities
Most CASE tools organize the documents pertaining to a single system
into a “project.” As you can see in Figure 10-1, by default a typical
project supports the following types of documents:

n	 Data dictionary: In most CASE tools, the data dictionary forms the
backbone of the project, providing a single repository for all pro-
cesses, entities, attributes, and domains used anywhere throughout
the project.

n	 Requirements: CASE tool requirements documents store the text
descriptions of product specifications. They also make it possible to
arrange requirements in a hierarchy, typically from general to
specific.

n	 Data flow diagrams: As you read in Chapter 4, data flow diagrams
document the way in which data travel throughout an organization,
indicating who handles the data. Although it isn’t necessary to
create a data flow diagram if your only goal with the project is to
document a database design, data flow diagrams can often be useful
in documenting the relationships among multiple organization
units and the data they handle. Data flow diagrams can, for example,
help you determine whether an organization needs a single data-
base or a combination of databases.

n  Figure 10-1  CASE software project documents.

183ER Diagram Reports

n	 Structure charts: Structure charts are used to model the structure of
application programs that will be developed using structured pro-
gramming techniques. The charts show the relationship between
program modules.

n	 Data models: Data models are the ER diagrams about which you
have been reading. The ER diagram on which the examples in this
chapter are based can be found in Figure 10-2.

n	 Screen prototypes: Drawings of sample screen layouts are typically
most useful for documenting the user interface of application pro-
grams. However, they can also act as a crosscheck to ensure that a
database design is complete by allowing you to verify that every-
thing needed to generate the sample screen designs is present in the
database.

n	 State models: State models, documented in state transition diagrams,
indicate the ways in which data change as they move through the
information system.

n	 Task diagrams: Task diagrams are used to help plan application
programs in which multiple operations (tasks) occur at the same
time. They are therefore not particularly relevant to the database
design process.

n	 Class diagrams: Class diagrams are used when performing object-
oriented rather than structured analysis and design.

n	 Object diagrams: Object diagrams are used during object-oriented
analysis to indicate how objects communicate with one another by
passing messages.

Many of the diagrams and reports that a CASE tool can provide are
designed to follow a single theoretical model. For example, the ER
diagrams that you have seen earlier in this book might be based on
the Chen model or the Information Engineering model. Any given
CASE tool will support some selection of diagramming models. You
must therefore examine what a particular product supports before you
purchase it to ensure that it provides exactly what you need.

ER Diagram Reports
In addition to providing tools for simplifying the creation of ER dia-
grams, many CASE tools can generate reports that document the con-
tents of an ERD. For example, in Figure 10-3 you can see a portion of

184 CHAPTER 10  Using CASE Tools for Database Design

Purchase

*purchase_data
*@customer_numb

items_received
customer_paid

Purchase_item

*@purchase_data
*@customer_numb

*@item_numb
condition

price_paid

*customer_numb
*customer_first_name
customer_last_name

customer_street
customer_city

customer_state
customer_zip

customer_phone

Customer

*order_numb
@customer_numb

order_date
credit_card_numb

credit_card_exp_date
order_complete
pickup_or_ship

*@order_numb
@item_numb

quantity
discount_percent

selling_price
line_cost

shipping_date

Order

Order_item

*@item_numb
item_type

title
@distributor_numb

retail_price
release_date

genre
quant_in_stock

Item

Actor

*actor_numb
actor_name

*@actor_numb
*@actor_numb

role

Performance

Producer

*producer_numb
producer_name

studio

Production

*@producer_numb
*@item_numb

Distributor

*distributor_numb
distributor_name
distributor_street
distributor_city

distributor_state
distributor_zip

distributor_phone
distributor_contact_person

contact_person_ext

n  Figure 10-2  ER diagram created with the sample CASE tool for Antique Opticals.

185ER Diagram Reports

**

Entity: actor

Language: SQL
Physical: actor##

Attributes:

...*actor_numb
Language: SQL
DataType: INTEGER
Physical: actor_numb##

...actor_name
Language: SQL
DataType: long_name
Physical: actor_name##

**

n  Figure 10-3  Part of an entity specification report.

a report that provides a description of each entity and its attributes,
including the attribute’s data type.

The “physical” line contains the name that the database element will
have in SQL CREATE TABLE statements; it can be different from the
element’s data dictionary entry name. For many designers, this type
of report actually constitutes a paper-based data dictionary.

A CASE tool can also translate the relationships in an ER diagram into
a report such as that in Figure 10-4. The text in the report describes
the cardinality of each relationship in the ERD (whether the relation-
ship is one-to-one, one-to-many, or many-to-many) and can therefore
be very useful for pinpointing errors that may have crept into the
graphic version of the diagram.

186 CHAPTER 10  Using CASE Tools for Database Design

Data Flow Diagrams
There are two widely used styles for data flow diagrams (DFDs):
Yourdon/DeMarco, which has been used throughout this book, and
Gene & Sarson.

The Yourdon/DeMarco style, which you can see in Figure 10-5, uses
circles for processes. (This particular example is for a small taxi
company that rents its cabs to drivers.) Data stores are represented by

actor is associated with zero or more instances of performance.
performance is associated with zero or one instance of actor.

customer is associated with zero or more instances of order.
order is associated with zero or one instance of customer.

customer is associated with zero or more instances of purchase.
purchase is associated with zero or one instance of customer.

distributor is associated with zero or more instances of item.
item is associated with zero or one instance of distributor.

item is associated with zero or more instances of order_item.
order_item is associated with zero or one instance of item.

item is associated with zero or more instances of performance.
performance is associated with zero or one instance of item.

item is associated with zero or more instances of production.
production is associated with zero or one instance of item.

item is associated with zero or more instances of purchase_item.
purchase_item is associated with zero or one instance of item.

order is associated with zero or more instances of order_item.
order_item is associated with zero or one instance of order.

producer is associated with zero or more instances of production.
production is associated with zero or one instance of producer.

purchase is associated with zero or more instances of purchase_item.
purchase_item is associated with zero or one instance of purchase.

n  Figure 10-4  A relation specification report.

187Data Flow Diagrams

parallel lines. Data flows are curved or straight lines with labels that
indicate the data that are moving along that pathway. External sources
of data are represented by rectangles.

In concept, the Gene & Sarson style is very similar: It varies primarily
in style. As you can see in Figure 10-6, the processes are round-
cornered rectangles as opposed to circles. Data stores are open-ended
rectangles rather than parallel lines. External sources of data remain
as rectangles, and data flows use only straight lines. However, the
concepts of numbering the processing and exploding each process
with a child diagram that shows further detail is the same, regardless
of which diagramming style you use.

As mentioned earlier, DFDs are very useful in the database design
process for helping a designer to determine whether an organization

3
Schedule

Shift

4
Perform

Maintenance

2
Accept

Returned
Cab from

Driver

1
Rent Cab
to Driver

Driver

Shift
Driven
Flag

Odometer
Reading

Problem
Report

Miles
Driven

Maintenance
Schedule

Maintenance
Performed

ReportCab Status

Shift
Request

Driver
Verification

Shift
Request

Driver &
shift data

Cab Data

n  Figure 10-5  Yourdon/DeMarco style DFD.

188 CHAPTER 10  Using CASE Tools for Database Design

needs a single, integrated database or a collection of independent
databases. For example, it is clear from the taxi company’s DFDs that
an integrated database is required. Of the four processes shown in the
diagram, three use data from both the cab data store and the drive
and shift data store. (Only the maintenance process uses just one data
store.) You will see examples of using DFDs in this way in the case
studies in the following three chapters.

The Data Dictionary
From a database designer’s point of view, the ER diagram and its
associated data dictionary are the two most important parts of CASE

Shift
Request

Shift
Cab

Status

Driver
Verification

3

Schedule
Shift

4

Perform
Maintenance

2

Accept
Returned Cab

from Driver

1

Rent Cab to
Driver

Driver

Shift
Driven
Flag

Odometer
Reading

Problem
Report

Miles
Driven

Maintenance
Schedule

Maintenance
Performed Report

Driver &
Shift Data

Cab Data

n  Figure 10-6  Gene & Sarson style DFD.

189The Data Dictionary

software. Since you were introduced to several types of ER diagrams
in Chapter 4, we will not repeat them here but instead focus on the
interaction of the diagrams and the data dictionary.

A data dictionary provides a central repository for documenting enti-
ties, attributes, and domains. In addition, by linking entries in the ER
diagram to the data dictionary you can provide enough information
for the CASE tool to generate the SQL CREATE statements needed to
define the structure of the database.

The layout of a data dictionary varies with the specific CASE tool, as
does the way in which entries are configured. Entities are organized
alphabetically, with the attributes following the entity name. Entity
names are red, and attributes are blue. (Of course, you can’t see the
colors in this black-and-white book, so you’ll have to take my word
for it.) Domain names appear alphabetically among the entities. Each
relationship in the related ERD also has an entry. Because each item
name begins with “Relation,” all relationship entries sort together in
the data dictionary.

When you select an entity name, the display shows the entity’s name,
composition (the attributes in the entity), definition (details needed
to generate SQL and so on), and type of database element (in the
References section). Figure 10-7, for example, shows the information
stored in the data dictionary for Antique Opticals’ customer relations.
All of the information about the entity (and all other entries, for that
matter) is editable, but because the format is specific to the CASE tool,
be careful when making changes unless you know exactly how entries
should appear.

Attribute entries (Figure 10-8) are similar to entity entries, but they
have no data in the composition section. Attribute definitions can
include the attribute’s data type, a default value, and any constraints
that have been placed on that attribute. In most cases, these details
are entered through a dialog box, relieving the designer of worrying
about specific SQL syntax.

Relationships (Figure 10-9) are named by the CASE tool. Notice that
the definition indicates which entities the relationship relates, as well
as which is at the “many” end of the relationship (the child) and
which is at the “one” end (the parent).

Many relational DBMSs now support the definition of custom
domains. Such domains are stored in the data dictionary

190 CHAPTER 10  Using CASE Tools for Database Design

(Figure 10-10) along with their definitions. Once a domain has been
created and is part of the data dictionary, it can be assigned to attri-
butes. If a database administrator needs to change a domain, it can
be changed once in the data dictionary and propagated automatically
to all attributes entries that use it.

The linking of data dictionary entries to an ER diagram has another
major benefit: The data dictionary can examine its entries and auto-
matically identify foreign keys. This is yet another way in which the
consistency of attribute definitions enforced by a CASE tool’s data
dictionary can support the database design process.

n  Figure 10-7  Definition of an entity in a data dictionary window.

Note: Mac A&D is good enough at identifying foreign keys to pick up
concatenated foreign keys.

191Code Generation

Keep in mind that a CASE tool is not linked dynamically with a DBMS.
Although data definitions in the data dictionary are linked to dia-
grams, changes made to the CASE tool’s project will not affect the
DBMS. It is up to the database administrator to make the actual
changes to the database.

Code Generation
The end product of most database design efforts is a set of SQL
CREATE TABLE commands. If you are using CASE software and the
software contains a complete data dictionary, then the software can
generate the SQL for you. You will typically find that a given CASE
tool can tailor the SQL syntax to a range of specific DBMSs. In most
cases, the code will be saved in a text file, which you can then use as
input to a DBMS.

n  Figure 10-8  Definition of an attribute in a data dictionary window.

192 CHAPTER 10  Using CASE Tools for Database Design

The effectiveness of the SQL that a CASE tool can produce, as you
might expect, depends on the completeness of the data dictionary
entries. To get truly usable SQL, the data dictionary must contain the
following:

n	 Domains for every attribute
n	 Primary key definitions (created as attributes are added to

entities in the ER diagram)

n  Figure 10-9  Data dictionary entry for a relationship between two entities in an ERD.

Note: Most of today’s CASE tools will also generate XML for you. XML
provides a template for interpreting the contents of files containing data
and therefore is particularly useful when you need to transfer schemas and
data between DBMSs with different SQL implementations or between
DBMSs that do not use SQL at all. XML has become so important for data
exchange that it is covered in Chapter 17.

193Sample Input and Output Designs

n	 Foreign key definitions (created as attributes are added to
entities in the ER diagram or by the CASE tool after the ER
diagram is complete)

n	 Any additional constraints that are to be placed on individual
attributes or on the entity as a whole

Sample Input and Output Designs
Sample input and output designs form part of the system documenta-
tion, especially in that they help document requirements. They can
also support the database designer by providing a way to double-check
that the database can provide all the data needed by application pro-
grams. Many CASE tools therefore provide a way to draw and label
sample screen and report layouts.

Most of today’s CASE tools allow multiple users to interaction with
the same project. This means that interface designers can work with

n  Figure 10-10  Data dictionary entry for a custom domain.

194 CHAPTER 10  Using CASE Tools for Database Design

the same data dictionary that the systems analysts and database
designers are building, ensuring that all the necessary data elements
have been handled.

For example, one of the most important things that the person sched-
uling cab reservations for the taxi company needs to know is which
cabs are not reserved for a given date and shift. A sample screen such
as that in Figure 10-11 will do the trick.1 The diagram shows what data
the user needs to enter (the shift date and the shift name). It also
shows the output (cab numbers). The names of the fields on the
sample screen design can be linked to the data dictionary.

A CASE tool can be used to model an entire application program. The
“browse” tool at the very bottom of the tool bar in Figure 10-12
switches into browse mode, in which buttons and menus become
active. Users can make choices from pull-down menus that can be

n  Figure 10-11  Sample screen design.

1 In the interest of complete disclosure, you should know that when Mac A&D was
ported from Mac OS 9 to Mac OS X, the screen and report design module wasn’t
included. (It will probably show up in a future release.) Therefore, the sample
screen designs that you will see in this chapter and in Chapter 12 are from an older
version of the product. The Windows version, however, does include the interface
design module.

195The Drawing Environment

linked to other forms. Buttons can also trigger the opening of other
forms. Users can click into data entry fields and tab between fields.
Users can therefore not only see the layout and output screen and
documents but also navigate through an application.

The Drawing Environment
Up to this point, you’ve been reading about the way in which the
functions provided by CASE software can support the database design
effort. In this last section we will briefly examine the tools you can
expect to find as part of CASE software, tools with which you can
create the types of documents you need.

Because many of the documents you create with CASE software are
diagrams, the working environment of a CASE tool includes a special-
ized drawing environment. For example, in Figure 10-12 you can see
the drawing tools provided by the sample CASE tool for creating ER
diagrams. (Keep in mind that each CASE tool will differ somewhat in
the precise layout of its drawing tool bars, but the basic capabilities
will be similar.)

The important thing to note is that the major shapes needed for the
diagrams—for ER diagrams, typically just the entity and relationship

Caption tool for labels that aren’t created automatically by
the CASE tool

Entity tool

Subdiagram tool

Connection tool for drawing relationships between entities

Structure tool

n  Figure 10-12  Example CASE tool drawing environment for ER diagrams.

196 CHAPTER 10  Using CASE Tools for Database Design

line—are provided as individual tools. You therefore simply click the
tool you want to use in the tool bar and draw the shape in the
diagram, much like you would if you were working with a general-
purpose graphics program.

For Further Reading
To learn more about the Yourdon/DeMarco method of structure anal-
ysis using data flow diagrams, see either of the following:

DeMarco, Tom, and P. J. Flauger. Structured Analysis and System
Specification. Prentice Hall, 1985.

Yourdon, Edward. Modern Structured Analysis. Prentice Hall PTR, 2000.

It is not unusual for a database designer to be employed to reengineer
the information systems of an established corporation. As you will see
from the company described in this chapter, information systems in
older companies have often grown haphazardly, with almost no plan-
ning and integration. The result is a hodgepodge of data repositories
that cannot provide the information needed for the corporation to
function because they are isolated from one another. In such a situa-
tion, it is the job of the database designer to examine the environment
as a whole and to focus on the integration of data access across the
corporation, as well as the design of one or more databases that will
meet individual department needs.

On the bright side, an organization such as Mighty-Mite Motors,
which has a history of data processing of some kind, knows quite well
what it needs in information systems, even if the employees are
unable to articulate those needs immediately. There will almost cer-
tainly be a collection of paper forms and reports that the organization
uses regularly to provide significant input to the systems design
process.

Corporate Overview
Might-Mite Motors, Inc. (MMM) is a closely held corporation, estab-
lished in 1980, that manufactures and markets miniature ridable
motor vehicles for children. Products include several models of cars,

197

11Chapter

Database Design
Case Study 1:

Mighty-Mite Motors

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

198 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

trucks, all-terrain vehicles, and trains (see Figure 11-1). Vehicles are
powered by car batteries and can achieve speeds of up to 5 mph.

At this time, MMM is organized into three divisions: Product Develop-
ment, Manufacturing, and Marketing and Sales. Each division is
headed by a vice president, who reports directly to the CEO. (An
organization chart appears in Figure 11-2.) All of these divisions are
housed in a single location that the corporation owns outright.

Mighty-Mite Motors

Product Catalog

Winter Holiday Season 2010

n  Figure 11-1  Might-Mite Motors’ product catalog.

199Corporate Overview

Product Development Division
The Product Development division is responsible for designing and
testing both new and redesigned products. The division employs
design engineers who use computer-aided design (CAD) software to
prepare initial designs for new or redesigned vehicles. Once a design
is complete, between one and ten prototypes are built. The prototypes
are first tested in-house using robotic drivers/passengers. After refine-
ment, the prototypes are test by children in a variety of settings. Feed-
back from the testers is used to refine product designs and to make

001

002

Model #001

All Terrain Vehicle: Accelerator in
the handebar lets young riders reach
speeds of up to 5 mph. Vehicle stops
immediately when child removes his
or her hand from the handbars.
Can carry one up to 65-lb passenger.
Suggested retail price: $124.95

Model #002

4-Wheel Drive Cruiser: Two-pedal
drive system lets vehicle move
forward at 2 1/2 mph on hard surfaces,
plus reverse. Electronic speed
reduction for beginners. Includes one
6V battery and one recharger. Ages
3–7 (can carry two passengers up
to 40 lbs each).
Suggested retail price: $249.99

n  Figure 11-1  Cont’d

200 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

decisions about which designs should actually be manufactured for
mass marketing.

Manufacturing Division
The Manufacturing division is responsible for producing product for
mass-market sales. Manufacturing procures its own raw materials and
manages it own operations, including personnel (hiring, firing, sched-
uling) and assembly line management. Manufacturing maintains the

003

004

005

Model #003

Classic Roadster: Sounds include
engine start-up, rev, shifting gears,
and idle. Two forward speeds—
2 1/2 mph and 5 mph; reverses at
2 1/2 mph. High-speed lockout.
On/off power pedal. Power-lock
electric brake. Includes two 6V
batteries and recharger. Ages 3–7
(carries two passengers up to
60 lbs each).
Suggested retail price: $189.95

Model #004

Sports Car #1: Two forward speeds—
2 1/2 and 5 mph. Reverses at 2 1/2
mph. High-speed lockout. Power-lock
electric brake. Includes two 6V
batteries and one recharger. Ages 3–6
(carries two passengers up to 90
lbs total).
Suggested retail price: $249.95

Model #005

Sports Car #2: Phone lets child
pretend to talk while he or she drives.
Two forward speeds—2 1/2 mph and
5 mph; reverses at 2 1/2 mph. High-
speed lockout. Power-lock electric
brake. Includes two 6V batteries and
one recharger. Ages 3–6 (carries two
passengers up to 90 lbs total).
Suggested retail price: $249.95

n  Figure 11-1  Might-Mite Motors’ product catalog—Cont’d

201Corporate Overview

inventory of products that are ready to go on sale. It also handles
shipping of products to resellers, based on sales information received
from Marketing and Sales.

Marketing and Sales Division
MMM sells directly to toy stores and catalog houses; the corporation
has never used distributors. Marketing and Sales employs a staff of 25
salespeople who make personal contacts with resellers. Salespeople

006

007

008

Model #008

Turbo-Injected Porsche: Working
stick shift—3 mph and 5 mph forward;
3 mph reverse. High-speed lockout.
Adjustable seat. Doors, trunk, and
hood open. Simulated car phone.
Includes one 18V battery and
recharger. Ages 3–8 (carries two
passengers up to 120 lbs total).
Suggested retail price: $299.95

Model #007

Indy Car: Dual motors for cruising
on a variety of surfaces, even up
hills. Two forward speeds (2 1/2 and
5 mph), plus reverse (2 1/2 mph).
Adjustable seat. Includes two 6V
batteries and recharger. Ages 3–7
(carries one passenger up to 80 lbs)
Suggested retail price: $269.95

Model #008

2-Ton Pickup: Metallic teal color.
Simulated chrome engine covers and
headlight with oversized wheels.
2 1/2 mph forward speed. Includes one
6V battery and recharger. Ages 3–7
(carries one passenger up to 65 lbs).
Suggested retail price: $189.95

n  Figure 11-1  Cont’d

202 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

are also responsible for distributing catalogs in their territories, visiting
and/or calling potential resellers, and taking reseller orders. Order
accounting is handled by Marketing and Sales. As noted earlier, Mar-
keting and Sales transmits shipping information to Manufacturing,
which takes care of actual product delivery.

Current Information Systems
MMM’s information systems are a hodgepodge of computers and
applications that have grown up with little corporate planning. The

009

012

Model #008

Santa Fe Train: Soundly engineered
for a little guy or gal. A hand-operated
on/off button controls the 6V battery-
operated motor. Reaches speeds up to
5 mph. Includes a battery-powered
“whoo whoo” whistle to greet
passersby. Ride on 76˝ x 168˝ oval
track (sold separately) or on carpet
or sidewalk, indoors or outdoors. Plastic
body and floorboard; steel axles and
coupling pins. Bright red, blue and yellow
body features a large lift-up seat and
trailing car for storage. Includes battery
and chargers. Ages 3–6.
Suggested retail price: $159.95

Model #010

Oval track: Measures 76˝ by 168.˝
Suggested retail price: $39.95

Model #011

6 Pieces Straight Track: Six straight
track sections 19˝ each (total 114˝).
Suggested retail price: $19.95

Model #012

Rechargeable Battery (6V): For use with
6V or 12V vehicles. For 12V vehicles, use
two. To charge, use charger included
with vehicle.
Suggested retail price: $27.95

n  Figure 11-1  Might-Mite Motors’ product catalog—Cont’d

203Corporate Overview

Product Development division relies primarily on stand-alone CAD
workstations. In contrast to the sophistication of the CAD machines,
testing records are kept and analyzed manually. Product Development
employs product designers (some of whom function as project leaders)
and clerical support staff but no information systems personnel.
Attempts to have clerical staff develop simple database applications
to store data about children who test new and redesigned products
and the results of those tests have proven futile. It has become evident
that Product Development needs information systems professionals,
and although the division is willing to hire information technology
(IT) staff, corporate management has decided to centralize the IS staff
rather than add to a decentralized model.

Manufacturing uses a stand-alone server to track purchases and inven-
tory levels of raw materials, personnel scheduling, manufacturing line
scheduling, and finished-product inventory. Each of the applications
running on the server were custom-written by outside consultants in
COBOL many years ago; the most significant maintenance they have
had was when they were ported from the department’s original mini-
computer to the server about 15 years ago. The data used by a Manu-
facturing application are contained in files that do not share
information with any of the other applications. Manufacturing
employs one COBOL programmer and a system administrator.
Although the programmer is talented, the most he can do is fix super-
ficial user interface issues and repair corrupted data files; he was not
part of the original program development, and does not understand

CEO

VP Development VP Manufacturing VP Marketing
and SalesCIO

Lead
Programmer

Database
Administrator Lead Analyst

n  Figure 11-2  Might-Mite Motors’ organization chart.

204 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

the functioning of much of the application code, which was poorly
written and even more poorly documented. The applications no
longer meet the needs of the Manufacturing division, and manage-
ment has determined that it isn’t cost effective to write new applica-
tions to access the existing data files.

Marketing and Sales, which wasn’t computerized until 1987, has a
local area network consisting of one server and 15 workstations. The
server provides shared applications such as word processing and
spreadsheets. It also maintains a marketing and sales database that
has been developed using a PC-based product. The database suffers
from several problems, including a limit of ten users at a time and
concurrency control problems that lead to severe data inconsistencies.
The marketing and sales database was developed by the division’s two
IS employees at the time, both of whom have since left the company.
None of the current staff understands the software. Regardless of the
amount of time spent trying to maintain the database, inaccurate data
continue to be introduced.

The Marketing and Sales network is not connected to the Internet.
Salespeople must therefore transmit hard copies of their orders to the
central office, where the orders are manually keyed into the existing
database. Some of the salespeople do have laptop computers, but
because the network has no Internet connection, the salespeople
cannot connect to it when they are out of the office.

Reengineering Project
Because MMM seems to have lost its strategic advantage in the mar-
ketplace, the CEO has decided to undertake a major systems reengi-
neering project. The overall thrust of the project is to provide an
information system that will support better evaluation of product
testing, better analysis of sales patterns, better control of the manufac-
turing process, and enhanced communications options throughout
the corporation. New information systems will be based on a client/
server model and include one or more databases running on an Inter-
net-connected network of servers, workstations, and PCs.

New Information Systems Division
The first step in the reengineering project is to establish an information
systems division. This new division will also be housed in the
corporate headquarters, along with the three existing divisions. To

205Corporate Overview

accommodate the new division, MMM will be construction a
10,000-square-foot addition to its building.

MMM is in the process of searching for a chief information officer
(CIO). This individual, who will report directly to the CEO, will
manage the new division and be responsible for overseeing the reen-
gineering of information systems that will handle all of the corpora-
tion’s operations.

All current IS personnel (those who work for the Manufacturing and
Marketing and Sales divisions) will be transferred to the new IS divi-
sion. The division will hire (either internally or externally) three man-
agement-level professionals, a Lead Programmer (responsible for
overseeing application development), a Database Administrator
(responsible for database design and management), and a Lead
Analyst (responsible for overseeing systems analysis and design
efforts). Retraining in the client/server model and client/server devel-
opment tools will be provided for all current employees who are
willing to make the transition. Those who are unwilling to move to
the new development environment will be laid off.

Basic System Goals
The CEO has defined the following goals for the reengineering project:

n	 Develop a corporation-wide data administration plan that includes
a requirements document detailing organizational functions that
require technology support and the functions that the reengineered
system will provide.

n	 Provide an application road map that documents all application
programs that will be needed to support corporate operations.

n	 Document all databases to be developed for the corporation. This
documentation will include ER diagrams and data dictionaries.

n	 Create a timeline for the development of applications and their
supporting databases.

n	 Specify hardware changes and/or acquisitions that will be necessary
to support the reengineered information systems.

n	 Plan and execute a security strategy for an expanded corporate
network that will include both internal and external users.

n	 Implement the planned systems.

206 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

Current Business Processes
To aid the systems analysts in their assessment of MMM’s information
systems needs, the CEO of MMM asked all existing division heads to
document the way information is currently processed. This documen-
tation, which also includes some information about what an improved
system should do, provides a starting point for the redesign of both
business and IS processes.

Sales and Ordering Processes
MMM receives orders at its plant in two ways: by telephone directly
from customers or from members of the sales staff who have visited
customers in person. Orders from the remote sales staff usually arrive
by fax or overnight courier.

Each order is written on a standard order form (Figure 11-3). If the
order arrives by fax, it will already be on the correct form, but tele-
phone orders must be written on the form by in-house order takers.
Several times a day, a clerk enters the orders into the existing database.
Unfortunately, if the sales office is particularly busy, order entry may
be delayed. This backup has a major impact on production line sched-
uling and thus on the company’s ability to fill orders. The new infor-
mation system must streamline the order entry process, including the
electronic transmission of order data from the field and the direct
entry of in-house orders.

The in-house sales staff has no access to the files that show the current
finished-goods inventory. They are therefore unable to tell customers
when their orders will be shipped. They can, however, tell customers
how many orders are ahead of theirs to be filled and, based on general
manufacturing timetables, come up with an approximation of how
long it will take to ship a given order. One of the goals of the informa-
tion systems reengineering project is to provide improved company-
wide knowledge of how long it will take to fill customer orders.

Manufacturing, Inventory, and Shipping Processes
The MMM Manufacturing division occupies a large portion of the
MMM facility. The division controls the actual manufacturing lines
(three assembly lines), a storage area for finished goods, a storage area
for raw materials, and several offices for supervisory and clerical staff.

The manufacturing process is triggered when a batch of order forms
is received each morning by the manufacturing office. The batch con-
sists of all orders that were entered into the sales database the previous

207Corporate Overview

working day. A secretary takes the individual order forms and com-
pletes a report summarizing the number ordered by model (Figure
11-4). This report is then given to the Manufacturing Supervisor,
whose responsibility it is to schedule which model will be produced
on each manufacturing line each day.

Mighty-Mite Motors

Customer Order Form

Customer #:

Name:

Street:

City: State: Zip:

Voice phone #: Fax:

Contact personFirst name: Last name:

Order date:

Item # Quantity Unit price Line total

• •

•

•

•

•

•
Order total: •

•

•

•

•

•

n  Figure 11-3  Mighty-Mite Motors’ order form.

208 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

The scheduling process is somewhat complex because the Manufactur-
ing Supervisor must take into account previously placed orders, which
have determined the current manufacturing schedule and current
inventory levels, as well as the new orders, when adjusting the sched-
ule. The availability of raw materials and the time it takes to modify
a manufacturing line to produce a different model are also entered
into the scheduling decision. This is one function that MMM’s man-
agement understands will be almost impossible to automate; there is
just too much human expertise involved to translate into an automatic
process. However, it is vital that the Manufacturing Supervisor have
access to accurate, up-to-date information about orders, inventory,
and the current time schedule so that judgments can be made based
on as much hard data as possible.

As finished vehicles come off the assembly line, they are packed for
shipping, labeled, and sent to finished-goods storage. Each shipping
carton contains one vehicle, which is marked with its model number,
serial number, and date of manufacture. The Shipping Manager, who
oversees finished-goods storage and shipping, ensures that newly
manufactured items are entered into the shipping inventory files.

The Shipping Manager receives the customer order forms after the
order report has been completed. (Photocopies of the order forms are
kept in the Marketing and Sales office as backups.) The orders are
placed in a box in reverse chronological order so that the oldest orders
can be filled first. The Shipping Manager checks orders against inven-

Mighty-Mite Motors
Order Summary

MM/DD/YYYY

Model # Quantity Ordered
57100
051200
08400
53500
511800
52900
52010
51110

n  Figure 11-4  Mighty-Mite Motors’ order summary report format.

209Corporate Overview

tory levels by looking at the inventory level output screen (Figure
11-5). If the manager sees that enough inventory is available to fill an
order, the order is given to a shipping clerk for processing. If there
isn’t enough inventory, then the order is put back in the box, where
it will be checked again the following day. Under this system, no
partial orders are filled because they would be extremely difficult to
track. (The reengineered information system should allow handling
of partial shipments.)

Shipping clerks are given orders to fill. They create shipping labels for
all vehicles that are part of a shipment. The cartons are labeled and
set aside to be picked up by delivery services. The shipping clerks
prepare the package labels (which also serve as packing slips), to
ensure that the items being shipped are removed from the inventory
file, and return the list of filled orders to the Shipping Manager. The
orders are then marked as filled and returned to Marketing and
Sales. The reengineered information system should automate the gen-
eration of pick-lists, packing slips, and updating of finished-goods
inventory.

MMM’s raw materials inventory is maintained on a just-in-time basis.
The Manufacturing Supervisor checks the line schedule (Figure 11-6)
and the current raw materials inventory (Figure 11-7) daily to deter-
mine what raw materials need to be ordered. This process relies heavily

Current Finished Goods Inventory Levels
MM/DD/YYYY

Model # Number on Hand

512100
53200
081300
213400
28500
5600
212700
981800
73900
111010
591110
22210

n  Figure 11-5  Mite-Mite Motors’ inventory screen layout.

210 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

on the Manufacturing Supervisor’s knowledge of which materials are
needed for which model vehicle. MMM’s CEO is very concerned about
this process because the Manufacturing Supervisor, while accurate in
scheduling the manufacturing line, is nowhere near as accurate in
judging raw materials needs. The result is that occasionally manufac-
turing must stop because raw materials have run out. The CEO would
therefore like to see ordering of raw materials triggered automatically.
The new information system should keep track of the raw materials
needed to produce each model and, based on the line schedule and
a reorder point established for each item, generate orders for items
when needed.

Raw materials are taken from inventory each morning as each manu-
facturing line is set up for the day’s production run. The inventory files
are modified immediately after all raw materials have been removed

Line Schedule
MM/DD/YYYY

MM/DD/YYYY
Line #1: Model 008 300 units
Line #2: Model 002 150 units
Line #3: Model 010 200 units

MM/DD/YYYY
Line #1: Model 008 200 units
Line #2: Model 003 400 units
Line #3: Model 005 300 units

MM/DD/YYYY
Line #1: Model 008 250 units
Line #2: Model 006 100 units
Line #3: Model 002 300 units

 :
 :
 :

Total production scheduled:
Model 002 450 units
Model 003 400 units
Model 005 300 units
Model 006 100 units
Model 008 750 units
Model 010 200 units

n  Figure 11-6  Mighty-Mite Motors’ line schedule report format.

211Corporate Overview

from storage for a given manufacturing line. There is no way to auto-
mate the reduction of inventory, but the new information system
should make it very easy for nontechnical users to update inventory
levels.

Product Testing and Support Function
MMM’s top management make decisions about which model vehicles
to produce based on data from three sources: product testing, cus-
tomer registrations, and problem reports.

Customer registrations are received on cards packaged with sold vehi-
cles (Figure 11-8). Currently, the registration cards are filed by cus-
tomer name. However, MMM would also like access to these data by
model and serial number to make it easier to notify customers if a
recall occurs. Management would also like summaries of the data by
model purchased, age of primary user, gender of primary user, and
who purchased the vehicle for the child.

Problem reports (Figure 11-9) are taken by customer support repre-
sentatives who work within the product testing division. These reports
include the serial number and model that is having problems, along
with the date and type of problem. Currently, the problem descrip-
tions are nonstandard, made up of whatever terms the customer
support representative happens to use. It is therefore difficult to sum-

Current Raw Materials Inventory Levels
MM/DD/YYYY

 Item HOQmetI#

001 Plastic #3 95 lbs.
002 Red dye 109 25 gals.
003 Wheel 12″ 120 each
004 Plastic #4 300 lbs.
005 Yellow dye 110 5 gals.
006 Yellow dye 65 30 gals.
007 Strut 15″ 99 each
008 Axle 24″ 250 each
009 Blue dye 25 18 gals.
010 Plastic #8 350 lbs.
011 Cotter pin: small 515 each
012 Cotter pin: medium 109 each

Next screen

n  Figure 11-7  Mighty-Mite Motors’ raw materials inventory screen layout.

212 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

marize problem reports to get an accurate picture of which models are
experiencing design problems that should be corrected. MMM would
therefore like to introduce a standardized method for describing prob-
lems, probably through a set of problem codes. The result should be
regular reports on the problems reported for each model that can be
used to help make decisions about which models to continue, which
to discontinue, which to redesign, and which to recall.

MMM does not repair its own products. When a problem report is
received, the customer is either directed to return the product to the
store were it was purchased for an exchange (during the first 30 days
after purchase) or to an authorized repair center in the customer’s area.

Please register your Mighty-Mite Motors vehicle

By registering you receive the following benefits:

• Validation of the warranty on your vehicle,
 making it easier to obtain warranty service

 if ever necessary.
• Notification of product updates relating to your vehicle.
• Information mailings about enhancements to your vehicle

 and other products that may be of interest.

Fold
 here. Tape closed

; d
o not staple.

First name

Last name

Street

City State Zip

Model # Serial #

Age of primary user of vehicle:

Gender: Male Female

Date of purchase:

Place of purchase:

Where did you first learn about Mighty-Mite Motors?

Advertisement in a magazine or newspaper

Friend’s recommendation

In-store display

Catalog

Other

What features of the vehicle prompted your purchase?

Size
Color

Speed

Safety features

Cost

What is the relationship of the purchaser to the primary user?

Other

Parent
Grandparent

Aunt/Uncle

Friend

Other

Phone #

n  Figure 11-8  Mighty-Mite Motors’ purchase registration form.

213Corporate Overview

First name

Last name

Street

City State Zip

Phone #

Problem Report

Date Time

Model # Serial #

Problem description:

n  Figure 11-9  Mighty-Mite Motors’ problem report.

214 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

In the latter case, the problem report is faxed to the repair center so
that it is already there when the customer arrives. MMM does not plan
to change this procedure because it currently provides quick, excellent
service to customers and alleviates the need for MMM to stock replace-
ment parts. (Replacement parts are stocked by the authorized repair
centers.)

Product test results are recorded on paper forms (Figure 11-10). After
a testing period is completed, the forms are collated manually to
produce a summary of how well a new product performed. MMM
would like the test results stored within an information system so that
the testing report can be produced automatically, saving time and
effort. Such a report will be used to help decide which new models
should be placed in production.

Product Test Report

Location

Model tested

Test result and comments:

Date Time

Test type

Test description

n  Figure 11-10  Mighty-Mite Motors’ product test report.

215Designing the Database

Designing the Database
The most effective approach to the design of a database (or collection
of databases) for an environment as diverse as that presented by
Mighty-Mite Motors usually involves breaking the design into compo-
nents indicated by the organization of the company. As the design
evolves, the designer can examine the entities and the relationships to
determine where parts of the organization will need to share data.
Working on one portion of the design at a time also simplifies dealing
with what might at first seem to be an overwhelmingly large database
environment. Paying special attention to the need to share data helps
ensure that shared data are consistent and suitable for all required uses.

A systems analysis indicates that the MMM database environment falls
into the following areas:

n	 Manufacturing (including finished-goods inventory and raw
materials ordering)

n	 Sales to toy stores and shipping of products ordered
n	 Purchase registrations
n	 Testing
n	 Problem handling

Examining the Data Flows
During the systems analysis, a data flow diagram can be a great help
in identifying where data are shared by various parts of an organiza-
tion. The top-level DFD (the context diagram in Figure 11-11) actually
tells us very little. It indicates that three sources outside the company
provide data: customers (the stores to which the company sells), pur-
chasers (the individuals who purchase products from the stores), and
raw materials suppliers. Somewhere, all those data are used by a
general process called Manufacture and Sell Products to keep the
company in business.

However, the level 1 DFD (Figure 11-12) is much more telling. As the
data handling processes are broken down, five data stores emerge:

n	 Raw materials: This data store holds both the raw materials
inventory and the orders for raw materials.

n	 Product data: The product data store contains data about the
products being manufactured, product testing results, and the
finished-goods inventory.

n	 Customer orders: This data store contains customer information
as well as order data.

216 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

Customer order
information

purchase
information

problem
decription

Purchaser

0*
Manufacture

and Sell
Products

raw materials
order

information

Raw Materials
Supplier

n  Figure 11-11  Context DFD for Mighty-Mite Motors.

n	 Purchaser data: The purchaser data store contains information
about the individuals who purchase products and the products
they have purchased.

n	 Problem data: This final data store contains problem reports.

As you examine the processes that interact with these five data stores,
you will find a number of processes that manipulate data in more than
one data store, as well as data stores that are used by more than one
process:

n	 The raw materials data store is used by the raw materials
ordering and the manufacturing processes.

n	 Product data are used by manufacturing, sales, shipping, and
product registration.

n	 Customer order data are used by sales and shipping.
n	 The purchases data store is used by purchaser registration and

problem handling.
n	 The problem data store, used only by problem handling, is the

only data store that is not shared by multiple processes.

The raw materials ordering process is the only process that uses only
a single data store. Nonetheless, the level 1 DFD makes it very clear
that there is no instance in which a single process uses a single data
store without interaction with other data stores and processes. Given
that each process in the DFD probably represents all or part of an
application program, this suggests that the database designer should
consider either a single database or a set of small databases along with
software to facilitate the interchange of data.

217Designing the Database

inventory
information

Customer

2
Manufacture

Products

3
Sell

Products

order
information

order
information

order
information

Materials
Supplier

item
information

order
information

order
information

4
Ship

Products

6
Record

Item
Purchase

purchaser
information

Purchaser
Data

purchaser
information

Problem
Data

problem
data

7
Handle

Problems

problem
report

Purchaser

purchase
information

5
Record

Purchasers

purchase
information

items
shipped

Product
Data

1
Order Raw
Materials

Raw
Materials

Customer
Orders

supplies used

order
information

n  Figure 11-12  Level 1 DFD for Mighty-Mite Motors.

218 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

The DFD makes it very clear that the need for the integration of the
various data stores is very strong. In addition, Mighty-Mite Motors is
a relatively small business, and therefore a single database that
manages all needed aspects of the company will not grow unreason-
ably large. It will also be more cost effective and perform better than
multiple databases that use some type of middleware to exchange
data. Ultimately, the database designer may decide to distribute the
database onto multiple servers, placing portions of it that are used
most frequently in the division where that use occurs. The database
design, however, will be the same regardless of whether the final
implementation is centralized or distributed. The essential decision is
to create a single database rather than several smaller, interrelated
databases that must exchange data.

The ER Diagram
The systems analyst preparing the requirements document for the
Mighty-Mite Motors reengineering project has had two very good
sources of information about exactly what needs to be stored in the
database: the employees of the company and the paper documents
that the company has been using. The document that is given to the
database design is therefore quite complete.

The design needs to capture all the information on the paper docu-
ments. Some documents are used only for input (for example, the
product registration form or the order form). Others represent reports
that an application program must be able to generate (for example,
the line schedule report).

Although the current documents do not necessarily represent all of
the outputs that the application programs running against the data-
base will eventually prepare, they do provide a good starting place for
the design. Whenever the designer has questions, he or she can then
turn to Might-Mite’s employees for clarification.

Working from the requirements document prepared by the systems
analyst, along with the paper input and output documents, the data-
base designer puts together the ER diagram. Because there are so many
entities, all of which interconnect, the diagram is very wide and has
been split into three pieces to make it easier to understand. As you
look at each of the pieces, keep in mind that entities that appear on
more than one piece represent the connection between the three
illustrations.

219Designing the Database

The first part (Figure 11-13) contains the entities for raw materials and
manufacturing. This portion of the data model is dealing with three
many-to-many relationships:

n	 material_order to raw_material (resolved by the composite
entity material_order_line)

n	 raw_material to model (resolved by the composite entity
material needed)

n	 manufacturing_line to model (resolved by the composite
entity line_schedule)

The second portion of the ERD (Figure 11-14) contains entities for
product testing and sales. (Remember that in this instance, the cus-
tomers are toy stores rather than individual purchasers.) There are two
many-to-many relationships:

n	 test_type to model (resolved by the test entity)
n	 order to model (resolved by the order_line composite entity)

The test entity is somewhat unusual for a composite entity. It is an
activity that someone performs and as such has an existence outside
the database. It is not an entity created just to resolve a many-to-many
relationship.

At this point, the diagrams become a bit unusual because of the need
to keep track of individual products rather than simply groups of
products of the same model. The model entity in Figure 11-13 repre-
sents a type of vehicle manufactured by Mighty-Mite Motors. However,
the product entity in Figure 11-14 represents a single vehicle that is
uniquely identified by a serial number. This means that the relation-
ships among an order, the line items on an order, and the models
and products are more complex than for most other sales database
designs.

The order and line item entities are fairly typical. They indicate how
many of a given model are required to fill a given order. The shipment
entity then indicates how many of a specific model are shipped on a
specific date. However, the database must also track the order in which
individual products are shipped. As a result, there is a direct relation-
ship between the product entity and the order entity, in addition to
the relationship between order_line and model. In this way, Mighty-
Mite Motors will know exactly where each product has gone. At the
same time, the company will be able to track the status of orders (in
particular, how many units of each model have yet to ship).

220 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

Manufacturing_line
*line_numb
line_status

Material_needed
*@model_numb

*@material_id_nu
quantity_needed

Raw_material
*material_id_numb

material_name
unit_of_measurement

quantity_in_stock
reorder_point

Line_schedule
*@line_numb

*production_date
@model_numb

quantity_to_produce

Model
*model_numb

model_description
suggested_retail_price

shipping_weight
time_to_manufacture

Material_order_line
*@po_numb

*@material_id_numb
material_quantity

material_cost_each
material_line_cost

Material_order
*po_numb

@supplier_numb
material_order_date
material_order_total

Supplier
*supplier_numb
supplier_name
supplier_street
supplier_city

supplier_state
supplier_zip

supplier_contact
supplier_phone

n  Figure 11-13  Part 1 of ERD for Mighty-Mite Motors.

221Designing the Database

n  Figure 11-14  Part 2 of ERD for Mighty-Mite Motors.

222 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

The final portion of the ERD (Figure 11-15) deals with the purchasers
and problem reports. There are two many-to-many relationships:

n	 problem_type to product (resolved with the entity
problem_report)

n	 purchase to feature (resolved with the composite entity
purchase_feature)

Like the test entity you saw earlier, the problem_report entity acts like
a composite entity to resolve many-to-many relationships, but it is
really a simple entity. It is an entity that has an existence outside of
the database and that was not created simply to take care of the M:N
relationship.

Product
*@serial_numb
@model_numb

date_manufactured
@status_code
date_shipped
@order_numb

Problem_report
*@serial_numb
*problem_date
problem_time

@problem_type_code
problem_descriptioin

Owner
*owner_numb

owner_first_name
owner_last_name

owner_street
owner_city

owner_state
owner_zip

owner_phone

Purchase
*@serial_numb
@owner_numb

age
gender

purchase_date
purchase_place

learn_code
relationship

Learn_about
*learn_code

learn_descriptioin

Purchase_feature
*@serial_numb
*@feature_code

Feature
*feature_code

feature_description

Product_status
*status_code

status_description

Problem_type

*problem_type_code
problem_type_description

n  Figure 11-15  Part 3 of ERD for Mighty-Mite Motors.

223Designing the Database

If you look closely at Figure 11-15, you’ll notice that there is a one-
to-one relationship between the product and purchase entities. The
handling of the data supplied by a purchaser on the product registra-
tion card presents an interesting dilemma for a database designer.
Each product will be registered by only one purchaser. (Even if the
product is later sold or given to someone else, the new owner will not
have a registration card to send in.) There will be only one set of
registration data for each product, which first suggests that all of the
registration data should be part of the product entity.

However, there is a lot of registration data—including one repeating
group (the features for which the purchaser chose the product, repre-
sented by the feature and purchase_feature entities)—and the product
is involved in a number of relationships that have nothing to do with
product registration. If the DBMS has to retrieve the registration data
along with the rest of the product data, database performance will
suffer. It therefore makes sense in this case to keep the purchase data
separate and to retrieve it only when absolutely necessary.

Note: Calling an entity a “problem_report” can be a bit misleading. In this
case, the word “report” does not refer to a piece of paper but to the action
of reporting a problem. A “problem_report” is therefore an activity rather
than a document. In fact, the printed documentation of a problem report
will probably include data from several entities, including the product,
problem_report, purchase, and owner entities.

Note: One common mistake made by novice database designers is to create
an entity called “registration card.” It is important to remember that the card
itself is merely an input document. What is crucial is the data the card
contains and the entity that the data describe, rather than the medium on
which the data are supplied.

Creating the Tables
The tables for the Mighty-Mite Motors’s database can come directly
from the ER diagram:

model (model_numb, model_description,
suggested_retail_price, shipping_weight,
time_to_manufacture)

224 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

test (model_numb, test_date, test_location,
test_code, test_results)

test_types (test_code, test_description)
customers (customer_numb, customer_name,

customer_street, customer_city, customer_state,
customer_zip, contact_person, contact_phone,
contact_fax)

orders (order_numb, customer_numb, order_date,
order_total, order_filled)

order_line (order_numbzu, model_numb,
quantity_ordered, unit_price, line_total,
all_shipped)

shipments (order_numb, model_numb, quantity_shipped)
product (serial_numb, model_numb, date_manufactured,

status_code, order_numb, date_shipped)
raw_material (material_id_numb, material_name,

unit_of_measurement, quantity_in_stock,
reorder_point)

supplier (supplier_numb, supplier_name,
supplier_street, supplier_city, supplier_state,
supplier_zip, supplier_contact, supplier_phone)

material_order (po_numb, supplier_numb,
material_order_date, material_oreder_total)

material_order_line (po_numb, material_id_numb,
material_quantity, material_cost_each,
material_line_cost)

manufacturing_line (line_numb, line_status)
line_schedule (line_numb, production_date,

model_numb, quantity_to_produce)
owner (owner_numb, owner_first_name, owner_last_name,

owner_street, owner_city, owner_state, owner_zip,
owner_phone)

purchase (serial_numb, owner_numb, age, gender,
purchase_date, purchase_price, learn_code,
relationship)

purchase_feature (serial_numb, feature_code)
learn_about (learn_code, learn_description)
feature (feature_code, feature_description)
problem_report (serial_numb, problem_date,

problem_time, problem_type_code, problem_details)
problem_type (problem_type_code, problem_type_

description)

225Designing the Database

CREATE TABLE model
(

model_numb INTEGER,
model_description VARCHAR (40),
suggested_retail_price NUMBER (6,2),
shipping_weight NUMBER(6,2),
time_to_manufacture TIME,
PRIMARY KEY (model_numb)

)

CREATE TABLE test_type
(

test_code INTEGER,
test_description VARCHAR (40),
PRIMARY KEY (test_code)

)

CREATE TABLE test
(

test_date DATE,
test_location VARCHAR (40),
test_code INTEGER,
test_results VARCHAR (256),
PRIMARY KEY (model_numb, test_date),
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (test_code) REFERENCES test_type

)

CREATE TABLE customer
{

customer_numb INTEGER,
customer_name VARCHAR (40),
customer_street VARCHAR (50),
customer_city VARCHAR (50),

n  Figure 11-16  SQL statements needed to create Mighty-Mite Motors’ database.

Generating the SQL
Assuming that the designers of the Mighty-Mite Motors database are
working with a CASE tool, then generating SQL statements to create
the database can be automated. For example, in Figure 11-16 you will
find the SQL generated by Mac A&D from the ER diagram you saw
earlier in this chapter.

226 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

customer_state CHAR (2),
customer_zip CHAR (10),
contact_person VARCHAR (30),
contact_phone CHAR (12),
contact_fax CHAR (12),
PRIMARY KEY (customer_numb)

)

CREATE TABLE order
{

order_numb INTEGER,
customer_numb INTEGER,
order_date DATE,
order_total NUMBER (8,2),
order_filled BOOLEAN,
PRIMARY KEY (order_numb),
FOREIGN KEY (customer_numb) REFERENCES customer

)

CREATE TABLE order_line
{

order_numb INTEGER,
model_numb INTEGER,
quantity_ordered INTEGER,
unit_price NUMBER (6,2),
line_total NUMBER (8,2),
all_shipped BOOLEAN,
PRIMARY KEY (order_numb, model_numb),
FOREIGN KEY (order_numb) REFERENCES order,
FOREIGN KEY (model_numb) REFERENCES model

)

CREATE TABLE shipment
(

order_numb INTEGER,
model_numb INTEGER,
shipping_date DATE,
quantity_shipped INTEGER,
PRIMARY KEY (order_numb, model_numb, shipping_date),
FOREIGN KEY (order_numb, model_numb) REFERENCES order_line

)

n  Figure 11-16  SQL statements needed to create Mighty-Mite Motors’ database—Cont’d

227Designing the Database

CREATE TABLE product
{

serial_numb INTEGER,
model_numb INTEGER,
date_manufactured DATE,
status_code INTEGER,
date_shipped DATE,
order_numb INTEGER,
PRIMARY KEY (serial_numb),
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (status_code) REFERENCES product_status,
FOREIGN KEY (order_numb) REFERENCES order

)

CREATE TABLE product_status
{

status_code INTEGER,
status_description VARCHAR (40),
PRIMARY KEY (status_code)

)

CREATE TABLE raw_material
{

material_id_numb INTEGER,
material_name VARCHAR (40),
unit_of_measurement CHAR (12),
quantity_in_stock INTEGER,
reorder_point INTEGER,
PRIMARY KEY (material_id_numb)

)

CREATE TABLE material_needed
{

model_numb INTEGER,
material_id_numb INTEGER,
quantity_needed INTEGER,
PRIMARY KEY (model_numb, material_id_numb),
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (material_id_numb) REFERENCES raw_material

}

n  Figure 11-16  Cont’d

228 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

CREATE TABLE supplier
{

supplier_numb INTEGER,
supplier_name VARCHAR (40),
supplier_street VARCHAR (50),
supplier_city VARCHAR (50),
supplier_state CHAR (2),
supplier_zip CHAR (10),
supplier_phone CHAR (12),
PRIMARY KEY (supplier_numb)

}

CREATE TABLE material_order
{

po_numb INTEGER,
supplier_numb INTEGER,
material_order_date DATE,
material_order_total NUMBER (8,2),
PRIMARY KEY (po_numb),
FOREIGN KEY (supplier_numb) REFERENCES supplier

)

CREATE TABLE material_order_line
{

po_numb INTEGER,
material_id_numb INTEGER,
material_quantity INTEGER,
material_cost_each NUMBER (6,2),
material_line_cost NUMBER (8,2),
PRIMARY KEY (po_numb, material_id_numb),
FOREIGN KEY (po_numb) REFERENCES material_order,
FOREIGN KEY (material_id_numb) REFERENCES raw_material

}

CREATE TABLE manufacturing_line
{

line_numb INTEGER,
line_status CHAR (12),
PRIMARY KEY (line_numb)

)

n  Figure 11-16  SQL statements needed to create Mighty-Mite Motors’ database—Cont’d

229Designing the Database

CREATE TABLE line_schedule
{

line_numb INTEGER,
production_date DATE,
model_numb INTEGER,
quantity_to_product INTEGER
PRIMARY KEY (line_numb, production_date),
FOREIGN KEY (lne_numb) REFERENCES manufacturing_line,
FOREIGN KEY (model_numb) REFERENCES model

)

CREATE TABLE owner
{

owner_numb INTEGER,
owner_street VARCHAR (50),
owner_city VARCHAR (50),
owner_state CHAR (2),
owner_zip CHAR (10),
owner_phone CHAR (10),
PRIMARY KEY (owner_numb)

}

CREATE TABLE purchase
{

serial_numb INTEGER,
owner_numb INTEGER,
age INTEGER,
gender CHAR (1),
purchase_date DATE,
purchase_place VARCHAR (50),
learn_code INTEGER,
relationship CHAR (10),
PRIMARY KEY (serial_numb),
FOREIGN KEY (serial_numb) REFERENCES product,
FOREIGN KEY (owner_numb) REFERENCES owner
FOREIGN KEY (learn_code) REFERENCES learn_about

)

n  Figure 11-16  Cont’d

230 CHAPTER 11  Database Design Case Study 1: Mighty-Mite Motors

n  Figure 11-16  SQL statements needed to create Mighty-Mite Motors’ database—Cont’d

CREATE TABLE feature
{

feature_code INTEGER,
feature_description VARCHAR (40),
PRIMARY KEY (feature_code)

)

CREATE TABLE purchase_feature
{

serial_numb INTEGER,
feature_code INTEGER,
PRIMARY KEY (serial_numb, feature_code),
FOREIGN KEY (serial_numb) REFERENCES product,
FOREIGN KEY (feature_code) REFERENCES feature

}

CREATE TABLE learn_about
{

learn_code INTEGER,
learn_description VARCHAR (50),
PRIMARY KEY (learn_code)

}

CREATE TABLE problem_type
{

problem_type_code INTEGER,
problem_type_description VARCHAR (50),
PRIMARY KEY (problem_type_code)

)

CREATE TABLE problem_report
{

serial_numb INTEGER,
problem_date DATE,
problem_time TIME,
problem_type_code INTEGER,
problem_details VARCHAR (50),
PRIMARY KEY (serial_numb, problem_date),
FOREIGN KEY (serial_numb) REFERENCES product,
FOREIGN KEY (product_type_code) REFERENCES problem_type

}

Many-to-many relationships are often the bane of the relational data-
base designer. Sometimes it is not completely clear that you are dealing
with that type of relationship. However, failure to recognize the many-
to-many relationship can result in serious data integrity problems.

The organization described in this chapter actually needs two data-
bases, the larger of which is replete with many-to-many relationships.
In some cases it will be necessary to create additional entities for
composite entities to reference merely to ensure data integrity.

Perhaps the biggest challenge with a database design that works for East
Coast Aquarium is the lack of complete specifications. As you will see,
the people who will be using the application programs to manipulate
the aquarium’s two new databases have only a general idea of what the
programs must do. Unlike Mighty-Mite Motors—which had the history
of working from a large collection of existing forms, documents, and
procedures—East Coast Aquarium has nothing of that sort.

Organizational Overview
The East Coast Aquarium is a nonprofit organization dedicated to the
study and preservation of marine life. Located on the Atlantic Coast
in the heart of a major northeastern U.S. city, it provides a wide variety
of educational services to the surrounding area. The aquarium is sup-
ported by donations, memberships, fees for private functions, gift
shop revenues, class fees, and the small admission fee it charges to the
public. Research activities are funded by federal and private grants. To
help keep costs down, many of the public service jobs (leading tours,

231

12Chapter

Database Design
Case Study 2:

East Coast Aquarium

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

232 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

staffing the admissions counter, running the gift shop) are handled by
volunteers.

The aquarium grounds consist of three buildings: the main facility, a
dolphin house, and a marina where the aquarium’s research barge is
docked. The centerpiece of the main building is a three-story center
tank that is surrounded by a spiral walkway. The sides of the tank are
transparent, so that visitors can walk around the tank and observe its
residents at various depths.

Note: If you happen to recognize the layout of this aquarium, please keep in
mind that only the physical structure of the environment is modeled after
anything that really exists. The way the organization functions is purely a
product of my imagination, and no comment, either positive or negative,
is intended with regard to the real-world aquarium.

The height of the tank makes it possible to simulate the way habitats
vary at different ocean depths. Species that dwell on the ocean floor,
coral reef fish, and sandbar dwellers therefore are all housed in the same
tank, interacting in much the same way as they would in the ocean.

The remaining space on the first floor of the main building (Figure
12-1) includes the gift shop and a quarantine area for newly arrived
animals. The latter area is not accessible to visitors. The second floor
(Figure 12-2) contains a classroom and the volunteers’ office. Small
tanks containing single-habitat exhibits are installed in the outside
walls. These provide places to house species that have special habitat
requirements or that don’t coexist well with other species. The third
floor (Figure 12-3) provides wall space for additional small exhibits.
It also houses the aquarium’s administrative offices.

East Coast Aquarium has two very different areas where it needs data
management. The first is in the handling of its animals: where they
are housed in the aquarium, where they came from, what they are to
be fed, problems that occur in the tanks, and so on. The second area
concerns the volunteers, including who they are, what they have been
trained to do, and when they are scheduled to work. For this particular
organization, the two data environments are completely separate; that
is, they share no data. A database designer who volunteers to work
with the aquarium staff will therefore prepare two database designs,
one to be used by the volunteer staff in the volunteers’ office and the
other to be used by the administrative and animal-care staff through
the aquarium grounds.

233Organizational Overview

Animal Tracking Needs
Currently, East Coast Aquarium uses a general-purpose PC accounting
package to handle its data-processing needs. The software takes care
of payroll as well as purchasing, accounts payable, and accounts
receivable. Grant funds are managed by special-purpose software that
is designed to monitor grant awards and how they are spent.

Although the accounting and grant management packages adequately
handle the aquarium’s finances, there is no data processing that tracks
the actual animals housed in the aquarium. The three people in charge
of the animals have expressed a need for the following:

Central Tank

M
en

’s
R

o
o

m
W

o
m

en
’s

R
o

o
m

Reception Desk

Main Entrance

Elevator

Quarantine Area

Loading Dock

Gift Shop

Spiral Walkway

n  Figure 12-1  First floor of East Coast Aquarium’s main building.

234 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

n	 An “inventory” of which species are living in which locations in the
aquarium. Some species can be found in more than one tank, and
several tanks in addition to the central tank contain more than one
species. For larger animals, such as sharks and dolphins, the head
animal keeper would like a precise count. However, for small fish
that are often eaten by large fish and that breed in large numbers,
only an estimate is possible. The animal handling staff would like
to be able to search for information about animals using either the
animal’s English name or its Latin name.

n	 Data about the foods each species eats, including how much should be
fed at which interval. The head animal keeper would like to be able
to print out a feeding instruction list every morning to distribute to
the staff. In addition, the animal-feeding staff would like to store
information about their food inventory. Although purchasing of
food is handled by the administrative office, the head animal keeper

Spiral Walkway

Central Tank

Elevator

Classroom Volunteers’ Office

Exhibits

E
xh

ib
it

s

E
xh

ib
it

s

n  Figure 12-2  Second floor of East Coast Aquarium’s main building.

235Organizational Overview

would like an application program to decrement the food inventory
automatically by the amount fed each day and to generate a tickle
request whenever the stock level of a type of food drops below the
reorder point. This will make it much easier to ensure that the
aquarium does not run short of animal food.

n	 Data about the sizes, locations, and habitats of the tanks on the aquarium
grounds. Some tanks, such as the main tank, contain more than one
habitat, and the same habitat can be found in more than one tank.

n	 Data about tank maintenance. Although the main tank is fed directly
from the ocean, the smaller tanks around the walls of the main
building are closed environments, much like a saltwater aquarium
might be at home. This means that the pH and salinity of the tanks
must be monitored closely. The head animal keeper therefore would
like to print out a maintenance schedule each day, as well as be able
to keep track of what maintenance is actually performed.

Spiral Walkway

Central Tank

M
en

’s
R

o
o

m
W

o
m

en
’s

R
o

o
m

Elevator

Administrative Offices

Exhibits

E
xh

ib
it

s

E
xh

ib
it

s

n  Figure 12-3  Third floor of East Coast Aquarium’s main building.

236 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

n	 Data about the habitats in which a given species can live. When a new
species arrives at the aquarium, the staff can use this information
to determine which locations could possibly house that species.

n	 Data about where species can be obtained. If the aquarium wants to
increase the population of a particular species, and the increase
cannot be generated through in-house breeding, then the staff
would like to know which external supplier can be contacted. Some
of the suppliers sell animals; others, such as zoos or other aquari-
ums, will trade or donate animals.

n	 Problems that arise in the tanks. When animals become ill, the veteri-
narian wants to be able to view a history of both the animal and
the tank in which it is currently living.

n	 Data about the orders placed for animals, in particular the shipments in
which animals arrive. Since any financial arrangements involved in
securing animals are handled by the administrative office, these
data indicate only how many individuals of each species are
included on a given order or shipment.

The shipment and problem data are particularly important to the
aquarium. When animals first arrive, they are not placed immediately
into the general population. Instead, they are held in special tanks in
the quarantine area at the rear of the aquarium’s first floor. The length
of the quarantine period depends on the species.

After the quarantine period has passed and the animals are declared
disease-free, they can be placed on exhibit in the main portion of the
aquarium. Nonetheless, animals do become ill after they have been
released from quarantine. It is therefore essential that records are kept
of the sources of animals so that patterns of illness can be tracked
back to specific suppliers, if such patterns appear. By the same token,
patterns of illnesses in various species housed in the same tank can
be an indication of serious problems with the environment in the
tank.

The Volunteer Organization
The volunteer organization (Friends of the Aquarium) is totally sepa-
rate from the financial and animal-handling areas of the aquarium.
Volunteers perform tasks that do not involve direct contact with
animals, such as leading tours, manning the admissions desk, and
running the gift shop. The aquarium has provided office space and a

237Organizational Overview

telephone line for the volunteer coordinator and her staff. Beyond
that, the Friends of the Aquarium organization has been on its own
as far as securing office furniture and equipment.

The recent donation of a PC now makes it possible for the volunteers
to input some of the volunteer data online, although the scheduling
is still largely manual. Currently, the scheduling process works in the
following way:

n	 The person on duty in the volunteers’ office receives requests for
volunteer services from the aquarium’s administrative office. Some
of the jobs are regularly scheduled (for example, staffing the gift
shop and the admissions desk). Others are ad hoc, such as a request
from a teacher to bring her class for a tour.

n	 The volunteer doing the scheduling checks the list of volunteers to
see who is trained to do the job requested. Each volunteer’s infor-
mation is recorded in a data file that contains the volunteer’s contact
data along with the volunteer’s skills. A skill is a general expression
of something the volunteer knows how to do, such as lead a tour
for elementary school children. The volunteer’s information also
includes an indication of when that person is available to work.

n	 The volunteer doing the scheduling searches the file for those people
who have the required skills and have indicated that they are avail-
able at the required time. Most volunteers work on a regularly
scheduled basis either at the admissions desk or in the gift shop.
However, for ad hoc jobs, the person doing the scheduling must
start making telephone calls until someone who is willing and able
to do the job is found.

n	 The volunteer is scheduled for the job by writing in the master
scheduling notebook. As far as the volunteer coordinator is con-
cerned, a job is an application of a skill. Therefore, a skill is knowing
how to lead a tour for elementary school students, while a job that
applies that skill is leading a tour of Mrs. Brown’s third-graders at
10 AM on Thursday.

One of the things that is very difficult to do with the current schedul-
ing process is keeping track of the work record of each individual
volunteer. The aquarium holds a volunteer recognition luncheon once
a year, and the volunteer organization would like to find an easy way
to identify volunteers who have put in an extra effort so they can be
recognized at that event. In contrast, the volunteer organization would

238 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

also like to be able to identify volunteers who rarely participate—the
people who stay on the volunteer rolls only to get free admission to
the aquarium—as well as people who make commitments to work
but do not show up. (The latter are actually far more of a problem
than the former.)

The Volunteers Database
In terms of scope, the volunteers database is considerably smaller than
the animal-tracking database. It therefore makes sense to tackle the
smaller project first. The database designer will create an application
prototype and review it with the users. When the users are satisfied
and the designers feel they have detailed information to actually
design a database, they will move on to the more traditional steps of
creating an ER diagram, tables, and SQL statements.

Note: As you will see, there is a lot involved in creating a prototype. It
requires very detailed, intensive work and produces a number of diagrams
and/or application program shells. We will therefore look at the volunteers’
prototype in full, but in the interest of length, we will look at only selected
aspects of the animal tracking prototype.

Creating the Application Prototype
Given that the specifications of the database are rather general, the
first step is to create a prototype of an application program interface.
It begins with the opening screen and its main menu board (Figure
12-4). As you can see, when in browse mode, the CASE tool allows
users and designers to pull down the menus in the menu bar.

The complete menu tree (with the exception of the Help menu, whose
contents are determined by the user interface guidelines of the operat-
ing system on which the application is running) can be found in
Figure 12-5. Looking at the menu options, users can see that their basic
requirements have been fulfilled. The details, however, must be speci-
fied by providing users with specific input and output designs.

Each menu option in the prototype’s main menu has therefore been
linked to a screen form. For example, to modify or delete a volunteer,
a user must first find the volunteer’s data. Therefore the Modify or
Delete a Volunteer menu option leads to a dialog box that lets the
user either enter a volunteer number or select a volunteer by name

239The Volunteers Database

and phone number from a list (Figure 12-6). With the prototype,
clicking the Find button opens the modify/delete form (Figure 12-7).
Users can click in the data entry fields and tab between them, but the
buttons at the right of the window are not functional.

While in browse mode, the CASE tool presents a form as it would
appear to the user. However, in design mode, a database designer can
see the names of the fields on the form (for example, Figure 12-8). These
field names suggest attributes that will be needed in the database.

In the case of the volunteer data, it is apparent to the designers that
there are at least two entities (and perhaps three) involved with the
data that describe a volunteer. The first entity is represented by the
single-valued fields occupying the top half of the form (volunteer
number, first name, last name, city, state, zip, and phone). However,
the availability data—day of the week, starting time, and ending

File Edit Volunteers Skills Schedule Help
Enter a New Volunteer
Modify or Delete a Volunteer
Print Volunteer Work Summary Report

Logo and Instructons to Go Here

n  Figure 12-4  Main menu prototype for the volunteers’ application.

Main Menu

File Edit Volunteers
Close

Page Setup...

Print...

Quit

Cut

Copy

Paste

Clear

Skills Schedule
Enter a New Volunteer

Modify or Delete a Volunteer

Print Volunteer Work Summary

Create New Skills

Assign Skills to Volunteers

Find Available Volunteers

Schedule Volunteer to Work

Print Daily Schedule

Record Volunteer Attendance

n  Figure 12-5  Menu tree of the volunteers database prototype application.

240 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

First Name Last Name Phone

Find Cancel

Volunteer number:

n  Figure 12-6  Prototype of a dialog box for finding a volunteer for modifications.

Day Starting Time Ending Time

Volunteer number:

First name:

Last name:

Address:

Telephone:

Availability

Insert

Delete

Save

First

Next

Prior

Last

n  Figure 12-7  Prototype of form for modifying and deleting a volunteer.

241The Volunteers Database

Day Starting Time Ending Time

Volunteer number: volun

First name: first_name

last_nameLast name:

Address:

Telephone:

Availability

Insert

Delete

Save

First

Next

Prior

Last

street

city stat zip

phone

n  Figure 12-8  Prototype data modification form showing field names.

time—are multivalued and therefore must be given an entity of their
own. This also implies that there will be a one-to-many relationship
between a volunteer and a period of time during which he or she is
available.

Note: Should you choose, the field names of a screen prototype can become
part of the data dictionary. However, if the field names do not ultimately
correspond to column names, their inclusion may add unnecessary
complexity to the data dictionary.

The remainder of the prototype application and its forms are designed
and analyzed in a similar way:

n	 The volunteer work summary report has been designed to let the
user enter a range of dates that the report will cover (see Figure
12-9). The report itself (Figure 12-10) is a control-break report that

242 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

Date Hours Worked

Volunteer Work Summary Report

Starting_date Ending_dateto

volunt first_name last_name

Total hours:

Number of “no shows”:

total_h

no_show

n  Figure 12-10  Prototype layout for the work summary report.

OK Cancel

Ending date:

Starting date:

end_date

start_date

n  Figure 12-9  A dialog box layout for entering dates for the work summary report.

243The Volunteers Database

Enter a skill description:

Insert Save Cancel

skill_description

n  Figure 12-11  Entering a new skill.

displays the work performed by each volunteer along with the total
hours worked and the number of times the volunteer was a “no
show.” The latter number was included because the volunteer coor-
dinator had indicated that it was extremely important to know
which volunteers consistently signed up to work and then didn’t
report when scheduled.

The need to report the “no shows” tells the designers that the schedule
table needs to include a Boolean column that indicates whether a
person showed up for a scheduled shift. The report layout also includes
some computed fields (total hours worked and number of no shows)
that contain data that do not need to be stored but can be generated
when the report is displayed.

n	 Entering a new skill into the master list requires only a simple form
(Figure 12-11). The end user sees only the description of a skill.
However, the database designers know that the best way to handle
an unstructured block of text is to assign each description a skill
number, which can then be used as a foreign key throughout
the database. Users, however, do not necessarily need to know
that a skill number is being used; they will see just the text
descriptions.

n	 To assign skills to a volunteer, the end user must first find the vol-
unteer. The application can therefore use a copy of the dialog box
in Figure 12-6. In this case, however, the Find button leads to the
form in Figure 12-12.

A database designer will recognize quickly that there is a many-to-
many relationship between a skill and a volunteer. There are actually

244 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

three entities behind Figure 12-12: the skill, the volunteer, and the
composite entity that represents the relationship between the two. The
skill entry form displays data from the volunteer entity at the top, data
from the composite entity in the current skills list, and all skills not
assigned from the skills table in the skill description list. Of course,
the foreign key used in the composite entity is a skill number, but the
user sees only the result of a join back to the skills table that retrieves
the skill description.

(volunteer_number)

Volunteer:

Current skills:

Skills description:

skill_description

first_name: last_name:

Add Save Cancel

skill_description

n  Figure 12-12  Assigning skills to a volunteer.

Note: Database integrity constraints will certainly prevent anyone from
assigning the same skill twice to the same volunteer. However, it is easier if
the user can see currently assigned skills. Then the application can restrict
what appears in the skill description list to all skills not assigned to that
volunteer. In this case, it is a matter of user interface design rather than
database design.

245The Volunteers Database

Skills:

Date: date

skill_description

Search

Time: time

Cancel

First Name Last Name Phone

Available volunteers:

n  Figure 12-13  Finding available volunteers.

n	 To find the volunteers available to perform a specific job, the vol-
unteers’ application needs a form like the one in Figure 12-13. The
end user enters the date and time of the job and chooses the skill
required by the job. Clicking the Search button fills in the table at
the bottom of the form with the names and phone numbers of
volunteers who are theoretically available.

Of all the outputs produced by this application, finding available
volunteers is probably the most difficult to implement. The applica-

246 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

(volunteer_number)first_name: last_name:

Save

Date:

Starting time:

Estimated duration:

Job:

Report to:

Cancel

work_date

est_duration

supervisor

start_time

job_decription

n  Figure 12-14  Scheduling a volunteer to perform a job.

tion program must not only work with overlapping intervals of time
but also consider both when a volunteer indicates he or she will be
available and when a volunteer is already scheduled to work. In most
cases, however, a database designer does not have to write the applica-
tion program code. The designer needs only to ensure that the data
necessary to produce the output are present in the database.

n	 Once the person doing the volunteer scheduling has located a vol-
unteer to fill a specific job, then the volunteer’s commitment to
work needs to become a part of the database. The process begins
by presenting the user with a Find Volunteer dialog box like that in
Figure 12-6. In this case, the Find button is linked to the Schedule
Volunteer window (Figure 12-14). A database designer will recog-
nize that this is not all the data that must be stored about a job,

247The Volunteers Database

however. In particular someone will need to record whether the
volunteer actually appeared to do the scheduled job on the day of
the job; this cannot be done when the job is scheduled initially.

n	 To record attendance, an end user first locates the volunteer using
a Find Volunteer dialog box (Figure 12-6), which then leads to a
display of the jobs the volunteer has been scheduled to do in reverse
chronological order (see Figure 12-15). For those jobs that have not
been performed, the End Time and Worked? Columns will be
empty. The user can then scroll the list to find the job to be modi-
fied and enter values for the two empty columns. The fields on this

Date Starting Time Ending Time Worked?

(volunteer_number)first_name: last_name:

Save Cancel

n  Figure 12-15  Recording jobs worked.

248 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

Display

display_date

Cancel

Display Volunteer Schedule For:

Today Other date:

n  Figure 12-16  Choosing a date for schedule display.

form, plus those on the job scheduling form, represent the attri-
butes that will describe the job entity.

n	 To print a daily schedule, an end user first uses a dialog box to
indicate the date for which a schedule should be displayed (Figure
12-16). The application program then assembles the report (Figure
12-17). To simplify working with the program, the application
developers should probably allows users to double-click on any line
in the listing to open the form in Figure 12-15 for the scheduled
volunteer. However, this capability will have no impact on the
database design.

Note: A smart database designer, however, would discuss any output that
involves something as difficult as evaluating overlapping time intervals with
application programmers to ensure that the output is feasible, not only in
terms of data manipulation but of performance as well. There is no point in
specifying infeasible output.

Creating the ER Diagram
From the approved prototype of the application design and conversa-
tions with the volunteers who do volunteer scheduling, the database
designers can gather enough information to create a basic ER diagram
for the volunteers’ organization. The designers examine each screen
form carefully to ensure that the database design provides the attri-
butes and relationships necessary to generate the output.

249The Volunteers Database

At first, the ER diagram (Figure 12-18) may seem overly complex.
However, two of the entities—state and day—are present for referen-
tial integrity purposes, ensuring that abbreviations for state and day
names are entered consistently. The relationships among volunteers,
jobs, and skills also aren’t quite as simple as they might seem at first,
in part because there are several many-to-many relationships:

n	 There is a many-to-many relationship between volunteers and
skills, which is handled by the skills_known entity.

n	 Because a job may require more than one volunteer, there is a
many-to-many relationship between volunteers and jobs that is
handled by the volunteer_scheduled entity.

n	 A job may require more than one skill and a skill is used on many
jobs. The many-to-many relationship between a job and a skill is
therefore handled by the job_skill_required entity.

Starting Time First Name Last Name Phone Job

Volunteer Work Schedule For: selected_date

n  Figure 12-17  Volunteer work schedule.

250 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

State

*state_code
state_name

Volunteer

*volunteer_numb
first_name
last_name

street
city

@state_code
zip

phone

Availability

*@volunteer_numb
*@day_code
*start_time
end_time

Day

*day_code
day_name

Job_skill_required

*@job_numb
*@skill_numb

numb_volunteers_with_skill

Skill

*skill_numb
skill_description

Skills_known

*@volunter_numb
*@skill_numb

Volunteer_scheduled

*@volunter_numb
*@job_numb
@skill_numb

Job

*job_numb
job_description

job_date
job_start_time

estimated_duration
numb_volunteers_needed

n  Figure 12-18  ER diagram for the volunteers database.

251The Volunteers Database

What makes the situation a bit more complex is that the meaning of
the M:M relationship between job and skill (through job_skill_required)
is used differently than the relationship between volunteer_scheduled
and job_skill_required. A row is added to job_skill_required for each
skill required by a job; these data are available when the job is
requested. As volunteers are scheduled for the job, rows are added to
volunteer_scheduled, creating the relationship between that entity and
job_skill_required. (This is essential for determining the correct vol-
unteers still needed to be scheduled for specific skills for a specific
job.) The foreign key in volunteer_scheduled uses one column from
the table’s primary key (job_numb) and one non-key attribute
(skill_numb). Nonetheless, that concatenation is exactly the same as
the primary key of the job_skill_required table (same columns with
the same meaning).

Designing the Tables
The ER diagram in Figure 12-18 produces the following tables:

volunteer (volunteer_numb, first_name, last_name,
street, city, state_code, zip, phone)

state (state_code, state_name)
availability (volunteer_numb, day_code, start_time,

end_time)
day (day_code, day_name)
skill (skill_numb, skill_description)
skills_known (volunteer_numb, skill_numb)
job (job_numb, job_description, job_date,

job_start_time, estimated_duration,
numb_volunteers_needed)

job_skill_required (job_numb, skill_numb,
numb_volunteers_with_skill)

volunteer_scheduled (volunteer_numb, job_numb,
skill_numb)

Generating the SQL
The nine tables that make up the volunteers database can be created
with the SQL in Figure 12-19. Notice that some of the attributes in
the volunteers table have been specified as NOT NULL. This constraint
ensures that at least a name and phone number are available for each
volunteer.

252 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

CREATE TABLE skill
(

skill_numb integer,
skill_description char (50),
CONSTRAINT PK_skill PRIMARY KEY (skill_numb)

);

CREATE TABLE job
(

job_numb integer,
job_description varchar (256),
job_date date,
job_start_time time,
estimated_duration interval,
numb_volunteers_needed integer,
CONSTRAINT PK_job PRIMARY KEY (job_numb)

);

CREATE TABLE job_skill_required
(

job_numb integer,
skill_numb integer,
numb_volunteers_with_skill integer,
CONSTRAINT PK_job_skill_required PRIMARY KEY (job_numb,skill_numb),
CONSTRAINT Relationjobjob_skill_required1 FOREIGN KEY ()

REFERENCES job,
CONSTRAINT Relationskilljob_skill_required1 FOREIGN KEY ()

REFERENCES skill
);

CREATE TABLE state
(

state_code char (2),
state_name char (15),
CONSTRAINT PK_state PRIMARY KEY (state_code)

);

CREATE TABLE volunteer
(

volunteer_numb integer,
first_name char (15) NOT NULL,

n  Figure 12-19  SQL statements needed to create the tables for the volunteers database.

253The Volunteers Database

last_name char (15) NOT NULL,
street char (50),
city char (30),
state_code char (2),
zip char (10),
phone char (10) NOT NULL,
CONSTRAINT PK_volunteer PRIMARY KEY (volunteer_numb),
CONSTRAINT Relationstatevolunteer1 FOREIGN KEY (state_code)

REFERENCES state
);

CREATE TABLE volunteer_scheduled
(

volunteer_numb integer,
job_numb integer,
skill_numb integer,
CONSTRAINT PK_volunteer_scheduled PRIMARY KEY

(volunteer_numb,job_numb),
CONSTRAINT Relationvolunteervolunteer_scheduled1 FOREIGN KEY ()

REFERENCES volunteer,
CONSTRAINT Relationjobvolunteer_scheduled1 FOREIGN KEY ()

REFERENCES job,
CONSTRAINT Relationjob_skill_requiredvolunteer_scheduled1

FOREIGN KEY () REFERENCES job_skill_required
);

CREATE TABLE skills_known
(

volunteer_numb integer,
skill_numb integer,
CONSTRAINT PK_skills_known PRIMARY KEY (volunteer_numb,skill_numb),
CONSTRAINT Relationvolunteerskills_known1 FOREIGN KEY

(VOLUNTEER_NUMB) REFERENCES volunteer,
CONSTRAINT Relationskillskills_known1 FOREIGN KEY (skill_numb)

REFERENCES skill
);

CREATE TABLE day
(

day_code char (3),
day_name char (10),

n  Figure 12-19  Cont’d

254 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

Main Menu

SourcesLocations Species Feeding
Add/Modify/Delete Tank Information

Add/Modify/Delete Habitat Information

Assign Habitats to Tanks

Add/Modify/Delete Species

Transfer Species

Add/Modify/Delete Types of Food

Update Food Inventory

Add/Modify/Delete Feeding Instructions

Print Food Reorder Report

Find a Habitat

Add/Modify/Delete Maintenance Information

Add/Modify/Delete Required Maintenance

Add/Modify/Delete Maintenance Performed

Print a Maintenance Schedule

Find Current Species Location

Find Sources for Species

Find Where Species Can Live

Add/Modify/Delete Problem Type

Add/Modify/Delete Problem Type

Add/Modify/Delete Problem Occurrence

Add/Modify/Delete Problem Solutions

Print Problem Summary Report

Print Daily Feeding Schedule

Print Daily Feeding Schedule

Add/Modify/Delete Source

Add/Modify/Delete Arriving Shipment

n  Figure 12-20  Menu tree for the animal tracking application.

The Animal Tracking Database
The animal tracking database is considerably bigger than the volun-
teers database. The application that will manipulate that database
therefore is concomitantly larger, as demonstrated by the menu tree
in Figure 12-20. (The File and Edit menus have been left off so the
diagram will fit across the width of the page. However, they are

CONSTRAINT PK_day PRIMARY KEY (day_code)
);

CREATE TABLE availability
(

volunteer_numb integer,
day_code char (3),
start_time time,
end_time time,
CONSTRAINT PK_availability PRIMARY KEY

(volunteer_numb,day_code,start_time),
CONSTRAINT Relationvolunteeravailability1 FOREIGN KEY

(volunteer_numb) REFERENCES volunteer,
CONSTRAINT Relationdayavailability1 FOREIGN KEY (day_code)

REFERENCES day
);

n  Figure 12-19  SQL statements needed to create the tables for the volunteers database—Cont’d

255The Animal Tracking Database

Note: One common mistake made when designing the interface of database
application programs is using one data entry form per table. Users do not
look at their environments in the same way as a database designer,
however, and often the organization imposed by tables does not make
sense to the users. Another benefit of prototyping is therefore that it forces
database and application designers to adapt to what the users really need,
rather than the other way around.

intended to be the first and second menus from the left, respectively.
A Help menu can also be added along the right stage.)

The functionality requested by the animal handlers falls generally into
four categories: the locations (the tanks) and their habitats, the species,
the food, and the sources of animals. The organization of the applica-
tion interface therefore was guided by those groups.

Highlights of the Application Prototype
The screen and report layouts designed for the animal tracking appli-
cation provide a good starting place for the database designers to
identify the entities and attributes needed in the database. As with the
volunteers’ application, there is not necessarily a one-to-one corre-
spondence between an entity and an output.

Food Management
One of the important functions mentioned by the aquarium’s animal
handlers was management of the aquarium feeding schedule (includ-
ing what should be fed and what was fed) and the food inventory. First,
they wanted a daily feeding schedule that could be printed and carried
with them as they worked (for example, Figure 12-21). They also
wanted to be able to record when animals had been fed so that an
updated feeding schedule could take prior feedings into account.
Knowing that each species may eat more than one type of food and
that each type of food can be eaten by many species, a database
designer realizes that there are a number of entities required to imple-
ment what the users need:

n	 An entity that describes each species.
n	 An entity that describes each tank in the aquarium.
n	 An entity that describes a type of food.
n	 A composite entity between the species and location entities

to record where a specific species can be found.

256 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

n	 A composite entity between a species and a type of food
recording which food a species eats, how much it eats, and
how often it is fed.

n	 A composite entity between a species and a type of food
recording which food was fed to an animal, when it was fed,
and how much of it was fed.

Although it sounds like a separate application to the animal handlers,
food inventory management actually requires nothing more than the
food entity. The food entity needs to store data about how much food
is currently in stock (modified by data from the entity that describes
what was fed and by manual entries made when shipments of food
arrive) and a reorder point.

Species Food Quantity How Often Today

Feeding Schedule For: date

Tank number: tank_n place_in_building

n  Figure 12-21  Daily feeding schedule.

257The Animal Tracking Database

Handling Arriving Animals
When a shipment of animals arrives at the aquarium, animal handlers
first check the contents of the shipment against the shipment’s paper-
work. They then take the animals and place them in the aquarium’s
quarantine area. The data entry form that the animal handlers will use
to store data about arrivals therefore includes a place for entering an
identifier for the tank in which the new animals have been placed
(Figure 12-22). Given that the aquarium staff needs to be able to
locate animals at any time, this suggests that the quarantine tanks
should be handled no differently from the exhibit tanks and that there
is only one entity for a tank.

After the quarantine period has expired and the animals are certified
as healthy, they can be transferred to another location in the build-
ing. This means an application program must delete the species from
their current tank (regardless of whether it is a quarantine tank or an
exhibit tank) and insert data for the new tank. The screen form

Species Quantity Tank

Shipment contents:

arrival_notes

Save Cancel

Notes:

Arrival date: arrival_date

source_numb source_name

n  Figure 12-22  Recording the arrival of a shipment of animals.

258 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

Transfer Animal from One Tank to Another

Species:

Current tank:

New tank:

Quantity being moved:

species1

location1

location2

quantity_moved

Save Cancel

n  Figure 12-23  Moving a species between tanks.

(Figure 12-23) therefore lets the user identify the species and its
current location using pop-up menus. The user also uses a pop-up
menu to identify the new location. To the database designer, this
translates into the modification of one row (if the species is new to
the exhibit tank) or the modification of one row and the deletion of
another (if some of the species already live in the exhibit tank) in
the table that represents the relationship between a species and a
tank. All the database designer needs to do, however, is to provide
the table; the application program will take care of managing the
data modification.

Problem Analysis
Animal handlers are primarily concerned with the health of the
animals in the aquarium. Therefore, it is important that they be able
to detect any patterns while analyzing problems that occur in the
tanks. Perhaps a single species is experiencing more problems than
any other, or perhaps an animal handler is not paying as much atten-
tion to the condition of the tanks for which he or she is responsible.

The animal handlers want the information in Figure 12-24 included
in the problem summary report. What cannot be seen from the
summary screen created by the CASE tool is that the data will appear
as a control-break layout. For example, each tank number will appear
only once, and each type of animal will appear once for each tank in
which it was the victim of a problem.

259The Animal Tracking Database

Tank Head Keeper Date Species Problem Description Problem Resolution

starting_date ending_date

Problem Summary Report

n  Figure 12-24  Problem summary report.

By the same token, each type of problem will appear once for each
tank and species it affected. Only the problem solutions will contain
data for every row in the sample output table.

To a database designer, the form in Figure 12-24 suggests the need for
five entities:

n	 The species
n	 The tank
n	 The type of problem
n	 A problem occurrence (a type of problem occurring in one

tank and involving one species)
n	 Problem solutions (one or more solutions tried for one

problem occurrence). There may be many solutions to a single
problem occurrence.

One of the best ways to handle problems is to prevent them in the
first place. For this reason, the animal handlers also want to include
maintenance data in their database.

260 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

To make data entry simpler for the end users, the form for entering
required maintenance (Figure 12-25) lets a user select a tank and then
enter as many maintenance activities as needed.

A database designer views such a form as requiring three entities: the
tank, the maintenance activity, and the maintenance required for that
tank (a composite entity between the tank and maintenance activity
entities).

Creating the ER Diagram
After refining the entire application prototype, the database designers
for the East Coast Aquarium generate a large interconnected ER diagram.
(Part 1 is shown in Figure 12-26, and part 2 is shown in Figure 12-27.)
As you can see when examining both figures, the centerpiece is the
species entity, which participates in seven different relationships.

Activity Frequency

Tank: location1

Save Cancel

n  Figure 12-25  Entering required maintenance.

261The Animal Tracking Database

Problem_type
*problem_type_code

problem_type_description

Species
*species_numb
english_name

latin_name
quarantine_length

Population
*@species_numb

*@tank_numb
number_of_animals

Individual_animal
*animal_id

@species_numb
@tank_numb
animal_name

approx_birthdate
date_acquired

@source_numb
animal_photo

Individual_illness
*@animal_id
*illness_date

*@illness_code
treatment_given
illness_outcome

Habitat_contained
*@tank_numb

*@habitat_numb

Habitat
*habitat_numb

habitat_description

Can_live_in
*@species_numb
*@habitat_numb

Illness
*illness_code

illness_description

Problem_occurrence
*problem_numb
@tank_numb

@problem_date
@problem_type_code

@species_code

Maintenance_required
*@maintenance_activity_numb

*@tank_numb
maintenance_interval

Location
*tank_numb

place_in_building
fluid_capacity

Maintenance_activity
*maintenance_activity_numb
maintenance_activity_descp

Maintenance_performed
*@maintenance_activity_numb

*@tank_numb
*maintenance_date
maintenance_notes

Problem_resolution
*@problem_numb

*solution_date
solution_description

n  Figure 12-26  Part 1 of animal handling ERD.

262 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

Can_supply
*@source_numb
*@species_numb

Feeding
*@species_numb

*@food_numb
feeding_amount
feeding_interval

Species
*species_numb
english_name

latin_name
quarantine_length

Shipment_animals
*@species_numb
*@source_numb
*@shipment_date

numb_animals
arrival_note

Shipment
*@source_numb
*shipment_date

carrier
tracking_number

arrival_date
arrival_note

Source
*source_numb
source_name
source_street
source_city

@state_code
source_zip

source_main_phone
source_fax

source_contact_first
source_contact_last

source_contact_phone
source_contact_ext

source_contact_email

Fed
*@species_numb

*tank_numb
*feeding_date
*feeding_time
*@food_numb

amount_fed

Food
*food_numb

food_description
@source_numb

food_unit
amount_on_hand

reorder_point

State
*state_code
state_name

n  Figure 12-27  Part 2 of animal handling ERD.

There are at least 11 many-to-many relationships represented by this
design:

n	 Species to location
n	 Location to habitat
n	 Species to habitat
n	 Location to maintenance activity for required maintenance

263The Animal Tracking Database

n	 Location to maintenance activity for maintenance performed
n	 Location to problem
n	 Species to problem
n	 Species to food
n	 Species to source for ability of source to supply the species
n	 Shipment to species
n	 Illness to individual animal for tracking the condition of

mammals and other large animals

The relationships involving location, problem, and species are particu-
larly interesting. On the surface, there appears to be a many-to-many
relationship between a tank and a type of problem. By the same token,
there appears to be another many-to-many relationship between a
species and a type of problem. The problem is that if the database
maintained the two separate relationships, each with its own individual
composite entity, then it will be impossible to determine which species
was affected by which problem in which tank. To resolve the issue, the
designer uses a three-way composite entity—problem_occurrence—
that relates three parent entities (location, problem, and species) rather
than the traditional two. Semantically, a problem occurrence is one
type of problem affecting one species in one location, and therefore
identifying it in the database requires all three parent entities.

In contrast, why is there no three-way composite entity among species,
location, and habitat? As with the preceding example, there is a
many-to-many relationship between species and location and a many-
to-many relationship between habitat and location. The answer once
again lies in the meaning of the relationships. Were we to create a
single composite entity relating all three entities, we would be assert-
ing that a given species lives in a given habitat in a given location.
However, the animal handlers at the aquarium know that this type of
data is not valid, particularly because if an animal lives in a tank with
many habitats, it may move among multiple habitats. Instead, the
relationship between species and habitat indicates all habitats in
which a species can live successfully, and the relationship between
location and habitat indicates the habitats present in a tank.

The remainder of the many-to-many relationships are the typical two-
parent relationships that you have already seen in this book. The only
aspect of these relationships that is the least bit unusual is the two
relationships between maintenance activity and location. Each rela-
tionship has a different meaning (scheduled maintenance versus
maintenance actually performed). The design therefore must include

264 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

Note: There is no theoretical restriction to the number of relationships that
can exist between the same parent entities. As long as each relationship has
a different meaning, there is usually justification for including all of them in a
database design.

Creating the Tables
The ER diagrams translate to the following tables:

species (species_numb, English_name, latin_name,
quarantine_length)

location (tank_numb, place_in_building,
fluid_capacity)

population (species_numb, tank_numb,
number_of_animals)

individual_animal (animal_id, species_numb,
tank_numb, animal_name, approx_birth_date,
source_numb, animal_photo)

illness (illness_code, illness_description)
individual_illness (animal_id, illness_date,

illness_code, treatment_given, illness_outcome)
habitat (habitat_numb, habitat_description)
habitat_contained (tank_numb, habitat_numb)
can_live_in (species_numb, habitat_numb)
problem_type (problem_type_code,

problem_type_description)
problem_occurrence (problem_numb, tank_numb,

problem_date, problem_type_code, species_code)
problem_resolution (problem_numb, solution_date,

solution_description)
maintenance_activity (maintenance_activity_numb,

maintenance_activity_desc)
maintenance_required (maintenance_activity_numb,

tank_numb, maintenance_interval)
maintenance_performed (maintenance_activity_numb,

tank_numb, maintenance_date, maintenance_notes)

two composite entities, one to represent the meaning of each indi-
vidual relationship.

265The Animal Tracking Database

food (food_numb, food_description, source_numb,
food_unit, amount_on_hand, reorder_point)

feeding (species_numb, food_numb, feeding_amount,
feeding_interval)

fed (species_numb, tank_numb, feeding_date,
feeding_time, food_numb, amount_fed)

state (state_code, state_name)
source (source_numb, source_name, source_street,

source_city, state_code, source_zip,
source_main_phone, source_fax,
source_contact_first, source_contact_last,
source_contact_phone, source_contact_ext,
source_contact_email)

can_supply (source_numb, species_numb)
shipment (source_numb, shipment_nate, carrier,

tracking_number, arrival_date, arrival_note)
shipment_animals (species_numb, source_numb,

shipment_date, numb_animals, arrival_note)

Choosing a primary key for the problem occurrence table presents a
bit of a dilemma. Given that a problem occurrence represents a rela-
tionship among a problem type, a tank, and a species, the theoretically
appropriate primary key is a concatenation of the problem type, the
tank number, the species number, and the problem date. However,
this is an extremely awkward primary key to use as a foreign key in
the problem_resolution table. Although it is unusual to give compos-
ite entities arbitrary unique keys, in this case it makes good practical
sense.

There are several tables in this design that are “all key” (made up of
nothing but the primary key). According to the CASE tool used to
draw the ER diagram, this represents an error in the design. However,
there is nothing in relational database theory that states that all-key
relations are not allowed. In fact, they are rather common when they
are needed to represent a many-to-many relationship that has no
accompanying relationship data.

Generating the SQL
The SQL CREATE statements that generate the animal tracking database
for East Cost Aquarium can be found in Figure 12-28. Because of the
large number of composite entities, there are also a large number of
foreign keys. Other than that, the SQL presents no unusual features.

266 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

CREATE TABLE state
(

state_code char (2),
state_name varchar (20),
CONSTRAINT PK_STATE PRIMARY KEY (state_code)

);

CREATE TABLE source
(

source_numb integer,
source_name char (15),
source_street varchar (500,
source_city varchar (50),
state_code char (2),
source_zip char (10),
source_main_phone char (10),
source_fax char (10),
source_contact_first char (15),
source_contact_last char (15),
source_contact_phone char (10),
source_contact_ext char (5),
source_contact_email varchar (256),
CONSTRAINT PK_SOURCE PRIMARY KEY (source_numb),
CONSTRAINT Relationstatesource1 FOREIGN KEY () REFERENCES STATE

);

CREATE TABLE shipment
(

source_numb integer,
shipment_date date,
carrier varchar (30),
tracking_number char (20),
arrival_date date,
arrival_note varchar (50,
CONSTRAINT PK_SHIPMENT PRIMARY KEY (source_numb,shipment_date)

);

CREATE TABLE species
(

species_numb integer,
english_name varchar (256),
latin_name varchar (256),
quarantine_length integer,
CONSTRAINT PK_species PRIMARY KEY (species_numb)

);

n  Figure 12-28  SQL statements prepared by a CASE tool for the animal tracking database.

267The Animal Tracking Database

CREATE TABLE shipment_animals
(

species_numb integer,
source_numb integer,
shipment_date date,
numb_animals integer,
arrival_note varchar (256),
CONSTRAINT PK_SHIPMENTANIMALS PRIMARY KEY
(species_numb,source_numb,shipment_date)

);

CREATE TABLE can_supply
(

source_numb integer,
species_numb integer,
CONSTRAINT PK_CAN_SUPPLY PRIMARY KEY (source_numb,species_numb),
CONSTRAINT Relationspeciescan_supply1 FOREIGN KEY ()

REFERENCES species,
CONSTRAINT Relationsourcecan_supply1 FOREIGN KEY () REFERENCES SOURCE

);

CREATE TABLE food
(

food_numb integer,
food_description varchar (256),
source_numb integer,
food_unit char (10),
amount_on_hand integer,
reorder_point integer,
CONSTRAINT PK_food PRIMARY KEY (food_numb)

);

CREATE TABLE fed
(

species_numb integer,
feeding_date date,
feeding_time time,
tank_numb integer,

n  Figure 12-28  Cont’d

268 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

food_numb integer,
amount_fed integer,
CONSTRAINT PK_fed PRIMARY KEY

(species_numb,tank_numb,feeding_date,feeding_time,food_numb),
CONSTRAINT Relationspeciesfed1 FOREIGN KEY () REFERENCES species,
CONSTRAINT Relationfoodfed1 FOREIGN KEY () REFERENCES food

);

CREATE TABLE feeding
(

species_numb integer,
food_numb integer,
feeding_amount integer,
feeding_interval interval,
CONSTRAINT PK_feeding PRIMARY KEY (species_numb,food_numb),
CONSTRAINT Relationspeciesfeeding1 FOREIGN KEY () REFERENCES species,
CONSTRAINT Relationfoodfeeding1 FOREIGN KEY () REFERENCES food

);

CREATE TABLE location
(

tank_numb integer,
place_in_building char (6),
fluid_capacity integer,
CONSTRAINT PK_location PRIMARY KEY (tank_numb)

);

CREATE TABLE problem_type
(

problem_type_code integer,
problem_type_description varchar(256),
CONSTRAINT PK_problem_type PRIMARY KEY (problem_type_code)

);

CREATE TABLE problem_occurrence
(

problem_numb integer,
tank_numb integer,
problem_date date,
problem_type_code integer,
species_code integer,
CONSTRAINT PK_problem_occurrence PRIMARY KEY (problem_numb),

n  Figure 12-28  SQL statements prepared by a CASE tool for the animal tracking database—Cont’d

269The Animal Tracking Database

CONSTRAINT Relationproblem_typeproblem_occurrence1 FOREIGN KEY ()
REFERENCES problem_type,

CONSTRAINT Relationproblem_occurrencelocation1 FOREIGN KEY ()
REFERENCES location,

CONSTRAINT Relationspeciesproblem_occurrence1 FOREIGN KEY ()
REFERENCES species

);

CREATE TABLE problem_resolution
(

problem_numb integer,
solution_date date,
solution_description varchar (256),
CONSTRAINT PK_problem_resolution## PRIMARY KEY

(problem_numb,solution_date),
CONSTRAINT Relationproblem_occurrenceproblem_resolution1

FOREIGN KEY () REFERENCES problem_occurrence
);

CREATE TABLE habitat
(

habitat_numb integer,
habitat_description varchar (256),
CONSTRAINT PK_habitat PRIMARY KEY (habitat_numb)

);

CREATE TABLE can_live_in
(

species_numb integer,
habitat_numb integer,
CONSTRAINT PK_can_live_in PRIMARY KEY (species_numb,habitat_numb),
CONSTRAINT Relationhabitatcan_live_in1 FOREIGN KEY ()

REFERENCES habitat
);

CREATE TABLE habitat_contained
(

tank_numb integer,
habitat_numb integer,
CONSTRAINT PK_habitat_contained PRIMARY KEY (tank_numb,habitat_numb),
CONSTRAINT Relationlocationhabitat_contained1 FOREIGN KEY ()

REFERENCES location,
CONSTRAINT Relationhabitathabitat_contained1 FOREIGN KEY ()

REFERENCES habitat
);

n  Figure 12-28  Cont’d

270 CHAPTER 12  Database Design Case Study 2: East Coast Aquarium

CREATE TABLE maintenance_activity
(

maintenance_activity_numb integer,
maintenance_activity varchar (256),
CONSTRAINT PK_maintenance_activity

PRIMARY KEY (maintenance_activity_numb)
);

CREATE TABLE maintenance_performed
(

maintenance_activity_numb integer,
tank_numb integer,
maintenance_date date,
maintenance_notes varchar (256),
CONSTRAINT PK_maintenance_performed PRIMARY KEY

(maintenance_activity_numb,tank_numb,maintenance_date),
CONSTRAINT Relationmaintenance_activitymaintenance_performed1

FOREIGN KEY () REFERENCES maintenance_activity,
CONSTRAINT Relationlocationmaintenance_performed1 FOREIGN KEY ()

REFERENCES location
);

CREATE TABLE maintenance_required
(

maintenance_activity_numb integer,
tank_numb integer,
maintenance_interval interval,
CONSTRAINT PK_maintenance_required PRIMARY KEY

(maintenance_activity_numb,tank_numb),
CONSTRAINT Relationmaintenance_requiredmaintenance_activity1

FOREIGN KEY () REFERENCES maintenance_activity,
CONSTRAINT Relationlocationmaintenance_required1 FOREIGN KEY ()

REFERENCES location
);

CREATE TABLE illness
(illness_code integer,
illness_description varchar (256),
CONSTRAINT PK_illness PRIMARY KEY (illness_code)

);

n  Figure 12-28  SQL statements prepared by a CASE tool for the animal tracking database—Cont’d

271The Animal Tracking Database

n  Figure 12-28  Cont’d

CREATE TABLE population
(

species_numb integer,
tank_numb integer,
number_of_animals integer,
CONSTRAINT PK_population PRIMARY KEY (species_numb,tank_numb),
CONSTRAINT Relationspeciespopulation1 FOREIGN KEY ()

REFERENCES species,
CONSTRAINT Relationlocationpopulation1 FOREIGN KEY ()

REFERENCES location
);

CREATE TABLE individual_animal
(

animal_id integer,
species_numb integer,
tank_numb integer,
animal_name varchar (50),
approx_birthdate char (10),
date_acquired date,
source_numb integer,
animal_photo blob,
CONSTRAINT PK_individual_animal PRIMARY KEY (animal_id),
CONSTRAINT Relationpopulationindividual_animal1 FOREIGN KEY ()

REFERENCES population
);

CREATE TABLE individual_illness
(

animal_id integer
illness_date date,
illness_code integer,
treatment_given varchar (256),
illness_outcome varchar (256),
CONSTRAINT PK_individual_illness

PRIMARY KEY (animal_id,illness_date,illness_code),
CONSTRAINT Relationindividual_animalindividual_illness1

FOREIGN KEY () REFERENCES individual_animal,
CONSTRAINT Relationillnessindividual_illness1

FOREIGN KEY () REFERENCES illness
);

IIIPart

Relational Design Practice

In this part of the book you will read about some of the practical
techniques we use when working with relational database designs.
You will be introduced to the SQL language statements needed to
create relational schemes and their contents. You will also see how a
CASE tool can help design and document a database. In addition, this
part contains three complete relational design case studies to provide
further examples of the database design process.

Many retail chains today maintain both a Web and a brick-and-mortar
presence in the marketplace. Doing so presents a special challenge for
inventory control because the inventory is shared between physical
stores and Web sales. The need to allow multiple shipping addresses
and multiple payment methods within a single order also adds com-
plexity to Web selling. Online shopping systems also commonly allow
users to store information about multiple credits.

To familiarize you with what is necessary to maintain the data for such
a business, we’ll be looking at a database for SmartMart, a long-
established retailer with 325 stores across North America that has
expanded into Web sales. SmartMart began as a local grocery store,
but over the years it expanded to also sell clothes, sundries, home
furnishings, hardware, and electronics. Some stores still have grocery
departments; others carry just “dry” goods. In addition to the retail
stores, SmartMart maintains four regional warehouses that supply the
stores as well as ship products that are ordered over the Web.

The Merchandising Environment
SmartMart has three major areas for which it wants to an integrated
database: in-store sales, Web sales, and some limited Human Resources
needs. The sales data must be compatible with accounting systems to
simplify data transfer. In addition, both the in-store sales and Web
sales applications must use the same data about products.

275

13Chapter

Database Design Case Study 3:
SmartMart

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

276 CHAPTER 13  Database Design Case Study 3: SmartMart

Product Requirements
The products that SmartMart sells are stocked throughout the com-
pany’s stores, although every store does not carry every product. The
database must therefore include data about the following:

n	 Products
n	 Stores
n	 Departments within stores
n	 Products stocked within a specific department
n	 Current sales promotions for a specific product

The store and department data must be integrated with the database’s
Human Resources data.

In-Store Sales Requirements
The data describing in-store sales serve two purposes: accounting and
inventory control. Each sale (whether paid with cash or credit) must
decrement inventory and provide an audit trail for accounting. Retain-
ing data about in-store sales is also essential to SmartMart’s customer
service reputation. The company offers a 14-day return period, during
which a customer can return any product with which he or she is not
satisfied. Store receipts therefore need to identify entire sales transac-
tions, in particular which products were purchased during a specific
transaction.

Because the company operates in several different states, there is a
wide variety of sales tax requirements. Both which products are
taxed and the sales tax rate vary among states. The database must
therefore include sales tax where necessary as a part of an in-store
transaction.

The database must distinguish between cash and credit transactions.
The database will not store customer data about cash transactions, but
it must retain credit card numbers, expiration dates, and customer
names on credit sales.

Web Sales Requirements
Web sales add another layer of complexity to the SmartMart data
environment. The Web application must certainly have access to the
same product data as the in-store sales, but it must also integrate with
a shopping cart application.

277Putting Together an ERD

To provide the most flexibility, SmartMart wants to allow customers
to store multiple shipping addresses, ship to multiple addresses on
the same order, and store multiple credit card data from which a cus-
tomer can choose when checking out. In addition, customers are to
be given a choice as to whether to pick up their order or have it
shipped. The Web application must therefore have access to data
about which stores are in a customer’s area and what products are
available at each store, the same inventory information used by in-
store sales.

Finally, the Web application must account for back orders and partial
shipments. This means that a shipment is not the same as a Web order,
whereas an in-store sale delivers its items at one time. (Should an in-
store customer want to purchase an item that is not in stock, the item
will be handled as if it were a Web sale.)

Personnel Requirements
Although a complete personnel database is beyond the scope of this
case, SmartMart’s management does want to be able to integrate some
basic HR functions into the database, especially the scheduling of
“sales associates” to specific departments in specific stores. The intent
is to eventually be able use an expert system to analyze sales and
promotion data to determine staffing levels and to move employees
among the stores in a region as needed.

Putting Together an ERD
As you might expect, the SmartMart ERD is fairly large. It has therefore
been broken into three parts to make it easier to examine and
understand.

Stores, Products, and Employees
As you can see in Figure 13-1 (the first third of the ERD), the Smart-
Mart database begins with four “foundation” entities (entities that are
only at the “one” end of 1:M relationships): employee, store, ware-
house, and product.

The store and warehouse entities, at least at this time, have exactly the
same attributes. It certainly would be possible to use a single entity
representing any place products were kept. This would remove some
of the complexity that arises when locating a product. However, there

278 CHAPTER 13  Database Design Case Study 3: SmartMart

State
*state_code
state_name Work_schedule

*@employee_numb
*work_date

work_start_time
work_hours_scheduledEmployee

*employee_id
employee_first_name
employee_last_name

employee_street
employee_city

employee_state_code
employee_zip

employee_phone
employee_ssn

employee_birth_date
@dept_numb
@store_numb

@supervisor_id
@pay_type_code

pay_rate

Store
*store_numb
store_street
store_city

store_state
store_zip

store_main_phone
@store_manager_id

Warehouse
*warehouse_numb
warehouse_street
warehouse_city

@warehouse_state
warehouse_zip

warehouse_phone
@warehouse_manager_id

Department
*dept_numb

*@store_numb
@dept_manager_id

Product_stocked
*SKU

@UPC
in_store

@store_numb
@dept_numb

@warehouse_numb
size
color

number_on_hand
retail_price

Pay_type
*pay_type_code

pay_type_description

Product_keywork
*@UPC

@keyword_code
Keyword_list

*keyword_code
keyword_text

Promotion_type
*promotion_type_code
promotion_type_name

Sales_promotion
*@UPC

*promotion_start_date
promotion_end_date

@promotion_type_code
promotion_details

State_tax_rates
*state_code

sales_tax_rate

Product_taxed
*UPC

*state_code

Product
*UPC

product_name
product_unit

shipping_weight
product_image
web_orderable

n  Figure 13-1  Part 1 of SmartMart ERD.

279Putting Together an ERD

is no way to be certain that the data stored about a store and a ware-
house will remain the same over the life of the database. Separating
them into two entities after the database has been in use for some
time would be very difficult and time consuming. Therefore, the
choice was made to handle them as two distinct entities from the
beginning.

Reference Entities
There are also several entities that are included for referential integrity
purposes (state, keyword_list, pay_type, promotion_type). These enti-
ties become necessary because the design attempts to standardize text
descriptions by developing collections of acceptable text descriptions
and then using a numbering scheme to link the descriptions to places
where they are used. There are two major benefits to doing this.

First, when the text descriptions, such as a type of pay (e.g., hourly
versus salaried), are standardized, searches will be more accurate.
Assume, for example, that the pay types haven’t been standardized.
An employee who is paid hourly might have a pay type of “hourly,”
“HOURLY,” “hrly,” and so on. A search that retrieves all rows with a
pay type of “hourly” will miss any rows with “HOURLY” or “hrly,”
however.

Second, using integers to represent values from the standardized list
of text descriptions saves space in the database. Given the relative low
price of disk storage, this usually isn’t a major consideration.

The drawback, of course, is that when you need to search on or display
the text description, the relation containing the standardized list and
the relation using the integers representing the terms must be joined.
Joins are relatively slow activities, but in this case, the reference rela-
tion containing the master list of text descriptions will be relatively
small; the join uses integer columns, which are quick to match. There-
fore, unless for some reason the reference relation becomes extremely
large, the overhead introduced by the join is minimal.

Circular Relationships
If you look closely at the employee entity in Figure 13-1, you’ll see a
relationship that seems to relate the entity to itself. In fact, this is
exactly what that circular relationship does. It represents the idea that
a person who supervises other employees is also an employee: The
supervisor_id attribute is drawn from the same domain as employee_id.
Each supervisor is related to many employees, and each employee has
only one supervisor.

280 CHAPTER 13  Database Design Case Study 3: SmartMart

It is always tempting to create a separate supervisor entity. Given that
a supervisor must also be an employee, however, the supervisor entity
would contain data duplicated from the employee entity. This means
that we introduce unnecessary duplicated data into the database and
run a major risk of data inconsistencies.

Note: To retrieve a list of supervisors and the individuals they supervise,
someone using SQL would join a copy of the employee table to itself,
matching the supervisor_id column in one table to the employee_id
column in the other. The resulting table would contain data for two
employees in each row (the employee and the employee’s supervisor) that
could be manipulated—in particular, sorted—for output as needed.

Mutually Exclusive Relationships
There is one symbol on the ERD in Figure 13-1 that has not been used
before in this book: the small circle that sits in the middle of the
relationships between a stocked product, a department (in a store),
and a warehouse. This type of structure indicates a mutually exclusive
relationship. A given product can be stocked in a store or in a ware-
house but not both. (This holds true for this particular data environ-
ment because a product stocked represents physical items to be sold.)

The structure of the product_stocked entity reflects its participation in
this type of relationship. In particular, it contains a Boolean column
(in_store) that holds a value of true if the product is stocked in a store;
a value of false indicates that the product is stocked in a warehouse.
The value of the in_store attribute will then tell a user whether to use
the warehouse_numb column or the concatenation of the store_numb
column with the dept_numb attribute to find the actual location of
an item.

One-to-One Relationships
Earlier in this book you read that true one-to-one relationships are
relatively rare. There are, however, three of them visible in Figure 13-1.
All involve employees that manage something: a store, a department
within a store, or a warehouse. A corporate unit may have one manager
at a time, or it may have no manager; an employee may be the
manager of one corporate unit or the manager of none. It is the rules
of this particular database environment that make the one-to-one
relationships valid.

281Putting Together an ERD

In-Store Sales
The second part of the ERD (Figure 13-2) deals with in-store sales. The
data that are common to cash and credit sales are stored in the
in_store_sale entity. These data are all that are needed for a cash sale.
Credit sales, however, require data about the credit card used (the
credit_sale_details entity). Notice that there is therefore a one-to-one
relationship between in_store_sale and credit_sale_details. The two-
entity design is not required for a good database design, but it has
been chosen for performance reasons with the assumption that there
will be many more cash transactions than credit transactions. It there-
fore is a way of providing vertical partitioning to a single data set that

Product_stocked

*SKU
@UPC

@store_numb
@dept_numb

size
color

number_on_hand
retail_price

In_store_payment_type

*in_store_payment_type_code
in_store_payment_type_text

In_store_sale

*in_store_transaction_numb
in_store_transaction_date

in_store_sale_product_total
in_store_sales_tax
in_store_sale_total

@in_store_sale_payment_type_code

Credit_sale_details

*in_store_transaction_numb
in_store_sale_credit_card_numb

in_store_sale_credit_card_exp_date
in_store_sale_name_on_credit_card

In_store_sale_item

*in_store_transaction_numb
in_store_SKU

in_store_quantity
in_store_price

n  Figure 13-2  Part 2 of SmartMart ERD.

282 CHAPTER 13  Database Design Case Study 3: SmartMart

is somewhat “unbalanced.” In other words, a small proportion of the
occurrences of the entity will have credit details, while others will not.

After SmartMart’s database has been in production for some time, the
database administrator can look at the actual relative proportion of
credit and cash sales. If a large proportion of the sales are credit, then
it may make sense to combine in_store_sale and credit_sale_details
into a single entity and simply leave the credit details columns as null
for cash sales. Although some space will be wasted, this combined
design avoids the need to perform a lengthy join when retrieving data
about a credit sale.

Web Sales
The third portion of the ERD (Figure 13-3) deals with Web sales. Each
Web sale uses only one credit card, but a Web customer may keep
more than one credit card number within SmartMart’s database. A
customer may also keep more than one shipping address; multiple
shipping addresses can be used within the same order. (Multiple credit
cards for a single order are not supported.)

At first glance, it might appear that the three relationships linking
web_customer, web_sale, and web_customer_credit_card form a cir-
cular relationship. However, the meaning of the relationships is such
that the circle does not exist:

n	 The direct relationship between web_customer and web_customer_
credit_card represents the cards that a Web customer has allowed
to be stored in the SmartMart database. The credit card data are
retrieved when the customer is completing a purchase. He or she
chooses one for the current order.

n	 The relationship between web_customer and web_sale connects a
purchase to a customer.

n	 The relationship between web_customer_credit_card and web_sale
represents the credit card used for a specific order.

It can be difficult to discern such subtle differences in meaning from
a simple ERD. There are two solutions: define the meaning of the
relationships in the data dictionary or add relationship names to the
ERD.

The web_sale_shipping_address entity is used to display addresses
from which a user can choose. However, because items within the

283Putting Together an ERD

same shipment can be sent to different addresses, there is a many-to-
many relationship between web_sale and web_sale_shipping_address.
The web_sale_item resolves that many-to-many relationship into two
one-to-many relationships.

The relationship among web_sale, web_sale_item, and web_sale_
shipment is ultimately circular, although at the time the order is
placed, there are no instances of the web_sale_shipment entity. The
circle is closed when items actually ship.

Web_security_question
*web_security_question_numb

web_security_question_text

Web_security_question_answer
*@web_security_question_numb

*@web_customer_numb
web_security_question_answer

Product_stocked
*SKU

@UPC
in_store

@store_numb
@dept_numb

@warehouse_numb
size
color

number_on_hand
retail_price

Web_sale_item
*@web_sale_numb
*@web_sale_SKU
web_sale_quantity
web_sale_shipped

web_sale_price
@web_shipping_address_numb

Web_sale_shipment
*@web_sale_numb

*web_sale_date_shipped
web_shipment_merchandise_total

web_shipment_tax
web_shipment_shipping

web_shipment_total_charged

Web_customer
*web_customer_numb

web_customer_first_name
web_customer_last_name

web_customer_phone
web_customer_password
web_customer_user_id

Web_sale
*web_sale_numb
web_sale_date

@web_customer_numb
web_sale_total

web_sale_merchandise_total
web_sale_shipping

web_sale_tax

Web_customer_credit_card
*@web_customer_numb
*web_credit_card_numb

web_credit_card_exp_date
web_sale_name_on_credit_card

State
*state_code
state_name

Web_sale_shipping_address
*web_shipping_address_numb

@web_customer_numb
web_shipping_street

web_customer_shipping_city
web_customer_shipping_state_code

web_customer_shipping_zip
web_customer_shipping_first_name
web_customer_shipping_last_name

n  Figure 13-3  Part 3 of SmartMart ERD.

284 CHAPTER 13  Database Design Case Study 3: SmartMart

Creating the Tables
The ERDs you have just seen produce the following tables, listed in
alphabetical order:

credit_sale_details (in_store_transaction_numb,
in_store_sale_credit_card_numb, in_store_exp_date,
in_store_sale_name_on_credit_card)

department (dept_numb, store_numb, dept_manager_id)
employee (employee_id, employee_first_name,

employee_last_name, employee_street,
employee_city, employee_state_code, employee_zip,
employee_phone, employee_ssn, employee_birth_date,
dept_id, store_numb, supervisor_id, pay_type_code,
pay_rate)

in_store_payment_type (in_store_payment_type_code,
in_store_payment_type_text)

in_store_sale (in_store_transaction_numb,
in_store_transaction_date,
in_store_sale_product_total, in_store_sales_tax,in
_store_total, in_store_payment_type_code)

in_store_sale_item (in_store_sale_transaction_numb,
in_store_SKU, in_store_quantity, in_store_price)

keyword_list (keyword_code, keyword_text)
pay_type (pay_type_code, pay_type_description)
product (UPC, product_name, product_unit,

shipping_weight, product_image,
web_orderable)

product_keyword (UPC, keyword_code)
product_stocked (SKU, UPC, in_store, store_numb,

dept_numb, warehouse_numb, size, color,
number_on_hand, retail_price)

product_taxed (UPC, state_code)
promotion_type (promotion_type_code,

promotion_type_name)
sales_promotion (UPC, promotion_start_date,

promotion_end_date, promotion_type_code,
promotion_details)

state (state_code, state_name)
state_tax_rates (state_code, sales_tax_rate)
store (store_numb, store_street, store_city,

store_state_code, store_zip, store_main_phone,
store_manager_id)

285Creating the Tables

warehouse (warehouse_id, warehouse_street,
warehouse_city, ware_house_state_code,
warehouse_zip, warehouse_phone,
warehouse_manager_id)

web_customer (web_customer_numb,
web_customer_first_name, web_customer_last_name,
web_customer_phone, web_customer_password,
web_customer_user_id)

web_customer_credit_card (web_customer_numb,
web_credit_card_numb, web_credit_card_exp_date,
web_sale_name_on_credit_card)

web_sale (web_sale_numb, web_sale_date,
web_customer_numb, web_sale_total,
web_sale_merchandise_total,
web_sale_shipping,web_sale_tax)

web_sale_item (web_sale_numb, web_sale_SKU,
web_sale_quantity, web_sale_shipped,
web_sale_price, web_shipping_address_numb)

web_sale_shipment (web_sale_numb,
web_sale_date_shipped,
web_shipment_merchandise_total, web_shipment_tax,
web_shipment_shipping, web_shipment_total_charged)

web_sale_shipping_address (web_shipping_address_numb,
web_customer_numb, web_shipping_street,
web_shipping_city, web_shipping_state_code,
web_customer_zip, web_customer_shipping_first_name,
web_customer_shipping_last_name)

web_security_question (web_security_question_numb,
web_security_question_text)

web_security_question_answer
(web_security_question_numb, web_customer_numb,
web_security_answer_text)

work_schedule (employee_id, work_date,
work_start_time, work_hours_scheduled)

Because of the circulation relationship between a supervisor, who
must be an employee, and an employee being supervised, the employee
table contains a foreign key that references the primary key of its own
table: supervisor_id is a foreign key referencing employee_id. There is
nothing wrong with this type of design. The definition of a foreign
key states only that the foreign key is the same as the primary key of
some table; it does not rule out the foreign key referencing the primary
key of its own table.

286 CHAPTER 13  Database Design Case Study 3: SmartMart

Generating the SQL
The case tool that generated the SQL misses some very important
foreign keys—the relationships between employees and various other
entities—because the two columns don’t have the same name (see
Figure 13-4). Therefore, the database designer must add the con-
straints manually to the foreign key tables’ CREATE TABLE
statements:

employee table: FOREIGN KEY (supervisor_id)
REFERENCES employee (employee_id)

warehouse table: FOREIGN KEY (warehouse_manager_id)
REFERENCES employee (employee_id)

department table: FOREIGN KEY
(department_manager_id) REFERENCES employee
(employee_id)

store table: FOREIGN KEY (store_manager_id)
REFERENCES employee (employee_id)

The manual foreign key insertions could have been avoided had the
manager IDs in the warehouse, department, and store tables been
given the name employee_id. However, it is more important in the
long run to have the column names reflect the meaning of the columns.

There is also one foreign key missing of the two needed to handle the
mutually exclusive relationship between a product stocked and either
a department (in a store) or a warehouse. The foreign key from
product_stocked to the department is present but not the reference to
the warehouse table. The database designer must therefore add the
following to the product_stocked table:

FOREIGN KEY (warehouse_numb) REFERENCES warehouse
(warehouse_numb)

You may be wondering whether there could be a problem with includ-
ing the two constraints if only one can be valid for any single row in
product_stocked. There won’t be, because, as we saw before, referen-
tial integrity constraints are used only when the foreign key is not null.
Therefore, a product stocked in a warehouse will have a value in its
warehouse_numb column but null in the store_numb and dept_numb
columns. The reverse is also true: A product stocked in a store will
have values in its store_numb and dept_numb columns but null in
the warehouse_numb column.

The foreign key relationships to the state reference relation must also
be added manually because the foreign key columns do not have the

287Generating the SQL

CREATE TABLE state
(

state_code char (2),
state_name char (15),
CONSTRAINT PK_state PRIMARY KEY (state_code),
CONSTRAINT RelationstateState_tax_rates1 FOREIGN KEY ()

REFERENCES state_tax_rates
);

CREATE TABLE warehouse
(

warehouse_id integer,
warehouse_street char (50),
warehouse_city char (3),
warehouse_state_code char (2),
warehouse_zip char (10),
warehouse_phone char (12),
warehouse_manager_id integer,
CONSTRAINT PK_warehouse PRIMARY KEY (warehouse_id)

);

CREATE TABLE state_tax_rates
(

state_code char (2),
sales_tax_rate number (5,20),
CONSTRAINT PK_state_tax_rates PRIMARY KEY (state_code),
CONSTRAINT RelationstateState_tax_rates1 FOREIGN KEY ()

REFERENCES state
);

CREATE TABLE product
(

UPC char (15),
product_name varchar (256),
product_unit char (10),
shipping_weight integer,
product_image blob,
web_orderable boolean,
CONSTRAINT PK_product PRIMARY KEY (UPC)

);

CREATE TABLE product_taxed

n  Figure 13-4  SQL CREATE statements for the SmartMart database.

288 CHAPTER 13  Database Design Case Study 3: SmartMart

(
UPC integer,
state_code integer,
CONSTRAINT PK_product_taxed PRIMARY KEY (UPC,state_code),
CONSTRAINT RelationProductProduct_taxed1 FOREIGN KEY ()

REFERENCES product,
CONSTRAINT RelationState_tax_ratesProduct_taxed1 FOREIGN KEY ()

REFERENCES state_tax_rates
);

CREATE TABLE in_store_payment_type
(

in_store_payment_type_code integer,
in_store_payment_type_text char (10),
CONSTRAINT PK_in_store_payment_type PRIMARY KEY

(in_store_payment_type_code)
);

CREATE TABLE web_customer
(

web_customer_numb integer,
web_customer_first_name char (15),
web_customer_last_name INTEGER,
web_customer_phone char (12),
web_customer_password char (15),
web_customer_user_id char (15),
CONSTRAINT PK_web_customer PRIMARY KEY (web_customer_number)

);

CREATE TABLE web_sale_shipping_address
(

web_shipping_address_numb integer,
web_customer_numb integer,
web_shipping_street char (50),
web_customer_shipping_city char (50),
web_customer_shipping_state_code char (2),
eb_customer_shipping_zip char (10),
web_customer_shipping_first_name char (15),
web_customer_shipping_last_name char (15),
CONSTRAINT PK_web_sale_shipping_address

PRIMARY KEY (web_shipping_address_numb),
CONSTRAINT RelationWeb_customerWeb_sale_shipping_address1

n  Figure 13-4  SQL CREATE statements for the SmartMart database—Cont’d

289Generating the SQL

FOREIGN KEY () REFERENCES web_customer,
CONSTRAINT RelationstateWeb_sale_shipping_address1

FOREIGN KEY () REFERENCES state
);

CREATE TABLE web_customer_credit_card
(

web_customer_numb integer,
web_credit_card_numb char (16),
web_credit_card_exp_date date,
web_sale_name_on_credit_card varchar (50),
CONSTRAINT PK_web_customer_credit_card

PRIMARY KEY (web_customer_numb,web_credit_card_numb),
CONSTRAINT RelationWeb_customerweb_customer_credit_card1

FOREIGN KEY () REFERENCES web_customer
);

CREATE TABLE web_sale
(

web_sale_numb integer,
web_sale_date date,
web_customer_numb integer,
web_sale_total number (7,2),
web_sale_merchandise_total number (6,2),
web_sale_shipping number (6,2),
web_sale_tax number (6,2),
CONSTRAINT PK_web_sale PRIMARY KEY (web_sale_numb),
CONSTRAINT RelationWeb_customerWeb_sale1 FOREIGN KEY ()

REFERENCES web_customer,
CONSTRAINT Relationweb_customer_credit_cardWeb_sale1

FOREIGN KEY () REFERENCES web_customer_credit_card
);

CREATE TABLE web_sale_shipment
(

web_sale_numb integer,
web_sale_date_shipped date,
web_shipment_merchandise_total number(7,2),
web_shipment_tax number (6,2),
web_shipment_shipping number (6,2),
web_shipment_total_charged number (6,2),
CONSTRAINT PK_web_sale_shipment PRIMARY KEY (web_sale_numb),

n  Figure 13-4  Cont’d

290 CHAPTER 13  Database Design Case Study 3: SmartMart

CONSTRAINT RelationWeb_saleWeb_sale_shipment1
FOREIGN KEY () REFERENCES web_sale

);

CREATE TABLE pay_type
(

pay_type_code integer,
pay_type_description varchar (10),
CONSTRAINT PK_pay_type PRIMARY KEY (pay_type_code)

);

CREATE TABLE employee
(

employee_id integer,
employee_first_name varchar (15),
employee_last_name integer,
employee_street varchar (50),
employee_city varchar (50),
employee_state_code char (2),
employee_zip char (10),
employee_phone char (12),
employee_ssn char (11),
employee_birth_date date,
dept_id integer,
store_numb integer,
supervisor_id integer,
pay_type_code integer,
pay_rate number (10,2),
CONSTRAINT PK_employee PRIMARY KEY (employee_id),
CONSTRAINT RelationEmployeeDepartment1

FOREIGN KEY () REFERENCES department,
CONSTRAINT Relationpay_typeEmployee1

FOREIGN KEY () REFERENCES pay_type,
CONSTRAINT RelationEmployeestate1

FOREIGN KEY () REFERENCES state
);

CREATE TABLE department
(

dept_numb integer,
store_numb integer,
dept_manager_id integer,

n  Figure 13-4  SQL CREATE statements for the SmartMart database—Cont’d

291Generating the SQL

CONSTRAINT PK_department PRIMARY KEY (dept_numb,store_numb),
CONSTRAINT RelationStoreDepartment1 FOREIGN KEY () REFERENCES Store

);

CREATE TABLE store
(

store_numb integer,
store_street char (50),
store_city char (50),
store_state_code char (2),
store_zip char (10),
store_main_phone char (12),
store_manager_id integer,
CONSTRAINT PK_Store PRIMARY KEY (store_numb)

);

CREATE TABLE work_schedule
(

employee_numb integer,
work_date date,
work_start_time time,
work_hours_scheduled integer,
CONSTRAINT PK_work_schedule PRIMARY KEY (employee_numb,work_date),
CONSTRAINT RelationEmployeeWork_schedule2

FOREIGN KEY () REFERENCES employee
);

CREATE TABLE credit_sale_details
(

in_store_transaction_numb integer,
in_store_sale_credit_card_numb char (16),
in_store_exp_date date,
in_store_sale_name_on_credit_card varchar (50),
CONSTRAINT PK_credit_sale_details

PRIMARY KEY (in_store_transaction_numb)
);

CREATE TABLE promotion_type
(

promotion_type_code integer,
promotion_type_name INTEGER,
CONSTRAINT PK_Promotion_type PRIMARY KEY (promotion_type_code)

);

n  Figure 13-4  Cont’d

292 CHAPTER 13  Database Design Case Study 3: SmartMart

CREATE TABLE keyword_list
(

keyword__code integer,
keyword_text varchar (50),
CONSTRAINT PK_keyword_list PRIMARY KEY (keyword__code)

);

CREATE TABLE product_keyword
(

UPC char (15),
keyword_code integer,
CONSTRAINT PK_product_keyword PRIMARY KEY (UPC),
CONSTRAINT RelationKeyword_listProduct_keyword1

FOREIGN KEY () REFERENCES keyword_list
);

CREATE TABLE sales_promotion
(

UPC char (15),
promotion_start_date date,
promotion_end_date date,
promotion_type_code integer,
promotion_details char (50),
CONSTRAINT PK_sales_promotion PRIMARY KEY (UPC,promotion_start_date),
CONSTRAINT RelationProductSales_promotion1

FOREIGN KEY () REFERENCES product
);

CREATE TABLE in_store_sale
(

in_store_transaction_numb integer,
in_store_transaction_date date,
in_store_sale_product_total number (8,2),
in_store_sales_tax number (6,2),
in_store_sale_total number (8,2),
in_store_sale_payment_type_code integer,
CONSTRAINT PK_in_store_sale PRIMARY KEY (in_store_transaction_numb),
CONSTRAINT Relationin_store_salecredit_sale_details1

FOREIGN KEY () REFERENCES credit_sale_details,
CONSTRAINT Relationin_store_payment_typein_store_sale1

n  Figure 13-4  SQL CREATE statements for the SmartMart database—Cont’d

293Generating the SQL

FOREIGN KEY () REFERENCES in_store_payment_type
);

CREATE TABLE product_stocked
(

SKU char (15),
UPC char (15),
in_store boolean,
store_ numb integer,
dept_numb integer,
warehouse_numb integer,
size char (10),
color char (15),
number_on_hand integer,
retail_price number (7,2),
CONSTRAINT PK_product_stocked PRIMARY KEY (SKU),
CONSTRAINT RelationProductProduct_stocked1

FOREIGN KEY () REFERENCES product,
CONSTRAINT RelationDepartmentProduct_stocked1

FOREIGN KEY () REFERENCES department
);

CREATE TABLE in_store_sale_item
(

in_store_transaction_numb integer,
in_store_SKU integer,
in_store_quantity integer,
in_store_price number (7,2)0,
CONSTRAINT PK_in_store_sale_item

PRIMARY KEY (in_store_transaction_numb,in_store_SKU),
CONSTRAINT RelationProduct_stockedin_store_sale_item1

FOREIGN KEY () REFERENCES product_stocked,
CONSTRAINT Relationin_store_salein_store_sale_item1

FOREIGN KEY () REFERENCES in_store_sale
);

CREATE TABLE web_sale_item
(

web_sale_numb integer,
web_sale_SKU char (15),
web_sale_quantity integer,

n  Figure 13-4  Cont’d

294 CHAPTER 13  Database Design Case Study 3: SmartMart

web_sale_shipped boolean,
web_sale_price number (6,2),
web_shipping_address_numb integer,
CONSTRAINT PK_web_sale_item PRIMARY KEY (web_sale_numb,web_sale_SKU),
CONSTRAINT RelationProduct_stockedWeb_sale_item1

FOREIGN KEY () REFERENCES product_stocked,
CONSTRAINT RelationWeb_saleWeb_sale_item1

FOREIGN KEY () REFERENCES web_sale,
CONSTRAINT RelationWeb_sale_shipmentWeb_sale_item1

FOREIGN KEY () REFERENCES web_sale_shipment,
CONSTRAINT RelationWeb_sale_shipping_addressWeb_sale_item1

FOREIGN KEY () REFERENCES web_sale_shipping_address
);

CREATE TABLE web_security_question
(

web_security_question_numb integer,
web_security_question_text varchar (256),
CONSTRAINT PK_web_security_question PRIMARY KEY

(web_security_question_numb)
);

CREATE TABLE web_security_question_answer
(

web_security_question_numb integer,
web_customer_numb integer,
web_security_question_answer_text varchar (256),
CONSTRAINT PK_web_security_question_answer PRIMARY KEY

(web_security_question_numb,web_customer_numb)
CONSTRAINT RelationWeb_security_questionWeb_security_question_answer1

FOREIGN KEY () REFERENCES web_security_question
CONSTRAINT RelationWeb_customerWeb_security_question_answer1

FOREIGN KEY () REFERENCES web_customer
);

n  Figure 13-4  SQL CREATE statements for the SmartMart database—Cont’d

295Generating the SQL

same name as the primary key column in the state table. Whether to
use the same name throughout the database (state_name) is a design
decision. If all of the tables that contain a state use the same name,
foreign keys will be added automatically by the CASE tool. However,
depending on the way the states are used, it may be difficult to distin-
guish among them if the column names are all the same.

IVPart

Database Implementation Issues

When the time comes to implement your relational database, you will
probably discover that there are other decisions you need to make
besides the design of the tables. You will need to worry about concur-
rency control and database security; you may have to send your data
to a data warehouse or exchange data with another system that requires
an XML document as the transfer medium. In this final part of this
book, we will examine all of those topics to round out your under-
standing of relational databases.

For the most part, today’s DBMSs are intended as shared resources.1
A single database may be supporting thousands of users at one time.
We call this type of use concurrent use. However, although many users
are working with the same database, it does not mean that more than
one user is (or should be) working with exactly the same data as
another at precisely the same moment.

It is physically impossible for two users to read or write exactly the
same bit on a disk at precisely the same time. Operating systems and
hardware disk controllers work together to ensure that only one read
or write request is executed for any given disk location. This type of
concurrency control is distinct from what occurs within a database envi-
ronment. Database concurrency control is concerned with the logical
consistency and integrity of a database; the physical concurrency
control offered by the OS and the hardware is assumed to be in place.

In this chapter we begin by looking at the multiuser environment and
then turn to the consistency and integrity problems that can occur
when multiuser access is not controlled. Then we explore several solu-
tions to those problems.

The Multiuser Environment
Any time you have more than one user interacting with the same
database at the same time, you have a multiuser environment. The
DBMS must be able to separate the actions of one user from another
and group them into a logical whole. It must also be able to ensure
the integrity of the database while multiple users are modifying data.

299

14Chapter

Concurrency Control

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

1 As mentioned earlier in this book, a major exception to this statement is Microsoft
Access, which is designed for a single user at a time.

300 CHAPTER 14  Concurrency Control

Transactions
A transaction is a unit of work submitted to a database by a single user.
It may consist of a single interactive command, or it may include many
commands issued from within an application program. Transactions
are important to multiuser databases because they either succeed or
fail as a whole. For example, if you are entering data about a new
customer and an order placed by that customer, you won’t be able to
save any of the information unless you satisfy all the constraints on
all the tables affected by the modification. If any validation fails, the
customer data, the order data, and the data about the items on the
data cannot be stored.

A transaction can end in one of two ways: If it is successful, then the
changes it made are stored in the database permanently—the transac-
tion is committed—or if the transaction fails, all the changes made by
the transaction are undone, restoring the database to the state it was
in prior to the start of the transaction (a rollback). A transaction is an
all-or-nothing unit. Either the entire transaction succeeds or the entire
transaction fails and is undone. We therefore often call a transaction
the unit of recovery. A transaction may fail for several reasons:

n	 A transaction may be unable to satisfy constraints necessary
for modifying data.

n	 A transaction may time out. (See the discussion later in this
chapter on Web database issues.)

n	 The network connection between the user and the database
may go down.

n	 The server running the database may go down for any
reason.

Note: In the interests of efficiency, some DBMSs commit all
transactions that perform only data retrieval, even if the retrievals
requested by the transactions returned no data.

Logging and Rollback
To effect transaction rollback, a DBMS must somehow save the state
of the database before a transaction begins. As a transaction proceeds,
the DBMS must also continue to save data modifications as they are
made. Most DBMSs write this type of transaction audit trail to a log
file. Conceptually, a log file looks something like Figure 14-1.

301The Multiuser Environment

When a transaction begins, it is given a number. Each time the transac-
tion makes a change, the values prior to the change are written to a
record in the log file. Records for transactions running concurrently
are intermixed in the file. Therefore, the records for each transaction
are connected into a linked list, with each record pointing to the next.

When a transaction commits, its changes are written to the database,
and its records are purged from the log file. If a transaction fails for

Transaction #2

Transaction #3

Transaction #4

Transaction #4

Transaction #4

Transaction #4

Transaction #3

Transaction #3

Transaction #2

Transaction #2

Transaction #1

Transaction #1

Transaction #1

Transaction #1

Transaction #1

Start

Start

Start

Start

Next ->

Next ->

Next ->

Next ->

Next ->

Next ->

Next ->

Next ->

Next ->

Next ->

Next ->

n  Figure 14-1  The conceptual structure of a database log file.

Note: Throughout this section, we will describe several things as “conceptual.”
This is because the exact procedure for performing some actions or the
specific file structure in use depends on the DBMS. However, the effect of
actions and/or file structures is as described.

302 CHAPTER 14  Concurrency Control

any reason, however, a rollback occurs conceptually in the following
way:

1.	 Find the last record for the transaction in the log file.
2.	 Replace current values with the values in the log record.
3.	 Follow the pointer to the previous log record.
4.	 Repeat steps 2 and 3 until reaching the record that marks the

start of the transaction.

Note: Committing a transaction is final. By definition, a committed
transaction is never rolled back.

There is one major problem with maintaining a log file: ensuring that
all changes to the log file are actually written to disk. This is important
because it is more efficient for a computer to wait until it has a com-
plete unit of data to write before it actually accesses the disk than to
write each time data are modified. Operating systems maintain disk
I/O buffers in main memory to hold data waiting to be written. When
a buffer is full, the write occurs. The buffering system is efficient
because while memory—which is one of the computer’s fastest com-
ponents—fills several buffers, the disk may be taking its time with the
writing. Once it finishes a write, the disk empties the next buffer in
line. In this way, the slower device, the disk, is kept busy. However, a
problem occurs when the computer fails for any reason. (Even a power
outage can be at fault.) Whatever data were in the buffers at that time,
waiting to be written, are lost. If those lost buffer contents happen to
contain database log records, then the database and the log may well
be inconsistent.

Note: The number and size of a computer’s I/O buffers depend on both the
hardware and the operating system. Typically, however, the buffers in today’s
machines are between 1 and 4 K.

The solution is something known as a checkpoint. A checkpoint is an
instant in time at which the database and the log file are known to be
consistent. To take a checkpoint, the DBMS forces the OS to write the
I/O buffers to disk, even if they aren’t full. Both database changes and
log file changes are forced to disk. The DBMS then writes a small file
(sometimes called the “checkpoint file” or the “recovery file”) that

303The Multiuser Environment

contains the location in the log file of the last log record when the
checkpoint was taken.

There will always be some unit of time between checkpoints during
which log records are written to the log file. If a system failure occurs,
anything after the checkpoint is considered to be suspect because there
is no way to know whether data modifications were actually written
to disk. The more closely spaced the checkpoints, the less data
that will be lost due to system failure. However, taking a checkpoint
consumes database processing and disk I/O time, slowing down
overall database processing. It is therefore the job of a database admin-
istrator to find a checkpoint interval that balances safety and
performance.

Recovery
Recovering a database after a system failure can be a tedious process.
It must not only take into account the transactions that were partially
completed but those that were committed after the last checkpoint
was taken and whose records haven’t yet been purged from the log
file. Conceptually, a recovery would work like this:

1.	 Find the latest checkpoint file.

2.	 Read the checkpoint file to determine the location of the last log
record known to be written to disk in the log file.

3.	 Set up two lists for transactions: one for those that need to be
undone and one for those that need to be redone.

4.	 Starting at the last verified log file record, read from the back of the
file to the front of the file, placing each transaction found in the
undo list.

5.	 Stop at the beginning of the file.

6.	 Now read each record from the front to the back. Each time you
encounter a commit record, you’ll know that you’ve discovered a
transaction that completed yet didn’t have its log records purged
from the log file. Because almost all of these transactions will be
after the last checkpoint record, there is no way to ensure that any
changes made by these transactions were written to the database.
Therefore, move these transactions to the redo list.

7.	 Undo any transactions for which there are no commit records.

8.	 Redo the suspect committed transactions.

304 CHAPTER 14  Concurrency Control

No normal database processing can occur while the recovery opera-
tion is in progress. For large operations with many transactions in the
log file, recovery may therefore take some time.

Problems with Concurrent Use
As mentioned earlier, the computer hardware and OS take care of
ensuring that only one physical write occurs to a given storage location
at one time. Why, then, might a database need additional concurrency
control? The answer lies in the need for logical, in addition to physical,
consistency of the database. To understand what can occur, let’s look
at some examples.

Lost Update #1
Assume, for example, that a small city has four community centers,
each of which receives a single shipment of publicity materials for
each city-wide event from the city’s printer. To keep track of what they
have received and what is already in their storage rooms, each com-
munity center has a table in the database like the following:

publicity_materials (event_name, event_date,
numb_posters_received, numb_brochures_received)

West Side Community Center has been accidentally left out of the
delivery of posters for a special event on Saturday. The community
center sends e-mail to all of the other community centers in the area
and requests 10 to 20 posters. Someone at the East Side Center calls
in to say that they have 15 posters they can send. The West Side staff
member who takes the call checks to see how many posters have been
received, sees a 0, and then enters the 15 in the publicity_materials
table.

About the same time, another call comes in from the North Side
Center and is answered by a different staff member. North Side Center
has 12 posters to offer. The second staff member queries the database
and sees that there are 0 posters (the 15 posters from East Side Center
haven’t been stored yet) and therefore enters the 12 into the database.
However, in the few seconds that elapse between viewing 0 posters
and entering 12 posters, the 15 posters are stored in the database. The
result is that the 12 overwrites the existing value, wiping out the
number 15 that was just stored. West Side Community Center will be
receiving 27 posters, but they don’t know it. The second update wiped

305Problems with Concurrent Use

out the first. The unintentional loss of data when data are replaced by
a newer value is the lost update.

You can see exactly how the first update to the database was lost if
you look at the timeline in Figure 14-2. Notice first that the actions
of the transactions (one for each user) overlap in time. We therefore
say that the transactions are interleaved. The goal of concurrency
control is to ensure that the result of interleaved transaction is the
same as if the transactions ran one after the other (the transactions
are serializable).

In this particular example, regardless of which transaction runs first,
the correct answer should be 27: The second staff member should
retrieve something other than 0 from the database and know that he
or she would need to add the second group of posters to the first. But
that’s not what happens without concurrency control. Instead, at time
4—when the second staff member stores 12 posters—the 0 that the
staff member retrieved at time 2 is old data, so the lost update occurs
because the second transaction was based on old data.

Lost Update #2
A more subtle type of lost update occurs when an existing database
value is modified rather than merely replaced. As an example, consider
two travel agents, one in Philadelphia and the other in Boston. Both
use the same airline reservations database. A customer calls the Boston
travel agency and, as a part of a cross-country trip, needs to reserve
three seats on a flight from Chicago to Denver on a specific date and
at a specific time. The travel agent queries the database and discovers

Time:

Posters available:

Staff member 1

Staff member 2

Query database

0 150

Query database

12

Store number of incoming posters

Store number of incoming posters

1 2 3 4

n  Figure 14-2  Lost update.

306 CHAPTER 14  Concurrency Control

that exactly three seats are available on a flight that meets the cus-
tomer’s criteria and informs the customer, who is waiting on the
phone.

Meanwhile, a customer calls the travel agent in Philadelphia. This
customer also needs three seats from Chicago to Denver on the same
date and at the same time as the Boston customer. The travel agent
checks the database and discovers that there are exactly three seats
available, but they are the same three seats the Boston travel agent just
offered to his customer.

While the Philadelphia travel agent is talking to her customer, the
Boston travel agent receives the go-ahead from the other customer to
book the seats. The number of available seats on the flight is modified
from three to zero.

The Philadelphia travel agent has also received consent to reserve the
seats and proceeds to issue a command to do so. The problem,
however, is that the Philadelphia travel agent is working from old
information. There may have been three seats available when the
database was queried, but they are no longer available at the time the
reservations are made. As a result, the flight is now overbooked by
three seats.

Note: Let’s not get too carried away here. We all know that airlines often
overbook flights intentionally, but for the purposes of this example, assume
that zero seats available means no more seats—period.

A summary of what is happening in this situation can be found in
Figure 14-3. This lost update—just like the previous example—occurs
because the Philadelphia travel agent is working with old data at time
4 when he or she books three seats.

There are two general strategies for handling the lost update problem:

n	 Prevent a second transaction from viewing data that have been
viewed previously and that might be modified.

n	 Prevent a second transaction from modifying data if the data
have been viewed by another transaction.

The first can be accomplished using locking and the second with
timestamping, both of which will be discussed shortly.

307Problems with Concurrent Use

Inconsistent Analysis
The other major type of concurrency control problem is known as
inconsistent analysis. As an example, assume that the West Side Com-
munity Center database contains the following relation to store data
about attendance at special events:

Events (event_name, event_date, total_attendance)

A staff member needs to produce a report that totals the attendance
for all events during the past week. As she starts running the report,
the table looks something like Figure 14-4. If the report were to run
without being interleaved with any other transaction, the sum of the
total_attendance column would be 495.

Time:

Seats available:

Boston travel agent

Philadelphia travel agent

Query database

3 03

Query database

-3

Book three seats

Book three seats

1 2 3 4

n  Figure 14-3  A second lost update example.

event_name event_date total_attendance
Knitting 10-1-10 15
Basketball 10-1-10 20
Open swim 10-1-10 30
Story hour 10-2-10 40
Soccer 10-2-10 35
Open swim 10-2-10 20
Knitting 10-3-10 20
Swim meet 10-3-10 80
Paper making 10-3-10 10
Book club 10-4-10 25
Open swim 10-4-10 20
Kids gym 10-5-10 10
Open swim 10-5-10 30
Handball tournament 10-6-10 50
Open swim 10-6-10 15
Story hour 10-7-10 35
Open swim 10-7-10 40

n  Figure 14-4  The events table at the start of the attendance summary report transaction.

308 CHAPTER 14  Concurrency Control

A second staff member needs to make some modifications to the
attendance figures in the events table, correcting two errors. He changes
the attendance at the basketball practice on 10-1-10 from 20 to 35.
He also changes the attendance at the handball tournament on
10-6-10 from 50 to 55.

After the modifications are made, the attendance total is 515. If the
report runs before the modifications, the result for the attendance total
is 495. Either one of these results is considered correct because both
represent the result of running the transactions one after the other.

However, look at what happens when the transactions are interleaved.
As you can see in Figure 14-5, the report transaction begins running
first. After accessing each of the first 10 rows, the interim total is 295.
At time 2, the update transaction begins and runs to completion. At
time 4, the report completes its computations, generating a result of
500. Given our definition of a correct result, this is definitely
incorrect.

The problem occurred because the update transaction changed the
basketball practice attendance figure after the report had processed
that row. Therefore, the change is never reflected in the report total.
We can solve the inconsistent analysis problem by

n	 Preventing the update because another transaction has viewed
the data.

n	 Preventing the completion of the view-only transaction
because the data have been changed.

Time:

Computed attendance total:

Report transaction

Update transaction

Total first
10 rows

295295

Correct
basketball

500

Complete
computations

Correct
handball

1 2 3 4

0

n  Figure 14-5  An inconsistent analysis.

309Problems with Concurrent Use

The first solution can be done with locking, and the second with
timestamping.

Dirty Reads
A dirty read occurs when a transaction reads and acts on data that have
been modified by an update transaction that hasn’t committed and is
later rolled back. It is similar to an inconsistent analysis, but the
update transaction doesn’t commit. To see how this might happen,
consider Figure 14-6.

The report generating the transaction starts first. It retrieves and totals
the first 10 rows. Then the update transaction begins, making changes
to both the basketball and handball totals. The report transaction runs
again at time 4, reading the modified totals written to the database by
the update transaction. The result, as it was with the inconsistent
analysis example in the preceding section, is 500. However, at time 5,
the update transaction is rolled back, restoring the original values in
the table. The correct result, however, should be 495.

As with an inconsistent analysis, a dirty read can be handled by pre-
venting the update transaction from making its modifications at times
2 and 3, using locking or timestamping to prevent the report from
completing because the data “may” have been changed.

Nonrepeatable Read
A nonrepeatable read occurs when a transaction reads data for the
second time and determines that the data are not the same as they
were from the first read. To help understand how this occurs, let’s

Time:

Computed attendance
total:

Report transaction

Update transaction

Total first
10 rows

295295

Correct
basketball

500

Complete
computations

Correct
handball

1 2 3 4

0 500

5

Roll back transaction;
Undo all changes

n  Figure 14-6  A dirty read.

310 CHAPTER 14  Concurrency Control

change the community center reporting scenario just a bit. In this case,
the report transaction must output two tables with events and their
attendance, one ordered by date and one ordered by the name of the
event. It will access the events table twice. When the update transac-
tion runs between the two retrievals, the problem appears (Figure
14-7).

Notice that the total attendance for the first read by the report transac-
tion is correct at that time (495). However, when the transaction reads
the table again, the total is correct for the data as modified but not for
the first read of the data.

The nonrepeatable read can be handled by preventing the update
transaction from making its modifications because another transac-
tion has already retrieved the data or by preventing the report transac-
tion from completing because the data have been modified.

Phantom Read
A phantom read is similar to a nonrepeatable read. However, instead
of data being changed on a second retrieval, new rows have been
inserted by another transaction. For this example, the update transac-
tion inserts a new row into the events table:

Open swim 10-8-10 25

Assuming that the report transaction is once again creating two output
tables, the interaction might appear as in Figure 14-8. The report
transaction’s second pass through the table once again produces an

Time:

Computed attendance total:

Report transaction

Update transaction

Read entire table

495

Correct
basketball

515

Read entire table

Correct
handball

1 2 3 4

0

n  Figure 14-7  A nonrepeatable read.

311Solution 1: Classic Locking

incorrect result, which is caused by the row inserted by the interleaved
update transaction.

As with other concurrency control issues that involve the interaction
of update and retrieval transactions, the phantom read problem can
be solved by preventing the insertion of the new row at time 2 or
preventing the report transaction from completing at time 3 because
the needed data have been changed.

Solution 1: Classic Locking
Locking is a method for giving a transaction control over some part
of a database. It is the most widely used concurrency control practice
today.

The portion of the database locked (the granularity of the lock) varies
from one DBMS to another and depends to some extent on exactly
what type of operation is being performed. The granularity can vary
from a single row in a table to the entire database, although locking
of single tables is very common.

Read or Exclusive Locks
To handle lost updates with locking, we need to prevent other transac-
tions from accessing the data viewed by an update transaction because
there is the possibility that the update transaction will modify every-
thing it has retrieved.

Time:

Computed attendance total:

Report transaction

Update transaction

Read entire table

495

Add row

520

Read entire table

1 2 3

0

n  Figure 14-8  A phantom read.

312 CHAPTER 14  Concurrency Control

Operation of Write/Exclusive Locks
The strongest type of lock is an exclusive lock (also known as a write
lock). A transaction is given a write lock on a data element when it
retrieves that element. Then, by definition, no other transaction can
obtain a write lock on that element until the transaction holding the
lock releases its lock. If a transaction needs a piece of data that is
locked by another transaction, it must wait until it can obtain the
exclusive lock.

To see how this solves the lost update at the West Side Community
Center, look at Figure 14-9. At time 1, the first staff member queries
the database to see how many posters are on hand. She not only sees
that there are no posters, but her transaction also receives an exclusive
lock on the poster data. Now, when staff member 2’s transaction
attempts to query the database, the transaction must wait because it
can’t obtain the lock it needs to proceed. (Transaction 1 already holds
the single possible write lock.)

Staff member 1 enters the 15 posters, and her transaction commits,
releasing the lock. Transaction 2 can now continue. It queries the
database and now retrieves 15 for the second staff member. He is now
working with current data and can decide not to accept the additional
12 posters or to add them to the existing 15, producing the correct
result of 27. The write lock has therefore solved the problem of the
lost update.

Time:

Posters available:

Staff member 1

Staff member 2

Query database
Receive exclusive
lock

0 150

Query database
Lock denied
Wait

27

Store number of
incoming posters

Store number
of incoming
posters

1 2 3 4

Commit transaction
Release lock

15

5

Query database
Receive exclusive
lock

6

15

n  Figure 14-9  Using exclusive locks to solve a lost update problem.

313Solution 1: Classic Locking

Problem with Write/Exclusive Locks: Deadlock
Although write locks can solve a lost update problem, they generate
a problem of their own: a condition known as deadlock. Deadlock
arises when two transactions hold locks that each other needs, so
neither can continue. To see how this happens, let’s look again at the
two travel agents, this time one in Boston and one in Los Angeles. The
Boston travel agent is attempting to book a round trip from Boston
to Los Angeles. The Los Angeles travel agent is trying to book a trip
from Los Angeles to Boston and back.

You can see the actions and locks of the two transactions in Figure
14-10. At time 1, the Boston travel agent retrieves data about the flights
to Los Angeles, and her transaction receives an exclusive lock on the
data. Shortly thereafter (time 2), the Los Angeles travel agent queries
the database about flights to Boston, and his transaction receives an
exclusive lock on the Boston flight data. So far so good.

The trouble begins at time 3 when the Boston travel agent attempts
to look for return flights from Los Angeles to Boston. The transaction
cannot obtain a lock on the data and therefore must wait. At time 4,
the Los Angeles travel agent tries to retrieve return flight data and
cannot obtain a lock, so the second transaction must wait as well. Each
transaction is waiting for a lock on data that the other has locked, and
neither can continue. This is the deadlock.

Time:

Boston

Los Angeles

Query database about
flights to Los Angeles
Receive exclusive
lock

Query database about
flights to Boston
Receive exclusive
lock

Query database about
flights to Boston
Lock denied
Wait

1 2 3 4

Query database about
flights to Los Angeles
Lock denied
Wait

n  Figure 14-10  Deadlock.

314 CHAPTER 14  Concurrency Control

In busy database systems, deadlock is inevitable. This means that a
DBMS must have some way of dealing with it. There are two basic
strategies:

n	 Detect and break: Allow deadlock to occur. When the deadlock is
detected, choose one transaction to be the “victim” and roll it back,
releasing its locks. The rolled-back transaction can then be restarted.
The mix of transactions will be different when the victim is restarted,
and the same deadlock is unlikely to occur in the near future. In
this case, all transactions start, but not every transaction runs to
completion.

n	 Predeclare locks: Require transactions to obtain all necessary locks
before beginning. This ensures that the deadlock cannot occur. Not
all transactions start immediately, but every transaction that starts
will finish.

Predeclaration of locks is very difficult to implement because it is often
impossible to know what a transaction will need to lock until the
transaction is in progress. In contrast, detecting deadlock is actually
quite straightforward. The DBMS maintains a data structure known as
a graph to keep track of which transaction is waiting for the release of
locks from which other transaction, as in Figure 14-11a. As long as
the graph continues in a downward direction, everything is fine (the
graph is acyclic). However, if a transaction ends up waiting for another
transaction that is higher in the graph (the graphic become cyclic), as
in Figure 14-11b, deadlock has occurred.

In Figure 14-11a, T2 is waiting for something locked by T3; T5 is
waiting for something locked by T3. When T5 completes and releases
its locks, T3 can continue. As soon as T3 finishes, it will release its
locks, letting T2 proceed. However, in Figure 14-11b, T5 is waiting for
something locked by T2. T2 can’t complete and release what T5 needs
because T2 is waiting for T3, which in turn is waiting for T5, which is

T1

T2

T3

T4

T5

T6

(a)

T1

T2

T3

T4

T5

T6

(b)

n  Figure 14-11  Graphs to monitor transaction waits.

315Solution 1: Classic Locking

waiting for T2, and so on endlessly. This circle of locks is the
deadlock.

Because detecting deadlock is so straightforward, most DBMSs that
use classic locking for concurrency control also use the detect-and-
break deadlock handling strategy.

Read or Shared Locks
Although a DBMS could use exclusive locks to solve the problem of
inconsistent analysis presented earlier in this chapter, exclusive locks
tie up large portions of the database, slowing performance and cutting
down on the amount of concurrent access to the database. There is no
reason, however, that multiple transactions can’t view the same data,
as long as none of the transactions attempt to update the data. A lock
of this type—a shared, or read, lock—allows many transactions to read
the same data but none to modify it. In other words, as long as there
is at least one shared lock on a piece of data, no transaction can obtain
an exclusive lock for updating.

Let’s look at how shared locks can solve the inconsistent analysis
problem. Figure 14-12 diagrams the situation in which the report
transaction begins first. The transaction retrieves 10 rows to begin
totaling attendance and receives a shared lock on the table. At time 2,
the update transaction begins. However, when it attempts to obtain

Time:

Computed attendance total:

Report transaction

Update transaction

Retrieve first
10 rows
Receive shared
lock

495295

Complete computations;
Commit transaction;
Release shared locks

1 2 3 4

0

Attempt to retrieve
basketball data for
modification
Lock denied
Wait

Receive exclusive
lock on basketball
data

n  Figure 14-12  Using shared locks to prevent inconsistent analysis.

316 CHAPTER 14  Concurrency Control

the exclusive lock it needs for data modification, it must wait because
at least one other transaction holds a shared lock on the data. Once
the report transaction completes (generating the correct result of 495),
the shared locks are released and the report transaction can obtain the
locks it needs.

Now consider what happens if the update transaction starts first. In
this case, it is the report transaction that must wait because it cannot
obtain shared locks as long as the modification has exclusive locks in
place. As you can see from Figure 14-13, the report transaction pro-
duces a result of 515. However, under our rules of correctness for
serializable transactions, this is as correct a result as the 495 that was
produced when the report transaction started first.

Two-Phase Locking
In practice, the way locks are applied is a bit more complex than what
you have just read. Some DBMSs use a variation of the exclusive and
shared locking scheme known as two-phase locking. The intent is to
allow as many shared locks as possible, thus increasing the amount
of concurrent use permitted by a database.

Two-phase locking works by giving an update transaction a shared
lock when it retrieves data and then upgrading the lock to an exclusive
lock when the transaction actually makes a data modification. This

Time:

Computed attendance
total:

Report transaction

Update transaction

Attempt to retrieve
first 10 rows
Shared lock request
denied
Wait

5150

Receive shared lock
Retrieve rows
Add up attendance

1 2 3 4

0

Attempt to
retrieve
basketball data
Get exclusive
lock

Modify handball
data
Commit transaction
Release locks

Modify
basketball
data

Attempt to retrieve
handball data
Get exclusive lock

0 0 0

5 6

n  Figure 14-13  The transaction from Figure 14-9 starting in the opposite order.

317Solution 1: Classic Locking

helps increase the amount of concurrent use by keeping the amount
of data tied up in exclusive locks to a minimum and by minimizing
the time that exclusive locks are in place. The trade-off is that an
update transaction may not be able to obtain an exclusive lock for
data on which it holds a shared lock because other transactions hold
shared locks on the same data. The update transaction may then
be rolled back, causing it to release all its locks. It can then be
restarted. Alternatively, it may wait for the exclusive lock to become
available.

One major drawback to two-phase locking is that some processes may
need to wait a long time before obtaining the exclusive locks they need
to complete processing. This is not an issue for most business data-
bases. However, real-time systems, such as those that monitor oil
refineries, nuclear plants, and chemical factories, cannot tolerate
delays in transaction processing. Therefore, many real-time databases
cannot use two-phase locking.

Locks and Transaction Length
For locking to be effective, locks must be held until the end of the
transaction, releasing only when a transaction either commits or is
rolled back. For interactive commands—for example, SQL commands
being entered singly—a transaction usually lasts only a single
command. However, application programs can control the length of
a transaction.

Some SQL implementations contain statements to indicate the start
of a transaction (for example, START TRANSACTION). All, however,
provide both COMMIT and ROLLBACK commands to terminate a
transaction. The application program must intercept and interpret SQL
return codes to determine whether actions against the database have
been successful.

The combination of the need to hold locks until a transaction ends
and programmer control over the length of an embedded SQL transac-
tion means that a poorly written application program can have a
major negative impact on database performance. A transaction that is
too long or that unnecessarily locks database resources will impede
the execution of concurrent transactions. It is therefore the responsi-
bility of application developers to test their programs under con
current use conditions to ensure that excessive locking is not
occurring.

318 CHAPTER 14  Concurrency Control

Solution 2: Optimistic Concurrency Control
(Optimistic Locking)
A database that is used primarily for retrieval with few updates can
also take advantage of a variation on locking known as optimistic
locking. It is based on the idea that when there are few updates per-
formed, there are relatively few opportunities for problems such as
lost updates to occur.

An update transaction in an optimistic locking environment proceeds
in the following manner:

n	 Find the data to be modified, and place a copy in the
transaction’s work area in main memory.

n	 Make the change to data in the transaction’s work area.
n	 Check the database to ensure that the modification won’t

conflict with any other transaction (e.g., cause a lost update).
n	 If no conflicts are detected, write the modified data back to the

database. If a conflict is detected, roll back the transaction and
start it again.

The core of the process is determining whether there are conflicting
transactions. An update transaction must therefore check all other
transactions, looking for instances of retrieval of the same data. There-
fore, optimistic locking performs well when there aren’t too many
other transactions to check and the number of conflicts is low.
However, performance suffers if there are many concurrent update
transactions and/or update conflicts.

Solution #3: Multiversion Concurrency
Control (Timestamping)
Multiversion concurrency control, or timestamping, is a concurrency
control method that does not rely on locking. Instead, it assigns a
timestamp to each piece of data retrieved by a transaction and uses
the chronological ordering of the timestamps to determine whether
an update will be permitted.

Each time a transaction reads a piece of data, it receives a timestamp
on that data. An update of the data will be permitted as long as
no other transaction holds an earlier timestamp on the data. There-
fore, only the transaction holding the earliest timestamp will be per-
mitted to update, although any number of transactions can read the
data.

319Transaction Isolation Levels

Timestamping is efficient in environments where most of the database
activity is retrieval because nothing blocks retrieval. However, as
the proportion of update transactions increases, so does the
number of transactions that are prevented from updating and must
be restarted.

Transaction Isolation Levels
The SQL standard makes no determination of what concurrency
control method a DBMS should use. However, it does provide a
method for specifying how tight concurrency control is in the face of
the three “read phenomena” (dirty read, nonrepeatable read, phantom
read). The inclusion of the relaxing of tight concurrency control is in
response to the performance degradation that can occur when large
portions of a database are locked. Despite the performance advan-
tages, relaxing concurrency control can place a database at risk for data
integrity and consistency problems.

There are four transaction isolation levels that provide increasingly strict
concurrency control and solutions to the read phenomena:

n	 Serializable: Transactions must be serializable, as described in this
chapter. This is the tightest isolation level.

n	 Read committted: This prevents a dirty read but allows nonrepeatable
reads and phantom reads. This means that a transaction can retrieve
all data from all committed transactions, even if the read may be
inconsistent with a previous read.

n	 Repeatable read: This prevents dirty reads and nonrepeatable reads,
but it does not control for phantom reads.

n	 Read uncommitted: This has virtually no concurrency control, making
all three read phenomena possible.

The SQL standard allows a user to set the isolation level with one of
the following:

SET TRANSACTION LEVEL SERIALIZABLE
SET TRANSACTION LEVEL READ COMMITTED
SET TRANSACTION LEVEL REPEATABLE READ
SET TRANSACTION LEVEL UNCOMMITTED

Some major DBMSs do not necessarily adhere to the standard exactly.
Oracle, for example, provides only three isolation levels: serializable,

320 CHAPTER 14  Concurrency Control

read committed, and read only. The read-only level restricts trans
actions to retrieval operations; by definition, a read-only transaction
cannot modify data. The DB2 syntax uses SET CURRENT ISOLATION;
with SQL Server, the statement is SET TRANSACTION ISOLATION
LEVEL. None uses the precise syntax just specified. The moral to the
story is that if you are going to manipulate isolation levels, check your
DBMSs documentation for the specific syntax in use.

Web Database Concurrency Control Issues
Databases that allow access over the Web certainly face the same issues
of concurrency control that a non-Web database faces. However, it
also has another problem: The length of a transaction will vary con-
siderably, the results of both the Web’s inconsistent performance
and the tendency of Web users to walk away from the computer
for periods of time. How long should a transaction be kept open?
When should a partially completed transaction be aborted and rolled
back?

One way Web DBMSs handle the situation is by working with a
unit known as a session. A session may contain multiple transac-
tions, but a transaction is confined to only one session. The length
of a session will vary, but usually it will have a limit on the amount
of time the session can remain idle. Once the limit has passed, the
DBMS will end the session and abort any open transactions. This
does not mean that the user necessarily loses all information gener-
ated during such a rolled-back transaction. For example, some shop-
ping cart applications store the items added to the cart as they are
added. Even if the session is terminated by the DBMS, the items
remain in the database (associated with the user’s login name) so
the shopping cart can be reconstructed should the user visit the site
again. Alternatively, a database application could use a cookie to
store the contents of a shopping cart prior to ending a session,
although a cookie may not be large enough to hold even part of
the data from a transaction.

Optimistic locking also works well over the Web. A transaction works
with a copy of data to be modified that has been downloaded to the
client computer over the Internet. The client communicates with the
database only when it is time to write the update. A transaction that
never completes leaves no dangling locks because no locks are placed
until the DBMS determines that an update does not conflict with other
transactions.

321Distributed Database Issues

Distributed Database Issues
Distributed databases add yet another layer of complexity to concur-
rency control because there are often multiple copies of data, each
kept at a different location. This presents several challenges:

n	 To use classic locking, locks must be placed on all copies of a piece
of data. What happens if some of the locks can be placed and others
cannot?

n	 What happens if an instruction to commit a transaction modifying
copies of the same data doesn’t reach all parts of the database? Some
transactions may commit, while others hang without an end.
Should the committed transactions be rolled back to keep the data-
base consistent? That violates a basic precept of concurrency control:
A committed transaction is never rolled back.

Early distributed DBMSs attempted to use timestamping for concur-
rency control. The overhead required to maintain the timestamps,
however, was significant.

Today most distributed DBMSs use some type of two-phase locking.
To lessen the chance of needing to roll back a committed transaction,
distributed databases also add a two-phase commit. During the first
phase, the transaction that initiated the data modification sends a
“prepare to commit” message to each copy that is locked. Each
copy then responds with a “ready to commit” message. Once the
transaction receives a “ready” message from each copy, it sends a
“commit” message (the second phase). If some copies do not respond
with a “ready” message, the transaction is rolled back at all
locations.

Whichever type of concurrency control a distributed DBMS employs,
the messages needed to effect the concurrency control can signifi-
cantly increase the amount of network traffic among the database
sites. There is also the issue of locks that aren’t released by the local
DBMS because no commit message was received from the remote
DBMS placing the lock. Most distributed DBMSs therefore allow
database administrators to set a limit on the time a transaction can
sit idle. When a transaction “times out,” it is rolled back and not
restarted.

322 CHAPTER 14  Concurrency Control

For Further Reading
Bernstein, Philip A., and Nathan Goodman. “Concurrency Control in

Distributed Database Systems.” ACM Computing Surveys, 13(2),
185–221, 1981.

Bernstein, Philip A., Vassos Hadzilacos, and Nathan Goodman.
Concurrency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

“How Oracle Manages Concurrency Control”; available at http://
download.oracle.com/docs/cd/B10501_01/server.920/a96524/c21cnsis.
htm#2570

Thomasian, Alexander. Data Concurrency Control: Methods, Performance,
and Analysis. Springer, 1996.

In our current computing environment, we usually think that the
instant world-spanning access provided by the Internet is a good
thing. However, that access has a dark side: those who would in
advertently or purposefully violate the security of our data. Security
has always been a part of relational database management, but now
it has become one of the most important issues facing database
administrators.

Another way to look at security is to consider the difference between
security and privacy. Privacy is the need to restrict access to data,
whether it be trade secrets or personal information that by law must
be kept private. Security is what you do to ensure privacy.

Many people view network security as having three goals:

n	 Confidentiality: Ensuring that data that must be kept private stay
private.

n	 Integrity: Ensuring that data are accurate. For a security professional,
this means that data must be protected from unauthorized modifi-
cation and/or destruction.

n	 Availability: Ensuring that data are accessible whenever needed by
the organization. This implies protecting the network from any-
thing that would make it unavailable, including such events as
power outages.

One thing that makes data theft such a problem is that data can be
stolen without anyone knowing about it. A good thief can get into a
target system, copy the data, and exit without leaving a trace. Because
copying digital data does not affect the source, examining the
data won’t reveal that any copying has taken place. An accomplished

323

15Chapter

Database Security

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

324 CHAPTER 15  Database Security

thief will also modify system log files, erasing any trace of the
illegal entry.

The popular media would have you believe that the source of most
computer security problems is the “hacker.” However, if you ask
people actually working in the field, they will tell you that nearly half
the security breaches they encounter come from sources internal to an
organization, and, in particular, employees. This means that it won’t
be sufficient to secure a network against external intrusion attempts;
you must pay as much attention to what is occurring within your
organization as you do to external threats. Databases in particular are
especially vulnerable to internal security threats because direct access
is typically provided only to employees.

Sources of External Security Threats
The Internet has been both a blessing and a curse to those who rely
on computer networks to keep an organization in business. The global
network has made it possible for potential customers, existing custom-
ers, and employees to reach an organization through its Web site. But
with this new access have come the enormous problems caused by
individuals and groups attempting illegal entry into computer net-
works and the computer systems they support.

Physical Threats
We are so focused on the security issues that come over a network that
we tend to ignore physical threats to our database installation. Cer-
tainly, we need to worry about a disgruntled employee with a hammer,
but there is more to physical security risks than that. The major issue
today is physical access to a server by a knowledgeable data thief.

All servers have at least one user account that has access rights to the
entire computer. When the servers are housed in a locked location,
operators tend to leave the privileged user account logged in. It
makes administration just a bit easier. The operators rely on the secu-
rity on the server room door to keep unauthorized people out. The
problem with this strategy is that sometimes physical barriers aren’t
sufficient; a knowledgeable data thief will be able to circumvent
whatever lock has been placed on the server room door and gain
physical access to the servers. If the privileged accounts are left logged
in, all the thief needs to do is sit down at a machine and start extract-
ing data.

325Sources of External Security Threats

Hackers and Crackers
External threats are initiated by people known in the hacking com-
munity as crackers. Initially, the term hacker referred to someone who
could write an ingenious bit of software. In fact, the phrase “a good
hack” meant a particularly clever piece of programming. Outside of
the hacking community, however, anyone who attempts illegal access
to a computer network is called a hacker.

Hacking often involves becoming intimate with the details of existing
software to give the hacker the knowledge necessary to attempt an
unauthorized system break-in. Nonetheless, those who adhere to the
original definition of hacker wanted to differentiate themselves from
those who perform illegal activities, thus the term cracker.

There are many ways to classify those who break into computer
systems, depending on which source you are reading. However, most
lists of the types of hackers include the following (although they may
be given different names):

n	 White hat hackers: This group considers itself to be the “good guys.”
Although white hat hackers may crack a system, they do not do it
for personal gain. When they find a vulnerability in a network, they
report it to the network owner, hardware vendor, or software
vendor, whichever is appropriate. They do not release information
about the system vulnerability to the public until the vendor has
had a chance to develop and release a fix for the problem. White
hat hackers might also be hired by an organization to test a net-
work’s defenses.

White hat hackers are extremely knowledgeable about network-
ing, programming, and existing vulnerabilities that have been found
and fixed. They typically write their own cracking tools.

n	 Script kiddies: The script kiddies are hacker “wannabes.” They have
little, if any, programming skill and therefore must rely on tools
written by others. Psychological profiles of script kiddies indicate
that they are generally male, young (under 30), and not socially
well adjusted. They are looked down upon by most other hackers.

Script kiddies do not target specific networks but, instead, scan
for any system that is vulnerable to attack. They might try to deface
a Web site, delete files from a target system, flood network band-
width with unauthorized packets, or in some other way commit
what amounts to cyber vandalism. Script kiddies typically don’t
want to keep their exploits secret. In fact, many of those who are

326 CHAPTER 15  Database Security

caught are trapped because they have been bragging about what
they have done.

n	 Black hat hackers: Black hat hackers are motivated by greed or a
desire to cause harm. They target specific systems, write their own
tools, and generally attempt to get in and out of a target system
without being detected. Because they are very knowledgeable and
their activities often undetectable, black hat hackers are among the
most dangerous.

n	 Cyberterrorists: Cyberterrorists are hackers who are motivated by a
political, religious, or philosophical agenda. They may propagate
their beliefs by defacing Web sites that support opposing positions.
Given the current global political climate, there is also some fear
that cyberterrorists may attempt to disable networks that handle
utilities such as nuclear plants and water systems.

Types of Attacks
When a hacker targets your network, what might you expect? There
are a number of broad categories of attacks.

n	 Denial of service: A denial of service attack (DoS) attempts to prevent
legitimate users from gaining access to network resources and, by
extension, any database that uses the network. It can take the form
of flooding a network or server with traffic so that legitimate mes-
sages can’t get through, or it can bring down a server. If you are
monitoring traffic on your network, a DoS attack is fairly easy to
detect. Unfortunately, it can be difficult to defend against and stop
without disconnecting your network from the Internet.

n	 Buffer overflow: A buffer overflow attack takes advantage of a pro-
gramming error in an application or system program. The hacker
can insert his or her own code into a program and from there take
control of a target system. Because they are the result of a program-
ming error, buffer overflow conditions are almost impossible for a
network engineer to detect. They are usually detected by hackers or
the software vendor. The most common defense is a patch provided
by that vendor.

Closely related to the more general buffer overflow vulnerability,
an SQL injection attack occurs when a hacker uses openings in SQL
statements to insert and execute malicious code from a database
application. Such attacks can be prevented by following specific
syntax forms when embedding SQL in high-level programming

327Sources of Internal Threats

languages. It is therefore important that application coding syntax
rules be documented, updated, and readily accessible to application
programmers.

n	 Malware: Malware includes all types of malicious software, such as
viruses, worms, and Trojan horses. The goal of a hacker in placing
such software on a computer may be simple maliciousness or to
provide access to the computer at a later date. Although there is a
constantly escalating battle between those who write malware and
those who write malware detection software, a good virus checker
goes a long way to keeping network devices free from infection.

n	 Social engineering: A social engineering attack is an attempt to get
system access information from employees using role playing and
misdirection. It is usually the prelude to an attempt to gain unau-
thorized access to the network.

n	 Brute force: One way to gain access to a system is to run brute force
login attempts. Assuming that a hacker knows one or more system
login names, he can attempt to guess the passwords. By keeping and
monitoring logs of who is attempting to log into a system, a network
administrator can usually detect brute force break-in attacks.

Note: There is no gender discrimination intended with the use of the
pronoun “he” when referring to hackers. The fact is that most hackers
are male.

Sources of Internal Threats
Most internal threats come from two sources: employees and acci-
dents. Employee threats may be intentional or accidental.

Employee Threats
In most cases, employees know more about a network and the com-
puters on it than any outsider. At the very least, they have legitimate
access to user accounts. IT personnel, of course, have various levels of
increased access. Intentional employee security threats include the
following:

n	 Personnel who employ hacking techniques to upgrade their legiti-
mate access to root/administrator, allowing them to divulge trade
secrets, steal money, and so on for personal or political gain.

328 CHAPTER 15  Database Security

n	 Personnel who take advantage of legitimate access to divulge trade
secrets, steal money, and so on for personal or political gain.

n	 Family members of employees who are visiting the office and have
been given access to company computers to occupy them while
waiting.

n	 As mentioned earlier, personnel who break into secure machine
rooms to gain physical access to mainframe and other large-system
consoles.

n	 Former employees, especially those who did not leave the organiza-
tion willingly, who want revenge. Attacks may be physical—actually
damaging equipment—or traditional hacking attacks that result in
damaged data.

As dangerous as the intentional employee security threat may be,
employees can also cause a great deal of damage unintentionally, such
as the following:

n	 Becoming the victim of a social engineering attack,
unknowingly helping a hacker gain unauthorized network
access.

n	 Unintentionally revealing confidential information.
n	 Physically damaging equipment, resulting in data loss.
n	 Misusing a system, introducing inaccurate and/or damaged

data, or accidentally deleting or modifying data.
n	 Installing personal equipment on a network (for example, a

wireless access point) that isn’t included in the organization’s
security measures.

Most unintentional employee threats theoretically can be handled
through employee education. For example, it seems logical that
instructing employees not to write passwords on sticky notes that are
then fixed to monitors would help prevent compromised passwords.
However, when you are dealing with human beings, even the
best education can be forgotten in the stress of getting a job done
on time.

Employees certainly can unintentionally damage a network. In addi-
tion, true accidents also occur. A security plan should guard against
data damage and loss caused by

n	 Electrical power fluctuations
n	 Hardware failures
n	 Natural disasters such as fire and flood

329External Remedies

Guarding against accidental network damage includes power protec-
tion—for example, surge protectors and UPSs—and comprehensive
backup schemes. When done well, backup takes significant planning
and disaster recovery rehearsals.

External Remedies
External security measures are typically outside the responsibility of
database administrators. However, you should be aware of what secu-
rity protections external to the database are in place and, if they appear
inadequate, know how to make your concerns and recommendations
heard. In this section we’ll therefore look at security strategies that
should be in place external to the database to provide a first line of
defense.

Securing the Perimeter: Firewalls
A firewall is a piece of software that filters incoming and outgoing
network traffic and stops messages that violate the rules that define
allowable traffic. It is typically placed between the Internet and an
internal network. Its primary job is to eliminate as much undesirable
network traffic as possible.

Note: You may hear a firewall spoken of as a piece of hardware. However, a
firewall device is really a special-purpose computer that runs firewall
software. Because the device is dedicated to the firewall application, it may
be more powerful than firewall software that is added to a router or other
network interconnection device.

If you look at Figure 15-1, you’ll notice that the network looks very
much like something that might be used by SmartMart from Chapter
13. Specifically, it includes a Web server that is exposed to the Internet
through a router and a database server that is isolated from the Web
server by a second firewall.

The first firewall—the one connected to the edge router—allows spe-
cific messages to pass, including those intended for the Web server
and for destinations that represent legitimate network traffic (for
example, e-mail and remote employees).

The edge router will send all Web traffic to the Web server, preventing
it from getting onto the internal network. However, because Web users

330 CHAPTER 15  Database Security

need access to data stored on the database server, simply routing that
traffic to the Web server doesn’t provide protection for the database.

To protect the database, only messages from the Web server are per-
mitted to interact with the database. A second firewall has therefore
been placed between the two servers. The Web server is said to reside
in a DMZ, a part of the network that is walled off from the internal
network.

A Web transaction that involves access to the database server proceeds
as follows:

n  Figure 15-1  Using firewalls to secure a network and create a DMZ to protect the database server.

331External Remedies

1.	 User’s browser generates a request for data stored in the
database (for example, a page from a retail catalog) and
transmits it to the company network.

2.	 The edge router passes the request to the Web server.
3.	 The Web server requests data from the database.
4.	 The firewall between the Web server and the database server

passes the message because it comes from the database server.
5.	 The database server retrieves the requested data and sends it

back through the firewall to the Web server.
6.	 The Web server formats the data and sends a response to the

user, whose browser displays the new Web page.

Notice that internal users have direct access to the Web server without
having to pass through the DMZ. The assumption is that internal users
will be authorized for direct database access.

Handling Malware
When a database server is infected by malware, it can be a serious
problem. The result may be loss of data, loss of access to the database,
or loss of control of the database server’s hardware. Protection against
malware is typically provided by “virus protection” software running
on firewalls and the servers themselves.

Most current virus protection software handles worms, Trojan horses,
and bots as well as viruses. The most important thing to keep in mind,
however, is that there is an ever-escalating battle between those who
write malware and those who produce the virus protection software.
As soon as a new threat is identified, the software developers rush to
add the new malware to their protection database; the malware pro-
ducers then write new malware that is typically more powerful and
more sophisticated than previous releases. You can never be com-
pletely safe from malware because there is always a lag, however brief,
between the detection of a new piece of malware and the updating of
virus protection software to handle that malware. The best thing you
can do is update the database that accompanies your virus protection
software regularly.

Buffer Overflows
Because a buffer overflow problem is a flaw in the way software is
written, there is really nothing an organization without access to the
source code and a staff of programmers can do to fix it. An organiza-

332 CHAPTER 15  Database Security

tion must rely on the software developer to release updates (patches)
to the code.

Patching is a cooperative operation in that once the vendor has
released a patch, it is up to organizations using the software to install
the patch. Nonetheless, the best defense against buffer overflow vul-
nerabilities (and any other vulnerabilities caused by bugs in software)
is to apply all available patches.

Patch management can become a nightmare for an IT staff. There are
so many patches released for some types of software (for example,
Microsoft Windows in all its myriad versions) that it is difficult to
know which patches are important and stable and, in a large organiza-
tion, which patches have been applied to which machine. Nonethe-
less, to protect your database server (both the operating system and
the DBMS), you must work with IT to ensure that all necessary patches
have been applied.

Physical Server Security
Physical security requires a two-pronged approach: preventing physi-
cal access to the server and, should that fail, securing the administra-
tive accounts. Actual physical methods include any or all of the
following:

n	 Security cameras outside machine/server room doors to record
everyone who enters, exits, and loiters in the area.

n	 Smart locks on machine/server room doors that store the code of
each individual who enters and exits, along with the date and time
of an entry or exit. Smart locks can be equipped with biometric
identification devices if desired. (These will be discussed shortly.)

n	 Removal of signs from machine/server room doors and hallways so
no one can locate hardware rooms by simply walking the hallways
of the building.

The recording produced by security cameras and smart locks must be
examined regularly to determine if any unusual access patterns appear.

Should an unauthorized person manage to defeat the physical secu-
rity, he will probably want to gain software access to a computer. (We
are assuming that physical damage to the equipment is a rare goal of
an intruder.) This means that the administrative accounts for each

333External Remedies

server must be secured. First, the accounts should never be left logged
in. It may be more convenient for operators, but it makes the servers
vulnerable to anyone who happens to walk by. Second, login attempts
to the administrative accounts should be limited. For example, after
three failed attempts to log in, the server should disallow further login
attempts for some predetermined length of time.

User Authentication
Any user who is permitted direct access to a database must first be
authenticated for access to the local area network. The forms that such
authentication takes depend on the size and security risks of the
network. Positive user identification requires three things:

1.	 Something the user knows
2.	 Something the user has
3.	 Something the user is

The first can be achieved with passwords, the second with physical
login devices, and the third with biometrics.

User IDs and Passwords (What the User Knows)
The first line of defense for any network authentication scheme is the
user ID and password. User IDs in and of themselves are not generally
considered to be private; in fact, many are based on user e-mail
addresses. The security therefore resides in the password. General
security practice tells us the following about passwords:

n	 Long passwords are better than short passwords.
n	 Passwords with a combination of letters, numbers, and special

characters (for example, punctuation) are more secure than
passwords that are all letters or all numbers.

n	 User education is needed to ensure that users don’t share their
passwords with anyone or write them down where others may
see them.

n	 Passwords should be changed at regular intervals.

Although “general wisdom” dictates that passwords should be changed
regularly, there are some problems with that policy. When users are
forced to change their passwords, they often forget which password
they have used. The solution is to write the password down, some-
times placing it in an insecure location such as the center drawer of a
desk or even on a sticky note affixed to a monitor.

334 CHAPTER 15  Database Security

Login Devices (What the User Has)
The second layer of user authentication is requiring that someone
attempting to log in present a physical device that only an authorized
user will have. The device has some way of making it unique to the
user ID.

Login devices include access cards that a user must scan in some way
before entering a password and devices that issue one-time passwords
that the user enters in addition to a regular password. For example,
for $5, PayPal will send you a small device that generates a one-time
password (Figure 15-2). To log on, the user must first enter the stan-
dard user ID and password. Then, however, the authentication appli-
cation asks for a code from the device. The device is for those users
who are concerned about the security of their accounts, but it is not
required.

Some authentication tokens require that the token be physically
inserted into a computer connected directly to the network. For
example, the eToken series from Aladdin Systems consists primarily
of devices that are to be plugged into a USB port to authenticate both
the user and the user’s location.1

The advantage of a login device is that it is small—usually small
enough to attach to a keychain—so it is easy for the user to keep the
device handy. However, if the user doesn’t have the device and needs
access, there must be an alternative form of authentication available.
PayPal, for example, provides several alternatives, such as answering

n  Figure 15-2  The PayPal security token.

1 See www.aladdin.com/etoken/devices/default.aspx.

335External Remedies

security questions or providing a financial account number that is
linked to the PayPal account.

Biometrics (What the User Is)
Biometric identification—identification based on certain characteris-
tics of a person’s body—has long been a part of science fiction. The
idea of retina prints, thumbprints, palmprints, and facial scans doesn’t
seem particularly far-fetched. Today you can purchase a mouse with
a thumbprint reader that sends the print to a computer for authentica-
tion. The computer won’t unlock unless it recognizes the thumbprint,
making this a seemingly good way to secure laptops and desktops in
sensitive areas.

VPNs
Remote access to a database is typical today. Users travel; users work
from home. The days are long gone where remote users dialed into
their work network using a modem and a standard telephone line.
Most remote access reaches an internal network over the Internet. The
problem facing a database administrator is ensuring that the data
remain safe while traveling on the external network.

One commonly applied solution is a virtual private network (VPN).
VPNs provide encryption for data transmissions over the Internet.
Although there are several types of VPNs, many use a security protocol
known as IPSec, including the VPNs that are built into desktop operat-
ing systems such as Windows and Mac OS X.

IPSec encrypts the data, turning it into something that is meaningless
to anyone who does not have the secret encryption keys. Even if
data are intercepted while traveling over the Internet, they will
be useless. We say that IPSec provides a secure tunnel for data (see
Figure 15-3). One type of tunneling encrypts data only when it is
actually on the Internet; the other provides end-to-end encryption
where data are encrypted from the sending computer to the destina-
tion network.

To operate a VPN, the destination network must have a VPN server, a
machine that receives all incoming VPN traffic and handles authenti-
cating the VPN user. The VPN server acts as a gatekeeper to the internal
network. Once authenticated, VPN users can interact with the destina-
tion network as if they were physically present at the network’s
location.

336 CHAPTER 15  Database Security

Combating Social Engineering
Social engineering isn’t a technical attack at all but a psychological/
behavior attack, so it can’t be stopped by technical means. It requires
employee education to teach employees to recognize this type of
attack and how to guard against it.

As an example, consider the following scenario: Jane Jones is the sec-
retary for the R&D department of a high-tech firm. Her boss, John
Smith, often works at home. Ms. Jones has been with the company
for many years, and she is a trusted employee. She knows the user
names and passwords for her computer, Mr. Smith’s desktop and
laptop, and Mr. Smith’s mainframe account.

One morning, Ms. Jones receives a telephone call. “Ms. Jones, this is
James Doe from IT. I have some upgrades that I need to install on
your computer and Mr. Smith’s computer. I don’t need to come to
your office. I can do it over the network if I have the user IDs and
passwords.”

“Oh, that sounds fine,” says Ms. Jones. “I hate it when IT has to come
by and interrupt my work to fix something. My user ID is . . .” (she
gives Mr. Doe the user names and passwords).

IPSec Server on
Local Network

Remote User Computer
Running IPSec
Client Software

Local Network Connection
to the Internet

Remote ISP’s Connection
to the Internet

IPSec Tunnel

Remote Connection
to the Internet

Remote
ISP

n  Figure 15-3  The architecture of an IPSec VPN.

337External Remedies

Unfortunately, the man who claims to be James Doe isn’t who he says
he is. He’s a hacker, and with just a little research and a phone call,
he has received access to two corporate desktops. First, he checked the
corporate directory online. It was simple to find the name of an IT
employee, as well as the names of the head of R&D and his secretary.
Then all he had to do was place a phone call to Ms. Jones. She cooper-
ated, and he was in business.

The phony James Doe does install a file or two on each of the com-
promised computers. However, the files are actually a Trojan horse
that he can activate later when he needs control of the compromised
machines.

Ms. Jones made one critical error: She revealed user names and pass-
words. She felt comfortable doing so because she knew that someone
named James Doe worked for IT. She had never thought that there
would be a problem trusting someone from that department; the idea
of an impersonator never crossed her mind.

There is no technological solution to a social engineering attack of this
type. The best prevention is employee awareness. Training sessions
with role playing to demonstrate how such attacks are perpetrated can
be very helpful. A few simple policies will also go a long way:

n	 Never reveal your user ID or password to anyone, no matter who
that person claims to be.

n	 If someone claims to be a corporate employee and asks for your
user name and password, take his or her name, a supervisor’s name,
and an extension. Then hang up and call the supervisor to report
the attempt to obtain a user ID and password.

n	 If someone claims to be a vendor representative (or anyone else
who is not an employee) and asks for a user ID and password, hang
up and notify IT security immediately.

An organization should also take steps to restrict the information that
it makes public so it becomes more difficult for a hacker to develop a
convincing social engineering attack. For example, employee directo-
ries should not be available publicly. Instead, use titles (such as “IT
Manager”) in any contact lists that are accessible to nonemployees.
Organizations with registered Internet domain names should also
restrict the information available to those who issue a “whois”
command on the domain name.

338 CHAPTER 15  Database Security

Handling Other Employee Threats
There are many things an organization can do to guard against other
employee threats:

n	 Develop and enforce policies that forbid employees to install their
own hardware and software on corporate machines and networks.
Use network discovery and mapping software to monitor network
hardware and detect any unauthorized equipment.

n	 Conduct employee training sessions to familiarize employees with
the organization’s policies on the release of information.

n	 Document all organizational security policies, distribute them to
employees, and require employees to sign, indicating that they have
read and accepted the policies.

n	 Require employees to take two consecutive weeks of vacation at
least once every two years. If an employee is hacking the organiza-
tion’s information systems and covering up the unauthorized access,
an absence of two weeks is likely long enough to expose what is
occurring.

n	 When an employee is going to be fired, disable all of the employee’s
computer accounts prior to telling the employee about the
termination.

Internal Solutions
Up to this point, the security measures we’ve discussed have all been
applied outside the DBMS. They are put in place by network admin-
istrators rather than database personnel. There are, however, at least
two layers of security that a relational DBMS adds to whatever is sup-
plied by the network.

Internal Database User IDs and Passwords
The user IDs and passwords we discussed earlier in this chapter are
used to give a user access to a network. They do not necessarily (and
probably shouldn’t) give access to a database. Most of today’s rela-
tional DBMSs provide their own user ID and password mechanism.
Once a user has gained access to the network, he or she must authen-
ticate again to gain direct access to the database (either at the command
line or with an application program).

339Internal Solutions

It is important to distinguish between direct access to the database
and account access by Web customers. Someone making a purchase
on a Web site does not interact directly with the database; only the
Web server has that type of access. A Web user supplies a user name
and password, both of which are probably stored in the database. The
Web server sends a query to the DBMS to retrieve data that match the
user ID/password pair. Assuming that a matching account is found,
the Web server can then send a query to retrieve the Web user’s
account data. Web customers cannot issue ad hoc queries using a
query language; they can only use the browser-based application pro-
vided for them. Therefore, there is little that the typical Web user can
do to compromise the security of the database.

However, internal database users have direct access to the database
elements for which their accounts have been configured. They can
formulate ad hoc queries at a command line to manipulate the tables
or views to which they have access. The trick, then, is to tailor access
to database elements based on what each user ID “needs to know.” A
relational database accomplishes this by using an authorization
matrix.

Authorization Matrices
Most DBMSs that support SQL use their data dictionaries to provide
a level of security. Originally known as an authorization matrix, this
type of security provides control of access rights to tables, views, and
their components.

Types of Access Rights
The typical SQL-based DBMS provides six types of access rights:

n	 SELECT: Allows a user to retrieve data from a table or view.

n	 INSERT: Allows a user to insert new rows in a table or updatable
view. Permission may be granted to specific columns rather than
the entire database element.

n	 UPDATE: Allows a user to modify rows in a table or updatable view.
Permission may be granted to specific columns rather than the
entire database element.

n	 DELETE: Allows a user to delete rows from a table or updatable
view.

340 CHAPTER 15  Database Security

n	 REFERENCES: Allows a user to reference a table column as a foreign
key in a table that he or she creates. Permission may be granted to
specific columns rather than the entire database element.

n	 ALL PRIVILEGES: Gives a user all of the preceding rights to a table
or view.

By default, granting access rights to another user does not give the user
the right to pass those rights on to others. If, however, you add a WITH
GRANT OPTION clause, you give the user the ability to grant his or
her rights to another user.

Using an Authorization Matrix
Whenever a user makes a request to the DBMS to manipulate data,
the DBMS first consults the authorization matrix to determine whether
the user has the right to perform the requested action. If the DBMS
cannot find a row with a matching user ID and table or view identifier,
then the user has no right at all to the database element. If a row with
a matching user ID and table identifier exists, then the DBMS checks
for the specific rights that the user has to the table or view and either
permits or disallows the requested database access. Because all data-
base access begins with at least one search of a data dictionary table,
we say that relational DBMSs are data dictionary driven.

Database Implementations
Access rights to tables and views are stored in the data dictionary.
Although the details of the data dictionary tables vary from one DBMS
to another, you will usually find access rights split between two system
tables named something like Systableperm and Syscolperm. The first
table is used when access rights are granted to entire tables or views
and the second when rights are granted to specific columns within a
table or view.

A Systableperm table has a structure similar to the following:

Systableperm (table_id, grantee, grantor,
selectauth, insertauth, deleteauth, updateauth,
updatecols, referenceauth)

The columns represent:

n	 table_id: An identifier for the table or view.

n	 grantee: The user ID to which rights have been granted.

n	 grantor: The user ID granting the rights.

341Internal Solutions

n	 selectauth: The grantee’s SELECT rights.

n	 insertauth: The grantee’s INSERT rights.

n	 deleteauth: The grantee’s INSERT rights.

n	 updateauth: The grantee’s UPDATE rights.

n	 updatecols: Indicates whether rights have been granted to specific
columns rather than the entire table or view. When this value is Y
(yes), the DBMS must also look in Syscolperm to determine whether
a user has the right to perform a specific action against the
database.

The columns that hold the access rights take one of three values: Y
(yes), N (no), or G (yes with grant option).

Granting and Revoking Access Rights
When you create an element of database structure, the user name
under which you are working becomes that element’s owner. The
owner has the right to do anything to that element; all other users
have no rights at all. This means that if tables and views are going to
be accessible to other users, you must grant them access rights.

Granting Rights
To grant rights to another user, a user that either created the database
element (and therefore has all rights to it) or has GRANT rights issues
a GRANT statement:

GRANT type_of_rights ON table_or_view_name TO
user_ID

For example, if the DBA of Antique Opticals wants to allow the
accounting manager (who has a user ID of acctg_mgr) to access an
order summary view, the DBA would type:

GRANT SELECT ON order_summary TO acctg_mgr

To allow the accounting manager to pass those rights on to others,
the DBA would need to add one line to the SQL:

GRANT SELECT ON order_summary TO acctg_mgr WITH
GRANT OPTION

If Antique Opticals wants to give some student interns limited rights
to some of the base tables, the GRANT might be written:

342 CHAPTER 15  Database Security

GRANT SELECT, UPDATE (retail_price,
distributor_name) ON item TO intern1, intern2,
intern3

The preceding example grants SELECT rights to the entire table but
gives UPDATE rights on only two specific columns. Notice also that
you can grant multiple rights in the same command as well as the
same group of rights to more than one user. However, a single GRANT
applies to only one table or view.

In most cases, rights are granted to specific user IDs. You can, however,
make database elements accessible to anyone by giving him or her the
rights to the special use ID PUBLIC. For example, the following state-
ment gives every authorized user the rights to see the order summary
view:

GRANT SELECT ON order_summary TO PUBLIC

Revoking Rights
To remove previously granted rights, use the REVOKE statement,
whose syntax is almost the opposite of GRANT:

REVOKE access_rights ON table_or_view_name FROM
user_ID

For example, if Antique Opticals’ summer interns have finished their
work for the year, the DBA might want to remove their access from
the database:

REVOKE SELECT, UPDATE (retail_price,
distributor_numb) ON item FROM intern1, intern2,
intern3

If the user from which you are revoking rights has the GRANT option
for those rights, then you also need to make a decision about what to
do if the user has passed on those rights. In the following case, the
REVOKE option will be disallowed if the acctg_mgr user has passed
on his or her rights:

REVOKE SELECT ON order_summary FROM acctg_mgr
RESTRICT

In contrast, the syntax

REVOKE SELECT ON order_summary FROM acctg_mgr
CASCADE

343Internal Solutions

will remove the rights from the acctg_mgr ID along with any user IDs
to which acctg_mgr granted rights.

Who Has Access to What
The internal database security measures we have discussed to this
point assume that we know which users should have access to which
data. For example, does a bookkeeper need access to data from the
last audit or should access to those data be restricted to the comptrol-
ler? Such decisions may not be as easy as they first appear. Consider
the following scenario (loosely based on a real incident).

The Human Relations department for a small private college occupies
very cramped quarters. Personnel files have not been converted to
machine-readable form but instead are stored in a half dozen locked
four-drawer file cabinets in the reception area, behind the reception-
ist’s desk. The receptionist keeps the keys to the file cabinets and gives
them to HR employees as needed.

The problem with this arrangement is that the receptionist, who is a
long-time college employee, has a habit of peeking at the personnel
files. (She is known for having the juiciest gossip in the building at
break times.)

One day the receptionist comes in to work and sees that the file cabi-
nets are being moved out of the reception area. In their place, a PC
has been placed on her desk. The new HR system is online, and an IT
staff member has come to train the receptionist. She has a word pro-
cessor, access to the college faculty/staff directory, and an appointment
scheduling application.

“How do I get to the personnel files?” she asks at the end of the
training session.

“You don’t have the application,” the IT employee responds.
“Why not?”
The IT staff member shrugs. “You’ll have to ask the database

administrator.”
The receptionist is immediately out the door, headed for the IT

department. She finds the database administrator in his
office.

“Why didn’t I get the personnel application?” she asks.
“Because you don’t need access to that information to do your

job, and legally we have to ensure the privacy of those data.”

344 CHAPTER 15  Database Security

At this point, the receptionist is furious. “But I’ve always had
access to the personnel files!” she shouts.

The scene degenerates from there.

The problem would appear to be that the HR receptionist should never
have had access to the personnel files in the first place. However, it’s
a bit more complicated than that. Access to information makes people
feel powerful. It’s the “I know something you don’t know” syndrome.
Remove or restrict access, and many people feel that they have lost
power and status in the organization.

Some organizations have solved this problem by appointing a com-
mittee to handle the decisions about who has access to what. Users
who feel that they need additional access must appeal to the commit-
tee rather than to a single individual. This protects the staff members
who are making the decisions and provides broader input to the
decision-making process.

The other side of this issue is data sharing. Occasionally you may run
into employees who have control of data that have to be shared, but
the employee is reluctant to release the data. Whether it is a researcher
who controls survey data, a district manager who handles the data
about the sales department, or a salesperson who guards the data he
collects when in the field, psychologically the issue is the same as
determining data access: Access to data and controlling data can make
people feel powerful and important.

Data sharing can be mandated by a supervisor (if necessary, as a con-
dition to continued employment). However, it is often better to try to
persuade the data owner that there is benefit to everyone if the data
are shared. By the same token, the committee that makes decisions
about data access must also be willing to listen to the data owner’s
arguments in favor of keeping the data restricted and be willing to
agree if the arguments are compelling.

Backup and Recovery
Every discussion about database security should include at least a few
words about preparing for catastrophic failures. Disk drives develop
bad sectors, making it impossible to read or write data; natural disas-
ters can fill the server room with water. Earthquakes and fires happen.
When such failures occur, there is only one thing you can do: revert
to a backup copy. In this section we’ll look at making backups and
how they fit into a disaster recovery scheme.

345Backup and Recovery

Backup
We don’t usually think of backups as a part of a security strategy, but
in some circumstances it can be the most effective way to recover from
security problems. If a server becomes so compromised by malware
that it is impossible to remove (perhaps because virus protection
software hasn’t been developed for the specific malware), then a rea-
sonable solution is to reformat any affected hard disks and restore the
database from the most recent backup. Backups are also your only
defense against physical damage to data storage, such as a failed hard
disk.

A backup copy is a usable fallback strategy only if you have a backup
that isn’t too old and you are certain that the backup copy is clean (in
other words, not infected by malware).

How often should you make backup copies? The answer depends on
the volatility of your data. In other words, how much do your data
change? If the database is primarily for retrieval, with very little data
modification, then a complete backup once a week and incremental
backups every day may be sufficient. However, an active transaction
database in which data are constantly being entered may need com-
plete daily backups. It comes down to a decision of how much you
can afford to lose versus the time and effort needed to make backups
often.

Assuming that you have decided on a backup interval, how many
backups should you keep? If you back up daily, is it enough to keep
a week’s worth? Do you need less or more than that? In this case, it
depends a great deal on the risk of malware. You want to keep enough
backups that you can go far enough back in time to obtain a clean
copy of the database (one without the malware). However, it is also
true that malware may affect the server operating system without
harming the database, in which case the most recent backup will be
clean. Then you can fall back on the “three generations of backups”
strategy, where you keep a rotation of “child,” “father,” and “grandfa-
ther” backup copies.

It used to be easy to choose backup media. Hard disk storage was
expensive; tape storage was slow and provided only sequential
retrieval, but it was cheap. We backed up to tape almost exclusively
until recently, when hard disk storage became large enough and cheap
enough to be seen as a viable backup device. Some mainframe instal-
lations continue to use tape cartridges, but even large databases are

346 CHAPTER 15  Database Security

quickly being migrated to disk backup media. Small systems, which
once could back up to optical drives, now use disks as backup media
almost exclusively.

The issue of backup has a psychological as well as a technical compo-
nent: How can you be certain that backups are being made as sched-
uled? At first, this may not seem to be something to worry about, but
consider the following scenario (which is a true story).

In the mid-1980s, a database application was installed for an outpa-
tient psychiatric clinic that was affiliated with a major hospital in a
major northeastern city. The application, which primarily handled
patient scheduling, needed to manage more than 25,000 patient visits
a year, divided among about 85 clinicians. The database itself was
placed on a server in a secured room.

The last patient appointment was scheduled for 5 PM, which was
when most staff left for the day. However, the receptionist stayed until
6 PM to close up after the last patient left. Her job during that last
hour included making a daily backup of the database.

About a month after the application went into day-to-day use, the
database developer who installed the system received a frantic call
from the office manager. There were 22 unexplained files on the recep-
tionist’s computer. The office manager was afraid that something was
terribly wrong.

Something was indeed wrong, but not what anyone would have imag-
ined. The database developer discovered that the unidentified files
were temporary files left by the database application. Each time
the application was launched from the server, it downloaded the
structure of the database and its application from the server and
kept them locally until the client software was shut down. The
presence of the temporary files meant that the receptionist wasn’t
quitting the application but only turning off her computer. If she
wasn’t quitting the database application properly, was she making
backup copies?

As you can guess, she wasn’t. The only backup that existed was the
one the database developer made the day the application was installed
and the data were migrated into the database. When asked why the
backups weren’t made, the receptionist admitted that it was just too
much trouble. The solution was a warning from the office manager
and additional training in backup procedures. The office manager also
monitored the backups more closely.

347Backup and Recovery

The moral of this story is that just having a backup strategy in place
isn’t enough. You need to make certain that the backups are actually
being made.

Disaster Recovery
The term disaster recovery refers to the activities that must take place to
bring the database back into use after it has been damaged in some
way. In large organizations, database disaster recovery will likely be
part of a broader organizational disaster recovery plan. However, in a
small organization, it may be up to the database administrator to
coordinate recovery.

A disaster recovery plan usually includes specifications for the
following:

n	 Where backup copies will be kept so they will remain
undamaged even if the server room is damaged

n	 How new hardware will be obtained
n	 How the database and its applications are to be restored from

the backups
n	 Procedures for handling data until the restored database is

available for use
n	 Lists of those affected by the database failure and procedures

for notifying them when the failure occurs and when the
database is available again

The location of backup copies is vitally important. If they are kept in
the server room, they risk being destroyed by a flood, fire, or earth-
quake along with the server itself. At least one backup copy should
therefore be stored off-site.

Large organizations often contract with commercial data storage
facilities to handle their backups. The storage facility maintains
temperature-controlled rooms to extend the life of backup media.
They may also operate trucks that deliver and pick up the backup
media so that the off-site backup remains relatively current.

For small organizations, it’s not unheard of for an IT staff member to
take backups home for safekeeping. This probably isn’t the best strat-
egy, given that the backup may not be accessible when needed. Some
use bank safe deposit boxes for offsite storage, although those gener-
ally are only accessible during normal business hours. If a small
organization needs 24/7 access to off-site backup copies, the expense
of using a commercial facility may be justified.

348 CHAPTER 15  Database Security

When a disaster occurs, an organization needs to be up and running
as quickly as possible. If the server room and its machines are damaged,
there must be some other way to obtain hardware. Small organiza-
tions can simply purchase new equipment, but they must have a plan
for where the new hardware will be located and how network connec-
tions will be obtained.

Large organizations often contract with hot sites, businesses that
provide hardware that can run the organization’s software. Hot sites
store backup copies and guarantee that they can have the organiza-
tion’s applications up and running in a specified amount of time.

Once a disaster recovery plan has been written, it must be tested.
Organizations need to run a variety of disaster recovery drills, simulat-
ing a range of system failures. It is not unusual to discover that what
appears to be a good plan on paper doesn’t work in practice. The plan
needs to be modified as needed to ensure that the organization can
recover its information systems should a disaster occur.

The Bottom Line: How Much
Security Do You Need?
Many of the security measures described in this chapter are costly, such
as adding user authentication measures beyond passwords and user
IDs and contracting with a hot site. How important are high-end
security measures? Should your organization invest in them?

The answer depends on a number of factors but primarily on the type
of data being protected:

n	 Are there laws governing the privacy of the data?
n	 Could the data be used as the basis for identity theft?
n	 Do the data represent trade secrets that could seriously

compromise the organization’s market position should they
be disclosed?

The final question you must answer is how much risk you are willing
to tolerate. Assume that it is affordable to install enough security to
protect against about 80 percent of security threats. However, it may
well cost as much as that entire 80 percent to achieve an additional
10 or 20 percent of protection. If you are willing (and able) to tolerate
a 20 percent chance of a security breach, then the 80 percent security
is enough. However, if that is too much risk, then you will need to
take more security measures, regardless of cost.

349For Further Reading

For Further Reading
Bond, Rebecca, Kevin Yeung-Kuen See, Carmen Ka Man Wong, and

Yuk-Kuen Henry Chan. Understanding DB2 9 Security. IBM Press,
2006.

Clarke, Justin. SQL Injection Attacks and Defense. Syngress, 2009.
Davis, Michael. Hacking Exposed Malware and Rootkits. McGraw-Hill

Osborne Media, 2009.
Gertz, Michael, and Sushil Jajodia. Handbook of Database Security:

Applications and Trends. Springer, 2007.
Kenan, Kevin. Cryptography in the Database: The Last Line of Defense.

Addison-Wesley Professional, 2005.
Litchfield, David. The Oracle Hacker’s Handbook: Hacking and Defending

Oracle. Wiley, 2007.
Litchfield, David, Chris Anley, John Heasman, and Bill Grindlay. The

Database Hacker’s Handbook: Defending Database Servers. Wiley, 2005.
Natan, Ron Ben. Implementing Database Security and Auditing. Digital

Press, 2005.
Thuraisingham, Bhavani. Database and Applications Security: Integrating

Information Security and Data Management. Auerbach Publications,
2005.

Welsh, Thomas R. A Manager’s Guide to Handling Information Security
Incidents. Auerbach, 2009.

A data warehouse is a repository of transaction and nontransaction data
used for querying, reporting, and corporate decision making. The data
typically come from multiple sources. They are not used for day-to-day
corporate operations, and therefore once data have been stored, the
data generally don’t change as much as the databases we have used as
examples up to this point.

Because of the cost associated with creating and maintaining a data
warehouse, only very large organizations establish their own. Tables
can grow to hold millions of rows; storage capacities have now moved
into the petabyte range. Full-fledged data warehouses therefore require
mainframe processing capabilities or clusters of smaller servers.

351

16Chapter

Data Warehousing

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

1 Most data warehouse software is commercial. However, Infobright has released
an open-source product. For details, see http://pcworld.about.com/od/businesscenter/
Infobright-Releases-Open-sourc.htm.

Note: Who has data warehouses that large? Wal-Mart, for one. By the third
quarter of 2007, its data warehouse was 4 petabytes in size. To put that
much data into perspective, consider that all the data in U.S. academic
research libraries could be stored in 2 petabytes.

The software that manages a data warehouse is typically a relational
DBMS.1 However, data modeling is somewhat different because
the goals of the data warehouse are different from an operational
transaction-based database. The purpose of this chapter is to acquaint
you with how data warehouses fit into the information strategy of
large organizations, as well as how and why their designs differ from
the relational data model as it has been presented throughout this
book.

352 CHAPTER 16  Data Warehousing

Scope and Purpose of a Data Warehouse
To better understand the difference between a data warehouse (or its
smaller sibling, a data mart), let’s return to SmartMart, the retailer
whose operational database was presented in Chapter 13. SmartMart’s
operational system performs the following data management activities
for the organization:

n	 Tracks the location and stock level of inventory items
n	 Stores in-store and Web sales data, including promotions

applied at the time of purchase
n	 Handles employee scheduling and work assignments (feeds

into the payroll system)

The applications that run against the database answer queries such as
the following:

n	 Where is a specific product in stock, and how many are
available?

n	 What promotions apply to a product being purchased?
n	 What items were ordered on a specific Web order?
n	 Where and when is a specific employee working?

The queries provide information necessary for the day-to-day opera-
tions of the business. However, they aren’t intended to provide the
types of information that upper-level management needs to make
strategic decisions, such as which products sell well in which parts of
country, and to evaluate the results of previous decisions, such as
which promotions generated a significant rise in sales and should be
repeated. Although an operational database can provide summary
reports for a district manager showing how the stores in her territory
performed over various time periods, such reports are typically limited
to only a few years, and the content of the reports is fixed when the
report application is developed.

Strategic planning and reviews of the implementation of strategic
plans must be able to “slice and dice” the data in a variety of ways. In
other words, the queries need to allow data to be grouped by a variety
of descriptions—sales by state, sales by promotion type, sales by zip
code, sales by date, and so on—in an ad hoc manner. The data in an
operational database may be offloaded to archival storage after a year
or so to keep the database from becoming too large, but the data in
a data warehouse are usually kept indefinitely.

Operational systems are usually accompanied by a variety of prewrit-
ten applications, such as those that run on point of sale terminals and

353Scope and Purpose of a Data Warehouse

management summary reports such as that described earlier. Very few
users have ad hoc query access to the database. In contrast, there are
few (if any) prewritten applications for the data in a data warehouse.
Users work with a query tool that makes it possible to explore data
groupings however they choose and however the data might lead
them.

The primary activity performed using a data warehouse is data mining,
through which a user analyzes data to look for patterns in the data.
For example, data mining can identify which products sell best in
which parts of a company’s market. The results can be used to tailor
marketing campaigns to the location or to shift inventory levels to
better match demand.

A data mining activity conducted by the 7-Eleven Corporation, for
example, indicated that around 8 PM in the evening, sales of beer and
diapers went up. When you think about it, this makes sense: Fathers
are sent to the convenience store to get diapers in the early evening, and
while they are there, they decide to pick up some beer. The corporation
relocated merchandise in the stores so that diapers were placed next to
the beer coolers. As a result, beer sales went up significantly.

You have to be carefully when data mining, because statistically you
are bound to find “something” sooner or later. For example, a data
mining activity discovered that individuals with higher incomes
tended to own more expensive houses than those with lower incomes.
This type of fact is certainly true but of little practical use to anyone.

Because we continually add data to a data warehouse and rarely delete
data, data warehouses tend to be extremely large databases, with tables
containing millions and tens of millions of rows. The sheer volume
of the data and the processing power needed to perform ad hoc
queries against them require a mainframe rather than a desktop server.
Although many desktop servers do rival mainframes in raw processing
power, they can’t handle the high volume of I/O that data warehouses
require.

Note: Data marts, the smaller versions of full-fledged data warehouses, can
and often run on desktop servers.

Most of the large data warehouses today use relational DBMSs such
as DB/2 and Oracle, two of the few products capable of handling the
data volume.

354 CHAPTER 16  Data Warehousing

Obtaining and Preparing the Data
Early in the evolution of data warehousing, general wisdom suggested
that the data warehouse should store summarized data rather than the
detailed data generated by operational systems. Experience has shown,
however, that the data warehouse needs as much detail as the opera-
tional system. Storing the detail makes the data warehouse more flex-
ible, allowing users to query in any way they choose. You can always
produce summaries if you have the details, but if you only have sum-
marized data, such as totals and averages, you can’t recreate the detail
should you need it.

Most, but not all, of the data come from operational systems. Data
may also come from outside sources. For example, a company such
as SmartMart might want to include demographic data about geo-
graphic regions and would be more likely to purchase such data from
a government entity rather than attempt to collect those data itself.

Although a data warehouse may store much of the same data as an
operational database, there are some significant differences in the way
the data are handled:

n	 Operational databases are generally updated in real time. For
example, a sales transaction is entered into the database as the sale
occurs. In contrast, data warehouses are typically loaded in batches
at regular intervals, such as once a day.

n	 Operational systems are interested in the latest or current values of
many data elements, such as a customer’s current address and tele-
phone. Data warehouses, however, want to see how data have
changed over time and therefore need to keep historical data. This
means that there may be multiple values for a customer’s address;
each value will then be associated with the dates that the address
was valid. (See the section “Dates and Data” later in this chapter
for more information.)

n	 Missing values are acceptable in an operational database. For
example, if the attribute color doesn’t apply to an inventory item,
then the value for that column in the product’s row can simply be
left null. However, nulls in a data warehouse can produce unpre-
dictable or inaccurate results. Assume that we want to know the
percentage of products sold over the Web that aren’t shipped, such
as software that is downloaded. Such items have no shipping weight
and in the operational database, they produce no problems when
the shipping weight column remains null. But when the data ware-
house software is counting the number of items that aren’t shipped,

355Obtaining and Preparing the Data

the nulls aren’t specific enough. A null might represent an item that
isn’t shipped but might also represent a shipped item for which we
don’t know the shipping weight. Therefore, nulls in a data ware-
house need to be replaced with specific values, such as “doesn’t
ship” in our example of the nonshipping inventory items.

Data warehouses typically obtain their data from multiple sources, be
they operational systems or data obtained from outside the company.
This generates a significant problem when the data sources don’t
represent duplicated data in the same way. For example, two opera-
tional systems (say, one from sales and one from marketing) may use
different transaction identifiers, although many transactions appear in
both databases. The software that loads the data warehouse must
recognize that the transactions are the same and merge the data into
a single entity.

Before they are loaded into a data warehouse, data must be modified
so that they match whatever format is used in the data warehouse. In
addition, duplicated data must be identified and coalesced; nulls must
be replaced with specific values. These activities, along with the pro-
cedures for cleaning the data (removing errors), are performed before
the data are loaded.

The process of getting data into the data warehouse is known as extract-
transform-load (ETL). It is virtually impossible to purchase complete
software that will perform ETL processing because the sources of data
for each data warehouse are so different. In most cases, such software
must be custom-developed for each warehouse. Much of the expense in
setting up a data warehouse therefore comes from the writing and
testing of the ETL software. Running data through the ETL software and
maintaining the ETL software also consume a large portion of IT staff
effort in maintaining the data warehouse. This work takes place out of
the user’s sight in the “back room” where the data are prepared.

Note: When all or most of the data that go into a data warehouse come
from within an organization, the changes necessary to make data formatting
consistent can be made either in the feeder systems or during the ETL
process. If the organization has many operational systems—and, in
particular, is working with legacy software—then it may not be feasible to
modify the operational systems. However, many organizations can benefit
from a project that makes data formatting consistent across multiple
databases. The effort to make the changes may be worthwhile in and of
itself, even without the benefits to the ongoing ETL process.

356 CHAPTER 16  Data Warehousing

Data Modeling for the Data Warehouse
Because the purpose of a data warehouse differs from that of an opera-
tional system, there are differences in the types of tables that make up
the design. The most commonly used data model used in data ware-
houses is dimensional modeling. As you will see, it takes its basic pre-
cepts from the relational data model, such as tables and a variety of
keys. However, the tables are generally not normalized. In fact, they
are really only in first normal form because many tables contain data
about multiple entities. They are nonetheless legal relations because
they are two-dimensional tables without repeating groups.

Dimensional Modeling Basics
Dimensional modeling uses two major types of tables: fact tables and
dimension tables. Fact tables hold numeric data that can be summarized
as needed; dimension tables hold the descriptive criteria by which a
user can organize the data. As a first example, consider Figure 16-1.

Dimension_date

*date_key
full_date

day_of_week
day_of_month
day_of_year

text_day
text_month
text_year

Fact_inventory_level

*@date_key
*@product_key
*@location_key

quantity_on_hand

Dimension_product

*product_key
product_name
product_unit

product_shipping_weight
product_UPC

product_web_orderable

Dimension_location

*location_key
store_or_warehouse_flag

location_id
location_street
location_city

location_state_code
location_state_text

location_zip

n  Figure 16-1  Dimension and fact tables to capture inventory levels at a given point in time.

357Data Modeling for the Data Warehouse

These tables support querying the data warehouse about inventory
levels of products on any given date. They illustrate several of the
characteristics of dimensional modeling that are different from pure
relational design.

Natural keys, such as UPCs, ISBNs, or invoice numbers, are not used
as all or part of the primary keys. Instead, each row in a table is given
a unique integer key. These keys speed up joins between the fact and
dimension tables. For example, the primary key of the dimension_date
table is an arbitrary integer rather than the date itself. When the
natural keys are included in a table, they are known as deprecated
dimensions. (Although they are natural keys, they are not referenced by
any foreign keys in the data warehouse.)

Fact tables contain foreign keys and data that can be summarized. For
example, the fact_inventory_level table contains foreign keys to the
date, location, and product dimension tables. The summarizable data
item is the quantity in stock. The primary key of the table is the con-
catenation of two or more of the foreign keys (all of which are arbi-
trary integer keys). Data warehouses use referential integrity to ensure
that the arbitrary foreign keys used in the fact tables reference existing
dimension table rows. However, unlike true relational databases, the
dimensional model foreign keys are always meaningless. Data ware-
houses also enforce non-null, unique primary keys.

Dimension tables contain descriptive data. The dimension_date table,
for example, has its unique integer key along with attributes for the
many ways in which a person might want to use a date in a query.
There will be one row in a date dimension table for each date that
might be used by any query against the data warehouse.

What can a user do with the dimensional model of the inventory
levels? There are a variety of analyses that the model can satisfy,
including the following:

n	 How do the inventory levels of product X vary from month to
month?

n	 How do the inventory levels of product X vary from month to
month and store to store?

n	 Which stores show the greatest/least inventory of product X
after the winter holiday shopping season?

n	 Which products had more inventory in the warehouses for
product X than in stores during the winter holiday season?

n	 Which warehouses had the total lowest inventory at the end of
each month?

358 CHAPTER 16  Data Warehousing

Dates and Data
Unlike operational databases, data warehouses keep track of data
changes over time. For example, the SmartMart operational database
is concerned about inventory levels at the current time; inventory
levels a week ago aren’t particularly relevant. However, the design in
Figure 16-1 takes a snapshot of inventory levels at some specified date.
The data warehouse will therefore contain many snapshots, making
possible the analysis of inventory levels over time.

In some circumstances, this can present some problems to the data
warehouse designer, especially where human data such as addresses
are concerned. Consider, for example, the simple customer dimension
in Figure 16-2. The problem with this design is that over time, custom-
ers change their addresses and phone numbers. An analysis based on
customer location during a specific time period may be incorrect if
there are multiple addresses for the same customer.

One solution is to include only the most recent address for a customer
in the data warehouse. However, this makes it impossible to analyze
sales by location, given that the address in the related customer row
may not have been the address when the sale was made. Another
solution is to add the dates during which an address was valid to the
customer dimension table, as was done in Figure 16-3. There will then
be one row in the table for each address used by a customer when
making purchases. Because each sale is related to the customer based
on an arbitrary customer key rather than a concatenation of customer
data, there will be no problem determining the correct address for a
specific sale (see Figure 16-4). Queries based on location and date will
then need to include logic to ensure that an address was valid during
the time period of the analysis.

Data Warehouse Appliances
During the early 1980s, when relational databases were supplanting
those based on older data models, several hardware vendors tried to
sell special-purpose computers called database machines. The idea was
to take a minicomputer and use it to run just a DBMS (with an OS
that was specifically tailored to that purpose). It would be connected
to another computer in a master-slave relationship. Requests for data-
base processing came first to the master machine, which passed them
to the database machine. The database machine completed all data-
base activity and sent the results back to the master computer, which
in turn sent the data to the user.

Dimension_customer

*customer_key
customer_first_name
customer_last_name

customer_street_address
customer_city

customers_state
customer_zip

customer_phone

n  Figure 16-2  A simple customer
dimension.

359Data Warehouse Appliances

In theory, by offloading database processing to a dedicated machine,
overall system performance (including database performance) would
improve. In practice, however, only database applications that were
severely CPU-bound showed significant performance improvements
when running on a database machine. The overhead needed to move
queries and data to and from the database machine erased any per-
formance gains that occurred from relieving the master computer’s
CPU of database work. By 1990, almost no one had heard of a data-
base machine.

The rise of data warehouses has seen the reappearance of computers
dedicated to database work. Today the situation is very different
because a dedicated database computer is really a special-purpose
server that is connected directly to a network.

One such hardware configuration, for example, is being offered by
Dell, EMC, and Oracle. The appliance includes a Dell rack server and

Dimension_date

*date_key
full_date

day_of_week
day_of_month
day_of_year

text_day
text_month
text_year

Dimension_customer

*customer_key
customer_first_name
customer_last_name

customer_street_address
customer_city

customer_state
customer_zip

customer_phone
@customer_address_start_date_key
@customer_address_end_date_key

n  Figure 16-3  Including valid dates for an address.

360 CHAPTER 16  Data Warehousing

an EMC networked storage array loaded with Oracle’s data warehouse
software.2 Terradata also provides a server-class data warehouse appli-
ance (hardware and Terradata’s data warehouse software) that scales
to 170 Tb. It is designed for relatively small data warehouses and data
marts.3

The benefit of such a preconfigured solution is that it simplifies setting
up the data warehouse. An appliance such as Terradata’s also means
that the entire data warehouse infrastructure is supported by a single
vendor, which many organizations prefer.

Dimension_date

*date_key
full_date

day_of_week
day_of_month
day_of_year

text_day
text_month
text_year

Fact_sale

*sale_numb
@date_key

@customer_key
sale_total_amt

web_or_in-store

Dimension_customer

*customer_key
customer_first_name
customer_last_name

customer_street_address
customer_city

customer_state
customer_zip

customer_phone
@customer_address_start_date_key
@customer_address_end_date_key

n  Figure 16-4  Relating a customer with a time-sensitive address to a sale.

2 For details, see www.intelligententerprise.com/showArticle.jhtml?articleID=210603924.
3 More details can be found at www.intelligententerprise.com/channels/business_
intelligence/showArticle.jhtml?articleID=212101077.

361For Further Reading

For Further Reading
Golfarelli, Matteo, and Stefano Rizzi. Data Warehouse Design: Modern

Principles and Methodologies. McGraw-Hill Osborne, 2009.
Hammergren, Thomas C. Data Warehousing for Dummies, 2nd ed. For

Dummies, 2009.
Imhoff, Claudia, Nicholas Galemmo, and Jonathan G. Geiger. Mastering

Data Warehouse Design: Relational and Dimensional Techniques. Wiley,
2003.

Kimball, Ralph, and Joe Caserta. The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning. Wiley, 2004.

Kimball, Ralph, and Margy Ross. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling, 2nd ed. Wiley, 2002.

Kimball, Ralph, Margy Ross, Warren Thornwaite, Joy Mundy, and Bob
Becker. The Data Warehouse Lifecycle Toolkit, 2nd ed. Wiley, 2008.

Pyle, Dorian. Data Preparation for Data Mining. Morgan Kaufmann,
1999.

Rainardi, Vincent. Building a Data Warehouse: With Examples in SQL
Server. Apress, 2007.

Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Addison-Wesley, 2005.

Westphal, Christopher. Data Mining for Intelligence, Fraud & Criminal
Detection: Advanced Analytics & Information Sharing Techniques. CRC,
2008.

As early as the 1960s, there was an expression in computing that most
people in the field agreed was true: “Garbage in, garbage out.” (It was
abbreviated GIGO and was pronounced “guy-go.”) We worried about
the effect of the quality of input data on the output of our programs.
In the intervening years, during the rise of databases, GIGO was largely
forgotten. Today, however, with some data warehouses approaching
a petabyte of data, the quality of that data has become extremely
important once again.

Exactly what do we mean by “data quality”? To be useful, the data in
a database must be accurate, timely, and available when needed. Data
quality ensures the accuracy and timeliness of data and, as you will
see, it is much easier to ensure data quality before data get into a data-
base than after they are stored.

363

17Chapter

Data Quality

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

Note: Much of what we do to ensure data quality is just plain common
sense. In fact, you may find yourself saying, “Well, that’s obvious” or “Of
course you would do that” as you read. The truth is, however, that as logical
as many data quality procedures seem to be, some organizations simply
overlook them.

Why Data Quality Matters
Why do we care so much about data quality? Because we need to be
confident that what we retrieve from a database is reliable. We will be
making both operational and strategic decisions based on what we
retrieve from a database. The quality of those decisions is directly
related to the quality of the data that underlies them.

364 CHAPTER 17  Data Quality

Consider, for example, the decisions that a buyer makes for the cloth-
ing department of a retail chain such as SmartMart. Choices of what
to stock for the winter holiday shopping season are made nine to 12
months in advance, based on what sold the previous year and the
buyer’s knowledge of clothing styles. The buyer therefore queries the
operational database to create a report showing how much of each
style sold at each store and on the Web. She can see that jeans sell
well in one particular store in a region, while another store sells more
dress pants. She will then adjust her orders to reflect those sales
patterns.

However, if the sales data are incorrect, she runs the risk of ordering
the wrong type of merchandise for each store. SmartMart can certainly
move inventory from one store another, but during the holiday shop-
ping season, customers are often unable to wait for merchandise to
arrive. They will either purchase a different item or go to another
retailer. In the long run, SmartMart will lose sales.

We can probably come up with hundreds of scenarios in which inac-
curate data cause problems for businesses: customers who can’t be
contacted because of out-of-date phone numbers or e-mail addresses,
orders missing items that are never shipped, customers who aren’t
notified of recalls, and so on. The bottom line is that when we have
problem data, business suffers.

Note: It is often better to have a database application crash than it is to have
a report that contains inaccurate results. In the former case, it’s clear that
you have a problem; in the latter case, there may be no indication that the
report is invalid, so you’ll go ahead and use it, bad data and all.

Data quality problems arise from a wide range of sources and have
many remedies. Throughout the rest of this chapter we will look at a
variety of data quality ills, how they are likely to occur, and what you
can do to prevent them, or at least minimize their occurrence.

Recognizing and Handling Incomplete Data
One source of data quality problems is missing data. There are two
general sources: data that are never entered into the database and data
that are entered but deleted when they shouldn’t be.

365Recognizing and Handling Incomplete Data

Missing Rows
Missing rows occur for a number of reasons. One common reason is
that someone has been using low-level data manipulation tools to
“maintain” the database and in the process either deleted rows or
missed rows when copying data from one table to another.

Note: The ability to manipulate rows in this way with a low-level tool violates
one of Codd’s rules for a relational database, which states that it should not
be possible to circumvent integrity rules with low-level tools.

Missing rows can be very hard to detect if their absence doesn’t violate
referential integrity constraints. For example, it’s impossible to detect
that an item is missing from an order—until the customer contacts
you about not receiving the item. It’s not necessarily obvious, however,
where the error has occurred. Any of the following might have
happened:

n	 An item was lost in transmission from the customer’s computer to
the vendor’s computer (Internet order), or a customer service rep-
resentative didn’t enter the item (phone or mail order).

n	 An error in one of the vendor’s application programs missed enter-
ing the row.

n	 Someone maintaining the database with a low-level data manipula-
tion tool accidentally deleted the item.

It’s a relatively easy matter to enter the missing item and ship it to the
customer. But what is to prevent the error from occurring again? To
do that, we have to find the cause of the error and fix it, and because
the possible causes are so diverse, it will be a long, difficult process.
Ultimately, we can fix a bug in an application program and put poli-
cies in place that control the use of maintenance languages. We can
even conduct additional training for data entry personnel to make
them more careful when they enter ordered items. We cannot, however,
control packets lost on the Internet.

Missing Column Data
SQL is based on what we call three-valued logic. The result of a logical
comparison between data and a search criterion can be true, false, or
maybe. The maybe occurs when a column contains null because no

366 CHAPTER 17  Data Quality

determination can be made. Sometimes nulls are harmless—we don’t
care that the data are missing—but in other situations we wish we had
the data. Currently there is no way to distinguish between the two
types of null, but some database theorists have proposed that DBMSs
should support four-valued logic: true, false, maybe and it’s okay, and
maybe and it’s not okay. It’s the nulls that fall into the last category
that cause problems with missing data. For example, assume that a
customer table has a column for the customer’s country. If the cus-
tomer is in the country where the company is based, a null in the
country column doesn’t really matter. However, if the customer is in
another country, then we need to know the country, and leaving that
value null leads to problems of undeliverable marketing mailings.

Missing column data can be prevented relatively easily by disallowing
nulls in those columns that must have values.

Missing Primary Key Data
A relational database with tight integrity controls prevents data from
entering a database because part of a primary key is null. From the
viewpoint of data retrieval, this is a positive result because it ensures
that every piece of data that makes it into the database is retrievable.
However, the lack of a primary key may mean that a set of data are
never stored in the database, despite the data being important to the
business operating the database.

One situation in which this problem occurs is when entities that are
only at the “one” end of relationships have no obvious primary key
attribute and no arbitrary key has been created. The primary key is
therefore created from the concatenation of two or more columns. For
example, if an employee entity has no employee number attribute,
then a primary key might be constructed of first name, last name, and
phone number. If a phone number isn’t available, the data can’t be
entered because there isn’t a complete primary key; the data are never
stored. In this case, the solution lies in the database design. Those
“top” entities that do not have inherent primary keys should be given
arbitrary primary keys. Those arbitrary keys then filter down through
the design as parts of foreign keys and ensure that primary key values
are available for all instances of all entities.

Recognizing and Handling Incorrect Data
Incorrect data are probably the worst type of problems to detect and
prevent. Often the data aren’t detected until someone external to an

367Recognizing and Handling Incorrect Data

organization makes a complaint. Determining how the error occurred
is equally difficult because sometimes the problems are one of a kind.

Wrong Codes
Relational databases make significant use of coded data. The codes are
defined in tables related to the tables where they are used through
primary key–foreign key relationships. For example, we often store the
names of U.S. states as two-letter abbreviations and then use a table
that contains the abbreviation and the full state name for validation
and output (when the full state name is needed).

Coding, however, is a two-edged sword. Consider the following sce-
nario: A company divides its products into categories, each of which
is represented by a three-letter code. The codes are stored in a table
with the code and a description of the product category (e.g., PEN and
“custom imprinted pens,” WCP and “white cups,” and so on). When
the company decides to carry a new product, the application program
used by the staff allows the user to make up a code and enter the code
and its description. To make things easier for the user, the user doesn’t
need to explicitly enter the new code. During data entry, the applica-
tion captures a failed referential integrity check, automatically asks the
user for the code description, and creates the new row in the code
table. The problem here, however, is if the user mistypes a code for
an existing product, the application handles it as a new product.
Therefore, many codes for the same product could exist in the data-
base. Searches on the correct code will not retrieve rows containing
the incorrect codes.

The solution is to restrict the ability to enter new codes. In some
organizations, only database administrators have the right to modify
the master code tables. If a new product needs to be entered, the DBA
assigns and enters the code prior to a clerical worker entering product
data. Application programs then retrieve the list of codes and make it
available to data entry personnel.

Wrong Calculations
One of the decisions that a database designer makes is whether to
include calculated values in a database or to compute them as needed
on the fly. The decision depends on many factors, including the
overhead to perform the calculations and how often they are used.
We often, for example, compute and store line costs in a line items
table:

368 CHAPTER 17  Data Quality

line_items (order_numb, item_numb, quantity_ordered,
line_cost)

The line cost is computed by retrieving the cost for each item from
the items table (item number is the foreign key) and then multiplying
it by the quantity ordered. The lookup of the price is quick and the
computation is simple.

What happens, however, if the formula for computing the line cost is
incorrect? Primarily, the total amount of the order (which is also often
stored) will be incorrect. It is much more likely that someone will
notice that the order total is incorrect, but it may require a bit more
investigation to find the specific error and track down its source.

Many of the automatic calculations performed by a DBMS when data
are modified are performed using triggers, small procedures stored in
the database whose executions are triggered when specific actions
occur (for example, storing a new row). An error in an automatic
calculation therefore means examining not only application programs
but all relevant database triggers. Nonetheless, once an error in a
computation has been identified and corrected, it is unlikely that
exactly the same problem will occur again.

Wrong Data Entered into the Database
We humans are prone to typing errors. Despite all our best efforts at
integrity constraints, we are still at the mercy of simple typos. If a user
types “24 West 325th Street” instead of “325 West 24th Street,” you
can be sure that the customer won’t receive his or her order. The
transposition of a pair of letters or digits in a post code or zip code is
all it takes to separate a customer from his or her purchase!

The typographical error is the hardest error to detect because we rarely
know about it until a customer complains. The fix is usually easy: edit
the data and replace the error with the correct values. However, deter-
mining how the error occurred is even tougher than finding the source
of missing rows. Was it simply a one-time typing error, in which case
an apology usually solves the problem, or is there some underlying
application code problem that is causing errors?

The best strategy for separating typos from system errors is to keep
logs of errors. Such logs should include the table, row, and column
in which the error was detected, when the error was reported, and who
was responsible for entering the erroneous data. The intent here is not

369Recognizing and Handling Incomprehensible Data

to blame an employee but to make it possible to see patterns that may
exist in the errors. When multiple errors are in the same column in
the same table, the evidence points toward an underlying system
problem. When many errors are made by the same employee,
the evidence points to an employee who needs more training.
However, a random pattern in the errors points to one-of-a-kind typo-
graphical errors. (Whether the random errors are at a level that sug-
gests the need for more training for all data entry personnel depends,
of course, on the organization and the impact of the errors on the
organization.)

Violation of Business Rules
A business often has rules that can be incorporated into a database so
that they can be enforced automatically when data are modified. For
example, a book club that bills its customers after shipping may place
a limit on customer accounts. The orders table includes a trigger that
adds the amount of a newly stored order to the total amount owed in
the customer table. If the customer table has no constraint to limit the
value in the total amount owed column, a customer could easily run
up a balance beyond what the company allows.

It is certainly possible to enforce such constraints through application
programs, but there is no guarantee that all data modification will be
made using the application program. In all cases where business rules
can be implemented as database constraints, you should do so. This
relieves application programmers of the responsibility of enforcing
constraints, simplifies application program logic, and ensures that the
constraints are always enforced.

Recognizing and Handling
Incomprehensible Data
Incomprehensible data are data we can’t understand. Unlike incorrect
data, it is relatively easy to spot incomprehensible data, although
finding the source of the problem may be as difficult as it is with
incorrect data.

Multiple Values in a Column
Assume that you are working with a personnel database. The depen-
dents table has the following structure:

370 CHAPTER 17  Data Quality

Dependents (employee_ID, child_first_name,
child_birth_date)

The intent, of course, is that there will be one row in the table for each
dependent of each employee. However, when you issue a query to
retrieve the dependents of employee number 12, you see the
following:

Employee_ID child_first_name child_birth_date
12 Mary, John, Sam 1-15-00

Clearly, something is wrong with these data. As we discussed earlier
in this book, putting multiple values in the same column not only
violates the precepts of the relational data model but makes it impos-
sible to associate data values accurately. Does the birth date apply to
the first, second, or third dependent? Or does it apply to all three?
(Triplets, perhaps?) There is no way to know definitively from just the
data in the database.

Character columns are particularly vulnerable to multiple data values,
especially where names are concerned, because they must be left
without constraints other than a length. You can’t attach constraints
that forbid blanks or commas because those characters may be part
of a legitimate name. The only solution to this type of problem is user
education: You must teach the people who are doing the data entry
that multiple values mean multiple rows.

Orphaned Foreign Keys
Much of the querying we do of a relational database involves joins
between primary and foreign keys. If we delete all of the foreign key
references to a primary key, then the row containing the primary key
simply doesn’t appear in the result of a join. The same thing occurs if
the primary key referenced by a foreign key is missing: The rows with
the foreign keys don’t appear in the result of a join. The former may
be a problem, but the latter always is. For example, a customer with
no orders in a database may be just fine, but orders that can’t be joined
to a customer table to provide customer identification will be a major
headache.

A relational database must prevent these “orphaned” foreign keys
from existing in the database, and the solution should be provided
when the foreign keys are defined. As you will remember from Chapter
9, the definition of a foreign key can contain an ON DELETE clause.

371Recognizing and Handling Inconsistent Data

Its purpose is to specify what should happen to the row containing a
foreign key when its primary key reference is deleted. The DBMS can
forbid the deletion, set foreign key values to null, or delete the foreign
key row. Which you choose, of course, depends on the specific needs
of your database environment. Nonetheless, an ON DELETE clause
should be set for every foreign key so that orphans never occur.

Recognizing and Handling
Inconsistent Data
Inconsistent data are those that are correct and make sense, but when
they are duplicated throughout the database and/or organization, they
are not the same. We normalize relations to help eliminate duplicated
data, but in large organizations there are often multiple databases that
contain information about the same entities. For example, a retail
company might have one database with customer information for use
in sales and another for use in customer service. If the data are to be
consistent, then the name and address of a customer must be stored
in exactly the same way in both databases.

Note: The best way to handle inconsistent data is the same regardless of the
type of inconsistent data. The solution is therefore presented at the end of
this section.

Inconsistent Names and Addresses
When names and addresses are repeated throughout an organization,
it’s tough to keep the data consistent. By their very nature, name and
address columns have few constraints because the variation of the
data in those columns is so great. Adding to the problem is the dif-
ficulty of detecting when such data are inconsistent: You rarely know
until someone complains or you have to match data between
databases.

Inconsistent Business Rules
Some business rules can be implemented as database constraints.
When there are multiple data stores within an organization, those
constraints may not be applied consistently. Assume, for example, that
the highest salary paid by an organization is $125,000 annually. There
is a central personnel database and smaller personnel databases at

372 CHAPTER 17  Data Quality

each of six satellite offices. The central database contains all personnel
data, but the satellite databases contain data only for the site at which
they are installed. The satellite databases were designed and installed
at the same time. The salary column in the employee table has the
correct CHECK clause to limit the salary value. However, IT ran into
a problem with that check clause at headquarters because the CEO’s
salary was $1,500,000. Their solution was simply to modify the check
clause to allow for the higher salary. The CEO is an exception to the
rule, but once the CHECK clause was modified, anyone who was
entered into the central database could be given a higher salary without
violating a table constraint.

Now assume that the CEO hires a new manager for one of the satellite
offices at a salary of $150,000. Someone on the Human Resources
staff enters the new employee’s information into the database. Because
the constraint on the salary limit has been removed, the data are
stored. However, when the update is propagated to the appropriate
satellite database, the constraint on the employee table prevents the
update. The organization is left with a distributed database in an
inconsistent state.

Inconsistent Granularity
Granularity is the level of detail at which data are stored in a database.
When the same data are represented in multiple databases, the granu-
larity may differ. As an example, consider the following table:

order_lines (order_numb, item_numb, quantity, cost)
order_lines (order_numb, item_numb, cost)

Both tables contain a cost attribute, but the meaning and use of the
columns are different. The first relation is used in the sales database
and includes details about how many of each item were ordered and
the amount actually charged for each item (which may vary from what
is in the items table). The second is used by marketing. Its cost attri-
bute is actually the line cost (quantity × cost from the sales database).
Two attributes with the same name therefore have different granulari-
ties. Any attempt to combine or compare values in the two attributes
will be meaningless.

This type of problem needs to be handled at an organizational level
rather than at the single database level. See the last part of this section
for details.

373Recognizing and Handling Inconsistent Data

Unenforced Referential Integrity
In the preceding section we discussed the problem of orphaned foreign
keys. They represent a violation of referential integrity that occurs after
the data have been stored and can be handled with strict foreign key
definitions when the tables are created. However, what happens if
foreign key constraints are never added to a table definition? Foreign
keys may then be orphaned as soon as they are added to the database
because there is nothing to ensure that they reference existing primary
keys.

As you might expect, the solution to this problem is straightforward:
Ensure that referential integrity constraints are present for all foreign
keys. Make it a policy that everyone who has the right to create tables
in the database must follow this rule.

Inconsistent Data Formatting
There are many ways to represent the same data, such as telephone
numbers and dates. Do you surround an area code with parentheses,
or do you put a hyphen after it? Do you store the area code in the
same column as the rest of the phone number, or is it stored in its
own column? Do dates have two- or four-digit years, and which comes
first, the month, the day, or the year? How are months represented
(numbers, codes, full words)? There are so many variations for tele-
phone numbers and dates that unless there is some standard set for
formatting throughout an organization’s data management, it may be
nearly impossible for queries to match values across databases.

Preventing Inconsistent Data on an
Organizational Level
There is no easy solution to preventing inconsistent data through an
organization. It requires planning at the organizational level and a
commitment by all those who are responsible for databases to work
together and, above all, to communicate.

A large organization with multiple databases should probably be
involved in data administration, a process distinct from database admin-
istration. Data administration keeps track of where data are used
throughout an organization and how the data are represented. It pro-
vides oversight for data at an organizational level rather than at the

374 CHAPTER 17  Data Quality

database level. When the time comes to use the data in a database or
application program, the developers can consult the metadata (data
about data) that have been identified through the data administration
process and then determine how the data should be represented to
ensure consistency.1

It is important to keep in mind, however, that even the best data
administration can’t totally protect against inconsistent names and
addresses. Although organizational metadata can specify that the
abbreviation for street is always “St.” and that the title for a married
woman is always stored as “Mrs.,” there is no way to ensure that names
and addresses are always spelled consistently. Human error will always
be a factor. When that occurs, the best strategy may be just to smile
sweetly to the complaining customer and fix the problem.

Employees and Data Quality
One recurrent theme throughout this chapter is that many data quality
problems are the result of human error. They may be attributable to
a single individual or to a group of employees as a whole. But how
do you know? The database needs to keep track of who enters data.
The easiest way to implement such audit trails is to add a column for
an employee ID to each table for which you want to keep data entry
data. Assuming that an employee must log in to the system with a
unique user name before running any application programs, the appli-
cation programs can tag rows with the employee ID without any
employee intervention.

If you need to keep more detailed modification information—in par-
ticular maintaining an audit trail for each modification of a table—
then you need a further modification of the database design. First, you
give each row in each table a unique numeric identifier:

customer (customer_numb, customer_first_name,
customer_last_name, customer_street,
customer_city, customer_zip, customer_phone,
row_ID)

The row ID is an integer that is assigned when a row is created. It is
merely a sequence number that has no relationship to the row’s posi-

1 A discussion of data administration is beyond the scope of this book. If you would
like to learn more, see the Inmon title in the For Further Reading section at the end
of this chapter.

375For Further Reading

tion in the table or to the customer number. The row ID continues to
get larger as rows are entered to the table; row IDs for deleted rows
are not reused.

Note: Should a table be old enough or large enough to run out of row IDs,
row IDs for deleted rows can be reused, or row IDs can be reassigned to the
entire table in a contiguous sequence (perhaps using a larger storage space,
such as a 64-bit rather than a 32-bit integer). This is a rather lengthy process
because all foreign keys that reference those row IDs must be updated as
well.

The design must then include a table to hold the audit trail:

customer_mods (row_ID, modification_date,
column_modified, employee_ID)

A search of this table will indicate who made a change to which
column on which date in the customer table. Alternatively, row IDs
can be unique throughout the database (rather than within each table)
and all audit information kept in one table:

modifications (table_name, row_ID, modification_date,
column_modified, employee_ID)

An even more detailed audit trail could include columns for the old
value in the modified column and the new value.

For Further Reading
Arkady, Maydancik. Data Quality Assessment. Technics Publications,

2007.
Batini, Carlo, and Monica Scannapieco. Data Quality: Concepts,

Methodologies and Techniques. Springer, 2006.
English, Larry P. Improving Data Warehouse and Business Information

Quality: Methods for Reducing Costs and Increasing Profits. Wiley, 1999.
Fisher, Craig, Eitel Lauria, Shobha Chengalur-Smith, and Richard Wang.

An Introduction to Data Quality. M.I.T. Information Quality Program,
2006.

Inmon, William H., Bonnie O’Neil, and Lowell Fryman. Business
Metadata: Capturing Enterprise Knowledge. Morgan Kaufmann, 2007.

McGilvray, Danette. Executing Data Quality Projects: Ten Steps to Quality
Data and Trusted Information. Morgan Kaufmann, 2008.

Olson, Jack E. Data Quality: The Accuracy Dimension. Morgan Kaufmann,
2003.

Redman, Thomas C. Data Quality: The Field Guide. Digital Press, 2001.

XML (Extensible Markup Language) is a cousin of HTML that has
become important as a data management tool. XML documents are
text files marked with tags that indicate the structure of the content of
the files. XML is software and platform independent, which means
that it provides an excellent environment for transferring data between
database systems.

XML has been accepted by the Word Wide Web Consortium (W3C)
and has become a de facto standard for cross-platform data transfers.
Because it is an open source specification, a number of application
programming languages have been built on top of it, such as XHTML,
RSS, MathML, GraphML, Scalable Vector Graphics, and MusicXML.

Major DBMSs handle XML in two ways. Some store XML documents
as binary objects. The documents are not searchable and therefore may
be accompanied by keywords assigned to the documents for search
purposes. The documents are stored and retrieved as complete units.
Other DBMSs store XML data in standard character columns and then
generate complete documents for output. Although incorporating
XML still isn’t a “typical” relational DBMS activity, its use is expanding,
and you may well encounter an organization that uses it.

XML Syntax
Like HTML, XML documents contain tags that identify elements in the
document. However, each markup language has a different purpose.
HTML tags communicate with a Web browser, telling the browser how
to display the page. XML tags, however, identify data elements and
how they are related to one another. HTML tags are defined as part of
the language specification. In contrast, almost all XML tags are defined
by the person or software writing the XML.

377

18Chapter

XML

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

378 CHAPTER 18  XML

To see how it works, consider the XML in Figure 18-1, which contains
data for an instance of SmartMart’s Product entity. Notice first that
tags are surrounded by < and >, just as they are in HTML. Most tags
are paired, with the closing tag beginning with /. The data are text.
(Because there is no provision for storing binary images, the product
image is supplied as the URL of a server where all the images are
stored. An application program will be needed to resolve the URL,
retrieve the image file, and store the image in the database.)

The tags in Figure 18-1 are also nested. The <entities> tag is known as
the root tag because it represents the top of the tag hierarchy. The
<product> tag is nested underneath it, with all of the product’s attri-
butes nested inside the product. Nested paired tags work just like
parentheses in programming languages: The last opened tag must also
be the first tag closed. To transfer all of SmartMart’s product data from
one database to another, an XML document would contain multiple
<product> tags, each with different data. Elements that have no data
can be handled as solo tags that contain only an opening tag that ends
with /.

Elements can also have attributes. In this case, the term is used some-
what differently from how it is used in a database environment. Here
it is used for data values that apply to a specific element as “children”

<?xml version=”1.0”?>
<!Product entity data!>

<entities>
<product>

<UPC>1234567890123</UPC>
<manufacturer>Soup Company</manufacturer>
<product_name>Pea soup</product_name>
<product_unit>can</product_unit>
<shipping_weight>16 oz.</shipping_weight>
<product_image>http://private.smartmart.com/images/

1234567890123.jpg</product_image>
<web_orderable>F</web_orderable>

</product>
</entities>

n  Figure 18-1  An XML instance of the SmartMart product entity.

379XML Syntax

of that element. In Figure 18-2, for example, you can see a modified
version of the product entity instance. The product entity and shipping
weight elements now have attributes.

XML also supports something known as an entity that has nothing to
do with the entities represented in a database. Instead, XML entities
are placeholders for special characters that have meaning to an XML
parser, making it possible to include those characters in data. The five
predefined entities can be found in Table 18-1. Additional entities can
be created as needed.

<?xml version=”1.0”?>
<!Product entity data!>

<entities>
<product>

<UPC>1234567890123</UPC>
<manufacturer>Soup Company</manufacturer>
<product_name>Pea soup</product_name>
<product_unit pack_size=”48”

packaging=”carton”>can</product_unit>
<shipping_weight unit=oz”>16</shipping_weight>
<product_image>http://private.smartmart.com/images/

1234567890123.jpg</product_image>
<web_orderable>F</web_orderable>

</product>
</entities>

Figure 18-2  The XML instance from Figure 18-1 with element attributes.

Table 18-1  XML Predefined
Entities

Character Entity

& &

< <

> >

‘ '

“ "

380 CHAPTER 18  XML

XML Document Correctness
XML documents may be examined by XML conforming parsers to deter-
mine if they meet basic standards for correctness. At the lowest level,
an XML document needs to be well formed, in which case it adheres
to the basic syntax rules, such as having a </> tag for each < > tag.
XML documents that are valid also conform to rules governing their
content. For example, a valid document contains only those elements
that appear in a related XML schema. (See the next section for more
information.)

Well-formed documents must meet a number of rules, including the
following:

n	 Elements that have content must have a start tag and an end
tag (<tag_name>data</tag_name>).

n	 Elements that may be empty can use a single tag as a
shorthand for the paired tags required by elements that have
content (<tag_name/>).

n	 Attribute values must be surrounded by quotes (either single
or double).

n	 Characters used to delimit items in an XML document must
be represented within data by entities.

n	 Like parentheses and braces in computer programs, tags can
be nested but must not overlap. In other words, the last
opened tag must be the next tag closed.

Note: Conforming parsers for checking the correctness of XML
documents are available as stand-alone tools. However, XML-enabled
Web browsers such as Firefox can also do the job. Simply attempt to
open the XML document in the browser. If the browser can’t interpret
the document, it will let you know.

XML Schemas
The syntax in Figures 18-1 and 18-2 is designed to transfer data, but
it isn’t suited for defining the structure of an XML document. XML has
therefore been extended to support several schema languages. XML
schemas are intended to specify the structure of XML documents that
contain data. Documents can then be validated against the schema to
ensure that they adhere to the format that the DBMS expects. XML

381XML Schemas

schemas can also be used to specify the format for an XML document
generated as output by a DBMS.

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="product">
<xs:complexType>

<xs:sequence>
<xs:element name="UPC" type="xs:string" />

<xs:element name="manfacturer" type="xs:string" />
<xs:element name="product_name" type="xs:string" />
<xs:element name="product_unit" type="xs:string" />
<xs:element name="shipping_weight" type="xs:string" />
<xs:element name="product_image" type="xs:string" />

<xs:element name="web_orderable" type="xs:string" />
</xs:sequence>

</xs:complexType>
</xs:element>

n  Figure 18-3  An XML schema definition for the product entity.

Note: XML schemas are the more modern equivalent of XML Data Type
Definitions (DTDs).

The first schema language to be recommended by the W3C was XML
Schema, an example of which appears in Figure 18-3. As you can see,
the product relation is defined as a complex data type.

Keep in mind that an XML schema is not precisely the same as a rela-
tional schema, although you could include the same structural ele-
ments (and the same relationships) in an XML schema as you do in
a relational schema. An XML schema specifies the layout of data in a
text document. In contrast, a relational schema specifies the structure
of relations and constraints on those relations. XML schemas, although
able to include elements that represent primary and foreign keys, have
no provision for constraints on data. If constraints are to be applied,
they must be enforced once the data have been loaded into a relational
database as normal relational data rather than XML documents.

382 CHAPTER 18  XML

XML Support in Relational DBMSs
Although XML itself is defined by a standard, the way in which a
specific DBMS supports XML is not. To give you an overview of the
nature and extent of such support, this section looks at DB2 and
Oracle, two of the most widely used DBMSs.

DB2
DB2 supports the storage of XML with an XML column data type. A
data type of XML can be assigned to a column in any relation and can
then store one XML document in that column for each row of the
table. The syntax for including an XML column in a table is the
same as creating a table using any other SQL data type (for example,
Figure 18-4).

To store a document, an application program sends the text (for
example, Figure 18-5) to the DB2 server. The server then checks the
document to see that it is correct (well formed and valid) and then
converts it into a hierarchical representation such as that in Figure
18-6. This hierarchy is stored separately from the rest of the table,

CREATE TABLE stocked_products
(

store_numb int PRIMARY KEY,
UPC char (13) PRIMARY KEY,
Product_details XML);

n  Figure 18-4  The definition of a table for DB2, including an XML column.

<product_details>
<product_name>gel pen</product_name>
<product_dept>Office Supplies</product_dept>
<product_desc>

<color>black</color>
<unit>box</unit>
<numb_per_pack>12</numb_per_pack>

</product_desc>
</product_details>

n  Figure 18-5  Sample XML for loading into a DB2 XML column.

383XML Support in Relational DBMSs

although an internal data structure links the relational and XML
storage structures.

DB2’s XML column data type does not need to be linked to an XML
schema. However, schemas can be applied to documents to check
their correctness.

As you know, indexing can significantly speed up database query
performance. XML documents, however, bury their data within the
document (and thus within a single DB2 column). The hierarchical
storage structure, such as that in Figure 18-6, however, makes indexing
possible. To create an index on a specific element, the user must
supply the path through the hierarchy to reach the desired data. For
example, to create an index on the product name from Figure 18-6,
someone might type:

CREATE INDEX idx_product_name ON products
(product_details)  GENERATE KEY USING XML PATTERN
‘/product_details/product_name’  AS SQL VARCHAR
(50);

Notice that the key for the index is indicated by the path to the data
element and that it must be given an SQL data type for use in the
index. If a value in an XML document can’t be transformed into the
index data type, the value won’t be included in the index.

DB2 supports manipulation of XML data through two extensions:
SQL/XML and XQuery. Both are query languages, although support

product_details

product_name product_dept

Gel Pen Office Supplies

product_desc

color unit numb_per_pack

Black Box 12

n  Figure 18-6  The hierarchical representation of and instance of the XML column specified in Figure 18-5.

384 CHAPTER 18  XML

for data modification using XQuery is still under development.1 SQL/
XML is an extension of the SQL standard, although, as with most
DBMSs, the implementation is proprietary. XQuery is also an open
standard.

SQL/XML contains extensions to standard SQL to retrieve either entire
XML documents or specific elements from a document. When refer-
encing specific elements in an XML document, you include the path
through the document storage hierarchy to reach the element, just as
it was done with creating an index on a single data element.

Oracle
Oracle provides three storage options for XML documents:

n	 Store an entire XML document as a character large object (CLOB).
Because the document is stored as a whole, it cannot be validated
against an XML schema and provides slow performance on rela-
tional queries. CLOB storage also uses the most disk space.

n	 Parse the document with an XML schema (including validation)
and store the data in binary form. This is the easiest storage method
to use, and although its performance on relational queries isn’t
optimal, it does outperform CLOB storage.

n	 Store parsed data in an object-relational format, a combination of
relational and object-oriented data modeling. The result is slow
performance when an XML document is added to the database but
the best query performance and minimal use of disk space.

Like DB2, Oracle provides a data type for a column in a relation to
store XML data (XMLType). An XMLType column in a relation can
accept data from a previously stored CLOB, a character column
(VARCHAR2), a correctly formatted SQL INSERT statement, or the
query of another XMLType column.

An SQL INSERT statement to add a row to the stocked products table
in Figure 18-4 might look like Figure 18-7. Notice that the XML speci-
fication is preceded by the data type to alert the DBMS that what
follows is in XML format.

Oracle’s SQL implementation allows querying of XMLType columns
using the standard SQL SELECT command. The product also supports

1 At the time this book was written, the most recent update of the XQuery standard
seemed to be from August 2008. You can find it at www.w3.org/TR/xqupdate/.

385For Further Reading

SQL/XML for querying relational data to produce XML documents as
output and provides an XQuery implementation.

For Further Reading
Chaudhri, Akaml B, Awais Rashid, and Roberto Zicari. XML Data

Management: Native XML and XML-Extended Database Systems.
Addison-Wesley Professional, 2003.

IBM Redbooks. Integrating XML with DB2 XML Extender and DB2 Text
Extender. IBM, 2000.

Melton, Jim, and Stephen Buxton. Querying XML: XQuery, XPath, and
SQL/XML in Context. Morgan Kaufmann, 2006.

Powell, Galvin. Beginning XML Databases. Wrox, 2006.
Quin, Liam. Open Source XML Database Toolkit: Resources and Techniques

for Improved Development. Wiley, 2000.
Scardina, Mark, Ben Chang, and Jinyu Wang. Oracle Database 10g XML

& SQL. McGraw-Hill Osborne Media, 2004.
Williams, Kevin, Michael Brudage, Patrick Dengler, Jeff Gabriel, Andy

Hoskinson, Michael Kay, Thomas Maxwell, Marcelo Ochoa, Johnny
Papa, and Mohan Vanmane. Professional XML Databases. Wrox, 2000.

INSERT INTO stocked_products
{

3,
‘1010101010101’,
XMLType (<product_details>

<product_name>gel pen</product_name>
<product_dept>Office Supplies</product_dept>
<product_desc>

<color>black</color>
<unit>box</unit>
<numb_per_pack>12</numb_per_pack>

</product_desc>
</product_details>)

);

n  Figure 18-7  Using SQL to insert data into an Oracle XMLType column.

In the beginning, there were data files … and from the need to manage
the data stored in those files arose a variety of data management
methods, most of which preceded the relational data model and,
because of their shortcomings, paved the way for the acceptance of
relational databases.

This appendix provides an overview of data management organiza-
tions used prior to the introduction of the relational data model.
Although you do not need to read this appendix to understand the
main body of this book, some of the concepts discussed here were
introduced in the case studies in Part III.

File Processing Systems
The first commercial computer—ENIAC—was designed to help
process the 1960 Census. Its designers thought that all computers
could do was crunch numbers; the idea that computers could handle
text data came later. Unfortunately, the tools available to handle data
weren’t particularly sophisticated. In most cases, all the computing
staff had available was some type of storage (at first tapes and later
disks) and a high-level programming language compiler.

Early File Processing
Early file processing systems were made up of a set of data files—most
commonly text files—and application programs that manipulated
those files directly without the intervention of a DBMS. The files were
laid out in a very precise, fixed format. Each individual piece of data
(a first name, a last name, street address, and so on) was known as a

387

Appendix

Historical Antecedents

Relational Database Design and Implementation
Copyright © 2009 by Morgan Kaufmann. All rights of reproduction in any form reserved.

388 APPENDIX  Historical Antecedents

field. The data that described a single entity were collected into a record.
A data file was therefore made up of a collection of records.

Each field was allocated a specific number of bytes. The fixed field
lengths meant that no delimiters were required between fields or at
the ends of records, although some data files did include them. A
portion of such a data field might appear like Figure A-1.

The programs that stored and retrieved data in the data files located
data by their byte position in the file. Assuming that the first record
in a file was numbered 0, a program could locate the start of any field
with the computation:

record_number * record_length +
starting_position_of_field

This type of file structure therefore was very easy to parse (i.e., separate
into individual fields). It also simplified the process of writing the
application programs that manipulated the files.

If the file was stored on tape, then access to the records was sequential.
Such a system was well suited to batch processing if the records were
in the order in which they needed to be accessed. If the records were
stored on disk, then the software could perform direct access reads
and writes. In either case, however, the program needed to know
exactly where each piece of data was stored and was responsible for
issuing the appropriate read and/or write commands.

n  Figure A-1  A portion of a fixed field length data file.

0
1
2
3
4
5
6
7
8
9
10
11

John
Jane
Edward
Louis
John
Theresa
Thomas
Jan
Edward
Emily
Thomas
Louis

Smith
Johnson
Smith
Johnson
Jones
Jones
Smith
Smith
Jones
Johnson
Johnson
Smith

25 W. Main Street …
120 Elm Lane …
44 Pine Heights …
250 W. Main Street …
RR1 Box 250B …
Anderson Road …
12589 Highway 25 South …
48 Roxbury Court …
10101 Binary Road …
202 Somerset Blvd …
25 N. Main Street …
918 Bayleaf Terrace …

389File Processing Systems

These systems were subject to many problems, including all of those
discussed in Chapter 3. In addition, programmers struggled with the
following situations:

n	 Changing the layout of a data file (e.g., changing the size of a
field or record) required changing all of the programs that
accessed that file as well as rewriting the file to accommodate the
new layout.

n	 Access was very fast when processing all records sequentially in the
physical order of the file. However, searches for specific records
based on some matching criteria also had to be performed sequen-
tially, which was a very slow process. This held true even for files
stored on disk.

The major advantage to a file processing system was that it was cheap.
An organization that installed a computer typically had everything it
needed: external storage and a compiler. In addition, a file processing
system was relatively easy to create in that it required little advance
planning. However, the myriad problems resulting from unnecessary
duplicated data, as well as the close coupling of programs and physical
file layouts and the serious performance problems that arose when
searching the file, soon drove data management personnel of the
1950s and 1960s to search for alternatives.

ISAM Files
Prior to the introduction of the database management system, pro-
grammers at IBM developed an enhanced file organization known as
indexed sequential access method (ISAM), which supported quick sequen-
tial access for batch processing but also provided indexes to fields in
the file for fast access searches.

An ISAM file must be stored on disk. It is written initially to disk with
excess space left in each cylinder occupied by the file. This allows
records to be added in sequential key order. When a cylinder fills up,

Note: Some tape drives were able to read backward to access data
preceding the last written or read location. However, those that could not
read backward needed to rewind completely and then perform a sequential
scan beginning at the start of the tape to find data preceding the previous
read/write location. Understandably, random access to data was
unacceptably slow for interactive data processing.

390 APPENDIX  Historical Antecedents

records are written to an overflow area and linked back to where
they appear in the sequence in the file’s primary storage areas (see
Figure A-2).

Note: Hard drives write files to a single track on a single surface in a disk
drive. When the track is full, then the drive writes to the same track on
another surface. The same tracks on all the surfaces in a stack of platters in a
disk drive are known as a cylinder. By filling a cylinder before moving to
another track on the same surface, the disk drive can avoid moving the
access arm to which read/write heads are attached, thus saving time in the
read or write process.

When the overflow area fills up, the file must be reblocked. During the
reblocking process, the file size is increased and records are rewritten,
once again leaving expansion space on each cylinder occupied by the
file. No data processing can occur using the file while reblocking is in
progress.

n  Figure A-2  ISAM file organization.

Overflow Area for Cylinder #1

Overflow Area for Cylinder #2

Overflow Area for Cylinder #3

Cylinder #1

Cylinder #2

Cylinder #3

used

used

unused

used

unused

unusedunused

used

used

391File Processing Systems

Depending on the implementation, indexes to ISAM files may be
stored in the same file as the data or in separate files. When the data
files are stored separately, the functions that manipulate the files treat
the indexes and data as if they were one logical file.

Note: Although ISAM files have largely fallen into disuse, the DBMS Informix
(now owned by IBM) continues to use its own version of ISAM—c-isam—for
data storage.

Limitations of File Processing
File processing, regardless of whether it uses simple data files or ISAM
files, is awkward at best. In addition to the problems mentioned earlier
in this section, there are two more major drawbacks to file
processing.

First, file processing cannot support ad hoc queries (queries that arise
at the spur of the moment, cannot be predicted, and may never arise
again). Because data files are created by the organization they are
using, there is no common layout to the files from one organization
to another. There is therefore no reasonable way for a software devel-
oper to write a language that can query any data file. A language that
could query file A probably wouldn’t work with file B because there
is no similarity between the layout of the files. Therefore, access is
limited to preplanned queries and reports that are provided by appli-
cation programs.

So much of today’s data access requires ad hoc querying capabilities.
Consider, for example, an ATM machine, perhaps the penultimate ad
hoc query device. When you walk up to the machine, there is no way
for the machine’s software to predict which account you will access.
Nor is there any way to predict who will use a particular machine or
what that person will request from the machine. Therefore, the soft-
ware must be able to access data at any time, from any location, from
any account holder, and perform any requested action.

Second, when a file processing system is made up of many files, there
is no easy way to either validate cross-references between the files or
perform queries that require data from multiple files. This cross-refer-
encing issue is a major data integrity concern. If you store customer
data in file A and orders in file B, you want the customer data in file
B (even if it’s only a customer number) to match the customer data

392 APPENDIX  Historical Antecedents

in file B. Whenever data are duplicated, they must remain consistent.
Unfortunately, when data are stored in multiple files, there is no easy
way to perform this type of validation. The only way is to write a
program that uses both files and explicitly verifies that the customer
data in file B matches the data in file A. Although it can be done, file
processing systems rarely perform this type of validation.

By the same token, queries or reports that require data to be extracted
from multiple files are difficult to prepare. The application program
that generates the output has to be created to read all the necessary
files, resulting in a program that is difficult to debug and maintain due
to its complexity.

The solution is to look for some way to separate physical storage
structures from logical data access. In other words, the program or user
who is manipulating data shouldn’t have to be concerned about physi-
cal placement of data in files but should be able to express data
manipulation requests in terms of how data logically relate to one
another. This separation of logical and physical data organization is
the hallmark of a database system.

File Processing on the Desktop
One of the problems with data management software written for PCs
has been that both developers and users often didn’t understand the
exact meaning of the term database. As a result, the word was
applied to any piece of software that managed data stored in a disk
file, regardless of whether the software could handle logical data
relationships.

This trend began in the early 1980s with a product called pfs : File. The
program was a simple file manager. You defined your fields and then
used a default form for entering data. There was no way to represent
multiple entities or data relationships. Nonetheless, the product was
marketed as a database management system, and thus the confusion
in the marketplace began.

A number of products have fallen into this trap. One is FileMaker Pro,
which began as a file manager and has been upgraded to database
status. The FileMaker company introduced a product named Bento in
2008, which it advertises as a “personal database manager.” Bento is
a rather nice piece of software, but it isn’t a database management
system; it’s a file manager. After nearly 30 years, the confusion about
and the misuse of the term database persist.

393The Hierarchical Data Model

You may often hear products such as those in the preceding paragraph
described as “flat-file databases,” despite the term “database” being a
misnomer. Nonetheless, desktop file managers can be useful tools for
applications such as maintaining a mailing list, a customer contact
list, and so on.

The issue here is not to be a database snob but to ensure that consum-
ers actually understand what they are buying and the limitations that
actually accompany a file manager. This means that you must pay
special attention to the capabilities of a product when you are consid-
ering a purchase.

The Hierarchical Data Model
The first true database model to be developed was the hierarchical data
model, which appeared as the basis of a commercial product in 1966.
Like the two network data models that followed, it was a navigational
data model, meaning that access paths were constrained by predeclared
pointer structures in the schema.

Characteristics of the Hierarchical Data Model
A database that is designed to use the hierarchical data model is
restricted to one-to-many relationships. In addition, no child entity
may have more than one parent entity. The implications of this last
restriction are significant.

As an example, consider the ER diagram in Figure A-3, which con-
tains two hierarchies, or trees. The first relates departments to their
employees and their projects. The second relates employees to proj-
ects. There is a one-to-many relationship between an employee and
a department but a many-to-many relationship between projects and
employees. The relationship between department and project is
one-to-many.

Ideally, we would like to be able to use a composite entity to handle
the many-to-many relationships. Unfortunately, the hierarchical data
model does not permit the inclusion of composite entities. (There is
no way to give a single entity two parent entities.) The only solution
is to duplicate entity occurrences. This means that a project occurrence
must be duplicated for every employee who works on the project. In
addition, the project and employee entities are duplicated in the
department hierarchy as well.

394 APPENDIX  Historical Antecedents

By their very nature, hierarchies include a great deal of duplicated data.
This means that hierarchical databases are subject to the data consis-
tency problems that arise from unnecessary duplicated data.

There is another major limitation to the hierarchical data model.
Access is only through the entity at the top of the hierarchy, the root.
From each root occurrence, the access path is top to bottom and left
to right. This means that the path through the department hierarchy,
for example, is through a department, to all its employees, and only
then to the projects. For example, Figure A-4 contains two occurrences
of the department/employee/project hierarchy. The arrows on the
dashed lines represent the traversal order.

The relationships among the entities in an occurrence of a hierarchy
are maintained by pointers embedded in the data. As a result, travers-
ing a hierarchy in its default order is very fast. However, if you need
random access to data, then access can be extremely slow because you
must traverse every entity occurrence in the hierarchy preceding a
needed occurrence to reach the needed occurrence. Hierarchies are

n  Figure A-3  Sample hierarchies.

Employee

*ID_numb
f_name
l_name
street
city

state
zip

birthdate
ssn

Project

proj_name
start_date

est_end_date
leader_f_name
leader_l_name

Project

proj_name
start_date

est_end_date
leader_f_name
leader_l_name

Department

dept_name
mgr_f_name
mgr_l_name

Employee

*ID_numb
f_name
l_name
street
city

state
zip

birthdate
ssn

395The Hierarchical Data Model

therefore well suited to batch processing in tree traversal order but are
not suitable for applications that require ad hoc querying.

The hierarchical model is a giant step forward from file processing
systems, including those based on ISAM files. It allows the user to store
and retrieve data based on logical data relationships. It therefore pro-
vides some independence between the logical and physical data
storage, relieving application programmers to a large extent of the
need to be aware of the physical file layouts.

IMS
The most successful hierarchical DBMS has been IMS, an IBM product.
Designed to run on IBM mainframes, IMS has been handling high-
volume transaction-oriented data processing since 1966. Today, IBM
supports IMS legacy systems but actively discourages new installa-
tions. In fact, many tools exist to help companies migrate from IMS
to new products or to integrate IMS into more up-to-date software.

IMS does not adhere strictly to the theoretical hierarchical data model.
In particular, it does allow multiple parentage in some very restrictive

n  Figure A-4  Tree traversal order in two occurrences of a hierarchy.

Employee #1 Employee #2
Employee #3

Project #3

Project #2Project #1

Department #2
Department #1

396 APPENDIX  Historical Antecedents

situations. As an example, consider Figure A-5, which actually contains
two hierarchies: the department-to-project hierarchy and the hierarchy
consisting of just the employee.

n  Figure A-5  Two IMS hierarchies with permitted multiple parentage.

Project

proj_name
start_date

est_end_date
leader_f_name
leader_l_name

Department

dept_name
mgr_f_name
mgr_l_name

Employee

*ID_numb
f_name
l_name
street
city

state
zip

birthdate
ssn

Note: IMS refers to each hierarchy as a database and each entity as a
segment.

The multiple parentage of the project entity is permitted because the
second parent—the employee entity—is in another hierarchy and is
at a higher level in the hierarchy. Despite the restrictions on multiple
parentage, this easing of the rules goes a long way to removing unnec-
essary duplicated data.

IMS does not support a query language. All access is through applica-
tion programs that are usually written in COBOL. Like a true hierarchi-
cal DBMS, it is therefore best suited to batch processing in tree traversal
order. It has been heavily used in large businesses with heavy opera-
tional transaction processing loads, such as banks and insurance
companies.

The Simple Network Data Model
At the same time IBM was developing IMS, other companies were
working on DBMSs that were based on the simple network data
model. The first DBMS based on this model appears in 1967 (IDS

397The Simple Network Data Model

from GE) and was welcomed because it directly addressed some of
the limitations of the hierarchical data model. In terms of business
usage, simple network databases had the widest deployment of any
of the prerelational data models.

Note: The network data models—both simple and complex—predate
computer networks as we know them today. In the context of a data model,
the term network refers to an interconnected mesh, such as a network of
neurons in the brain or a television or radio network.

Characteristics of a Simple Network
A simple network database supports one-to-many relationship
between entities. There is no restriction on multiple parentage,
however. This means that the employees/departments/projects data-
base we have been using as an example could be designed as in Figure
A-6. In this example, the project acts as a composite entity between
department and employee. In addition, there is a direct relationship
between department and employee for faster access.

Given the restrictions of the hierarchical data model, the simple
network was a logical evolutionary step. It removed the most egregious
limitation of the hierarchical data model: no multiple parentage. It

Employee

*ID_numb
f_name
l_name
street
city

state
zip

birthdate
ssn

Project

proj_name
start_date

est_end_date
leader_f_name
leader_l_name

Department

dept_name
mgr_f_name
mgr_l_name

n  Figure A-6  A simple network data model.

398 APPENDIX  Historical Antecedents

also further divorced the logical and physical storage, although as you
will see shortly, simple network schemas still allowed logical database
designers to specify some physical storage characteristics.

Simple network databases implement data relationships either by
embedding pointers directly in the data or through the use of indexes.
Regardless of which strategy is used, access to the data is restricted to
the predefined links created by the pointers unless a fast access path
has been defined for a particular type of entity. In this sense, a simple
network is navigational, just like a hierarchical database.

There are two types of fast access paths available to the designer of a
simple network. The first—hashing—affects the strategy used to place
entity occurrences in a data file. When an entity occurrence is hashed
into a data file, the DBMS uses a key (the value or one or more attri-
butes) to compute a physical file locator (usually known as the data-
base key). To retrieve the occurrence, the DBMS recomputes the hash
value. Occurrences of related entities are then clustered around their
parent entity in the data file. The purpose of this is twofold: It provides
fast access to parent entities and puts child entities on the same disk
page as their parents for faster retrieval. In the example we are using,
a database designer might choose to hash department occurrences and
cluster projects around their departments.

Note: An entity occurrence can either be clustered or hashed; it can’t be
both because the two alternatives determine physical placement in a
data file.

Note: For an in-depth explanation of indexing, see “Indexing” in Chapter 7.

The second type of fast access path is an index, which provides fast,
direct access to entity occurrences containing secondary keys. If occur-
rences are not hashed and have no indexes, then the only way to
retrieve them is by traversing down relationships with parent entity
occurrences.

To enable traversals of the data relationships, a simple network DBMS
must keep track of where it is in the database. For every program
running against the database, the DBMS maintains a set of currency
indicators, each of which is a system variable containing a database key
of the last entity occurrence accessed of a specific type. For example,
there are currency indicators for each type of entity, for the program

399The Simple Network Data Model

as a whole, and so on. Application programs can then use the contents
of the currency indicators to perform data accesses relative to the
program’s previous location in the database.

Originally, simple network DBMSs did not support query languages.
However, as the relational data model became more popular, many
vendors added relational-style query languages to their products. If a
simple network database is designed like a relational database, then
it can be queried much like a relational database. However, the simple
network is still underneath, and the database is therefore still subject
to the access limitations placed on a simple network.

Simple network databases are not easy to maintain. In particular,
changes to the logical design of the database can be extremely disrup-
tive. First, the database must be brought offline; no processing can be
done against it until the changes have been made. Once the database
is down, then the following process occurs:

1.	 Back up all data or save the data in text files.
2.	 Delete the current schema and data files.
3.	 Compile the new database schema, which typically is

contained in a text file, written in a data definition language
(DDL).

4.	 Reallocate space for the data files.
5.	 Reload the data files.

In later simple network DBMSs, this process was largely automated by
utility software, but considering that most simple network DBMSs
were mainframe-based, they involved large amounts of data. Changes
to the logical database could take significant amounts of time. There
are still simple network databases in use today as legacy systems.
However, it would be highly unusual for an organization to decide to
create a new database based on this data model.

CODASYL
In the mid-1960s, government and industry professionals organized
into the Committee for Data Systems Languages (CODASYL). Their
goal was to develop a business programming language, the eventual
result of which was COBOL. As they were working, the committee
realized that they had another output besides a programming lan-
guage: the specifications for a simple network database. CODASYL
spun off the Database Task Group (DBTG), which in 1969 released
its set of specifications.

400 APPENDIX  Historical Antecedents

The CODASYL specifications were submitted to the American National
Standards Institute (ANSI). ANSI made a few modifications to the
standard to further separate the logical design of the database from its
physical storage layout. The result was two sets of very similar, but not
identical, specifications.

Note: It is important to understand that CODASYL is a standard rather than a
product. Many products were developed to adhere to the CODASYL
standards. In addition, there have been simple network DBMSs that employ
the simple network data model but not the CODASYL standards.

A CODASYL DBMS views a simple network as a collection of two-level
hierarchies known as sets. The database in Figure A-6 requires two sets:
one for department → employee and department → project and the
second for employee → project. The entity at the “one” end of the
relationship is known as the owner of the set; the entities at the “many”
end of relationships are member of the set. There can be only one
owner entity but many member entities in any set. The same entity
can be an owner of one set and a member of another, allowing the
database designer to build a network of many levels.

As mentioned in the previous section, access is either directly to an
entity occurrence using a fast access path (hashing or an index) or in
traversal order. In the case of a CODASYL database, the members of
a set have an order that is specified by the database designer.

If an entity is not given a fast access path, then the only way to retrieve
occurrences is through the owners of some set. In addition, there is
no way to retrieve all occurrences of an entity unless all of those occur-
rences are members of the same set, with the same owner.

Each set provides a conceptual linked list, beginning with the owner
occurrence, continuing through all member occurrences, and linking
back to the owner. Like the occurrences of a hierarchy in a hierarchical
database, the occurrences of a set are distinct and unrelated, as in
Figure A-7.

Note: Early CODASYL DBMSs actually implemented sets as linked lists. The
result was complex pointer manipulation in the data files, especially for
entities that were members of multiple sets. Later products represented sets
using indexes, with database keys acting as pointers to the storage locations
of owner and member records.

401The Simple Network Data Model

The independence of set occurrences presents a major problem for
entities that aren’t a member of any set, such as the department occur-
rences in Figure A-7. To handle this limitation, CODASYL databases
support a special type of set—often called a system set—that has only
one owner occurrence: the database system itself. All occurrences of
an entity that is a member of that set are connected to the single owner
occurrence. Employees and projects would probably be included in a
system set also to provide the ability to access all employees and all
projects. The declaration of system sets is left up to the database
designer.

Any DBMS that was written to adhere to either set of CODASYL stan-
dards is generally known as a CODASYL DBMS. This represents the
largest population of simple network products that were marketed.

Arguably, the most successful CODASYL DBMS was IDMS, originally
developed by Cullinet. IDMS was a mainframe product that was
popular well into the 1980s. As relational DBMSs began to dominate
the market, IDMS was given a relational-like query language and mar-
keted as IDMS/R. Ultimately, Cullinet was sold to Computer Associ-
ates, which marketed and supported the product under the name
CA-IDMS.

n  Figure A-7  Occurrences of CODASYL sets.

Employee #1 Employee #2

Project #2Project #1

Department #1

Employee #3

Project #3

Department #2

402 APPENDIX  Historical Antecedents

The Complex Network Data Model
The complex network data model was developed at the same time as
the simple network. It allows direct many-to-many relationships
without requiring the introduction of a composite entity. The intent
of the data model’s developers was to remove the restriction against
many-to-many relationships imposed by the simple network data
model. However, the removal of this restriction comes with a steep
price.

As you will remember from Chapter 4, there are at least two major
problems associated with the inclusion of direct many-to-many rela-
tionships. Consider first the database segment in Figure A-8. Notice
that there is no place to store data about the quantity of each item
being ordered. The need to store relationship data is one reason why
we replace many-to-many relationships with a composite entity and
two one-to-many relationships.

Nonetheless, if we examine an occurrence diagram for Figure A-8 (see
Figure A-9), you can see that there is no ambiguity in the relationships.
However, assume that we add another entity to the design, as in Figure
A-10. In this case, each item can appear on many shipments, and each
shipment can contain many items.

The problem with this design becomes clear when you look at the
occurrences in Figure A-11. Notice, for example, that it is impossible
to determine the order to which Shipment #1 and Shipment #2
belong. After you follow the relationships from the shipment occur-
rence to Item #1, there is no way to know which order is correct.

There are two solutions to this problem. The first is to introduce an
additional relationship to indicate which shipment comes from which

Note: Although virtually every PC DBMS in the market today claims to be
relational, many are not. Some, such as FileMaker Pro, are actually simple
networks. These are client–server products, robust enough for small business
use. They allow multiple parentage with one-to-many relationships and
represent those relationships with preestablished links between files. These
are simple networks. As you become familiar with the relational data model,
you will understand why such products aren’t relational. It doesn’t mean that
they aren’t good products but simply that they don’t meet the minimum
requirements for a relational DBMS.

n  Figure A-8  A complex network lacking
a place to store relationship data.

Customer

costomer_numb
f_name
l_name
street
city

state
zip

phone

Order

order_numb
order_date

total$

Item

item_numb
title

price

403The Complex Network Data Model

n  Figure A-9  Sample occurrences for the design in Figure A-8.

Item #09244
Die Hard
$29.95

Item #10101
Gone with the Wind

$89.99

Item #00250
Flowers for Algernon

$29.95

Customer #0985

Order #3
02/18/00
$119.94

Order #2
05/18/00
$119.9405/02/00

$29.95

Order #1

Customer #1212

n  Figure A-10  A complex network with
ambiguous logical relationships.

Customer
costomer_numb

f_name
l_name
street
city

state
zip

phone

Order
order_numb
order_date

total$

Item

item_numb
title

price

404 APPENDIX  Historical Antecedents

n  Figure A-11  Occurrences of the complex network in Figure A-10 containing ambiguous logical relationships.

Item #09244
Die Hard
$29.95

Item #10101
Gone with the Wind

$89.99

Item #00250
Flowers for Algernon

$29.95

Customer #0985

Order #3
02/18/00
$119.94

Order #2
05/18/00
$119.9405/02/00

$29.95

Order #1

Customer #1212

Shipment #1 Shipment #2 Shipment #4

Shipment #4

405The Complex Network Data Model

n  Figure A-12  Using an additional
relationship to remove logical ambiguity in a
complex network.

Order

order_numb
order_date

total$

Shipment

shipment_date
weight
carrier

numb_items
tracking_numb

Customer
costomer_numb

f_name
l_name
street
city

state
zip

phone

Item

item_numb
title

price

order, as in Figure A-12. Although this is certainly a viable solution,
it results in increased complexity for storing and retrieving data.

The other solution is to abandon the use of the complex network
altogether and introduce composite entities to reduce all the many-
to-many relationships to one-to-many relationships. The result, of
course, is a simple network.

Note: In terms of the sequence of the development of data models, the
relational data model followed the network data models. Since the
development of the relational data model, two additional data models have
appeared: the object-oriented data model and multidimensional databases
(usually known as online analytical processing [OLAP] or star schema
databases). Multidimensional databases are designed primarily for use with
data warehouses.

Note: As discussed in Chapter 5, a relational DBMS can represent all the
relationships acceptable in a simple network—including composite
entities—but it does so in a nonnavigational manner. Like a simple network,
it can capture all of the meaning of a many-to-many relationship and still
avoid data ambiguity.

Because of the complexity of maintaining many-to-many relationships
and the possibility of logical ambiguity, there have been no widely
successful commercial products based on the complex network data
model. However, the data model remains in the literature and pro-
vides some theoretical completeness to traditional data modeling.

Glossary

407

All-key relation:  A relation in which every column is
part of the primary key.

Attribute:  Data that describe an entity; the formal term
for a column in a relation.

Authorization matrix:  A database system table that
contains information about which users have access
to which parts of the database. The DBMS consults
the authorization matrix before performing user data
manipulation requests.

Base table:  Relations whose data are physically stored in
a database.

Binary large object (BLOB):  A column data type
specifying that the column will show the contents of
a file (text and/or graphics) in its binary
representation, without being searchable or readable
in any way by the DBMS.

Black hat hackers:  Hackers who break into a computer
system for profit or with a desire to do harm.

Buffer overflow attack:  An attempt to gain
unauthorized control over a computer system by
exploiting a programming error in an application or
system program.

Candidate key:  A column or combination of columns
that can be used as the primary key of a relation.

Cardinality (of a relationship):  The type of relationship
(one-to-one, one-to-many, or many-to-many).

Catalog:  Another term for a data dictionary.

Circular inclusion constraint:  A constraint on a relation
that specifies that if a row is added to a specific table,
rows must be added to one or more other tables.

Client/server architecture:  System architecture where
processing tasks are shared between server and client
computers.

Clustering:  Physically storing foreign key rows close to
the primary key rows they reference to improve
database performance.

CODASYL database:  A database that adheres to the
Committee on Data Systems Languages (CODASYL)
database standard.

Column homogeneous:  A property of a relation stating
that all the values in a given column are taken from
the same domain.

Commit (a transaction):  End a transaction by making
its changes permanent.

Committee on Data Systems Languages (CODASYL):  A
committee of government and industry technologists
that developed the COBOL programming language
and a standard for a simple network database.

Complex network data model:  A navigational data
model that permits direct many-to-many
relationships as well as one-to-many and one-to-one
relationships.

Composite entity:  An entity that exists to represent the
relationship between two other entities. It may have
relationship data as attributes.

Computer-aided software engineering (CASE) tool:  A
software package that provides specialized tools for
software and database modeling diagrams.

Concatenated identifier:  An entity identifier made up of
a combination of values from multiple attributes.

Concurrency control:  Mechanisms to ensure that a
database remains consistent and accurate during
concurrent use.

Concurrent use:  Multiple users working with the same
database at the same time.

Conforming parser:  Software that can read an XML
document to determine whether the document is
well formed.

Constraint:  A rule to which data in a database must
adhere.

Context diagram:  The top-level diagram in a data flow
diagram that shows the environmental context in
which the information system exists.

Currency indicator:  A system value kept by a
navigational database to indicate a transaction’s
current position in the database hierarchy.

Cyberterrorists:  Hackers who are motivated by a
political, religious, or philosophical agenda.

Cylinder:  The same track on all surfaces in a stack of
platters in a hard disk.

Database:  A collection of data and information about
the relationships among those data.

Database administrator (DBA):  A person who has the
responsibility for maintaining a database.

408 Glossary

Database key:  In a CODASYL database, an internal
pointer to the physical storage location of a record
occurrence in a file.

Database management system (DBMS):  Software that
manages the storage and retrieval of data stored in a
database.

Data definition language:  A special-purpose computer
language used to define the schema of a navigational
database.

Data dictionary:  A repository that describes the data
stored in a database along with definitions of data
relationships.

Data dictionary driven:  A property of relational
databases in which all access to stored data is
preceded by access to the data dictionary to
determine if the requested data elements exist and if
the user has the access rights to perform the
requested action.

Data flow:  The path taken by data as they are processed
throughout an organization.

Data flow diagram (DFD):  A graphic method for
documenting the flow of data within an
organization.

Data mart:  A small data warehouse.

Data model:  The formal way of expressing relationships
in a database.

Data store (in a DFD):  A place where data are
stored.

Data warehouse:  A repository of transaction and
nontransaction data used for querying, reporting,
and corporate decision making.

Deadlock:  A problem that occurs as a result of
exclusive/writing locking where two or more
transactions become stalled waiting for the release of
locks held by each other.

Deletion anomaly:  A problem with the design of a
relation such that deleting data about one entity in a
row causes a part of the primary key to become null,
requiring the deletion of the entire row, which may
contain data that must be retained.

Denial of service attack:  An attack on a computer
system that attempts to prevent legitimate users from
gaining access to network resources and, by
extension, any database that uses that network.

Determinant:  An attribute on which other attributes are
functionally dependent.

Dimensional modeling:  The most frequently used data
model for data warehouses.

Dimension table:  A table in a data warehouse that
contains descriptive information for grouping data
stored in fact tables.

Dirty read:  A problem with uncontrolled concurrent use
of a database where a transaction acts on data that
have been modified by an update transaction that
hasn’t committed and is later rolled back.

Disaster recovery:  Activities that must take place to
bring the database back into use after it has been
damaged in some way.

Distributed database:  A database where portions of the
database are stored on computers at physically
distributed locations. The entire database is the sum
of all the parts.

Distribution independence:  A constraint on a
distributed database that specifies that the database
should look and act like a centralized database to
users.

Domain:  A specification of permissible values for an
attribute.

Domain constraint:  A rule that requires that all
values of an attribute come from a specified
domain.

Entity:  Something about which we store data.

Entity identifier:  A value (or combination of values)
that uniquely identifies each occurrence of an entity
in a database.

Entity integrity:  A constraint on a relation that states
that no part of the primary key can be null.

Entity-relationship diagram (ERD):  A graphic
technique for representing entity relationships.

Entity-relationship (ER) model:  A technique for
representing entity relationships that is
independent of any specific data model and any
specific software.

Equi-join:  A join based on matching identical values.

Evolutionary prototyping:  A form of prototyping in
which successive prototypes of the software are
modified based on user feedback, eventually
converging on the production system.

Exclusive lock:  A lock that gives the transaction holding
the lock the exclusive right to read and write a
portion of the database.

Extensible markup language (XML):  A platform-
independent markup language for specifying the
structure of data in a text document used for both
data storage and the transfer of data.

409Glossary

Extract-transform-load:  The process of taking data from
operational databases (and optionally external
sources), modifying the data to meet the
requirements of a data warehouse, and loading the
data into the warehouse.

Fact table:  A table used in dimensional modeling to
contain summarizable facts.

Field:  In a file processing system, the smallest unit of
meaningful data, such as a first name or street
address.

File processing system:  A system that handles data by
storing them in data files and then manipulating the
files through application programs.

Firewall:  A piece of software that filters incoming and
outgoing network traffic and stops messages that
violate the rules that define allowable traffic.

Foreign key:  An attribute (or combination of attributes)
in a relation that is the same as the primary key of
another relation. A foreign key may be a non-key
attribute in its own relation, or it may be part of a
concatenated primary key.

Functional dependency:  A relationship between two
attributes (or two combination of attributes) in a
relation such that for every unique value of the
second attribute, the table contains only one value of
the first attribute. The first attribute, however, may be
associated with multiple values of the second
attribute.

Granularity (of a lock):  The size of the portion of a
database to which a lock is applied.

Hashing:  A technique for providing fast access to data
based on a key value by determining the physical
storage location of those data.

Hierarchical data model:  A legacy data model where all
relationships are one-to-many or one-to-one, and
entities at the “many” end of a relationship can be
related to only one entity at the “one” end of the
relationship.

Horizontal portioning:  Splitting the rows of a table
between multiple tables with the same structure to
improve database performance.

Inconsistent analysis:  A problem that occurs from
uncontrolled concurrent use of a database where a
transaction produces incorrect output because
another transaction was concurrently modifying data
being retrieved.

Index:  A data structure in a database that provides a
logical ordering of data based on key values.

Indexed sequential access method (ISAM):  A physical
file storage technique that also provides indexes to
data based on a key for fast access on that key.

Inner join:  An equi-join.

Insertion anomaly:  A problem with the design of a
relation such that all data for a complete primary key
are not available, preventing data from being stored
in the relationship.

Instance (of an entity):  A group of attributes that
describes a single real-world occurrence of an entity.

Instance (of a relation):  A relation that contains at least
one row of data.

Interleaved execution:  The interweaving of the actions
of two or more concurrent database transactions.

IPSec:  A type of security used by a virtual private
network.

Join:  A relational algebra operation that combines two
relations horizontally by matching values between
the two tables. Most valid joins involve matching
primary key values to foreign key values.

Join dependency:  The most general form of dependency
between attributes in a relation such that a table can
be put together correctly by joining two or more
tables, all of which contain only attributes from the
original table.

Legacy database:  A database using a pre-relational data
model that is still in use.

Locking:  Restricting access to parts of a database to
specific transactions to provide concurrency
control.

Logging:  The process of keeping an audit trail of
changes made by a transaction to be used to undo
the transaction should it need to be rolled back.

Lost update:  A problem that occurs during uncontrolled
concurrent use of a database where an update made
by one transaction wipes out the effect of an update
made by a concurrent transaction.

Malware:  Unwanted software—such as a virus, worm, or
Trojan horse—that is inadvertently loaded onto a
computer and causes disruption or distribution of
computer functioning.

Mandatory relationship:  A relationship between two
entities in a database such that an instance of the
second entity cannot exist in the database unless it is
related to an instance of the first entity.

Many-to-many relationship:  A relationship between
two entities in a database such that each instance of
the first entity can be related to many instances of

410 Glossary

the second and each instance of the second entity
can be related to many instances of the first.

Metadata:  Data about data; the data stored in a data
dictionary.

Modification anomaly:  A problem that occurs when
duplicated data become inconsistent when not all
occurrences of the same value are modified at the
same time.

Multivalued attribute:  An attribute that can contain
more than one value at a time.

Multivalued dependency:  A general case of a functional
dependency where a determinant determines a small
group of values (as opposed to a single value) for
two unrelated attributes.

Multiversion concurrency control:  A concurrency
control method in which data retrievals and
modifications are marked with the time they occur.
Modifications are allowed if no other transaction
holds an earlier timestamp on the data.

Mutually exclusive relationship:  A relationship between
entities such that an instance of an entity can be
related to an instance of either a second or third
entity, but not both.

Natural identifiers:  Entity identifiers that are unique by
nature, such as invoice numbers.

Navigational data model:  A data model where
relationships between entities are represented by
physical data structures (for example, pointers or
indexes) that provide the only paths for data access.

Nonrepeatable read:  A problem with uncontrolled
concurrent use of a database that occurs when a
transaction reads data for the second time and
determines that the data are not the same as they
were from the first read.

Normal form:  A set of theoretical rules to which a
relation must conform.

Normalization:  The process of designing relations to
adhere to increasingly stringent sets of rules to avoid
problems with poor database design.

Null:  A database value, distinct from a blank or zero,
meaning “unknown.”

Object-oriented analysis:  A method for viewing the
interaction of data and manipulations of data that is
based on the object-oriented programming
paradigm.

One-to-many relationship:  A relationship between two
entities in a database such that one instance of an
entity can be related to many instances of a second

entity and the second entity can be related to only
one instance of the first.

One-to-one relationship:  A relationship between two
entities in a database such that each instance of an
entity is related to no more than one instance of the
other entity.

Optimistic locking:  A concurrency control method
that allows all modifications but then rolls back
transactions if other transactions have modified the
data.

Page:  The size of the block of data that a computer (and
therefore a database) transfers between disk and
main memory at one time.

Performance tuning:  Making changes to the design of a
database to enhance database performance.

Phantom read:  A problem with uncontrolled concurrent
use of a database that occurs when a transaction
reads data for the second time and determines that
new rows have been inserted by another transaction.

Physical schema:  The underlying physical storage of a
database, managed by the DBMS.

Precision:  The number of digits to the right of a
decimal point in a number.

Predicate:  A statement of logical criteria against which
data are evaluated during a query.

Primary key:  A column or combination of columns
whose value uniquely identifies each row in a
relation.

Process (in a DFD):  Something that is done to data.

Product:  The relational algebra operation that combines
two tables by forming all possible combination of
rows; the Cartesian product of two tables.

Project:  The relational algebra operation that creates a
projection of a relation.

Projection:  A subset of a relation created by copying
selected columns and all rows in those columns.

Prototyping:  A form of system development where
developers prepare models of a system that are not
fully functional. User feedback is used to modify the
prototype or to develop a final system.

Query optimizer:  A portion of a DBMS that determines
the most efficient sequence of relational algebra
operations to use to satisfy a query.

Read lock:  Control over a portion of the database given
to one or more transactions that prevents other
transactions from modifying the data while the locks
are in place.

411Glossary

Reblocking:  In an ISAM file, rewriting the file to leave
physical space on each track occupied by the file to
allow the addition of records in key sequence order.

Record:  In a file processing system, a collection of data
that describes one instance of an entity.

Recovery:  The process of restoring a database from a
damaged or inconsistent state so it becomes
operational again.

Referential integrity:  A constraint on a relation that
states that every non-null foreign key value must
match an existing primary key value.

Relation:  The definition of a two-dimensional table
with columns and rows. There is no more than one
value at the intersection of each column and row (no
repeating groups).

Relational algebra:  The set of theoretical operations
used to manipulate data in a relation.

Relational data model:  A paradigm for describing the
structure of a database in which entities are
represented as tables, and relationships between the
entities are represented by matching data.

Relationship data:  Data that apply to the relationship
between two entities rather than to the entities
themselves.

Repeating group:  A multivalued attribute that must be
removed before the data in the group can be stored
in a relational database.

Requirements document:  A document prepared as the
output of a systems analysis that describes the
information requirements of a new or modified
information system.

Restrict:  The more recent term for the relational algebra
operation that chooses rows from a table based on
evaluating data against logical criteria (a predicate).

Roll back (a transaction):  Undo the changes made by a
transaction, restoring the database to the state it was
in before the transaction began.

Schema:  The overall logical plan of a database.

Script kiddies:  Hackers who use prewritten software to
break into computer systems.

Select:  The original relational algebra term for restrict;
the SQL command to retrieve data from a database.

Serializable:  A condition in which interleaved
transactions produce the same result that they would
have produced if they had run in a series.

Service-oriented architecture (SOA):  A method for
organizing a company’s entire information system

functions so all information components are viewed
as services that are provided to the organization.

Set:  In a CODASYL database, a two-level hierarchy
representing one or more one-to-many relationships.

Shared lock:  Control over a portion of the database
given to one or more transactions that prevents other
transactions from modifying the data while the locks
are in place.

Simple network data model:  A legacy data model
where all relationships are one-to-many or one-to-
one; a navigational data model where relationships
are represented with physical data structures such as
pointers.

Single-valued attribute:  An attribute that contains only
one value at any given time.

Social engineering:  A nontechnological method for
gaining unauthorized access to a computer system by
tricking people into revealing access information.

Sorting:  Physically reordering the rows in a table based
on the values in one or more columns.

Spiral methodology:  A more formal form of
prototyping that uses a gradual process in which
each cycle further refines the system, bringing it
closer to the desired end point.

SQL injection attack:  An attack against a database
system launched through an application program
containing embedded SQL.

Structured design life cycle:  The classic model for
developing an information system. It involves a
sequence of activities that defines and develops a
new or modified system. It works best in
environments where information needs are well
known.

Systems analysis:  Conducting a needs assessment to
determine what a new or modified information
system should do.

System set:  In a CODASYL database, a special set with
only one owner occurrence that is used to collect all
occurrences of a single entity.

Table:  A term used synonymously with relation in the
relational data model.

Three-schema architecture:  A view of a database
environment in which the logical schema provides
an interface between the physical schema and user
views of the database.

Three-valued logic:  A set of logical truth tables that
include the values true, false, and unknown.

412 Glossary

Throwaway prototyping:  A type of prototyping in
which the prototype software is demonstrated and
evaluated and then discarded. The production system
is developed from scratch based on feedback to the
prototype.

Timestamping:  A concurrency control method in which
data retrievals and modifications are marked with
the time they occur. Modifications are allowed if no
other transaction holds an earlier timestamp on the
data.

Transaction:  A unit of work presented to a database.

Transitive dependency:  A set of functional
dependencies where an attribute that is a candidate
key for its relation determines a second attribute,
and the second attribute determines a third,
producing a functional dependency between the first
and third as well.

Tree:  In the hierarchical data mode, a single entity
hierarchy.

Tuple:  The formal term for a row in a relations.

Two-phase locking:  A concurrency control method that
begins by giving transactions shared/read locks on
data and then upgrades the locks to exclusive/write
locks only when the transaction is ready to modify
data.

Unified modeling language (UML):  A style of ER
diagramming.

Unit of recovery:  A transaction,, called so because a
transaction either succeeds or fails as a whole.

Update anomaly:  A problem that occurs when
duplicated data become inconsistent when not all

occurrences of the same value are modified at the
same time.

Vertical partitioning:  Storing a relation as two or more
tables that are projections of the original relation to
improve database performance.

View:  A virtual table that is constructed by executing a
named query that is stored as part of a database.

Virtual private network (VPN):  A method that provides
remote access to local area networks that uses the
Internet and encrypts transmissions for security.

Virtual table:  A table whose data exist only in main
memory rather than being stored physically in the
database.

Waterfall method:  An alternative name for the
traditional structured systems development life cycle
based on the idea that one step falls into another.

Weak entity:  An entity whose instances cannot exist in a
database unless a related instance of another entity is
present and related to it.

Well-formed (XML document):  An XML document that
conforms to the syntax rules for a correct document.

White hat hackers:  Hackers who break into computer
systems and then report vulnerabilities to the
software owner or developer. Their motives are
usually to help make systems more secure.

Write lock:  A lock that gives the transaction holding the
lock the exclusive right to read and write a portion of
the database.

XML schema:  A document without data that specifies
the structure of an XML document.

Index

413

A
Access

guaranteed access rule, 141–142
hierarchical data models, 394
remote, 17–18
simple network databases, 398

Access DBMS, 8
Access rights

granting, 341–342
restricting, 343–344
revoking, 342–343
types, 339–341

Acyclic graphs, 314
Ad hoc queries

data warehouses, 353
file processing limitations, 391
Web customers, 339

ADD clause
columns, 176
constraints, 177

Addresses, inconsistent, 371
ADKAR model, 26–27
Aggregation, in object-oriented analysis,

42
All-key relations, 92–93
ALL PRIVILEGES rights, 340
ALTER TABLE statement

columns, 176–178
constraints, 177
deleting table elements, 179
renaming table elements, 179

Alternative analysis methods
evaluating and choosing, 35
generating, 34–35
object-oriented analysis, 38, 40–42
prototyping, 36–37
spiral methodology, 38–40

American National Standards Institute
(ANSI), 400

Application program interface (API),
238–248

Application prototypes, 255

Brainstorming sessions, 32
Brute force attacks, 327
Buffer overflow

attacks, 326–327
problems, 331–332

Buffers, I/O, 302
Business rules

inconsistent, 371–372
incorrect data from, 369
and relationships, 77

Bytes, in file processing systems, 388

C
Calculations, incorrect, 367–368
Cameras, 332
Cardinality of relationships, 185
Cartesian products, 128
CASCADE option with foreign keys, 166
CASE. See Computer-aided software

engineering (CASE) tools
Case sensitivity

and data inconsistency, 47
SQL, 153–154

Catalogs. See Data dictionaries
Centralized hardware architecture, 10–12
Change

resistance to, 26–27
Unfreeze-Change-Refreeze model, 27

CHAR data type, 62–64, 159
Character large objects (CLOBs), 384
CHARACTER VARYING data type, 159
CHECK clauses

column constraints, 170, 178
domains, 156
overriding, 179
tables, 157

Checkpoints, transaction, 302–303
Chen, Peter P. S., 58
Chen model, 58–59, 61–62, 69–70
Children’s Online Privacy Protection Act,

21
Circular inclusion constraints, 126

arriving animals, 257–258
food management, 255–256
problem analysis, 258–260

Architecture, 10
centralized, 10–12
client/server, 13–14
distributed, 14–16
remote access, 17–18
three-schema, 81–82
Web sites, 16–17

Assessment
feasibility, 32–34
needs, 28–32

Attributes, 86
in data dictionaries, 189
documenting, 58–60
entities, 51–53
examples, 60–61
single-valued vs. multivalued, 54–56

Audit trails to log files, 300
Authentication, 333

biometrics, 335
login devices, 334–335
user IDs and passwords, 333–334

AUTHORIZATION clause, 155
Authorization matrices, 339–341
Availability, 323

B
Backups, 344–347
Bad data, in legacy databases, 22
Base tables, 87–88, 157
Bento product, 392
Binary Large Object (BLOB) data type,

63, 160
Biometrics for authentication, 335
BIT data type, 159
BIT VARYING data type, 159
Black hat hackers, 326
BOOLEAN data type, 63, 160
Boyce-Codd normal form (BCNF), 105,

116–117

414 Index

Circular relationships, 279–280
Class diagrams, 183
Classes, in object-oriented analysis, 38
Classic locks, 311–317
Client/server architecture, 13–14
Clusters, 134–135

simple network databases, 398
SQL, 151–152

Codd, Edgar (E. F.), 85–86, 99, 139
Codd’s rules, 139

comprehensive data sublanguage rule,
144–145

distribution independence, 148–149
dynamic online catalogs, 143–144
guaranteed access rule, 141–142
high-level insert, update, delete,

145–146
information rule, 140–141
integrity independence, 147–148
logical data independence, 147
nonsubversion, 149
null value treatment, 142–143
physical data independence, 146
view updating rule, 145

Codes, incorrect, 367
Collections of entities, 56–58
Column homogeneous relations, 87
Columns and column characteristics,

86–87
adding, 176–177
constraints, 170, 178
data types, 158–160
definitions, 177–178
deleting, 179
missing data, 364–365
multiple values, 369–370
names, 153
renaming, 179

Committed transactions, 300
isolation levels, 319
temporary tables, 175

Committee for Data Systems Languages
(CODASYL), 145–146, 399–401

Complex network databases, 402–405
Composite entities

documenting, 74–75
working with, 73–74

Comprehensive data sublanguage rule,
144–145

Computer-aided software engineering
(CASE) tools, 61, 181

capabilities, 182–183

code generation, 191–193
data dictionaries, 188–193
data flow diagrams, 186–188
drawing environment, 195–196
ER diagram reports, 183–186
input and output designs, 193–195

Concatenated identifiers, 53
Concatenated keys

indexes on, 176
properties, 91–92

Concurrency control, 299
classic locks, 311–317
dirty reads, 309
distributed databases, 321
inconsistent analysis, 307–309
lost updates, 304–307
multiuser environment, 299–304
nonrepeatable reads, 309–310
optimistic locks, 317–318
phantom reads, 310–311
timestamping, 318–319
transaction isolation levels, 319–320
Web, 320

Confidentiality, 323
Conforming parsers, 380
CONSTRAINT clause, 161
Constraints, 54

adding, 177
circular inclusion, 126
columns, 170, 178
deleting, 179
domain, 61

Context diagrams, 215
Converting

data types, 177–178
legacy data, 22

Crackers, 325–326
CREATE DOMAIN statement, 156–157
CREATE INDEX statement, 175–176, 383
CREATE SCHEMA statement, 154–156
CREATE TABLE statement

base tables, 157
code generation, 191
schemas in, 155
temporary tables, 174

CREATE VIEW statement, 172
Cross-platform data transfers, 377
Cross-references, in file processing

systems, 391
Crows feet model, 58–59
Currency indicators, in simple network

databases, 398

CURRENT_DATE value, 160
Custom domains, in data dictionaries,

189
Cyberterrorists, 326
Cyclic graphs for locks, 314
Cylinders, 389–390

D
Data administration, 373
Data consistency, 47–48
Data definition language (DDL), 399
Data dictionaries, 7

based on relational models, 143–144
CASE tools, 182, 188–193
contents, 97–98
distributed databases, 16
domains in, 61
for rights, 340
sample tables, 98–99

Data dictionary driven DBMSs, 98, 340
Data flow diagrams (DFDs)

CASE tools, 182, 186–188
examples, 215–218
exploding, 77–80

Data independence rules, 146–147
Data marts, 352
Data mining, 353
Data models, 51, 77–80, 183
Data ownership, 6–7
Data quality, 363

employee issues, 374–375
importance, 363–364
incomprehensible data, 369–371
inconsistent data, 371–374
incorrect data, 366–369
missing data, 364–366

Data sharing security issues, 344
Data stores data flow diagrams, 77
Data Type Definitions (DTDs), 381
Data types, 62–64

columns, 158–160
convert, 177–178

Data warehousing, 351
appliances, 358–360
models for, 356–358
obtaining and preparing data,

354–355
scope and purpose, 352–353

Database administration, 373
Database administrators (DBAs), 127
Database environment, 3–4
Database keys, 398

415Index

Database machines, 358
Database management system (DBMSs),

5
capabilities, 9–10
software, 8–10

Database Task Group (DBTG), 399
Databases, 4–6

architecture. See Architecture
distributed, 321
legacy, 21–23
structure hierarchy in SQL, 151–154

Date, C. J., 125
DATE data type, 63–64, 159
Dates in data warehousing, 358
DATETIME data type, 63
DB2 DBMS, 8

referential integrity, 148
XML support, 382–384

DBAs (database administrators), 127
dBase II, 100
DBMSs (database management systems),

5
capabilities, 9–10
software, 8–10

DDL (data definition language), 399
Deadlocks, 313–315
DECIMAL data type, 63, 158
DEFAULT keyword, 160
Default values

changing, 178
SQL, 160

Definitions, column, 177–178
DELETE clause, 179
DELETE rights, 339
Deleting

database elements, 179–180
high level, 145–146

Deletion anomalies, 49–50, 110–111,
114, 124

Denial of service (DoS) attacks, 326
Dependencies

functional, 111–113
multivalued, 118–119
transitive, 114–116

Deprecated dimensions, 357
DESC keyword, 176
Design, 45

CASE tools. See Computer-aided
software engineering (CASE) tools

life cycle, 27–29
poor design effects, 45–50
requirements, 36

Desktop, file processing systems on,
392–393

Detect and break deadlock strategy, 314
Determinants

BCNF, 117
second normal form, 112
third normal form, 115

DFDs. See Data flow diagrams (DFDs)
Diagrams

data flow. See Data flow diagrams
(DFDs)

ER. See Entity-relationship diagrams
(ERDs)

styles, 58–59, 70–71
Dictionaries. See Data dictionaries
Dimension tables, 356–357
Dimensional modeling, 356–357
Dirty reads, 309
Disaster recovery, 347–348
Disk backup media, 345–346
Distributed databases, 14–16, 321
Distribution independence rule, 148–149
DMZs, 330–331
Documenting

composite entities, 74–75
domains, 61–62
entities and attributes, 58–60
organizational security policies, 338
relationships, 68–70

Documents
requirements, 27
XML correct, 380

Domains, 61
choices, 62–64
columns, 87
constraints, 61
data dictionaries, 189
deleting, 180
documenting, 61–62
SQL, 156–157

DoS (denial of service) attacks, 326
Drawing environment, CASE tools for,

195–196
Drills for disaster recovery, 348
DROP DOMAIN statement, 180
DROP INDEX statement, 180
DROP TABLE statement, 179–180
DROP VIEW statement, 180
DTDs (Data Type Definitions), 381
Dumb terminals, 10
Duplicated data, 47–48
Dynamic online catalogs, 143–144

E
Edge routers, 329–330
Employee issues

data quality, 374–375
examples, 277, 279
security threats, 327–329, 338
training sessions, 338

Encryption in VPNs, 335
End-to-end encryption, 335
Entities

attributes, 51–53
collections, 56–58
documenting, 58–60
examples, 60–61
identifiers, 53–54
XML, 378–379

Entity integrity, 89, 147
Entity-relationship diagrams (ERDs),

58–59
creating relations from, 103–104
diagram reports, 183–186
domains on, 61–62
examples, 218–223, 248–251,

260–264, 277–284
linking to data dictionaries, 189–190,

192
Equi-join operations, 120–122
Error logs, 368–369
Errors, human, 374
Ethernet LANs, 13–14
ETL (extract-transform-load) process,

355
eToken series, 334
Evolutionary prototyping, 37
Exclusive locks, 312–315
Extensible Markup Language. See

XML (Extensible Markup
Language)

External files, pointers to, 141
External security threats

attack types, 326–327
buffer overflow, 331–332
employees, 338
firewalls for, 329–331
hackers and crackers, 325–326
malware, 331
physical, 324, 332–333
social engineering, 336–337
user authentication, 333–335
VPNs for, 335–336

Extract-transform-load (ETL) process,
355

416 Index

F
Fact tables, 356–357
Family Educational Rights and Privacy

Act (FERPA), 20–21
Feasibility assessment, 32–34
Fields in file processing systems, 388
Fifth normal form (5NF), 105, 116, 119

overview, 122–125
projections and joins, 120–122

File processing systems, 387–389
desktop, 392–393
limitations, 391–392

FileMaker Pro product, 8, 392, 402
Files, 4–5
Financial feasibility, 33
Find Volunteer dialog box, 246–247
Fired employees, security issues with,

338
Firewalls, 329–331
First normal form (1NF), 106

problems, 109–111
repeating groups, 106–109

Fixed field lengths, in file processing
systems, 388

Flat-file databases, 393
FLOAT data type, 159
Focus groups, for needs assessment, 32
FOREIGN KEY clause, 161, 166
Foreign key constraints, 177
Foreign keys

in clustering, 135
codes for, 367
data warehousing, 357
deleting, 179
examples, 244, 286
indexing, 134
orphaned, 370–371
and primary keys, 94–96
specifications, 161, 166

Formatting, inconsistent, 373
Fourth normal form (4NF), 105, 116

multivalued dependencies, 118–119
overview, 117–118

FoxPro, 100
Functional dependencies, 111–113

G
“Garbage in, garbage out” expression,

363
Gene & Sarson DFD style, 187–188
GLOBAL TEMPORARY keywords, 174
Global temporary tables, 157, 174

Government regulations on privacy,
20–21

GRANT statement, 341–342
Granting rights, 341–342
Granularity

inconsistent, 372
locks, 311

Graph structure, for locks, 314
Guaranteed access rule, 141–142

H
Hackers, 325–326
Hard drives, for ISAM files, 389–390
Hardware architecture, 10

centralized, 10–12
client/server, 13–14
distributed, 14–16
remote access, 17–18
Web sites, 16–17

Hashing, 398
Health Insurance Portability and

Accountability Act (HIPAA), 20
Helix DBMS, 8
Hierarchical data models

characteristics, 393–395
IMS, 395–396

High-cost alternatives, 35
High level insert, update, delete rule,

145–146
Historical antecedents, 387

CODASYL, 399–401
complex network databases, 402–

405
file processing systems, 387–393
hierarchical data models, 393–396
ISAM files, 389–391
limitations, 391–392
simple network databases, 396–399

Horizontal partitioning, 135–136
Hot sites, 348
Human error as security issue, 374

I
Identification

primary keys for, 89–90
SQL structural elements, 153–154
user authentication, 333–335

Identifiers
entities, 53–54
primary keys, 90–91
problems, 50

IDMS product, 401

IDMS/R product, 140, 401
IDS model, 396–397
IE diagramming style, 70
Images, 141
IMS systems, 395–396
Incomprehensible data, 369–371
Inconsistent analysis, in concurrency

control, 307–309
Inconsistent data, 371

business rules, 371–372
formatting, 373
granularity, 372
names and addresses, 371
preventing, 373–374
referential integrity, 373

Incorrect data, 366–367
calculations, 367–368
codes, 367
rule violations, 369
typing errors, 368–369

Indexed sequential access method (ISAM)
files, 389–391

Indexes, 132–133
creating, 175–176
deciding on, 133–134
deleting, 180
ISAM files, 391
simple network databases, 398

Information Engineering (IE) model,
58–59

Information rule, 140–141
Informix product, 100, 391
Ingres product, 100
Injection attacks, 326–327
Input designs, CASE tools for, 193–195
INSERT INTO statement, 174
INSERT rights, 339
Insertion anomalies, 110
Instances

entity, 51–52
relations, 86

INT data type, 63, 158
Integrity

data, 323
entity, 89
referential, 95, 148, 161, 373

Integrity independence rule, 147–148
Interleaved transactions, 305
Internal security threats

access restrictions, 343–344
access rights for, 341–343
authorization matrices, 339–341

417Index

employee, 327–329
user IDs and passwords, 338–339

INTERVAL data type, 160
Interviews, for needs assessment, 29–30
I/O buffers, 302
IPSec protocol, 335
ISAM (indexed sequential access method)

files, 389–391
Isolation levels, for transactions,

319–320

J
Join dependencies, 119, 124
Joins

performance effects, 127–131
working with, 120–122

K
Keys, 91–92

concatenated, 91–92, 176
foreign. See Foreign keys
primary. See Primary keys

L
Legacy databases, 21–23
Lists, 4–5
Loading temporary tables, 174
Local area networks (LANS), 13–14
Local temporary tables, 157, 174
Location of backup copies, 347
Locks

classic, 311–317
optimistic, 317–318
smart, 332
transaction length, 317

Log files
errors, 368–369
transactions, 300–303

Logical data independence rule, 147
Logical relationships, 140
Login devices, for authentication,

334–335
Lost updates, 304–307
Low-cost alternatives, 34

M
Malware, 327, 331
Mandatory relationships, 67–68
Many-to-many relationships, 67

complex network databases, 402–405
composite entities, 73–74
dealing with, 72–73

examples, 75–77, 219–223, 249–251,
263–264

hierarchical data models, 393
Matrices, authorization, 339–341
Meaningful data, for primary keys, 90–91
Media, backup, 345–346
Members of sets in CODASYL, 400
Metadata, 98, 144, 374
Migrating legacy database data, 22
Missing data

columns, 364–365
data warehousing, 354–355
legacy databases, 22
primary keys, 366
rows, 364

Models
CASE tools for, 194–195
for data warehousing, 356–358

Moderate-cost alternatives, 34–35
Modification anomalies, 111
MODIFY command, 177
Multiple values, in columns, 369–370
Multiuser environments, concurrency

control in, 299–304
Multivalued attributes, 54–56
Multivalued dependencies, 118–119
Multiversion concurrency control,

318–319
Mutually exclusive relationships, 280
MySQL DBMS, 9

N
Names

columns, 86–87, 179
foreign keys, 166
inconsistent, 371
SQL elements, 153–154
tables, 142, 179
view columns, 172

Natural equi-join operations, 120–122
Natural identifiers, 53
Natural keys, for data warehousing, 357
Navigational data model, 393
Needs assessment, 28–32
Network databases

complex, 402–405
simple, 396–399

NO ACTION option, 166
“No cheating” rule, 149
Non-null foreign keys, 95
Nondiscriminatory data, 134
Nonrepeatable reads, 309–310

Nonsubversion rule, 149
Normal forms, 103, 105–106

1NF, 106–111
2NF, 111–114
3NL, 114–116
BCBF, 116–117
4NF, 117–119
5NF, 119–125
6NF, 125–126

NOT NULL constraints, 161, 178
Notations for relations, 88
Null values

constraints, 161, 178
data warehousing, 354–355
issues with, 364–365
primary keys, 89
systematic treatment of, 142–143

NUMERIC data type, 63, 158

O
Object diagrams, 183
Object-oriented analysis, 38, 40–42
Observations, for needs assessment,

29–30
ON COMMIT PRESERVE ROWS clause,

175
ON DELETE RESTRICT clause, 180
One-time passwords, 334
One-to-many relationships, 66–67

complex network databases, 402–
405

hierarchical data models, 393
simple network databases, 397

One-to-one relationships, 64, 66, 280
Online analytical processing (OLAP),

405
Operational feasibility, 32–33
Optimistic locks, 317–318
Oracle DBMS, 8

market, 99–100
XML support, 384–385

Orphaned foreign keys, 370–371
Output designs, CASE tools for, 193–195
Overflow

attacks, 326–327
problems, 331–332

Owners of sets, in CODASYL, 400
Ownership of data, 6–7

P
Paradox DBMS, 100
Parsers, conforming, 380

418 Index

Partitioning, 135
horizontal, 136
vertical, 136–137

Passwords
for authentication, 333–334
brute force attacks on, 327
database, 338–339

Patches, 332
Path names to images, 141
Performance entity in Antique Opticals,

75
Performance issues, 127

clustering, 134–135
indexing, 132–134
join effects, 127–131
partitioning, 135–137
sequential file access, 389
temporary tables, 173

Permanent base tables, 157
pfs:File product, 392
Phantom reads, 310–311
Physical data independence rule, 146
Physical schemas, 80–81
Physical server security, 332–333
Physical threats, 324
Pointers

to images, 141
simple network databases, 398

Policies, security, 338
Poor database design, 45–47

deletion problems, 49–50
duplicated data, 47–48
identifier problems, 50
insertion problems, 48–49

Positional concepts, for columns and
rows, 87

Precision of numeric data types, 63, 158
Predeclare locks strategy, 314
Predicates, 128
PRIMARY KEY clause, 161, 166
Primary keys, 88–89

all-key relations, 92–93
in clustering, 135
codes for, 367
concatenated, 91–92
deleting, 179
examples, 265
first normal form, 109–111
and foreign keys, 94–96
guaranteed access rule, 141
to identify people, 89–90
indexing, 133

meaningful identifiers, 90–91
missing, 366
rows, 87
SQL, 161
unique, 142

Privacy
issues, 20–21
vs. security, 323

Problem analysis and data, 216, 258–
260

Processes, in data flow diagrams, 77–78
Project operation, 120
Projection-join normal form, 119–125
Prototyping, 36–37

Q
Quadrants, in spiral methodology, 38–40
Query optimizers, 127
Questionnaires, for needs assessment, 31

R
R:BASE product, 100
Read committed transactions, 319
Read locks, 311, 315–316
Read uncommitted transactions, 319
REAL data type, 158
Reblocked files, 390
Records, in file processing systems, 388
Recovery

plans, 347–348
after system failures, 303–304

Redo lists, 303
Reference entities, examples, 279
REFERENCES clause, 166
REFERENCES rights, 340
Referential integrity, 95, 148

foreign keys, 161
unenforced, 373

Refreeze actions, in Unfreeze-Change-
Refreeze model, 27

Reinforcement component, in ADKAR
model, 27

Relational algebra operations, 119
Relational data model, 85–86

Codd’s rules. See Codd’s rules
data dictionaries, 96–99
data relationships, 93–96
history, 99–100
primary keys, 88–93
relations, 86–88
views, 96–97

Relational integrity, 147

Relations
all-key, 92–93
columns, 86–87
from ER diagrams, 103–104
notations, 88
rows, 87
table types, 87–88

Relationship data, 72
Relationships, 64–65

and business rules, 77
cardinality of, 185
complex network databases, 402–405
composite entities, 73–74
data dictionaries, 189
dealing with, 72–73
documenting, 68–70
ER diagrams. See Entity-relationship

diagrams (ERDs)
examples, 71–72, 219–223, 249–251,

263–264
hierarchical data models, 393
mandatory, 67–68
many-to-many, 67
one-to-many, 66–67
one-to-one, 64, 66
representing, 93–96
simple network databases, 397–399

Remote access, 17–18
RENAME clause, 179
Renaming table elements, 179
Repeatable read transactions, 319
Repeating groups, 106–109
Representing relationships, 93–96
Requirements documents, 27

CASE tools, 182
from needs assessment, 32

Resistance to change, 26–27
Response times. See Performance issues
Restrict operations, 128
RESTRICT option, 166
REVOKE statement, 342–343
Revoking rights, 342–343
Rights

granting, 341–342
restricting, 343–344
revoking, 342–343
types, 339–341

Rolled back transactions
log files for, 300–303
temporary tables, 175

Root access, in hierarchical data models,
394

419Index

Root tags, in XML, 378
Rows and row characteristics, 87

missing data, 364
temporary tables, 174–175

Rules, business
inconsistent, 371–372
incorrect data from, 369
and relationships, 77

S
Schemas, 80–82, 154

creating, 154–155
specifying, 155
SQL, 151, 153
XML, 380–381

Scope
data warehousing, 352–353
temporary tables, 174

Screen prototypes, CASE tools for, 183
Script kiddies, 325
Second normal form (2NF)

functional dependencies, 111–113
problems, 113–114

Security, 18–20, 323–324
access restrictions, 343–344
access rights, 341–343
attack types, 326–327
authorization matrices, 339–341
backups and recovery, 344–348
buffer overflow problems, 331–332
employee threats, 327–329
firewalls, 329–331
hackers and crackers, 325–326
investment in, 348
physical server security, 332–333
physical threats, 324
social engineering, 336–337
user authentication, 333–335
user IDs and passwords, 338–339
virtual private networks for, 335–336

Security cameras, 332
SELECT rights, 339
Semicolons (;), in SQL statements, 154
Sequential file access, 388–389
Serializable transactions, 305, 319
Servers

physical threats, 324
security for, 332–333

Service-oriented architecture (SOA), 7–8
Sessions, Web, 320
SET CURRENT ISOLATION statement,

320

SET DEFAULT option, 166
SET NULL option, 166
SET SCHEMA statement, 155
Set theory, 86
SET TRANSACTION ISOLATION LEVEL

statement, 320
SET TRANSACTION LEVEL statement,

319
Sets, in CODASYL, 400–401
Shared data, 7–8
Shared locks, 315–316
Signs in server security, 332
Simple network databases, 396–399
Single-valued attributes, 54–56
Sixth normal form (6NF), 106, 125–

126
SMALLINT data type, 158
Smart locks, 332
SOA (service-oriented architecture), 7–8
Social engineering, 327, 336–337
Social Security numbers, as primary keys,

89–90
Sorting

in descending order, 176
vs. indexing, 132

Spiral methodology, 38–40
SQL, 151

database structure hierarchy, 151–
154

domains, 156–157
examples, 230, 251, 265, 286
foreign keys, 161, 166
injection attacks, 326–327
names, 153–154
NOT NULL constraints, 161
primary keys, 161
schemas, 154
tables, 157–165, 167–170

SQL DBMS, 9
SQL/DS, 99
SQL/XML language, 383–385
State models, CASE tools for, 183
Storage facilities for backups, 347
Structure charts, CASE tools for, 183
Structured design life cycle, 27–29
Subschemas, 145
Syntax in XML, 377–379
System failures, recovery after, 303–304
System R, 99
System sets, in CODASYL, 401
Systematic treatment, of null values,

142–143

Systems analysis, 25
alternative analysis methods, 36–42
alternatives generation, 34–35
design requirements, 36
feasibility assessment, 32–34
needs assessment, 28–32
resistance to change, 26–27
structured design life cycle, 27–29

T
Tables

columns, 86–87
data warehousing, 356–357
deleting, 179–180
examples, 223–230, 251–255,

264–271, 284–294
foreign keys and primary keys, 95–

96
renaming, 179
rows, 87
SQL, 151, 157–165, 167–170
temporary, 157, 173–175
types, 87–88

Tags, in XML, 377–378, 380
Tank maintenance data, 235–236
Tape file storage, 388–389
Task diagrams, CASE tools for, 183
Technological feasibility, 33
Temporary tables, 157, 173

creating, 174
loading, 174
row disposition, 174–175

Terms, 407–412
Testing recovery plans, 348
Text files, 387–388
Third normal form (3NF), 105

purpose, 114
transitive dependencies, 114–116

Three-generation backup strategy, 345
Three-schema architecture, 81–82
Three-valued logic, 142, 364–365
Throwaway prototyping, 37
TIME data type, 63, 159
Time outs, 300
TIMESTAMP data type, 159
Timestamping

concurrency control, 318–319
distributed databases, 321

Tokens for authentication, 334
Tracks, disk, 390
Training sessions, 338
Transaction length and locks, 317

420 Index

Transactions, 300
classic locks, 311–317
dirty reads, 309
distributed databases, 321
inconsistent analysis, 307–309
isolation levels, 319–320
logging and rollback, 300–303
lost updates, 304–307
nonrepeatable reads, 309–310
optimistic locks, 317–318
phantom reads, 310–311
recovery after failures, 303–304
temporary tables, 175
timestamping, 318–319
Web, 320

Transitive dependencies, 114–116
Trees in hierarchical data models,

393–395
Triggers, 368
Tunnels, in VPNs, 335
Tuples, 86
Two-phase commits, 321
Two-phase locking, 316–317
Typographical errors, 368–369

U
Undo lists, 303
Unenforced referential integrity, 373
Unfreeze-Change-Refreeze model, 27
Unified Modeling Language (UML),

58–59, 70–71
UNIQUE constraints

columns, 170
removing, 179

Unique indexes, 175

Unique primary keys, 142
Unique rows, 87
Units of recovery, 300
UPDATE rights, 339
Updates

concurrency control, 304–307
first normal form anomalies,

111
high level, 145–146
views for, 171–172

URLs to images, 141
User authentication, 333–335
User-defined domains, 156
User IDs

for authentication, 333
database, 338–339

V
Valid XML documents, 380
VARCHAR data type, 63, 159
Vertical partitioning, 135–137
View updating rule, 145
Views, 96, 170

creating, 172
deciding on, 170–171
deleting, 180
mechanisms, 96–97
reasons, 97
SQL, 151
vs. temporary tables, 173
for updates, 171–172

Virtual private networks (VPNs), 18–19,
335–336

Virtual tables, 88
Volatility issues for backups, 345

VPNs (virtual private networks), 18–19,
335–336

W
Warehousing, 351

appliances, 358–360
models for, 356–358
obtaining and preparing data,

354–355
scope and purpose, 352–353

Waterfall method, 28–29
Weak entities, 67–68
Web concurrency control, 320
Web sites, 16–17
Well formed XML documents, 380
White hat hackers, 325
WITH GRANT OPTION clause, 340
World Wide Web Consortium (W3C),

377
Write locks, 312–315

X
XML (Extensible Markup Language), 377

document correctness, 380
generating, 192
schemas, 380–381
support, 382–385
syntax, 377–379

XQuery language, 383–385

Y
Yourdon/DeMarco DFD style, 186–187

Z
Zip codes, data types for, 63

	Morgan Kaufman Relational Database Design and Implementation 3. Edition (09-2009) (ATTiCA)
	Copyright page
	Preface to the Third Edition
	Acknowledgments
	Part I: Introduction
	The Database Environment
	Defining a Database
	Lists and Files
	Databases

	Data “Ownership”
	Service-Oriented Architecture

	Database Software: DBMSs
	Database Hardware Architecture
	Centralized
	Client/Server
	Distributed
	The Web
	Remote Access

	Other Factors in the Database Environment
	Security
	Government Regulations and Privacy
	Legacy Databases

	For Further Reading

	Systems Analysis and Database Requirements
	Dealing with Resistance to Change
	The Structured Design Life Cycle
	Conducting the Needs Assessment
	Assessing Feasibility
	Generating Alternatives
	Evaluating and Choosing an Alternative
	Creating Design Requirements
	Alternative Analysis Methods
	Prototyping
	Spiral Methodology
	Object-Oriented Analysis

	For Further Reading

	Part II: Database Design Theory
	Why Good Design Matters
	Effects of Poor Database Design
	Unnecessary Duplicated Data and Data Consistency
	Data Insertion Problems
	Data Deletion Problems
	Meaningful Identifiers

	Entities and Relationships
	Entities and Their Attributes
	Entity Identifiers
	Single-Valued versus Multivalued Attributes
	Avoiding Collections of Entities
	Documenting Entities and Their Attributes
	Entities and Attributes for Antique Opticals

	Domains
	Documenting Domains
	Practical Domain Choices

	Basic Data Relationships
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationships
	Weak Entities and Mandatory Relationships
	Documenting Relationships
	The Chen Method
	IE Style Diagrams
	UML Style Diagrams

	Basic Relationships for Antique Opticals

	Dealing with Many-to-Many Relationships
	Composite Entities
	Documenting Composite Entities
	Resolving Antique Opticals’ Many-to-Many Relationships

	Relationships and Business Rules
	Data Modeling versus Data Flow
	Schemas
	For Further Reading

	The Relational Data Model
	Understanding Relations
	Columns and Column Characteristics
	Rows and Row Characteristics
	Types of Tables
	A Notation for Relations

	Primary Keys
	Primary Keys to Identify People
	Avoiding Meaningful Identifiers
	Concatenated Primary Keys
	All-Key Relations

	Representing Data Relationships
	Referential Integrity
	Foreign Keys and Primary Keys in the Same Table

	Views
	The View Mechanism
	Why Use Views?

	The Data Dictionary
	Sample Data Dictionary Tables

	A Bit of History
	For Further Reading

	Normalization
	Translating an ER Diagram into Relations
	Normal Forms
	First Normal Form
	Understanding Repeating Groups
	Handling Repeating Groups
	Problems with First Normal Form

	Second Normal Form
	Understanding Functional Dependencies
	Using Functional Dependencies to Reach 2NF
	Problems with 2NF Relations

	Third Normal Form
	Transitive Dependencies

	Boyce-Codd Normal Form
	Fourth Normal Form
	Multivalued Dependencies

	Fifth Normal Form
	Projections and Joins
	Projection
	Equi-Join

	Understanding 5NF

	Sixth Normal Form
	For Further Reading

	Database Structure and Performance Tuning
	Joins and Database Performance
	Indexing
	Deciding Which Indexes to Create

	Clustering
	Partitioning
	Horizontal Partitioning
	Vertical Partitioning

	For Further Reading

	Codd’s Rules for Relational Database Design
	Rule 1: The Information Rule
	Rule 2: The Guaranteed Access Rule
	Rule 3: Systematic Treatment of Null Values
	Rule 4: Dynamic Online Catalog Based on the Relational Model
	Rule 5: The Comprehensive Data Sublanguage Rule
	Rule 6: The View Updating Rule
	Rule 7: High-Level Insert, Update, Delete
	Rule 8: Physical Data Independence
	Rule 9: Logical Data Independence
	Rule 10: Integrity Independence
	Rule 11: Distribution Independence
	Rule 12: Nonsubversion Rule

	Using SQL to Implement a Relational Design
	Database Structure Hierarchy
	Naming and Identifying Structural Elements

	Schemas
	Creating a Schema
	Identifying the Schema You Want to Use

	Domains
	Tables
	Column Data Types
	Default Values
	NOT NULL CONSTRAINTS
	Primary Keys
	Foreign Keys
	Additional Column Constraints
	Requiring Unique Values
	Check Clauses

	Views
	Deciding Which Views to Create
	View Updatability Issues
	Creating Views

	Temporary Tables
	Creating Temporary Tables
	Loading Temporary Tables with Data
	Disposition of Temporary Table Rows

	Creating Indexes
	Modifying Database Elements
	Adding Columns
	Adding Table Constraints
	Modifying Columns
	Changing Column Definitions
	Changing Default Values
	Changing Null Status
	Changing Column Constraints

	Deleting Table Elements
	Renaming Table Elements

	Deleting Database Elements

	Using CASE Tools for Database Design
	CASE Capabilities
	ER Diagram Reports
	Data Flow Diagrams
	The Data Dictionary
	Code Generation
	Sample Input and Output Designs
	The Drawing Environment
	For Further Reading

	Database Design Case Study 1: Mighty-Mite Motors
	Corporate Overview
	Product Development Division
	Manufacturing Division
	Marketing and Sales Division
	Current Information Systems
	Reengineering Project
	New Information Systems Division
	Basic System Goals
	Current Business Processes
	Sales and Ordering Processes
	Manufacturing, Inventory, and Shipping Processes
	Product Testing and Support Function

	Designing the Database
	Examining the Data Flows
	The ER Diagram
	Creating the Tables
	Generating the SQL

	Database Design Case Study 2: East Coast Aquarium
	Organizational Overview
	Animal Tracking Needs
	The Volunteer Organization

	The Volunteers Database
	Creating the Application Prototype
	Creating the ER Diagram
	Designing the Tables
	Generating the SQL

	The Animal Tracking Database
	Highlights of the Application Prototype
	Food Management
	Handling Arriving Animals
	Problem Analysis

	Creating the ER Diagram
	Creating the Tables
	Generating the SQL

	Part III: Relational Design Practice
	Database Design Case Study 3: SmartMart
	The Merchandising Environment
	Product Requirements
	In-Store Sales Requirements
	Web Sales Requirements
	Personnel Requirements

	Putting Together an ERD
	Stores, Products, and Employees
	Reference Entities
	Circular Relationships
	Mutually Exclusive Relationships
	One-to-One Relationships

	In-Store Sales
	Web Sales

	Creating the Tables
	Generating the SQL

	Part IV: Database Implementation Issues
	Concurrency Control
	The Multiuser Environment
	Transactions
	Logging and Rollback
	Recovery

	Problems with Concurrent Use
	Lost Update #1
	Lost Update #2
	Inconsistent Analysis
	Dirty Reads
	Nonrepeatable Read
	Phantom Read

	Solution 1: Classic Locking
	Read or Exclusive Locks
	Operation of Write/Exclusive Locks
	Problem with Write/Exclusive Locks: Deadlock

	Read or Shared Locks
	Two-Phase Locking
	Locks and Transaction Length

	Solution 2: Optimistic Concurrency Control (Optimistic Locking)
	Solution #3: Multiversion Concurrency Control (Timestamping)
	Transaction Isolation Levels
	Web Database Concurrency Control Issues
	Distributed Database Issues
	For Further Reading

	Database Security
	Sources of External Security Threats
	Physical Threats
	Hackers and Crackers
	Types of Attacks

	Sources of Internal Threats
	Employee Threats

	External Remedies
	Securing the Perimeter: Firewalls
	Handling Malware
	Buffer Overflows
	Physical Server Security
	User Authentication
	User IDs and Passwords (What the User Knows)
	Login Devices (What the User Has)
	Biometrics (What the User Is)

	VPNs
	Combating Social Engineering
	Handling Other Employee Threats

	Internal Solutions
	Internal Database User IDs and Passwords
	Authorization Matrices
	Types of Access Rights
	Using an Authorization Matrix
	Database Implementations

	Granting and Revoking Access Rights
	Granting Rights
	Revoking Rights

	Who Has Access to What

	Backup and Recovery
	Backup
	Disaster Recovery

	The Bottom Line: How Much Security Do You Need?
	For Further Reading

	Data Warehousing
	Scope and Purpose of a Data Warehouse
	Obtaining and Preparing the Data
	Data Modeling for the Data Warehouse
	Dimensional Modeling Basics
	Dates and Data

	Data Warehouse Appliances
	For Further Reading

	Data Quality
	Why Data Quality Matters
	Recognizing and Handling Incomplete Data
	Missing Rows
	Missing Column Data
	Missing Primary Key Data

	Recognizing and Handling Incorrect Data
	Wrong Codes
	Wrong Calculations
	Wrong Data Entered into the Database
	Violation of Business Rules

	Recognizing and Handling Incomprehensible Data
	Multiple Values in a Column
	Orphaned Foreign Keys

	Recognizing and Handling Inconsistent Data
	Inconsistent Names and Addresses
	Inconsistent Business Rules
	Inconsistent Granularity
	Unenforced Referential Integrity
	Inconsistent Data Formatting
	Preventing Inconsistent Data on an Organizational Level

	Employees and Data Quality
	For Further Reading

	XML
	XML Syntax
	XML Document Correctness
	XML Schemas
	XML Support in Relational DBMSs
	DB2
	Oracle

	For Further Reading

	Historical Antecedents
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

