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Preface

“Whatever	there	be	of	progress	in	life	comes	not	through	adaptation	but	through
daring.”

—HENRY	MILLER

It	is	difficult	to	avoid	discussions	about	data.	Individuals	are	concerned	about	keeping
their	personal	data	private.	Companies	struggle	to	keep	data	out	of	the	hands	of
cybercriminals.	Governments	and	businesses	have	an	insatiable	appetite	for	data.	IT
analysts	trip	over	themselves	coming	up	with	new	terms	to	describe	data:	Big	Data,
streaming	data,	high-velocity	data,	and	unstructured	data.	There	is	no	shortage	of	terms	for
ways	to	store	data:	databases,	data	stores,	data	warehouses,	and	data	lakes.	Someone	has
gone	so	far	as	to	coin	the	phrase	data	swamp.

While	others	engage	in	sometimes	heated	discussions	about	data,	there	are	those	who	need
to	collect,	process,	analyze,	and	manage	data.	This	book	is	for	them.

NoSQL	databases	emerged	from	unmet	needs.	Data	management	tools	that	worked	well
for	decades	could	not	keep	up	with	demands	of	Internet	applications.	Hundreds	and
thousands	of	business	professionals	using	corporate	databases	were	no	longer	the	most
challenging	use	case.	Companies	such	as	Google,	Amazon,	Facebook,	and	Yahoo!	had	to
meet	the	needs	of	users	that	measured	in	the	millions.

The	theoretically	well-grounded	relational	data	model	that	had	served	us	so	well	needed
help.	Specialized	applications,	like	Web	crawling	and	online	shopping	cart	management,
motivated	the	enhancement	and	creation	of	nonrelational	databases,	including	key-value,
document,	column	family,	and	graph	databases.	Relational	databases	are	still	needed	and
face	no	risk	of	being	replaced	by	NoSQL	databases.	Instead,	NoSQL	databases	offer
additional	options	with	different	performance	and	functional	characteristics.

This	book	is	intended	as	a	guide	to	introduce	NoSQL	databases,	to	discuss	when	they
work	well	and	when	they	do	not,	and,	perhaps	most	important,	to	describe	how	to	use
them	effectively	to	meet	your	data	management	needs.

You	can	find	PowerPoints,	chapter	quizzes,	and	an	accompanying	instructor’s	guide	in
Pearson’s	Instructor	Resource	Center	(IRC)	via	the	website	pearsonhighered.com.

http://pearsonhighered.com
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Introduction

“Just	when	I	think	I	have	learned	the	way	to	live,	life	changes.”

—HUGH	PRATHER

Databases	are	like	television.	There	was	a	time	in	the	history	of	both	when	you	had	few
options	to	choose	from	and	all	the	choices	were	disappointingly	similar.	Times	have
changed.	The	database	management	system	is	no	longer	synonymous	with	relational
databases,	and	television	is	no	longer	limited	to	a	handful	of	networks	broadcasting
indistinguishable	programs.

Names	like	PostgreSQL,	MySQL,	Oracle,	Microsoft	SQL	Server,	and	IBM	DB2	are	well
known	in	the	IT	community,	even	among	professionals	outside	the	data	management
arena.	Relational	databases	have	been	the	choice	of	data	management	professionals	for
decades.	They	meet	the	needs	of	businesses	tracking	packages	and	account	balances	as
well	as	scientists	studying	bacteria	and	human	diseases.	They	keep	data	logically
organized	and	easily	retrieved.	One	of	their	most	important	characteristics	is	their	ability
to	give	multiple	users	a	consistent	view	of	data	no	matter	how	many	changes	are	under
way	within	the	database.

Many	of	us	in	the	database	community	thought	we	understood	how	to	live	with	databases.
Then	life	changed.	Actually,	the	Internet	changed.	The	Internet	emerged	from	a	military-
sponsored	network	called	ARPANET	to	become	a	platform	for	academic	collaboration
and	eventually	for	commercial	and	personal	use.	The	volume	and	types	of	data	expanded.
In	addition	to	keeping	our	checking	account	balances,	we	want	our	computers	to	find	the
latest	news,	help	with	homework,	and	summarize	reviews	of	new	films.	Now,	many	of	us
depend	on	the	Internet	to	keep	in	touch	with	family,	network	with	colleagues,	and	pursue
professional	education	and	development.

It	is	no	surprise	that	such	radical	changes	in	data	management	requirements	have	led	to
radically	new	ways	to	manage	data.	The	latest	generation	of	data	management	tools	is
collectively	known	as	NoSQL	databases.	The	name	reflects	what	these	systems	are	not
instead	of	what	they	are.	We	can	attribute	this	to	the	well-earned	dominance	of	relational
databases,	which	use	a	language	called	SQL.

NoSQL	databases	fall	into	four	broad	categories:	key-value,	document,	column	family,
and	graph	databases.	(Search-oriented	systems,	such	as	Solr	and	Elasticsearch	are
sometimes	included	in	the	extended	family	of	NoSQL	databases.	They	are	outside	the
scope	of	this	book.)

Key-value	databases	employ	a	simple	model	that	enables	you	to	store	and	look	up	a	datum
(also	known	as	the	value)	using	an	identifier	(also	known	as	the	key).	BerkleyDB,	released
in	the	mid-1990s,	was	an	early	key-value	database	used	in	applications	for	which
relational	databases	were	not	a	good	fit.

Document	databases	expand	on	the	ideas	of	key-value	databases	to	organize	groups	of	key
values	into	a	logical	structure	known	as	a	document.	Document	databases	are	high-
performance,	flexible	data	management	systems	that	are	increasingly	used	in	a	broad
range	of	data	management	tasks.



Column	family	databases	share	superficial	similarities	to	relational	databases.	The	name
of	the	first	implementation	of	a	column	family	database,	Google	BigTable,	hints	at	the
connection	to	relational	databases	and	their	core	data	structure,	the	table.	Column	family
databases	are	used	for	some	of	the	largest	and	most	demanding,	data-intensive
applications.

Graph	databases	are	well	suited	to	modeling	networks—that	is,	things	connected	to	other
things.	The	range	of	use	cases	spans	computers	communicating	with	other	computers	to
people	interacting	with	each	other.

This	is	a	dynamic	time	in	database	system	research	and	development.	We	have	well-
established	and	widely	used	relational	databases	that	are	good	fits	for	many	data
management	problems.	We	have	long-established	alternatives,	such	as	key-value
databases,	as	well	as	more	recent	designs,	including	document,	column	family,	and	graph
databases.

One	of	the	disadvantages	of	this	state	of	affairs	is	that	decision	making	is	more
challenging.	This	book	is	designed	to	lessen	that	challenge.	After	reading	this	book,	you
should	have	an	understanding	of	NoSQL	options	and	when	to	use	them.

Keep	in	mind	that	NoSQL	databases	are	changing	rapidly.	By	the	time	you	read	this,	your
favorite	NoSQL	database	might	have	features	not	mentioned	here.	Watch	for	increasing
support	for	transactions.	How	database	management	systems	handle	transactions	is	an
important	distinguishing	feature	of	these	systems.	(If	you	are	unfamiliar	with	transactions,
don’t	worry.	You	will	soon	know	about	them	if	you	keep	reading.)

Who	Should	Read	This	Book?
This	book	is	designed	for	anyone	interested	in	learning	how	to	use	NoSQL	databases.
Novice	database	developers,	seasoned	relational	data	modelers,	and	experienced	NoSQL
developers	will	find	something	of	value	in	this	book.

Novice	developers	will	learn	basic	principles	and	design	criteria	of	data	management	in
the	opening	chapters	of	the	book.	You’ll	also	get	a	bit	of	data	management	history
because,	as	we	all	know,	history	has	a	habit	of	repeating	itself.

There	are	comparisons	to	relational	databases	throughout	the	book.	If	you	are	well	versed
in	relational	database	design,	these	comparisons	might	help	you	quickly	grasp	and	assess
the	value	of	NoSQL	database	features.

For	those	who	have	worked	with	some	NoSQL	databases,	this	book	may	help	you	get	up
to	speed	with	other	types	of	NoSQL	databases.	Key-value	and	document	databases	are
widely	used,	but	if	you	haven’t	encountered	column	family	or	graph	databases,	then	this
book	can	help.

If	you	are	comfortable	working	with	a	variety	of	NoSQL	databases	but	want	to	know	more
about	the	internals	of	these	distributed	systems,	this	book	is	a	starting	place.	You’ll
become	familiar	with	implementation	features	such	as	quorums,	Bloom	filters,	and	anti-
entropy.	The	references	will	point	you	to	resources	to	help	you	delve	deeper	if	you’d	like.

This	book	does	not	try	to	duplicate	documentation	available	with	NoSQL	databases.	There
is	no	better	place	to	learn	how	to	insert	data	into	a	database	than	from	the	documentation.



On	the	other	hand,	documentation	rarely	has	the	level	of	explanation,	discussion	of	pros
and	cons,	and	advice	about	best	practices	provided	in	a	book	such	as	NoSQL	for	Mere
Mortals.	Read	this	book	as	a	complement	to,	not	a	replacement	for,	database
documentation.

The	Purpose	of	This	Book
The	purpose	of	this	book	is	to	help	someone	with	an	interest	in	data	to	use	NoSQL
databases	to	help	solve	problems.	The	book	is	built	on	the	assumption	that	the	reader	is
not	a	seasoned	database	professional.	If	you	are	comfortable	working	with	Excel,	then	you
are	ready	for	the	topics	covered	in	this	book.

With	this	book,	you’ll	not	only	learn	about	NoSQL	databases,	but	also	how	to	apply
design	principles	and	best	practices	to	solve	your	data	management	requirements.	This	is	a
book	that	will	take	you	into	the	internals	of	NoSQL	database	management	systems	to
explain	how	distributed	databases	work	and	what	to	do	(and	not	do)	to	build	scalable,
reliable	applications.

The	hallmark	of	this	book	is	pragmatism.	Everything	in	this	book	is	designed	to	help	you
use	NoSQL	databases	to	solve	problems.	There	is	a	bit	of	computer	science	theory
scattered	through	the	pages	but	only	to	provide	more	explanation	about	certain	key	topics.
If	you	are	well	versed	in	theory,	feel	free	to	skip	over	it.

How	to	Read	This	Book
For	those	who	are	new	to	database	systems,	start	with	Chapters	1	and	2.	These	will
provide	sufficient	background	to	read	the	other	chapters.

If	you	are	familiar	with	relational	databases	and	their	predecessors,	you	can	skip	Chapter
1.	If	you	are	already	experienced	with	NoSQL,	you	could	skip	Chapter	2;	however,	it	does
discuss	all	four	major	types	of	NoSQL	databases,	so	you	might	want	to	at	least	skim	the
sections	on	types	you	are	less	familiar	with.

Everyone	should	read	Part	II.	It	is	referenced	throughout	the	other	parts	of	the	book.	Parts
III,	IV,	and	V	could	be	read	in	any	order,	but	there	are	some	references	to	content	in
earlier	chapters.	To	achieve	the	best	understanding	of	each	type	of	NoSQL	database,	read
all	three	chapters	in	Parts	II,	III,	IV,	and	V.

Chapter	15	assumes	familiarity	with	the	content	in	the	other	chapters,	but	you	might	be
able	to	skip	parts	on	NoSQL	databases	you	are	sufficiently	familiar	with.	If	your	goal	is	to
understand	how	to	choose	between	NoSQL	options,	be	sure	to	read	Chapter	15.

How	This	Book	Is	Organized
Here’s	an	overview	of	what	you’ll	find	in	each	part	and	each	chapter.

Part	I:	Introduction
NoSQL	databases	did	not	appear	out	of	nowhere.	This	part	provides	a	background	on
relational	databases	and	earlier	data	management	systems.

Chapter	1,	“Different	Databases	for	Different	Requirements,”	introduces	relational



databases	and	their	precursor	data	management	systems	along	with	a	discussion	about
today’s	need	for	the	alternative	approaches	provided	by	NoSQL	databases.

Chapter	2,	“Variety	of	NoSQL	Databases,”	explores	key	functionality	in	databases,
challenges	to	implementing	distributed	databases,	and	the	trade-offs	you’ll	find	in
different	types	of	databases.	The	chapter	includes	an	introduction	to	a	series	of	case
studies	describing	realistic	applications	of	various	NoSQL	databases.

Part	II:	Key-Value	Databases
In	this	part,	you	learn	how	to	use	key-value	databases	and	how	to	avoid	potential	problems
with	them.

Chapter	3,	“Introduction	to	Key-Value	Databases,”	provides	an	overview	of	the	simplest
of	the	NoSQL	database	types.

Chapter	4,	“Key-Value	Database	Terminology,”	introduces	the	vocabulary	you	need	to
understand	the	structure	and	function	of	key-value	databases.

Chapter	5,	“Designing	for	Key-Value	Databases,”	covers	principles	of	designing	key-
value	databases,	the	limitations	of	key-value	databases,	and	design	patterns	used	in	key-
value	databases.	The	chapter	concludes	with	a	case	study	describing	a	realistic	use	case	of
key-value	databases.

Part	III:	Document	Databases
This	part	delves	into	the	widely	used	document	database	and	provides	guidance	on	how	to
effectively	implement	document	database	applications.

Chapter	6,	“Introduction	to	Document	Databases,”	describes	the	basic	characteristics	of
document	databases,	introduces	the	concept	of	schemaless	databases,	and	discusses	basic
operations	on	document	databases.

Chapter	7,	“Document	Database	Terminology,”	acquaints	you	with	the	vocabulary	of
document	databases.

Chapter	8,	“Designing	for	Document	Databases,”	delves	into	the	benefits	of
normalization	and	denormalization,	planning	for	mutable	documents,	tips	on	indexing,	as
well	as	common	design	patterns.	The	chapter	concludes	with	a	case	study	using	document
databases	for	a	business	application.

Part	IV:	Column	Family	Databases
This	part	covers	Big	Data	applications	and	the	need	for	column	family	databases.

Chapter	9,	“Introduction	to	Column	Family	Databases,”	describes	the	Google	BigTable
design,	the	difference	between	key-value,	document,	and	column	family	databases	as	well
as	architectures	used	in	column	family	databases.

Chapter	10,	“Column	Family	Database	Terminology,”	introduces	the	vocabulary	of
column	family	databases.	If	you’ve	always	wondered	“what	is	anti-entropy?”	this	chapter
is	for	you.



Chapter	11,	“Designing	for	Column	Family	Databases,”	offers	guidelines	for	designing
tables,	indexing,	partitioning,	and	working	with	Big	Data.

Part	V:	Graph	Databases
This	part	covers	graph	databases	and	use	cases	where	they	are	particularly	appropriate.

Chapter	12,	“Introduction	to	Graph	Databases,”	discusses	graph	and	network	modeling	as
well	as	the	benefits	of	graph	databases.

Chapter	13,	“Graph	Database	Terminology,”	introduces	the	vocabulary	of	graph	theory,
the	branch	of	math	underlying	graph	databases.

Chapter	14,	“Designing	for	Graph	Databases,”	covers	tips	for	graph	database	design,
traps	to	watch	for,	and	methods	for	querying	a	graph	database.	This	chapter	concludes
with	a	case	study	example	of	graph	database	applied	to	a	business	problem.

Part	VI:	Choosing	a	Database	for	Your	Application
This	part	deals	with	applying	what	you	have	learned	in	the	rest	of	the	book.

Chapter	15,	“Guidelines	for	Selecting	a	Database,”	builds	on	the	previous	chapters	to
outline	factors	that	you	should	consider	when	selecting	a	database	for	your	application.

Part	VII:	Appendices
Appendix	A,	“Answers	to	Chapter	Review	Questions,”	contains	the	review	questions	at
the	end	of	each	chapter	along	with	answers.

Appendix	B,	“List	of	NoSQL	Databases,”	provides	a	nonexhaustive	list	of	NoSQL
databases,	many	of	which	are	open	source	or	otherwise	free	to	use.

The	Glossary	contains	definitions	of	NoSQL	terminology	used	throughout	the	book.



Part	I:	Introduction



1.	Different	Databases	for	Different	Requirements

“There	is	nothing	new	in	the	world	except	the	history	you	do	not	know.”

—HARRY	S.	TRUMAN

Topics	Covered	In	This	Chapter

Relational	Database	Design

Early	Database	Management	Systems

The	Relational	Database	Revolution

Motivations	for	Not	Just/No	SQL	(NoSQL)	Databases

Case	Study

The	history	of	information	technology	is	a	story	of	increasingly	faster	computation	and
greater	volumes	of	data	storage.	An	important	subplot	of	this	story	is	the	evolution	of	data
management	technologies.	Anyone	who	started	to	work	with	data	management	systems	in
the	past	two	decades	might	understandably	assume	that	data	management	is	synonymous
with	relational	database	management	systems.	It	is	not.	Prior	to	the	advent	of	the	relational
database	management	systems,	such	as	Microsoft	Access,	Microsoft	SQL	Server,	Oracle
relational	database,	and	IBM’s	DB2,	computer	scientists	and	information	technology
professionals	created	a	variety	of	data	management	systems	based	on	different	organizing
principles.	The	data	management	community	has	recently	taken	on	new	types	of	data
management	problems	that	have	prompted	the	development	of	new	kinds	of	data
management	systems.	These	are	collectively	known	as	NoSQL	databases.

NoSQL	gets	its	name	from	SQL	(pronounced	“sequel”),	which	is	a	language	used	with
most	relational	database	management	systems.	The	“No”	in	NoSQL	can	mean	literally
there	is	no	SQL	used	in	a	database,	or	it	can	mean	“not	just	SQL.”	For	our	purposes,	we
will	consider	the	non-SQL	aspects	of	NoSQL	databases.

	Note

If	you	are	interested	in	learning	more	about	SQL,	see	John	L.	Viescas	and	Michael
J.	Hernandez’s	SQL	Queries	for	Mere	Mortals	(Addison-Wesley,	2007).

This	chapter	introduces	the	basic	concepts	of	data	management	and	database	systems.	It
begins	with	a	discussion	of	early	database	management	systems.	The	limitations	of	these
early	data	management	systems	motivated	the	development	of	a	new	kind	of	database:	the
relational	database.	Relational	databases	were	a	major	advance	over	earlier	types	of	data
management	systems.	For	example,	relational	databases	help	avoid	inconsistencies	in	data,
known	as	data	anomalies,	that	could	be	introduced	in	some	data	management	systems
under	seemingly	normal	operating	conditions.	Relational	databases	have	so	successfully
solved	a	wide	range	of	data	management	problems	that	they	have	been	widely	used	across
industries	and	application	areas.



Relational	Database	Design
Relational	databases	are	well	designed	to	support	hundreds	and	even	thousands	of	users
simultaneously.	Even	large	enterprises	can	support	complex	applications	serving
thousands	of	users.	As	businesses	and	researchers	developed	new	types	of	applications
designed	for	the	Web,	they	realized	that	relational	databases	were	not	always	meeting	their
needs.

Web	applications	may	need	to	support	tens	of	thousands	of	users	or	more.	Some	of	the
most	important	features	of	relational	databases,	such	as	ensuring	anyone	reading	data	will
have	a	consistent	view	of	the	data,	require	time,	storage,	and	computational	resources.
These	types	of	features	are	vital	to	some	applications.

For	example,	if	you	were	to	transfer	$100	from	your	savings	account	to	your	checking
account,	it	requires	two	steps:	Deduct	$100	from	your	savings	account	and	add	$100	to
your	checking	account.	If	you	were	to	read	your	account	balances	after	the	$100	was
deducted	from	your	savings	account	but	before	it	was	added	to	your	checking	account,
you	would	appear	to	be	missing	$100.	Relational	databases	can	group	a	set	of	operations,
like	deducting	from	savings	and	adding	to	checking	accounts,	as	a	single	operation.	If	you
were	to	read	your	balances,	you	would	see	the	balances	either	before	or	after	the	transfer
—never	in	the	middle	of	the	set	of	operations.

E-commerce	Application
Now	consider	an	e-commerce	application.	Customers	use	a	web	application	to	select
products	from	a	vendor’s	catalog.	As	you	select	products,	they	are	added	to	a	“shopping
cart.”	Of	course,	there	is	no	literal	shopping	cart;	it	is	a	metaphor	for	a	data	structure	that
manages	the	customer’s	selection.	For	this	kind	of	data	management	operation,	a	fairly
simple	data	structure	will	suffice.	You	would	need	a	unique	identifier	for	each	customer
and	a	list	of	items	selected.	(You	might	also	want	other	details,	such	as	the	date	and	time
an	item	was	added	to	the	cart	so	you	can	remove	items	after	some	period	of	inactivity,	but
we’ll	ignore	those	additional	details	for	now.)

A	data	model	using	key-value	pairs	would	work	well	here.	The	unique	customer	ID	would
be	the	key,	which	is	how	you	look	up	or	find	data.	The	values	would	be	the	list	of	items	in
the	cart.	Because	there	is	no	need	to	support	operations	like	transfers	between	bank
accounts,	you	do	not	need	to	support	the	additional	data	management	features	found	in
relational	databases.

Different	applications	require	different	types	of	databases.	This	fact	has	driven	the
development	of	data	management	systems	for	decades.	As	you	shall	see,	history	repeats
itself.	Some	of	the	features	found	in	early	database	management	systems	appear	again	in
some	NoSQL	databases.	This	fact	is	more	than	just	an	interesting	coincidence.	Relational
databases	largely	displaced	early	types	of	data	management	systems	because	the	relational
model	addresses	limitations	of	early	systems.

As	you	evaluate	NoSQL	databases,	you	should	consider	how	the	newer	NoSQL	databases
address	the	limitations	of	relational	databases	as	well	as	any	limitations	they	have	in
common	with	earlier	data	management	systems.



Early	Database	Management	Systems
Early	data	management	systems	include	file	and	database	systems	that	were	designed
prior	to	the	advent	of	relational	databases	in	the	1970s.	These	include

•	Flat	file	data	management	systems

•	Hierarchical	data	management	systems

•	Network	data	management	systems

Flat	file–based	systems	were	the	earliest	form	of	computerized	data	management.	The
hierarchical	and	network	models	improved	on	the	flat	file	approach	to	data	management.

Flat	File	Data	Management	Systems
A	file	is	an	organized	set	of	data	stored	on	a	long-term	storage	medium	such	as	a	disk	or,
at	the	time,	magnetic	tape.	At	the	time	flat	files	were	commonly	used	data	management,
but	magnetic	tape	was	also	in	widespread	use.	For	this	reason,	early	data	management
files	had	to	accommodate	the	physical	constraints	of	physical	systems.

Organization	of	Flat	File	Data	Management	Systems

Although	there	are	multiple	ways	of	storing	data	on	magnetic	tape,	this	section	just
considers	block	storage	for	simplicity.	Magnetic	tape	is	a	long,	thin	magnetized	plastic
material	that	was	a	popular	means	of	recording	audio	from	the	1950s	to	the	1970s.	It	was
adapted	to	store	digital	data	as	well.	A	magnetic	tape	is	divided	into	a	series	of	blocks	with
gaps	between	them	(see	Figure	1.1).	Data	is	written	to	blocks	by	recording	heads	in	a	tape
drive.	Data	is	read	by	moving	the	tape	over	heads	as	well.

Figure	1.1	Magnetic	tapes	store	data	in	sequential	blocks.

It	is	a	relatively	simple	operation	to	start	reading	a	tape	at	a	particular	block	and	then	read
the	following	blocks	in	sequence.	This	is	known	as	sequential	access	to	data.	This	method
optimizes	the	amount	of	data	read	relative	to	the	amount	of	movement	of	the	tape.	You	can
think	of	a	block	as	a	chunk	of	data	that	the	tape	drive	reads.	Blocks	may	contain	data
about	multiple	entities,	such	as	people,	products,	and	locations.	If	a	business	needs	to	track
customers’	names,	addresses,	and	phone	numbers,	it	could	use	a	file-based	storage
method.	The	programmers	working	on	the	project	may	decide	to	leave	a	fixed	amount	of
storage	space	for	each	customer:

•	Customer	ID—10	characters

•	Customer	name—40	characters



•	Customer	address—100	characters

•	Customer	phone	number—10	characters

To	store	each	customer’s	information,	160	characters	are	required.	If	a	block	on	the	tape	is
800	characters	long,	you	could	store	five	customer	records	in	each	block	(see	Figure	1.2).

Figure	1.2	A	block	is	a	chunk	of	data	read	by	tape	or	disk	drive	in	a	single	read
operation.

Random	Access	of	Data

Sometimes	it	is	necessary	to	access	data	on	different	parts	of	the	tape.	For	example,
looking	up	the	addresses	of	several	customers	may	require	moving	the	tape	to	several
different	positions,	some	of	which	can	be	quite	far	from	each	other.	This	is	known	as
random	access	(see	Figure	1.3).



Figure	1.3	Random	access	to	blocks	on	tape	can	take	more	time	than	sequential	access
because	there	can	be	more	tape	movement	relative	to	the	amount	of	data	read.

Random	access	is	more	efficient	on	disk	drives.	Read-write	heads	of	disk	drives	may	need
to	move	to	be	in	the	correct	position	to	read	a	data	block,	but	there	is	less	movement	than
with	tapes.	Disk	read-write	heads	only	need	to	move	at	most	the	radius	of	the	disk.	Tape
drives	may	need	to	move	the	full	length	of	a	tape	to	retrieve	a	data	block.

Limitations	of	Flat	File	Data	Management	Systems

The	programs	that	use	flat	files	largely	determine	the	organization	of	data.	A	team	of
developers,	for	example,	may	decide	that	they	want	to	organize	the	file	by	customer	record
ordered	by	customer	ID.	This	makes	for	efficient	addition	of	new	customers.	As	each	new
customer	is	created,	the	customer	can	be	added	to	the	end	of	the	tape.	If	you	need	to
produce	a	list	of	customers	ordered	by	customer	ID,	you	could	start	at	the	beginning	of	the
tape	and	sequentially	read	each	record.	If	you	need	to	produce	a	customer	list	ordered
alphabetically	by	customer	name,	it	is	a	more	difficult	process.	You	could,	for	example,
read	all	the	data	from	tape	to	memory	(assuming	it	would	all	fit)	and	then	sort	the	records
in	memory.

One	of	the	problems	with	file-based	data	management	systems	is	that	they	can	lead	to
duplicated	data.	Another	team	of	developers	may	need	customer	data	but	want	to	organize
records	by	customer	name	instead	of	customer	ID.	Another	developer	who	needs	access	to
customer	data	may	not	know	other	customer	files	exist	or	does	not	want	to	use	someone
else’s	file	because	the	structure	of	the	file	might	change.	If	that	were	to	happen,
programmers	have	to	update	their	programs	to	reflect	the	new	structure.

If	a	programmer	wrote	a	program	that	assumed	the	customer	record	was	organized	as
described	previously,	then	the	program	would	expect	to	find	the	customer	address	to	start
at	51	characters	after	the	start	of	the	record;	the	first	10	characters	would	be	taken	up	by
the	customer	ID,	and	the	following	40	by	customer	name.	Now,	imagine	the	programmers
who	designed	the	original	file	layout	decided	they	needed	50	characters	for	a	customer
name.	They	changed	the	organization	of	the	file	to	be

•	Customer	ID—10	characters

•	Customer	name—50	characters

•	Customer	address—100	characters



•	Customer	phone	number—10	characters

They	then	created	a	new	file	with	the	new	organization,	copied	the	data	from	the	original
file	to	a	new	version,	and	replaced	the	old	version	with	the	new	version.	Programs
designed	to	work	with	the	original	file	format	would	start	reading	the	customer	address	at
character	51,	which	is	now	part	of	the	customer	name.

Another	problem	with	flat	file	management	is	that	it	is	difficult	to	share	files	that	contain
information	that	should	be	kept	confidential	from	some	users.	An	employee	file	that
contains	the	names,	addresses,	phone	numbers,	employee	IDs,	and	position	title	of	all
employees	would	be	useful	to	a	number	of	different	parts	of	an	organization.	However,	if
the	file	also	contained	salary	information,	then	that	data	should	be	accessed	only	by	those
who	have	a	job	responsibility	that	requires	it,	such	as	someone	working	on	payroll	or	in
human	resources.	In	this	scenario,	the	easiest	solution	may	be	to	have	two	copies	of	the
employee	file:	one	with	salary	data	and	one	without.

The	proposed	solution	introduces	another	problem:	The	data	in	the	two	files	may	become
inconsistent.	If	an	employee	moves	and	informs	the	human	resources	department	of	her
new	address,	that	department	might	update	the	file	its	employees	use;	that	is,	the	one	with
salary	information.	Unless	the	employee	or	someone	in	human	resources	informs	the
person	responsible	for	updating	the	other	version	of	the	employee	file,	the	data	in	the	two
files	will	be	inconsistent.	One	file	will	have	the	employee’s	new	address	while	the	other
file	will	contain	the	employee’s	old	address.

To	summarize,	the	limitations	of	flat	file	data	management	systems	include	the	following:

•	It	is	inefficient	to	access	data	in	any	way	other	than	by	the	way	data	is	organized	in
the	file;	for	example,	by	customer	ID.

•	Changes	to	file	structure	require	changes	to	programs.

•	Different	kinds	of	data	have	different	security	requirements.

•	Data	may	be	stored	in	multiple	files,	making	it	difficult	to	maintain	consistent	sets	of
data.

Attempts	to	address	the	limitations	of	flat	file	data	management	systems	led	to	the
development	of	hierarchical	data	model	and	network	data	model	systems.

Hierarchical	Data	Model	Systems
One	of	the	limitations	of	flat	file–based	data	management	systems	is	that	they	can	be
inefficient	to	search.	Hierarchical	data	models	address	this	problem	by	organizing	data	in	a
hierarchy	of	parent-child	relationships.

Organization	of	Hierarchical	Data	Management	Systems

A	hierarchy	starts	with	a	root	node	that	links	to	the	top	layer	of	data	nodes	or	records.
These	top-layer	records	can	have	child	records	that	contain	additional	data	about	the
parent	record.	The	logical	organization	is	shown	in	Figure	1.4.



Figure	1.4	The	hierarchical	model	is	organized	into	a	set	of	parent-child	relations.

Consider	the	kind	of	data	the	loan	department	of	a	bank	may	track.	It	has	customers	and
each	customer	has	one	or	more	loans.	For	each	customer,	the	loan	department	would	want
to	track	the	customer’s	name,	address,	and	phone	number.	For	each	loan,	the	loan
department	should	track	the	amount	of	the	loan,	the	interest	rate,	the	date	the	loan	was
made,	and	the	date	the	loan	is	due.	Customers	can	have	more	than	one	loan	at	a	time,	and
a	loan	might	have	multiple	customers	associated	with	it.	Figure	1.5	shows	the	logical
organization	of	such	a	database.



Figure	1.5	A	hierarchical	data	model	for	a	loan	management	database.

An	advantage	of	the	hierarchical	model	over	flat	files	is	that	searching	is	more	efficient.
Rather	than	having	to	scan	over	all	the	data	on	a	tape	to	search	for	a	block	of	data,	a
program	using	a	hierarchical	model	could	scan	just	customer	records	in	search	of	a
particular	customer’s	loan	record.	Once	the	customer	record	is	found,	the	program	could
search	through	the	customer’s	loans	looking	for	the	particular	loan	of	interest.

Limitations	of	Hierarchical	Data	Management	Systems

Hierarchical	data	management	systems	work	well	when	the	entities	you	are	managing	can
be	organized	into	parent-child	relationships,	specifically,	one	parent	to	one	or	more
children.	One	customer	with	one	loan	is	easily	managed.	One	customer	with	three	loans	is
easily	managed.	Two	customers	with	one	loan,	such	as	two	business	partners	taking	out	a
short-term	business	loan,	are	not	so	easily	represented.

In	the	case	of	two	customers	on	the	same	loan,	the	hierarchical	data	management	system
would	have	to	duplicate	information	about	the	loan	under	both	customers.	This	creates
three	problems.	First,	it	makes	inefficient	use	of	storage	space	to	duplicate	data.

In	addition,	like	duplicated	data	in	the	case	of	flat	file	management	systems,	it	can	lead	to
inconsistent	data	if	care	is	not	taken	to	ensure	that	any	changes	are	applied	to	all	copies	of
the	data.

Also,	there	is	a	potential	for	errors	when	aggregating	data.	For	example,	to	find	the	total
value	of	all	outstanding	loans,	a	programmer	could	not	just	read	all	loan	records	and	add
all	loan	amounts	together.	Because	some	loans	have	multiple	copies,	one	for	each
customer,	simply	adding	all	copies	of	all	loan	records	will	sum	to	a	total	loan	amount
greater	than	the	actual	amount.	The	programmer	must	take	steps	to	count	each	loan	only
once.



To	address	the	limitations	of	hierarchical	models,	data	management	system	designers
turned	to	network	data	model	systems.

Network	Data	Management	Systems
A	network	data	model	is	like	a	hierarchical	data	model	in	that	it	uses	links	between
records;	however,	unlike	hierarchical	data	models,	you	are	not	restricted	to	having	one
parent	record.	Also,	unlike	flat	file	data	management	systems	and	hierarchical	data
management	systems,	network	data	models	have	two	essential	components:	a	schema	and
the	database	itself.

Organization	of	Network	Data	Management	Systems

A	network	is	made	up	of	data	records	linked	together.	The	data	records	are	known	as
nodes	and	the	links	are	known	as	edges.	The	collection	of	nodes	and	edges	is	known	as	a
graph.	Network	data	models	have	two	important	constraints	on	how	you	use	edges.	Edges
have	a	direction	to	them.	This	allows	you	to	represent	parent-child	relations.	Parent-child
relations	are	also	known	as	one-to-many	relations	(see	Figure	1.6).	Furthermore,	network
data	models	allow	for	multiple	parents,	such	as	two	customers	on	a	loan.	It	can	also
represent	two	customers	with	two	loans	without	duplicating	data.	This	is	known	as	a
many-to-many	relation.

Figure	1.6	A	parent-child	relationship	is	represented	by	a	directed	edge.

Another	constraint	is	that	you	cannot	have	cycles	in	the	graph.	That	is,	if	you	start	at	a
node,	follow	a	link	to	another	node,	then	follow	a	link	from	that	node,	and	so	on,	you	will
never	return	to	the	starting	node.	Graphs	that	have	directed	edges	and	no	cycles	are	known
as	directed	acyclic	graphs	(see	Figure	1.7).



Figure	1.7	This	graph	has	cycles	and,	therefore,	is	not	a	directed	acyclic	graph	and	not
a	model	of	a	network	data	management	system.

Additional	constraints	on	which	nodes	can	link	to	other	nodes	arise	from	the	entities	you
are	trying	to	model.	For	example,	in	a	banking	database,	customers	can	have	addresses,
but	loans	and	bank	accounts	do	not.	In	a	human	resources	database,	employees	can	have
positions	in	the	organization,	but	departments	cannot.	The	kinds	of	nodes	that	can	link	to
other	nodes	are	defined	in	a	structure	called	a	schema	(see	Figure	1.8).

Figure	1.8	A	simple	network	schema	shows	which	entities	can	link	to	other	entities.

The	other	part	of	a	network	data	management	system	is	the	database	itself.	This	is	where



the	actual	data	is	stored	according	to	the	structure	of	the	schema.	One	of	the	advances	of
network	databases	over	previous	approaches	is	that	it	became	standardized	in	1969	by	the
Conference	on	Data	Systems	Languages	(CODASYL)	Consortium.	This	standard	became
the	basis	for	most	implementations	of	network	databases.

Limitations	of	Network	Data	Management	Systems

The	chief	limitation	of	network	databases	is	that	they	can	be	difficult	to	design	and
maintain.	Depending	on	how	nodes	are	linked,	a	program	may	need	to	traverse	a	large
number	of	links	to	get	to	the	node	with	the	needed	data.	For	example,	if	you	must	start	at	a
customer	record	to	get	to	a	loan	record	and	then	to	a	loan	payment	history	record,	you
must	traverse	two	links	from	customer	to	loan	payment	history.	As	data	models	become
more	complex,	the	number	of	links	and	the	length	of	paths	can	become	substantially
longer.

Also,	if	after	a	network	database	is	deployed,	a	database	designer	determines	another
entity	or	node	type	is	needed,	then	programs	that	access	the	network	database	will	have	to
be	updated.	Adding	nodes	to	the	schema	and	the	database	changes	the	paths	that	programs
must	traverse	to	get	to	particular	nodes.

Summary	of	Early	Database	Management	Systems
Early	database	management	systems	include	flat	file,	hierarchical,	and	network	databases.

Flat	file	databases	tend	to	keep	data	about	a	single	entity	together	in	a	single	record.	This
is	a	simple	structure	but	can	lead	to	duplicated	data	and	inefficient	retrieval.	It	is	difficult
to	implement	security	controls	to	protect	confidential	data	in	flat	file	management
systems.

Hierarchical	data	management	systems	allow	for	parent-child	relationships.	This	can	help
avoid	duplicating	data	about	parents	because	only	one	copy	of	a	parent	record	is	needed.
Because	data	is	organized	into	different	records,	data	retrieval	can	be	more	efficient.	For
example,	searching	for	a	customer	in	a	loan	database	might	require	scanning	all	customer
records,	but	at	least	the	program	does	not	have	to	scan	over	loan	data	as	well.

	Note

Although	hierarchical	data	management	systems	avoid	some	duplication	found	in
flat	file	management	systems,	there	is	still	a	potential	for	duplicate	data.	This	can
occur,	for	example,	in	the	case	of	a	loan	database	that	must	model	multiple
customers	on	a	single	loan.

Network	data	management	improves	on	hierarchical	databases	by	allowing	multiple
parents.	Network	data	management	systems	also	incorporate	schemas	that	define	valid
relations	between	node	types.	The	ability	to	represent	parent-child	and	many-to-many
relations	is	an	advantage	over	flat	file	and	hierarchical	data	management	systems.

The	disadvantages	of	early	database	management	systems	include	duplicate	data,
difficulty	implementing	security,	inefficient	searching,	and	difficulty	maintaining	program
code	to	access	databases.	The	reason	programs	have	to	change	when	the	structure	of	the



database	changes	is	that	there	is	no	independence	between	the	logical	organization	of	a
database	and	the	way	the	data	is	physically	stored	on	tape	or	disk.	As	you	will	see	in	the
next	section,	the	structural	independence	of	the	logical	and	physical	organization	of	the
database	is	a	major	advance	in	data	management	provided	by	relational	database
management	systems.

The	Relational	Database	Revolution
Although	network	and	hierarchical	data	management	systems	improved	on	flat	file	data
management	systems,	it	was	not	until	1970	when	E.	F.	Codd	published	a	paper	on	the
design	of	a	new	type	of	database	that	data	management	technology	radically	changed.
There	are	many	important	aspects	of	relational	database	design	that	are	improvements
over	previous	data	management	models.	Relational	databases	were	based	on	a	formal
mathematical	model	that	used	relational	algebra	to	describe	data	and	their	relations.
Relational	databases	separated	the	logical	organization	of	data	structures	from	the	physical
storage	of	those	structures.	Codd	and	others	developed	rules	for	designing	relational
databases	that	eliminated	the	potential	for	some	types	of	data	anomalies,	such	as
inconsistent	data.

	Note

There	are	many	aspects	of	relational	databases	that	deserve	in-depth	review.	This
section,	however,	provides	only	a	minimal,	high-level	review	of	key	points.	For
more	on	relational	databases,	see	Michael	J.	Hernandez’s	Database	Design	for
Mere	Mortals:	A	Hands-On	Guide	to	Relational	Database	Design	(Addison
Wesley,	2003).

Relational	Database	Management	Systems
A	relational	database	management	system	is	an	application	made	up	of	multiple	programs
that	manage	data	and	allow	users	of	the	application	to	add,	update,	read,	and	delete	data.
Unlike	flat	file	data	stores	where	each	time	a	new	file	for	storage	was	created,	a
programmer	had	to	develop	a	program	to	manipulate	the	data,	relational	database
management	systems	are	designed	to	use	a	common	language	to	manipulate	data.	That
language	is	called	SQL	and	is	standardized	across	relational	database	management
systems.	Although	SQL	is	a	language	used	with	relational	databases,	it	is	sometimes	used
as	shorthand	for	“relational”	as	in	“SQL	database”	or	“NoSQL.”

Most	of	the	users	of	relational	database	management	systems	(RDBMSs)	do	not	work
directly	with	the	database	software.	Instead,	they	work	with	applications	created	by
software	developers	and	those	applications	interact	with	the	RDBMS.	To	explain
relational	databases,	it	helps	to	separately	describe	the	features	of	the	RDBMS	and	a
typical	database	application.



Organization	of	Relational	Database	Management	Systems

A	relational	database	management	system	is	a	set	of	programs	for	managing	data	and
programs	that	manipulate	that	data.	The	minimal	requirements	for	implementing	an
RDBMS	include	four	components:

•	Storage	management	programs

•	Memory	management	programs

•	Data	dictionary

•	Query	language

Together,	these	four	components	provide	the	core	data	management	and	data	retrieval
services	of	an	RDBMS.

Storage	Management	Programs

Database	systems	store	data	persistently	on	disks	and	flash	drives	for	long-term	storage.
Database	storage	may	be	directly	attached	to	a	server	or	other	device	running	a	database.
For	example,	a	laptop	running	the	MySQL	database	can	persistently	store	data	on	the	local
disk	drive.	In	large	enterprises,	IT	departments	may	offer	shared	storage.	In	such	cases,
large	disk	arrays	are	managed	as	a	single	resource	and	database	servers	can	save	data	to
and	read	data	from	these	storage	arrays	(see	Figure	1.9).

Figure	1.9	Local	storage	versus	shared	network	storage.

Regardless	of	what	type	of	storage	system	is	used,	the	RDBMS	has	to	track	where	each
piece	of	data	is	stored.	One	of	the	drawbacks	of	tape-based	storage	was	the	need	to
sequentially	search	a	tape	to	retrieve	data.	Disk	and	flash	devices	are	not	so	restricted.
This	has	allowed	RDBMS	designers	to	improve	retrieval	methods.



Like	flat	file–based	data	stores,	RDBMSs,	at	the	most	basic	level,	read	and	write	blocks	of
data.	Disk	technologies	made	it	easier	to	create	and	use	indexes	to	data.	Indexes	are	data
sets	that	contain	location	information	about	blocks	of	data	saved	by	the	database.	Indexes
are	based	on	some	attribute	contained	in	the	data,	such	as	a	customer	ID	or	customer
name.	Indexes	point	to	the	location	on	disk	or	flash	memory	that	contains	the	record
holding	information	about	the	entity	referenced	in	the	index.	For	example,	an	index	with
the	data	“Smith,	Jane	18277372”	would	indicate	that	the	block	of	data	with	information
about	Jane	Smith	is	located	at	disk	position	18277372.

The	storage	management	programs	in	an	RDBMS	do	much	more	than	keep	track	of	the
location	of	data.	They	can	also	optimize	the	placement	of	data	on	disks,	compress	data	to
save	storage,	and	make	copies	of	data	blocks	so	data	is	not	lost	in	case	a	data	block	on	a
disk	goes	bad.

Memory	Management	Programs

RDBMSs	are	also	responsible	for	managing	data	in	memory.	Often,	the	size	of	data	stored
in	a	database	is	larger	than	available	memory.	The	RDBMS	memory	management
components	are	responsible	for	bringing	and	keeping	data	in	memory	as	long	as	it	is
needed	and	deleting	it	when	it	is	no	longer	needed	or	to	make	space	for	additional	data.
Because	reading	data	from	memory	is	order	of	magnitudes	faster	than	reading	it	from	disk,
the	overall	performance	of	the	RDBMS	is	highly	influenced	by	its	ability	to	use	memory
efficiently	and	effectively.

Data	Dictionary

The	data	dictionary	is	the	part	of	the	RDBMS	that	keeps	track	of	information	about	the
structure	of	data	stored	in	the	database	(see	Figure	1.10).	This	includes	information	about
multiple	levels	of	database	structures,	including

•	Schemas

•	Tables

•	Columns

•	Indexes

•	Constraints

•	Views



Figure	1.10	Data	structures	managed	by	a	data	dictionary.

A	schema	is	a	collection	of	tables,	views,	indexes,	and	other	structures	that	are	all	related
to	a	set	of	data.	Typically,	you	would	have	separate	schemas	for	separate	major	types	of
applications,	such	as	a	schema	for	inventory	of	products,	for	accounts	receivable,	or	for
employees	and	their	benefits.

Tables	are	structures	that	have	data	about	entities.	Entities	describe	a	physical	or	logical
thing	related	to	the	business	or	operation	supported	by	an	RDBMS.	Entities	for	a	human
resources	schema	might	include	employees,	managers,	and	departments.	An	inventory
schema	might	include	warehouses,	products,	and	suppliers.

Tables	are	made	up	of	columns.	Columns	contain	a	single	unit	of	information.	An
employee	table	might	contain	the	following:	employee	first	name,	last	name,	street
address,	city,	state,	zip	code,	date	of	birth,	and	salary.	Columns	have	a	type	associated	with
them	to	indicate	the	kind	of	data	that	can	be	stored.	First	name,	for	example,	may	be
character	data,	date	of	birth	would	be	a	date	type,	and	salary	would	be	some	type	of
number	or	currency	type.

Indexes,	as	described	earlier,	are	data	structures	used	by	the	RDBMS	to	improve	the	speed
at	which	the	RDBMS	can	retrieve	data.	An	employee	table	would	probably	have	an	index
on	the	employee’s	last	name	to	enable	rapid	lookup	of	employee	data	by	last	name.

Constraints	are	rules	that	further	restrict	the	values	of	data	that	can	go	in	a	column.	Data
types	associated	with	columns	prevent	the	wrong	type	of	data	from	being	saved	to	a
column.	A	program	might	mistakenly	try	to	write	a	number	to	the	employee	first	name
column,	but	the	database	would	prevent	it.	A	negative	number	would	be	a	valid	number	or
currency	value	and	allowed	in	the	salary	column.	You	could	add	a	constraint	to	the	salary
column	to	specify	that	a	salary	must	be	greater	than	0.	Constraints	are	generally	based	on
business	rules	about	the	entities	and	operations	the	data	is	representing.

Views	are	collections	of	related	columns	from	one	or	more	tables	as	well	as	values
calculated	for	data	in	columns.	Views	can	be	used	to	restrict	the	data	that	a	user	sees.	For
example,	if	an	employee	table	has	salary	information,	you	can	create	a	view	that	includes



all	nonsalary	columns	from	the	employee	table.	Users	who	need	access	to	employees’
names	and	addresses	can	use	that	view	instead	of	the	employee	table.	Views	can	also
combine	data	from	multiple	tables,	such	as	a	table	with	employee	names	and	a	table	with
details	about	promotions	all	employees	have	received.

Query	Language

A	query	language	in	an	RDBMS	performs	two	types	of	operations:	defining	data
structures	and	manipulating	data.	SQL	is	the	query	language	of	relational	databases	and
includes	statements	for	performing	both	types	of	operations.

SQL	Data	Definition	Language

SQL	includes	statements	that	allow	programmers	to	create	and	delete	schemas,	tables,
views,	indexes,	constraints,	and	other	data	structures.	It	also	provides	statements	for
adding	and	removing	columns	from	tables,	and	granting	access	to	read	or	write	tables.	The
following	is	a	sample	statement	for	creating	a	schema:

CREATE	SCHEMA	humresc

The	following	is	a	sample	statement	for	creating	a	table:
Click	here	to	view	code	image

CREATE	TABLE	employees	(

								emp_id		int,

								emp_first_name	varchar(25),

								emp_last_name	varchar(25),

								emp_address	varchar(50),

								emp_city	varchar(50),

								emp_state	varchar(2),

								emp_zip	varchar(5),

								emp_position_title	varchar(30)

								)

The	specifics	of	these	statements	are	not	important	at	this	point,	but	they	do	show	the
declarative	style	of	SQL.	Instead	of	telling	the	computer	how	to	create	a	data	structure,
such	as	creating	a	free	block	of	data	at	a	particular	address,	you	tell	the	RDBMS	what	kind
of	data	structure	you	want.	In	the	first	case,	the	statement	creates	a	schema	with	the	name
humresc	(short	for	human	resources).	In	the	second	statement,	a	table	called	employee
is	created	with	eight	columns.	Varchar	is	a	variable-length	character	type.	The	number
with	each	varchar	term	is	the	maximum	length	of	the	column.	Int,	short	for	integer,
indicates	that	the	emp_id	is	an	integer.

SQL	Data	Manipulation	Language

Once	you	have	a	schema	with	tables,	you	can	start	to	add	data	and	manipulate	it.	The	SQL
data	manipulation	language	includes	statements	for

•	Inserting	data

•	Updating	data

•	Deleting	data

•	Selecting	(that	is,	reading)	data



The	following	is	a	sample	INSERT	statement	for	the	employee	table:
Click	here	to	view	code	image

INSERT	INTO	employee	(emp_id,	first_name,	last_name)

		VALUES	(1234,	‘Jane’,	‘Smith’)

This	statement	adds	a	row	to	the	employee	table	with	an	emp_id	of	1234,	a	first	name
of	'Jane',	and	a	last	name	of	'Smith'.	The	other	columns	of	the	table	would	be
NULL,	a	special	data	value	used	to	indicate	the	column	has	no	value	specified.

Updating	and	deleting	statements	allow	users	to	change	values	in	existing	rows	or	remove
existing	rows.

To	read	data	from	a	database,	use	the	SELECT	statement.	For	example:
Click	here	to	view	code	image

SELECT	emp_id,	first_name,	last_name

FROM				employee

would	produce	output	such	as
Click	here	to	view	code	image

emp_id								first_name													last_name

–––––––––––––––––––

1234										Jane																			Smith

The	data	manipulation	data	statements	are	capable	of	expressing	complex	operations	and
targeting	specific	rows	of	data	using	fairly	complex	logic	in	the	SELECT,	UPDATE,	and
DELETE	statements.

Relational	database	management	systems	provide	storage	management,	memory
management,	a	data	dictionary,	and	a	query	language.	Although	programmers	and
software	developers	may	be	comfortable	working	directly	with	SQL,	database	applications
allow	any	computer	user	to	work	with	relational	databases.

Organization	of	Applications	Using	Relational	Database	Management	Systems

Working	with	broad	concepts,	you	can	think	of	business	applications	that	use	relational
databases	as	having	three	major	components:

•	A	user	interface

•	Business	logic

•	Database	code

The	user	interface	is	designed	to	support	the	workflow	of	users.	For	example,	a	person
using	a	human	resources	application	might	need	to	look	up	an	employee’s	salary,	change
an	employee’s	position,	or	add	a	new	employee.	The	user	works	with	menus	and	other
user	interface	abstractions	to	invoke	data	entry	forms,	update	the	data	as	needed,	and	save
changes	to	the	database.	There	is	no	exposure	to	SQL	or	to	the	RDBMS.

The	business	logic	is	the	part	of	the	program	that	performs	calculations	and	checks
business	rules.	A	business	rule,	for	example,	might	check	the	age	of	an	employee	to	verify
the	employee	is	over	21	before	assigning	the	position	“bartender”	to	that	employee.
Business	rules	can	be	implemented	in	programming	languages,	such	as	Python,	Visual



Basic,	or	Java,	or	in	SQL.

Database	code	is	the	set	of	SELECT,	INSERT,	UPDATE,	and	DELETE	(and	so	on)
statements	that	perform	operations	on	the	database.	The	statements	correspond	to	the
operations	that	users	can	perform	through	the	user	interface.

Database	applications	make	the	functionality	of	relational	databases,	and	other	types	of
databases,	accessible	to	nonprogrammers.

Limitations	of	Relational	Databases

Relational	databases	have	been	the	dominant	type	of	database	used	for	database
applications	for	decades.	Relational	databases	addressed	many	of	the	limitations	of	flat
file–based	data	stores,	hierarchical	databases,	and	network	databases.	With	the	advent	of
the	Web,	however,	the	limitations	of	relational	databases	became	increasingly	problematic.

Companies	such	as	Google,	LinkedIn,	Yahoo!,	and	Amazon	found	that	supporting	large
numbers	of	users	on	the	Web	was	different	from	supporting	much	smaller	numbers	of
business	users,	even	those	in	large	enterprises	with	thousands	of	users	on	a	single	database
application.

Web	application	developers	working	with	large	volumes	of	data	and	extremely	large
numbers	of	users	found	they	needed	to	support

•	Large	volumes	of	read	and	write	operations

•	Low	latency	response	times

•	High	availability

These	requirements	were	difficult	to	realize	using	relational	databases.	These	were	not	the
first	database	users	who	needed	to	improve	performance.	The	problem	is	that	techniques
used	in	the	past	did	not	work	at	the	scale	of	operations,	users,	and	data	that	businesses	now
demanded.	In	the	past,	if	a	relational	database	was	running	slowly,	it	could	be	upgraded
with	more	CPUs,	additional	memory,	or	faster	storage	devices.	This	is	a	costly	option	and
works	only	to	a	point.	There	are	limits	to	how	many	CPUs	and	memory	can	be	supported
in	a	single	server.	Database	designers	could	redesign	the	database	schema	to	use
techniques	that	would	improve	performance	but	at	the	cost	of	increasing	the	risk	of	data
anomalies.	(These	techniques	are	known	as	denormalization.)

Another	option	is	to	use	multiple	servers	with	a	relational	database.	This	is	possible,	but
operating	a	single	relational	database	management	system	over	multiple	servers	is	a
complex	operation.	This	makes	long-term	management	difficult.	There	are	also
performance	issues	when	supporting	a	series	of	operations	that	run	on	different	servers	but
all	have	to	complete	successfully	or	all	fail.	These	sets	of	operations	that	succeed	or	fail
together	are	known	as	transactions.	As	the	number	of	servers	in	a	database	cluster
increases,	the	cost	of	implementing	transactions	increases.

In	spite	of	these	difficulties,	some	companies,	such	as	Facebook,	use	the	MySQL
relational	database	for	some	of	its	operations.	They,	however,	have	a	dedicated	MySQL
staff	that	are	pushing	and	expanding	the	limits	of	MySQL.	Most	organizations	do	not	have
such	resources.	For	those	organizations,	if	relational	databases	are	not	meeting	needs,	then



it	may	be	time	to	consider	a	NoSQL	database.

Motivations	for	Not	Just/No	SQL	(NoSQL)	Databases
Pressing	real-world	problems	motivated	the	data	management	professionals	and	software
designers	who	created	NoSQL	databases.	Web	applications	serving	tens	of	thousands	or
more	users	were	difficult	to	implement	with	relational	databases.	Four	characteristics	of
data	management	systems	that	are	particularly	important	for	large-scale	data	management
tasks	are

•	Scalability

•	Cost

•	Flexibility

•	Availability

Depending	on	the	needs	of	a	particular	application,	some	of	these	characteristics	may	be
more	important	than	others.

Scalability
Scalability	is	the	ability	to	efficiently	meet	the	needs	for	varying	workloads.	For	example,
if	there	is	a	spike	in	traffic	to	a	website,	additional	servers	can	be	brought	online	to	handle
the	additional	load.	When	the	spike	subsides	and	traffic	returns	to	normal,	some	of	those
additional	servers	can	be	shut	down.	Adding	servers	as	needed	is	called	scaling	out.

When	you	work	with	relational	databases,	it	is	often	challenging	to	scale	out.	Additional
database	software	may	be	needed	to	manage	multiple	servers	working	as	a	single	database
system.	Oracle,	for	example,	offers	Oracle	Real	Applications	Clusters	(RAC)	for	cluster-
based	databases.	Additional	database	components	can	add	complexity	and	cost	to
operations.

Alternatively,	database	administrators	could	choose	to	scale	up,	which	is	upgrading	an
existing	database	server	to	add	additional	processors,	memory,	network	bandwidth,	or
other	resources	that	would	improve	performance	on	a	database	management	system	or
replacing	an	existing	server	with	one	with	more	CPUs,	memory,	and	so	on	(see	Figure
1.11).



Figure	1.11	Scaling	up	versus	scaling	out.

Scaling	out	is	more	flexible	than	scaling	up.	Servers	can	be	added	or	removed	as	needed
when	scaling	up.	NoSQL	databases	are	designed	to	utilize	servers	available	in	a	cluster
with	minimal	intervention	by	database	administrators.	As	new	servers	are	added	or
removed,	the	NoSQL	database	management	system	adjusts	to	use	the	new	set	of	available
servers.	Scaling	up	by	replacing	a	server	requires	migrating	the	database	management	to	a
new	server.	Scaling	up	by	adding	resources	would	not	require	a	migration,	but	would
likely	require	some	downtime	to	add	hardware	to	the	database	server.

Cost
The	cost	of	database	licenses	is	an	obvious	consideration	for	any	business	or	organization.
Commercial	software	vendors	employ	a	variety	of	licensing	models	that	include	charging
by	the	size	of	the	server	running	the	RDBMS,	by	the	number	of	concurrent	users	on	the
database,	or	by	the	number	of	named	users	allowed	to	use	the	software.	Each	of	these
models	presents	challenges	for	users	of	the	database	system.

Web	applications	may	have	spikes	in	demand	that	increase	the	number	of	users	utilizing	a
database	at	any	time.	Should	users	of	the	RDBMS	pay	for	the	number	of	peak	users	or	the
number	of	average	users?	How	should	they	budget	for	RDBMS	licenses	when	it	is
difficult	to	know	how	many	users	will	be	using	the	system	six	months	or	a	year	from	now?
Users	of	open	source	software	avoid	these	issues.	The	software	is	free	to	use	on	as	many
servers	of	whatever	size	needed	because	open	source	developers	do	not	typically	charge
fees	to	run	their	software.	Fortunately	for	NoSQL	database	users,	the	major	NoSQL
databases	are	available	as	open	source.

Third-party	companies	provide	commercial	support	services	for	open	source	NoSQL
databases	so	businesses	can	have	software	support	as	they	do	with	commercial	relational
databases.



Flexibility
Relational	database	management	systems	are	flexible	in	the	range	of	problems	that	can	be
addressed	using	relational	data	models.	Industries	as	different	as	banking,	manufacturing,
retail,	energy,	and	health	care	all	make	use	of	relational	databases.	There	is,	however,
another	aspect	of	relational	databases	that	is	less	flexible.

Database	designers	expect	to	know	at	the	start	of	a	project	all	the	tables	and	columns	that
will	be	needed	to	support	an	application.	It	is	also	commonly	assumed	that	most	of	the
columns	in	a	table	will	be	needed	by	most	of	the	rows.	For	example,	all	employees	will
have	names	and	employee	IDs.	There	are	times	that	the	problems	modeled	are	less
homogeneous	than	that.

Consider	an	e-commerce	application	that	uses	a	database	to	track	attributes	of	products.
Computer	products	would	have	attributes	such	as	CPU	type,	amount	of	memory,	and	disk
size.	Microwave	ovens	would	have	attributes	such	as	size	and	power.	A	database	designer
could	create	separate	tables	for	each	type	of	product	or	define	a	table	with	as	many
different	product	attributes	as	she	could	imagine	at	the	time	she	designs	the	database.

Unlike	relational	databases,	some	NoSQL	databases	do	not	require	a	fixed	table	structure.
For	example,	in	a	document	database,	a	program	could	dynamically	add	new	attributes	as
needed	without	having	to	have	a	database	designer	alter	the	database	design.

	Refer	to	Chapter	2,	“Distributed	Systems	and	the	Variety	of	NoSQL	Databases,”
for	more	information	on	working	with	a	document	database.

Availability
Many	of	us	have	come	to	expect	websites	and	web	applications	to	be	available	whenever
we	want	to	use	them.	If	your	favorite	social	media	or	e-commerce	site	were	frequently
down	when	you	tried	to	use	it,	you	would	likely	start	looking	for	a	new	favorite.

NoSQL	databases	are	designed	to	take	advantage	of	multiple,	low-cost	servers.	When	one
server	fails	or	is	taken	out	of	service	for	maintenance,	the	other	servers	in	the	cluster	can
take	on	the	entire	workload	(see	Figure	1.12).	Performance	may	be	somewhat	less,	but	the
application	will	still	be	available.	If	a	database	is	running	on	a	single	server	and	it	fails,	the
application	will	become	unavailable	unless	there	is	a	backup	server.	Backup	servers	keep
replicated	copies	of	data	from	the	primary	server	in	case	the	primary	server	fails.	If	that
happens,	the	backup	can	take	on	the	workload	that	the	primary	server	had	been
processing.	This	can	be	an	inefficient	configuration	because	a	server	is	kept	in	reserve	in
the	event	of	a	failure	but	otherwise	is	not	helping	to	process	the	workload.



Figure	1.12	High-availability	NoSQL	clusters	run	multiple	servers.	If	one	fails,	the
others	can	continue	to	support	applications.

Database	designers	turned	to	NoSQL	systems	when	existing	RDBMSs	failed	to	meet	their
needs.	Scalability,	cost,	flexibility,	and	availability	are	increasingly	important	concerns	for
application	developers,	and	their	choice	of	database	management	systems	reflects	this.

Summary
Data	management	systems	have	evolved	to	meet	changing	application	requirements
subject	to	the	constraints	of	the	existing	compute	and	storage	technologies	at	their	times.
Early	data	management	systems	were	based	on	records	stored	in	flat	files.	These	provided
a	basic	capability	of	persistent	storage	of	data,	but	suffered	from	a	number	of	drawbacks,
including	slow	search	and	retrieval	operations,	redundant	data,	and	poor	security.
Hierarchical	databases	were	an	improvement	over	flat	files.	These	systems	allowed	for
parent-child	relations	between	records.	This	helped	reduce,	but	not	eliminate,	the	potential
for	redundant	data.	Network	databases	further	improved	on	hierarchical	databases	by
allowing	for	multiple	parent–multiple	child	relations.	These	are	commonly	known	as
many-to-many	relations.

The	development	of	relational	databases	represented	a	radical	improvement	over	flat	file,
hierarchical,	and	network	databases.	Relational	databases	are	based	on	a	sound
mathematical	foundation.	Rules	for	designing	relational	databases	eliminate	the	potential
for	a	range	of	data	anomalies,	such	as	inconsistent	data.	Relational	databases	virtually
replaced	all	other	types	of	data	management	systems	in	business	applications.

In	spite	of	the	widespread	successful	use	of	relational	databases,	the	exponential	growth	of



e-commerce	and	social	media	led	to	the	need	for	data	management	systems	that	were
scalable,	low	cost,	flexible,	and	highly	available.	Achieving	some	of	these	objectives	with
relational	databases	is	possible	in	some	cases,	but	often	with	difficulty	and	potentially	high
costs.

NoSQL	databases	were	created	to	address	the	limitations	of	relational	database
management	systems.	NoSQL	databases	are	unlikely	to	displace	relational	databases	the
way	RDBMSs	displaced	flat	file,	hierarchical,	and	network	databases.	The	two	will	likely
complement	each	other	and	adapt	features	from	each	other	as	they	both	continue	to	be
applied	to	increasingly	complex	and	demanding	applications.

Case	Study
Throughout	this	book,	you	will	develop	a	case	study	around	a	set	of	applications	needed
by	a	transportation	management	company.	The	company,	TransGlobal	Transport	and
Shipping,	is	a	fictional	company	with	realistic	requirements.	As	you	examine	each	of	the
major	types	of	NoSQL	databases,	you	will	consider	how	each	can	be	applied	to	a	specific
application	for	TransGlobal	Transport	and	Shipping.

The	four	major	applications	are

•	Building	a	shipment	order

•	Managing	customer	manifests,	or	a	detailed	description	of	items	in	a	shipment

•	Maintaining	a	customer	database

•	Optimizing	transportation	routes

As	you	will	see,	different	sets	of	requirements	can	demand	different	types	of	database
systems.	In	this	case,	the	four	types	of	NoSQL	databases	will	be	used	to	meet	the
information	management	needs	of	TransGlobal	Transport	and	Shipping.

	Refer	to	Chapter	2,	“Distributed	Systems	and	the	Variety	of	NoSQL	Databases,”	to
learn	more	about	the	four	types	of	NoSQL	databases.

Review	Questions
1.	If	the	layout	of	records	in	a	file	data	management	system	changes,	what	else	must
change?

2.	What	kind	of	relation	is	supported	in	a	hierarchical	data	management	system?

a.	Parent-child

b.	Many-to-many

c.	Many-to-many-to-many

d.	No	relations	are	allowed.

3.	What	kind	of	relation	is	supported	in	network	data	management	systems?

a.	Parent-child

b.	Many-to-many



c.	Both	parent-child	and	many-to-many

d.	No	relations	are	allowed.

4.	Give	an	example	of	a	SQL	data	manipulation	language	statement.

5.	Give	an	example	of	a	SQL	data	definition	language	statement.

6.	What	is	scaling	up?

7.	What	is	scaling	out?

8.	Are	NoSQL	databases	likely	to	displace	relational	databases	as	relational	databases
displaced	earlier	types	of	data	management	systems?

9.	Name	four	required	components	of	a	relational	database	management	system
(RDBMS).

10.	Name	three	common	major	components	of	a	database	application.

11.	Name	four	motivating	factors	for	database	designers	and	other	IT	professionals	to
develop	and	use	NoSQL	databases.
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2.	Variety	of	NoSQL	Databases

“Nothing	is	pleasant	that	is	not	spiced	with	variety.”

—FRANCIS	BACON

Topics	Covered	In	This	Chapter

Data	Management	with	Distributed	Databases

ACID	and	BASE

A	Variety	of	Distributed	Databases

NoSQL	databases	solve	a	wide	variety	of	data	management	problems	by	offering	several
types	of	solutions.	NoSQL	databases	are	commonly	designed	to	use	multiple	servers,	but
this	is	not	a	strict	requirement.	When	systems	run	on	multiple	servers,	instead	of	on	just
one	computer,	they	are	known	as	distributed	systems	(see	Figure	2.1).

Figure	2.1	Single	server	versus	distributed	system.

This	chapter	starts	with	a	review	of	common	features	and	challenges	faced	by	distributed
databases.	Because	NoSQL	databases	are	often	used	in	distributed	environments,	this
chapter	spends	some	time	examining	the	challenges	of	using	multiple	servers	to	manage
data	in	a	single	logical	database.	Much	of	what	is	discussed	in	the	following	section	on
distributed	systems	does	not	apply	if	you	run	your	NoSQL	database	on	a	single	server.

Chapter	1,	“Different	Databases	for	Different	Requirements,”	introduced	the	motivations
for	NoSQL,	including	the	need	for	scalability,	flexibility,	cost	control,	and	availability.	A
common	way	to	meet	these	needs	is	by	designing	data	management	systems	to	work
across	multiple	servers,	that	is,	as	a	distributed	system.

In	addition	to	the	other	benefits	of	NoSQL	databases,	distributed	systems	offer	some	level
of	operational	simplicity.	You	can	add	and	remove	servers	as	needed	rather	than	adding	or
removing	memory,	CPUs,	and	so	on	from	a	single	server.	Also,	some	NoSQL	databases
include	features	that	automatically	detect	when	a	server	is	added	or	removed	from	a
cluster.

Many	NoSQL	databases	take	advantage	of	distributed	systems,	but	they	may	employ
different	data	management	strategies.	There	are	four	major	types	of	key	NoSQL	databases:



•	Key-value	databases,	for	example,	work	with	a	simple	model	based	on	keys,	which
are	identifiers	for	looking	up	data,	and	values,	the	data	that	is	associated	with	keys.

•	Document	databases	also	use	identifiers	to	look	up	values,	but	the	values	are
typically	more	complex	than	those	typically	stored	in	key-value	databases.
Documents	are	collections	of	data	items	stored	together	in	a	flexible	structure.

•	Column	family	databases	have	some	of	the	characteristics	of	relational	databases,
such	as	organizing	data	into	collections	of	columns.	Column	family	databases	trade
some	of	the	functionality	of	relational	databases,	such	as	the	ability	to	link	or	join
tables,	for	improved	performance.

•	Graph	databases	are	well	suited	to	model	objects	and	relationships	between	objects.

Because	distributed	systems	are	the	foundation	of	many	NoSQL	databases,	it	is	important
to	explore	some	of	the	issues	associated	with	managing	data	in	a	distributed	system.	After
I	outline	the	challenges	and	limitations	associated	with	distributed	databases,	you	will
learn	about	key-value,	document,	column	family	store,	and	graph	databases	and	compare
them	with	relational	databases.

Data	Management	with	Distributed	Databases
Before	getting	into	the	details	of	distributed	databases,	let’s	look	at	a	simplified	view	of
databases	in	general.	Databases	are	designed	to	do	two	things:	store	data	and	retrieve	data.
To	meet	these	objectives,	the	database	management	systems	must	do	three	things:

•	Store	data	persistently

•	Maintain	data	consistency

•	Ensure	data	availability

In	this	section,	you	will	learn	how	distributed	systems	meet	these	objectives.	You	will	also
learn	about	limitations	of	distributed	systems,	with	particular	attention	to	balancing
consistency,	availability,	and	protection	for	network	failures	that	leaves	some	servers	in	a
cluster	unreachable.

Store	Data	Persistently
Data	must	be	stored	persistently;	that	is,	it	must	be	stored	in	a	way	that	data	is	not	lost
when	the	database	server	is	shut	down.	If	data	were	only	stored	in	memory—that	is,	RAM
—then	it	would	be	lost	when	power	to	the	memory	is	lost.	Only	data	that	is	stored	on	disk,
flash,	tape,	or	other	long-term	storage	is	considered	persistently	stored,	as	shown	in	Figure
2.2.



Figure	2.2	Persistently	stored	data	is	stored	on	disk,	flash,	or	other	long-term	storage
medium.

Data	must	be	available	for	retrieving.	You	can	retrieve	persistently	stored	data	in	a	number
of	different	ways.	Data	stored	on	a	flash	device	is	read	directly	from	its	storage	location.
The	movable	parts	of	the	disk	and	tape	drives	are	put	in	position	so	that	the	read	heads	of
the	device	are	over	the	block	of	data	to	be	read.

You	could	design	your	database	to	simply	start	at	the	beginning	of	a	data	file	and	search
for	the	record	you	need	when	a	read	operation	is	performed.	This	would	lead	to	painfully
long	response	times	and	a	waste	of	valuable	compute	resources.	Rather	than	scan	the	full
table	for	the	data,	you	can	use	database	indexes,	which	are	like	indexes	at	the	end	of	a
book,	to	quickly	find	the	location	of	a	particular	piece	of	data.	Indexes	are	a	central
element	of	databases.

Maintain	Data	Consistency
It	is	important	to	ensure	that	the	correct	data	is	written	to	a	persistent	storage	device.	If	the
write	or	read	operation	does	not	accurately	record	or	retrieve	data,	the	database	will	not	be
of	much	use.	This	is	rarely	a	problem	unless	there	is	a	hardware	failure.	A	more	common
issue	with	reading	and	writing	occurs	when	two	or	more	people	are	using	the	database	and
want	to	use	the	same	data	at	the	same	time.

Consider	a	small	business	with	two	partners,	Alice	and	Bob.	Alice	is	using	a	database
application	to	update	the	company’s	financial	records.	She	has	just	received	a	number	of
payments	from	customers	and	posted	them	to	the	accounting	system.	The	process	requires
two	steps:	updating	the	customer’s	balance	due	and	updating	the	total	funds	available	to
the	business.	At	the	same	time	Alice	is	doing	that,	Bob	is	placing	an	order	for	more
supplies.	Bob	wants	to	make	sure	there	are	sufficient	funds	before	he	commits	to	an	order,
so	he	checks	the	balance	of	total	funds	available.	What	balance	will	Bob	see?

Ideally,	Bob	would	see	the	balance	of	funds	available	that	includes	the	most	recent
payments.	If	he	issues	his	query	while	Alice	is	updating	the	customer	balance	and	total



funds	available,	then	Bob	would	see	the	balance	without	the	new	payments.	The	reason
for	this	is	that	the	database	is	designed	to	be	consistent.	Bob	could	see	the	balance	before
or	after	Alice	updates	both	the	customer	balance	record	and	the	funds	available	record,	but
never	when	only	one	of	the	two	has	been	updated	(see	Figure	2.3).

Figure	2.3	Data	should	reflect	a	consistent	state.

It	would	be	inconsistent	for	the	database	to	return	results	that	indicated	a	customer	had
paid	the	balance	due	on	her	account	without	also	including	that	payment	in	the	funds
available	record.	Relational	database	systems	are	designed	to	support	these	kinds	of
multistep	procedures	that	have	to	be	treated	as	a	single	operation	or	transaction.

Ensure	Data	Availability
Data	should	be	available	whenever	it	is	needed.	This	is	difficult	to	guarantee.	Hardware
may	fail.	An	operating	system	on	the	database	server	may	need	patching.	You	might	need
to	install	a	new	version	of	the	database	management	system.	A	database	that	runs	on	a
single	server	can	be	unavailable	for	a	large	number	of	reasons.

One	way	to	avoid	the	problem	of	an	unavailable	database	server	is	to	have	two	database
servers:	One	is	used	for	updating	data	and	responding	to	queries	while	the	other	is	kept	as
a	backup	in	case	the	first	server	fails.	The	server	that	is	used	for	updating	and	responding
to	queries	is	called	the	primary	server,	and	the	other	is	the	backup	server.	The	backup
server	starts	with	a	copy	of	the	database	that	is	on	the	primary	server.	When	the	database
is	in	use,	any	changes	to	the	primary	database	are	reflected	in	the	backup	database	as	well.

For	example,	if	Alice	and	Bob’s	company	used	a	backup	database	server,	then	when	Alice
updated	a	customer’s	account,	those	same	changes	would	be	made	to	the	backup	server.
This	would	require	the	database	to	write	data	twice:	once	to	the	disk	used	by	the	primary
server	and	then	one	more	time	to	the	disk	used	by	the	backup	server	in	an	operation
known	as	a	two-phase	commit	(see	Figure	2.4).



Figure	2.4	Two-phase	commits	are	complete	only	when	operations	on	both	databases
are	complete.

Recall	that	a	database	transaction	is	an	operation	made	up	of	multiple	steps	and	that	all
steps	must	complete	for	the	transaction	to	complete.	If	any	one	of	the	multiple	steps	fails,
then	the	entire	transaction	fails.	Updating	two	databases	makes	every	update	a	multistep
process.

When	the	company	used	a	single	server,	there	was	just	one	step	in	updating	the	number	of
a	particular	product	in	the	warehouse.	For	example,	the	number	of	black	desk	chairs	could
be	updated	from	100	to	125	in	a	single	operation.	Now	that	the	company	is	using	a	backup
database,	the	number	of	chairs	would	have	to	be	updated	on	the	primary	server	and	the
backup	server.

The	process	for	updating	both	databases	is	similar	to	other	multistep	transactions:	Both
databases	must	succeed	for	the	operation	to	succeed.	If	the	primary	database	is	updated	to
reflect	125	black	desk	chairs	in	the	warehouse	but	the	update	fails	on	the	backup	database,
then	the	primary	database	resets	the	chair	count	back	to	100.	The	primary	and	the	backup
databases	must	be	consistent.	This	is	an	example	of	a	two-phase	commit.	In	the	first	phase
of	the	operation,	the	database	writes,	or	commits,	the	data	to	the	disk	of	the	primary
server.	In	the	second	phase	of	the	operation,	the	database	writes	data	to	the	disk	of	the
backup	server.

With	data	consistent	on	two	database	servers,	you	can	be	sure	that	if	the	primary	database
fails,	you	can	switch	to	using	the	backup	database	and	know	that	you	have	the	same	data
on	both.	When	the	primary	database	is	back	online,	the	first	thing	it	does	is	to	update	itself
so	that	all	changes	made	to	the	backup	database	while	the	primary	database	was	down	are
made	to	the	primary	database.	The	primary	database	is	usable	when	it	is	consistent	with
the	backup	database.

The	advantage	of	using	two	database	servers	is	that	it	enables	the	database	to	remain
available	even	if	one	of	the	servers	fails.	This	is	helpful	but	is	not	without	costs.	Database



applications,	and	the	people	who	use	them,	must	wait	while	a	write	operation	completes.

Because,	in	the	case	of	a	two-phase	commit,	a	write	operation	is	not	complete	until	both
databases	are	updated	successfully,	the	speed	of	the	updates	depends	on	the	amount	of
data	written,	the	speed	of	the	disks,	the	speed	of	the	network	between	the	two	servers,	and
other	design	factors	(see	Figure	2.5).

Figure	2.5	Consistency	and	availability	require	more	time	to	complete	transactions	in
high-availability	environments.

	Note

You	can	have	consistent	data,	and	you	can	have	a	high-availability	database,	but
transactions	will	require	longer	times	to	execute	than	if	you	did	not	have	those
requirements.

Consistency	of	Database	Transactions

The	term	consistency	with	respect	to	database	transactions	refers	to	maintaining	a	single,
logically	coherent	view	of	data.	When	you	transfer	$100	from	your	savings	account	to
your	checking	account,	the	bank’s	software	may	subtract	$100	from	your	savings	account
in	one	step	and	add	$100	to	your	checking	account	in	another.	At	no	time	would	it	be
correct	to	say	you	have	$100	less	in	your	savings	account	without	also	reflecting	an
additional	$100	in	your	checking	account.

Consistency	has	also	been	used	to	describe	the	state	of	copies	of	data	in	distributed
systems.	For	example,	if	two	database	servers	each	have	copies	of	data	about	products
stored	in	a	warehouse,	it	is	said	they	are	consistent	if	they	have	the	same	data.	This	is
different	from	the	kind	of	consistency	that	is	needed	when	updating	data	in	a	transaction.

	Note

To	avoid	confusion	going	forward,	let’s	define	a	database	server	as	a	computer	that
runs	database	management	software.	That	database	management	software	will	be
called	a	database	management	system.

Database	management	systems	can	run	on	one	or	more	computers.	When	the
database	management	system	is	running	on	multiple	computers,	it	is	called	a
distributed	database.	The	term	database	in	this	context	is	synonymous	with
database	management	system.



Availability	and	Consistency	in	Distributed	Databases

You	might	be	starting	to	see	some	of	the	challenges	to	maintaining	a	database
management	system	that	uses	multiple	servers.	When	two	database	servers	must	keep
consistent	copies	of	data,	they	incur	longer	times	to	complete	a	transaction.	This	is
acceptable	in	applications	that	require	both	consistency	and	high	availability	at	all	times.
Financial	systems	at	a	bank,	for	example,	fall	into	this	category.	There	are	applications,
however,	in	which	the	fast	database	operations	are	more	important	than	maintaining
consistency	at	all	times.	For	example,	an	e-commerce	site	might	want	to	maintain	copies
of	your	shopping	cart	on	two	different	database	servers.	If	one	of	the	servers	fails,	your
cart	is	still	available	on	the	other	server.

Imagine	you	are	programming	the	user	interface	for	an	e-commerce	site.	How	long	should
the	customer	wait	after	clicking	on	an	“Add	to	My	Cart”	button?	Ideally,	the	interface
would	respond	immediately	so	the	customer	could	keep	shopping.	If	the	interface	feels
slow	and	sluggish,	the	customer	might	switch	to	another	site	with	faster	performance.	In
this	case,	speed	is	more	important	than	having	consistent	data	at	all	times.

One	way	to	deal	with	this	problem	is	to	write	the	updates	to	one	database	and	then	let	the
program	know	the	data	has	been	saved.	The	interface	can	indicate	to	the	customer	that	the
product	has	been	added	to	the	cart.	While	the	customer	receives	the	message	that	the	cart
has	been	updated,	the	database	management	system	is	making	a	copy	of	the	newly
updated	data	and	writing	it	to	another	server.	There	is	a	brief	period	of	time	when	the
customer’s	cart	on	the	two	servers	is	not	consistent,	but	the	customer	is	able	to	continue
shopping	anyway.	In	this	case,	we	are	willing	to	tolerate	inconsistency	for	a	brief	period	of
time	knowing	that	eventually	the	two	carts	will	have	the	same	products	in	it.	This	is
especially	true	with	online	shopping	carts	because	there	is	only	a	small	chance	someone
else	would	read	that	customer’s	cart	data	anyway	(see	Figure	2.6).



Figure	2.6	Data	structures,	such	as	shopping	carts,	can	be	inconsistent	for	short
periods	of	time	without	adversely	affecting	system	effectiveness.	In	this	example,	Server

2	is	inconsistent	with	Server	1	until	step	3	is	complete.

Balancing	Response	Times,	Consistency,	and	Durability
NoSQL	databases	often	implement	eventual	consistency;	that	is,	there	might	be	a	period	of
time	where	copies	of	data	have	different	values,	but	eventually	all	copies	will	have	the
same	value.	This	raises	the	possibility	of	a	user	querying	the	database	and	getting	different
results	from	different	servers	in	a	cluster.	For	example,	assume	Alice	has	updated	a
customer’s	address	in	a	database	that	implements	eventual	consistency.	Immediately	after
Alice	updates	the	address,	Bob	reads	that	customer’s	address.	Will	he	see	the	new	or	old
address?	The	answer	is	not	as	simple	as	it	is	when	working	with	a	relational	database	and
strict	consistency.

NoSQL	databases	often	use	the	concept	of	quorums	when	working	with	reads	and	writes.
A	quorum	is	the	number	of	servers	that	must	respond	to	a	read	or	write	operation	for	the
operation	to	be	considered	complete.

When	a	read	is	performed,	the	NoSQL	database	reads	data	from,	potentially,	multiple
servers.	Most	of	the	time,	all	of	the	servers	will	have	consistent	data.	However,	while	the
database	copies	data	from	one	of	the	servers	to	the	other	servers	storing	replicas,	the
replica	servers	may	have	inconsistent	data.

One	way	to	determine	the	correct	response	to	any	read	operation	is	to	query	all	servers
storing	that	data.	The	database	counts	the	number	of	distinct	response	values	and	returns
the	one	that	meets	or	exceeds	a	configurable	threshold.	For	example,	assume	data	in	a
NoSQL	database	is	replicated	to	five	servers	and	you	have	set	the	read	threshold	to	3	(see



Figure	2.7).	As	soon	as	three	servers	respond	with	the	same	response,	the	result	is	returned
to	the	user.

Figure	2.7	NoSQL	databases	can	mitigate	the	risk	of	inconsistent	data	by	having
servers	vote	on	the	correct	response	to	a	query.

You	can	vary	the	threshold	to	improve	response	time	or	consistency.	If	the	read	threshold
is	set	to	1,	you	get	a	fast	response.	The	lower	the	threshold,	the	faster	the	response	but	the
higher	the	risk	of	returning	inconsistent	data.

In	the	preceding	example,	if	you	set	the	read	threshold	to	5,	you	would	guarantee
consistent	reads.	In	that	case,	the	query	would	return	only	after	all	replicas	have	been
updated	and	could	lead	to	longer	response	times.

Just	as	you	can	adjust	a	read	threshold	to	balance	response	time	and	consistency,	you	can
also	alter	a	write	threshold	to	balance	response	time	and	durability.	Durability	is	the
property	of	maintaining	a	correct	copy	of	data	for	long	periods	of	time.	A	write	operation
is	considered	complete	when	a	minimum	number	of	replicas	have	been	written	to
persistent	storage.

	Caution

If	the	write	threshold	is	set	to	1,	then	the	write	is	complete	once	a	single	server
writes	the	data	to	persistent	storage.	This	leads	to	fast	response	times	but	poor
durability.	If	that	one	server	or	its	storage	system	fails,	the	data	is	lost.

Assume	you	are	working	the	five-server	cluster	described	previously.	If	data	is	replicated
across	three	servers	and	you	set	the	write	threshold	to	3,	then	all	three	copies	would	be



written	to	persistent	storage	before	the	write	completes.	If	you	set	the	threshold	to	2,	your
data	would	be	written	to	two	servers	before	completing	the	write	operation	and	the	third
copy	would	be	written	at	a	later	time.

Setting	the	write	threshold	to	at	least	2	provides	for	durability	while	setting	the	number	of
replicas	higher	than	the	threshold	helps	improve	durability	without	increasing	the	response
time	of	write	operations.

Consistency,	Availability,	and	Partitioning:	The	CAP	Theorem
This	book	is	one	of	many	books	written	“for	mere	mortals,”	that	is,	people	who	are	not
necessarily	specialists	in	the	subject	area.	In	these	books,	technical	terminology	is	kept	to
a	minimum	and	discussions	are	designed	to	provide	practical,	useful	knowledge.	There	are
times,	however,	when	a	brief	discussion	of	a	fundamental	principle	is	worth	the	need	to
delve	into	a	more	subject-oriented	discussion.	This	is	one	of	those	times.

The	CAP	theorem,	also	known	as	Brewer’s	theorem	after	the	computer	scientist	who
introduced	it,	states	that	distributed	databases	cannot	have	consistency	(C),	availability
(A),	and	partition	protection	(P)	all	at	the	same	time.	Consistency,	in	this	case,	means
consistent	copies	of	data	on	different	servers.	Availability	refers	to	providing	a	response	to
any	query.	Partition	protection	means	if	a	network	that	connects	two	or	more	database
servers	fails,	the	servers	will	still	be	available	with	consistent	data.

You	saw	in	a	previous	example	of	the	e-commerce	shopping	cart	that	it	is	possible	to	have
a	backup	copy	of	the	cart	data	that	is	out	of	sync	with	the	primary	copy.	The	data	would
still	be	available	if	the	primary	server	failed,	but	the	data	on	the	backup	server	would	be
inconsistent	with	data	on	the	primary	server	if	the	primary	server	failed	prior	to	updating
the	backup	server	(see	Figure	2.8).



Figure	2.8	Data	can	be	available	but	not	consistent.

You	also	saw	in	an	earlier	example	of	the	two-phase	commit	that	you	can	have	consistency
but	at	the	risk	of	the	most	recent	data	not	being	available	for	a	brief	period	of	time.	While
the	two-phase	commit	is	executing,	other	queries	to	the	data	are	blocked.	The	updated	data
is	unavailable	until	the	two-phase	commit	finishes.	This	favors	consistency	over
availability	(see	Figure	2.9).



Figure	2.9	Data	can	be	consistent	but	not	available.

Partition	protection	deals	with	situations	in	which	servers	cannot	communicate	with	each
other.	This	would	be	the	case	in	the	event	of	a	network	failure.	This	splitting	of	the
network	into	groups	of	devices	that	can	communicate	with	each	other	from	those	that
cannot	is	known	as	partitioning.	(Partitioning,	like	consistency,	has	multiple	meanings	in
data	management.	It	is	important	to	remember	that	when	talking	about	the	CAP	theorem,
partitioning	has	to	do	with	the	inability	to	send	messages	between	database	servers.)	If
database	servers	running	the	same	distributed	database	are	partitioned	by	a	network
failure,	then	you	could	continue	to	allow	both	to	respond	to	queries	and	preserve
availability	but	at	the	risk	of	them	becoming	inconsistent.	Alternatively,	you	could	disable
one	so	that	only	one	of	the	servers	responds	to	queries.	This	would	avoid	returning
inconsistent	data	to	users	querying	different	servers	but	at	the	cost	of	availability	to	some
users.

From	a	practical	standpoint,	network	partitions	are	rare,	at	least	in	local	area	networks.
You	can	imagine	a	wide	area	network	with	slow	network	connections	and	low	throughput
(for	example,	older	satellite	connections	to	remote	areas)	that	could	experience	network
outages.	This	means	that	from	a	pragmatic	perspective,	database	application	designers
have	to	deal	with	the	trade-offs	between	consistency	and	availability	more	than	issues	with
partitioning.

Designers	of	NoSQL	database	management	systems	have	to	determine	how	to	balance
varying	needs	for	consistency,	availability,	and	partitioning	protection.	This	is	not	a	one-
time	decision	for	the	database	management	system.	NoSQL	database	designers	can
provide	configuration	mechanisms	that	allow	users	of	the	database	to	specify	their
preferred	settings	rather	than	making	a	single	choice	for	all	users	of	the	database
management	system.

Application	designers	could	make	use	of	NoSQL	database	configuration	options	to	make
the	availability-consistency	trade-off	decision	at	fine-grained	levels,	such	as	based	on
different	types	of	data	in	the	database.	The	only	limitation	is	the	configuration	options
provided	in	the	NoSQL	database	management	system	used	by	the	application.



ACID	and	BASE
In	the	world	of	chemistry,	acids	are	chemicals	with	a	pH	of	less	than	7	and	bases	are
chemicals	that	have	a	pH	of	greater	than	7.	However,	the	use	of	the	terms	ACID	and
BASE	when	discussing	databases	has	nothing	to	do	with	chemistry.	ACID	is	an	acronym
derived	from	four	properties	implemented	in	relational	database	management	systems.
BASE	is	an	acronym	for	properties	common	to	NoSQL	databases.

ACID:	Atomicity,	Consistency,	Isolation,	and	Durability
A	is	for	atomicity.	Atomicity,	as	the	name	implies,	describes	a	unit	that	cannot	be	further
divided.	The	word	atom	comes	from	the	Greek	atomos,	which	means	indivisible.	In	the
earlier	discussion	about	transactions,	such	as	transferring	funds	from	your	savings	account
to	your	checking	account,	you	learned	that	all	the	steps	had	to	complete	or	none	of	them
completed.	In	essence,	the	set	of	steps	is	indivisible.	You	have	to	complete	all	of	them	as	a
single	indivisible	unit,	or	you	complete	none	of	them.

C	is	for	consistency.	In	relational	databases,	this	is	known	as	strict	consistency.	In	other
words,	a	transaction	does	not	leave	a	database	in	a	state	that	violates	the	integrity	of	data.
Transferring	$100	from	your	savings	account	to	your	checking	account	must	end	with
either	(a)	$100	more	in	your	checking	account	and	$100	less	in	your	savings	account	or
(b)	both	accounts	have	the	same	amount	as	they	had	at	the	start	of	the	transaction.
Consistency	ensures	no	other	possible	state	could	result	after	a	transfer	operation.

I	is	for	isolation.	Isolated	transactions	are	not	visible	to	other	users	until	transactions	are
complete.	For	example,	in	the	case	of	a	bank	transfer	from	a	savings	account	to	a	checking
account,	someone	could	not	read	your	account	balances	while	the	funds	are	being
deducted	from	your	savings	account	but	before	they	are	added	to	your	checking	account.
Databases	can	allow	different	levels	of	isolation.	This	can	allow,	for	example,	lost	updates
in	which	a	query	returns	data	that	does	not	reflect	the	most	recent	update	because	the
update	operation	has	not	completely	finished.

D	is	for	durability.	This	means	that	once	a	transaction	or	operation	is	completed,	it	will
remain	even	in	the	event	of	a	power	loss.	In	effect,	this	means	that	data	is	stored	on	disk,
flash,	or	other	persistent	media.

Relational	database	management	systems	are	designed	to	support	ACID	transactions.
NoSQL	databases	typically	support	BASE	transactions,	although	some	NoSQL	databases
also	provide	some	level	of	support	for	ACID	transactions.

BASE:	Basically	Available,	Soft	State,	Eventually	Consistent
BA	is	for	basically	available.	This	means	that	there	can	be	a	partial	failure	in	some	parts
of	the	distributed	system	and	the	rest	of	the	system	continues	to	function.	For	example,	if	a
NoSQL	database	is	running	on	10	servers	without	replicating	data	and	one	of	the	servers
fails,	then	10%	of	the	users’	queries	would	fail,	but	90%	would	succeed.	NoSQL	databases
often	keep	multiple	copies	of	data	on	different	servers.	This	allows	the	database	to	respond
to	queries	even	if	one	of	the	servers	has	failed.

S	is	for	soft	state.	Usually	in	computer	science,	the	term	soft	state	means	data	will	expire	if



it	is	not	refreshed.	Here,	in	NoSQL	operations,	it	refers	to	the	fact	that	data	may	eventually
be	overwritten	with	more	recent	data.	This	property	overlaps	with	the	third	property	of
BASE	transactions,	eventually	consistent.

E	is	for	eventually	consistent.	This	means	that	there	may	be	times	when	the	database	is	in
an	inconsistent	state.	For	example,	some	NoSQL	databases	keep	multiple	copies	of	data
on	multiple	servers.	There	is,	however,	a	possibility	that	the	multiple	copies	may	not	be
consistent	for	a	short	period	of	time.	This	can	occur	when	a	user	or	program	updates	one
copy	of	the	data	and	other	copies	continue	to	have	the	old	version	of	the	data.	Eventually,
the	replication	mechanism	in	the	NoSQL	database	will	update	all	copies,	but	in	the
meantime,	the	copies	are	inconsistent.

The	time	it	takes	to	update	all	copies	depends	on	several	factors,	such	as	the	load	on	the
system	and	the	speed	of	the	network.	Consider	a	database	that	maintains	three	copies	of
data.	A	user	updates	her	address	in	one	server.	The	NoSQL	database	management	system
automatically	updates	the	other	two	copies.	One	of	the	other	copies	is	on	a	server	in	the
same	local	area	network,	so	the	update	happens	quickly.	The	other	server	is	in	a	data
center	thousands	of	miles	away,	so	there	is	a	time	delay	in	updating	the	third	copy.	A	user
querying	the	third	server	while	the	update	is	in	progress	might	get	the	user’s	old	address
while	someone	querying	the	first	server	gets	the	new	address.

Types	of	Eventual	Consistency
Eventual	consistency	is	such	an	important	aspect	of	NoSQL	databases,	it	is	worth	further
discussion.

There	are	several	types	of	eventual	consistency:

•	Casual	consistency

•	Read-your-writes	consistency

•	Session	consistency

•	Monotonic	read	consistency

•	Monotonic	write	consistency

Casual	Consistency

Casual	consistency	ensures	that	the	database	reflects	the	order	in	which	operations	were
updated.	For	example,	if	Alice	changes	a	customer’s	outstanding	balance	to	$1,000	and
one	minute	later	Bob	changes	it	to	$2,000,	all	copies	of	the	customer’s	outstanding
balance	will	be	updated	to	$1,000	before	they	are	updated	to	$2,000.



Read-Your-Writes	Consistency

Read-your-writes	consistency	means	that	once	you	have	updated	a	record,	all	of	your
reads	of	that	record	will	return	the	updated	value.	You	would	never	retrieve	a	value
inconsistent	with	the	value	you	had	written.	Let’s	say	Alice	updates	a	customer’s
outstanding	balance	to	$1,500.	The	update	is	written	to	one	server	and	the	replication
process	begins	updating	other	copies.	During	the	replication	process,	Alice	queries	the
customer’s	balance.	She	is	guaranteed	to	see	$1,500	when	the	database	supports	read-
your-writes	consistency.

Session	Consistency

Session	consistency	ensures	read-your-writes	consistency	during	a	session.	You	can	think
of	a	session	as	a	conversation	between	a	client	and	a	server	or	a	user	and	the	database.	As
long	as	the	conversation	continues,	the	database	“remembers”	all	writes	you	have	done
during	the	conversation.	If	the	session	ends	and	you	start	another	session	with	the	same
server,	there	is	no	guarantee	it	will	“remember”	the	writes	you	made	in	the	previous
session.	A	session	may	end	if	you	log	off	an	application	using	the	database	or	if	you	do	not
issue	commands	to	the	database	for	so	long	that	the	database	assumes	you	no	longer	need
the	session	and	abandons	it.

Monotonic	Read	Consistency

Monotonic	read	consistency	ensures	that	if	you	issue	a	query	and	see	a	result,	you	will
never	see	an	earlier	version	of	the	value.	Let’s	assume	Alice	is	yet	again	updating	a
customer’s	outstanding	balance.	The	outstanding	balance	is	currently	$1,500.	She	updates
it	to	$2,500.	Bob	queries	the	database	for	the	customer’s	balance	and	sees	that	it	is	$2,500.
If	Bob	issues	the	query	again,	he	will	see	the	balance	is	$2,500	even	if	all	the	servers	with
copies	of	that	customer’s	outstanding	balance	have	not	updated	to	the	latest	value.

Monotonic	Write	Consistency

Monotonic	write	consistency	ensures	that	if	you	were	to	issue	several	update	commands,
they	would	be	executed	in	the	order	you	issued	them.	Let’s	consider	a	variation	on	the
outstanding	balance	example.	Alice	is	feeling	generous	today	and	decides	to	reduce	all
customers’	outstanding	balances	by	10%.	Charlie,	one	of	her	customers,	has	a	$1,000
outstanding	balance.	After	the	reduction,	Charlie	would	have	a	$900	balance.	Now
imagine	if	Alice	continues	to	process	orders.	Charlie	has	just	ordered	$1,100	worth	of
material.	His	outstanding	balance	is	now	the	sum	of	the	previous	outstanding	balance
($900)	and	the	amount	of	the	new	order	($1,100)	or	$2,000.

Now	consider	what	would	happen	if	the	NoSQL	database	performed	Alice’s	operations	in
a	different	order.	Charlie	started	with	a	$1,000	outstanding	balance.	Next,	instead	of
having	the	discount	applied,	his	record	was	first	updated	with	the	new	order	($1,100).	His
outstanding	balance	becomes	$2,100.	Now,	the	10%	discount	operation	is	executed	and
his	outstanding	balance	is	set	to	$2,100–$210	or	$1890.

Monotonic	write	consistency	is	obviously	an	important	feature.	If	you	cannot	guarantee
the	order	of	operations	in	the	database,	you	would	have	to	build	features	into	your
program	to	guarantee	operations	execute	in	the	order	you	expect.



Four	Types	of	NoSQL	Databases
Distributed	databases	come	in	several	forms.	Distributed	relational	databases	exist	but	are
not	within	the	scope	of	this	book.	Instead,	the	focus	here	is	on	NoSQL	databases.	The
most	widely	used	types	of	NoSQL	databases	are

•	Key-value	pair	databases

•	Document	databases

•	Column	family	store	databases

•	Graph	databases

NoSQL	databases	do	not	have	to	be	implemented	as	distributed	systems.	Many	can	run	on
a	single	server.	Some	of	the	most	interesting	and	appealing	features	of	NoSQL	databases,
however,	require	a	distributed	implementation.	When	availability	and	scalability	are	top
concerns,	it	makes	sense	to	implement	a	NoSQL	database	across	multiple	servers.	As	soon
as	you	enter	the	realm	of	distributed	systems,	you	are	faced	with	decisions	and	trade-offs
not	found	in	single-server	implementations.	As	you	design	your	NoSQL	databases	and
related	applications,	consider	how	you	want	to	balance	your	need	for	scalability,
availability,	consistency,	partition	protection,	and	durability.	These	topics	are	central	to
NoSQL	databases	and	are	addressed	repeatedly	throughout	this	book.

Key-Value	Pair	Databases
Key-value	pair	databases	are	the	simplest	form	of	NoSQL	databases.	These	databases	are
modeled	on	two	components:	keys	and	values.

Keys

Keys	are	identifiers	associated	with	values.	They	are	analogous	to	tags	you	get	when	you
check	luggage	at	the	airport.	The	tag	you	receive	has	an	identifier	associated	with	your
luggage.	With	your	tag,	you	can	find	your	luggage	more	efficiently	than	without	it.
Imagine	you	have	a	connecting	flight	and	your	luggage	did	not	make	it	to	your	connecting
flight.	If	your	luggage	doesn’t	have	a	tag,	an	airline	employee	searching	for	your	bag
would	have	to	look	through	all	undelivered	bags	to	determine	which	is	yours.

Now	imagine	that	the	airline	organizes	undelivered	bags	by	tag	number.	If	the	airline
employee	knows	your	ticket	number,	she	or	he	could	go	right	to	that	spot	in	the	luggage
area	to	retrieve	your	bag.

Airlines	generate	luggage	tags	when	you	check	a	bag.	If	you	were	assigned	the	task	of
designing	a	ticket-generating	program,	you	might	decide	to	have	tickets	with	two	parts:	a
flight	number	and	a	sequential	number.

	Note

This	is	an	oversimplified	scheme	because	it	does	not	account	for	flights	with	the
same	number	that	occurs	on	different	days,	but	we	will	continue	with	it	anyway.

The	first	customer	checking	bags	on	flight	1928	might	be	assigned	ticket	1928.1	for	her



first	bag	and	1928.2	for	her	second	bag.	The	second	customer	also	has	two	bags	and	he	is
assigned	1928.3	and	1928.4	(see	Figure	2.10).

Figure	2.10	Airline	tags	for	checked	bags	are	analogous	to	keys	used	to	store	data	in	a
key-value	database.

You	can	use	a	similar	approach	when	generating	keys	in	a	key-value	database.	Let’s
assume	you	are	building	a	key-generating	program	for	an	e-commerce	website.	You
realize	you	need	to	track	five	pieces	of	information	about	each	visitor	to	your	site:	the
customer’s	account	number,	name,	address,	number	of	items	in	the	shopping	cart,	and
customer	type	indicator.	The	customer	type	indicator	identifies	customers	enrolled	in	the
company’s	loyalty	program.

All	of	these	values	are	associated	with	a	customer,	so	you	can	generate	a	sequential
number	for	each	customer.	For	each	item	you	are	storing,	you	create	a	new	key	by
appending	the	name	of	the	item	you	are	storing	to	the	customer	number.	For	example,	data
about	the	first	customer	in	the	system	would	use	keys	1.accountNumber,	1.name,
1.address,	1.numItems,	and	1.custType	(see	Figure	2.11).

Figure	2.11	Key-value	databases	are	modeled	on	a	simple,	two-part	data	structure
consisting	of	an	identifier	and	a	data	value.

This	approach	would	work	when	you	have	a	relatively	simple	database.	If	you	need	to
track	other	entities,	such	as	product	information,	warehouses,	and	shipping	providers,	you
might	want	to	use	a	similar	sequential	numbering	system.	Take	warehouses,	for	example.



You	might	want	to	track	the	closest	warehouse	to	a	customer	that	has	the	products	listed	in
the	shopping	cart.	This	can	help	determine	an	estimated	delivery	date.	For	each
warehouse,	you	need	to	track	its	warehouse	number	and	its	address.	If	you	use	a	sequential
number	generator	for	warehouses	that	is	different	from	the	one	used	with	customers,	you
could	generate	the	following	keys	for	the	first	warehouse:	1.number	and	1.address.

The	1.address	key	is	used	for	both	a	customer	and	a	warehouse.	This	will	cause	problems
because	data	about	customers	and	warehouses	will	be	saved	with	the	same	key.	If	you	add
a	warehouse	to	your	key-value	database	using	1.address	and	then	save	a	customer’s
address	using	1.address,	the	next	time	you	look	up	the	warehouse’s	address,	you	will	find
a	customer’s	address	instead.

One	way	to	address	this	problem	is	to	use	a	key-naming	convention	that	includes	the
entity	type.	For	example,	you	could	use	the	prefix	cust	for	customer	and	wrhs	for
warehouse.	You	can	append	the	sequentially	generated	numbers	to	these	prefixes	to	create
unique	keys.	The	keys	for	the	customer	data	would	look	like	the	following:

•	cust1.accountNumber

•	cust1.name

•	cust1.address

•	cust1.numItems

•	cust1.custType

•	cust2.accountNumber

•	cust2.name

•	cust2.address

•	cust2.numItems

•	cust2.custType

and	so	on.	Similarly,	the	keys	for	the	warehouse	data	would	be

•	wrhs1.number

•	wrhs1.address

•	wrhs2.number

•	wrhs2.address

The	important	principle	to	remember	about	keys	is	that	they	must	be	unique.	Of	course,
someone	building	a	key-value	database	at	Company	A	might	use	the	same	keys	as
someone	at	Company	B.	This	is	not	a	problem	because	the	two	databases	are	separate.
There	is	no	chance	of	one	company	reading	or	writing	to	the	other	database.	In	database
terminology,	the	keys	in	these	two	companies	are	in	different	namespaces.	A	namespace	is
a	collection	of	identifiers.	Keys	must	be	unique	within	a	namespace.

A	namespace	could	correspond	to	an	entire	database.	In	this	case,	all	keys	in	the	database
must	be	unique.	Some	key-value	databases	provide	for	different	namespaces	within	a
database.	This	is	done	by	setting	up	data	structures	for	separate	collections	of	identifiers



within	a	database.	This	book	refers	to	these	data	structures	as	buckets	(see	Figure	2.12).

Figure	2.12	Key-value	databases	may	support	separate	namespaces	within	a	single
database.

	Note

If	you	are	familiar	with	SQL	databases,	you	might	notice	a	similarity	to	schemas	in
relational	databases.

Values

Values	are	data	stored	along	with	keys.	Like	luggage,	values	in	a	key-value	database	can
store	many	different	things.	Values	can	be	as	simple	as	a	string,	such	as	a	name,	or	a
number,	such	as	the	number	of	items	in	a	customer’s	shopping	cart.	You	can	store	more
complex	values,	such	as	images	or	binary	objects,	too.

Key-value	databases	give	developers	a	great	deal	of	flexibility	when	storing	values.	For
example,	strings	can	vary	in	length.	Cust123.address	could	be	“543	N.	Main	St.”	or	“543
North	Main	St.	Portland,	OR	97222.”	Values	can	also	vary	in	type.	An	employee	database
might	include	photos	of	employees	using	keys	such	as	Emp328.photo.	That	key	could
have	a	picture	stored	as	a	binary	large	object	(BLOB)	type	or	a	string	value	such	as	“Not
available.”	Key-value	databases	typically	do	not	enforce	checks	on	data	types	of	values.

Because	key-value	databases	allow	virtually	any	data	type	in	values,	it	is	important	for
software	developers	to	implement	checks	in	their	programs.	For	example,	a	program	that
expects	either	a	BLOB	or	a	string	with	a	value	of	“Not	available”	might	not	function	as
expected	if	the	string	“No	photo”	is	used	instead.	A	programmer	might	decide	to	support
any	BLOB	or	string	as	valid	values,	but	it	is	up	to	the	programmer	to	determine	the	range
of	valid	values	and	enforce	those	choices	as	needed.



Differences	Between	Key-Value	and	Relational	Databases

Key-value	databases	are	modeled	on	minimal	principles	for	storing	and	retrieving	data.
Unlike	in	relational	databases,	there	are	no	tables,	so	there	are	no	features	associated	with
tables,	such	as	columns	and	constraints	on	columns.	There	is	no	need	for	joins	in	key-
value	databases,	so	there	are	no	foreign	keys.	Key-value	databases	do	not	support	a	rich
query	language	such	as	SQL.

Some	key-value	databases	support	buckets,	or	collections,	for	creating	separate
namespaces	within	a	database.	This	can	be	used	to	implement	something	analogous	to	a
relational	schema,	especially	when	combined	with	a	key-naming	convention	like	the	one
described	previously.

If	you	have	developed	relational	data	models,	you	might	have	noticed	parallels	between
the	key-naming	convention	and	tables,	primary	keys,	and	columns.	The	key-naming
convention	described	previously	basically	uses	the	convention	of	concatenating	a	table
name	or	symbol,	a	primary	key,	and	a	column	name.	For	example,	the	key
‘cust123.address’	would	be	equivalent	to	a	relational	table	named	cust	or	customer,	with	a
column	called	address,	and	a	row	identified	by	the	primary	key	ID	of	123	(see	Figure
2.13).

Figure	2.13	The	key-naming	convention	outlined	above	maps	to	patterns	seen	in
relational	database	tables.

Document	Databases
Document	databases,	also	called	document-oriented	databases,	use	a	key-value	approach
to	storing	data	but	with	important	differences	from	key-value	databases.	A	document
database	stores	values	as	documents.	In	this	case,	documents	are	semistructured	entities,
typically	in	a	standard	format	such	as	JavaScript	Object	Notation	(JSON)	or	Extensible
Markup	Language	(XML).	It	should	be	noted	that	when	the	term	document	is	used	in	this
context,	it	does	not	refer	to	word	processing	or	other	office	productivity	files.	It	refers	to
data	structures	that	are	stored	as	strings	or	binary	representations	of	strings.



Documents

Instead	of	storing	each	attribute	of	an	entity	with	a	separate	key,	document	databases	store
multiple	attributes	in	a	single	document.

Here	is	a	simple	example	of	a	document	in	JSON	format:
Click	here	to	view	code	image

{

				firstName:	“Alice”,

				lastName:	“Johnson”,

				position:	“CFO”,

				officeNumber:	“2-120”,

				officePhone:	“555-222-3456”,

}

One	of	the	most	important	characteristics	of	document	databases	is	you	do	not	have	to
define	a	fixed	schema	before	you	add	data	to	the	database.	Simply	adding	a	document	to
the	database	creates	the	underlying	data	structures	needed	to	support	the	document.

The	lack	of	a	fixed	schema	gives	developers	more	flexibility	with	document	databases
than	they	have	with	relational	databases.	For	example,	employees	can	have	different
attributes	than	the	ones	listed	above.	Another	valid	employee	document	is
Click	here	to	view	code	image

{

				firstName:	“Bob”,

				lastName:	“Wilson”,

				position:	“Manager”,

				officeNumber:	“2-130”,

				officePhone:	“555-222-3478”,

				hireDate:	“1-Feb-2010”,

				terminationDate:	“12-Aug-2014”

}

The	attributes	hireDate	and	terminationDate	are	in	Bob’s	document	but	not
Alice’s.	This	is	not	a	problem	from	the	database	perspective.	Developers	can	add	attributes
as	needed,	but	their	programs	are	responsible	for	managing	them.	If	you	expect	all
employee	documents	to	have	first	and	last	names,	you	should	implement	a	check	in	your
code	that	adds	employee	documents	to	ensure	that	the	rule	is	enforced.

Querying	Documents

You	might	be	wondering,	why	couldn’t	you	store	JSON	or	XML	documents	in	key-value
databases?	Because	key-value	databases	have	few	restrictions	on	the	type	of	data	stored	as
a	value,	you	could	store	a	JSON	document	as	a	value.	The	only	way	to	retrieve	such	a
document	is	by	its	key,	however.

Document	databases	provide	application	programming	interfaces	(APIs)	or	query
languages	that	enable	you	to	retrieve	documents	based	on	attribute	values.	For	example,	if
you	have	a	database	with	a	collection	of	employee	documents	called	“employees,”	you
could	use	a	statement	such	as	the	following	to	return	the	set	of	all	employees	with	the
position	Manager:
Click	here	to	view	code	image



db.employees.find(	{	position:“Manager”	})

As	with	relational	databases,	document	databases	typically	support	operators	such	as
AND,	OR,	greater	than,	less	than,	and	equal	to.

Differences	Between	Document	and	Relational	Databases

As	noted,	a	key	distinction	between	document	and	relational	databases	is	that	document
databases	do	not	require	a	fixed,	predefined	schema.

Another	important	difference	is	that	documents	can	have	embedded	documents	and	lists	of
multiple	values	within	a	document.	For	example,	the	employee	documents	might	include	a
list	of	previous	positions	an	employee	held	within	the	company.	For	example:
Click	here	to	view	code	image

{

				firstName:	“Bob”,

				lastName:	“Wilson”,

				positionTitle:	“Manager”,

				officeNumber:	“2-130”,

				officePhone:	“555-222-3478”,

				hireDate:	“1-Feb-2010”,

				terminationDate:	“12-Aug-2014”

				PreviousPositions:	[

								{					\position:	“Analyst”,

									StartDate:“1-Feb-2010”,

								endDate:“10-Mar-2011”

								}	{

												position:	“Sr.	Analyst”,

												startDate:	“10-Mar-2011”

												endDate:“29-May-2013”

								}	]

}

Embedding	documents	or	lists	of	values	in	a	document	eliminates	the	need	for	joining
documents	the	way	you	join	tables	in	a	relational	database.	If	there	are	cases	where	you
stored	a	list	of	document	identifiers	in	a	document	and	want	to	look	up	attributes	in	the
documents	associated	with	those	identifiers,	then	you	would	have	to	implement	that
operation	in	your	program.

Document	databases	are	probably	the	most	popular	type	of	NoSQL	database.	They	offer
support	for	querying	structures	with	multiple	attributes,	like	relational	databases,	but	offer
more	flexibility	with	regard	to	variation	in	the	attributes	used	by	each	document.

The	next	section	discusses	the	column	family	database,	which	is	another	type	of	NoSQL
database	that	shares	some	important	characteristics	with	relational	databases.

Column	Family	Databases
Column	family	databases	are	perhaps	the	most	complex	of	the	NoSQL	database	types,	at
least	in	terms	of	the	basic	building	block	structures.	Column	family	databases	share	some
terms	with	relational	databases,	such	as	rows	and	columns,	but	you	must	be	careful	to
understand	important	differences	between	these	structures.

These	differences	are	discussed	in	Chapters	9	through	11.	In	the	meantime,	let’s	examine



the	basic	building	blocks	of	column	family	databases.

Columns	and	Column	Families

A	column	is	a	basic	unit	of	storage	in	a	column	family	database.	A	column	is	a	name	and	a
value.	(Some	column	family	databases	keep	a	time	stamp	along	with	a	name	and	value,
but	let’s	ignore	that	for	now.)	See	Figure	2.14.

Figure	2.14	A	column	consists	of	a	name	and	a	value.	In	this	example,	the	column	is
named	lastName	and	has	a	value	of	“Wilson.”

A	set	of	columns	makes	up	a	row.	Rows	can	have	the	same	columns,	or	they	can	have
different	columns,	as	shown	in	Figure	2.15.

Figure	2.15	A	row	consists	of	one	or	more	columns.	Different	rows	can	have	different
columns.

When	there	are	large	numbers	of	columns,	it	can	help	to	group	them	into	collections	of
related	columns.	For	example,	first	and	last	name	are	often	used	together,	and	office
numbers	and	office	phone	numbers	are	frequently	needed	together.	These	can	be	grouped
in	collections	called	column	families.

As	in	document	databases,	column	family	databases	do	not	require	a	predefined	fixed
schema.	Developers	can	add	columns	as	needed.	Also,	rows	can	have	different	sets	of
columns	and	super	columns.	Column	family	databases	are	designed	for	rows	with	many
columns.	It	is	not	unusual	for	column	family	databases	to	support	millions	of	columns.



Differences	Between	Column	Family	and	Relational	Databases

Column	family	databases	and	relational	databases	are	superficially	similar.	They	both
make	use	of	rows	and	columns,	for	example.	There	are	important	differences	in	terms	of
data	models	and	implementation	details.

One	thing	missing	from	column	family	databases	is	support	for	joining	tables.	You	might
have	noticed	that	the	term	table	has	not	been	used	when	describing	column	family
databases.	This	is	intentional.	Tables	in	relational	databases	have	a	relatively	fixed
structure,	and	the	relational	database	management	system	can	take	advantage	of	that
structure	when	optimizing	the	layout	of	data	on	drives	and	when	retrieving	data	for	read
operations.	Unlike	a	relational	database	table,	however,	the	set	of	columns	in	a	column
family	table	can	vary	from	one	row	to	another.

In	relational	databases,	data	about	an	object	can	be	stored	in	multiple	tables.	For	example,
a	customer	might	have	name,	address,	and	contact	information	in	one	table;	a	list	of	past
orders	in	another	table;	and	a	payment	history	in	another.	If	you	needed	to	reference	data
from	all	three	tables	at	once,	you	would	need	to	perform	a	join	operation	between	tables.
Column	family	databases	are	typically	denormalized,	or	structured	so	that	all	relevant
information	about	an	object	is	in	a	single,	possibly	very	wide,	row.

Query	languages	for	column	family	databases	may	look	similar	to	SQL.	The	query
language	can	support	SQL-like	terms	such	as	SELECT,	INSERT,	UPDATE,	and	DELETE
as	well	as	column	family–specific	operations,	such	as	CREATE	COLUMNFAMILY.

The	next	section	discusses	a	fourth	type	of	NoSQL	databases	known	as	graph	databases,
which	are	well	suited	for	addressing	problems	that	require	representing	many	objects	and
links	between	those	objects.	Social	media,	a	transportation	network,	and	an	electric	grid
are	just	a	few	examples	of	areas	where	graph	databases	may	be	used.

Graph	Databases
Graph	databases	are	the	most	specialized	of	the	four	NoSQL	databases	discussed	in	this
book.	Instead	of	modeling	data	using	columns	and	rows,	a	graph	database	uses	structures
called	nodes	and	relationships	(in	more	formal	discussions,	they	are	called	vertices	and
edges).	A	node	is	an	object	that	has	an	identifier	and	a	set	of	attributes.	A	relationship	is	a
link	between	two	nodes	that	contain	attributes	about	that	relation.

Nodes	and	Relationships

There	are	many	ways	to	use	graph	databases.	Nodes	can	represent	people,	and
relationships	can	represent	their	friendships	in	social	networks.	A	node	could	be	a	city,	and
a	relationship	between	cities	could	be	used	to	store	information	about	the	distance	and
travel	time	between	cities.	Figure	2.16	includes	an	example	of	flying	times	between
several	cities.



Figure	2.16	Properties	of	relationships	or	nodes	store	attributes	about	relations
between	linked	nodes.	In	this	case,	attributes	include	flying	times	between	cities.

Both	the	nodes	and	relationships	can	have	complex	structures.	For	example,	each	city	can
have	a	list	of	airports	along	with	demographic	and	geographic	data	about	the	city,	as
shown	in	Figure	2.17.

Figure	2.17	Nodes	can	also	have	attributes	to	describe	the	node.	In	this	case,	attributes
include	information	about	the	airports	in	the	city	along	with	population	and	geographic

area.

Graph	databases	get	their	name	from	a	branch	of	mathematics	called	graph	theory.	Graph



theory	is	the	study	of	objects	represented	by	vertices	and	relations	represented	by	edges.
Graph	theory	is	not	related	to	the	study	of	charts	and	other	visualizations	sometimes
referred	to	as	graphs.

Differences	Between	Graph	and	Relational	Databases

Graph	databases	are	designed	to	model	adjacency	between	objects.	Every	node	in	the
database	contains	pointers	to	adjacent	objects	in	the	database.	This	allows	for	fast
operations	that	require	following	paths	through	a	graph.

For	example,	if	you	wanted	to	find	all	possible	ways	to	fly	from	Montreal	to	Mexico	City
using	the	graph	you	saw	in	Figure	2.16,	you	could	start	at	the	Montreal	node	and	follow
each	of	the	adjacent	nodes	to	Boston,	Chicago,	and	Tokyo,	and	then	to	Mexico	City.	At	the
Boston	node,	you	would	find	no	relationship	with	Mexico	City	and	assume	that	there	are
no	direct	flights	available	from	Boston	to	Mexico	City.	From	Chicago,	a	direct	flight	to
Mexico	City	would	take	3	hours	and	50	minutes.	That	time,	plus	the	1	hour	and	20
minutes	to	fly	to	Chicago	would	leave	a	total	flying	time	of	5	hours	and	10	minutes.

Flying	from	Montreal	to	Tokyo	to	get	to	Mexico	City	is	possible	but	hardly	efficient.
Because	the	relationship	between	Montreal	and	Tokyo	shows	a	13	hour	30	minute	flight,
over	twice	as	long	as	the	Montreal	to	Chicago	to	Mexico	City	route,	you	can	safely	stop
following	other	routes	from	Tokyo	to	Mexico	City.	From	Chicago,	you	could	fly	to
Portland,	but	like	Boston,	this	does	not	lead	to	a	direct	flight	to	Mexico	City.	Finally,	a
direct	flight	from	Montreal	to	Mexico	City	would	take	5	hours,	the	fastest	route	available.

Performing	this	same	kind	of	analysis	in	a	relational	database	would	be	more	involved.
We	could	easily	represent	the	same	data	shown	in	Figure	2.16	using	a	table	such	as	the	one
shown	in	Table	2.1.

Table	2.1	Flight	Times	Between	Cities	Modeled	as	a	Relational	Table

Querying	is	more	difficult.	You	would	have	to	write	multiple	SQL	statements	or	use
specialized	recursive	statements	if	they	are	provided	(for	example,	Oracle’s	CONNECT



BY	clause	in	SELECT	statements)	to	find	paths	using	the	table	representation	of	the	data.

Graph	databases	allow	for	more	efficient	querying	when	paths	through	graphs	are
involved.	Many	application	areas	are	efficiently	modeled	as	graphs	and,	in	those	cases,	a
graph	database	may	streamline	application	development	and	minimize	the	amount	of	code
you	would	have	to	write.

The	most	widely	used	types	of	NoSQL	databases	are	key-value,	document,	column	family,
and	graph	databases.	The	following	chapters	describe	each	of	these	in	depth	and	present
examples	of	typical	use	cases	for	each.

Summary
NoSQL	databases	are	often	deployed	using	clusters	of	servers.	When	applications	run	on
multiple	servers	and	coordinate	their	work	across	servers,	they	are	known	as	distributed
systems.	When	you	use	NoSQL	databases	in	a	distributed	manner,	you	will	have	to	decide
how	to	address	the	challenges	that	come	with	that	type	of	implementation.	Distributed
systems	help	improve	scalability	and	availability	but	make	it	more	difficult	to	ensure
consistency	of	data	across	servers.	There	are	also	potential	problems	if	there	is	a	network
failure	and	some	servers	cannot	send	messages	to	other	servers	in	the	distributed	database
system.

The	nature	of	distributed	systems	has	led	NoSQL	database	designers	to	choose	a	different
set	of	principles	for	building	data	management	systems.	Rather	than	support	atomic,
consistent,	isolated,	and	durable	transactions	(ACID),	NoSQL	databases	achieve	basic
availability,	soft	state,	eventually	consistent	(BASE).	(Some	NoSQL	databases	are
working	to	support	ACID	transactions,	at	least	in	some	cases.)

The	four	types	of	NoSQL	databases	described	in	this	chapter	all	must	address	the
challenges	of	distributed	systems.	The	types	of	NoSQL	database	systems	differ	primarily
in	the	basic	data	structures	used	to	model	data.	The	different	data	structure	choices	lead	to
different	implementation	details.	Developers	who	work	with	NoSQL	databases	should
understand	how	the	nature	of	distributed	systems	could	affect	their	applications,	and	they
should	know	how	to	choose	among	NoSQL	databases	for	their	requirements.	The	rest	of
this	book	is	dedicated	to	informing	you	about	those	topics.

Review	Questions
1.	What	is	a	distributed	system?

2.	Describe	a	two-phase	commit.	Does	it	help	ensure	consistency	or	availability?

3.	What	do	the	C	and	A	in	the	CAP	theorem	stand	for?	Give	an	example	of	how
designing	for	one	of	those	properties	can	lead	to	difficulties	in	maintaining	the	other.

4.	The	E	in	BASE	stands	for	eventually	consistent.	What	does	that	mean?

5.	Describe	monotonic	write	consistency.	Why	is	it	so	important?

6.	How	many	values	can	be	stored	with	a	single	key	in	a	key-value	database?

7.	What	is	a	namespace?	Why	is	it	important	in	key-value	databases?



8.	How	do	document	databases	differ	from	key-value	databases?

9.	Describe	two	differences	between	document	databases	and	relational	databases.

10.	Name	two	data	structures	used	in	column	family	databases.

11.	What	are	the	two	fundamental	data	structures	in	a	graph	database?

12.	You	are	assigned	the	task	of	building	a	database	to	model	employees	and	who	they
work	with	in	your	company.	The	database	must	be	able	to	answer	queries	such	as
how	many	employees	does	Employee	A	work	with?	And,	does	Employee	A	work
with	anyone	who	works	with	Employee	B?	Which	type	of	NoSQL	database	would
naturally	fit	with	these	requirements?
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Part	II:	Key-Value	Databases



3.	Introduction	to	Key-Value	Databases

“Everything	should	be	made	as	simple	as	possible,	but	no	simpler.”

—ALBERT	EINSTEIN

Topics	Covered	In	This	Chapter

From	Arrays	to	Key-Value	Databases

Essential	Features	of	Key-Value	Databases

Properties	of	Keys

Characteristics	of	Values

Key-value	databases	are	the	simplest	of	the	NoSQL	databases	and	are	a	good	place	to	start
a	detailed	examination	of	NoSQL	database	options.	As	the	name	implies,	the	design	of
this	type	of	data	store	is	based	on	storing	data	with	identifiers	known	as	keys.	This	chapter
introduces	key-value	data	structures	by	starting	with	an	even	simpler	data	structure:	the
array.

A	key-value	data	store	is	a	more	complex	variation	on	the	array	data	structure.	Computer
scientists	have	extended	the	concept	of	an	array	by	relaxing	constraints	on	the	simple	data
structure	and	adding	persistent	data	storage	features	to	create	a	range	of	other	useful	data
structures,	including	associative	arrays,	caches,	and	persistent	key-value	databases.

In	this	chapter,	you	learn	about	key	characteristics	of	key-value	data	stores	as	well	as
about	keys	and	values	themselves.	You	also	see	some	important	operational	characteristics
of	key-value	databases.

Before	jumping	into	database-specific	topics,	the	next	section	sets	the	stage	for	key-value
databases	with	a	slight	diversion	into	introductory	data	structures.

From	Arrays	to	Key-Value	Databases
Relational	databases	did	not	spring	from	the	mind	of	computer	scientists	at	the	dawn	of
computing.	Chapter	1,	“Different	Databases	for	Different	Requirements,”	describes	the
development	of	databases	as	a	series	of	increasingly	more	complex	systems	that	are	better
able	to	manage	increasingly	more	complex	data	management	challenges.	The	high	points
of	that	progression	are	relational	and	NoSQL	databases.

It	helps	to	start	an	examination	of	key-value	databases	by	starting	with	a	simple	data
structure	and	showing	how	adding	features	to	a	simple	data	structure	can	lead	to	a	simple
but	even	more	useful	type	of	database.



Arrays:	Key	Value	Stores	with	Training	Wheels
One	of	the	first	data	structures	taught	to	computer	science	students	is	the	array.	After
scalar	variables,	like	integers	and	characters,	the	array	is	one	of	the	simplest.	An	array	is
an	ordered	list	of	values.	Each	value	in	the	array	is	associated	with	an	integer	index.	The
values	are	all	the	same	type.	For	example,	an	array	could	be	an	ordered	list	of	integers,
characters,	or	Boolean	values.	Figure	3.1	shows	an	array	of	10	Boolean	elements.

Figure	3.1	An	array	is	an	ordered	list	of	elements.	All	elements	are	of	the	same	type.
The	value	of	each	element	of	the	array	is	read	and	set	by	reference	to	its	index.

The	syntax	for	reading	and	setting	array	values	varies	by	programming	language.	In	this
book,	to	read	the	first	element	of	an	array	named	exampleArray,	you	would	use

exampleArray[0]

	Note

It	is	common	practice	in	programming	languages	to	use	zero	instead	of	one	as	the
first	element	of	an	array.

The	convention	for	reading	from	an	array	is	to	use	the	name	of	the	array	followed	by	an	[,
an	integer	index,	and	then	a	].	To	set	the	value	of	an	array	element,	use	the	same	syntax	for
reading	an	element	and	follow	it	with	an	assignment	symbol,	in	this	case	a	‘=’,	and	the
value	to	be	assigned	to	that	element.	For	example,
Click	here	to	view	code	image

exampleArray[0]	=	‘Hello	world.’

sets	the	first	element	of	exampleArray	to	the	string	of	characters	‘Hello	world.’
Additional	elements	can	be	set	with	the	following	commands:
Click	here	to	view	code	image

exampleArray[1]	=	‘Goodbye	world.’

exampleArray[2]	=	‘This	is	a	test.’

exampleArray[5]	=	‘Key-value	database’

exampleArray[9]	=	‘Elements	can	be	set	in	any	order.’



exampleArray	is	an	array	in	which	all	elements	are	strings	of	characters.	You	could
not,	for	example,	set	an	element	of	exampleArray	to	a	real	number.	The	following
command	would	generate	an	error:

exampleArray[6]	=	3.1415

You	might	see	the	two	following	limitations	when	working	with	arrays:

•	The	index	can	only	be	an	integer.

•	The	values	must	all	have	the	same	type.

Sometimes	it	is	useful	to	have	a	data	structure	that	does	not	have	these	limitations.

Associative	Arrays:	Taking	Off	the	Training	Wheels
An	associative	array	is	a	data	structure,	like	an	array,	but	is	not	restricted	to	using	integers
as	indexes	or	limiting	values	to	the	same	type.	You	could,	for	example,	have	commands
such	as	the	following:
Click	here	to	view	code	image

exampleAssociativeArray[‘Pi’]	=	3.1415

exampleAssociativeArray[‘CapitalFrance’]	=	‘Paris’

exampleAssociativeArray[‘ToDoList’]	=	{	‘Alice’	:	‘run

		reports;	meeting	with	Bob’,	‘Bob’	:	‘order	inventory;

		meeting	with	Alice’	}

exampleAssociativeArray[17234]	=	34468

Associative	arrays	generalize	the	idea	of	an	ordered	list	indexed	by	an	identifier	to	include
arbitrary	values	for	identifiers	and	values	(see	Figure	3.2).	As	the	previous	examples
show,	keys	can	be	strings	of	characters	or	integers.	Depending	on	the	programming
language	or	database,	you	may	be	able	to	use	keys	with	even	more	complex	data
structures,	such	as	a	list	of	values.

Figure	3.2	An	associative	array	shares	some	characteristics	of	arrays	but	has	fewer
constraints	on	keys	and	values.

In	addition,	note	that	values	stored	in	the	associative	array	can	vary.	In	the	previous
examples,	there	is	a	real	number,	a	character	string,	a	list,	and	an	integer.	The	identifiers
are	generally	referred	to	as	keys.	As	you	might	have	already	guessed,	associative	arrays
are	the	basic	structure	underlying	the	concept	of	key-value	databases.

	Note

Associative	arrays	go	by	a	number	of	different	names,	including	dictionary,	map,
hash	map,	hash	table,	and	symbol	table.



Caches:	Adding	Gears	to	the	Bike
Key-value	databases	build	on	the	concept	of	an	associative	array,	but	there	are	important
differences.	Many	key-value	data	stores	keep	persistent	copies	of	data	on	long-term
storage,	such	as	hard	drives	or	flash	devices.	Some	key-value	data	stores	only	keep	data	in
memory.	These	are	typically	used	so	programs	can	access	data	faster	than	if	they	had	to
retrieve	data	from	disk	drives	(see	Figure	3.3).	The	first	time	a	piece	of	data	is	retrieved
from	a	disk,	for	example,	as	the	result	of	a	SQL	query	in	a	relational	database,	it	is	stored
in	the	cache	along	with	a	set	of	unique	keys.	A	SQL	query	such	as	the	following	retrieves
name	and	shipping	address	information	from	a	relational	table	called	customers:

SELECT

				firstName,

				lastName,

				shippingAddress,

				shippingCity,

				shippingState,

				shippingZip

from

				customers

where

				customerID	=	1982737

Figure	3.3	Caches	are	associative	arrays	used	by	application	programs	to	improve
data	access	performance.

Only	the	information	for	the	customer	with	the	customerID	of	1982737	is	retrieved.

The	program	could	run	faster	if	it	retrieved	data	from	memory	rather	than	from	the
database.	The	first	time	the	program	fetches	the	data,	it	will	need	to	read	from	the	disk	but
after	that	the	results	can	be	saved	in	memory.



	Tip

If	the	program	is	relatively	simple	and	only	needs	to	track	one	customer	at	a	time,
then	the	application	programmer	could	use	character-string	variables	to	store	the
customer	name	and	address	information.	When	a	program	must	track	many
customers	and	other	entities	at	the	same	time,	then	using	a	cache	makes	more	sense.

An	in-memory	cache	is	an	associative	array.	The	values	retrieved	from	the	relational
database	could	be	stored	in	the	cache	by	creating	a	key	for	each	value	stored.	One	way	to
create	a	unique	key	for	each	piece	of	data	for	each	customer	is	to	concatenate	a	unique
identifier	with	the	name	of	the	data	item.	For	example,	the	following	stores	the	data
retrieved	from	the	database	in	an	in-memory	cache:
Click	here	to	view	code	image

customerCache[‘1982737:firstname’]	=	firstName

customerCache[‘1982737:lastname’]	=	lastName

customerCache[‘1982737:shippingAddress’]	=	shippingAddress

customerCache[‘1982737:shippingCity’]	=	shippingCity

customerCache[‘1982737:shippingState’]	=	shippingState

customerCache[‘1982737:shippingZip’]	=	shippingZip

Because	the	customerID	is	part	of	the	key,	the	cache	can	store	data	about	as	many
customers	as	needed	without	creating	separate	program	variables	for	each	set	of	customer
data.

Programs	that	access		customer	data	will	typically	check	the	cache	first	for	data	and	if	it	is
not	found	in	the	cache,	the	program	will	then	query	the	database.	Here	is	sample
pseudocode	for	a	getCustomer	function:
Click	here	to	view	code	image

define	getCustomer(p_customerID):

				begin

								if	exists(customerCache[‘1982737:firstName]),

												return(

																			customerCache[p_customerID

																					+’:lastname’],

																			customerCache[p_customerID

																					+’:shippingAddress’],

																			customerCache[p_customerID

																					+’:shippingCity’],

																			customerCache[‘p_customerID

																					+’:shippingState’],

																			customerCache[p_customerID

																					+”:shippingZip’]

																			);

				else

												return(addQueryResultsToCache(p_customerID,

																			‘SELECT

																								firstName,

																								lastName,

																								shippingAddress,

																								shippingCity,

																								shippingState,

																								shippingZip

																				FROM



																								customers

															WHERE

																							customerID	=	p_customerID’)

				end;

);

The	pseudocoded	function	takes	one	parameter,	p_customerID,	which	is	a	unique
identifier	of	the	customer.	The	if		statement	checks	if	there	exists	a	key	in	the	cache	that
consists	of	the	customer	identifier	passed	in	as	a	parameter	and	the	character	string
'firstName'.	If	it	does	exist,	then	it	is	safe	to	assume	that	all	the	attributes	about	the
customer	are	in	the	cache	and	can	be	returned	from	the	cache.	If	the	customer’s	first	name
is	not	in	the	cache,	the	function	executes	another	function	called
addQueryResultsToCache.	This	function	takes	a	key,	and	SQL	query	returns	the
data	associated	with	that	key.	The	function	also	stores	a	copy	of	the	returned	data	in	the
cache	so	it	is	available	next	time	the	getCustomer	function	is	called.

	Caution

Like	arrays	in	programming	languages,	when	the	server	is	shut	down	or	the	cache
terminates,	the	data	in	memory	is	lost.	The	next	time	the	application	starts,	it	will
have	to	reload	the	cache	with	data	by	executing	statements	like	the	SQL	statement
in	the	getCustomer	function.

Although	caches	are	types	of	key-value	data	stores,	they	are	outside	the	scope	of	this
book.	The	following	discussion	about	key-value	databases	applies	to	key-value	stores	that
save	data	persistently.

In-Memory	and	On-Disk	Key-Value	Database:	From	Bikes	to	Motorized
Vehicles
Caches	are	helpful	for	improving	the	performance	of	applications	that	perform	many
database	queries.	Key-value	data	stores	are	even	more	useful	when	they	store	data
persistently	on	disk,	flash	devices,	or	other	long-term	storage.	They	offer	the	fast
performance	benefits	of	caches	plus	the	persistent	storage	of	databases.

Key-value	databases	impose	a	minimal	set	of	constraints	on	how	you	arrange	your	data.
There	is	no	need	for	tables	if	you	do	not	want	to	think	in	terms	of	groups	of	related
attributes.

	Note

The	one	design	requirement	of	a	key-value	database	is	that	each	value	has	a	unique
identifier	in	the	form	of	the	key.	Keys	must	be	unique	within	the	namespace	defined
by	the	key-value	database.	The	namespace	can	be	called	a	bucket,	a	database,	or
some	other	term	indicating	a	collection	of	key-value	pairs	(see	Figure	3.4).



Figure	3.4	Keys	of	a	key-value	database	must	be	unique	within	a	namespace.

Developers	tend	to	use	key-value	databases	when	ease	of	storage	and	retrieval	are	more
important	than	organizing	data	into	more	complex	data	structures,	such	as	tables	or
networks.

	Note

Developers	could	readily	implement	networks	and	table-like	data	structures	using
key-value	databases	as	a	foundation.	A	developer	could	use	a	key-naming
convention	that	uses	a	table	name,	primary	key	value,	and	an	attribute	name	to
create	a	key	to	store	the	value	of	an	attribute,	as	shown	in	the	following	example:

Click	here	to	view	code	image

customer:1982737:firstName

customer:1982737:lastName

customer:1982737:shippingAddress

customer:1982737:shippingCity

customer:1982737:shippingState

customer:1982737:shippingZip

Next,	the	developer	can	create	a	set	of	functions	that	emulate	the	operations	performed	on
a	table,	such	as	creating,	reading,	updating,	or	deleting	a	row.	One	example	of	pseudocode
for	a	create	function	is
Click	here	to	view	code	image

define	addCustomerRow(p_tableName,	p_primaryKey,

		p_firstName,	p_lastName,	p_shippingAddress,

		p_shippingCity,	p_shippingState,	p_shippingZip)

			begin

				set	[p_tableName+p_primary+‘firstName’]	=	p_firstName;

				set	[p_tableName+p_primary+‘lastName’]	=	p_lastName;

				set	[p_tableName+p_primary+‘shippingAddress’]	=

						p_shippingAddress;

				set	[p_tableName+p_primary+‘shippingCity’]	=

						p_shippingCity;

				set	[p_tableName+p_primary+‘shippingState’]	=

						p_shippingState;

				set	[p_tableName+p_primary+‘shippingZip’]	=

						p_shippingZip;

			end;

The	reading,	updating,	and	deleting	functions	are	equally	as	easy	to	write.	(You	will	write
a	delete	function	later	in	the	chapter	as	an	exercise.)



Essential	Features	of	Key-Value	Databases
A	variety	of	key-value	databases	is	available	to	developers,	and	they	all	share	three
essential	features:

•	Simplicity

•	Speed

•	Scalability

These	characteristics	sound	like	an	ideal	combination	that	should	be	embraced	by	every
database,	but	as	you	will	see,	there	are	limitations	that	come	along	with	these	valued
features.

Simplicity:	Who	Needs	Complicated	Data	Models	Anyway?
Key-value	databases	use	a	bare-minimum	data	structure.	You	might	wonder,	why	would
anyone	want	to	use	a	bare-minimum	database	when	you	could	use	a	feature-rich	relational
database?	The	answer	is	that	sometimes	you	do	not	need	all	those	extra	features.

Think	about	word	processors.	Microsoft	Word,	for	example,	has	an	impressive	list	of
features,	including	a	wide	array	of	formatting	options,	spelling	and	grammar	checkers,	and
even	the	ability	to	integrate	with	other	tools	like	reference	and	bibliography	managers.

These	are	just	the	kinds	of	tools	you	want	in	your	word	processor	if	you	are	writing	a	book
or	lengthy	term	paper.	But	what	if	you	are	writing	a	six-item	to-do	list	on	your	phone?	A
full-featured	word	processor	is	more	than	you	need.	A	simple	text	editor	would	do	the	job
just	as	well.	The	same	kind	of	situation	can	occur	when	design	applications	use	a	database
for	storage.

Often,	developers	do	not	need	support	for	joining	tables	or	running	queries	about	multiple
entities	in	the	database.	If	you	were	implementing	a	database	to	store	information	about	a
customer’s	online	shopping	cart,	you	could	use	a	relational	database,	but	it	would	be
simpler	to	use	a	key-value	database.	You	would	not	have	to	define	a	database	schema	in
SQL.	You	would	not	have	to	define	data	types	for	each	attribute	you’d	like	to	track.

If	you	discover	that	you	would	like	to	track	additional	attributes	after	you	have	written
your	program,	you	can	simply	add	code	to	your	program	to	take	care	of	those	attributes.
There	is	no	need	to	change	database	code	to	tell	the	database	about	the	new	attribute.	Key-
value	databases	have	no	problem	working	with	adding	new	attributes	as	they	come	along.

In	key-value	databases,	you	work	with	a	simple	data	model.	The	syntax	for	manipulating
data	is	simple.	Typically,	you	specify	a	namespace,	which	could	be	a	database	name,	a
bucket	name,	or	some	other	type	of	collection	name,	and	a	key	to	indicate	you	want	to
perform	an	operation	on	a	key-value	pair.	When	you	specify	only	the	namespace	name	and
the	key,	the	key-value	database	will	return	the	associated	value.	When	you	want	to	update
the	value	associated	with	a	key,	you	specify	the	namespace,	key,	and	new	value.

Key-value	databases	are	flexible	and	forgiving.	If	you	make	a	mistake	and	assign	the
wrong	type	of	data,	for	example,	a	real	number	instead	of	an	integer,	the	database	usually
does	not	complain.	This	feature	is	especially	useful	when	the	data	type	changes	or	you
need	to	support	two	or	more	data	types	for	the	same	attribute.	If	you	need	to	have	both



numbers	as	strings	for	customer	identifiers,	you	can	do	that	with	code	such	as	the
following:
Click	here	to	view	code	image

shoppingCart[cart:1298:customerID]	=	1982737

shoppingCart[cart:3985:customerID]	=	‘Johnson,	Louise’

One	of	the	advantages	of	simple	data	structures	in	computer	science	is	that	they	are	often
associated	with	fast	operations.

Speed:	There	Is	No	Such	Thing	as	Too	Fast
Major	database	vendors	create	tools	to	help	developers	and	database	administrators
identify	slow-running	queries.	Books	are	written	on	tuning	databases.	Software	engineers
comb	their	code	for	opportunities	to	cut	down	on	the	time	required	to	run	their	code.	It
seems	like	no	one	wants	to	wait	for	his	or	her	data.

Key-value	databases	are	known	for	their	speed.	With	a	simple	associative	array	data
structure	and	design	features	to	optimize	performance,	key-value	databases	can	deliver
high-throughput,	data-intensive	operations.

One	way	to	keep	database	operations	running	fast	is	to	keep	data	in	memory.	Reading	and
writing	data	to	RAM	is	much	faster	than	writing	to	a	disk.	Of	course,	RAM	is	not
persistent	storage,	so	if	you	lose	power	on	your	database	server,	you	will	lose	the	contents
of	RAM.	Key-value	databases	can	have	the	advantages	of	fast	write	operations	to	RAM
and	the	persistence	of	disk-based	storage	by	using	both.

When	a	program	changes	the	value	associated	with	a	key,	the	key-value	database	can
update	the	entry	in	RAM	and	then	send	a	message	to	the	program	that	the	updated	value
has	been	saved.	The	program	can	then	continue	with	other	operations.	While	the	program
is	doing	something	else,	the	key-value	database	can	write	the	recently	updated	value	to
disk.	The	new	value	is	saved	to	disk	unless	there	is	a	power	loss	or	some	other	failure
between	the	time	the	application	updates	the	value	and	the	key-value	database	stores	the
value	on	disk	(see	Figure	3.5).

Figure	3.5	Write	operations	can	return	control	to	the	calling	application	faster	by	first
writing	inserts	and	updates	to	RAM	and	then	updating	disk	storage.

Similarly,	read	operations	can	be	faster	if	data	is	stored	in	memory.	This	is	the	motivation
for	using	a	cache,	as	described	earlier.	Because	the	size	of	the	database	can	exceed	the	size
of	RAM,	key-value	stores	have	to	find	ways	of	managing	the	data	in	memory.



	Tip

Compressing	data	is	one	way	of	increasing	the	effective	storage	capacity	of
memory,	but	even	with	compression	there	may	not	be	sufficient	memory	to	store	a
large	key-value	database	completely	in	RAM.

When	the	key-value	database	uses	all	the	memory	allocated	to	it,	the	database	will	need	to
free	some	of	the	allocated	memory	before	storing	copies	of	additional	data.	There	are
multiple	algorithms	for	this,	but	a	commonly	used	method	is	known	as	least	recently	used
(LRU).	The	idea	behind	the	LRU	algorithm	is	that	if	data	has	not	been	used	in	a	while,	it
is	less	likely	to	be	used	than	data	that	has	been	read	or	written	more	recently.	This
intuition	makes	sense	for	many	application	areas	of	key-value	databases	(see	Figure	3.6).

Figure	3.6	Least	recently	used	algorithms	delete	data	that	has	not	been	read	or	written
as	recently	as	other	data.

Consider	a	key-value	database	used	to	store	items	in	customers’	online	carts.	Assume	that
once	a	customer	adds	an	item	to	the	cart,	it	stays	there	until	the	customer	checks	out	or	the
item	is	removed	by	a	background	cleanup	process.	A	customer	who	finished	shopping
several	hours	ago	may	still	have	data	in	memory.	More	than	likely,	that	customer	has
abandoned	the	cart	and	is	not	likely	to	continue	shopping.	Compare	that	scenario	with	a
customer	who	last	added	an	item	to	the	cart	five	minutes	ago.	There	is	a	good	chance	that
customer	is	still	shopping	and	will	likely	add	other	items	to	the	cart	or	continue	to	the
checkout	process	shortly.



Scalability:	Keeping	Up	with	the	Rush
It	is	important	for	key-value	databases,	and	other	types	of	NoSQL	databases	used	in	web
and	other	large-scale	applications,	to	scale	with	minimal	disruption	to	operations.
Remember	from	Chapter	2,	“Variety	of	NoSQL	Databases,”	that	scalability	is	the
capability	to	add	or	remove	servers	from	a	cluster	of	servers	as	needed	to	accommodate
the	load	on	the	system.	When	you	scale	databases,	the	capability	to	accommodate	both
reads	and	writes	is	an	important	property.	Key-value	databases	take	different	approaches
to	scaling	read	and	write	operations.	Let’s	consider	two	options:

•	Master-slave	replication

•	Masterless	replication

Scaling	with	Master-Slave	Replication

One	way	to	keep	up	with	a	growing	demand	for	read	operations	is	to	add	servers	that	can
respond	to	queries.	It	is	easy	to	imagine	applications	that	would	have	many	more	reads
than	writes.	During	the	World	Cup	finals,	football	fans	around	the	world	(and	soccer	fans
in	the	United	States)	who	have	to	work	instead	of	watch	the	game	would	be	checking	their
favorite	sport	score	website	for	the	latest	updates.	News	sites	would	similarly	have	a
greater	proportion	of	reads	than	writes.	Even	e-commerce	sites	can	experience	a	higher
ratio	of	page	views	than	data	writes	because	customers	may	browse	many	descriptions	and
reviews	for	each	item	they	ultimately	end	up	adding	to	their	shopping	carts.

In	applications	such	as	this,	it	is	reasonable	to	have	more	servers	that	can	respond	to
queries	than	accept	writes.	A	master-slave	replication	model	works	well	in	this	case.

The	master	is	a	server	in	the	cluster	that	accepts	write	and	read	requests.	It	is	responsible
for	maintaining	the	master	record	of	all	writes	and	replicating,	or	copying,	updated	data	to
all	other	servers	in	the	cluster.	These	other	servers	only	respond	to	read	requests.	As
Figure	3.7	shows,	master-slave	architectures	have	a	simple	hierarchical	structure.



Figure	3.7	Master-slave	architectures	have	a	simple	communication	pattern	during
normal	operations.

An	advantage	of	master-slave	models	is	simplicity.	Except	for	the	master,	each	node	in	the
cluster	only	needs	to	communicate	with	one	other	server:	the	master.	The	master	accepts
all	writes,	so	there	is	no	need	to	coordinate	write	operations	or	resolve	conflicts	between
multiple	servers	accepting	writes.

A	disadvantage	of	the	master-slave	replication	model	is	that	if	the	master	fails,	the	cluster
cannot	accept	writes.	This	can	adversely	impact	the	availability	of	the	cluster		The	master
server	is	known	as	a	single	point	of	failure—that	is,	a	single	component	in	a	system	that	if
it	fails,	the	entire	system	fails	or	at	least	loses	a	critical	capacity,	such	as	accepting	writes.

Designers	of	distributed	systems	have	developed	protocols	so	active	servers	can	detect
when	other	servers	in	the	cluster	fail.	For	example,	a	server	may	send	a	simple	message	to
ask	a	random	server	in	the	cluster	if	it	is	still	active.	If	the	randomly	selected	server
replies,	then	the	first	server	will	know	the	other	server	is	active.

In	the	case	of	master-slave	configurations,	if	a	number	of	slave	servers	do	not	receive	a
message	from	the	master	within	some	period	of	time,	the	slaves	may	determine	the	master
has	failed.	At	that	point,	the	slaves	initiate	a	protocol	to	promote	one	of	the	slaves	to
master	(see	Figure	3.8).	Once	active	as	the	master,	the	new	master	server	begins	accepting
write	operations	and	the	cluster	would	continue	to	function,	accepting	both	read	and	write
operations.



Figure	3.8	Once	a	failed	master	server	is	detected,	the	slaves	initiate	a	protocol	to	elect
a	new	master.

Scaling	with	Masterless	Replication

The	master-slave	replication	model	with	a	single	server	accepting	writes	does	not	work
well	when	there	are	a	large	number	of	writes.	Imagine	the	Rolling	Stones	decide	to	have
one	more	world	tour.	Fans	around	the	world	flock	to	buy	concert	tickets.	The	fans	would
generate	a	large	number	of	reads	when	they	look	up	the	cities	that	will	be	hosting	concerts,
but	once	they	find	one	or	two	close	cities,	they	are	ready	to	purchase	tickets.

The	software	engineers	who	write	the	concert	ticket	program	have	a	lot	to	think	about,
including

•	Storing	concert	locations	and	dates.

•	Available	seats	in	each	venue.

•	Cost	of	seats	in	various	sections.

•	Any	limits	on	the	number	of	tickets	purchased	by	a	single	customer.

•	Ensuring	that	seats	that	appear	to	be	available	to	a	user	are	still	available	when	the
user	chooses	to	purchase	the	ticket.	This	assumes	the	customer	opts	to	buy	the	ticket
almost	immediately	after	seeing	the	availability.

There	are	probably	many	more	requirements,	but	these	are	sufficient	to	give	you	a	basic



idea	of	the	challenges	the	software	engineers	are	up	against.

With	the	possibility	of	a	surge	in	the	number	of	customers	trying	to	write	to	the	database,	a
single	server	accepting	writes	will	limit	scalability.	A	better	option	for	this	application	is	a
masterless	replication	model	in	which	all	nodes	accept	reads	and	writes.	An	immediate
problem	that	comes	to	mind	is:	How	do	you	handle	writes	so	that	two	or	more	servers	do
not	try	to	sell	the	same	seat	in	a	concert	venue	to	multiple	customers?	(See	Figure	3.9.)

Figure	3.9	A	fan’s	worst	nightmare:	Multiple	fans	are	able	to	purchase	tickets	for	the
same	seat.

There	is	an	elegant	solution	to	this	problem	that	is	described	later	in	the	“Keys:	More
Than	Meaningless	Identifiers”	section.	For	now,	let’s	assume	that	only	one	customer	can
purchase	a	seat	at	a	concert	venue	at	a	particular	date	and	time.	There	is	still	the	problem
of	scaling	reads.

In	a	masterless	replication	model,	there	is	not	a	single	server	that	has	the	master	copy	of
updated	data,	so	no	single	server	can	copy	its	data	to	all	other	servers.	Instead,	servers	in	a
masterless	replication	model	work	in	groups	to	help	their	neighbors.

Consider	a	set	of	eight	servers	configured	in	a	masterless	replication	model	and	set	up	in	a
ring	structure.	For	simplicity,	assume	that	the	servers	are	named	1,	2,	3,	and	so	on	up	to
Server	8.	In	the	ring	structure,	Server	1	is	logically	linked	to	Servers	2	and	8,	Server	2	is
linked	to	Servers	1	and	3,	Server	3	is	linked	to	Servers	2	and	4,	and	so	on.	Figure	3.10
shows	the	full	configuration.



Figure	3.10	An	eight-server	cluster	in	a	ring	configuration.

	Note

The	ring	structure	is	a	useful	abstraction	for	discussing	replication	in	a	masterless
model.	In	a	data	center,	the	eight	servers	would	probably	all	be	connected	to	a
single	network	hub	and	able	to	directly	communicate	with	each	other.

Database	administrators	can	configure	a	key-value	database	to	keep	a	particular	number	of
replicas.	In	this	scenario,	the	administrator	has	decided	that	four	replicas	are	sufficient.
Each	time	there	is	a	write	operation	to	one	of	the	servers,	it	replicates	that	change	to	the



three	other	servers	holding	its	replica.	In	this	scenario,	each	server	replicates	to	its	two
neighbors	and	to	the	server	two	links	ahead.	For	example,	Server	2	replicates	to	its
neighbors	Server	1	and	Server	3	as	well	as	Server	4,	which	is	two	links	ahead.	Figure	3.11
shows	the	full	replication	pattern.

Figure	3.11	An	eight-server	cluster	in	a	ring	configuration	with	a	replication	factor	of
4.

Now	that	you	have	had	a	basic	introduction	to	the	essential	features	of	key-value	data
stores,	it	is	time	to	drill	down	into	some	of	the	properties	of	two	components:	keys	and
values.



Keys:	More	Than	Meaningless	Identifiers
As	already	stated,	keys	are	used	to	identify,	index,	or	otherwise	reference	a	value	in	a	key-
value	database.	The	one	essential	property	of	a	key	is	that	it	must	be	unique	within	a
namespace.	This	makes	keys	sound	pretty	simple,	and	they	are—sometimes.

How	to	Construct	a	Key
If	you	have	worked	with	relational	databases,	you	may	have	used	counters	or	sequences	to
generate	keys.	Counters	and	sequences	are	functions	that	return	a	new	unique	number
each	time	the	function	is	called.	Database	application	designers	use	these	routinely	to
make	keys	for	rows	of	data	stored	in	a	table.	Each	generated	number	is	a	unique	identifier
used	by	a	row	in	a	table.

Designers	could	use	one	counter	to	generate	primary	keys	for	all	tables,	or	they	could	use
a	different	counter	or	sequence	for	each	table.	Either	way,	each	row	in	a	table	has	a	unique
identifier.	Just	as	keys	in	key-value	databases	must	be	unique	in	a	namespace,	the	primary
key	of	a	row	of	data	must	be	unique	to	the	table.

	Tip

It	is	considered	good	practice	to	use	meaningless	keys	in	relational	database	design.

The	sole	purpose	of	a	primary	key,	the	reasoning	goes,	is	to	uniquely	identify	a	row.	If	you
were	to	use	a	property	of	the	data,	such	as	the	last	name	and	first	initial	of	a	customer,	you
might	run	into	problems	with	duplicates.	Also,	values	stored	in	rows	may	change.

For	example,	consider	how	quickly	the	meaning	of	a	primary	key	would	change	if	you
used	the	two-letter	state	abbreviation	of	the	state	in	which	a	customer	lives	as	part	of	a	key
for	that	customer.	You	could	have	a	key	such	as	‘SMITH_K_TX’	for	a	Katherine	Smith
who	lives	in	Texas.	If	Katherine	Smith	moves	to	Illinois,	then	the	primary	key	is	no	longer
meaningful.

	Caution

Primary	keys	should	not	be	changed,	so	you	could	not	simply	change	the	key	to
‘SMITH_K_IL.’	That	would	violate	the	principle	that	primary	keys	are	immutable.
You	could	conceivably	change	a	primary	key	(if	the	database	management	system
allowed	such	updates),	but	you	would	have	to	update	all	references	to	that	key	in
other	tables.

Storing	a	primary	key	to	a	row	in	another	table	is	known	as	a	foreign	key.	As	you	can	see,
the	way	relational	databases	work,	it	makes	sense	to	have	meaningless	keys.

In	NoSQL	databases,	and	key-value	databases	in	general,	the	rules	are	different.	Key-
value	databases	do	not	have	a	built-in	table	structure.	With	no	tables,	there	are	no
columns.	With	no	columns,	there	is	no	way	to	know	what	a	value	is	for	except	for	the	key.
Consider	a	shopping	cart	application	using	a	key-value	database	with	meaningless	keys:

Cart[12387]	=	‘SKU	AK8912j4’



This	key	is	the	type	of	identifier	you	would	likely	see	in	a	relational	database.	This	key-
value	pair	only	tells	you	that	a	cart	identified	by	number	12387	has	an	item	called	'SKU
AK8912j4'.	You	might	assume	from	the	value	that	SKU	stands	for	stock	keeping	unit,	a
standard	term	in	retail	to	refer	to	a	specific	type	of	product.	However,	you	don’t	know	who
this	cart	belongs	to	or	where	to	ship	the	product.

One	way	to	solve	this	problem	is	to	create	another	namespace,	such	as	custName.	Then
you	could	save	a	value	such	as
Click	here	to	view	code	image

CustName[12387]	=	‘Katherine	Smith’

This	would	solve	the	immediate	problem	of	identifying	who	owns	the	cart,	but	you	can
see	that	this	approach	does	not	generalize	well.	Every	attribute	tracked	in	the	application
would	need	a	separate	namespace.	Alternatively,	you	can	use	meaningful	keys	that	entail
information	about	attributes.

As	discussed	earlier,	you	can	construct	meaningful	names	that	entail	information	about
entity	types,	entity	identifiers,	and	entity	attributes.	For	example:

Cust:12387:firstName

could	be	a	key	to	store	the	first	name	of	the	customer	with	customerID	12387.	This	is
not	the	only	way	to	create	meaningful	names,	but	it	is	the	one	used	throughout	this	book.
Again,	the	basic	formula	is
Click	here	to	view	code	image

Entity	Name	+	‘:’	+	Entity	Identifier	+’:’	+	Entity

		Attribute

The	delimiter	does	not	have	to	be	a	':'	but	it	is	a	common	practice.

Using	Keys	to	Locate	Values
Up	to	this	point,	there	has	been	a	fair	amount	of	discussion	about	how	to	construct	keys,
why	keys	must	be	unique	within	a	namespace,	and	why	meaningful	keys	are	more	useful
in	key-value	databases	than	relational	databases.	There	has	been	some	mention	of	the	idea
that	keys	are	used	to	look	up	associated	values,	but	there	has	been	no	explanation	about
how	that	happens.	It	is	time	to	address	that	topic.

If	key-value	database	designers	were	willing	to	restrict	you	to	using	integers	as	key	values,
then	they	would	have	an	easy	job	of	designing	code	to	fetch	or	set	values	based	on	keys.
They	could	load	a	database	into	memory	or	store	it	on	disk	and	assume	that	the	first	value
stored	in	a	namespace	is	referenced	by	key	1,	the	next	value	by	key	2,	and	so	on.
Fortunately,	key-value	designers	are	more	concerned	with	designing	useful	data	stores
than	simplifying	data	access	code.

Using	numbers	to	identify	locations	is	a	good	idea,	but	it	is	not	flexible	enough.	You
should	be	able	to	use	integers,	character	strings,	and	even	lists	of	objects	as	keys	if	you
want.	The	good	news	is	that	you	can.	The	trick	is	to	use	a	function	that	maps	from
integers,	character	strings,	or	lists	of	objects	to	a	unique	string	or	number.	These	functions
that	map	from	one	type	of	value	to	a	number	are	known	as	hash	functions.



	Note

Not	all	key-value	databases	support	lists	and	other	complex	structures.	Some	are
more	restricted	in	the	types	and	lengths	of	keys	than	others.

Hash	Functions:	From	Keys	to	Locations

A	hash	function	is	a	function	that	can	take	an	arbitrary	string	of	characters	and	produce	a
(usually)	unique,	fixed-length	string	of	characters.

	Note

Actually,	the	value	returned	by	the	hash	function	is	not	always	unique;	sometimes
two	unrelated	inputs	can	generate	the	same	output.	This	is	known	as	a	collision.

	Refer	to	Chapter	4,	“Key-Value	Database	Terminology,”	for	information	on	how	to
deal	with	collisions.

For	example,	the	keys	mentioned	earlier	in	the	chapter	to	describe	customer	shipping
information	are	mapped	to	hash	values	listed	in	Table	3.1.

Table	3.1	Key	to	Hash	Value	Mappings

Each	hash	value	is	quite	different	from	the	others,	although	they	all	have	the	same
'customer:1982737:'	prefix.	One	of	the	properties	of	hash	functions	is	that	they
map	to	what	appear	to	be	random	outputs.	In	this	example,	the	SHA-1	hash	function	is
used	to	generate	the	hash	values.

The	values	are	all	numbers	in	hexadecimal,	a	base-16	number	system.	The	hexadecimal
integers	are	0–9	and	a–f,	which	represent	10–15.	This	is	about	1.4615016e+48	different
values.		Needless	to	say,	this	should	be	plenty	for	any	key-value	database	application.



Keys	Help	Avoid	Write	Problems

Now,	let’s	see	how	you	can	use	the	numbers	returned	by	the	hash	function	to	map	to	a
location.	To	keep	things	simple,	the	discussion	focuses	on	using	the	number	returned	by	a
hash	function	to	determine	which	server	in	a	cluster	should	be	used	to	store	the	value
associated	with	the	key.	An	actual	key-value	implementation	would	have	to	map	to	a
location	on	disk	or	in	memory,	but	that	is	beyond	the	scope	of	this	discussion.

Assume	you	are	working	with	the	eight-server	cluster	that	you	saw	in	Figure	3.10.	You
can	take	advantage	of	the	fact	that	the	hash	function	returns	a	number.	Because	the	write
load	should	be	evenly	distributed	across	all	eight	servers,	you	can	send	one	eighth	of	all
writes	to	each	server.	You	could	send	the	first	write	to	Server	1,	the	second	to	Server	2,	the
third	to	Server	3,	and	so	on	in	a	round-robin	fashion,	but	this	would	not	take	advantage	of
the	hash	value.

One	way	to	take	advantage	of	the	hash	value	is	to	start	by	dividing	the	hash	value	by	the
number	of	servers.	Sometimes	the	hash	value	will	divide	evenly	by	the	number	of	servers.
(For	this	discussion,	assume	the	hash	function	returns	decimal	numbers,	not	hexadecimal
numbers,	and	that	the	number	of	digits	in	the	number	is	not	fixed.)

If	the	hash	function	returns	the	number	32	and	that	number	is	divided	by	8,	then	the
remainder	is	0.	If	the	hash	function	returns	41	and	it	is	divided	by	8,	then	the	remainder	is
1.	If	the	hash	function	returns	67,	division	by	8	leaves	a	remainder	of	3.

As	you	can	see,	any	division	by	8	will	have	a	remainder	between	0	and	7.	Each	of	the
eight	servers	can	be	assigned	a	number	between	0	and	7.

In	this	discussion,	the	remainder	will	be	called	the	modulus	after	the	modulo	arithmetic
operation	that	returns	a	remainder.	Figure	3.12	shows	how	to	assign	each	modulus	to	a
server.



Figure	3.12	An	eight-server	cluster	in	a	ring	configuration	with	modulo	number
assigned.

Let’s	return	to	the	concert	ticket	application.	A	challenge	was	to	ensure	that	two	servers
did	not	sell	tickets	to	the	same	seat,	at	the	same	venue,	in	the	same	city,	on	the	same	night
to	more	than	one	person.	Because	key-value	databases	running	in	a	masterless
configuration	can	accept	writes	from	all	servers,	such	a	mistake	could	happen.	The
solution	is	to	make	sure	any	requests	for	the	same	seat,	at	the	same	venue,	in	the	same	city,
on	the	same	night	all	go	to	the	same	server.

You	can	do	this	by	making	a	key	based	on	seat,	venue,	city,	and	date.	For	example,	two



fans	want	to	purchase	set	A73	at	the	Civic	Center	in	Portland,	Oregon,	on	July	15.	You
could	construct	keys	using	the	seat,	an	abbreviation	for	the	venue	(CIvCen	in	this	case),
the	airport	code	for	the	city	(PDX	in	this	case),	and	a	four-digit	number	for	the	date.	In	this
example,	the	key	would	be

A73:CivCen:PDX:0715

Anyone	trying	to	purchase	that	same	seat	on	the	same	day	would	generate	the	same	key.
Because	keys	are	mapped	to	servers	using	modulo	operations,	all	requests	for	that	seat,
location,	and	date	combination	would	go	to	the	same	server.	There	is	no	chance	for
another	server	to	sell	that	seat,	thus	avoiding	the	problem	with	servers	competing	to	sell
the	same	ticket.

Keys,	of	course,	are	only	half	the	story	in	key-value	databases.	It	is	time	to	discuss	values.

Values:	Storing	Just	About	Any	Data	You	Want
This	chapter	started	with	the	theme	of	simplicity.	Key-value	data	stores	are	the	simplest
form	of	NoSQL	database.	That	is	in	part	because	the	foundational	data	structure	of	the
associative	array	is	so	simple.	NoSQL	databases	are	also	simple	with	respect	to	the	way
they	store	data.

Values	Do	Not	Require	Strong	Typing
Unlike	strongly	typed	programming	languages	that	require	you	to	define	variables	and
specify	a	type	for	those	variables,	key-value	databases	do	not	expect	you	to	specify	types
for	the	values	you	store.

You	could,	for	example,	store	a	string	along	with	a	key	for	a	customer’s	address:
Click	here	to	view	code	image

‘1232	NE	River	Ave,	St.	Louis,	MO’

or	you	could	store	a	list	of	the	form:
Click	here	to	view	code	image

(‘1232	NE	River	Ave’,	‘St.	Louis’,	‘MO’)

or	you	could	store	a	more	structured	format	using	JavaScript	Object	Notation,	such	as
Click	here	to	view	code	image

{	‘Street:’	:	‘1232	NE	River	Ave’,	‘City’	:	‘St.	Louis’,:

		‘State’	:	‘MO’	}

Key-value	databases	make	minimal	assumptions	about	the	structure	of	data	stored	in	the
database.

While	in	theory,	key-value	databases	allow	for	arbitrary	types	of	values,	in	practice
database	designers	have	to	make	implementation	choices	that	lead	to	some	restrictions.
Different	implementations	of	key-value	databases	have	different	restrictions	on	values.
For	example,	some	key-value	databases	will	typically	have	some	limit	on	the	size	of
values.	Some	might	allow	multiple	megabytes	in	each	value,	but	others	might	have
smaller	size	limitations.

Even	in	cases	in	which	you	can	store	extremely	large	values,	you	might	run	into



performance	problems	that	lead	you	to	work	with	smaller	data	values.

	Note

It	is	important	to	consider	the	design	characteristics	of	the	key-value	database	you
choose	to	use.	Consult	the	documentation	for	limitations	on	keys	and	values.	Part	of
the	process	in	choosing	a	key-value	database	is	considering	the	trade-off	of	various
features.	One	key-value	database	might	offer	ACID	transactions	but	limit	you	to
small	keys	and	values.	Another	key-value	data	store	might	allow	for	large	values
but	limit	keys	to	numbers	or	strings.	Your	application	requirements	should	be
considered	when	weighing	the	advantages	and	disadvantages	of	different	database
systems.

Limitations	on	Searching	for	Values
Keep	in	mind	that	in	key-value	databases,	operations	on	values	are	all	based	on	keys.	You
can	retrieve	a	value	by	key,	you	can	set	a	value	by	key,	and	you	can	delete	values	by	key.
That	is	pretty	much	the	repertoire	of	operations.	If	you	want	to	do	more,	such	as	search	for
an	address	in	which	the	city	is	“St.	Louis,”	you	will	have	to	do	that	with	an	application
program.	If	you	were	using	a	relational	database,	you	could	issue	a	SQL	query,	such	as	the
following:

SELECT

				address,

				city,

				state,

				zip

FROM

				Customer

WHERE

				city	=	‘St.	Louis’

Key-value	databases	do	not	support	query	languages	for	searching	over	values.	There	are
two	ways	to	address	this	limitation.

You,	as	an	application	developer,	could	implement	the	required	search	operations	in	your
application.	For	example,	you	could	generate	a	series	of	keys,	query	for	the	value	of	each
key,	and	test	the	returned	value	for	the	pattern	you	seek.

Let’s	assume	you	decided	to	store	addresses	as	a	string	such	as	'1232	NE	River
Ave,	St.	Louis,	MO'	and	you	store	it	like	this:
Click	here	to	view	code	image

appData[cust:9877:address]	=	‘1232	NE	River	Ave,	St.

		Louis,	MO’

A	pseudocode	function	for	searching	for	customers	in	a	particular	city	is
Click	here	to	view	code	image

define	findCustomerWithCity(p_startID,	p_endID,	p_City):

				begin

				#	first,	create	an	empty	list	variable	to	hold	all

				#	addresses	that	match	the	city	name

				returnList	=	();



				#	loop	through	a	range	of	identifiers	and	build	keys

				#	to	look	up	address	values	then	test	each	address

				#	using	the	inString	function	to	see	if	the	city	name

				#	passed	in	the	p_City	parameter	is	in	the	address

				#	string.	If	it	is,	add	it	to	the	list	of		addresses

				#	to	return

				for	id	in	p_startID	to	p_endID:

									address	=	appData[‘cust:’	+	id	+	‘:address’];

									if	inString(p_City,	Address):

												addToList(Address,returnList	);

				#	after	checking	all	addresses	in	the	ranges	specified

				#	by	the	start	and	end	ID	return	the	list	of	addresses

				#	with	the	specified	city	name.

				return(returnList);

end;

This	method	enables	you	to	search	value	strings,	but	it	is	inefficient.	If	you	need	to	search
large	ranges	of	data,	you	might	retrieve	and	test	many	values	that	do	not	have	the	city	you
are	looking	for.

Some	key-value	databases	incorporate	search	functionality	directly	into	the	database.	This
is	an	additional	service	not	typically	found	in	key-value	databases	but	can	significantly
add	to	the	usefulness	of	the	database.	A	built-in	search	system	would	index	the	string
values	stored	in	the	database	and	create	an	index	for	rapid	retrieval.	Rather	than	search	all
values	for	a	string,	the	search	system	keeps	a	list	of	words	with	the	keys	of	each	key-value
pair	in	which	that	word	appears.	Figure	3.13	shows	a	graphical	depiction	of	what	such	an
index	might	look	like.

Figure	3.13	A	search	index	helps	efficiently	retrieve	data	when	selecting	by	criteria
based	on	values.



Summary
Key-value	databases	are	simple	and	flexible.	They	are	based	on	the	associative	array,
which	is	a	more	generalized	data	structure	than	arrays.	Associative	arrays	allow	for
generalized	index	values,	or	keys.	Keys	may	be	integers,	strings,	lists	of	values,	or	other
types.

An	important	constraint	on	keys	is	that	they	must	be	unique	within	a	namespace.	Keys	are
used	to	look	up	values	and	those	values	can	vary	by	type.	There	are	some	practical
limitations	on	the	size	of	values	and	those	limitations	can	vary	by	implementation.	Some
of	the	limitations	of	key-value	databases,	such	as	lack	of	query	language,	are	mitigated
with	additional	features	such	as	search	tools.

Key-value	databases	lend	themselves	to	scalable	designs	based	on	both	master-slave	and
masterless	replication	models.	Master-slave	architectures	typically	have	a	single	node	that
accepts	writes	and	multiple	nodes	that	support	read	operations.	Masterless	architectures
allow	for	multiple	nodes	to	accept	write	and	support	reads.

Chapter	4	includes	additional	terminology	and	concepts	needed	to	understand	both	the
design	and	the	use	of	key-value	databases.	Then,	Chapter	5,	“Designing	for	Key-Value
Databases,”	discusses	the	use	of	key-value	databases	in	application	design	and	describes	a
number	of	useful	design	patterns	to	help	you	develop	robust	applications	based	on	key-
value	databases.

Review	Questions
1.	How	are	associative	arrays	different	from	arrays?

2.	How	can	you	use	a	cache	to	improve	relational	database	performance?

3.	What	is	a	namespace?

4.	Describe	a	way	of	constructing	keys	that	captures	some	information	about	entities
and	attribute	types.

5.	Name	three	common	features	of	key-value	databases.

6.	What	is	a	hash	function?	Include	important	characteristics	of	hash	functions	in	your
definition.

7.	How	can	hash	functions	help	distribute	writes	over	multiple	servers?

8.	What	is	one	type	of	practical	limitation	on	values	stored	in	key-value	databases?

9.	How	does	the	lack	of	a	query	language	affect	application	developers	using	key-
value	databases?

10.	How	can	a	search	system	help	improve	the	performance	of	applications	that	use
key-value	databases?

References
Basho	Technologies,	Inc.	Riak	Documentation:	http://docs.basho.com/riak/latest/

Carlson,	Josiah	L.	Redis	in	Action.	Shelter	Island,	NY:	Manning	Publications	Co.,	2013.

http://docs.basho.com/riak/latest/


Meyer,	Mathias.	Riak	Handbook.	Seattle,	WA:	Amazon	Digital	Services,	Inc.,	2013.

FoundationDB,	FoundationDB	Documentation:	https://foundationdb.com/key-value-
store/documentation/index.html

Macedo,	Tiago,	and	Fred	Oliveira.	Redis	Cookbook.	Sebastopol,	CA:	O’Reilly	Media,
Inc.,	2011.

Oracle	Corporation.	Oracle	NoSQL	Documentation:
http://www.oracle.com/technetwork/database/database-
technologies/nosqldb/documentation/index.html.

Redis.	io	Documentation:	http://redis.io/documentation

Bibliography
Hernandez,	Michael	J.	Database	Design	for	Mere	Mortals:	A	Hands-On	Guide	to
Relational	Database	Design.	Reading,	MA:	Addison-Wesley,	2003.

Viescas,	John	L.,	and	Michael	J.	Hernandez.	SQL	Queries	for	Mere	Mortals.	Reading,
MA:	Addison-Wesley,	2007.

https://foundationdb.com/key-value-store/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/documentation/index.html
http://redis.io/documentation


4.	Key-Value	Database	Terminology

“I	always	try	to	think	of	a	vocabulary	to	match	different	musical	situations.”

—ROSCOE	MITCHELL
JAZZ	COMPOSER	AND	SAXOPHONIST

Topics	Covered	In	This	Chapter

Key-Value	Database	Data	Modeling	Terms

Key-Value	Architecture	Terms

Key-Value	Implementation	Terms

This	chapter	is	different	from	the	first	three	chapters	of	this	book.	The	intent	of	this
chapter	is	to	provide	an	explanation	of	important	terms	used	when	discussing	key-value
databases.	Introducing	terminology	of	a	new	domain,	like	NoSQL	databases,	presents
something	of	a	chicken-and-egg	problem.

Which	should	come	first?	Should	you	learn	about	the	basic	ideas	of	key-value	databases
and	then	delve	into	a	more	detailed	understanding	of	the	terms	and	concepts	that	underlie
key-value	databases?	Or,	should	you	first	learn	the	definition	of	terms	independent	of	the
bigger	picture	of	key-value	databases?	There	are	advantages	and	disadvantages	to	both
approaches.

This	book	tries	to	have	the	best	of	both	worlds	by	introducing	basic	concepts	and	then
providing	detailed	descriptions	of	key	terms	followed	by	an	advanced	topics	chapter	that
includes	a	discussion	of	design	patterns,	potential	pitfalls	and	traps,	and	a	case	study
describing	a	typical	use	case	for	key-value	databases.

This	chapter	is	organized	into	three	broad,	somewhat	overlapping	topics:	data	modeling
terms,	architecture	terms,	and	implementation	terms.	This	structure	is	somewhat	arbitrary
and	you	could	make	the	case	that	some	terms	in	the	architecture	section	should	be	in	the
implementation	section	and	vice	versa.	The	placement	of	the	terms	in	chapter	sections	is
far	less	important	than	the	terms	themselves.

NoSQL	databases	do	not	share	the	same	level	of	standardization	you	find	in	relational
databases.	There	is,	for	example,	no	standard	NoSQL	query	language	comparable	to
relational	databases’	SQL.	Different	vendors	and	open	source	projects	sometimes
introduce	terms	or	use	data	structures	not	found	in	other	NoSQL	databases.

The	terminology	chapters	(there	is	one	for	each	of	the	four	major	types	of	NoSQL
database)	offer	an	opportunity	to	introduce	vendor-or	project-specific	terminology.
Although	the	For	Mere	Mortals	series	of	books	tends	to	not	focus	on	specific	software,	a
familiarity	with	vendor	and	open	source	project-specific	terms	may	help	when	you	start
implementing	your	own	NoSQL	database–based	applications.

Key-Value	Database	Data	Modeling	Terms
Data	models	are	abstractions	that	help	organize	the	information	conveyed	by	the	data	in
databases.	They	are	different	from	data	structures.



Data	structures	are	well-defined	data	storage	structures	that	are	implemented	using
elements	of	underlying	hardware,	particularly	random	access	memory	and	persistent	data
storage,	such	as	hard	drives	and	flash	devices.	For	example,	an	integer	variable	in	a
programming	language	may	be	implemented	as	a	set	of	four	contiguous	bytes,	or	32	bits.

An	array	of	100	integers	can	be	implemented	as	a	contiguous	set	of	4-byte	memory
addresses.	Data	structures	also	have	a	set	of	operations	that	manipulate	the	data	structure.
Addition,	subtraction,	multiplication,	and	division	are	some	of	the	operations	defined	on
integers.	Reading	and	writing	values	based	on	indices	are	operations	defined	on	arrays.

Data	structures	offer	a	higher	level	of	organization	so	you	do	not	have	to	think	in	low-
level	terms	of	memory	addresses	and	machine-level	operations	on	those	addresses.	Data
models	serve	a	similar	purpose.	They	provide	a	level	of	organization	and	abstraction
above	data	structures	(see	Figure	4.1).

Figure	4.1	Data	structures	provide	higher-level	organizations	than	available	at	the
machine	level.

Data	models	typically	organize	multiple	kinds	of	related	information.	A	customer
management	data	model	could	model	information	about	customers’	names,	addresses,



orders,	and	payment	histories.	Clinical	databases	could	include	information	such	as
patients’	names,	ages,	genders,	current	prescriptions,	past	surgeries,	allergies,	and	other
medically	relevant	details.

In	theory,	you	could	write	software	that	tracks	all	of	these	pieces	of	data	in	basic	database
structures	like	arrays	and	linked	lists.	In	practice,	such	an	approach	would	be	an	inefficient
use	of	your	time.	Using	data	models	and	databases	is	a	more	effective	and	productive
strategy	(see	Figure	4.2).

Figure	4.2	Data	models	provide	a	layer	of	abstraction	above	data	structures	that
allows	database	application	developers	to	focus	more	on	the	information	that	must	be

managed	and	less	on	implementation	issues.

The	elements	of	data	models	vary	with	the	type	of	database.	Relational	databases	are
organized	around	tables.	Tables	are	used	to	store	information	about	entities,	such	as
customers,	patients,	orders,	and	surgeries.	Entities	have	attributes	that	capture	information
about	particular	entities.	Attributes	include	names,	ages,	shipping	addresses,	and	so	forth.

In	a	relational	database,	a	table	is	organized	by	a	set	of	columns	and	each	column
corresponds	to	an	attribute.	Rows	of	the	table	correspond	to	a	single	instance	of	an	entity,
such	as	a	particular	customer	or	patient.

The	software	engineers	who	design	databases	choose	data	structures	for	implementing
tables	and	other	elements	of	a	data	model.	This	relieves	application	developers	of	needing
to	delve	into	such	details.	The	price	application	developers	must	pay,	however,	is	learning
the	terms	and	design	patterns	associated	with	data	models	used	in	their	database.



	Note

In	relational	database	design,	there	is	a	distinction	between	logical	data	models	and
physical	data	models.	Entities	and	attributes	are	used	in	logical	data	models.	Tables
and	columns	are	the	corresponding	elements	of	physical	data	models.	This	book
uses	both	entity	and	table.	Because	this	is	not	a	book	about	relational	database
design,	a	detailed	explanation	of	the	differences	of	logical	and	physical	data	models
and	when	to	use	terms	from	each	is	beyond	the	scope	of	this	book.	For	more	on
relational	data	modeling,	see	Michael	J.	Hernandez’s	Database	Design	for	Mere
Mortals,	Second	Edition	(Addison-Wesley,	2003).

The	following	sections	discuss	some	of	the	most	important	terms	associated	with	data
modeling	in	key-value	databases,	including	key,	value,	namespace,	partition,	partition	key,
and	schemaless.

Key
A	key	is	a	reference	to	a	value.	It	is	analogous	to	an	address.	The	address	1232	NE	River
St.	is	a	reference	to	a	building	located	in	a	particular	place.	Among	other	things,	it	enables
postal	workers	and	delivery	services	to	find	a	particular	building	and	drop	off	or	pick	up
letters	and	packages.	The	string	“1232	NE	River	St.”	is	obviously	not	a	building,	but	it	is	a
way	to	find	the	corresponding	building.	Keys	in	key-value	databases	are	similarly	not
values	but	are	ways	of	finding	and	manipulating	values.

A	key	can	take	on	different	forms	depending	on	the	key-value	database	used.	At	a
minimum,	a	key	is	specified	as	a	string	of	characters,	such	as	"Cust9876"	or
"Patient:A384J:Allergies".	Some	key-value	databases,	such	as	Redis
(www.redis.io),	support	more	complex	data	structures	as	keys.	The	supported	key	data
types	in	Redis	version	2.8.13	include

•	Strings

•	Lists

•	Sets

•	Sorted	sets

•	Hashes

•	Bit	arrays

	Note

Redis	developers	use	the	term	data	structures	server	instead	of	key-value	data
store.	Visit	http://redis.io/topics/data-types-intro	for	more	information.

Lists	are	ordered	collections	of	strings.	Sets	are	collections	of	unique	items	in	no	particular
order.	Sorted	sets,	as	the	name	implies,	are	collections	of	unique	items	in	a	particular
order.	Hashes	are	data	structures	that	have	key-value	characteristics:	They	map	from	one
string	to	another.	Bit	arrays	are	binary	integer	arrays	in	which	each	individual	bit	can	be

http://www.redis.io
http://redis.io/topics/data-types-intro


manipulated	using	various	bit	array	operations.

	Refer	to	the	“Hash	Functions”	section	later	in	this	chapter	for	more	detailed
information	on	this	topic.

It	helps	to	have	a	naming	convention	when	creating	keys,	such	as	described	in	Chapter	3,
“Introduction	to	Key-Value	Databases.”	One	convention	is	to	use	a	combination	of	strings
representing	an	entity	type,	a	unique	identifier	for	a	particular	entity,	and	an	attribute.

	Caution

Keep	in	mind	that	strings	should	not	be	too	long.	Long	keys	will	use	more	memory
and	key-value	databases	tend	to	be	memory-intensive	systems	already.	At	the	same
time,	avoid	keys	that	are	too	short.	Short	keys	are	more	likely	to	lead	to	conflicts	in
key	names.	For	example,	the	key
CMP:1897:Name

could	refer	to	the	name	of	a	marketing	campaign	or	the	name	of	a	component	in	a
product.	A	better	option	would	be
CAMPN:1897:Name

to	refer	to	a	marketing	campaign	and
COMPT:1897:Name

to	refer	to	a	component	in	a	product.

Keys	can	also	play	an	important	role	in	implementing	scalable	architectures.	Keys	are	not
only	used	to	reference	values,	but	they	are	also	used	to	organize	data	across	multiple
servers.	The	upcoming	“Partition”	section	describes	the	use	of	keys	for	organizing	data
across	servers.

Value
The	definition	of	value	with	respect	to	key-value	databases	is	so	amorphous	that	it	is
almost	not	useful.	A	value	is	an	object,	typically	a	set	of	bytes,	that	has	been	associated
with	a	key.	Values	can	be	integers,	floating-point	numbers,	strings	of	characters,	binary
large	objects	(BLOBs),	semistructured	constructs	such	as	JSON	objects,	images,	audio,
and	just	about	any	other	data	type	you	can	represent	as	a	series	of	bytes.

	Note

It	is	important	to	understand	that	different	implementations	of	key-value	databases
have	different	restrictions	on	values.	Most	key-value	databases	will	have	a	limit	on
the	size	of	a	value.	Redis,	for	example,	can	have	a	string	value	up	to	512MB	in
length.1	FoundationDB	(foundationdb.com),	a	key-value	database	known	for	its
support	of	ACID	transactions,	limits	the	size	of	values	to	100,000	bytes.2

1.	http://redis.io/topics/data-types

2.	https://foundationdb.com/key-value-store/documentation/beta1/known-limitations.html

http://foundationdb.com
http://redis.io/topics/data-types
https://foundationdb.com/key-value-store/documentation/beta1/known-limitations.html


Key-value	implementations	will	vary	in	the	types	of	operations	supported	on	values.	At
the	very	least,	a	key-value	database	will	support	getting	and	setting	values.	Others	support
additional	operations,	such	as	appending	a	string	to	an	existing	value	or	randomly
accessing	a	section	of	a	string.	This	can	be	more	efficient	than	retrieving	a	value,	returning
it	to	a	client	application,	performing	the	append	operation	in	the	client	application,	and
then	performing	a	set	operation	to	update	the	value.

	Note

Another	example	of	extended	functionality	is	found	in	Riak	(www.basho.com),
which	supports	full	text	indexing	of	values	so	you	can	use	an	API	to	find	keys	and
values	using	search	queries.3

3.	http://docs.basho.com/riak/latest/dev/using/search/

Keys	and	values	are	the	basic	building	blocks	of	key-value	databases,	but	they	are	only	the
beginning.

Namespace
A	namespace	is	a	collection	of	key-value	pairs.	You	can	think	of	a	namespace	as	a	set,	a
collection,	a	list	of	key-value	pairs	without	duplicates,	or	a	bucket	for	holding	key-value
pairs.	A	namespace	could	be	an	entire	key-value	database.	The	essential	characteristic	of	a
namespace	is	it	is	a	collection	of	key-value	pairs	that	has	no	duplicate	keys.	It	is
permissible	to	have	duplicate	values	in	a	namespace.

Namespaces	are	helpful	when	multiple	applications	use	a	key-value	database.	Developers
of	different	applications	should	not	have	to	coordinate	their	key-naming	strategy	unless
they	are	sharing	data	(see	Figure	4.3).

http://www.basho.com
http://docs.basho.com/riak/latest/dev/using/search/


Figure	4.3	Namespaces	enable	duplicate	keys	to	exist	without	causing	conflicts	by
maintaining	separate	collections	of	keys.

For	example,	one	development	team	might	work	on	a	customer	management	system	while
another	is	working	on	an	order-tracking	system.	Both	will	need	to	use	customers’	names
and	addresses.	In	this	case,	it	makes	sense	to	have	a	single	set	of	customers	used	by	both
teams.	It	would	avoid	duplicate	work	to	maintain	two	customer	lists	and	eliminate	the
possibility	of	inconsistent	data	between	the	two	databases.

When	the	two	teams	need	to	model	data	specific	to	their	application,	there	is	a	potential
for	key-naming	conflicts.	The	team	working	on	the	customer	management	system	might
want	to	track	the	top	type	of	products	each	customer	purchases,	for	example,	personal
electronics,	clothing,	sports,	and	so	on.	The	team	decides	to	use	the	prefix	Prod	for	their
product	type	keys.	The	team	working	on	order	tracking	also	needs	to	track	products	but	at
a	more	detailed	level.	Instead	of	tracking	broad	categories,	like	personal	electronics,	they
track	specific	products,	such	as	an	iPhone	5	32MB.	They	also	decide	to	use	the	prefix
Prod.

You	can	probably	see	the	problem	this	raises.	Imagine	both	applications	use	the	same
customer	data	and,	therefore,	customer	IDs.	The	customer	management	team	might	create
a	key	such	as	'Prod:12986:name'	and	assign	the	value	‘personal	electronic.’
Meanwhile,	the	order	management	team	wants	to	track	the	last	product	ordered	by	a
customer	and	creates	the	key	'Prod:12986:name'	and	assigns	it	the	value	‘iPhone	5
32MB.’

In	this	situation,	the	value	of	the	key	is	set	to	the	last	value	written	by	one	of	the
applications.	When	the	other	application	reads	the	data,	it	will	find	not	only	an	incorrect
value,	but	also	one	that	is	out	of	the	range	of	expected	values.

Namespaces	solve	this	problem	by	implicitly	defining	an	additional	prefix	for	keys.	The



customer	management	team	could	create	a	namespace	called	custMgmt,	and	the	order
management	team	could	create	a	namespace	called	ordMgmt.	They	would	then	store	all
keys	and	values	in	their	respective	namespaces.	The	key	that	caused	problems	before
effectively	becomes	two	unique	keys:	custMgmt:	Prod:12986:name	and
ordMgmt:	Prod:12986:name.

Partition
Just	as	it	is	helpful	to	organize	data	into	subunits—that	is,	namespaces—it	is	also	helpful
to	organize	servers	in	a	cluster	into	subunits.	A	partitioned	cluster	is	a	group	of	servers	in
which	servers	or	instances	of	key-value	database	software	running	on	servers	are	assigned
to	manage	subsets	of	a	database.	Let’s	consider	a	simple	example	of	a	two-server	cluster.
Each	server	is	running	key-value	database	software.	Ideally,	each	server	should	handle
50%	of	the	workload.	There	are	several	ways	to	handle	this.

You	could	simply	decide	that	all	keys	starting	with	the	letters	A	through	L	are	handled	by
Server	1	and	all	keys	starting	with	M	through	Z	are	managed	by	Server	2.	(Assume	for	the
moment	that	all	keys	start	with	a	letter.)	In	this	case,	you	are	partitioning	data	based	on	the
first	letter	of	the	key	(see	Figure	4.4).

Figure	4.4	Servers	in	a	cluster	are	assigned	subsets	of	data	to	manage.

Like	so	many	simple	strategies	that	sound	reasonable	at	first,	this	one	is	vulnerable	to
significant	problems.	For	example,	most	of	the	keys	may	start	with	the	letter	C,	as	in	cust
(customer),	cmpg	(campaign),	comp	(component),	and	so	on,	whereas	very	few	keys	start
with	letters	from	the	latter	half	of	the	alphabet,	for	example,	warh	(warehouse).	This



imbalance	in	keys	leads	to	an	imbalance	in	the	amount	of	work	done	by	each	server	in	the
cluster.

Partition	schemes	should	be	chosen	to	distribute	the	workload	as	evenly	as	possible	across
the	cluster.	The	“Partition	Key”	section	describes	a	widely	used	method	to	help	ensure	a
fairly	even	distribution	of	data	and,	therefore,	workloads	(see	Figure	4.5).

Figure	4.5	When	multiple	instances	of	key-value	database	software	run	on	servers	in	a
cluster,	servers	can	be	added	to	the	cluster	and	instances	reallocated	to	balance	the

workload.



	Note

Note	that	a	server	may	support	more	than	one	partition.	This	can	happen	if	servers
are	running	virtual	machines	and	each	virtual	machine	supports	a	single	partition.
Alternatively,	key-value	databases	may	run	multiple	instances	of	partition	software
on	each	server.	This	allows	for	a	number	of	partitions	larger	than	the	number	of
servers.

Partition	Key
A	partition	key	is	a	key	used	to	determine	which	partition	should	hold	a	data	value.	In	key-
value	databases,	all	keys	are	used	to	determine	where	the	associated	value	should	be
stored.	Later,	you	see	that	other	NoSQL	database	types,	such	as	document	databases,	use
one	of	several	attributes	in	a	document	as	a	partition	key.

In	the	previous	example,	the	first	letter	of	a	key	name	is	used	to	determine	which	partition
manages	it.	Other	simple	strategies	are	partitioning	by	numeric	value	and	string	value.
Any	key	in	a	key-value	database	is	used	as	a	partition	key;	good	partition	keys	are	ones
that	distribute	workloads	evenly.

In	some	cases,	you	may	not	have	a	key	that	by	itself	naturally	distributes	workloads
evenly.	In	these	cases,	it	helps	to	use	a	hash	function.	Hash	functions	map	an	input	string
to	a	fixed-sized	string	that	is	usually	unique	to	the	input	string.

You	can	find	out	more	about	hash	functions	in	the	“Key-Value	Architecture	Terms”
section	later	in	this	chapter.	For	now,	it	is	sufficient	to	think	of	a	hash	function	as	a	way	to
map	from	an	imbalanced	set	of	keys	to	a	more	equally	distributed	set	of	keys.

Key,	value,	namespace,	partition,	and	partition	key	are	all	constructs	that	help	you
organize	data	within	a	key-value	database.	The	key-value	database	software	that	you	use
makes	use	of	particular	architectures,	or	arrangements	of	hardware	and	software
components.	It	is	now	time	to	describe	important	terms	related	to	key-value	database
architecture.

Schemaless
Schemaless	is	a	term	that	describes	the	logical	model	of	a	database.	In	the	case	of	key-
value	databases,	you	are	not	required	to	define	all	the	keys	and	types	of	values	you	will
use	prior	to	adding	them	to	the	database.	If	you	would	like	to	store	a	customer	name	as	a
full	name	using	a	key	such	as
Click	here	to	view	code	image

cust:8983:fullName	=	‘Jane	Anderson’

you	can	do	so	without	first	specifying	a	description	of	the	key	or	indicating	the	data	type
of	the	values	is	a	string.	Schemaless	data	models	allow	you	to	make	changes	as	needed
without	changing	a	schema	that	catalogs	all	keys	and	value	types	(see	Figure	4.6).



Figure	4.6	Schemaless	data	models	allow	for	multiple	types	of	representations	of	the
same	data	to	exist	simultaneously.

For	example,	you	might	decide	that	storing	a	customer’s	full	name	in	a	single	value	is	a
bad	idea.	You	conclude	that	using	separate	first	and	last	names	would	be	better.	You	could
simply	change	your	code	to	save	keys	and	values	using	statements	such	as	the	following:
Click	here	to	view	code	image

cust:8983:firstName	=	‘Jane’

cust:8983:lastName	=	‘Anderson’

The	full	name	and	first/last	name	keys	and	values	can	coexist	without	a	problem.

	Tip

You	would,	of	course,	need	to	update	your	code	to	handle	both	ways	of	representing
customer	names	or	convert	all	instances	of	one	form	into	the	other.

Part	III,	“Document	Databases,”	returns	to	the	concept	of	schemaless	databases	and
discusses	the	related	concept	of	a	polymorphic	database,	which	is	something	of	a	middle
ground	between	fixed	schemas	found	in	relational	databases	and	schemaless	models	used
in	key-value	databases.

Key-Value	Architecture	Terms
The	architecture	of	a	key-value	database	is	a	set	of	characteristics	about	the	servers,
networking	components,	and	related	software	that	allows	multiple	servers	to	coordinate
their	work.	Three	terms	frequently	appear	when	discussing	key-value	architectures:

•	Clusters

•	Rings

•	Replication



Cluster
Clusters	are	sets	to	connected	computers	that	coordinate	their	operations	(see	Figure	4.7).
Clusters	may	be	loosely	or	tightly	coupled.	Loosely	coupled	clusters	consist	of	fairly
independent	servers	that	complete	many	functions	on	their	own	with	minimal	coordination
with	other	servers	in	the	cluster.	Tightly	coupled	clusters	tend	to	have	high	levels	of
communication	between	servers.	This	is	needed	to	support	more	coordinated	operations,
or	calculations,	on	the	cluster.	Key-value	clusters	tend	to	be	loosely	coupled.

Figure	4.7	A	ring	architecture	of	key-value	databases	links	adjacent	nodes	in	the
cluster.

Servers,	also	known	as	nodes,	in	a	loosely	coupled	cluster	share	information	about	the
range	of	data	the	server	is	responsible	for	and	routinely	send	messages	to	each	other	to
indicate	they	are	still	functioning.	The	latter	message	exchange	is	used	to	detect	failed
nodes.	When	a	node	fails,	the	other	nodes	in	the	cluster	can	respond	by	taking	over	the
work	of	that	node.

Some	clusters	have	a	master	node.	The	master	node	in	Redis,	for	example,	is	responsible
for	accepting	read	and	write	operations	and	copying,	or	replicating,	copies	of	data	to	slave
nodes	that	respond	to	read	requests.	If	a	master	node	fails,	the	remaining	nodes	in	the



cluster	will	elect	a	new	master	node.	If	a	slave	node	fails,	the	other	nodes	in	the	cluster	can
continue	to	respond	to	read	requests.

Masterless	clusters,	such	as	used	by	Riak,	have	nodes	that	all	carry	out	operations	to
support	read	and	write	operations.	If	one	of	those	nodes	fails,	other	nodes	will	take	on	the
read	and	write	responsibilities	of	the	failed	node.

Because	the	failed	node	was	also	responsible	for	writes,	the	nodes	that	take	over	for	the
failed	node	must	have	copies	of	the	failed	node’s	data.	Ensuring	there	are	multiple	copies
of	data	on	different	nodes	is	the	responsibility	of	the	replication	subsystem.	This	is
described	in	the	section	“Replication,”	later	in	this	chapter.

Each	node	in	a	masterless	cluster	is	responsible	for	managing	some	set	of	partitions.	One
way	to	organize	partitions	is	in	a	ring	structure.

Ring
A	ring	is	a	logical	structure	for	organizing	partitions.	A	ring	is	a	circular	pattern	in	which
each	server	or	instance	of	key-value	database	software	running	on	a	server	is	linked	to	two
adjacent	servers	or	instances.	Each	server	or	instance	is	responsible	for	managing	a	range
of	data	based	on	a	partition	key.

Consider	a	simple	hashlike	function	that	maps	a	partition	key	from	a	string;	for	example,
'cust:8983:firstName'	to	a	number	between	0	and	95.	Now	assume	that	you	have
an	eight-node	cluster	and	the	servers	are	labeled	Server	1,	Server	2,	Server	3,	and	so	on.
With	eight	servers	and	96	possible	hashlike	values,	you	could	map	the	partitions	to
servers,	as	shown	in	Table	4.1.

Table	4.1	Server	to	Partition	Mapping

In	this	model,	Server	2	is	linked	to	Server	1	and	Server	3;	Server	3	is	linked	to	Server	2
and	Server	4;	and	so	on.	Server	1	is	linked	to	Server	8	and	Server	2.	Refer	to	Figure	4.7	to
see	a	graphical	depiction	of	a	ring	architecture.

A	ring	architecture	helps	to	simplify	some	otherwise	potentially	complex	operations.	For
example,	whenever	a	piece	of	data	is	written	to	a	server,	it	is	also	written	to	the	two



servers	linked	to	the	original	server.	This	enables	high	availability	of	a	key-value	database.
For	example,	if	Server	4	fails,	both	Server	3	and	Server	5	could	respond	to	read	requests
for	the	data	on	Server	4.	Servers	3	and	5	could	also	accept	write	operations	destined	for
Server	4.	When	Server	4	is	back	online,	Servers	3	and	5	can	update	Server	4	with	the
writes	that	occurred	while	it	was	down	(see	Figure	4.8).

Figure	4.8	One	way	to	replicate	data	is	to	write	copies	of	data	to	adjacent	nodes	in	the
cluster	ring.

Replication
Replication	is	the	process	of	saving	multiple	copies	of	data	in	your	cluster.	This	provides
for	high	availability	as	described	previously.



One	parameter	you	will	want	to	consider	is	the	number	of	replicas	to	maintain.	The	more
replicas	you	have,	the	less	likely	you	will	lose	data;	however,	you	might	have	lower
performance	with	a	large	number	of	replicas.	If	your	data	is	easily	regenerated	and
reloaded	into	your	key-value	database,	you	might	want	to	use	a	small	number	of	replicas.
If	you	have	little	tolerance	for	losing	data,	a	higher	replica	number	is	recommended.

Some	NoSQL	databases	enable	you	to	specify	how	many	replicas	must	be	written	before	a
write	operation	is	considered	complete	from	the	perspective	of	the	application	sending	the
write	request.	For	example,	you	may	configure	your	database	to	store	three	replicas.	You
may	also	specify	that	as	soon	as	two	of	the	replicas	are	successfully	written,	a	successful
write	return	value	can	be	sent	to	the	application	making	the	write	request.	The	third	replica
will	still	be	written,	but	it	will	be	done	while	the	application	continues	to	do	other	work.

You	should	take	replicas	into	consideration	with	reads	as	well.	Because	key-value
databases	do	not	typically	enforce	two-phase	commits,	it	is	possible	that	replicas	have
different	versions	of	data.	All	the	versions	will	eventually	be	consistent,	but	sometimes
they	may	be	out	of	sync	for	short	periods.

To	minimize	the	risk	of	reading	old,	out-of-date	data,	you	can	specify	the	number	of	nodes
that	must	respond	with	the	same	answer	to	a	read	request	before	a	response	is	returned	to
the	calling	application.	If	you	are	keeping	three	replicas	of	data,	you	may	want	to	have	at
least	two	responses	from	replicas	before	issuing	a	response	to	the	calling	program.

The	higher	the	number	required,	the	more	likely	you	are	to	send	the	latest	response.	This
can	add	to	the	latency	of	the	read	because	you	might	have	to	wait	longer	for	the	third
server	to	respond.

Up	to	this	point,	most	of	the	terms	described	have	dealt	with	logical	modeling	and	the
organization	of	servers	and	related	processes.	Now	it	is	time	to	address	algorithms
implemented	in	and	processes	that	run	within	the	key-value	database	software	to
implement	higher-level	functions.

Key-Value	Implementation	Terms
The	terms	discussed	in	this	last	set	of	key-value	vocabulary	deal	with	topics	you	generally
do	not	work	with	directly.	These	terms	cover	operations	that	happen	behind	the	scenes	of
application	programs	but	are	nonetheless	crucial	to	the	functioning	of	a	key-value
database.

Hash	Function
Hash	functions	are	algorithms	that	map	from	an	input—for	example,	a	string	of	characters
—to	an	output	string.	The	size	of	the	input	can	vary,	but	the	size	of	the	output	is	always
the	same.	For	example,	a	simple	string	like	'Hello	world'	maps	to
Click	here	to	view	code	image

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

While	longer	text,	such	as	the	following:

“There	is	a	theory	which	states	that	if	ever	anyone	discovers	exactly	what
the	Universe	is	for	and	why	it	is	here,	it	will	instantly	disappear	and	be



replaced	by	something	even	more	bizarre	and	inexplicable.	There	is
another	theory	which	states	that	this	has	already	happened.”

DOUGLAS	ADAMS
THE	RESTAURANT	AT	THE	END	OF	THE	UNIVERSE,	1980

yields	an	equal-sized	output	string:
Click	here	to	view	code	image

3f4d004fcb7c40b02deb393d34db9bd02b067f56

Clearly,	the	two	output	strings	are	quite	different.	This	would	be	expected	when	the	inputs
are	so	different.	One	of	the	important	characteristics	of	hash	algorithms	is	that	even	small
changes	in	the	input	can	lead	to	large	changes	in	the	output.	For	example,	if	you	hash
'Hello	World'	instead	of	'Hello	world',	the	output	string	is
Click	here	to	view	code	image

0a4d55a8d778e5022fab701977c5d840bbc486d0

Hash	functions	are	generally	designed	to	distribute	inputs	evenly	over	the	set	of	all
possible	outputs.	The	output	space	can	be	quite	large.	For	example,	the	SHA-1	has	2160
possible	output	values.	This	is	especially	useful	when	hashing	keys.	No	matter	how
similar	your	keys	are,	they	are	evenly	distributed	across	the	range	of	possible	output
values.	The	ranges	of	output	values	can	be	assigned	to	partitions	and	you	can	be
reasonably	assured	that	each	partition	will	receive	approximately	the	same	amount	of	data.

For	example,	assume	you	have	a	cluster	of	16	nodes	and	each	node	is	responsible	for	one
partition.	You	can	use	the	first	digit	output	by	the	SHA-1	function	to	determine	which
partition	should	receive	the	data.

	Note

As	you	might	recall,	the	SHA-1	function	outputs	a	hexadecimal,	or	base-16,
number.	The	hexadecimal	digits	are	0–9	and	a–f	for	a	total	of	16	digits.

The	key	'cust:8983:firstName'	has	a	hash	value	of
Click	here	to	view	code	image

4b2cf78c7ed41fe19625d5f4e5e3eab20b064c24

and	would	be	assigned	to	partition	4,	while	the	key	'cust:8983:lastName'	has	a
hash	value	of
Click	here	to	view	code	image

c0017bec2624f736b774efdc61c97f79446fc74f

and	would	be	assigned	to	node	12	(c	is	the	hexadecimal	digit	for	the	base-10	number	12).

Although	there	are	many	possible	outputs	for	hash	functions,	it	is	possible	for	two	distinct
input	strings	to	map	to	the	same	output	string.



Collision
A	collision	occurs	when	two	distinct	inputs	to	a	hash	function	produce	the	same	output.
When	it	is	difficult	to	find	two	inputs	that	map	to	the	same	hash	function	output,	the	hash
function	is	known	as	collision	resistant.	If	a	hash	table	is	not	collision	resistant	or	if	you
encounter	one	of	those	rare	cases	in	which	two	inputs	map	to	the	same	output,	you	will
need	a	collision	resolution	strategy.

Basically,	a	collision	resolution	strategy	is	a	way	to	deal	with	the	fact	that	you	have	two
inputs	that	map	to	the	same	output.	If	the	hash	table	only	has	room	for	one	value,	then	one
of	the	hashed	values	will	be	lost.

A	simple	method	to	deal	with	this	is	to	implement	a	list	in	each	cell	of	a	hash	table.	Most
entries	will	include	a	single	value,	but	if	there	are	collisions,	the	hash	table	cell	will
maintain	a	list	of	keys	and	values,	as	shown	in	Figure	4.9.	This	is	a	logical	representation
of	a	generic	solution	to	the	collision	problem;	actual	implementations	may	vary.

Figure	4.9	Collisions	with	hash	functions	are	managed	using	collision	resolution
strategies,	such	as	maintaining	linked	lists	of	values.

Compression
Key-value	databases	are	memory	intensive.	Large	numbers	of	large	values	can	quickly
consume	substantial	amounts	of	memory.	Operating	systems	can	address	this	problem
with	virtual	memory	management,	but	that	entails	writing	data	to	disk	or	flash	storage.

Reading	from	and	writing	to	disk	is	significantly	slower	than	reading	from	random	access
memory,	so	avoid	it	when	possible.	One	option	is	to	add	more	memory	to	your	servers.
There	are	both	technical	and	cost	limitations	on	this	option.	In	the	case	of	disk-based,	key-
value	stores,	such	as	the	LevelDB	library	(code.google.com/p/leveldb/),	there	is	still	a
motivation	to	optimize	storage	because	the	time	required	to	read	and	write	data	is	a
function	of	the	size	of	the	data.

One	way	to	optimize	memory	and	persistent	storage	is	to	use	compression	techniques.	A
compression	algorithm	for	key-value	stores	should	perform	compression	and

http://code.google.com/p/leveldb/


decompression	operations	as	fast	as	possible.	This	often	entails	a	trade-off	between	the
speed	of	compression/decompression	and	the	size	of	the	compressed	data.

Faster	compression	algorithms	can	lead	to	larger	compressed	data	than	other,	slower
algorithms	(see	Figure	4.10).	For	example,	the	Snappy	compression	algorithm	compresses
250MB	per	second	and	decompresses	500MB	per	second	on	a	Core	i7,	64-bit	mode
processor	but	produces	compressed	data	that	is	20%	to	100%	larger	than	the	same	data
compressed	by	other	algorithms.4

4.	https://code.google.com/p/snappy/

Figure	4.10	Compression	algorithms	may	be	designed	to	optimize	for	speed	or	data
size.

Summary
Key-value	databases	come	with	their	own	terminology	used	to	describe	data	models,
architecture,	and	implementation	components.	Keys,	values,	partitions,	and	partition	keys
are	important	concepts	related	to	data	models.	You	will	see	some	of	the	terms	again	when
you	learn	about	other	types	of	NoSQL	databases.

It	is	also	important	to	understand	the	architecture	employed	with	key-value	databases.
Clusters,	rings,	and	replication	are	key	topics	with	regard	to	architecture.

Database	application	developers	do	not	need	to	work	with	implementation	issues	on	a
regular	basis,	but	it	helps	to	understand	them,	particularly	when	tuning	parameters.	Key
concepts	related	to	implementation	include	hash	functions,	collision,	and	compression.

Now	that	you	understand	key-value	database	terminology	and	were	introduced	to	key-
value	databases	in	Chapter	3,	it	is	time	to	examine	more	advanced	applications	of	key-
value	databases	and	review	established	design	patterns	that	can	help	you	develop	robust,
scalable,	key-value	database	applications.

Review	Questions
1.	What	are	data	models?	How	do	they	differ	from	data	structures?

2.	What	is	a	partition?

3.	Define	two	types	of	clusters.	Which	type	is	typically	used	with	key-value	data
stores?

https://code.google.com/p/snappy/


4.	What	are	the	advantages	of	having	a	large	number	of	replicas?	What	are	the
disadvantages?

5.	Why	would	you	want	to	receive	a	response	from	more	than	one	replica	when
reading	a	value	from	a	key-value	data	store?

6.	Under	what	circumstances	would	you	want	to	have	a	large	number	of	replicas?

7.	Why	are	hash	functions	used	with	key-value	databases?

8.	What	is	a	collision?

9.	Describe	one	way	to	handle	a	collision	so	that	no	data	is	lost.

10.	Discuss	the	relation	between	speed	of	compression	and	the	size	of	compressed	data.
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5.	Designing	for	Key-Value	Databases

“Design	is	not	just	what	it	looks	like	and	feels	like.	Design	is	how	it	works.”

—STEVE	JOBS
FORMER	CEO,	APPLE	COMPUTER,	INC.

Topics	Covered	In	This	Chapter

Key	Design	and	Partitioning

Designing	Structured	Values

Limitations	of	Key-Value	Databases

Design	Patterns	for	Key-Value	Databases

Case	Study:	Key-Value	Databases	for	Mobile	Application	Configuration

Through	the	first	four	chapters	of	this	book,	you	have	learned	the	basics	of	NoSQL
databases	and	details	of	key-value	databases	in	particular.	It	is	now	time	to	put	those
details	to	work.	When	you	design	an	application	that	uses	a	key-value	database,	you
should	consider	several	factors,	including

•	How	to	structure	keys

•	What	types	of	information	you	want	to	capture	in	values

•	How	to	compensate	for	limitations	of	key-value	databases

•	How	to	introduce	abstractions	that	help	create	higher-level	organizational	structures
than	simple	key-value	pairs

Well-designed	keys	can	make	your	application	code	easier	to	read	and	streamline	the
maintenance	of	your	application	and	your	key-value	database.	Capturing	the	right	data	in
your	key-value	pairs	is	important	both	for	meeting	functional	requirements	and	for
ensuring	adequate	performance	of	your	application.	As	useful	as	key-value	databases	are,
there	are	some	significant	limitations,	such	as	poor	support	for	retrieving	a	range	of
values.	There	are	ways	to	work	around	these	limitations,	and	this	chapter	describes	design
patterns	you	might	want	to	use	in	your	applications	and	key-value	database	designs.

Design	Pattern	Definition

The	Wikipedia	definition	of	a	design	pattern	is	“A	general	reusable	solution	to	a
commonly	occurring	problem	within	a	given	context	in	software	design.	A	design	pattern
is	not	a	finished	design	that	can	be	transformed	directly	into	source	or	machine	code.	It	is
a	description	or	template	for	how	to	solve	a	problem	that	can	be	used	in	many	different
situations.”1

1.	http://en.wikipedia.org/wiki/Software_design_pattern

http://en.wikipedia.org/wiki/Software_design_pattern


Key	Design	and	Partitioning
How	you	design	your	keys	can	impact	the	ease	of	working	with	your	key-value	database.
At	one	end	of	the	design	spectrum,	you	could	come	up	with	random	keys	for	every	value
you	want	to	store.	Obviously,	a	key	like	'laklsjfdjjd'	is	virtually	useless	unless	you
have	an	uncanny	memory	for	strings	or	have	a	data	structure	that	can	map	nonsense	keys
to	something	meaningful.	Keys	should	have	some	logical	structure	to	make	code	readable
and	extensible,	but	they	should	also	be	designed	with	storage	efficiency	in	mind.

Keys	Should	Follow	a	Naming	Convention
The	naming	convention	you	choose	is	less	important	than	choosing	one.	A	well-designed
naming	convention	enables	developers	to	easily	devise	keys	for	new	entities,	instances,
and	attributes.

Here	are	some	general	guidelines.	These	are	not	hard-and-fast	rules;	they	are	tips	that	can
work	well	for	you	in	various	situations.

•	Use	meaningful	and	unambiguous	naming	components,	such	as	'cust'	for
customer	or	'inv'	for	inventory.

•	Use	range-based	components	when	you	would	like	to	retrieve	ranges	of	values.
Ranges	include	dates	or	integer	counters.

•	Use	a	common	delimiter	when	appending	components	to	make	a	key.	The	‘:’	is	a
commonly	used	delimiter,	but	any	character	that	will	not	otherwise	appear	in	the	key
will	work.

•	Keep	keys	as	short	as	possible	without	sacrificing	the	other	characteristics
mentioned	in	this	list.

	Tip

Anticipating	all	possible	entities’	types	can	be	difficult,	so	coming	up	with
unambiguous	name	components	isn’t	always	possible.	Try	to	use	at	least	three	or
four	letters	to	distinguish	an	entity	type	or	attribute.	'Cst'	or	'cust'	are	better
than	'c'	for	a	customer	abbreviation.

Well-Designed	Keys	Save	Code
A	well-designed	key	pattern	helps	minimize	the	amount	of	code	a	developer	needs	to	write
to	create	functions	that	access	and	set	values.	For	example,	consider	a	key	pattern	that
consists	of	an	entity	or	object	type	(for	example,	'customer'),	a	unique	identifier	for
that	entity	or	object	type	(for	example,	'198277'),	an	attribute	name	(for	example,
'fname'),	and	common	delimiter	(for	example,	':').	A	single	function	with	two
parameters	can	get	any	value:
Click	here	to	view	code	image

define	getCustAttr(p_id,	p_attrName)

				v_key	=	‘cust’	+	‘:’	+	p_id	+	‘:’	+	p_attrName;

				return(AppNameSpace[v_key]);



In	this	pseudocode	example,	the	function	getCustAttr	has	parameters	for	the	customer
identifier	and	the	name	of	the	attribute	that	should	have	its	value	returned.	The	local
variable,	v_key,	is	a	string	created	by	concatenating	the	parts	of	the	key.	Because	the	key
follows	a	standard	naming	convention,	every	attribute	about	a	customer	can	be	retrieved
using	this	function.	The	last	line	of	the	pseudocode	function	returns	the	value	associated
with	key	specified	by	the	string	in	variable	v_key.	AppNameSpace	is	the	name	of	the
namespace	holding	keys	and	values	for	this	application.

	Note

In	practice,	you	should	have	a	naming	convention	for	namespaces,	too.	For
example,	a	customer	management	namespace	might	be	'CstMgtNS'.

The	associated	set	function	is	similar	but	uses	three	parameters.	The	third	parameter	is
used	to	pass	in	the	value	to	be	saved:
Click	here	to	view	code	image

define	setCustAttr(p_id,	p_attrName,	p_value)

				v_key	=	‘cust’	+	‘:’	+	p_id	+	‘:’	+	p_attrName

				AppNameSpace[v_key]	=	p_value

	Note

In	production	applications,	you	should	include	appropriate	error	checking	and
handling.	Set	functions	should	check	the	status	of	write	operations	to	ensure	the
minimum	number	of	replicas	has	been	written.	If	the	database	could	not	save	the
minimum	number	of	replicas,	you	might	want	to	attempt	the	write	operation	again
some	number	of	times	before	returning	an	error.

Using	generalized	set	and	get	functions	helps	improve	the	readability	of	code	and	reduces
the	repeated	use	of	low-level	operations,	such	as	concatenating	strings	and	looking	up
values.

Dealing	with	Ranges	of	Values
Consider	using	values	that	indicate	ranges	when	you	want	to	retrieve	groups	of	values.	For
example,	you	might	want	to	include	a	six-digit	date	in	a	key	if	you	want	to	retrieve	all
customers	who	made	a	purchase	on	a	particular	date.	In	this	case,	'cust061514'	could
be	used	as	a	prefix	instead	of	'cust'	to	indicate	customers	who	bought	products	on	June
15,	2014.	The	customer	ID	would	be	stored	as	a	value	associated	with	each	key.

For	example,	the	following	are	keys	associated	with	the	first	10	customers	who	purchased
products	on	June	15,	2014:

•	cust061514:1:custId

•	cust061514:2:custId

•	cust061514:3:custId

•	cust061514:4:custId



•	…

•	cust061514:10:custId

This	type	of	key	is	useful	for	querying	ranges	of	keys	because	you	can	easily	write	a
function	to	retrieve	a	range	of	values.	For	example,	the	following
getCustPurchaseByDate	function	retrieves	a	list	of	customerIDs	who	made
purchases	on	a	particular	date:
Click	here	to	view	code	image

define	getCustPurchByDate(p_date)

				v_custList	=	makeEmptyList();

				v_rangeCnt	=	1;

				v_key	=	‘cust:’	+	p_date	+	‘:’	+	v_rangeCnt	+

						’:custId’;

				while	exists(v_key)

								v_custList.append(myAppNS[v_key]);

								v_rangeCnt	=	v_rangeCnt	+	1;

								v_key	=	‘cust:’	+	p_date	+	‘:’	+	v_rangeCnt	+

										’:custId’;

				return(v_custList);

The	function	takes	one	parameter,	the	date	of	purchases,	although	this	code	could	easily
generalize	to	accept	a	range	of	dates.	The	function	starts	by	initializing	two	local
variables:	v_custList	is	set	to	an	empty	list,	which	will	hold	customer	IDs,	and
v_rangeCnt,	which	will	hold	the	counters	associated	with	the	range	of	customers	that
made	purchases	on	the	date	specified	in	the	parameter	p_date.

Because	there	is	no	way	to	know	the	number	of	customers	that	made	purchases,	the	code
uses	a	while	loop	and	checks	a	terminating	condition.	In	this	case,	the	while	loop
terminates	when	it	checks	for	a	key	and	finds	it	does	not	exist.	If	there	were	only	10
purchases	on	June	15,	2014,	then	when	the	loop	checks	the	key
'cust:061514:11:custId',	it	does	not	find	a	corresponding	key-value	pair	in	the
database	and	the	while	loop	terminates.

In	the	while	loop,	the	key	stored	in	the	local	variable	v_key	is	used	to	look	up	the	value
in	the	myAppNS	namespace.	The	key	returns	the	customer	ID,	and	the	code	appends	the
value	to	the	local	variable	v_custList.	When	the	while	loop	terminates,	the	list	of
customer	IDs	in	v_custList	is	returned.

You	might	have	realized	that	although	using	this	type	of	function	will	standardize	your
code,	it	is	no	more	efficient	than	retrieving	each	key-value	pair	individually.	In	some	data
stores,	values	can	be	ordered	on	disk	in	a	specific	sort	order,	making	it	more	efficient	to
read	a	range	of	values	because	they	are	stored	in	contiguous	blocks.	If	your	key-value
database	offers	ordered	key	values	or	allows	for	secondary	indexes,	you	might	find	those
are	more	efficient	options	for	retrieving	ranges	of	values	than	using	a	function	like	the	one
above.



Keys	Must	Take	into	Account	Implementation	Limitations
Different	key-value	databases	have	different	limitations.	Consider	those	limitations	when
choosing	your	key-value	database.

Some	key-value	databases	restrict	the	size	of	keys.	For	example,	FoundationDB	limits	the
size	of	keys	to	10,000	bytes.2

2.	https://foundationdb.com/key-value-store/documentation/known-limitations.html

Others	restrict	the	data	types	that	can	be	used	as	keys.	Riak	treats	keys	as	binary	values	or
strings.3	The	Redis	data	store	takes	a	liberal	approach	to	keys	and	allows	for	more
complex	structures	than	string.	Valid	data	types	for	Redis	keys	include4

3.	http://docs.basho.com/riak/1.3.0/references/appendices/concepts/Keys-and-Objects/

4.	http://redis.io/topics/data-types-intro

•	Binary	safe	strings

•	Lists

•	Sets

•	Sorted	sets

•	Hashes

•	Bit	arrays

•	HyperLogLogs	(a	probabilistic	data	structure	for	estimating	number	of	entities	in	a
set)

The	variety	of	data	types	supported	by	Redis	allows	you	more	flexibility	when	creating
keys.	Instead	of	concatenating	entity	types,	identifiers,	and	attributes	as	a	string	such	as
'cust:19873:fname',	you	could	use	a	list,	such	as	('cust',	'19873',
'fname').	Redis	keys	can	be	up	to	512MB	in	length.5	It	sounds	unlikely	that	you	would
create	a	512MB	string	by	concatenating	components,	but	large	binary	objects,	such	as
images,	are	valid	key	types	and	can	reach	substantial	sizes.

5.	http://redis.io/topics/data-types

	Tip

Before	using	large	keys	in	production,	be	sure	to	test	the	performance	of	key-value
databases	with	large	keys	so	you	understand	the	level	of	performance	you	can
expect.

How	Keys	Are	Used	in	Partitioning
Partitioning	is	the	process	of	grouping	sets	of	key-value	pairs	and	assigning	those	groups
to	different	nodes	in	a	cluster.	Hashing	is	a	common	method	of	partitioning	that	evenly
distributes	keys	and	values	across	all	nodes.	Another	method	that	is	sometimes	used	is
called	range	partitioning.

Range	partitioning	works	by	grouping	contiguous	values	and	sending	them	to	the	same

https://foundationdb.com/key-value-store/documentation/known-limitations.html
http://docs.basho.com/riak/1.3.0/references/appendices/concepts/Keys-and-Objects/
http://redis.io/topics/data-types-intro
http://redis.io/topics/data-types


node	in	a	cluster	(see	Figure	5.1).	This	assumes	a	sort	order	is	defined	over	the	key.	For
example,	you	could	partition	by	customer	number,	date,	or	part	identifier.	Range
partitioning	requires	some	kind	of	table	to	map	from	keys	to	partitions,	as	shown	in	Table
5.1.

Table	5.1	Sample	Range	Partition	Table

Figure	5.1	Different	hashing	schemes	will	lead	to	different	key-to-node	assignments.

If	you	decide	to	use	range	partitioning,	carefully	consider	how	your	data	volumes	may
grow.	If	you	need	to	restructure	your	partitioning	scheme,	some	keys	may	be	reassigned	to
different	nodes	and	data	will	have	to	migrate	between	nodes.



Designing	Structured	Values
The	term	values	can	cover	a	wide	range	of	data	objects,	from	simple	counts	to	hierarchical
data	structures	with	embedded	complex	structures.	All	can	be	assigned	as	values	in	a	key-
value	database.	But	ask	yourself,	do	you	really	want	structured	data	types	in	your
database?	As	usual	in	database	design,	the	answer	is	“it	depends.”

Consider	two	possible	cases.	In	the	first,	you	have	two	attributes	that	are	frequently	used
together.	In	the	second,	you	have	a	set	of	attributes	that	are	logically	related,	and	some	but
not	all	of	the	attributes	are	frequently	used	together.	As	you	shall	see,	each	is	best
managed	with	a	different	approach.

Structured	Data	Types	Help	Reduce	Latency
You	should	consider	the	workload	on	your	server	as	well	as	on	developers	when	designing
applications	that	use	key-value	data	stores.	Consider	an	application	development	project	in
which	the	customer	address	is	needed	about	80%	of	the	time	when	the	customer	name	is
needed.	This	can	occur	when	you	frequently	need	to	display	the	customer’s	name	and
mailing	address,	although	occasionally	you	only	need	the	name,	for	example,	as	part	of	a
form	header.

It	makes	sense	to	have	a	function	that	retrieves	both	the	name	and	the	address	in	one
function	call.	Here	is	a	sample	get	function	for	name	and	address:
Click	here	to	view	code	image

define	getCustNameAddr(p_id)

				v_fname	=	getCustAttr(p_id,‘fname’);

				v_lname	=	getCustAttr(p_id,‘lname’);

				v_addr		=	getCustAttr(p_id,‘addr’);

				v_city	=	getCustAttr(p_id,‘city’);

				v_state	=	getCustAttr(p_id,‘state’);

				v_zip	=	getCustAttr(p_id,‘zip’);

				v_fullName	=	v_fname	+	‘	‘	+	v_lname;

				v_fullAddr	=	v_city	+	‘	‘	+	v_state	+	‘	‘	+	v_zip;

				return(makeList(v_fullName,	v_fullAddr);

This	function	retrieves	six	values,	creates	two	local	variable	strings,	creates	a	list	to	hold
both	the	name	and	address,	and	returns	that	list.	If	customer	name	and	address	are
frequently	retrieved,	it	makes	sense	to	use	a	function	such	as	getCustNameAddr	rather
than	duplicate	the	multiple	getCustAttr	calls	each	time	the	customer	name	and
address	are	needed.

Assuming	the	developer	needs	to	call	getCustNameAddr	frequently,	it	would	help	to
optimize	this	code	as	much	as	possible.	The	getCustAttr	function	is	called	multiple
times	so	it	is	a	good	candidate	for	optimizing.	The	code	for	that	function	is	simple	and
does	not	lend	itself	to	significant	optimization.

The	other	operations	in	the	getCustNameAddr,	concatenating	strings	and	making	a	list,
are	primitive	operations	that	take	little	time.	The	best	option	for	optimizing
getCustNameAddr	is	to	reduce	the	number	of	times	the	developer	has	to	call
getCustAddr.

Each	time	getCustAddr	is	called,	it	builds	a	key	by	concatenating	strings.	This



primitive	operation	does	not	take	much	time.	Fetching	a	value	from	the	key-value
database	can	take	a	long	time,	at	least	compared	with	primitive	operations.	The	reason	is
that	retrieving	a	value	can	require	reading	from	a	disk.	This	means	that	the	read	operation
must	wait	for	the	read/write	heads	to	get	into	position.
The	latency,	or	time	you	have	to	wait	for	the	disk	read	to	complete,	is	significantly	longer
than	the	time	needed	to	perform	other	operations	in	the	function	(see	Figure	5.2).

Figure	5.2	Reading	a	value	from	disk	requires	the	read/write	heads	to	move	to	the
proper	track	and	the	platter	to	rotate	to	the	proper	block.	This	can	lead	to	long

latencies.

One	way	to	improve	the	speed	of	fetching	values	from	the	key-value	database	is	to	store
frequently	used	values	in	memory.	This	works	well	in	many	cases	but	is	limited	by	the
amount	of	room	in	memory	allocated	to	caching	keys	and	values.

Another	approach	is	to	store	commonly	used	attribute	values	together.	In	the	case	of	a
customer	management	database,	you	could	store	a	list	with	both	the	customer’s	name	and
address	together,	for	example:
Click	here	to	view	code	image

cstMgtNS[cust:	198277:nameAddr]	=	‘{	‘Jane	Anderson’	,

		‘39	NE	River	St.	Portland,	OR	97222’}

This	is	a	more	complex	value	structure	than	using	several	different	keys	but	has	significant
advantages	in	some	cases.	By	storing	a	customer	name	and	address	together,	you	might
reduce	the	number	of	disk	seeks	that	must	be	performed	to	read	all	the	needed	data	(see
Figure	5.3).



Figure	5.3	Reading	a	single	block	of	data	is	faster	than	reading	multiple	blocks
referenced	by	multiple	keys.

Key-value	databases	usually	store	the	entire	list	together	in	a	data	block	so	there	is	no
need	to	hash	multiple	keys	and	retrieve	multiple	data	blocks.	An	exception	to	this	rule
occurs	if	the	data	value	is	larger	than	the	disk	data	block	size.	This	can	occur	if	you	store	a
large	image	or	other	sizeable	object	as	a	value.

If	there	are	many	times	you	need	a	customer	name	but	not	the	address,	you	might	want	to
store	the	name	separately.	This	would	duplicate	the	customer	name	in	your	key-value
database,	but	that	should	not	be	considered	a	problem.

	Note

Generally,	you	should	avoid	duplicating	data	in	relational	database	design,	although
it	is	a	common	practice	in	NoSQL	databases.

Duplicating	data	is	also	a	common	way	to	improve	the	performance	of	relational	database
queries.	Known	as	denormalization,	duplicating	data	can	reduce	the	number	of	joins
required	to	perform	a	query	and	substantially	improve	application	performance.

The	same	pattern	holds	in	NoSQL	databases.	You	can	use	the	name-only	key	to	look	up
just	the	name	when	that	is	the	only	attribute	needed,	and	you	can	use	the	name	and	address
key	when	you	need	both.

There	are	advantages	to	storing	structures	as	values,	but	there	are	also	limits	to	those
advantages.	As	you	will	see	in	the	next	section,	storing	too	much	data	in	a	value	can	have



adverse	effects	on	application	performance.

Large	Values	Can	Lead	to	Inefficient	Read	and	Write	Operations
Ancient	Greek	philosophers	advocated	sophrosyne,	a	state	of	mind	that	led	to	self-control
and	moderation.	It	is	a	practice	that	will	serve	you	well	when	designing	data	structures	for
key-value	databases.

Using	structured	data	types,	such	as	lists	and	sets,	can	improve	the	overall	efficiency	of
some	applications	by	minimizing	the	time	required	to	retrieve	data.	It	is	important	to	also
consider	how	increasing	the	size	of	a	value	can	adversely	impact	read	and	write
operations.	Consider	a	data	structure	that	maintains	customer	order	information	in	a	single
value,	such	as	the	following:
Click	here	to	view	code	image

{

		‘custFname’:	‘Liona’,

		‘custLname’:		‘Williams’,

		‘custAddr’	:		‘987	Highland	Rd’,

		‘custCity’	:		‘Springfield’,

		‘custState’:	‘NJ’,

		‘custZip’		:		21111,

		‘ordItems’	[

								{

												‘itemID’	:	‘85838A’,

													‘itemQty’	:	2	,

												‘descr’	:	‘Intel	Core	i7-4790K	Processor

														(8M	Cache,

				4.40	GHz)’,

								‘price:’	:	$325.00

								}	,

								{

									‘itemID’	:	‘38371R’,

									‘itemQty’	:	1	,

								‘descr’	:	‘Intel	BOXDP67BGB3	Socket	1155,	Intel

										P67’,

												CrossFireX	&	SLI	SATA3&USB3.0,	A&GbE,	ATX

												Motherboard’,

								‘price’	:	$140.00

									}	,

									{

								‘itemID’	:	‘10484K’,

								‘itemQty’	:	1,

								‘descr’	:	‘EVGA	GeForce	GT	740	Superclocked	Single

										Slot	4GB

												DDR3	Graphics	Card’

													‘price’:	‘$201.00’

										}	,

								{

									‘itemID’	:	‘67594M’,

								‘itemQty’	:	1,

								‘descr’:	‘Rosewill	Black	Gaming	ATX	Mid	Tower

										Computer	Case’,

								‘price’	:	$47.98

								}	,

								{

									‘itemID’	:	‘46328A’,



									‘itemQty’	:	2,

									‘descr’:	‘WD	Blue	1	TB	Desktop	Hard	Drive:	3.5

											Inch,	7200	RPM,

											SATA	6	Gb/s,	64	MB	Cache	-	WD10EZEX’,

												‘price’	:	$63.50

												}

												]

}

This	data	structure	includes	customer	information	as	well	as	order	information.	The
customer	information	is	stored	as	a	set	of	string	values	and	corresponding	attribute	names.
The	order	items	are	stored	in	an	array	in	which	each	element	is	a	list	structure	with	item
identifier,	quantity,	product	description,	and	price.	This	entire	list	can	be	stored	under	an
order	key,	such	as	'ordID:781379'.

The	advantage	of	using	a	structure	such	as	this	is	that	much	of	the	information	about
orders	is	available	with	a	single	key	lookup.	Let’s	consider	how	this	data	structure	might
be	built.

When	the	customer	adds	her	first	item	to	her	cart,	the	list	is	created	and	the	customer	name
and	address	are	copied	from	the	customer	database.	An	order	array	is	created	and	a	list
with	the	item	identifier,	quantity,	description,	and	price	is	added	to	the	array.	The	key
value	is	hashed	and	the	entire	data	structure	is	written	to	disk.	The	customer	then	adds
another	item	to	the	cart,	and	a	new	entry	is	added	to	the	array	of	ordered	items.	Because
the	value	is	treated	as	an	atomic	unit,	the	entire	list	(for	example,	customer	information
and	ordered	items)	is	written	to	the	disk	again.	This	process	continues	for	each	of	the
additional	items.

Assume	the	key-value	database	allocates	enough	storage	for	an	average	order	size	when
the	value	is	first	created.	Adding	the	fifth	order	item	causes	the	size	of	the	data	structure	to
exceed	the	allocated	space.	When	an	additional	item	is	added	to	the	ordItems	array,	the
new	item	will	be	written	to	a	new	block.

As	values	grow	in	size,	the	time	required	to	read	and	write	the	data	can	increase.	Data	is
generally	read	in	blocks.	If	the	size	of	a	value	exceeds	the	size	of	a	block,	then	multiple
blocks	must	be	read.	During	write	operations,	an	entire	value	has	to	be	written,	even	if
only	a	small	part	of	the	value	has	changed.

You	might	think	that	because	a	read	operation	must	read	an	entire	block,	as	long	as	the
size	of	the	value	is	less	than	the	size	of	a	data	block	on	disk,	there	is	no	additional	penalty.
It	is	true	the	time	to	position	the	read/write	heads	and	read	the	data	block	is	the	same.
However,	there	is	an	indirect	penalty.	When	values	are	smaller	than	the	disk	data	block
size,	multiple	values	can	be	stored	in	a	single	block.	When	a	block	is	read,	all	the	values	in
the	block	can	be	added	to	the	in-memory	cache.	This	increases	the	likelihood	that	a	future
read	will	find	the	value	it	needs	in	the	cache.	This	saves	the	time	required	to	perform	a
disk	read.

Of	course,	if	an	entire	large-sized	value	is	in	the	cache,	then	any	of	the	embedded
attributes	are	available	for	low-latency	reads	from	the	cache.	This	could	help	performance
if	there	are	multiple	reads	to	multiple	parts	of	the	value	data	structure.	If,	however,	you
load	a	large	value	into	the	cache	and	only	reference	a	small	percentage	of	the	data,	you	are
essentially	wasting	valuable	memory	(see	Figure	5.4).



Figure	5.4	Data	is	read	in	blocks.	Blocks	may	store	a	large	number	of	small-sized
values	or	few	large-sized	values.	The	former	can	lead	to	better	performance	if

frequently	used	attributes	are	available	in	the	cache.

If	you	find	yourself	needing	to	frequently	design	large	value	structures,	you	might	want	to
consider	using	a	document	database	rather	than	a	key-value	database.	Document	databases
are	discussed	in	depth	in	Chapters	6	through	8.

Limitations	of	Key-Value	Databases
Key-value	databases	are	the	simplest	of	the	NoSQL	databases.	This	makes	them	easy	to
learn	and	use,	but	it	also	brings	with	them	important	limitations.	You	have	just	read	about
the	disadvantages	of	using	large	data	values.	There	are	some	others	to	keep	in	mind	as
well.	In	particular,	it	is	important	to	remember	the	following:

•	The	only	way	to	look	up	values	is	by	key.

•	Some	key-value	databases	do	not	support	range	queries.

•	There	is	no	standard	query	language	comparable	to	SQL	for	relational	databases.

These	are	limitations	with	key-value	databases	in	general.	As	you	will	no	doubt	learn	as
you	work	with	different	key-value	database	implementations,	vendors	and	open	source
project	developers	take	it	upon	themselves	to	devise	ways	to	mitigate	the	disadvantages	of
these	limitations.

Look	Up	Values	by	Key	Only
Imagine	what	it	would	be	like	if	you	had	to	look	up	every	piece	of	information	about
someone	using	only	an	identifier,	like	a	Social	Security	number	or	a	student	ID	number.
You	might	have	no	trouble	remembering	the	identifier	for	a	handful	of	friends	and	family,
but	after	that,	tracking	down	information	will	start	to	get	difficult.

The	same	thing	can	occur	with	key-value	databases.	At	times,	you	will	want	to	look	up
information	about	an	object	without	already	knowing	the	key	value.	In	the	most	basic



versions	of	key-value	databases,	this	is	not	possible.	Fortunately,	key-value	database
developers	have	added	extended	features	to	address	this	limitation.

One	approach	is	to	use	text	search	capabilities.	Riak,	for	example,	provides	a	search
mechanism	and	API	that	indexes	data	values	as	they	are	added	to	the	database.	The	API
supports	common	search	features,	such	as	wildcard	searches,	proximity	searches,	range
searches,	and	Boolean	operators.	Search	functions	return	a	set	of	keys	that	have	associated
values	that	satisfy	the	search	criteria.	If	you	wanted	to	list	all	orders	that	included	the
purchase	of	a	computer	case	and	motherboard	but	not	a	CPU,	you	might	use	a	statement
such	as	the	following:
Click	here	to	view	code	image

field:	{	‘motherboard’	AND	‘computer	case’)	AND	NOT	‘CPU’

This	type	of	search	is	useful,	for	example,	when	you	want	to	find	all	customers	from
Illinois	who	placed	orders	in	the	past	two	weeks.

	Note

More	on	Riak	search	is	available	at
http://docs.basho.com/riak/latest/dev/using/search/.

Another	way	to	get	around	key-only	lookup	is	to	use	secondary	indexes.	If	your	key-value
database	supports	secondary	indexes	directly,	you	will	be	able	to	specify	an	attribute	in	a
value	to	index.	For	example,	you	could	create	an	index	on	state	or	city	in	an	address	value
to	enable	lookup	by	state	or	city	name.

Key-Value	Databases	Do	Not	Support	Range	Queries
Range	queries,	such	as	selecting	records	with	dates	between	a	start	and	end	date	or	names
in	some	range	of	the	alphabet,	are	fairly	common	in	database	applications.	The	basic	key-
value	database	does	not	support	these	types	of	queries	unless	you	use	a	specialized	naming
convention	and	lookup	table	described	earlier	in	the	section,	“Dealing	with	Ranges	of
Values.”	A	specialized	type	of	key-value	database,	known	as	an	ordered	key-value
database,	keeps	a	sorted	structure	that	allows	for	range	queries.

If	you	use	a	key-value	database	that	supports	secondary	indexes,	you	may	have	the	ability
to	perform	range	queries	on	the	indexed	values.	Some	text	search	engines	also	support
range	searches	over	text.

No	Standard	Query	Language	Comparable	to	SQL	for	Relational
Databases
Key-value	databases	are	designed	for	simple	lookup	operations.	It	should	be	no	surprise
that	there	is	not	a	standard	query	language	for	key-value	databases.

You	will	find,	however,	that	some	key-value	databases	understand	commonly	used
structures,	such	as	XML	and	JavaScript	Object	Notation	(JSON).	Many	programming
languages	have	libraries	that	support	constructing	and	parsing	XML	and	JSON.	Search
applications,	such	as	Solr	(http://lucene.apache.org/solr/)	and	Lucene

http://docs.basho.com/riak/latest/dev/using/search/
http://lucene.apache.org/solr/


(http://lucene.apache.org/),	have	mechanisms	for	parsing	XML	and	JSON	as	well.	This
combination	of	structured	formats	and	programming	libraries	is	not	equivalent	to	a
standard	query	language,	but	they	do	start	to	provide	some	of	the	capabilities	you	would
expect	in	such	a	query	language.
There	are	limitations	to	the	basic	key-value	data	model,	but	today	there	are	multiple
implementations	that	offer	enhanced	features	that	enable	developers	to	more	easily
implement	frequently	needed	application	features.

Design	Patterns	for	Key-Value	Databases
Design	patterns,	or	general	software	solutions,	were	popularized	by	Erich	Gamma,
Richard	Helm,	Ralph	Jackson,	and	John	Vlissides	in	their	book	Design	Patterns:	Elements
of	Reusable	Object-Oriented	Software.	This	book	is	popularly	known	as	the	Gang	of	Four,
or	the	GoF,	book.

The	idea	that	you	can	reuse	solutions	in	different	applications	is	well	understood	and
known	to	all	but	the	most	novice	programmers.	The	value	of	the	Gang	of	Four	book	is	that
it	cataloged	and	described	a	number	of	useful	software	patterns	that	could	be	applied	in	a
variety	of	languages.	Design	patterns	appear	in	database	applications	as	well.

It	is	now	time	to	consider	several	design	patterns	that	may	prove	useful	when	using	key-
value	databases	to	develop	your	applications.	These	include

•	Time	to	Live	(TTL)	keys

•	Emulating	tables

•	Aggregates

•	Atomic	aggregates

•	Enumerable	keys

•	Indexes

Design	patterns	can	be	useful	as	described	or	can	require	some	modification	to	fit	your
needs.	Think	of	design	patterns	as	guides	to	solving	common	problems,	not	dogmatic
solutions	handed	down	by	a	cadre	of	design	elders	that	must	be	followed	precisely.

Just	as	importantly,	pay	attention	to	the	solutions	you	repeatedly	use	when	developing
applications.	You	might	find	some	of	your	most	frequently	used	design	patterns	are	ones
you	discover	yourself.

Time	to	Live	(TTL)	Keys
Time	to	Live	is	a	term	frequently	used	in	computer	science	to	describe	a	transient	object.
For	example,	a	packet	of	data	sent	from	one	computer	to	another	can	have	a	Time	to	Live
parameter	that	indicates	the	number	of	times	it	should	be	forwarded	to	another	router	or
server	while	en	route	to	its	destination.	If	the	packet	is	routed	through	more	devices	than
specified	by	the	TTL	parameter,	it	is	dropped	and	the	packet	is	undelivered.

TTL	is	sometimes	useful	with	keys	in	a	key-value	database,	especially	when	caching	data
in	limited	memory	servers	or	when	keys	are	used	to	hold	a	resource	for	some	specified
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period	of	time.	A	large	e-commerce	company	selling	tickets	to	sporting	and	music	events
might	have	thousands	of	users	active	at	any	time.	When	a	customer	indicates	he	wants	to
purchase	tickets	for	several	seats,	the	ticketing	application	may	add	key-value	pairs	to	the
database	to	hold	those	seats	while	the	customer’s	payment	is	processed.	The	e-commerce
company	does	not	want	one	customer	buying	seats	that	another	customer	has	already
added	to	his	or	her	cart.	At	the	same	time,	the	company	does	not	want	seats	held	for	long
periods	of	time,	especially	if	customers	abandon	their	carts.	A	TTL	parameter	associated
with	a	key	can	help	here	(see	Figure	5.5).

Figure	5.5	Time	to	Live	keys	are	useful	for	allowing	users	to	reserve	a	product	or
resource	for	a	limited	time	while	other	operations,	such	as	making	a	payment,

complete.

The	application	may	create	a	key	that	references	the	seat	being	saved	and	the	value	could
be	the	identifier	of	the	customer	purchasing	the	seat.	Setting	a	five-minute	Time	to	Live
parameter	would	provide	enough	time	for	someone	to	enter	his	or	her	payment
information	without	unduly	delaying	access	to	the	ticket	if	the	payment	authorization	fails
or	the	customer	abandons	the	cart.	This	also	saves	the	application	developer	from	needing
to	develop	a	custom	method	that	might	include	keeping	a	time	stamp	with	a	key	and
checking	multiple	keys	at	regular	intervals	to	determine	whether	any	have	expired.



	Tip

Time	to	Live	properties	are	database-specific,	so	check	the	documentation	of	your
key-value	database	to	see	whether	they	are	supported	and	how	to	specify	an
expiration.

Emulating	Tables
Although	most	key-value	databases	do	not	explicitly	support	a	data	structure	like	the
relational	table,	it	can	be	a	useful	construct.

	Note

The	Oracle	NoSQL	database	is	unlike	most	key-value	databases	and	provides	an
API	for	manipulating	data	using	a	table	metaphor.6

6.	See	Chapter	4	of	“Getting	Started	with	Oracle	NoSQL	Database	Tables.”
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/tablesapi.html

A	method	of	emulating	tables	has	been	partially	described	in	earlier	chapters	using	a	key-
naming	convention	based	on	entity	name,	unique	identifier,	and	attribute	name.	See	the
“Key	Design	and	Partitioning”	section	found	earlier	in	this	chapter.

It	is	not	practical	to	fully	emulate	the	features	of	relational	tables.	For	example,	this	design
pattern	does	not	include	a	SQL-like	query	capability.	Instead,	it	focuses	on	implementing
basic	get	and	set	operations.

The	two	functions	defined	earlier,	getCustAttr	and	setCustAttr,	are	sample
building	blocks	for	building	row-level-like	functions,	such	as	addCustRecord	and
getCustRecord.	Assume	a	customer	record	consists	of	a	name	and	address.	The
following	is	a	pseudocode	function	of	the	addCustRecord:
Click	here	to	view	code	image

define	addCustRecord	(p_id,	p_fname,	p_lname,	p_addr,

		p_city,	p_state,	p_zip)

				begin

								setCustAttr(p_id,‘fname’,	p_fname);

								setCustAttr(p_id,‘lname’,p_lname);

								setCustAttr(p_id,‘addr’,p_addr);

								setCustAttr(p_id,‘city’,p_city);

								setCustAttr(p_id,‘state’,p_state);

								setCustAttr(p_id,‘zip’,	p_zip);

				end;

The	following	is	the	corresponding	get	record	function:
Click	here	to	view	code	image

define	getCustRecord	(p_id)

				begin

								v_custRec	=	make_list	(

												getCustAttr(p_id,‘fname’,	p_fname),

												getCustAttr(p_id,‘lname’,p_lname),

												getCustAttr(p_id,‘addr’,p_addr),

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/tablesapi.html


												getCustAttr(p_id,‘city’,p_city),

												getCustAttr(p_id,‘state’,p_state),

												getCustAttr(p_id,‘zip’,	p_zip)

								);

								return(v_custRec);

				end;

Emulating	tables	is	helpful	when	you	routinely	get	or	set	a	related	set	of	attributes.	This
pattern	is	useful	when	you	are	dealing	with	a	small	number	of	emulated	tables.

If	you	find	yourself	emulating	many	tables	or	implementing	complicated	filtering
conditions	and	range	searches,	you	should	consider	alternative	approaches.	These	can
include	using	key-value	databases	that	support

•	Table	constructs,	such	as	Oracle’s	NoSQL	database

•	Advanced	search	features,	such	as	Riak

•	Relational	databases,	such	as	MySQL

Aggregates
Aggregation	is	a	pattern	that	supports	different	attributes	for	different	subtypes	of	an
entity.	In	a	relational	database,	you	can	handle	subtypes	in	a	couple	of	different	ways.	You
could	create	a	single	table	with	all	attributes	across	all	subtypes.

You	could	also	create	a	table	with	the	attributes	common	to	all	subtypes	and	then	create	an
additional	table	for	each	of	the	subtypes.	Consider	the	concert	ticket	sales	system.	Many
concerts	are	held	in	large	stadiums	with	assigned	seats,	some	are	held	in	smaller	venues
with	no	assigned	seating,	and	still	others	are	multiday	festivals	with	multiple	stages	and
open	seating.	Table	5.2	shows	a	list	of	attributes	that	must	be	tracked	for	the	various	kinds
of	concerts.

Table	5.2	Sample	Attributes	for	Multiple	Types	of	Concerts

Two	attributes	are	used	by	all	concert	types,	three	are	used	by	stadium	and	small	venue



concerts,	three	are	used	by	festivals	only,	and	one	is	used	by	stadiums	only.

In	a	relational	database,	you	could	create	a	single	table	with	all	the	attributes	listed	in
Table	5.2,	or	you	could	create	a	table	with	common	attributes	and	subtype	tables,	as
shown	in	Figure	5.6.	The	single	table	would	have	unused	columns	and	could	become
unwieldy	as	the	number	of	subtypes	and	attributes	grows.	Using	a	table	with	common
attributes	and	subtype	tables	requires	join	operations	to	get	all	data	about	a	concert	ticket.
Aggregation	in	key-value	databases	takes	a	different	approach.

Figure	5.6	Entity	subtypes	can	be	modeled	in	relational	databases	as	a	common	table
with	tables	to	store	attributes	of	each	subtype.

A	single	entity	type,	that	is,	'concert',	can	be	used	for	all	types	and	the	values	can	be
lists	of	attribute	value	pairs	specific	to	each	type.	In	addition,	a	type	indicator	is	used	in
the	list	to	distinguish	the	concert	type.	For	example,	a	value	of	a	stadium	ticket	could	be
Click	here	to	view	code	image

{‘type’:‘stadium’,	‘conDate’:15-Mar-2015,	‘locDescr’:

		‘Springfield	Civic	Center’,	‘assgnSeat’:	‘J38’,

		‘startTime’:‘17:30’,	‘price’:’$50.00’,	‘perfName’:

		‘The	National’	}

The	following	is	a	sample	small	venue	concert	ticket:
Click	here	to	view	code	image

{‘type’:‘small	venue’,	‘conDate’:	12-Jun-2015,

		‘locDescr’:	‘Plymoth	Concert	Hall’,	‘startTime’:‘17:30’,

		‘price’:’$75.00’,	‘perfName’:‘Joshua	Redman’	}

Finally,	a	sample	festival	ticket	is
Click	here	to	view	code	image

{‘type’:‘festival’,	‘festStartDate’:	01-Feb-2015,

		‘festEndDate’:	01-Feb-2015,	‘locDescr’:	‘Portland,	OR’,

		price:’$100.00’,	‘festName’:‘PDX	Jazz	Festival’}

Each	of	these	lists	can	be	assigned	to	a	ticket	key	stored	in	a	namespace	called
ConcertApp,	such	as



Click	here	to	view	code	image

ConcertApp[ticket:18380]	=	{‘type’:‘stadium’,

		‘conDate’:15-Mar-2015,	‘locDescr’:	‘Springfield

		Civic	Center’,	‘assgnSeat’:	‘J38’,	‘startTime’:‘17:30’,

		‘price’:’$50.00’,	‘perfName’:	‘The	National’	}

ConcertApp[ticket:18381]	=	{‘type’:‘small	venue’,

		‘conDate’:	12-Jun-2015,	‘locDescr’:	‘Plymoth	Concert

		Hall’,	‘startTime’:‘17:30’,	‘price’:’$75.00’,

		‘perfName’:‘Joshua	Redman’	}

ConcertApp[ticket:18382]	=	{‘type’:‘festival’,

		‘festStartDate’:	01-Feb-2015,	‘festEndDate’:

		01-Feb-2015,	‘locDescr’:	‘Portland,	OR’,

		‘price’:’$100.00’,	‘festName’:‘PDX	Jazz	Festival’}

You	can	write	set	and	get	functions	to	check	the	type	of	ticket	and	then	assign	or	retrieve
the	appropriate	attribute	values.

Atomic	Aggregates
Atomic	aggregates	contain	all	values	that	must	be	updated	together	or	not	at	all.	Recall
that	relational	databases	support	the	ACID	properties,	and	the	A	in	ACID	stands	for
atomicity.	Relational	databases	and	some	key-value	databases	provide	transactions	to
ensure	multiple	statements	are	all	completed	successfully	or	not	at	all.

	Tip

If	you	are	using	a	key-value	database	that	does	not	support	transactions,	you	might
want	to	use	the	atomic	aggregate	pattern	in	place	of	transactions.

The	atomic	aggregate	pattern	uses	a	single	assignment	statement	to	save	multiple	values.
For	example,	if	the	concert	ticket	application	logged	a	record	each	time	a	stadium	ticket	is
purchased,	it	should	record	the	date,	location,	and	seat	assignment.	For	example:
Click	here	to	view	code	image

ConcertApp[ticketLog:9888]	=	{‘conDate’:15-Mar-2015,

		‘locDescr’:

‘Springfield	Civic	Center’,	‘assgnSeat’:	‘J38’}

This	will	save	all	three	values	or	none	at	all.	If	you	tried	to	log	each	attribute	separately,
you	would	run	the	risk	of	completing	some	but	not	all	of	the	operations.

Consider,	if	you	used	the	following	three	statements	instead	of	the	one	atomic	aggregate
statement	above:
Click	here	to	view	code	image

ConcertApp[ticketLog:9888:conDate]			=	15-Mar-2015

ConcertApp[ticketLog:9888:locDescr]		=	‘Springfield	Civic

		Center’

ConcertApp[ticketLog:9888:assgnSeat]	=	‘J38’

If	the	server	writing	this	data	to	disk	failed	after	writing	the	locDescr	attribute	but
before	writing	the	assgnSeat	attribute,	then	you	would	lose	a	critical	piece	of	data.	The
atomic	aggregate	pattern	is	not	a	full	substitute	for	transaction	support,	but	it	does	help
avoid	partially	writing	a	set	of	attributes.



Enumerable	Keys
Enumerable	keys	are	keys	that	use	counters	or	sequences	to	generate	new	keys.	This	on	its
own	would	not	be	too	useful;	however,	when	combined	with	other	attributes,	this	can	be
helpful	when	working	with	groups	of	keys.	Take	logging,	for	example.

You	saw	in	the	“Atomic	Aggregates”	section	that	you	could	save	information	about	each
ticket	sale	using	an	assignment,	such	as	the	following:
Click	here	to	view	code	image

ConcertApp[ticketLog:9888]	=	{‘conDate’:15-Mar-2015,

		‘locDescr’:

‘Springfield	Civic	Center’,	‘assgnSeat’:	‘J38’}

The	key	is	a	combination	of	the	entity	name	'ticketLog'	and	a	counter.	Presumably,
the	counter	starts	at	1	and	increases	by	one	each	time	a	ticket	is	sold.	This	is	suitable	for
recording	information,	but	it	does	not	help	if	you	want	to	work	with	a	range	of	logged
values.

For	example,	if	you	wanted	to	retrieve	log	entries	for	all	tickets	sold	on	a	particular	day,	a
better	key	format	would	be	'ticketLog'	concatenated	to	a	date	concatenated	with	a
counter,	such	as	'ticketLog:20140617:10',	which	is	the	key	assigned	to	the	tenth
ticket	sold	on	June	17,	2014.

You	can	retrieve	a	range	of	ticket	keys	by	generating	a	series	of	keys,	for	example,
'ticketLog:20140617:1',	'ticketLog:20140617:2',
'ticketLog:20140617:3',	and	so	on	until	you	generate	a	key	that	does	not	exist	or
until	you	reach	a	number	of	keys	you	specify.

Indexes
Inverted	indexes	are	sets	of	key-value	pairs	that	allow	for	looking	up	keys	or	values	by
other	attribute	values	of	the	same	entity.	Let’s	revisit	the	ticket	logging	key-value
example:
Click	here	to	view	code	image

ConcertApp[ticketLog:9888]	=	{‘conDate’:15-Mar-2015,

		‘locDescr’:

‘Springfield	Civic	Center’,	‘assgnSeat’:	‘J38’}

This	is	useful	for	recording	all	seats	assigned	across	concerts,	but	it	is	not	easy	to	list	only
seats	assigned	in	a	particular	location	unless	your	key-value	database	provides	search
capabilities.	For	those	that	do	not,	inverted	indexes	can	help.	If	you	want	to	track	all	seats
assigned	in	the	Springfield	Civic	Center,	you	could	use	a	function	such	as	the	following:
Click	here	to	view	code	image

define	addLocAssgnSeat(p_locDescr,	p_seat)

				begin

								v_seatList	=	ConcertApp[p_locDescr]

								v_seatList	=	append(v_seatList,	p_seat)

								ConcertApp[p_locDescr]	=	v_seatList

				end;

This	function	accepts	the	location	name	and	seat	as	parameters.	v_seatList	is	a	local



variable	to	store	a	copy	of	the	current	list	of	sold	seats	at	the	location.	The	append
statement	adds	the	parameter	p_list	to	v_seatList,	and	the	following	statement
assigns	the	new	set	of	sold	seats	to	the	value	associated	with	the	location	specified	by	the
parameter	p_locDescr.

If	the	function	is	initially	called	as	the	following,	it	would	set	the	value	of
ConcertApp['Springfield	Civic	Center']	to	{'J38'}:
Click	here	to	view	code	image

addLocAssgnSeat(‘Springfield	Civic	Center’,	‘J38’)

If	the	application	then	sold	the	following	seats	‘J39’,	‘A17’,	‘A18’,	‘A19’,	and	‘R22’	and
called	the	addLocAssngSeat	function	for	each	sale,	the	value	of
ConcertApp[('Springfield	Civic	Center']	would	be	{'J38',	'J39',
'A17',	'A18',	'A19',	'R22'}.

The	design	patterns	discussed	here	solve	some	common	problems	you	may	face	when
developing	applications	using	key-value	attributes.	The	Time	to	Live	pattern	is	useful
when	you	have	operations	that	may	be	disrupted	and	can	be	safely	ignored	after	some
period	of	inactivity	or	inability	to	finish	the	operation.

Emulating	tables	streamlines	the	getting	and	setting	of	multiple	attributes	related	to	a
single	instance	of	an	entity,	but	should	not	be	overused.	Frequent	use	of	emulating	tables
can	indicate	a	misuse	of	a	key-value	database.

A	document	database	or	relational	database	may	be	a	better	option.	Aggregates	provide	a
means	for	working	with	entities	that	need	to	manage	subtypes	and	different	attributes
associated	with	each	subtype.	The	atomic	aggregate	pattern	is	used	when	you	have
multiple	attributes	that	should	be	set	together.	It	is	not	a	full	substitute	for	transactions,	but
it	serves	some	of	the	purposes	of	transactions.	Enumerable	keys	provide	a	crude	range
functionality	by	allowing	a	program	to	generate	and	test	for	the	existence	of	keys.	Finally,
indexes	allow	you	to	look	up	attribute	values	starting	with	something	other	than	a	key.

	Tip

It	is	important	to	remember	that	these	patterns	are	like	templates:	They	are	starting
points	for	solving	a	problem,	but	you	should	feel	free	to	modify	and	adjust	as
needed	to	meet	your	requirements.

Chapter	1,	“Different	Databases	for	Different	Requirements,”	briefly	introduced	a	case
study	about	a	fictional	company	called	TransGlobal	Transport	and	Shipping.	Now	that	you
have	reviewed	the	structure,	function,	and	design	of	key-value	databases	and	related
applications,	it	is	time	to	consider	how	they	can	be	applied	in	realistic	use	cases.



Summary
Key-value	databases	are	the	simplest	of	the	NoSQL	databases,	but	they	can	satisfy	the
needs	of	application	developers	who	need	basic	storage	and	retrieval	services.	Designing
for	key-value	databases	requires	several	steps.	You	should	define	a	naming	convention	for
keys	that	allows	developers	to	easily	create	keys	and	document	the	types	of	values
associated	with	the	keys.	Values	can	be	basic	data	types	or	more	complicated	data
structures.	Data	structures	allow	for	storing	multiple	attributes	together,	but	large	values
can	have	adverse	performance	consequences.	Design	patterns	described	in	this	chapter	can
provide	starter	solutions	to	common	problems	as	well	as	help	organize	applications	by
introducing	an	additional	level	of	abstraction.	Some	key-value	database	implementations
provide	additional	features	such	as	search	and	secondary	indexes.	Take	advantage	of	these
when	possible.	They	are	likely	to	be	more	efficient	and	require	less	code	than	a	“do-it-
yourself”	version	of	the	same	functionality.

Case	Study:	Key-Value	Databases	for	Mobile	Application	Configuration
TransGlobal	Transport	and	Shipping	(TGTS)	coordinates	the	movement	of	goods	around
the	globe	for	businesses	of	all	sizes.	Customers	of	TGTS	contact	the	shipper	and	provide
detailed	information	about	packages	and	cargo	that	need	to	be	shipped.	Simple	orders	can
be	a	single	package	shipped	across	the	country,	and	more	complicated	orders	can	entail
hundreds	of	parcels	or	shipping	containers	that	are	transported	internationally.	To	help
their	customers	track	their	shipments,	TGTS	is	developing	a	mobile	app	called	TGTS
Tracker.

TGTS	Tracker	will	run	on	the	most	popular	mobile	device	platforms.	To	allow	customers
to	monitor	their	shipments	from	any	of	their	mobile	devices,	application	designers	have
decided	to	keep	configuration	information	about	each	customer	in	a	centralized	database.
This	configuration	information	includes

•	Customer	name	and	account	number

•	Default	currency	for	pricing	information

•	Shipment	attributes	to	appear	in	the	summary	dashboard

•	Alerts	and	notification	preferences

•	User	interface	options,	such	as	preferred	color	scheme	and	font

In	addition	to	configuration	information,	designers	want	the	app	to	quickly	display
summary	information	in	a	dashboard.	Slower	response	times	are	acceptable	when
customers	need	to	look	up	more	detailed	information	about	shipments.	The	database
supporting	TGTS	Tracker	should	support	up	to	10,000	simultaneous	users,	with	reads
making	up	90%	of	all	I/O	operations.

The	design	team	evaluated	relational	databases	and	key-value	databases.	Relational
databases	are	well	suited	to	manage	complex	relations	between	multiple	tables,	but	the
need	for	scalability	and	fast	read	operations	convinced	them	that	a	key-value	database	was
the	better	choice	for	TGTS	Tracker.

The	range	of	data	that	is	required	by	the	mobile	app	is	fairly	limited	so	the	designers	felt



confident	that	a	single	namespace	would	be	sufficient.	They	chose	TrackerNS	as	the	name
of	the	app’s	namespace.

Each	customer	has	an	account	number,	so	this	was	selected	as	a	unique	identifier	for	each
customer.

The	designers	then	moved	on	to	decide	on	the	structure	of	values.	After	reviewing
preliminary	designs	of	the	user	interface,	they	determined	that	name	and	account	number
appear	frequently	together,	so	it	made	sense	to	keep	them	together	in	a	single	list	of
values.	The	default	currency	is	also	frequently	required,	so	it	is	included	in	the	list	of
values	along	with	customer	name	and	account	number.	Because	this	app	is	designed	to
track	the	status	of	shipments,	there	is	little	need	for	administrative	information,	such	as
billing	address,	so	it	is	not	stored	in	the	key-value	database.

The	app	designers	decided	to	use	the	following	naming	convention	for	keys:	entity
type:account	number.	Given	the	list	of	data	types	the	tracker	manages,	the	designers
decided	the	database	should	support	four	entity	types:

•	Customer	information,	abbreviated	‘cust’

•	Dashboard	configuration	options,	abbreviated	‘dshb’

•	Alerts	and	notification	specifications,	abbreviated	‘alrt’

•	User	interface	configurations,	abbreviated	‘ui’

The	next	step	in	the	design	process	is	determining	attributes	for	each	entity.	The	customer
entity	maintains	the	customer	name	and	preferred	currency.	The	account	number	is	part	of
the	key,	so	there	is	no	need	to	store	it	again	in	the	list	of	values.	The	following	is	a	sample
customer	key-value	pair:
Click	here	to	view	code	image

TrackerNS[‘cust:4719364’]	=	{‘name’:‘Prime	Machine,	Inc.’,

		‘currency’:‘USD’}

The	dashboard	configuration	detail	is	a	list	of	up	to	six	attributes	about	a	shipment	that
will	appear	on	a	summary	screen.	The	following	are	options,	with	abbreviations	in
parentheses:

•	Ship	to	company	(shpComp)

•	Ship	to	city	(shpCity)

•	Ship	to	state	(shpState)

•	Ship	to	country	(shpCountry)

•	Date	shipped	(shpDate)

•	Expected	date	of	delivery	(shpDelivDate)

•	Number	of	packages/containers	shipped	(shpCnt)

•	Type	of	packages/containers	shipped	(shpType)

•	Total	weight	of	shipment	(shpWght)

•	Note	on	shipment	(shpNotes)



The	following	is	a	sample	dashboard	configuration	specification:
Click	here	to	view	code	image

TrackerNS[‘dash:4719364’]	=

		{‘shpComp’,‘shpState’,‘shpDate’,‘shpDelivDate’}

The	alerts	and	notification	data	indicate	when	messages	should	be	sent	to	a	customer.		An
alert	and	notification	can	be	sent	when	a	shipment	is	picked	up,	delivered,	or	delayed.	The
message	can	be	sent	as	either	an	email	address	or	as	a	text	message	to	a	phone.	Multiple
people	can	receive	messages,	and	each	person	receiving	a	message	can	be	notified	under
different	conditions.

This	is	modeled	with	a	list	of	lists	as	a	value.	For	example,	the	person	with	email	address
‘jane.washingon@primemachineinc.com’	might	get	emails	when	packages	are	picked	up
and	the	person	with	phone	number	(202)555-9812	might	get	a	text	message	when
packages	are	delayed.	The	key-value	pair	for	that	would	look	like	the	following:
Click	here	to	view	code	image

TrackerNS[alrt:4719364]	=

				{	altList	:

				{‘jane.washingon@primemachineinc.com’,‘pickup’},

				{‘(202)555-9812’,‘delay’}

}

Finally,	the	user	interface	configuration	options	are	a	simple	list	of	attribute	value	pairs,
such	as	font	name,	font	size,	and	color	scheme.	A	key-value	pair	for	a	user	interface
specification	could	be
Click	here	to	view	code	image

TrackerNS[alrt:4719364]	=	{	‘fontName’:	‘Cambria’,

									‘fontSize’:	9,

									‘colorScheme’	:	‘default’

			}

Now	that	the	designers	have	defined	the	entity	types,	key-naming	conventions,	and
structure	of	values,	developers	can	write	supporting	code	to	set	and	retrieve	keys	and	their
values.

Review	Questions
1.	Describe	four	characteristics	of	a	well-designed	key-naming	convention.

2.	Name	two	types	of	restrictions	key-value	databases	can	place	on	keys.

3.	Describe	the	difference	between	range	partitioning	and	hash	partitioning.

4.	How	can	structured	data	types	help	reduce	read	latency	(that	is,	the	time	needed	to
retrieve	a	block	of	data	from	a	disk)?

5.	Describe	the	Time	to	Live	(TTL)	key	pattern.

6.	Which	design	pattern	provides	some	of	the	features	of	relational	transactions?

7.	When	would	you	want	to	use	the	Aggregate	pattern?

8.	What	are	enumerable	keys?

mailto:jane.washingon@primemachineinc.com


9.	How	can	enumerable	keys	help	with	range	queries?

10.	How	would	you	modify	the	design	of	TGTS	Tracker	to	include	a	user’s	preferred
language	in	the	configuration?
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Part	III:	Document	Databases



6.	Introduction	to	Document	Databases

“I	am	a	man	of	fixed	and	unbending	principles,	the	first	of	which	is	to	be	flexible
at	all	times.”

—EVERETT	DIRKSEN
FORMER	U.S.	SENATOR

Topics	Covered	In	This	Chapter

What	Is	a	Document?

Avoid	Explicit	Schema	Definitions

Basic	Operations	on	Document	Databases

Developers	often	turn	to	document	databases	when	they	need	the	flexibility	of	NoSQL
databases	but	need	to	manage	more	complex	data	structures	than	those	readily	supported
by	key-value	databases.	Like	key-value	databases,	and	unlike	relational	databases,
document	databases	do	not	require	you	to	define	a	common	structure	for	all	records	in	the
data	store.	Document	databases,	however,	do	have	some	similar	features	to	relational
databases.	For	example,	it	is	possible	to	query	and	filter	collections	of	documents	much	as
you	would	rows	in	a	relational	table.	Of	course,	the	syntax,	or	structure,	of	queries	is
different	between	SQL	and	NoSQL	databases,	but	the	functionality	is	comparable.

This	chapter	begins	the	second	section	of	the	book	dedicated	to	document	databases.	The
discussion	begins	by	defining	a	document	with	respect	to	document	databases.	The	focus
then	moves	to	the	structure	of	documents	and	the	ability	to	vary	the	structure	of
documents	within	a	collection.	The	later	sections	of	the	chapter	address	basic	database
operations,	organizing	data	as	well	as	indexing	and	retrieving	documents.

What	Is	a	Document?
When	you	see	the	term	document,	you	might	think	of	a	word	processing	or	spreadsheet
file	or	perhaps	even	a	paper	document.	These	are	the	types	of	things	many	people	would
probably	think	of	when	they	see	the	word	document.	They	have	nothing	to	do	with
document	databases,	at	least	with	respect	to	the	NoSQL	type	of	database.

	Note

There	are	applications	that	do	maintain	databases	that	store	word	processing,
spreadsheets,	emails,	and	other	electronic	objects	you	might	describe	as	a
document.	Attorneys,	for	example,	might	use	a	relational	database	to	store
documents	related	to	their	cases.	These	are	reasonably	and	properly	called
document	databases,	but	they	are	not	the	type	referred	to	when	discussing	NoSQL
document	databases.	From	this	point	on,	references	in	this	book	to	document
databases	refer	to	NoSQL	document	databases,	not	databases	that	store	electronic
documents.



Documents	Are	Not	So	Simple	After	All
Let’s	start	with	another	common	type	of	document:	an	HTML	document.	Figure	6.1	shows
a	simple	HTML	document	rendered	according	to	formatting	commands	in	the	file.

Figure	6.1	A	simple	example	of	an	HTML	document	with	basic	formatting	commands.

HTML	documents	store	two	types	of	information:

•	Content	commands

•	Formatting	commands

Content	includes	text	and	references	to	image,	audio,	or	other	media	files.	This	is
information	the	viewer	of	the	document	will	see	and	hear	when	the	document	is	rendered.
The	document	also	contains	formatting	commands	that	specify	how	the	layout	and	the
format	of	content	should	look.	For	example,	the	title	is	rendered	in	a	larger	font	than	major
headings	or	subheadings	because	of	different	formatting	commands.	A	subset	of	the
HTML	code	and	content	that	generates	Figure	6.1	is	shown	in	Listing	6.1.

	Note

Some	HTML	code	has	been	removed	from	Listing	6.1	for	clarity.

Listing	6.1	Sample	of	HTML	Code	Used	to	Generate	Figure	6.1
Click	here	to	view	code	image

<body	bgcolor=white	lang=EN-US	style=‘tab-interval:.5in’>

<div	class=Section1>

<div	style=‘mso-element:para-border-div;border:none;



		border-bottom:solid	#4F81BD;

mso-border-bottom-themecolor:accent1;border-bottom:1.0pt;

		padding:0in	0in	4.0pt	0in’>

<p	class=MsoTitle>The	Structure	of	HTML	Documents</p>

</div>

<p	class=MsoNormal><o:p>&nbsp;</o:p></p>

<p	class=MsoNormal>HTML	documents	combine	content,	such	as

text	and	images,	with	layout	instructions,	such	as	heading

and	table	formatting	commands.	</p>

<p	class=MsoNormal><o:p>&nbsp;</o:p></p>

<h1>Major	Headings	Look	Like	This</h1>

<p	class=MsoNormal>Major	headings	are	used	to	indicate	the

start	of	a	high	level	section.	Each	high	level	section	may

be	divided	into	subsections.</p>

<p	class=MsoNormal><o:p>&nbsp;</o:p></p>

<h2>Minor	Headings	Indicate	Subsections</h2>

<p	class=MsoNormal	style=‘tab-stops:132.0pt’>Minor

headings	are	useful	when	you	have	a	long	major	section	and

want	to	visually	break	it	up	into	more	manageable	pieces

for	the	reader.</p>

<p	class=MsoNormal	style=‘tab-stops:132.0pt’><o:p>&nbsp;

		</o:p></p>

<h1>Summary</h1>

<p	class=MsoNormal	style=‘tab-stops:132.0pt’>HTML	combines

structure	and	content.	Other	standards	for	structuring

combinations	of	structure	and	content	include	XML	and

JSON.</p>

</div>

</body>

</html>

The	formatting	commands	indicate	which	text	should	be	displayed	with	a	major	heading
(for	example,	surrounded	by	<h1>	and	</h1>),	when	to	start	a	new	paragraph	(that	is,
the	<p>	and	</p>	tags),	and	other	rendering	instructions.

The	details	of	the	particular	commands	are	not	important	for	this	discussion—the	key
point	is	that	HTML	combines	formatting	and	content	in	a	single	document.	In	much	the
same	way,	documents	in	document	databases	combine	structure	and	content.

HTML	documents	use	predefined	tags	to	indicate	formatting	commands.	Documents	in
document	databases	are	not	constrained	to	a	predefined	set	of	tags	for	specifying	structure.
Instead,	developers	are	free	to	choose	the	terms	they	need	to	structure	their	content	just	as
data	modelers	choose	table	and	column	names	for	relational	databases.



Let’s	consider	a	simple	example	of	a	customer	record	that	tracks	the	customer	ID,	name,
address,	first	order	date,	and	last	order	date.	Using	JavaScript	Object	Notation	(JSON),	a
sample	customer	record	is
Click	here	to	view	code	image

{

					“customer_id”:187693,

				“name”:	“Kiera	Brown”,

				“address”	:	{

								“street”	:	“1232	Sandy	Blvd.”,

								“city”	:		“Vancouver”,

								“state”	:		“Washington”,

								“zip”	:		“99121”

							},

				“first_order”	:	“01/15/2013”,

				“last_order”	:	”	06/27/2014”

}

The	Structure	of	JSON	Objects

JSON	objects	are	constructed	using	several	simple	syntax	rules:

•	Data	is	organized	in	key-value	pairs,	similar	to	key-value	databases.

•	Documents	consist	of	name-value	pairs	separated	by	commas.

•	Documents	start	with	a	{	and	end	with	a	}.

•	Names	are	strings,	such	as	"customer_id"	and	"address".

•	Values	can	be	numbers,	strings,	Booleans	(true	or	false),	arrays,	objects,	or	the
NULL	value.

•	The	values	of	arrays	are	listed	within	square	brackets,	that	is	[	and	].

•	The	values	of	objects	are	listed	as	key-value	pairs	within	curly	brackets,	that	is,	{
and	}.

JSON	is	just	one	option	for	representing	documents	in	a	document	database.	The	same
information	in	the	preceding	example	is	represented	in	XML	as	follows:
Click	here	to	view	code	image

<customer_record>

<customer_id>187693</customer_id>

	<name>“Kiera	Brown”</name>

	<address>

				<street>“1232	Sandy	Blvd.”</street>

				<city>“Vancouver”</city>

				<state>“Washington”</state>

				<zip>“99121”</zip>

	</address>

	<first_order>“01/15/2013”</first_order>

	<last_order>“06/27/2014”</last_order>

</customer_record>



	Note

Describing	the	full	syntax	of	XML	is	beyond	the	scope	of	this	chapter.	See
XMLFiles.com	or	W3Schools.com/xml	for	details.

To	summarize,	a	document	is	a	set	of	key-value	pairs.	Keys	are	represented	as	strings	of
characters.	Values	may	be	basic	data	types	(such	as	numbers,	strings,	and	Booleans)	or
structures	(such	as	arrays	and	objects).	Documents	contain	both	structure	information	and
data.	The	name	in	a	name-value	pair	indicates	an	attribute	and	the	value	in	a	name-value
pair	is	the	data	assigned	to	that	attribute.	JSON	and	XML	are	two	formats	commonly	used
to	define	documents.1

1.	Binary	JSON,	or	BSON,	is	a	binary	representation	of	JSON	objects	and	is	another	method	for	specifying
documents.

Documents	and	Key-Value	Pairs
An	advantage	of	documents	over	key-value	databases	is	that	related	attributes	are
managed	within	a	single	object.	As	you	may	recall,	you	can	emulate	some	aspects	of
relational	tables	using	a	naming	convention	based	on	the	name	of	the	entity	modeled,	a
unique	identifier	for	an	instance	of	that	entity,	and	the	name	of	the	attribute.

Documents,	like	relational	tables,	organize	multiple	attributes	in	a	single	object.	This
allows	database	developers	to	more	easily	implement	common	requirements,	such	as
returning	all	attributes	of	an	entity	based	on	a	filter	applied	to	one	of	the	attributes.	For
example,	in	one	step	you	could	filter	a	list	of	customer	documents	to	identify	those	whose
last	purchase	was	at	least	six	months	ago	and	return	their	IDs,	names,	and	addresses.	If
you	were	using	a	key-value	database,	you	would	need	to	query	all	last	purchase	dates,
generate	a	list	of	unique	identifiers	associated	with	those	customers	with	a	purchase	date
greater	than	six	months,	and	then	query	for	names	and	addresses	associated	with	each
identifier	in	the	list	(see	Figure	6.2).

http://XMLFiles.com
http://W3Schools.com/xml


Figure	6.2	Document	databases	require	less	code	than	key-value	data	stores	to	query
multiple	attributes.

Managing	Multiple	Documents	in	Collections
The	full	potential	of	document	databases	becomes	apparent	when	you	work	with	large
numbers	of	documents.	Documents	are	generally	grouped	into	collections	of	similar
documents.	One	of	the	key	parts	of	modeling	document	databases	is	deciding	how	you
will	organize	your	documents	into	collections.

Getting	Started	with	Collections

Collections	can	be	thought	of	as	lists	of	documents.	Document	database	designers
optimize	document	databases	to	quickly	add,	remove,	update,	and	search	for	documents.
They	are	also	designed	for	scalability,	so	as	your	document	collection	grows,	you	can	add
more	servers	to	your	cluster	to	keep	up	with	demands	for	your	database.

It	is	important	to	note	that	documents	in	the	same	collection	do	not	need	to	have	identical
structures,	but	they	should	share	some	common	structures.	For	example,	Listing	6.2	shows
a	collection	of	four	documents	with	similar	structures.

Listing	6.2	Documents	with	Similar	Structures
Click	here	to	view	code	image

{

			{

				“customer_id”:187693,

				“name”:	“Kiera	Brown”

				“address”	:	{

																“street”	:	“1232	Sandy	Blvd.”,

																“city”	:		“Vancouver”,

																“state”	:		“WA”,

																“zip”	:		“99121”



																},

			“first_order”	:	“01/15/2013”,

			“last_order”	:	”	06/27/2014”

}

			{

				“customer_id”:187694,

				“name”:	“Bob	Brown”,

				“address”	:	{

																“street”	:	“1232	Sandy	Blvd.”,

																“city”	:		“Vancouver”,

																“state”	:		“WA”,

																“zip”	:		“99121”

																},

			“first_order”	:	“02/25/2013”,

			“last_order”	:	”	05/12/2014”

			}

			{

				“customer_id”:179336,

				“name”:	“Hui	Li”,

				“address”	:	{

																“street”	:	“4904	Main	St.”,

																“city”	:		“St	Louis”,

																“state”	:		“MO”,

																“zip”	:		“99121”

																},

			“first_order”	:	“05/29/2012”,

			“last_order”	:	”	08/31/2014”,

			“loyalty_level”	:	“Gold”,

			“large_purchase_discount”	:	0.05,

			“large_purchase_amount”	:	250.00

			}

{

				“customer_id”:290981,

				“name”:	“Lucas	Lambert”,

				“address”	:	{

																“street”	:	“974	Circle	Dr.”,

																“city”	:		“Boston”,

																“state”	:		“MA”,

																“zip”	:		“02150”

																},

			“first_order”	:	“02/14/2014”,

			“last_order”	:	”	02/14/2014”,

			“number_of_orders”	:	1,

			“number_of_returns”	:	1

			}

}

Notice	that	the	first	two	documents	have	the	same	structure	while	the	third	and	fourth
documents	have	additional	attributes.	The	third	document	contains	three	new	fields:
loyalty_level,	large_purchase_discount,	and
large_purchase_amount.	These	are	used	to	indicate	this	person	is	considered	a
valued	customer	who	should	receive	a	5%	discount	on	all	orders	over	$250.	(The	currency
type	is	implicit.)	The	fourth	document	has	two	other	new	fields,	number_of_orders
and	number_of_returns.	In	this	case,	it	appears	that	the	customer	made	one	purchase
on	February	14,	2014,	and	returned	it.



One	of	the	advantages	of	document	databases	is	that	they	provide	flexibility	when	it
comes	to	the	structure	of	documents.	If	only	10%	of	your	documents	need	to	record
loyalty	and	discount	information,	why	should	you	have	to	clutter	the	other	90%	with
unused	fields?	You	do	not	have	to	when	using	document	databases.	The	next	section
addresses	this	issue	in	more	detail.

Tips	on	Designing	Collections

Collections	are	sets	of	documents.	Because	collections	do	not	impose	a	consistent
structure	on	documents	in	the	collection,	it	is	possible	to	store	different	types	of
documents	in	a	single	collection.	You	could,	for	example,	store	customer,	web	clickstream
data,	and	server	log	data	in	the	same	collection.	In	practice,	this	is	not	advisable.

In	general,	collections	should	store	documents	about	the	same	type	of	entity.	The	concept
of	an	entity	is	fairly	abstract	and	leaves	a	lot	of	room	for	interpretation.	You	might
consider	both	web	clickstream	data	and	server	log	data	as	a	“system	event”	entity	and,
therefore,	they	should	be	stored	in	the	same	collection.

Avoid	Highly	Abstract	Entity	Types

A	system	event	entity	such	as	this	is	probably	too	abstract	for	practical	modeling.	This	is
because	web	clickstream	data	and	server	log	data	will	have	few	common	fields.	They	may
share	an	ID	field	and	a	time	stamp	but	few	other	attributes.	The	web	clickstream	data	will
have	fields	capturing	information	about	web	pages,	users,	and	transitions	from	one	page	to
another.	The	server	log	documents	will	contain	details	about	the	server,	event	types,
severity	levels,	and	perhaps	some	descriptive	text.	Notice	how	dissimilar	web	clickstream
data	is	from	server	log	data:
Click	here	to	view	code	image

{	“id”	:	12334578,

				“datetime”	:		“201409182210”,

				“session_num”	:	987943,

				“client_IP_addr”	:	“192.168.10.10”,

				“user_agent”	:	“Mozilla	/	5.0”,

				“referring_page”	:	“http://www.example.com/page1”

}

{	“id”	:	31244578,

				“datetime”	:		“201409172140”,

				“event_type”	:	“add_user”,

				“server_IP_addr”	:	“192.168.11.11”,

				“descr”	:		“User	jones	added	with	sudo	privileges”

}

If	you	were	to	store	these	two	document	types	in	a	single	collection,	you	would	likely
need	to	add	a	type	indicator	so	your	code	could	easily	distinguish	between	a	web
clickstream	document	and	a	server	log	event	document.

In	the	preceding	example,	the	documents	would	be	modified	to	include	a	type	indicator:
Click	here	to	view	code	image

{	“id”	:	12334578,

				“datetime”	:		“201409182210”,

				“doc_type”:	“click_stream”,



				“session_num”	:	987943,

				“client_IP_addr”	:	“192.168.10.10”,

				“user_agent”	:	“Mozilla	/	5.0”,

				“referring_page”	:	“http://www.example.com/page1”

}

{	“id”	:	31244578,

				“datetime”	:		“201409172140”

				“doc_type”	:	“server_log”

				“event_type”	:	“add_user”

				“server_IP_addr”	:	“192.168.11.11”

				“descr”	:		“User	jones	added	with	sudo	privileges”

}

	Tip

If	you	find	yourself	using	a	'doc_type'	field	and	frequently	filtering	your
collection	to	select	a	single	document	type,	carefully	review	your	documents.	You
might	have	a	mix	of	entity	types.

Filtering	collections	is	often	slower	than	working	directly	with	multiple	collections,	each
of	which	contains	a	single	document	type.	Consider	if	you	had	a	system	event	collection
with	1	million	documents:	650,000	clickstream	documents	and	350,000	server	log	events.
Because	both	types	of	events	are	added	over	time,	the	document	collection	will	likely
store	a	mix	of	clickstream	and	server	log	documents	in	close	proximity	to	each	other.

If	you	are	using	disk	storage,	you	will	likely	retrieve	blocks	of	data	that	contain	both
clickstream	and	server	log	documents.	This	will	adversely	impact	performance	(see	Figure
6.3).

Figure	6.3	Mixing	document	types	can	lead	to	multiple	document	types	in	a	disk	data
block.	This	can	lead	to	inefficiencies	because	data	is	read	from	disk	but	not	used	by	the

application	that	filters	documents	based	on	type.



You	might	argue	that	indexes	could	be	used	to	improve	performance.	Indexes	certainly
improve	data	access	performance	in	some	cases.	However,	indexes	may	be	cached	in
memory	or	stored	on	disk.	Retrieving	indexes	from	disk	will	add	time	to	processing.	Also,
if	indexes	reference	a	data	block	that	contains	both	clickstream	and	server	log	data,	the
disk	will	read	both	types	of	records	even	though	one	will	be	filtered	out	in	your
application.

Depending	on	the	size	of	the	collection,	the	index,	and	the	number	of	distinct	document
types	(this	is	known	as	cardinality	in	relational	database	terminology),	it	may	be	faster	to
scan	the	full	document	collection	rather	than	use	an	index.	Finally,	consider	the	overhead
of	writing	indexes	as	new	documents	are	added	to	the	collection.

Watch	for	Separate	Functions	for	Manipulating	Different	Document	Types

Another	clue	that	a	collection	should	be	broken	into	multiple	collections	is	your
application	code.	The	application	code	that	manipulates	a	collection	should	have
substantial	amounts	of	code	that	apply	to	all	documents	and	some	amount	of	code	that
accommodates	specialized	fields	in	some	documents.

For	example,	most	of	the	code	you	would	write	to	insert,	update,	and	delete	documents	in
the	customer	collection	would	apply	to	all	documents.	You	would	probably	have
additional	code	to	handle	loyalty	and	discount	fields	that	would	apply	to	only	a	subset	of
all	documents.

	Tip

If	your	code	at	the	highest	levels	consists	of	if	statements	conditionally	checking
document	types	that	branch	to	separate	functions	to	manipulate	separate	document
types,	it	is	a	good	indication	you	probably	have	mixed	document	types	that	should
go	in	separate	collections	(see	Figure	6.4).



Figure	6.4	High-level	branching	in	functions	manipulating	documents	can	indicate	a
need	to	create	separate	collections.	Branching	at	lower	levels	is	common	when	some

documents	have	optional	attributes.

Use	Document	Subtypes	When	Entities	Are	Frequently	Aggregated	or	Share
Substantial	Code

The	document	collection	design	tips	have	so	far	focused	on	ensuring	you	do	not	mix
dissimilar	documents	in	a	single	collection.	If	there	were	no	more	design	tips,	you	might
think	that	you	should	never	use	type	indicators	in	documents.	That	would	be	wrong—very
wrong.

There	are	times	when	it	makes	sense	to	use	document	type	indicators	and	have	separate
code	to	handle	the	different	types.

	Note

When	it	comes	to	designing	NoSQL	databases,	remember	design	principles	but
apply	them	flexibly.	Always	consider	the	benefits	and	drawbacks	of	a	design
principle	in	a	particular	situation.	That	is	what	the	designers	of	NoSQL	databases
did	when	they	considered	the	benefits	and	drawbacks	of	relational	databases	and
decided	to	devise	their	own	data	model	that	broke	many	of	the	design	principles	of
relational	databases.

It	is	probably	best	to	start	this	tip	with	an	example.	In	addition	to	tracking	customers	and
their	clickstream	data,	you	would	like	to	track	the	products	customers	have	ordered.	You
have	decided	the	first	step	in	this	process	is	to	create	a	document	collection	containing	all
products,	which	for	our	purposes,	includes	books,	CDs,	and	small	kitchen	appliances.
There	are	only	three	types	of	products	now,	but	your	client	is	growing	and	will	likely
expand	into	other	product	types	as	well.

All	of	the	products	have	the	following	information	associated	with	them:

•	Product	name



•	Short	description

•	SKU	(stock	keeping	unit)

•	Product	dimensions

•	Shipping	weight

•	Average	customer	review	score

•	Standard	price	to	customer

•	Cost	of	product	from	supplier

Each	of	the	product	types	will	have	specific	fields.	Books	will	have	fields	with
information	about

•	Author	name

•	Publisher

•	Year	of	publication

•	Page	count

The	CDs	will	have	the	following	fields:

•	Artist	name

•	Producer	name

•	Number	of	tracks

•	Total	playing	time

The	small	kitchen	appliances	will	have	the	following	fields:

•	Color

•	Voltage

•	Style

How	should	you	go	about	deciding	how	to	organize	this	data	into	one	or	more	document
collections?	Start	with	how	the	data	will	be	used.	Your	client	might	tell	you	that	she	needs
to	be	able	to	answer	the	following	queries:

•	What	is	the	average	number	of	products	bought	by	each	customer?

•	What	is	the	range	of	number	of	products	purchased	by	customers	(that	is,	the	lowest
number	to	the	highest	number	of	products	purchased)?

•	What	are	the	top	20	most	popular	products	by	customer	state?

•	What	is	the	average	value	of	sales	by	customer	state	(that	is,	Standard	price	to
customer	–	Cost	of	product	from	supplier)?

•	How	many	of	each	type	of	product	were	sold	in	the	last	30	days?

All	the	queries	use	data	from	all	product	types,	and	only	the	last	query	subtotals	the
number	of	products	sold	by	type.	This	is	a	good	indication	that	all	the	products	should	be



in	a	single	document	collection	(see	Figure	6.5).	Unlike	the	example	of	the	collection	with
clickstream	and	server	log	data,	the	product	document	types	are	frequently	used	together
to	respond	to	queries	and	calculate	derived	values.

Figure	6.5	When	is	a	toaster	the	same	as	a	database	design	book?	When	they	are
treated	the	same	by	application	queries.	Queries	can	help	guide	the	organization	of

documents	and	collections.

Another	reason	to	favor	a	single	document	collection	is	that	the	client	is	growing	and	will
likely	add	new	product	types.	If	the	number	of	product	types	grows	into	the	tens	or	even
hundreds,	the	number	of	collections	would	become	unwieldy.

	Note

Relational	databases	are	often	used	to	support	a	broad	range	of	query	types.	NoSQL
databases	complement	relational	databases	by	providing	functionality	optimized	for
particular	aspects	of	application	support.	Rather	than	start	with	data	and	try	to
figure	out	how	to	organize	your	collections,	it	can	help	to	start	with	queries	to
understand	how	your	data	will	be	used.	This	can	help	inform	your	decisions	about
how	to	structure	collections	and	documents.

To	summarize,	avoid	overly	abstract	document	types.	If	you	find	yourself	writing	separate
code	to	process	different	document	subtypes,	you	should	consider	separating	the	types	into
different	collections.	Poor	collection	design	can	adversely	affect	performance	and	slow
your	application.	There	are	cases	where	it	makes	sense	to	group	somewhat	dissimilar
objects	(for	example,	small	kitchen	appliances	and	books)	if	they	are	treated	as	similar	(for
example,	they	are	all	products)	in	your	application.



Documents	and	collections	are	the	organizing	structures	of	document	database	storage.
You	might	be	wondering	when	and	where	you	define	the	specification	describing
documents.	Programmers	define	structures	and	record	types	before	using	them	in	their
programs.	Relational	database	designers	spend	a	substantial	amount	of	time	crafting	and
tuning	data	models	that	define	tables,	columns,	and	other	data	structures.

Now	it	is	time	to	consider	how	such	specifications,	known	as	schemas,	are	used	in
document	databases.

Avoid	Explicit	Schema	Definitions
If	you	have	worked	with	relational	databases,	you	are	probably	familiar	with	defining
database	schemas.	A	schema	is	a	specification	that	describes	the	structure	of	an	object,
such	as	a	table.	A	pseudoschema	specification	for	the	customer	record	discussed	above	is
Click	here	to	view	code	image

CREATE	TABLE	customer	(

				customer_ID			integer,

				name	varchar(100),

				street		varchar(100),

				city	varchar(100),

				state	varchar(2),

				zip	varchar(5),

				first_purchase_date		date,

				last_purchase_date		date

)

This	schema	defines	a	table	to	hold	customer	and	address	information.	All	customer
records	have	the	same	eight	columns:	customer_id,	name,	street,	city,	state,
zip,	first_purchase_date,	and	last_purchase_date.	Each	column	is
assigned	a	specific	data	type,	either	integer,	date,	or	varchar.	Varchar	is	a
variable	character	string.	The	number	in	parentheses	following	varchar	is	the	maximum
length	of	the	value	stored	in	that	attribute.

Data	modelers	have	to	define	tables	in	a	relational	database	before	developers	can	execute
code	to	add,	remove,	or	update	rows	in	the	table.	Document	databases	do	not	require	this
formal	definition	step.	Instead,	developers	can	create	collections	and	documents	in
collections	by	simply	inserting	them	into	the	database	(see	Figure	6.6).



Figure	6.6	Relational	databases	require	an	explicitly	defined	schema,	but	document
databases	do	not.

Document	databases	are	designed	to	accommodate	variations	in	documents	within	a
collection.	Because	any	document	could	be	different	from	all	previously	inserted
documents,	it	does	not	make	sense	to	require	data	modelers	to	specify	all	possible
document	fields	prior	to	building	and	populating	the	database.	This	freedom	from	the	need
to	predefine	the	database	structure	is	captured	in	the	term	often	used	to	describe	document
databases:	schemaless.

Although	it	is	true	that	you	do	not	have	to	define	a	schema	prior	to	adding	documents,
there	is	an	organization	implicit	in	the	set	of	documents	you	insert	into	the	database.	The
organization	is	apparent	in	the	code	that	manipulates	the	documents	from	the	database.

For	example,	if	you	were	building	the	product	database	described	previously,	you	would
have	code	that	sets	the	value	of	artist,	producer,	number	of	tracks,	and	total	play	time	for
each	CD	inserted.	Similarly,	you	would	have	code	to	set	small	appliance	fields	and	book
fields	as	well.	Presumably,	you	would	use	the	same	code	to	set	common	fields,	such	as



product	name	and	SKU.

Polymorphic	schema	is	another	term	that	describes	document	databases.	Polymorphic	is
derived	from	Latin	and	literally	means	“many	shapes.”	This	makes	it	an	apt	description	for
a	document	database	that	supports	multiple	types	of	documents	in	a	single	collection.

Basic	Operations	on	Document	Databases
The	basic	operations	on	document	databases	are	the	same	as	other	types	of	databases	and
include	the	following:

•	Inserting

•	Deleting

•	Updating

•	Retrieving

There	is	no	standard	data	manipulation	language	used	across	document	databases	to
perform	these	operations.	The	examples	that	follow	use	a	command	structure	similar	to
that	of	MongoDB,	currently	the	most	commonly	used	document	database.2

2.	DB-Engines	Rankings.	http://db-engines.com/en/ranking.

Before	introducing	the	basic	operations,	there	is	one	additional	data	structure	to	introduce
and	that	is	the	database.	The	database	is	the	container	for	collections	and	containers	are	for
documents.	The	logical	relationship	between	these	three	data	structures	is	shown	in	Figure
6.7.

Figure	6.7	The	database	is	the	highest-level	logical	structure	in	a	document	database
and	contains	collections	of	documents.

http://db-engines.com/en/ranking


	Note

By	convention,	the	database	container	is	referred	to	as	‘db’	in	sample	code.	To	refer
to	a	collection,	you	prefix	the	collection	name	with	‘db’.	For	example,	the
collection	customer	is	indicated	by	‘db.customer.’	The	basic	operations	are
performed	on	collections	specified	in	this	way.

Inserting	Documents	into	a	Collection
Collections	are	objects	that	can	perform	a	number	of	different	operations.	The	insert
method	adds	documents	to	a	collection.	For	example,	the	following	adds	a	single
document	describing	a	book	by	Kurt	Vonnegut	to	the	books	collection:
Click	here	to	view	code	image

db.books.insert(	{“title”:”	Mother	Night”,	“author”:	“Kurt

		Vonnegut,	Jr.”}	)

	Tip

It	is	a	good	practice	to	include	a	unique	identifier	with	each	document	when	it	is
inserted.

Instead	of	simply	adding	a	book	document	with	the	title	and	author	name,	a	better	option
would	be	to	include	a	unique	identifier	as	in
Click	here	to	view	code	image

db.books.insert(	{book_id:	1298747,

																“title”:“Mother	Night”,

																“author”:	“Kurt	Vonnegut,	Jr.”}	)

	Note

Different	document	databases	have	different	recommendations	for	unique
identifiers.	MongoDB	adds	a	unique	identifier	if	one	is	not	provided.	CouchDB
supports	any	string	as	a	unique	identifier	but	recommends	using	a	Universally
Unique	Identifier	(UUID).	Check	your	document	database	documentation	for
details	on	unique	identifiers.

In	many	cases,	it	is	more	efficient	to	perform	bulk	inserts	instead	of	a	series	of	individual
inserts.	For	example,	the	following	three	insert	commands	could	be	used	to	add	three
books	to	the	book	collection:
Click	here	to	view	code	image

db.books.insert(	{“book_id”:	1298747,

																		“title”:“Mother	Night”,

																		“author”:	“Kurt	Vonnegut,	Jr.”}	)

db.books.insert(	{“book_id”:	639397,

																		“title”:“Science	and	the	Modern	World”,

																		“author”:	“Alfred	North	Whitehead”}	)



db.books.insert(	{“book_id”:	1456701,

																		“title”:“Foundation	and	Empire”,

																		“author”:	“Isaac	Asimov”}	)

Each	of	these	commands	would	incur	the	overhead	of	the	write	operation.	A	single	bulk
insert	would	incur	that	overhead	only	once,	so	it	is	especially	useful	for	loading	a	large
number	of	documents	at	once.	The	same	three	documents	listed	above	could	be	added
with	the	following	command:
Click	here	to	view	code	image

db.books.insert(

					[

															{“book_id”:	1298747,

																“title”:“Mother	Night”,

																“author”:	“Kurt	Vonnegut,	Jr.”},

															{“book_id”:	639397,

																“title”:“Science	and	the	Modern	World”,

																“author”:	“Alfred	North	Whitehead”},

															{“book_id”:	1456701,

																“title”:“Foundation	and	Empire”,

																“author”:	“Isaac	Asimov”}

					]

}

The	[	and	]	in	the	parameter	list	delimit	an	array	of	documents	to	insert.

	Tip

Check	your	document	database	documentation	for	limits	on	the	size	of	bulk	inserts.
If	you	have	many	large	documents,	you	may	need	to	perform	multiple	bulk	inserts
to	ensure	that	your	array	of	documents	does	not	exceed	the	bulk	insert	size	limit.

Deleting	Documents	from	a	Collection
You	can	delete	documents	from	a	collection	using	the	remove	methods.	The	following
command	deletes	all	documents	in	the	books	collection:

db.books.remove()

Note	that	the	collection	still	exists,	but	it	is	empty.

The	remove	command	is	probably	more	frequently	used	for	selective	deleting	rather	than
removing	all	documents	from	a	collection.	To	delete	a	single	document,	you	can	specify	a
query	document	that	matches	the	document	you	would	like	to	delete.	A	query	document	is
a	list	of	keys	and	values	that	are	matched	against	documents.	The	query	document

{“book_id”:	639397}

uniquely	identifies	the	book	titled	Science	and	the	Modern	World.	(For	those	familiar	with
SQL,	this	is	analogous	to	specifying	a	WHERE	clause.)	To	delete	the	book	titled	Science
and	the	Modern	World,	you	would	issue	the	following	command:
Click	here	to	view	code	image

db.books.remove({“book_id”:	639397})



The	remove	command	deletes	all	documents	that	match	the	query	document.	This
example	used	the	unique	identifier	for	a	book,	so	only	one	book	is	deleted.	Suppose	you
have	removed	all	books	from	the	books	collection	and	then	execute	the	following
command:
Click	here	to	view	code	image

db.books.insert(

				[

								{“book_id”:	1298747,

																								“title”:“Mother	Night”,

																								“author”:	“Kurt	Vonnegut,	Jr.”},

								{“book_id”:	1298770,

																								“title”:“Cat’s	Cradle”,

																								“author”:	“Kurt	Vonnegut,	Jr.”},

								{“book_id”:	639397,

																								“title”:“Science	and	the	Modern

																										World”,

																								“author”:	“Alfred	North

																										Whitehead”},

								{“book_id”:	1456701,

																								“title”:“Foundation	and	Empire”,

																								“author”:	“Isaac	Asimov”}

							]

The	books	collection	now	has	four	books.	Executing	the	following	remove	command
will	delete	the	two	books	by	Kurt	Vonnegut,	Jr.:
Click	here	to	view	code	image

db.books.remove({“author”:	“Kurt	Vonnegut,	Jr.”})

You	should	be	especially	careful	when	deleting	documents	that	may	be	referenced	in	other
documents.	For	example,	assume	you	have	a	simple	orders	collection	that	contains
customers	and	books	they	ordered:
Click	here	to	view	code	image

{

				{“customer_id”	:	183747,	“book_id”:	639397},

				{“customer_id”	:	165301,	“book_id”:	639397},

				{“customer_id”	:	183747,	“book_id”:1298770},

				…

}

If	you	execute	the	following	command,	you	will	remove	two	books	with	IDs	1298747	and
1298770:
Click	here	to	view	code	image

db.books.remove({“author”:	“Kurt	Vonnegut,	Jr.”})

The	orders	collection,	however,	will	still	have	references	to	these	IDs.	If	your	application
code	were	to	try	to	look	up	the	book	with	ID	1298770,	it	would	fail.



	Note

Relational	databases	can	be	designed	to	prevent	this	type	of	problem,	but	document
databases	depend	on	application	code	to	manage	this	type	of	data	integrity.

Updating	Documents	in	a	Collection
Once	a	document	has	been	inserted	into	a	collection,	it	can	be	modified	with	the	update
method.	The	update	method	requires	two	parameters	to	update:

•	Document	query

•	Set	of	keys	and	values	to	update

	Note

Because	we	are	using	MongoDB	syntax,	it	should	be	noted	that	the	MongoDB
update	method	takes	three	optional	parameters	in	addition	to	the	two	described
here.	They	are	out	of	the	scope	of	this	chapter.

Like	the	remove	method,	the	document	query	of	the	update	command	is	a	set	of	keys
and	values	identifying	the	documents	to	update.	To	indicate	you	want	to	update	Kurt
Vonnegut	Jr.’s	Mother	Night,	you	would	use	the	following	query	document:

{“book_id”:	1298747}

	Note

When	using	MongoDB	syntax,	you	should	note	that	the	MongoDB	update
method	takes	three	optional	parameters	in	addition	to	the	two	described	here.
However,	the	other	options	are	out	of	the	scope	of	this	chapter.

MongoDB	uses	the	$set	operator	to	specify	which	keys	and	values	should	be	updated.
For	example,	the	following	command	adds	the	quantity	key	with	the	value	of	10	to	the
collection:
Click	here	to	view	code	image

db.books.update	({“book_id”:	1298747},

																	{$set		{“quantity”	:	10	}})

The	full	document	would	then	be
Click	here	to	view	code	image

{“book_id”:	1298747,

				“title”:“Mother	Night”,

				“author”:	“Kurt	Vonnegut,	Jr.”,

				“quantity”	:	10}

The	update	command	adds	a	key	if	it	does	not	exist	and	sets	the	value	as	indicated.	If
the	key	already	exists,	the	update	command	changes	the	value	associated	with	it.

Document	databases	sometimes	provide	other	operators	in	addition	to	set	commands.



For	example,	MongoDB	has	an	increment	operator	($inc),	which	is	used	to	increase	the
value	of	a	key	by	the	specified	amount.	The	following	command	would	change	the
quantity	of	Mother	Night	from	10	to	15:
Click	here	to	view	code	image

db.books.update	({“book_id”:	1298747},

																	{$inc		{“quantity”	:	5	}})

Check	your	document	database	documentation	for	details	on	update	operators.

Retrieving	Documents	from	a	Collection
The	find	method	is	used	to	retrieve	documents	from	a	collection.	As	you	might	expect,
the	find	method	takes	an	optional	query	document	that	specifies	which	documents	to
return.	The	following	command	matches	all	documents	in	a	collection:

db.books.find()

This	is	useful	if	you	want	to	perform	an	operation	on	all	documents	in	a	collection.

If,	however,	you	only	want	a	subset	of	documents	in	the	database,	you	would	specify
selection	criteria	using	a	document.	For	example,	the	following	returns	all	books	by	Kurt
Vonnegut,	Jr.:
Click	here	to	view	code	image

db.books.find({“author”:	“Kurt	Vonnegut,	Jr.”})

These	two	find	examples	both	return	all	the	keys	and	values	in	the	documents.	There	are
times	when	it	is	not	necessary	to	return	all	key-value	pairs.	In	those	cases,	you	can	specify
an	optional	second	argument	that	is	a	list	of	keys	to	return	along	with	a	“1”	to	indicate	the
key	should	be	returned.
Click	here	to	view	code	image

db.books.find({“author”:	“Kurt	Vonnegut,	Jr.”},

														{“title”	:	1}	)

This	returns	only	the	titles	of	books	by	Kurt	Vonnegut,	Jr.

	Tip

By	default,	MongoDB	returns	the	unique	identifier	as	well,	even	if	it	is	not
explicitly	listed	in	the	set	of	keys	to	return.

More	complex	queries	are	built	using	conditionals	and	Boolean	operators.	To	retrieve	all
books	with	a	quantity	greater	than	or	equal	to	10	and	less	than	50,	you	could	use	the
following	command:
Click	here	to	view	code	image

Db.books.find(	{“quantity”	:	{“$gte”	:	10,	“$lt”	:	50	}}	)

Notice	that	even	more	complex	criteria	are	still	constructed	as	query	documents.

The	conditionals	and	Booleans	supported	in	MongoDB	include	the	following:

•	$lt—Less	than



•	$let—Less	than	or	equal	to

•	$gt—Greater	than

•	$gte—Greater	than	or	equal	to

•	$in—Query	for	values	of	a	single	key

•	$or—Query	for	values	in	multiple	keys

•	$not—Negation

Document	databases	can	provide	more	extensive	query	capabilities,	including	the	ability
to	match	regular	expressions	or	apply	full-text	search.	Check	the	documentation	for	your
document	database	for	additional	information.

	In	addition	to	these	basic	operations,	document	databases	support	advanced
functions	such	as	indexing.	These	more	advanced	features	are	covered	in	Chapter
8,	“Designing	for	Document	Databases.”

Summary
Documents	are	flexible	data	structures.	They	do	not	require	predefined	schemas	and	they
readily	accommodate	variations	in	the	structure	of	documents.	Documents	are	organized
into	related	sets	called	collections.	Collections	are	analogous	to	a	relational	table,	and
documents	are	analogous	to	rows	in	a	relational	table.

The	flexibility	of	document	databases	enables	you	to	make	poor	design	decisions	with
regard	to	organizing	collections.	Collections	should	contain	similar	types	of	entities,
although	the	keys	and	values	may	differ	across	documents.

There	are	times	when	modeling	documents	using	highly	abstract	entities,	such	as	the
system	event	entity	discussed	previously,	can	adversely	affect	performance	and	lead	to
more	complicated	application	code	than	necessary.	There	are	other	times,	however,	when
abstract	entities,	such	as	products,	are	appropriate.	Analyze	the	types	of	queries	your
database	will	support	to	guide	your	design	decisions.

Unlike	relational	databases,	there	is	not	a	standard	query	language	for	document
databases.	The	examples	in	this	chapter,	and	subsequent	chapters,	are	based	on	the	syntax
of	a	commonly	used	document	database.	The	principles	and	concepts	described	here
should	apply	across	document	databases,	although	implementation	details	will	vary.

Review	Questions
1.	Define	a	document	with	respect	to	document	databases.

2.	Name	two	types	of	formats	for	storing	data	in	a	document	database.

3.	List	at	least	three	syntax	rules	for	JSON	objects.

4.	Create	a	sample	document	for	a	small	appliance	with	the	following	attributes:
appliance	ID,	name,	description,	height,	width,	length,	and	shipping	weight.	Use	the
JSON	format.

5.	Why	are	highly	abstract	entities	often	avoided	when	modeling	document



collections?

6.	When	is	it	reasonable	to	use	highly	abstract	entities?

7.	Using	the	db.books	collection	described	in	this	chapter,	write	a	command	to	insert	a
book	to	the	collection.	Use	MongoDB	syntax.

8.	Using	the	db.books	collection	described	in	this	chapter,	write	a	command	to	remove
books	by	Isaac	Asimov.	Use	MongoDB	syntax.

9.	Using	the	db.books	collection	described	in	this	chapter,	write	a	command	to	retrieve
all	books	with	quantity	greater	than	or	equal	to	20.	Use	MongoDB	syntax.

10.	Which	query	operator	is	used	to	search	for	values	in	a	single	key?
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7.	Document	Database	Terminology

“We	must	dare	to	think	‘unthinkable’	thoughts.	We	must	learn	to	explore	all	the
options	and	possibilities	that	confront	us	in	a	complex	and	rapidly	changing
world.”

—J.	WILLIAM	FULBRIGHT
FORMER	U.S.	SENATOR

Topics	Covered	In	This	Chapter

Document	and	Collection	Terms

Types	of	Partitions

Data	Modeling	and	Query	Processing

The	previous	chapter	introduced	the	basic	concepts	of	document	databases.	This	chapter
focuses	on	defining	commonly	used	terms	in	document	database	theory	and	practice.

	Note

As	with	the	other	terminology	chapters	in	this	book,	the	goal	is	to	provide	in-depth
descriptions	of	key	terms	used	in	document	databases.	Some	of	the	terminology	is
generally	applicable	to	other	distributed	databases	as	well,	whereas	some	is	specific
to	document	databases.

The	first	set	of	terms	is	related	to	the	basic	data	structures	of	document	databases.	You
should	be	familiar	with	these	from	the	last	chapter,	but	they	are	presented	here	as	well	in
somewhat	more	formal	terms.

The	second	section	defines	terms	you	will	come	across	as	you	learn	about	document
database	architecture.	The	terms	defined	in	this	section	are	used	to	describe	distributed
databases	in	general,	especially	with	regard	to	how	to	scale	large	databases.	You	will	see
these	terms	frequently	as	you	work	with	NoSQL	technologies.

The	final	section	is	the	most	heterogeneous.	It	contains	a	mix	of	document	modeling	terms
and	operations.	The	document	modeling	terms	are	high-level	broad	concepts.	The	next
chapter	introduces	more	specific	design	patterns.	The	section	concludes	with	several
somewhat	miscellaneous	but	important	terms	you	should	be	familiar	with	when	working
with	document	databases.

Document	and	Collection	Terms
Documents	and	collections	are	the	basic	data	structures	of	a	document	database.	They	are
somewhat	analogous	to	rows	and	tables	in	relational	databases.	The	informal	introduction
to	these	terms	in	Chapter	6,	“Introduction	to	Document	Databases,”	was	sufficient	to
introduce	the	basic	concepts	of	document	databases.	Now	it	is	time	for	more	formal
definitions	that	allow	for	more	precise	descriptions	and	reasoning	about	these	structures.

The	following	terms	are	defined:



•	Document

•	Collection

•	Embedded	document

•	Schemaless

•	Polymorphic	schema

At	the	end	of	this	section,	you	should	have	an	understanding	of	how	documents	are
organized	into	collections.	You	should	also	understand	important	properties	of	document
database	organization	that	allow	for	flexible	database	design.	This	is	one	of	the	primary
reasons	document	databases	have	gained	popularity	among	developers.

Document
A	document	is	a	set	of	ordered	key-value	pairs.	A	key	value	is	a	data	structure	that	consists
of	two	parts	called,	not	surprisingly,	the	key	and	the	value.

	Note

For	those	who	may	have	skipped	the	section	of	this	book	on	key-value	databases,	a
key	is	a	unique	identifier	used	to	look	up	a	value.	A	value	is	an	instance	of	any
supported	data	type,	such	as	a	string,	number,	array,	or	list.

Documents:	Ordered	Sets	of	Key-Value	Pairs

Because	a	document	is	a	set,	it	has	one	instance	of	each	member.	Members	are	key-value
pairs.	For	example,	the	following	is	a	set	with	three	members:	'foo':	'a',	'bar':
'b',	and	'baz':	'c':
Click	here	to	view	code	image

{	‘foo’:	‘a’,	‘bar’:	‘b’,	‘baz’:	‘c’}

A	slight	change	turns	this	set	into	a	nonset	(also	known	as	a	bag):
Click	here	to	view	code	image

{‘foo’:	‘a’,	‘bar’:	‘b’,	‘baz’:	‘c’,	‘foo’:	‘a’}

This	list	of	key	values	is	not	a	set	because	there	are	two	instances	of	the	key-value	pair
'foo':	'a'.

Sets	do	not	distinguish	by	order.	The	following	set
Click	here	to	view	code	image

{	‘foo’:	‘a’,	‘bar’:	‘b’,	‘baz’:	‘c’}

is	equivalent	to
Click	here	to	view	code	image

{‘baz’:	‘c’,	‘foo’:	‘a’,	‘bar’:	‘b’}

However,	for	the	purposes	of	designing	document	databases,	these	are	different
documents.	The	order	of	key-value	pairs	matters	in	determining	the	identity	of	a



document.	The	document	{	'foo':	'a',	'bar':	'b',	'baz':	'c'}	is	not
the	same	document	as	{'baz':	'c',	'foo':	'a',	'bar':	'b'}.

Key	and	Value	Data	Types

Keys	are	generally	strings.	Some	key-value	databases	support	a	more	extensive	set	of	key
data	types,	so	document	databases	could,	in	principle,	support	multiple	data	types	as	well.

Values	can	be	a	variety	of	data	types.	As	you	might	expect,	document	databases	support
values	of	numbers	and	strings.	They	also	support	more	structured	data	types,	such	as
arrays	and	other	documents.

Arrays	are	useful	when	you	want	to	track	multiple	instances	of	a	value	and	the	values	are
all	of	one	type.	For	example,	if	you	need	to	model	an	employee	and	a	list	of	her	projects,
you	could	use	a	document	such	as
Click	here	to	view	code	image

{		‘employeeName’	:		‘Janice	Collins’,

				‘department’	:	‘Software	engineering’

					‘startDate’	:	‘10-Feb-2010’,

				‘pastProjectCodes’	:	[	189847,	187731,	176533,	154812]

}

The	key	pastProjectCodes	is	a	list	of	project	code	numbers.	All	project	codes	are
numbers,	so	it	is	appropriate	to	use	an	array.

Alternatively,	if	you	want	to	store,	or	embed,	more	information	about	projects	along	with
the	employee	information,	you	could	include	another	document	within	the	employee
document.	One	such	version	is
Click	here	to	view	code	image

{		‘employeeName’	:		‘Janice	Collins’,

				‘department’	:	‘Software	engineering’,

				‘startDate’	:	‘10-Feb-2010’,

				‘pastProjects’	:	{

{‘projectCode’	:	189847,

						‘projectName’	:	‘Product	Recommendation	System’,

						‘projectManager’	:	‘Jennifer	Delwiney’	},

{‘projectCode’	:	187731,

		‘projectName’	:		‘Finance	Data	Mart	version	3’,

		‘projectManager’	:	‘James	Ross’},

{‘projectCode’:	176533,

	‘projectName’	:	‘Customer	Authentication’,

				‘projectManager’	:	‘Nick	Clacksworth’},

{‘projectCode’:	154812,

	‘projectName’	:	‘Monthly	Sales	Report’,

	‘projectManager’:	‘Bonnie	Rendell’}

}

To	summarize,	documents	are	ordered	sets	of	key-value	pairs.	Keys	are	used	to	reference
particular	values.	Values	can	be	either	basic	or	structured	data	types.



Collection
A	collection	is	a	group	of	documents.	The	documents	within	a	collection	are	usually
related	to	the	same	subject	entity,	such	as	employees,	products,	logged	events,	or	customer
profiles.	It	is	possible	to	store	unrelated	documents	in	a	collection,	but	this	is	not	advised.

At	the	most	basic	level,	collections	allow	you	to	operate	on	groups	of	related	documents.
If	you	maintain	a	collection	of	employee	records,	you	can	iterate	over	all	employee
records	in	the	collection	looking	for	particular	employees,	such	as	all	employees	with
startDates	earlier	than	January	1,	2011.	If	you	have	a	large	number	of	employees,	this
can	be	inefficient	because	you	would	have	to	compare	every	employee	record	to	your
search	criteria.

In	addition	to	allowing	you	to	easily	operate	on	groups	of	documents,	collections	support
additional	data	structures	that	make	such	operations	more	efficient.	For	example,	a	more-
efficient	approach	to	scanning	all	documents	in	a	collection	is	to	use	an	index.	Indexes	on
collections	are	like	indexes	in	the	back	of	book:	a	structured	set	of	information	that	maps
from	one	attribute,	such	as	a	key	term,	to	related	information,	such	as	a	list	of	page
numbers	(see	Figure	7.1).

Figure	7.1	Indexes	map	attributes,	such	as	key	terms,	to	related	information,	such	as
page	numbers.	Using	an	index	is	faster	than	scanning	an	entire	book	for	key	terms.

Collections	are	groups	of	similar	documents	that	allow	you	to	easily	access	or	operate	on
all	documents	in	the	group.	Collections	support	additional	data	structures,	such	as	indexes,
to	improve	the	efficiency	of	operations	on	those	groups	of	documents.



Embedded	Document
One	of	the	advantages	of	document	databases	is	that	they	allow	developers	to	store	related
data	in	more	flexible	ways	than	typically	done	in	relational	databases.	If	you	were	to
model	employees	and	the	projects	they	work	on	in	a	relational	database,	you	would
probably	create	two	tables:	one	for	employee	information	and	one	for	project	information
(see	Figure	7.2).

Figure	7.2	Relational	data	models	separate	data	about	different	entities	into	separate
tables.	This	requires	looking	up	information	in	both	tables	using	a	process	known	as

joining.

An	embedded	document	enables	document	database	users	to	store	related	data	in	a	single
document.	This	allows	the	document	database	to	avoid	a	process	called	joining	in	which
data	from	one	table,	called	the	foreign	key,	is	used	to	look	up	data	in	another	table.

Joining	two	large	tables	can	be	potentially	time	consuming	and	require	a	significant
number	of	read	operations	from	disk.	Embedded	documents	allow	related	data	to	be	stored
together.	When	the	document	is	read	from	disk,	both	the	primary	and	the	related
information	are	read	without	the	need	for	a	join	operation.	Figure	7.3	shows	embedded
documents	within	a	document.



Figure	7.3	Embedded	documents	are	documents	within	a	document.	Embedding	is	used
to	efficiently	store	and	retrieve	data	that	is	frequently	used	together.

Embedded	documents	are	documents	within	documents.	They	are	used	to	improve
database	performance	by	storing	together	data	that	is	frequently	used	together.

Schemaless
Document	databases	do	not	require	data	modelers	to	formally	specify	the	structure	of
documents.	A	formal	structure	specification	is	known	as	a	schema.	Relational	databases
do	require	schemas.	They	typically	include	specifications	for

•	Tables

•	Columns

•	Primary	keys

•	Foreign	keys

•	Constraints

These	all	help	the	relational	database	management	system	manage	the	data	in	the
database.	It	also	helps	the	database	catch	errors	when	data	is	added	to	the	database.	If,	for
example,	someone	tries	to	enter	a	string	when	a	number	is	expected,	the	database
management	system	will	issue	a	warning.

Constraints	are	rules	that	describe	what	kind	of	data	or	relation	between	data	is	allowed.



You	could	indicate	in	a	schema	that	a	column	must	always	have	a	value	and	can	never	be
empty.

	Tip

An	empty	column	in	a	relational	database	is	referred	to	as	having	a	NULL	value.

Document	databases	do	not	require	this	specification	step	prior	to	adding	documents	to	a
collection.	For	this	reason,	document	databases	are	called	schemaless.	Schemaless
databases	have	two	important	differences	compared	with	relational	databases:

•	More	flexibility

•	More	responsibility

Schemaless	Means	More	Flexibility

In	a	schemaless	database,	developers	and	applications	can	add	new	key-value	pairs	to
documents	at	any	time.	Once	a	collection	is	created,	you	can	add	documents	to	it.	There	is
no	need	to	tell	the	document	database	about	the	structure	of	the	document.	In	fact,	the
structures	will	often	vary	between	documents	in	a	collection.	The	two	documents
Click	here	to	view	code	image

{		‘employeeName’	:		‘Janice	Collins’,

			‘department’	:	‘Software	engineering’

			‘startDate’	:	‘10-Feb-2010’,

			‘pastProjectCodes’	:	[	189847,	187731,	176533,	154812]

}

and
Click	here	to	view	code	image

{		‘employeeName’	:		‘Robert	Lucas,

			‘department’	:	‘Finance’

			‘startDate’	:	‘21-May-2009’,

			‘certifications’	:	‘CPA’

}

both	describe	employees,	but	the	first	is	tailored	to	someone	in	the	software	engineering
department	and	the	second	is	designed	for	someone	in	the	finance	department.

These	and	variations	on	these	documents	are	simply	added	to	the	collection	as	needed.
There	is	no	need	to	specify	that	some	documents	will	have	'pastProjectCodes'	and
some	will	have	'certifications'	keys.	There	is	also	no	need	to	indicate	that	some
values	will	be	strings	while	others	will	be	arrays.

	Note

The	document	database	management	system	infers	the	information	it	needs	from
the	structure	of	the	documents	in	the	collection,	not	from	a	separate	structure
specification.



Schemaless	Means	More	Responsibility

Schemaless	databases	are	something	of	a	double-edged	sword.	On	the	one	hand,	the
flexibility	of	working	without	a	schema	makes	it	easy	to	accommodate	differences	in
document	structures.	On	the	other	hand,	the	document	database	management	cannot
enforce	rules	based	on	structure.	Because	there	is	no	way	to	indicate	that	a	key-value	pair
should	always	exist	in	a	document,	the	document	database	management	system	will	not
check	for	it.

If	the	database	management	system	does	not	enforce	rules	about	data,	what	will?	The
answer	is	your	application	code.

	Tip

An	exception	to	this	rule	is	the	use	of	unique	identifiers.	If	you	specify	a	document
without	a	unique	identifier,	the	document	database	will	probably	add	one	for	you.
Check	your	document	database’s	documentation	for	details.

Some	of	your	application	code	should	be	dedicated	to	verifying	rules	about	the	structure
of	data.	If	you	always	require	a	name	in	an	employee	document,	then	your	code	that	adds
employees	should	check	for	that	when	new	employees	are	added.	This	is	a	simple	case	of
a	data	validation	rule,	but	not	all	are	so	simple.

Over	time,	the	keys	and	values	you	track	in	documents	in	a	collection	may	change.	You
may	have	started	collecting	information	about	employees’	certifications	last	year.
Employees	added	since	last	year	may	all	have	a	certification	key.	Employees	whose
documents	have	been	updated	may	have	a	certification	key	and	value	as	well.	The
remaining	employee	documents	do	not	have	a	certification	key.

In	this	situation,	it	is	your	code	that	uses	and	processes	employee	documents,	not	the	code
that	adds	employee	documents,	which	must	check	for	valid	data	structures	or	at	least
handle	a	case	where	an	expected	key	does	not	exist	(see	Figure	7.4).

Figure	7.4	Data	validation	code	and	error-handling	code	is	used	throughout
applications	to	compensate	for	the	lack	of	automatic,	schema-based	validation	checks.



Schemaless	databases	do	not	require	formal	structure	specifications.	Necessary
information	is	inferred	from	documents	within	collections.	This	allows	for	more	flexibility
than	in	databases	that	require	schemas,	but	there	is	less	opportunity	to	automatically
enforce	data	and	document	integrity	rules.

Polymorphic	Schema
Another	term	you	might	encounter	about	document	databases	is	polymorphic	schema.	It
might	seem	odd	that	a	database	can	be	without	a	schema	(schemaless)	while	at	the	same
time	having	many	schemas	(polymorphic	schema).	It	is	actually	quite	logical	when	you
consider	the	distinction	between	a	formal	specification	of	a	structure	and	the	structure	that
is	implied	by	the	documents	in	a	collection.

	Tip

Again,	document	databases	are	schemaless	because	you	do	not	have	to	specify	a
formal	definition	of	the	structure	of	documents,	keys,	and	values.

A	document	database	is	polymorphic	because	the	documents	that	exist	in	collections	can
have	many	different	forms	(see	Figure	7.5).

Figure	7.5	Schemaless	means	there	is	no	formal	definition	of	structure.	Polymorphic
schema	means	there	are	many	document	structures	implied	in	the	set	of	documents	that

occur	in	a	collection.



Types	of	Partitions
Partitioning	is	a	word	that	gets	a	lot	of	use	in	the	NoSQL	world—perhaps	too	much.

Chapter	2,	“Variety	of	NoSQL	Databases,”	introduced	the	CAP	theorem,	which	you	might
remember	describes	limits	on	consistency,	availability,	and	partition	tolerance.	In	this
context,	the	word	partition	refers	to	partitioning	or	separating	a	network	into	separate
parts	that	are	unreachable	from	each	other.

This	is	an	important	concept	for	all	distributed	databases,	but	it	is	not	the	focus	of
partitioning	with	respect	to	document	databases.	Instead,	when	people	use	the	term
partitioning	when	discussing	document	databases,	they	are	probably	referring	to	splitting
a	document	database	and	distributing	different	parts	of	the	database	to	different	servers.

There	are	two	types	of	database	partitioning:	vertical	partitioning	and	horizontal
partitioning.

It	is	important	to	distinguish	the	meaning	of	the	term	partitioning	based	on	the	context	in
which	it	is	used	(see	Figure	7.6).

Figure	7.6	The	term	partitioning	has	multiple	meanings	that	are	distinguished	by	the
context,	such	as	in	the	context	of	networks	versus	in	the	context	of	databases.



Vertical	Partitioning
Vertical	partitioning	is	a		technique	for	improving	database	performance	by	separating
columns	of	a	relational	table	into	multiple	separate	tables	(see	Figure	7.7).

Figure	7.7	Vertical	partitioning	is	typically	used	with	relational	tables	because	they
have	a	fixed	structure.

This	technique	is	particularly	useful	when	you	have	some	columns	that	are	frequently
accessed	and	others	that	are	not.	Consider	a	table	with	images	and	attributes	about	those
images,	such	as	name,	location,	date	image	created,	and	so	on.	The	table	of	images	may	be
used	in	an	application	that	allows	users	to	look	up	images	by	characteristics.

Someone	might	want	pictures	from	Paris,	France,	taken	within	the	last	three	months.	The
database	management	system	would	probably	use	an	index	to	find	the	rows	of	the	table
that	meet	the	search	criteria.	If	the	application	only	lists	the	attributes	in	the	resultset	and
waits	for	a	user	to	pick	a	particular	record	before	showing	the	image,	then	there	is	no
reason	to	retrieve	the	image	from	the	database	along	with	the	attributes.

If	the	image	attributes	and	the	image	object	were	stored	in	the	same	table,	reading	the
attributes	could	also	force	a	reading	of	the	image	because	of	layout	of	data	on	the	disk.	By
separating	the	image	table	into	a	table	of	image	attributes	and	the	image	object,	the
database	can	more	efficiently	retrieve	data	for	the	application	(see	Figure	7.8).



Figure	7.8	Separating	columns	into	separate	tables	can	improve	the	efficiency	of	reads
because	data	that	is	not	needed	(for	example,	an	image	object)	is	not	retrieved	along

with	data	that	is	likely	needed	(for	example,	image	attributes).

Vertical	partitioning		is	more	frequently	used	with	relational	database	management
systems	than	with	document	management	systems.	There	are	methods	for	implementing
vertical	partitioning	in	nonrelational	databases,	but	horizontal	partitioning,	or	sharding,	is
more	common.

	Note

For	an	example	of	sharding,	see	J.	Kaur,	et	al.	“A	New	and	Improved	Vertical
Partitioning	Scheme	for	Non-Relational	Databases	Using	Greedy	Method,”
International	Journal	of	Advanced	Research	in	Computer	and	Communication
Engineering	2,	no.	8	(August	2013).



Horizontal	Partitioning	or	Sharding
Horizontal	partitioning	is	the	process	of	dividing	a	database	by	documents	in	a	document
database	or	by	rows	in	a	relational	database.	These	parts	of	the	database,	known	as	shards,
are	stored	on	separate	servers.	(Horizontal	partitioning	of	a	document	database	is	often
referred	to	as	sharding.)	A	single	shard	may	be	stored	on	multiple	servers	when	a	database
is	configured	to	replicate	data.	If	data	is	replicated	or	not,	a	server	within	a	document
database	cluster	will	have	only	one	shard	per	server	(see	Figure	7.9).

Figure	7.9	Horizontal	sharding	splits	a	database	by	document	or	row	and	distributes
sections	of	the	database,	known	as	shards,	to	different	servers.	When	a	cluster
implements	replication,	a	single	shard	will	be	available	on	multiple	servers.

Sharding	offers	a	number	of	advantages	when	implementing	large	document	databases.	A
large	number	of	users	or	other	heavy	loads	on	a	single	server	can	tax	the	available	CPU,
memory,	and	bandwidth.	One	way	to	address	this	is	to	deploy	a	larger	server	with	more
CPU	cores,	more	memory,	and	more	bandwidth.

This	solution,	referred	to	as	vertical	scaling,	can	require	significantly	more	money	and
time	than	sharding.	Additional	servers	can	be	added	to	a	cluster	as	demand	for	a	document
database	grows.	Existing	servers	are	not	replaced	but	continue	to	be	used.

To	implement	sharding,	database	designers	have	to	select	a	shard	key	and	a	partitioning
method.	These	topics	are	discussed	in	the	next	sections.

Separating	Data	with	Shard	Keys

A	shard	key	is	one	or	more	keys	or	fields	that	exist	in	all	documents	in	a	collection	that	is
used	to	separate	documents.	A	shard	key	could	be	virtually	any	atomic	field	in	a
document:

•	Unique	document	ID

•	Name

•	Date,	such	as	creation	date

•	Category	or	type



•	Geographical	region

	Note

In	spite	of	the	discussion	that	document	databases	are	schemaless,	some	elements	of
document	databases	parallel	the	schema	of	relational	databases.	The	use	of	indexes
is	one	such	parallel.	Indexes	are	part	of	the	physical	data	model	of	a	relational
database,	which	means	there	is	a	data	structure	in	the	database	that	implements	the
index.	Indexes	are	part	of	the	schema	of	relational	databases.	Schemaless	databases,
such	as	document	databases,	can	have	schemalike	objects	such	as	indexes	as	well.
Indexes	help	improve	the	speed	of	read	operations	and	are	useful	when
implementing	sharding.	Because	all	documents	in	a	collection	need	to	be	placed
into	a	shard,	it	is	important	for	all	documents	to	have	the	shard	key.

The	shard	key	specifies	the	values	to	use	when	grouping	documents	into	different	shards.
The	partitioning	algorithm	uses	the	shard	key	as	input	and	determines	the	appropriate
shard	for	that	key	(see	Figure	7.10).

Figure	7.10	Shard	keys	are	input	to	the	partitioning	algorithm	that	outputs	a	shard.

Distributing	Data	with	a	Partitioning	Algorithm

There	are	a	number	of	different	ways	to	horizontally	partition	data,	including

•	Range

•	Hash

•	List

A	range	partition	is	useful	when	you	have	an	ordered	set	of	values	for	shard	keys,	such	as
dates	and	numbers.	For	example,	if	all	documents	in	a	collection	had	a	creation	date	field,
it	could	be	used	to	partition	documents	into	monthly	shards.	Documents	created	between
January	1,	2015,	and	January	31,	2015,	would	go	into	one	shard,	whereas	documents
created	between	February	1,	2015,	and	February	28,	2015,	would	go	into	another.

	Note

Business	intelligence	and	other	analytic	systems	that	produce	time-based	reports—
for	example,	a	report	comparing	this	month’s	sales	with	last	month’s	sales—often
use	time-based	range	partitioning.



A	hash	partition	uses	a	hash	function	to	determine	where	to	place	a	document.	Hash
functions	are	designed	to	generate	values	evenly	across	the	range	of	values	of	the	hash
function.	If,	for	example,	you	have	an	eight-server	cluster,	and	your	hash	function
generated	values	between	1	and	8,	you	should	have	roughly	equal	numbers	of	documents
placed	on	all	eight	servers.

List-based	partitioning	uses	a	set	of	values	to	determine	where	to	place	data.	You	can
imagine	a	product	database	with	several	types,	including	electronics,	appliances,
household	goods,	books,	and	clothes.	These	product	types	could	be	used	as	a	shard	key	to
allocate	documents	across	five	different	servers.

If	you	needed	even	more	partitions,	you	could	combine	product	types	with	some	other
field,	such	as	sales	region,	which	could	have	values	such	as	northeast,	southeast,	midwest,
northwest,	and	southwest.	Each	of	the	five	product	types	could	be	used	with	each	of	the
five	sales	regions	to	create	25	possible	shards,	including

•	Electronic—northeast

•	Electronics—southeast

•	Electronics—midwest

•	Electronics—southwest

•	Electronics—northwest

•	Appliances—northeast

•	Appliances—southeast

•	Appliances—midwest

•	And	so	forth…

Sharding	is	a	fundamental	process	that	enables	many	document	databases	to	scale	to	meet
demands	of	applications	with	a	large	number	of	users	or	other	heavy	loads.	Vertical
partitioning	is	possible	with	document	databases.	Horizontal	partitioning,	or	sharding,	is
widely	used.

Developers	using	document	databases	can	choose	keys	to	use	for	sharding.	However,	the
developers	of	document	database	management	systems	are	the	ones	who	choose	the
sharding	algorithms	provided	in	the	database.

The	final	section	of	this	chapter	introduces	a	few	terms	that	do	not	fit	well	into	any	of	the
previous	sections,	but	are	important	to	understand	before	moving	on	to	the	document
database	modeling	discussion	in	Chapter	8,	“Designing	for	Document	Databases.”

Data	Modeling	and	Query	Processing
Document	databases	are	flexible.	They	can	accommodate	a	wide	range	of	document	types
and	variations	within	document	collections.	If	you	were	to	sit	down	right	now	and	start
designing	a	document	database,	you	would	probably	start	with	a	list	of	queries	you	would
like	to	run	against	your	database.	(At	least	that	is	one	good	way	to	start.)	If	you	were
designing	a	relational	database,	you	would	probably	start	by	thinking	about	the	entities
you	have	to	model	and	their	relationship	to	each	other.



After	you	have	a	basic	understanding	of	the	entities	and	their	relations,	you	would
probably	engage	in	an	exercise	known	as	normalization.	If	you	experience	performance
problems	with	your	database,	you	might	engage	in	a	process	known	as	denormalization.
This	process	would	be	guided,	to	some	degree,	about	what	you	learn	about	poorly
performing	queries	by	reviewing	the	output	of	the	query	processor.

You	should	be	familiar	with	normalization	and	denormalization	because	you	will	likely
encounter	these	terms	when	modeling	document	databases.	The	processes	are	less	formal
with	document	databases	than	relational	databases	so	the	explanations	here	will	be	much
simpler	than	you	would	find	in	a	book	on	relational	databases.	Document	databases	also
implement	query	processors	to	attempt	to	find	the	optimal	sequence	of	steps	to	retrieve
data	specified	by	a	query.

Normalization
Database	normalization	is	the	process	of	organizing	data	into	tables	in	such	a	way	as	to
reduce	the	potential	for	data	anomalies.	An	anomaly	is	an	inconsistency	in	the	data.	For
example,	consider	if	your	database	had	a	table	like	the	one	shown	in	Table	7.1.	A	user
queries	the	database	for	the	address	of	a	customer	named	Janice	Washington.	What
address(es)	should	be	returned?

Table	7.1	User	Address	Queries

The	query	could	return	873	Morton	Dr,	Houston,	TX;	187	River	St,	Seattle,	WA;	or	both.
It	is	possible	that	Janice	Washington	resides	at	both	addresses,	but	it	is	also	possible	that
one	is	a	current	address	and	one	is	a	prior	address.	There	is	no	indication	in	Table	7.1.

Normalization	reduces	the	amount	of	redundant	data	in	the	database.	Rather	than	repeat
customer	names	and	addresses	with	each	order,	those	attributes	would	be	placed	in	their
own	tables.	Additional	attributes	could	be	associated	with	both	customers	and	addresses.
In	particular,	the	address	table	could	have	an	active	address	indicator	to	identify	which	of
multiple	addresses	are	current.

There	are	several	rules	for	normalizing	databases.	Databases	are	said	to	be	in	different
normal	form	depending	on	how	many	of	the	normalization	rules	are	followed.	It	is
common	for	data	modelers	to	design	to	something	called	Third	Normal	Form,	which
means	the	first	three	rules	of	normalization	are	followed.1



1.	For	a	basic	introduction	to	normalization,	see	William	Kent	“A	Simple	Guide	to	Five	Normal	Forms	in	Relational
Database	Theory.”	September,	1982.	http://www.bkent.net/Doc/simple5.htm

Normalization	is	sometimes	used	to	describe	the	way	you	design	documents.	When
designers	use	multiple	collections	to	store	related	data,	it	is	considered	normalized.

Normalized	documents	imply	that	you	will	have	references	to	other	documents	so	you	can
look	up	additional	information.	For	example,	a	server	log	document	might	have	a	field
with	the	identifier	of	the	server	that	generates	log	event	data.	A	collection	of	server
documents	would	have	additional	information	about	each	server	so	it	does	not	have	to	be
repeated	in	each	log	event	document	(see	Figure	7.11).

Figure	7.11	Normalized	documents	reduce	redundant	data	by	referencing	a	single	copy
of	data	rather	than	repeating	it	in	each	document.

Denormalization
Normalization	helps	avoid	data	anomalies,	but	it	can	cause	performance	problems.	This	is
especially	true	if	you	have	to	look	up	data	in	two	or	more	large	tables.	This	process	is
called	joining,	and	it	is	a	basic	operation	in	relational	databases.	A	great	deal	of	effort	has
gone	into	developing	efficient	ways	to	join	data.	Database	administrators	and	data
modelers	can	spend	substantial	amounts	of	time	trying	to	improve	the	performance	of	join
operations.	It	does	not	always	lead	to	improvement.

Designing	databases	entails	trade-offs.	You	could	design	a	highly	normalized	database
with	no	redundant	data	but	suffer	poor	performance.	When	that	happens,	many	designers
turn	to	denormalization.

As	the	name	implies,	denormalization	undoes	normalization—specifically,	it	introduces
redundant	data.	You	might	wonder,	why	introduce	redundant	data?	It	can	cause	data

http://www.bkent.net/Doc/simple5.htm


anomalies	like	that	in	Table	7.1.	It	obviously	requires	more	storage	to	keep	redundant
copies	of	data.	The	reason	to	risk	data	anomalies	and	use	additional	storage	is	that
denormalization	can	significantly	improve	performance.

When	data	is	denormalized,	there	is	no	need	to	read	data	from	multiple	tables	and	perform
joins	on	the	data	from	the	multiple	collections.	Instead,	data	is	retrieved	from	a	single
collection	or	document.	This	can	be	much	faster	than	retrieving	from	multiple	collections,
especially	when	indexes	are	available.

Query	Processor
Getting	data	from	a	document	database	is	more	complicated	than	getting	it	from	key-value
databases.	Remember,	if	you	have	a	key,	you	can	retrieve	an	associated	value	from	a	key-
value	database.

Document	databases	offer	more	options	for	retrieving	data.	For	example,	you	could
retrieve	documents	created	before	a	particular	date,	or	documents	that	are	a	specific	type,
documents	that	contain	the	string	“long	distance	running”	in	a	product	description,	or
some	combination	of	all	of	these.

The	query	processor	is	an	important	part	of	a	database	management	system.	It	takes	as
input	queries	and	data	about	the	documents	and	collections	in	the	database	and	produces	a
sequence	of	operations	that	retrieve	the	selected	data.

Key-value	databases	do	not	need	query	processors;	they	function	by	looking	up	values	by
keys.	There	is	no	need	to	analyze	logical	statements	such	as	the	following:
Click	here	to	view	code	image

(createDate	>	‘1-Jan-2015’)	AND	(productType	=

		‘electronics’)

When	there	can	be	multiple	conditions	on	selecting	documents,	the	query	processor	must
make	decisions,	such	as	which	criteria	it	should	apply	first.	Should	it	find	all	documents
with	a	creation	date	greater	than	January	1,	2015,	or	should	it	retrieve	all	documents	about
electronics	products?

If	there	are	fewer	documents	with	a	creation	date	after	January	1,	2015,	than	there	are
documents	with	an	electronics	type,	then	it	would	make	sense	to	retrieve	documents	based
on	creation	date	because	it	will	return	fewer	documents	than	the	other	criteria.	This	means
the	second	criterion	is	applied	to	a	smaller	number	of	documents.

This	is	a	simple	example	of	the	kinds	of	options	a	query	processor	evaluates	as	it	builds	its
plan	to	retrieve	data.



Summary
Document	databases	have	some	terminology	specific	to	their	type	of	NoSQL	database,	but
they	also	share	vocabulary	with	other	NoSQL	databases	as	well	as	relational	databases.
Documents	parallel	rows	in	relational	tables,	whereas	collections	are	comparable	to	tables
in	relational	tables.	Partitioning,	especially	sharding,	is	used	in	document	databases	to	split
large	databases	over	multiple	servers	to	improve	performance.	Normalization,
denormalization,	and	query	processors	also	play	crucial	roles	in	the	overall	performance	of
document	databases.

Chapter	8	delves	into	design	issues	particular	to	document	databases.

Review	Questions
1.	Describe	how	documents	are	analogous	to	rows	in	relational	databases.

2.	Describe	how	collections	are	analogous	to	tables	in	relational	databases.

3.	Define	a	schema.

4.	Why	are	document	databases	considered	schemaless?

5.	Why	are	document	databases	considered	polymorphic?

6.	How	does	vertical	partitioning	differ	from	horizontal	partitioning,	or	sharding?

7.	What	is	a	shard	key?

8.	What	is	the	purpose	of	the	partitioning	algorithm	in	sharding?

9.	What	is	normalization?

10.	Why	would	you	want	to	denormalize	collections	in	a	document	database?
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8.	Designing	for	Document	Databases

“Making	good	decisions	is	a	crucial	skill	at	every	level.”

—PETER	DRUCKER
AUTHOR	AND	MANAGEMENT	CONSULTANT

Topics	Covered	In	This	Chapter

Normalization,	Denormalization,	and	the	Search	for	Proper	Balance

Planning	for	Mutable	Documents

The	Goldilocks	Zone	of	Indexes

Modeling	Common	Relations

Case	Study:	Customer	Manifests

Designers	have	many	options	when	it	comes	to	designing	document	databases.	The
flexible	structure	of	JSON	and	XML	documents	is	a	key	factor	in	this—flexibility.	If	a
designer	wants	to	embed	lists	within	lists	within	a	document,	she	can.	If	another	designer
wants	to	create	separate	collections	to	separate	types	of	data,	then	he	can.	This	freedom
should	not	be	construed	to	mean	all	data	models	are	equally	good—they	are	not.

The	goal	of	this	chapter	is	to	help	you	understand	ways	of	assessing	document	database
models	and	choosing	the	best	techniques	for	your	needs.

Relational	database	designers	can	reference	rules	of	normalization	to	help	them	assess
data	models.	A	typical	relational	data	model	is	designed	to	avoid	data	anomalies	when
inserts,	updates,	or	deletes	are	performed.	For	example,	if	a	database	maintained	multiple
copies	of	a	customer’s	current	address,	it	is	possible	that	one	or	more	of	those	addresses
are	updated	but	others	are	not.	In	that	case,	which	of	the	current	databases	is	actually	the
current	one?

In	another	case,	if	you	do	not	store	customer	information	separately	from	the	customer’s
orders,	then	all	records	of	the	customer	could	be	deleted	if	all	her	orders	are	deleted.	The
rules	for	avoiding	these	anomalies	are	logical	and	easy	to	learn	from	example.

	Note

Document	database	modelers	depend	more	on	heuristics,	or	rules	of	thumb,	when
designing	databases.	The	rules	are	not	formal,	logical	rules	like	normalization	rules.
You	cannot,	for	example,	tell	by	looking	at	a	description	of	a	document	database
model	whether	or	not	it	will	perform	efficiently.	You	must	consider	how	users	will
query	the	database,	how	much	inserting	will	be	done,	and	how	often	and	in	what
ways	documents	will	be	updated.

In	this	chapter,	you	learn	about	normalization	and	denormalization	and	how	it	applies	to
document	database	modeling.	You	also	learn	about	the	impact	of	updating	documents,
especially	when	the	size	of	documents	changes.	Indexes	can	significantly	improve	query
response	times,	but	this	must	be	balanced	against	the	extra	time	that	is	needed	to	update



indexes	when	documents	are	inserted	or	updated.	Several	design	patterns	have	emerged	in
the	practice	of	document	database	design.	These	are	introduced	and	discussed	toward	the
end	of	the	chapter.

This	chapter	concludes	with	a	case	study	covering	the	use	of	a	document	database	for
tracking	the	contents	of	shipments	made	by	the	fictitious	transportation	company
introduced	in	earlier	chapters.

Normalization,	Denormalization,	and	the	Search	for	Proper	Balance
Unless	you	have	worked	with	relational	databases,	you	probably	would	not	guess	that
normalization	has	to	do	with	eliminating	redundancy.	Redundant	data	is	considered	a	bad,
or	at	least	undesirable,	thing	in	the	theory	of	relational	database	design.	Redundant	data	is
the	root	of	anomalies,	such	as	two	current	addresses	when	only	one	is	allowed.

In	theory,	a	data	modeler	will	want	to	eliminate	redundancy	to	minimize	the	chance	of
introducing	anomalies.	As	Albert	Einstein	observed,	“In	theory,	theory	and	practice	are	the
same.	In	practice,	they	are	not.”	There	are	times	where	performance	in	relational	databases
is	poor	because	of	the	normalized	model.	Consider	the	data	model	shown	in	Figure	8.1.

Figure	8.1	Normalized	databases	have	separate	tables	for	entities.	Data	about	entities
is	isolated	and	redundant	data	is	avoided.

Figure	8.1	depicts	a	simple	normalized	model	of	customers,	orders,	and	products.	Even
this	simple	model	requires	eight	tables	to	capture	a	basic	set	of	data	about	the	entities.
These	include	the	following:

•	Customers	table	with	fields	such	as	name,	customer	ID,	and	so	on

•	Loyalty	Program	Members,	with	fields	such	as	date	joined,	amount	spent	since
joining,	and	customer	ID

•	Customer	Addresses,	with	fields	such	as	street,	city,	state,	start	date,	end	date,	and



customer	ID

•	Customer	Credit	Histories	report	with	fields	such	as	credit	category,	start	date,	end
date,	and	customer	ID

•	Orders,	with	fields	such	as	order	ID,	customer	ID,	ship	date,	and	so	on

•	Order	Items,	with	fields	such	as	order	ID,	order	item	ID,	product	ID,	quantity,	cost,
and	so	on

•	Products,	with	fields	such	as	product	ID,	product	name,	product	description,	and	so
on

•	Daily	Inventory	Levels,	with	fields	such	as	product	ID,	date,	quantity	available,	and
so	on

•	Promotions,	with	fields	such	as	promotion	ID,	promotion	description,	start	date,	and
so	on

•	Promotion	to	Customers,	with	fields	such	as	promotion	ID	and	customer	ID

Each	box	in	Figure	8.1	represents	an	entity	in	the	data	model.	The	lines	between	entities
indicate	the	kind	of	relationship	between	the	entities.

One-to-Many	Relations
When	a	single	line	ends	at	an	entity,	then	one	of	those	rows	participates	in	a	single
relation.	When	there	are	three	branching	lines	ending	at	an	entity,	then	there	are	one	or
more	rows	in	that	relationship.	For	example,	the	relation	between	Customer	and	Orders
indicates	that	a	customer	can	have	one	or	more	orders,	but	there	is	only	one	customer
associated	with	each	order.

This	kind	of	relation	is	called	a	one-to-many	relationship.

Many-to-Many	Relations
Now	consider	the	relation	between	Customers	and	Promotions.	There	are	branching	lines
at	both	ends	of	the	relationship.	This	indicates	that	customers	can	have	many	promotions
associated	with	them.	It	also	means	that	promotions	can	have	many	customers	related	to
them.	For	example,	a	customer	might	receive	promotions	that	are	targeted	to	all	customers
in	their	geographic	area	as	well	as	promotions	targeted	to	the	types	of	products	the
customer	buys	most	frequently.

Similarly,	a	promotion	will	likely	target	many	customers.	The	sales	and	marketing	team
might	create	promotions	designed	to	improve	the	sale	of	headphones	by	targeting	all
customers	who	bought	new	phones	or	tablets	in	the	past	three	months.	The	team	might
have	a	special	offer	on	Bluetooth	speakers	for	anyone	who	bought	a	laptop	or	desktop
computer	in	the	last	year.	Again,	there	will	be	many	customers	in	this	category	(at	least	the
sales	team	hopes	so),	so	there	will	be	many	customers	associated	with	this	promotion.

These	types	of	relations	are	known	as	many-to-many	relationships.



The	Need	for	Joins
Developers	of	applications	using	relational	databases	often	have	to	work	with	data	from
multiple	tables.	Consider	the	Order	Items	and	Products	entities	shown	in	Figure	8.2.

Figure	8.2	Products	and	Order	Items	are	in	a	one-to-many	relationship.	To	retrieve
Product	data	about	an	Order	item,	they	need	to	share	an	attribute	that	serves	as	a

common	reference.	In	this	case,	Product_ID	is	the	shared	attribute.

If	you	were	designing	a	report	that	lists	an	order	with	all	the	items	on	the	order,	you	would
probably	need	to	include	attributes	such	as	the	name	of	the	product,	the	cost	per	unit,	and
the	quantity.	The	name	of	the	product	is	in	the	Product	table,	and	the	other	two	attributes
are	in	the	Order	Items	table	(see	Figure	8.3).

Figure	8.3	To	be	joined,	tables	must	share	a	common	value	known	as	a	foreign	key.



	Note

If	you	are	familiar	with	the	difference	in	logical	and	physical	data	models,	you	will
notice	a	mix	of	terminology.	Figures	8.1	and	8.2	depict	logical	models,	and	parts	of
these	models	are	referred	to	as	entities	and	attributes.	If	you	were	to	write	a	report
using	the	database,	you	would	work	with	an	implementation	of	the	physical	model.

For	physical	models,	the	terms	tables	and	columns	are	used	to	refer	to	the	same
structures	that	are	called	entities	and	attributes	in	the	logical	data	model.	There	are
differences	between	entities	and	tables;	for	example,	tables	have	locations	on	disks
or	in	other	data	structures	called	table	spaces.	Entities	do	not	have	such	properties.

For	the	purpose	of	this	chapter,	entities	should	be	considered	synonymous	with
tables	and	attributes	should	be	considered	synonymous	with	columns.

In	relational	databases,	modelers	often	start	with	designs	like	the	one	you	saw	earlier	in
Figure	8.1.	Normalized	models	such	as	this	minimize	redundant	data	and	avoid	the
potential	for	data	anomalies.	Document	database	designers,	however,	often	try	to	store
related	data	together	in	the	same	document.	This	would	be	equivalent	to	storing	related
data	in	one	table	of	a	relational	database.	You	might	wonder	why	data	modelers	choose
different	approaches	to	their	design.	It	has	to	do	with	the	trade-offs	between	performance
and	potential	data	anomalies.

To	understand	why	normalizing	data	models	can	adversely	affect	performance,	let’s	look
at	an	example	with	multiple	joins.

Executing	Joins:	The	Heavy	Lifting	of	Relational	Databases
Imagine	you	are	an	analyst	and	you	have	decided	to	develop	a	promotion	for	customers
who	have	bought	electronic	accessories	in	the	past	12	months.	The	first	thing	you	want	to
do	is	understand	who	those	customers	are,	where	they	live,	and	how	often	they	buy	from
your	business.	You	can	do	this	by	querying	the	Customer	table.

You	do	not	want	all	customers,	though—just	those	who	have	bought	electronic
accessories.	That	information	is	not	stored	in	the	Customer	table,	so	you	look	to	the
Orders	table.	The	Orders	table	has	some	information	you	need,	such	as	the	date	of
purchase.	This	enables	you	to	filter	for	only	orders	made	in	the	past	12	months.

The	Orders	table,	however,	does	not	have	information	on	electronic	accessories,	so	you
look	to	the	Order	Items	table.	This	does	not	have	the	information	you	are	looking	for,	so
you	turn	to	the	Products	table.	Here,	you	find	the	information	you	need.	The	Products
table	has	a	column	called	Product_Category,	which	indicates	if	a	product	is	an	electronic
accessory	or	some	other	product	category.	You	can	use	this	column	to	filter	for	electronic
accessory	items.

At	this	point,	you	have	all	the	data	you	need.	The	Customer	table	has	information	about
customers,	such	as	their	names	and	customer	IDs.	The	Orders	table	has	order	date
information,	so	you	can	select	only	orders	from	the	past	12	months.	It	also	allows	you	to
join	to	the	Order_Items	table,	which	can	tell	you	which	orders	contained	products	in	the
electronic	accessories	category.	The	category	information	is	not	directly	available	in	the



Order_Items	table,	but	you	can	join	the	Order_Items	table	to	the	Products	table	to	get	the
product	category	(see	Figure	8.4).

Figure	8.4	Analyzing	customers	who	bought	a	particular	type	of	product	requires	three
joins	between	four	tables.

To	get	a	sense	of	how	much	work	is	involved	in	joining	tables,	let’s	consider	pseudocode
for	printing	the	name	of	customers	who	have	purchased	electronic	accessories	in	the	last
12	months:
Click	here	to	view	code	image

for	cust	in	get_customers():

			for	order	in	get_customer_orders(cust.customer_id):

						if	today()	-	365	<=	order.order_date:

									for	order_item	in	get_order_items

											(order.order_id):

										if	‘electronic	accessories’	=

														get_product_category(order_item.product_id):

																	customer_set	=	add_item

																			(customer_set,cust.name);

for	customer_name	in	customer_set:

			print	customer_name;

In	this	example,	the	functions	get_customers,	get_customer_orders,	and
get_order_items	return	a	list	of	rows.	In	the	case	of	get_customers(),	all
customers	are	returned.

Each	time	get_customer_orders	is	called,	it	is	given	a	customer_id.	Only
orders	with	that	customer	ID	are	returned.	Each	time	get_order_items	is	called,	it	is
given	an	order_id.	Only	order	items	with	that	order_id	are	returned.

The	dot	notation	indicates	a	field	in	the	row	returned.	For	example,
order.order_date	returns	the	order_date	on	a	particular	order.	Similarly,
cust.name	returns	the	name	of	the	customer	currently	referenced	by	the	cust	variable.



Executing	Joins	Example

Now	to	really	see	how	much	work	is	involved,	let’s	walk	through	an	example.	Let’s
assume	there	are	10,000	customers	in	the	database.	The	first	for	loop	will	execute	10,000
times.	Each	time	it	executes,	it	will	look	up	all	orders	for	the	customer.	If	each	of	the
10,000	customers	has,	on	average,	10	orders,	then	the	for	order	loop	will	execute
100,000	times.	Each	time	it	executes,	it	will	check	the	order	date.

Let’s	say	there	are	20,000	orders	that	have	been	placed	in	the	last	year.	The	for
order_item	loop	will	execute	20,000	times.	It	will	perform	a	check	and	add	a	customer
name	to	a	set	of	customer	names	if	at	least	one	of	the	order	items	was	an	electronic
accessory.

Looping	through	rows	of	tables	and	looking	for	matches	is	one—rather	inefficient—way
of	performing	joins.	The	performance	of	this	join	could	be	improved.	For	example,
indexes	could	be	used	to	more	quickly	find	all	orders	placed	within	the	last	year.	Similarly,
indexes	could	be	used	to	find	the	products	that	are	in	the	electronic	accessory	category.

Databases	implement	query	optimizers	to	come	up	with	the	best	way	of	fetching	and
joining	data.	In	addition	to	using	indexes	to	narrow	down	the	number	of	rows	they	have	to
work	with,	they	may	use	other	techniques	to	match	rows.	They	could,	for	example,
calculate	hash	values	of	foreign	keys	to	quickly	determine	which	rows	have	matching
values.

The	query	optimizer	may	also	sort	rows	first	and	then	merge	rows	from	multiple	tables
more	efficiently	than	if	the	rows	were	not	sorted.	These	techniques	can	work	well	in	some
cases	and	not	in	others.	Database	researchers	and	vendors	have	made	advances	in	query
optimization	techniques,	but	executing	joins	on	large	data	sets	can	still	be	time	consuming
and	resource	intensive.

What	Would	a	Document	Database	Modeler	Do?
Document	data	modelers	have	a	different	approach	to	data	modeling	than	most	relational
database	modelers.	Document	database	modelers	and	application	developers	are	probably
using	a	document	database	for	its	scalability,	its	flexibility,	or	both.	For	those	using
document	databases,	avoiding	data	anomalies	is	still	important,	but	they	are	willing	to
assume	more	responsibility	to	prevent	them	in	return	for	scalability	and	flexibility.

For	example,	if	there	are	redundant	copies	of	customer	addresses	in	the	database,	an
application	developer	could	implement	a	customer	address	update	function	that	updates	all
copies	of	an	address.	She	would	always	use	that	function	to	update	an	address	to	avoid
introducing	a	data	anomaly.	As	you	can	see,	developers	will	write	more	code	to	avoid
anomalies	in	a	document	database,	but	will	have	less	need	for	database	tuning	and	query
optimization	in	the	future.

So	how	do	document	data	modelers	and	application	developers	get	better	performance?
They	minimize	the	need	for	joins.	This	process	is	known	as	denormalization.	The	basic
idea	is	that	data	models	should	store	data	that	is	used	together	in	a	single	data	structure,
such	as	a	table	in	a	relational	database	or	a	document	in	a	document	database.



The	Joy	of	Denormalization

To	see	the	benefits	of	denormalization,	let’s	start	with	a	simple	example:	order	items	and
products.	Recall	that	the	Order_Items	entity	had	the	following	attributes:

•	order_item_ID

•	order_id

•	quantity

•	cost_per_unit

•	product_id

The	Products	entity	has	the	following	attributes:

•	product_ID

•	product_description

•	product_name

•	product_category

•	list_price

An	example	of	an	order	items	document	is
{

order_item_ID	:	834838,

			order_ID:	8827,

			quantity:	3,

			cost_per_unit:	8.50,

			product_ID:	3648

}

An	example	of	a	product	document	is
Click	here	to	view	code	image

{

			product_ID:	3648,

			product_description:	“1	package	laser	printer	paper.

					100%	recycled.”,

			product_name	:	“Eco-friendly	Printer	Paper”,

			product_category	:	“office	supplies”,

			list_price	:	9.00

}

If	you	implemented	two	collections	and	maintained	these	separate	documents,	then	you
would	have	to	query	the	order	items	collection	for	the	order	item	you	were	interested	in
and	then	query	the	products	document	for	information	about	the	product	with
product_ID	3648.	You	would	perform	two	lookups	to	get	the	information	you	need
about	one	order	item.

By	denormalizing	the	design,	you	could	create	a	collection	of	documents	that	would
require	only	one	lookup	operation.	A	denormalized	version	of	the	order	item	collection
would	have,	for	example:
Click	here	to	view	code	image



	{

order_item_ID	:	834838,

			order_ID:	8827,

			quantity:	3,

			cost_per_unit:	8.50,

			product	:

								{

													product_description:	“1	package	laser	printer

															paper.	100%	recycled.”,

													product_name	:	“Eco-friendly	Printer	Paper”,

													product_category	:	“office	supplies”,

													list_price	:	9.00

								}

}

	Note

Notice	that	you	no	longer	need	to	maintain	product_ID	fields.	Those	were	used
as	database	references	(or	foreign	keys	in	relational	database	parlance)	in	the
Order_Items	document.

Avoid	Overusing	Denormalization

Denormalization,	like	all	good	things,	can	be	used	in	excess.	The	goal	is	to	keep	data	that
is	frequently	used	together	in	the	document.	This	allows	the	document	database	to
minimize	the	number	of	times	it	must	read	from	persistent	storage,	a	relatively	slow
process	even	when	using	solid	state	devices	(SSDs).	At	the	same	time,	you	do	not	want	to
allow	extraneous	information	to	creep	into	your	denormalized	collection	(see	Figure	8.5).

Figure	8.5	Large	documents	can	lead	to	fewer	documents	retrieved	when	a	block	of
data	is	read	from	persistent	storage.	This	can	increase	the	total	number	of	data	block

reads	to	retrieve	a	collection	or	subset	of	collections.

To	answer	the	question	“how	much	denormalization	is	too	much?”	you	should	consider
the	queries	your	application	will	issue	to	the	document	database.

Let’s	assume	you	will	use	two	types	of	queries:	one	to	generate	invoices	and	packing	slips
for	customers	and	one	to	generate	management	reports.	Also,	assume	that	95%	of	the



queries	will	be	in	the	invoice	and	packing	slip	category	and	5%	of	the	queries	will	be	for
management	reports.

Invoices	and	packing	slips	should	include,	among	other	fields,	the	following:

•	order_ID

•	quantity

•	cost_per_unit

•	product_name

Management	reports	tend	to	aggregate	information	across	groups	or	categories.	For	these
reports,	queries	would	include	product	category	information	along	with	aggregate
measures,	such	as	total	number	sold.	A	management	report	showing	the	top	25	selling
products	would	likely	include	a	product	description.

Based	on	these	query	requirements,	you	might	decide	it	is	better	to	not	store	product
description,	list	price,	and	product	category	in	the	Order_Items	collection.	The	next
version	of	the	Order_Items	document	would	then	look	like	this:
Click	here	to	view	code	image

{

			order_item_ID	:	834838,

			order_ID:	8827,

			quantity:	3,

			cost_per_unit:	8.50,

			product_name	:	“Eco-friendly	Printer	Paper”

}

and	we	would	maintain	a	Products	collection	with	all	the	relevant	product	details;	for
example:
Click	here	to	view	code	image

{

					product_description:	“1	package	laser	printer	paper.

							100%	recycled.”,

					product_name	:	“Eco-friendly	Printer	Paper”,

					product_category	:	‘office	supplies’,

					list_price	:	9.00

			}

Product_name	is	stored	redundantly	in	both	the	Order_Items	collection	and	in	the
Products	collection.	This	model	uses	slightly	more	storage	but	allows	application
developers	to	retrieve	information	for	the	bulk	of	their	queries	in	a	single	lookup
operation.

Just	Say	No	to	Joins,	Sometimes

Never	say	never	when	designing	NoSQL	models.	There	are	best	practices,	guidelines,	and
design	patterns	that	will	help	you	build	scalable	and	maintainable	applications.	None	of
them	should	be	followed	dogmatically,	especially	in	the	presence	of	evidence	that
breaking	those	best	practices,	guidelines,	or	design	patterns	will	give	your	application
better	performance,	more	functionality,	or	greater	maintainability.



If	your	application	requirements	are	such	that	storing	related	information	in	two	or	more
collections	is	an	optimal	design	choice,	then	make	that	choice.	You	can	implement	joins	in
your	application	code.	A	worst-case	scenario	is	joining	two	large	collections	with	two	for
loops,	such	as
Click	here	to	view	code	image

for	doc1	in	collection1:

			for	doc2	in	collection2:

									<do	something	with	both	documents>

If	there	are	N	documents	in	collection1	and	M	documents	in	collection2,	this	statement
would	execute	N	×	M	times.	The	execution	time	for	such	loops	can	grow	quickly.	If	the
first	collection	has	100,000	documents	and	the	second	has	500,000,	then	the	statement
would	execute	50,000,000,000	(5	×	105)	times.	If	you	are	dealing	with	collections	this
large,	you	will	want	to	use	indexes,	filtering,	and,	in	some	cases,	sorting	to	optimize	your
join	by	reducing	the	number	of	overall	operations	performed	(see	Figure	8.6).

Figure	8.6	Simple	join	operations	that	compare	all	documents	in	one	collection	to	all
documents	in	another	collection	can	lead	to	poor	performance	on	large	collections.
Joins	such	as	this	can	be	improved	by	using	indexes,	filtering,	and,	in	some	cases,

sorting.

Normalization	is	a	useful	technique	for	reducing	the	chances	of	introducing	data
anomalies.	Denormalization	is	also	useful,	but	for	(obviously)	different	reasons.
Specifically,	denormalization	is	employed	to	improve	query	performance.	When	using
document	databases,	data	modelers	and	developers	often	employ	denormalization	as
readily	as	relational	data	modelers	employ	normalization.

	Tip

Remember	to	use	your	queries	as	a	guide	to	help	strike	the	right	balance	of
normalization	and	denormalization.	Too	much	of	either	can	adversely	affect
performance.	Too	much	normalization	leads	to	queries	requiring	joins.	Too	much
denormalization	leads	to	large	documents	that	will	likely	lead	to	unnecessary	data
reads	from	persistent	storage	and	other	adverse	effects.



There	is	another	less-obvious	consideration	to	keep	in	mind	when	designing	documents
and	collections:	the	potential	for	documents	to	change	size.	Documents	that	are	likely	to
change	size	are	known	as	mutable	documents.

Planning	for	Mutable	Documents
Things	change.	Things	have	been	changing	since	the	Big	Bang.	Things	will	most	likely
continue	to	change.	It	helps	to	keep	these	facts	in	mind	when	designing	databases.

Some	documents	will	change	frequently,	and	others	will	change	infrequently.	A	document
that	keeps	a	counter	of	the	number	of	times	a	web	page	is	viewed	could	change	hundreds
of	times	per	minute.	A	table	that	stores	server	event	log	data	may	only	change	when	there
is	an	error	in	the	load	process	that	copies	event	data	from	a	server	to	the	document
database.	When	designing	a	document	database,	consider	not	just	how	frequently	a
document	will	change,	but	also	how	the	size	of	the	document	may	change.

Incrementing	a	counter	or	correcting	an	error	in	a	field	will	not	significantly	change	the
size	of	a	document.	However,	consider	the	following	scenarios:

•	Trucks	in	a	company	fleet	transmit	location,	fuel	consumption,	and	other	operating
metrics	every	three	minutes	to	a	fleet	management	database.

•	The	price	of	every	stock	traded	on	every	exchange	in	the	world	is	checked	every
minute.	If	there	is	a	change	since	the	last	check,	the	new	price	information	is	written
to	the	database.

•	A	stream	of	social	networking	posts	is	streamed	to	an	application,	which	summarizes
the	number	of	posts;	overall	sentiment	of	the	post;	and	the	names	of	any	companies,
celebrities,	public	officials,	or	organizations.	The	database	is	continuously	updated
with	this	information.

Over	time,	the	number	of	data	sets	written	to	the	database	increases.	How	should	an
application	designer	structure	the	documents	to	handle	such	input	streams?	One	option	is
to	create	a	new	document	for	each	new	set	of	data.	In	the	case	of	the	trucks	transmitting
operational	data,	this	would	include	a	truck	ID,	time,	location	data,	and	so	on:
Click	here	to	view	code	image

{

			truck_id:	‘T87V12’,

			time:	‘08:10:00’,

			date	:		‘27-May-2015’,

			driver_name:	‘Jane	Washington’,

			fuel_consumption_rate:	‘14.8	mpg’,

			…

}

Each	truck	would	transmit	20	data	sets	per	hour,	or	assuming	a	10-hour	operations	day,
200	data	sets	per	day.	The	truck_id,	date,	and	driver_name	would	be	the	same	for
all	200	documents.	This	looks	like	an	obvious	candidate	for	embedding	a	document	with
the	operational	data	in	a	document	about	the	truck	used	on	a	particular	day.	This	could	be
done	with	an	array	holding	the	operational	data	documents:
Click	here	to	view	code	image



{

			truck_id:	‘T87V12’,

			date	:		‘27-May-2015’,

			driver_name:	‘Jane	Washington’,

			operational_data:

														[

																	{time	:	‘00:01’,

																		fuel_consumption_rate:	‘14.8	mpg’,

																		…},

																			{time	:	‘00:04’,

																		fuel_consumption_rate:	‘12.2	mpg’,

																		…},

																			{time	:	‘00:07’,

																		fuel_consumption_rate:	‘15.1	mpg’,

																		…},

															…]

}

The	document	would	start	with	a	single	operational	record	in	the	array,	and	at	the	end	of
the	10-hour	shift,	it	would	have	200	entries	in	the	array.

From	a	logical	modeling	perspective,	this	is	a	perfectly	fine	way	to	structure	the
document,	assuming	this	approach	fits	your	query	requirements.	From	a	physical	model
perspective,	however,	there	is	a	potential	performance	problem.

When	a	document	is	created,	the	database	management	system	allocates	a	certain	amount
of	space	for	the	document.	This	is	usually	enough	to	fit	the	document	as	it	exists	plus
some	room	for	growth.	If	the	document	grows	larger	than	the	size	allocated	for	it,	the
document	may	be	moved	to	another	location.	This	will	require	the	database	management
system	to	read	the	existing	document	and	copy	it	to	another	location,	and	free	the
previously	used	storage	space	(see	Figure	8.7).



Figure	8.7	When	documents	grow	larger	than	the	amount	of	space	allocated	for	them,
they	may	be	moved	to	another	location.	This	puts	additional	load	on	the	storage

systems	and	can	adversely	affect	performance.

Avoid	Moving	Oversized	Documents
One	way	to	avoid	this	problem	of	moving	oversized	documents	is	to	allocate	sufficient
space	for	the	document	at	the	time	the	document	is	created.	In	the	case	of	the	truck
operations	document,	you	could	create	the	document	with	an	array	of	200	embedded
documents	with	the	time	and	other	fields	specified	with	default	values.	When	the	actual
data	is	transmitted	to	the	database,	the	corresponding	array	entry	is	updated	with	the	actual
values	(see	Figure	8.8).



Figure	8.8	Creating	documents	with	sufficient	space	for	anticipated	growth	reduces	the
need	to	relocate	documents.

Consider	the	life	cycle	of	a	document	and	when	possible	plan	for	anticipated	growth.
Creating	a	document	with	sufficient	space	for	the	full	life	of	the	document	can	help	to
avoid	I/O	overhead.

The	Goldilocks	Zone	of	Indexes
Astronomers	have	coined	the	term	Goldilocks	Zone	to	describe	the	zone	around	a	star	that
could	sustain	a	habitable	planet.	In	essence,	the	zone	that	is	not	too	close	to	the	sun	(too
hot)	or	too	far	away	(too	cold)	is	just	right.	When	you	design	a	document	database,	you
also	want	to	try	to	identify	the	right	number	of	indexes.	You	do	not	want	too	few,	which
could	lead	to	poor	read	performance,	and	you	do	not	want	too	many,	which	could	lead	to
poor	write	performance.

Read-Heavy	Applications
Some	applications	have	a	high	percentage	of	read	operations	relative	to	the	number	of
write	operations.	Business	intelligence	and	other	analytic	applications	can	fall	into	this
category.	Read-heavy	applications	should	have	indexes	on	virtually	all	fields	used	to	help
filter	results.	For	example,	if	it	was	common	for	users	to	query	documents	from	a
particular	sales	region	or	with	order	items	in	a	certain	product	category,	then	the	sales
region	and	product	category	fields	should	be	indexed.

It	is	sometimes	difficult	to	know	which	fields	will	be	used	to	filter	results.	This	can	occur
in	business	intelligence	applications.	An	analyst	may	explore	data	sets	and	choose	a
variety	of	different	fields	as	filters.	Each	time	he	runs	a	new	query,	he	may	learn
something	new	that	leads	him	to	issue	another	query	with	a	different	set	of	filter	fields.
This	iterative	process	can	continue	as	long	as	the	analyst	gains	insight	from	queries.

Read-heavy	applications	can	have	a	large	number	of	indexes,	especially	when	the	query
patterns	are	unknown.	It	is	not	unusual	to	index	most	fields	that	could	be	used	to	filter
results	in	an	analytic	application	(see	Figure	8.9).



Figure	8.9	Querying	analytic	databases	is	an	iterative	process.	Virtually	any	field	could
potentially	be	used	to	filter	results.	In	such	cases,	indexes	may	be	created	on	most

fields.

Write-Heavy	Applications
Write-heavy	applications	are	those	with	relatively	high	percentages	of	write	operations
relative	to	read	operations.	The	document	database	that	receives	the	truck	sensor	data
described	previously	would	likely	be	a	write-heavy	database.	Because	indexes	are	data
structures	that	must	be	created	and	updated,	their	use	will	consume	CPU,	persistent
storage,	and	memory	resources	and	increase	the	time	needed	to	insert	or	update	a
document	in	the	database.

Data	modelers	tend	to	try	to	minimize	the	number	of	indexes	in	write-heavy	applications.
Essential	indexes,	such	as	those	created	for	fields	storing	the	identifiers	of	related
documents,	should	be	in	place.	As	with	other	design	choices,	deciding	on	the	number	of
indexes	in	a	write-heavy	application	is	a	matter	of	balancing	competing	interests.

Fewer	indexes	typically	correlate	with	faster	updates	but	potentially	slower	reads.	If	users
performing	read	operations	can	tolerate	some	delay	in	receiving	results,	then	minimizing
indexes	should	be	considered.	If,	however,	it	is	important	for	users	to	have	low-latency
queries	against	a	write-heavy	database,	consider	implementing	a	second	database	that
aggregates	the	data	according	to	the	time-intensive	read	queries.	This	is	the	basic	model
used	in	business	intelligence.

Transaction	processing	systems	are	designed	for	fast	writes	and	targeted	reads.	Data	is
copied	from	that	database	using	an	extraction,	transformation,	and	load	(ETL)	process	and
placed	in	a	data	mart	or	data	warehouse.	The	latter	two	types	of	databases	are	usually
heavily	indexed	to	improve	query	response	time	(see	Figure	8.10).



Figure	8.10	When	both	write-heavy	and	read-heavy	applications	must	be	supported,	a
two-database	solution	may	be	the	best	option.

	Tip

Identifying	the	right	set	of	indexes	for	your	application	can	take	some
experimentation.	Start	with	the	queries	you	expect	to	support	and	implement
indexes	to	reduce	the	time	needed	to	execute	the	most	important	and	the	most
frequently	executed.	If	you	find	the	need	for	both	read-heavy	and	write-heavy
applications,	consider	a	two-database	solution	with	one	database	tuned	for	each
type.

Modeling	Common	Relations
As	you	gather	requirements	and	design	a	document	database,	you	will	likely	find	the	need
for	one	or	more	of	three	common	relations:

•	One-to-many	relations

•	Many-to-many	relations

•	Hierarchies

The	first	two	involve	relations	between	two	collections,	whereas	the	third	can	entail	an
arbitrary	number	of	related	documents	within	a	collection.	You	learned	about	one-to-one
and	one-to-many	relations	previously	in	the	discussion	of	normalization.	At	that	point,	the
focus	was	on	the	need	for	joins	when	normalizing	data	models.	Here,	the	focus	is	on	how
to	efficiently	implement	such	relationships	in	document	databases.	The	following	sections



discuss	design	patterns	for	modeling	these	three	kinds	of	relations.

One-to-Many	Relations	in	Document	Databases
One-to-many	relations	are	the	simplest	of	the	three	relations.	This	relation	occurs	when	an
instance	of	an	entity	has	one	or	more	related	instances	of	another	entity.	The	following	are
some	examples:

•	One	order	can	have	many	order	items.

•	One	apartment	building	can	have	many	apartments.

•	One	organization	can	have	many	departments.

•	One	product	can	have	many	parts.

This	is	an	example	in	which	the	typical	model	of	document	database	differs	from	that	of	a
relational	database.	In	the	case	of	a	one-to-many	relation,	both	entities	are	modeled	using
a	document	embedded	within	another	document.	For	example:
Click	here	to	view	code	image

{

			customer_id:	76123,

			name:	‘Acme	Data	Modeling	Services’,

			person_or_business:	‘business’,

			address	:	[

																					{	street:	‘276	North	Amber	St’,

																								city:	‘Vancouver’,

																								state:	‘WA’,

																								zip:	99076}	,

																					{	street:	‘89	Morton	St’,

																								city:	‘Salem’,

																								state:	‘NH’,

																								zip:	01097}

																				]

			}

The	basic	pattern	is	that	the	one	entity	in	a	one-to-many	relation	is	the	primary	document,
and	the	many	entities	are	represented	as	an	array	of	embedded	documents.	The	primary
document	has	fields	about	the	one	entity,	and	the	embedded	documents	have	fields	about
the	many	entities.

Many-to-Many	Relations	in	Document	Databases
A	many-to-many	relation	occurs	when	instances	of	two	entities	can	both	be	related	to
multiple	instances	of	another	entity.	The	following	are	some	examples:

•	Doctors	can	have	many	patients	and	patients	can	have	many	doctors.

•	Operating	system	user	groups	can	have	many	users	and	users	can	be	in	many
operating	system	user	groups.

•	Students	can	be	enrolled	in	many	courses	and	courses	can	have	many	students
enrolled.

•	People	can	join	many	clubs	and	clubs	can	have	many	members.



Many-to-many	relations	are	modeled	using	two	collections—one	for	each	type	of	entity.
Each	collection	maintains	a	list	of	identifiers	that	reference	related	entities.	For	example,	a
document	with	course	data	would	include	an	array	of	student	IDs,	and	a	student	document
would	include	a	list	of	course	IDs,	as	in	the	following:

Courses:
Click	here	to	view	code	image

{

		{	courseID:	‘C1667’,

					title:	‘Introduction	to	Anthropology’,

					instructor:	‘Dr.	Margret	Austin’,

					credits:	3,

					enrolledStudents:	[‘S1837’,	‘S3737’,	‘S9825’	…

							‘S1847’]	},

		{	courseID:	‘C2873’,

					title:	‘Algorithms	and	Data	Structures’,

					instructor:	‘Dr.	Susan	Johnson’,

					credits:	3,

					enrolledStudents:	[‘S1837’,‘S3737’,	‘S4321’,	‘S9825’

							…	‘S1847’]	},

		{	courseID:	C3876,

					title:	‘Macroeconomics’,

					instructor:	‘Dr.	James	Schulen’,

					credits:	3,

					enrolledStudents:	[‘S1837’,	‘S4321’,	‘S1470’,	‘S9825’

							…	‘S1847’]	},

		…

Students:
Click	here	to	view	code	image

{

	{studentID:‘S1837’,

			name:	‘Brian	Nelson’,

			gradYear:	2018,

			courses:	[‘C1667’,	C2873,‘C3876’]},

	{studentID:	‘S3737’,

			name:	‘Yolanda	Deltor’,

								gradYear:	2017,

								courses:	[	‘C1667’,‘C2873’]},

				…

}

The	pattern	minimizes	duplicate	data	by	referencing	related	documents	with	identifiers
instead	of	embedded	documents.

Care	must	be	taken	when	updating	many-to-many	relationships	so	that	both	entities	are
correctly	updated.	Also	remember	that	document	databases	will	not	catch	referential
integrity	errors	as	a	relational	database	will.	Document	databases	will	allow	you	to	insert	a
student	document	with	a	courseID	that	does	not	correspond	to	an	existing	course.



Modeling	Hierarchies	in	Document	Databases
Hierarchies	describe	instances	of	entities	in	some	kind	of	parent-child	or	part-subpart
relation.	The	product_category	attribute	introduced	earlier	is	an	example	where	a
hierarchy	could	help	represent	relations	between	different	product	categories	(see	Figure
8.11).

Figure	8.11	Hierarchies	describe	parent-child	or	part-subpart	relations.

There	are	a	few	different	ways	to	model	hierarchical	relations.	Each	works	well	with
particular	types	of	queries.

Parent	or	Child	References

A	simple	technique	is	to	keep	a	reference	to	either	the	parent	or	the	children	of	an	entity.
Using	the	data	depicted	in	Figure	8.11,	you	could	model	product	categories	with
references	to	their	parents:
Click	here	to	view	code	image

{

			{productCategoryID:	‘PC233’,	name:‘Pencils’,

					parentID:‘PC72’},

			{productCategoryID:	‘PC72’,	name:‘Writing	Instruments’,

					parentID:	‘PC37”},

			{productCategoryID:	‘PC37’,	name:‘Office	Supplies’,

					parentID:	‘P01’},

			{productCategoryID:	‘P01’,	name:‘Product	Categories’	}

}

Notice	that	the	root	of	the	hierarchy,	'Product	Categories',	does	not	have	a	parent
and	so	has	no	parent	field	in	its	document.

This	pattern	is	useful	if	you	frequently	have	to	show	a	specific	instance	and	then	display
the	more	general	type	of	that	category.

A	similar	pattern	works	with	child	references:
Click	here	to	view	code	image

{

			{productCategoryID:	‘P01’,	name:‘Product	Categories’,



					childrenIDs:	[‘P37’,‘P39’,‘P41’]},

				{productCategoryID:	‘PC37’,	name:‘Office	Supplies’,

						childrenIDs:	[‘PC72’,‘PC73’,‘PC74”]},

					{productCategoryID:	‘PC72’,	name:‘Writing

							Instruments’,	childrenIDs:	[‘PC233’,‘PC234’]’},

						{productCategoryID:	‘PC233’,	name:‘Pencils’}

}

The	bottom	nodes	of	the	hierarchy,	such	as	'Pencils',	do	not	have	children	and
therefore	do	not	have	a	childrenIDs	field.

This	pattern	is	useful	if	you	routinely	need	to	retrieve	the	children	or	subparts	of	the
instance	modeled	in	the	document.	For	example,	if	you	had	to	support	a	user	interface	that
allowed	users	to	drill	down,	you	could	use	this	pattern	to	fetch	all	the	children	or	subparts
of	the	current	level	of	the	hierarchy	displayed	in	the	interface.

Listing	All	Ancestors

Instead	of	just	listing	the	parent	in	a	child	document,	you	could	keep	a	list	of	all	ancestors.
For	example,	the	'Pencils'	category	could	be	structured	in	a	document	as
Click	here	to	view	code	image

{productCategoryID:	‘PC233’,	name:‘Pencils’,

		ancestors:[‘PC72’,	‘PC37’,	‘P01’]}

This	pattern	is	useful	when	you	have	to	know	the	full	path	from	any	point	in	the	hierarchy
back	to	the	root.

An	advantage	of	this	pattern	is	that	you	can	retrieve	the	full	path	to	the	root	in	a	single
read	operation.	Using	a	parent	or	child	reference	requires	multiple	reads,	one	for	each
additional	level	of	the	hierarchy.

A	disadvantage	of	this	approach	is	that	changes	to	the	hierarchy	may	require	many	write
operations.	The	higher	up	in	the	hierarchy	the	change	is,	the	more	documents	will	have	to
be	updated.	For	example,	if	a	new	level	was	introduced	between	'Product
Category'	and	'Office	Supplies',	all	documents	below	the	new	entry	would
have	to	be	updated.	If	you	added	a	new	level	to	the	bottom	of	the	hierarchy—for	example,
below	'Pencils'	you	add	'Mechanical	Pencils'	and	'Non-mechanical
Pencils'—then	no	existing	documents	would	have	to	change.

	Note

One-to-many,	many-to-many,	and	hierarchies	are	common	patterns	in	document
databases.	The	patterns	described	here	are	useful	in	many	situations,	but	you	should
always	evaluate	the	utility	of	a	pattern	with	reference	to	the	kinds	of	queries	you
will	execute	and	the	expected	changes	that	will	occur	over	the	lives	of	the
documents.	Patterns	should	support	the	way	you	will	query	and	maintain
documents	by	making	those	operations	faster	or	less	complicated	than	other
options.



Summary
This	chapter	concludes	the	examination	of	document	databases	by	considering	several	key
issues	you	should	consider	when	modeling	for	document	databases.

Normalization	and	denormalization	are	both	useful	practices.	Normalization	helps	to
reduce	the	chance	of	data	anomalies	while	denormalization	is	introduced	to	improve
performance.	Denormalization	is	a	common	practice	in	document	database	modeling.	One
of	the	advantages	of	denormalization	is	that	it	reduces	or	eliminates	the	need	for	joins.
Joins	can	be	complex	and/or	resource-intensive	operations.	It	helps	to	avoid	them	when
you	can,	but	there	will	likely	be	times	you	will	have	to	implement	joins	in	your
applications.	Document	databases,	as	a	rule,	do	not	support	joins.

In	addition	to	considering	the	logical	aspects	of	modeling,	you	should	consider	the
physical	implementation	of	your	design.	Mutable	documents,	in	particular,	can	adversely
affect	performance.	Mutable	documents	that	grow	in	size	beyond	the	storage	allocated	for
them	may	have	to	be	moved	in	persistent	storage,	such	as	on	disks.	This	need	for
additional	writing	of	data	can	slow	down	your	applications’	update	operations.

Indexes	are	another	important	implementation	topic.	The	goal	is	to	have	the	right	number
of	indexes	for	your	application.	All	instances	should	help	improve	query	performance.
Indexes	that	would	help	with	query	performance	may	be	avoided	if	they	would	adversely
impact	write	performance	in	a	noticeable	way.	You	will	have	to	balance	benefits	of	faster
query	response	with	the	cost	of	slower	inserts	and	updates	when	indexes	are	in	place.

Finally,	it	helps	to	use	design	patterns	when	modeling	common	relations	such	as	one-to-
many,	many-to-many,	and	hierarchies.	Sometimes	embedded	documents	are	called	for,
whereas	in	other	cases,	references	to	other	document	identifiers	are	a	better	option	when
modeling	these	relations.

Part	IV,	“Column	Family	Databases,”	introduces	wide	column	databases.	These	are
another	important	type	of	NoSQL	database	and	are	especially	important	for	managing
large	data	sets	with	potentially	billions	of	rows	and	millions	of	columns.

Case	Study:	Customer	Manifests
Chapter	1,	“Different	Databases	for	Different	Requirements,”	introduced	TransGlobal
Transport	and	Shipping	(TGTS),	a	fictitious	transportation	company	that	coordinates	the
movement	of	goods	around	the	globe	for	businesses	of	all	sizes.	As	business	has	grown,
TGTS	is	transporting	and	tracking	more	complicated	and	varied	shipments.	Analysts	have
gathered	requirements	and	some	basic	estimates	about	the	number	of	containers	that	will
be	shipped.	They	found	a	mix	of	common	fields	for	all	containers	and	specialized	fields
for	different	types	of	containers.

All	containers	will	require	a	core	set	of	fields	such	as	customer	name,	origination	facility,
destination	facility,	summary	of	contents,	number	of	items	in	container,	a	hazardous
material	indicator,	an	expiration	date	for	perishable	items	such	as	fruit,	a	destination
facility,	and	a	delivery	point	of	contact	and	contact	information.

In	addition,	some	containers	will	require	specialized	information.	Hazardous	materials
must	be	accompanied	by	a	material	safety	data	sheet	(MSDS),	which	includes	information



for	emergency	responders	who	may	have	to	handle	the	hazardous	materials.	Perishable
foods	must	also	have	details	about	food	inspections,	such	as	the	name	of	the	person	who
performed	the	inspection,	the	agency	responsible	for	the	inspection,	and	contact
information	of	the	agency.

The	analyst	found	that	70%–80%	of	the	queries	would	return	a	single	manifest	record.
These	are	typically	searched	for	by	a	manifest	identifier	or	by	customer	name,	date	of
shipment,	and	originating	facility.	The	remaining	20%–30%	would	be	mostly	summary
reports	by	customers	showing	a	subset	of	common	information.	Occasionally,	managers
will	run	summary	reports	by	type	of	shipment	(for	example,	hazardous	materials,
perishable	foods),	but	this	is	rarely	needed.

Executives	inform	the	analysts	that	the	company	has	plans	to	substantially	grow	the
business	in	the	next	12	to	18	months.	The	analysts	realize	that	they	may	have	many
different	types	of	cargo	in	the	future	with	specialized	information,	just	as	hazardous
materials	and	perishable	foods	have	specialized	fields.	They	also	realize	they	must	plan
for	future	scaling	up	and	the	need	to	support	new	fields	in	the	database.	They	concluded
that	a	document	database	that	supports	horizontal	scaling	and	a	flexible	schema	is
required.

The	analysts	start	the	document	and	collection	design	process	by	considering	fields	that
are	common	to	most	manifests.	They	decided	on	a	collection	called	Manifests	with	the
following	fields:

•	Customer	name

•	Customer	contact	person’s	name

•	Customer	address

•	Customer	phone	number

•	Customer	fax

•	Customer	email

•	Origination	facility

•	Destination	facility

•	Shipping	date

•	Expected	delivery	date

•	Number	of	items	in	container

They	also	determine	fields	they	should	track	for	perishable	foods	and	hazardous	materials.
They	decide	that	both	sets	of	specialized	fields	should	be	grouped	into	their	own
documents.	The	next	question	they	have	to	decide	is,	should	those	documents	be
embedded	with	manifest	documents	or	should	they	be	in	a	separate	collection?



Embed	or	Not	Embed?
The	analysts	review	sample	reports	that	managers	have	asked	for	and	realize	that	the
perishable	foods	fields	are	routinely	reported	along	with	the	common	fields	in	the
manifest.	They	decide	to	embed	the	perishable	foods	within	the	manifest	document.

They	review	sample	reports	and	find	no	reference	to	the	MSDS	for	hazardous	materials.
They	ask	a	number	of	managers	and	executives	about	this	apparent	oversight.	They	are
eventually	directed	to	a	compliance	officer.	She	explains	that	the	MSDS	is	required	for	all
hazardous	materials	shipments.	The	company	must	demonstrate	to	regulators	that	their
database	includes	MSDSs	and	must	make	the	information	available	in	the	event	of	an
emergency.	The	compliance	officer	and	analyst	conclude	they	need	to	define	an	additional
report	for	facility	managers	who	will	run	the	report	and	print	MSDS	information	in	the
event	of	an	emergency.

Because	the	MSDS	information	is	infrequently	used,	they	decide	to	store	it	in	a	separate
collection.	The	Manifest	collection	will	include	a	field	called	msdsID	that	will	reference
the	corresponding	MSDS	document.	This	approach	has	the	added	benefit	that	the
compliance	officer	can	easily	run	a	report	listing	any	hazardous	material	shipments	that	do
not	have	an	msdsID.	This	allows	her	to	catch	any	missing	MSDSs	and	continue	to	comply
with	regulations.

Choosing	Indexes
The	analysts	anticipate	a	mix	of	read	and	write	operations	with	approximately	60%–65%
reads	and	35%–40%	writes.	They	would	like	to	maximize	the	speed	of	both	reads	and
writes,	so	they	carefully	weigh	the	set	of	indexes	to	create.

Because	most	of	the	reads	will	be	looks	for	single	manifests,	they	decide	to	focus	on	that
report	first.	The	manifest	identifier	is	a	logical	choice	for	index	field	because	it	is	used	to
retrieve	manifest	doccuments.

Analysts	can	also	look	up	manifests	by	customer	name,	shipment	date,	and	origination
facility.	The	analysts	consider	creating	three	indexes:	one	for	each	field.	They	realize,
however,	that	they	will	rarely	need	to	list	all	shipments	by	date	or	by	origination	facility,
so	they	decide	against	separate	indexes	for	those	fields.

Instead,	they	create	a	single	index	on	all	three	fields:	customer	name,	shipment	date,	and
origination	facility.	With	this	index,	the	database	can	determine	if	a	manifest	exists	for	a
particular	customer,	shipping	date,	and	origination	facility	by	checking	the	index	only;
there	is	no	need	to	check	the	actual	collection	of	documents,	thus	reducing	the	number	of
read	operations	that	have	to	be	performed.

Separate	Collections	by	Type?
The	analysts	realize	that	they	are	working	with	a	small	number	of	manifest	types,	but	there
may	be	many	more	in	the	future.	For	example,	the	company	does	not	ship	frozen	goods
now,	but	there	has	been	discussion	about	providing	that	service.	The	analysts	know	that	if
you	frequently	filter	documents	by	type,	it	can	be	an	indicator	that	they	should	use
separate	collections	for	each	type.



They	soon	realize	they	are	the	exception	to	that	rule	because	they	do	not	know	all	the
types	they	may	have.	The	number	of	types	can	grow	quite	large,	and	managing	a	large
number	of	collections	is	less	preferable	to	managing	types	within	a	single	collection.

By	using	requirements	for	reports	and	keeping	in	mind	some	basic	design	principles,	the
analysts	are	able	to	quickly	create	an	initial	schema	for	tracking	a	complex	set	of	shipment
manifests.

Review	Questions
1.	What	are	the	advantages	of	normalization?

2.	What	are	the	advantages	of	denormalization?

3.	Why	are	joins	such	costly	operations?

4.	How	do	document	database	modelers	avoid	costly	joins?

5.	How	can	adding	data	to	a	document	cause	more	work	for	the	I/O	subsystem	in
addition	to	adding	the	data	to	a	document?

6.	How	can	you,	as	a	document	database	modeler,	help	avoid	that	extra	work
mentioned	in	Question	5?

7.	Describe	a	situation	where	it	would	make	sense	to	have	many	indexes	on	your
document	collections.

8.	What	would	cause	you	to	minimize	the	number	of	indexes	on	your	document
collection?

9.	Describe	how	to	model	a	many-to-many	relationship.

10.	Describe	three	ways	to	model	hierarchies	in	a	document	database.
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9.	Introduction	to	Column	Family	Databases

“The	family	is	one	of	nature’s	masterpieces.”

—GEORGE	SANTAYANA
PHILOSOPHER

Topics	Covered	In	This	Chapter

In	the	Beginning,	There	Was	Google	BigTable

Differences	and	Similarities	to	Key-Value	and	Document	Databases

Architectures	Used	in	Column	Family	Databases

When	to	Use	Column	Family	Databases

Deciding	what	is	Big	Data	or	a	large	database	is	somewhat	subjective.	Are	a	million	rows
in	a	MySQL	table	a	large	database?	To	some	it	is,	to	others	it	is	just	an	average,	perhaps
even	small,	table.	There	is	little	room	for	debate,	however,	when	you	start	to	get	into	the
realm	of	billions	of	rows	and	tens	of	thousands	of	columns	in	a	table.	That	is	a	very	large
database	(VLDB)	by	any	standard.

Relational	databases	might	scale	to	VLDBs	with	a	small	set	of	large	servers,	but	the	cost
would	be	prohibitive	for	most.	Key-value	databases	have	useful	features	for	this	scale	of
database,	but	lack	support	for	organizing	many	columns	and	keeping	frequently	used	data
together.	Document	databases	might	scale1	to	this	level	but	may	not	have	some	of	the
features	you	might	expect	at	this	scale,	such	as	a	SQL-like	query	language.

1.	Chris	Biow,	and	Miles	Ward.	“PetaMongo:	A	Petabyte	Database	for	as	Little	as	$200.”	AWS	re:Invent	Conference,
2013.	http://www.slideshare.net/mongodb/petamongo-a-petabyte-database-for-as-little-as-200.

Companies	such	as	Google,	Facebook,	Amazon,	and	Yahoo!	must	contend	with	demands
for	very	large	database	management	solutions.	In	2006,	Google	published	a	paper	entitled
“BigTable:	A	Distributed	Storage	System	for	Structured	Data.”2	The	paper	described	a
new	type	of	database,	the	column	family	database.	Google	designed	this	database	for
several	of	its	large	services,	including	web	indexing,	Google	Earth,	and	Google	Finance.
BigTable	became	the	model	for	implementing	very	large-scale	NoSQL	databases.	Other
column	family	databases	include	Cassandra,	HBase,	and	Accumulo.

2.	Fay	Chang,	et	al.	“BigTable:	A	Distributed	Storage	System	for	Structured	Data.”	OSDI’06:	Seventh	Symposium	on
Operating	System	Design	and	Implementation,	Seattle,	WA,	November,	2006.
http://research.google.com/archive/bigtable.html.

http://www.slideshare.net/mongodb/petamongo-a-petabyte-database-for-as-little-as-200
http://research.google.com/archive/bigtable.html


	Note

Although	the	database	community	has	standardized	on	the	terms	key	value,
document,	and	graph	database,	there	is	some	variety	in	the	terminology	used	with
column	family	databases.	The	latter	NoSQL	databases	are	sometimes	called	wide
column	databases	to	emphasize	their	ability	to	manage	tens	of	thousands	(or	more)
of	columns.	They	are	also	sometimes	called	data	stores	rather	than	databases
because	they	lack	some	of	the	features	of	relational	databases.	This	book	uses	the
term	column	family	database	to	(1)	emphasize	the	importance	of	the	column
grouping	function	performed	by	column	families	and	to	(2)	reinforce	the	idea	that
NoSQL	databases	are	truly	database	management	systems	even	when	they	lack
some	features	of	relational	databases.	Relational	databases	are	popular	and	highly
functional,	but	they	do	not	define	what	constitutes	a	database	or	a	database
management	system.

In	the	Beginning,	There	Was	Google	BigTable
The	following	are	core	features	of	Google	BigTable:

•	Developers	have	dynamic	control	over	columns.

•	Data	values	are	indexed	by	row	identifier,	column	name,	and	a	time	stamp.

•	Data	modelers	and	developers	have	control	over	location	of	data.

•	Reads	and	writes	of	a	row	are	atomic.

•	Rows	are	maintained	in	a	sorted	order.

As	Figure	9.1	shows,	rows	are	composed	of	several	column	families.	Each	family	consists
of	a	set	of	related	columns.	For	example,	an	address	column	family	might	contain

•	Street	address

•	City

•	State	or	province

•	Postal	code

•	Country



Figure	9.1	A	row	in	a	column	family	database	is	organized	as	a	set	of	column	families.
Column	families	consist	of	related	columns;	a	data	value	is	indexed	by	a	row,	a	column

name,	and	a	time	stamp.

Column	families	are	organized	into	groups	of	data	items	that	are	frequently	used	together.
Column	families	for	a	single	row	may	or	may	not	be	near	each	other	when	stored	on	disk,
but	columns	within	a	column	family	are	kept	together.

BigTable	takes	the	middle	ground	with	respect	to	defining	data	structures.	A	data	modeler
defines	column	families	prior	to	implementing	the	database,	but	developers	can
dynamically	add	columns	to	a	column	family.	There	is	no	need	to	update	a	schema
definition.	From	a	developer’s	point	of	view,	column	families	are	analogous	to	relational
tables	and	columns	function	like	key-value	pairs.

Utilizing	Dynamic	Control	over	Columns
The	use	of	column	families	and	dynamic	columns	enables	database	modelers	to	define
broad,	course-grained	structures	(that	is,	column	families)	without	anticipating	all	possible
fine-grained	variations	in	attributes.	Consider	the	address	column	family	described	earlier.

Let’s	assume	a	company	builds	a	column	family	database	to	store	information	about
customers	in	the	United	States.	The	data	modeler	defines	the	address	column	family	but
no	column	names.	The	developer,	who	elicits	detailed	requirements	from	colleagues,
determines	that	all	customers	are	located	in	the	United	States.	The	developer	adds	a
“State”	column	to	the	address	column	family.		Several	months	later,	the	company	expands
its	customer	base	into	Canada,	where	regional	governmental	entities	are	known	as
provinces.	The	developer	simply	adds	another	column	called	“Province”	to	the	database
without	having	to	wait	for	a	data	modeler	to	refine	a	database	schema	and	update	the



database.

Indexing	by	Row,	Column	Name,	and	Time	Stamp
In	BigTable,	a	data	value	is	indexed	by	its	row	identifier,	column	name,	and	time	stamp
(see	Figure	9.2).	The	row	identifier	is	analogous	to	a	primary	key	in	a	relational	database.
It	uniquely	identifies	a	row.	Remember,	a	single	row	can	have	multiple	column	families.
Unlike	row-oriented	relational	databases	that	store	all	of	a	row’s	data	values	together,
column	family	databases	store	only	portions	of	rows	together.

Figure	9.2	Data	values	are	indexed	by	row	identifier,	column	name,	and	time	stamp.
Multiple	versions	of	a	column	value	can	exist.	The	latest	version	is	returned	by	default

when	the	column	value	is	queried.

The	column	name	uniquely	identifies	a	column.	The	time	stamp	orders	versions	of	the
column	value.	When	a	new	value	is	written	to	a	BigTable	database,	the	old	value	is	not
overwritten.	Instead,	a	new	value	is	added	along	with	a	time	stamp.	The	time	stamp	allows
applications	to	determine	the	latest	version	of	a	column	value.

Controlling	Location	of	Data
You	might	recall	discussions	from	earlier	chapters	about	the	speed	with	which	data	is
retrieved	based	on	where	is	it	located	on	a	disk.	Database	queries	can	cause	the	database
management	system	to	retrieve	blocks	of	data	from	different	parts	of	a	disk.	This	can
cause	the	database	management	system	to	wait	while	the	disk	spins	to	the	proper	position
and	the	read/write	head	of	the	drive	moves	to	the	proper	position	as	well.

One	way	to	avoid	the	need	to	read	multiple	blocks	of	data	located	on	different	parts	of	the
disk	is	to	keep	data	close	together	when	it	is	frequently	used	together.	Turning	back	to	the
address	example	again,	there	are	few	cases	in	which	you	would	want	the	street	address	of
a	customer	but	not	want	the	city	or	state.	It	is	logical	to	keep	this	data	together.	Column
families	serve	this	purpose.	Columns	families	store	columns	together	in	persistent	storage,
making	it	more	likely	that	reading	a	single	data	block	can	satisfy	a	query.



	Caution

It	might	seem	logical	to	keep	streets,	cities,	and	states	close	together	on	disks	at	all
times,	but	that	is	not	the	case.	Business	intelligence	systems,	for	example,	often
query	for	data	by	one	of	these	attributes	but	not	others.	For	example,	a	sales
manager	might	issue	a	query	to	determine	the	number	of	tablets	sold	in	the	last
month	in	the	state	of	Colorado.	There	is	no	need	to	reference	the	city	or	street
address	of	stores	selling	tablets.	For	applications	such	as	these,	data	is	more
efficiently	stored	by	columns.	Columnar	databases	do	just	that.	Instead	of	storing	all
data	in	a	row	together	as	row-oriented	databases	do	or	storing	related	groups	of
columns	together,	as	column	family	databases	do,	columnar	databases	store
columns	of	data	together.	Choosing	a	database	management	system	with	the
appropriate	storage	model	for	your	application	is	an	important	and	early	decision	in
application	design	(see	Figure	9.3).

Figure	9.3	Different	storage	models	offer	different	benefits.	Choose	a	storage	model
that	meets	your	query	needs.



Reading	and	Writing	Atomic	Rows
The	designers	of	BigTable	decided	to	make	all	read	and	write	operations	atomic	regardless
of	the	number	of	columns	read	or	written.	This	means	that	as	you	read	a	set	of	columns,
you	will	be	able	to	read	all	the	columns	needed	or	none	of	them.	There	are	no	partial
results	allowed	with	atomic	operations	(see	Figure	9.4).

Figure	9.4	Read	and	write	operations	are	atomic.	All	columns	are	read	or	written	or
none	are.

Similarly,	if	you	update	several	columns	in	different	column	values,	atomic	writes
guarantee	that	the	write	to	all	columns	will	succeed	or	they	will	all	fail.	You	will	never	be
left	with	partially	written	data.	For	example,	if	a	customer	moves	from	Portland,	Oregon,
to	Lincoln,	Nebraska,	and	you	update	the	customer’s	address,	you	would	never	find	a	case
in	which	the	city	changes	from	Portland	to	Lincoln	but	the	state	does	not	change	from
Oregon	to	Nebraska.



Maintaining	Rows	in	Sorted	Order
BigTable	maintains	rows	in	sorted	order.	This	makes	it	straightforward	to	perform	range
queries.	Sales	transactions,	for	example,	may	be	ordered	by	date.	When	a	user	needs	to
retrieve	a	list	of	sales	transactions	for	the	past	week,	the	data	can	be	retrieved	without
sorting	a	large	transaction	table	or	using	a	secondary	index	that	maintains	date	order.

Of	course,	you	can	only	order	a	table	in	one	way,	so	you	must	choose	carefully	when
defining	a	sort	order.	The	original	BigTable	implementation	did	not	include	support	for
multiple	indexes	on	tables.	You	could	define	tables	with	the	same	information	as	a
secondary	index	and	manage	that	table	yourself.

Google	BigTable	introduced	a	data	management	system	designed	to	scale	to	petabytes	of
data	using	commodity	hardware.	The	design	balanced	data	modeling	features	with	the
need	to	scale.	The	designers	of	Google	BigTable	anticipated	the	need	for	hundreds	of
column	families,	tens	of	thousands	(or	more)	columns,	and	billions	of	rows.	As	a	result,
the	column	family	database	has	some	features	of	key-value	databases,	document
databases,	and	relational	databases.

	Note

Google	BigTable	is	a	good	reference	point	for	understanding	column	family
databases.	It	is,	however,	only	used	by	Google	and	is	not	publicly	available.	The
two	most	widely	used	and	publicly	available	column	family	databases	are
Cassandra	(http://cassandra.apache.org/)	and	HBase	(http://hbase.apache.org/).

HBase	runs	within	the	Hadoop	ecosystem,	whereas	Cassandra	is	designed	to
function	without	Hadoop	or	other	Big	Data	systems.	Because	Cassandra	is	the	more
independent	of	the	two	most	popular	column	family	databases,	it	will	be	used	as	the
reference	model	for	the	remainder	of	the	column	family	discussion.

Differences	and	Similarities	to	Key-Value	and	Document	Databases
Column	family	databases	have	characteristics	similar	to	other	NoSQL	databases—key-
value	and	document	databases	in	particular.	This	is	not	surprising	because	all	NoSQL
databases	were	designed	to	address	problems	that	challenged	traditional	relational
databases.	In	addition,	many	NoSQL	databases	employ	distributed	database	techniques	to
address	scalability	and	availability	concerns.

Column	Family	Database	Features
Key-value	databases	are	the	simplest	of	all	NoSQL	architectures.	They	consist	of	a
keyspace,	which	is	essentially	a	logical	structure	for	isolating	keys	and	values	maintained
for	a	particular	purpose.	You	may	implement	a	keyspace	for	each	application,	or	you	may
have	a	single	keyspace	that	is	used	by	multiple	applications.	Whichever	approach	you
choose,	a	keyspace	is	used	to	store	related	keys	and	their	values.

Column	families	are	analogous	to	keyspaces	in	key-value	databases.	Developers	are	free
to	add	keys	and	values	in	key-value	databases	just	as	they	are	free	to	add	columns	and
values	to	column	families.	In	Cassandra	terminology,	a	keyspace	is	analogous	to	a

http://cassandra.apache.org/
http://hbase.apache.org/


database	in	relational	databases.	In	both	key-value	databases	and	Cassandra,	a	keyspace	is
the	outermost	logical	structure	used	by	data	modelers	and	developers.

Unlike	key-value	databases,	the	values	in	columns	are	indexed	by	a	row	identifier	as	well
as	by	a	column	name	(and	time	stamp).	(See	Figure	9.5.)

Figure	9.5	Keyspaces	in	key-value	databases	are	analogous	to	column	families	in	the
way	they	maintain	collections	of	attributes.	Indexing,	however,	is	different	between	the

two	database	types.

Column	Family	Database	Similarities	to	and	Differences	from	Document
Databases
Document	databases	extend	the	functionality	found	in	key-value	databases	by	allowing	for
highly	structured	and	accessible	data	structures.	Documents	are	analogous	to	rows	in	a
relational	database	and	store	multiple	fields	of	data,	typically	in	a	JSON	or	XML	structure.
You	could	also	store	JSON	or	XML	strings	in	key-value	databases,	but	those	databases	do
not	support	querying	based	on	contents	of	the	JSON	or	XML	string.

	Note

Some	key-value	databases	provide	search	engines	to	index	the	contents	of	JSON	or
XML	documents	stored	as	values,	but	this	is	not	a	standard	component	of	key-value
databases.

If	you	stored	the	following	document	in	a	key-value	database,	you	could	set	or	retrieve	the
entire	document,	but	you	could	not	query	and	extract	a	subset	of	the	data,	such	as	the
address.
Click	here	to	view	code	image

{

				“customer_id”:187693,



				“name”:	“Kiera	Brown”,

				“address”	:	{

								“street”	:	“1232	Sandy	Blvd.”,

								“city”	:		“Vancouver”,

								“state”	:		“Washington”,

								“zip”	:		“99121”

																}

			“first_order”	:	“01/15/2013”,

			“last_order”	:	“06/27/2014”

}

Document	databases	enable	you	to	query	and	filter	based	on	elements	in	the	document.
For	example,	you	could	retrieve	the	address	of	customer	Kiera	Brown	with	the	following
command	(using	MongoDB	syntax):
Click	here	to	view	code	image

db.customers.find(	{	“customer_id”:187693	},	{	“address”:

		1	}	)

Column	family	databases	support	similar	types	of	querying	that	allow	you	to	select	subsets
of	data	available	in	a	row.	Cassandra	uses	a	SQL-like	language	called	Cassandra	Query
Language	(CQL)	that	uses	the	familiar	SELECT	statement	to	retrieve	data.

Column	family	databases,	like	document	databases,	do	not	require	all	columns	in	all	rows.
Some	rows	in	a	column	family	database	may	have	values	for	all	columns,	whereas	others
will	have	values	for	only	some	columns	in	some	column	families	(see	Figure	9.6).



Figure	9.6	Column	family	databases,	like	document	databases,	may	have	values	for
some	or	all	columns.	Columns	can	be	added	programmatically	as	needed	in	both

document	and	column	family	databases.

In	both	column	family	and	document	databases,	columns	or	fields	can	be	added	as	needed
by	developers.

Column	Family	Database	Versus	Relational	Databases
Column	family	databases	have	some	features	that	are	similar	to	features	in	relational
databases	and	others	that	are	superficially	similar	but	different	in	implementation.

Both	column	family	databases	and	relational	databases	use	unique	identifiers	for	rows	of



data.	These	are	known	as	row	keys	in	column	family	databases	and	as	primary	keys	in
relational	databases.	Both	row	keys	and	primary	keys	are	indexed	for	rapid	retrieval.

Both	types	of	databases	can	be	thought	of	as	storing	tabular	data,	at	least	at	some	level	of
abstraction.	The	actual	storage	model	varies,	even	between	relational	databases.	Column
family	databases	use	the	concept	of	maps	(also	known	as	dictionaries	or	associative
arrays).	A	column	key	maps	from	a	column	name	to	a	column	value.	A	column	family	is	a
map/dictionary/associative	array	that	points	to	a	map/dictionary/associative	array	of
columns	(see	Figure	9.7).	In	a	sense,	you	have	a	map	of	map.

Figure	9.7	Column	family	databases	store	data	using	maps	of	maps	to	column	values.

Other	important	differences	between	column	family	databases	and	relational	databases
pertain	to	typed	columns,	transactions,	joins,	and	subqueries.

Column	family	databases	do	not	support	the	concept	of	a	typed	column.	Column	values
can	be	seen	as	a	series	of	bytes	that	are	interpreted	by	an	application,	not	the	database.
This	provides	developers	with	a	great	deal	of	flexibility	because	they	can	choose	to
interpret	a	string	of	bytes	in	different	ways,	depending	on	other	values	in	a	row.	It	also
leaves	developers	with	the	responsibility	to	validate	data	before	it	is	stored	in	the	database.

Avoiding	Multirow	Transactions

Although	you	can	expect	to	find	atomic	reads	and	writes	with	respect	to	a	single	row,
column	family	databases	such	as	Cassandra	do	not	support	multirow	transactions.	If	you
need	to	have	two	or	more	operations	performed	as	a	transaction,	it	is	best	to	find	a	way	to
implement	that	operation	using	a	single	row	of	data.	This	may	require	some	changes	to
your	data	model	and	is	one	of	the	considerations	you	should	take	into	account	when
designing	and	implementing	column	families.

	Note

Cassandra	2.0	introduced	“lightweight	transactions.”	These	enable	developers	to
specify	conditions	on	INSERT	and	UPDATE	operations.	If	the	condition	is
satisfied,	the	operation	is	performed;	otherwise,	it	is	not	performed.	This	feature	is
useful,	but	does	not	implement	the	full-blown	ACID	type	of	transaction	found	in
relational	databases	and	some	NoSQL	databases.

Avoiding	Subqueries

There	should	be	minimal	need	for	joins	and	subqueries	in	a	column	family	database.
Column	families	promote	denormalization	and	that	eliminates,	or	at	least	reduces,	the
need	for	joins.

In	relational	databses,	a	subquery	is	an	inner	query	that	runs,	typically,	as	part	of	the
WHERE	clause	of	an	outer	query.	For	example,	you	might	need	to	select	all	sales
transactions	performed	by	a	salesperson	with	a	last	name	of	Smith.	A	SQL	query	such	as
the	following	could	be	used:



SELECT

			*

FROM

			sales_transactions

WHERE

SELECT

				sales_person_id

FROM

			sales_persons

WHERE

			last_name	=	‘Smith’

The	part	of	the	statement	that	begins	with	SELECT	sales	_	person	_	id	FROM…
is	a	subquery	and	executes	in	the	context	of	the	outer	query.	These	types	of	subqueries	are
supported	by	relational	databases	but	not	by	column	family	databases.	Instead,	a	column
family	with	salesperson	information	could	be	included	with	sales	transaction	data	that
would	likely	be	maintained	in	another	column	family	(see	Figure	9.8).

Figure	9.8	Instead	of	using	joins	and	subqueries,	as	in	a	relational	databases,	column
family	databases	use	denormalization	to	maintain	related	information	using	a	common

row	identifier.



This	concludes	the	introduction	to	the	logical	model	of	column	family	databases.	It	is	now
time	to	consider	architectural	approaches	to	implementing	column	family	databases.

Architectures	Used	in	Column	Family	Databases
Broadly	speaking,	there	are	two	commonly	used	types	of	architectures	used	with
distributed	databases:	multiple	node	type	and	peer-to-peer	type.	Multiple	node	type
architectures	have	at	least	two	types	of	nodes,	although	there	may	be	more.

HBase	is	built	on	Hadoop	and	makes	use	of	various	Hadoop	nodes,	including	name	nodes,
data	nodes,	and	a	centralized	server	for	maintaining	configuration	data	about	the	cluster.
Peer-to-peer	type	architectures	have	only	one	type	of	node.	Cassandra,	for	example,	has	a
single	type	of	node.	Any	node	can	assume	responsibility	for	any	service	or	task	that	must
be	run	in	the	cluster.

HBase	Architecture:	Variety	of	Nodes
Apache	HBase	uses	the	Hadoop	infrastructure.	A	full	description	of	Hadoop	architecture	is
beyond	the	scope	of	this	chapter,	but	the	most	important	parts	for	HBase	are	outlined	here.

The	Hadoop	File	System,	HDFS,	uses	a	master-slave	architecture	that	consists	of	name
nodes	and	data	nodes.	The	name	nodes	manage	the	file	system	and	provide	for	centralized
metadata	management.	Data	nodes	actually	store	data	and	replicate	data	as	required	by
configuration	parameters.

Zookeeper	is	a	type	of	node	that	enables	coordination	between	nodes	within	a	Hadoop
cluster.	Zookeeper	maintains	a	shared	hierarchical	namespace.	Because	clients	need	to
communicate	with	Zookeeper,	it	is	a	potential	single	point	of	failure	for	HBase.	Zookeeper
designers	mitigate	risks	of	failure	by	replicating	Zookeeper	data	to	multiple	nodes.

In	addition	to	the	Hadoop	services	used	by	HBase,	the	database	also	has	server	processes
for	managing	metadata	about	the	distribution	of	table	data.	RegionServers	are	instances
that	manage	Regions,	which	are	storage	units	for	HBase	table	data.	When	a	table	is	first
created	in	HBase,	all	data	is	stored	in	a	single	Region.	As	the	volume	of	data	grows,
additional	Regions	are	created	and	data	is	partitioned	between	the	multiple	Regions.
RegionServers,	which	host	Regions,	are	designed	to	run	with	20–200	Regions	per	server;
each	Region	should	store	between	5GB	and	20GB	of	table	data.3	A	Master	Server
oversees	the	operation	of	RegionServers	(see	Figure	9.9).

3.	The	Apache	HBase	Reference	Guide:	http://hbase.apache.org/book/regions.arch.html.

http://hbase.apache.org/book/regions.arch.html


Figure	9.9	Apache	HBase	depends	on	multiple	types	of	nodes	that	make	up	the	Hadoop
environment.

When	a	client	device	needs	to	read	or	write	data	from	HBase,	it	can	contact	the	Zookeeper
server	to	find	the	name	of	the	server	that	stores	information	about	the	corresponding
Region’s	storage	location	within	the	cluster.	The	client	device	can	then	cache	that
information	so	it	does	not	need	to	query	Zookeeper	again	for	those	device	details.	The
client	then	queries	the	server	with	the	Region	information	to	find	out	which	server	has
data	for	a	given	row	key	(in	the	case	of	a	read)	or	which	server	should	receive	data
associated	with	a	row	key	(in	the	case	of	the	write).

An	advantage	of	this	type	of	architecture	is	that	servers	can	be	deployed	and	tuned	for
specific	tasks,	for	example,	managing	the	Zookeeper.	It	does,	however,	require	system
administrators	to	manage	multiple	configurations	and	to	tune	each	configuration
separately.	An	alternative	approach	is	to	use	a	single	type	of	node	that	can	assume	any	role
required	in	the	cluster.	Cassandra	uses	this	approach.

Cassandra	Architecture:	Peer-to-Peer
Apache	Cassandra,	like	Apache	HBase,	is	designed	for	high	availability,	scalability,	and
consistency.	Cassandra	takes	a	different	architectural	approach	than	HBase.	Rather	than
use	a	hierarchical	structure	with	fixed	functions	per	server,	Cassandra	uses	a	peer-to-peer
model	(see	Figure	9.10).	All	Cassandra	nodes	run	the	same	software.	They	may,	however,
serve	different	functions	for	the	cluster.



Figure	9.10	Cassandra	uses	a	peer-to-peer	architecture	in	which	all	nodes	are	the
same.

There	are	several	advantages	to	the	peer-to-peer	approach.	The	first	is	simplicity.	No	node
can	be	a	single	point	of	failure.	Scaling	up	and	down	is	fairly	straightforward:	Servers	are
added	or	removed	from	the	cluster.	Servers	in	a	peer-to-peer	network	communicate	with
each	other	and,	eventually,	new	nodes	are	assigned	a	set	of	data	to	manage.	When	a	node
is	removed,	servers	hosting	replicas	of	data	from	the	removed	node	respond	to	read	and
write	requests.

Because	peer-to-peer	networks	do	not	have	a	single	master	coordinating	server,	the	servers
in	the	cluster	are	responsible	for	managing	a	number	of	operations	that	a	master	server
would	handle,	including	the	following:

•	Sharing	information	about	the	state	of	servers	in	the	cluster

•	Ensuring	nodes	have	the	latest	version	of	data

•	Ensuring	write	data	is	stored	when	the	server	that	should	receive	the	write	is
unavailable

Cassandra	has	protocols	to	implement	all	of	these	functions.



Getting	the	Word	Around:	Gossip	Protocol
Sharing	information	about	the	state	of	servers	in	a	cluster	can	sound	like	a	trivial	problem.
Each	server	can	simply	ping	or	request	update	information	from	each	of	the	other	servers.
The	problem	is	that	this	type	of	all-servers-to-all-other-servers	protocol	can	quickly
increase	the	volume	of	traffic	on	the	network	and	the	amount	of	time	each	server	has	to
dedicate	to	communicating	with	other	servers.

Consider	a	variety	of	scenarios.	When	there	are	only	two	servers	in	a	cluster,	they	each
request	information	from	and	receive	information	from	each	other;	2	messages	are
exchanged.	If	you	add	a	third	server	to	the	cluster,	the	servers	generate	6	messages
between	the	three	of	them.	Increase	the	number	to	four	servers,	and	they	generate	12
messages.	By	the	time	you	reach	a	100-node	cluster,	9,900	messages	are	sent	through	the
cluster	to	communicate	status	information.	The	number	of	messages	sent	is	a	function	of
the	number	of	servers	in	the	cluster.	If	N	is	the	number	of	servers,	then	N×(N–1)	is	the
number	of	messages	needed	to	update	all	servers	with	information	about	all	other	servers
(see	Figure	9.11).

Figure	9.11	The	number	of	messages	sent	in	a	complete	server-to-server
communication	protocol	grows	more	rapidly	each	time	a	server	is	added	to	the	cluster.



A	more-efficient	method	of	sharing	information	is	to	have	each	server	update	another
server	about	itself	as	well	as	all	the	servers	it	knows	about.	Those	servers	can	then	share
what	they	know	with	a	second	set	of	other	servers.	The	second	set,	which	might	receive
information	from	a	few	different	servers,	can	pass	on	all	the	status	information	it	has	been
sent	instead	of	just	passing	on	its	own	information.

To	get	an	idea	of	how	efficient	an	information-sharing	scheme	can	be,	consider	a	seven-
node	cluster.	Servers	1	and	2	send	status	information	to	Server	3.	Servers	4	and	5	send
status	information	to	Server	6.	Servers	3	and	6	send	their	own	status	information	plus
status	information	about	two	other	servers	to	Server	7.	Server	7	now	has	information	about
every	server	in	the	cluster.	Server	7	sends	the	complete	set	of	information	to	Servers	3	and
6.	Server	3	then	passes	the	information	on	to	Servers	1	and	2	while	Server	6	passes	the
information	on	to	Servers	4	and	5.	All	nodes	in	the	cluster	now	have	complete	status
information	about	the	cluster.

	Note

Cassandra’s	protocol	and	gossip	protocols	in	general	do	not	operate	exactly	like	this
example.	Gossip	protocols	implement	random	selection,	and	there	may	be	some
redundancy	in	information	delivery.	Rather	than	try	to	depict	the	complexities	of	a
random	process,	a	deterministic	protocol	example	is	used	instead.	In	both	random
and	deterministic	protocols,	aggregating	information	into	fewer	messages	can
convey	the	same	amount	of	information	more	efficiently	than	nonaggregating
protocols.

Cassandra’s	gossip	protocol	works	as	follows:4

4.	Eben	Hewitt.	Cassandra:	The	Definitive	Guide.	Sebastopol,	CA:	O’Reilly	Media,	Inc.,	2010.

•	A	node	in	the	cluster	initiates	a	gossip	session	with	a	randomly	selected	node.

•	The	initiating	node	sends	a	starter	message	(known	as	a	Gossip-DigestSyn	message)
to	a	target	node.

•	The	target	node	replies	with	an	acknowledgment	(known	as	a	GossipDigestAck
message).

•	After	receiving	the	acknowledgment	from	the	target	node,	the	initiating	node	sends	a
final	acknowledgment	(a	GossipDigestAck2	message)	to	the	target	node.

In	the	course	of	this	message	exchange,	each	server	is	updated	about	the	state	of	servers	as
known	by	the	other	server.	In	addition,	version	information	about	each	server’s	state	is
exchanged.	With	this	additional	piece	of	data,	each	party	in	the	exchange	can	determine
which	of	the	two	has	the	most	up-to-date	data	about	each	of	the	servers	discussed.



Thermodynamics	and	Distributed	Database:	Why	We	Need	Anti-Entropy
If	you	have	studied	physics,	you	might	have	come	across	the	laws	of	thermodynamics.
The	second	law	of	thermodynamics	describes	a	feature	of	entropy,	which	is	the	state	of
randomness	and	lack	of	order	in	a	system	or	object.	A	broken	glass,	for	example,	has
higher	entropy	than	an	unbroken	glass.	The	second	law	of	thermodynamics	states	that	the
amount	of	entropy	(or	disorder)	in	a	closed	system	does	not	decrease.	A	broken	glass	does
not	repair	itself	and	restore	itself	to	the	state	of	less	entropy	found	in	an	unbroken	glass.

Databases,	especially	distributed	databases,	are	subject	to	a	kind	of	entropy,	too.	The
mechanical	parts	of	a	database	server	are	certainly	subject	to	entropy—just	ask	anyone
who	has	suffered	a	disk	failure—but	that	is	not	the	kind	of	entropy	discussed	here.
Distributed	database	designers	have	to	address	information	entropy.	Information	entropy
increases	when	data	is	inconsistent	in	the	database.	If	one	replica	of	data	indicates	that
Lucinda	Jones	last	made	a	purchase	on	January	15,	2014,	and	another	replica	has	data	that
indicates	she	last	made	a	purchase	on	November	23,	2014,	the	system	is	in	an	inconsistent
state.

Cassandra	uses	an	anti-entropy	algorithm,	that	is,	one	that	increases	order,	to	correct
inconsistencies	between	replicas.	When	a	server	initiates	an	anti-entropy	session	with
another	server,	it	sends	a	hash	data	structure,	known	as	a	Merkle	or	hash	tree,	derived
from	the	data	in	a	column	family.	The	receiving	server	calculates	a	hash	data	structure
from	its	copy	of	the	column	family.	If	they	do	not	match,	the	servers	determine	which	of
the	two	has	the	latest	information	and	updates	the	server	with	the	outdated	data	(see	Figure
9.12).



Figure	9.12	Cassandra	regularly	compares	replicas	of	data	to	ensure	they	are	up	to
date.	Hashes	are	used	to	make	this	a	relatively	fast	operation.

Hold	This	for	Me:	Hinted	Handoff
Cassandra	is	known	for	being	well	suited	for	write-intensive	applications.	This	is	probably
due	in	part	to	its	ability	to	keep	accepting	write	requests	even	when	the	server	that	is
responsible	for	handling	the	write	request	is	unavailable.	To	understand	how	this	high-
availability	write	service	works,	let’s	take	a	step	back	and	consider	how	read	operations
work.

Figure	9.13	shows	the	basic	flow	of	information	when	a	client	device	makes	a	request	to
the	Cassandra	database.



Figure	9.13	Any	node	in	a	Cassandra	cluster	can	handle	a	client	request.	All	nodes
have	information	about	the	state	of	the	cluster	and	can	act	as	a	proxy	for	a	client,

forwarding	the	request	to	the	appropriate	node	in	the	cluster.

A	client	device	needs	to	request	data	from	the	database.	It	issues	a	read	operation	and
Node	1	receives	the	request.	Node	1	uses	the	row	key	in	the	read	request	and	looks	up
information	about	which	node	should	process	the	request.	It	determines	that	Node	2	is
responsible	for	data	associated	with	that	row	key	and	passes	the	information	on	to	it.	Node
2	performs	the	read	operation	and	sends	the	data	back	to	Node	1.	Node	1,	in	turn,	passes
the	read	results	back	to	the	client.

Now	consider	a	similar	situation	but	with	a	write	request.	The	client	sends	a	request	to
Node	1	to	write	data	associated	with	a	row	key.	Node	1	queries	its	local	copy	of	metadata
about	the	cluster	and	determines	that	Node	3	should	process	this	request.	Node	1,
however,	knows	that	Node	3	is	unavailable	because	the	gossip	protocol	informed	Node	1
about	the	status	of	Node	3	a	few	seconds	ago.	Rather	than	lose	the	write	information	or
change	the	permanent	location	of	data	associated	with	that	row	key,	Node	1	initiates	a
hinted	handoff.

A	hinted	handoff	entails	storing	information	about	the	write	operation	on	a	proxy	node	and
periodically	checking	the	status	of	the	unavailable	node.	When	that	node	becomes
available	again,	the	node	with	the	write	information	sends,	or	“hands	off,”	the	write
request	to	the	recently	recovered	node	(see	Figure	9.14).



Figure	9.14	If	a	node	is	unavailable,	then	other	nodes	can	receive	write	requests	on	its
behalf	and	forward	them	to	the	intended	node	when	it	becomes	available.

The	architectures	of	column	family	databases	allow	for	significant	scalability.	They	can
also	be	challenging	to	deploy	and	manage.	It	is	important	to	choose	a	type	of	database	that
fits	your	needs	but	also	minimizes	the	administrative	overhead,	development	effort,	and
compute	resources	required.

When	to	Use	Column	Family	Databases
Column	family	databases	are	appropriate	choices	for	large-scale	database	deployments
that	require	high	levels	of	write	performance,	a	large	number	of	servers	or	multi–data
center	availability.

Cassandra’s	peer-to-peer	architecture	with	support	for	hinted	handoff	means	the	database
will	always	be	able	to	accept	write	operations	as	long	as	at	least	one	node	is	functioning
and	reachable.	Write-intensive	operations,	such	as	those	found	in	social	networking
applications,	are	good	candidates	for	using	column	family	databases.



	Tip

If	your	write-intensive	application	also	requires	transactions,	then	a	column	family
database	may	not	be	the	best	choice.	You	might	want	to	consider	a	hybrid	approach
that	uses	a	database	that	supports	ACID	transactions	(for	example,	a	relational
database	or	a	key-value	database	such	as	FoundationDB5).

5.	FoundationDB.	“ACID	Claims.”	https://foundationdb.com/acid-claims.

Column	family	databases	are	also	appropriate	when	a	large	number	of	servers	are	required
to	meet	expected	workloads.	Although	column	family	databases	can	run	on	a	single	node,
this	configuration	is	more	appropriate	for	development,	testing,	and	getting	to	know	a
database	management	system.	Column	family	databases	typically	run	with	more	than
several	servers.	If	you	find	one	or	a	few	servers	satisfy	your	performance	requirements,
you	might	find	that	key-value,	document,	or	even	relational	databases	are	a	better	option.

Cassandra	supports	multi–data	center	deployment,	including	multi–data	center	replication.
If	you	require	continuous	availability	even	in	the	event	of	a	data	center	outage,	then
consider	Cassandra	for	your	deployment.

If	you	are	considering	column	family	databases	for	the	flexibility	of	the	data	model,	be
sure	to	evaluate	key-value	and	document	databases.	You	may	find	they	meet	your
requirements	and	run	well	in	an	environment	with	a	single	server	or	a	small	number	of
servers.

Summary
Column	family	databases	are	some	of	the	most	scalable	databases	available.	They	provide
developers	with	the	flexibility	to	change	the	columns	of	a	column	family.	They	also
support	high	availability,	in	some	cases	even	cross–data	center	availability.

The	next	two	chapters	delve	deeper	into	column	family	databases.	Chapter	10,	“Column
Family	Database	Terminology,”	describes	key	terminology	you	will	need	to	understand
data	modeling	for	column	family	databases	as	well	as	additional	terms	related	to
implementation.	Chapter	11,	“Designing	for	Column	Family	Databases,”	focuses	on	data
modeling	techniques	and	implementation	issues	developers	should	understand	when
deploying	applications	built	on	column	family	databases.

Review	Questions
1.	Name	at	least	three	core	features	of	Google	BigTable.

2.	Why	are	time	stamps	used	in	Google	BigTable?

3.	Identify	one	similarity	between	column	family	databases	and	key-value	databases.

4.	Identify	one	similarity	between	column	family	databases	and	document	databases.

5.	Identify	one	similarity	between	column	family	databases	and	relational	databases.

6.	What	types	of	Hadoop	nodes	are	used	by	HBase?

7.	Describe	the	essential	characteristics	of	a	peer-to-peer	architecture.

https://foundationdb.com/acid-claims


8.	Why	does	Cassandra	use	a	gossip	protocol	to	exchange	server	status	information?

9.	What	is	the	purpose	of	the	anti-entropy	protocol	used	by	Cassandra?

10.	When	would	you	use	a	column	family	database	instead	of	another	type	of	NoSQL
database?
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10.	Column	Family	Database	Terminology

“Uttering	a	word	is	like	striking	a	note	on	the	keyboard	of	the	imagination.”

—LUDWIG	WITTGENSTEIN
PHILOSOPHER

Topics	Covered	In	This	Chapter

Basic	Components	of	Column	Family	Databases

Structures	and	Processes:	Implementing	Column	Family	Databases

Processes	and	Protocols

When	you	read	documentation	and	books	about	column	family	databases,	you	will	see
many	familiar	terms.	Columns,	partitions,	and	keyspaces	are	just	a	few	of	the	commonly
used	terms	you	will	see.	When	you	are	trying	to	understand	a	new	technology,	it	often
helps	when	the	new	technology	uses	the	same	terms	used	in	existing	technology—that	is,
unless	they	mean	something	else.

This	chapter	consists	of	descriptions	of	words	and	terms	used	in	column	family	databases.
The	definitions	are	specific	to	column	family	databases.	There	are	no	minimalist
definitions	designed	to	satisfy	a	logician’s	desire	for	parsimony.	The	descriptions	are
designed	to	meet	the	needs	of	database	designers,	software	developers,	and	others
interested	in	understanding	what	makes	column	family	databases	different	from	other
databases.

The	next	section	of	this	chapter	focuses	on	the	elements	of	column	family	databases	that
you	should	understand	to	get	started	working	with	databases	like	Cassandra	and	HBase.
Developers	of	column	family	databases	will	regularly	deal	with	these	components.

Next,	the	focus	moves	onto	terms	associated	with	implementing	column	family	databases.
Many	of	these	terms	refer	to	data	structures	or	processes	that	are	not	obvious	to
application	developers,	but	are	essential	for	efficient	implementation	of	the	database.

	Note

To	use	a	column	family	database,	you	do	not	need	to	know	the	details	of	how
partitioning	works,	but	it	helps—quite	a	bit.	If	some	of	the	terminology	in	the
implementation	section	seems	obscure	and	too	low	level	to	matter	to	you	(for
example,	Bloom	filters	and	gossip	protocols),	then	you	can	skim	the	material	now.

Basic	Components	of	Column	Family	Databases
The	basic	components	of	a	column	family	database	are	the	data	structures	developers	deal
with	the	most.	These	are	the	data	structures	that	developers	define	explicitly,	such	as	a
column.	The	terms	described	in	this	section	include

•	Keyspace

•	Row	key



•	Column

•	Column	families

With	these	basic	components,	you	can	start	constructing	a	column	family	database.

Keyspace
A	keyspace	is	the	top-level	data	structure	in	a	column	family	database	(see	Figure	10.1).	It
is	top	level	in	the	sense	that	all	other	data	structures	you	would	create	as	a	database
designer	are	contained	within	a	keyspace.	A	keyspace	is	analogous	to	a	schema	in	a
relational	database.	Typically,	you	will	have	one	keyspace	for	each	of	your	applications.

Figure	10.1	A	keyspace	is	a	top-level	container	that	logically	holds	column	families,
row	keys,	and	related	data	structures.	Typically,	there	is	one	keyspace	per	application.

Row	Key
A	row	key	uniquely	identifies	a	row	in	a	column	family.	It	serves	some	of	the	same
purposes	as	a	primary	key	in	a	relational	database	(see	Figure	10.2).



Figure	10.2	A	row	key	uniquely	identifies	a	row	and	has	a	role	in	determining	the	order
in	which	data	is	stored.

Row	keys	are	one	of	the	components	used	to	uniquely	identify	values	stored	in	a	database.
The	others	are	column	family	names,	column	names,	and	a	version	ordering	mechanism,
such	as	a	time	stamp.

In	addition	to	uniquely	identifying	rows,	row	keys	are	also	used	to	partition	and	order
data.	In	HBase,	rows	are	stored	in	lexicographic	order	of	row	keys.	You	can	think	of	this
as	alphabetic	ordering	with	additional	orderings	for	nonalphabetic	characters.

In	Cassandra,	rows	are	stored	in	an	order	determined	by	an	object	known	as	a	partitioner.
Cassandra	uses	a	random	partitioner	by	default.	As	the	name	implies,	the	partitioner
randomly	distributes	rows	across	nodes.	Cassandra	also	provides	an	order-preserving
partitioner,	which	can	provide	lexicographic	ordering.

Column
A	column	is	the	data	structure	for	storing	a	single	value	in	a	database	(see	Figure	10.3).
Depending	on	the	type	of	column	family	database	you	are	using,	you	might	find	values	are
represented	simply	as	a	string	of	bytes.	This	minimizes	the	overhead	on	the	database
because	it	does	not	validate	data	types.	HBase	takes	this	approach.



Figure	10.3	A	column,	along	with	a	row	key	and	version	stamp,	uniquely	identifies
values.

In	other	cases,	you	might	be	able	to	specify	data	types	ranging	from	integers	and	strings	to
lists	and	maps.	Cassandra’s	Query	Language	(CQL)	offers	almost	20	different	data	types.

Values	can	vary	in	length.	For	example,	a	value	could	be	as	simple	as	a	single	integer,
such	as	12,	or	as	complex	as	a	highly	structured	XML	document.

Columns	are	members	of	column	family	databases.	Database	designers	define	column
families	when	they	create	a	database.	However,	developers	can	add	columns	any	time	after
that.	Just	as	you	can	insert	data	into	a	relational	table,	you	can	create	new	columns	in
column	family	databases.

Columns	have	three	parts:

•	A	column	name

•	A	time	stamp	or	other	version	stamp

•	A	value

The	column	name	serves	the	same	function	as	a	key	in	a	key-value	pair:	It	refers	to	a
value.

The	time	stamp	or	other	version	stamp	is	a	way	to	order	values	of	a	column.	As	the	value
of	a	column	is	updated,	the	new	value	is	inserted	into	the	database	and	a	time	stamp	or
other	version	stamp	is	recorded	along	with	the	column	name	and	value.	The	version
mechanism	allows	the	database	to	store	multiple	values	associated	with	a	column	while
maintaining	the	ability	to	readily	identify	the	latest	value.	Column	family	databases	vary
in	the	types	of	version	control	mechanisms	used.

Column	Families
Column	families	are	collections	of	related	columns.	Columns	that	are	frequently	used
together	should	be	grouped	into	the	same	column	family.	For	example,	a	customer’s
address	information,	such	as	street,	city,	state,	and	zip	code,	should	be	grouped	together	in
a	single	column	family.

Column	families	are	stored	in	a	keyspace.	Each	row	in	a	column	family	is	uniquely
identified	by	a	row	key.	This	makes	a	column	family	analogous	to	a	table	in	a	relational
database	(see	Figure	10.4).	There	are	important	differences,	however.	Data	in	relational



database	tables	is	not	necessarily	maintained	in	a	predefined	order.	Rows	in	relational
tables	are	not	versioned	the	way	they	are	in	column	family	databases.

Figure	10.4	Column	families	are	analogous	to	relational	database	tables:	They	store
multiple	rows	and	multiple	columns.	There	are,	however,	significant	differences	between

the	two,	including	varying	columns	by	row.

Perhaps	most	importantly,	columns	in	a	relational	database	table	are	not	as	dynamic	as	in
column	family	databases.	Adding	a	column	in	a	relational	database	requires	changing	its
schema	definition.	Adding	a	column	in	a	column	family	database	just	requires	making	a
reference	to	it	from	a	client	application,	for	example,	inserting	a	value	to	a	column	name.

In	many	ways,	the	data	structures	that	database	application	designers	work	with	are	just
the	tip	of	the	column	family	database	iceberg.	There	are	many	more	components	of
column	family	databases	that	support	the	more	apparent	structures.

The	next	section	focuses	on	these	underlying	structures	and	processes	that	implement
essential	functions	of	column	family	databases.

Structures	and	Processes:	Implementing	Column	Family	Databases
Column	family	databases	are	complicated.	There	are	many	processes	that	continually	run
in	order	to	ensure	the	database	functions	as	expected.	There	are	also	sophisticated	data
structures	that	significantly	improve	performance	over	more	naive	implementations.

Internal	Structures	and	Configuration	Parameters	of	Column	Family
Databases
Internal	structures	and	configuration	parameters	of	column	family	databases	span	the	full
range	of	the	database—from	the	lowest	level	of	storing	a	single	value	up	to	the	high-level
components	of	the	database.	Several	are	particularly	important	for	database	application
designers	and	developers	to	understand:

•	Cluster

•	Partition

•	Commit	log

•	Bloom	filter



•	Replication	count

•	Consistency	level

Clusters	and	partitions	are	commonly	used	in	distributed	databases	and	are	probably
familiar	topics	by	now.	Vector	clocks	are	used	in	version	management.	The	commit	log
and	Bloom	filter	are	supporting	data	structures	that	improve	integrity	and	availability	of
data	as	well	as	the	performance	of	read	operations.

Replication	count	and	consistency	level	are	configuration	parameters	that	allow	database
administrators	to	customize	functionality	of	the	column	family	database	according	to	the
needs	of	applications	using	it.

Old	Friends:	Clusters	and	Partitions
Clusters	and	partitions	enable	distributed	databases	to	coordinate	processing	and	data
storage	across	a	set	of	servers.

Cluster

A	cluster	is	a	set	of	servers	configured	to	function	together.	Servers	sometimes	have
differentiated	functions	and	sometimes	they	do	not	(see	Figure	10.5).

Figure	10.5	Clusters	are	collections	of	servers	functioning	together	to	implement	a
distributed	service,	such	as	a	column	family	database.

HBase	is	a	part	of	the	Hadoop	infrastructure.	It	uses	the	various	types	of	servers	to



implement	the	functional	requirements	of	Hadoop.	Hadoop	implementation	details	are
outside	the	scope	of	this	book.1

1.	The	interested	reader	should	see	Professional	Hadoop	Solutions	by	Boris	Lublinsky,	Kevin	T.	Smith,	and	Alexy
Yakubovich	(Worx,	2013).

Cassandra,	on	the	other	hand,	uses	a	single	type	of	node.	There	are	no	master	or	slave
nodes.	Each	node	shares	similar	responsibilities,	including

•	Accepting	read	and	write	requests

•	Forwarding	read	and	write	requests	to	servers	able	to	fulfill	the	requests

•	Gathering	and	sharing	information	about	the	state	of	servers	in	the	clusters

•	Helping	compensate	for	failed	nodes	by	storing	write	requests	for	the	failed	node
until	it	is	restored

These	operations	are	all	required	to	maintain	a	functional	distributed	database.	At	the
same	time,	these	operations	are	too	low	level	to	concern	database	application	developers.
If	they	had	to	write	code	to	ensure	they	sent	read	and	write	requests	to	the	proper	server	or
had	to	maintain	state	information	about	each	server	in	the	cluster,	it	would	add
significantly	more	code	to	the	application.

Partition

A	partition	is	a	logical	subset	of	a	database.	Partitions	are	usually	used	to	store	a	set	of
data	based	on	some	attribute	of	the	data	(see	Figure	10.6).	For	example,	a	database	might
assign	data	to	a	particular	partition	based	on	one	of	the	following:

•	A	range	of	values,	such	as	the	value	of	a	row	ID

•	A	hash	value,	such	as	the	hash	value	of	a	column	name

•	A	list	of	values,	such	as	the	names	of	states	or	provinces

•	A	composite	of	two	or	more	of	the	above	options

Figure	10.6	Partitions	store	data	ordered	by	partition	key.



Each	node	or	server	within	a	column	family	cluster	maintains	one	or	more	partitions.

When	a	client	application	requests	data,	the	request	is	routed	to	a	server	with	the	partition
containing	the	requested	data.	A	request	could	go	to	a	central	server	in	a	master-slave
architecture	or	to	any	server	in	a	peer-to-peer	architecture.	In	either	case,	the	request	is
forwarded	to	the	appropriate	server.

In	practice,	multiple	servers	may	store	copies	of	the	same	partition.	This	improves	the
chances	of	successfully	reading	and	writing	data	even	in	the	event	of	server	failures.	It	can
also	help	improve	performance	because	all	servers	with	copies	of	a	partition	can	respond
to	requests	for	data	from	that	partition.	This	model	effectively	implements	load	balancing.

Taking	a	Look	Under	the	Hood:	More	Column	Family	Database
Components
In	addition	to	the	structures	and	procedures	you	will	routinely	work	with,	there	are	a	few
less	visible	components	of	column	family	databases	worth	understanding.	These	include

•	Commit	logs

•	Bloom	filter

•	Consistency	level

These	components	are	not	obvious	to	most	developers,	but	they	play	crucial	roles	in
achieving	availability	and	performance.

Commit	Log

If	your	application	writes	data	to	a	database	and	receives	a	successful	status	response,	you
reasonably	expect	the	data	to	be	stored	on	persistent	storage.	Even	if	a	server	fails
immediately	after	sending	a	write	success	response,	you	should	be	able	to	retrieve	your
data	once	the	server	restarts	(see	Figure	10.7).

Figure	10.7	A	commit	log	saves	data	written	to	the	database	prior	to	writing	it	to
partitions.	This	reduces	the	latency	introduced	by	random	writes	on	disks.



One	way	to	ensure	this	is	to	have	the	database	write	data	to	disk	(or	other	persistent
storage)	before	sending	the	success	response.	The	database	could	do	this,	but	it	would
have	to	wait	for	the	read/write	heads	to	be	in	the	correct	position	on	the	disk	before
writing	the	data.	If	the	database	did	this	for	every	write,	it	could	significantly	cut	down	on
write	performance.

Instead	of	writing	data	immediately	to	its	partition	and	disk	block,	column	family
databases	can	employ	commit	logs.	These	are	append	only	files	that	always	write	data	to
the	end	of	the	file.

	Tip

When	database	administrators	dedicate	a	disk	to	a	commit	log,	there	are	no	other
write	processes	competing	to	write	data	to	the	disk.	This	reduces	the	need	for
random	seeks	and	reduces	latency.

In	the	event	of	a	failure,	the	database	management	system	reads	the	commit	log	on
recovery.	Any	entries	in	the	commit	log	that	have	not	been	saved	to	partitions	are	then
written	to	appropriate	partitions	(see	Figure	10.8).

Figure	10.8	After	a	database	failure,	the	recovery	process	reads	the	commit	log	and
writes	entries	to	partitions.	The	database	remains	unavailable	to	users	until	all	commit

log	entries	are	written	to	partitions.



Bloom	Filter

Anything	that	reduces	the	number	of	blocks	read	from	disk	or	solid	state	device	can	help
improve	performance.	Applying	Bloom	filters	is	one	such	technique.

A	Bloom	filter	tests	whether	or	not	an	element	is	a	member	of	a	set	(see	Figure	10.9).
Unlike	a	typical	member	function,	the	Bloom	filter	sometimes	returns	an	incorrect	answer.
It	could	return	a	positive	response	in	cases	where	the	tested	element	is	not	a	member	of	the
set.	This	is	known	as	a	false-positive.	Bloom	filters	never	return	a	negative	response
unless	the	element	is	not	in	the	set.

Figure	10.9	Member	functions	always	return	accurate	results.	Bloom	filters	usually
return	accurate	results	but	sometimes	make	false-positive	errors.

Bloom	filters	help	reduce	the	number	of	read	operations	by	avoiding	reading	partitions	or
other	data	structures	that	definitely	do	not	contain	a	sought-after	piece	of	data.

Another	way	to	achieve	the	same	benefit	is	to	use	a	hash	function.	For	example,	assume
you	partition	customer	data	using	a	hash	function	on	a	person’s	last	name	and	city.	The
hash	function	would	return	a	single	value	for	each	last	name–city	combination.	The
application	would	only	need	to	read	that	one	partition.	Why	should	database	developers
use	Bloom	filters	that	sometimes	return	incorrect?

Bloom	filters	use	less	memory	than	typical	hash	functions,	and	the	savings	can	be
significant	for	the	large-scale	databases	typically	deployed	in	column	family	databases.
Because	a	Bloom	filter	is	a	probabilistic	data	structure,	you	can	tune	your	implementation
according	to	the	error	rate	you	would	like	to	achieve.	The	more	memory	you	allocate	for
the	Bloom	filter,	the	smaller	your	error	rate.	If	you	can	tolerate	a	1%	false-positive	rate,
you	can	implement	a	Bloom	filter	using	about	10	bits	per	element.	If	you	can	afford
another	5	bits	per	element,	your	error	rate	can	reduce	to	0.1%.

Both	HBase	and	Cassandra	make	use	of	Bloom	filters	to	avoid	unnecessary	disk	seeks.



Consistency	Level

Consistency	level	refers	to	the	consistency	between	copies	of	data	on	different	replicas.	In
the	strictest	sense,	data	is	consistent	only	if	all	replicas	have	the	same	data.	At	the	other
end	of	the	spectrum,	you	could	consider	the	data	“consistent”	as	long	as	it	is	persistently
written	to	at	least	one	replica.	There	are	several	intermediate	levels	as	well.

Consistency	level	is	set	according	to	several,	sometimes	competing,	requirements:

•	How	fast	should	write	operations	return	a	success	status	after	saving	data	to
persistent	storage?

•	Is	it	acceptable	for	two	users	to	look	up	a	set	of	columns	by	the	same	row	ID	and
receive	different	data?

•	If	your	application	runs	across	multiple	data	centers	and	one	of	the	data	centers	fails,
must	the	remaining	functioning	data	centers	have	the	latest	data?

•	Can	you	tolerate	some	inconsistency	in	reads	but	need	updates	saved	to	two	or	more
replicas?

In	many	cases,	a	low	consistency	level	can	satisfy	requirements.	Consider	an	application
that	collects	sensor	data	every	minute	from	hundreds	of	industrial	sensors.	If	data	is
occasionally	lost,	the	data	sets	will	have	missing	values.

	Note

A	small	number	of	missing	values	may	not	even	be	noticeable	because	this	kind	of
data	is	often	aggregated	into	sums,	averages,	standard	deviations,	and	other
descriptive	statistics.	In	addition,	missing	data	is	a	common	problem	in	scientific
and	social	science	research;	statisticians	have	developed	a	number	of	methods	of
compensating	for	missing	data.

Other	situations	call	for	a	moderate	consistency	level.	Players	using	an	online	game
reasonably	expect	to	have	the	state	of	their	game	saved	when	they	pause	or	stop	playing
on	one	device	to	switch	to	another.	Even	losing	a	small	amount	of	data	could	frustrate
users	who	have	to	repeat	play	and	possibly	lose	gains	made	in	the	game.

To	avoid	disrupting	players’	games	in	the	event	of	a	server	failure,	an	underlying	column
family	database	could	be	configured	with	a	consistency	level	requiring	writes	to	two	or
three	replicas.	Using	a	higher	level	of	consistency	would	increase	availability	but	at	the
cost	of	slowing	write	operations	and	possibly	adversely	affecting	gameplay.

The	highest	levels	of	consistency,	such	as	writing	replicas	to	multiple	replicas	in	multiple
data	centers,	should	be	saved	for	the	most	demanding	fault-tolerant	applications.

Processes	and	Protocols
In	addition	to	the	data	structures	described	above,	a	number	of	important	background
processes	are	responsible	for	maintaining	a	functional	column	family	database.



Replication
Replication	is	a	process	closely	related	to	consistency	level.	Whereas	the	consistency	level
determines	how	many	replicas	to	keep,	the	replication	process	determines	where	to	place
replicas	and	how	to	keep	them	up	to	date.

In	the	simplest	case,	the	server	for	the	first	replica	is	determined	by	hash	function,	and
additional	replicas	are	placed	according	to	the	relative	position	of	other	servers.	For
example,	all	nodes	in	Cassandra	are	in	a	logical	ring.	Once	the	first	replica	is	placed,
additional	replicas	are	stored	on	successive	nodes	in	the	ring	in	the	clockwise	direction.

Column	family	databases	can	also	use	network	topology	to	determine	where	to	place
replicas.	For	example,	replicas	may	be	created	on	different	racks	within	a	data	center	to
ensure	availability	in	the	event	of	a	rack	failure.

Anti-Entropy
Anti-entropy	is	the	process	of	detecting	differences	in	replicas.	From	a	performance
perspective,	it	is	important	to	detect	and	resolve	inconsistencies	with	a	minimum	amount
of	data	exchange.

The	naive	way	to	compare	replicas	is	to	send	a	copy	of	one	replica	to	the	node	storing
another	replica	and	compare	the	two.	This	is	obviously	inefficient.	Even	with	high-write
applications,	much	of	the	data	sent	from	the	source	is	the	same	as	the	data	on	the	target
node.	Column	family	databases	can	exploit	the	fact	that	much	of	replica	data	may	not
change	between	anti-entropy	checks.	They	do	this	by	sending	hashes	of	data	instead	of	the
data	itself.

One	method	employs	a	tree	of	hashes,	also	known	as	a	Merkle	tree	(see	Figure	10.10).	The
leaf	nodes	contain	hashes	of	a	data	set.	The	nodes	above	the	leaf	nodes	contain	a	hash	of
the	hashes	in	the	leaf	nodes.	Each	successive	layer	contains	the	hash	of	hashes	in	the	level
below.	The	root	node	contains	the	hash	of	the	entire	collection	of	data	sets.

Figure	10.10	Hash	trees,	or	Merkle	trees,	allow	for	rapid	checks	on	consistency
between	two	data	sets.	In	this	example,	data3a	and	data3b	are	different,	resulting	in

different	hash	values	in	each	level	from	the	data	block	to	the	root.

Anti-entropy	processes	can	calculate	hash	trees	on	all	replicas.	One	replica	sends	its	hash
tree	to	another	node.	That	node	compares	the	hash	values	in	the	two	root	nodes.	If	both	are
the	same,	then	there	is	no	difference	in	the	replicas.	If	there	is	a	difference,	then	the	anti-
entropy	process	can	compare	the	hash	values	at	the	next	level	down.



At	least	one	pair	of	these	hash	values	will	differ	between	replicas.	The	process	of
traversing	the	tree	continues	until	the	process	reaches	one	or	more	leaf	nodes	that	have
changed.	Only	the	data	associated	with	those	leaf	nodes	needs	to	be	exchanged.

Gossip	Protocol
A	fundamental	challenge	in	any	distributed	system	is	keeping	member	nodes	up	to	date	on
information	about	other	members	of	the	system.	This	is	not	too	much	of	a	problem	when
the	number	of	nodes	in	a	cluster	is	small,	say	fewer	than	10	servers.	If	every	node	in	a
server	has	to	communicate	with	every	other	node,	then	the	number	of	messages	can
quickly	grow.

Table	10.1	shows	how	the	number	of	messages	that	must	be	sent	in	complete
communications	protocol	increases	at	the	rate	of	n×(n–1)/2,	where	n	is	the	number	of
nodes	in	the	cluster.

Table	10.1	Number	of	Messages	Sent	Per	Node

Instead	of	having	every	node	communicate	with	every	other	node,	it	is	more	efficient	to
have	nodes	share	information	about	themselves	as	well	as	other	nodes	from	which	they
have	received	updates.	Consider	a	cluster	with	10	nodes.	If	each	node	communicated	with
every	other	node,	the	system	will	send	a	total	of	90	messages	to	ensure	all	nodes	have	up-
to-date	information.

Figure	10.11	shows	that	when	using	a	gossip	protocol—in	which	each	node	sends
information	about	itself	and	all	information	it	has	received	from	other	nodes—all	nodes
can	be	updated	with	a	fraction	of	the	number	of	messages	required	for	complete
communication.



Figure	10.11	Gossip	protocols	spread	information	with	fewer	messages	than	a	protocol
that	requires	all	nodes	to	communicate	with	all	other	nodes.

Hinted	Handoff
Replicas	enable	read	availability	even	if	some	nodes	have	failed.	They	do	not	address	how
to	handle	a	write	operation	that	is	directed	to	a	node	that	is	down.	The	hinted	handoff
mechanism	is	designed	to	solve	this	problem.

If	a	write	operation	is	directed	to	a	node	that	is	unavailable,	the	operation	can	be	redirected
to	another	node,	such	as	another	replica	node	or	a	node	designated	to	receive	write
operations	when	the	target	node	is	down.

The	node	receiving	the	redirected	write	message	creates	a	data	structure	to	store
information	about	the	write	operation	and	where	it	should	ultimately	be	sent.	The	hinted
handoff	periodically	checks	the	status	of	the	target	server	and	sends	the	write	operation
when	the	target	is	available.

Storing	a	hinted	handoff	data	structure	is	not	the	same	as	writing	to	a	replica.	Hinted
handoffs	are	stored	in	their	own	data	structures	and	are	managed	by	the	hinted	handoff
process.	Once	the	write	data	is	successfully	written	to	the	target	node,	it	can	be	considered
a	successful	write	for	the	purposes	of	consistency	and	replication.

Summary
Column	family	databases	share	some	terminology	with	relational	databases,	but	there	are
important	differences	in	how	those	terms	are	used.	Columns,	for	example,	can	have
similar	characteristics	in	both	relational	and	column	family	databases,	but	they	are
implemented	differently.	Columns	can	be	programmatically	added	to	column	family
databases	but	require	schema	changes	in	relational	databases.	It	is	important	to	keep	these
differences	in	mind	when	working	with	column	family	databases.

The	basic,	logical	components	of	a	column	family	database	are	namespaces,	column
families,	columns,	and	row	keys.	You	should	be	familiar	with	these	components	when
working	with	any	column	family	database.

To	understand	the	physical	implementation	of	a	column	family	database,	you	should
understand	at	least	partitions	and	clusters.	To	ensure	you	have	adequately	addressed
availability	and	performance	requirements,	you	should	understand	how	commit	logs	are
used	and	the	trade-offs	in	setting	replication	parameters	and	consistency	levels.	For	those



who	like	to	dig	into	details,	it	helps	to	understand	Bloom	filters,	anti-entropy,	gossip
protocols,	and	hinted	handoffs.

Review	Questions
1.	What	is	a	keyspace?	What	is	an	analogous	data	structure	in	a	relational	database?

2.	How	do	columns	in	column	family	databases	differ	from	columns	in	relational
databases?

3.	When	should	columns	be	grouped	together	in	a	column	family?	When	should	they
be	in	separate	column	families?

4.	Describe	how	partitions	are	used	in	column	family	databases.

5.	What	are	the	performance	advantages	of	using	a	commit	log?

6.	What	are	the	advantages	of	using	a	Bloom	filter?

7.	What	factors	should	you	consider	when	setting	a	consistency	level?

8.	What	factors	should	you	consider	when	setting	a	replication	strategy?

9.	Why	are	hash	trees	used	in	anti-entropy	processes?

10.	What	are	the	advantages	of	using	a	gossip	protocol?

11.	Describe	how	hinted	handoff	can	help	improve	the	availability	of	write	operations.
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11.	Designing	for	Column	Family	Databases

“A	good	designer	must	rely	on	experience,	on	precise,	logic	thinking;	and	on
pedantic	exactness.	No	magic	will	do.”

—NIKLAUS	WIRTH
COMPUTER	SCIENTIST

Topics	Covered	In	This	Chapter

Guidelines	for	Designing	Tables

Guidelines	for	Indexing

Tools	for	Working	with	Big	Data

Case	Study:	Customer	Data	Analysis

Users	drive	the	design	of	a	column	family	database.	This	might	seem	illogical	at	first.
After	all,	shouldn’t	experienced	designers	with	knowledge	of	the	database	management
system	take	the	lead	on	design?	Actually,	designers	follow	the	lead	of	users.	It	is	users
who	determine	the	questions	that	will	be	asked	of	the	database	application.	They	might
have	questions	such	as	these:

•	How	many	new	orders	were	placed	in	the	Northwest	region	yesterday?

•	When	did	a	particular	customer	last	place	an	order?

•	What	orders	are	en	route	to	customers	in	London,	England?

•	What	products	in	the	Ohio	warehouse	have	fewer	than	the	stock	keeping	minimum
number	of	items?

Only	when	you	have	questions	like	these	can	you	design	for	a	column	family	database.
Like	other	NoSQL	databases,	design	starts	with	queries.

Queries	provide	information	needed	to	effectively	design	column	family	databases.	The
information	includes

•	Entities

•	Attributes	of	entities

•	Query	criteria

•	Derived	values

Entities	represent	things	that	can	range	from	concrete	things,	such	as	customers	and
products,	to	abstractions	such	as	a	service	level	agreement	or	a	credit	score	history.
Entities	are	modeled	as	rows	in	column	family	databases.	A	single	row	should	correspond
to	a	single	entity.	Rows	are	uniquely	identified	by	row	keys.

Attributes	of	entities	are	modeled	using	columns.	Queries	include	references	to	columns	to
specify	criteria	for	selecting	entities	and	to	specify	a	set	of	attributes	to	return.

Designers	use	the	selection	criteria	to	determine	optimal	ways	to	organize	data	with	tables



and	partitions.	For	example,	queries	that	require	range	scans,	such	as	selecting	all	orders
placed	between	two	dates,	are	best	served	by	tables	that	order	the	data	in	the	same	order	it
will	be	scanned.

Designers	use	the	set	of	attributes	to	return	to	help	determine	how	to	group	attributes	in
column	families.	It	is	most	efficient	to	store	columns	together	that	are	frequently	used
together.

	Tip

When	designers	see	queries	that	include	derived	values,	such	as	a	count	of	orders
placed	yesterday	or	the	average	dollar	value	of	an	order,	it	is	an	indication	that
additional	attributes	may	be	needed	to	store	derived	data.

Information	about	entities,	attributes,	query	criteria,	and	derived	values	is	a	starting	point
for	column	family	design.	Designers	start	with	this	information	and	then	use	the	features
of	column	family	databases	to	select	the	most	appropriate	implementation.

	Note

When	you	first	learn	about	column	family	databases,	it	is	useful	to	draw	parallels
between	relational	databases	and	column	family	databases.	When	you	have	learned
enough	of	the	basics	to	start	to	design	column	family	database	applications,	it	is
time	to	forget	the	relational	analogies.

Column	family	databases	are	implemented	differently	than	relational	databases.	Thinking
they	are	essentially	the	same	could	lead	to	poor	design	decisions.	It	is	important	to
understand:

•	Column	family	databases	are	implemented	as	sparse,	multidimensional	maps.

•	Columns	can	vary	between	rows.

•	Columns	can	be	added	dynamically.

•	Joins	are	not	used;	data	is	denormalized	instead.

These	characteristics	of	column	family	databases	will	influence	design	guidelines	detailed
in	the	following	sections.	Guidelines	are	presented	for	the	major	logical	components	of	the
column	family	database.	In	the	case	of	keyspaces,	there	are	few	guidelines	other	than	to
use	a	separate	keyspace	for	each	application.	This	is	based	on	the	fact	that	applications
will	have	different	query	patterns	and,	as	noted	previously,	column	family	database	design
is	largely	driven	by	those	queries.



	Note

HBase	and	Cassandra	are	two	popular	column	family	databases.	They	have	many
features	in	common.	They	differ	in	others.	For	example,	HBase	uses	a	time	stamp
to	keep	multiple	versions	of	column	values.	Cassandra	uses	time	stamp-like	data
too,	but	for	conflict	resolution,	not	for	storing	multiple	values.	Implementation
details	can	also	vary	between	versions	of	column	family	database	systems.	What
was	true	of	an	earlier	version	of	Cassandra	might	not	be	true	of	the	latest	version.

Guidelines	for	Designing	Tables
One	of	your	first	design	decisions	is	to	determine	the	tables	in	your	schema.	The	following
are	several	guidelines	to	keep	in	mind	when	designing	tables:

•	Denormalize	instead	of	join.

•	Make	use	of	valueless	columns.

•	Use	both	column	names	and	column	values	to	store	data.

•	Model	an	entity	with	a	single	row.

•	Avoid	hotspotting	in	row	keys.

•	Keep	an	appropriate	number	of	column	value	versions.

•	Avoid	complex	data	structures	in	column	values.

It	should	be	noted	that	some	of	these	recommendations,	such	as	using	an	appropriate
number	of	column	value	versions,	are	not	applicable	to	all	column	family	database
systems.

Denormalize	Instead	of	Join
Tables	model	entities,	so	it	is	reasonable	to	expect	to	have	one	table	per	entity.	Column
family	databases	often	need	fewer	tables	than	their	relational	counterparts.	This	is	because
column	family	databases	denormalize	data	to	avoid	the	need	for	joins.	For	example,	in	a
relational	database,	you	typically	use	three	tables	to	represent	a	many-to-many
relationship:	two	tables	for	the	related	entities	and	one	table	for	the	many-to-many
relation.

Figure	11.1	shows	how	to	model	customers	who	bought	multiple	products	and	products
that	were	purchased	by	multiple	customers.



Figure	11.1	In	relational	databases,	many-to-many	relations	are	modeled	with	a	table
for	storing	primary	keys	of	the	two	entities	in	a	many-to-many	relationship.

Figure	11.2	shows	how	to	accomplish	the	same	modeling	goal	with	denormalized	data.
Each	customer	includes	a	set	of	column	names	that	correspond	to	purchased	products.
Similarly,	products	include	a	list	of	customer	IDs	that	indicate	the	set	of	customers	that
purchased	those	products.

Figure	11.2	In	a	column	family	database,	many-to-many	relationships	are	captured	by
denormalizing	data.



Make	Use	of	Valueless	Columns
You	might	have	noticed	something	strange	about	the	previous	example	of	using	column
names	to	hold	actual	data	about	customers	and	products.	Instead	of	having	a	column	with
a	name	like	'ProductPurchased1'	with	value	'PR	_	B1839',	the	table	simply
stores	the	product	ID	as	the	column	name.

	Tip

Using	column	names	to	store	data	can	have	advantages.	For	example,	in	Cassandra,
data	stored	in	column	names	is	stored	in	sort	order,	but	data	stored	in	column	values
is	not.

Of	course,	you	could	store	a	value	associated	with	a	column	name.	If	a	column	name
indicates	the	presence	or	absence	of	something,	you	could	assign	a	T	or	F	to	indicate	true
or	false.	This,	however,	would	take	additional	storage	without	increasing	the	amount	of
information	stored	in	the	column.

Use	Both	Column	Names	and	Column	Values	to	Store	Data
A	variation	on	the	use	of	valueless	columns	uses	the	column	value	for	denormalization.
For	example,	in	a	database	about	customers	and	products,	the	features	of	the	product,	such
as	description,	size,	color,	and	weight,	are	stored	in	the	products	table.	If	your	application
users	want	to	produce	a	report	listing	products	bought	by	a	customer,	they	probably	want
the	product	name	in	addition	to	its	identifier.	Because	you	are	dealing	with	large	volumes
of	data	(otherwise	you	would	not	be	using	a	column	family	database),	you	do	not	want	to
join	or	query	both	the	customer	and	the	product	table	to	produce	the	report.

As	you	saw	in	Figure	11.2,	the	customer	table	includes	a	list	of	column	names	indicating
the	product	ID	of	items	purchased	by	the	customer.	Because	the	column	value	is	not	used
for	anything	else,	you	can	store	the	product	name	there,	as	shown	in	Figure	11.3.

Figure	11.3	Both	the	column	name	and	the	column	value	can	store	data.

Keeping	a	copy	of	the	product	name	in	the	customer	table	will	increase	the	amount	of
storage	used.	That	is	one	of	the	downsides	of	denormalized	data.	The	benefit,	however,	is
that	the	report	of	customers	and	the	products	they	bought	is	produced	by	referencing	only
one	table	instead	of	two.	In	effect,	you	are	trading	the	need	for	additional	storage	for
improved	read	performance.



Model	an	Entity	with	a	Single	Row
A	single	entity,	such	as	a	particular	customer	or	a	specific	product,	should	have	all	its
attributes	in	a	single	row.	This	can	lead	to	cases	in	which	some	rows	store	more	column
values	than	others,	but	that	is	not	uncommon	in	column	family	databases.

Let’s	consider	the	product	table	in	more	detail.	The	retailer	designing	the	application	sells
several	different	types	of	products,	including	appliances,	books,	and	clothing.	They	all
share	some	common	attributes,	such	as	price,	stock	keeping	unit	(SKU),	and	inventory
level.	They	each	have	unique	features	as	well.	Appliances	have	form	factors,	voltage,	and
energy	certifications.	Books	have	authors,	publishers,	and	copyright	dates.	Clothing	items
have	fabrics,	size,	and	cleaning	instructions.	One	way	to	model	this	is	with	several	tables,
as	shown	in	Figure	11.4.

Figure	11.4	Entities	can	have	attributes	stored	in	multiple	tables,	but	this	is	not
recommended	for	column	family	databases.

Column	family	databases	do	not	provide	the	same	level	of	transaction	control	as	relational
databases.	Typically,	writes	to	a	row	are	atomic.	If	you	update	several	columns	in	a	table,
they	will	all	be	updated,	or	none	of	them	will	be.

	Caution

If	you	need	to	update	two	separate	tables,	such	as	a	product	table	and	a	books	table,
it	is	conceivable	the	updates	to	the	product	table	succeed,	but	the	updates	to	the
book	table	do	not.	In	such	a	case,	you	would	be	left	with	inconsistent	data.



Avoid	Hotspotting	in	Row	Keys
Distributed	systems	enable	you	to	take	advantage	of	large	numbers	of	servers	to	solve
problems.	It	is	inefficient	to	direct	an	excessive	amount	of	work	at	one	or	a	few	machines
while	others	are	underutilized.

Hotspotting	occurs	when	many	operations	are	performed	on	a	small	number	of	servers
(see	Figure	11.5).	Consider	an	example	of	how	this	can	occur	in	HBase.

Figure	11.5	(a)	Hotspotting	leads	to	underutilization	of	cluster	resources	while	(b)
more	even	distribution	of	operations	leads	to	more	efficient	use	of	resources.

HBase	uses	lexigraphic	ordering	of	rows.	Let’s	assume	you	are	loading	data	into	a	table
and	the	key	value	for	the	table	is	a	sequential	number	assigned	by	a	source	system.	The
data	is	stored	in	a	file	in	sequential	order.	As	HBase	loads	each	record,	it	will	likely	write
it	to	the	same	server	that	received	the	prior	record	and	to	a	data	block	near	the	data	block
of	the	prior	record.	This	helps	avoid	disk	latency,	but	it	means	a	single	server	is	working
consistently	while	others	are	underutilized.



	Tip

In	a	real-world	scenario,	you	would	probably	load	multiple	files	in	parallel	to	utilize
other	servers	while	maintaining	the	benefits	of	reduced	disk	latency.

You	can	prevent	hotspotting	by	hashing	sequential	values	generated	by	other	systems.
Alternatively,	you	could	add	a	random	string	as	a	prefix	to	the	sequential	value.	This
would	eliminate	the	effects	of	the	lexicographic	order	of	the	source	file	on	the	data	load
process.

Keep	an	Appropriate	Number	of	Column	Value	Versions
HBase	enables	you	to	store	multiple	versions	of	a	column	value.	Column	values	are	time-
stamped	so	you	can	determine	the	latest	and	earliest	values.	Like	other	forms	of	version
control,	this	feature	is	useful	if	you	need	to	roll	back	changes	you	have	made	to	column
values.

	Tip

You	should	keep	as	many	versions	as	your	application	requirements	dictate,	but	no
more.	Additional	versions	will	obviously	require	more	storage.

HBase	enables	you	to	set	a	minimum	and	maximum	number	of	versions	(see	Figure	11.6).
It	will	not	remove	versions	if	it	would	leave	a	column	value	with	less	than	the	minimum
number	of	versions.	When	the	number	of	versions	exceeds	the	maximum	number	of
versions,	the	oldest	versions	are	removed	during	data	compaction	operations.

Figure	11.6	HBase	provides	for	column	value	versions.	The	number	of	versions
maintained	is	controlled	by	database	parameters,	which	can	be	changed	according	to

application	requirements.



Avoid	Complex	Data	Structures	in	Column	Values
You	might	recall	from	the	discussion	of	document	databases	that	embedded	objects	are
commonly	used	with	documents.	A	JSON	document	about	a	customer,	for	example,	might
contain	an	embedded	document	storing	address	information,	such	as	the	following:
Click	here	to	view	code	image

{

				“customer_id”:187693,

				“name”:	“Kiera	Brown”,

				“address”	:	{

													“street”	:	“1232	Sandy	Blvd.”,

													“city”	:		“Vancouver”,

													“state”	:		“Washington”,

													“zip”	:		“99121”

																},

			“first_order”	:	“01/15/2013”,

			“last_order”	:	”	06/27/2014”

}

	Tip

This	type	of	data	structure	may	be	stored	in	a	column	value,	but	it	is	not
recommended	unless	there	is	a	specific	reason	to	maintain	this	structure.	If	you	are
simply	treating	this	object	as	a	string	and	will	only	store	and	fetch	it,	then	it	is
reasonable	to	store	the	string	as	is.	If	you	expect	to	use	the	database	to	query	or
operate	on	the	values	within	the	structure,	then	it	is	better	to	decompose	the
structure.

Using	separate	columns	for	each	attribute	makes	it	easier	to	apply	database	features	to	the
attributes.	For	example,	creating	separate	columns	for	street,	city,	state,	and	zip	means	you
can	create	secondary	indexes	on	those	values.

Also,	separating	attributes	into	individual	columns	allows	you	to	use	different	column
families	if	needed.	Both	the	ability	to	use	secondary	indexes	and	the	option	of	separating
columns	according	to	how	they	are	used	can	lead	to	improved	database	performance.

As	you	can	see	from	this	discussion	of	guidelines	for	table	design,	there	are	a	number	of
factors	to	consider	when	working	with	column	family	databases.		One	of	the	most
important	considerations	with	regard	to	performance	is	indexing.

Guidelines	for	Indexing
Indexes	allow	for	rapid	lookup	of	data	in	a	table.	For	example,	if	you	want	to	look	up
customers	in	a	particular	state,	you	could	use	a	statement	such	as	the	following	(in
Cassandra	query	language,	CQL):

SELECT

				fname,	lname

FROM

				customers

WHERE

					state	=	‘OR’;



A	database	index	functions	much	like	the	index	in	a	book.	You	can	look	up	an	entry	in	a
book	index	to	find	the	pages	that	reference	that	word	or	term.	Similarly,	in	column	family
databases,	you	can	look	up	a	column	value,	such	as	state	abbreviation,	to	find	rows	that
reference	that	column	value.	In	many	cases,	using	an	index	allows	the	database	engine	to
retrieve	data	faster	than	it	otherwise	would.

It	is	helpful	to	distinguish	two	kinds	of	indexes:	primary	and	secondary.	Primary	indexes
are	indexes	on	the	row	keys	of	a	table.	They	are	automatically	maintained	by	the	column
family	database	system.	Secondary	indexes	are	indexes	created	on	one	or	more	column
values.	Either	the	database	system	or	your	application	can	create	and	manage	secondary
indexes.	Not	all	column	family	databases	provide	automatically	managed	secondary
indexes,	but	you	can	create	and	manage	tables	as	secondary	indexes	in	all	column	family
database	systems.

When	to	Use	Secondary	Indexes	Managed	by	the	Column	Family
Database	System
As	a	general	rule,	if	you	need	secondary	indexes	on	column	values	and	the	column	family
database	system	provides	automatically	managed	secondary	indexes,	then	you	should	use
them.	The	alternative,	maintaining	tables	as	indexes,	is	described	in	the	next	section.

The	primary	advantage	of	using	automatically	managed	secondary	indexes	is	they	require
less	code	to	maintain	than	the	alternative.	In	Cassandra,	for	example,	you	could	create	an
index	in	CQL	using	the	following	statement:
Click	here	to	view	code	image

CREATE	INDEX	state	ON	customers(state);

Cassandra	will	then	create	and	manage	all	data	structures	needed	to	maintain	the	index.	It
will	also	determine	the	optimal	use	of	indexes.	For	example,	if	you	have	an	index	on	state
and	last	name	column	values	and	you	queried	the	following,	Cassandra	would	choose
which	index	to	use	first:

SELECT

				fname,	lname

FROM

				customers

WHERE

				state	=	‘OR’

AND

				lname	=	‘Smith’

Typically,	the	database	system	will	use	the	most	selective	index	first.	For	example,	if	there
are	10,000	customers	in	Oregon	and	1,500	customers	with	the	last	name	Smith,	then	it
would	use	the	lname	secondary	index	first.	It	might	then	use	the	state	index	to
determine,	which,	if	any,	of	the	1,500	customers	with	the	last	name	Smith	are	in	Oregon.

The	automatic	use	of	secondary	indexes	has	another	major	advantage	because	you	do	not
have	to	change	your	code	to	use	the	indexes.	Imagine	you	built	an	application	according	to
the	query	requirements	of	your	users	and	over	time	those	requirements	change.	Now,	your
application	has	to	generate	a	report	based	on	state	and	last	name	instead	of	just	state.

You	could	create	a	secondary	index	on	the	last	name	column	and	the	database	system



would	automatically	use	it	when	appropriate.	As	you	will	see	in	the	next	section,	the	tables
as	indexes	method	requires	changes	to	your	code.
There	are	times	when	you	should	not	use	automatically	managed	indexes.	Avoid,	or	at
least	carefully	test,	the	use	of	indexes	in	the	following	cases:

•	There	is	a	small	number	of	distinct	values	in	a	column.

•	There	are	many	unique	values	in	a	column.

•	The	column	values	are	sparse.

When	the	number	of	distinct	values	in	a	column	(known	as	the	cardinality	of	the	column)
is	small,	indexes	will	not	help	performance	much—it	might	even	hurt	(see	Figure	11.7).
For	example,	if	you	have	a	column	with	values	Yes	and	No,	an	index	will	probably	not
help	much,	especially	if	there	are	roughly	equal	numbers	of	each	value.

Figure	11.7	Columns	with	few	distinct	values	are	not	good	candidates	for	secondary
indexes.

At	the	other	end	of	the	cardinality	spectrum	are	columns	with	many	distinct	values,	such
as	street	addresses	and	email	addresses	(see	Figure	11.8).	Again,	automatically	managed
indexes	may	not	help	much	here	because	the	index	will	have	to	maintain	so	much	data	it
could	take	more	time	to	search	the	index	and	retrieve	the	data	than	to	scan	the	tables	for
the	particular	value.



Figure	11.8	Rows	with	too	many	distinct	values	are	also	not	good	candidates	for
indexes.

In	cases	where	many	of	the	rows	do	not	use	a	column,	a	secondary	index	may	not	help.
For	example,	if	most	of	your	customers	are	in	the	United	States,	then	their	addresses	will
include	a	value	in	the	state	column.	For	those	customers	who	live	in	Canada,	they	will
have	values	in	the	province	column	instead	of	in	the	state	column.	Because	most	of	your
customers	are	in	the	United	States,	the	province	column	will	have	sparse	data.	An	index
will	not	likely	help	with	that	column	(see	Figure	11.9).



Figure	11.9	Sparsely	populated	columns	should	not	be	indexed.

	Note

If	you	are	not	sure	whether	indexes	will	help,	test	their	use	if	possible.	Be	sure	to
use	realistically	sized	test	data.	If	you	create	test	data	yourself,	try	to	ensure	it	has
the	same	range	of	values	and	distribution	of	values	that	you	would	see	in	real	data.
If	your	test	data	varies	significantly	in	size	or	distribution,	your	results	might	not	be
informative	for	your	actual	use	case.

A	second	approach	to	indexing	is	to	build	and	manage	indexes	yourself	using	tables	as
indexes.

When	to	Create	and	Manage	Secondary	Indexes	Using	Tables
If	your	column	family	database	system	does	not	support	automatically	managed	secondary
indexes	or	the	column	you	would	like	to	index	has	many	distinct	values,	you	might	benefit
from	creating	and	managing	your	own	indexes.

Indexes	created	and	managed	by	your	application	use	the	same	table,	column	family,	and
column	data	structures	used	to	store	your	data.	Instead	of	using	a	statement	such	as
CREATE	INDEX	to	make	data	structures	managed	by	the	database	system,	you	explicitly
create	tables	to	store	data	you	would	like	to	access	via	the	index.



Let’s	return	to	the	customer	and	product	database.	Your	end	users	would	like	to	generate
reports	that	list	all	customers	who	bought	a	particular	product.	They	would	also	like	a
report	on	particular	products	and	which	customers	bought	them.

In	the	first	situation,	you	would	want	to	quickly	find	information	about	a	product,	such	as
its	name	and	description.	The	existing	product	table	meets	this	requirement.	Next,	you
would	want	to	quickly	find	all	customers	who	bought	that	product.	A	time-efficient	way	to
do	this	is	to	keep	a	table	that	uses	the	product	identifier	as	the	row	key	and	uses	customer
identifiers	as	column	names.	The	column	values	can	be	used	to	store	additional
information	about	the	customers,	such	as	their	names.	In	the	example	shown	in	Figure
11.10,	the	necessary	data	is	stored	in	the	Cust	_	by	_	Prod	table.

Figure	11.10	Example	of	tables	as	indexes	method.

A	similar	approach	works	for	the	second	report	as	well.	To	list	all	products	purchased	by	a
customer,	you	start	with	the	customer	table	to	find	the	customer	identifier	and	any
information	about	the	customer	needed	for	the	report,	for	example,	address,	credit	score,
last	purchase	date,	and	so	forth.	Information	about	the	products	purchased	is	found	in	the
Prod	_	by	_	Cust	table	shown	in	Figure	11.10.



	Tip

Using	tables	as	secondary	indexes	will,	of	course,	require	more	storage	than	if	no
additional	tables	were	used.	The	same	is	the	case	when	using	column	family
database	systems	to	manage	indexes.	In	both	cases,	you	are	trading	additional
storage	space	for	better	performance.

When	using	tables	as	indexes,	you	will	be	responsible	for	maintaining	the	indexes.	You
have	two	broad	options	with	regard	to	the	timing	of	updates.	You	could	update	the	index
whenever	there	is	a	change	to	the	base	tables,	for	example,	when	a	customer	makes	a
purchase.	Alternatively,	you	could	run	a	batch	job	at	regular	intervals	to	update	the	index
tables.

Updating	index	tables	at	the	same	time	you	update	the	base	tables	keeps	the	indexes	up	to
date	at	all	times.	This	is	a	significant	advantage	if	the	reports	that	use	the	index	table	could
be	run	at	any	time.	A	drawback	of	this	approach	is	that	your	application	will	have	to
perform	two	write	operations,	one	to	the	base	table	and	one	to	the	index	table.	This	could
lead	to	longer	latencies	during	write	operations.

Updating	index	tables	with	batch	jobs	has	the	advantage	of	not	adding	additional	work	to
write	operations.	The	obvious	disadvantage	is	that	there	is	a	period	of	time	when	the	data
in	the	base	tables	and	the	indexes	is	out	of	synchronization.	This	might	be	acceptable	in
some	cases.	For	example,	if	the	reports	that	use	the	index	tables	only	run	at	night	as	part	of
a	larger	batch	job,	then	the	index	tables	could	be	updated	just	prior	to	running	the	report.
Your	reporting	requirements	should	guide	your	choice	of	update	strategy	(see	Figure
11.11).



Figure	11.11	(a)	Updating	an	index	table	during	write	operations	keeps	data
synchronized	but	increases	the	time	needed	to	complete	a	write	operation.	(b)	Batch
updates	introduce	periods	of	time	when	the	data	is	not	synchronized,	but	this	may	be

acceptable	in	some	cases.

Tools	for	Working	with	Big	Data
NoSQL	database	options,	such	as	key-value,	document,	and	graph	databases,	are	used
with	a	wide	range	of	applications	with	varying	data	sizes.	Column	family	databases
certainly	could	be	used	with	small	data	sets,	but	other	database	types	are	probably	better
options.

	Note

If	you	find	yourself	working	with	Apache	HBase	or	Cassandra,	two	popular	column
family	databases,	you	are	probably	dealing	with	Big	Data.

The	term	Big	Data	does	not	have	a	precise	definition.	Informally,	data	sets	that	are	too
large	to	efficiently	store	and	analyze	in	relational	databases	are	considered	Big	Data.
Internet	search	companies,	such	as	Yahoo!,	found	early	that	relational	databases	would	not
meet	the	needs	of	a	web	search	service.	They	went	on	to	create	the	Hadoop	platform,
which	is	now	an	Apache	project	with	broad	community	support.

A	more	formal	and	commonly	used	definition	is	due	to	the	Gartner	research	group.1



Gartner	defines	Big	Data	as	high	velocity,	high	volume,	and/or	high	variety.	Velocity
refers	to	the	speed	at	which	data	is	generated	or	changed.	Volume	refers	to	the	size	of	the
data.	Variety	refers	to	the	range	of	data	types	and	the	scope	of	information	included	in	the
data.

1.	Laney	Douglas.	“The	Importance	of	‘Big	Data’:	A	Definition.”	http://www.gartner.com/resId=2057415.

A	database	with	information	about	weather,	traffic,	population,	and	cell	phone	use	must
contend	with	large	volumes	of	rapidly	generated	data	about	different	entities	and	in
different	forms.	A	column	family	database	would	be	a	good	option	for	such	a	database.

Databases	are	designed	to	store	and	retrieve	data,	and	they	perform	these	operations	well.
There	are,	however,	a	number	of	supporting	and	related	tasks	that	are	usually	required	to
get	the	most	out	of	your	database.	These	tasks	include

•	Extracting,	transforming,	and	loading	data	(ETL)

•	Analyzing	data

•	Monitoring	database	performance

Innovative	designers	and	developers	created	NoSQL	databases	to	address	an	emerging
need.	Similarly,	a	wide	community	of	designers	and	developers	has	created	tools	to
perform	additional	operations	required	to	support	Big	Data	services.

Extracting,	Transforming,	and	Loading	Big	Data
Moving	large	amounts	of	data	is	challenging	for	several	reasons,	including

•	Insufficient	network	throughput	for	the	volume	of	data

•	The	time	required	to	copy	large	volumes	of	data

•	The	potential	for	corrupting	data	during	transmission

•	Storing	large	amounts	of	data	at	the	source	and	target

Data	warehousing	developers	have	faced	these	same	problems	for	decades,	and	the
challenges	have	gotten	only	more	difficult	with	Big	Data.	There	are	many	ETL	tools
available	for	data	warehouse	developers.	Scaling	ETL	to	Big	Data	volumes	and	variety
requires	attention	to	factors	that	are	not	common	to	smaller	data	warehouse
implementations.

Examples	of	ETL	tools	for	Big	Data	include

•	Apache	Flume

•	Apache	Sqoop

•	Apache	Pig

Each	of	these	addresses	particular	needs	in	Big	Data	ETL	and,	like	HBase,	is	part	of	the
Hadoop	ecosystem	of	tools.

Apache	Flume	is	designed	to	move	large	amounts	of	log	data,	but	it	can	be	used	for	other
types	of	data	as	well.	It	is	a	distributed	system,	so	it	has	many	of	the	benefits	you	have
probably	come	to	expect	from	such	systems:	reliability,	scalability,	and	fault	tolerance.	It

http://www.gartner.com/resId=2057415


uses	a	streaming	event	model	to	capture	and	deliver	data.	When	an	event	occurs,	such	as
data	is	written	to	a	log	file,	data	is	sent	to	Flume.	Flume	sends	the	data	through	a	channel,
which	is	an	abstraction	for	delivering	the	data	to	one	or	more	destinations.

Apache	Sqoop	works	with	relational	databases	to	move	data	to	and	from	Big	Data	sources,
such	as	the	Hadoop	file	system	and	to	the	HBase	column	family	database.	Sqoop	also
allows	developers	to	run	massively	parallel	computations	in	the	form	of	MapReduce	jobs.

	MapReduce	is	described	in	more	detail	in	the	“Tools	for	Analyzing	Big	Data”
section,	later	in	this	chapter.

Apache	Pig	is	a	data	flow	language	that	provides	a	succinct	way	to	transform	data.	The
programming	language,	known	as	Pig	Latin,	has	high-level	statements	for	loading,
filtering,	aggregating,	and	joining	data.	Pig	programs	are	translated	into	MapReduce	jobs.

Analyzing	Big	Data
One	of	the	reasons	companies	and	other	organizations	collect	Big	Data	is	that	such	data
holds	potentially	valuable	insights.	That	is,	someone	can	glean	those	insights	from	all	the
data.	There	are	many	ways	to	analyze	data,	look	for	patterns,	and	otherwise	extract	useful
information.	Two	broad	disciplines	are	useful	here:	statistics	and	machine	learning.

Describing	and	Predicting	with	Statistics

Statistics	is	the	branch	of	mathematics	that	studies	how	to	describe	large	data	sets,	also
known	as	populations	in	statistics	parlance,	and	how	to	make	inference	from	data.
Descriptive	statistics	are	particularly	useful	for	understanding	the	characteristics	of	your
data.

	Note

Something	as	simple	as	an	average	and	a	standard	deviation,	which	is	a	measure	of
the	spread	in	your	data,	can	give	you	a	useful	picture	of	your	data,	especially	when
comparing	it	with	other,	related	data.

Figure	11.12	shows	an	example	of	the	dollar	value	of	average	orders	in	the	months	of
November	and	December.	Notice	that	in	November,	the	average	was	lower	than	in
December	and	there	was	more	variation	in	the	size	of	orders.	December	orders	have	a
higher	average	and	less	variation.	Perhaps	last-minute	holiday	shoppers	had	to	purchase	as
much	as	possible	from	one	retailer	in	order	to	finish	their	shopping.



Figure	11.12	Descriptive	statistics	help	us	understand	the	composition	of	our	data	and
how	it	compares	with	other,	related	data	sets.

Predictive,	or	inferential,	statistics	is	the	study	of	methods	for	making	predictions	based	on
data	(see	Figure	11.13).	For	example,	if	the	average	December	order	has	been	increasing
by	1%	each	year	for	the	past	10	years,	you	might	predict	that	this	year’s	December
average	will	increase	by	1%	as	well.	This	is	a	trivial	example,	but	predictive	statistics	can
be	used	for	much	more	complex	problems	that	include	confounding	factors,	such	as
seasonal	variations	and	differences	in	data	set	sizes.

Figure	11.13	Predictive	statistics	help	us	make	inferences	about	new	situations	using
existing	data.

	Note

There	is	much	more	to	statistics	and	machine	learning	than	presented	here.	See	the
“References”	section	at	the	end	of	the	chapter	for	additional	resources	in	these
areas.

Finding	Patterns	with	Machine	Learning

Machine	learning	is	another	discipline	proving	useful	for	Big	Data	analysis.	Machine
learning	incorporates	methods	from	several	disciplines,	including	computer	science,
artificial	intelligence,	statistics,	linear	algebra,	and	others.	Many	services	might	be	taken
for	granted,	such	as	getting	personal	recommendations	based	on	past	purchases,	analyzing
the	sentiment	in	social	media	posts,	fraud	detection,	and	machine	translation,	but	all
depend	on	machine-learning	techniques.



One	area	of	machine	learning,	called	unsupervised	learning,	is	useful	for	exploring	large
data	sets.	A	common	unsupervised	learning	method	is	clustering.	Clustering	algorithms
are	helpful	when	you	want	to	find	nonapparent	structures	or	common	patterns	in	data.	For
example,	your	company	may	have	a	cluster	of	customers	who	tend	to	shop	late	at	night
and	early	in	the	week.	Marketing	professionals	can	devise	incentives	targeted	at	this
particular	group	to	increase	the	average	dollar	value	of	their	purchases.

Supervised	learning	techniques	provide	the	means	to	learn	from	examples.	A	credit	card
company,	for	example,	has	large	volumes	of	data	on	legitimate	credit	card	transactions	as
well	as	data	on	fraudulent	transactions.	There	are	many	ways	to	use	this	data	to	create
classifiers,	which	are	programs	that	can	analyze	transactions	and	classify	them	as	either
legitimate	or	fraudulent.

Tools	for	Analyzing	Big	Data

NoSQL	database	users	have	the	option	of	using	freely	available	distributed	platforms	for
building	their	own	tools	or	using	available	statistics	and	machine-learning	tools.	Four
widely	used	tools	are

•	MapReduce

•	Spark

•	R

•	Mahout

MapReduce	and	Spark	are	distributed	platforms.	R	is	a	widely	used	statistics	package,	and
Mahout	is	a	machine-learning	system	designed	for	Big	Data.

MapReduce	is	a	programming	model	used	for	distributed,	parallel	processing.	MapReduce
programs	consist	of	two	primary	components:	a	mapping	function	and	a	reducing
function.	The	MapReduce	engine	applies	the	mapping	function	to	a	set	of	input	data	to
generate	a	stream	of	output	values.	Those	values	are	then	transformed	by	a	reducing
function,	which	often	performs	aggregating	operations,	like	counting,	summing,	or
averaging	the	input	data.	The	MapReduce	model	is	a	core	part	of	the	Apache	Hadoop
project	and	is	widely	used	for	Big	Data	analysis.

Spark	is	another	distributed	computational	platform.	Spark	was	designed	by	researchers	at
the	University	of	California,	Berkley,	as	an	alternative	to	MapReduce.	Both	are	designed
to	solve	similar	types	of	problems,	but	they	take	different	approaches.	MapReduce	writes
much	data	to	disk,	whereas	Spark	makes	more	use	of	memory.	MapReduce	employs	a
fairly	rigid	computational	model	(map	operation	followed	by	reduce	operation),	whereas
Spark	allows	for	more	general	computational	models.

R	is	an	open	source	statistics	platform.	The	core	platform	contains	modules	for	many
common	statistical	functions.	Libraries	with	additional	capabilities	are	added	to	the	R
environment	as	needed	by	users.	Libraries	are	available	to	support	machine	learning	and
data	mining,	specialized	disciplines	(for	example,	aquatic	sciences),	visualization,	and
specialized	statistical	methods.	R	did	not	start	out	as	a	tool	for	Big	Data,	but	at	least	two
libraries	are	available	that	support	Big	Data	analysis.



Mahout	is	an	Apache	project	developing	machine-learning	tools	for	Big	Data.	Mahout
machine-learning	packages	were	originally	written	as	MapReduce	programs,	but	newer
implementations	are	using	Spark.	Mahout	is	especially	useful	for	recommendations,
classification,	and	clustering.

Tools	for	Monitoring	Big	Data
One	of	the	primary	responsibilities	of	system	administrators	is	ensuring	applications	and
servers	are	running	as	expected.	When	an	application	runs	on	a	cluster	of	servers	instead
of	a	single	server,	the	system	administrator’s	job	is	even	more	difficult.	General	cluster-
monitoring	tools	and	database-specific	tools	can	help	with	distributed	systems
management.	Examples	of	these	tools	are

•	Ganglia

•	Hannibal	for	HBase

•	OpsCenter	for	Cassandra

Ganglia	is	monitoring	tool	designed	for	high-performance	clusters.	It	is	not	specific	to	any
one	type	of	database.	It	uses	a	hierarchical	model	to	represent	nodes	in	a	cluster	and
manage	communication	between	nodes.	Ganglia	is	a	freely	available	open	source	tool.

Hannibal	is	an	open	source	monitoring	tool	for	HBase.	It	is	especially	useful	for
monitoring	and	managing	regions,	which	are	high-level	data	structures	used	in	distributing
data.	Hannibal	includes	visualization	tools	that	allow	administrators	to	quickly	assess	the
current	and	historical	state	of	data	distribution	in	the	cluster.

OpsCenter	is	another	open	source	tool,	but	it	is	designed	for	the	Cassandra	database.
OpsCenter	gives	system	administrators	a	single	point	of	access	to	information	about	the
state	of	the	cluster	and	jobs	running	on	the	cluster.

Summary
Column	family	databases	are	designed	for	large	volumes	of	data.	They	are	flexible	in
regard	to	the	type	of	data	stored	and	the	structure	of	schemas.	Although	you	will	find	a
good	amount	of	overlap	in	terminology	between	relational	database	and	column	family
databases,	the	similarity	is	only	superficial.	Column	family	databases	optimize	storage	by
using	efficient	data	structures	for	sparse,	multidimensional	data	sets.

To	get	the	most	out	of	your	column	family	database,	it	is	important	to	work	with,	and	not
against,	the	data	structures	and	processes	that	implement	the	column	family	database.
Guidelines	outlined	in	this	chapter	can	help	when	designing	tables,	column	families,	and
columns.

The	discussion	of	indexes	demonstrates	a	common	choice	developers	and	designers	face:
Which	is	more	important,	time	or	space?	When	time—as	in	query	response	time—is
important,	use	indexes.	Column	family	databases	automatically	index	on	row	keys.	When
you	need	secondary	indexes	on	column	values	and	your	database	system	does	not	support
them,	you	can	implement	your	own	indexes	using	tables.	There	are	some	disadvantages	to
this	approach	compared	with	database-supported	secondary	indexes,	but	the	benefits	often
outweigh	the	disadvantages.



If	you	find	yourself	using	a	column	family	database,	you	are	probably	working	with	Big
Data.	It	helps	to	use	tools	designed	specifically	for	moving,	processing,	and	managing	Big
Data	and	Big	Data	systems.

Case	Study:	Customer	Data	Analysis
Chapter	1,	“Different	Databases	for	Different	Requirements,”	introduced	TransGlobal
Transport	and	Shipping	(TGTS),	a	fictitious	transportation	company	that	coordinates	the
movement	of	goods	around	the	globe	for	businesses	of	all	sizes.	Chapter	8,	“Designing	for
Document	Databases,”	discussed	how	the	shipping	company	could	use	document
databases	to	help	manage	shipping	manifests.

The	following	case	study	applies	concepts	you	learned	in	this	chapter	to	show	how	TGTS
can	use	column	family	databases	to	store	and	analyze	large	volumes	of	data	about	its
customers	and	their	shipping	practices.

Understanding	User	Needs
Analysts	at	TGTS	would	like	to	understand	how	customer	shipping	patterns	are	changing.
The	analysts	have	several	hypotheses	about	why	some	customers	are	shipping	more	and
others	are	shipping	less.	They	would	like	to	have	a	large	data	store	with	a	wide	range	of
data,	including

•	All	shipping	orders	for	all	customers	since	the	start	of	the	company

•	All	details	kept	in	customer	records

•	News	articles,	industry	newsletters,	and	other	text	on	their	customers’	industries	and
markets

•	Historical	data	about	the	shipping	industry,	especially	financial	databases

The	variety	and	volume	of	data	put	this	project	into	the	Big	Data	category,	so	the
development	team	decides	to	use	a	column	family	database.	Next,	they	turn	their	attention
to	specific	query	requirements.

In	the	first	phase	of	the	project,	analysts	want	to	apply	statistical	and	machine-learning
techniques	to	get	a	better	sense	of	the	data.	Questions	include:	Are	there	clusters	of	similar
customers	or	shipping	orders?	How	does	the	average	value	of	order	vary	by	customer	and
by	time	of	year	the	shipment	is	made?	They	also	want	to	run	reports	on	specific	customers
and	shipping	routes.	The	queries	for	these	reports	are

•	For	a	particular	customer,	what	orders	have	been	placed?

•	For	a	particular	order,	what	items	were	shipped?

•	For	a	particular	route,	how	many	ships	used	that	route	in	a	given	time	period?

•	For	customers	in	a	particular	industry,	how	many	shipments	were	made	during	a
particular	period	of	time?

The	database	designers	have	a	good	sense	of	the	entities	that	need	to	be	modeled	in	the
first	phase	of	the	project.	The	column	store	database	will	need	tables	for



•	Customers

•	Orders

•	Ships

•	Routes

Customers	will	have	a	single	column	family	with	data	about	company	name,	addresses,
contacts,	industry,	and	market	categories.	Orders	will	have	details	about	items	shipped,
such	as	names,	descriptions,	and	weights.	Ships	will	have	details	about	the	capacity,	age,
maintenance	history,	and	other	features	of	the	vessels.	Routes	will	store	descriptive
information	about	routes	as	well	as	geographic	details	of	the	route.

In	addition	to	the	tables	for	the	four	primary	entities,	the	designers	will	implement	tables
as	indexes	for	the	following:

•	Orders	by	customer

•	Shipped	items	by	order

•	Ships	by	route

The	tables	as	indexes	allow	for	rapid	retrieval	of	data	as	needed	by	the	queries.	Because
these	reports	are	run	after	data	is	loaded	in	batch,	it	is	not	a	problem	if	the	base	tables	and
tables	as	indexes	are	not	synchronized	for	some	time	during	the	load.

In	addition,	because	some	of	the	queries	make	a	reference	to	a	period	of	time,	the
designers	will	implement	database-managed	indexes	on	data	columns.	This	will	allow
developers	and	users	to	issue	queries	and	filter	by	date	without	having	to	use	specialized
index	tables.

Review	Questions
1.	What	is	the	role	of	end-user	queries	in	column	family	database	design?

2.	How	can	you	avoid	performing	joins	in	column	family	databases?

3.	Why	should	entities	be	modeled	in	a	single	row?

4.	What	is	hotspotting,	and	why	should	it	be	avoided?

5.	What	are	some	disadvantages	of	using	complex	data	structures	as	a	column	value?

6.	Describe	three	scenarios	in	which	you	should	not	use	secondary	indexes.

7.	What	are	the	disadvantages	of	managing	your	own	tables	as	indexes?

8.	What	are	two	types	of	statistics?	What	are	they	each	used	for?

9.	What	are	two	types	of	machine	learning?	What	are	they	used	for?

10.	How	is	Spark	different	from	MapReduce?
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Part	V:	Graph	Databases



12.	Introduction	to	Graph	Databases

“They	told	me	computers	could	only	do	arithmetic.”

—GRACE	HOPPER
COMPUTER	SCIENTIST	AND	U.S.	NAVY	REAR	ADMIRAL

Topics	Covered	In	This	Chapter

Design	Criteria	of	Graph	Databases

Graphs	and	Network	Modeling

Advantages	of	Graph	Databases

In	this	chapter,	you	learn	about	a	specialized	type	of	database	known	as	a	graph	database.
A	graph	database	is	based	on	a	branch	of	mathematics	known	as	graph	theory.	The
techniques	in	this	area	of	mathematics	are	useful	for	analyzing	connections	and	links
between	entities.	As	you	shall	see,	these	techniques	are	quite	useful	in	many	data
management	areas.

What	Is	a	Graph?
Graphs	are	mathematical	objects	that	consist	of	two	parts:	vertices	and	edges.	Vertices	are
sometimes	called	nodes;	however,	this	chapter	avoids	this	term	to	prevent	confusion
because	the	term	node	can	also	refer	to	a	server	in	a	cluster.

Vertices	represent	things.	They	could	be	just	about	anything,	including

•	Cities

•	Employees	in	a	company

•	Proteins

•	Electrical	circuits

•	Junctions	in	a	water	line

•	Organisms	in	an	ecosystem

•	Train	stations

One	thing	that	is	common	with	all	of	these	things	is	that	they	have	relationships	to	other
things—often	in	the	same	category.	Cities	are	connected	to	other	cities	by	roads.
Employees	work	with	other	employees.	Proteins	interact	with	other	proteins.	Electrical
circuits	are	linked	to	other	electrical	circuits.	Junctions	in	water	lines	connect	to	other
junctions.	Organisms	in	ecosystems	are	predators	and	prey	of	other	organisms.	Train
stations	are	connected	to	other	train	stations	by	railway	lines.

The	links	or	connections	between	entities	are	represented	by	edges.	This	might	seem	like
an	obvious	representation	for	some	relations,	such	as	roads	and	railway	lines	between
cities.	However,	it	might	be	less	obvious	in	other	cases,	such	as	interacting	proteins	and
organisms	in	an	ecosystem.	The	flexible	nature	of	vertices	and	edges	makes	them	well
suited	to	model	both	concrete	and	abstract	relations	between	things.



Figure	12.1	shows	a	simple	graph	with	two	vertices	and	one	edge.

Figure	12.1	A	simple	graph	with	two	vertices	and	one	edge.

Some	relations	are	long	term	(for	example,	roads	between	cities),	whereas	others	are	short
term	(for	example,	a	person	passing	on	a	bacterial	infection	to	another	person).
Additionally,	some	are	physically	obvious,	whereas	others	have	no	physical	instantiation.
For	instance,	you	can	see	a	water	line,	but	the	manager-employee	relationship	in	a
business	has	no	physical	representation.

Graphs	and	Network	Modeling
At	first	glance,	it	is	obvious	that	graphs	are	good	for	modeling	networks.	However,	it
might	also	appear	that	networks	are	specialized	systems	and	not	generalized	to	a	wide
range	of	problems;	this	assumption	is	incorrect.	If	you	think	of	networks	as	things	and
relations	between	those	things,	you	can	start	to	see	networks	everywhere.	Here	are	several
examples	to	show	the	breadth	of	problems	you	can	tackle	by	modeling	systems	as	graphs.

Modeling	Geographic	Locations
Highways	and	railways	have	two	distinct	properties	of	interest	here:	They	are	designed	to
link	geographic	locations	and	they	last	a	long	time.

Geographic	locations	are	modeled	as	vertices.	These	could	be	cities,	towns,	or
intersections	of	highways.	Vertices	have	properties,	like	names,	latitudes,	and	longitudes.
In	the	case	of	towns	and	cities,	they	have	populations	and	size	measured	in	square	miles	or
kilometers.

Highways	and	railways	are	modeled	as	edges	between	two	vertices.	They	also	have
properties,	such	as	length,	year	built,	and	maximum	speed.

Highways	could	be	modeled	in	two	ways.	A	highway	could	be	a	single	edge	between	two
cities,	in	which	case	it	models	the	road	traffic	in	both	directions.	Alternatively,	a	graphical
representation	could	use	two	edges,	one	to	represent	travel	in	each	direction	(for	example,
east	to	west	and	west	to	east).	Which	is	the	“right	way”	to	model	highways?	It	depends.

If	your	goal	is	to	model	distance	and	approximate	travel	times	between	cities,	then	a	single
edge	might	be	sufficient.	If	you	are	interested	in	more	detailed	descriptions	of	highways,
such	as	direction,	number	of	lanes,	current	construction	areas,	and	locations	of	accidents,
then	using	two	edges	is	a	better	option.	When	you	use	two	edges	between	cities,	it	helps	to
indicate	which	direction	traffic	is	flowing.	This	is	done	with	a	type	of	edge	known	as	a
directed	edge	(see	Figure	12.2).



Figure	12.2	Highways	between	cities	are	modeled	as	vertices	and	edges.

Modeling	Infectious	Diseases
Infectious	diseases	can	spread	from	person	to	person.	For	example,	a	person	coughs	into
his	hand	and	bacteria	and	viruses	are	left	on	his	hand.	When	that	person	shakes	the	hand
of	someone	else,	there	is	a	chance	that	a	pathogen	is	transmitted	to	the	other	person,	who
may	eventually	become	infected.	The	spread	of	infectious	disease	is	readily	modeled	using
graphs.

Vertices	represent	people,	whereas	edges	represent	interactions	between	people,	such	as
shaking	hands	or	standing	in	close	proximity.	Both	the	vertices	and	the	edges	have
properties	that	help	represent	the	way	diseases	spread	(see	Figure	12.3).



Figure	12.3	The	spread	of	flu	and	other	infectious	diseases	is	modeled	as	graphs.

People	have	properties,	such	as	age	and	weight.	In	the	case	of	the	infectious	disease
model,	the	most	important	property	is	infection	status,	which	could	be

•	Not	infected	now,	never	infected	before

•	Not	infected	now,	infected	in	the	past

•	Infected	now

•	Immune

You	want	to	keep	track	of	these	properties	because	they	influence	the	probability	of
becoming	infected:

•	If	you	are	not	infected	now	and	never	have	been,	you	have	a	moderately	high
probability	of	becoming	infected	upon	contact	with	an	infected	person.

•	If	you	are	not	infected	now	but	were	infected	in	the	past,	you	have	probably	acquired
some	immunity	to	the	infectious	disease.	This	means	you	have	a	low	probability	of
getting	infected	upon	contact	with	an	infected	person.

•	If	you	are	infected	now	and	come	in	contact	with	another	infected	person,	you	will
both	continue	to	be	infected.	There	is	no	change.



•	If	you	are	immune,	either	because	of	some	natural	immunity	or	medical
immunization,	then	you	will	not	become	infected	upon	contact	with	another	infected
person.

The	state	of	an	infectious	disease	graph	would	change	frequently	as	people	interact;	some
people	become	infected	while	others	recover	from	the	disease.	As	you	can	see,	this	is
much	different	from	the	railways	and	highways	example,	which	is	fairly	static	in	terms	of
nodes	and	edges.	Properties	of	cities	and	roads	may	change	as	populations	change	and	car
accidents	occur.	The	infectious	disease	graph	changes	as	people	interact,	something	that
happens	frequently	and	rapidly.

Edges—or	in	this	case,	interactions	between	people—have	properties.	For	example,	there
is	a	probability	that	someone	will	transmit	a	disease	to	another	person	by	shaking	hands.
This	interaction	has	a	higher	rate	of	transmission	than	two	people	standing	in	close
proximity	but	not	touching.	Some	pathogens	require	physical	contact	to	spread	disease,
whereas	other	airborne	diseases	can	transmit	without	direct	contact.	These	are	the	kinds	of
properties	that	would	be	associated	with	edges.

Graphs	are	useful	for	more	than	modeling	railways	and	disease	transmission.	Sometimes
there	is	no	flow	or	transmission	of	objects	between	vertices.	Instead,	some	graphs	model
relations	between	things	that	persist	over	time.

Modeling	Abstract	and	Concrete	Entities
Graphs	are	well	suited	to	model	abstract	relations,	like	a	part-of	relation.	For	example,	the
state	of	Oregon	is	a	part	of	the	United	States,	and	the	province	of	Quebec	is	a	part	of
Canada.	The	city	of	Portland	is	located	in	Oregon,	and	the	city	of	Montreal	is	located	in
Quebec.	This	kind	of	hierarchical	relationship	is	modeled	in	a	special	type	of	graph	known
as	a	tree.

A	tree	has	a	special	vertex	call	the	root.	The	root	is	the	top	of	the	hierarchy.	Figure	12.4
shows	two	trees,	one	for	the	United	States	and	one	for	Canada.	Both	show	the	relationship
between	national,	regional,	and	local	government	entities.

Figure	12.4	Hierarchical	government	structures	modeled	as	graphs.



Notice	that	all	nodes	connect	up	to	only	one	other	vertex.	The	upper	vertex	is	often	called
the	parent	vertex,	and	the	lower	vertices	are	called	children	vertices.	Parent	vertices	can
have	multiple	children	vertices.

Trees	are	useful	for	modeling	hierarchical	relationships,	such	as	organization	charts,	as
well	as	part-of	relations,	such	as	parts	of	a	car,	as	shown	in	Figure	12.5.

Figure	12.5	Part-of	relations,	such	as	parts	of	a	car,	are	modeled	using	a	graph.

The	examples	so	far	have	focused	on	flows	or	relations	between	entities	of	the	same	type,
such	as	cities	and	governments;	graphs	can	also	model	relations	between	different	types	of
entities.



Modeling	Social	Media
Social	networking	sites	like	Facebook	and	LinkedIn	allow	users	to	interact	and
communicate	with	each	other	online.	They	have	extended	the	way	people	communicate	by
introducing	new	ways	of	interacting,	such	as	the	“Like”	button.	This	makes	it	quick	and
easy	to	indicate	you	like	or	appreciate	someone	else’s	post.

A	social	media	“like”	can	be	modeled	as	a	link	between	a	person	and	a	post.	Many	people
can	like	the	same	post,	and	people	can	have	multiple	posts	each	with	a	different	number	of
likes.	The	vertices	in	this	case	would	be	people	and	posts.	It	is	worth	pointing	out,	not	all
vertices	and	edges	have	to	be	of	the	same	type;	there	can	be	a	mix	of	different	types	in	a
single	graph.

Figure	12.6	shows	an	example	of	a	people-like-posts	graph.	You	will	notice,	unlike	many
other	graphs,	this	has	a	special	property.	The	edges	only	go	from	people	to	posts;	there	are
no	edges	between	people	or	between	posts.	This	is	a	special	type	of	graph	known	as	a
bipartite	graph,	and	it	is	useful	for	modeling	relations	between	different	types	of	entities.

Figure	12.6	Social	media	posts	and	likes	are	modeled	by	graphs.

As	these	examples	show,	graphs	are	capable	of	modeling	a	wide	range	of	entities	and
relations.	An	obvious	question	probably	comes	to	mind:	What	are	good	use	cases	for
graph	databases?

Advantages	of	Graph	Databases
Graph	databases	show	explicit	relations	between	entities.	Vertices	represent	entities,	and
they	are	linked	or	connected	by	edges.	In	relational	databases,	connections	are	not
represented	as	links.	Instead,	two	entities	share	a	common	attribute	value,	which	is	known
as	a	key.



Query	Faster	by	Avoiding	Joins
To	find	connections	or	links	in	a	relational	database,	you	must	perform	an	operation	called
a	join.	A	join	entails	looking	up	a	value	from	one	table	in	another	table.	For	example,	in
Figure	12.7,	the	table	Students	has	a	list	of	student	names	and	IDs.	The	student	ID	is	also
used	in	the	table	Enrollment	to	indicate	a	student	is	enrolled	in	a	course.	To	list	all	of	the
courses	a	student	is	enrolled	in,	you	need	to	perform	a	join	between	two	tables.	This	can
be	time	consuming	when	using	join	operations	frequently	on	large	tables.

Figure	12.7	Representing	a	student-course	relation	in	a	relational	database.

Alternatively,	you	can	represent	relations	between	a	student	and	a	course	using	a	graph,	as
shown	in	Figure	12.8.	The	edges	between	students	and	courses	allow	users	to	quickly
query	all	the	courses	a	particular	student	is	enrolled	in.

Figure	12.8	Representing	a	student-course	relation	in	a	graph	database.

The	infectious	disease	example	shows	even	more	dramatically	how	graphs	can	help	avoid
joins.	Figure	12.9	shows	a	relational	table	with	information	about	people	and	their	state	of
infection.	It	also	shows	a	table	indicating	interactions	between	people.



Figure	12.9	Finding	Patient	Zero	in	an	infectious	disease	investigation.

During	an	outbreak,	it	helps	to	understand	either	the	source	of	an	outbreak	or	the	first
person	infected	with	a	disease.	Suppose	you	know	Patient	A	was	infected	by	Patient	B,
and	Patient	B	was	infected	by	Patient	C,	and	so	on.	If	you	were	to	start	with	Patient	A,	you
would	need	to	perform	a	join	to	find	she	was	infected	by	Patient	B.	Next,	you	would	need
to	query	the	interaction	table	to	find	out	Patient	C	had	infected	Patient	B.	The	process
would	continue	until	you	found	the	person	who	was	not	infected	by	someone	else	(that	is,
Patient	Zero,	or	the	index	case	in	epidemiological	parlance).

	Tip

In	a	graph	database,	instead	of	performing	joins,	you	follow	edges	from	vertex	to
vertex.	This	is	a	much	simpler	and	faster	operation.



Fun	with	Graphs

Graphs	have	even	made	their	way	into	popular	entertainment.	Take	the	board	game
Pandemic	from	Z-Man	Games,	for	instance.	In	Pandemic,	players	work	together	to
suppress	and	eradicate	four	different	infectious	diseases,	represented	by	colored	plastic
blocks.	The	game	board	displays	numerous	major	cities	across	the	world,	and	each	city
possesses	between	two	and	six	lines	connecting	it	to	another	city.	Each	line	represents	a
pathway	for	transmission	of	a	given	disease.	Throughout	the	game,	players	utilize	unique
powers	assigned	to	them	at	the	beginning	of	the	game	to	remove	the	colored	blocks	from
the	board.

As	you	can	see,	Pandemic’s	gameplay	takes	place	within	a	graphical	model.	Cities	act	as
the	vertices,	whereas	the	lines	serve	as	edges.	You	may	also	attribute	certain	properties	to
the	vertices	and	edges.	For	instance,	each	city	has	a	certain	number	of	lines	connecting	it
to	other	cities,	as	well	as	a	level	of	infection,	represented	by	the	number	of	colored	blocks
on	a	city.	In	this	case,	properties	of	the	edges	are	more	abstract.	They	include	whether	or
not	the	lines	connect	two	infected	cites,	two	healthy	cities,	or	one	infected	city	and	one
healthy	city.

Simplified	Modeling
Working	with	graph	databases	can	simplify	the	modeling	process.	When	you	work	with
relational	databases,	you	typically	start	by	modeling	the	main	entities	in	your	domain.	In
the	case	of	social	media,	this	could	be	people	and	posts.	In	the	case	of	infectious	diseases,
the	main	entity	is	just	people.	When	you	start	to	model	information	about	interactions,	it
can	start	to	get	more	complicated.

For	example,	in	the	social	media	area,	many	people	may	like	a	post	and	a	post	may	be
liked	by	many	people.	This	is	known	as	a	many-to-many	relation,	which	is	modeled	as
another	table,	as	shown	in	Figure	12.10.

Figure	12.10	Modeling	many-to-many	relations	in	a	relational	database.

In	a	graph	database,	there	is	no	need	to	create	tables	to	model	many-to-many	relations;
instead,	they	are	explicitly	modeled	using	edges.



Multiple	Relations	Between	Entities
Using	multiple	types	of	edges	allows	database	designers	to	readily	model	multiple
relations	between	entities.	This	is	particularly	useful	when	modeling	transportation	options
between	entities.	For	example,	a	transportation	company	might	want	to	consider	road,	rail,
and	air	transportation	between	cities	(see	Figure	12.11).	Each	has	different	properties,	such
as	time	to	deliver,	cost,	and	government	regulations.

Figure	12.11	Modeling	multiple	types	of	relations	in	a	graph	database.

Multiple	relations	can	be	modeled	in	relational	databases,	but	they	are	explicit	and	easy	to
understand	when	using	a	graph	database.

Summary
Interactions	and	relations	between	entities	are	commonplace.	Graph	theory	provides	a
solid	foundation	for	building	graph	databases	and	analyzing	relations	between	entities.	As
the	examples	in	this	chapter	show,	the	power	of	graph	theory	can	be	applied	to	a	wide
range	of	problems.	The	next	chapter	introduces	additional	terms	and	concepts	that	will	be
useful	for	analyzing	graph	data.

Review	Questions
1.	What	are	the	two	components	of	a	graph?

2.	List	at	least	three	sample	entities	that	can	be	modeled	as	vertices.

3.	List	at	least	three	sample	relations	that	can	be	modeled	as	edges.

4.	What	properties	could	you	associate	with	a	vertex	representing	a	city?

5.	What	properties	could	you	associate	with	an	edge	representing	a	highway	between
two	cities?

6.	Epidemiologists	use	graphs	to	model	the	spread	of	infection.	What	do	vertices
represent?	What	do	edges	represent?

7.	Give	an	example	of	a	part-of	hierarchy.

8.	How	do	graph	databases	avoid	joins?



9.	How	is	a	person-likes-post	graph	different	from	other	graphs	used	as	examples	in
this	chapter?

10.	Give	an	example	of	a	business	application	that	would	use	multiple	types	of	edges
(relations)	between	vertices.

References
Easley,	David,	and	Jon	Kleinberg.	Networks,	Crowds,	and	Markets:	Reasoning	About	a
Highly	Connected	World.	Cambridge,	England:	Cambridge	University	Press,	2010.

Robinson,	Ian,	Jim	Webber,	and	Emil	Eifrem.	Graph	Databases.	Sebastopol,	CA:
O’Reilly	Media,	Inc.,	2013.

Trudeau,	Richard	J.	Introduction	to	Graph	Theory.	Mineola,	NY:	Courier	Dover
Publications,	2013.



13.	Graph	Database	Terminology

“If	the	industrial	age	was	about	building	things,	the	social	era	is	about
connecting	things,	people	and	ideas.”

—NILOFER	MERCHANT
FOUNDER	AND	CEO,	RUBICON	CONSULTING

Topics	Covered	In	This	Chapter

Elements	of	Graphs

Operations	on	Graphs

Properties	of	Graphs	and	Nodes

Types	of	Graphs

A	graph	is	a	fairly	abstract	concept.	It	includes	two	basic	components:	vertices	and	edges.
Even	with	such	a	simple	model,	graphs	are	suitable	for	modeling	a	number	of	domain
areas.	This	forms	the	foundation	for	their	usefulness	as	a	major	type	of	NoSQL	database.

When	you	consider	other	properties	of	graphs,	such	as	weights	on	edges,	and	operations
you	can	perform	on	graphs,	such	as	taking	an	intersection	of	two	graphs,	you	have	even
more	capabilities	from	a	modeling	perspective.

The	goal	of	this	chapter	is	to	define	terminology	about	graphs,	their	components,
operations	on	graphs,	and	properties	of	graphs.	Graphs	are	different	from	tables	and
documents	and	have	distinct	properties.	In	this	chapter,	you	learn	how	these	differences
enable	you	to	create	higher-level	abstractions	that	can	fit	well	with	some	problem
domains,	such	as	modeling	social	networks,	transportation	systems,	and	flow	networks.

Elements	of	Graphs
There	are	two	basic	building	blocks	of	graphs:	vertices	and	edges.	This	section	introduces
these	two	components.	Using	these	two	components,	you	can	construct	higher-level
structures	such	as	paths,	which	are	sets	of	connected	edges	and	vertices.	You	also	learn
about	loops,	a	special	type	of	path	that	sometimes	requires	specialized	processing.

Vertex
A	vertex	represents	an	entity	marked	with	a	unique	identifier—analogous	to	a	row	key	in	a
column	family	database	or	a	primary	key	in	a	relational	database.

	Note

Note	that	the	term	node	is	an	acceptable	replacement	for	vertex.	However,	this	book
only	uses	the	latter	to	avoid	confusion	with	the	use	of	node	to	describe	a	service
running	in	a	cluster.

A	vertex	can	represent	virtually	any	entity	that	has	a	relation	with	another	entity	(see
Figure	13.1).	Vertices	can	represent



•	People	in	a	social	network

•	Cities	connected	by	highways

•	Proteins	that	interact	with	other	proteins	in	the	body

•	Warehouses	in	a	company’s	distribution	network

•	Compute	servers	in	a	cluster

Figure	13.1	Vertices	are	used	to	represent	objects.

Vertices	can	have	properties.	For	example,	a	vertex	in	a	social	network	represents	a
person;	it	has	properties	like	a	name,	an	address,	and	a	birth	date.	Similarly,	a	graph	of	a
highway	system	uses	vertices	to	represent	cities.	Cities	have	populations,	a	longitude	and
latitude,	and	a	name,	and	are	located	in	a	geographic	region.

Edge
An	edge,	also	known	as	a	link	or	arc,	defines	relationships	between	vertices	or	objects
connecting	vertices	(see	Figure	13.2).	For	example,	in	a	family	tree	database,	vertices	can
represent	people,	whereas	the	edges	represent	the	relationships	between	them,	such	as
“daughter	of”	and	“father	of.”	In	the	case	of	a	highway	database,	cities	are	represented
with	vertices,	whereas	edges	represent	highways	linking	the	cities.



Figure	13.2	Edges	represent	relationships	between	vertices.

Much	like	vertices,	edges	have	properties.	For	example,	in	the	highway	database,	all	edges
will	have	properties,	such	as	distance,	speed	limit,	and	number	of	lanes.	In	the	family	tree
example,	edges	may	have	properties	such	as	indicating	whether	two	people	are	related	by
marriage,	adoption,	or	biology.

A	commonly	used	property	is	called	the	weight	of	an	edge	(see	Figure	13.3).	Weights
represent	some	value	about	the	relationship.	For	example,	in	the	case	of	highways,	weight
could	be	the	distance	between	cities.	In	a	social	network,	weight	could	be	an	indication	of
how	frequently	the	two	individuals	post	on	each	other’s	walls	or	comment	on	each	other’s
posts.	In	general,	weights	can	represent	cost,	distance,	or	another	measure	of	the
relationship	between	objects	represented	by	vertices.

Figure	13.3	Weighted	edges	have	a	numeric	property	associated	with	them.

	Note

Not	all	graphs	have	weights.	For	instance,	edge	weight	would	not	be	a	factor	in	a
family	tree	graph.

There	are	two	types	of	edges:	directed	and	undirected	(see	Figure	13.4).	Directed	edges



have	a	direction.	This	is	used	to	indicate	how	the	relationship,	as	modeled	by	the	edge,
should	be	interpreted.	For	example,	in	a	family	relations	graph,	there	is	a	direction
associated	with	a	“parent	of”	relation.	However,	direction	is	not	always	needed.	The
highway	graph,	for	instance,	could	be	undirected,	assuming	traffic	flows	both	ways.

Figure	13.4	Directed	and	undirected	edges	further	refine	properties	of	relationships
between	vertices	by	capturing	directionality.

Path
A	path	through	a	graph	is	a	set	of	vertices	along	with	the	edges	between	those	vertices	(see
Figure	13.5).	The	vertices	in	a	graph	are	all	different	from	each	other.	If	edges	are
directed,	the	path	is	a	directed	path.	If	the	graph	is	undirected,	the	paths	in	it	are
undirected	paths.



Figure	13.5	A	path	is	a	set	of	vertices	and	edges	through	a	graph.	The	vertices	and
edges	from	B	to	D	to	H	to	I	are	a	path	from	vertex	B	to	vertex	I.

Paths	are	important	because	they	capture	information	about	how	vertices	in	a	graph	are
related.	For	example,	in	a	family	graph,	a	person	is	an	ancestor	of	someone	else	only	if
there	is	a	directed	path	from	the	person	to	her	ancestor.	In	the	case	of	a	family	tree,	there	is
only	one	path	from	a	person	to	an	ancestor.	In	the	case	of	a	highway	graph,	there	may	be
multiple	paths	between	cities.

A	common	problem	encountered	when	working	with	graphs	is	to	find	the	least	weighted
path	between	two	vertices.	The	weight	can	represent	cost	of	using	the	edge,	time	required
to	traverse	the	edge,	or	some	other	metric	that	you	are	trying	to	minimize.

Loop
A	loop	is	an	edge	that	connects	a	vertex	to	itself	(see	Figure	13.6).	For	example,	in
biology,	proteins	can	interact	with	other	proteins.	Some	proteins	interact	with	other	protein
molecules	of	the	same	type.	A	loop	could	be	used	to	represent	this.	However,	like
direction,	it	might	not	make	sense	to	allow	loops	in	some	graphs.	For	instance,	a	loop
would	not	make	much	sense	in	a	family	tree	graph;	people	cannot	be	their	own	parents	or
children.



Figure	13.6	A	loop	is	an	edge	that	links	a	vertex	to	itself.

Operations	on	Graphs
Common	operations	performed	on	databases	include	inserting,	reading,	updating,	and
deleting	data.	You	do	this	in	graph	databases	as	well.	In	the	case	of	relational,	document,
and	column	family	databases,	you	often	perform	aggregations,	such	as	counting	or
summing	values	from	multiple	rows	in	the	database.

Graph	databases	are	also	well	suited	for	an	additional	set	of	operations.	Specifically,
operations	can	be	used	to	follow	paths	or	detect	repeating	patterns	in	relationships
between	vertices.

The	following	sections	cover	three	important	operations	unique	to	graphs:

•	Union	of	graphs

•	Intersection	of	graphs

•	Graph	traversal

Union	of	Graphs
The	union	of	graphs	is	the	combined	set	of	vertices	and	edges	in	a	graph.

Consider	two	graphs.	The	first	graph,	A,	has	vertices	1,	2,	3,	and	4,	and	the	edges	are	{1,
2},	{1,	3},	and	{1,	4}.	The	second	graph,	B,	has	vertices	1,	4,	5,	and	6,	and	edges	{1,	4},
{4,	5},	{4,	6},	and	{5,	6}.	Figure	13.7	shows	the	two	graphs.



Figure	13.7	Two	distinct	graphs,	A	and	B.

The	union	of	A	and	B	is	the	set	of	vertices	and	edges	from	both	graphs.	The	set	of	vertices
is	1,	2,	3,	4,	5,	and	6.	The	set	of	edges	is	{1,	2},	{1,	3},	{1,	4},	{4,	5},	{4,	6},	and	{5,	6}.
Because	the	two	graphs	share	common	vertices,	the	union	produces	a	single	graph	(see
Figure	13.8).

Figure	13.8	Union	of	graphs	A	and	B.

Intersection	of	Graphs
The	intersection	of	a	graph	is	the	set	of	vertices	and	edges	that	are	common	to	both	graphs
(see	Figure	13.9).	In	the	case	of	graphs	A	and	B,	the	intersection	of	graphs	includes
vertices	1	and	4,	as	well	as	the	edge	{1,	4}.

Figure	13.9	Intersection	of	graphs	A	and	B.



Graph	Traversal
Graph	traversal	is	the	process	of	visiting	all	vertices	in	a	graph	in	a	particular	way	(see
Figure	13.10).	The	purpose	of	this	is	usually	to	either	set	or	read	some	property	value	in	a
graph.

Figure	13.10	Graph	traversal	is	the	process	of	visiting	all	nodes	in	a	graph.

For	example,	you	might	create	a	graph	of	all	cities	in	the	country	that	you	would	like	to
visit;	cities	are	represented	by	vertices	and	highways	by	edges.	You	start	at	your	home	city
and	follow	the	highway	with	the	shortest	distance	out	of	all	edges	between	your	starting
city	and	another	city	on	the	graph.

After	you	visit	the	next	city,	you	drive	on	to	a	third	city.	The	third	city	is	the	city	that	is	the
shortest	distance	from	the	current	city,	unless	you	have	already	been	to	that	city.	For
instance,	you	have	already	been	to	your	home	city,	so	even	if	your	home	city	is	closest	to
the	second	city,	you	would	choose	the	next	shortest	route	to	an	adjacent	city.	In	this	way,
you	could	keep	moving	from	city	to	city	until	you	have	visited	all	cities.

Properties	of	Graphs	and	Nodes
Several	properties	of	graphs	and	nodes	are	useful	when	comparing	and	analyzing	graphs.
These	include

•	Isomorphisms

•	Order	and	Size

•	Degree

•	Closeness

•	Betweenness

As	you	will	see,	these	properties	are	useful	when	comparing	graphs	and	when	trying	to
identify	particularly	interesting	vertices	within	a	graph.



Isomorphism
Two	graphs	are	considered	isomorphic	if	for	each	vertex	in	the	first	graph,	there	is	a
corresponding	vertex	in	the	other	graph	(see	Figure	13.11).	In	addition,	for	each	edge
between	a	pair	of	vertices	in	the	first	graph,	there	is	a	corresponding	edge	between	the
corresponding	vertices	of	the	other	graph.

Figure	13.11	Example	of	two	isomorphic	graphs.

Graph	isomorphism	is	important	if	you	are	trying	to	detect	patterns	in	a	set	of	graphs.	In	a
large	social	network	graph,	there	may	be	repeating	patterns	with	interesting	properties.	For
example,	it	may	be	possible	to	detect	business	collaborators	by	examining	their	links	on	a
business	social	network.

Another	branch	of	study	that	makes	use	of	graphs	is	epidemiology,	or	the	study	of
infectious	diseases.	For	example,	an	epidemiologist	who	studies	flu	transmission	in	a	city
might	build	a	graph	of	individuals	and	their	connections	to	other	individuals.	Let’s	assume
that	they	can	collect	data	about	who	has	the	flu	at	any	point	in	time	and	they	want	to
determine	how	fast	it	spreads.

First,	the	flu	may	spread	faster	in	some	groups	than	others.	This	may	be	because	of	the
characteristics	of	the	individuals	involved,	or	it	could	be	because	of	patterns	of
interconnection	that	affect	the	rate	of	disease	spread.	If	epidemiologists	can	identify
patterns	associated	with	infection,	they	could	then	identify	other	individuals	by	finding
similar	patterns	and	target	them	for	intervention,	education,	and	so	on.

Order	and	Size
Order	and	size	are	measures	of	how	large	a	graph	is.	The	order	of	a	graph	is	the	number	of
vertices,	whereas	the	size	of	a	graph	is	the	number	of	edges	in	a	graph.

The	order	and	size	of	a	graph	are	important	to	understand	because	they	can	affect	the	time
and	space	required	to	perform	operations.	It	is	obvious	that	performing	a	union	or
intersection	on	a	small	graph	would	take	less	time	than	performing	the	same	operation	on
a	larger	graph.	It	is	also	easy	to	assume	that	traversing	a	small	graph	will	take	less	time
than	traversing	a	large	graph.

Some	problems	sound	simple	but	can	quickly	become	too	hard	to	solve	in	any	reasonable



amount	of	time.	Consider	a	clique,	which	is	a	set	of	vertices	in	a	graph	that	are	all
connected	to	each	other.	Finding	cliques	is	impractical	for	large	graphs.

Think	of	trying	to	find	the	largest	subset	of	people	in	a	social	network	that	know	each
other;	this	is	obviously	a	large	undertaking.	As	you	work	with	graphs	and	perform
operations	on	graphs,	consider	how	the	order	and	size	impact	the	time	it	takes	to	perform
operations.

Degree
Degree	is	the	number	of	edges	linked	to	a	vertex	and	is	one	way	to	measure	the
importance	of	any	given	vertex	in	a	graph.	Vertices	with	high	degrees	are	more	directly
connected	to	other	vertices	than	vertices	with	low	degrees.	Degree	is	important	when
addressing	problems	of	spreading	information	or	properties	through	a	network.

Consider	a	person	with	many	family	members	and	friends	that	he	sees	regularly;	that
person	would	have	high	degree.	What	if	that	person	contracts	the	flu?	It	is	easy	to	imagine
it	spreading	to	friends	and	family,	and	from	there	to	people	outside	of	the	initial	social
circle.	One	person	can	infect	many	people	if	he	has	many	connections.

As	another	example,	think	about	the	last	time	you	were	delayed	in	an	airport	because	of
bad	weather.	Delays	in	airports	with	high	degrees,	like	Chicago	and	Atlanta,	can	generate
ripple	effects	that	lead	to	delays	at	other	airports.

Closeness
Closeness	is	a	property	of	a	vertex	that	indicates	how	far	the	vertex	is	from	all	others	in
the	graph.

Closeness	is	an	important	measure	if	you	want	to	understand	the	spread	of	information	in
a	social	network,	an	infectious	disease	in	a	community,	or	movement	of	materials	in	a
distribution	network.

Vertices	with	high	closeness	values	can	reach	other	vertices	in	the	network	faster	than
vertices	with	smaller	closeness	values.	Marketers,	for	example,	might	want	to	target
people	in	a	social	network	with	high	closeness	values	to	get	the	word	out	about	a	new
product.	Information	will	spread	faster	in	the	network	if	the	marketer	starts	with	someone
with	a	high	closeness	value	than	with	someone	on	the	periphery	of	the	network.

Betweenness
In	addition	to	understanding	closeness,	it	is	sometimes	important	to	understand
betweenness.	Betweenness	is	a	measure	of	how	much	of	a	bottleneck	a	given	vertex	is.
Imagine	a	city	on	a	river	that	has	many	roads	but	only	one	bridge	(see	Figure	13.12).



Figure	13.12	Betweenness	helps	identify	bottlenecks	in	a	graph.

As	you	can	see	from	the	network,	there	are	many	ways,	or	paths,	to	move	from	one	vertex
to	another	on	the	west	side	of	the	network.	Similarly,	there	are	multiple	paths	to	get	from
one	vertex	to	another	on	the	east	side.	There	is	only	one	edge	that	connects	the	west	and
east	sides	of	the	city,	linking	vertices	1	and	2.

Both	vertices	1	and	2	will	have	high	betweenness	scores	as	they	form	a	bottleneck	in	the
graph.	If	vertex	1	or	2	were	removed,	it	would	leave	the	graph	disconnected.	However,	if
you	removed	nodes	4	or	9,	for	example,	you	could	still	move	between	any	of	the
remaining	nodes.

Betweenness	helps	identify	potentially	vulnerable	parts	of	a	network.	For	instance,	you
would	not	want	a	distribution	network	that	depended	on	one	bridge.	If	that	bridge	were
damaged	or	the	flow	of	traffic	were	disrupted,	you	would	not	be	able	to	move	materials	to
all	vertices	in	the	network.

Types	of	Graphs
Graphs	are	useful	for	modeling	structures	and	processes	in	many	different	domains.
Sometimes,	the	graphs	represent	relations	between	entities	such	as	people	or	cities.	In
other	cases,	graphs	represent	the	flow	of	material	or	objects	through	a	system,	such	as
water	flowing	through	a	municipal	water	system	or	trucks	on	a	highway.	This	section
describes	several	distinct	types	of	graphs	that	can	be	useful	for	your	modeling	need.	These
include

•	Undirected	and	directed	graphs

•	Flow	networks

•	Bipartite	graphs

•	Multigraphs

•	Weighted	graphs

Graphs	you	create	might	share	features	from	one	or	more	of	these	types.	For	example,	you
might	have	directed	and	weighted	graphs.	It	is	important	to	remember	that	these	types	are
not	mutually	exclusive.



Undirected	and	Directed	Graphs
An	undirected	graph,	shown	in	Figure	13.13(a),	is	one	in	which	the	edges	are	not	directed.
This	type	of	graph	is	used	for	modeling	relations	or	flows	where	direction	does	not	make
sense.	For	example,	you	can	model	couples	in	a	domestic	relationship	using	undirected
edges.

Figure	13.13	Undirected	(a)	and	directed	(b)	graphs.

Directed	graphs,	shown	in	Figure	13.13	(b),	are	graphs	with	directed	edges.	You	can
model	a	parent-child	relationship		with	directed	edges.

There	might	be	cases	in	which	some	edges	in	a	graph	are	directed	and	some	are	not.	For
example,	if	you	modeled	employees	in	a	business,	some	edges	could	represent	a	“reports
to”	relation	between	an	employee	and	a	manager.	This	would	use	a	directed	edge.	On	the
other	hand,	a	“works	with”	relation	among	peers	would	be	without	direction.	It	could	also
be	modeled	as	two	directional	edges.

	Refer	to	Chapter	14,	“Designing	for	Graph	Databases,”	to	learn	more	about
graph	database	design.

Flow	Network
A	flow	network	is	a	directed	graph	in	which	each	edge	has	a	capacity	and	each	vertex	has	a
set	of	incoming	and	outgoing	edges.	The	sum	of	the	capacity	of	incoming	edges	cannot	be
greater	than	the	sum	of	the	capacity	of	outgoing	edges.	The	two	exceptions	to	this	rule	are
source	and	sink	vertices.	Sources	have	no	inputs	but	do	have	outputs,	whereas	sinks	have
inputs	but	no	outputs.

Flow	networks	are	also	called	transportation	networks	(see	Figure	13.14).	Graph	databases
can	be	used	to	model	flow	networks,	like	road	systems	or	transportation	networks.	They
can	also	be	used	to	model	processes	with	continuous	flows,	such	as	a	network	of	storm
drains	that	take	in	rainwater	(source)	and	allow	it	to	flow	into	a	river	(sink).



Figure	13.14	Flow	networks	capture	information	about	capacities	of	edges	and	how
they	can	be	combined	using	vertices.

Bipartite	Graph
A	bipartite	graph,	or	bigraph,	is	a	graph	with	two	distinct	sets	of	vertices	where	each
vertex	in	one	set	is	only	connected	to	vertices	in	the	other	set	(see	Figure	13.15).

Figure	13.15	A	bipartite	graph	consists	of	two	subgroups	of	nodes.

Bipartite	graphs	are	useful	when	modeling	relationships	between	different	types	of
objects.	For	example,	one	set	of	vertices	might	represent	businesses	and	another	might
represent	people.	An	edge	between	a	given	person	and	a	business	appears	if	the	person
works	for	that	business.	Other	examples	include	teachers	and	students,	members	and
groups,	and	train	cars	and	trains.

Multigraph
A	multigraph	is	a	graph	with	multiple	edges	between	vertices	(see	Figure	13.16).	Let’s
take	a	shipping	company	as	an	example.



Figure	13.16	A	multigraph	is	used	to	represent	multiple	types	of	relations	between
vertices.

The	company	could	use	a	graph	database	for	determining	the	least	costly	way	to	ship
items	between	cities.	Multiple	edges	between	cities	could	represent	various	shipping
options,	such	as	shipping	by	truck,	train,	or	plane.	Each	edge	would	have	its	own
properties,	such	as	the	time	taken	to	transport	an	item	between	two	cities,	cost	per
kilogram	to	ship,	and	so	forth.

Weighted	Graph
A	weighted	graph	is	a	graph	in	which	each	edge	has	a	number	assigned	to	it.	The	number
can	reflect	a	cost,	a	capacity,	or	some	other	measure	of	an	edge.	This	is	commonly	used	in
optimization	problems,	such	as	finding	the	shortest	path	between	vertices.

One	way	to	find	the	shortest	path	is	known	as	Dijkstra’s	algorithm,	created	by	Edsger
Dijkstra.	Famous	for	his	contributions	to	software	design,	the	Dutch	scientist	actually
shunned	the	use	of	computers	in	his	own	work	for	many	years,	instead	opting	for
handwritten	manuscripts.

Dijkstra’s	algorithm	is	used	to	find	the	shortest	path	in	a	network.	This	is	ideal	for	routing
packets	on	the	Internet	or	finding	the	most	efficient	route	for	delivery	trucks.

The	algorithm	states	that	the	growth	rate	is	equal	to	the	number	of	vertices	squared;	this	is
one	of	those	algorithms	where	it	pays	to	understand	size.	Let’s	take	a	look	at	Table	13.1
for	an	illustration.

Table	13.1	Growth	Rate	Calculation	of	Dijkstra’s	Algorithm



As	you	can	see,	Dijkstra’s	algorithm	takes	time	proportional	to	the	number	of	vertices	in
the	network.	The	time	required	to	complete	Dijkstra’s	algorithm	increases	exponentially	as
the	number	of	vertices	increases.

Summary
Graphs	are	composed	of	two	simple	components:	vertices	and	edges.	This	simplicity
quickly	gives	way	to	a	broad	range	of	graph	properties	and	features	that	are	useful	for
modeling	a	number	of	phenomena.

Mathematicians	and	computer	scientists	have	developed	a	wide	array	of	algorithms	for
working	with	graphs.	This	combination	of	the	ability	to	model	many	domains	and	apply
general	algorithms	to	those	domains	makes	graphs	a	powerful	way	to	represent	data	in	a
NoSQL	database.

Review	Questions
1.	Define	a	vertex.

2.	Define	an	edge.

3.	List	at	least	three	examples	in	which	you	can	use	graphs	to	model	the	domains.

4.	Give	an	example	of	when	you	would	use	a	weighted	graph.

5.	Give	an	example	of	when	you	would	use	a	directed	graph.

6.	What	is	the	difference	between	order	and	size?

7.	Why	is	betweenness	sometimes	called	a	bottleneck	measure?

8.	How	would	an	epidemiologist	use	closeness	to	understand	the	spread	of	a	disease?

9.	When	would	you	use	a	multigraph?

10.	What	is	Dijkstra’s	algorithm	used	for?
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14.	Designing	for	Graph	Databases

“We	start	with	an	idea	which	is	then	translated	into	a	form,	a	structure.”

—LINDA	VON	DEURSEN
GRAPHIC	DESIGNER,	FACULTY	YALE	UNIVERSITY	OF	ART

Topics	Covered	In	This	Chapter

Getting	Started	with	Graph	Design

Querying	a	Graph

Tips	and	Traps	of	Graph	Database	Design

Case	Study:	Optimizing	Transportation	Routes

Graph	database	design	has	some	things	in	common	with	other	types	of	database	design,
but	it	has	distinct	characteristics	as	well.	This	chapter	delves	into	details	and	examples	of
designing	entity	and	relations	between	entities	along	with	a	description	of	two	different
ways	of	querying	graph	databases.

Graph	databases	have	some	unusual	characteristics.	Algorithms	that	run	in	reasonable
time	on	small	graphs	can	take	a	surprisingly	long	time	with	moderate	or	large	graphs.

Design	tips	are	included	in	this	chapter	to	help	you	avoid,	or	at	least	recognize	the
potential	for,	such	problems.	This	chapter	concludes	with	a	case	study	on	the	optimization
of	transportation	routes.

Getting	Started	with	Graph	Design
A	common	characteristic	of	NoSQL	databases	is	the	way	you	approach	design,	which	is
by	asking	what	kinds	of	queries	or	analysis	you	will	perform	on	the	data.	Graph	databases
are	well	suited	to	problem	domains	that	are	easily	described	in	terms	of	entities	and
relations	between	those	entities.

Entities	can	be	virtually	anything,	from	proteins	to	planets.	Of	course,	other	NoSQL
databases	and	relational	databases	are	well	suited	to	modeling	entities,	too.

What	makes	a	particular	problem	well	suited	for	a	graph	database?	A	number	of
characteristics.

Graph	database	applications	frequently	include	queries	and	analysis	that	involve

•	Identifying	relations	between	two	entities

•	Identifying	common	properties	of	edges	from	a	node

•	Calculating	aggregate	properties	of	edges	from	a	node

•	Calculating	aggregate	values	of	properties	of	nodes

Here	are	some	examples	of	each	of	these	types	of	queries:

•	How	many	hops	(that	is,	edges)	does	it	take	to	get	from	vertex	A	to	vertex	B?



•	How	many	edges	between	vertex	A	and	vertex	B	have	a	cost	that	is	less	than	100?

•	How	many	edges	are	linked	to	vertex	A?

•	What	is	the	centrality	measure	of	vertex	B?

•	Is	vertex	C	a	bottleneck;	that	is,	if	vertex	C	is	removed,	which	parts	of	the	graph
become	disconnected?

	Note

You	might	have	noticed	these	queries	are	different	from	queries	associated	with
document	and	column	family	databases.	There	is	less	emphasis	on	selecting	by
particular	properties,	for	example,	how	many	vertices	have	at	least	10	edges?
Similarly,	there	is	less	emphasis	on	aggregating	values	across	a	group	of	entities.
For	example,	in	a	column	family	database,	you	might	have	a	query	that	selects	all
customer	orders	from	the	Northeast	placed	in	the	last	month	and	sum	the	total	value
of	those	orders.	These	types	of	queries	can	be	done	in	graph	databases,	but	they	do
not	reflect	the	flexibility	and	new	ways	of	querying	offered	by	graph	databases.

The	queries	listed	above	are	fairly	abstract.	They	are	stated	in	the	terminology	used	by
computer	scientists	and	mathematicians	when	working	with	graphs.	When	it	comes	to
designing	graph	databases,	it	is	probably	better	to	start	with	queries	that	reflect	the
problem	domain.

Designing	a	Social	Network	Graph	Database
Imagine	you	are	starting	a	new	social	networking	site	designed	for	NoSQL	database
developers.	The	goal	is	to	support	the	NoSQL	development	community	by	providing	a
platform	for	sharing	tips,	asking	questions,	and	keeping	in	touch	with	others	working	on
similar	problems.	Let’s	assume	this	site	will	allow	for	developers	to

•	Join	and	leave	the	site

•	Follow	the	postings	of	other	developers

•	Post	questions	for	others	with	expertise	in	a	particular	area

•	Suggest	new	connections	with	other	developers	based	on	shared	interests

•	Rank	members	according	to	their	number	of	connections,	posts,	and	answers

The	model	will	start	simple	with	just	two	entities:	developers	and	posts.	You	can	always
add	more	later,	but	it	helps	to	flesh	out	the	relations	and	properties	of	a	small	number	of
entities	at	a	time.

Properties	of	developers	include

•	Name

•	Location

•	NoSQL	databases	used

•	Years	of	experience	with	NoSQL	databases



•	Areas	of	interest,	such	as	data	modeling,	performance	tuning,	and	security

Developers	will	be	asked	for	this	information	when	they	register	at	the	site.	Posts	have
several	properties	as	well,	such	as

•	Date	created

•	Topic	keywords

•	Post	type	(for	example,	question,	tip,	news)

•	Title

•	Body	of	post

The	application	will	automatically	assign	date	created	as	well	as	topic	keywords.	The
person	posting	the	message	will	fill	in	the	other	properties	(see	Figure	14.1).

Figure	14.1	Developers	and	posts	are	two	types	of	entities	in	the	NoSQL	social
network.

Next,	consider	the	relations	between	entities.	Entities	may	have	one	or	more	relations	to
other	entities.	Because	there	are	two	types	of	entities,	there	can	be	four	possible
combinations	of	entity-relation-entity:

•	Developer-relation-developer

•	Developer-relation-post

•	Post-relation-developer

•	Post-relation-post

The	term	relation	is	a	placeholder	in	the	preceding	list.	As	a	graph	database	designer,	one
of	your	first	tasks	is	to	identify	each	of	these	relations.



	Tip

It	helps	to	consider	all	possible	combinations	of	entities	having	relations	when	the
number	of	entity	types	is	small.	Some	of	the	combinations	may	not	be	relevant	to
the	types	of	queries	you	will	pose.	You	can	eliminate	them	from	consideration.	This
process	helps	reduce	the	chance	that	you	miss	a	relevant	relation	early	in	the	design
phase.

As	the	number	of	entities	grows,	you	might	want	to	focus	on	combinations	that	are
reasonably	likely	to	support	your	queries.

The	“follows”	relation	is	the	only	relation	between	developers	in	the	simple	model	(see
Figure	14.2).	If	Robert	Smith	follows	Andrea	Wilson,	then	Robert	will	see	all	of	Andrea’s
posts	when	he	logs	on	to	the	NoSQL	social	network.	The	site	designers	believe	the
followers	of	a	developer	might	be	interested	in	who	that	developer	follows	as	well.	For
example,	if	Andrea	follows	Charles	Vita,	then	Robert	should	see	Charles’s	posts	as	well.
You	can	imagine	adding	posts	from	the	developers	Charles	follows,	but	that	could	start	to
overwhelm	Robert’s	feed.

Figure	14.2	Sample	set	of	“follows”	relations	in	a	NoSQL	developer	social	network.

The	designers	do	not	have	to	decide	now	how	deep	of	a	path	to	pursue	looking	for	posts	to
show	to	Robert.	The	way	graph	databases	are	designed	makes	it	easy	to	alter	application
features	with	minor	changes	to	queries.	No	change	in	the	underlying	model	is	required.

The	relation	between	developers	and	posts	is	“created”;	that	is,	developers	create	posts.



This	implies	a	reverse	relationship;	that	is,	that	posts	are	“created	by”	developers.	There
are	two	ways	to	model	this:

•	A	designer	could	create	a	directed	edge	of	type	“created”	from	the	developer	vertex
to	the	post	vertex	and	another	directed	edge	from	the	post	to	the	developer	of	type
“created	by,”	as	shown	in	Figure	14.3(a).

Figure	14.3	Developer	and	post	with	two	directed	edges	(a);	one	edge	not	directed	(b).

•	Because	one	of	these	relations	always	implies	the	other,	you	can	avoid	using	two
directed	edges	by	using	a	single,	possibly	undirected,	edge,	as	shown	in	Figure
14.3(b).

Queries	Drive	Design	(Again)
There	is	no	one	correct	way	to	model	a	graph	database	for	all	possible	problems.	If	you
have	queries	that	frequently	involved	gathering	posts	and	then	looking	up	the	creators	of
those	posts,	it	makes	sense	to	have	a	created	by	relation.

By	creating	such	an	edge,	you	implement	a	direct	link	between	the	post	and	the	developer.
It	is	this	feature	that	allows	graph	database	designers	to	avoid	working	with	joins	to
retrieve	data	from	related	entities.	Following	edges	between	vertices	is	a	simple	and	fast
operation,	so	it	is	possible	to	follow	long	paths	or	a	large	number	of	paths	between
vertices	without	adversely	impacting	performance.

At	first	glance,	the	post-relation-post	may	not	appear	useful.	After	all,	posts	do	not	create
other	posts.	However,	there	is	no	rule	that	says	all	relations	between	entities	need	to	be	the
same	type.	In	fact,	one	of	the	powerful	features	of	graph	database	modeling	is	the	ability
to	use	different	types	of	relations.	For	example,	a	post	may	be	created	in	response	to
another	post.	This	is	particularly	useful	for	questions.

Imagine	that	Robert	posted	the	question:	Is	there	a	faster	way	than	Dijkstra’s	algorithm	to
find	the	shortest	path	(see	Figure	14.4)?	Andrea	and	Charles	might	each	reply	with	their
own	answers.	Robert	then	posts	another	question	to	clarify	his	understanding	of	Andrea’s
response.	Andrea	responds	with	additional	details.	Meanwhile,	Edith	Woolfe	adds
additional	details	to	Charles’s	post.	The	resulting	graph	of	posts	is	a	tree	with	Robert’s
initial	post	as	the	root	and	branches	that	follow	the	two	parts	of	the	conversation	thread.



Figure	14.4	A	conversation	thread	started	with	Robert	posting	a	question.

Let’s	return	the	queries	that	reference	vertices	and	edges	and	rewrite	them	in	terms	of	the
NoSQL	social	network	example.

As	Table	14.1	shows,	abstract	queries	map	to	useful	queries	about	graph	databases.	Some
queries	are	based	on	paths,	such	as	the	distance	between	two	nodes;	for	example,	“How
many	follows	relations	are	between	Developer	A	and	Developer	B?”	Other	queries	take
into	account	the	global	structure	of	the	graph,	such	as	“If	a	developer	left	the	social
network,	would	there	be	disconnected	groups	of	developers?”

Table	14.1	Mapping	from	Graph-Specific	Queries	That	Apply	to	Any	Graph	to	Queries
That	Apply	to	a	Social	Network	Graph

When	you	design	graph	databases,	you	start	with	domain-specific	queries.	Ultimately,	you
will	want	to	map	these	domain-specific	queries	to	graph-specific	queries	that	reference
vertices,	edges,	and	graph	measures,	like	centrality	and	betweenness.

When	you	have	your	domain-specific	queries	mapped	to	graph-specific	queries,	you	have
the	full	range	of	graph	query	tools	and	graph	algorithms	available	to	you	to	analyze	and
explore	your	data.



The	following	are	the	basic	steps	to	getting	started	with	graph	database	design:

•	Identify	the	queries	you	would	like	to	perform.

•	Identify	entities	in	the	graph.

•	Identify	relations	between	entities

•	Map	domain-specific	queries	to	more	abstract	queries	so	you	can	implement	graph
queries	and	use	graph	algorithms	to	compute	additional	properties	of	nodes.

Queries	drive	the	design	of	graph	databases.	The	next	sections	delve	into	details	about
how	to	perform	those	queries.

Querying	a	Graph
The	motto	of	the	Perl	programing	language	is	“There	is	more	than	one	way	to	do	it.”	The
same	statement	applies	to	querying	graphs.

The	Cypher	query	language	provides	a	declarative,	SQL-like	language	for	building
queries.	Cypher	is	used	with	the	Neo4j	graph	database	(neo4j.com).	Alternatively,
developers	can	use	Gremlin,	a	graph	traversal	language	that	works	with	a	number	of
different	graph	databases.

The	goal	in	this	section	is	not	to	teach	you	the	details	of	these	query	languages,	but	to	give
you	a	flavor	for	how	each	works	and	show	examples	of	how	each	language	is	used.

Cypher:	Declarative	Querying
Before	you	can	query	a	graph,	you	must	create	one.	Cypher	statements	to	create	vertices
for	the	preceding	NoSQL	social	network	include
Click	here	to	view	code	image

CREATE	(robert:Developer	{	name:	‘Robert	Smith’	})

CREATE	(andrea:Developer	{	name:	‘Andrea	Wilson’	})

CREATE	(charles:Developer	{	name:	‘Charles	Vita’	})

These	three	statements	create	three	vertices.	The	text	robert:	Developer	creates	a
developer	vertex	with	a	label	of	robert.	The	text	{	name:	'Robert	Smith'	}
adds	a	property	to	the	node	to	store	the	name	of	the	developer.

Edges	are	added	with	create	statements	as	well.	For	example:
Click	here	to	view	code	image

CREATE	(robert)-[FOLLOWS]->(andrea)

CREATE	(andrea)-[FOLLOWS]->(charles)

To	query	nodes	in	Cypher,	use	the	MATCH	command,	which	returns	all	developers	in	the
social	network:

MATCH	(developer:DEVELOPER)

RETURN	(developer)

A	comparable	query	in	SQL	is
SELECT	*

FROM	developer

http://neo4j.com


SQL	is	a	declarative	language	designed	to	work	with	tables	that	consist	of	rows	and
columns.	Cypher	is	a	declarative	language	designed	to	work	with	graphs	that	consist	of
vertices	and	edges,	so	it	is	not	surprising	that	there	are	ways	to	query	based	on	both.	For
example,	the	following	returns	all	developer	nodes	linked	to	Robert	Smith:
Click	here	to	view	code	image

MATCH	(robert:Developer	{name:‘Robert

		Smith’})—(developer:DEVELOPER)

RETURN	developers

The	MATCH	operation	starts	with	the	node	robert	and	searches	all	edges	that	lead	to
vertices	of	type	DEVELOPER	and	returns	those	that	it	finds.

Cypher	is	a	rich	language	with	support	for	many	graph	operations.	It	also	has	clauses
found	in	SQL,	such	as	the	following:

•	WHERE

•	ORDER	BY

•	LIMIT

•	UNION

•	COUNT

•	DISTINCT

•	SUM

•	AVG

Because	Cypher	is	a	declarative	query	language,	you	specify	the	criteria	for	selecting
vertices	and	edges,	but	you	do	not	specify	how	to	retrieve	them.	If	you	want	control	over
the	way	your	query	retrieves	vertices	and	edges,	you	should	consider	using	a	graph
traversal	language	such	as	Gremlin.

Gremlin:	Query	by	Graph	Traversal
Traverse	means	to	travel	across	or	through.	Graph	traversal	is	the	process	of	logically
moving	from	one	vertex	to	another	over	an	edge.	Instead	of	querying	by	specifying	criteria
for	selecting	vertices,	as	in	Cypher,	you	specify	vertices	and	rules	for	traversing	them.

Basic	Graph	Traversal

Consider	the	graph	in	Figure	14.5.	The	graph	has	seven	vertices	and	nine	directed	edges.
Some	vertices	have	edges	coming	in,	some	have	only	edges	going	out,	and	others	have
both.



Figure	14.5	Sample	directed	graph	with	vertices	with	only	in,	out,	and	both	in	and	out
edges.

Let’s	assume	a	graph	G	is	defined	with	the	vertices	and	edges	shown	in	Figure	14.5.	You
can	create	a	variable	in	Gremlin	to	refer	to	a	particular	vertex,	such	as

v	=	G.v(1)

Gremlin	also	has	special	terms	defined	to	refer	to	adjacent	edges	and	vertices.	These	are

•	outE—Outgoing	directed	edges	from	a	vertex

•	inE—Incoming	directed	edges	from	a	vertex

•	bothE—Both	inward	and	outward	directed	edges	from	a	vertex

•	outV—Outgoing	vertex	of	an	edge

•	inV—Incoming	vertex	of	an	edge

•	bothV—Both	incoming	and	outgoing	vertex	of	an	edge

These	are	useful	for	querying	edges	and	graphs	based	on	a	starting	vertex	or	edge.	For
example,	if	you	queried	v.outE,	you	would	get	the	following	resultset:

[1-follows-2]

[1-follows-5]

Because	the	variable	v	is	defined	as	the	vertex	v(1)	and	there	are	two	outgoing	edges,
Gremlin	returns	a	descriptive	string	representing	those	two	edges.

Consider	the	following	example:
v2	=	G.v(2)

v2.outE

	Results:



				[2-follows-3]

				[2-follows-4]

				[2-follows-6]

The	vertex	2	has	five	incident	edges,	but	only	three	edges	are	listed	above.	This	is	because
the	other	two	edges	are	inbound	edges,	not	outbound	edges.

If	you	want	to	return	the	vertices	at	the	end	of	the	outbound	edge,	you	can	refer	to	the
inbound	vertices	of	the	edges	listed	in	the	last	example	with	the	following	code:

v2.outE.inV

	Results:

				[3]

				[4]

				[6]

This	model	of	querying	allows	you	to	string	together	additional	combinations	of	edge	and
vertex	specifications,	such	as	v2.outE.inV.outE.inV.

Gremlin	supports	more	complex	query	patterns	as	well.

Traversing	a	Graph	with	Depth-First	and	Breadth-First	Searches

There	will	be	times	when	you	do	not	have	a	specific	starting	point.	Instead,	you	want	to
find	all	nodes	that	have	a	particular	property.	Cypher	uses	the	MATCH	statement	for
retrieving	vertices.

In	Gremlin,	you	can	traverse	the	entire	graph	and	as	you	visit	each	vertex,	you	can	test	it
to	determine	if	it	meets	your	search	criteria.	For	example,	you	could	traverse	the	graph,
starting	at	vertex	1	by	visiting	vertex	2,	then	vertex	3,	then	vertex	4,	then	vertex	5,	then
vertex	6,	and	finally	vertex	7.	This	is	an	example	of	a	depth-first	search	of	a	graph	(see
Figure	14.6).



Figure	14.6	Example	of	a	depth-first	search.

In	a	depth-first	search,	you	start	traversal	at	one	vertex	and	select	adjacent	vertices.	You
then	select	the	first	vertex	in	that	resultset	and	select	adjacent	vertices	to	it.	You	continue
to	select	the	first	vertex	in	the	resultset	until	there	are	no	more	edges	to	traverse.

At	that	point,	you	visit	the	next	vertex	in	the	latest	resultset.	If	there	are	incident	edges
leading	to	other	vertices,	you	visit	those;	otherwise,	you	continue	to	the	next	item	in	the
latest	resultset.	When	you	exhaust	all	vertices	in	the	latest	resultset,	you	return	to	the
resultset	selected	prior	to	that	and	begin	the	process	again.

In	a	breadth-first	search,	you	visit	each	of	the	vertices	incident	to	the	current	vertex	before
visiting	other	vertices.	Figure	14.7	shows	an	example	of	a	breadth-first	search	traversal.



Figure	14.7	Example	of	a	breadth-first	search.

Gremlin	supports	other	specialized	types	of	graph	traversal,	such	as	the	flow	rank	pattern
that	allows	for	queries	such	as	“rank	developers	by	the	number	of	posts	we	have	both
commented	on.”

	Note

For	details	on	the	Gremlin	language,	see	the	Gremlin	Wiki	at
https://github.com/tinkerpop/gremlin/wiki.

	Note

Gremlin	is	part	of	the	larger	TinkerPop	project	that	builds	a	common	framework	for
graph	databases	and	graph	analysis	applications.	TinkerPop	includes	Blueprints,	a
database	API	analogous	to	JDBC	and	ODBC	for	relational	databases;	Pipes,	a	data
flow	framework	for	transforming	streams	of	data;	Furnace,	a	graph	algorithm
package;	and	Rexster,	a	graph	server.

Graph	databases	support	both	declarative	and	traversal-based	query	methods.	Choosing
the	more	appropriate	model	will,	as	always,	depend	on	your	requirements.

Declarative	languages,		such	as	Cypher,	are	well	suited	to	problems	that	require	selecting
vertices	based	on	their	properties.	It	is	also	useful	when	you	need	to	apply	aggregate

https://github.com/tinkerpop/gremlin/wiki


operations,	such	as	grouping	or	summing	values	from	vertex	properties.

Traversal	languages,	such	as	Gremlin,	provide	more	control	over	how	the	query	is
executed.	Developers,	for	example,	can	choose	between	searching	by	depth-first	or
breadth-first	methods.

Tips	and	Traps	of	Graph	Database	Design
Applications	using	graph	databases	can	take	advantage	of	the	vertexedge	data	model	to
implement	efficient	query	and	analysis	capabilities.	At	the	same	time,	graph	operations
that	run	in	reasonable	time	with	modest-size	graphs	may	take	too	long	to	complete	when
the	graph	grows	larger.

This	section	discusses	several	techniques	that	can	be	used	to	optimize	performance	when
working	with	graphs.

Use	Indexes	to	Improve	Retrieval	Time
Some	graph	databases	provide	for	indexes	on	nodes.	Neo4j,	for	example,	provides	a
CREATE	INDEX	command	that	allows	developers	to	specify	properties	to	index.	The
Cypher	query	processor	automatically	uses	indexes,	when	they	are	available,	to	improve
the	query	performance	of	WHERE	and	IN	operations.

Use	Appropriate	Types	of	Edges
Edges	may	be	directed	or	undirected.	Directed	edges	are	used	when	the	relation	between
two	vertices	is	not	symmetrical.	For	example,	in	the	NoSQL	social	network,	Robert
follows	Andrea,	but	Andrea	does	not	follow	Robert.	If	Andrea	were	to	follow	Robert,
there	would	be	an	additional	edge,	directed	inward	toward	Robert	from	Andrea.

Undirected	edges	are	used	for	symmetrical	relations,	such	as	the	distance	between	two
cities	(see	Figure	14.8).

Figure	14.8	Undirected	edges	are	used	for	symmetrical	relations;	directed	edges	are
used	for	nonsymmetrical	relations.

	Tip

Graph	processing	is	memory	intensive.	Keep	this	in	mind	as	you	design	your	graph.



Simple	edges	with	no	properties	require	little	storage,	so	there	is	not	necessarily	a	storage
penalty	for	using	them.	If,	however,	edges	have	a	large	number	of	properties	or	large
values	(for	example,	BLOBs),	then	the	amount	of	storage	required	can	be	significant.

Consider	whether	your	relations	between	two	vertices	require	one	undirected	or	two
directed	nodes.	Also,	consider	how	you	code	property	values.	Reducing	the	size	of	values
that	are	used	in	a	large	number	of	edges	can	help	reduce	memory	requirements.

Watch	for	Cycles	When	Traversing	Graphs
Cycles	are	paths	that	lead	back	to	themselves.	The	graph	in	Figure	14.9	has	a	cycle	A-B-
C-D-E-F-A.

Figure	14.9	Cycles	can	cause	problems	with	traversal	if	they	are	not	accounted	for	in
the	traversal	algorithm.

If	you	were	to	start	a	traversal	at	vertex	A	and	then	followed	a	path	through	vertices	B,	C,
D,	E,	and	F,	you	would	end	up	back	at	A.	If	there	is	no	indication	that	you	have	already
visited	A,	you	could	find	yourself	in	an	endless	cycle	of	revisiting	the	same	six	nodes	over
and	over	again.



	Tip

When	writing	your	own	graph-processing	algorithms,	consider	the	possibility	of
cycles.	Not	all	graphs	have	them—trees,	for	example,	do	not.

If	you	might	encounter	cycles,	keep	track	of	which	vertices	have	already	been	visited.
This	can	be	as	simple	as	maintaining	a	set	named	visitedNodes.

Each	time	you	visit	a	node,	you	first	check	to	see	if	that	node	is	in	the	set
visitedNodes.	If	it	is,	you	return	with	processing	the	node;	otherwise,	you	process	the
node	and	add	it	to	the	set.

Consider	the	Scalability	of	Your	Graph	Database
The	graph	database	systems	available	today	can	work	with	millions	of	vertices	and	edges
using	a	single	server.	You	should	consider	how	your	applications	and	analysis	tools	will
scale	as	the	following	occurs:

•	The	number	of	nodes	and	edges	grow

•	The	number	of	users	grow

•	The	number	and	size	of	properties	on	vertices	and	edges	grow

Increases	in	each	of	these	three	areas	can	put	additional	demands	on	a	database	server.
Many	graph	databases	are	designed	to	run	on	a	single	server.	If	your	server	can	no	longer
meet	performance	requirements,	you	have	to	scale	vertically,	that	is,	get	a	bigger	server.

	Note

This	is	an	unusual	situation	for	NoSQL	databases,	which	are	generally	designed	for
scalability.	Titan	(http://thinkaurelius.github.io/titan/),	a	graph	database	designed	to
scale	horizontally—that	is,	by	adding	more	servers—uses	other	NoSQL	databases
such	as	Cassandra	for	basic	storage	and	retrieval	functions.	Because	Titan	supports
Gremlin	and	the	TinkerPop	graph	platform,	you	could	start	with	another	graph
database	that	supports	Gremlin	and	migrate	to	Titan	when	you	need	to	horizontally
scale.

Also	consider	the	algorithms	you	use	to	analyze	data	in	the	graph.	The	time	required	to
perform	some	types	of	analysis	grows	rapidly	as	you	add	more	vertices.	For	example,
Dijkstra’s	algorithm	for	finding	the	shortest	paths	in	a	network	takes	a	time	related	to	the
square	of	the	number	of	vertices	in	a	graph.

To	find	the	largest	group	of	people	who	all	follow	each	other	(known	as	a	maximal	clique)
in	the	NoSQL	social	network	requires	time	that	grows	exponentially	with	the	number	of
people.

Table	14.2	shows	examples	of	time	required	to	run	Dijkstra’s	algorithm	and	solve	the
maximal	clique	problem.	Be	careful	when	using	graph	algorithms.	Some	that	run	in
reasonable	amounts	of	time	with	small	graphs	will	not	finish	in	reasonable	amounts	of
time	if	the	graphs	grow	too	large.	This	table	assumes	a	time	of	two	units	to	complete	the

http://thinkaurelius.github.io/titan/


operations	on	a	single	vertex.

Table	14.2	Solving	a	Maximal	Clique	Problem

Summary
Graph	databases	are	well	suited	to	a	wide	range	of	applications.	Graph	database	designers
should	start	with	the	queries	they	will	run	on	the	database	to	identify	the	entities	and
relations	between	entities	that	should	be	modeled.	Depending	on	the	types	of	relations,
edges	may	be	directed	or	undirected.

Graph	databases	support	both	declarative	and	traversal	query	options.	Designers	should
use	optimization	features,	such	as	indexes,	when	available	to	improve	the	overall
performance	of	graph	database	operations.

Case	Study:	Optimizing	Transportation	Routes
A	client	of	TransGlobal	Transport	and	Shipping	(TGTS),	a	fictitious	transportation
company,	has	hired	the	analytics	company	to	help	optimize	its	shipping	routes.	The	client
ships	parcels	from	manufacturing	sites	to	distribution	centers	and	then	to	customer	sites.	It
has	used	a	simple	method	for	shipping	parcels	but	suspects	its	approach	is	less	than
optimal.

Understanding	User	Needs
Analysts	at	TGTS	have	several	meetings	with	executives,	shipping	managers,	and	other
employees	responsible	for	parcel	shipping.	They	learn	that	the	client	uses	two	methods	for
shipping:

•	If	there	is	no	need	for	rush	shipping,	an	employee	from	the	manufacturing	site	will
drive	a	shipment	of	parcels	to	the	nearest	hub	airport.	From	there,	it	is	flown	to	a
distribution	center	closest	to	the	ultimate	customer	destination.	An	employee	from
the	distribution	center	then	drives	the	package	from	the	distribution	center	to	the
customer’s	location.

•	If	there	is	a	rush	order,	an	employee	from	the	manufacturing	site	drives	the	shipment
to	the	closest	regional	airport	and	the	parcel	is	flown	to	the	closet	regional	airport	to



the	customer.

The	client	has	data	indicating	that	the	first	method	is	less	expensive	than	the	second,
which	is	only	used	in	order	to	meet	time	constraints	on	delivery.

The	analysts	collect	information	about	the	client’s	shipping	costs	between	all	of	its
facilities	and	its	customer	sites.

Designing	a	Graph	Analysis	Solution
The	TGTS	analysts	quickly	realize	that	the	client	is	using	only	a	small	subset	of	all
possible	routes.	They	determine	that	Dijkstra’s	algorithm	can	be	used	with	data	from	a
graph	database	to	find	the	least-cost	path	between	all	locations.

The	set	of	least-cost	paths	will	provide	the	optimal	route	for	deliveries	without	time
constraints.	It	does	not,	however,	address	the	need	to	consider	time	constraints	as	well	as
costs.

The	analysts	decide	to	use	edge	properties	to	store	both	the	cost	of	moving	a	parcel
between	the	two	locations	and	the	time	required	to	move	it.

	Tip

Because	the	cost	of	shipping	a	parcel	will	vary	by	weight,	the	TGTS	analysts	use	a
unit	cost,	such	as	cost	per	kilogram,	to	represent	the	cost	of	the	edge.

The	time	property	is	the	average	time	it	takes	to	ship	a	parcel	between	locations.	The
client	has	historical	data	for	many	of	the	edges,	but	not	all.	For	those	edges	without
shipment	time	data,	the	analysts	estimate	based	on	the	shipping	time	of	packages	between
similar	types	of	facilities.

The	TGTS	analysts	create	a	database	of	shortest	paths	between	all	facilities	and	store	the
total	cost	and	total	time	required	to	ship	a	parcel.	They	realize	that	sometimes	the	least-
cost	path	will	not	meet	time	constraints	on	delivery,	so	the	analysts	develop	their	own
algorithm	to	find	the	least-cost	path	that	does	meet	the	time	constraints.

The	algorithm	takes	as	input	a	start	facility,	an	end	facility,	and	the	time	available	for
delivery.	As	the	algorithm	traverses	each	facility	(vertex),	it	records	the	cumulative	cost
and	time	required	to	ship	a	parcel	between	the	two	facilities.	If	at	any	time,	the	cumulative
time	exceeds	the	time	available	for	delivery,	the	path	is	discarded.

All	remaining	paths	are	stored	in	a	list	sorted	by	cost.	The	first	path	in	the	list	is	the	least-
cost	path	created	so	far.	The	algorithm	continues	with	the	least-cost	path	and	finds	all
facilities	linked	to	the	latest	facility	in	the	least-cost	path.

If	any	of	those	facilities	is	the	final	destination,	the	algorithm	terminates	and	outputs	the
least-cost	path	with	a	delivery	time	within	constraints.	Otherwise,	it	continues	to	find
facilities	linked	to	the	last	facility	in	the	current	least-cost	path.

As	this	example	shows,	well-established	algorithms	can	provide	the	foundation	for	graph
analysis	problems.	There	are	times,	however,	that	slight	variations	on	the	algorithm	are
required	to	accommodate	the	particular	requirements	of	the	problem	under	study.



Review	Questions
1.	What	is	the	benefit	of	mapping	domain-specific	queries	into	graph-specific	queries?

2.	Which	is	more	like	SQL,	Cypher	or	Gremlin?

3.	How	is	the	MATCH	statement	like	a	SQL	SELECT	statement?

4.	What	are	the	inE	and	outE	terms	used	for	in	Gremlin?

5.	Which	type	of	edge	should	be	used	for	a	nonsymmetrical	relation,	a	directed	or
undirected	edge?

6.	What	is	the	difference	between	a	declarative	and	a	traversal	query	language	for
graph	databases?

7.	What	is	a	depth-first	search?

8.	What	is	a	breadth-first	search?

9.	Why	are	cycles	a	potential	problem	when	performing	graph	operations?

10.	Why	is	scalability	such	an	important	consideration	when	working	with	graphs?

References
Gremlin:	https://github.com/tinkerpop/gremlin/wiki

Neo4j	Manual:	http://neo4j.com/docs/

Titan	Distributed	Graph	Database:	http://thinkaurelius.github.io/titan/

Wikipedia.	“Dijkstra’s	Algorithm”:	http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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Part	VI:	Choosing	a	Database	for	Your
Application



15.	Guidelines	for	Selecting	a	Database

“One’s	philosophy	is	not	best	expressed	in	words;	it	is	expressed	in	the	choices
one	makes.”

—ELEANOR	ROOSEVELT
POLITICIAN,	ACTIVIST,	AND	DIPLOMAT

Topics	Covered	In	This	Chapter

Choosing	a	NoSQL	Database

Using	NoSQL	and	Relational	Databases	Together

Developers	have	never	had	as	many	good	database	options	as	they	have	today.	Relational
databases	have	a	long	and	proven	track	record	of	successful	use	in	a	wide	range	of
applications.	These	databases	have	been	so	successful	they	virtually	eliminated	the
widespread	use	of	earlier	database	models,	such	as	file-based,	hierarchical,	and	network
databases.	It	was	not	until	the	advent	of	commercial	web	systems,	such	as	search	engines,
that	relational	databases	strained	to	meet	developers’	demands.

The	growing	demands	for	web-scale	data	management	systems	drove	a	renaissance	in
nonrelational	database	design.	Yahoo!	developed	Hadoop.	Google	created	BigTable.
Amazon	designed	and	deployed	DynamoDB.	Instead	of	keeping	their	intellectual	property
locked	up	in	a	corporate	vault	somewhere,	these	companies	published	papers	and,	in	some
cases,	released	code	for	others	to	build	on.	This	in	turn	allowed	other	developers	to	build
on	those	designs	and	expand	the	ecosystem	of	NoSQL	databases	and	supporting	tools.

If	you	are	a	developer	starting	a	data	management	project	today,	you	will	have	to	decide
which	type	of	database	management	system	to	use.	Your	major	options	are

•	Relational	databases,	such	as	PostgreSQL,	MySQL,	and	Microsoft	SQL	Server

•	Key-value	databases,	such	as	Redis,	Riak,	and	Oracle	BerkeleyDB

•	Document	databases,	such	as	MongoDB,	CouchDB,	and	CouchBase

•	Column	family	databases,	such	as	Cassandra	and	HBase

•	Graph	databases,	such	as	Neo4j	and	Titan

	Note

Discussing	relational	database	design	in	any	detail	is	outside	the	scope	of	this	book,
but	if	you	think	a	relational	database	might	be	an	option	for	you,	see	Michael
Hernandez’s,	Database	Design	for	Mere	Mortals:	A	Hands-On	Guide	to	Relational
Database	Design	for	guidance.

For	those	best	served	by	a	NoSQL	option,	this	chapter	includes	some	points	to	consider	as
you	evaluate	your	options.



Choosing	a	NoSQL	Database
In	relational	database	design,	the	structure	and	relations	of	entities	drives	design—not	so
in	NoSQL	database	design.	Of	course,	you	will	model	entities	and	relations,	but
performance	is	more	important	than	preserving	the	relational	model.

The	relational	model	emerged	for	pragmatic	reasons,	that	is,	data	anomalies	and	difficulty
reusing	existing	databases	for	new	applications.	NoSQL	databases	also	emerged	for
pragmatic	reasons,	specifically,	the	inability	to	scale	to	meet	growing	demands	for	high
volumes	of	read	and	write	operations.

In	exchange	for	improved	read	and	write	performance,	you	may	lose	other	features	of
relational	databases,	such	as	immediate	consistency	and	ACID	transactions	(although	this
is	not	always	the	case).

Throughout	this	book,	queries	have	driven	the	design	of	data	models.	This	is	the	case
because	queries	describe	how	data	will	be	used.	Queries	are	also	a	good	starting	point	for
understanding	how	well	various	NoSQL	databases	will	meet	your	needs.	You	will	also
need	to	understand	other	factors,	such	as

•	The	volume	of	reads	and	writes

•	Tolerance	for	inconsistent	data	in	replicas

•	The	nature	of	relations	between	entities	and	how	that	affects	query	patterns

•	Availability	and	disaster	recovery	requirements

•	The	need	for	flexibility	in	data	models

•	Latency	requirements

The	following	sections	provide	some	sample	use	cases	and	some	criteria	for	matching
different	NoSQL	database	models	to	different	requirements.

Criteria	for	Selecting	Key-Value	Databases
Key-value	databases	are	well	suited	to	applications	that	have	frequent	small	reads	and
writes	along	with	simple	data	models.	The	values	stored	in	key-value	databases	may	be
simple	scalar	values,	such	as	integers	or	Booleans,	but	they	may	be	structured	data	types,
such	as	lists	and	JSON	structures.

Key-value	databases	generally	have	simple	query	facilities	that	allow	you	to	look	up	a
value	by	its	key.	Some	key-value	databases	support	search	features	that	provide	for
somewhat	more	flexibility.	Developers	can	use	tricks,	such	as	enumerated	keys,	to
implement	range	queries,	but	these	databases	usually	lack	the	query	capabilities	of
document,	column	family,	and	graph	databases.

Key-value	databases	are	used	in	a	wide	range	of	applications,	such	as	the	following:

•	Caching	data	from	relational	databases	to	improve	performance

•	Tracking	transient	attributes	in	a	web	application,	such	as	a	shopping	cart

•	Storing	configuration	and	user	data	information	for	mobile	applications



•	Storing	large	objects,	such	as	images	and	audio	files

	Note

In	addition	to	key-value	databases	you	install	and	run	on	the	premises,	there	are	a
number	of	cloud-based	choices	as	well.	Amazon	Web	Services	offers	SimpleDB
and	DynamoDB,	whereas	Microsoft	Azure’s	Table	service	provides	for	key-value
storage.

Use	Cases	and	Criteria	for	Selecting	Document	Databases
Document	databases	are	designed	for	flexibility.	If	an	application	requires	the	ability	to
store	varying	attributes	along	with	large	amounts	of	data,	then	document	databases	are	a
good	option.	For	example,	to	represent	products	in	a	relational	database,	a	modeler	may
use	a	table	for	common	attributes	and	additional	tables	for	each	subtype	of	product	to	store
attributes	used	only	in	the	subtype	of	product.	Document	databases	can	handle	this
situation	easily.

Document	databases	provide	for	embedded	documents,	which	are	useful	for
denormalizing.	Instead	of	storing	data	in	different	tables,	data	that	is	frequently	queried
together	is	stored	together	in	the	same	document.

Document	databases	improve	on	the	query	capabilities	of	key-value	databases	with
indexing	and	the	ability	to	filter	documents	based	on	attributes	in	the	document.

Document	databases	are	probably	the	most	popular	of	the	NoSQL	databases	because	of
their	flexibility,	performance,	and	ease	of	use.

These	databases	are	well	suited	to	a	number	of	use	cases,	including

•	Back-end	support	for	websites	with	high	volumes	of	reads	and	writes

•	Managing	data	types	with	variable	attributes,	such	as	products

•	Tracking	variable	types	of	metadata

•	Applications	that	use	JSON	data	structures

•	Applications	benefiting	from	denormalization	by	embedding	structures	within
structures

Document	databases	are	also	available	from	cloud	services	such	as	Microsoft	Azure
Document	and	Cloudant’s	database.

Use	Cases	and	Criteria	for	Selecting	Column	Family	Databases
Column	family	databases	are	designed	for	large	volumes	of	data,	read	and	write
performance,	and	high	availability.	Google	introduced	BigTable	to	address	the	needs	of	its
services.	Facebook	developed	Cassandra	to	back	its	Inbox	Search	service.

These	database	management	systems	run	on	clusters	of	multiple	servers.	If	your	data	is
small	enough	to	run	with	a	single	server,	then	a	column	family	database	is	probably	more
than	you	need—consider	a	document	or	key-value	database	instead.



Column	family	databases	are	well	suited	for	use	with

•	Applications	that	require	the	ability	to	always	write	to	the	database

•	Applications	that	are	geographically	distributed	over	multiple	data	centers

•	Applications	that	can	tolerate	some	short-term	inconsistency	in	replicas

•	Applications	with	dynamic	fields

•	Applications	with	the	potential	for	truly	large	volumes	of	data,	such	as	hundreds	of
terabytes

Google	demonstrated	the	capabilities	of	Cassandra	running	the	Google	Compute	Engine.1
Google	engineers	deployed

•	330	Google	Compute	Engine	virtual	machines

•	300	1TB	Persistent	Disk	volumes

•	Debian	Linux

•	Datastax	Cassandra	2.2

•	Data	was	written	to	two	nodes	(Quorum	commit	of	2)

•	30	virtual	machines	to	generate	3	billion	records	of	170	bytes	each
1.	Google.	2014,	March	20.	“Cassandra	Hits	One	Million	Writes	Per	Second	on	Google	Compute	Engine.”
http://googlecloudplatform.blogspot.com/2014/03/cassandra-hits-one-million-writes-per-second-on-google-
compute-engine.html

With	this	configuration,	the	Cassandra	cluster	reached	one	million	writes	per	second	with
95%	completing	in	under	23	milliseconds.	When	one-third	of	the	nodes	were	lost,	the	one
million	writes	were	sustained	but	with	higher	latency.

Several	areas	can	use	this	kind	of	Big	Data	processing	capability,	such	as

•	Security	analytics	using	network	traffic	and	log	data	mode

•	Big	Science,	such	as	bioinformatics	using	genetic	and	proteomic	data

•	Stock	market	analysis	using	trade	data

•	Web-scale	applications	such	as	search

•	Social	network	services

Key-value,	document,	and	column	family	databases	are	well	suited	to	a	wide	range	of
applications.	Graph	databases,	however,	are	best	suited	to	a	particular	type	of	problem.

Use	Cases	and	Criteria	for	Selecting	Graph	Databases
Problem	domains	that	lend	themselves	to	representations	as	networks	of	connected	entities
are	well	suited	for	graph	databases.	One	way	to	assess	the	usefulness	of	a	graph	database
is	to	determine	if	instances	of	entities	have	relations	to	other	instances	of	entities.

For	example,	two	orders	in	an	e-commerce	application	probably	have	no	connection	to
each	other.	They	might	be	ordered	by	the	same	customer,	but	that	is	a	shared	attribute,	not
a	connection.

http://googlecloudplatform.blogspot.com/2014/03/cassandra-hits-one-million-writes-per-second-on-google-compute-engine.html


Similarly,	a	game	player’s	configuration	and	game	state	have	little	to	do	with	other	game
players’	configurations.	Entities	like	these	are	readily	modeled	with	key-value,	document,
or	relational	databases.

Now	consider	examples	mentioned	in	the	discussion	of	graph	databases,	such	as	highways
connecting	cities,	proteins	interacting	with	other	proteins,	and	employees	working	with
other	employees.	In	all	of	these	cases,	there	is	some	type	of	connection,	link,	or	direct
relationship	between	two	instances	of	entities.

These	are	the	types	of	problem	domains	that	are	well	suited	to	graph	databases.	Other
examples	of	these	types	of	problem	domains	include

•	Network	and	IT	infrastructure	management

•	Identity	and	access	management

•	Business	process	management

•	Recommending	products	and	services

•	Social	networking

From	these	examples,	it	is	clear	that	when	there	is	a	need	to	model	explicit	relations
between	entities	and	rapidly	traverse	paths	between	entities,	then	graph	databases	are	a
good	database	option.

Large-scale	graph	processing,	such	as	with	large	social	networks,	may	actually	use	column
family	databases	for	storage	and	retrieval.	Graph	operations	are	built	on	top	of	the
database	management	system.	The	Titan	graph	database	and	analysis	platform	takes	this
approach.

Key-value,	document,	column	family,	and	graph	databases	meet	different	types	of	needs.
Unlike	relational	databases	that	essentially	displaced	their	predecessors,	these	NoSQL
databases	will	continue	to	coexist	with	each	other	and	relational	databases	because	there	is
a	growing	need	for	different	types	of	applications	with	varying	requirements	and
competing	demands.

Using	NoSQL	and	Relational	Databases	Together
NoSQL	and	relational	databases	are	complementary.	Relational	databases	offer	many
features	that	protect	the	integrity	of	data	and	reduce	the	risk	of	data	anomalies.	Relational
databases	incur	operational	overhead	providing	these	features.

In	some	use	cases,	performance	is	more	important	than	ensuring	immediate	consistency	or
supporting	ACID	transactions.	In	these	cases,	NoSQL	databases	may	be	the	better
solution.	Choosing	a	database	is	a	process	of	choosing	the	right	tool	for	the	job.	The	more
varied	your	set	of	jobs,	the	more	varied	your	toolkit.

Modern	data	management	infrastructure	is	responsible	for	a	wider	range	of	applications
and	data	types	than	ever	before.	When	E.	F.	Codd	developed	the	relational	model	in	the
1970s,	businesses	and	governments	were	the	primary	users	of	databases.

The	personal	computer,	smartphones,	and	tablets	did	not	exist.	The	Internet	was	used	by
government	and	academic	researchers;	the	World	Wide	Web	was	almost	20	years	into	the



future.	The	Global	Positioning	System	(GPS)	was	not	fully	operational	until	1995.

Today,	IT	professionals	are	working	with	more	of	the	same	types	of	business	data	that
existed	in	the	1970s	as	well	as	new	types,	such	as	social	media	and	detailed	customer
demographics	and	preference	data.

Mobile	devices	generate	large	volumes	of	data	about	users’	behaviors	and	location.	The
instrumentation	of	cars,	appliances,	and	other	devices,	referred	to	as	the	Internet	of	Things
(IoT),	is	another	potential	data	source.	With	so	many	changes	in	the	scope	and	size	of	data
and	applications,	it	is	no	surprise	that	additional	database	management	techniques	are
needed.

Relational	databases	will	continue	to	support	transaction	processing	systems	and	business
intelligence	applications.	Decades	of	work	with	transaction	processing	systems	and	data
warehouses	has	led	to	best	practices	and	design	principles	that	continue	to	meet	the	needs
of	businesses,	governments,	and	other	organizations.

At	the	same	time,	these	organizations	are	adapting	to	technologies	that	did	not	exist	when
the	relational	model	was	first	formulated.	Customer-facing	web	applications,	mobile
services,	and	Big	Data	analytics	might	work	well	with	relational	databases,	but	in	some
cases	they	do	not.

The	current	technology	landscape	requires	a	variety	of	database	technologies.	Just	as	there
is	no	best	programming	language,	there	is	no	best	database	management	system.	There	are
database	systems	better	suited	to	some	problems	than	others,	and	the	job	of	developers	and
designers	is	to	find	the	best	database	for	the	requirements	at	hand.

Summary
Application	developers	have	choices	about	which	programming	language	they	use,	which
development	environments	they	work	in,	and	which	web	frameworks	they	deploy.	They
also	have	choices	when	it	comes	to	database	management	systems.	The	different	types	of
database	management	systems	were	all	developed	to	solve	real-world	problems	that	could
not	be	solved	as	well	with	other	types	of	databases.

One	of	the	jobs	of	developers	and	designers	is	to	choose	an	appropriate	database	system
for	their	applications.	You	do	this	by	understanding	your	problem	domain	and	your	user
requirements.	Often	you	will	have	options.	You	could	use	a	key-value	store	or	a	document
database	in	some	cases.	Other	times,	a	graph	database	might	be	the	best	fit.	Do	not	be
surprised	if	you	find	yourself	working	with	key-value	databases	one	day	and	graph
databases	the	next.	The	choice	of	database	should	be	driven	by	your	needs.

Review	Questions
1.	Name	two	use	cases	for	key-value	databases.

2.	Describe	two	reasons	for	choosing	a	key-value	database	for	your	application.

3.	Name	two	use	cases	for	document	databases.

4.	Describe	two	reasons	for	choosing	a	document	database	for	your	application.

5.	Name	two	use	cases	for	column	family	databases.



6.	Describe	two	reasons	for	choosing	a	column	family	database	for	your	application.

7.	Name	two	use	cases	for	graph	databases.

8.	Describe	two	reasons	for	choosing	a	graph	database	for	your	application.

9.	Name	two	types	of	applications	well	suited	for	relational	databases.

10.	Discuss	the	need	for	both	NoSQL	and	relational	databases	in	enterprise	data
management.
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Part	VII:	Appendices



A.	Answers	to	Chapter	Review	Questions

This	appendix	provides	answers	to	review	questions	throughout	the	book.

Chapter	1
1.	If	the	layout	of	records	in	a	flat	file	data	management	system	changes,	what	else
must	change?

Answer:	Data	access	programs	will	have	to	change.

2.	What	kind	of	relation	is	supported	in	a	hierarchical	data	management	system?

a.	Parent-child

b.	Many-to-many

c.	Many-to-many-to-many

d.	No	relations	are	allowed.

Answer:	A.	Parent-child	relations	are	supported	in	hierarchical	data	management
systems.

3.	What	kind	of	relation	is	supported	in	network	data	management	systems?

a.	Parent-child

b.	Many-to-many

c.	Both	parent-child	and	many-to-many

d.	No	relations	are	allowed

Answer:	C.	Both	parent-child	and	many-to-many	relations	are	supported	in	network
data	management	systems.

4.	Give	an	example	of	a	SQL	data	manipulation	language	statement.

Answer:	Examples	could	include	INSERT,	DELETE,	UPDATE,	and	SELECT.	The
following	is	an	INSERT	example:

Click	here	to	view	code	image

INSERT	INTO	employee	(emp_id,	first_name,	last_name)

		VALUES	(1234,	‘Jane’,	‘Smith’)

5.	Give	an	example	of	a	SQL	data	definition	language	statement.

Answer:	The	CREATE	TABLE	statement	is	a	data	definition	statement.	The
following	is	an	example	of	CREATE	TABLE:

Click	here	to	view	code	image
CREATE	TABLE	employee	(

				emp_id		int,

				emp_first_name	varchar(25),

				emp_last_name	varchar(25),

				emp_address	varchar(50),

				emp_city	varchar(50),



				emp_state	varchar(2),

				emp_zip	varchar(5),

				emp_position_title	varchar(30)

				)

6.	What	is	scaling	up?

Answer:	Scaling	entails	upgrading	an	existing	database	server	to	add	additional
processors,	memory,	network	bandwidth,	or	other	resources	that	would	improve
performance	on	a	database	management	system.	It	could	also	entail	replacing	an
existing	server	with	one	that	has	more	CPUs,	memory,	and	so	forth.

7.	What	is	scaling	out?

Answer:	Scaling	out	entails	adding	servers	to	a	cluster.

8.	Are	NoSQL	databases	likely	to	displace	relational	databases	as	relational	databases
displaced	earlier	types	of	data	management	systems?

Answer:	No,	relational	databases	and	NoSQL	databases	meet	different	types	of
needs.

9.	Name	four	required	components	of	a	relational	database	management	system
(RDBMS).

Answer:

•	Storage	management	programs

•	Memory	management	programs

•	Data	dictionary

•	Query	language

10.	Name	three	common	major	components	of	a	database	application.

Answer:

•	A	user	interface

•	Business	logic

•	Database	code

11.	Name	four	motivating	factors	for	database	designers	and	other	IT	professionals	to
develop	and	use	NoSQL	databases.

Answer:

•	Scalability

•	Cost

•	Flexibility

•	Availability



Chapter	2
1.	What	is	a	distributed	system?

Answer:	Systems	that	run	on	multiple	servers	are	known	as	distributed	systems.

2.	Describe	a	two-phase	commit.	Does	it	help	ensure	consistency	or	availability?

Answer:	A	two-phase	commit	is	a	transaction	that	requires	writing	data	to	two
separate	locations.	In	the	first	phase	of	the	operation,	the	database	writes,	or
commits,	the	data	to	the	disk	of	the	primary	server.	In	the	second	phase	of	the
operation,	the	database	writes	data	to	the	disk	of	the	backup	server.

Answer:	Two-phase	commits	help	ensure	consistency.

3.	What	do	the	C	and	A	in	the	CAP	theorem	stand	for?	Give	an	example	of	how
designing	for	one	of	those	properties	can	lead	to	difficulties	in	maintaining	the	other.

Answer:	C	stands	for	consistency;	A	stands	for	availability.

When	using	a	two-phase	commit,	the	database	favors	consistency	but	at	the	risk	of
the	most	recent	data	not	being	available	for	a	brief	period	of	time.	While	the	two-
phase	commit	is	executing,	other	queries	to	the	data	are	blocked.	The	updated	data	is
unavailable	until	the	two-phase	commit	finishes.	This	favors	consistency	over
availability.

4.	The	E	in	BASE	stands	for	eventually	consistent.	What	does	that	mean?

Answer:	E	stands	for	eventually	consistent,	which	means	that	some	replicas	might
be	inconsistent	for	some	period	of	time	but	will	become	consistent	at	some	point.

5.	Describe	monotonic	write	consistency.	Why	is	it	so	important?

Answer:	Monotonic	write	consistency	ensures	that	if	you	were	to	issue	several
update	commands,	they	would	be	executed	in	the	order	you	issued	them.	This
ensures	that	the	results	of	a	set	of	commands	are	predictable.	Repeating	the	same
commands	with	the	same	starting	data	will	yield	the	same	results.

6.	How	many	values	can	be	stored	with	a	single	key	in	a	key-value	database?

Answer:	One.

7.	What	is	a	namespace?	Why	is	it	important	in	key-value	databases?

Answer:	A	namespace	is	a	collection	of	identifiers.	Keys	must	be	unique	within	a
namespace.

8.	How	do	document	databases	differ	from	key-value	databases?

Answer:	Instead	of	storing	each	attribute	of	an	entity	with	a	separate	key,	document
databases	store	multiple	attributes	in	a	single	document.	Users	can	query	and
retrieve	documents	by	filtering	on	key-value	pairs	within	a	document.

9.	Describe	two	differences	between	document	databases	and	relational	databases.

Answer:	Document	databases	do	not	require	a	fixed,	predefined	schema.	Also,
documents	can	have	embedded	documents	and	lists	of	multiple	values	within	a



document.

10.	Name	two	data	structures	used	in	column	family	databases.

Answer:	Columns	and	column	families.

11.	What	are	the	two	fundamental	data	structures	in	a	graph	database?

Answer:	Nodes	and	relations,	also	known	as	vertices	and	edges.

12.	You	are	assigned	the	task	of	building	a	database	to	model	employees	and	who	they
work	with	in	your	company.	The	database	must	be	able	to	answer	queries	such	as
how	many	employees	does	Employee	A	work	with?	And,	does	Employee	A	work
with	anyone	who	works	with	Employee	B?	Which	type	of	NoSQL	database	would
naturally	fit	with	these	requirements?

Answer:	A	graph	database	because	these	queries	require	working	with	relations
between	employees.	Employees	can	be	modeled	as	vertices,	and	the	“works	with”
relation	can	be	modeled	as	an	edge.

Chapter	3
1.	How	are	associative	arrays	different	from	arrays?

Answer:	An	associative	array	is	a	data	structure,	like	an	array,	but	is	not	restricted	to
using	integers	as	indexes	or	limiting	values	to	the	same	type.	Associative	arrays
generalize	the	idea	of	an	ordered	list	indexed	by	an	identifier	to	include	arbitrary
values	for	identifiers	and	values.

2.	How	can	you	use	a	cache	to	improve	relational	database	performance?

Answer:	An	in-memory	cache	is	an	associative	array.	The	values	retrieved	from	the
relational	database	could	be	stored	in	the	cache	by	creating	a	key	for	each	value
stored.	Programs	that	access	customer	data	will	typically	check	the	cache	first	for
data	and	if	it	is	not	found	in	the	cache,	the	program	will	then	query	the	database.
Retrieving	data	from	memory	is	faster	than	retrieving	it	from	disk.

3.	What	is	a	namespace?

Answer:	A	namespace	is	a	logical	data	structure	for	organizing	key-value	pairs.
Keys	must	be	unique	within	a	namespace.	Namespaces	are	sometimes	called
buckets.

4.	Describe	a	way	of	constructing	keys	that	captures	some	information	about	entities
and	attribute	types.

Answer:	A	developer	could	use	a	key-naming	convention	that	uses	a	table	name,
primary	key	value,	and	an	attribute	name	to	create	a	key,	such	as	customer:
1982737:firstName.

5.	Name	three	common	features	of	key-value	databases.

Answer:

•	Simplicity



•	Speed

•	Scalability

6.	What	is	a	hash	function?	Include	important	characteristics	of	hash	functions	in	your
definition.

Answer:	A	hash	function	is	a	function	that	can	take	an	arbitrary	string	of	characters
and	produce	a	(usually)	unique,	fixed-length	string	of	characters.	Hash	functions
map	to	what	appear	to	be	random	outputs.

7.	How	can	hash	functions	help	distribute	writes	over	multiple	servers?

Answer:	One	way	to	take	advantage	of	the	hash	value	is	to	start	by	dividing	the
hash	value	by	the	number	of	servers.	Sometimes	the	hash	value	will	divide	evenly
by	the	number	of	servers	and	sometimes	not.	The	remainder	can	be	used	to
determine	which	of	the	servers	should	receive	a	write	operation.

8.	What	is	one	type	of	practical	limitation	on	values	stored	in	key-value	databases?

Answer:	Different	implementations	of	key-value	databases	have	different
restrictions	on	values.	For	example,	some	key-value	databases	will	typically	have
some	limit	on	the	size	of	values.	Some	might	allow	multiple	megabytes	in	each
value,	but	others	might	have	smaller	size	limitations.	Even	in	cases	in	which	you	can
store	extremely	large	values,	you	might	run	into	performance	problems	that	lead	you
to	work	with	smaller	data	values.

9.	How	does	the	lack	of	a	query	language	affect	application	developers	using	key-
value	databases?

Answer:	Key-value	databases	do	not	support	query	languages	for	searching	over
values.	Application	developers	can	implement	search	operations	in	their
applications.	Alternatively,	some	key-value	databases	incorporate	search
functionality	directly	into	the	database.

10.	How	can	a	search	system	help	improve	the	performance	of	applications	that	use
key-value	databases?

Answer:	A	built-in	search	system	would	index	the	string	values	stored	in	the
database	and	create	an	index	for	rapid	retrieval.	Rather	than	search	all	values	for	a
string,	the	search	system	keeps	a	list	of	words	with	the	keys	of	each	key-value	pair
in	which	that	word	appears.

Chapter	4
1.	What	are	data	models?	How	do	they	differ	from	data	structures?

Answer:	Data	models	are	abstractions	that	help	organize	the	information	conveyed
by	the	data	in	databases.	Data	structures	are	well-defined	data	storage	structures	that
are	implemented	using	elements	of	underlying	hardware,	particularly	random	access
memory	and	persistent	data	storage,	such	as	hard	drives	and	flash	devices.	Data
models	provide	a	level	of	organization	and	abstraction	above	data	structures.

2.	What	is	a	partition?



Answer:	A	partition	is	a	logical	subdivision	of	a	larger	structure.	Clusters,	or	groups
of	servers,	can	be	organized	into	partitions.	A	partitioned	cluster	is	a	group	of	servers
in	which	servers	or	instances	of	key-value	database	software	running	on	servers	are
assigned	to	manage	subsets	of	a	database.

3.	Define	two	types	of	clusters.	Which	type	is	typically	used	with	key-value	data
stores?

Answer:	Clusters	may	be	loosely	or	tightly	coupled.	Loosely	coupled	clusters
consist	of	fairly	independent	servers	that	complete	many	functions	on	their	own	with
minimal	coordination	with	other	servers	in	the	cluster.	Tightly	coupled	clusters	tend
to	have	high	levels	of	communication	between	servers.	This	is	needed	to	support
more	coordinated	operations,	or	calculations,	on	the	cluster.	Key-value	clusters	tend
to	be	loosely	coupled.

4.	What	are	the	advantages	of	having	a	large	number	of	replicas?	What	are	the
disadvantages?

Answer:	The	more	replicas	you	have,	the	less	likely	you	will	lose	data;	however,
you	might	have	lower	performance	with	a	large	number	of	replicas.

It	is	possible	for	replicas	to	have	different	versions	of	data.	All	the	versions	will
eventually	be	consistent,	but	sometimes	they	may	be	out	of	sync	for	short	periods.

5.	Why	would	you	want	to	receive	a	response	from	more	than	one	replica	when
reading	a	value	from	a	key-value	data	store?

Answer:	To	minimize	the	risk	of	reading	old,	out-of-date	data,	you	can	specify	the
number	of	nodes	that	must	respond	with	the	same	answer	to	a	read	request	before	a
response	is	returned	to	the	calling	application.

6.	Under	what	circumstances	would	you	want	to	have	a	large	number	of	replicas?

Answer:	If	you	have	little	tolerance	for	losing	data,	a	higher	replica	number	is
recommended.

7.	Why	are	hash	functions	used	with	key-value	databases?

Answer:	Hash	functions	are	generally	designed	to	distribute	inputs	evenly	over	the
set	of	all	possible	outputs.	The	output	space	can	be	quite	large.	No	matter	how
similar	your	keys	are,	they	are	evenly	distributed	across	the	range	of	possible	output
values.	The	ranges	of	output	values	can	be	assigned	to	partitions	and	you	can	be
reasonably	assured	that	each	partition	will	receive	approximately	the	same	amount
of	data.

8.	What	is	a	collision?

Answer:	A	collision	occurs	when	two	distinct	inputs	to	a	hash	function	produce	the
same	output.

9.	Describe	one	way	to	handle	a	collision	so	that	no	data	is	lost.

Answer:	Instead	of	storing	just	one	value,	a	hash	table	can	store	lists	of	values.

10.	Discuss	the	relation	between	speed	of	compression	and	the	size	of	compressed	data.



Answer:	There	is	a	trade-off	between	the	speed	of	compression/decompression	and
the	size	of	the	compressed	data.	Faster	compression	algorithms	can	lead	to	larger
compressed	data	than	other,	slower	algorithms.

Chapter	5
1.	Describe	four	characteristics	of	a	well-designed	key-naming	convention.

Answer:

•	Use	meaningful	and	unambiguous	naming	components,	such	as	‘cust’	for	customer
or	‘inv’	for	inventory.

•	Use	range-based	components	when	you	would	like	to	retrieve	ranges	of	values.
Ranges	include	dates	or	integer	counters.

•	Use	a	common	delimiter	when	appending	components	to	make	a	key.	The	‘:’	is	a
commonly	used	delimiter,	but	any	character	that	will	not	otherwise	appear	in	the
key	will	work.

•	Keep	keys	as	short	as	possible	without	sacrificing	the	other	characteristics
mentioned	in	this	list.

2.	Name	two	types	of	restrictions	key-value	databases	can	place	on	keys.

Answer:	Restrictions	can	be	placed	on	key	size	and	data	types.

3.	Describe	the	difference	between	range	partitioning	and	hash	partitioning.

Answer:	Range	partitioning	works	by	grouping	contiguous	values	and	sending	them
to	the	same	node	in	a	cluster.	Hash	partitioning	distributes	values	evenly	across	the
cluster.

4.	How	can	structured	data	types	help	reduce	read	latency	(that	is,	the	time	needed	to
retrieve	a	block	of	data	from	a	disk)?

Answer:	By	storing	commonly	used	values	together	in	a	list	or	other	structure,	you
reduce	the	number	of	disk	seeks	that	must	be	performed	to	read	all	the	needed	data.
Key-value	databases	will	usually	store	the	entire	structure	together	in	a	data	block	so
there	is	no	need	to	hash	multiple	keys	and	retrieve	multiple	data	blocks.

5.	Describe	the	Time	to	Live	(TTL)	key	pattern.

Answer:	A	TTL	parameter	specifies	a	time	that	a	key-value	record	is	allowed	to
exist.	The	TTL	pattern	is	sometimes	useful	with	keys	in	a	key-value	database,
especially	when	caching	data	in	limited	memory	servers	or	keys	are	used	to	hold	a
resource	for	some	specified	period	of	time.

6.	Which	design	pattern	provides	some	of	the	features	of	relational	transactions?

Answer:	Emulating	tables.

7.	When	would	you	want	to	use	the	Aggregate	pattern?

Answer:	Aggregation	is	used	to	support	different	attributes	for	different	subtypes	of
an	entity.	For	example,	a	concert	venue	could	have	two	subtypes,	seated	and



nonseated.

8.	What	are	enumerable	keys?

Answer:	Enumerable	keys	are	keys	that	use	counters	or	sequences	to	generate	new
keys.	Enumerable	keys	are	often	created	using	an	entity	type	prefix	along	with	the
generated	number.

9.	How	can	enumerable	keys	help	with	range	queries?

Answer:	A	range	of	keys	can	be	retrieved	by	using	a	loop	to	generate	the	set	of	keys
between	the	lower	and	upper	bounds.	For	example,	a	for	loop	starting	at	1	and
ending	with	3	could	be	used	to	generate	the	following	keys:	‘ticketLog:20140617:1’,
‘ticketLog:20140617:2’,	and	‘ticketLog:20140617:3’.

10.	How	would	you	modify	the	design	of	TGTS	Tracker	to	include	a	user’s	preferred
language	in	the	configuration?

Answer:	A	language	preference	could	be	added	to	the	customer	value	list.	For
example,

Click	here	to	view	code	image

TrackerNS[cust:4719364]	=	{name:’	Prime	Machine,

		Inc.’,	currency:‘USD’,	language:‘EN’}

Chapter	6
1.	Define	a	document	with	respect	to	document	databases.

Answer:	Documents	in	document	databases	are	composed	of	a	set	of	attribute	tags
and	values.	Developers	can	make	up	their	own	set	of	attribute	tags;	they	are	not
constrained	to	a	predefined	set	of	tags	for	specifying	structure.

2.	Name	two	types	of	formats	for	storing	data	in	a	document	database.

Answer:	JSON	and	XML.

3.	List	at	least	three	syntax	rules	for	JSON	objects.

Answer:

•	Data	is	organized	in	key-value	pairs,	similar	to	key-value	databases.

•	Documents	consist	of	name-value	pairs	separated	by	commas.

•	Documents	start	with	a	{	and	end	with	a	}.

•	Names	are	strings,	such	as	"customer_id"	and	"address".

•	Values	can	be	numbers,	strings,	Booleans	(true	or	false),	arrays,	objects,	or	the	null
value.

•	The	values	of	arrays	are	listed	within	square	brackets,	such	as	[	and	].

•	The	values	of	objects	are	listed	as	key-value	pairs	within	curly	brackets,	such	as	{
and	}.

4.	Create	a	sample	document	for	a	small	appliance	with	the	following	attributes:



appliance	ID,	name,	description,	height,	width,	length,	and	shipping	weight.	Use	the
JSON	format.
Answer:

Click	here	to	view	code	image

{	“appliance	ID”:			132738,

		“name”:	“Toaster	Model	X”,

		“description”:	“Large	4	bagel	toaster”,

		“height”:		“9	in.”,

			“width”:		“7.5	in”,

			“length”:	“12	in”,

			“shipping	weight”:	“3.2	lbs”

}

5.	Why	are	highly	abstract	entities	often	avoided	when	modeling	document
collections?

Answer:	Highly	abstract	entities	can	lead	to	document	collections	with	many
subtypes.	These	subtypes	will	need	type	indicators	to	support	the	frequent	filtering
required	when	different	document	types	are	in	the	same	collection.	Large	collections
can	lead	to	inefficient	retrieval	operations.

6.	When	is	it	reasonable	to	use	highly	abstract	entities?

Answer:	Abstract	entities	should	be	used	when	many	of	the	queries	used	against	a
collection	apply	to	all	or	many	subtypes,	for	example,	in	a	products	document
collection.	Also,	if	there	is	a	potential	for	the	number	of	subtypes	to	grow	into	the
tens	or	hundreds,	it	could	become	difficult	to	manage	collections	for	all	of	those
subtypes.

7.	Using	the	db.books	collection	described	in	this	chapter,	write	a	command	to	insert	a
book	to	the	collection.	Use	MongoDB	syntax.

Answer:
Click	here	to	view	code	image

db.books.insert(	{“title”:“Mother	Night”,	“author”:

		“Kurt	Vonnegut,	Jr.”}	)

8.	Using	the	db.books	collection	described	in	this	chapter,	write	a	command	to	remove
books	by	Isaac	Asimov.	Use	MongoDB	syntax.

Answer:
Click	here	to	view	code	image

db.books.remove(“author”:	“Isaac	Asimov”})

9.	Using	the	db.books	collection	described	in	this	chapter,	write	a	command	to	retrieve
all	books	with	quantity	greater	than	or	equal	to	20.	Use	MongoDB	syntax.

Answer:
Click	here	to	view	code	image

db.books.find(	{“quantity”	:	{“$gte”	:	20	}})

10.	Which	query	operator	is	used	to	search	for	values	in	a	single	key?



Answer:	The	$in	operator	is	used	to	search	for	a	value	in	a	single	key.

Chapter	7
1.	Describe	how	documents	are	analogous	to	rows	in	relational	databases.

Answer:	Documents	are	ordered	sets	of	key-value	pairs.	Keys	are	used	to	reference
particular	values	and	are	analogous	to	column	names	in	relational	tables.	Values	in	a
document	database	are	analogous	to	values	stored	in	a	row	of	a	relational	database
table.

2.	Describe	how	collections	are	analogous	to	tables	in	relational	databases.

Answer:	Collections	are	sets	of	documents;	tables	are	sets	of	rows.	Both	documents
and	rows	have	unique	identifiers	and	may	have	other	attributes	as	well.

3.	Define	a	schema.

Answer:	A	schema	is	a	formal	specification	of	a	database	structure.

4.	Why	are	document	databases	considered	schemaless?

Answer:	Document	databases	do	not	require	data	modelers	to	formally	specify	the
structure	of	documents.

5.	Why	are	document	databases	considered	polymorphic?

Answer:	A	document	database	is	polymorphic	because	the	documents	that	exist	in
collections	can	have	many	different	forms.

6.	How	does	vertical	partitioning	differ	from	horizontal	partitioning,	or	sharding?

Answer:	Vertical	partitioning	is	a	technique	for	improving	database	performance	by
separating	columns	of	a	relational	table	into	multiple	separate	tables.	This	technique
is	particularly	useful	when	you	have	some	columns	that	are	frequently	accessed	and
others	that	are	not.

Horizontal	partitioning	is	the	process	of	dividing	a	database	by	documents	in	a
document	database	or	by	rows	in	a	relational	database.	These	parts	of	the	database,
known	as	shards,	are	stored	on	separate	servers.

7.	What	is	a	shard	key?

Answer:	A	shard	key	is	one	or	more	keys	or	fields	that	exist	in	all	documents	in	a
collection	that	is	used	to	separate	documents	into	different	partitions.

8.	What	is	the	purpose	of	the	partitioning	algorithm	in	sharding?

Answer:	The	partitioning	algorithm	determines	how	to	distribute	documents	over
shards.	Common	techniques	include	range,	hash,	and	list	partitioning.

9.	What	is	normalization?

Answer:	Database	normalization	is	the	process	of	organizing	data	into	tables	in	such
a	way	as	to	reduce	the	potential	for	data	anomalies.	An	anomaly	is	an	inconsistency
in	the	data.	Normalization	reduces	the	amount	of	redundant	data	in	the	database.



10.	Why	would	you	want	to	denormalize	collections	in	a	document	database?

Answer:	Denormalization	is	used	to	improve	performance	over	normalized	versions
of	databases.

Chapter	8
1.	What	are	the	advantages	of	normalization?

Answer:	Normalization	reduces	redundant	data	and	mitigates	the	risk	of	data
anomalies.

2.	What	are	the	advantages	of	denormalization?

Answer:	Denormalization	can	improve	query	performance	over	more	normalized
models.

3.	Why	are	joins	such	costly	operations?

Answer:	Joins	retrieve	data	from	multiple	tables.	Joins	use	loops,	hashes,	and	merge
operations.	As	the	size	of	tables	grows,	these	operations	take	longer	as	more	data
blocks	need	to	be	read.	Indexes	can	improve	performance,	but	they	also	require	disk
seeks	to	retrieve	data	blocks	holding	index	data.

4.	How	do	document	database	modelers	avoid	costly	joins?

Answer:	They	use	denormalized	data	models.	The	basic	idea	is	that	data	models
store	data	that	is	used	together	in	a	single	data	structure,	such	as	a	table	in	a
relational	database	or	in	a	document	in	a	document	database.	This	increases	the
likelihood	that	all	the	data	in	a	document	is	in	a	single	data	block	or	at	least	adjacent
data	blocks.

5.	How	can	adding	data	to	a	document	cause	more	work	for	the	I/O	subsystem	in
addition	to	adding	the	data	to	a	document?

Answer:	Too	much	denormalization	will	lead	to	large	documents	that	will	likely
lead	to	unnecessary	data	read	from	persistent	storage.

6.	How	can	you,	as	a	document	database	modeler,	help	avoid	that	extra	work
mentioned	in	Question	5?

Answer:	Let	queries	drive	how	you	design	documents.	Try	to	include	only	fields
that	are	frequently	used	together	in	documents.	If	you	have	two	or	more	distinct	sets
of	requirements	for	the	same	type	of	data,	consider	using	two	document	collections
each	tailored	to	the	different	requirements.

7.	Describe	a	situation	where	it	would	make	sense	to	have	many	indexes	on	your
document	collections.

Answer:	Read-heavy	applications,	especially	those	with	ad	hoc	query	requirements,
might	need	many	indexes.	Business	intelligence	and	other	analytic	applications	can
fall	into	this	category.	Read-heavy	applications	with	ad	hoc	query	requirements
should	have	indexes	on	virtually	all	fields	used	to	help	filter	results.	For	example,	if
it	was	common	for	users	to	query	documents	from	a	particular	sales	region	or	with
order	items	in	a	certain	product	category,	then	the	sales	region	and	product	category



fields	should	be	indexed.

8.	What	would	cause	you	to	minimize	the	number	of	indexes	on	your	document
collection?

Answer:	Data	modelers	tend	to	try	to	minimize	the	number	of	indexes	in	write-
heavy	applications.	Because	indexes	are	data	structures	that	must	be	created	and
updated,	their	use	will	consume	CPU,	persistent	storage,	and	memory	resources	and
increase	the	time	needed	to	insert	or	update	a	document	in	the	database.

9.	Describe	how	to	model	a	many-to-many	relationship.

Answer:	Many-to-many	relationships	are	modeled	using	two	collections—one	for
each	type	of	entity.	Each	collection	maintains	a	list	of	identifiers	that	reference
related	entities.	For	example,	a	document	with	course	data	would	include	an	array	of
student	IDs,	and	a	student	document	would	include	a	list	of	course	IDs.

10.	Describe	three	ways	to	model	hierarchies	in	a	document	database.

Answer:	Parent	references,	child	references,	listing	all	ancestors.

Chapter	9
1.	Name	at	least	three	core	features	of	Google	BigTable.

Answer:

•	Developers	maintain	dynamic	control	over	columns.

•	Data	values	are	indexed	by	row	identifier,	column	name,	and	a	time	stamp.

•	Data	modelers	and	developers	have	control	over	location	of	data.

•	Reads	and	writes	of	a	row	are	atomic.

•	Rows	are	maintained	in	a	sorted	order.

2.	Why	are	time	stamps	used	in	Google	BigTable?

Answer:	The	time	stamp	orders	versions	of	the	column	value.	When	a	new	value	is
written	to	a	BigTable	database,	the	old	value	is	not	overwritten.	Instead,	a	new	value
is	added	along	with	a	time	stamp.	The	time	stamp	allows	applications	to	determine
the	latest	version	of	a	column	value.

3.	Identify	one	similarity	between	column	family	databases	and	key-value	databases.

Answer:	Column	families	are	analogous	to	keyspaces	in	key-value	databases.	In
both	key-value	databases	and	Cassandra,	a	keyspace	is	the	outermost	logical
structure	used	by	data	modelers	and	developers.

4.	Identify	one	similarity	between	column	family	databases	and	document	databases.

Answer:	Column	family	and	document	databases	support	similar	types	of	querying
that	allow	you	to	select	subsets	of	data	available	in	a	row.

Column	family	databases,	like	document	databases,	do	not	require	all	columns	in	all
rows.	In	both	column	family	and	document	databases,	columns	or	fields	can	be



added	as	needed	by	developers.

5.	Identify	one	similarity	between	column	family	databases	and	relational	databases.

Answer:	Both	column	family	databases	and	relational	databases	use	unique
identifiers	for	rows	of	data.	These	are	known	as	row	keys	in	column	family
databases	and	as	primary	keys	in	relational	databases.	Both	row	keys	and	primary
keys	are	indexed	for	rapid	retrieval.

6.	What	types	of	Hadoop	nodes	are	used	by	HBase?

Answer:	Name	nodes	and	data	nodes.

7.	Describe	the	essential	characteristics	of	a	peer-to-peer	architecture.

Answer:	Peer-to-peer	architectures	have	only	one	type	of	node.	Any	node	can
assume	responsibility	for	any	service	or	task	that	must	be	run	in	the	cluster.

8.	Why	does	Cassandra	use	a	gossip	protocol	to	exchange	server	status	information?

Answer:	An	“all-servers-to-all-other-servers”	protocol	can	quickly	increase	the
volume	of	traffic	on	the	network	and	the	amount	of	time	each	server	has	to	dedicate
to	communicating	with	other	servers.	The	number	of	messages	sent	is	a	function	of
the	number	of	servers	in	the	cluster.	If	N	is	the	number	of	servers,	then	N	×	(N–1)	is
the	number	of	messages	needed	to	update	all	servers	with	information	about	all	other
servers.	Gossip	protocols	are	more	efficient	because	one	server	can	update	another
server	about	itself	as	well	as	all	the	servers	it	knows	about.

9.	What	is	the	purpose	of	the	anti-entropy	protocol	used	by	Cassandra?

Answer:	Anti-entropy	algorithms	correct	inconsistencies	between	replicas.

10.	When	would	you	use	a	column	family	database	instead	of	another	type	of	NoSQL
database?

Answer:	Column	family	databases	are	appropriate	choices	for	large-scale	database
deployments	that	require	high	levels	of	write	performance,	a	large	number	of
servers,	or	multi–data	center	availability.

Column	family	databases	are	also	appropriate	when	a	large	number	of	servers	are
required	to	meet	expected	workloads.

Chapter	10
1.	What	is	a	keyspace?	What	is	an	analogous	data	structure	in	a	relational	database?

Answer:	A	keyspace	is	the	top-level	data	structure	in	a	column	family	database.	It	is
top	level	in	the	sense	that	all	other	data	structures	you	would	create	as	a	database
designer	are	contained	within	a	keyspace.	A	keyspace	is	analogous	to	a	schema	in	a
relational	database.

2.	How	do	columns	in	column	family	databases	differ	from	columns	in	relational
databases?

Answer:	Columns	in	column	families	are	dynamic.	Columns	in	a	relational	database
table	are	not	as	dynamic	as	in	column	family	databases.	Adding	a	column	in	a



relational	database	requires	changing	its	schema	definition.	Adding	a	column	in	a
column	family	database	just	requires	making	a	reference	to	it	from	a	client
application,	for	example,	inserting	a	value	to	a	column	name.

3.	When	should	columns	be	grouped	together	in	a	column	family?	When	should	they
be	in	separate	column	families?

Answer:	Columns	that	are	frequently	used	together	should	be	grouped	in	the	same
column	family.

4.	Describe	how	partitions	are	used	in	column	family	databases.

Answer:	A	partition	is	a	logical	subset	of	a	database.	Partitions	are	usually	used	to
store	a	set	of	data	based	on	some	attribute	of	the	data.	Each	node	or	server	within	a
column	family	cluster	maintains	one	or	more	partitions.

When	a	client	application	requests	data,	the	request	is	routed	to	a	server	with	the
partition	containing	the	requested	data.	A	request	could	go	to	a	central	server	in	a
master-slave	architecture	or	to	any	server	in	a	peer-to-peer	architecture.	In	either
case,	the	request	is	forwarded	to	the	appropriate	server.

5.	What	are	the	performance	advantages	of	using	a	commit	log?

Answer:	Commit	logs	are	append-only	files	that	always	write	data	to	the	end	of	the
file.	When	database	administrators	dedicate	a	disk	to	a	commit	log,	there	are	no
other	write	processes	competing	to	write	data	to	the	disk.	This	reduces	the	need	for
random	seeks	and	reduces	latency.

6.	What	are	the	advantages	of	using	a	Bloom	filter?

Answer:	A	Bloom	filter	tests	whether	or	not	an	element	is	a	member	of	a	set,	such
as	a	partition.	Bloom	filters	never	return	a	negative	response	unless	the	element	is
not	in	the	set;	it	may,	however,	return	a	true	response	in	cases	when	the	element	is
not	in	the	set.	Bloom	filters	are	used	to	reduce	the	number	of	blocks	read	from	disks
or	solid	state	devices.

7.	What	factors	should	you	consider	when	setting	a	consistency	level?

Answer:	A	consistency	level	is	set	according	to	several,	sometimes	competing,
requirements:

•	How	fast	should	write	operations	return	a	success	status	after	saving	data	to
persistent	storage?

•	Is	it	acceptable	for	two	users	to	look	up	a	set	of	columns	by	the	same	row	ID	and
receive	different	data?

•	If	your	application	runs	across	multiple	data	centers	and	one	of	the	data	centers
fails,	must	the	remaining	functioning	data	centers	have	the	latest	data?

•	Can	you	tolerate	some	inconsistency	in	reads	but	need	updates	saved	to	two	or
more	replicas?

8.	What	factors	should	you	consider	when	setting	a	replication	strategy?

Answer:	One	method	uses	the	ring	structure	of	a	cluster.	When	data	is	written	to	a



node,	it	is	replicated	to	the	two	adjacent	nodes	in	the	cluster.	The	other	method	uses
network	topology	to	determine	where	to	replicate	data.	For	example,	replicas	may	be
created	on	different	racks	within	a	data	center	to	ensure	availability	in	the	event	of	a
rack	failure.

9.	Why	are	hash	trees	used	in	anti-entropy	processes?

Answer:	The	naive	way	to	compare	replicas	is	to	send	a	copy	of	one	replica	to	the
node	storing	another	replica	and	compare	the	two.	Even	with	high-write
applications,	much	of	the	data	sent	from	the	source	is	the	same	as	the	data	on	the
target	node.	Column	family	databases	can	exploit	the	fact	that	much	of	replica	data
may	not	change	between	anti-entropy	checks.	They	do	this	by	sending	hashes	of
data	instead	of	the	data	itself.

10.	What	are	the	advantages	of	using	a	gossip	protocol?

Answer:	Instead	of	having	every	node	communicate	with	every	other	node,	it	is
more	efficient	to	have	nodes	share	information	about	themselves	as	well	as	other
nodes	from	which	they	have	received	updates.	This	avoids	the	rapid	increase	in	the
number	of	messages	that	must	be	sent	when	compared	with	each	node
communicating	with	all	other	nodes.

11.	Describe	how	hinted	handoff	can	help	improve	the	availability	of	write	operations.

Answer:	If	a	write	operation	is	directed	to	a	node	that	is	unavailable,	the	operation
can	be	redirected	to	another	node,	such	as	another	replica	node	or	a	node	designated
to	receive	write	operations	when	the	target	node	is	down.

The	node	receiving	the	redirected	write	message	creates	a	data	structure	to	store
information	about	the	write	operation	and	where	it	should	ultimately	be	sent.	The
hinted	handoff	periodically	checks	the	status	of	the	target	server	and	sends	the	write
operation	when	the	target	is	available.

Chapter	11
1.	What	is	the	role	of	end-user	queries	in	column	family	database	design?

Answer:	Queries	provide	information	needed	to	effectively	design	column	family
databases.	The	information	includes	entities,	attributes	of	entities,	query	criteria,	and
derived	values.	It	is	users	who	determine	the	questions	that	will	be	asked	of	the
database	application	and	drive	the	data	model	design.

2.	How	can	you	avoid	performing	joins	in	column	family	databases?

Answer:	Denormalization	is	used	to	avoid	joins.

3.	Why	should	entities	be	modeled	in	a	single	row?

Answer:	Column	family	databases	do	not	provide	the	same	level	of	transaction
control	as	relational	databases.	Typically,	writes	to	a	row	are	atomic.	If	you	update
several	columns	in	a	table,	they	will	all	be	updated	or	none	of	them	will	be.	If	you
need	to	update	two	separate	tables,	such	as	a	product	table	and	a	books	table,	it	is
conceivable	that	the	updates	to	the	product	table	succeed	but	the	updates	to	the	book



table	do	not.	In	such	a	case,	you	would	be	left	with	inconsistent	data.

4.	What	is	hotspotting,	and	why	should	it	be	avoided?

Answer:	Hotspotting	occurs	when	many	operations	are	performed	on	a	small
number	of	servers.	It	is	inefficient	to	direct	an	excessive	amount	of	work	at	one	or	a
few	machines	while	there	are	others	that	are	underutilized.

5.	What	are	some	disadvantages	of	using	complex	data	structures	as	a	column	value?

Answer:	Not	all	column	family	database	features	work	well	with	complex	data
structures.	Using	separate	columns	for	each	attribute	makes	it	easier	to	apply
database	features	to	the	attributes.	For	example,	creating	separate	columns	for	street,
city,	state,	and	zip	means	you	can	create	secondary	indexes	on	those	values.

6.	Describe	three	scenarios	in	which	you	should	not	use	secondary	indexes.

Answer:

•	There	are	a	small	number	of	distinct	values	in	a	column.

•	There	are	many	unique	values	in	a	column.

•	The	column	values	are	sparse.

7.	What	are	the	disadvantages	of	managing	your	own	tables	as	indexes?

Answer:	When	using	tables	as	indexes,	you	will	be	responsible	for	maintaining	the
indexes.	You	could	update	the	index	whenever	there	is	a	change	to	the	base	tables;
for	example,	a	customer	makes	a	purchase.	Alternatively,	you	could	run	a	batch	job
at	regular	intervals	to	update	the	index	tables.

Updating	index	tables	at	the	same	time	you	update	the	base	tables	keeps	the	indexes
up	to	date	at	all	times.	A	drawback	of	this	approach	is	that	your	application	will	have
to	perform	two	write	operations,	one	to	the	base	table	and	one	to	the	index	table.
This	could	lead	to	longer	latencies	during	write	operations.

Updating	index	tables	with	batch	jobs	has	the	advantage	of	not	adding	additional
work	to	write	operations.	The	obvious	disadvantage	is	that	there	is	a	period	of	time
when	the	data	in	the	base	tables	and	the	indexes	is	out	of	synchronization.

8.	What	are	two	types	of	statistics?	What	are	they	each	used	for?

Answer:	Descriptive	statistics	are	used	for	understanding	the	characteristics	of	your
data.	Predictive,	or	inferential,	statistics	is	the	study	of	methods	for	making
predictions	based	on	data.

9.	What	are	two	types	of	machine	learning?	What	are	they	used	for?

Answer:	Unsupervised	learning	is	useful	for	exploring	large	data	sets	with
techniques	such	as	clustering.	Supervised	learning	techniques	provide	the	means	to
learn	from	examples.	These	techniques	can	be	used	to	create	classifiers.

10.	How	is	Spark	different	from	MapReduce?

Answer:	MapReduce	writes	much	data	to	disk,	whereas	Spark	makes	more	use	of
memory.	MapReduce	employs	a	fairly	rigid	computational	model	(map	operation



followed	by	reduce	operation),	whereas	Spark	allows	for	more	general
computational	models.

Chapter	12
1.	What	are	the	two	components	of	a	graph?

Answer:	Vertices	and	edges.

2.	List	at	least	three	sample	entities	that	can	be	modeled	as	vertices.

Answer:

•	Cities

•	Employees	in	a	company

•	Proteins

•	Electrical	circuits

•	Junctions	in	a	water	line

•	Organisms	in	an	ecosystem

•	Train	stations

•	A	person	infected	with	a	contagious	disease

3.	List	at	least	three	sample	relations	that	can	be	modeled	as	edges.

Answer:

•	Roads	connecting	cities

•	Employees	working	with	other	employees

•	Proteins	interacting	with	other	proteins

•	Electrical	components	linked	to	other	electrical	components

•	Water	lines	connecting	junctions

•	Predators	and	prey	in	ecosystems

•	Rail	lines	connecting	train	stations

•	Disease	transmission	between	an	infected	and	uninfected	person

4.	What	properties	could	you	associate	with	a	vertex	representing	a	city?

Answer:

•	City	name

•	Population

•	Longitude	and	latitude

•	Points	of	interest

5.	What	properties	could	you	associate	with	an	edge	representing	a	highway	between



two	cities?

Answer:

•	Length

•	Year	built

•	Maximum	speed

6.	Epidemiologists	use	graphs	to	model	the	spread	of	infection.	What	do	vertices
represent?	What	do	edges	represent?

Answer:	Vertices	represent	people.	Edges	represent	interactions	between	people,
such	as	shaking	hands	or	standing	in	close	proximity.

7.	Give	an	example	of	a	part-of	hierarchy.

Answer:

•	Federal,	state/provincial/local	governments

•	Part	of	a	car	hierarchy

8.	How	do	graph	databases	avoid	joins?

Answer:	In	a	graph	database,	instead	of	performing	joins,	you	follow	edges	from
vertex	to	vertex.

9.	How	is	a	person-likes-post	graph	different	from	other	graphs	used	as	examples	in
this	chapter?

Answer:	This	is	an	example	of	a	bipartite	graph.

10.	Give	an	example	of	a	business	application	that	would	use	multiple	types	of	edges
(relations)	between	vertices.

Answer:	A	transportation	company	might	want	to	consider	road,	rail,	and	air
transportation	between	cities.	Each	has	different	options,	such	as	time	to	deliver,
cost,	and	government	regulations.

Chapter	13
1.	Define	a	vertex.

Answer:	A	vertex	represents	an	entity	marked	with	a	unique	identifier.	A	vertex	can
represent	virtually	any	entity	that	has	a	relation	with	another	entity.

2.	Define	an	edge.

Answer:	Edges	define	relationships	between	vertices.

3.	List	at	least	three	examples	in	which	you	can	use	graphs	to	model	the	domains.

Answer:

•	Transportation	networks

•	Social	networks



•	Spread	of	infectious	diseases

•	Electrical	circuits

•	Networks,	such	as	the	Internet

4.	Give	an	example	of	when	you	would	use	a	weighted	graph.

Answer:

•	In	the	case	of	highways,	weight	could	be	the	distance	between	cities.

•	In	a	social	network,	weight	could	be	an	indication	of	how	frequently	the	two
individuals	post	on	each	other’s	walls	or	comment	on	each	other’s	posts.

5.	Give	an	example	of	when	you	would	use	a	directed	graph.

Answer:	In	a	family	relations	graph,	there	is	a	direction	associated	with	a	“parent
of”	relation.

6.	What	is	the	difference	between	order	and	size?

Answer:	The	order	of	a	graph	is	the	number	of	vertices	in	the	graph.	The	size	is	the
number	of	edges	in	a	graph.

7.	Why	is	betweenness	sometimes	called	a	bottleneck	measure?

Answer:	Betweenness	is	a	measure	of	how	important	a	vertex	is	to	connecting
different	parts	of	a	graph.	If	all	paths	from	one	part	of	the	network	to	another	part
must	go	through	a	single	vertex,	then	it	can	become	a	bottleneck.	Such	vertices	have
high	betweenness	scores.

8.	How	would	an	epidemiologist	use	closeness	to	understand	the	spread	of	a	disease?

Answer:	Closeness	is	a	property	of	a	vertex	that	indicates	how	far	the	vertex	is	from
all	others	in	the	graph.	People	(vertices)	with	high	closeness	scores	have	short	paths
to	others	in	the	network.	Diseases	can	spread	faster	from	people	with	high	closeness
scores	than	from	those	with	low	closeness	scores.

9.	When	would	you	use	a	multigraph?

Answer:	Multigraphs	are	graphs	with	multiple	edges	between	vertices.	Multiple
edges	between	cities	could	represent	various	shipping	options,	such	as	shipping	by
truck,	train,	or	plane.

10.	What	is	Dijkstra’s	algorithm	used	for?

Answer:	Dijkstra’s	algorithm	is	used	to	find	the	shortest	paths	in	a	network.

Chapter	14
1.	What	is	the	benefit	of	mapping	domain-specific	queries	into	graph-specific	queries?

Answer:	Once	you	have	your	domain-specific	queries	mapped	to	graph-specific
queries,	you	have	the	full	range	of	graph	query	tools	and	graph	algorithms	available
to	you	to	analyze	and	explore	your	data.

2.	Which	is	more	like	SQL,	Cypher	or	Gremlin?



Answer:	Cypher.

3.	How	is	the	MATCH	statement	like	a	SQL	SELECT	statement?

Answer:	MATCH	is	used	to	retrieve	data	from	a	graph	database.	MATCH	supports
filtering	based	on	properties.

4.	What	are	the	inE	and	outE	terms	used	for	in	Gremlin?

Answer:	inE	is	a	reference	to	incoming	edges	of	a	vertex;	outE	is	a	reference	to
outgoing	edges	of	a	vertex.

5.	Which	type	of	edge	should	be	used	for	a	nonsymmetrical	relation,	a	directed	or
undirected	edge?

Answer:	A	directed	edge.

6.	What	is	the	difference	between	a	declarative	and	a	traversal	query	language	for
graph	databases?

Answer:	Declarative	languages	express	what	is	to	be	retrieved;	traversal	languages
specify	how	to	retrieve	data.

7.	What	is	a	depth-first	search?

Answer:	In	a	depth-first	search,	you	start	traversal	at	one	vertex	and	select	adjacent
vertices.	You	then	select	the	first	vertex	in	that	resultset	and	select	adjacent	vertices
to	it.	You	continue	to	select	the	first	vertex	in	the	resultset	until	there	are	no	more
edges	to	traverse.	At	that	point,	you	visit	the	next	vertex	in	the	latest	resultset.	If
there	are	incident	edges	leading	to	other	vertices,	you	visit	those;	otherwise,	you
continue	to	the	next	item	in	the	latest	resultset.	When	you	exhaust	all	vertices	in	the
latest	resultset,	you	return	to	the	resultset	selected	prior	to	that	and	begin	the	process
again.

8.	What	is	a	breadth-first	search?

Answer:	In	a	breadth-first	search,	you	visit	each	of	the	vertices	incident	to	the
current	vertex	before	visiting	other	vertices.

9.	Why	are	cycles	a	potential	problem	when	performing	graph	operations?

Answer:	Cycles	can	lead	to	traversing	the	same	vertices	repeatedly.	Keeping	track
of	visited	vertices	is	one	way	to	avoid	problems	with	cycles.

10.	Why	is	scalability	such	an	important	consideration	when	working	with	graphs?

Answer:	Scalability	in	graph	databases	must	address	growth	in

•	Vertices	and	edges

•	Number	of	users

•	Number	and	size	of	properties	on	vertices	and	edges

Chapter	15
1.	Name	two	use	cases	for	key-value	databases.



Answer:

•	Caching	data	from	relational	databases	to	improve	performance

•	Tracking	transient	attributes	in	a	web	application,	such	as	a	shopping	cart

2.	Describe	two	reasons	for	choosing	a	key-value	database	for	your	application.

Answer:

•	There	is	a	need	for	variable	attributes.

•	The	problem	domain	requires	a	relatively	simple	data	model.

3.	Name	two	use	cases	for	document	databases.

Answer:

•	Content	management	systems

•	Back-end	support	for	mobile	device	applications

4.	Describe	two	reasons	for	choosing	a	document	database	for	your	application.

Answer:

•	There	is	a	wide	variety	of	query	patterns.

•	There	is	a	need	for	flexible	data	structures.

5.	Name	two	use	cases	for	column	family	databases.

Answer:

•	Collecting	and	analyzing	log	data	from	a	large	number	of	devices

•	Analyzing	customer	characteristics	to	generate	personalized	offers

6.	Describe	two	reasons	for	choosing	a	column	family	database	for	your	application.

Answer:

•	There	is	a	need	for	multi–data	center	replication.

•	There	is	the	need	to	work	with	Big	Data–scale	volumes	of	data.

7.	Name	two	use	cases	for	graph	databases.

Answer:

•	Modeling	computer	networks

•	Modeling	social	media	networks

8.	Describe	two	reasons	for	choosing	a	graph	database	for	your	application.

Answer:

•	There	is	a	need	to	model	explicit	relations	between	entities	and	rapidly	traverse
paths	between	entities.

•	There	is	an	affinity	between	the	problem	domain,	such	as	transportation	networks,
and	graphs.



9.	Name	two	types	of	applications	well	suited	for	relational	databases.

Answer:

•	Transaction	processing

•	Data	warehouses	and	data	marts

10.	Discuss	the	need	for	both	NoSQL	and	relational	databases	in	enterprise	data
management.

Answer:	NoSQL	and	relational	databases	are	complementary.	Relational	databases
offer	many	features	that	protect	the	integrity	of	data	and	reduce	the	risk	of	data
anomalies.	Relational	databases	incur	operational	overhead	providing	these	features.
In	some	use	cases,	performance	is	more	important	than	ensuring	immediate
consistency	or	supporting	ACID	transactions.	In	these	cases,	NoSQL	databases	may
be	the	better	solution.	Choosing	a	database	is	a	process	of	choosing	the	right	tool	for
the	job.	The	more	varied	your	set	of	jobs,	the	more	varied	your	toolkit.



B.	List	of	NoSQL	Databases

Aerospike

A	key-value	database	available	as	open	source	software.	Optimized	for	flash	storage.	For
more	details,	see	http://www.aerospike.com/.

AllegroGraph

A	commercial	graph	database	with	support	for	resource	description	format	(RDF)	data.
For	more	details,	see	http://franz.com/agraph/allegrograph/.

Amazon	Web	Services	DynamoDB

A	key-value	and	document	database	service	provided	by	Amazon	Web	Services.	This
highly	scalable	service	is	designed	for	large	key-value	data	stores;	support	for	documents
was	recently	added.	Service	cost	is	based	on	use.	For	more	details,	see
aws.amazon.com/dynamodb.

Amazon	Web	Services	SimpleDB

A	minimal	key-value	database	provided	by	Amazon	Web	Services.	Well	suited	for	small
databases	that	require	query	flexibility	but	do	not	require	scalability.	When	scalability	is
required,	AWS	DynamoDB	is	a	better	option.	Service	cost	is	based	on	use.	For	more
details,	see	aws.amazon.com/simpledb.

Apache	Accumulo

A	column	family	database	based	on	the	Google	BigTable	design.	Accumulo	is	open	source
software.	Includes	support	for	cell-based	access	controls.	Built	to	work	with	the	Hadoop
ecosystem.	For	more	details,	see	http://accumulo.apache.org/.

Apache	CouchDB

An	open	source	document	data	store	from	the	Apache	Foundation.	For	more	details,	see
http://couchdb.apache.org.

Apache	Giraph

An	open	source	graph	database	designed	for	scalability.	Based	on	Pregel,	a	graph	database
developed	by	Google.	For	more	details,	see	giraph.apache.org.

Apache	HBase

A	column	family	database	based	on	the	Google	BigTable	design.	HBase	is	part	of	the
Hadoop	ecosystem.	For	more	details,	see	http://hbase.apache.org.

ArrangoDB

An	open	source,	multimodal	NoSQL	database	with	support	for	key-value,	document,	and
graph	data	models.	For	more	details,	see	http://www.arrangodb.org.

Cassandra

An	open	source	wide	column	database	based	on	Google	BigTable	and	Amazon’s
DynamoDB	designs.	For	more	information,	see	http://cassandra.apache.org	and
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http://www.datastax.com/docs.

Cloudant

A	commercial	document	database	service	based	on	CouchDB	and	owned	by	IBM.	For
more	details,	see	https://cloudant.com.

Couchbase

An	open	source	document	database	derived	from	Apache	CouchDB.	For	more
information,	see	http://www.couchbase.com.

FoundationDB

A	commercial	key-value	database	that	supports	ordered	key	values	and	ACID
transactions.	For	more	details,	see	https://foundationdb.com.

Google	Cloud	Datastore

A	commercial	document	database	service	from	Google.	See
developers.google.com/datastore	for	more	details.

Hypertable

An	open	source	implementation	of	Google	BigTable.	For	more	information,	see
http://hypertable.org/.

Infinispan

An	open	source	key-value	data	store	that	uses	a	distributed	inmemory	model	to	support	a
scalable	key-value	grid.	For	more	details,	see	http://infinispan.org/.

LevelDB

An	open	source	key-value	data	store	library	from	Google.	This	is	a	library	for	use	with
other	applications.	There	is	no	client/server	support;	this	must	be	provided	by	another
application,	if	needed.	For	more	details,	see	https://github.com/google/leveldb.

MarkLogic

A	commercial	document	database	with	support	for	native	XML	and	resource	description
format	(RDF)	data.	For	more	information,	see	http://www.marklogic.com.

Microsoft	Azure	DocumentDB

A	commercial	service	providing	document	database	functionality	in	the	Microsoft	Azure
cloud.	See	azure.microsoft.com/en-us/services/documentdb	for	more	details.

MongoDB

Probably	the	most	popular	document	database.	MongoDB	is	open	source.	For	more
details,	see	http://www.mongodb.org.

Neo4j

A	popular	open	source	graph	database	that	supports	the	Cypher	query	language.	For	more
details,	see	http://neo4j.com.

Oracle	Berkeley	DB
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One	of	the	oldest	key-value	data	stores	started	as	a	project	at	the	University	of	California
at	Berkeley.	The	open	source	code	is	now	managed	by	Oracle.	For	more	details,	see
www.oracle.com/technetwork/products/berkeleydb.

OrientDB

An	open	source	document	database	with	some	support	for	graph	databases	as	well.	For
more	information,	see	http://www.orientdb.org.

RavenDB

An	open	source	document	database	designed	for	use	with	the	.NET	Framework.	For	more
details,	see	http://ravendb.net/.

Redis

An	open	source	key-value	database	that	uses	master-slave	replication.	For	more	details,
see	http://redis.io.

Riak

Distributed	key-value	data	store	that,	unlike	Redis,	does	not	use	a	master-slave
architecture.	For	more	details,	see	basho.com/products/riak-overview.

Sparksee

A	commercial	graph	database	that	includes	a	mobile	version	of	the	database	for	iOS	and
Android	devices.	For	more	details,	see	sparsitytechnologies.com/#sparksee.

Sqrrl

A	commercial	multimodal	NoSQL	database	based	on	Apache	Accumulo.	Supports	key-
value,	document,	column	family,	and	graph	database	models.	For	more	details,	see
http://sqrrl.com.

Titan

An	open	source	distributed	graph	database	that	supports	the	Tinker-Pop	platform.	Uses
Cassandra	or	other	database	for	back-end,	persistent	storage.	For	more	details,	see
http://thinkaurelius.github.io/titan/.
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Glossary

A
anti-entropy

Anti-entropy	is	the	process	of	detecting	differences	in	replicas.	From	a	performance
perspective,	it	is	important	to	detect	and	resolve	inconsistencies	with	a	minimum	amount
of	data	exchange.

B
betweenness

Betweenness	is	a	measure	of	how	much	of	a	bottleneck	a	given	vertex	is.

bipartite	graph

A	bipartite	graph,	or	bigraph,	is	a	graph	with	two	distinct	sets	of	vertices	where	each
vertex	in	one	set	is	only	connected	to	vertices	in	the	other	set.

Bloom	filter

A	Bloom	filter	tests	whether	or	not	an	element	is	a	member	of	a	set.	Unlike	a	typical
member	function,	the	Bloom	filter	sometimes	returns	an	incorrect	answer.	It	could	return	a
positive	response	in	cases	where	the	tested	element	is	not	a	member	of	the	set.	This	is
known	as	a	false	positive.	Bloom	filters	never	return	a	negative	response	unless	the
element	is	not	in	the	set.

C
CAP	theorem

Also	known	as	Brewer’s	theorem	after	the	computer	scientist	who	introduced	it,	the	CAP
theorem	states	that	distributed	databases	cannot	have	consistency	(C),	availability	(A),	and
partition	protection	(P)	all	at	the	same	time.	Consistency,	in	this	case,	means	consistent
copies	of	data	on	different	servers.	Availability	refers	to	providing	a	response	to	any	query.
Partition	protection	means	a	network	that	connects	two	or	more	servers	is	unable	to
transmit	network	packets	between	the	servers.

closeness

Closeness	is	a	property	of	a	vertex	that	indicates	how	far	the	vertex	is	from	all	others	in
the	graph.

cluster

A	cluster	is	a	set	of	servers	configured	to	function	together.	Servers	sometimes	have
differentiated	functions	and	sometimes	they	do	not.

collection

A	collection	is	a	group	of	documents.	The	documents	within	a	collection	are	usually
related	to	the	same	subject	entity,	such	as	employees,	products,	logged	events,	or	customer



profiles.	It	is	possible	to	store	unrelated	documents	in	a	collection,	but	this	is	not	advised.

collision

A	collision	occurs	when	two	distinct	inputs	to	a	hash	function	produce	the	same	output.
When	it	is	difficult	to	find	two	inputs	that	map	to	the	same	hash	function	output,	the	hash
function	is	known	as	collision	resistant.	If	a	hash	table	is	not	collision	resistant	or	if	you
encounter	one	of	those	rare	cases	in	which	two	inputs	map	to	the	same	output,	you	will
need	a	collision	resolution	strategy.

column

A	column	is	the	data	structure	for	storing	a	single	value	in	a	column	family	database.

column	family

A	column	family	is	a	collection	of	related	columns.	Columns	that	are	frequently	used
together	should	be	grouped	into	the	same	column	family.

commit	log

Commit	log	files	are	used	in	databases	to	improve	performance	while	ensuring
recoverability.	Instead	of	writing	data	immediately	to	their	partition	and	disk	block,
column	family	databases	can	employ	commit	logs.	These	are	append-only	files	that
always	write	data	to	the	end	of	the	file.	In	the	event	of	a	failure,	the	database	management
system	reads	the	commit	log	on	recovery.	Any	entries	in	the	commit	log	that	have	not
been	saved	to	partitions	are	written	to	appropriate	partitions.

compression

Compression	is	a	data	management	technique	that	uses	repeating	patterns	in	data	to	reduce
the	storage	needed	to	hold	the	data.	A	compression	algorithm	for	databases	should
perform	compression	and	decompression	operations	as	fast	as	possible.	This	often	entails
a	trade-off	between	the	speed	of	compression/decompression	and	the	size	of	the
compressed	data.	Faster	compression	algorithms	can	lead	to	larger	compressed	data	than
other,	slower	algorithms.

consistency	level

Consistency	level	refers	to	the	consistency	between	copies	of	data	on	different	replicas.	In
the	strictest	sense,	data	is	consistent	only	if	all	replicas	have	the	same	data.	At	the	other
end	of	the	spectrum,	you	could	consider	the	data	“consistent”	as	long	as	it	is	persistently
written	to	at	least	one	replica.	There	are	several	intermediate	levels	as	well.

D
degree

Degree	is	the	number	of	edges	linked	to	a	vertex	and	is	one	way	to	measure	the
importance	of	any	given	vertex	in	a	graph.

directed	graph

A	directed	graph	is	one	in	which	the	edges	have	a	specified	direction	from	one	vertex	to
another.



document

A	document	is	a	set	of	ordered	key-value	pairs.	A	key	is	a	unique	identifier	used	to	look	up
a	value.	A	value	is	an	instance	of	any	supported	data	type,	such	as	a	string,	number,	array,
or	list.

E
edge

An	edge,	also	known	as	a	link	or	arc,	defines	relationships	between	vertices	or	objects
connecting	vertices.

embedded	document

An	embedded	document	enables	document	database	users	to	store	related	data	in	a	single
document.	This	allows	the	document	database	to	avoid	a	process	called	joining	in	which
data	from	one	table,	called	the	foreign	key,	is	used	to	look	up	data	in	another	table.

F
flow	network

A	flow	network	is	a	directed	graph	in	which	each	edge	has	a	capacity	and	each	vertex	has
a	set	of	incoming	and	outgoing	edges.	The	sum	of	the	capacity	of	incoming	edges	cannot
be	greater	than	the	sum	of	the	capacity	of	outgoing	edges.	The	two	exceptions	to	this	rule
are	source	and	sink	vertices.	Sources	have	no	inputs	but	have	outputs,	whereas	sinks	have
inputs	but	no	outputs.

G
gossip	protocol

The	gossip	protocol	is	a	protocol	for	sharing	information	between	nodes	in	a	cluster.
Instead	of	having	every	node	communicate	with	every	other	node,	it	is	more	efficient	to
have	nodes	share	information	about	themselves	as	well	as	other	nodes	from	which	it	has
received	updates.

graph	traversal

Graph	traversal	is	the	process	of	visiting	all	vertices	in	a	graph	in	a	particular	way.	The
purpose	of	this	is	usually	to	either	set	or	read	some	property	value	in	a	graph.

H
hash	function

A	hash	function	is	an	algorithm	that	maps	from	an	input,	for	example,	a	string	of
characters,	to	an	output	string.	The	size	of	the	input	can	vary,	but	the	size	of	the	output	is
always	the	same.

hinted	handoff

The	hinted	handoff	is	a	protocol	designed	to	preserve	update	information	if	a	server	is



down.	If	a	write	operation	is	directed	to	a	node	that	is	unavailable,	the	operation	can	be
redirected	to	another	node,	such	as	another	replica	node	or	a	node	designated	to	receive
write	operations	when	the	target	node	is	down.

The	node	receiving	the	redirected	write	message	creates	a	data	structure	to	store
information	about	the	write	operation	and	where	it	should	ultimately	be	sent.	The	hinted
handoff	periodically	checks	the	status	of	the	target	server.

horizontal	partitioning	or	sharding

Horizontal	partitioning	is	the	process	of	dividing	a	database	by	documents	in	a	document
database	or	by	rows	in	a	relational	database.

I
intersection	of	graphs

The	intersection	of	a	graph	is	the	set	of	vertices	and	edges	that	are	common	to	both
graphs.

isomorphism

Two	graphs	are	considered	isomorphic	if	for	each	vertex	in	the	first	graph,	there	is	a
corresponding	vertex	in	the	other	graph.	In	addition,	for	each	edge	between	a	pair	of
vertices	in	the	first	graph,	there	is	a	corresponding	edge	between	the	corresponding
vertices	of	the	other	graph.

K
key

In	key-value	databases,	a	key	is	a	reference	to	a	value.	In	relational	databases,	a	key	is	also
a	way	to	reference	a	row	in	a	table.	Primary	keys	refer	to	the	way	of	uniquely	identifying	a
row.	Foreign	keys	refer	to	keys	stored	in	one	table	that	are	used	to	reference	rows	in	other
tables.

keyspace

A	keyspace	is	the	top-level	data	structure	in	a	column	family	database.	It	is	top	level	in	the
sense	that	all	other	data	structures	you	would	create	as	a	database	designer	are	contained
within	a	keyspace.	A	keyspace	is	analogous	to	a	schema	in	a	relational	database.

L
loop

A	loop	is	an	edge	that	connects	a	vertex	to	itself.

M
multigraph

A	multigraph	is	a	graph	with	multiple	edges	between	vertices.



N
namespace

A	namespace	is	a	list	of	key-value	pairs	without	duplicates	for	holding	key-value	pairs.	A
namespace	could	be	an	entire	key-value	database.	The	essential	characteristic	of	a
namespace	is	it	is	a	collection	of	key-value	pairs	that	has	no	duplicate	keys.	It	is
permissible	to	have	duplicate	values	in	a	namespace.

O
order	of	a	graph

The	order	of	a	graph	is	the	number	of	vertices	in	the	graph.

P
partition

A	partition	is	a	logical	subset	of	a	database.	Partitions	are	usually	used	to	store	a	set	of
data	based	on	some	attribute	of	the	data.

partitioning

With	respect	to	distributed	databases,	partitioning	refers	to	splitting	documents,	tables,	or
graphs	and	distributing	them	to	different	servers.

With	respect	to	the	CAP	theorem,	partitioning	refers	to	losing	a	network	connection	in	a
way	that	leaves	parts	of	the	network	unreachable	from	some	other	parts.

path

A	path	through	a	graph	is	a	set	of	vertices	along	with	the	edges	between	those	vertices.
The	vertices	in	a	graph	are	all	different	from	each	other.	If	edges	are	directed,	the	path	is	a
directed	path.	If	the	graph	is	undirected,	the	paths	in	it	are	undirected	paths.

polymorphic	schema

A	polymorphic	schema	is	a	database	that	allows	for	documents	of	different	types	and
forms	to	exist	in	the	same	collection.	This	term	is	usually	used	with	reference	to	document
databases.

Q
query	processor

The	query	processor	takes	as	input	queries	and	data	about	the	documents,	columns,	or
graphs	in	a	database	and	produces	a	sequence	of	operations	that	retrieve	the	selected	data.
Key-value	databases	do	not	need	query	processors;	they	function	by	looking	up	values	by
keys.

R
replication



Replication	is	the	process	of	saving	multiple	copies	of	data	in	your	cluster.	This	provides
for	high	availability	of	distributed	databases.

ring

A	ring	is	a	logical	structure	for	organizing	partitions.	A	ring	is	a	circular	pattern	in	which
each	server	or	instance	of	key-value	database	software	running	on	a	server	is	linked	to	two
adjacent	servers	or	instances.	Each	server	or	instance	is	responsible	for	managing	a	range
of	data	based	on	a	partition	key.

row	key

A	row	key	uniquely	identifies	a	row	in	a	column	family.	It	serves	some	of	the	same
purposes	as	a	primary	key	in	a	relational	database.

S
schemaless

Document	databases	do	not	require	data	modelers	to	formally	specify	the	structure	of
documents.	A	formal	structure	specification	is	known	as	a	schema.	Relational	databases
do	require	schemas.

sharding	or	horizontal	partitioning

Horizontal	partitioning	is	the	process	of	dividing	a	database	by	documents	in	a	document
database	or	by	rows	in	a	relational	database.

size	of	a	graph

The	size	of	a	graph	is	the	number	of	edges	in	a	graph.

U
undirected	graph

An	undirected	graph	is	one	in	which	the	edges	do	not	indicate	a	direction	(such	as	from-
to)	between	two	vertices.

union	of	graphs

The	union	of	graphs	is	the	combined	set	of	vertices	and	edges	in	a	graph.

V
value

In	key-value	databases,	a	value	is	an	object,	typically	a	set	of	bytes,	that	has	been
associated	with	a	key.	Values	can	be	integers,	floating-point	numbers,	strings	of
characters,	binary	large	objects	(BLOBs),	semistructured	constructs	such	as	JSON	objects,
images,	audio,	and	just	about	any	other	data	type	you	can	represent	as	a	series	of	bytes.

vertex

A	vertex	represents	an	entity	marked	with	a	unique	identifier—analogous	to	a	row	key	in	a
column	family	database	or	a	primary	key	in	a	relational	database.	It	should	be	noted	that



the	term	node	is	an	acceptable	replacement	for	vertex.	However,	this	book	only	uses	the
latter	to	avoid	confusion	with	the	use	of	node	to	describe	a	service	running	in	a	cluster.

vertical	partitioning

Vertical	partitioning	is	a	technique	for	improving	database	performance	by	storing
columns	of	a	relational	table	in	separate,	multiple	partitions.	This	is	especially	helpful
when	only	a	subset	of	columns	is	read	from	a	row	of	data	and	the	columns	are	read	from
many	rows.

W
weighted	graph

A	weighted	graph	is	a	graph	in	which	each	edge	has	a	number	assigned	to	it.	The	number
can	reflect	a	cost,	a	capacity,	or	some	other	measure	of	an	edge.	This	is	commonly	used	in
optimization	problems,	such	as	finding	the	shortest	path	between	vertices.
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subtypes

aggregation,	166-169

code	sharing,	195-198

support,	range	queries,	161

T
tables,	23,	121,	244

column	family	databases,	332-340

emulating,	165-166

secondary	indexes,	345-347

terminology

column	family	databases,	308-313

keyspaces,	309

row	keys,	309-310

document	databases,	214-217

collections,	218

denormalization,	235

embedded	documents,	218-219

horizontal	partitions,	227-231

normalization,	233-234

partitions,	224

polymorphic	schemas,	223

query	processors,	235-236

schemaless,	220-222

vertical	partitions,	225-227

graph	databases,	380



edges,	381-382

loops,	384

paths,	383

vertices,	380-381

key-value	database	architecture,	131,	137-140

clusters,	131-133

replication,	135-136

rings,	133

key-value	database	modeling,	118-121

keys,	121-123

namespaces,	124-126

partition	keys,	129

partitions,	126-127

schemaless,	129-131

values,	123-124

thermodynamics,	laws	of,	299-300

Third	Normal	Form,	234

time,	optimizing	retrieval,	415

time	stamps,	indexing,	281

Time	to	Live.	See	TTL

TinkerPop,	418

Titan,	418,	480

tools,	big	data,	348-356

transactions,	45

ACID,	429.	See	also	ACID

atomic	aggregation,	169-170

consistency	of,	47-48

multirow,	avoiding,	290-291

transportation	networks,	393

traversal,	graphs,	387,	410-417

troubleshooting

read/write	operations,	155-159



write	problems,	107-110

TTL	(Time	to	Live)	keys,	163-164

types

data.	See	data	types

of	databases,	59,	477-480

distributed	databases,	41-54

document	databases,	66-68

graph	databases,	71-75

key-value	pair	databases,	60-65

of	edges,	382

of	eventual	consistency,	57-59

of	graphs,	392

bigraphs,	394

directed/undirected,	392-393

flow	networks,	393

multigraphs,	395

weighted	graphs,	395-396

of	partitions,	224

horizontal,	227-231

vertical,	225-227

U
undirected	edges,	382.	See	also	edges

undirected	graphs,	392-393

unions	of	graphs,	385

update	command,	207

UPDATE	statements,	27

updating	documents	in	collections,	206-208

V
validation	of	code,	222

valueless	columns,	334

values,	64,	110-113



arrays.	See	arrays

atomic	aggregation,	169-170

columns

avoiding	complex	data	structures,	339-340

storage,	334

versions,	338

data	types,	216-217

definition	of,	123-124

indexes,	171-173

key-value	databases

architecture	terms,	131-136

design,	147-148

modeling	terms,	118-131

keys,	105-110,	215

optimizing,	155-159

searching,	112-113,	160-161

structured	design,	151-159

versions,	column	values,	338

vertical	partitioning,	225-227

vertices,	380-381,	363.	See	also	nodes

betweenness,	391

closeness,	390-391

degrees,	390

graph	traversal,	387

views,	23

Vlissides,	John,	162

W
weight	of	edges,	382.	See	also	edges

weighted	graphs,	395-396

while	loops,	148

write-heavy	applications,	260-261

write	problems,	avoiding,	107-110



writing	atomic	rows,	283-284

X
XML	(Extensible	Markup	Language),	66

Z
zones,	Goldilocks	Zone	of	indexes,	258-260

Zookeeper,	293-294









Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.
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