yoftware-Independent Approach!
i! Ol | ':-! YOMIT ." WOT K1 |:.l.|.'|-.! :|.~ COnsrame ol :l! A -'.|..| a.'lJ[it'l.l'-l.,"-,ﬂ'

S : Wi) ¥
a NoSQL database might be a bereer opuiony Thi¥ ookl hieip voul
lentify and |:::!".:' ent the best ""~-l"~'i_E"L database tophot .||‘~i":..:l.4l|'l.'

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and
its many features varies across reading devices and applications. Use your device or app
settings to customize the presentation to your liking. Settings that you can customize often
include font, font size, single or double column, landscape or portrait mode, and figures
that you can click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable format
may compromise the presentation of the code listing, you will see a “Click here to view
code image” link. Click the link to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your device or app.

NoSQL for Mere Mortals®

Dan Sullivan
vv Addison-Wesley

Hoboken, NJ = Boston = Indianapolis = San Francisco
New York = Toronto » Montreal = London = Munich = Paris = Madrid
Capetown = Sydney = Tokyo = Singapore » Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals. The author and publisher have taken care in the preparation
of this book, but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or
programs contained herein. The publisher offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales, which may include electronic
versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales(@pearsontechgroup.com

For questions about sales outside the U.S., please contact:

International Sales

international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2015935038

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-402321-2
ISBN-10: 0-13-402321-8

Text printed in the United States on recycled paper at Edwards Brothers Malloy, Ann
Arbor, Michigan.

First printing, April 2015

Editor-in-Chief: Greg Wiegand
Acquisitions Editor: Joan Murray
Development Editor: Mark Renfrow
Managing Editor: Sandra Schroeder
Senior Project Editor: Tonya Simpson
Copy Editor: Karen Annett

Indexer: WordWise Publishing Services
Proofreader: Chuck Hutchinson
Technical Reviewer: Theodor Richardson

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw

Editorial Assistant: Cindy Teeters
Cover Designer: Alan Clements
Compositor: Mary Sudul

For Mere Mortals Series

Manogemer

DATABASE [
" DESIGN SQL QUERIES § NOSQL Project
RS o F e . Manegs

vv Addison-Wesley

Visit informit.com/formeremortalsseries for a complete list of available products.

he For Mere Mortals® Series presents you with information on important technology
Ttopics in an easily accessible, common sense manner. If you have little or no
background or formal training on the subjects covered in the series, these guides are

for you. This series avoids dwelling on the theoretical and instead takes you right to

the heart of the topic with a matter-of-fact, hands-on approach.

“These books will give you the knowledge you need to do your work with confidence.”

Mike Hernandez - Series Editor

Are you an instructor? Most For Mere Mortals guides have extensive teaching resources and supplements available.

~ o BRRLT ~ |
H o ¥ B

Make sure 1o connect with us!
informit.com/fsocialconnect

iﬂ'ﬂrm”ﬂﬂm ‘ ++ Addison-Wesley | Safari

.........

ALWAYS LEARNIMNG pEARSON

For Katherine

About the Author

Dan Sullivan is a data architect and data scientist with more than 20 years of experience
in business intelligence, machine learning, data mining, text mining, Big Data, data
modeling, and application design. Dan’s project work has ranged from analyzing complex
genomics and proteomics data to designing and implementing numerous database
applications. His most recent work has focused on NoSQL database modeling, data
analysis, cloud computing, text mining, and data integration in life sciences. Dan has
extensive experience in relational database design and works regularly with NoSQL
databases. Dan has presented and written extensively on NoSQL, cloud computing,
analytics, data warehousing, and business intelligence. He has worked in many industries,
including life sciences, financial services, oil and gas, manufacturing, health care,
insurance, retail, power systems, telecommunications, pharmaceuticals, and publishing.

Contents

Preface
Introduction

PART I: INTRODUCTION

Chapter 1 Different Databases for Different Requirements
Relational Database Design
E-commerce Application
Early Database Management Systems
Flat File Data Management Systems

Organization of Flat File Data Management Systems
Random Access of Data

Limitations of Flat File Data Management Systems
Hierarchical Data Model Systems

Organization of Hierarchical Data Management Systems

Limitations of Hierarchical Data Management Systems
Network Data Management Systems

Organization of Network Data Management Systems

Limitations of Network Data Management Systems

Summary of Early Database Management Systems
The Relational Database Revolution

Relational Database Management Systems

Organization of Relational Database Management Systems

Organization of Applications Using Relational Database Management
Systems

Limitations of Relational Databases

Motivations for Not Just/No SQL (NoSQL) Databases

Scalability
Cost

Flexibility
Availability
Summary
Case Study

Review Questions

References

Bibliography
Chapter 2 Variety of NoSQL Databases

Data Management with Distributed Databases
Store Data Persistently

Maintain Data Consistency
Ensure Data Availability

Consistency of Database Transactions

Availability and Consistency in Distributed Databases
Balancing Response Times, Consistency, and Durability

Consistency, Availability, and Partitioning: The CAP Theorem
ACID and BASE

ACID: Atomicity, Consistency, Isolation, and Durability
BASE: Basically Available, Soft State, Eventually Consistent
Types of Eventual Consistency

Casual Consistency

Read-Your-Writes Consistency

Session Consistency

Monotonic Read Consistency

Monotonic Write Consistency
Four Types of NoSQL Databases
Key-Value Pair Databases

Keys
Values

Differences Between Key-Value and Relational Databases

Document Databases

Documents

Querying Documents

Differences Between Document and Relational Databases

Column Family Databases

Columns and Column Families

Differences Between Column Family and Relational Databases
Graph Databases
Nodes and Relationships

Differences Between Graph and Relational Databases

Summary

Review Questions

References

Bibliography
PART II: KEY-VALUE DATABASES

Chapter 3 Introduction to Key-Value Databases

From Arrays to Key-Value Databases

Arrays: Key Value Stores with Training Wheels
Associative Arrays: Taking Off the Training Wheels
Caches: Adding Gears to the Bike

In-Memory and On-Disk Key-Value Database: From Bikes to Motorized
Vehicles

Essential Features of Key-Value Databases
Simplicity: Who Needs Complicated Data Models Anyway?

Speed: There Is No Such Thing as Too Fast
Scalability: Keeping Up with the Rush

Scaling with Master-Slave Replication

Scaling with Masterless Replication

Keys: More Than Meaningless Identifiers
How to Construct a Key

Using Keys to Locate Values

Hash Functions: From Keys to Locations
Keys Help Avoid Write Problems
Values: Storing Just About Any Data You Want

Values Do Not Require Strong Typing

Limitations on Searching for Values
Summary

Review Questions

References

Bibliography
Chapter 4 Key-Value Database Terminology
Key-Value Database Data Modeling Terms
Key
Value
Namespace
Partition

Partition Key

Schemaless

Key-Value Architecture Terms

Cluster
Ring
Replication

Key-Value Implementation Terms
Hash Function

Collision

Compression
Summary
Review Questions

References

Chapter 5 Designing for Key-Value Databases

Key Design and Partitioning

Keys Should Follow a Naming Convention
Well-Designed Keys Save Code

Dealing with Ranges of Values

Keys Must Take into Account Implementation Limitations
How Keys Are Used in Partitioning

Designing Structured Values

Structured Data Types Help Reduce Latency

Large Values Can Lead to Inefficient Read and Write Operations

Limitations of Key-Value Databases
Look Up Values by Key Only

Key-Value Databases Do Not Support Range Queries

No Standard Query Language Comparable to SQL for Relational Databases
Design Patterns for Key-Value Databases

Time to Live (TTL) Keys

Emulating Tables
Aggregates
Atomic Aggregates

Enumerable Keys
Indexes

Summary
Case Study: Key-Value Databases for Mobile Application Configuration

Review Questions

References
PART III: DOCUMENT DATABASES

Chapter 6 Introduction to Document Databases
What Is a Document?

Documents Are Not So Simple After All
Documents and Key-Value Pairs

Managing Multiple Documents in Collections
Getting Started with Collections

Tips on Designing Collections

Avoid Explicit Schema Definitions
Basic Operations on Document Databases

Inserting Documents into a Collection

Deleting Documents from a Collection

Updating Documents in a Collection

Retrieving Documents from a Collection

Summary

Review Questions

References

Chapter 7 Document Database Terminology
Document and Collection Terms

Document

Documents: Ordered Sets of Key-Value Pairs

Key and Value Data Types

Collection

Embedded Document

Schemaless

Schemaless Means More Flexibility

Schemaless Means More Responsibility
Polymorphic Schema
Types of Partitions
Vertical Partitioning
Horizontal Partitioning or Sharding
Separating Data with Shard Keys
Distributing Data with a Partitioning Algorithm
Data Modeling and Query Processing

Normalization

Denormalization

Query Processor

Summary
Review Questions

References

Chapter 8 Designing for Document Databases

Normalization, Denormalization, and the Search for Proper Balance
One-to-Many Relations

Many-to-Many Relations
The Need for Joins

Executing Joins: The Heavy Lifting of Relational Databases

Executing Joins Example

What Would a Document Database Modeler Do?

The Joy of Denormalization
Avoid Overusing Denormalization

Just Say No to Joins, Sometimes

Planning for Mutable Documents
Avoid Moving Oversized Documents

The Goldilocks Zone of Indexes

Read-Heavy Applications
Write-Heavy Applications

Modeling Common Relations
One-to-Many Relations in Document Databases

Many-to-Many Relations in Document Databases

Modeling Hierarchies in Document Databases
Parent or Child References
Listing All Ancestors
Summary
Case Study: Customer Manifests
Embed or Not Embed?
Choosing Indexes
Separate Collections by Type?
Review Questions

References
PART IV: COLUMN FAMILY DATABASES

Chapter 9 Introduction to Column Family Databases
In the Beginning, There Was Google BigTable
Utilizing Dynamic Control over Columns

Indexing by Row, Column Name, and Time Stamp
Controlling Location of Data

Reading and Writing Atomic Rows

Maintaining Rows in Sorted Order

Differences and Similarities to Key-Value and Document Databases
Column Family Database Features

Column Family Database Similarities to and Differences from Document
Databases

Column Family Database Versus Relational Databases
Avoiding Multirow Transactions

Avoiding Subqueries

Architectures Used in Column Family Databases
HBase Architecture: Variety of Nodes

Cassandra Architecture: Peer-to-Peer

Getting the Word Around: Gossip Protocol

Thermodynamics and Distributed Database: Why We Need Anti-Entropy
Hold This for Me: Hinted Handoff

When to Use Column Family Databases
Summary

Review Questions

References

Chapter 10 Column Family Database Terminology
Basic Components of Column Family Databases
Keyspace
Row Key

Column

Column Families

Structures and Processes: Implementing Column Family Databases

Internal Structures and Configuration Parameters of Column Family Databases
Old Friends: Clusters and Partitions

Cluster

Partition

Taking a Look Under the Hood: More Column Family Database Components

Commit L.og
Bloom Filter

Consistency Level

Processes and Protocols

Replication

Anti-Entropy
Gossip Protocol

Hinted Handoff

Summary

Review Questions

References

Chapter 11 Designing for Column Family Databases
Guidelines for Designing Tables

Denormalize Instead of Join
Make Use of Valueless Columns
Use Both Column Names and Column Values to Store Data

Model an Entity with a Single Row

Avoid Hotspotting in Row Keys

Keep an Appropriate Number of Column Value Versions

Avoid Complex Data Structures in Column Values
Guidelines for Indexing

When to Use Secondary Indexes Managed by the Column Family Database
System

When to Create and Manage Secondary Indexes Using Tables
Tools for Working with Big Data
Extracting, Transforming, and I.oading Big Data
Analyzing Big Data
Describing and Predicting with Statistics

Finding Patterns with Machine [.earning
Tools for Analyzing Big Data

Tools for Monitoring Big Data

Summary
Case Study: Customer Data Analysis

Understanding User Needs

Review Questions

References
PART V: GRAPH DATABASES
Chapter 12 Introduction to Graph Databases
What Is a Graph?
Graphs and Network Modeling

Modeling Geographic Locations

Modeling Infectious Diseases

Modeling Abstract and Concrete Entities

Modeling Social Media
Advantages of Graph Databases
Query Faster by Avoiding Joins

Simplified Modeling
Multiple Relations Between Entities

Summary

Review Questions

References

Chapter 13 Graph Database Terminology
Elements of Graphs

Vertex

Edge
Path
Loop

Operations on Graphs
Union of Graphs
Intersection of Graphs
Graph Traversal

Properties of Graphs and Nodes
Isomorphism

Order and Size

Degree
Closeness

Betweenness

Types of Graphs

Undirected and Directed Graphs

Flow Network

Bipartite Graph

Multigraph
Weighted Graph
Summary

Review Questions

References

Chapter 14 Designing for Graph Databases
Getting Started with Graph Design
Designing a Social Network Graph Database
Queries Drive Design (Again)
Querying a Graph
Cypher: Declarative Querying
Gremlin: Query by Graph Traversal
Basic Graph Traversal
Traversing a Graph with Depth-First and Breadth-First Searches
Tips and Traps of Graph Database Design
Use Indexes to Improve Retrieval Time
Use Appropriate Types of Edges
Watch for Cycles When Traversing Graphs
Consider the Scalability of Your Graph Database
Summary
Case Study: Optimizing Transportation Routes
Understanding User Needs

Designing a Graph Analysis Solution
Review Questions

References
PART VI: CHOOSING A DATABASE FOR YOUR APPLICATION
Chapter 15 Guidelines for Selecting a Database
Choosing a NoSQL Database

Criteria for Selecting Key-Value Databases

Use Cases and Criteria for Selecting Document Databases

Use Cases and Ciriteria for Selecting Column Family Databases

Use Cases and Criteria for Selecting Graph Databases

Using NoSQL and Relational Databases Together
Summary

Review Questions

References

PART VII: APPENDICES

Appendix A: Answers to Chapter Review Questions
Appendix B: List of NoSQL Databases
Glossary

Index

Preface

“Whatever there be of progress in life comes not through adaptation but through
daring.”

—HENRY MILLER

It is difficult to avoid discussions about data. Individuals are concerned about keeping
their personal data private. Companies struggle to keep data out of the hands of
cybercriminals. Governments and businesses have an insatiable appetite for data. IT
analysts trip over themselves coming up with new terms to describe data: Big Data,
streaming data, high-velocity data, and unstructured data. There is no shortage of terms for
ways to store data: databases, data stores, data warehouses, and data lakes. Someone has
gone so far as to coin the phrase data swamp.

While others engage in sometimes heated discussions about data, there are those who need
to collect, process, analyze, and manage data. This book is for them.

NoSQL databases emerged from unmet needs. Data management tools that worked well
for decades could not keep up with demands of Internet applications. Hundreds and
thousands of business professionals using corporate databases were no longer the most
challenging use case. Companies such as Google, Amazon, Facebook, and Yahoo! had to
meet the needs of users that measured in the millions.

The theoretically well-grounded relational data model that had served us so well needed
help. Specialized applications, like Web crawling and online shopping cart management,
motivated the enhancement and creation of nonrelational databases, including key-value,
document, column family, and graph databases. Relational databases are still needed and
face no risk of being replaced by NoSQL databases. Instead, NoSQL databases offer
additional options with different performance and functional characteristics.

This book is intended as a guide to introduce NoSQL databases, to discuss when they
work well and when they do not, and, perhaps most important, to describe how to use
them effectively to meet your data management needs.

You can find PowerPoints, chapter quizzes, and an accompanying instructor’s guide in
Pearson’s Instructor Resource Center (IRC) via the website pearsonhighered.com.

http://pearsonhighered.com

Acknowledgments

This book is the product of a collaboration, not a single author as the cover may suggest. I
would like to thank my editor, Joan Murray, for conceiving of this book and inviting me
into the ranks of the well-respected authors and publishing professionals who have created
the For Mere Mortals series.

Tonya Simpson patiently and professionally took a rough draft of NoSQL for Mere
Mortals and turned it into a polished, finished product. Thanks to Sondra Scott, Cindy
Teeters, and Mark Renfrow of Pearson for their help in seeing this book to completion.
Thank you to Karen Annett for copyediting this book; I know I gave you plenty to do.

Thanks to Theodor Richardson for his thoughtful and detail-oriented technical edit.
My family was a steadfast support through the entire book writing process.

My father-in-law, Bill Aiken, is my number-one fan and my constant source of
encouragement.

I am thankful for the encouragement offered by my children Nicole, Charles, and Kevin
and their partners Katie and Sara.

I would like to especially thank my sons, Nicholas and James. Nicholas read chapters and
completed review questions as if this were a textbook in a course. He identified weak
spots and was a resource for improving the explanations throughout the text. James, a
professional technology writer himself, helped write the section on graph databases. He
did not hesitate to make time in his schedule for yet another unexpected request for help
from his father, and as a result, the quality of those chapters improved.

Neither this book nor the other professional and personal accomplishments I have had
over the past three decades could have occurred without the ever-present love and support
of my partner, Katherine. Others cannot know, and probably do not even suspect, that
much of what I appear to have done myself is really what we have accomplished together.
This book is just one of the many products of our journey.

Dan Sullivan
Portland, Oregon
2015

Introduction

“Just when I think I have learned the way to live, life changes.”
—HUGH PRATHER

Databases are like television. There was a time in the history of both when you had few
options to choose from and all the choices were disappointingly similar. Times have
changed. The database management system is no longer synonymous with relational
databases, and television is no longer limited to a handful of networks broadcasting
indistinguishable programs.

Names like PostgreSQL, MySQL, Oracle, Microsoft SQL Server, and IBM DB2 are well
known in the IT community, even among professionals outside the data management
arena. Relational databases have been the choice of data management professionals for
decades. They meet the needs of businesses tracking packages and account balances as
well as scientists studying bacteria and human diseases. They keep data logically
organized and easily retrieved. One of their most important characteristics is their ability
to give multiple users a consistent view of data no matter how many changes are under
way within the database.

Many of us in the database community thought we understood how to live with databases.
Then life changed. Actually, the Internet changed. The Internet emerged from a military-
sponsored network called ARPANET to become a platform for academic collaboration
and eventually for commercial and personal use. The volume and types of data expanded.
In addition to keeping our checking account balances, we want our computers to find the
latest news, help with homework, and summarize reviews of new films. Now, many of us
depend on the Internet to keep in touch with family, network with colleagues, and pursue
professional education and development.

It is no surprise that such radical changes in data management requirements have led to
radically new ways to manage data. The latest generation of data management tools is
collectively known as NoSQL databases. The name reflects what these systems are not
instead of what they are. We can attribute this to the well-earned dominance of relational
databases, which use a language called SQL.

NoSQL databases fall into four broad categories: key-value, document, column family,
and graph databases. (Search-oriented systems, such as Solr and Elasticsearch are
sometimes included in the extended family of NoSQL databases. They are outside the
scope of this book.)

Key-value databases employ a simple model that enables you to store and look up a datum
(also known as the value) using an identifier (also known as the key). BerkleyDB, released
in the mid-1990s, was an early key-value database used in applications for which
relational databases were not a good fit.

Document databases expand on the ideas of key-value databases to organize groups of key
values into a logical structure known as a document. Document databases are high-
performance, flexible data management systems that are increasingly used in a broad
range of data management tasks.

Column family databases share superficial similarities to relational databases. The name
of the first implementation of a column family database, Google BigTable, hints at the
connection to relational databases and their core data structure, the table. Column family
databases are used for some of the largest and most demanding, data-intensive
applications.

Graph databases are well suited to modeling networks—that is, things connected to other
things. The range of use cases spans computers communicating with other computers to
people interacting with each other.

This is a dynamic time in database system research and development. We have well-
established and widely used relational databases that are good fits for many data
management problems. We have long-established alternatives, such as key-value
databases, as well as more recent designs, including document, column family, and graph
databases.

One of the disadvantages of this state of affairs is that decision making is more
challenging. This book is designed to lessen that challenge. After reading this book, you
should have an understanding of NoSQL options and when to use them.

Keep in mind that NoSQL databases are changing rapidly. By the time you read this, your
favorite NoSQL database might have features not mentioned here. Watch for increasing
support for transactions. How database management systems handle transactions is an
important distinguishing feature of these systems. (If you are unfamiliar with transactions,
don’t worry. You will soon know about them if you keep reading.)

Who Should Read This Book?

This book is designed for anyone interested in learning how to use NoSQL databases.
Novice database developers, seasoned relational data modelers, and experienced NoSQL
developers will find something of value in this book.

Novice developers will learn basic principles and design criteria of data management in
the opening chapters of the book. You’ll also get a bit of data management history
because, as we all know, history has a habit of repeating itself.

There are comparisons to relational databases throughout the book. If you are well versed
in relational database design, these comparisons might help you quickly grasp and assess
the value of NoSQL database features.

For those who have worked with some NoSQL databases, this book may help you get up
to speed with other types of NoSQL databases. Key-value and document databases are
widely used, but if you haven’t encountered column family or graph databases, then this
book can help.

If you are comfortable working with a variety of NoSQL databases but want to know more
about the internals of these distributed systems, this book is a starting place. You’ll
become familiar with implementation features such as quorums, Bloom filters, and anti-
entropy. The references will point you to resources to help you delve deeper if you’d like.

This book does not try to duplicate documentation available with NoSQL databases. There
is no better place to learn how to insert data into a database than from the documentation.

On the other hand, documentation rarely has the level of explanation, discussion of pros
and cons, and advice about best practices provided in a book such as NoSQL for Mere
Mortals. Read this book as a complement to, not a replacement for, database
documentation.

The Purpose of This Book

The purpose of this book is to help someone with an interest in data to use NoSQL
databases to help solve problems. The book is built on the assumption that the reader is
not a seasoned database professional. If you are comfortable working with Excel, then you
are ready for the topics covered in this book.

With this book, you’ll not only learn about NoSQL databases, but also how to apply
design principles and best practices to solve your data management requirements. This is a
book that will take you into the internals of NoSQL database management systems to
explain how distributed databases work and what to do (and not do) to build scalable,
reliable applications.

The hallmark of this book is pragmatism. Everything in this book is designed to help you
use NoSQL databases to solve problems. There is a bit of computer science theory
scattered through the pages but only to provide more explanation about certain key topics.
If you are well versed in theory, feel free to skip over it.

How to Read This Book

For those who are new to database systems, start with Chapters 1 and 2. These will
provide sufficient background to read the other chapters.

If you are familiar with relational databases and their predecessors, you can skip Chapter
1. If you are already experienced with NoSQL, you could skip Chapter 2; however, it does
discuss all four major types of NoSQL databases, so you might want to at least skim the
sections on types you are less familiar with.

Everyone should read Part II. It is referenced throughout the other parts of the book. Parts
III, IV, and V could be read in any order, but there are some references to content in
earlier chapters. To achieve the best understanding of each type of NoSQL database, read
all three chapters in Parts II, III, IV, and V.

Chapter 15 assumes familiarity with the content in the other chapters, but you might be
able to skip parts on NoSQL databases you are sufficiently familiar with. If your goal is to
understand how to choose between NoSQL options, be sure to read Chapter 15.

How This Book Is Organized

Here’s an overview of what you’ll find in each part and each chapter.

Part I: Introduction

NoSQL databases did not appear out of nowhere. This part provides a background on
relational databases and earlier data management systems.

Chapter 1, “Different Databases for Different Requirements,” introduces relational

databases and their precursor data management systems along with a discussion about
today’s need for the alternative approaches provided by NoSQL databases.

Chapter 2, “Variety of NoSQL Databases,” explores key functionality in databases,
challenges to implementing distributed databases, and the trade-offs you’ll find in
different types of databases. The chapter includes an introduction to a series of case
studies describing realistic applications of various NoSQL databases.

Part I1: Key-Value Databases

In this part, you learn how to use key-value databases and how to avoid potential problems
with them.

Chapter 3, “Introduction to Key-Value Databases,” provides an overview of the simplest
of the NoSQL database types.

Chapter 4, “Key-Value Database Terminology,” introduces the vocabulary you need to
understand the structure and function of key-value databases.

Chapter 5, “Designing for Key-Value Databases,” covers principles of designing key-
value databases, the limitations of key-value databases, and design patterns used in key-

value databases. The chapter concludes with a case study describing a realistic use case of
key-value databases.

Part III: Document Databases

This part delves into the widely used document database and provides guidance on how to
effectively implement document database applications.

Chapter 6, “Introduction to Document Databases,” describes the basic characteristics of
document databases, introduces the concept of schemaless databases, and discusses basic
operations on document databases.

Chapter 7, “Document Database Terminology,” acquaints you with the vocabulary of
document databases.

Chapter 8, “Designing for Document Databases,” delves into the benefits of
normalization and denormalization, planning for mutable documents, tips on indexing, as
well as common design patterns. The chapter concludes with a case study using document
databases for a business application.

Part IV: Column Family Databases

This part covers Big Data applications and the need for column family databases.

Chapter 9, “Introduction to Column Family Databases,” describes the Google BigTable
design, the difference between key-value, document, and column family databases as well

as architectures used in column family databases.

Chapter 10, “Column Family Database Terminology,” introduces the vocabulary of
column family databases. If you’ve always wondered “what is anti-entropy?” this chapter

is for you.

Chapter 11, “Designing for Column Family Databases,” offers guidelines for designing
tables, indexing, partitioning, and working with Big Data.

Part V: Graph Databases
This part covers graph databases and use cases where they are particularly appropriate.

Chapter 12, “Introduction to Graph Databases,” discusses graph and network modeling as
well as the benefits of graph databases.

Chapter 13, “Graph Database Terminology,” introduces the vocabulary of graph theory,
the branch of math underlying graph databases.

Chapter 14, “Designing for Graph Databases,” covers tips for graph database design,
traps to watch for, and methods for querying a graph database. This chapter concludes

with a case study example of graph database applied to a business problem.
Part VI: Choosing a Database for Your Application
This part deals with applying what you have learned in the rest of the book.

Chapter 15, “Guidelines for Selecting a Database,” builds on the previous chapters to
outline factors that you should consider when selecting a database for your application.
Part VII: Appendices

Appendix A, “Answers to Chapter Review Questions,” contains the review questions at
the end of each chapter along with answers.

Appendix B, “List of NoSQL Databases,” provides a nonexhaustive list of NoSQL
databases, many of which are open source or otherwise free to use.

The Glossary contains definitions of NoSQL terminology used throughout the book.

Part I: Introduction

1. Different Databases for Different Requirements

“There is nothing new in the world except the history you do not know.”
—HARRY S. TRUMAN

Topics Covered In This Chapter

Relational Database Design

Early Database Management Systems
The Relational Database Revolution

Motivations for Not Just/No SQL. (NoSQL) Databases

Case Study

The history of information technology is a story of increasingly faster computation and
greater volumes of data storage. An important subplot of this story is the evolution of data
management technologies. Anyone who started to work with data management systems in
the past two decades might understandably assume that data management is synonymous
with relational database management systems. It is not. Prior to the advent of the relational
database management systems, such as Microsoft Access, Microsoft SQL Server, Oracle
relational database, and IBM’s DB2, computer scientists and information technology
professionals created a variety of data management systems based on different organizing
principles. The data management community has recently taken on new types of data
management problems that have prompted the development of new kinds of data
management systems. These are collectively known as NoSQL databases.

NoSQL gets its name from SQL (pronounced “sequel”), which is a language used with
most relational database management systems. The “No” in NoSQL can mean literally
there is no SQL used in a database, or it can mean “not just SQL.” For our purposes, we
will consider the non-SQL aspects of NoSQL databases.

+ Note

If you are interested in learning more about SQL, see John L. Viescas and Michael
J. Hernandez’s SQL Queries for Mere Mortals (Addison-Wesley, 2007).

This chapter introduces the basic concepts of data management and database systems. It
begins with a discussion of early database management systems. The limitations of these
early data management systems motivated the development of a new kind of database: the
relational database. Relational databases were a major advance over earlier types of data
management systems. For example, relational databases help avoid inconsistencies in data,
known as data anomalies, that could be introduced in some data management systems
under seemingly normal operating conditions. Relational databases have so successfully
solved a wide range of data management problems that they have been widely used across
industries and application areas.

Relational Database Design

Relational databases are well designed to support hundreds and even thousands of users
simultaneously. Even large enterprises can support complex applications serving
thousands of users. As businesses and researchers developed new types of applications
designed for the Web, they realized that relational databases were not always meeting their
needs.

Web applications may need to support tens of thousands of users or more. Some of the
most important features of relational databases, such as ensuring anyone reading data will
have a consistent view of the data, require time, storage, and computational resources.
These types of features are vital to some applications.

For example, if you were to transfer $100 from your savings account to your checking
account, it requires two steps: Deduct $100 from your savings account and add $100 to
your checking account. If you were to read your account balances after the $100 was
deducted from your savings account but before it was added to your checking account,
you would appear to be missing $100. Relational databases can group a set of operations,
like deducting from savings and adding to checking accounts, as a single operation. If you
were to read your balances, you would see the balances either before or after the transfer
—never in the middle of the set of operations.

E-commerce Application

Now consider an e-commerce application. Customers use a web application to select
products from a vendor’s catalog. As you select products, they are added to a “shopping
cart.” Of course, there is no literal shopping cart; it is a metaphor for a data structure that
manages the customer’s selection. For this kind of data management operation, a fairly
simple data structure will suffice. You would need a unique identifier for each customer
and a list of items selected. (You might also want other details, such as the date and time
an item was added to the cart so you can remove items after some period of inactivity, but
we’ll ignore those additional details for now.)

A data model using key-value pairs would work well here. The unique customer ID would
be the key, which is how you look up or find data. The values would be the list of items in
the cart. Because there is no need to support operations like transfers between bank
accounts, you do not need to support the additional data management features found in
relational databases.

Different applications require different types of databases. This fact has driven the
development of data management systems for decades. As you shall see, history repeats
itself. Some of the features found in early database management systems appear again in
some NoSQL databases. This fact is more than just an interesting coincidence. Relational
databases largely displaced early types of data management systems because the relational
model addresses limitations of early systems.

As you evaluate NoSQL databases, you should consider how the newer NoSQL databases
address the limitations of relational databases as well as any limitations they have in
common with earlier data management systems.

Early Database Management Systems

Early data management systems include file and database systems that were designed
prior to the advent of relational databases in the 1970s. These include

» Flat file data management systems
* Hierarchical data management systems
» Network data management systems

Flat file-based systems were the earliest form of computerized data management. The
hierarchical and network models improved on the flat file approach to data management.

Flat File Data Management Systems

A file is an organized set of data stored on a long-term storage medium such as a disk or,
at the time, magnetic tape. At the time flat files were commonly used data management,
but magnetic tape was also in widespread use. For this reason, early data management
files had to accommodate the physical constraints of physical systems.

Organization of Flat File Data Management Systems

Although there are multiple ways of storing data on magnetic tape, this section just
considers block storage for simplicity. Magnetic tape is a long, thin magnetized plastic
material that was a popular means of recording audio from the 1950s to the 1970s. It was
adapted to store digital data as well. A magnetic tape is divided into a series of blocks with
gaps between them (see Figure 1.1). Data is written to blocks by recording heads in a tape
drive. Data is read by moving the tape over heads as well.

Data Block Gap

Figure 1.1 Magnetic tapes store data in sequential blocks.

It is a relatively simple operation to start reading a tape at a particular block and then read
the following blocks in sequence. This is known as sequential access to data. This method
optimizes the amount of data read relative to the amount of movement of the tape. You can
think of a block as a chunk of data that the tape drive reads. Blocks may contain data
about multiple entities, such as people, products, and locations. If a business needs to track
customers’ names, addresses, and phone numbers, it could use a file-based storage
method. The programmers working on the project may decide to leave a fixed amount of
storage space for each customer:

» Customer ID—10 characters

» Customer name—40 characters

* Customer address—100 characters
* Customer phone number—10 characters

To store each customer’s information, 160 characters are required. If a block on the tape is
800 characters long, you could store five customer records in each block (see Figure 1.2).

1235 Jane Smith 876 North Main Street Loudan New
York 10087 21255587431236 Mark
Johnson 89 Larchwood Dr Westfield OR 97212

50355596881237 Alice Tinderson
2376 Arlington St Austin TX 57899

57689345671238
Marsha Hughes 879 South Beach St Ft Johnson FL
33877
28955571711239 Andrew Veda 811 Hutcheson Dr
Southburg PA 05011

3895551218

Figure 1.2 A block is a chunk of data read by tape or disk drive in a single read
operation.

Random Access of Data

Sometimes it is necessary to access data on different parts of the tape. For example,
looking up the addresses of several customers may require moving the tape to several
different positions, some of which can be quite far from each other. This is known as
random access (see Figure 1.3).

Read First Block

Read Last Block

Read Second Block _
Read Second to Last Block

Figure 1.3 Random access to blocks on tape can take more time than sequential access
because there can be more tape movement relative to the amount of data read.

Random access is more efficient on disk drives. Read-write heads of disk drives may need
to move to be in the correct position to read a data block, but there is less movement than
with tapes. Disk read-write heads only need to move at most the radius of the disk. Tape
drives may need to move the full length of a tape to retrieve a data block.

Limitations of Flat File Data Management Systems

The programs that use flat files largely determine the organization of data. A team of
developers, for example, may decide that they want to organize the file by customer record
ordered by customer ID. This makes for efficient addition of new customers. As each new
customer is created, the customer can be added to the end of the tape. If you need to
produce a list of customers ordered by customer ID, you could start at the beginning of the
tape and sequentially read each record. If you need to produce a customer list ordered
alphabetically by customer name, it is a more difficult process. You could, for example,
read all the data from tape to memory (assuming it would all fit) and then sort the records
in memory.

One of the problems with file-based data management systems is that they can lead to
duplicated data. Another team of developers may need customer data but want to organize
records by customer name instead of customer ID. Another developer who needs access to
customer data may not know other customer files exist or does not want to use someone
else’s file because the structure of the file might change. If that were to happen,
programmers have to update their programs to reflect the new structure.

If a programmer wrote a program that assumed the customer record was organized as
described previously, then the program would expect to find the customer address to start
at 51 characters after the start of the record; the first 10 characters would be taken up by
the customer ID, and the following 40 by customer name. Now, imagine the programmers
who designed the original file layout decided they needed 50 characters for a customer
name. They changed the organization of the file to be

e Customer ID—10 characters
» Customer name—50 characters

» Customer address—100 characters

* Customer phone number—10 characters

They then created a new file with the new organization, copied the data from the original
file to a new version, and replaced the old version with the new version. Programs
designed to work with the original file format would start reading the customer address at
character 51, which is now part of the customer name.

Another problem with flat file management is that it is difficult to share files that contain
information that should be kept confidential from some users. An employee file that
contains the names, addresses, phone numbers, employee IDs, and position title of all
employees would be useful to a number of different parts of an organization. However, if
the file also contained salary information, then that data should be accessed only by those
who have a job responsibility that requires it, such as someone working on payroll or in
human resources. In this scenario, the easiest solution may be to have two copies of the
employee file: one with salary data and one without.

The proposed solution introduces another problem: The data in the two files may become
inconsistent. If an employee moves and informs the human resources department of her
new address, that department might update the file its employees use; that is, the one with
salary information. Unless the employee or someone in human resources informs the
person responsible for updating the other version of the employee file, the data in the two
files will be inconsistent. One file will have the employee’s new address while the other
file will contain the employee’s old address.

To summarize, the limitations of flat file data management systems include the following:

« It is inefficient to access data in any way other than by the way data is organized in
the file; for example, by customer ID.

* Changes to file structure require changes to programs.
» Different kinds of data have different security requirements.

* Data may be stored in multiple files, making it difficult to maintain consistent sets of
data.

Attempts to address the limitations of flat file data management systems led to the
development of hierarchical data model and network data model systems.

Hierarchical Data Model Systems

One of the limitations of flat file—based data management systems is that they can be
inefficient to search. Hierarchical data models address this problem by organizing data in a
hierarchy of parent-child relationships.

Organization of Hierarchical Data Management Systems

A hierarchy starts with a root node that links to the top layer of data nodes or records.
These top-layer records can have child records that contain additional data about the
parent record. The logical organization is shown in Figure 1.4.

Figure 1.4 The hierarchical model is organized into a set of parent-child relations.

Consider the kind of data the loan department of a bank may track. It has customers and
each customer has one or more loans. For each customer, the loan department would want
to track the customer’s name, address, and phone number. For each loan, the loan
department should track the amount of the loan, the interest rate, the date the loan was
made, and the date the loan is due. Customers can have more than one loan at a time, and
a loan might have multiple customers associated with it. Figure 1.5 shows the logical
organization of such a database.

Customer Customer Customer Customer
052 106 487 598

Loan Loan Loan Loan
106 127 085 127

Figure 1.5 A hierarchical data model for a loan management database.

An advantage of the hierarchical model over flat files is that searching is more efficient.
Rather than having to scan over all the data on a tape to search for a block of data, a
program using a hierarchical model could scan just customer records in search of a
particular customer’s loan record. Once the customer record is found, the program could
search through the customer’s loans looking for the particular loan of interest.

Limitations of Hierarchical Data Management Systems

Hierarchical data management systems work well when the entities you are managing can
be organized into parent-child relationships, specifically, one parent to one or more
children. One customer with one loan is easily managed. One customer with three loans is
easily managed. Two customers with one loan, such as two business partners taking out a
short-term business loan, are not so easily represented.

In the case of two customers on the same loan, the hierarchical data management system
would have to duplicate information about the loan under both customers. This creates
three problems. First, it makes inefficient use of storage space to duplicate data.

In addition, like duplicated data in the case of flat file management systems, it can lead to
inconsistent data if care is not taken to ensure that any changes are applied to all copies of
the data.

Also, there is a potential for errors when aggregating data. For example, to find the total
value of all outstanding loans, a programmer could not just read all loan records and add
all loan amounts together. Because some loans have multiple copies, one for each
customer, simply adding all copies of all loan records will sum to a total loan amount
greater than the actual amount. The programmer must take steps to count each loan only
once.

To address the limitations of hierarchical models, data management system designers
turned to network data model systems.

Network Data Management Systems

A network data model is like a hierarchical data model in that it uses links between
records; however, unlike hierarchical data models, you are not restricted to having one
parent record. Also, unlike flat file data management systems and hierarchical data
management systems, network data models have two essential components: a schema and
the database itself.

Organization of Network Data Management Systems

A network is made up of data records linked together. The data records are known as
nodes and the links are known as edges. The collection of nodes and edges is known as a
graph. Network data models have two important constraints on how you use edges. Edges
have a direction to them. This allows you to represent parent-child relations. Parent-child
relations are also known as one-to-many relations (see Figure 1.6). Furthermore, network
data models allow for multiple parents, such as two customers on a loan. It can also
represent two customers with two loans without duplicating data. This is known as a
many-to-many relation.

Customer
273

Directed Edge

Loan
106

Figure 1.6 A parent-child relationship is represented by a directed edge.

Another constraint is that you cannot have cycles in the graph. That is, if you start at a
node, follow a link to another node, then follow a link from that node, and so on, you will
never return to the starting node. Graphs that have directed edges and no cycles are known
as directed acyclic graphs (see Figure 1.7).

Customer
106

Customer
598

Figure 1.7 This graph has cycles and, therefore, is not a directed acyclic graph and not
a model of a network data management system.

Additional constraints on which nodes can link to other nodes arise from the entities you
are trying to model. For example, in a banking database, customers can have addresses,
but loans and bank accounts do not. In a human resources database, employees can have
positions in the organization, but departments cannot. The kinds of nodes that can link to
other nodes are defined in a structure called a schema (see Figure 1.8).

Customer

Loan

Payment
History

Phone
Numbers

Addresses

|

Checking
Account

Transactions

Figure 1.8 A simple network schema shows which entities can link to other entities.

The other part of a network data management system is the database itself. This is where

the actual data is stored according to the structure of the schema. One of the advances of
network databases over previous approaches is that it became standardized in 1969 by the
Conference on Data Systems Languages (CODASYL) Consortium. This standard became
the basis for most implementations of network databases.

Limitations of Network Data Management Systems

The chief limitation of network databases is that they can be difficult to design and
maintain. Depending on how nodes are linked, a program may need to traverse a large
number of links to get to the node with the needed data. For example, if you must start at a
customer record to get to a loan record and then to a loan payment history record, you
must traverse two links from customer to loan payment history. As data models become
more complex, the number of links and the length of paths can become substantially
longer.

Also, if after a network database is deployed, a database designer determines another
entity or node type is needed, then programs that access the network database will have to
be updated. Adding nodes to the schema and the database changes the paths that programs
must traverse to get to particular nodes.

Summary of Early Database Management Systems
Early database management systems include flat file, hierarchical, and network databases.

Flat file databases tend to keep data about a single entity together in a single record. This
is a simple structure but can lead to duplicated data and inefficient retrieval. It is difficult
to implement security controls to protect confidential data in flat file management
systems.

Hierarchical data management systems allow for parent-child relationships. This can help
avoid duplicating data about parents because only one copy of a parent record is needed.
Because data is organized into different records, data retrieval can be more efficient. For
example, searching for a customer in a loan database might require scanning all customer
records, but at least the program does not have to scan over loan data as well.

+ Note

Although hierarchical data management systems avoid some duplication found in
flat file management systems, there is still a potential for duplicate data. This can
occur, for example, in the case of a loan database that must model multiple
customers on a single loan.

Network data management improves on hierarchical databases by allowing multiple
parents. Network data management systems also incorporate schemas that define valid
relations between node types. The ability to represent parent-child and many-to-many
relations is an advantage over flat file and hierarchical data management systems.

The disadvantages of early database management systems include duplicate data,
difficulty implementing security, inefficient searching, and difficulty maintaining program
code to access databases. The reason programs have to change when the structure of the

database changes is that there is no independence between the logical organization of a
database and the way the data is physically stored on tape or disk. As you will see in the
next section, the structural independence of the logical and physical organization of the
database is a major advance in data management provided by relational database
management systems.

The Relational Database Revolution

Although network and hierarchical data management systems improved on flat file data
management systems, it was not until 1970 when E. F. Codd published a paper on the
design of a new type of database that data management technology radically changed.
There are many important aspects of relational database design that are improvements
over previous data management models. Relational databases were based on a formal
mathematical model that used relational algebra to describe data and their relations.
Relational databases separated the logical organization of data structures from the physical
storage of those structures. Codd and others developed rules for designing relational
databases that eliminated the potential for some types of data anomalies, such as
inconsistent data.

+ Note

There are many aspects of relational databases that deserve in-depth review. This
section, however, provides only a minimal, high-level review of key points. For
more on relational databases, see Michael J. Hernandez’s Database Design for
Mere Mortals: A Hands-On Guide to Relational Database Design (Addison
Wesley, 2003).

Relational Database Management Systems

A relational database management system is an application made up of multiple programs
that manage data and allow users of the application to add, update, read, and delete data.
Unlike flat file data stores where each time a new file for storage was created, a
programmer had to develop a program to manipulate the data, relational database
management systems are designed to use a common language to manipulate data. That
language is called SQL and is standardized across relational database management
systems. Although SQL is a language used with relational databases, it is sometimes used
as shorthand for “relational” as in “SQL database” or “NoSQL.”

Most of the users of relational database management systems (RDBMSs) do not work
directly with the database software. Instead, they work with applications created by
software developers and those applications interact with the RDBMS. To explain
relational databases, it helps to separately describe the features of the RDBMS and a
typical database application.

Organization of Relational Database Management Systems

A relational database management system is a set of programs for managing data and
programs that manipulate that data. The minimal requirements for implementing an
RDBMS include four components:

« Storage management programs

* Memory management programs

* Data dictionary

* Query language
Together, these four components provide the core data management and data retrieval
services of an RDBMS.
Storage Management Programs

Database systems store data persistently on disks and flash drives for long-term storage.
Database storage may be directly attached to a server or other device running a database.
For example, a laptop running the MySQL database can persistently store data on the local
disk drive. In large enterprises, IT departments may offer shared storage. In such cases,
large disk arrays are managed as a single resource and database servers can save data to
and read data from these storage arrays (see Figure 1.9).

{ Storage Array]

—

\ —
.
Local Storage Shared Storage

Figure 1.9 Local storage versus shared network storage.

Regardless of what type of storage system is used, the RDBMS has to track where each
piece of data is stored. One of the drawbacks of tape-based storage was the need to
sequentially search a tape to retrieve data. Disk and flash devices are not so restricted.
This has allowed RDBMS designers to improve retrieval methods.

Like flat file-based data stores, RDBMSs, at the most basic level, read and write blocks of
data. Disk technologies made it easier to create and use indexes to data. Indexes are data
sets that contain location information about blocks of data saved by the database. Indexes
are based on some attribute contained in the data, such as a customer ID or customer
name. Indexes point to the location on disk or flash memory that contains the record
holding information about the entity referenced in the index. For example, an index with
the data “Smith, Jane 18277372” would indicate that the block of data with information
about Jane Smith is located at disk position 18277372.

The storage management programs in an RDBMS do much more than keep track of the
location of data. They can also optimize the placement of data on disks, compress data to
save storage, and make copies of data blocks so data is not lost in case a data block on a
disk goes bad.

Memory Management Programs

RDBMSs are also responsible for managing data in memory. Often, the size of data stored
in a database is larger than available memory. The RDBMS memory management
components are responsible for bringing and keeping data in memory as long as it is
needed and deleting it when it is no longer needed or to make space for additional data.
Because reading data from memory is order of magnitudes faster than reading it from disk,
the overall performance of the RDBMS is highly influenced by its ability to use memory
efficiently and effectively.

Data Dictionary

The data dictionary is the part of the RDBMS that keeps track of information about the
structure of data stored in the database (see Figure 1.10). This includes information about
multiple levels of database structures, including

* Schemas

* Tables

* Columns

* Indexes

* Constraints

* Views

Tables

Columns

Indexes

Figure 1.10 Data structures managed by a data dictionary.

A schema is a collection of tables, views, indexes, and other structures that are all related
to a set of data. Typically, you would have separate schemas for separate major types of
applications, such as a schema for inventory of products, for accounts receivable, or for
employees and their benefits.

Tables are structures that have data about entities. Entities describe a physical or logical
thing related to the business or operation supported by an RDBMS. Entities for a human
resources schema might include employees, managers, and departments. An inventory
schema might include warehouses, products, and suppliers.

Tables are made up of columns. Columns contain a single unit of information. An
employee table might contain the following: employee first name, last name, street
address, city, state, zip code, date of birth, and salary. Columns have a type associated with
them to indicate the kind of data that can be stored. First name, for example, may be
character data, date of birth would be a date type, and salary would be some type of
number or currency type.

Indexes, as described earlier, are data structures used by the RDBMS to improve the speed
at which the RDBMS can retrieve data. An employee table would probably have an index
on the employee’s last name to enable rapid lookup of employee data by last name.

Constraints are rules that further restrict the values of data that can go in a column. Data
types associated with columns prevent the wrong type of data from being saved to a
column. A program might mistakenly try to write a number to the employee first name
column, but the database would prevent it. A negative number would be a valid number or
currency value and allowed in the salary column. You could add a constraint to the salary
column to specify that a salary must be greater than 0. Constraints are generally based on
business rules about the entities and operations the data is representing.

Views are collections of related columns from one or more tables as well as values
calculated for data in columns. Views can be used to restrict the data that a user sees. For
example, if an employee table has salary information, you can create a view that includes

all nonsalary columns from the employee table. Users who need access to employees’
names and addresses can use that view instead of the employee table. Views can also
combine data from multiple tables, such as a table with employee names and a table with
details about promotions all employees have received.

Query Language

A query language in an RDBMS performs two types of operations: defining data
structures and manipulating data. SQL is the query language of relational databases and
includes statements for performing both types of operations.

SQL Data Definition Language

SQL includes statements that allow programmers to create and delete schemas, tables,
views, indexes, constraints, and other data structures. It also provides statements for
adding and removing columns from tables, and granting access to read or write tables. The
following is a sample statement for creating a schema:

CREATE SCHEMA humresc
The following is a sample statement for creating a table:

Click here to view code image

CREATE TABLE employees (
emp_id 1int,
emp_first_name varchar(25),
emp_last_name varchar(25),
emp_address varchar(50),
emp_city varchar(50),
emp_state varchar(2),
emp_zip varchar(5),
emp_position_title varchar(30)

)

The specifics of these statements are not important at this point, but they do show the
declarative style of SQL. Instead of telling the computer how to create a data structure,
such as creating a free block of data at a particular address, you tell the RDBMS what kind
of data structure you want. In the first case, the statement creates a schema with the name
humresc (short for human resources). In the second statement, a table called employee
is created with eight columns. Varchar is a variable-length character type. The number
with each varchar term is the maximum length of the column. Int, short for integer,
indicates that the emp_3id is an integer.

SQL Data Manipulation Language

Once you have a schema with tables, you can start to add data and manipulate it. The SQL
data manipulation language includes statements for

* Inserting data
 Updating data
* Deleting data
* Selecting (that is, reading) data

The following is a sample INSERT statement for the employee table:

Click here to view code image

INSERT INTO employee (emp_id, first_name, last_name)
VALUES (1234, ‘Jane’, ‘Smith’)

This statement adds a row to the employee table with an emp_1id of 1234, a first name
of 'Jane', and a last name of 'Smith'. The other columns of the table would be
NULL, a special data value used to indicate the column has no value specified.

Updating and deleting statements allow users to change values in existing rows or remove
existing rows.

To read data from a database, use the SELECT statement. For example:

Click here to view code image

SELECT emp_id, first_name, last_name
FROM employee

would produce output such as

Click here to view code image
emp_id first_name last_name

1234 Jane Smith

The data manipulation data statements are capable of expressing complex operations and
targeting specific rows of data using fairly complex logic in the SELECT, UPDATE, and
DELETE statements.

Relational database management systems provide storage management, memory
management, a data dictionary, and a query language. Although programmers and
software developers may be comfortable working directly with SQL, database applications
allow any computer user to work with relational databases.

Organization of Applications Using Relational Database Management Systems

Working with broad concepts, you can think of business applications that use relational
databases as having three major components:

A user interface
* Business logic
» Database code

The user interface is designed to support the workflow of users. For example, a person
using a human resources application might need to look up an employee’s salary, change
an employee’s position, or add a new employee. The user works with menus and other
user interface abstractions to invoke data entry forms, update the data as needed, and save
changes to the database. There is no exposure to SQL or to the RDBMS.

The business logic is the part of the program that performs calculations and checks
business rules. A business rule, for example, might check the age of an employee to verify
the employee is over 21 before assigning the position “bartender” to that employee.
Business rules can be implemented in programming languages, such as Python, Visual

Basic, or Java, or in SQL.

Database code is the set of SELECT, INSERT, UPDATE, and DELETE (and so on)
statements that perform operations on the database. The statements correspond to the
operations that users can perform through the user interface.

Database applications make the functionality of relational databases, and other types of
databases, accessible to nonprogrammers.

Limitations of Relational Databases

Relational databases have been the dominant type of database used for database
applications for decades. Relational databases addressed many of the limitations of flat
file—based data stores, hierarchical databases, and network databases. With the advent of
the Web, however, the limitations of relational databases became increasingly problematic.

Companies such as Google, LinkedIn, Yahoo!, and Amazon found that supporting large
numbers of users on the Web was different from supporting much smaller numbers of
business users, even those in large enterprises with thousands of users on a single database
application.

Web application developers working with large volumes of data and extremely large
numbers of users found they needed to support

* Large volumes of read and write operations
» Low latency response times
* High availability

These requirements were difficult to realize using relational databases. These were not the
first database users who needed to improve performance. The problem is that techniques
used in the past did not work at the scale of operations, users, and data that businesses now
demanded. In the past, if a relational database was running slowly, it could be upgraded
with more CPUs, additional memory, or faster storage devices. This is a costly option and
works only to a point. There are limits to how many CPUs and memory can be supported
in a single server. Database designers could redesign the database schema to use
techniques that would improve performance but at the cost of increasing the risk of data
anomalies. (These techniques are known as denormalization.)

Another option is to use multiple servers with a relational database. This is possible, but
operating a single relational database management system over multiple servers is a
complex operation. This makes long-term management difficult. There are also
performance issues when supporting a series of operations that run on different servers but
all have to complete successfully or all fail. These sets of operations that succeed or fail
together are known as transactions. As the number of servers in a database cluster
increases, the cost of implementing transactions increases.

In spite of these difficulties, some companies, such as Facebook, use the MySQL
relational database for some of its operations. They, however, have a dedicated MySQL
staff that are pushing and expanding the limits of MySQL. Most organizations do not have
such resources. For those organizations, if relational databases are not meeting needs, then

it may be time to consider a NoSQL database.

Motivations for Not Just/No SQL (NoSQL) Databases

Pressing real-world problems motivated the data management professionals and software
designers who created NoSQL databases. Web applications serving tens of thousands or
more users were difficult to implement with relational databases. Four characteristics of
data management systems that are particularly important for large-scale data management
tasks are

* Scalability
* Cost

* Flexibility
* Availability

Depending on the needs of a particular application, some of these characteristics may be
more important than others.

Scalability

Scalability is the ability to efficiently meet the needs for varying workloads. For example,
if there is a spike in traffic to a website, additional servers can be brought online to handle
the additional load. When the spike subsides and traffic returns to normal, some of those
additional servers can be shut down. Adding servers as needed is called scaling out.

When you work with relational databases, it is often challenging to scale out. Additional
database software may be needed to manage multiple servers working as a single database
system. Oracle, for example, offers Oracle Real Applications Clusters (RAC) for cluster-
based databases. Additional database components can add complexity and cost to
operations.

Alternatively, database administrators could choose to scale up, which is upgrading an
existing database server to add additional processors, memory, network bandwidth, or
other resources that would improve performance on a database management system or
replacing an existing server with one with more CPUs, memory, and so on (see Figure
1.11).

.

2

Scale Up Scale Out
Figure 1.11 Scaling up versus scaling out.

Scaling out is more flexible than scaling up. Servers can be added or removed as needed
when scaling up. NoSQL databases are designed to utilize servers available in a cluster
with minimal intervention by database administrators. As new servers are added or
removed, the NoSQL database management system adjusts to use the new set of available
servers. Scaling up by replacing a server requires migrating the database management to a
new server. Scaling up by adding resources would not require a migration, but would
likely require some downtime to add hardware to the database server.

Cost

The cost of database licenses is an obvious consideration for any business or organization.
Commercial software vendors employ a variety of licensing models that include charging
by the size of the server running the RDBMS, by the number of concurrent users on the
database, or by the number of named users allowed to use the software. Each of these
models presents challenges for users of the database system.

Web applications may have spikes in demand that increase the number of users utilizing a
database at any time. Should users of the RDBMS pay for the number of peak users or the
number of average users? How should they budget for RDBMS licenses when it is
difficult to know how many users will be using the system six months or a year from now?
Users of open source software avoid these issues. The software is free to use on as many
servers of whatever size needed because open source developers do not typically charge
fees to run their software. Fortunately for NoSQL database users, the major NoSQL
databases are available as open source.

Third-party companies provide commercial support services for open source NoSQL
databases so businesses can have software support as they do with commercial relational
databases.

Flexibility

Relational database management systems are flexible in the range of problems that can be
addressed using relational data models. Industries as different as banking, manufacturing,
retail, energy, and health care all make use of relational databases. There is, however,
another aspect of relational databases that is less flexible.

Database designers expect to know at the start of a project all the tables and columns that
will be needed to support an application. It is also commonly assumed that most of the
columns in a table will be needed by most of the rows. For example, all employees will
have names and employee IDs. There are times that the problems modeled are less
homogeneous than that.

Consider an e-commerce application that uses a database to track attributes of products.
Computer products would have attributes such as CPU type, amount of memory, and disk
size. Microwave ovens would have attributes such as size and power. A database designer
could create separate tables for each type of product or define a table with as many
different product attributes as she could imagine at the time she designs the database.

Unlike relational databases, some NoSQL databases do not require a fixed table structure.
For example, in a document database, a program could dynamically add new attributes as
needed without having to have a database designer alter the database design.

B Refer to Chapter 2, “Distributed Systems and the Variety of NoSQL Databases,”
for more information on working with a document database.

Availability

Many of us have come to expect websites and web applications to be available whenever
we want to use them. If your favorite social media or e-commerce site were frequently
down when you tried to use it, you would likely start looking for a new favorite.

NoSQL databases are designed to take advantage of multiple, low-cost servers. When one
server fails or is taken out of service for maintenance, the other servers in the cluster can
take on the entire workload (see Figure 1.12). Performance may be somewhat less, but the
application will still be available. If a database is running on a single server and it fails, the
application will become unavailable unless there is a backup server. Backup servers keep
replicated copies of data from the primary server in case the primary server fails. If that
happens, the backup can take on the workload that the primary server had been
processing. This can be an inefficient configuration because a server is kept in reserve in
the event of a failure but otherwise is not helping to process the workload.

[Stt:-rage Array]

Failed Server

Figure 1.12 High-availability NoSQL clusters run multiple servers. If one fails, the
others can continue to support applications.

Database designers turned to NoSQL systems when existing RDBMSs failed to meet their
needs. Scalability, cost, flexibility, and availability are increasingly important concerns for
application developers, and their choice of database management systems reflects this.

Summary

Data management systems have evolved to meet changing application requirements
subject to the constraints of the existing compute and storage technologies at their times.
Early data management systems were based on records stored in flat files. These provided
a basic capability of persistent storage of data, but suffered from a number of drawbacks,
including slow search and retrieval operations, redundant data, and poor security.
Hierarchical databases were an improvement over flat files. These systems allowed for
parent-child relations between records. This helped reduce, but not eliminate, the potential
for redundant data. Network databases further improved on hierarchical databases by
allowing for multiple parent—multiple child relations. These are commonly known as
many-to-many relations.

The development of relational databases represented a radical improvement over flat file,
hierarchical, and network databases. Relational databases are based on a sound
mathematical foundation. Rules for designing relational databases eliminate the potential
for a range of data anomalies, such as inconsistent data. Relational databases virtually
replaced all other types of data management systems in business applications.

In spite of the widespread successful use of relational databases, the exponential growth of

e-commerce and social media led to the need for data management systems that were
scalable, low cost, flexible, and highly available. Achieving some of these objectives with
relational databases is possible in some cases, but often with difficulty and potentially high
costs.

NoSQL databases were created to address the limitations of relational database
management systems. NoSQL databases are unlikely to displace relational databases the
way RDBMSs displaced flat file, hierarchical, and network databases. The two will likely
complement each other and adapt features from each other as they both continue to be
applied to increasingly complex and demanding applications.

Case Study

Throughout this book, you will develop a case study around a set of applications needed
by a transportation management company. The company, TransGlobal Transport and
Shipping, is a fictional company with realistic requirements. As you examine each of the
major types of NoSQL databases, you will consider how each can be applied to a specific
application for TransGlobal Transport and Shipping.

The four major applications are
* Building a shipment order
» Managing customer manifests, or a detailed description of items in a shipment
* Maintaining a customer database
* Optimizing transportation routes

As you will see, different sets of requirements can demand different types of database
systems. In this case, the four types of NoSQL databases will be used to meet the
information management needs of TransGlobal Transport and Shipping.

B Refer to Chapter 2, “Distributed Systems and the Variety of NoSQL Databases,” to
learn more about the four types of NoSQL databases.

Review Questions

1. If the layout of records in a file data management system changes, what else must
change?

IN

. What kind of relation is supported in a hierarchical data management system?
a. Parent-child
b. Many-to-many
c. Many-to-many-to-many
d. No relations are allowed.
3. What kind of relation is supported in network data management systems?
a. Parent-child

b. Many-to-many

c. Both parent-child and many-to-many
d. No relations are allowed.
4. Give an example of a SQL data manipulation language statement.
5. Give an example of a SQL data definition language statement.
6. What is scaling up?
7. What is scaling out?

8. Are NoSQL databases likely to displace relational databases as relational databases
displaced earlier types of data management systems?

9. Name four required components of a relational database management system
(RDBMS).

10. Name three common major components of a database application.

11. Name four motivating factors for database designers and other IT professionals to
develop and use NoSQL databases.

References

Codd, E. F. A Relational Model of Data for Large Shared Data Banks. Communications of
the ACM 13, no. 6 (June 1970).

Intuit. “A Timeline of Database History.” http://quickbase.intuit.com/articles/timeline-of-
database-history.
Bibliography

Hernandez, Michael J. Data Design for Mere Mortals: A Hands-On Guide to Relational
Database Design. Reading, MA: Addison-Wesley, 2007.

Viescas, John L., and Michael J. Hernandez. SQL Queries for Mere Mortals. Reading,
MA: Addison-Wesley, 2007.

http://quickbase.intuit.com/articles/timeline-of-database-history

2. Variety of NoSQL Databases

“Nothing is pleasant that is not spiced with variety.”
—FRANCIS BACON
Topics Covered In This Chapter
Data Management with Distributed Databases
ACID and BASE
A Variety of Distributed Databases

NoSQL databases solve a wide variety of data management problems by offering several
types of solutions. NoSQL databases are commonly designed to use multiple servers, but
this is not a strict requirement. When systems run on multiple servers, instead of on just
one computer, they are known as distributed systems (see Figure 2.1).

Single Server

Network

Distributed System
Figure 2.1 Single server versus distributed system.

This chapter starts with a review of common features and challenges faced by distributed
databases. Because NoSQL databases are often used in distributed environments, this
chapter spends some time examining the challenges of using multiple servers to manage
data in a single logical database. Much of what is discussed in the following section on
distributed systems does not apply if you run your NoSQL database on a single server.

Chapter 1, “Different Databases for Different Requirements,” introduced the motivations
for NoSQL, including the need for scalability, flexibility, cost control, and availability. A
common way to meet these needs is by designing data management systems to work
across multiple servers, that is, as a distributed system.

In addition to the other benefits of NoSQL databases, distributed systems offer some level
of operational simplicity. You can add and remove servers as needed rather than adding or
removing memory, CPUs, and so on from a single server. Also, some NoSQL databases
include features that automatically detect when a server is added or removed from a
cluster.

Many NoSQL databases take advantage of distributed systems, but they may employ
different data management strategies. There are four major types of key NoSQL databases:

» Key-value databases, for example, work with a simple model based on keys, which
are identifiers for looking up data, and values, the data that is associated with keys.

» Document databases also use identifiers to look up values, but the values are
typically more complex than those typically stored in key-value databases.
Documents are collections of data items stored together in a flexible structure.

* Column family databases have some of the characteristics of relational databases,
such as organizing data into collections of columns. Column family databases trade
some of the functionality of relational databases, such as the ability to link or join
tables, for improved performance.

* Graph databases are well suited to model objects and relationships between objects.

Because distributed systems are the foundation of many NoSQL databases, it is important
to explore some of the issues associated with managing data in a distributed system. After
I outline the challenges and limitations associated with distributed databases, you will
learn about key-value, document, column family store, and graph databases and compare
them with relational databases.

Data Management with Distributed Databases

Before getting into the details of distributed databases, let’s look at a simplified view of
databases in general. Databases are designed to do two things: store data and retrieve data.
To meet these objectives, the database management systems must do three things:

* Store data persistently
* Maintain data consistency
* Ensure data availability

In this section, you will learn how distributed systems meet these objectives. You will also
learn about limitations of distributed systems, with particular attention to balancing
consistency, availability, and protection for network failures that leaves some servers in a
cluster unreachable.

Store Data Persistently

Data must be stored persistently; that is, it must be stored in a way that data is not lost
when the database server is shut down. If data were only stored in memory—that is, RAM
—then it would be lost when power to the memory is lost. Only data that is stored on disk,
flash, tape, or other long-term storage is considered persistently stored, as shown in Figure
2.2.

Disk

Flash
(SSD)

Tape

Persistently Stored Data

Figure 2.2 Persistently stored data is stored on disk, flash, or other long-term storage
medium.

Data must be available for retrieving. You can retrieve persistently stored data in a number
of different ways. Data stored on a flash device is read directly from its storage location.
The movable parts of the disk and tape drives are put in position so that the read heads of
the device are over the block of data to be read.

You could design your database to simply start at the beginning of a data file and search
for the record you need when a read operation is performed. This would lead to painfully
long response times and a waste of valuable compute resources. Rather than scan the full
table for the data, you can use database indexes, which are like indexes at the end of a
book, to quickly find the location of a particular piece of data. Indexes are a central
element of databases.

Maintain Data Consistency

It is important to ensure that the correct data is written to a persistent storage device. If the
write or read operation does not accurately record or retrieve data, the database will not be
of much use. This is rarely a problem unless there is a hardware failure. A more common
issue with reading and writing occurs when two or more people are using the database and
want to use the same data at the same time.

Consider a small business with two partners, Alice and Bob. Alice is using a database
application to update the company’s financial records. She has just received a number of
payments from customers and posted them to the accounting system. The process requires
two steps: updating the customer’s balance due and updating the total funds available to
the business. At the same time Alice is doing that, Bob is placing an order for more
supplies. Bob wants to make sure there are sufficient funds before he commits to an order,
so he checks the balance of total funds available. What balance will Bob see?

Ideally, Bob would see the balance of funds available that includes the most recent
payments. If he issues his query while Alice is updating the customer balance and total

funds available, then Bob would see the balance without the new payments. The reason
for this is that the database is designed to be consistent. Bob could see the balance before
or after Alice updates both the customer balance record and the funds available record, but
never when only one of the two has been updated (see Figure 2.3).

. ﬂ‘_
Bob

Alice
Writes Reads
Financials Customer Balance
DB
——
— -
Total Fund Available

Figure 2.3 Data should reflect a consistent state.

It would be inconsistent for the database to return results that indicated a customer had
paid the balance due on her account without also including that payment in the funds
available record. Relational database systems are designed to support these kinds of
multistep procedures that have to be treated as a single operation or transaction.

Ensure Data Availability

Data should be available whenever it is needed. This is difficult to guarantee. Hardware
may fail. An operating system on the database server may need patching. You might need
to install a new version of the database management system. A database that runs on a
single server can be unavailable for a large number of reasons.

One way to avoid the problem of an unavailable database server is to have two database
servers: One is used for updating data and responding to queries while the other is kept as
a backup in case the first server fails. The server that is used for updating and responding
to queries is called the primary server, and the other is the backup server. The backup
server starts with a copy of the database that is on the primary server. When the database
is in use, any changes to the primary database are reflected in the backup database as well.

For example, if Alice and Bob’s company used a backup database server, then when Alice
updated a customer’s account, those same changes would be made to the backup server.
This would require the database to write data twice: once to the disk used by the primary
server and then one more time to the disk used by the backup server in an operation
known as a two-phase commit (see Figure 2.4).

Alice

@ Finish Write
Operation

(1) Write to Primary Server

(3@ Acknowledge Copy Complete

(@) Copy to Backup Server

Primary DB Server

Figure 2.4 Two-phase commits are complete only when operations on both databases
are complete.

Recall that a database transaction is an operation made up of multiple steps and that all
steps must complete for the transaction to complete. If any one of the multiple steps fails,
then the entire transaction fails. Updating two databases makes every update a multistep
process.

When the company used a single server, there was just one step in updating the number of
a particular product in the warehouse. For example, the number of black desk chairs could
be updated from 100 to 125 in a single operation. Now that the company is using a backup
database, the number of chairs would have to be updated on the primary server and the
backup server.

The process for updating both databases is similar to other multistep transactions: Both
databases must succeed for the operation to succeed. If the primary database is updated to
reflect 125 black desk chairs in the warehouse but the update fails on the backup database,
then the primary database resets the chair count back to 100. The primary and the backup
databases must be consistent. This is an example of a two-phase commit. In the first phase
of the operation, the database writes, or commits, the data to the disk of the primary
server. In the second phase of the operation, the database writes data to the disk of the
backup server.

With data consistent on two database servers, you can be sure that if the primary database
fails, you can switch to using the backup database and know that you have the same data
on both. When the primary database is back online, the first thing it does is to update itself
so that all changes made to the backup database while the primary database was down are
made to the primary database. The primary database is usable when it is consistent with
the backup database.

The advantage of using two database servers is that it enables the database to remain
available even if one of the servers fails. This is helpful but is not without costs. Database

applications, and the people who use them, must wait while a write operation completes.

Because, in the case of a two-phase commit, a write operation is not complete until both
databases are updated successfully, the speed of the updates depends on the amount of
data written, the speed of the disks, the speed of the network between the two servers, and
other design factors (see Figure 2.5).

Time to Complete Write Time to Complete Write
on One Server on Two Servers

Figure 2.5 Consistency and availability require more time to complete transactions in
high-availability environments.

+ Note

You can have consistent data, and you can have a high-availability database, but
transactions will require longer times to execute than if you did not have those
requirements.

Consistency of Database Transactions

The term consistency with respect to database transactions refers to maintaining a single,
logically coherent view of data. When you transfer $100 from your savings account to
your checking account, the bank’s software may subtract $100 from your savings account
in one step and add $100 to your checking account in another. At no time would it be
correct to say you have $100 less in your savings account without also reflecting an
additional $100 in your checking account.

Consistency has also been used to describe the state of copies of data in distributed
systems. For example, if two database servers each have copies of data about products
stored in a warehouse, it is said they are consistent if they have the same data. This is
different from the kind of consistency that is needed when updating data in a transaction.

+ Note

To avoid confusion going forward, let’s define a database server as a computer that
runs database management software. That database management software will be
called a database management system.

Database management systems can run on one or more computers. When the
database management system is running on multiple computers, it is called a
distributed database. The term database in this context is synonymous with
database management system.

Availability and Consistency in Distributed Databases

You might be starting to see some of the challenges to maintaining a database
management system that uses multiple servers. When two database servers must keep
consistent copies of data, they incur longer times to complete a transaction. This is
acceptable in applications that require both consistency and high availability at all times.
Financial systems at a bank, for example, fall into this category. There are applications,
however, in which the fast database operations are more important than maintaining
consistency at all times. For example, an e-commerce site might want to maintain copies
of your shopping cart on two different database servers. If one of the servers fails, your
cart is still available on the other server.

Imagine you are programming the user interface for an e-commerce site. How long should
the customer wait after clicking on an “Add to My Cart” button? Ideally, the interface
would respond immediately so the customer could keep shopping. If the interface feels
slow and sluggish, the customer might switch to another site with faster performance. In
this case, speed is more important than having consistent data at all times.

One way to deal with this problem is to write the updates to one database and then let the
program know the data has been saved. The interface can indicate to the customer that the
product has been added to the cart. While the customer receives the message that the cart
has been updated, the database management system is making a copy of the newly
updated data and writing it to another server. There is a brief period of time when the
customer’s cart on the two servers is not consistent, but the customer is able to continue
shopping anyway. In this case, we are willing to tolerate inconsistency for a brief period of
time knowing that eventually the two carts will have the same products in it. This is
especially true with online shopping carts because there is only a small chance someone
else would read that customer’s cart data anyway (see Figure 2.6).

5 /
\I 7
[y
| 7
Customer Cart
A
(@) Finish Write (1) Write to First Server

and Return

Response to N3 ltems \ 2 ltems

Customer

Server 1 Server 2

Figure 2.6 Data structures, such as shopping carts, can be inconsistent for short
periods of time without adversely affecting system effectiveness. In this example, Server
2 is inconsistent with Server 1 until step 3 is complete.

Balancing Response Times, Consistency, and Durability

NoSQL databases often implement eventual consistency; that is, there might be a period of
time where copies of data have different values, but eventually all copies will have the
same value. This raises the possibility of a user querying the database and getting different
results from different servers in a cluster. For example, assume Alice has updated a
customer’s address in a database that implements eventual consistency. Immediately after
Alice updates the address, Bob reads that customer’s address. Will he see the new or old
address? The answer is not as simple as it is when working with a relational database and
strict consistency.

NoSQL databases often use the concept of quorums when working with reads and writes.
A quorum is the number of servers that must respond to a read or write operation for the
operation to be considered complete.

When a read is performed, the NoSQL database reads data from, potentially, multiple
servers. Most of the time, all of the servers will have consistent data. However, while the
database copies data from one of the servers to the other servers storing replicas, the
replica servers may have inconsistent data.

One way to determine the correct response to any read operation is to query all servers
storing that data. The database counts the number of distinct response values and returns
the one that meets or exceeds a configurable threshold. For example, assume data in a
NoSQL database is replicated to five servers and you have set the read threshold to 3 (see

Figure 2.7). As soon as three servers respond with the same response, the result is returned
to the user.

NoSQL DB

User Issues Queryl THesponse
A

\

Server 1 Server 2 Server 3 Server 4 Server 5

S8 J

™
Five Replicas

Three Consistent Responses
One Inconsistent

Figure 2.7 NoSQL databases can mitigate the risk of inconsistent data by having
servers vote on the correct response to a query.

You can vary the threshold to improve response time or consistency. If the read threshold
is set to 1, you get a fast response. The lower the threshold, the faster the response but the
higher the risk of returning inconsistent data.

In the preceding example, if you set the read threshold to 5, you would guarantee
consistent reads. In that case, the query would return only after all replicas have been
updated and could lead to longer response times.

Just as you can adjust a read threshold to balance response time and consistency, you can
also alter a write threshold to balance response time and durability. Durability is the
property of maintaining a correct copy of data for long periods of time. A write operation
is considered complete when a minimum number of replicas have been written to
persistent storage.

& Caution

If the write threshold is set to 1, then the write is complete once a single server
writes the data to persistent storage. This leads to fast response times but poor
durability. If that one server or its storage system fails, the data is lost.

Assume you are working the five-server cluster described previously. If data is replicated
across three servers and you set the write threshold to 3, then all three copies would be

written to persistent storage before the write completes. If you set the threshold to 2, your
data would be written to two servers before completing the write operation and the third
copy would be written at a later time.

Setting the write threshold to at least 2 provides for durability while setting the number of
replicas higher than the threshold helps improve durability without increasing the response
time of write operations.

Consistency, Availability, and Partitioning: The CAP Theorem

This book is one of many books written “for mere mortals,” that is, people who are not
necessarily specialists in the subject area. In these books, technical terminology is kept to
a minimum and discussions are designed to provide practical, useful knowledge. There are
times, however, when a brief discussion of a fundamental principle is worth the need to
delve into a more subject-oriented discussion. This is one of those times.

The CAP theorem, also known as Brewer’s theorem after the computer scientist who
introduced it, states that distributed databases cannot have consistency (C), availability
(A), and partition protection (P) all at the same time. Consistency, in this case, means
consistent copies of data on different servers. Availability refers to providing a response to
any query. Partition protection means if a network that connects two or more database
servers fails, the servers will still be available with consistent data.

You saw in a previous example of the e-commerce shopping cart that it is possible to have
a backup copy of the cart data that is out of sync with the primary copy. The data would
still be available if the primary server failed, but the data on the backup server would be
inconsistent with data on the primary server if the primary server failed prior to updating
the backup server (see Figure 2.8).

Queryl Tﬁesponse

A
Query Query : Response
But Yy !
\ 3 ltems | No Response N2 ltems
4 L/ 3 L7
s f)" r

"\.P,;/
X

Server 1 Server 2
Failed Operational

Figure 2.8 Data can be available but not consistent.

You also saw in an earlier example of the two-phase commit that you can have consistency
but at the risk of the most recent data not being available for a brief period of time. While
the two-phase commit is executing, other queries to the data are blocked. The updated data
is unavailable until the two-phase commit finishes. This favors consistency over
availability (see Figure 2.9).

_.--""Read Blocked Until
~d Write Complete

Copy to Backup
in Process

Primary Server Backup Server
Figure 2.9 Data can be consistent but not available.

Partition protection deals with situations in which servers cannot communicate with each
other. This would be the case in the event of a network failure. This splitting of the
network into groups of devices that can communicate with each other from those that
cannot is known as partitioning. (Partitioning, like consistency, has multiple meanings in
data management. It is important to remember that when talking about the CAP theorem,
partitioning has to do with the inability to send messages between database servers.) If
database servers running the same distributed database are partitioned by a network
failure, then you could continue to allow both to respond to queries and preserve
availability but at the risk of them becoming inconsistent. Alternatively, you could disable
one so that only one of the servers responds to queries. This would avoid returning
inconsistent data to users querying different servers but at the cost of availability to some
users.

From a practical standpoint, network partitions are rare, at least in local area networks.
You can imagine a wide area network with slow network connections and low throughput
(for example, older satellite connections to remote areas) that could experience network
outages. This means that from a pragmatic perspective, database application designers
have to deal with the trade-offs between consistency and availability more than issues with
partitioning.

Designers of NoSQL database management systems have to determine how to balance
varying needs for consistency, availability, and partitioning protection. This is not a one-
time decision for the database management system. NoSQL database designers can
provide configuration mechanisms that allow users of the database to specify their
preferred settings rather than making a single choice for all users of the database
management system.

Application designers could make use of NoSQL database configuration options to make
the availability-consistency trade-off decision at fine-grained levels, such as based on
different types of data in the database. The only limitation is the configuration options
provided in the NoSQL database management system used by the application.

ACID and BASE

In the world of chemistry, acids are chemicals with a pH of less than 7 and bases are
chemicals that have a pH of greater than 7. However, the use of the terms ACID and
BASE when discussing databases has nothing to do with chemistry. ACID is an acronym
derived from four properties implemented in relational database management systems.
BASE is an acronym for properties common to NoSQL databases.

ACID: Atomicity, Consistency, Isolation, and Durability

A is for atomicity. Atomicity, as the name implies, describes a unit that cannot be further
divided. The word atom comes from the Greek atomos, which means indivisible. In the
earlier discussion about transactions, such as transferring funds from your savings account
to your checking account, you learned that all the steps had to complete or none of them
completed. In essence, the set of steps is indivisible. You have to complete all of them as a
single indivisible unit, or you complete none of them.

C is for consistency. In relational databases, this is known as strict consistency. In other
words, a transaction does not leave a database in a state that violates the integrity of data.
Transferring $100 from your savings account to your checking account must end with
either (a) $100 more in your checking account and $100 less in your savings account or
(b) both accounts have the same amount as they had at the start of the transaction.
Consistency ensures no other possible state could result after a transfer operation.

I is for isolation. Isolated transactions are not visible to other users until transactions are
complete. For example, in the case of a bank transfer from a savings account to a checking
account, someone could not read your account balances while the funds are being
deducted from your savings account but before they are added to your checking account.
Databases can allow different levels of isolation. This can allow, for example, lost updates
in which a query returns data that does not reflect the most recent update because the
update operation has not completely finished.

D is for durability. This means that once a transaction or operation is completed, it will
remain even in the event of a power loss. In effect, this means that data is stored on disk,
flash, or other persistent media.

Relational database management systems are designed to support ACID transactions.
NoSQL databases typically support BASE transactions, although some NoSQL databases
also provide some level of support for ACID transactions.

BASE: Basically Available, Soft State, Eventually Consistent

BA is for basically available. This means that there can be a partial failure in some parts
of the distributed system and the rest of the system continues to function. For example, if a
NoSQL database is running on 10 servers without replicating data and one of the servers
fails, then 10% of the users’ queries would fail, but 90% would succeed. NoSQL databases
often keep multiple copies of data on different servers. This allows the database to respond
to queries even if one of the servers has failed.

S is for soft state. Usually in computer science, the term soft state means data will expire if

it is not refreshed. Here, in NoSQL operations, it refers to the fact that data may eventually
be overwritten with more recent data. This property overlaps with the third property of
BASE transactions, eventually consistent.

E is for eventually consistent. This means that there may be times when the database is in
an inconsistent state. For example, some NoSQL databases keep multiple copies of data
on multiple servers. There is, however, a possibility that the multiple copies may not be
consistent for a short period of time. This can occur when a user or program updates one
copy of the data and other copies continue to have the old version of the data. Eventually,
the replication mechanism in the NoSQL database will update all copies, but in the
meantime, the copies are inconsistent.

The time it takes to update all copies depends on several factors, such as the load on the
system and the speed of the network. Consider a database that maintains three copies of
data. A user updates her address in one server. The NoSQL database management system
automatically updates the other two copies. One of the other copies is on a server in the
same local area network, so the update happens quickly. The other server is in a data
center thousands of miles away, so there is a time delay in updating the third copy. A user
querying the third server while the update is in progress might get the user’s old address
while someone querying the first server gets the new address.

Types of Eventual Consistency

Eventual consistency is such an important aspect of NoSQL databases, it is worth further
discussion.

There are several types of eventual consistency:
* Casual consistency
* Read-your-writes consistency
* Session consistency
* Monotonic read consistency

* Monotonic write consistency

Casual Consistency

Casual consistency ensures that the database reflects the order in which operations were
updated. For example, if Alice changes a customer’s outstanding balance to $1,000 and
one minute later Bob changes it to $2,000, all copies of the customer’s outstanding
balance will be updated to $1,000 before they are updated to $2,000.

Read-Your-Writes Consistency

Read-your-writes consistency means that once you have updated a record, all of your
reads of that record will return the updated value. You would never retrieve a value
inconsistent with the value you had written. Let’s say Alice updates a customer’s
outstanding balance to $1,500. The update is written to one server and the replication
process begins updating other copies. During the replication process, Alice queries the
customer’s balance. She is guaranteed to see $1,500 when the database supports read-
your-writes consistency.

Session Consistency

Session consistency ensures read-your-writes consistency during a session. You can think
of a session as a conversation between a client and a server or a user and the database. As
long as the conversation continues, the database “remembers” all writes you have done
during the conversation. If the session ends and you start another session with the same
server, there is no guarantee it will “remember” the writes you made in the previous
session. A session may end if you log off an application using the database or if you do not
issue commands to the database for so long that the database assumes you no longer need
the session and abandons it.

Monotonic Read Consistency

Monotonic read consistency ensures that if you issue a query and see a result, you will
never see an earlier version of the value. Let’s assume Alice is yet again updating a
customer’s outstanding balance. The outstanding balance is currently $1,500. She updates
it to $2,500. Bob queries the database for the customer’s balance and sees that it is $2,500.
If Bob issues the query again, he will see the balance is $2,500 even if all the servers with
copies of that customer’s outstanding balance have not updated to the latest value.

Monotonic Write Consistency

Monotonic write consistency ensures that if you were to issue several update commands,
they would be executed in the order you issued them. Let’s consider a variation on the
outstanding balance example. Alice is feeling generous today and decides to reduce all
customers’ outstanding balances by 10%. Charlie, one of her customers, has a $1,000
outstanding balance. After the reduction, Charlie would have a $900 balance. Now
imagine if Alice continues to process orders. Charlie has just ordered $1,100 worth of
material. His outstanding balance is now the sum of the previous outstanding balance
($900) and the amount of the new order ($1,100) or $2,000.

Now consider what would happen if the NoSQL database performed Alice’s operations in
a different order. Charlie started with a $1,000 outstanding balance. Next, instead of
having the discount applied, his record was first updated with the new order ($1,100). His
outstanding balance becomes $2,100. Now, the 10% discount operation is executed and
his outstanding balance is set to $2,100-$210 or $1890.

Monotonic write consistency is obviously an important feature. If you cannot guarantee
the order of operations in the database, you would have to build features into your
program to guarantee operations execute in the order you expect.

Four Types of NoSQL Databases

Distributed databases come in several forms. Distributed relational databases exist but are
not within the scope of this book. Instead, the focus here is on NoSQL databases. The
most widely used types of NoSQL databases are

» Key-value pair databases

* Document databases

* Column family store databases
* Graph databases

NoSQL databases do not have to be implemented as distributed systems. Many can run on
a single server. Some of the most interesting and appealing features of NoSQL databases,
however, require a distributed implementation. When availability and scalability are top
concerns, it makes sense to implement a NoSQL database across multiple servers. As soon
as you enter the realm of distributed systems, you are faced with decisions and trade-offs
not found in single-server implementations. As you design your NoSQL databases and
related applications, consider how you want to balance your need for scalability,
availability, consistency, partition protection, and durability. These topics are central to
NoSQL databases and are addressed repeatedly throughout this book.

Key-Value Pair Databases

Key-value pair databases are the simplest form of NoSQL databases. These databases are
modeled on two components: keys and values.

Keys

Keys are identifiers associated with values. They are analogous to tags you get when you
check luggage at the airport. The tag you receive has an identifier associated with your
luggage. With your tag, you can find your luggage more efficiently than without it.
Imagine you have a connecting flight and your luggage did not make it to your connecting
flight. If your luggage doesn’t have a tag, an airline employee searching for your bag
would have to look through all undelivered bags to determine which is yours.

Now imagine that the airline organizes undelivered bags by tag number. If the airline
employee knows your ticket number, she or he could go right to that spot in the luggage
area to retrieve your bag.

Airlines generate luggage tags when you check a bag. If you were assigned the task of
designing a ticket-generating program, you might decide to have tickets with two parts: a
flight number and a sequential number.

+ Note

This is an oversimplified scheme because it does not account for flights with the
same number that occurs on different days, but we will continue with it anyway.

The first customer checking bags on flight 1928 might be assigned ticket 1928.1 for her

first bag and 1928.2 for her second bag. The second customer also has two bags and he is
assigned 1928.3 and 1928.4 (see Figure 2.10).

Baggage Tag

<
D
=
D

Key

i

Suitcase

Figure 2.10 Airline tags for checked bags are analogous to keys used to store data in a
key-value database.

You can use a similar approach when generating keys in a key-value database. Let’s
assume you are building a key-generating program for an e-commerce website. You
realize you need to track five pieces of information about each visitor to your site: the
customer’s account number, name, address, number of items in the shopping cart, and
customer type indicator. The customer type indicator identifies customers enrolled in the
company’s loyalty program.

All of these values are associated with a customer, so you can generate a sequential
number for each customer. For each item you are storing, you create a new key by
appending the name of the item you are storing to the customer number. For example, data
about the first customer in the system would use keys 1.accountNumber, 1.name,
1.address, 1.numltems, and 1.custType (see Figure 2.11).

Keys Values
1.accountNumber ——» 387694
1.Name —» Jane Washington
1.numlitems > 3
1.custType —» Loyalty Member

Figure 2.11 Key-value databases are modeled on a simple, two-part data structure
consisting of an identifier and a data value.

This approach would work when you have a relatively simple database. If you need to
track other entities, such as product information, warehouses, and shipping providers, you
might want to use a similar sequential numbering system. Take warehouses, for example.

You might want to track the closest warehouse to a customer that has the products listed in
the shopping cart. This can help determine an estimated delivery date. For each
warehouse, you need to track its warehouse number and its address. If you use a sequential
number generator for warehouses that is different from the one used with customers, you
could generate the following keys for the first warehouse: 1.number and 1.address.

The 1.address key is used for both a customer and a warehouse. This will cause problems
because data about customers and warehouses will be saved with the same key. If you add
a warehouse to your key-value database using 1.address and then save a customer’s
address using 1.address, the next time you look up the warehouse’s address, you will find
a customer’s address instead.

One way to address this problem is to use a key-naming convention that includes the
entity type. For example, you could use the prefix cust for customer and wrhs for
warehouse. You can append the sequentially generated numbers to these prefixes to create
unique keys. The keys for the customer data would look like the following:

* custl.accountNumber
e custl.name
* custl.address
e custl.numltems
* custl.custType
* cust2.accountNumber
* cust2.name
* cust2.address
e cust2.numltems
* cust2.custType
and so on. Similarly, the keys for the warehouse data would be
» wrhs1.number
» wrhs1.address
» wrhs2.number
» wrhs2.address

The important principle to remember about keys is that they must be unique. Of course,
someone building a key-value database at Company A might use the same keys as
someone at Company B. This is not a problem because the two databases are separate.
There is no chance of one company reading or writing to the other database. In database
terminology, the keys in these two companies are in different namespaces. A namespace is
a collection of identifiers. Keys must be unique within a namespace.

A namespace could correspond to an entire database. In this case, all keys in the database
must be unique. Some key-value databases provide for different namespaces within a
database. This is done by setting up data structures for separate collections of identifiers

within a database. This book refers to these data structures as buckets (see Figure 2.12).

Database
Sales Inventory Product Descriptions
Key 1—»{Value Key 1 Value Key 1 Value
Key 2 —» Value Key 2 —>»{Value Key 2 —» Value
Key 3 —» Value Key 3 —>»{Value Key 3 —>»Value
Ke;f Np—» Value Ke;g N> Value Key N Value

Figure 2.12 Key-value databases may support separate namespaces within a single
database.

% Note

If you are familiar with SQL databases, you might notice a similarity to schemas in
relational databases.

Values

Values are data stored along with keys. Like luggage, values in a key-value database can
store many different things. Values can be as simple as a string, such as a name, or a
number, such as the number of items in a customer’s shopping cart. You can store more
complex values, such as images or binary objects, too.

Key-value databases give developers a great deal of flexibility when storing values. For
example, strings can vary in length. Cust123.address could be “543 N. Main St.” or “543
North Main St. Portland, OR 97222.” Values can also vary in type. An employee database
might include photos of employees using keys such as Emp328.photo. That key could
have a picture stored as a binary large object (BLOB) type or a string value such as “Not
available.” Key-value databases typically do not enforce checks on data types of values.

Because key-value databases allow virtually any data type in values, it is important for
software developers to implement checks in their programs. For example, a program that
expects either a BLOB or a string with a value of “Not available” might not function as
expected if the string “No photo” is used instead. A programmer might decide to support
any BLOB or string as valid values, but it is up to the programmer to determine the range
of valid values and enforce those choices as needed.

Differences Between Key-Value and Relational Databases

Key-value databases are modeled on minimal principles for storing and retrieving data.
Unlike in relational databases, there are no tables, so there are no features associated with
tables, such as columns and constraints on columns. There is no need for joins in key-
value databases, so there are no foreign keys. Key-value databases do not support a rich
query language such as SQL.

Some key-value databases support buckets, or collections, for creating separate
namespaces within a database. This can be used to implement something analogous to a
relational schema, especially when combined with a key-naming convention like the one
described previously.

If you have developed relational data models, you might have noticed parallels between
the key-naming convention and tables, primary keys, and columns. The key-naming
convention described previously basically uses the convention of concatenating a table
name or symbol, a primary key, and a column name. For example, the key
‘cust123.address’ would be equivalent to a relational table named cust or customer, with a
column called address, and a row identified by the primary key ID of 123 (see Figure

2.13).
!

cust123.address Customer Table
Primary
Key Name Address
ID

» 123 T

e el Gt

lable Primary Column
Ky

Figure 2.13 The key-naming convention outlined above maps to patterns seen in
relational database tables.

Document Databases

Document databases, also called document-oriented databases, use a key-value approach
to storing data but with important differences from key-value databases. A document
database stores values as documents. In this case, documents are semistructured entities,
typically in a standard format such as JavaScript Object Notation (JSON) or Extensible
Markup Language (XML). It should be noted that when the term document is used in this
context, it does not refer to word processing or other office productivity files. It refers to
data structures that are stored as strings or binary representations of strings.

Documents

Instead of storing each attribute of an entity with a separate key, document databases store
multiple attributes in a single document.

Here is a simple example of a document in JSON format:

Click here to view code image

{
firstName: “Alice”,
lastName: “Johnson”,
position: “CF0O”,
officeNumber: “2-120",
officePhone: *“555-222-3456",
3

One of the most important characteristics of document databases is you do not have to
define a fixed schema before you add data to the database. Simply adding a document to
the database creates the underlying data structures needed to support the document.

The lack of a fixed schema gives developers more flexibility with document databases
than they have with relational databases. For example, employees can have different
attributes than the ones listed above. Another valid employee document is

Click here to view code image
{

firstName: “Bob”,

lastName: “Wilson”,

position: “Manager”,
officeNumber: “2-130",
officePhone: *“555-222-3478",
hireDate: “1-Feb-2010",
terminationDate: “12-Aug-2014"

}

The attributes hireDate and terminationDate are in Bob’s document but not
Alice’s. This is not a problem from the database perspective. Developers can add attributes
as needed, but their programs are responsible for managing them. If you expect all
employee documents to have first and last names, you should implement a check in your
code that adds employee documents to ensure that the rule is enforced.

Querying Documents

You might be wondering, why couldn’t you store JSON or XML documents in key-value
databases? Because key-value databases have few restrictions on the type of data stored as
a value, you could store a JSON document as a value. The only way to retrieve such a
document is by its key, however.

Document databases provide application programming interfaces (APIs) or query
languages that enable you to retrieve documents based on attribute values. For example, if
you have a database with a collection of employee documents called “employees,” you
could use a statement such as the following to return the set of all employees with the
position Manager:

Click here to view code image

db.employees.find({ position:“Manager” })

As with relational databases, document databases typically support operators such as
AND, OR, greater than, less than, and equal to.

Differences Between Document and Relational Databases

As noted, a key distinction between document and relational databases is that document
databases do not require a fixed, predefined schema.

Another important difference is that documents can have embedded documents and lists of
multiple values within a document. For example, the employee documents might include a
list of previous positions an employee held within the company. For example:

Click here to view code image
{

firstName: “Bob”,
lastName: “Wilson”,
positionTitle: “Manager”,
officeNumber: “2-130",
officePhone: *“555-222-3478",
hireDate: “1-Feb-2010",
terminationDate: “12-Aug-2014"
PreviousPositions: [
{ \position: “Analyst”,
StartDate:“1-Feb-2010",
endDate:“10-Mar-2011"

IRt

position: “Sr. Analyst”,
startDate: “10-Mar-2011"
endDate:“29-May-2013"

3]
}

Embedding documents or lists of values in a document eliminates the need for joining
documents the way you join tables in a relational database. If there are cases where you
stored a list of document identifiers in a document and want to look up attributes in the
documents associated with those identifiers, then you would have to implement that
operation in your program.

Document databases are probably the most popular type of NoSQL database. They offer
support for querying structures with multiple attributes, like relational databases, but offer
more flexibility with regard to variation in the attributes used by each document.

The next section discusses the column family database, which is another type of NoSQL
database that shares some important characteristics with relational databases.

Column Family Databases

Column family databases are perhaps the most complex of the NoSQL database types, at
least in terms of the basic building block structures. Column family databases share some
terms with relational databases, such as rows and columns, but you must be careful to
understand important differences between these structures.

These differences are discussed in Chapters 9 through 11. In the meantime, let’s examine

the basic building blocks of column family databases.

Columns and Column Families

A column is a basic unit of storage in a column family database. A column is a name and a
value. (Some column family databases keep a time stamp along with a name and value,
but let’s ignore that for now.) See Figure 2.14.

LastName

l

“W”E.':In”

Figure 2.14 A column consists of a name and a value. In this example, the column is
named lastName and has a value of “Wilson.”

A set of columns makes up a row. Rows can have the same columns, or they can have
different columns, as shown in Figure 2.15.

FirstName LastName Position
Row 1 | l l l
“Alice” “Johnson” CFOF
FirstName LastName OfficeNumber
Row 2 l l l
“Bob” “Wilson” “2-130"

Figure 2.15 A row consists of one or more columns. Different rows can have different
columns.

When there are large numbers of columns, it can help to group them into collections of
related columns. For example, first and last name are often used together, and office
numbers and office phone numbers are frequently needed together. These can be grouped
in collections called column families.

As in document databases, column family databases do not require a predefined fixed
schema. Developers can add columns as needed. Also, rows can have different sets of
columns and super columns. Column family databases are designed for rows with many
columns. It is not unusual for column family databases to support millions of columns.

Differences Between Column Family and Relational Databases

Column family databases and relational databases are superficially similar. They both
make use of rows and columns, for example. There are important differences in terms of
data models and implementation details.

One thing missing from column family databases is support for joining tables. You might
have noticed that the term table has not been used when describing column family
databases. This is intentional. Tables in relational databases have a relatively fixed
structure, and the relational database management system can take advantage of that
structure when optimizing the layout of data on drives and when retrieving data for read
operations. Unlike a relational database table, however, the set of columns in a column
family table can vary from one row to another.

In relational databases, data about an object can be stored in multiple tables. For example,
a customer might have name, address, and contact information in one table; a list of past
orders in another table; and a payment history in another. If you needed to reference data
from all three tables at once, you would need to perform a join operation between tables.
Column family databases are typically denormalized, or structured so that all relevant
information about an object is in a single, possibly very wide, row.

Query languages for column family databases may look similar to SQL. The query
language can support SQL-like terms such as SELECT, INSERT, UPDATE, and DELETE
as well as column family—specific operations, such as CREATE COLUMNFAMILY.

The next section discusses a fourth type of NoSQL databases known as graph databases,
which are well suited for addressing problems that require representing many objects and
links between those objects. Social media, a transportation network, and an electric grid
are just a few examples of areas where graph databases may be used.

Graph Databases

Graph databases are the most specialized of the four NoSQL databases discussed in this
book. Instead of modeling data using columns and rows, a graph database uses structures
called nodes and relationships (in more formal discussions, they are called vertices and
edges). A node is an object that has an identifier and a set of attributes. A relationship is a
link between two nodes that contain attributes about that relation.

Nodes and Relationships

There are many ways to use graph databases. Nodes can represent people, and
relationships can represent their friendships in social networks. A node could be a city, and
a relationship between cities could be used to store information about the distance and
travel time between cities. Figure 2.16 includes an example of flying times between
several cities.

13 hrs. 30 min. ¢
Montreal €————
A A
Tokyo
Al
T1 1 hrs. 20 min. 1hr.
—>»> Seattle
Y Y
I20 min. » Chicago Boston
3 hrs. 45 min.
Portland €&—
3 hrs. 50 min.
Y
5 hrs. 10 min. 1 1
» Mexico City |«

5 hrs.

Figure 2.16 Properties of relationships or nodes store attributes about relations
between linked nodes. In this case, attributes include flying times between cities.

Both the nodes and relationships can have complex structures. For example, each city can
have a list of airports along with demographic and geographic data about the city, as

shown in Figure 2.17.

Chicago

Airports: [

]

Name
“O’ Hare”
Symbol: ORD},

{Name : Midway,
Symbol: MDW}

Population: 2,715,000,
Area: 234 Sqg. Miles

Figure 2.17 Nodes can also have attributes to describe the node. In this case, attributes
include information about the airports in the city along with population and geographic
area.

Graph databases get their name from a branch of mathematics called graph theory. Graph

theory is the study of objects represented by vertices and relations represented by edges.
Graph theory is not related to the study of charts and other visualizations sometimes
referred to as graphs.

Differences Between Graph and Relational Databases

Graph databases are designed to model adjacency between objects. Every node in the
database contains pointers to adjacent objects in the database. This allows for fast
operations that require following paths through a graph.

For example, if you wanted to find all possible ways to fly from Montreal to Mexico City
using the graph you saw in Figure 2.16, you could start at the Montreal node and follow
each of the adjacent nodes to Boston, Chicago, and Tokyo, and then to Mexico City. At the
Boston node, you would find no relationship with Mexico City and assume that there are
no direct flights available from Boston to Mexico City. From Chicago, a direct flight to
Mexico City would take 3 hours and 50 minutes. That time, plus the 1 hour and 20
minutes to fly to Chicago would leave a total flying time of 5 hours and 10 minutes.

Flying from Montreal to Tokyo to get to Mexico City is possible but hardly efficient.
Because the relationship between Montreal and Tokyo shows a 13 hour 30 minute flight,
over twice as long as the Montreal to Chicago to Mexico City route, you can safely stop
following other routes from Tokyo to Mexico City. From Chicago, you could fly to
Portland, but like Boston, this does not lead to a direct flight to Mexico City. Finally, a
direct flight from Montreal to Mexico City would take 5 hours, the fastest route available.

Performing this same kind of analysis in a relational database would be more involved.
We could easily represent the same data shown in Figure 2.16 using a table such as the one
shown in Table 2.1.

City 1 City 2 Flying Time
Montreal Boston Lok,
Montreal Chicago 1 hr. 20 min.
Montreal Tokyo 13 hr. 30 min.
Montreal Mexico City - by

Chicago Mexico City 3 hr. 50 min.
Chicago Portland 3 hr. 45 min.
Portland Seattle 20 min.
Seattle Tokyo 11 hr.

Seattle Mexico City 5 hr. 10 min.

Table 2.1 Flight Times Between Cities Modeled as a Relational Table

Querying is more difficult. You would have to write multiple SQL statements or use
specialized recursive statements if they are provided (for example, Oracle’s CONNECT

BY clause in SELECT statements) to find paths using the table representation of the data.

Graph databases allow for more efficient querying when paths through graphs are
involved. Many application areas are efficiently modeled as graphs and, in those cases, a
graph database may streamline application development and minimize the amount of code
you would have to write.

The most widely used types of NoSQL databases are key-value, document, column family,
and graph databases. The following chapters describe each of these in depth and present
examples of typical use cases for each.

Summary

NoSQL databases are often deployed using clusters of servers. When applications run on
multiple servers and coordinate their work across servers, they are known as distributed
systems. When you use NoSQL databases in a distributed manner, you will have to decide
how to address the challenges that come with that type of implementation. Distributed
systems help improve scalability and availability but make it more difficult to ensure
consistency of data across servers. There are also potential problems if there is a network
failure and some servers cannot send messages to other servers in the distributed database
system.

The nature of distributed systems has led NoSQL database designers to choose a different
set of principles for building data management systems. Rather than support atomic,
consistent, isolated, and durable transactions (ACID), NoSQL databases achieve basic
availability, soft state, eventually consistent (BASE). (Some NoSQL databases are
working to support ACID transactions, at least in some cases.)

The four types of NoSQL databases described in this chapter all must address the
challenges of distributed systems. The types of NoSQL database systems differ primarily
in the basic data structures used to model data. The different data structure choices lead to
different implementation details. Developers who work with NoSQL databases should
understand how the nature of distributed systems could affect their applications, and they
should know how to choose among NoSQL databases for their requirements. The rest of
this book is dedicated to informing you about those topics.

Review Questions
1. What is a distributed system?

2. Describe a two-phase commit. Does it help ensure consistency or availability?

o

. What do the C and A in the CAP theorem stand for? Give an example of how
designing for one of those properties can lead to difficulties in maintaining the other.

4. The E in BASE stands for eventually consistent. What does that mean?

5. Describe monotonic write consistency. Why is it so important?

[=p]

. How many values can be stored with a single key in a key-value database?

7. What is a namespace? Why is it important in key-value databases?

8. How do document databases differ from key-value databases?

9. Describe two differences between document databases and relational databases.
10. Name two data structures used in column family databases.
11. What are the two fundamental data structures in a graph database?

12. You are assigned the task of building a database to model employees and who they
work with in your company. The database must be able to answer queries such as
how many employees does Employee A work with? And, does Employee A work
with anyone who works with Employee B? Which type of NoSQL database would
naturally fit with these requirements?

References

Brewer, Eric. “CAP Twelve Years Later: How the ‘Rules’ Have Changed.” Computer vol.
45, no. 2 (Feb 2012): 23-29

Chodorow, Kristina. MongoDB: The Definitive Guide. Sebastopol, CA: O’Reilly Media,
Inc., 2013.

Hewitt, Eben. Cassandra: The Definitive Guide. Sebastopol, CA: O’Reilly Media, Inc.,
2010.

Robinson, Ian, Jim Webber, and Emil Eifrem. Graph Databases. Sebastopol, CA:
O’Reilly Media, Inc., 2013.

Vogel, Werner. 2008. “Eventually Consistent—Revisited” (December).
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
Bibliography

Hernandez, Michael J. Data Design for Mere Mortals: A Hands-On Guide to Relational
Database Design. Reading, MA: Addison-Wesley, 2007.

Viescas, John L., and Michael J. Hernandez. SQL Queries for Mere Mortals. Reading,
MA: Addison-Wesley, 2007.

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

Part II: Key-Value Databases

3. Introduction to Key-Value Databases

“Everything should be made as simple as possible, but no simpler.”
—ALBERT EINSTEIN
Topics Covered In This Chapter

From Arrays to Key-Value Databases

Essential Features of Key-Value Databases

Properties of Keys
Characteristics of Values

Key-value databases are the simplest of the NoSQL databases and are a good place to start
a detailed examination of NoSQL database options. As the name implies, the design of
this type of data store is based on storing data with identifiers known as keys. This chapter
introduces key-value data structures by starting with an even simpler data structure: the
array.

A key-value data store is a more complex variation on the array data structure. Computer
scientists have extended the concept of an array by relaxing constraints on the simple data
structure and adding persistent data storage features to create a range of other useful data
structures, including associative arrays, caches, and persistent key-value databases.

In this chapter, you learn about key characteristics of key-value data stores as well as
about keys and values themselves. You also see some important operational characteristics
of key-value databases.

Before jumping into database-specific topics, the next section sets the stage for key-value
databases with a slight diversion into introductory data structures.

From Arrays to Key-Value Databases

Relational databases did not spring from the mind of computer scientists at the dawn of
computing. Chapter 1, “Different Databases for Different Requirements,” describes the
development of databases as a series of increasingly more complex systems that are better
able to manage increasingly more complex data management challenges. The high points
of that progression are relational and NoSQL databases.

It helps to start an examination of key-value databases by starting with a simple data
structure and showing how adding features to a simple data structure can lead to a simple
but even more useful type of database.

Arrays: Key Value Stores with Training Wheels

One of the first data structures taught to computer science students is the array. After
scalar variables, like integers and characters, the array is one of the simplest. An array is
an ordered list of values. Each value in the array is associated with an integer index. The
values are all the same type. For example, an array could be an ordered list of integers,
characters, or Boolean values. Figure 3.1 shows an array of 10 Boolean elements.

True

True

False

True

False

False

False

True

False

o|lo|le|N|o|la|lslw| n| =

True

Figure 3.1 An array is an ordered list of elements. All elements are of the same type.
The value of each element of the array is read and set by reference to its index.

The syntax for reading and setting array values varies by programming language. In this
book, to read the first element of an array named exampleArray, you would use

exampleArray[0]

+ Note

It is common practice in programming languages to use zero instead of one as the
first element of an array.

The convention for reading from an array is to use the name of the array followed by an [,
an integer index, and then a]. To set the value of an array element, use the same syntax for
reading an element and follow it with an assignment symbol, in this case a ‘=’, and the
value to be assigned to that element. For example,

Click here to view code image
exampleArray[@] = ‘Hello world.’

sets the first element of exampleArray to the string of characters ‘Hello world.’
Additional elements can be set with the following commands:

Click here to view code image

exampleArray[1] = ‘Goodbye world.’
exampleArray[2] = ‘This is a test.’
exampleArray[5] = ‘Key-value database’

exampleArray[9] ‘Elements can be set in any order.’

exampleArray is an array in which all elements are strings of characters. You could
not, for example, set an element of exampleArray to a real number. The following
command would generate an error:

exampleArray[6] = 3.1415
You might see the two following limitations when working with arrays:
* The index can only be an integer.
* The values must all have the same type.

Sometimes it is useful to have a data structure that does not have these limitations.

Associative Arrays: Taking Off the Training Wheels

An associative array is a data structure, like an array, but is not restricted to using integers
as indexes or limiting values to the same type. You could, for example, have commands
such as the following:

Click here to view code image

exampleAssociativeArray[‘Pi’] = 3.1415

exampleAssociativeArray[‘CapitalFrance’] = ‘Paris’

exampleAssociativeArray[‘ToDoList’] = { ‘Alice’ : ‘run
reports; meeting with Bob’, ‘Bob’ : ‘order inventory;
meeting with Alice’ }

exampleAssociativeArray[17234] = 34468

Associative arrays generalize the idea of an ordered list indexed by an identifier to include
arbitrary values for identifiers and values (see Figure 3.2). As the previous examples
show, keys can be strings of characters or integers. Depending on the programming
language or database, you may be able to use keys with even more complex data
structures, such as a list of values.

‘PI’ 3.14
‘CapitalFrance’ ‘Paris’
17234 34468
‘Foo’ ‘Bar’
‘Start_Value’ 1

Figure 3.2 An associative array shares some characteristics of arrays but has fewer
constraints on keys and values.

In addition, note that values stored in the associative array can vary. In the previous
examples, there is a real number, a character string, a list, and an integer. The identifiers
are generally referred to as keys. As you might have already guessed, associative arrays
are the basic structure underlying the concept of key-value databases.

+ Note

Associative arrays go by a number of different names, including dictionary, map,
hash map, hash table, and symbol table.

Caches: Adding Gears to the Bike

Key-value databases build on the concept of an associative array, but there are important
differences. Many key-value data stores keep persistent copies of data on long-term
storage, such as hard drives or flash devices. Some key-value data stores only keep data in
memory. These are typically used so programs can access data faster than if they had to
retrieve data from disk drives (see Figure 3.3). The first time a piece of data is retrieved
from a disk, for example, as the result of a SQL query in a relational database, it is stored
in the cache along with a set of unique keys. A SQL query such as the following retrieves
name and shipping address information from a relational table called customers:

SELECT
firstName,
lastName,
shippingAddress,
shippingCity,
shippingState,
shippingZip
from
customers
where
customerID = 1982737

Server
Cache
Client = Storage
Key 1 | Value 1
Key 2 | Value 2 ol
Key N | Value N -

_

Figure 3.3 Caches are associative arrays used by application programs to improve
data access performance.

Only the information for the customer with the customerID of 1982737 is retrieved.

The program could run faster if it retrieved data from memory rather than from the
database. The first time the program fetches the data, it will need to read from the disk but
after that the results can be saved in memory.

< Tip

If the program is relatively simple and only needs to track one customer at a time,
then the application programmer could use character-string variables to store the
customer name and address information. When a program must track many
customers and other entities at the same time, then using a cache makes more sense.

An in-memory cache is an associative array. The values retrieved from the relational
database could be stored in the cache by creating a key for each value stored. One way to
create a unique key for each piece of data for each customer is to concatenate a unique
identifier with the name of the data item. For example, the following stores the data
retrieved from the database in an in-memory cache:

Click here to view code image

customerCache[“1982737:firstname’] = firstName
customerCache[‘1982737:1lastname’] = lastName
customerCache[“1982737:shippingAddress’] = shippingAddress
customerCache[“1982737:shippingCity’] = shippingCity
customerCache[“1982737:shippingState’] = shippingState
customerCache[“1982737:shippingzip’] = shippingzZip

Because the customer ID is part of the key, the cache can store data about as many
customers as needed without creating separate program variables for each set of customer
data.

Programs that access customer data will typically check the cache first for data and if it is
not found in the cache, the program will then query the database. Here is sample
pseudocode for a getCustomer function:

Click here to view code image

define getCustomer (p_customerID):
begin
if exists(customerCache[1982737:firstName]),
return(
customerCache[p_customerID
+":lastname’],
customerCache[p_customerID
+":shippingAddress’],
customerCache[p_customerID
+":shippingCity’],
customerCache[‘p_customerID
+’:shippingState’],
customerCache[p_customerID
+"”:shippingzZip’]
);
else
return(addQueryResultsToCache(p_customerID,
'SELECT
firstName,
lastName,
shippingAddress,
shippingCity,
shippingState,
shippingZip
FROM

customers
WHERE
customerID = p_customerID’)
end;

);
The pseudocoded function takes one parameter, p_customerID, which is a unique
identifier of the customer. The 1 statement checks if there exists a key in the cache that
consists of the customer identifier passed in as a parameter and the character string
'"firstName'. If it does exist, then it is safe to assume that all the attributes about the
customer are in the cache and can be returned from the cache. If the customer’s first name
is not in the cache, the function executes another function called
addQueryResultsToCache. This function takes a key, and SQL query returns the
data associated with that key. The function also stores a copy of the returned data in the
cache so it is available next time the getCustomer function is called.

+ Caution

Like arrays in programming languages, when the server is shut down or the cache
terminates, the data in memory is lost. The next time the application starts, it will
have to reload the cache with data by executing statements like the SQL statement
in the getCustomer function.

Although caches are types of key-value data stores, they are outside the scope of this
book. The following discussion about key-value databases applies to key-value stores that
save data persistently.

In-Memory and On-Disk Key-Value Database: From Bikes to Motorized
Vehicles

Caches are helpful for improving the performance of applications that perform many
database queries. Key-value data stores are even more useful when they store data
persistently on disk, flash devices, or other long-term storage. They offer the fast
performance benefits of caches plus the persistent storage of databases.

Key-value databases impose a minimal set of constraints on how you arrange your data.
There is no need for tables if you do not want to think in terms of groups of related
attributes.

+ Note

The one design requirement of a key-value database is that each value has a unique
identifier in the form of the key. Keys must be unique within the namespace defined
by the key-value database. The namespace can be called a bucket, a database, or
some other term indicating a collection of key-value pairs (see Figure 3.4).

Database

Bucket 1 Bucket 2 Bucket 3
‘Foot1’ | ‘Bar’ ‘Fool’ | ‘Baz’ ‘Foo1’ | ‘Bar7’
‘Foo2’ | ‘Bar2’ ‘Food’ | ‘Baz3’ ‘Foo4’ | ‘Baz3
‘Foo3’ | ‘Bar?’ ‘Foob’ | ‘Baz2’ ‘Foo7’ | ‘Baz®’

Figure 3.4 Keys of a key-value database must be unique within a namespace.

Developers tend to use key-value databases when ease of storage and retrieval are more
important than organizing data into more complex data structures, such as tables or
networks.

+ Note

Developers could readily implement networks and table-like data structures using
key-value databases as a foundation. A developer could use a key-naming
convention that uses a table name, primary key value, and an attribute name to
create a key to store the value of an attribute, as shown in the following example:

Click here to view code image

customer:1982737:firstName
customer:1982737:lastName
customer:1982737:shippingAddress
customer:1982737:shippingCity
customer:1982737:shippingState
customer:1982737:shippingZip

Next, the developer can create a set of functions that emulate the operations performed on
a table, such as creating, reading, updating, or deleting a row. One example of pseudocode
for a create function is

Click here to view code image

define addCustomerRow(p_tableName, p_primaryKey,
p_firstName, p_lastName, p_shippingAddress,
p_shippingCity, p_shippingState, p_shippingZip)
begin
set [p_tableName+p_primary+‘firstName’] = p_firstName;
set [p_tableName+p_primary+‘lastName’] = p_lastName;
set [p_tableName+p_primary+‘shippingAddress’] =
p_shippingAddress;
set [p_tableName+p_primary+‘shippingCity’] =
p_shippingCity;
set [p_tableName+p_primary+‘shippingState’] =
p_shippingState;
set [p_tableName+p_primary+‘shippingzZip’] =
p_shippingZip;
end;

The reading, updating, and deleting functions are equally as easy to write. (You will write
a delete function later in the chapter as an exercise.)

Essential Features of Key-Value Databases

A variety of key-value databases is available to developers, and they all share three
essential features:

* Simplicity
* Speed
* Scalability

These characteristics sound like an ideal combination that should be embraced by every
database, but as you will see, there are limitations that come along with these valued
features.

Simplicity: Who Needs Complicated Data Models Anyway?

Key-value databases use a bare-minimum data structure. You might wonder, why would
anyone want to use a bare-minimum database when you could use a feature-rich relational
database? The answer is that sometimes you do not need all those extra features.

Think about word processors. Microsoft Word, for example, has an impressive list of
features, including a wide array of formatting options, spelling and grammar checkers, and
even the ability to integrate with other tools like reference and bibliography managers.

These are just the kinds of tools you want in your word processor if you are writing a book
or lengthy term paper. But what if you are writing a six-item to-do list on your phone? A
full-featured word processor is more than you need. A simple text editor would do the job
just as well. The same kind of situation can occur when design applications use a database
for storage.

Often, developers do not need support for joining tables or running queries about multiple
entities in the database. If you were implementing a database to store information about a
customer’s online shopping cart, you could use a relational database, but it would be
simpler to use a key-value database. You would not have to define a database schema in
SQL. You would not have to define data types for each attribute you’d like to track.

If you discover that you would like to track additional attributes after you have written
your program, you can simply add code to your program to take care of those attributes.
There is no need to change database code to tell the database about the new attribute. Key-
value databases have no problem working with adding new attributes as they come along.

In key-value databases, you work with a simple data model. The syntax for manipulating
data is simple. Typically, you specify a namespace, which could be a database name, a
bucket name, or some other type of collection name, and a key to indicate you want to
perform an operation on a key-value pair. When you specify only the namespace name and
the key, the key-value database will return the associated value. When you want to update
the value associated with a key, you specify the namespace, key, and new value.

Key-value databases are flexible and forgiving. If you make a mistake and assign the
wrong type of data, for example, a real number instead of an integer, the database usually
does not complain. This feature is especially useful when the data type changes or you
need to support two or more data types for the same attribute. If you need to have both

numbers as strings for customer identifiers, you can do that with code such as the
following:

Click here to view code image

shoppingCart[cart:1298:customerID]
shoppingCart[cart:3985:customerID]

1982737
‘Johnson, Louise’

One of the advantages of simple data structures in computer science is that they are often
associated with fast operations.

Speed: There Is No Such Thing as Too Fast

Major database vendors create tools to help developers and database administrators
identify slow-running queries. Books are written on tuning databases. Software engineers
comb their code for opportunities to cut down on the time required to run their code. It
seems like no one wants to wait for his or her data.

Key-value databases are known for their speed. With a simple associative array data
structure and design features to optimize performance, key-value databases can deliver
high-throughput, data-intensive operations.

One way to keep database operations running fast is to keep data in memory. Reading and
writing data to RAM is much faster than writing to a disk. Of course, RAM is not
persistent storage, so if you lose power on your database server, you will lose the contents
of RAM. Key-value databases can have the advantages of fast write operations to RAM
and the persistence of disk-based storage by using both.

When a program changes the value associated with a key, the key-value database can
update the entry in RAM and then send a message to the program that the updated value
has been saved. The program can then continue with other operations. While the program
is doing something else, the key-value database can write the recently updated value to
disk. The new value is saved to disk unless there is a power loss or some other failure
between the time the application updates the value and the key-value database stores the
value on disk (see Figure 3.5).

Server
Client Q —
| @ Write r"’f
-« > Cache @ Write
o @ Acknowledge to -l
Disk

Figure 3.5 Write operations can return control to the calling application faster by first
writing inserts and updates to RAM and then updating disk storage.

Similarly, read operations can be faster if data is stored in memory. This is the motivation
for using a cache, as described earlier. Because the size of the database can exceed the size
of RAM, key-value stores have to find ways of managing the data in memory.

o+ Tip

Compressing data is one way of increasing the effective storage capacity of
memory, but even with compression there may not be sufficient memory to store a
large key-value database completely in RAM.

When the key-value database uses all the memory allocated to it, the database will need to
free some of the allocated memory before storing copies of additional data. There are
multiple algorithms for this, but a commonly used method is known as least recently used
(LRU). The idea behind the LRU algorithm is that if data has not been used in a while, it
is less likely to be used than data that has been read or written more recently. This
intuition makes sense for many application areas of key-value databases (see Figure 3.6).

Cache

Most
Recently
Used

Least > //////////////// f} Deleted
Recently \\\\\\\\\\\\\\\\ \

Used

Figure 3.6 Least recently used algorithms delete data that has not been read or written
as recently as other data.

Consider a key-value database used to store items in customers’ online carts. Assume that
once a customer adds an item to the cart, it stays there until the customer checks out or the
item is removed by a background cleanup process. A customer who finished shopping
several hours ago may still have data in memory. More than likely, that customer has
abandoned the cart and is not likely to continue shopping. Compare that scenario with a
customer who last added an item to the cart five minutes ago. There is a good chance that
customer is still shopping and will likely add other items to the cart or continue to the
checkout process shortly.

Scalability: Keeping Up with the Rush

It is important for key-value databases, and other types of NoSQL databases used in web
and other large-scale applications, to scale with minimal disruption to operations.
Remember from Chapter 2, “Variety of NoSQL Databases,” that scalability is the
capability to add or remove servers from a cluster of servers as needed to accommodate
the load on the system. When you scale databases, the capability to accommodate both
reads and writes is an important property. Key-value databases take different approaches
to scaling read and write operations. Let’s consider two options:

* Master-slave replication

* Masterless replication

Scaling with Master-Slave Replication

One way to keep up with a growing demand for read operations is to add servers that can
respond to queries. It is easy to imagine applications that would have many more reads
than writes. During the World Cup finals, football fans around the world (and soccer fans
in the United States) who have to work instead of watch the game would be checking their
favorite sport score website for the latest updates. News sites would similarly have a
greater proportion of reads than writes. Even e-commerce sites can experience a higher
ratio of page views than data writes because customers may browse many descriptions and
reviews for each item they ultimately end up adding to their shopping carts.

In applications such as this, it is reasonable to have more servers that can respond to
queries than accept writes. A master-slave replication model works well in this case.

The master is a server in the cluster that accepts write and read requests. It is responsible
for maintaining the master record of all writes and replicating, or copying, updated data to
all other servers in the cluster. These other servers only respond to read requests. As
Figure 3.7 shows, master-slave architectures have a simple hierarchical structure.

Server

Figure 3.7 Master-slave architectures have a simple communication pattern during
normal operations.

An advantage of master-slave models is simplicity. Except for the master, each node in the
cluster only needs to communicate with one other server: the master. The master accepts
all writes, so there is no need to coordinate write operations or resolve conflicts between
multiple servers accepting writes.

A disadvantage of the master-slave replication model is that if the master fails, the cluster
cannot accept writes. This can adversely impact the availability of the cluster The master
server is known as a single point of failure—that is, a single component in a system that if
it fails, the entire system fails or at least loses a critical capacity, such as accepting writes.

Designers of distributed systems have developed protocols so active servers can detect
when other servers in the cluster fail. For example, a server may send a simple message to
ask a random server in the cluster if it is still active. If the randomly selected server
replies, then the first server will know the other server is active.

In the case of master-slave configurations, if a number of slave servers do not receive a
message from the master within some period of time, the slaves may determine the master
has failed. At that point, the slaves initiate a protocol to promote one of the slaves to
master (see Figure 3.8). Once active as the master, the new master server begins accepting
write operations and the cluster would continue to function, accepting both read and write
operations.

Msg

Figure 3.8 Once a failed master server is detected, the slaves initiate a protocol to elect
a new master.
Scaling with Masterless Replication

The master-slave replication model with a single server accepting writes does not work
well when there are a large number of writes. Imagine the Rolling Stones decide to have
one more world tour. Fans around the world flock to buy concert tickets. The fans would
generate a large number of reads when they look up the cities that will be hosting concerts,
but once they find one or two close cities, they are ready to purchase tickets.

The software engineers who write the concert ticket program have a lot to think about,
including

» Storing concert locations and dates.

* Available seats in each venue.

» Cost of seats in various sections.

* Any limits on the number of tickets purchased by a single customer.

* Ensuring that seats that appear to be available to a user are still available when the
user chooses to purchase the ticket. This assumes the customer opts to buy the ticket
almost immediately after seeing the availability.

There are probably many more requirements, but these are sufficient to give you a basic

idea of the challenges the software engineers are up against.

With the possibility of a surge in the number of customers trying to write to the database, a
single server accepting writes will limit scalability. A better option for this application is a
masterless replication model in which all nodes accept reads and writes. An immediate
problem that comes to mind is: How do you handle writes so that two or more servers do
not try to sell the same seat in a concert venue to multiple customers? (See Figure 3.9.)

Key Value

Client

Ticket Client Ticket
A73 l A73
PDX PDX
7115 — 7115

Figure 3.9 A fan’s worst nightmare: Multiple fans are able to purchase tickets for the
same seat.

There is an elegant solution to this problem that is described later in the “Keys: More
Than Meaningless Identifiers” section. For now, let’s assume that only one customer can
purchase a seat at a concert venue at a particular date and time. There is still the problem
of scaling reads.

In a masterless replication model, there is not a single server that has the master copy of
updated data, so no single server can copy its data to all other servers. Instead, servers in a
masterless replication model work in groups to help their neighbors.

Consider a set of eight servers configured in a masterless replication model and set up in a
ring structure. For simplicity, assume that the servers are named 1, 2, 3, and so on up to
Server 8. In the ring structure, Server 1 is logically linked to Servers 2 and 8, Server 2 is
linked to Servers 1 and 3, Server 3 is linked to Servers 2 and 4, and so on. Figure 3.10
shows the full configuration.

Figure 3.10 An eight-server cluster in a ring configuration.

+ Note

The ring structure is a useful abstraction for discussing replication in a masterless
model. In a data center, the eight servers would probably all be connected to a
single network hub and able to directly communicate with each other.

Database administrators can configure a key-value database to keep a particular number of
replicas. In this scenario, the administrator has decided that four replicas are sufficient.
Each time there is a write operation to one of the servers, it replicates that change to the

three other servers holding its replica. In this scenario, each server replicates to its two
neighbors and to the server two links ahead. For example, Server 2 replicates to its
neighbors Server 1 and Server 3 as well as Server 4, which is two links ahead. Figure 3.11
shows the full replication pattern.

Ring Link
———— Replication ok

b

\

-
~

—
-—
-

Figure 3.11 An eight-server cluster in a ring configuration with a replication factor of
4.

Now that you have had a basic introduction to the essential features of key-value data
stores, it is time to drill down into some of the properties of two components: keys and
values.

Keys: More Than Meaningless Identifiers

As already stated, keys are used to identify, index, or otherwise reference a value in a key-
value database. The one essential property of a key is that it must be unique within a
namespace. This makes keys sound pretty simple, and they are—sometimes.

How to Construct a Key

If you have worked with relational databases, you may have used counters or sequences to
generate keys. Counters and sequences are functions that return a new unique number
each time the function is called. Database application designers use these routinely to
make keys for rows of data stored in a table. Each generated number is a unique identifier
used by a row in a table.

Designers could use one counter to generate primary keys for all tables, or they could use

a different counter or sequence for each table. Either way, each row in a table has a unique
identifier. Just as keys in key-value databases must be unique in a namespace, the primary
key of a row of data must be unique to the table.

o+ Tip

It is considered good practice to use meaningless keys in relational database design.

The sole purpose of a primary key, the reasoning goes, is to uniquely identify a row. If you
were to use a property of the data, such as the last name and first initial of a customer, you
might run into problems with duplicates. Also, values stored in rows may change.

For example, consider how quickly the meaning of a primary key would change if you
used the two-letter state abbreviation of the state in which a customer lives as part of a key
for that customer. You could have a key such as ‘SMITH_K_TX’ for a Katherine Smith
who lives in Texas. If Katherine Smith moves to Illinois, then the primary key is no longer
meaningful.

% Caution

Primary keys should not be changed, so you could not simply change the key to
‘SMITH_K_IL.’ That would violate the principle that primary keys are immutable.
You could conceivably change a primary key (if the database management system
allowed such updates), but you would have to update all references to that key in
other tables.

Storing a primary key to a row in another table is known as a foreign key. As you can see,
the way relational databases work, it makes sense to have meaningless keys.

In NoSQL databases, and key-value databases in general, the rules are different. Key-
value databases do not have a built-in table structure. With no tables, there are no
columns. With no columns, there is no way to know what a value is for except for the key.
Consider a shopping cart application using a key-value database with meaningless keys:

Cart[12387] = ‘SKU AK8912j4’

This key is the type of identifier you would likely see in a relational database. This key-
value pair only tells you that a cart identified by number 12387 has an item called ' SKU
AK89127j4". You might assume from the value that SKU stands for stock keeping unit, a
standard term in retail to refer to a specific type of product. However, you don’t know who
this cart belongs to or where to ship the product.

One way to solve this problem is to create another namespace, such as custName. Then
you could save a value such as

Click here to view code image
CustName[12387] = ‘Katherine Smith’

This would solve the immediate problem of identifying who owns the cart, but you can
see that this approach does not generalize well. Every attribute tracked in the application
would need a separate namespace. Alternatively, you can use meaningful keys that entail
information about attributes.

As discussed earlier, you can construct meaningful names that entail information about
entity types, entity identifiers, and entity attributes. For example:

Cust:12387:firstName

could be a key to store the first name of the customer with customerID 12387. This is
not the only way to create meaningful names, but it is the one used throughout this book.
Again, the basic formula is

Click here to view code image
Entity Name + ‘:’ + Entity Identifier +’':’ + Entity
Attribute

The delimiter does not have tobe a ' : ' but it is a common practice.

Using Keys to Locate Values

Up to this point, there has been a fair amount of discussion about how to construct keys,
why keys must be unique within a namespace, and why meaningful keys are more useful
in key-value databases than relational databases. There has been some mention of the idea
that keys are used to look up associated values, but there has been no explanation about
how that happens. It is time to address that topic.

If key-value database designers were willing to restrict you to using integers as key values,
then they would have an easy job of designing code to fetch or set values based on keys.
They could load a database into memory or store it on disk and assume that the first value
stored in a namespace is referenced by key 1, the next value by key 2, and so on.
Fortunately, key-value designers are more concerned with designing useful data stores
than simplifying data access code.

Using numbers to identify locations is a good idea, but it is not flexible enough. You
should be able to use integers, character strings, and even lists of objects as keys if you
want. The good news is that you can. The trick is to use a function that maps from
integers, character strings, or lists of objects to a unique string or number. These functions
that map from one type of value to a number are known as hash functions.

+ Note

Not all key-value databases support lists and other complex structures. Some are
more restricted in the types and lengths of keys than others.

Hash Functions: From Keys to Locations

A hash function is a function that can take an arbitrary string of characters and produce a
(usually) unique, fixed-length string of characters.

+ Note

Actually, the value returned by the hash function is not always unique; sometimes
two unrelated inputs can generate the same output. This is known as a collision.

B Refer to Chapter 4, “Key-Value Database Terminology,” for information on how to
deal with collisions.

For example, the keys mentioned earlier in the chapter to describe customer shipping
information are mapped to hash values listed in Table 3.1.

Key Hash Value

customer:1982737: el3E5e850bEo2348ade5lecfcbhbiasebaibifbedz0s
firstName

customer:1982737: fE84667cE5938571996379f256bBc82d2f5e0fe2f
lastName

customer:1982737: degslfzedcdb3l3cea77e0s2bla7obe3z24cd2d4aele
shippingfiddress

customer:1982737: 33522192dak0eacebfciEb74d41315778b&36%eChE
shippingCity

customer:1982737: 239balbd4cd437368ef2bleecfs8ce2biesd 09722
shippingState

customer:1982737: 8l4f3b2281ed9941ele7a03b223daz8a8e0762fE
shippingZip

Table 3.1 Key to Hash Value Mappings

Each hash value is quite different from the others, although they all have the same
'customer:1982737: "' prefix. One of the properties of hash functions is that they
map to what appear to be random outputs. In this example, the SHA-1 hash function is
used to generate the hash values.

The values are all numbers in hexadecimal, a base-16 number system. The hexadecimal
integers are 0-9 and a—f, which represent 10—15. This is about 1.4615016e+48 different
values. Needless to say, this should be plenty for any key-value database application.

Keys Help Avoid Write Problems

Now, let’s see how you can use the numbers returned by the hash function to map to a
location. To keep things simple, the discussion focuses on using the number returned by a
hash function to determine which server in a cluster should be used to store the value
associated with the key. An actual key-value implementation would have to map to a
location on disk or in memory, but that is beyond the scope of this discussion.

Assume you are working with the eight-server cluster that you saw in Figure 3.10. You
can take advantage of the fact that the hash function returns a number. Because the write
load should be evenly distributed across all eight servers, you can send one eighth of all
writes to each server. You could send the first write to Server 1, the second to Server 2, the
third to Server 3, and so on in a round-robin fashion, but this would not take advantage of
the hash value.

One way to take advantage of the hash value is to start by dividing the hash value by the
number of servers. Sometimes the hash value will divide evenly by the number of servers.
(For this discussion, assume the hash function returns decimal numbers, not hexadecimal
numbers, and that the number of digits in the number is not fixed.)

If the hash function returns the number 32 and that number is divided by 8, then the
remainder is 0. If the hash function returns 41 and it is divided by 8, then the remainder is
1. If the hash function returns 67, division by 8 leaves a remainder of 3.

As you can see, any division by 8 will have a remainder between 0 and 7. Each of the
eight servers can be assigned a number between 0 and 7.

In this discussion, the remainder will be called the modulus after the modulo arithmetic
operation that returns a remainder. Figure 3.12 shows how to assign each modulus to a
server.

Figure 3.12 An eight-server cluster in a ring configuration with modulo number
assigned.

Let’s return to the concert ticket application. A challenge was to ensure that two servers
did not sell tickets to the same seat, at the same venue, in the same city, on the same night
to more than one person. Because key-value databases running in a masterless
configuration can accept writes from all servers, such a mistake could happen. The
solution is to make sure any requests for the same seat, at the same venue, in the same city,
on the same night all go to the same server.

You can do this by making a key based on seat, venue, city, and date. For example, two

fans want to purchase set A73 at the Civic Center in Portland, Oregon, on July 15. You
could construct keys using the seat, an abbreviation for the venue (CIvCen in this case),
the airport code for the city (PDX in this case), and a four-digit number for the date. In this
example, the key would be

A73:CivCen:PDX:0715

Anyone trying to purchase that same seat on the same day would generate the same key.
Because keys are mapped to servers using modulo operations, all requests for that seat,
location, and date combination would go to the same server. There is no chance for
another server to sell that seat, thus avoiding the problem with servers competing to sell
the same ticket.

Keys, of course, are only half the story in key-value databases. It is time to discuss values.

Values: Storing Just About Any Data You Want

This chapter started with the theme of simplicity. Key-value data stores are the simplest
form of NoSQL database. That is in part because the foundational data structure of the
associative array is so simple. NoSQL databases are also simple with respect to the way
they store data.

Values Do Not Require Strong Typing

Unlike strongly typed programming languages that require you to define variables and
specify a type for those variables, key-value databases do not expect you to specify types
for the values you store.

You could, for example, store a string along with a key for a customer’s address:

Click here to view code image
1232 NE River Ave, St. Louis, MO’

or you could store a list of the form:

Click here to view code image
(1232 NE River Ave’, ‘St. Louis’, ‘M0")

or you could store a more structured format using JavaScript Object Notation, such as

Click here to view code image
{ ‘Street:’ : ‘1232 NE River Ave’, ‘City’ : ’‘St. Louis’,:
‘State’ : ‘MO’ }
Key-value databases make minimal assumptions about the structure of data stored in the
database.

While in theory, key-value databases allow for arbitrary types of values, in practice
database designers have to make implementation choices that lead to some restrictions.
Different implementations of key-value databases have different restrictions on values.
For example, some key-value databases will typically have some limit on the size of
values. Some might allow multiple megabytes in each value, but others might have
smaller size limitations.

Even in cases in which you can store extremely large values, you might run into

performance problems that lead you to work with smaller data values.

+ Note

It is important to consider the design characteristics of the key-value database you
choose to use. Consult the documentation for limitations on keys and values. Part of
the process in choosing a key-value database is considering the trade-off of various
features. One key-value database might offer ACID transactions but limit you to
small keys and values. Another key-value data store might allow for large values
but limit keys to numbers or strings. Your application requirements should be
considered when weighing the advantages and disadvantages of different database
systems.

Limitations on Searching for Values

Keep in mind that in key-value databases, operations on values are all based on keys. You
can retrieve a value by key, you can set a value by key, and you can delete values by key.
That is pretty much the repertoire of operations. If you want to do more, such as search for
an address in which the city is “St. Louis,” you will have to do that with an application
program. If you were using a relational database, you could issue a SQL query, such as the
following:
SELECT
address,
city,
state,
zip
FROM
Customer

WHERE
city = ‘St. Louis’

Key-value databases do not support query languages for searching over values. There are
two ways to address this limitation.

You, as an application developer, could implement the required search operations in your
application. For example, you could generate a series of keys, query for the value of each
key, and test the returned value for the pattern you seek.

Let’s assume you decided to store addresses as a string such as '1232 NE River
Ave, St. Louis, MO' and you store it like this:

Click here to view code image

appData[cust:9877:address] = ‘1232 NE River Ave, St.
Louis, MO’

A pseudocode function for searching for customers in a particular city is

Click here to view code image
define findCustomerWithCity(p_startID, p_endID, p_City):
begin
first, create an empty list variable to hold all
addresses that match the city name
returnList = ();

loop through a range of identifiers and build keys
to look up address values then test each address
using the inString function to see if the city name
passed in the p_City parameter is in the address
string. If it is, add it to the list of addresses
to return
for id in p_startID to p_endID:
address = appData[‘cust:’ + id + ‘:address’];
if inString(p_City, Address):
addToList(Address, returnList);
after checking all addresses in the ranges specified
by the start and end ID return the list of addresses
with the specified city name.
return(returnList);
end;

This method enables you to search value strings, but it is inefficient. If you need to search
large ranges of data, you might retrieve and test many values that do not have the city you
are looking for.

Some key-value databases incorporate search functionality directly into the database. This
is an additional service not typically found in key-value databases but can significantly
add to the usefulness of the database. A built-in search system would index the string
values stored in the database and create an index for rapid retrieval. Rather than search all
values for a string, the search system keeps a list of words with the keys of each key-value
pair in which that word appears. Figure 3.13 shows a graphical depiction of what such an
index might look like.

Word Keys
L ‘cust:2149:state’ , ‘cust:4111 : state’
‘OR’ ‘cust: 9134 : state’
‘MA ‘cust: 7714 :state’, ‘cust: 3412 state’
‘Boston’ ‘cust: 1839:address’

‘St. Louis’ ‘cust: 9877 :address’, ‘cust: 1171 :address’

‘Portland’ ‘cust: 9134 :city’
‘Chicago’ ‘cust:2149:city’, ‘cust: 4111 :city’

Figure 3.13 A search index helps efficiently retrieve data when selecting by criteria
based on values.

Summary

Key-value databases are simple and flexible. They are based on the associative array,
which is a more generalized data structure than arrays. Associative arrays allow for
generalized index values, or keys. Keys may be integers, strings, lists of values, or other

types.

An important constraint on keys is that they must be unique within a namespace. Keys are
used to look up values and those values can vary by type. There are some practical
limitations on the size of values and those limitations can vary by implementation. Some
of the limitations of key-value databases, such as lack of query language, are mitigated
with additional features such as search tools.

Key-value databases lend themselves to scalable designs based on both master-slave and
masterless replication models. Master-slave architectures typically have a single node that
accepts writes and multiple nodes that support read operations. Masterless architectures
allow for multiple nodes to accept write and support reads.

Chapter 4 includes additional terminology and concepts needed to understand both the
design and the use of key-value databases. Then, Chapter 5, “Designing for Key-Value
Databases,” discusses the use of key-value databases in application design and describes a
number of useful design patterns to help you develop robust applications based on key-
value databases.

Review Questions

1. How are associative arrays different from arrays?

2. How can you use a cache to improve relational database performance?
3. What is a namespace?

4. Describe a way of constructing keys that captures some information about entities
and attribute types.

[$)

. Name three common features of key-value databases.

6. What is a hash function? Include important characteristics of hash functions in your

definition.
7. How can hash functions help distribute writes over multiple servers?
8. What is one type of practical limitation on values stored in key-value databases?

9. How does the lack of a query language affect application developers using key-
value databases?

10. How can a search system help improve the performance of applications that use
key-value databases?
References

Basho Technologies, Inc. Riak Documentation: http://docs.basho.com/riak/latest/

Carlson, Josiah L. Redis in Action. Shelter Island, NY: Manning Publications Co., 2013.

http://docs.basho.com/riak/latest/

Meyer, Mathias. Riak Handbook. Seattle, WA: Amazon Digital Services, Inc., 2013.

FoundationDB, FoundationDB Documentation: https://foundationdb.com/key-value-
store/documentation/index.html

Macedo, Tiago, and Fred Oliveira. Redis Cookbook. Sebastopol, CA: O’Reilly Media,
Inc., 2011.

Oracle Corporation. Oracle NoSQL Documentation:

http://www.oracle.com/technetwork/database/database-
technologies/nosqldb/documentation/index.html.

Redis. io Documentation: http://redis.io/documentation

Bibliography

Hernandez, Michael J. Database Design for Mere Mortals: A Hands-On Guide to
Relational Database Design. Reading, MA: Addison-Wesley, 2003.

Viescas, John L., and Michael J. Hernandez. SQL Queries for Mere Mortals. Reading,
MA: Addison-Wesley, 2007.

https://foundationdb.com/key-value-store/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/documentation/index.html
http://redis.io/documentation

4. Key-Value Database Terminology

“I always try to think of a vocabulary to match different musical situations.”

—ROSCOE MITCHELL
JAZZ COMPOSER AND SAXOPHONIST

Topics Covered In This Chapter

Key-Value Database Data Modeling Terms
Key-Value Architecture Terms

Key-Value Implementation Terms

This chapter is different from the first three chapters of this book. The intent of this
chapter is to provide an explanation of important terms used when discussing key-value
databases. Introducing terminology of a new domain, like NoSQL databases, presents
something of a chicken-and-egg problem.

Which should come first? Should you learn about the basic ideas of key-value databases
and then delve into a more detailed understanding of the terms and concepts that underlie
key-value databases? Or, should you first learn the definition of terms independent of the
bigger picture of key-value databases? There are advantages and disadvantages to both
approaches.

This book tries to have the best of both worlds by introducing basic concepts and then
providing detailed descriptions of key terms followed by an advanced topics chapter that
includes a discussion of design patterns, potential pitfalls and traps, and a case study
describing a typical use case for key-value databases.

This chapter is organized into three broad, somewhat overlapping topics: data modeling
terms, architecture terms, and implementation terms. This structure is somewhat arbitrary
and you could make the case that some terms in the architecture section should be in the
implementation section and vice versa. The placement of the terms in chapter sections is
far less important than the terms themselves.

NoSQL databases do not share the same level of standardization you find in relational
databases. There is, for example, no standard NoSQL query language comparable to
relational databases’ SQL. Different vendors and open source projects sometimes
introduce terms or use data structures not found in other NoSQL databases.

The terminology chapters (there is one for each of the four major types of NoSQL
database) offer an opportunity to introduce vendor-or project-specific terminology.
Although the For Mere Mortals series of books tends to not focus on specific software, a
familiarity with vendor and open source project-specific terms may help when you start
implementing your own NoSQL database—based applications.

Key-Value Database Data Modeling Terms

Data models are abstractions that help organize the information conveyed by the data in
databases. They are different from data structures.

Data structures are well-defined data storage structures that are implemented using
elements of underlying hardware, particularly random access memory and persistent data
storage, such as hard drives and flash devices. For example, an integer variable in a
programming language may be implemented as a set of four contiguous bytes, or 32 bits.

An array of 100 integers can be implemented as a contiguous set of 4-byte memory
addresses. Data structures also have a set of operations that manipulate the data structure.
Addition, subtraction, multiplication, and division are some of the operations defined on
integers. Reading and writing values based on indices are operations defined on arrays.

Data structures offer a higher level of organization so you do not have to think in low-
level terms of memory addresses and machine-level operations on those addresses. Data
models serve a similar purpose. They provide a level of organization and abstraction
above data structures (see Figure 4.1).

Array Linked List
([T var1 |] ([val 1 ._1”
o Val 2 +
g | v vz [o
4 | Val4 P | Pointers to
waltag + Next Value
Data Structure Ind . vt
Abstractions ncexes - _ alues Val 3 o—-l
N Val n
[269F1| Val 1] [[o69F1] Val1 |]
269F2 | Val 2 269F2| 27103
269F3 | Val 3
Values
Machine Memory Val 27103 | Val 2 anq
Implementation Address | rvalues Memory | Pointers
P ress Address | | 27104| 27292 | 0
Memory
Addresses)
27292 | Val 3
N Val n 27293

Figure 4.1 Data structures provide higher-level organizations than available at the
machine level.

Data models typically organize multiple kinds of related information. A customer
management data model could model information about customers’ names, addresses,

orders, and payment histories. Clinical databases could include information such as
patients’ names, ages, genders, current prescriptions, past surgeries, allergies, and other
medically relevant details.

In theory, you could write software that tracks all of these pieces of data in basic database
structures like arrays and linked lists. In practice, such an approach would be an inefficient
use of your time. Using data models and databases is a more effective and productive

strategy (see Figure 4.2).

Patient Surgeries
Name : Date
Age Type
Gender Outcome
Allergies
Medicine Name
Severity

Figure 4.2 Data models provide a layer of abstraction above data structures that
allows database application developers to focus more on the information that must be
managed and less on implementation issues.

The elements of data models vary with the type of database. Relational databases are
organized around tables. Tables are used to store information about entities, such as
customers, patients, orders, and surgeries. Entities have attributes that capture information
about particular entities. Attributes include names, ages, shipping addresses, and so forth.

In a relational database, a table is organized by a set of columns and each column
corresponds to an attribute. Rows of the table correspond to a single instance of an entity,
such as a particular customer or patient.

The software engineers who design databases choose data structures for implementing
tables and other elements of a data model. This relieves application developers of needing
to delve into such details. The price application developers must pay, however, is learning
the terms and design patterns associated with data models used in their database.

+ Note

In relational database design, there is a distinction between logical data models and
physical data models. Entities and attributes are used in logical data models. Tables
and columns are the corresponding elements of physical data models. This book
uses both entity and table. Because this is not a book about relational database
design, a detailed explanation of the differences of logical and physical data models
and when to use terms from each is beyond the scope of this book. For more on
relational data modeling, see Michael J. Hernandez’s Database Design for Mere
Mortals, Second Edition (Addison-Wesley, 2003).

The following sections discuss some of the most important terms associated with data
modeling in key-value databases, including key, value, namespace, partition, partition key,
and schemaless.

Key

A key is a reference to a value. It is analogous to an address. The address 1232 NE River
St. is a reference to a building located in a particular place. Among other things, it enables
postal workers and delivery services to find a particular building and drop off or pick up
letters and packages. The string “1232 NE River St.” is obviously not a building, but it is a
way to find the corresponding building. Keys in key-value databases are similarly not
values but are ways of finding and manipulating values.

A key can take on different forms depending on the key-value database used. At a
minimum, a key is specified as a string of characters, such as "Cust9876" or
"Patient:A384J:Allergies". Some key-value databases, such as Redis
(www.redis.io), support more complex data structures as keys. The supported key data
types in Redis version 2.8.13 include

* Strings

* Lists

* Sets

* Sorted sets
 Hashes

* Bit arrays

+ Note

Redis developers use the term data structures server instead of key-value data
store. Visit http://redis.io/topics/data-types-intro for more information.

Lists are ordered collections of strings. Sets are collections of unique items in no particular
order. Sorted sets, as the name implies, are collections of unique items in a particular
order. Hashes are data structures that have key-value characteristics: They map from one
string to another. Bit arrays are binary integer arrays in which each individual bit can be

http://www.redis.io
http://redis.io/topics/data-types-intro

manipulated using various bit array operations.

B Refer to the “Hash Functions” section later in this chapter for more detailed
information on this topic.

It helps to have a naming convention when creating keys, such as described in Chapter 3,
“Introduction to Key-Value Databases.” One convention is to use a combination of strings
representing an entity type, a unique identifier for a particular entity, and an attribute.

+ Caution

Keep in mind that strings should not be too long. Long keys will use more memory
and key-value databases tend to be memory-intensive systems already. At the same
time, avoid keys that are too short. Short keys are more likely to lead to conflicts in
key names. For example, the key

CMP:1897 :Name

could refer to the name of a marketing campaign or the name of a component in a
product. A better option would be

CAMPN: 1897 :Name

to refer to a marketing campaign and
COMPT :1897 : Name

to refer to a component in a product.

Keys can also play an important role in implementing scalable architectures. Keys are not
only used to reference values, but they are also used to organize data across multiple
servers. The upcoming “Partition” section describes the use of keys for organizing data
across servers.

Value

The definition of value with respect to key-value databases is so amorphous that it is
almost not useful. A value is an object, typically a set of bytes, that has been associated
with a key. Values can be integers, floating-point numbers, strings of characters, binary
large objects (BLOBs), semistructured constructs such as JSON objects, images, audio,
and just about any other data type you can represent as a series of bytes.

+ Note

It is important to understand that different implementations of key-value databases
have different restrictions on values. Most key-value databases will have a limit on
the size of a value. Redis, for example, can have a string value up to 512MB in

length.! FoundationDB (foundationdb.com), a key-value database known for its
support of ACID transactions, limits the size of values to 100,000 bytes.2

. http://redis.io/topics/data-types

1
2. https://foundationdb.com/key-value-store/documentation/betal/known-limitations.html

http://foundationdb.com
http://redis.io/topics/data-types
https://foundationdb.com/key-value-store/documentation/beta1/known-limitations.html

Key-value implementations will vary in the types of operations supported on values. At
the very least, a key-value database will support getting and setting values. Others support
additional operations, such as appending a string to an existing value or randomly
accessing a section of a string. This can be more efficient than retrieving a value, returning
it to a client application, performing the append operation in the client application, and
then performing a set operation to update the value.

+ Note

Another example of extended functionality is found in Riak (www.basho.com),

which supports full text indexing of values so you can use an API to find keys and

values using search queries.2

3. http://docs.basho.com/riak/latest/dev/using/search/

Keys and values are the basic building blocks of key-value databases, but they are only the
beginning.

Namespace

A namespace is a collection of key-value pairs. You can think of a namespace as a set, a
collection, a list of key-value pairs without duplicates, or a bucket for holding key-value
pairs. A namespace could be an entire key-value database. The essential characteristic of a
namespace is it is a collection of key-value pairs that has no duplicate keys. It is
permissible to have duplicate values in a namespace.

Namespaces are helpful when multiple applications use a key-value database. Developers
of different applications should not have to coordinate their key-naming strategy unless
they are sharing data (see Figure 4.3).

http://www.basho.com
http://docs.basho.com/riak/latest/dev/using/search/

Database

Namespace Namespace
CMGMT OMGMT
Prod:12986:name = Prod:12986:name
‘Personal ‘iPhone 5

Electronics’ 32 MB’

Figure 4.3 Namespaces enable duplicate keys to exist without causing conflicts by
maintaining separate collections of keys.

For example, one development team might work on a customer management system while
another is working on an order-tracking system. Both will need to use customers’ names
and addresses. In this case, it makes sense to have a single set of customers used by both
teams. It would avoid duplicate work to maintain two customer lists and eliminate the
possibility of inconsistent data between the two databases.

When the two teams need to model data specific to their application, there is a potential
for key-naming conflicts. The team working on the customer management system might
want to track the top type of products each customer purchases, for example, personal
electronics, clothing, sports, and so on. The team decides to use the prefix Prod for their
product type keys. The team working on order tracking also needs to track products but at
a more detailed level. Instead of tracking broad categories, like personal electronics, they
track specific products, such as an iPhone 5 32MB. They also decide to use the prefix
Prod.

You can probably see the problem this raises. Imagine both applications use the same
customer data and, therefore, customer IDs. The customer management team might create
a key such as 'Prod:12986:name' and assign the value ‘personal electronic.’
Meanwhile, the order management team wants to track the last product ordered by a
customer and creates the key 'Prod:12986:name' and assigns it the value ‘iPhone 5
32MB.’

In this situation, the value of the key is set to the last value written by one of the
applications. When the other application reads the data, it will find not only an incorrect
value, but also one that is out of the range of expected values.

Namespaces solve this problem by implicitly defining an additional prefix for keys. The

customer management team could create a namespace called custMgmt, and the order
management team could create a namespace called ordMgmt. They would then store all
keys and values in their respective namespaces. The key that caused problems before
effectively becomes two unique keys: custMgmt: Prod:12986:name and
ordMgmt: Prod:12986:name.

Partition

Just as it is helpful to organize data into subunits—that is, namespaces—it is also helpful
to organize servers in a cluster into subunits. A partitioned cluster is a group of servers in
which servers or instances of key-value database software running on servers are assigned
to manage subsets of a database. Let’s consider a simple example of a two-server cluster.
Each server is running key-value database software. Ideally, each server should handle
50% of the workload. There are several ways to handle this.

You could simply decide that all keys starting with the letters A through L are handled by
Server 1 and all keys starting with M through Z are managed by Server 2. (Assume for the
moment that all keys start with a letter.) In this case, you are partitioning data based on the
first letter of the key (see Figure 4.4).

T .

Server 1~

Eﬁf- Keys: ‘A" — ‘L’

"

L
\

>

Server2 ~

Keys: ‘M’ -2’

£

Figure 4.4 Servers in a cluster are assigned subsets of data to manage.

Like so many simple strategies that sound reasonable at first, this one is vulnerable to
significant problems. For example, most of the keys may start with the letter C, as in cust
(customer), cmpg (campaign), comp (component), and so on, whereas very few keys start
with letters from the latter half of the alphabet, for example, warh (warehouse). This

imbalance in keys leads to an imbalance in the amount of work done by each server in the
cluster.

Partition schemes should be chosen to distribute the workload as evenly as possible across
the cluster. The “Partition Key” section describes a widely used method to help ensure a
fairly even distribution of data and, therefore, workloads (see Figure 4.5).

Server 1 Server 2

Keys

£
\\\\ ;
y.
\\\\

Server 1 Server 2 Server 3
Keys]
‘M’_:H Key Key
-— iG:_:L: :S:_:Z:
—
=

\ —
/
(b)

Figure 4.5 When multiple instances of key-value database software run on servers in a
cluster, servers can be added to the cluster and instances reallocated to balance the
workload.

+ Note

Note that a server may support more than one partition. This can happen if servers
are running virtual machines and each virtual machine supports a single partition.
Alternatively, key-value databases may run multiple instances of partition software
on each server. This allows for a number of partitions larger than the number of
Servers.

Partition Key

A partition key is a key used to determine which partition should hold a data value. In key-
value databases, all keys are used to determine where the associated value should be
stored. Later, you see that other NoSQL database types, such as document databases, use
one of several attributes in a document as a partition key.

In the previous example, the first letter of a key name is used to determine which partition
manages it. Other simple strategies are partitioning by numeric value and string value.
Any key in a key-value database is used as a partition key; good partition keys are ones
that distribute workloads evenly.

In some cases, you may not have a key that by itself naturally distributes workloads
evenly. In these cases, it helps to use a hash function. Hash functions map an input string
to a fixed-sized string that is usually unique to the input string.

You can find out more about hash functions in the “Key-Value Architecture Terms”
section later in this chapter. For now, it is sufficient to think of a hash function as a way to
map from an imbalanced set of keys to a more equally distributed set of keys.

Key, value, namespace, partition, and partition key are all constructs that help you
organize data within a key-value database. The key-value database software that you use
makes use of particular architectures, or arrangements of hardware and software
components. It is now time to describe important terms related to key-value database
architecture.

Schemaless

Schemaless is a term that describes the logical model of a database. In the case of key-
value databases, you are not required to define all the keys and types of values you will
use prior to adding them to the database. If you would like to store a customer name as a
full name using a key such as

Click here to view code image
cust:8983:fullName = ‘Jane Anderson’

you can do so without first specifying a description of the key or indicating the data type
of the values is a string. Schemaless data models allow you to make changes as needed
without changing a schema that catalogs all keys and value types (see Figure 4.6).

Key-Value
Database

Keys Values

cust: 8983 :firstiName ‘Jane’

cust:8983:lastName ‘Anderson’

cust: 8983 : fullName ‘Jane Anderson’

Figure 4.6 Schemaless data models allow for multiple types of representations of the
same data to exist simultaneously.

For example, you might decide that storing a customer’s full name in a single value is a
bad idea. You conclude that using separate first and last names would be better. You could
simply change your code to save keys and values using statements such as the following;:

Click here to view code image

cust:8983:firstName = ‘Jane’
cust:8983:1lastName = ‘Anderson’

The full name and first/last name keys and values can coexist without a problem.

o+ Tip

You would, of course, need to update your code to handle both ways of representing
customer names or convert all instances of one form into the other.

Part III, “Document Databases,” returns to the concept of schemaless databases and
discusses the related concept of a polymorphic database, which is something of a middle
ground between fixed schemas found in relational databases and schemaless models used
in key-value databases.

Key-Value Architecture Terms

The architecture of a key-value database is a set of characteristics about the servers,
networking components, and related software that allows multiple servers to coordinate
their work. Three terms frequently appear when discussing key-value architectures:

» Clusters
* Rings

* Replication

Cluster

Clusters are sets to connected computers that coordinate their operations (see Figure 4.7).
Clusters may be loosely or tightly coupled. Loosely coupled clusters consist of fairly
independent servers that complete many functions on their own with minimal coordination
with other servers in the cluster. Tightly coupled clusters tend to have high levels of
communication between servers. This is needed to support more coordinated operations,
or calculations, on the cluster. Key-value clusters tend to be loosely coupled.

e

Seruer_1

e

S

Server 4

Figure 4.7 A ring architecture of key-value databases links adjacent nodes in the
cluster.

Servers, also known as nodes, in a loosely coupled cluster share information about the
range of data the server is responsible for and routinely send messages to each other to
indicate they are still functioning. The latter message exchange is used to detect failed
nodes. When a node fails, the other nodes in the cluster can respond by taking over the
work of that node.

Some clusters have a master node. The master node in Redis, for example, is responsible
for accepting read and write operations and copying, or replicating, copies of data to slave
nodes that respond to read requests. If a master node fails, the remaining nodes in the

cluster will elect a new master node. If a slave node fails, the other nodes in the cluster can
continue to respond to read requests.

Masterless clusters, such as used by Riak, have nodes that all carry out operations to
support read and write operations. If one of those nodes fails, other nodes will take on the
read and write responsibilities of the failed node.

Because the failed node was also responsible for writes, the nodes that take over for the
failed node must have copies of the failed node’s data. Ensuring there are multiple copies
of data on different nodes is the responsibility of the replication subsystem. This is
described in the section “Replication,” later in this chapter.

Each node in a masterless cluster is responsible for managing some set of partitions. One
way to organize partitions is in a ring structure.

Ring

A ring is a logical structure for organizing partitions. A ring is a circular pattern in which
each server or instance of key-value database software running on a server is linked to two
adjacent servers or instances. Each server or instance is responsible for managing a range
of data based on a partition key.

Consider a simple hashlike function that maps a partition key from a string; for example,
'cust:8983:firstName' to a number between 0 and 95. Now assume that you have
an eight-node cluster and the servers are labeled Server 1, Server 2, Server 3, and so on.
With eight servers and 96 possible hashlike values, you could map the partitions to
servers, as shown in Table 4.1.

Server Name Partition Range
Server 1 0-11

Server 2 12-23

Server 3 24-35

Server 4 o6-47

Server 5 48-59

Server 6 60-71

Server 7 72-83

Server 8 84-95

Table 4.1 Server to Partition Mapping

In this model, Server 2 is linked to Server 1 and Server 3; Server 3 is linked to Server 2
and Server 4; and so on. Server 1 is linked to Server 8 and Server 2. Refer to Figure 4.7 to
see a graphical depiction of a ring architecture.

A ring architecture helps to simplify some otherwise potentially complex operations. For
example, whenever a piece of data is written to a server, it is also written to the two

servers linked to the original server. This enables high availability of a key-value database.
For example, if Server 4 fails, both Server 3 and Server 5 could respond to read requests
for the data on Server 4. Servers 3 and 5 could also accept write operations destined for
Server 4. When Server 4 is back online, Servers 3 and 5 can update Server 4 with the
writes that occurred while it was down (see Figure 4.8).

<
TN

Server 1

Server 6 \

y

\k&‘\ B\

Server 2

\ Server 4 / \r#/
P '
5 /
— ;;
!
- Y
~ \; 7
Write ™~ _ _-" Write
Replica ~~~__ Write _---~ Replica
Write

cust:7328:lastName = ‘Zhang’

Figure 4.8 One way to replicate data is to write copies of data to adjacent nodes in the
cluster ring.

Replication

Replication is the process of saving multiple copies of data in your cluster. This provides
for high availability as described previously.

One parameter you will want to consider is the number of replicas to maintain. The more
replicas you have, the less likely you will lose data; however, you might have lower
performance with a large number of replicas. If your data is easily regenerated and
reloaded into your key-value database, you might want to use a small number of replicas.
If you have little tolerance for losing data, a higher replica number is recommended.

Some NoSQL databases enable you to specify how many replicas must be written before a
write operation is considered complete from the perspective of the application sending the
write request. For example, you may configure your database to store three replicas. You
may also specify that as soon as two of the replicas are successfully written, a successful
write return value can be sent to the application making the write request. The third replica
will still be written, but it will be done while the application continues to do other work.

You should take replicas into consideration with reads as well. Because key-value
databases do not typically enforce two-phase commits, it is possible that replicas have
different versions of data. All the versions will eventually be consistent, but sometimes
they may be out of sync for short periods.

To minimize the risk of reading old, out-of-date data, you can specify the number of nodes
that must respond with the same answer to a read request before a response is returned to
the calling application. If you are keeping three replicas of data, you may want to have at
least two responses from replicas before issuing a response to the calling program.

The higher the number required, the more likely you are to send the latest response. This
can add to the latency of the read because you might have to wait longer for the third
server to respond.

Up to this point, most of the terms described have dealt with logical modeling and the
organization of servers and related processes. Now it is time to address algorithms
implemented in and processes that run within the key-value database software to
implement higher-level functions.

Key-Value Implementation Terms

The terms discussed in this last set of key-value vocabulary deal with topics you generally
do not work with directly. These terms cover operations that happen behind the scenes of
application programs but are nonetheless crucial to the functioning of a key-value
database.

Hash Function

Hash functions are algorithms that map from an input—for example, a string of characters
—to an output string. The size of the input can vary, but the size of the output is always
the same. For example, a simple string like 'Hello world' maps to

Click here to view code image
2aae6¢c35c94fcfb415dbe95f408b9ce91ee846ed

While longer text, such as the following:

“There is a theory which states that if ever anyone discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be

replaced by something even more bizarre and inexplicable. There is
another theory which states that this has already happened.”

DouGLAs ADAMS
THE RESTAURANT AT THE END OF THE UNIVERSE, 1980

yields an equal-sized output string:

Click here to view code image
3f4d004fcb7c40b02deb393d34db9bd02b067 56

Clearly, the two output strings are quite different. This would be expected when the inputs
are so different. One of the important characteristics of hash algorithms is that even small
changes in the input can lead to large changes in the output. For example, if you hash
'Hello World' instead of '"Hello world', the output string is

Click here to view code image
0a4d55a8d778e5022fab701977¢c5d840bbc486d0

Hash functions are generally designed to distribute inputs evenly over the set of all

possible outputs. The output space can be quite large. For example, the SHA-1 has 216
possible output values. This is especially useful when hashing keys. No matter how
similar your keys are, they are evenly distributed across the range of possible output
values. The ranges of output values can be assigned to partitions and you can be
reasonably assured that each partition will receive approximately the same amount of data.

For example, assume you have a cluster of 16 nodes and each node is responsible for one
partition. You can use the first digit output by the SHA-1 function to determine which
partition should receive the data.

% Note

As you might recall, the SHA-1 function outputs a hexadecimal, or base-16,
number. The hexadecimal digits are 0-9 and a—f for a total of 16 digits.

The key 'cust:8983:firstName' has a hash value of

Click here to view code image
4b2cf78c7ed41fel19625d5f4e5e3eab20b064c24

and would be assigned to partition 4, while the key 'cust :8983:1lastName' hasa
hash value of

Click here to view code image
c0017bec2624f736b774efdc61c97f79446fc74f

and would be assigned to node 12 (c is the hexadecimal digit for the base-10 number 12).

Although there are many possible outputs for hash functions, it is possible for two distinct
input strings to map to the same output string.

Collision

A collision occurs when two distinct inputs to a hash function produce the same output.
When it is difficult to find two inputs that map to the same hash function output, the hash
function is known as collision resistant. If a hash table is not collision resistant or if you
encounter one of those rare cases in which two inputs map to the same output, you will
need a collision resolution strategy.

Basically, a collision resolution strategy is a way to deal with the fact that you have two
inputs that map to the same output. If the hash table only has room for one value, then one
of the hashed values will be lost.

A simple method to deal with this is to implement a list in each cell of a hash table. Most
entries will include a single value, but if there are collisions, the hash table cell will
maintain a list of keys and values, as shown in Figure 4.9. This is a logical representation
of a generic solution to the collision problem; actual implementations may vary.

Hash Table
Hashkey Value
Hashkey, ‘Thelma’
Hash(‘cust: 7328 : lastName’) -
Hashkey, ‘iPad 64 MB’
Hashkey, ‘Chicago’
> ‘cust: 7328 lastName’
Hashkey, °
> ‘Zhang’
®

Hash(‘cust: 8983 : fullName’)

¥

‘cust: 8983 : fullName’

‘Jane Anderson’

Figure 4.9 Collisions with hash functions are managed using collision resolution
strategies, such as maintaining linked lists of values.

Compression

Key-value databases are memory intensive. Large numbers of large values can quickly
consume substantial amounts of memory. Operating systems can address this problem
with virtual memory management, but that entails writing data to disk or flash storage.

Reading from and writing to disk is significantly slower than reading from random access
memory, so avoid it when possible. One option is to add more memory to your servers.
There are both technical and cost limitations on this option. In the case of disk-based, key-
value stores, such as the LevelDB library (code.google.com/p/leveldb/), there is still a
motivation to optimize storage because the time required to read and write data is a
function of the size of the data.

One way to optimize memory and persistent storage is to use compression techniques. A
compression algorithm for key-value stores should perform compression and

http://code.google.com/p/leveldb/

decompression operations as fast as possible. This often entails a trade-off between the
speed of compression/decompression and the size of the compressed data.

Faster compression algorithms can lead to larger compressed data than other, slower
algorithms (see Figure 4.10). For example, the Snappy compression algorithm compresses
250MB per second and decompresses 500MB per second on a Core i7, 64-bit mode
processor but produces compressed data that is 20% to 100% larger than the same data

compressed by other algorithms.#

4. https://code.google.com/p/snappy/

Input Compressed
Data Fa1st o Data
Block Algorithm Block 1

Size-optimized 5l Compressed
Algorithm Data Block 2

Figure 4.10 Compression algorithms may be designed to optimize for speed or data
size.

Summary

Key-value databases come with their own terminology used to describe data models,
architecture, and implementation components. Keys, values, partitions, and partition keys
are important concepts related to data models. You will see some of the terms again when
you learn about other types of NoSQL databases.

It is also important to understand the architecture employed with key-value databases.
Clusters, rings, and replication are key topics with regard to architecture.

Database application developers do not need to work with implementation issues on a
regular basis, but it helps to understand them, particularly when tuning parameters. Key
concepts related to implementation include hash functions, collision, and compression.

Now that you understand key-value database terminology and were introduced to key-
value databases in Chapter 3, it is time to examine more advanced applications of key-
value databases and review established design patterns that can help you develop robust,
scalable, key-value database applications.

Review Questions
1. What are data models? How do they differ from data structures?
2. What is a partition?

3. Define two types of clusters. Which type is typically used with key-value data
stores?

https://code.google.com/p/snappy/

4. What are the advantages of having a large number of replicas? What are the
disadvantages?

5. Why would you want to receive a response from more than one replica when
reading a value from a key-value data store?

[=p]

. Under what circumstances would you want to have a large number of replicas?
7. Why are hash functions used with key-value databases?

8. What is a collision?

9. Describe one way to handle a collision so that no data is lost.

10. Discuss the relation between speed of compression and the size of compressed data.

References

Adams, Douglas. The Restaurant at the End of the Universe. Reprint Edition, Del Rey.
1995.

Basho Technologies, Inc. Riak Documentation: http://docs.basho.com/riak/latest/

Google, Snappy Documentation: https://code.google.com/p/snappy/

Key-Value Store 2.0 Documentation: https://foundationdb.com/key-value-
store/documentation/index.html

Redis Documentation: http://redis.io/documentation
Redman, Eric. “A Little Riak Book.” http:/littleriakbook.com/

Seeger, Marc. “Key-Value Stores: A Practical Overview”: http://blog.marc-
seeger.de/assets/papers/Ultra_Large_Sites_SS09-Seeger Key_Value_Stores.pdf

http://docs.basho.com/riak/latest/
https://code.google.com/p/snappy/
https://foundationdb.com/key-value-store/documentation/index.html
http://redis.io/documentation
http://littleriakbook.com/
http://blog.marc-seeger.de/assets/papers/Ultra_Large_Sites_SS09-Seeger_Key_Value_Stores.pdf

5. Designing for Key-Value Databases

“Design is not just what it looks like and feels like. Design is how it works.”

—STEVE JOBS
ForMER CEO, ArpLE COMPUTER, INC.

Topics Covered In This Chapter

Key Design and Partitioning

Designing Structured Values

Limitations of Key-Value Databases
Design Patterns for Key-Value Databases

Case Study: Key-Value Databases for Mobile Application Configuration

Through the first four chapters of this book, you have learned the basics of NoSQL
databases and details of key-value databases in particular. It is now time to put those
details to work. When you design an application that uses a key-value database, you
should consider several factors, including

* How to structure keys
» What types of information you want to capture in values
» How to compensate for limitations of key-value databases

* How to introduce abstractions that help create higher-level organizational structures
than simple key-value pairs

Well-designed keys can make your application code easier to read and streamline the
maintenance of your application and your key-value database. Capturing the right data in
your key-value pairs is important both for meeting functional requirements and for
ensuring adequate performance of your application. As useful as key-value databases are,
there are some significant limitations, such as poor support for retrieving a range of
values. There are ways to work around these limitations, and this chapter describes design

patterns you might want to use in your applications and key-value database designs.

Design Pattern Definition

The Wikipedia definition of a design pattern is “A general reusable solution to a
commonly occurring problem within a given context in software design. A design pattern
is not a finished design that can be transformed directly into source or machine code. It is
a description or template for how to solve a problem that can be used in many different

situations.”?

1. http://en.wikipedia.org/wiki/Software design pattern

http://en.wikipedia.org/wiki/Software_design_pattern

Key Design and Partitioning

How you design your keys can impact the ease of working with your key-value database.
At one end of the design spectrum, you could come up with random keys for every value
you want to store. Obviously, a key like ' laklsjfdjjd' is virtually useless unless you
have an uncanny memory for strings or have a data structure that can map nonsense keys
to something meaningful. Keys should have some logical structure to make code readable
and extensible, but they should also be designed with storage efficiency in mind.

Keys Should Follow a Naming Convention

The naming convention you choose is less important than choosing one. A well-designed
naming convention enables developers to easily devise keys for new entities, instances,
and attributes.

Here are some general guidelines. These are not hard-and-fast rules; they are tips that can
work well for you in various situations.

* Use meaningful and unambiguous naming components, such as 'cust' for
customer or 'inv' for inventory.

» Use range-based components when you would like to retrieve ranges of values.
Ranges include dates or integer counters.

* Use a common delimiter when appending components to make a key. The :’ is a
commonly used delimiter, but any character that will not otherwise appear in the key
will work.

* Keep keys as short as possible without sacrificing the other characteristics
mentioned in this list.

o+ Tip

Anticipating all possible entities’ types can be difficult, so coming up with
unambiguous name components isn’t always possible. Try to use at least three or
four letters to distinguish an entity type or attribute. 'Cst' or 'cust' are better
than 'c' for a customer abbreviation.

Well-Designed Keys Save Code

A well-designed key pattern helps minimize the amount of code a developer needs to write
to create functions that access and set values. For example, consider a key pattern that
consists of an entity or object type (for example, ' customer '), a unique identifier for
that entity or object type (for example, ' 198277 '), an attribute name (for example,
'fname'), and common delimiter (for example, ' : '). A single function with two
parameters can get any value:

Click here to view code image
define getCustAttr(p_id, p_attrName)
v_key = ‘cust’ + ‘:’ + p_id + ‘:’ + p_attrName;
return(AppNameSpace[v_key]);

In this pseudocode example, the function getCustAttr has parameters for the customer
identifier and the name of the attribute that should have its value returned. The local
variable, v_key, is a string created by concatenating the parts of the key. Because the key
follows a standard naming convention, every attribute about a customer can be retrieved
using this function. The last line of the pseudocode function returns the value associated
with key specified by the string in variable v_key. AppNameSpace is the name of the
namespace holding keys and values for this application.

+ Note

In practice, you should have a naming convention for namespaces, too. For
example, a customer management namespace might be ' CStMgtNS'.

The associated set function is similar but uses three parameters. The third parameter is
used to pass in the value to be saved:

Click here to view code image
define setCustAttr(p_id, p_attrName, p_value)
v_key = ‘cust’ + ‘:’ + p_id + ‘:’ + p_attrName
AppNameSpace[v_key] = p_value

+ Note

In production applications, you should include appropriate error checking and
handling. Set functions should check the status of write operations to ensure the
minimum number of replicas has been written. If the database could not save the
minimum number of replicas, you might want to attempt the write operation again
some number of times before returning an error.

Using generalized set and get functions helps improve the readability of code and reduces
the repeated use of low-level operations, such as concatenating strings and looking up
values.

Dealing with Ranges of Values

Consider using values that indicate ranges when you want to retrieve groups of values. For
example, you might want to include a six-digit date in a key if you want to retrieve all
customers who made a purchase on a particular date. In this case, ' cust061514"' could
be used as a prefix instead of 'cust' to indicate customers who bought products on June
15, 2014. The customer ID would be stored as a value associated with each key.

For example, the following are keys associated with the first 10 customers who purchased
products on June 15, 2014:

*Ccust061514:1:custId
*Ccust061514:2:custId
*Ccust061514:3:custId
*Ccust061514:4:custId

e cuUst061514:10:custId

This type of key is useful for querying ranges of keys because you can easily write a
function to retrieve a range of values. For example, the following
getCustPurchaseByDate function retrieves a list of customerIDs who made
purchases on a particular date:

Click here to view code image
define getCustPurchByDate(p_date)
v_custList = makeEmptyList();

v_rangeCnt 1;

v_key = ‘cust:’ + p_date + ‘:’ + v_rangeCnt +
"icustIid’;
while exists(v_key)
v_custList.append(myAppNS[v_key]);
v_rangeCnt = v_rangeCnt + 1,
v_key = ‘cust:’ + p_date + ‘:’ + v_rangeCnt +
"icustId’;

return(v_custList);

The function takes one parameter, the date of purchases, although this code could easily
generalize to accept a range of dates. The function starts by initializing two local
variables: v_custList is set to an empty list, which will hold customer IDs, and
v_rangeCnt, which will hold the counters associated with the range of customers that
made purchases on the date specified in the parameter p_date.

Because there is no way to know the number of customers that made purchases, the code
uses a while loop and checks a terminating condition. In this case, the while loop
terminates when it checks for a key and finds it does not exist. If there were only 10
purchases on June 15, 2014, then when the loop checks the key
'cust:061514:11:custId’, it does not find a corresponding key-value pair in the
database and the while loop terminates.

In the while loop, the key stored in the local variable v_key is used to look up the value
in the myAppNS namespace. The key returns the customer ID, and the code appends the
value to the local variable v_custList. When the while loop terminates, the list of
customer IDs in V_custList is returned.

You might have realized that although using this type of function will standardize your
code, it is no more efficient than retrieving each key-value pair individually. In some data
stores, values can be ordered on disk in a specific sort order, making it more efficient to
read a range of values because they are stored in contiguous blocks. If your key-value
database offers ordered key values or allows for secondary indexes, you might find those
are more efficient options for retrieving ranges of values than using a function like the one
above.

Keys Must Take into Account Implementation Limitations

Different key-value databases have different limitations. Consider those limitations when
choosing your key-value database.

Some key-value databases restrict the size of keys. For example, FoundationDB limits the
size of keys to 10,000 bytes.?
2. https://foundationdb.com/key-value-store/documentation/known-limitations.html

Others restrict the data types that can be used as keys. Riak treats keys as binary values or
strings.2 The Redis data store takes a liberal approach to keys and allows for more
complex structures than string. Valid data types for Redis keys include?

. http://docs.basho.com/riak/1.3.0/references/appendices/concepts/Keys-and-Objects/

3
4. http://redis.io/topics/data-types-intro

* Binary safe strings
* Lists

* Sets

* Sorted sets

* Hashes

* Bit arrays

» HyperLoglLogs (a probabilistic data structure for estimating number of entities in a
set)

The variety of data types supported by Redis allows you more flexibility when creating
keys. Instead of concatenating entity types, identifiers, and attributes as a string such as
'cust:19873:fname', you could use a list, such as ('cust', '19873',
'fname'). Redis keys can be up to 512MB in length.2 It sounds unlikely that you would
create a 512MB string by concatenating components, but large binary objects, such as
images, are valid key types and can reach substantial sizes.

5. http://redis.io/topics/data-types

o+ Tip

Before using large keys in production, be sure to test the performance of key-value
databases with large keys so you understand the level of performance you can
expect.

How Keys Are Used in Partitioning

Partitioning is the process of grouping sets of key-value pairs and assigning those groups
to different nodes in a cluster. Hashing is a common method of partitioning that evenly
distributes keys and values across all nodes. Another method that is sometimes used is
called range partitioning.

Range partitioning works by grouping contiguous values and sending them to the same

https://foundationdb.com/key-value-store/documentation/known-limitations.html
http://docs.basho.com/riak/1.3.0/references/appendices/concepts/Keys-and-Objects/
http://redis.io/topics/data-types-intro
http://redis.io/topics/data-types

node in a cluster (see Figure 5.1). This assumes a sort order is defined over the key. For
example, you could partition by customer number, date, or part identifier. Range
partitioning requires some kind of table to map from keys to partitions, as shown in Table

5.1.

Range of Values

Assigned Node

cust:00001-cust:00999 Server 1
cust:01000-cust:01999 Server 2
cust:02000-cust: 02999 Server 3
cust:04000-cust:04999 Server 4

Table 5.1 Sample Range Partition Table

cust:000198

cust:00109

Hash Partioning

cust:000227

cust:00005

cust:01001
cust:01002
cust:01003
cust:01004

Range Partioning

Figure 5.1 Different hashing schemes will lead to different key-to-node assignments.

If you decide to use range partitioning, carefully consider how your data volumes may
grow. If you need to restructure your partitioning scheme, some keys may be reassigned to
different nodes and data will have to migrate between nodes.

Designing Structured Values

The term values can cover a wide range of data objects, from simple counts to hierarchical
data structures with embedded complex structures. All can be assigned as values in a key-
value database. But ask yourself, do you really want structured data types in your
database? As usual in database design, the answer is “it depends.”

Consider two possible cases. In the first, you have two attributes that are frequently used
together. In the second, you have a set of attributes that are logically related, and some but
not all of the attributes are frequently used together. As you shall see, each is best
managed with a different approach.

Structured Data Types Help Reduce Latency

You should consider the workload on your server as well as on developers when designing
applications that use key-value data stores. Consider an application development project in
which the customer address is needed about 80% of the time when the customer name is
needed. This can occur when you frequently need to display the customer’s name and
mailing address, although occasionally you only need the name, for example, as part of a
form header.

It makes sense to have a function that retrieves both the name and the address in one
function call. Here is a sample get function for name and address:

Click here to view code image
define getCustNameAddr (p_id)

v_fname = getCustAttr(p_id, ‘fname’);
v_lname = getCustAttr(p_id, ‘lname’);
v_addr = getCustAttr(p_id, ‘addr’);

v_city = getCustAttr(p_id, ‘city’);

v_state = getCustAttr(p_id, ‘state’);

v_zip = getCustAttr(p_id, ‘zip’);

v_fullName = v_fname + ‘ ‘ + v_lname;

v_fullAddr = v_city + * * + v_state + ' + v_zip;
return(makeList(v_fullName, v_fullAddr);

This function retrieves six values, creates two local variable strings, creates a list to hold
both the name and address, and returns that list. If customer name and address are
frequently retrieved, it makes sense to use a function such as getCustNameAddr rather
than duplicate the multiple getCustAttr calls each time the customer name and
address are needed.

Assuming the developer needs to call getCustNameAddr frequently, it would help to
optimize this code as much as possible. The getCustAttr function is called multiple
times so it is a good candidate for optimizing. The code for that function is simple and
does not lend itself to significant optimization.

The other operations in the getCustNameAddr, concatenating strings and making a list,
are primitive operations that take little time. The best option for optimizing
getCustNameAddr is to reduce the number of times the developer has to call
getCustAddr.

Each time getCustAddr is called, it builds a key by concatenating strings. This

primitive operation does not take much time. Fetching a value from the key-value
database can take a long time, at least compared with primitive operations. The reason is
that retrieving a value can require reading from a disk. This means that the read operation
must wait for the read/write heads to get into position.

The latency, or time you have to wait for the disk read to complete, is significantly longer
than the time needed to perform other operations in the function (see Figure 5.2).

Data Block
to Read

Read/Write
Head
Current
Position

Figure 5.2 Reading a value from disk requires the read/write heads to move to the
proper track and the platter to rotate to the proper block. This can lead to long
latencies.

One way to improve the speed of fetching values from the key-value database is to store
frequently used values in memory. This works well in many cases but is limited by the
amount of room in memory allocated to caching keys and values.

Another approach is to store commonly used attribute values together. In the case of a
customer management database, you could store a list with both the customer’s name and
address together, for example:

Click here to view code image

CStMgtNS[cust: 198277:nameAddr] = ‘{ ‘Jane Anderson’ ,
‘39 NE River St. Portland, OR 97222'}

This is a more complex value structure than using several different keys but has significant
advantages in some cases. By storing a customer name and address together, you might
reduce the number of disk seeks that must be performed to read all the needed data (see

Figure 5.3).

Read/Write

Head
Data Block

to Read

Read/Write

Head Blocks
fo Read

Figure 5.3 Reading a single block of data is faster than reading multiple blocks
referenced by multiple keys.

Key-value databases usually store the entire list together in a data block so there is no
need to hash multiple keys and retrieve multiple data blocks. An exception to this rule
occurs if the data value is larger than the disk data block size. This can occur if you store a
large image or other sizeable object as a value.

If there are many times you need a customer name but not the address, you might want to
store the name separately. This would duplicate the customer name in your key-value
database, but that should not be considered a problem.

+ Note

Generally, you should avoid duplicating data in relational database design, although
it is a common practice in NoSQL databases.

Duplicating data is also a common way to improve the performance of relational database
queries. Known as denormalization, duplicating data can reduce the number of joins
required to perform a query and substantially improve application performance.

The same pattern holds in NoSQL databases. You can use the name-only key to look up
just the name when that is the only attribute needed, and you can use the name and address
key when you need both.

There are advantages to storing structures as values, but there are also limits to those
advantages. As you will see in the next section, storing too much data in a value can have

adverse effects on application performance.

Large Values Can Lead to Inefficient Read and Write Operations

Ancient Greek philosophers advocated sophrosyne, a state of mind that led to self-control
and moderation. It is a practice that will serve you well when designing data structures for
key-value databases.

Using structured data types, such as lists and sets, can improve the overall efficiency of
some applications by minimizing the time required to retrieve data. It is important to also
consider how increasing the size of a value can adversely impact read and write
operations. Consider a data structure that maintains customer order information in a single
value, such as the following:

Click here to view code image

{

‘custFname’: ‘Liona’,
‘custLname’: ‘Williams’,
‘custAddr’ : ‘987 Highland Rd’,
‘custCity’ : ‘Springfield’,
‘custState’: ‘NJ’,

‘custzip’ : 21111,

‘ordItems’ [

{
‘itemID’ : ‘85838A’,

‘itemQty’ : 2 ,
‘descr’ : ‘Intel Core 17-4790K Processor
(8M Cache,

4.40 GHz)',

‘price:’ : $325.00

Yo

{
‘itemID’ : ‘38371R’,

‘itemQty’ : 1 ,
‘descr’ : ‘Intel BOXDP67BGB3 Socket 1155, Intel
P67’,
CrossFireX & SLI SATA3&USB3.0, A&GbE, ATX
Motherboard’,
‘price’ : $140.00
o

{
‘itemID’ : ‘10484K’,

‘itemQty’ : 1,
‘descr’ : ‘EVGA GeForce GT 740 Superclocked Single
Slot 4GB
DDR3 Graphics Card’
‘price’: ‘$201.00'

Yo
{

‘itemID’ : ‘67594M’,

‘itemQty’ : 1,

‘descr’: ‘Rosewill Black Gaming ATX Mid Tower
Computer Case’,

‘price’ : $47.98

I

{
‘itemID’ : ‘46328A’,

‘itemQty’ : 2,
‘descr’: ‘WD Blue 1 TB Desktop Hard Drive: 3.5
Inch, 7200 RPM,
SATA 6 Gb/s, 64 MB Cache - WD1OEZEX',
‘price’ : $63.50
¥
1
}

This data structure includes customer information as well as order information. The
customer information is stored as a set of string values and corresponding attribute names.
The order items are stored in an array in which each element is a list structure with item
identifier, quantity, product description, and price. This entire list can be stored under an
order key, such as 'ordID:781379"'.

The advantage of using a structure such as this is that much of the information about
orders is available with a single key lookup. Let’s consider how this data structure might
be built.

When the customer adds her first item to her cart, the list is created and the customer name
and address are copied from the customer database. An order array is created and a list
with the item identifier, quantity, description, and price is added to the array. The key
value is hashed and the entire data structure is written to disk. The customer then adds
another item to the cart, and a new entry is added to the array of ordered items. Because
the value is treated as an atomic unit, the entire list (for example, customer information
and ordered items) is written to the disk again. This process continues for each of the
additional items.

Assume the key-value database allocates enough storage for an average order size when
the value is first created. Adding the fifth order item causes the size of the data structure to
exceed the allocated space. When an additional item is added to the ordItems array, the
new item will be written to a new block.

As values grow in size, the time required to read and write the data can increase. Data is
generally read in blocks. If the size of a value exceeds the size of a block, then multiple
blocks must be read. During write operations, an entire value has to be written, even if
only a small part of the value has changed.

You might think that because a read operation must read an entire block, as long as the
size of the value is less than the size of a data block on disk, there is no additional penalty.
It is true the time to position the read/write heads and read the data block is the same.
However, there is an indirect penalty. When values are smaller than the disk data block
size, multiple values can be stored in a single block. When a block is read, all the values in
the block can be added to the in-memory cache. This increases the likelihood that a future

read will find the value it needs in the cache. This saves the time required to perform a
disk read.

Of course, if an entire large-sized value is in the cache, then any of the embedded
attributes are available for low-latency reads from the cache. This could help performance
if there are multiple reads to multiple parts of the value data structure. If, however, you
load a large value into the cache and only reference a small percentage of the data, you are
essentially wasting valuable memory (see Figure 5.4).

(oo } A
(oo Y N
o ol |
(oo 3 I ;
 S— }

(oo } [
||
A 3 I
(oo 4 B . }

Small Values Large Values

Figure 5.4 Data is read in blocks. Blocks may store a large number of small-sized
values or few large-sized values. The former can lead to better performance if
frequently used attributes are available in the cache.

If you find yourself needing to frequently design large value structures, you might want to
consider using a document database rather than a key-value database. Document databases
are discussed in depth in Chapters 6 through 8.

Limitations of Key-Value Databases

Key-value databases are the simplest of the NoSQL databases. This makes them easy to
learn and use, but it also brings with them important limitations. You have just read about
the disadvantages of using large data values. There are some others to keep in mind as
well. In particular, it is important to remember the following:

* The only way to look up values is by key.
* Some key-value databases do not support range queries.
* There is no standard query language comparable to SQL for relational databases.

These are limitations with key-value databases in general. As you will no doubt learn as
you work with different key-value database implementations, vendors and open source
project developers take it upon themselves to devise ways to mitigate the disadvantages of
these limitations.

Look Up Values by Key Only

Imagine what it would be like if you had to look up every piece of information about
someone using only an identifier, like a Social Security number or a student ID number.
You might have no trouble remembering the identifier for a handful of friends and family,
but after that, tracking down information will start to get difficult.

The same thing can occur with key-value databases. At times, you will want to look up
information about an object without already knowing the key value. In the most basic

versions of key-value databases, this is not possible. Fortunately, key-value database
developers have added extended features to address this limitation.

One approach is to use text search capabilities. Riak, for example, provides a search
mechanism and API that indexes data values as they are added to the database. The API
supports common search features, such as wildcard searches, proximity searches, range
searches, and Boolean operators. Search functions return a set of keys that have associated
values that satisfy the search criteria. If you wanted to list all orders that included the
purchase of a computer case and motherboard but not a CPU, you might use a statement
such as the following:

Click here to view code image
field: { ‘motherboard’ AND ‘computer case’) AND NOT ‘CPU’

This type of search is useful, for example, when you want to find all customers from
Illinois who placed orders in the past two weeks.

+ Note

More on Riak search is available at
http://docs.basho.com/riak/latest/dev/using/search/.

Another way to get around key-only lookup is to use secondary indexes. If your key-value
database supports secondary indexes directly, you will be able to specify an attribute in a
value to index. For example, you could create an index on state or city in an address value
to enable lookup by state or city name.

Key-Value Databases Do Not Support Range Queries

Range queries, such as selecting records with dates between a start and end date or names
in some range of the alphabet, are fairly common in database applications. The basic key-
value database does not support these types of queries unless you use a specialized naming
convention and lookup table described earlier in the section, “Dealing with Ranges of
Values.” A specialized type of key-value database, known as an ordered key-value
database, keeps a sorted structure that allows for range queries.

If you use a key-value database that supports secondary indexes, you may have the ability
to perform range queries on the indexed values. Some text search engines also support
range searches over text.

No Standard Query Language Comparable to SQL for Relational
Databases

Key-value databases are designed for simple lookup operations. It should be no surprise
that there is not a standard query language for key-value databases.

You will find, however, that some key-value databases understand commonly used
structures, such as XML and JavaScript Object Notation (JSON). Many programming
languages have libraries that support constructing and parsing XML and JSON. Search
applications, such as Solr (http://lucene.apache.org/solr/) and Lucene

http://docs.basho.com/riak/latest/dev/using/search/
http://lucene.apache.org/solr/

(http://lucene.apache.org/), have mechanisms for parsing XML and JSON as well. This
combination of structured formats and programming libraries is not equivalent to a
standard query language, but they do start to provide some of the capabilities you would
expect in such a query language.

There are limitations to the basic key-value data model, but today there are multiple
implementations that offer enhanced features that enable developers to more easily
implement frequently needed application features.

Design Patterns for Key-Value Databases

Design patterns, or general software solutions, were popularized by Erich Gamma,
Richard Helm, Ralph Jackson, and John Vlissides in their book Design Patterns: Elements
of Reusable Object-Oriented Software. This book is popularly known as the Gang of Four,
or the GoF, book.

The idea that you can reuse solutions in different applications is well understood and
known to all but the most novice programmers. The value of the Gang of Four book is that
it cataloged and described a number of useful software patterns that could be applied in a
variety of languages. Design patterns appear in database applications as well.

It is now time to consider several design patterns that may prove useful when using key-
value databases to develop your applications. These include

* Time to Live (TTL) keys
* Emulating tables

» Aggregates

* Atomic aggregates

* Enumerable keys

* Indexes

Design patterns can be useful as described or can require some modification to fit your
needs. Think of design patterns as guides to solving common problems, not dogmatic
solutions handed down by a cadre of design elders that must be followed precisely.

Just as importantly, pay attention to the solutions you repeatedly use when developing
applications. You might find some of your most frequently used design patterns are ones
you discover yourself.

Time to Live (TTL) Keys

Time to Live is a term frequently used in computer science to describe a transient object.
For example, a packet of data sent from one computer to another can have a Time to Live
parameter that indicates the number of times it should be forwarded to another router or
server while en route to its destination. If the packet is routed through more devices than
specified by the TTL parameter, it is dropped and the packet is undelivered.

TTL is sometimes useful with keys in a key-value database, especially when caching data
in limited memory servers or when keys are used to hold a resource for some specified

http://lucene.apache.org/

period of time. A large e-commerce company selling tickets to sporting and music events
might have thousands of users active at any time. When a customer indicates he wants to
purchase tickets for several seats, the ticketing application may add key-value pairs to the
database to hold those seats while the customer’s payment is processed. The e-commerce
company does not want one customer buying seats that another customer has already
added to his or her cart. At the same time, the company does not want seats held for long
periods of time, especially if customers abandon their carts. A TTL parameter associated
with a key can help here (see Figure 5.5).

Key TTL

‘U7138’

R3194

S2241

171294

K4111

R1143

S1914

CC P T e S

Figure 5.5 Time to Live keys are useful for allowing users to reserve a product or
resource for a limited time while other operations, such as making a payment,
complete.

The application may create a key that references the seat being saved and the value could
be the identifier of the customer purchasing the seat. Setting a five-minute Time to Live
parameter would provide enough time for someone to enter his or her payment
information without unduly delaying access to the ticket if the payment authorization fails
or the customer abandons the cart. This also saves the application developer from needing
to develop a custom method that might include keeping a time stamp with a key and
checking multiple keys at regular intervals to determine whether any have expired.

< Tip

Time to Live properties are database-specific, so check the documentation of your
key-value database to see whether they are supported and how to specify an
expiration.

Emulating Tables

Although most key-value databases do not explicitly support a data structure like the
relational table, it can be a useful construct.

% Note
The Oracle NoSQL database is unlike most key-value databases and provides an
API for manipulating data using a table metaphor.®

6. See Chapter 4 of “Getting Started with Oracle NoSQL Database Tables.”
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/tablesapi.html

A method of emulating tables has been partially described in earlier chapters using a key-
naming convention based on entity name, unique identifier, and attribute name. See the
“Key Design and Partitioning” section found earlier in this chapter.

It is not practical to fully emulate the features of relational tables. For example, this design
pattern does not include a SQL-like query capability. Instead, it focuses on implementing
basic get and set operations.

The two functions defined earlier, get CustAttr and setCustAttr, are sample
building blocks for building row-level-like functions, such as addCustRecord and
getCustRecord. Assume a customer record consists of a name and address. The
following is a pseudocode function of the addCustRecord:

Click here to view code image

define addCustRecord (p_id, p_fname, p_lname, p_addr,
p_city, p_state, p_zip)

begin
setCustAttr(p_id, ‘fname’, p_fname);
setCustAttr(p_id, ‘1name’, p_lname);
setCustAttr(p_id, ‘addr’, p_addr);
setCustAttr(p_id, ‘city’,p_city);
setCustAttr(p_id, ‘state’, p_state);
setCustAttr(p_id, ‘zip’, p_zip);

end;

The following is the corresponding get record function:

Click here to view code image

define getCustRecord (p_id)
begin
v_custRec = make_list (
getCustAttr(p_id, ‘fname’, p_fname),
getCustAttr(p_id, ‘1lname’, p_lname),
getCustAttr(p_id, ‘addr’, p_addr),

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/tablesapi.html

getCustAttr(p_id, ‘city’, p_city),
getCustAttr(p_id, ‘state’, p_state),
getCustAttr(p_id, ‘zip’, p_zip)
)
return(v_custRec);
end;

Emulating tables is helpful when you routinely get or set a related set of attributes. This
pattern is useful when you are dealing with a small number of emulated tables.

If you find yourself emulating many tables or implementing complicated filtering
conditions and range searches, you should consider alternative approaches. These can
include using key-value databases that support

* Table constructs, such as Oracle’s NoSQL database
» Advanced search features, such as Riak

* Relational databases, such as MySQL

Aggregates

Aggregation is a pattern that supports different attributes for different subtypes of an
entity. In a relational database, you can handle subtypes in a couple of different ways. You
could create a single table with all attributes across all subtypes.

You could also create a table with the attributes common to all subtypes and then create an
additional table for each of the subtypes. Consider the concert ticket sales system. Many
concerts are held in large stadiums with assigned seats, some are held in smaller venues
with no assigned seating, and still others are multiday festivals with multiple stages and
open seating. Table 5.2 shows a list of attributes that must be tracked for the various kinds
of concerts.

Attribute Concert Subtype

Concert date Stadium and small venue
Festival start date Festival

Festival end date Festival

Location description All

Assigned seat Stadium

Start time Stadium and small venue
Price All

Performer name Stadium and small venue
Festival name Festival

Table 5.2 Sample Attributes for Multiple Types of Concerts

Two attributes are used by all concert types, three are used by stadium and small venue

concerts, three are used by festivals only, and one is used by stadiums only.

In a relational database, you could create a single table with all the attributes listed in
Table 5.2, or you could create a table with common attributes and subtype tables, as
shown in Figure 5.6. The single table would have unused columns and could become
unwieldy as the number of subtypes and attributes grows. Using a table with common
attributes and subtype tables requires join operations to get all data about a concert ticket.
Aggregation in key-value databases takes a different approach.

Concert

LocDescr

Price
Stadium Tickets Small Venue Festival
Concert Date Concert Date Festival Start Date
Assigned Seat Start Time Festival End Date
Start Time Performer Name Festival Name
Performer Name

Figure 5.6 Entity subtypes can be modeled in relational databases as a common table
with tables to store attributes of each subtype.

A single entity type, that is, 'concert', can be used for all types and the values can be
lists of attribute value pairs specific to each type. In addition, a type indicator is used in
the list to distinguish the concert type. For example, a value of a stadium ticket could be

Click here to view code image
{‘type’:‘stadium’, ‘conDate’:15-Mar-2015, ‘locDescr’:
‘Springfield Civic Center’, ‘assgnSeat’: ‘J38',
‘startTime’:“17:30’, ‘price’:’$50.00', ‘perfName’:
‘The National’ }

The following is a sample small venue concert ticket:

Click here to view code image

{‘type’:’small venue’, ‘conDate’: 12-Jun-2015,
‘locDescr’: ‘Plymoth Concert Hall’, ‘startTime’:‘17:30’,
‘price’:’$75.00', ‘perfName’:’Joshua Redman’ }

Finally, a sample festival ticket is

Click here to view code image

{‘type’:‘festival’, ‘festStartDate’: 01-Feb-2015,
‘festEndDate’: 01-Feb-2015, ‘locDescr’: ‘Portland, OR’,
price:’$100.00', ‘festName’:’PDX Jazz Festival’}

Each of these lists can be assigned to a ticket key stored in a namespace called
ConcertApp, such as

Click here to view code image

ConcertApp[ticket:18380] = {‘type’:‘stadium’,
‘conDate’:15-Mar-2015, ‘locDescr’: ‘Springfield
Civic Center’, ‘assgnSeat’: “J38’, ‘startTime’:‘17:30’,
‘price’:’$50.00', ‘perfName’: ‘The National’ }

ConcertApp[ticket:18381] = {‘type’:’small venue’,
‘conDate’: 12-Jun-2015, ‘locDescr’: ‘Plymoth Concert
Hall’, ‘startTime’:‘17:30', ‘price’:’$75.00’,
‘perfName’:‘Joshua Redman’ }

ConcertApp[ticket:18382] = {‘type’:’festival’,
‘festStartDate’: 01-Feb-2015, ‘festEndDate’:
@1-Feb-2015, ‘locbescr’: ‘Portland, OR’,
‘price’:'$100.00’, ‘festName’:’PDX Jazz Festival'’}

You can write set and get functions to check the type of ticket and then assign or retrieve
the appropriate attribute values.

Atomic Aggregates

Atomic aggregates contain all values that must be updated together or not at all. Recall
that relational databases support the ACID properties, and the A in ACID stands for
atomicity. Relational databases and some key-value databases provide transactions to
ensure multiple statements are all completed successfully or not at all.

+ Tip

If you are using a key-value database that does not support transactions, you might
want to use the atomic aggregate pattern in place of transactions.

The atomic aggregate pattern uses a single assignment statement to save multiple values.
For example, if the concert ticket application logged a record each time a stadium ticket is
purchased, it should record the date, location, and seat assignment. For example:

Click here to view code image

ConcertApp[ticketLog:9888] = {‘conDate’:15-Mar-2015,
‘locDescr’:
‘Springfield Civic Center’, ‘assgnSeat’: ‘J38'}

This will save all three values or none at all. If you tried to log each attribute separately,
you would run the risk of completing some but not all of the operations.

Consider, if you used the following three statements instead of the one atomic aggregate
statement above:

Click here to view code image

ConcertApp[ticketLog:9888:conDate]

ConcertApp[ticketLog:9888:1locDescr]
Center’

ConcertApp[ticketLog:9888:assgnSeat]

15-Mar-2015
‘Springfield Civic

£J38’

If the server writing this data to disk failed after writing the 1ocDescr attribute but
before writing the assgnSeat attribute, then you would lose a critical piece of data. The
atomic aggregate pattern is not a full substitute for transaction support, but it does help
avoid partially writing a set of attributes.

Enumerable Keys

Enumerable keys are keys that use counters or sequences to generate new keys. This on its
own would not be too useful; however, when combined with other attributes, this can be
helpful when working with groups of keys. Take logging, for example.

You saw in the “Atomic Aggregates” section that you could save information about each
ticket sale using an assignment, such as the following:

Click here to view code image

ConcertApp[ticketLog:9888] = {‘conDate’:15-Mar-2015,

‘locDescr’:

‘Springfield Civic Center’, ‘assgnSeat’: ‘J38'}
The key is a combination of the entity name 'ticketLog' and a counter. Presumably,
the counter starts at 1 and increases by one each time a ticket is sold. This is suitable for
recording information, but it does not help if you want to work with a range of logged
values.

For example, if you wanted to retrieve log entries for all tickets sold on a particular day, a
better key format would be ' ticketLog' concatenated to a date concatenated with a
counter, such as 'ticketLog:20140617:10"', which is the key assigned to the tenth
ticket sold on June 17, 2014.

You can retrieve a range of ticket keys by generating a series of keys, for example,
'"ticketLog:20140617:1', 'ticketlLog:20140617:2",
"ticketlLog:20140617:3"', and so on until you generate a key that does not exist or
until you reach a number of keys you specify.

Indexes

Inverted indexes are sets of key-value pairs that allow for looking up keys or values by
other attribute values of the same entity. Let’s revisit the ticket logging key-value
example:

Click here to view code image

ConcertApp[ticketLog:9888] = {‘conDate’:15-Mar-2015,
‘locDescr’:
‘Springfield Civic Center’, ‘assgnSeat’: ‘J38'}

This is useful for recording all seats assigned across concerts, but it is not easy to list only
seats assigned in a particular location unless your key-value database provides search
capabilities. For those that do not, inverted indexes can help. If you want to track all seats
assigned in the Springfield Civic Center, you could use a function such as the following:

Click here to view code image

define addLocAssgnSeat(p_locDescr, p_seat)
begin
v_seatlList ConcertApp[p_locDescr]
v_seatlList append(v_seatlList, p_seat)
ConcertApp[p_locDescr] = v_seatlList
end;

This function accepts the location name and seat as parameters. V_seatList is alocal

variable to store a copy of the current list of sold seats at the location. The append
statement adds the parameter p_list to v_seatList, and the following statement
assigns the new set of sold seats to the value associated with the location specified by the
parameter p_locDescr.

If the function is initially called as the following, it would set the value of
ConcertApp['Springfield Civic Center']to {'J38'}:

Click here to view code image
addLocAssgnSeat(‘Springfield Civic Center’, ‘J38")

If the application then sold the following seats ‘J39°, ‘A17’°, ‘A18’, ‘A19’, and ‘R22’ and
called the addLocAssngSeat function for each sale, the value of
ConcertApp[('Springfield Civic Center'] wouldbe {'J38', 'J39',
'A17', 'A18', 'A19', 'R22'}.

The design patterns discussed here solve some common problems you may face when
developing applications using key-value attributes. The Time to Live pattern is useful
when you have operations that may be disrupted and can be safely ignored after some
period of inactivity or inability to finish the operation.

Emulating tables streamlines the getting and setting of multiple attributes related to a
single instance of an entity, but should not be overused. Frequent use of emulating tables
can indicate a misuse of a key-value database.

A document database or relational database may be a better option. Aggregates provide a
means for working with entities that need to manage subtypes and different attributes
associated with each subtype. The atomic aggregate pattern is used when you have
multiple attributes that should be set together. It is not a full substitute for transactions, but
it serves some of the purposes of transactions. Enumerable keys provide a crude range
functionality by allowing a program to generate and test for the existence of keys. Finally,
indexes allow you to look up attribute values starting with something other than a key.

% Tip

It is important to remember that these patterns are like templates: They are starting
points for solving a problem, but you should feel free to modify and adjust as
needed to meet your requirements.

Chapter 1, “Different Databases for Different Requirements,” briefly introduced a case
study about a fictional company called TransGlobal Transport and Shipping. Now that you
have reviewed the structure, function, and design of key-value databases and related
applications, it is time to consider how they can be applied in realistic use cases.

Summary

Key-value databases are the simplest of the NoSQL databases, but they can satisfy the
needs of application developers who need basic storage and retrieval services. Designing
for key-value databases requires several steps. You should define a naming convention for
keys that allows developers to easily create keys and document the types of values
associated with the keys. Values can be basic data types or more complicated data
structures. Data structures allow for storing multiple attributes together, but large values
can have adverse performance consequences. Design patterns described in this chapter can
provide starter solutions to common problems as well as help organize applications by
introducing an additional level of abstraction. Some key-value database implementations
provide additional features such as search and secondary indexes. Take advantage of these
when possible. They are likely to be more efficient and require less code than a “do-it-
yourself” version of the same functionality.

Case Study: Key-Value Databases for Mobile Application Configuration

TransGlobal Transport and Shipping (TGTS) coordinates the movement of goods around
the globe for businesses of all sizes. Customers of TGTS contact the shipper and provide
detailed information about packages and cargo that need to be shipped. Simple orders can
be a single package shipped across the country, and more complicated orders can entail
hundreds of parcels or shipping containers that are transported internationally. To help
their customers track their shipments, TGTS is developing a mobile app called TGTS
Tracker.

TGTS Tracker will run on the most popular mobile device platforms. To allow customers
to monitor their shipments from any of their mobile devices, application designers have
decided to keep configuration information about each customer in a centralized database.
This configuration information includes

 Customer name and account number

* Default currency for pricing information

 Shipment attributes to appear in the summary dashboard

* Alerts and notification preferences

» User interface options, such as preferred color scheme and font

In addition to configuration information, designers want the app to quickly display
summary information in a dashboard. Slower response times are acceptable when
customers need to look up more detailed information about shipments. The database
supporting TGTS Tracker should support up to 10,000 simultaneous users, with reads
making up 90% of all I/O operations.

The design team evaluated relational databases and key-value databases. Relational
databases are well suited to manage complex relations between multiple tables, but the
need for scalability and fast read operations convinced them that a key-value database was
the better choice for TGTS Tracker.

The range of data that is required by the mobile app is fairly limited so the designers felt

confident that a single namespace would be sufficient. They chose TrackerNS as the name
of the app’s namespace.

Each customer has an account number, so this was selected as a unique identifier for each
customer.

The designers then moved on to decide on the structure of values. After reviewing
preliminary designs of the user interface, they determined that name and account number
appear frequently together, so it made sense to keep them together in a single list of
values. The default currency is also frequently required, so it is included in the list of
values along with customer name and account number. Because this app is designed to
track the status of shipments, there is little need for administrative information, such as
billing address, so it is not stored in the key-value database.

The app designers decided to use the following naming convention for keys: entity
type:account number. Given the list of data types the tracker manages, the designers
decided the database should support four entity types:

» Customer information, abbreviated ‘cust’

 Dashboard configuration options, abbreviated ‘dshb’

» Alerts and notification specifications, abbreviated ‘alrt’
» User interface configurations, abbreviated ‘ui’

The next step in the design process is determining attributes for each entity. The customer
entity maintains the customer name and preferred currency. The account number is part of
the key, so there is no need to store it again in the list of values. The following is a sample
customer key-value pair:

Click here to view code image

TrackerNS[‘cust:4719364’] = {‘name’:‘Prime Machine, Inc.’,
‘currency’:‘USD'}

The dashboard configuration detail is a list of up to six attributes about a shipment that
will appear on a summary screen. The following are options, with abbreviations in
parentheses:

* Ship to company (shpComp)

« Ship to city (shpCity)

* Ship to state (shpState)

* Ship to country (shpCountry)

* Date shipped (shpDate)

* Expected date of delivery (shpDelivDate)

» Number of packages/containers shipped (shpCnt)
* Type of packages/containers shipped (shpType)

» Total weight of shipment (shpWght)

* Note on shipment (shpNotes)

The following is a sample dashboard configuration specification:

Click here to view code image

TrackerNS[‘dash:4719364'] =

{’shpComp’, ‘shpState’, ‘shpDate’, ‘shpDelivDate’}

The alerts and notification data indicate when messages should be sent to a customer. An
alert and notification can be sent when a shipment is picked up, delivered, or delayed. The
message can be sent as either an email address or as a text message to a phone. Multiple
people can receive messages, and each person receiving a message can be notified under
different conditions.

This is modeled with a list of lists as a value. For example, the person with email address
‘Jane.washingon@primemachineinc.com’ might get emails when packages are picked up
and the person with phone number (202)555-9812 might get a text message when
packages are delayed. The key-value pair for that would look like the following:

Click here to view code image
TrackerNS[alrt:4719364] =
{ altlList :
{’jane.washingon@primemachineinc.com’, ‘pickup’},
{’(202)555-9812", ‘delay’}
3
Finally, the user interface configuration options are a simple list of attribute value pairs,
such as font name, font size, and color scheme. A key-value pair for a user interface
specification could be

Click here to view code image

TrackerNS[alrt:4719364] = { ‘fontName’: ‘Cambria’,
‘fontSize’: 9,
‘colorScheme’ : ‘default’

}

Now that the designers have defined the entity types, key-naming conventions, and
structure of values, developers can write supporting code to set and retrieve keys and their
values.

Review Questions
1. Describe four characteristics of a well-designed key-naming convention.
2. Name two types of restrictions key-value databases can place on keys.
3. Describe the difference between range partitioning and hash partitioning.

4. How can structured data types help reduce read latency (that is, the time needed to
retrieve a block of data from a disk)?

5. Describe the Time to Live (TTL) key pattern.

[=p]

. Which design pattern provides some of the features of relational transactions?

7. When would you want to use the Aggregate pattern?

(=]

. What are enumerable keys?

mailto:jane.washingon@primemachineinc.com

9. How can enumerable keys help with range queries?

10. How would you modify the design of TGTS Tracker to include a user’s preferred
language in the configuration?

References
Basho Technologies, Inc., Riak Documentation: http://docs.basho.com/riak/latest/.

FoundationDB. Key-Value Store 2.0 Documentation: https://foundationdb.com/key-value-
store/documentation/index.html.

Katsov, Ilya. “NoSQL Data Modeling Techniques.” Highly Scalable Blog:
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/.

Oracle Corporation. “Oracle NoSQL Database, 12c Release 1”:
http://docs.oracle.com/cd/NOSQL/html/index.html.

Redis Documentation: http://redis.io/documentation.

Wikipedia. “Software Design Patterns”:
http://en.wikipedia.org/wiki/Software_design_pattern.

http://docs.basho.com/riak/latest/
https://foundationdb.com/key-value-store/documentation/index.html
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://docs.oracle.com/cd/NOSQL/html/index.html
http://redis.io/documentation
http://en.wikipedia.org/wiki/Software_design_pattern

Part II1: Document Databases

6. Introduction to Document Databases

“I am a man of fixed and unbending principles, the first of which is to be flexible
at all times.”

—EVERETT DIRKSEN
FOrRMER U.S. SENATOR

Topics Covered In This Chapter

What Is a Document?

Avoid Explicit Schema Definitions

Basic Operations on Document Databases

Developers often turn to document databases when they need the flexibility of NoSQL
databases but need to manage more complex data structures than those readily supported
by key-value databases. Like key-value databases, and unlike relational databases,
document databases do not require you to define a common structure for all records in the
data store. Document databases, however, do have some similar features to relational
databases. For example, it is possible to query and filter collections of documents much as
you would rows in a relational table. Of course, the syntax, or structure, of queries is
different between SQL and NoSQL databases, but the functionality is comparable.

This chapter begins the second section of the book dedicated to document databases. The
discussion begins by defining a document with respect to document databases. The focus
then moves to the structure of documents and the ability to vary the structure of
documents within a collection. The later sections of the chapter address basic database
operations, organizing data as well as indexing and retrieving documents.

What Is a Document?

When you see the term document, you might think of a word processing or spreadsheet
file or perhaps even a paper document. These are the types of things many people would
probably think of when they see the word document. They have nothing to do with
document databases, at least with respect to the NoSQL type of database.

+ Note

There are applications that do maintain databases that store word processing,
spreadsheets, emails, and other electronic objects you might describe as a
document. Attorneys, for example, might use a relational database to store
documents related to their cases. These are reasonably and properly called
document databases, but they are not the type referred to when discussing NoSQL
document databases. From this point on, references in this book to document
databases refer to NoSQL document databases, not databases that store electronic
documents.

Documents Are Not So Simple After All

Let’s start with another common type of document: an HTML document. Figure 6.1 shows
a simple HTML document rendered according to formatting commands in the file.

The Structure of HTML Documents

HTML documents combine content, such as text and images, with layout instructions, such as
heading and table formatting commands.

Major Headings Look Like This

Major headings are used to indicate the start of a high level section. Each high level section may be
divided into subsections.

Minor Headings Indicate Subsections
Minor headings are useful when you have a long major section and want to visually break it up
into more manageable pieces for the reader.

Summary

HTML combines structure and content. Other standards for structuring combinations of structure
and content include XML and JSON.

Figure 6.1 A simple example of an HTML document with basic formatting commands.
HTML documents store two types of information:
* Content commands
* Formatting commands

Content includes text and references to image, audio, or other media files. This is
information the viewer of the document will see and hear when the document is rendered.
The document also contains formatting commands that specify how the layout and the
format of content should look. For example, the title is rendered in a larger font than major
headings or subheadings because of different formatting commands. A subset of the
HTML code and content that generates Figure 6.1 is shown in Listing 6.1.

+ Note

Some HTML code has been removed from Listing 6.1 for clarity.

Listing 6.1 Sample of HTML Code Used to Generate Figure 6.1
Click here to view code image

<body bgcolor=white lang=EN-US style=‘tab-interval:.5in’>
<div class=Sectionil>

<div style=‘mso-element:para-border-div;border:none;

border-bottom:solid #4F81BD;
mso-border-bottom-themecolor:accentl;border-bottom:1.0pt;
padding:0in 0in 4.0pt 0in’>
<p class=MsoTitle>The Structure of HTML Documents</p>

</div>

<p class=MsoNormal><o:p> </0:p></p>

<p class=MsoNormal>HTML documents combine content, such as
text and images, with layout instructions, such as heading
and table formatting commands. </p>

<p class=MsoNormal><o:p> </0:p></p>

<hi1>Major Headings Look Like This</h1>

<p class=MsoNormal>Major headings are used to indicate the
start of a high level section. Each high level section may
be divided into subsections.</p>

<p class=MsoNormal><o0:p> </0:p></p>

<h2>Minor Headings Indicate Subsections</h2>

<p class=MsoNormal style=‘tab-stops:132.0pt’>Minor
headings are useful when you have a long major section and
want to visually break it up into more manageable pieces

for the reader.</p>

<p class=MsoNormal style=‘tab-stops:132.0pt’'><0:p>
</0:p></p>

<h1>Summary</h1>

<p class=MsoNormal style=‘tab-stops:132.0pt’>HTML combines
structure and content. Other standards for structuring
combinations of structure and content include XML and
JSON.</p>

</div>
</body>
</html>

The formatting commands indicate which text should be displayed with a major heading
(for example, surrounded by <h1> and </h1>), when to start a new paragraph (that is,
the <p> and </p> tags), and other rendering instructions.

The details of the particular commands are not important for this discussion—the key
point is that HTML combines formatting and content in a single document. In much the
same way, documents in document databases combine structure and content.

HTML documents use predefined tags to indicate formatting commands. Documents in

document databases are not constrained to a predefined set of tags for specifying structure.

Instead, developers are free to choose the terms they need to structure their content just as
data modelers choose table and column names for relational databases.

Let’s consider a simple example of a customer record that tracks the customer ID, name,
address, first order date, and last order date. Using JavaScript Object Notation (JSON), a
sample customer record is

Click here to view code image

{

“customer_id”:187693,
“name”: “Kiera Brown”,
“address” : {

“street” : “1232 Sandy Blvd.”,
“city” : “Vancouver”,
“state” : “Washington”,
“zip” : “99121"
I
“first_order” : "“01/15/2013",
“last_order” : " 06/27/2014"
}

The Structure of JSON Objects
JSON objects are constructed using several simple syntax rules:
* Data is organized in key-value pairs, similar to key-value databases.
» Documents consist of name-value pairs separated by commas.
* Documents start with a { and end with a }.
» Names are strings, such as "customer_id" and "address".

* Values can be numbers, strings, Booleans (true or false), arrays, objects, or the
NULL value.

* The values of arrays are listed within square brackets, that is [and].

* The values of objects are listed as key-value pairs within curly brackets, that is, {
and }.

JSON is just one option for representing documents in a document database. The same
information in the preceding example is represented in XML as follows:

Click here to view code image

<customer_record>
<customer_id>187693</customer_id>
<name>*“Kiera Brown”</name>
<address>
<street>“1232 Sandy Blvd.”</street>
<city>“Vancouver”</city>
<state>"“Washington”</state>
<zip>"99121"</zip>
</address>
<first_order>“01/15/2013"</first_order>
<last_order>"“06/27/2014"</last_order>
</customer_record>

+ Note

Describing the full syntax of XML is beyond the scope of this chapter. See
XML Files.com or W3Schools.com/xml for details.

To summarize, a document is a set of key-value pairs. Keys are represented as strings of
characters. Values may be basic data types (such as numbers, strings, and Booleans) or
structures (such as arrays and objects). Documents contain both structure information and
data. The name in a name-value pair indicates an attribute and the value in a name-value
pair is the data assigned to that attribute. JSON and XML are two formats commonly used

to define documents.!

1. Binary JSON, or BSON, is a binary representation of JSON objects and is another method for specifying
documents.

Documents and Key-Value Pairs

An advantage of documents over key-value databases is that related attributes are
managed within a single object. As you may recall, you can emulate some aspects of
relational tables using a naming convention based on the name of the entity modeled, a
unique identifier for an instance of that entity, and the name of the attribute.

Documents, like relational tables, organize multiple attributes in a single object. This
allows database developers to more easily implement common requirements, such as
returning all attributes of an entity based on a filter applied to one of the attributes. For
example, in one step you could filter a list of customer documents to identify those whose
last purchase was at least six months ago and return their IDs, names, and addresses. If
you were using a key-value database, you would need to query all last purchase dates,
generate a list of unique identifiers associated with those customers with a purchase date
greater than six months, and then query for names and addresses associated with each
identifier in the list (see Figure 6.2).

http://XMLFiles.com
http://W3Schools.com/xml

Document Database

Last Purchase Date > (Today () — 180)

Key Value
Customer_List = Return Customer_ID

Where Last Purchase Date >
(Today () — 180);

Customer_Name = Return Customer Name
Value Where
Customer_ID in
Customer_List;

Customer_Address = Return Customer Address
Value Where
Customer_ID in
Customer_List;

Figure 6.2 Document databases require less code than key-value data stores to query
multiple attributes.

Managing Multiple Documents in Collections

The full potential of document databases becomes apparent when you work with large
numbers of documents. Documents are generally grouped into collections of similar
documents. One of the key parts of modeling document databases is deciding how you
will organize your documents into collections.

Getting Started with Collections

Collections can be thought of as lists of documents. Document database designers
optimize document databases to quickly add, remove, update, and search for documents.
They are also designed for scalability, so as your document collection grows, you can add
more servers to your cluster to keep up with demands for your database.

It is important to note that documents in the same collection do not need to have identical
structures, but they should share some common structures. For example, Listing 6.2 shows
a collection of four documents with similar structures.

Listing 6.2 Documents with Similar Structures

Click here to view code image

{

{

“customer_id”:187693,

“name”: “Kiera Brown”

“address” : {
“street” : #1232 Sandy Blvd.”,
“city” : “Vancouver”,
“state” : “WA”,

“zip” : "99121"

+
“first_order” : "“01/15/2013",

“last_order” : " 06/27/2014"

{
“customer_id”:187694,

“name”: “Bob Brown”,
“address” : {
“street” : #1232 Sandy Blvd.”,
“city” : “Vancouver”,
“state” : “WA”,
“zip” : *99121"”
+
“first_order” : "“02/25/2013",
“last_order” : " 05/12/2014"

}

{
“customer_id”:179336,

“name”: “Hui Li",
“address” : {
“street” : "4904 Main St.”,
“city” : “St Louis”,
“state” : “MO”,
“zip” *“99121"
+
“first_order” : “05/29/2012",
“last_order” : " 08/31/2014",
“loyalty_level” : “Gold”,
“large_purchase_discount” : 0.05,
“large_purchase_amount” : 250.00

}

“customer_id”:290981,
“name”: “Lucas Lambert”,
“address” : {
“street” : “974 Circle Dr.”,
“city” : “Boston”,
“state” : “MA”,
“zip” *“02150"

4

“first_order” : “02/14/2014",
“last_order” : " 02/14/2014",
“number_of_orders” : 1,
“number_of_returns” : 1

}
}

Notice that the first two documents have the same structure while the third and fourth
documents have additional attributes. The third document contains three new fields:
loyalty_level, large_purchase_discount, and
large_purchase_amount. These are used to indicate this person is considered a
valued customer who should receive a 5% discount on all orders over $250. (The currency
type is implicit.) The fourth document has two other new fields, number_of_orders
and number_of_returns. In this case, it appears that the customer made one purchase
on February 14, 2014, and returned it.

One of the advantages of document databases is that they provide flexibility when it
comes to the structure of documents. If only 10% of your documents need to record

loyalty and discount information, why should you have to clutter the other 90% with
unused fields? You do not have to when using document databases. The next section
addresses this issue in more detail.

Tips on Designing Collections

Collections are sets of documents. Because collections do not impose a consistent
structure on documents in the collection, it is possible to store different types of
documents in a single collection. You could, for example, store customer, web clickstream
data, and server log data in the same collection. In practice, this is not advisable.

In general, collections should store documents about the same type of entity. The concept
of an entity is fairly abstract and leaves a lot of room for interpretation. You might
consider both web clickstream data and server log data as a “system event” entity and,
therefore, they should be stored in the same collection.

Avoid Highly Abstract Entity Types

A system event entity such as this is probably too abstract for practical modeling. This is
because web clickstream data and server log data will have few common fields. They may
share an ID field and a time stamp but few other attributes. The web clickstream data will
have fields capturing information about web pages, users, and transitions from one page to
another. The server log documents will contain details about the server, event types,
severity levels, and perhaps some descriptive text. Notice how dissimilar web clickstream
data is from server log data:

Click here to view code image

{ “id” : 12334578,
“datetime” : “201409182210",
“session_num” : 987943,
“client_IP_addr” : “192.168.10.10",
“user_agent” : “Mozilla / 5.0",
“referring_page” : “http://www.example.com/pagel”

}

{ “id” : 31244578,
“datetime” : “201409172140",
“event_type” : “add_user”,
“server_IP_addr” : “192.168.11.11",
“descr” : “*“User jones added with sudo privileges”

}

If you were to store these two document types in a single collection, you would likely
need to add a type indicator so your code could easily distinguish between a web
clickstream document and a server log event document.

In the preceding example, the documents would be modified to include a type indicator:

Click here to view code image

{ “id” : 12334578,
“datetime” : “201409182210",
“doc_type”: *“click_stream”,

“session_num” : 987943,

“client_IP_addr” : “192.168.10.10",

“user_agent” : “Mozilla / 5.0",

“referring_page” : “http://www.example.com/pagel”

}

{ “id” : 31244578,
“datetime” : “201409172140"
“doc_type” : “server_log”
“event_type” : “add_user”
“server_IP_addr” : “192.168.11.11"
“descr” : “User jones added with sudo privileges”

o+ Tip

If you find yourself using a 'doc_type' field and frequently filtering your
collection to select a single document type, carefully review your documents. You
might have a mix of entity types.

Filtering collections is often slower than working directly with multiple collections, each
of which contains a single document type. Consider if you had a system event collection
with 1 million documents: 650,000 clickstream documents and 350,000 server log events.
Because both types of events are added over time, the document collection will likely
store a mix of clickstream and server log documents in close proximity to each other.

If you are using disk storage, you will likely retrieve blocks of data that contain both
clickstream and server log documents. This will adversely impact performance (see Figure
6.3).

Disk Data Blocks

{click_stream....}
{server_log....}
{server_log....}
{click_stream....}
{click_stream....}
{server_log....}
{click_stream....}

{click_stream....}
{server_log....}

Figure 6.3 Mixing document types can lead to multiple document types in a disk data
block. This can lead to inefficiencies because data is read from disk but not used by the
application that filters documents based on type.

You might argue that indexes could be used to improve performance. Indexes certainly
improve data access performance in some cases. However, indexes may be cached in
memory or stored on disk. Retrieving indexes from disk will add time to processing. Also,
if indexes reference a data block that contains both clickstream and server log data, the
disk will read both types of records even though one will be filtered out in your
application.

Depending on the size of the collection, the index, and the number of distinct document
types (this is known as cardinality in relational database terminology), it may be faster to
scan the full document collection rather than use an index. Finally, consider the overhead
of writing indexes as new documents are added to the collection.

Watch for Separate Functions for Manipulating Different Document Types

Another clue that a collection should be broken into multiple collections is your
application code. The application code that manipulates a collection should have
substantial amounts of code that apply to all documents and some amount of code that
accommodates specialized fields in some documents.

For example, most of the code you would write to insert, update, and delete documents in
the customer collection would apply to all documents. You would probably have
additional code to handle loyalty and discount fields that would apply to only a subset of
all documents.

o+ Tip

If your code at the highest levels consists of 1T statements conditionally checking
document types that branch to separate functions to manipulate separate document
types, it is a good indication you probably have mixed document types that should
go in separate collections (see Figure 6.4).

High-Level Branching
doc.
If (doc_type = ‘click_stream’):
process_click_stream (doc)
Else
process_server_log (doc)

Lower-Level Branching
book.title = doc.title
book.author = doc.author
book.year = doc.publication_year
book.publisher = doc.publisher
book.descr = book.title + book.author + book.year + book.publisher
if (doc.ebook = true);
book.descr = book.descr + doc.ebook_size

Figure 6.4 High-level branching in functions manipulating documents can indicate a
need to create separate collections. Branching at lower levels is common when some
documents have optional attributes.

Use Document Subtypes When Entities Are Frequently Aggregated or Share
Substantial Code

The document collection design tips have so far focused on ensuring you do not mix
dissimilar documents in a single collection. If there were no more design tips, you might
think that you should never use type indicators in documents. That would be wrong—very
wrong.

There are times when it makes sense to use document type indicators and have separate
code to handle the different types.

+ Note

When it comes to designing NoSQL databases, remember design principles but
apply them flexibly. Always consider the benefits and drawbacks of a design
principle in a particular situation. That is what the designers of NoSQL databases
did when they considered the benefits and drawbacks of relational databases and
decided to devise their own data model that broke many of the design principles of
relational databases.

It is probably best to start this tip with an example. In addition to tracking customers and
their clickstream data, you would like to track the products customers have ordered. You
have decided the first step in this process is to create a document collection containing all
products, which for our purposes, includes books, CDs, and small kitchen appliances.
There are only three types of products now, but your client is growing and will likely
expand into other product types as well.

All of the products have the following information associated with them:

* Product name

* Short description

» SKU (stock keeping unit)

* Product dimensions

« Shipping weight

» Average customer review score
» Standard price to customer

* Cost of product from supplier

Each of the product types will have specific fields. Books will have fields with
information about

 Author name
* Publisher
* Year of publication
* Page count
The CDs will have the following fields:
 Artist name
* Producer name
* Number of tracks
* Total playing time
The small kitchen appliances will have the following fields:
* Color
* Voltage
* Style

How should you go about deciding how to organize this data into one or more document
collections? Start with how the data will be used. Your client might tell you that she needs
to be able to answer the following queries:

» What is the average number of products bought by each customer?

* What is the range of number of products purchased by customers (that is, the lowest
number to the highest number of products purchased)?

* What are the top 20 most popular products by customer state?

» What is the average value of sales by customer state (that is, Standard price to
customer — Cost of product from supplier)?

* How many of each type of product were sold in the last 30 days?

All the queries use data from all product types, and only the last query subtotals the
number of product