[Advanced Skills from the Experts]

“A valuable resource you'll want to keep within reach on your bookshelf.”"
—From the Foreword by Arjen Lentz, Founder, Ogen Ouery

Vikram Vaswani

MySQL Database Usage
& Administration

Vikram Vaswani

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-0-07-160550-2
MHID: 0-07-160550-9
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-160549-6, MHID: 0-07-160549-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the mtbenefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-
grams. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechan-
ical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any informa-
tion and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, dis-
seminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own non-
commercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to com-
ply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages result-
ing therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the
use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

For Farah and Tonka:
I couldn’t have got this far without you!

About the Author

Vikram Vaswani is the founder and CEO of Melonfire
(www.melonfire.com), a consultancy firm with special
expertise in open-source tools and technologies. He is a
passionate proponent of the open-source movement and
frequently contributes articles and tutorials on open-source
P technologies—including Perl, Python, PHP, MySQL, and
$ "\ Linux—to the community at large. His previous books
e include MySQL: The Complete Reference (www.mysql-tcr.com),
A\ PHP: A Beginner’s Guide (www.php-beginners-guide.com),
' ';\“ and PHP Programming Solutions (www.php-programming-
\ b &% solutions.com).
Vikram has more than eight years’ experience interacting with the MySQL RDBMS
as a user, administrator, and application developer. He has deployed MySQL in a variety
of different environments, including corporate intranets, high-traffic websites, and
mission-critical thin client applications, and is a vocal advocate of MySQL in his role as
a software consultant.

A Felix Scholar at the University of Oxford, England, Vikram combines his interest in
Web application development with various other activities. When not dreaming up plans
for world domination, he amuses himself by reading crime fiction, watching old movies,
playing squash, blogging, and keeping an eye out for unfriendly agents. Read more
about him and MySQL Database Usage & Administration at www.mysql-usage.com.

About the Technical Editor

Chris Cornutt has been involved in the PHP community for more than eight years. Soon
after discovering the language, he started up his news site, www.PHPDeveloper.org, to
share the latest happenings and opinions from other PHPers from around the world.
Chris has written for publications such as php | architect and the international PHP
magazines on topics ranging from geocoding to trackbacks. He is also a coauthor of
PHP String Handling (Wrox Press, 2003). Chris lives in Frisco, Texas, with his wife and
son, where he works for a large natural-gas distributor maintaining their website and
developing PHP-based applications.

")
D
—
~

O oOoO~NOOOTRAWNE

Part Il
10
11
12
13

Contents at a Glance

Usage

An Introductionto MySQL o i 3
Understanding Basic Commands 19
Making Design Decisions 49
Using Joins, Subqueries, and Views 69
Using Transactions i, 109
Using Stored Procedures and Functions 133
Using Triggers and Scheduled Events 167
Working with Data in Different Formats 189
Optimizing Performance 213
Administration

Performing Basic Server Administration 241
Managing Users and Controlling Access 263
Performing Maintenance, Backup, and Recovery 287
Replicating Data i 301
Installing MySQL and the Sample Database 319
Index ... o 335

This page intentionally left blank

Part |

Contents

Foreword xiii
Acknowledgments o ool XV
Introduction xvii

Usage

An Introduction to MySQL o 3
History ... o 4
Unique Features i 5
Speed 5
Reliability —........... . 5
Scalability —......... ... 5
Easeof Use i 6
Portability and Standards Compliance 7
Multiuser Support o o 7
Internationalization oo 7
Wide Application Support oL 7
Open-Source Code L. 7
Product Family 8
MySQL Server —......... . 8
MySQL Cluster i i 8
MySQLProxy ... 8
MySQL Administrator — oo ool 9
MySQL Query Browser 9
MySQL Workbench ool 9
MySQL Migration Toolkit 9
MySQL Embedded Server o oL 9
MySQL Drivers and Connectors 10
Technical Architecture L 10
Subsystems 10
Connectivity i 11
Standards Compliance 11

Vili MySQL Database Usage & Administration

Transactions 11
Query Cachingl 12
Extensibility 12
Symmetric Multiprocessing Support 13
Security ... 13
Application Programming Interfaces 14
Applications ... 14
Web Applications 14

Data Warehouses oL 15
Business Applicationsl 16
Summary ... 16
2 Understanding Basic Commandscoiiiiiiiinen 19
Understanding Basic Concepts 20
Databases, Tables, and Records 20
Primary and Foreign Keys 21
Structured Query Language (SQL) 23
Database Normalization 24
Working with Databases and Tables 25
Using the MySQL Command-Line Client 25
Creating Databases 26
Creating Tables 27
Altering Tables il 30
Removing Tables and Databases 32
Working with Records o il 33
Creating Records 33
Removing and Modifying Records 34
Retrieving Records oL 35
Viewing Database, Table, and Field Information 47
Summary ... 48
3 Making Design Decisionsot 49
Selecting Field Data Types o ... 50
Numeric Types 50
Character and String Types 51

Text and Binary Types i 51

Date and Time Types 51
Enumerations 52

Data Type Selection Checklist 52
Selecting Table Storage Engines 53
The MyISAM Storage Engine 53

The InnoDB Storage Engine 53

The Archive Storage Engine 54

The Federated Storage Engine 54

The Memory Storage Engine 54

The CSV Storage Engine 55

Contents

The MERGE Storage Engine 55

The ISAM Storage Engine 55

The NDB Storage Engine 56
Storage Engine Selection Checklist 56

Using Primary and Foreign Keys 57
Primary Keys ool 57
ForeignKeysl 58

Using Indexes 63
The UNIQUEIndex0, 65

The FULLTEXT Indext 65
SUMMAry ... 68
Using Joins, Subqueries, and Viewsc.oiiiiininne. 69
Using Joins 70
ASimpleJoin ... oo o oo 70
Typesoffoins i 72

Using Subqueries i il 83
ASimple Subquery o ool 83

Types of Subqueries L 85

Using VIews ... 95
ASimple View ... 96

View Security 100
Multitable Views oo ool 100
Nested Views i 102
Updatable Views L 103
Summary ... 108
Using Transactionsiiiiiiiiiiiiiiiiiiiiinnan., 109
Understanding Transactions 110
The ACID Properties 112
MySQL and the ACID Properties 114

A Simple Transaction il 114
Savepoints 119
Controlling Transactional Behavior —............................ 121
Automatic Commitso ool 121
Transaction Isolation Levels 122
Pseudo-Transactions i 126
Table Locks as a Substitute for Transactions 127
Implementing a Pseudo-Transaction with Table Locks 130
SUMMATY ..o 131
Using Stored Procedures and Functions 133
Understanding Stored Routines 134
Creating and Using Stored Procedures 135
Creating and Using Stored Functions 142

Setting Routine Characteristics 146

ix

MySQL Database Usage & Administration

Doing More with Stored Routines
Variables
Conditional Tests
Loops
CUISOTS ottt et e e
Handlers

Summary ...

Using Triggers and Scheduled Events
Understanding Triggers,
ASimple Trigger o il
Triggers and Old/New Values
Triggers and More Complex Applications
Triggers and Constraints
Understanding Scheduled Events
A Simple Scheduled Event
Recurring Events il
One-Off Eventst
Summary ...

Working with Data in Different Formats
Importing Records i
Exporting Records i il
Working with XML Data
Obtaining Resultsin XML
Using XML Functions o
Importing XML
Exporting XML
Summary ...

Optimizing Performanceciiiiiiiiiiiiiiiiiinnnn.
Optimizing Queries
Indexing
Query Cachingl
Query Analysis
Optimizing Joins and Subqueries
Use Joins Instead of Subqueries
Use Session Variables and Temporary Tables for
Transient Data and Calculations
Explicitly Name Output Fields
Index Join Fields
Rewrite Correlated Subqueries as Joins
Replace Materialized Subqueries with Temporary Tables
Optimizing Transactional Performance
Use Small Transactions
Select an Appropriate Isolation Level
Avoid Deadlocks

Part Il

10

11

12

Contents
Optimizing Stored Routines 229
Follow the KISS Principle 229
Optimize SQL Statements Within Routines 230
Optimizing Table Design 231
Optimizing Server Settings 232
Benchmarking 233
SUMMAry ... 237
Administration
Performing Basic Server Administration 241
Database Administration and MySQL 242
Uptime 242
DataBackup oo 243
Security and Access Control 243
Performance Optimization 244
Understanding Basic Server Administration —.................... 244
Starting and Stopping the Server 245
Checking MySQL Server Status 247
Managing MySQL Client Processes 248
Altering the Server Configuration 249
Setting the Server’s SQLMode 254
Troubleshooting with the Error Log 255
Obtaining Database Meta-Information 256
Summary ... 260
Managing Users and Controlling Access 263
Understanding the Access Control System 264
TheuserTable il 265
Thedb and host Tables 269
The tables_priv and columns_priv Tables 272
The procs_privTable 275
Interaction Between the Grant Tables 276
Managing User Privileges 277
Granting and Revoking Privileges 277
Viewing Privileges L. 281
Restoring Default Privileges 282
Working with User Accounts and Passwords 282
The Administrator Password 284
Summary ... 285
Performing Maintenance, Backup, and Recovery 287
Using Database Log Files 288
TheErrorLog 288

The General Query Log 289

Xi

Xli MySQL Database Usage & Administration

13

The Slow Query Log ,
The Binary Log
Checking and Repairing Tables
Checking Tables for Errors
Repairing Tables
Optimizing Tables
Backing Up and Restoring Data
Backing Up Databases and Tables
Restoring Databases and Tables from Backup ~
Summary ...

ReplicatingData coiiiiiiiiiiiiii ittt
Understanding Replication
The Master-Slave Relationship
Replication Threads
Replication Methods
Configuring Master-Slave Replication
Configuring Master-Master Replication
Managing the Replication Process
Changing Replication Parameters
Starting and Stopping Slave Servers
Checking Replication Status
Working with Master Server Binary Logs
Summary ...

Installing MySQL and the Sample Database
Obtaining MySQL
Choosing Which Versionto Install
Choosing Between Binary and Source Distributions
Installing and Configuring MySQL
Installingon UNIX ... o o il
Installing on Windows oL
Testing MySQL
Performing Post-Installation Steps L.
Setting the MySQL Superuser Password
Configuring MySQL and Apache to Start Automatically
Setting Up the Example Database
Re-creating the Example Database
Understanding the Example Database
Summary ...

5 U =5 G

Foreword

websites and many other environments. MySQL really is everywhere. Yet, it

remains remarkably easy to get started with MySQL. If you just need to run it
on a home system for an application that requires it, you can simply install MySQL with
no further worries. But this apparent simplicity can be deceiving!

When you build a website with it or otherwise use it for aspects of a business, you
need to get things better than “just running.” MySQL offers many features and quite a
few settings, and there are plenty of issues to consider in and around database-driven
systems.

Many businesses get an expert to help with setup and keeping an eye on things as
the system grows over time; however, many people are interested in knowing a bit
more about the systems they work with—or at least rely on. Chances are you're one
of those people, since you're holding this book.

Unlike a reference manual containing all features in “dry” form, MySQL Database
Usage & Administration provides practical and easy-to-read information to look up and
use while you work on something. Building on his earlier work, MySQL: The Complete
Reference, Vikram covers the basics as well as many advanced and new features of
MySQL 5.1, with examples and clarifications. It’s a valuable resource you’ll want to keep
within reach on your bookshelf.

MySQL is nearly 15 years old, and now it is the ubiquitous database system for

Arjen Lentz

Founder, Open Query
openquery.com
Brisbane, Australia

Xiii

This page intentionally left blank

Acknowledgments

I found out over the last seven months—a particularly simple task. Fortunately,
I was aided in this process by a diverse and dynamic group of people, all of
whom played an important part in getting this book into your hands.

First and foremost, I would like to thank my wife, who encouraged and supported
me through the entire process and made sure I had a comfortable and stress-free
working environment. [am pretty sure that I would not have been able to do this
without her help. Thanks, babe!

The editorial and marketing team at McGraw-Hill Professional deserves an honorable
mention here as well. This is my fifth book with them and, as usual, they have been an
absolute pleasure to work with. Acquisitions coordinator Joya Anthony, technical editor
Chris Cornutt, and executive editor Jane Brownlow all guided this book through the
development process and played no small part in making it the polished and professional
product you hold in your hands. I would like to thank them for their expertise, dedication,
and efforts on my behalf.

Finally, for making the entire book-writing process more enjoyable than it usually is,
thanks to: Patrick Quinlan, lan Fleming, Bryan Adams, the Stones, Peter O’Donnell,
MAD Maguazine, Scott Adams, FHM, Gary Larson, VH1, Britney Spears, George Michael,
Kylie Minogue, Buffy the Vampire Slayer, Farah Malegam, Stephen King, Shakira, Anahita
Marker, John le Carre, The Saturdays, Barry White, Gwen Stefani, Robert Crais, Robert
B. Parker, Baz Luhrmann, Stefy, Anna Kournikova, John Connolly, Wasabi, Omega,
Pidgin, Cal Evans, Ling’s Pavilion, Tonka and his evil twin Bonka, Din Tai Fung, HBO,
Mark Twain, Tim Burton, Harish Kamath, Madonna, John Sandford, Iron Man, the Tube,
Dido, Google.com, The Matrix, Lee Child, Michael Connelly, Antonio Prohias, Quentin
Tarantino, Alfred Hitchcock, Woody Allen, Kinokuniya, Percy Jackson, Jennifer Hudson,
Mambo’s and Tito’s, Easyjet, Humphrey Bogart, Thai Pavilion, Wikipedia, Amazon.com,
U2, The Three Stooges, Pacha, Oscar Wilde, Hugh Grant, Punch, Kelly Clarkson, Scott
Turow, Slackware Linux, Calvin and Hobbes, Blizzard Entertainment, Alfred Kropp,
Otto, Pablo Picasso, Popeye and Olive Oyl, Dennis Lehane, Trattoria, Dire Straits, Bruce
Springsteen, David Mitchell, The West Wing, Santana, Rod Stewart, and all my friends,
at home and elsewhere.

MySQL is a complex piece of software, and writing a book about it is not—as

XV

This page intentionally left blank

Introduction

system built around a client-server architecture. Over the last few years, this

fast, robust, and user-friendly product has become the de facto choice for both
business and personal use, notably on account of its advanced suite of data management
tools, its friendly licensing policy, and its worldwide support community of users and
engineers.

As a reliable, feature-rich database server, MySQL also has applications in business,
education, science, and engineering—a fact amply demonstrated by its customer list,
which includes such names as Motorola, Sony, NASA, HP, Xerox, and Silicon Graphics.
According to the MySQL website, more than 100 million copies of MySQL have been
downloaded and distributed to date, and 50,000 more are added to that total every day.

These are impressive statistics, but what is even more impressive is that MySQL
is—and always has been—an open-source project, with both source and binary code
freely available under the terms of the GNU General Public License (MySQL earns
revenue through the sale of commercial support packages). This is a key benefit, since
it allows users to download and use the product at no cost; however, it also places the
responsibility of learning, managing, and securing the resulting installation squarely on
the shoulders of those same users.

That’s where this book comes in. If you're one of the many millions of users who've
downloaded and installed MySQL, found it interesting, and are now wondering how to
maximize your usage of the product, this is the book for you. It takes a close look at some
of MySQL’s most important features—transactions, stored routines, triggers, etc.—and
shows you how to use them in a practical context. It also includes information on
everything you need to know to function as an effective MySQL system administrator,
from securing user accounts to backing up and restoring data. In short, it gives you the
knowledge you need to make the most of your MySQL experience.

C hances are, you've already heard of MySQL: It’s a high-performance database

Who Should Read This Book

MySQL Database Usage & Administration is intended for beginner-to-intermediate MySQL
users, particularly those who already have some (limited) experience of using MySQL
and are interested in taking their skills to the next level. Users who have cut their teeth on
other database systems will also be able to make use of the book, as the first two chapters
include a fast introduction to MySQL’s dialect of SQL.

Xvii

Xviii

MySQL Database Usage & Administration

If you're an experienced MySQL user, administrator or developer—say, if you've
been using MySQL for two years or more—it’s quite likely that you'll find this book
much less useful than the reader segment described previously.

What This Book Covers

MySQL Database Usage & Administration contains information on the MySQL 5.1
RDBMS and provides one-stop coverage of common topics related to MySQL usage
and administration. This includes topics such as views, triggers, transactions, stored
routines, security, data backup, performance optimization, and replication. Each
chapter also includes practical code examples that readers can “follow along with” to
gain a practical understanding of the material being discussed.

The following outline describes the contents of the book and shows how it is broken
down into task-focused chapters.

Part I: Usage

Chapter 1: An Introduction to MySQL discusses MySQL'’s history and evolution, looks
at its feature set, and explains why it offers such a compelling value proposition. It also
examines MySQL’s technical architecture and explains the various MySQL subsystems.

Chapter 2: Understanding Basic Commands provides a quick reference to basic
database concepts and MySQL’s dialect of SQL, explaining the basic SQL commands
to create, modify, and query databases.

Chapter 3: Making Design Decisions offers a thorough discussion of important
issues to be considered when designing a MySQL database. It includes coverage of
MySQL'’s data types, storage engines, and handling of primary keys, foreign keys,
and indexes.

Chapter 4: Using Joins, Subqueries, and Views discusses MySQL's support for
multitable queries, nested queries, and virtual tables, which offer different ways of
exploiting table relationships and viewing data.

Chapter 5: Using Transactions examines MySQL’s ability to group a series of
SQL statements into a single unit and execute them atomically, or undo the entire set
of changes in the event of an error.

Chapter 6: Using Stored Procedures and Functions examines MySQL's support for
server-side stored routines, discussing important concepts such as conditional tests,
loops, cursors, and error handlers.

Chapter 7: Using Triggers and Scheduled Events discusses two relatively recent
additions to MySQL, triggers and scheduled events, which provide a framework for
automating database operations.

Chapter 8: Working with Data in Different Formats discusses MySQL'’s built-in
tools for importing and exporting data in different formats, including comma-separated,
tab-delimited, and XML formats.

Chapter 9: Optimizing Performance offers tips and tricks to squeeze the maximum
performance out of your MySQL server, including information on how to fine-tune
queries; optimize cache and buffer settings; and maximize performance of stored
routines, transactions, and subqueries.

Introduction XixX

Part 11: Administration

Chapter 10: Performing Basic Server Administration explores common server
administration tasks, including starting and stopping the server, obtaining server
status, using the MySQL log files, and using the new information_schema database.

Chapter 11: Managing Users and Controlling Access discusses the MySQL security
and privilege system, and the management of user accounts and passwords (including
what do to if you forget the MySQL superuser password).

Chapter 12: Performing Maintenance, Backup, and Recovery provides instructions
and information on how to back up and restore a MySQL database and use MySQL-
supplied utilities to recover data from a damaged database.

Chapter 13: Replicating Data discusses MySQL's replication features, which
provide the ability to automatically synchronize databases across multiple hosts.

The appendix includes reference material for the information presented in the first
two parts.

Appendix: Installing MySQL and the Sample Database discusses the process of
obtaining, installing, and configuring MySQL on both Windows and UNIX.

Conventions
This book uses different types of formatting to highlight special advice. Here’s a list:

NotE Additional insight or information on the topic

Tip A technique or trick to help you do things better

CAUTION Something to watch out for

Q&A A frequently asked question and its answer

In the code listings in this book, text highlighted in bold is a command to be entered
at the prompt. For example, in the following listing:

mysgl> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window', 1954);
Query OK, 1 row affected (0.06 sec)

the line in bold is a query that you would type at the command prompt. You can use
this as a guide to try out the commands in the book.

This page intentionally left blank

PART |
Usage

CHAPTER 1
An Introduction to MySQL

CHAPTER 2
Understanding Basic
Commands

CHAPTER 3
Making Design Decisions

CHAPTER 4
Using Joins, Subqueries,
and Views

CHAPTER 5
Using Transactions .

CHAPTER 6
Using Stored Procedures
and Functions

CHAPTER 7
Using Triggers and
Scheduled Events

CHAPTER 8
Working with Data in
Different Formats

CHAPTER 9
Optimizing Performance

This page intentionally left blank

CHAPTER 1

An Introduction to MySQL

4 Partl: Usage

doesn’t depend on information in some form or another. Be it marketing data,

financial movements, or operational statistics, businesses today live or die by their
ability to manage, massage, and filter information flow in order to achieve a
competitive advantage.

More often than not, all this data finds a home in a business’ relational database
management system (RDBMS), a software tool that assists in organizing, retrieving,
and cross-referencing information. A large number of such systems are currently
available, and you've probably already heard of some of them: Oracle, Sybase,
Microsoft Access, and PostgreSQL are well-known names. These database systems are
powerful, feature-rich software applications, capable of organizing and searching
millions of records at high speeds; as such, they’re widely used by businesses and
government offices, often for mission-critical purposes.

Recently, though, more and more attention has focused on a relatively new entrant
in this field: MySQL.

MySQL is a high-performance, multithreaded, multiuser RDBMS built around a
client-server architecture. Over the last few years, this fast, robust, and user-friendly
database system has become the de facto choice for both business and personal use,
notably on account of its advanced suite of data management tools, its friendly
licensing policy, and its worldwide support community of users and engineers. This
introductory chapter will gently introduce you to the world of MySQL by taking you
on a whirlwind tour of MySQL'’s history, features, and technical architecture.

In today’s interconnected world, it’s almost impossible to find a business that

History
MySQL came into being in 1979, when Michael “Monty” Widenius created a database
system named UNIREG for the Swedish company TcX. UNIREG didn’t, however, have
a Structured Query Language (SQL) interface—something that caused it to fall out of
favor with TcX in the mid-1990s. So TcX began looking for alternatives. One of those
alternatives was mSQL, a competing DBMS created by David Hughes.

mSQL didn’t work for TcX either, however, so Widenius decided to create a new
database server customized to his specific requirements. That system, completed and
released to a small group in May 1996, became the first version of what is today known
as MySQL.

A few months later, MySQL 3.11 saw its first public release as a binary distribution
for Solaris. Linux source and binaries followed shortly; an enthusiastic developer
community and a friendly, General Public License (GPL)-based licensing policy took
care of the rest. Today, MySQL is available for a wide variety of platforms, including
Linux, MacOS, and Windows, in both source and binary form.

A few years later, TcX spun off MySQL AB, a private company that had sole
ownership of the MySQL server source code and trademark, and was responsible for
maintenance, marketing, and further development of the MySQL database server. It
was managed by Michael Widenius, David Axmark, and Allan Larsson, supported by
both a full-time staff and the active support of a worldwide developer community.

Chapter 1: An Introduction to MySQL §

In 2008, MySQL AB was formally acquired by Sun Microsystems, and in 2009, Sun
Microsystems was in turn acquired by Oracle, which today owns and develops the
MySQL database engine. Although Oracle operates commercially in a number of
different markets, the MySQL source code remains available to the community under
the GNU General Public License (users can, however, purchase commercial support
from MySQL).

Unique Features

MySQL’s popularity is due to a particular combination of unique features: speed,
reliability, extensibility, and open-source code. The following sections discuss these
features in greater detail.

Speed

In an RDBMS, speed—the time it takes to execute a query and return the results to the
caller—is everything. By any standards, MySQL is fast, often orders of magnitude
faster than its competition. Benchmarks available on the MySQL website show that
MySQL outperforms almost every other database currently available, including
commercial counterparts like Microsoft SQL Server 2000 and IBM DB2. For example, an
eWeek study in February 2002 that compared IBM DB2, Microsoft SQL Server, MySQL,
Oracle9i, and Sybase concluded that “MySQL has the best overall performance and that
MySQL scalability matches Oracle ... MySQL had the highest throughput, even
exceeding the numbers generated by Oracle.”!

Reliability

Most of the time, high database performance comes at a price: low reliability. MySQL
is, however, designed to offer maximum reliability and uptime, and it has been tested
and certified for use in high-volume, mission-critical applications. MySQL supports
transactions, which ensure data consistency and reduce the risk of data loss, and
replication and clustering, two techniques that significantly reduce downtime in the
event of a server failure. Finally, MySQL's large user base assists in rapidly locating and
resolving bugs and in testing the software in a variety of environments; this proactive
approach has resulted in software that is virtually bug-free.

Scalability

MySQL can handle extremely large and complex databases without too much of a
performance drop. Tables of several gigabytes containing hundreds of thousands of
records are not uncommon, and the MySQL website itself claims to use databases
containing 50 million records. A 2005 test by MySQL Test Labs demonstrated that

1 “A Look at MySQL 5.0 Performance Benchmarks: MySQL Technical White Paper”; http://www.mysql.com;
May 2006.

6 Partl: VUsage

What Makes MySQL so Fast?

Part of the reason for MySQL's blazing performance is its fully multithreaded
architecture, which allows multiple concurrent accesses to the database. This
multithreaded architecture is the core of the MySQL engine, allowing multiple clients
to read the same database simultaneously and providing a substantial performance
gain. The MySQL code tree is also structured in a modular, multilayered manner,
with minimum redundancies and special optimizers for such complex tasks as joins
and indexing.

MySQL also includes a query cache, which can substantially improve performance
by caching the results of common queries and returning this cached data to the caller
without having to re-execute the query each time. This is different from competing
systems such as Oracle, in that those systems merely cache the execution plan, not
the results. However, they still need to execute the query, including all joins, and
re-retrieve the query results on every run. MySQL benchmarks claim that this feature
improves performance by more than 200 percent, with no special programming
required on the part of the user?.

It is worth noting that MySQL’s designers initially left out many of the features
that cause performance degradation on competing systems, including transactions,
referential integrity, and stored procedures. These features typically add complexity
to the server and result in a performance hit. User requests for these features have,
however, resulted in their inclusion in newer versions of the product.

“MySQL shows near-linear scalability in a multi-CPU environment,”® with performance

increasing in proportion to the number of CPUs added to the system. This ability to
scale with demand has made MySQL popular with businesses like Eli Lilly, Alstom, Dun
& Bradstreet, Epson, and the New York Times; high-volume websites such as Google,
Facebook, and Slashdot; and government organizations such as NASA, the U.S. Census
Bureau, and the Swedish National Police.

Ease of Use

MySQL is so easy to use that even a novice can pick up the basics in a few hours, and
the software is well supported by a detailed manual, a large number of free online
tutorials, a knowledgeable developer community, and a fair number of books. While
most interaction with MySQL takes place through a command-line interface, a number
of graphical tools, both browser-based and otherwise, are also available to simplify the
task of managing and administering the MySQL database server. Finally, unlike its
proprietary counterparts, which have literally hundreds of adjustable parameters,

2 The MySQL manual; http://dev.mysql.com/doc/refman/5.0/en/query-cache.html
* The MySQL website; http://www.mysql.com/why-mysql/white-papers/performance.php

Chapter 1: An Introduction to MySQL

MySQL is fairly easy to tune and optimize for even the most demanding applications.
For commercial environments, MySQL is fully supported in terms of professional
MySQL training, consultancy, and technical support.

Portability and Standards Compliance

MySQL supports most of the important features of the ANSI (American National
Standards Institute) SQL standard, and often extends the ANSI standard with custom
extensions, functions, and data types designed to improve portability and provide
users with enhanced functionality. MySQL is also available for both UNIX and non-
UNIX operating systems, including Linux; Solaris; FreeBSD; OS/2; MacOS; and
Windows 95, 98, Me, 2000, XP, NT, and Vista; and it runs on a range of architectures,
including Intel x86, Alpha, SPARC, PowerPC, and 1A64.

Multiuser Support

MySQL is a full multiuser system, which means that multiple clients can access and use
one (or more) MySQL database(s) simultaneously; this is of particular significance
during development of web-based applications, which are required to support
simultaneous connections by multiple remote clients. MySQL also includes a powerful
and flexible privilege system that allows administrators to protect access to sensitive
data using a combination of user- and host-based authentication schemes.

Internationalization

As a program that is used by millions of users in countries across the globe, it would be
unusual indeed if MySQL did not include support for various languages and character
sets. MySQL offers full Unicode support, as well as full support for most important
character sets (including Latin, Chinese, and European character sets). Character sets
are taken into account when sorting, comparing, and saving data.

Wide Application Support

MySQL exposes application programming interfaces (APIs) to many programming
languages, thereby making it possible to write database-driven applications in the
language of your choice. Currently, MySQL provides hooks to C, C++, Eiffel, Java,
Perl, PHP, Python, Ruby, and Tcl, and connectors are available for JDBC, ODBC, and
.NET applications.

Open-Source Code

The MySQL source code is freely available under the terms of the GNU General Public
License—a key benefit, since it allows users to download and modify the application to
meet their specific needs. This unique licensing policy has fuelled MySQL’s popularity,
creating an active and enthusiastic global community of MySQL developers and users.
This community plays an active role in keeping MySQL ahead of its competition, both
by crash-testing the software for reliability on millions of installations worldwide and
extending the engine to stay abreast of the latest technologies.

1

8 Partl: VUsage

High-volume, well-informed mailing lists and user groups assist in the rapid
resolution of questions and problems, and a global network of committed MySQL users
and developers provides knowledgeable advice, bug fixes, and third-party utilities. All
of this has paid off: A code inspection study by Reasoning, Inc. concluded that the code
quality of MySQL was six times better than that of comparable proprietary code.

NortE It is worth noting that if your MySQL-powered application is not licensed under the
GPL or other MySQL-approved open-source license and you intend to redistribute it
(whether internally or externally), you are required to purchase a commercial license for this
use. Oracle earns revenue both from the sale of these licenses and by providing support,
training, and consultation services for the MySQL database server.

Product Family

In addition to the core MySQL database server, Oracle makes available a number of
MySQL-related products and tools. This section introduces you to some of the other
members of the MySQL product family.

MySQL Server

This core product consists of a high-performance database server, which is the main
software engine responsible for creating and managing databases, executing queries
and returning query results, and maintaining security. This core product also includes a
number of client-side tools, such as a command-line SQL client; tools to manage user
permissions; and utilities to import, export, copy, and repair databases.

MySQL Cluster

MySQL Cluster is a version of the MySQL database server that supports “clustering,” a
technology that allows data to be transparently distributed across two or more physical
servers to increase redundancy. This clustering technology plays an important role

in high-availability applications, as it ensures continuous data availability even if one
of the nodes in the cluster fails. At the time of this writing, MySQL Cluster supports

up to 255 nodes in a single cluster and uses synchronous replication to copy data
between nodes.

MySQL Proxy

MySQL Proxy is a proxy server that serves as a “gatekeeper” between the MySQL
database server and connecting clients. It includes the ability to intercept and rewrite
queries, modify result sets, implement query queues, analyze query traffic for reporting
purposes, and perform load balancing tasks.

* The MySQL website; http:/ /www.mysql.com/why-mysql/quality

Chapter 1: An Introduction to MySQL 9

Are there Different Versions of the MySQL Database Server?

MySQL’s core database server comes in two flavors: Community and Enterprise.
The Community server is “free”: Users can download and use it at no cost under
the terms of the GNU GPL, but by the same token, are required to perform all
maintenance and administrative tasks themselves, with no support from the
MySQL development team. For companies and individuals looking for a greater
level of support, the Enterprise server is a commercial offering that provides regular
updates and bug fixes, consultancy services and advice from MySQL engineers, and
proprietary database-monitoring software in return for a subscription fee.

MySQL Administrator

MySQL Administrator is an all-in-one control center for a MySQL database server,
allowing database administrators to track server status in real time. It includes visual
tools for user administration, database backup and restore, and log analysis, as well as
server fine-tuning.

MySQL Query Browser

MySQL Query Browser is a visual tool for graphically constructing queries and
viewing the results. It includes tools to manage database connections, databases, and
tables, as well as a debugger (with breakpoint support) to assist in optimizing and
troubleshooting complex queries.

MySQL Workbench

MySQL Workbench is a visual design tool that enables database administrators and
developers to graphically design and validate data models, generate database schema
code, and manage changes to database schemas. It also includes the ability to visually
compare and synchronize two versions of a database and create import/export scripts
to transfer data from one system to another.

MySQL Migration Toolkit

The MySQL Migration Toolkit is a graphical, wizard-driven tool to port databases from
other RDBMS products to MySQL. It includes support for Oracle, Microsoft SQL
Server, and Microsoft Access, and provides automated tools to remap and rebuild table
schemas; copy records; and transfer indexes, views, triggers, and stored procedures.

MySQL Embedded Server

MySQL Embedded Server is a low-footprint version of the MySQL database server that is
intended specifically for use in embedded applications, such as networking equipment,
diagnostic tools, or point-of-sale (POS) systems. This embedded database also includes a
number of useful administrative features: automatic space expansion, auto-restart, and
dynamic reconfiguration.

10

Part I: Usage

MySQL Drivers and Connectors

MySQL provides drivers and connectors for many different programming languages,
thereby making it possible to build database-driven applications using any one of several
different development toolkits. Currently, MySQL provides drivers and connectors for C,
C++, Java, Perl, PHP, Python, Ruby, JDBC, ODBC, and .NET applications.

Technical Architecture

MySQL is based on a tiered architecture, consisting of both primary subsystems and
support components that interact with each other to read, parse, and execute queries,
and to cache and return query results.

Subsystems

There are three primary subsystems within the MySQL architecture, as discussed in the
following sections.

Memory and Connection Management

This subsystem manages user connections, via modules for network connection
management with clients, and synchronizes competing tasks and processes, via
modules for multithreading, thread locking, and performing thread-safe operations.
It also handles all memory management issues between requests for data by the
query subsystem and the data storage subsystem.

Query Parsing and Execution

Query parsing and execution is handled by two interrelated components: the syntax
parser and the query optimizer. The syntax parser decomposes the SQL commands it
receives from calling programs into a form that can be understood by the MySQL
engine. It also checks the objects being referenced to ensure that the privilege level of
the calling program allows it to use them. The query optimizer then prepares the most
efficient plan for query execution, making decisions about table-versus-index scans,
join methods, and range optimization, and using a bottom-up methodology to detect
the optimal execution plan.

Data Storage

The data storage subsystem interfaces with the operating system (OS) to write to disk
all of the data in the user tables, indexes, and logs, as well as the internal system data.
MySQL 5.1 also introduced a new pluggable architecture, which allows developers to
create new table storage mechanisms and “plug them in” to the server at run-time.
This pluggable architecture also creates a level of abstraction between the data storage
subsystem and the rest of the MySQL server, making it possible for developers to add
new data storage engines that interact with the other MySQL subsystems through a
standard APL

Chapter 1: An Introduction to MySQL

Connectivity

MySQL is designed on the assumption that the vast majority of its applications will be
running on a TCP/IP (Transmission Control Protocol/Internet Protocol) network. This
is a fairly good assumption, given that TCP/IP is not only highly robust and secure,
but is also common to UNIX, Windows, OS/2, and almost any other serious operating
system you’ll likely encounter. When the client and the server are on the same UNIX
machine, MySQL uses TCP/IP with UNIX sockets, which operate in the UNIX domain;
that is, they are generally used between processes on the same UNIX system, as
opposed to Internet sockets, which operate between networks.

Standards Compliance

The Structured Query Language (SQL) is an open standard that has been maintained
by the American National Standards Institute (ANSI) since 1986. Although it’s true that
the implementation of this standard does differ in varying degrees from vendor to
vendor, it’s fair to say that SQL is today one of the most widely used cross-vendor
languages. As with other implementations, such as SQL Server’s T-SQL (Transact-SQL)
and Oracle’s SQL, MySQL has its own variations of the SQL standard that add power
beyond what is available within the standard. Beginning with v5.1, MySQL also
includes support for data import and export using Extensible Markup Language
(XML), a widely accepted, vendor-neutral format for data markup and sharing.

Transactions

In the SQL context, a transaction consists of one or more SQL statements that operate as
a single unit. Each SQL statement in such a unit is dependent on the others, and the unit
as a whole is indivisible. If one statement in the unit does not complete successfully, the
entire unit will be rolled back, and all the affected data will be returned to the state it
was in before the transaction was started. Thus, a transaction is said to be successful
only if all the individual statements within it are executed successfully.

The MySQL transaction system fully satisfies the ACID tests for transaction safety
via its InnoDB and BDB table types (older table types, such as the MyISAM type, do
not support transactions).

» Atomicity is handled by storing the results of transactional statements
(the modified rows) in a memory buffer and writing these results to disk and
to the binary log from the buffer only once the transaction is committed. This
ensures that the statements in a transaction operate as an indivisible unit and
their effects are seen either collectively or not at all.

* Consistency is primarily handled by MySQL’s logging mechanisms, which record
all changes to the database and provide an audit trail for transaction recovery. In
addition to the logging process, MySQL provides locking mechanisms that
ensure that all of the tables, rows, and indexes that make up the transaction are
locked by the initiating process long enough to either commit the transaction or
roll it back.

1

12

Part I: Usage

* Server-side semaphore variables and locking mechanisms act as traffic
managers to help programs manage their own isolation mechanisms. MySQL’s
BDB table handler, for example, uses page-level locking to safely handle
multiple simultaneous transactions, while the InnoDB table handler uses a more
fine-grained row-level locking.

e MySQL implements durability by maintaining a binary transaction log file that
tracks changes to the system during the course of a transaction. In the event of a
hardware failure or abrupt system shutdown, recovering lost data is a relatively
straightforward task by using the last backup in combination with the log when
the system restarts.

Because transactional tables incur some performance overhead, it’s also possible to
specify whether to use transactions on a per-table basis.

Query Caching

If a query returns a given set of records, repeating the same query should return the
same set of records, unless the underlying data has somehow changed. As obvious as
this sounds, few of the other major RDBMS vendors provide features that take
advantage of this principle. Other database products are efficient in storing optimized
access plans that detail the process by which data is retrieved; such plans allow queries
similar to those that have been issued previously to bypass the process of analyzing
indexes yet again to get to the data.

Result-set caching takes this principle a step further by storing the result sets
themselves in memory, thus circumventing the need to search the database at all. The
data from a query is simply placed in a cache, and when a similar query is issued, this
data is returned as if in response to the query that created it in the first place.

The MySQL engine uses an extremely efficient result set—caching mechanism, known
as the Query Cache, that dramatically enhances response times for queries that are
called upon to retrieve the exact same data as a previous query. This mechanism is so
efficient that a major computing publication declared MySQL queries to be faster than
those of Oracle and SQL Server (which are both known for their speed). If implemented
properly, decision support systems using MySQL with canned reports or data-driven
web pages can provide response speeds far beyond those that would be expected
without the Query Cache.

Extensibility

In keeping with its open-source roots, MySQL makes the original source code available
as part of the distribution, which permits developers to add new functions and features
that are compiled into the engine as part of the core product. MySQL also allows
separate C and C++ libraries to be loaded in the same memory space as the engine
when MySQL starts up.

Chapter 1: An Introduction to MySQL

MySQL also allows developers to add new functions at run-time through a special
user-defined function interface. User-defined functions are created initially as special
C/C++ libraries and are then added and removed dynamically by means of the CREATE
FUNCTION and DROP FUNCTION statements.

Symmetric Multiprocessing Support

To take advantage of multiprocessor architecture, MySQL is built using a multithreaded
design, which allows threads to be allocated between processors to achieve a higher
degree of parallelism. This is important to know not only for the database
administrator, who needs to understand how MySQL takes best advantage of
processing power, but also for developers, who can extend MySQL with custom
functions. All custom functions must be thread-safe—that is, that they must not interfere
with the workings of other threads in the same process as MySQL.

MySQL makes use of various thread packages, depending on the platform. POSIX
threads are used on most UNIX variants, such as FreeBSD and Solaris. LinuxThreads are
used for Linux distributions. For efficiency reasons, Windows threads are used on the
Windows platform, but the code that handles them is designed to simulate POSIX threads.

Because MySQL is a threaded application, it is able to let the operating system take
over the task of coordinating the allocation of threads to balance the workload across
multiple processors. MySQL uses a global connection thread to handle all connection
requests and creates a new dedicated thread to handle authentication and SQL query
processing for each connection. In addition, in replication, master-host synchronization
is handled by separate threads.

Of course, another way to take advantage of multiprocessing is to run multiple
instances of MySQL on the same machine, thereby spawning a separate process for
each instance. This approach is especially practical for hosting companies and even for
internal hosting within corporate environments. By running multiple instances of
MySQL on the same computer, you can easily accommodate multiple user bases that
need different configuration options.

Security

The process of accessing a MySQL database can be broken down into two tasks:
connecting to the MySQL server itself and accessing individual objects, such as tables
or columns, in a database. MySQL has built-in security to verify user credentials at
both stages.

* MySQL manages user authentication through user tables, which check not only
that a user has logged on correctly with the proper username and password,
but also that the connection is originating from an authorized TCP/IP address.

* Once a user is connected, a system administrator can bestow user-specific
privileges on objects and on the actions that can be taken in MySQL. For
example, you might allow fred@thiscompany.com to perform only SELECT queries
against an inventory table, while allowing anna@thatcompany.net to run INSERT,
UPDATE, and DELETE statements against the same table.

13

14

Part I: Usage

The actual data that travels over a network, such as query results, isn’t encrypted
and is, therefore, open to viewing by a hacker. To secure your data, you can use one of
the Secure Shell (SSH) protocols; you'll need to install it on both the client applications
and the operating system you're using. If you're using MySQL 4.0 or later, you can also
use the Secure Socket Layer (SSL) encryption protocol, which can be configured to
work from within MySQL, making it safe for use over the Internet or other public
network infrastructures.

Application Programming Interfaces

For application developers, MySQL provides a client library that is written in the C
programming language and a set of APIs that provide an understandable set of rules
by which host languages can connect to MySQL and send commands. Using an API
protects client programs from any underlying changes in MySQL that could affect
connectivity.

Currently, MySQL provides hooks to C, C++, Eiffel, Java, Perl, PHP, Python, Ruby,
and Tcl, and connectors are also available for JDBC, ODBC, and .NET applications.

Applications

MySQL'’s technical architecture, built as it is around the three tenets of performance,
reliability, and ease of use, have made the product extremely popular, both on and off
the Web. According to the MySQL website, more than 100 million copies of MySQL
have been downloaded and distributed to date, and 50,000 more are added to that total
every day. MySQL software today powers a variety of applications, including Internet
websites, e-commerce applications, search engines, data warehouses, embedded
applications, high-volume content portals, and mission-critical software systems.

Web Applications

It should come as no surprise that MySQL'’s primary applications today lie in the arena
of the Web. As websites and web-based distributed applications grow ever more
complex, it becomes more and more important that data be managed efficiently to
improve transactional efficiency, reduce response time, and enhance the overall user
experience. Consequently, a pressing need exists for a data management solution that is
fast, stable, and secure—one that can be deployed and used with minimal fuss and that
provides solid underpinnings for future development.

MySQL fits the bill for a number of reasons. Its proven track record generates
confidence in its reliability and longevity; its open-source roots ensure rapid bug fixes
and a continued cycle of enhancements (not to mention a lower overall cost); its
portability and support for various programming languages and technologies make it
suitable for a wide variety of applications; and its low cost/high performance value
proposition makes it attractive to everyone from home users to small- and medium-
sized businesses and government organizations. For these reasons and more, MySQL
is a key component of modern web applications, particularly those built on the
popular LAMP stack.

Chapter 1: An Introduction to MySQL

http: //my.server.com/webmail.php
HTTP request

HTTP response

Result set

Linux OS

Client Server

Ficure 1-1 The LAMP development framework

Wondering what a LAMP stack is? Well, the term refers to a set of open-source
software components that are commonly used in conjunction with each other to build
web-based applications. These components are

¢ Abase operating system and server environment (Linux)

* A web server (Apache) to intercept HTTP requests and either serve them
directly or pass them on to the PHP interpreter for execution

* A database engine (MySQL) that holds application data, accepts connections
from the application layer, and modifies or retrieves data from the database

¢ A programming toolkit (PHP, Perl, or Python) that parses and executes program
code, processes database results, and returns results to the client

Figure 1-1 illustrates the four elements of the LAMP framework in action.

Data Warehouses

As the opening paragraph in this chapter notes, businesses are becoming more and
more intelligent in how they store, filter, and use information. Data warehouses are a
key source of this business intelligence. Typically, data in a data warehouse is gathered
from an enterprise’s internal information systems, linked, and stored for long periods
of time. In its simplest form, this data merely provides a record of past events; however,
it can also be “mined” to detect patterns, which serve as input into an organization’s
decision-making. Speed of data retrieval is thus one crucial component of a data
warehouse; long-term reliability is another.

MySQL scores high on both counts. It supports engine-level data integrity through
the use of primary key and foreign key constraints. An extremely efficient query-
caching mechanism dramatically enhances response times for queries that are called

15

16

Part I: Usage

upon to retrieve the exact same data as a previous query. MySQL InnoDB table format
uses asynchronous I/0O and a sequential read-ahead buffer to improve data retrieval
speed, and a “buddy algorithm” and Oracle-type tablespaces for optimized file and
memory management. For data storage reliability, MySQL supports replication, a data
distribution mechanism that places copies of tables and databases in remote locations
to reduce downtime in case of a server failure.

Business Applications

As areliable, feature-rich database server, MySQL also has applications in business,
education, science, and engineering—a fact amply demonstrated by its customer list,
which includes such names as Motorola, Sony, NASA, HP, Xerox, and Silicon Graphics.
Whether it is small, embedded applications or high-availability data processing
systems, MySQL offers the scalability and performance needed to achieve business
objectives. The MySQL website states that “MySQL scales to deal with billions of rows
and terabytes of data, making it suitable for a wide range of transactional and analytic
applications.”

To take advantage of multiprocessor architecture, MySQL is built using a
multithreaded design, which allows threads to be allocated between processors to
achieve a higher degree of parallelism. MySQL's clustering technology allows data to
be distributed across multiple nodes to achieve greater redundancy, while its fully
ACID-compliant transactional engine provides a high degree of safety from undetected
data loss. At the other end of the scale, MySQL’s embedded server library has a 1-MB
memory/4-MB disk space footprint and provides a multithreaded, cross-platform data
storage engine for use in kiosk-style applications or appliances. Finally, MySQL uses a
two-tier privilege system (at the connection level and at the individual object level) to
ensure the security and integrity of its data, and supports the SSL encryption protocol
for client/server communication.

Summary

This chapter provided a gentle introduction to the world of MySQL, discussing the
history and evolution of the product and highlighting some of its unique features and
advantages vis-a-vis competing alternatives. It explained the various components of
the MySQL architecture, discussed some of the key technical features of the MySQL
engine, and illustrated how they interact with each other. Finally, it discussed some of
MySQL'’s real-world applications, notably with regard to web application development,
data warehousing, and industrial applications.

If you'd like to learn more about the topics discussed in this chapter, consider
visiting the following links:

* A more detailed history of MySQL at http://wwwlinuxjournal.com/
article.php?sid=3609

¢ The MySQL development roadmap at http://dev.mysql.com/doc/refman/5.1/
en/roadmap.html

Chapter 1: An Introduction to MySQL

The MySQL manual at http://dev.mysql.com/doc

An overview of MySQL'’s technical architecture at http://dev.mysql.com/doc/
refman/5.1/en/pluggable-storage-overview.html

MySQL case studies at http://www.mysql.com/why-mysql/case-studies
MySQL customer listings at http://www.mysql.com/customers

MySQL market share and usage statistics at http://www.mysql.com/
why-mysql/marketshare

MySQL performance benchmarks at http: //www.eweek.com/article2/
0,3959,293,00.asp and http://www.mysql.com/why-mysql/benchmarks

Awards won by MySQL at http://www.mysql.com /why-mysql/awards

17

This page intentionally left blank

CHAPTER 2

Understanding Basic Commands

20

Part I: Usage

tool that helps you organize information efficiently so it becomes easier to find

exactly what you need. A relational database management system (RDBMS) like
MySQL takes things a step further by enabling you to create links between the various
pieces of data in a database and use the relationships to analyze the data in different
ways.

Most of the time, your primary tool to perform these tasks is a language known as
Structured Query Language (SQL). To use MySQL effectively, you'll need to be able to
speak SQL fluently—it’s your primary means of interacting with the database server,
and it plays a very important role in helping you get to the data you need rapidly and
efficiently.

This chapter, which is aimed primarily at users new to MySQL, explains some of
the basic SQL commands to manipulate database structures and records. If you've
never used a database before, this chapter should give you the basic information you
need to understand the more advanced material in subsequent chapters. Alternatively,
if you're familiar with another flavor of RDBMS, you can use this chapter as a quick-
and-dirty refresher, or flip through it to understand how MySQL’s dialect of SQL
differs from other database systems.

You already know that an electronic database management system (DBMS) is a

Understanding Basic Concepts

To truly understand how a database works, you need to move from abstract theoretical
concepts to practical real-world examples. This section does just that, by using a simple
example database to explain some of the basic concepts you must know before
proceeding further in this book.

Databases, Tables, and Records
Every database is composed of one or more tables. These tables, which structure data
into rows and columns, are what lend organization to the data.

Figure 2-1 illustrates what a typical table looks like.

AirportID | AirportCode AirportName CityName | CountryCode | NumRunways | NumTerminals
34| ORY Paris-Orly Airport Paris FR 3 2
48| LGW Gatwick Airport London UK 2 2
56| LHR Heathrow Airport London UK 2 5
59[CIA Rome Ciampino Airport Rome 1T 1 1
62| AMS Schiphol Airport Amsterdam |NL 6 1
72| BCN Barcelona International Airport |Barcelona [ES 3 3
74| MUC Franz Josef Strauss Airport Munich DE 3 2
83| LIS Lisbon Airport Lisbon PT 2 2
87| BUD Budapest Ferihegy International | Budapest HU 2 2
92| ZRH Zurich Airport Zurich CH 3 1

126| BOM Chhatrapati Shivaji International| Bombay IN 2 2
132| MAD Barajas Airport Madrid ES 4 4

Ficure 2-1 A table containing airport information

Chapter 2: Understanding Basic Commands

As you can see, a table divides data into rows, with a new entry (or record) on
every row. The data in each row is further broken down into columns (or fields), each
of which contains a value for a particular attribute of that data. For example, consider
the record for Heathrow Airport, and you'll see that the record is clearly divided into
separate fields for the airport code, name, city, country, number of runways, and
number of terminals.

Tip Think of a table as a drawer containing files. A record is the electronic representation of a
file in the drawer.

Primary and Foreign Keys

Records within a table are not arranged in any particular order—they can be sorted
alphabetically, by ID, by member name, or by any other criteria you choose to specify.
Therefore, it becomes necessary to have some method of identifying a specific record in
a table. In the previous example, each airport record is identified by a unique number,
and this unique field is referred to as the primary key for that table. Primary keys don’t
appear automatically; you have to explicitly mark a field as a primary key when you
create a table.

Tip Think of a primary key as a label on each file that tells you what it contains. In the absence
of this label, the files would all look the same and it would be difficult for you to identify the
one(s) you need.

With a relational database system like MySQL, it’s also possible to link information
in one table to information in another. When you begin to do this, the true power of an
RDBMS becomes evident. So let’s add one more table, this one listing flight routes
between airport pairs (Figure 2-2).

If you take a close look at this second table, you'll see that it lists flight routes
between different pairs of airports using the airport codes from the first table. Thus,
you can see that route 1003 links Bombay and London (a distance of 7200 km), while
route 1176 links London and Madrid (a distance of 1267 km).

Let’s now add two more tables to define the flight schedule for the routes described
previously (Figure 2-3).

These tables add a further level of detail by linking flight routes with the actual
flight schedule for those routes. Thus, we see that flight 876 flies the London-Madrid
route on Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays, while flight 535
operates the Paris-London route on Tuesdays and Thursdays only.

Ficure 22 RoutelD From To Distance | Duration | Status

A table listing routes 1003 126 56 7200 550 1

between airport pairs 1005 34 18 343 385 1
1176 56 132 1267 150 1
1175 132 56 1267 150 1

21

22 Partl: Usage

FlightID | RouteID | AircraftID FlightID | DepDay | DepTime
535 1005 3451 535 2| 15:30:00
876 1175 3467 535 4| 15:30:00
652 1018 3465 876 1 7:10:00

876 2 7:10:00
876 3 7:10:00
876 4 7:10:00
876 5 7:10:00
652 1 14:10:00
652 2| 14:10:00
652 3| 14:10:00
652 4| 14:10:00
652 5| 14:10:00
652 6| 17:45:00
652 7| 17:45:00

Fieure 2-3 Two tables listing flight schedules for various routes

To understand these relationships visually, look at Figure 2-4.

Relationships such as those described previously form the foundation of a relational
database system. The common fields used to link the tables together are called foreign keys,
and when every foreign key value is related to a field in another table, this relationship
being unique, the system is said to be in a state of referential integrity. In other words, if the
AirportID field is present once and only once in each table that uses it, and if a change to
the AirportID field in any single table is reflected in all other tables, referential integrity is
said to exist.

H b

RoutelD | From To Distance
AirportID| AirportCode AirportName CityName | CountryCode 1003 126 56 7200
34| ORY Paris-Orly Airport Paris FR 1005 34 48 343
48 | LGW Gatwick Airport London UK 1176 56 132 1267
56| LHR Heathrow Airport London UK 1175 132 56 1267
59|CIA Rome Ciampino Airport | Rome IT
62| AMS Schiphol Airport Amsterdam | NL I—l
72| BCN Barcelona International Al Barcelona | ES
74| MUC Franz Josef Strauss Airpo| Munich DE FlightID| RouteID |AircraftlD
83| LIS Lisbon Airport Lisbon PT 535 1005 3451
87| BUD Budapest Ferihegy Intern Budapest | HU 376 1175 3467
92| ZRH Zurich Airport Zurich CH 652 1018 3465
126 | BOM Chhatrapati Shivaji Inter | Bombay IN
132| MAD Barajas Airport Madrid ES i
FlightID | DepDay | DepTime
535 2 15:30:00
535 4 15:30:00
876 1 7:10:00
876 2 7:10:00
876 3 7:10:00
876 4 7:10:00
876 5 7:10:00
652 1 14:10:00
652 2 14:10:00
652 3 14:10:00
652 4 14:10:00

Ficure 2-4 The inter-relationships between airports, routes, and flights

Chapter 2: Understanding Basic Commands

Once one or more relationships are set up between tables, it is possible to extract a
subset of the data (a data slice) to answer specific questions. The act of pulling out this
data is referred to as a query, and the resulting data is referred to as a result set. And it’s
in creating these queries, as well as in manipulating the database itself, that SQL truly
comes into its own.

Referential Integrity

Referential integrity is a basic concept with an RDBMS, and one that becomes
important when designing a database with more than one table. When foreign keys are
used to link one table to another, referential integrity, by its nature, imposes constraints
on inserting new records and updating existing records. For example, if a table only
accepts certain types of values for a particular field, and other tables use that field as
their foreign key, this automatically imposes certain constraints on the dependent
tables. Similarly, referential integrity demands that a change in the field used as a
foreign key—a deletion or new insertion—must immediately be reflected in all
dependent tables.

Many of today’s databases take care of this automatically—if you've worked with
Microsoft Access, for example, you'll have seen this in action—but some don’t. In the
latter case, the task of maintaining referential integrity becomes a manual one in which
the values in all dependent tables have to be updated manually whenever the value in
the primary table changes. Because using foreign keys can degrade the performance of
your RDBMS, MySQL leaves the choice of activating such automatic updates (and
losing some measure of performance) or deactivating foreign keys (and gaining the
benefits of greater speed) to the developer by making it possible to choose a different
type for each table.

Structured Query Language (SQL)

SQL began life as SEQUEL, the Structured English Query Language, a component of an
IBM research project called System/R. System/R was a prototype of the first relational
database system; it was created at IBM’s San Jose laboratories in 1974, and SEQUEL
was the first query language to support multiple tables and multiple users. The name
SEQUEL was later changed to SQL for legal reasons.

In the late 1970s, SQL made its first appearance in a commercial role as the query
language used by the Oracle RDBMS. This was quickly followed by the Ingres RDBMS,
which also used SQL, and by the 1980s, SQL had become the de facto standard for the
rapidly growing RDBMS industry. In 1989, SQL became an ANSI standard commonly
referred to as SQL89; this was later updated in 1992 to become SQL92 or SQL2, the
standard in use on most of today’s commercial RDBMSs (including MySQL).

NotEe Although most of today’s commercial RDBMSs do support the SQL92 standard, many
of them also take liberties with the specification, extending SQL with proprietary extensions
and enhancements. MySQL is an example of one such RDBMS. Most often, these
enhancements are designed to improve performance or add extra functionality to the system;
however, they can cause substantial difficulties when migrating from one DBMS to another.

23

24

Part I: Usage

As a language, SQL was designed to be “human-friendly”; most of its commands
resemble spoken English, making it easy to read, understand, and learn. Commands
are formulated as statements, and every statement begins with an “action word.” The
following examples demonstrate this:

CREATE DATABASE toys;

USE toys;

SELECT id FROM toys WHERE targetAge > 3;

DELETE FROM toys WHERE productionStatus = "Revoked";

As these examples illustrate, SQL syntax is close to spoken English, and this makes it
quite easy for novice programmers to learn and use. SQL statements can be divided into
three broad categories, each concerned with a different aspect of database management.

¢ Statements used to define the structure of a database These statements
define the relationships among different pieces of data; definitions for database,
table, and column types; and database indexes. In the SQL specification, this
component is referred to as Data Definition Language (DDL).

* Statements used to manipulate data These statements control adding and
removing records, querying and joining tables, and verifying data integrity. In
the SQL specification, this component is referred to as Data Manipulation
Language (DML).

e Statements used to control the permissions and access level to different
pieces of data These statements define the access levels and security
privileges for databases, tables, and fields, which may be specified on a per-user
and/or per-host basis. In the SQL specification, this component is referred to as
Data Control Language (DCL).

Typically, every SQL statement ends in a semicolon, and white space, tabs, and
carriage returns are ignored by the SQL processor. The following two statements are
equivalent, even though the first is on a single line and the second is split over
multiple lines.

DELETE FROM toys WHERE productionStatus = "Revoked";

DELETE FROM
toys
WHERE productionStatus =

"Revoked";

Database Normalization

An important part of designing a database is a process known as normalization.
Normalization refers to the activity of streamlining a database design by eliminating
redundancies and repeated values. Most often, redundancies are eliminated by placing
repeating groups of values into separate tables and linking them through foreign keys.

Chapter 2: Understanding Basic Commands 25

This not only makes the database more compact and reduces the disk space it occupies,
but it also simplifies the task of making changes. In non-normalized databases, because
values are usually repeated in different tables, altering them is a manual (and error-
prone) find-and-replace process. In a normalized database, because values appear only
once, making changes is a simple one-step UPDATE.

The normalization process also includes validating the database relationships to
ensure that there aren’t any crossed wires and to eliminate incorrect dependencies. This
is a worthy goal, because when you create convoluted table relationships, you add
greater complexity to your database design ... and greater complexity translates into
slower query time as the optimizer tries to figure out how best to handle your table joins.

A number of so-called normal forms are defined to help you correctly normalize a
database. A normal form is simply a set of rules that a database must conform to. Five
such normal forms exist, ranging from the completely non-normalized database to the
fully normalized one.

Working with Databases and Tables

Now that you have an understanding of basic RDBMS concepts, let’s put the theory
into practice. The following sections will guide you through a fast-paced tutorial that
introduces you to the MySQL command-line client and shows you how to create a
database, add tables and records to it, and write queries to retrieve data from: it.

Using the MySQL Command-Line Client

The MySQL RDBMS consists of two primary components: the MySQL database server
itself and a suite of client-side programs, including an interactive client and utilities to
manage MySQL user permissions, view and copy databases, and import and export
data. If you installed and tested MySQL according to the procedure outlined in
Appendix A of this book, you've already met the MySQL command-line client. This
client is your primary means of interacting with the MySQL server, and this section
will get you started with it.

To begin, ensure that your MySQL server is running and then connect to it by
entering the command mysgl at your command prompt to invoke the command-line
client. Remember to send a valid password with your username, or else MySQL will
reject your connection attempt. (Throughout this section and the ones that follow,
boldface type is used to indicate commands that you should enter at the prompt).

[user@host]# mysql -u root -p
Password: ****%%

If all went well, you'll see a prompt like this:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 70 to server version: 5.0.15
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysqgl>

26

Part I: Usage

The mysgl> you see is an interactive prompt, where you enter SQL statements.
Statements entered here are transmitted to the MySQL server using a proprietary
client-server protocol, and the results are transmitted back using the same format.

Try this out by sending the server a simple statement:

mysqgl> SELECT 6*3;

oo +
| 6*3 |
- +
|18 |
Fo-m - +

1 row in set (0.01 sec)

Here, the SELECT statement is used to perform an arithmetic operation on the
server and return the results to the client. Statements entered at the prompt must be
terminated with either a semicolon or a \g signal, followed by a carriage return, to
send the statement to the server. Statements can be entered in either uppercase or
lowercase type.

The response returned by the server is displayed in tabular form as rows and
columns. The number of rows returned, as well as the time taken to execute the
statement, is also printed. If you're dealing with extremely large databases, this
information can come in handy to analyze the speed of your queries.

White space, tabs, and carriage returns in SQL statements are ignored. In the
MySQL command-line client, typing a carriage return without ending the statement
correctly simply causes the client to jump to a new line and wait for further input. The
continuation character -> is displayed in such situations to indicate that the statement
is not yet complete.

You can close the connection to the server and exit the client at any time by typing
quit at the mysqgl> prompt.

mysgl> quit
Bye

Don’t quit just yet, though—there’s a database waiting to be created!

Creating Databases

Because all tables are stored in a database, the first statement you need to know is the
CREATE DATABASE statement, which initializes an empty database. Try it out by
creating a database called db1:

mysqgl> CREATE DATABASE dbl;
Query OK, 1 row affected (0.05 sec)

Databases in MySQL are represented as directories on the disk, and tables are
represented as files within those directories. Therefore, database names must comply
with the operating system’s (OS) restrictions on which characters are permissible

Chapter 2: Understanding Basic Commands 27

within directory names. Database names cannot exceed 64 characters, and names that
contain special characters or consist entirely of digits or reserved words must be quoted
with the backtick (~) operator.

Tip To simplify moving databases and tables between different operating systems, lowercase all
database and table names, and ensure they consist of only alphanumeric and underscore
characters. Try to avoid using reserved MySQL keywords as database names.

To select a particular database as the default for all subsequent statements, use the
USE statement. Here’s an example:

mysgl> USE dbl;
Database changed

Creating Tables

Once you've got a database, the next step is to add some tables to it. To create a table,
use the CREATE TABLE statement, as in the following listing:

mysgl> CREATE TABLE airport (
-> AirportID smallint(5) unsigned NOT NULL,
-> AirportCode char(3) NOT NULL,
-> AirportName varchar (255) NOT NULL,
-> CityName varchar (255) NOT NULL,
-> CountryCode char(2) NOT NULL,
-> Runways INT(1l) unsigned NOT NULL,
-> NumTerminals tinyint(l) unsigned NOT NULL,
-> PRIMARY KEY (AirportID)
->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.38 sec)

The CREATE TABLE statement begins with the table name, followed by a set of
parentheses. These parentheses enclose one or more field definitions, separated by
commas. Each field definition contains the field name, its data type, and any special
modifiers or constraints that apply. Following the closing parenthesis is an optional
table type specifier, which tells MySQL which storage engine to use for this table.

Table and field names must conform to the same rules that apply to database names.
MySQL tables are stored as files within the database directory and, as such, are subject
to the host operating system’s rules on filenames.

Specifying Field Data Types

When creating a MySQL table, specifying a data type for every field is necessary. This
data type plays an important role in enforcing the integrity of the data in a MySQL
database and in making this data easier to use and manipulate. MySQL offers a number
of different data types, which are summarized in Table 2-1.

28 Partl: Usage

Type Used For
TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT Integer values
FLOAT Single-precision floating-point values
DOUBLE Double-precision floating-point values
DECIMAL Decimal values
BIT Bit-field values
CHAR Fixed-length strings up to
255 characters
VARCHAR Variable-length strings up to
255 characters
TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB Binary data
TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT Text blocks
DATE Date values
TIME Time values or durations
YEAR Year values
DATETIME, TIMESTAMP Combined date and time values
ENUM, SET Predefined sets of values

TaBLE 21 MySQL Data Types

These data types are discussed in greater detail later in Chapter 3.

Adding Field Modifiers and Keys

A number of additional constraints, or modifiers, can be applied to a field to increase the
consistency of the data that will be entered into it and to mark it as “special” in some
way. These modifiers can either appear as part of the field definition, if they apply only
to that specific field (for example, a default value for a field), or after all the field
definitions, if they relate to multiple fields (for example, a multicolumn primary key).

¢ To specify whether the field is allowed to be empty or if it must necessarily be
filled with data, place the NULL and NOT NULL modifiers after each field definition.

o To specify a default value for a field, use the DEFAULT modifier. This default
value is used if no value is specified for that field when inserting a record. In
the absence of a DEFAULT modifier for NOT NULL fields, MySQL automatically
inserts a nonthreatening default value into the field.

e To have MySQL automatically generate a number for a field (by incrementing
the previous value by 1), use the AUTO INCREMENT modifier. This is particularly
useful to generate row numbers for each record in the table. However, the
AUTO_INCREMENT modifier can only be applied to numeric fields that are
both NOT NULL and belong to the PRIMARY KEY. A table may only contain one
AUTO_ INCREMENT field.

Chapter 2: Understanding Basic Commands

* To specify the character set for fields containing string values, use the
CHARACTER SET modifier.

e To index a field, use the INDEX modifier. When a field is indexed in this manner,
MySQL no longer needs to scan each row of the table for a match when
performing queries; instead, it can simply look up the index. Indexing is
recommended for fields that frequently appear in the WHERE, ORDER BY, and
GROUP BY clauses of SELECT queries and for fields used to join tables together.

e A variant of the INDEX modifier is the UNIQUE modifier, which is a special type
of index used to ensure that values entered into a field must be either unique

or NULL.

¢ To specify a primary key for the table, use the PRIMARY KEY modifier. The
PRIMARY KEY constraint can best be thought of as a combination of the NOT
NULL and UNIQUE constraints because it requires values in the specified field
to be neither NULL nor repeated in any other row. It thus serves as a unique
identifier for each record in the table, and it should be selected only after careful
thought has been given to the inter-relationships between tables.

¢ To specify a foreign key for a table, use the FOREIGN KEY modifier. The FOREIGN
KEY modifier links a field in one table to a field (usually a primary key) in
another table, setting up a base for relationships. However, foreign keys are only
supported in MySQL’s InnoDB storage engine; the FOREIGN KEY modifier is
simply ignored in all other engines.

Tip Indexes, primary keys, and foreign keys play an important role in determining both the
performance and integrity of your database. These topics are discussed in greater detail

in Chapter 3.

Selecting a Storage Engine

Following the field definitions and modifiers come one or more table modifiers, which
specify table-level attributes. Of these, the most frequently used one is the ENGINE
modifier, which tells MySQL which storage engine, or table type, to use. A number of
such engines are available, each with different advantages. Table 2-2 has a list.

Type Description

ISAM Legacy engine

MYISAM Revision of ISAM engine with support for dynamic-length fields
INNODB ACID-compliant transactional engine with support for foreign keys
MEMORY Memory-based engine with support for hash indexes

csv Text-based engine for CSV recordsets

TaBLE 2-2 MySQL Storage Engines

29

30 Partl: VUsage

Type Description

ARCHIVE Engine with compression features for large recordsets
FEDERATED Engine for remote tables

NDB Engine for clustered tables

MERGE Engine for merged tables

BLACKHOLE Bitbucket engine

TaBLE 2-2 MySQL Storage Engines (continued)

These storage engines are discussed in greater detail later in Chapter 3.

Using Other Table Modifiers

The TYPE attribute isn’t the only option available to control the behavior of the table
being created. A number of other MySQL-specific attributes are also available. Here’s
a list of the more interesting ones.

The AUTO_INCREMENT modifier specifies the starting value to use for AUTO
INCREMENT fields in the table.

The CHARACTER SET and COLLATE modifiers specify the table character set
and collation.

The CHECKSUM modifier controls whether table checksums should be calculated
and stored.

The COMMENT modifier saves a descriptive label for the table.

The MAX_ROWS and MIN_ROWS modifiers specify the maximum and minimum
number of rows the table is likely to have.

The PACK_KEYS modifier controls whether table indexes are compressed.
Compressing indexes reduces the table’s size on disk, but can affect performance
(as indexes need to be uncompressed every time they are updated).

The DELAY KEY WRITE modifier controls whether table indexes are updated
only after all writes to the table are complete. This can improve performance for
tables that see a high frequency of writes.

The UNION modifier specifies a list of tables to be merged (only useful with the
MERGE storage engine).

The DATA DIRECTORY and INDEX DIRECTORY modifiers specify custom paths
for the table data and index files.

Altering Tables

Table definitions created with the CREATE TABLE statement are not set in stone—it’s
easy to alter them at a later date as well. The SQL statement to do this is the ALTER
TABLE statement. It is used to add or delete fields; alter field types; add, remove, or

Chapter 2: Understanding Basic Commands 3]

modify keys; alter the table type; and change the table name (among other things). The
following sections discuss these capabilities in greater detail.

Altering Table Names
To alter a table name, use an ALTER TABLE statement with a supplementary RENAME
clause. The following example demonstrates by renaming table bills to invoices:

mysgl> ALTER TABLE airport RENAME TO cities;
Query OK, 0 rows affected (0.28 sec)

An alternative is to use the RENAME TABLE statement, which does the same thing.
Here’s an example, which reverses the previous operation:

mysgl> RENAME TABLE cities TO airport;
Query OK, 0 rows affected (0.06 sec)

Altering Field Names and Properties

A CHANGE clause can be used to alter a field’s name, type, and properties, simply by
using a new field definition instead of the original one. Here’s an example, which
changes the field named Runways defined as INT (11) to a field named NumRunways
with definition TINYINT (1):

mysgl> ALTER TABLE airport CHANGE Runways NumRunways TINYINT (1) ;
Query OK, 0 rows affected (0.23 sec)
Records: 0 Duplicates: 0 Warnings: 0

When a field is changed from one type to another, MySQL will automatically
attempt to convert the data in that field to the new type. If the data in the field is
inconsistent with the new field definition—for example, a field defined as NOT NULL
contains NULL values, or a field marked as UNIQUE contains duplicate values—MySQL
will generate an error. To alter this default behavior, add an IGNORE clause to the ALTER
TABLE statement that tells MySQL to ignore such inconsistencies.

Adding and Removing Fields and Keys
To add a new field to a table, place an ADD clause in your ALTER TABLE statement. The
following example demonstrates by adding a field named StartYear to the airports table:

mysqgl> ALTER TABLE airport ADD StartYear YEAR NOT NULL;
Query OK, 0 rows affected (0.26 sec)
Records: 0 Duplicates: 0 Warnings: 0

To do the reverse—delete an existing field from a table—use a DROP clause instead
of an ADD clause. The following example removes the field added in the previous
operation (along with any data it might have contained):

mysgl> ALTER TABLE airport DROP StartYear;
Query OK, 0 rows affected (0.18 sec)
Records: 0 Duplicates: 0 Warnings: 0

32

Part I: Usage

To delete a table’s primary key, use the DROP PRIMARY KEY clause, as illustrated here:

mysgl> ALTER TABLE airport DROP PRIMARY KEY;
Query OK, 0 rows affected (0.06 sec)

To add a new primary key, use the ADD PRIMARY KEY clause, as illustrated here:

mysgl> ALTER TABLE airport ADD PRIMARY KEY (AirportID);
Query OK, 0 rows affected (0.05 sec)

Tip A table’s primary key must always be NOT NULL.

Altering Table Types
To alter the table’s storage engine, add an ENGINE clause to the ALTER TABLE statement
with the name of the new storage engine, as in the following example:

mysgl> ALTER TABLE airport ENGINE = INNODB;
Query OK, 6 rows affected (0.11 sec)

CAUuTION To execute an ALTER TABLE statement, MySQL first creates a copy of the original
table, changes it, and then deletes the original table and replaces it with the changed copy.
For this reason, ALTER TABLE operations on large tables may take a fair amount of time.

Removing Tables and Databases

To remove a database, use the DROP DATABASE statement, which deletes the named
database and all its tables permanently. Similarly, to delete a table, use the DROP TABLE
statement. Try this out by creating and dropping a database and a table:

mysgl> CREATE DATABASE music;

Query OK, 1 row affected (0.05 sec)

mysgl> CREATE TABLE member (MemberID INT NOT NULL) ;
Query OK, 0 rows affected (0.00 sec)

mysgl> DROP TABLE member;

Query OK, 0 rows affected (0.00 sec)

mysgl> DROP DATABASE music;

Query OK, 0 rows affected (0.49 sec)

These DROP statements will immediately wipe out the target, along with all the data
it contains—so use them with care!

Tip If what you actually intended was to empty the table of all records, use the TRUNCATE
TABLE statement instead, which internally DROP-s the table and then re-creates it. The
AUTO_INCREMENT counter, if one exists, is automatically reset in TRUNCATE TABLE
operations (this does not happen if you simply delete all the records in the table with a
DELETE statement).

Chapter 2: Understanding Basic Commands 33

Working with Records

Once databases and tables are defined, the next step is to begin using them by
populating them with records and performing queries on the data stored inside them.
This section discusses the SQL statements to add, edit, and delete records to a table
and then perform different types of queries on that data to retrieve a result set of
records that satisfy the query.

Creating Records

Once you've created a table, it’s time to begin entering data into it. The SQL statement
to accomplish this is the INSERT statement. The syntax of the INSERT statement is
illustrated in the following example:

mysgl> INSERT INTO airport (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES (34, 'ORY', 'Orly Airport', 'Paris', 'FR', 3, 2);
Query OK, 1 row affected (0.09 sec)

The INSERT statement is followed by the optional keyword INTO, a table name, and
a field list, in parentheses, which indicates which fields the values are to be inserted
into. A VALUES clause completes the statement by specifying the values to be inserted
into the previously named fields.

MySQL also allows multiple records to be inserted into a table at once by using
multiple VALUES () clauses within the same INSERT statement. To see how this works,
try running the following statements:

mysgl> INSERT INTO airport (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)

-> VALUES

-> (48, 'LGW', 'Gatwick Airport’',

-> 'London', 'GB', 3, 1),

-> (56, 'LHR', 'Heathrow Airport',

-> 'London', 'GB', 2, 5),

-> (59, 'CIA', 'Rome Ciampino Airport',

-> 'Rome', 'IT', 1, 1),

-> (72, 'BCN', 'Barcelona International Airport’',
-> 'Barcelona', 'ES', 3, 3);

Query OK, 4 rows affected (0.05 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysgl> INSERT INTO airport (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)

-> VALUES
-> (62, 'AMS', 'Schiphol Airport’',
-> 'Amsterdam', 'NL', 6, 1),

-> (74, 'MUC', 'Franz Josef Strauss Airport',
-> 'Munich', 'DE', 3, 2),

34

Part I: Usage

-> (83, 'LIS', 'Lisbon Airport',
-> 'Lisbon', 'PT', 2, 2),
-> (87, 'BUD', 'Budapest Ferihegy International Airport',
-> 'Budapest', 'HU', 2, 2),
-> (92, '"ZRH', 'Zurich Airport ',
-> 'Zurich', 'CH', 3, 1),
-> (126, 'BOM', 'Chhatrapati Shivaji International Airport ',
-> 'Bombay', 'IN', 2, 2),
-> (129, 'BRS', 'Bristol International Airport’',
-> 'Bristol', 'GB', 1, 1),
-> (132, 'MAD', 'Barajas Airport',
-> 'Madrid', 'ES', 4, 4),
-> (165, 'NCE', 'Nice CUte d''Azur Airport ',
-> 'Nice', 'FR', 2, 2),
-> (201, 'SIN', 'Changi Airport',
-> 'Singapore', 'SG', 3, 3);
Query OK, 10 rows affected (0.07 sec)
Records: 10 Duplicates: 0 Warnings: 0

MySQL can automatically perform the following operations:

e For AUTO INCREMENT fields, entering a NULL value automatically increments the
previously generated field value by 1.

¢ For the first TIMESTAMP field in a table, entering a NULL value automatically
inserts the current date and time.

* For UNIQUE or PRIMARY KEY fields, entering a value that already exists causes
MySQL to generate an error.

Tip When inserting string and some date values into a table, enclose them in quotation marks
so that MySQL doesn’t confuse them with variable or field names. Quotation marks within
the values themselves can be “escaped” by preceding them with the backslash (\) symbol.

Removing and Modifying Records

Just as you INSERT records into a table, so, too, can you remove records with the
DELETE statement. You can select a specific subset of rows to be deleted by adding the
WHERE clause to the DELETE statement. The following example would only delete
records for those airports with three or more terminals:

mysgl> DELETE FROM airport WHERE NumTerminals >= 3;
Query OK, 4 rows affected (0.05 sec)

Omitting the WHERE clause in a DELETE statement would delete all the records from
the table.

Chapter 2: Understanding Basic Commands 35

CAUTION It is not possible to reverse a DELETE operation in MySQL (unless you're in the
middle of an InnoDB transaction that hasn’t yet been committed). Therefore, be extremely
careful when using DELETE commands, both with and without WHERE clauses—a small
mistake and the contents of your entire table will be lost for good.

Data in a database usually changes over time, which is why SQL includes an
UPDATE statement designed to change existing values in a table. As with DELETE,
UPDATE can be used to change all the values in a particular field, or to change only
those values matching a particular condition. To illustrate how this works, consider
the following example, which changes the country code ‘GB’ to “UK.

mysgl> UPDATE airport SET CountryCode = 'UK!'
-> WHERE CountryCode = 'GB';

Query OK, 3 rows affected (0.24 sec)

Rows matched: 3 Changed: 3 Warnings: 0

Thus, the SET clause specifies the field name, as well as the new value for the field;
the WHERE clause is used to identify which rows of the table to change. In the absence of
this clause, all the rows of the table are updated with the new value.

To update multiple fields at once, simply use multiple SET clauses. The following
example illustrates by updating the record for Gatwick Airport with new values:

mysqgl> UPDATE airport SET NumTerminals = 2,

-> NumRunways = 2 WHERE AirportCode = 'LGW';
Query OK, 1 row affected (0.10 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Retrieving Records

Just as you can add records to a table with the INSERT statement, you can retrieve them
with the SELECT statement. The SELECT statement is one of the most versatile and
useful statements in SQL. It offers tremendous flexibility in extracting specific subsets
of data from a table.

In its most basic form, the SELECT statement can be used to evaluate expressions
and functions, or as a “catch-all” query that returns all the records in a specific table.
Here is an example of using SELECT to evaluate mathematical expressions:

mysgl> SELECT 75 / 15, 61 + (3 * 3);

+-mmmm- - e ittt +
| 75 / 15 | 61 + (3 * 3) |
e i Fomm e +
| 5.00 | 70 |
+---mmm——- e +

1 row in set (0.05 sec)

36

Part I: Usage

And here is an example of using SELECT to retrieve all the records in a table:

mysgl> SELECT * FROM airport\G

khkkhkkhdhhkhkhhhkhdhkhdhhhkhdhkhddkxd] pOw **Fdkdkddkhkhdhkhdhrhdhhhhhhhrhd

AirportID: 34
AirportCode: ORY
AirportName: Orly Airport
CityName: Paris
CountryCode: FR
NumRunways: 3
NumTerminals: 2
EE R R E R RS EEEEEEEEEEEEEEEEEEE] 2. TOW EE R R R EEEEEEEEEEEEEEEEEEEEEE]
AirportID: 48
AirportCode: LGW
AirportName: Gatwick Airport
CityName: London
CountryCode: UK
NumRunways: 2
NumTerminals: 2
hhhkhkhhhhhhhdhdhdhdhdhdhddhdd 3 pow *F ddkdkhdhdhdhdhdhdhhhdhdhdhh
AirportID: 56
AirportCode: LHR
AirportName: Heathrow Airport
CityName: London
CountryCode: UK
NumRunways: 2
NumTerminals: 5
khkkhkkhkkhkkhkhkkhkhkhkkhkhkhkhkhkdkhkhkhkhhkhdxkx 4. row khkkhkkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhhkdkhkhkkhxkk
AirportID: 59
AirportCode: CIA
AirportName: Rome Ciampino Airport
CityName: Rome
CountryCode: IT
NumRunways: 1
NumTerminals: 1
hhkkhkkhhhhhhhhhhkhhhhhhhhdhhddhkdkd 5§ pOw *F dhdhhhhhdhdhdhdhdhdhdhhhh
AirportID: 62
AirportCode: AMS
AirportName: Schiphol Airport
CityName: Amsterdam
CountryCode: NL
NumRunways: 6
NumTerminals: 1
dhhkhkhkhkhkhhhhhhhhhhdhdhhddhdkdkdd G pow *ddkhkdhdhhhhdhdhhhhhhhhhhhhhh
AirportID: 72
AirportCode: BCN
AirportName: Barcelona International Airport
CityName: Barcelona

Chapter 2: Understanding Basic Commands 37

CountryCode: ES
NumRunways: 3
NumTerminals: 3
Fhhkkkkkkkdkhkdkdddhkdxdkdkxdxkxdx*x%x 7 pOw FrErkkkkhkkhkkhkkhkkhhrhrhhhhhkhx
AirportID: 74
AirportCode: MUC
AirportName: Franz Josef Strauss Airport
CityName: Munich
CountryCode: DE
NumRunways: 3
NumTerminals: 2
R R R R EEEEEEEEEEEEEEESEEEEEEE] 8‘ TOwW PR R R E R EEEEEEEEEEEEEEEEEEEEE]
AirportID: 83
AirportCode: LIS
AirportName: Lisbon Airport
CityName: Lisbon
CountryCode: PT
NumRunways: 2
NumTerminals: 2
hhkhkkhkkhkhkhkhkhkhkhhkhkhhhkhhkhkhhhhhkhkdkd O yOw ***khkkhhhhhhhhhhhhhhhhhhhhhik
AirportID: 87
AirportCode: BUD
AirportName: Budapest Ferihegy International Airport
CityName: Budapest
CountryCode: HU
NumRunways: 2
NumTerminals: 2
Fhhkkkkhkkdkdhkdkdkdkdkkdkxdxdxdxx*x], rOw *F*xdxdkdkkdkkdkkdkdhkdkdhkrhkrhkxhkxxx
AirportID: 92
AirportCode: ZRH
AirportName: Zurich Airport
CityName: Zurich
CountryCode: CH
NumRunways: 3
NumTerminals: 1
R R R R R R RS EEEEEEEEEEEEEEEEEE] 11. TrTOow R R R R R R RS SR EEEEEEEEEEEEEEEE]
AirportID: 126
AirportCode: BOM
AirportName: Chhatrapati Shivaji International Airport
CityName: Bombay
CountryCode: IN
NumRunways: 2
NumTerminals: 2
Fhhkkkkkkdkdkddddddddxdxdxdxxdx*x*x]2 1OW *Fr¥rxrrxdkdkdkddkddkrrddrrrrrrrrhkxxx
AirportID: 129
AirportCode: BRS
AirportName: Bristol International Airport
CityName: Bristol

Part I: Usage

CountryCode: UK
NumRunways: 1
NumTerminals: 1
hhhkhhhhhhhhhhdhdhdhdhdhddddx]33 pow *FF*Fkdkdkhhkdhhhhhdhhhddrdrhhhkix
AirportID: 132
AirportCode: MAD
AirportName: Barajas Airport
CityName: Madrid
CountryCode: ES
NumRunways: 4
NumTerminals: 4
PR R R E R EEEEEEEEEEEEEEEEEEEEE] 14‘ TOW PR R R E R RS EEEEEEEEEEEEEEEEEEE]
AirportID: 165
AirportCode: NCE
AirportName: Nice Cote d'Azur Airport
CityName: Nice
CountryCode: FR
NumRunways: 2
NumTerminals: 2
hhhkhkhhkhhhhhhhdhdhhhdhhdhkdhkdkdx 5 pOw ** Fkdkhhhhhhhhhhkhhkrhkhhhhhkxx
AirportID: 201
AirportCode: SIN
AirportName: Changi Airport
CityName: Singapore
CountryCode: SG
NumRunways: 3
NumTerminals: 3
15 rows in set (0.02 sec)

Retrieving Specific Fields

The asterisk (*) in the previous example indicates that the records returned by the
SELECT query should contain all the fields present in the table. To return only one or
two specific fields, specify their name(s) in the SELECT statement, like this:

mysgl> SELECT AirportName, NumTerminals FROM airport;

Orly Airport |
Gatwick Airport |
Heathrow Airport |
Rome Ciampino Airport |
Schiphol Airport |
Barcelona International Airport |
Franz Josef Strauss Airport |
Lisbon Airport |
Budapest Ferihegy International Airport |

N NN WERERE NN

Chapter 2: Understanding Basic Commands 39

| Zurich Airport

| Chhatrapati Shivaji International Airport
| Bristol International Airport

| Barajas Airport

| Nice Cote d’Azur Airport

| Changi Airport

15 rows in set (0.00 sec)

Filtering Records with a WHERE Clause
To restrict which records appear in the result set, add a WHERE clause to your SELECT
statement. This WHERE clause is used to define specific criteria used to filter records
from the result set. Records that do not meet the specified criteria will not appear in
the result set.

The following example filters the record set to only display airports in the United
Kingdom:

mysgl> SELECT AirportName FROM airport
-> WHERE CountryCode = 'UK';

| Gatwick Airport |
| Heathrow Airport |
| Bristol International Airport |

3 rows in set (0.00 sec)

Using Operators
The = symbol previously used is an equality operator, used to test whether the left side
of the expression is equal to the right side. MySQL comes with numerous such operators
that can be used in the WHERE clause for comparisons and calculations. Table 2-3 lists the
important operators in MySQL by category.

Here is an example of using a comparison operator in the WHERE clause to list
airports with three or more terminals:

mysgl> SELECT AirportName FROM airport
-> WHERE NumTerminals >= 3;

| Heathrow Airport |
| Barcelona International Airport |
| Barajas Airport |
| Changi Airport |

4 rows in set (0.00 sec)

40

Part I: Usage

TaBLE 2-3 MySQL
Operators

Multiple conditions can be combined with the AND or OR logical operators. This next
example lists all airports with more than two runways outside the United Kingdom:

Operator

What It Does

Arithmetic operators

+

Addition

Subtraction

Multiplication

Division; returns quotient

Division; returns modulus

= Equal to

<> aka != Not equal to

<=> NULI-safe equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
BETWEEN Exists in specified range
IN Exists in specified set
IS NULL Is a NULL value

IS NOT NULL Is not a NULL value
LIKE Wildcard match

REGEXP aka RLIKE

Regular expression match

Logical operators

NOT aka ! Logical NOT
AND aka && Logical AND
OR aka || Logical OrR

XOR Exclusive OR

mysgl> SELECT AirportName FROM airport WHERE
-> NumRunways > 2 AND CountryCode !=

| orly Airport
| Schiphol Airport

IUKI;

Chapter 2: Understanding Basic Commands 4]

| Barcelona International Airport |
| Franz Josef Strauss Airport |
| Zurich Airport |
| Barajas Airport |
| Changi Airport |

7 rows in set (0.00 sec)

The LIKE operator can be used to perform queries using wildcards, which comes
in handy when you're not sure what you're looking for. Two types of wildcards are
allowed when using the LIKE operator: the % wildcard, which is used to signify zero
or more occurrences of a character, and the _ wildcard, which is used to signify exactly
one occurrence of a character.

This next example uses the LIKE operator with the logical OR operator to list all
airports containing the letters I or b:

mysgl> SELECT AirportName FROM airport
-> WHERE AirportName LIKE '%h%'
-> OR AirportName LIKE '$%b%';

| Heathrow Airport |
| Schiphol Airport |
| Barcelona International Airport |
| Lisbon Airport |
| Budapest Ferihegy International Airport |
| Zurich Airport |
| Chhatrapati Shivaji International Airport |
| Bristol International Airport |
| Barajas Airport |
| Changi Airport |

10 rows in set (0.01 sec)

Sorting Records and Eliminating Duplicates
To see the data from a table ordered by a specific field, attach the ORDER BY clause to
the SELECT statement. This clause enables you to specify both the field name and the
sort direction (ASCending or DESCending).

Here is an example of sorting the airport list by three-letter code in ascending order:

mysgl> SELECT AirportCode, AirportName FROM airport
-> ORDER BY AirportCode ASC;

42

Part I: Usage

oo mmm oo e e TR
| AirportCode | AirportName

R e e et e TR P
| AMS | Schiphol Airport

| BCN | Barcelona International Airport

| BOM | Chhatrapati Shivaji International Airport

| BRS | Bristol International Airport

| BUD | Budapest Ferihegy International Airport

| cIa | Rome Ciampino Airport

| Lew | Gatwick Airport

| LHR | Heathrow Airport

| LIS | Lisbon Airport

| MAD | Barajas Airport

| mMuc | Franz Josef Strauss Airport

| NCE | Nice Cote d'Azur Airport

| ORY | orly Airport

| SIN | Changi Airport

| ZRH | Zurich Airport

oo mmm oo e e T TP

15 rows in set (0.06 sec)
And here is the same table sorted by city name in descending order:

mysgl> SELECT CityName, AirportName FROM airport
-> ORDER BY CityName DESC;

e e i e +
| CityName | AirportName |
R e B e i +

Zurich Zurich Airport

Singapore Changi Airport

Rome Rome Ciampino Airport

Paris Orly Airport

Nice Nice Cote d'Azur Airport

Munich Franz Josef Strauss Airport

Madrid Barajas Airport

| |
| |
| |
| |
| |
| |
| |
London | Gatwick Airport |
| |
| |
| |
| |
| |
| |
| |

London Heathrow Airport

Lisbon Lisbon Airport

Budapest Budapest Ferihegy International Airport
Bristol Bristol International Airport

Bombay Chhatrapati Shivaji International Airport
Barcelona Barcelona International Airport
Amsterdam Schiphol Airport

15 rows in set (0.00 sec)

Chapter 2: Understanding Basic Commands 43

To eliminate duplicate records in a table, add the DISTINCT keyword. Consider the
following example, which illustrates the use of this keyword by printing a list of all the
unique country codes in the airport list:

mysgl> SELECT DISTINCT CountryCode FROM airport;

| FR |
| UK |
| IT |
| NL |
| ES |
| DE |
| PT |
| HU |
| cH |
| 1N |
| sG |

11 rows in set (0.00 sec)
Limiting Results

To limit the number of records returned by MySQL, use the LIMIT clause, as illustrated
in the following;:

mysgl> SELECT AirportCode, AirportName, NumTerminals
-> FROM airport LIMIT O0,3;

oo mm oo oo mmmmmm oo T +
| AirportCode | AirportName | NumTerminals |
R e T e EE R R T +
ORY	orly Airport	2
LGw	Gatwick Airport	2
LHR	Heathrow Airport	5
Hmmmmmmm oo oo mm o mm oo T +

3 rows in set (0.08 sec)

It is also possible to combine the ORDER BY and LIMIT clauses to return a sorted list
restricted to a certain number of values. The following example illustrates by listing the
top three airports by number of terminals:

mysqgl> SELECT AirportCode, AirportName, NumTerminals
-> FROM airport ORDER BY NumTerminals DESC
-> LIMIT O0,3;

Part I: Usage

oo mmm oo oo mmmm oo oo mmmm oo +
| AirportCode | AirportName | NumTerminals |
mmmmmmmo—o o R T R T T +
LHR	Heathrow Airport	5
MAD	Barajas Airport	4
SIN	Changi Airport	3
dmmmmmmm oo oo mmm oo T TR +

3 rows in set (0.02 sec)

Using Built-in Functions

MySQL comes with more than 100 built-in functions to help perform calculations and
process the records in a result set. These functions can be used in a SELECT statement,
either to manipulate field values or in the WHERE clause. The following example
illustrates by using MySQL's COUNT () function to return the total number of airport
records:

mysgl> SELECT COUNT (AirportID) FROM airport;

fmm e +
| COUNT (AirportID) |
fmm e +
| 15 |
fmmmmm oo +

1 row in set (0.00 sec)
You can calculate string length with the LENGTH () function, as in the following;:

mysgl> SELECT DISTINCT CityName, LENGTH (CityName)
-> FROM airport LIMIT O0,5;

it e e +
| CityName | LENGTH(CityName) |
e it Y e e T +
Paris	5
London	6
Rome	4
Amsterdam	9
Barcelona	9
e D e T T +

5 rows in set (0.00 sec)

You can use the DATE () function to format date and time values into a human-
readable form, as illustrated in the following:

mysgl> SELECT DATE FORMAT (NOW(), 'SW %d %M %Y');

i it +
| DATE_FORMAT (NOW (), 'SW %d %M %Y') |
o m e - +
| Thursday 02 October 2008 |
oo +

1 row in set (0.03 sec)

Chapter 2: Understanding Basic Commands

Grouping Records

To group records on the basis of a specific field, use MySQL’'s GROUP BY clause. Each
group created in this manner is treated as a single row, even though it internally
contains multiple records. The COUNT () function can be used in this context to count
the number of records in each group. Consider the following example, which groups
and counts airports by country:

mysgl> SELECT CountryCode, COUNT (AirportID) AS NumAirports
-> FROM airport GROUP BY CountryCode;

| cH |
| DE |
| ES |
| FR |
| HU |
| 1N |
| IT |
| NL |
| PT |
| sG |
| UK |

11 rows in set (0.02 sec)

To further filter the groups, add a HAVING clause to the GROUP BY clause. This
HAVING clause works much like a regular WHERE clause, making it possible to filter the
grouped data by a specific condition. The following example revises the previous one
to only return those countries having two or more airports:

mysgl> SELECT CountryCode, COUNT (AirportID) AS NumAirports
-> FROM airport GROUP BY CountryCode
-> HAVING NumAirports >= 2;

Hommmmmm o m oo Hommmmmm o m oo +
| CountryCode | NumAirports |
T T +
| ES | 2 |
| FR | 2 |
| UK | 3]
e e +

3 rows in set (0.00 sec)

In addition to the COUNT () function, MySQL offers the MIN () and MAX () functions to
retrieve the minimum and maximum of a group, the AVG () function to return the average
of a group of values, and the SUM () function to return the total of a group of values.

45

46

Part I: Usage

Using Variables
MySQL supports user-defined variables, which come in handy when you need to pass
values from one SQL statement to another. These variables are session variables—they
remain extant for the duration of the client session, and are automatically destroyed
once the client disconnects—and are defined using the SET statement. Note that
variable names are case-insensitive and must be prefixed with the @ symbol.

Here’s an example:

mysgl> SET @runways = 3;
Query OK, 0 rows affected (0.02 sec)
mysgl> SELECT AirportName, NumRunways
-> FROM airport
-> WHERE NumRunways >= @runways;

orly Airport	3
Schiphol Airport	6
Barcelona International Airport	3
Franz Josef Strauss Airport	3
Zurich Airport	3
Barajas Airport	4
Changi Airport	3

7 rows in set (0.01 sec)

Another way to define a variable is to write the result of a SELECT statement into it
using the SELECT INTO statement. Here’s an example, which finds the airport with the
maximum number of inward routes, stores the airport identifier into the @aid variable,
and then uses the variable to retrieve the airport name:

~

mysgl> SELECT “to~ INTO @aid
-> FROM route

-> GROUP BY “to~

-> ORDER BY COUNT(" to~)
-> DESC LIMIT 1;

Query OK, 1 row affected (0.00 sec)

mysgl> SELECT AirportName
-> FROM airport
-> WHERE AirportID = @aid;

R TR +
| AirportName |
oo mmm o mmo oo +
| Heathrow Airport |
R e e +

1 row in set (0.09 sec)

Chapter 2: Understanding Basic Commands

Modifying SELECT Behavior
A number of other keywords can be added to the SELECT statement to modify its
behavior.

The SQL._CACHE and SQL_NO_CACHE keywords tell MySQL whether the query
results should be cached.

The SQL_BUFFER_RESULT keyword forces MySQL to store query results in a
temporary table. This result buffer eliminates the need for MySQL to lock the
tables used by the query while the results are being transmitted to the client,
thus ensuring they can be used by other processes in the interim.

The SQL. BIG RESULT and SQL SMALL RESULT keywords can be used to
indicate the expected size of the result set to MySQL and, thereby, help it identify
the most optimal way to sort and store the returned records (disk-based or in-
memory temporary tables, respectively).

The SQL. HIGH PRIORITY keyword raises the priority of the query over
competing UPDATE, INSERT, or DELETE statements, thereby resulting in
(slightly) faster query execution on busy database servers.

The SQL_CALC FOUND_ROWS keyword tells MySQL to calculate the total number
of rows matching the query, without taking into account any LIMIT that might
have been set. This total number can then be retrieved via a call to the FOUND_
ROWS () function.

Appropriate usage of the SQL. CACHE, SQL. BUFFER RESULT, SQL. BIG RESULT, SQL
SMALL RESULT, and SQL HIGH PRIORITY keywords can 51gn1f1cantly improve the
speed of your transactions with the MySQL server. Chapter 9 has more information on
some of these keywords.

Viewing Database, Table, and Field Information

MySQL also comes with a full-featured list of SHOW statements to obtain information
about all aspects of the server, its databases, and its tables. Here’s a quick list:

The SHOW DATABASES statement displays a list of databases on the server.
The SHOW TABLES statement displays a list of tables in a database.
The DESCRIBE statement displays the structure of a table.

The SHOW CREATE TABLE statement retrieves the SQL statements originally
used to create the table.

The SHOW INDEX statement displays a list of table indexes.
The SHOW ENGINES statement retrieves a list of available storage engines.

The SHOW PROCESSLIST statement displays a list of active connections to the
server, as well as what each one is doing.

41

48 PartI: Usage

¢ The SHOW ERRORS and SHOW WARNINGS statements display a list of errors and
warnings generated by the server.

e The SHOW STATUS statement displays live server status (including information
on server uptime, number of queries processed, and number of connections).

* The SHOW TABLE STATUS statement displays detailed information on the tables
in a database (including information on the table type, the number of rows, the
date and time of the last table update, and the lengths of indexes and rows).

¢ The SHOW CHARACTER SET statement displays a list of available character sets.

Summary

This chapter provided a crash course in MySQL’s dialect of SQL, showing you how to
create databases and tables; insert, modify, and delete records; and execute different
types of queries. This introductory chapter on SQL wasn’t meant to be deep—rather, it
was intended as a broad overview of the things you can do with MySQL and a primer
for the more detailed material ahead. The next few chapters will build on this
introductory material to discuss some of MySQL's more advanced features.

While this chapter covered a fair bit of ground, it still barely scratched the surface of
what you can do with MySQL. For more in-depth information about the topics in this
chapter, you should visit the following links:

* The official MySQL tutorial at http://dev.mysql.com/doc/refman/5.1/en/
tutorial.html

* A discussion of RDBMS concepts at http://www.melonfire.com/community /
columns/trog/article.php?id=52

¢ Database normalization at http://en.wikipedia.org/wiki/Database_normalization

* More information on the MySQL command-line client at http://dev.mysql.com/
doc/refman/5.1/en/mysql.html

* Detailed information on SQL statements discussed in this chapter at http://
dev.mysql.com/doc/refman/5.1/en/sql-syntax.html

CHAPTER 3

Making Design Decisions

30

Part I: Usage

two key goals for any database architect. To achieve these goals, a database architect

must consider every aspect of a proposed database design and decide the optimal
storage structure for the data within it.

Broadly, there are two main storage decisions facing a database architect when
proposing a database design: which data types are best suited to a table’s fields,
and which storage engine is best suited to a table’s intended use. An architect must
also make decisions about which fields to index and how best to construct table
relationships through the use of foreign and primary keys. These design-time decisions
have a far-reaching effect on database performance and require careful thought and
consideration. The following sections discuss the issues involved in greater detail.

In the RDBMS world, efficiency (in data storage) and speed (in data retrieval) are the

Selecting Field Data Types

Every field of a MySQL table incorporates a data type as one of its primary attributes.
This data type plays an important role in enforcing the integrity of the data in a MySQL
database and in making this data easier to use and manipulate.

Intelligent use of data typing can result in smaller databases and tables, efficient
indexing, and quicker query execution; indifferent, ham-handed use of types can result
in bloated tables, wasted storage space, inefficient indexing, and a gradual deterioration
in performance. For example, using a VARCHAR type on a field that is meant for numeric
or date values could result in unexpected behavior when you perform calculations on it,
just as using a large TEXT field for small string values could lead to a waste of space and
inefficient indexing. Wise database architects, therefore, make it a point to be fully aware
of the various data types available in a system, together with the limitations and benefits
of each, prior to implementing a database-driven application; the alternative can be
costly in terms of both time and money.

MySQL supports a number of different data types, as listed in Table 2-1 in Chapter 2.
To help you choose the one best suited to the values you expect to enter into a field,
the following sections examine each of these types in greater detail.

Numeric Types

For integer values, MySQL offers you a choice of the TINYINT, SMALLINT, MEDIUMINT,
INT, and BIGINT types, which differ from each other only in the size of values they can
store. Use the TINYINT and SMALLINT types for small integer values, the INT type for
larger integer values, and the BIGINT type for extremely large values. For floating-
point values, use the FLOAT and DOUBLE types for single-precision and double-precision
floating point values, respectively. And, finally, for decimal values, use the DECIMAL
data type.

When defining an integer field, you can include a width specifier in parentheses.
This width specifier controls the padding MySQL applies to the field when retrieving it
from the database. For a field defined as BIGINT (20), MySQL will automatically pad
the value to 20 characters before displaying it.

Chapter 3: Making Design Decisions

When defining floating-point and decimal fields, MySQL enables you to include both
a width specifier and a precision specifier. For example, the declaration FLOAT (7,4)
specifies that displayed values will not contain more than seven digits, with four digits
after the decimal point. You can also add the ZEROFILL attribute to pad values with
leading zeroes, and the UNSIGNED attribute to force a field to only accept positive values.

CAurIoN By default, MySQL will automatically truncate or round values down to the
maximum allowed value for the field they’re being placed in. To avoid this and instead have
MySQL generate an error, run MySQL in “strict mode.” A discussion of MySQL modes
can be found in Chapter 10.

Character and String Types

MySQL lets you store strings up to 255 characters in length as either a CHAR or VARCHAR
type. The difference between these two types is simple: CHAR fields are fixed to the
length specified at the time of definition, while VARCHAR fields can grow and shrink
dynamically, based on the data entered into them. This makes VARCHAR fields more
suitable for fields that accept variable-length data, and CHAR fields better for fields that
always contain values of the same length.

Both CHAR and VARCHAR type definitions must include a width specifier in
parentheses, as with numeric type definitions. Thus, the definition CHAR (10) creates
a field whose length remains exactly 10 characters, regardless of what is entered into it,
while the definition VARCHAR (10) creates a field whose length can range anywhere
between 0 and 10 characters, depending on what is entered into it.

Text and Binary Types

MySQL enables you to store strings greater than 255 characters in length as either a
TEXT or BLOB type. The difference between TEXT and BLOB types is minimal at best:
TEXT types are compared in a case-insensitive manner, while BLOB types are compared
in a case-sensitive manner. For this reason, BLOBs are usually used to store binary data,
while TEXT fields are used to store ASCII data.

Depending on the size of the string you're trying to store, MySQL offers you a choice
of the TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT types (for ASCII text blocks) and
the TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB types (for binary data).

Date and Time Types

For simple date and time values, MySQL offers the intelligently named DATE and TIME
data types. The DATE type is used to store date values consisting of year, month, and
day components, while the TIME type is used for time values or durations consisting
of hour, minute, and second components. Both DATE and TIME types can be used for
values in either numeric (YYYYMMDD and HHMMSS) or string ('YYYY-MM-DD’ and
‘HH:MM:SS’) format.

3l

Y

Part I: Usage

If what you need is a combination of the two, consider using the DATETIME or
TIMESTAMP types, both of which let you specify both date and time values in a single
field. The difference between the two lies in how the values are stored: DATETIME fields
are stored in the form ‘YYYY-MM-DD HH:MM:SS’, and TIMESTAMP fields are stored in
the form YYYYMMDDHHMMSS.

How Do | Enter the Current Date and Time into a Field?

When inserting records into a table containing a TIMESTAMP field, MySQL
automatically fills that field with the current date and time if no other value
was specified. To accomplish the same thing with other date/time fields, use
the NOW () function.

Finally, for simple applications that only need to store the year, MySQL offers the
special YEAR type, which accepts a four-digit year value. It’s worthwhile to use this
value if your application deals mostly with the year component of a date value,
because a field marked as YEAR occupies 1 byte on disk (as compared to a DATETIME or
DATE field, which can occupy up to 8 bytes). MySQL YEAR fields can accept any value
in the range 1901 to 2155.

Enumerations

For situations where a field value must be selected from a predefined list of values,
MySQL offers the ENUM and SET data types. For both these types, a list of predefined
values must be included as part of the type definition. An ENUM field definition can
contain up to 65,536 elements, while a SET field definition can hold up to 64 elements.
For a field marked as an ENUM field, only one of the predefined values may be selected,

whereas for a field marked as a SET field, zero, one, or more than one of the pre-defined
values may be selected. ENUM fields are best suited for mutually exclusive values, while
SET fields are best suited for independent values. As an example, the definition ENUM
(‘red’, ‘green’, ‘yellow’) forces entry of any one of the three values, while the
definition SET (‘mon’, ‘tue’, ‘wed’, ‘thu’, ‘fri’) allows entry of none, one,
or all of the five values. In addition, SET values are stored as bits, making it possible to
perform bitwise comparison and sorting operations on them.

What Happens if | Try Inserting an Unlisted Value into an ENUM or SET Field?
With both ENUM and SET types, attempting to insert a value that does not exist in the
predefined list of values will cause MySQL to insert either an empty string or a 0.

Data Type Selection Checklist

To decide the data type for a field, take into account the following factors:

e The range and type of values that the field will hold
¢ The types of calculations you expect to perform on those values

* The manner in which the data is to be formatted for display purposes

Chapter 3: Making Design Decisions

¢ The manner in which the data is to be sorted and compared against other fields

e The available subtypes for each field and their storage efficiencies

By taking all of these factors into consideration when designing your database, you
reduce the chance of incompatibilities and storage inefficiencies later.

Selecting Table Storage Engines

As Table 2-2 in Chapter 2 illustrates, MySQL supports many different storage engines
for its tables, each with its own advantages and disadvantages. While all of MySQL’s
storage engines are reasonably efficient, using the wrong storage engine can hinder your
application from achieving its maximum possible performance. For example, using
the ARCHIVE engine for a table that will see frequent reads and writes will produce
significantly slower performance than using the MYISAM engine for the same table.

To help you choose the most appropriate engine for your table, the following
sections discuss each of these engines in greater detail.

The MylSAM Storage Engine

The MyISAM storage engine extends the base ISAM type with a number of additional
optimizations and enhancements, and is MySQL’s default table type. MyISAM tables
are optimized for compression and speed, and are immediately portable between
different OSs and platforms (for example, the same MyISAM table can be used on both
Windows and UNIX OSs). The MyISAM format supports large table files (up to 256TB
in size) and allows indexing of BLOB and TEXT columns. Tables and table indexes can
be compressed to save space, a feature that comes in handy when storing large BLOB or
TEXT fields. VARCHAR fields can either be constrained to a specific length or adjusted
dynamically as per the data within them, and the format supports searching for records
using any key prefix, as well as using the entire key.

Because MyISAM tables are optimized for MySQL, it’s no surprise that the
developers added a fair amount of intelligence to them. MyISAM tables can be either
fixed-length or dynamic-length. MySQL automatically checks MyISAM tables for
corruption on startup and can even repair them in case of errors. Table data and table
index files can be stored in different locations, or even on different file systems. And
intelligent defragmentation logic ensures a high-performance coefficient, even for
tables with a large number of inserts, updates, and deletions. Large MyISAM tables can
also be compressed, or “packed,” into smaller read-only tables that take up less disk
space, with MySQL’s my i sampack utility.

The InnoDB Storage Engine

The InnoDB storage engine has been a part of MySQL since MySQL 4.0. InnoDB is a
fully ACID-compliant and efficient table format that provides full support for
transactions in MySQL without compromising speed or performance. Fine-grained
(row- and table-level) locks improve the fidelity of MySQL transactions, and InnoDB
also supports nonlocking reads and multiversioning (features previously only available
in the Oracle RDBMS). InnoDB tables can grow up to 64TB in size.

33

54

Part I: Usage

Asynchronous I/0 and a sequential read-ahead buffer improve data retrieval
speed, and a “buddy algorithm” and Oracle-type tablespaces result in optimized file
and memory management. InnoDB also supports automatic creation of hash indexes in
memory on an as-needed basis to improve performance, and it uses buffering to
improve the reliability and speed of database operations. As a result, InnoDB tables
match (and, sometimes, exceed) the performance of MyISAM tables.

InnoDB tables are fully portable between different OSs and architectures, and,
because of their transactional nature, they’re always in a consistent state (MySQL
makes them even more robust by checking them for corruption and repairing them on
startup). Support for foreign keys and commit, rollback, and roll-forward operations
complete the picture, making this one of the most full-featured table formats available
in MySQL.

The Archive Storage Engine

The Archive storage engine provides a way to store large recordsets that see infrequent
reads into a smaller, compressed format. The key feature of this storage engine is its
ability to compress records as they are inserted and decompress them as they are
retrieved using the zlib library. These tables are ideally suited for storage of historical
data, typically to meet auditing or compliance norms.

Given that this storage engine is not designed for frequent reads, it lacks many of
the bells and whistles of the InnoDB and MyISAM engines: Archive tables only support
INSERT and SELECT operations, do not allow indexes (and, therefore, perform full table
scans during reads), ignore BLOB fields in read operations, and, by virtue of their
on-the-fly compression system, necessarily display lower performance. That said,
Archive tables are still superior to packed MyISAM tables because they support both
read and write operations and produce a smaller disk footprint.

The Federated Storage Engine

The Federated storage engine implements a “stub” table that merely contains a table
definition; this table definition is mirrored on a remote MySQL server, which also holds
the table data. A Federated table itself contains no data; rather, it is accompanied by
connection parameters that tell MySQL where to look for the actual table records.
Federated tables thus make it possible to access MySQL tables on a remote server from
a local server without the need for replication or clustering.

Federated “stub” tables can point to source tables that use any of MySQL's standard
storage engines, including InnoDB and MyISAM. However, in and of themselves, they
are fairly limited; they lack transactional support and indexes, cannot use MySQL's
query cache, and are less than impressive performance-wise.

The Memory Storage Engine

The Memory storage engine, as the name suggests, implements in-memory tables that use
hash indexes, making them at least 30 percent faster than regular MyISAM tables. They
are accessed and used in exactly the same manner as regular MyISAM or ISAM tables.

Chapter 3: Making Design Decisions

However, the data stored within them is available only for the lifetime of the MySQL
server and is erased if the MySQL server crashes or shuts down. Although these tables can
offer a performance benefit, their temporary nature makes them unsuitable for uses more
sophisticated than temporary data storage and management.

Can | Define How Much Memory a Memory Table Can Use?
Yes, the size of Memory tables can be limited by setting a value for the ‘max heap
table size’ server variable.

The CSV Storage Engine

The CSV storage engine provides a convenient way to merge the portability of text files
with the power of SQL queries. CSV tables are essentially plain ASCII files, with
commas separating each field of a record. This format is easily understood by non-SQL
applications, such as Microsoft Excel, and thus allows data to be easily transferred
between SQL and non-SQL environments. A fairly obvious limitation, however, is that
CSV tables don’t support indexing and SELECT operations must, therefore, perform a
full table scan, with the attendant impact on performance. CSV tables also don’t
support the NULL data type.

The MERGE Storage Engine

A MERGE table is a virtual table created by combining multiple MyISAM tables into a
single table. Such a combination of tables is only possible if the tables involved have
completely identical table structures. Any difference in field types or indexes won't
permit a successful union. A MERGE table uses the indexes of its component tables
and doesn’t maintain any indexes of its own, which can improve its speed in certain
situations. MERGE tables permit SELECT, DELETE, and UPDATE operations, and can
come in handy when you need to pull together data from different tables or to speed
up performance in joins or searches between a series of tables.

The ISAM Storage Engine

ISAM tables are similar to MyISAM tables, although they lack many of the
performance enhancements of the MyISAM format and, therefore, don’t offer the
optimization and performance efficiency of that type. Because ISAM indexes cannot
be compressed, they use fewer system resources than their MyISAM counterparts.
ISAM indexes also require more disk space, however, which can be a problem in
small-footprint environments.

Like MyISAM, ISAM tables can be either fixed-length or dynamic-length, though
maximum key lengths are smaller with the ISAM format. The format cannot handle
tables greater than 4GB, and the tables aren’t immediately portable across different
platforms. In addition, the ISAM table format is more prone to fragmentation, which
can reduce query speed, and has limited support for data/index compression.

35

56 Partl: Usage

Note MySQL versions prior to MySQL 5.1 included the ISAM storage engine primarily
for compatibility with legacy tables. This storage engine is no longer supported as of
MySQL 5.1.

What Is a Temporary Table? Is It the Same as a Table Created

with the Memory Storage Engine?

No. Memory tables, which are created by adding the ENGINE=MEMORY modifier to a
CREATE TABLE statement, remain extant during the lifetime of the server. They are
destroyed once the server process is terminated; however, while extant, they are
visible to all connecting clients.

Temporary tables, which are initialized with the CREATE TEMPORARY TABLE
statement, are a different kettle of fish. These tables are client-specific and remain
in existence only for the duration of a single client session. They can use any of
MySQL’s supported storage engines, but they are automatically deleted when the
client that created them closes its connection with the MySQL server. As such, they
come in handy for transient, session-based data storage or calculations. And,
because they’re session-dependent, two different client sessions can use the same
table name without conflicting.

The NDB Storage Engine

The NDB storage engine implements a high-availability, in-memory table type
designed only for use in clustered MySQL server environments. The NDB format
supports large table files (up to 384EB in size), variable-length fields, and replication.
However, NDB tables don’t support foreign keys, savepoints, or statement-based
replication, and limit the number of fields and indexes per table to 128.

NortE A new addition to MySQL is the Blackhole storage engine. As you might guess from
the name, this is MySQL'’s equivalent of a bit bucket: Any data entered into a Blackhole
table immediately disappears, never to be seen again. This storage engine isn't just the
MySQL development team’s idea of a joke, however—it does have some utility as a “cheap”
SQL syntax verification tool, a statement logger, or a replication filter.

Storage Engine Selection Checklist

To decide the most appropriate storage engine for a table, take into account the
following factors:

¢ Frequency of reads versus writes

e Whether transactional support is needed

Chapter 3: Making Design Decisions 57

Whether foreign key support is needed

¢ Indexing requirements

Table size and speed at which it will grow

OS/architecture portability

e Future extendibility requirements and adaptability to changing data requirements

It’s worth noting, also, that MySQL lets you mix and match storage engines within
a database. So you could use the MyISAM engine for tables that see frequent SELECTSs
and use InnoDB tables for tables that see frequent INSERTs or transactions. This ability
to select storage engines on a per-table basis is unique to MySQL and plays a key role
in helping it achieve its blazing performance.

Using Primary and Foreign Keys
Primary keys serve as unique identifiers for the records in a table, while foreign keys
are used to link related tables together. When designing a set of database tables, it is
important to specify which fields will be used for primary and foreign keys to clarify
both in-table structure and inter-table relationships.

Primary Keys

You can specify a primary key for the table with the PRIMARY KEY constraint. In a well-
designed database schema, a primary key serves as an unchanging, unique identifier for
each record. If a key is declared as primary, this usually implies that the values in it will
rarely be modified.

The PRIMARY KEY constraint can best be thought of as a combination of the NOT NULL
and UNIQUE constraints because it requires values in the specified field to be neither NULL
nor repeated in any other row. Consider the following example, which demonstrates by
setting the numeric AirportID field as the primary key for the airport table.

mysgl> CREATE TABLE airport (
-> AirportID smallint(5) unsigned NOT NULL,
-> AirportCode char(3),
-> AirportName varchar (255) NOT NULL,
-> CityName wvarchar (255) NOT NULL,
-> CountryCode char(2) NOT NULL,
-> NumRunways INT (11l) unsigned NOT NULL,
-> NumTerminals tinyint (1) unsigned NOT NULL,
-> PRIMARY KEY (AirportID)
->) ENGINE=MYISAM;
Query OK, 0 rows affected (0.05 sec)

98

Part I: Usage

In this situation, because the AirportID field is defined as the primary key, MySQL
won’t allow duplication or NULL values in that field. This allows the database
administrator to ensure that every airport listed in the table has a unique numeric
value, thereby enforcing a high degree of consistency on the stored data.

PRIMARY KEY constraints can be specified for either a single field or for a composite
of multiple fields. Consider the following example, which demonstrates by
constructing a table containing a composite primary key:

mysgl> CREATE TABLE flightdep (
-> FlightID SMALLINT(6) NOT NULL,
-> DepDay TINYINT (4) NOT NULL,
-> DepTime TIME NOT NULL,
-> PRIMARY KEY (FlightID, DepDay, DepTime)
->) ENGINE=MyISAM;
Query OK, 0 rows affected (0.96 sec)

In this case, the table rules permit repetition of the flight number, the departure day,
or the departure time, but not of all three together. Look what happens if you try:

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (511,1,'00:01"');

Query OK, 1 row affected (0.20 sec)

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (511,2,'00:01"');

Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (511,1,'00:02"');

Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (511,1,'00:01"');

ERROR 1062 (23000) : Duplicate entry '511-1-00:01:00' for key 'PRIMARY'

Composite primary keys can come in handy when a record is to be uniquely
identified by a combination of its attributes, rather than by only a single attribute.

Foreign Keys

The fundamental basis of a relational database system like MySQL is its capability to
create relationships between the tables that make up the database. By making it
possible to easily relate records in different tables to one another, an RDBMS makes it
possible to analyze data in different ways while simultaneously keeping it organized in
a systematic fashion, with minimal redundancy.

These relationships are managed through the use of foreign keys, essentially, fields that
have the same meaning in all the tables in the relationship and that serve as points of

FiGURE 3-1
A one-to-one

relationship between

tables

commonality to link records in different tables together. A foreign key relationship could
be one-to-one (a record in one table is linked to one and only one record in another table)
or one-to-many (a record in one table is linked to multiple records in another table).

Chapter 3: Mak

ing Design Decisions

ServicelD | ServiceName
2 | Accounting
3 | Security
4 | Maintenance

l1
1

ServicelD SetupFee Recurring Tax
2 100 25 10%
3 300 50 11
4 350 125 9%

NOoOTE Foreign keys are only supported on InnoDB tables.

Figure 3-1 illustrates a one-to-one relationship: a service and its associated description,

with the relationship between the two managed via the unique ServicelD field.

Figure 3-2 illustrates a one-to-many relationship: an author and his or her books,

with the link between the two maintained via the unique AuthorID field.

AuthorID | AuthorName
2 | Dennis Lehane
3 | Agatha Christie
4] KRowling
1
|
BookID BookName AuthorID
100 | Harry Potter and the Goblet of Fire 4
101 | Harry Potter and the Deathly Hallows 4
102 | Murder on the Orient Express 3
103 | Prayers for Rain 2
104 | Death on the Nile 3
105 | Harry Potter and the Chamber of Secrets 4

Ficure 3-2 A one-to-many relationship between tables

60

Part I: Usage

When creating a table, a foreign key can be defined in much the same way as a
primary key, by using the FOREIGN KEY...REFERENCES modifier. The following
example demonstrates by creating two InnoDB tables linked to each other in a one-to-
many relationship by the aircraft type identifier:

mysgl> CREATE TABLE aircrafttype (
-> AircraftTypeID smallint(4) unsigned NOT NULL AUTO_ INCREMENT,
-> AircraftName varchar (255) NOT NULL,
-> PRIMARY KEY (AircraftTypelID)
->) ENGINE=INNODB;
Query OK, 0 rows affected (0.61 sec)
mysgl> CREATE TABLE aircraft (
-> AircraftID smallint(4) unsigned NOT NULL AUTO_ INCREMENT,
-> AircraftTypeID smallint(4) unsigned NOT NULL,
-> RegNum char(6) NOT NULL,
-> LastMaintEnd date NOT NULL,
-> NextMaintBegin date NOT NULL,
-> NextMaintEnd date NOT NULL,
-> PRIMARY KEY (AircraftID),
-> UNIQUE RegNum (RegNum),
-> INDEX (AircraftTypelD),
-> FOREIGN KEY (AircraftTypelID)
-> REFERENCES aircrafttype (AircraftTypeID)
->) ENGINE=INNODB;
Query OK, 0 rows affected (0.45 sec)

In this example, the aircraft. Aircraft TypelD field is a foreign key, linked to the
aircrafttype. AircraftTypelD primary key. Note the manner in which this relationship is
specified in the FOREIGN KEY...REFERENCES modifier. The FOREIGN KEY part
specifies one end of the relationship (the field name in the current table), while the
REFERENCES part specifies the other end of the relationship (the field name in the
referenced table).

Tip As a general rule, it’s a good idea to use integer fields as foreign keys rather than character
fields, as this produces better performance when joining tables.

Once a foreign key is set up, MySQL only allows entry of those values into the
aircraft types into the aircraft table that also exist in the aircrafttype table. Continuing the
previous example, let’s see how this works.

mysgl> INSERT INTO aircrafttype
-> (AircraftTypeID, AircraftName)
-> VALUES (503, 'Boeing 747');
Query OK, 1 row affected (0.09 sec)
mysgl> INSERT INTO aircraft
-> (AircraftID, AircraftTypeID, RegNum,
-> LastMaintEnd, NextMaintBegin, NextMaintEnd)
-> VALUES

Chapter 3: Making Design Decisions

-> (3451, 503, 'zX6488',

-> '2007-10-01', '2008-10-23', '2008-10-31"');
Query OK, 1 row affected (0.04 sec)
mysgl> INSERT INTO aircraft

-> (AircraftID, AircraftTypeID, RegNum,

-> LastMaintEnd, NextMaintBegin, NextMaintEnd)

-> VALUES

-> (3452, 616, 'ZX6488',

-> '2007-10-01', '2008-10-23', '2008-10-31"');
ERROR 1452 (23000): Cannot add or update a child row: a foreign key
constraint fails ("dbl”. aircraft™, CONSTRAINT “aircraft ibfk 1~ FOREIGN KEY
("AircraftTypeID”~) REFERENCES “aircrafttype”™ ("AircraftTypeID”))

Thus, because an aircraft type with identifier 616 doesn’t exist in the aircrafttype,
MySQL rejects the record with that value for the aircraft table. In this manner, foreign
key constraints can significantly help in enforcing the data integrity of the tables in a
database and reducing the occurrences of “bad” or inconsistent field values.

The following three constraints must be kept in mind when linking tables with
foreign keys:

e All the tables in the relationship must be InnoDB tables. In non-InnoDB tables,
the FOREIGN KEY...REFERENCES modifier is simply ignored by MySQL.

¢ The fields used in the foreign key relationship must be indexed in all referenced
tables (InnoDB will automatically create these indexes for you if you don’t
specify any).

* The data types of the fields named in the foreign key relationship should be
similar. This is especially true of integer types, which must match in both size
and sign.

What's interesting to note is this: Even if foreign key constraints exist on a table,
MySQL permits you to DROP the table without raising an error (even if doing so would
break the foreign key relationships established earlier). In fact, in versions of MySQL
earlier than 4.0.13, dropping the table was the only way to remove a foreign key.
MySQL 4.0.13 and later does, however, support a less drastic way of removing a
foreign key from a table, via the ALTER TABLE command. Here’s an example:

mysgl> ALTER TABLE aircraft DROP FOREIGN KEY aircraft ibfk 1;
Query OK, 1 row affected (0.57 sec)
Records: 1 Duplicates: 0 Warnings: 0

To remove a foreign key reference, use the DROP FOREIGN KEY clause with the
internal name of the foreign key constraint. This internal name can be obtained using
the SHOW CREATE TABLE statement. And in case you're wondering why you must use
the internal constraint name and not the field name in the DROP FOREIGN KEY clause
... well, that’s a good question!

61

62

Part I: Usage

Automatic Key Updates and Deletions Foreign keys can certainly take care of ensuring
the integrity of newly inserted records. But what if a record is deleted from the table
named in the REFERENCES clause? What happens to all the records in subordinate
tables that use this value as a foreign key?

Obviously, those records should be deleted as well, or else you’ll have orphan
records cluttering your database. MySQL 3.23.50 and later simplifies this task by
enabling you to add an ON DELETE clause to the FOREIGN KEY...REFERENCES
modifier, which tells the database what to do with the orphaned records in such a
situation. Here’s a sequence that demonstrates this:

mysgl> CREATE TABLE aircraft (
-> AircraftID smallint(4) unsigned NOT NULL AUTO INCREMENT,
-> AircraftTypeID smallint(4) unsigned NOT NULL,
-> RegNum char(6) NOT NULL,
-> LastMaintEnd date NOT NULL,
-> NextMaintBegin date NOT NULL,
-> NextMaintEnd date NOT NULL,
-> PRIMARY KEY (AircraftID),
-> UNIQUE RegNum (RegNum),
-> FOREIGN KEY (AircraftTypeID)
-> REFERENCES aircrafttype (AircraftTypeID)
-> ON DELETE CASCADE
->) ENGINE=INNODB;
Query OK, 0 rows affected (0.17 sec)
mysgl> INSERT INTO aircraft
-> (AircraftID, AircraftTypeID, RegNum,
-> LastMaintEnd, NextMaintBegin, NextMaintEnd)
-> VALUES
-> (3451, 503, 'zXx6488',
-> '2007-10-01', '2008-10-23', '2008-10-31"');
Query OK, 1 row affected (0.05 sec)
mysgl> DELETE FROM aircrafttype;
Query OK, 1 row affected (0.06 sec)
mysgl> SELECT * FROM aircraft;
Empty set (0.01 sec)

MySQL 4.0.8 and later also lets you perform these automatic actions on updates by
allowing the use of an ON UPDATE clause, which works in a similar manner to the ON
DELETE clause. So, for example, adding the ON UPDATE CASCADE clause to a foreign key
definition tells MySQL that when a record is updated in the primary table (the table
referenced for foreign key checks), all records using that foreign key value in the
current table should also be automatically updated with the new values to ensure the
consistency of the system.

Table 3-1 lists the four keywords that can follow an ON DELETE or ON UPDATE clause.

Chapter 3: Making Design Decisions 63

Keyword What It Means
CASCADE Delete all records containing references to the deleted key value.

SET NULL Modify all records containing references to the deleted key value to instead use
a NULL value (this can only be used for fields previously marked as NOT NULL).

RESTRICT Reject the deletion request until all subordinate records using the deleted key
value have themselves been manually deleted and no references exist (this is
the default setting, and it’s also the safest).

NO ACTION | Do nothing.

TasLE 3-1 Actions Available in ON DELETE and ON UPDATE Clause

CAUTION Be aware that setting up MySQL for automatic operations through ON UPDATE and
ON DELETE rules can result in serious data corruption if your key relationships aren't set
up perfectly. For example, if you have a series of tables linked together by foreign key
relationships and ON DELETE CASCADE rules, a change in any of the master tables can
result in records, even records linked only peripherally to the original deletion, getting
wiped out with no warning. For this reason, you should check (and then double-check) these
rules before finalizing them.

Using Indexes

To speed up searches and reduce query execution time, MySQL lets you index
particular fields of a table. The term “index” here means much the same as in the real
world. Similar in concept to the index you find at the end of a book, an index is a list
of sorted field values used to simplify the task of locating specific records in response
to queries.

In the absence of an index, MySQL needs to scan each row of the table to find the
records matching a particular query. This might not cause a noticeable slowdown in
smaller tables, but, as table size increases, a complete table scan can add many seconds
of overhead to a query. An index speeds up things significantly: With an index, MySQL
can bypass the full table scan altogether by instead looking up the index and jumping
to the appropriate location(s) in the table. When looking for records that match a
specific search condition, reading an index is typically faster than scanning an entire
table. This is because indexes are smaller in size and can be searched faster.

That said, an index does have two important disadvantages: It takes up additional
space on disk, and it can affect the speed of INSERT, UPDATE, and DELETE queries
because the index must be updated every time table records are added, updated, or
deleted. Most of the time, though, these reasons shouldn’t stop you from using indexes:
Disk storage is getting cheaper every day, and MySQL includes numerous optimization
techniques to reduce the time spent on updating indexes and searching them for
specific values.

64

Part I: Usage

Indexing is typically recommended for fields that frequently appear in the WHERE,
ORDER BY, and GROUP BY clauses of SELECT queries, and for fields used to join tables
together.

NotEe With InnoDB tables, MySQL uses intelligent insert buffering to reduce the number of disk
writes to InnoDB indexes by maintaining a list of changes in a special insert buffer and then
updating the index with all the changes in a single write (rather than multiple simultaneous
writes). MySQL also tries to convert the disk-based B-tree indexes into adaptive hash indexes
(which can be searched faster), based on patterns in the queries being executed.

Indexes can be defined either when the table is created or at a later date. To define an
index at table creation time, add the INDEX or KEY modifier (the terms are synonymous
in MySQL) to the CREATE TABLE statement, as in the following example:

mysgl> CREATE TABLE airport (
-> AirportID smallint(5) unsigned NOT NULL,
-> AirportCode char(3) NOT NULL,
-> AirportName varchar (255) NOT NULL,
-> CityName varchar (255) NOT NULL,
-> CountryCode char(2) NOT NULL,
-> NumRunways INT (11l) unsigned NOT NULL,
-> NumTerminals tinyint(l) unsigned NOT NULL,
-> PRIMARY KEY (AirportID),
-> INDEX (AirportCode),
-> INDEX (CountryCode)
->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.48 sec)

The previous statement builds an index of airport and country codes for the
airport list.

To create multifield indexes by concatenating the values of all indexed fields, up to
a maximum of 15, specify a comma-separated list of field names in the index modifier,
as in the next example:

mysql> CREATE TABLE flightdep (
-> FlightID SMALLINT (6) NOT NULL,
-> DepDay TINYINT (4) NOT NULL,
-> DepTime TIME NOT NULL,
-> INDEX (DepDay,DepTime)
->) ENGINE=MyISAM;
Query OK, 0 rows affected (0.19 sec)

Indexes can also be added to an existing table with the CREATE INDEX command.
Here’s an example, which creates an index on the AirportID field of the airport table:

mysgl> CREATE INDEX AirportID ON airport (AirportID) ;
Query OK, 15 rows affected (1.02 sec)
Records: 15 Duplicates: 0 Warnings: 0

Chapter 3: Making Design Decisions

Can | Specify How Much of a Field Should Be Indexed?

Yes, by stating the required index length in parentheses after the field name in
a CREATE INDEX statement. For BLOB and TEXT fields, this is mandatory; it is
optional for CHAR and VARCHAR fields. Here’s an example:

CREATE INDEX synopsis ON books (synopsis(100)) ;

Tip If an index name isn’t specified in the INDEX modifier of a CREATE TABLE statement,
MySQL automatically names the index using the corresponding field name as the base.

To remove an index, use the DROP INDEX command, as in the next example:

mysgl> DROP INDEX AirportID on airport;
Query OK, 15 rows affected (0.24 sec)
Records: 15 Duplicates: 0 Warnings: 0

In addition to the “regular” index type, MySQL supports two other important index
variants: UNIQUE indexes and FULLTEXT indexes, which are discussed in the following
sections.

The UNIQUE Index

You can specify that values entered into a field must be unique, that is, not duplicated
in any other row, by adding the UNIQUE modifier to the CREATE TABLE and CREATE
INDEX commands. Once a field is marked as UNIQUE in this manner, any attempt to
enter duplicate data into it will fail.

mysgl> CREATE UNIQUE INDEX AirportCode on airport (AirportCode) ;
Query OK, 0 rows affected (0.27 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysgl> INSERT INTO airport (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES (34, 'ORY', 'Orly Airport', 'Paris', 'FR', 3, 2);
Query OK, 1 row affected (0.04 sec)
mysgl> INSERT INTO airport (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES (35, 'ORY', 'Paris-Orly Airport', 'Paris', 'FR', 3, 2);
ERROR 1062 (23000): Duplicate entry 'ORY' for key 'AirportCode'

Note, however, that a UNIQUE field is permitted to store NULL values (so long as the
underlying field is not marked NOT NULL).

The FULLTEXT Index

MySQL 3.23.23 and later supports a special type of index designed specifically for full-
text searching on MyISAM tables, called a FULLTEXT index. This index, which results in
faster queries than the LIKE operator, makes it possible to query the indexed columns
for arbitrary text strings and return only those records that contain values similar to the

65

66

Part I: Usage

search strings. When performing this type of full-text search, MySQL calculates a
similarity score between the table records and the search string, and returns only those
records with a high score.

NoOTE FULLTEXT indexes are only supported on MyISAM tables.
Here’s an example:

mysgl> CREATE FULLTEXT INDEX Synopsis ON books (Synopsis) ;
Query OK, 15 rows affected (0.11 sec)
Records: 15 Duplicates: 0 Warnings: 0

Once the index is created, you can search it with the MATCH () function, providing
the search string as an argument to the AGAINST () function. Consider the following
example:

mysgl> SELECT Title, MATCH(Synopsis) AGAINST ('suspense') AS score
-> FROM books LIMIT 0, 10;

e e T e +
| Title | Score |
e b e T e +
The Prometheus Deception	o
Dark Hollow	2.5951748101926
Easy Prey	2.703356073143
Prayers For Rain	2.8519631063088
Roses Are Red	2.8209489868374
Personal Injuries	o
Demolition Angel	o
Code To Zero	o
Adrian Mole: The Cappuccino Years	0

| The Bear And The Dragon | o

10 rows in set (0.11 sec)

The argument passed to the MATCH () function must be a field list that maps exactly
to some FULLTEXT index on the table. The MATCH () function then calculates a similarity
score between the search string and the named fields for every record in the table.
According to the MySQL manual, similarity is scored on the basis of a number of
parameters, including the following:

* The number of words in the row

® The number of unique words in that row

¢ The total number of words in the collection

* The number of rows that contain a particular word

A similarity score of 0 indicates that no similarity exists between the values being
compared.

Chapter 3: Making Design Decisions

NOTE FULLTEXT indexes are fairly new to MySQL and work best when used with large tables.
Small tables don’t offer a sufficient spread of data values for the index to operate optimally.

Words that appear in more than 50 percent of the total records in the table (so-called
stopwords) are ignored and are treated as having no relevance for the purpose of full-text
searching. Similarly, words that appear more frequently are given less weight in the
index than words that appear less frequently.

Typically, you would use the MATCH () function in a WHERE clause to retrieve those
records with a high similarity score, as in the following example:

mysgl> SELECT Title, Author FROM books WHERE MATCH (Synopsis)
-> AGAINST ('suspense');

Prayers For Rain | Dennis Lehane |
Roses Are Red | James Patterson |
Easy Prey | John Sandford

Dark Hollow | John Connolly |

4 rows in set (0.06 sec)

Boolean Searches

In MySQL 4.0.1 and later, you can also execute Boolean searches on a FULLTEXT index
by adding the IN BOOLEAN MODE modifier and one or more Boolean operators in the
argument passed to the AGAINST () function. The following examples illustrate. The first
example returns all those records containing both the words “crime” and “suspense” in
the Synopsis field, while the second example lists all those records containing the word
“romance” but not the words “teenage” or “period” in their synopsis:

mysgl> SELECT Title, Author FROM books WHERE MATCH (Synopsis)
-> AGAINST ('suspense');

Prayers For Rain | Dennis Lehane |
Roses Are Red | James Patterson |
Easy Prey | John Sandford

Dark Hollow | John Connolly |

4 rows in set (0.06 sec)

Tip For faster full-text indexing, add a FULLTEXT index to a table after it's been populated
with data, with the CREATE INDEX or ALTER TABLE commands, rather than at table
creation time itself.

67

68

Part I: Usage

Summary

Good database design goes a long way towards streamlining the performance of your
queries and, by extension, your application. Choosing data types that best match field
values, selecting a storage engine that is optimized for the type of queries you intend to
use, selecting primary and foreign keys, and applying indexing to commonly used
search fields are crucial tasks in achieving a database that is both efficient and fast.

This chapter focused on these key design decisions. It provided detailed information
on MySQL’s data types and storage engines, explaining the pros and cons of each and
offering guidelines to help you choose the best one for your needs. It explained how to
define primary keys and discussed the benefits of foreign keys that automatically
cascade changes or deletions to subordinate tables. Finally, it examined MySQL's index
types, with working examples of the most important ones.

To learn more about the topics in this chapter, consider visiting the following links:

¢ Detailed information on MySQL’s data types at http://dev.mysql.com/doc/
refman/5.1/en/data-types.html

* A comparison of MySQL's storage engines at http://dev.mysql.com/
tech-resources/articles/storage-engine.html and http://dev.mysql.com/
doc/refman/5.1/en/storage-engines.html

* Primary key constraints at http://dev.mysql.com/doc/refman/5.1/en/
constraint-primary-key.html

e Foreign key constraints at http://dev.mysql.com/doc/refman/5.1/en/
innodb-foreign-key-constraints.html

¢ Full-text search functions at http://dev.mysql.com/doc/refman/5.1/en/
fulltext-search.html

CHAPTER 4

Using Joins, Subqueries, and Views

10

Part I: Usage

relational database systems lies in their ability to “split” data across multiple tables

and dynamically generate different views of this data by linking these tables together
as needed. These links, or relationships, between tables are what put the R in RDBMS;
they not only make it possible to store information more efficiently (by removing
redundancies and repetition), but they also enable the discovery of new patterns or
causal chains hidden in the data.

This chapter builds on the basic DML concepts discussed earlier and demonstrates
how SQL can be used to query multiple tables at once and to combine the data
retrieved from them in different ways. Up until MySQL 4.1, the only way to accomplish
such multitable queries was with a join; however, MySQL now also supports subqueries,
or nested queries, which provide an alternative to the traditional join. This chapter
examines both approaches, with examples that demonstrate their respective utility.

If you've been following along, you should now understand that the effectiveness of

Using Joins

Look back to the previous chapter, and you'll see that the SELECT query examples
retrieved data from only a single table. In the real world, however, your SELECT queries
will typically be much more sophisticated, requiring records from different tables to be
combined to produce the desired result set. The traditional way of doing this is referred
to as a join, since it involves “joining” different tables at specific points to create new
views of the data.

Tip When using a join, it's recommended that you prefix each field name with the name of the
table it belongs to. This reduces ambiguity when dealing with tables that contain identically
named fields. To illustrate, in the example database, the RoutelD field is seen in both flight
and route tables, so to make it clear which one is being referred to at any given time, specify
the field name in queries as either route.RoutelD or flight.RoutelD.

A common misconception is that MySQL, because of its simplicity and/or
open-source roots, is “bad” at joins. This is simply not true. MySQL has supported
joins well right from its inception and today boasts support for SQL2-compliant join
syntax, which makes it possible to combine table records in a variety of sophisticated
ways.

A Simple Join

To illustrate how a join works, consider a simple requirement: finding out which
aircraft type is used for flight 652 between Orly and Budapest. Look at the example
database, and it’s clear that this information is split between the flight, aircraft, and
aircrafttype tables, with the AircraftID field linking the flight and aircraft tables and the
AircraftTypelD field linking the aircraft and aircrafttype tables (Figure 4-1).

Chapter 4: Using Joins, Subqueries, and Views

FlightID | RoutelD | AircraftID
535 1005 3451
876 1175 3467
652 1018 3465
662 1018 3465
345 1003 3452
877 1176 3467
675 1023 3451
702 1008 3469
708 1006 3469
896 1141 3145

|

AircraftID | AircraftTypelD RegNum LastMaintEnd
3451 616 | ZX6488 10/1/2007
3465 616 | ZX5373 0000-00-00
3467 616 | ZX7283 2/5/2008
3452 617 | ZX5464 10/4/2006

l

AircraftTypelD | AircraftName
503 |Boeing 747
504 | Boeing 767
615 | Airbus A300/310
616 | Airbus A330
617 | Airbus A340
618 | Airbus A380

Ficure 4-1 The relationship between flights, aircraft, and aircraft types

By equating these common fields through a join, it’s possible to answer this
question without too much trouble:

mysgl> SELECT f.FlightID, at.AircraftName
-> FROM aircrafttype AS at, aircraft AS a, flight AS f
-> WHERE a.AircraftID = f.AircraftID
-> AND a.AircraftTypeID = at.AircraftTypelID
-> AND f.FlightID=652;

e e +
| FlightID | AircraftName |
e i Fommm - +
| 652 | Boeing 747 |
e e it e +

1 row in set (0.00 sec)

4!

12

Part I: Usage

In this query, the first part of the WHERE clause is used to connect the common fields
within the three tables to each other and present a composite picture. The last bit of the
WHERE clause further filters the result set to include only those records relevant for
flight 652.

How about another? Try finding which of the airline’s flights use airplanes from
Boeing:

mysqgl> SELECT f£.FlightID, at.AircraftName
-> FROM aircrafttype AS at, aircraft AS a, flight AS f
-> WHERE a.AircraftID = f.AircraftID
-> AND a.AircraftTypeID = at.AircraftTypeID
-> AND at.AircraftName LIKE 'Boeing%';

+----- - e e T +
| FlightID | AircraftName |
R T e +

535 Boeing 747

652 Boeing 747

662 Boeing 747

675 Boeing 747

896 Boeing 747

898	Boeing 747

897 Boeing 747
899 Boeing 747
812 Boeing 747
857 Boeing 747
765 Boeing 767

11 rows in set (0.00 sec)

Using the COUNT () function will display a count of the records found instead of the
individual records:

mysql> SELECT COUNT (f.FlightID)
-> FROM aircrafttype AS at, aircraft AS a, flight AS £
-> WHERE a.AircraftID = f.AircraftID
-> AND a.AircraftTypelID = at.AircraftTypeID
-> AND at.AircraftName LIKE 'Boeing%';

Fom e +
| COUNT (£light.FlightID) |
Fom e mmm s s +
| 11 |
B i +

1 row in set (0.08 sec)

Types of Joins

Now that you have a basic understanding of how joins work, let’s move on to a more
detailed discussion of the various types of joins supported by MySQL’s SQL. The
following different join types are possible in MySQL:

Chapter 4: Using Joins, Subqueries, and Views

¢ Cross joins, which involve multiplying tables by each other to create a composite
table containing all possible permutations

¢ Inner joins, which produce only those records for which a match exists in all tables

® Quter joins, which produce all the records from one side of the join and fill in
the blanks with NULLs

¢ Self-joins, which involve duplicating a table by means of table aliases and then
connecting the copies to each other by means of other joins

e Unions, which involve adding all the records in the tables involved to create
one single, composite sum

The following sections examine each of these join types in greater detail, with
examples and illustrations.

Cross Joins

The simplest type of join is the cross join, which multiplies the tables involved to create
an all-inclusive product. Consider the following example, which joins the aircraft and
aircrafttype tables:

mysgl> SELECT r.RouteID, at.AircraftTypelD,
-> at.AircraftName FROM route AS r, aircrafttype AS at;

+--------- e e il +
| RouteID | AircraftTypelID | AircraftName |
tommmm - tomm e tomm oo +
1003	503	Boeing 747
1003	504	Boeing 767
1003	615	Airbus A300/310
1003	616	Airbus A330
1003	617	Airbus A340
1003	618	Airbus A380
1005	503	Boeing 747
1005	504	Boeing 767
1005	615	Airbus A300/310
1005	616	Airbus A330
1005	617	Airbus A340
1005	618	Airbus A380
1176	503	Boeing 747
1176	504	Boeing 767
+--------- +t---- - e il +

174 rows in set (0.00 sec)

In this case, fields from both tables are combined to produce a result set that contains
all possible combinations. This kind of join is referred to as a cross join, and the number
of records in the joined table will be equal to the product of the number of records in
each of the tables used in the join. Thus, when performing a cross join between two
tables, each of which has 10 records, the result set will contain 10 x 10 = 100 records.
And as you add more tables to the join, the size of the result set increases exponentially.

13

74

Part I: Usage

For this reason, cross joins have huge implications for the performance of your
database server. Fortunately, there are only a few cases where a cross join is necessary—
one example would be to generate test data, another to create a derived table that can
be used for further joins—and in all those cases, it’s a good idea to attach a WHERE
clause to the join to limit the size of the result set generated and to clearly specify which
tields should be returned in the result set.

Inner Joins

Inner joins are the most common type of join and also the most symmetrical, because
they require a match in each table that forms a part of the join. Rows that do not match
are excluded from the final result set.

The most common example of an inner join is the equi-join, where certain fields in
the joined tables are equated to each other using the equality (=) operator. In this case,
the final result set only includes those rows from the joined tables that have matches in
the specified fields.

NoTE The joins shown in the previous section, “A Simple Join,” are equi-joins.

To illustrate an equi-join, consider the following query, which displays the registration
number and type of each of the airline’s aircraft, by joining the aircraft and aircrafttype
tables on the common AircraftTypelD field:

mysgl> SELECT a.RegNum, at.AircraftName
-> FROM aircraft AS a, aircrafttype AS at
-> WHERE a.AircraftTypeID = at.AircraftTypelD;

to-mmm- - e +

| RegNum | AircraftName |

+o------- e +
7ZX6488 Boeing 747
ZX5373 Boeing 747
ZX5731 Boeing 747
ZX5830 Boeing 747
ZX6821 Boeing 767
ZX7283 Airbus A330
ZX5382 Airbus A330
ZX582 Airbus A330

ZX7391 Airbus A330
ZX5464 Airbus A340
7ZX1386 Airbus A340
ZX7634 Airbus A340
ZX7472 Airbus A340

|
|
|
|
|
|
|
| zx5921
|
|
|
|
|
|
|
| zx1037 Airbus A380

|
|
|
|
|
|
|
Airbus A330
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
7ZX5173 | Airbus A330
|
|
|
|
|
|
+

16 rows in set (0.01 sec)

Chapter 4: Using Joins, Subqueries, and Views

Here’s another example, this one listing routes greater than 5000 kilometers and the
flights that operate on them:

mysgl> SELECT r.RouteID, f.FlightID, r.Distance
-> FROM route AS r, flight AS £
-> WHERE r.RouteID = f.RouteID
-> AND r.Distance > 5000;

tommmmmm - tommmm - - tommmm - - - +
| RouteID | FlightID | Distance |
e it e il +---------- +
1003	345	7200
1133	765	6336
1180	685	10863
1193	724	10310
1192	725	10310
+---- - e il +---------- +

5 rows in set (0.00 sec)

Although uncommon, inner joins based on inequalities between fields are also
possible. However, these types of joins cannot be called equi-joins, as they do not make
use of the equality operator. Here’s an example:

mysgl> SELECT a.RegNum, at.AircraftName
-> FROM aircraft AS a, aircrafttype AS at

-> WHERE a.AircraftTypeID != at.AircraftTypelD;
e e il +
| RegNum | AircraftName |
R e il +
7ZX6488 Boeing 767

7X6488 Airbus A300/310
7X6488 Airbus A330
7X6488 Airbus A340
7X6488 Airbus A380

|
|
|
|
|
ZX5373 | Boeing 767
|
|
|
|

ZX5373 Airbus A300/310
7ZX5373 Airbus A330
7ZX5373 Airbus A340
7X6488 Airbus A300/310
+-------- oo m-m - m-mmmm— - — - +

80 rows in set (0.01 sec)

15

716 Partl: Usage

NoTE For compliance with the SQL standard, MySQL also supports the use of the INNER
JOIN and CROSS JOIN keywords instead of the comma (,) used in those operations. For
example, the following two statements both produce a cross join:

SELECT CountryName, StateName FROM country, state;
SELECT CountryName, StateName FROM country CROSS JOIN state;

just as the following two statements both create an inner equi-join:

SELECT c.CountryName, s.StateName FROM country AS c, state AS s
WHERE s.CountryID = c.CountryID;

SELECT c.CountryName, s.StateName FROM country AS c¢ INNER JOIN state
AS s WHERE s.CountryID = c.CountryID;

Outer Joins

From the previous section, it should be clear that inner joins are symmetrical. To be
included in the final result set, records must match in all joined tables. Records that do
not match are automatically omitted from the result set. Outer joins, on the other hand,
are asymmetrical—all records from one side of the join are included in the final result
set, regardless of whether they match records on the other side of the join.

Depending on which side of the join is to be preserved, SQL defines a left outer join
and a right outer join. In a left outer join, all the records from the table on the left side of
the join matching the WHERE clause appear in the final result set. In a right outer join, all
the records matching the WHERE clause from the table on the right appear.

To illustrate the difference, first consider the following inner join, which links routes
and flights:

mysgl> SELECT r.RouteID, f.FlightID
-> FROM route AS r, flight AS £
-> WHERE r.RouteID = f.RouteID
-> AND r.RouteID BETWEEN 1050 AND 1175;

tommm - R +
| RouteID | FlightID |
+--------- +-------- - +
1175	876
1141	896
1141	898
1142	897
1142	899
1133	765
1165	674
1123	681
1139	688
1140	689
1097	589
1059	857
1173	871
1173	872

671

Chapter 4: Using Joins, Subqueries, and Views 77

17 rows in set (0.05 sec)

This join only displays those route-and-flight combinations that match on both
sides of the join. Routes without flights, or flights without routes, are not displayed.
To display this missing information, a left outer join becomes necessary:

mysgl> SELECT r.RouteID, f£.FlightID
-> FROM route AS r
-> LEFT JOIN flight AS f
-> ON r.RouteID = f.RouteID
-> WHERE r.RouteID BETWEEN 1050 AND 1175;

+--------- +t---------- +
| RouteID | FlightID |
+--------- - +
1059	857
1061	833
1071	NULL
1097	589
1123	681
1133	765
1139	688
1140	689
1141	896
1141	898
1142	897
1142	899
1165	674
1167	NULL
1169	671
1169	672
1173	871
1173	872
1175	876
+--------- +t-------- - +

19 rows in set (0.01 sec)

In English, this query translates to “select all the records from the left side of the
join (route) and, for each row selected, either display the matching value from the right
side (flight) or display a NULL value.” This kind of join is known as a left join or,
sometimes, a left outer join.

Notice the difference in the result set: The left outer join displays two additional
routes, route 1071 and route 1167, for which no flights exist. This is because when
processing the left outer join, MySQL begins by retrieving all of the records matching
the query conditions from the table on the left of the join, and then proceeds to the table
on the right of the join. As a result, records that exist on the left but have no counterpart
on the right will still appear in the result set, with NULL values for the missing fields.

Part I: Usage

Contrast this to the equi-join used previously, which automatically omits these
“orphan” records from the result set.

This kind of join comes in handy when you need to see which values from one table
are missing in another table: All you need to do is look for the NULL values. In fact, you
don’t even need to look—you can have SQL do the heavy lifting for you by adding a
new condition to handle this in the WHERE clause, as follows:

mysgl> SELECT r.RouteID, f.FlightID
-> FROM route AS r
-> LEFT JOIN flight AS £
-> ON r.RouteID = f.RoutelID
-> WHERE r.RouteID BETWEEN 1050 AND 1175
-> AND f.FlightID IS NULL;

+-------=-- +---------- +
| RouteID | FlightID |
+--------- +----mm- - +
| 1071 | NULL |
| 1167 | NULL |
+-------=-- +--------=- +

2 rows in set (0.00 sec)

Tip When the field being used for the join has the same name in both tables, the USING clause
provides a convenient shortcut over the ON syntax. The following two queries are equivalent:

SELECT r.RouteID, f.FlightID
FROM route AS r LEFT JOIN flight AS £
ON r.RouteID = f.RoutelD
WHERE r.RouteID BETWEEN 1050 AND 1175;
SELECT r.RouteID, f.FlightID
FROM route AS r LEFT JOIN flight AS £
USING (RoutelID)
WHERE r.RouteID BETWEEN 1050 AND 1175;

In a similar vein, it’s possible to construct a right outer join, wherein all the
records in the table on the right side of the join are displayed, regardless of whether
or not matching records in the table on the left side of the join exist. To illustrate,
consider the following example, which checks if there are any aircraft types that are
not currently in use by the airline:

mysgl> SELECT a.AircraftID, at.AircraftName
-> FROM aircraft AS a
-> RIGHT JOIN aircrafttype AS at
-> ON a.AircraftTypeID = at.AircraftTypeID;

| 3451 | Boeing 747 |
| 3465 | Boeing 747 |

Chapter 4: Using Joins, Subqueries, and Views 79

3145 Boeing 747
3565 Boeing 747
3425 Boeing 767
NULL Airbus A300/310
3467 Airbus A330
3469 Airbus A330
3427 Airbus A330

3470 Airbus A330
3130 Airbus A330
3452 Airbus A340
3125 Airbus A340
3128 Airbus A340
3201 Airbus A340
3223 Airbus A380

|
|
|
|
|
|
|
3189 | Airbus A330
|
|
|
|
|
|
|

17 rows in set (0.00 sec)

In English, this query translates to “select all the records from the right side of the
join (aircrafttype) and, for each record selected, either display the matching value from
the left side (aircraft) or display a NULL value.” The output is self-explanatory: The
airline does not currently operate any Airbus A300/310 airplanes.

NoOTE The terms “left join” and “right join” are interchangeable, depending on where you're
standing. A left join can be turned into a right join (and vice versa) simply by altering the order
of the tables in the join. To illustrate, consider the following two queries, which are equivalent:

SELECT * FROM c LEFT JOIN a USING (id);
SELECT * FROM a RIGHT JOIN c USING (id);

A refinement of the previous example is to use the COUNT () function in combination
with the right outer join and a GROUP BY clause to calculate how many airplanes of each
type the airline has in operation:

mysgl> SELECT at.AircraftName, COUNT (a.AircraftID)
-> FROM aircraft AS a
-> RIGHT JOIN aircrafttype AS at
-> ON a.AircraftTypeID = at.AircraftTypeID
-> GROUP BY a.AircraftTypeID;

| Airbus A300/310 |
| Boeing 747 |
| Boeing 767 |
| Airbus A330 |
| Airbus A340 |
| Airbus A380 |

6 rows in set (0.06 sec)

80

Part I: Usage

Self-Joins

In addition to cross, inner, and outer joins, MySQL supports a fourth type of join,
known as a self-join. This type of join involves joining a table to itself, and it’s
typically used when working with results sets where field values contain internal
links to each other.

NoTtE Since MySQL 5.0.12, there is a key difference in the output produced by a join created
with the comma (,) operator and a join created with the USING clause: In the latter case,
MySQL will automatically remove redundant join fields, such that these fields appear only
once in the result set. To illustrate, compare the number of fields in the output generated by
each of the following two joins:

SELECT * FROM aircraft AS a INNER JOIN aircrafttype AS at
USING (AircraftTypelID) ;

SELECT * FROM aircraft AS a, aircrafttype AS at WHERE
a.AircraftTypelID = at.AircraftTypelD;

You'll see that the output of the first query contains only one instance of the common
AircraftTypelD field, while that of the second contains two such instances. This
“coalescing” of duplicate join fields is intended for compliance with the SQL-2003
standard.

To create a self-join, assign the table in question two different aliases and then use
these aliases to construct a join, as though the aliases represented two separate tables.
To illustrate, let’s try querying the route table to identify “round-trip” routes—that is,
routes between the same pair of cities. Because the same table contains both the route
origin and destination, a simple SELECT won't work and neither will an inner join. The
only way to perform such a query is with a self-join, as follows:

mysgl> SELECT rl.RouteID, rl.From, rl.To, rl.Distance
-> FROM route AS rl, route AS r2
-> WHERE rl.From = r2.To
-> AND r2.From = rl.To
-> ORDER BY rl.Distance;

to-mmm - +o----- +----- to—mmm - - +
| RouteID | From | To | Distance |
+-------- - +------ +----- +---------- +
1175	132	56	1267
1176	56	132	1267
1139	83	87	2474
1140	87	83	2474
1142	201	126	3913
1141	126	201	3913
1193	201	92	10310
1192	92	201	10310
tommm - +o----- +----- tommmm - - +

Chapter 4: Using Joins, Subqueries, and Views 81

Most of the magic here lies in the table aliasing. The previous query first creates two
copies of the route table, aliased as 1 and r2, respectively; joining these together with a
self-join now becomes a simple matter.

Here’s another example that, though not strictly a selfjoin, displays some
interesting elements. The following query creates two aliases for the airport table and
joins its AirportID fields to the route table’s From and To fields in order to display
human-readable airport names (origin and destination) for each route instead of
numeric airport identifiers:

mysqgl> SELECT r.RouteID, al.AirportName AS FromAirport,
-> a2.AirportName AS ToAirport
-> FROM route AS r, airport AS al, airport AS a2
-> WHERE al.AirportID = r.From
-> AND a2.AirportID = r.To;

e e it e il +
| RouteID | FromAirport | ToAirport |
T Fom o mm oo mm oo B +

1005 Orly Airport Gatwick Airport

1176 Heathrow Airport Barajas Airport

1175 Barajas Airport Heathrow Airport

1023 Gatwick Airport Rome Ciampino Airport

1008	Orly Airport	Nice Cote d'Azur Airport

1009 Orly Airport Zurich Airport
1165 Zurich Airport Rome Ciampino Airport
1167 Zurich Airport Heathrow Airport
1123 Zurich Airport Gatwick Airport
d----m- - - e e T B +

29 rows in set (0.16 sec)

Unions
In addition to joins, MySQL 4.0 and later supports the UNION operator, which is used to
combine the output of multiple SELECT queries into a single result set. Most often, this
operator is used to add the result sets generated by different queries to create a single
table of results.

To illustrate, consider if airport information was separated into two identically
structured tables, airportGB and airportFR, as shown:

mysgl> CREATE TEMPORARY TABLE airportUK

-> SELECT * FROM airport WHERE CountryCode = 'UK';
Query OK, 3 rows affected (0.11 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysgl> CREATE TEMPORARY TABLE airportFR

-> SELECT * FROM airport WHERE CountryCode = 'FR';

Query OK, 2 rows affected (0.13 sec)
Records: 2 Duplicates: 0 Warnings: 0

82

Part I: Usage

Then, the following query would return a combined result set containing the
records from both tables:

mysgl> SELECT AirportID, AirportName FROM airportUK

-> UNION
-> SELECT AirportID, AirportName FROM airportFR;
e i R +
| AirportID | AirportName |
dommmmm - R +
48 Gatwick Airport
56 Heathrow Airport

34 Orly Airport

129	Bristol International Airport
165	Nice Cote d'Azur Airport

You can combine as many SELECT queries as you like with the UNION operator, so
long as two basic conditions are fulfilled.
e The number of fields returned by each SELECT query must be the same.

¢ The data types of the fields in each SELECT query must correspond to each
other.

Tip The UNION operator automatically eliminates duplicate rows from the composite result set
(this behavior is similar to that obtained by adding the DISTINCT keyword to a regular
SELECT query). To see all of the records (including duplicates) in the UNION, add the ALL
keyword to the UNION operator, as in the example query:

SELECT * FROM a UNION ALL SELECT * FROM b;

To sort the composite result set returned by a UNION operation, add an ORDER BY
clause to the end of the query. However, remember to enclose each of the individual
SELECTs in parentheses so that MySQL knows the ORDER BY clause is meant for the
final result set and not for the last SELECT in the set. The following example illustrates,
sorting the combined list of airports in reverse alphabetical order:

mysgl> (SELECT AirportID, AirportName FROM airportUK)
-> UNION
-> (SELECT AirportID, AirportName FROM airportFR)
-> ORDER BY AirportName DESC;

Chapter 4: Using Joins, Subqueries, and Views 83

| 34 | Orly Airport |

| 165 | Nice Cote d'Azur Airport |

| 56 | Heathrow Airport |

| 48 | Gatwick Airport |

| 129 | Bristol International Airport |
+

5 rows in set (0.02 sec)

Tip Adding an ORDER BY clause to individual SELECT queries within the UNION doesn't
usually make too much sense because the result set generated by each individual query is
never visible to the user; only the final result is visible. It's interesting to note, also, that
queries using UNION ALL are often faster than queries using only UNION.

Using Subqueries
Normally, query results are restricted through the addition of a WHERE or HAVING
clause, which contains one or more conditional expressions used to filter out irrelevant
records from the result set. Most often, these conditional tests use fixed constants—for
example, “list all users older than 40” or “show all invoices between January and
June”—making them easy to write and maintain.

However, a situation often arises when the conditional test used by a particular query
depends on the value generated by another query—for example, “list all users older than
the average user age” or “show the largest invoice from the smallest group of customers.”
In all such cases, the results generated by one query depend on the data generated by
another, and the use of a constant value in the outer query’s conditional test becomes
infeasible. MySQL 4.1 and later support this requirement through subqueries.

Norte Subqueries, although useful, can significantly drain your MySQL RDBMS of
performance. This is because at press time, subquery performance is suboptimal in MySQL
4.x and MySQL 5.x on data of any significant size. Subqueries can also be problematic to
debug when the data sets returned by them are large or complex. Numerous improvements
in the subquery processor are expected in MySQL 6.0; for a complete list, visit http://forge.
mysql.com/wiki/Subquery_Works.

A Simple Subquery

A subquery is simply a SELECT query that is subordinate to another query. MySQL
enables you to nest queries within one another and to use the result set generated by
an inner query within an outer one. As a result, instead of executing two (or more)
separate queries, you execute a single query containing one (or more) subqueries.

84

Part I: Usage

A subquery works just like a regular SELECT query, except that its result set always
consists of a single column containing one or more values. A subquery can be used
anywhere an expression can be used; it must be enclosed in parentheses; and, like a
regular SELECT query, it must contain a field list (as previously noted, this is a single-
column list), a FROM clause with one or more table names, and optional WHERE, HAVING,
and GROUP BY clauses.

To illustrate a typical subquery, let’s go back to an earlier example: displaying
which of the airline’s routes originate at Heathrow Airport. This can be accomplished
with an inner join, as shown:

mysgl> SELECT r.RouteID
-> FROM route AS r, airport AS a
-> WHERE r.From = a.AirportID
-> AND a.AirportCode='LHR';

tommmm - +
| RouteID |
+-------=-- +
| 1176 |
| 1209 |
+----m---- +

2 rows in set (0.00 sec)
However, this can also be rewritten as a subquery:

mysgl> SELECT r.RouteID
-> FROM route AS r
-> WHERE r.From =
-> (SELECT a.AirportID
-> FROM airport AS a
-> WHERE a.AirportCode='LHR') ;

tommmm - - +
| RouteID |
+-------=-- +
| 1176 |
| 1209 |
+--------- +

2 rows in set (0.00 sec)

Thus, a subquery makes it possible to combine two or more queries into a single
statement and to use the results of one query in the conditional clause of the other.

Each subquery must return a single column of results or else MySQL will not know
how to handle the result set. Consider the following example, which demonstrates this
by having the subquery return a multicolumn result set:

mysgl> SELECT r.RouteID
-> FROM route AS r
-> WHERE r.From =
-> (SELECT *

Chapter 4: Using Joins, Subqueries, and Views 85

-> FROM airport AS a
-> WHERE a.AirportCode='LHR') ;
ERROR 1241 (21000): Operand should contain 1 column(s)

You can nest subqueries to any depth, so long as the basic rules discussed previously
are followed. Consider the following example, which demonstrates this by listing the
flights operated by a Boeing 747:

mysgl> SELECT £.FlightID
-> FROM flight AS £
-> WHERE f.AircraftID IN
-> (SELECT a.AircraftID
-> FROM aircraft AS a
-> WHERE a.AircraftTypeID =
-> (SELECT AircraftTypeID
-> FROM aircrafttype AS at
-> WHERE at.AircraftName = 'Boeing 747’

| 535 |
| 652 |
| 662 |
| 675 |
| 896 |
| 898 |
| 897 |
| 899 |
| 812 |
| 857 |

10 rows in set (0.01 sec)

CAUTION Because MySQL does not yet fully optimize subqueries, deeply nested subqueries
can take a long time to execute, especially in certain situations where the outer query
returns more records than the inner one.

Types of Subqueries

Subqueries can be used in a number of different ways.

e Within a WHERE or HAVING clause
e With comparison and logical operators
e With the IN membership test
* With the EXISTS Boolean test

86

Part I: Usage

e Within a FROM clause
e With UPDATE and DELETE queries

The following sections examine each of these aspects in greater detail.

Subqueries and the WHERE/HAVING Clause

MySQL enables you to include subqueries in either a WHERE clause (to constrain the
records returned by the enclosing SELECT. . .WHERE) or a HAVING clause (to constrain
the groups created by the enclosing SELECT. . .GROUP BY). The subquery, which is
enclosed in parentheses, can be preceded by comparison and logical operators, the IN
operator, or the EXISTS operator.

Subqueries and Comparison Operators If a subquery produces a single value, you can
use MySQL’s comparison operators to compare it with the conditional expression
specified in the outer query’s WHERE or HAVING clause. To demonstrate, consider the
following subquery, which returns the airline’s longest route:

mysqgl> SELECT r.RouteID
-> FROM route AS r
-> WHERE r.Distance =

-> (SELECT MAX (r.Distance)
-> FROM route AS r);
+--------- +
| RouteID |
B et +
| 1180 |
e it +

1 row in set (0.03 sec)

It’s also easy to add one more subquery, this one returning the number of the flight(s)
operating said route:

mysgl> SELECT f.FlightID
-> FROM flight AS £
-> WHERE f.RoutelID =
-> (SELECT r.RouteID
-> FROM route AS r
-> WHERE r.Distance =

-> (SELECT MAX(r.Distance)
-> FROM route AS r));
+--------- - +
| FlightID |
B it +
| 685 |
+---------- +

1 row in set (0.00 sec)

Chapter 4: Using Joins, Subqueries, and Views

You can also use inequality operators with a subquery, as illustrated by the following
query, which calculates the average distance of the airline’s routes and flags all those
routes that are above this average:

mysgl> SELECT r.RouteID, r.Distance
-> FROM route AS r
-> WHERE r.Distance >
-> (SELECT AVG(distance) FROM route) ;

tommmmmm - tommmm - - +
| RouteID | Distance |
- - +
1003	7200
1133	6336
1141	3913
1142	3913
1180	10863
1193	10310
1192	10310
+--------- +-------- - +

7 rows in set (0.01 sec)

Tip With subqueries, you can use the AND and OR logical operators to add further constraints
to a conditional test or the NOT logical operator to reverse it.

Subqueries can also be used in the HAVING clause of a GROUP BY aggregation, as
illustrated in the following trivial example, which returns the total number of flights
operating today:

mysgl> SELECT COUNT (£d.FlightID)
-> FROM flightdep AS fd
-> GROUP BY £d.DepDay
-> HAVING fd.DepDay =
-> (SELECT WEEKDAY (NOW())) ;

R e +
| COUNT (fd.FlightID) |
R e et +
| 19 |
tomm s s s s +

1 row in set (0.00 sec)

Subqueries and the IN Operator Comparison operators are appropriate only so long as
the subquery returns a result column consisting of a single value. In case the result set
returned by a subquery returns a list of values, however, comparison operators must be
substituted by the IN operator.

81

Part I: Usage

The IN operator makes it possible to test if a particular value exists in the result set
and to perform the outer query if the test is successful. To illustrate, consider the
following query, which returns all of the flights operating to Changi Airport:

mysgl> SELECT f.FlightID
-> FROM flight AS £
-> WHERE f.RouteID IN
-> (SELECT r.RouteID
-> FROM route AS r
-> WHERE r.To=

-> (SELECT a.AirportID
-> FROM airport AS a
-> WHERE a.AirportCode='SIN')
->)
-> ORDER BY FlightID DESC;

B it +

| FlightID |

+----m----- +

| 898 |

| 896 |

| 725 |

B i +

3 rows in set (0.06 sec)

Another example might involve finding out the number of routes operated by the
airline from airports with more than two terminals:

mysgl> SELECT r.From, COUNT (r.RouteID) FROM route AS r
-> WHERE r.from IN
-> (SELECT a.AirportID FROM airport AS a
-> WHERE a.NumTerminals > 2)
-> GROUP BY r.From;

+o----- e i +
| From | COUNT (r.RouteID) |
+------ tomm - +
56	2
72	2
132	2
201	3
+------ e bl +

4 rows in set (0.00 sec)
You can bring in the airport names as well with a quick inner join:
mysgl> SELECT a.AirportName, a.NumTerminals, COUNT (r.RouteID)

-> FROM route AS r, airport AS a
-> WHERE r.From = a.AirportID

Chapter 4: Using Joins, Subqueries, and Views 89

-> AND r.From IN

-> (SELECT a.AirportID FROM airport AS a
-> WHERE a.NumTerminals > 2)

-> GROUP BY r.From;

o m oo oo mmmmmo oo e e +
| AirportName | NumTerminals | COUNT (r.RouteID) |
oo mm oo T oo mmmmmmmo o +
Heathrow Airport	5	2
Barcelona Inter...	3	2
Barajas Airport	4	2
Changi Airport	3	3
oo T oo mmmmmmm oo +

4 rows in set (0.00 sec)

As with comparison operators, you can use the NOT keyword to reverse the results
returned by the IN operator—or, in other words, return those records not matching the
result collection generated by a subquery. The following example illustrates by
reversing the previous query:

mysgl> SELECT a.AirportName, a.NumTerminals, COUNT (r.RouteID)
-> FROM route AS r, airport AS a
-> WHERE r.From = a.AirportID
-> AND r.From NOT IN
-> (SELECT a.AirportID FROM airport AS a
-> WHERE a.NumTerminals > 2)
-> GROUP BY r.From;

| orly Airport |
| Gatwick Airport |
| Schiphol Airport |
| Franz Josef St... |
| Lisbon Airport |
| Budapest Ferih... |
| Zurich Airport |
| Chhatrapati Sh... |
| Bristol Intern... |
| Nice Cote d'Az... |

10 rows in set (0.01 sec)

Subqueries and the EXISTS Operator The special EXISTS operator can be used to check
if a subquery produces any results at all. This makes it possible to conditionally execute
the outer query only if the EXISTS test returns true.

Part I: Usage

Here’s a simple example:

mysgl> SELECT r.RouteID, r.From, r.To

-> FROM route AS r

-> WHERE EXISTS

-> (SELECT £.FlightID

-> FROM flight AS £, flightdep AS fd

-> WHERE f.FlightID = £d4d.FlightID

-> AND fd.DepTime BETWEEN '02:00' and '04:00');
Empty set (0.00 sec)

In this case, because the subquery returns an empty result set—there are no flights
between 2 and 4 A.M.—the EXISTS test will return false and the outer query will not
execute. If, on the other hand, the inner query returns a result set, the EXISTS test will
return true, causing the outer query to execute. Here’s an example:

mysgl> SELECT r.RouteID, r.From, r.To
-> FROM route AS r
-> WHERE EXISTS
-> (SELECT £.FlightID
-> FROM flight AS £, flightdep AS fd
-> WHERE f.FlightID = fd.FlightID
-> AND fd.DepTime BETWEEN '00:00' and '04:00');

+-------- - +------ +----- +
| RouteID | From | To |
tommm oo - R +----- +
1003	126	56
1005	34	48
1176	56	132
1175	132	56
1018	34	87
+--------- +------ +----- +

29 rows in set (0.00 sec)

In this case, because there are some flights between 12 and 4 a.m., the inner query
returns a result that, in turn, triggers the execution of the outer query.

It must be noted that when used in this manner, the actual content of the inner query
is irrelevant; the previous output could just as well have been accomplished with the
following;:

mysgl> SELECT r.RouteID, r.From, r.To
-> FROM route AS r
-> WHERE EXISTS
-> (SELECT 1) ;

Chapter 4: Using Joins, Subqueries, and Views 91

1003	126	56
1005	34	48
1176	56	132
1175	132	56
1018	34	87
+--------- +------ +----- +

29 rows in set (0.00 sec)

The EXISTS operator is most often used with correlated subqueries—subqueries that
use fields from the outer query in their clause(s). Such a reference, by a subquery to a
field in its enclosing query;, is called an outer reference.

When an outer reference appears within a subquery, MySQL has to reevaluate the
subquery once for every record generated by the outer query and, therefore, test the
subquery as many times as there are records in the outer query’s result set. Here’s an
example of a correlated subquery:

mysgl> SELECT * FROM route AS r
-> WHERE r.RouteID IN
-> (SELECT f.RoutelD
-> FROM flight AS £, flightdep AS fd
-> WHERE f.FlightID = £d.FlightID
-> AND f.RouteID = r.RouteID
-> AND fd.DepTime BETWEEN '00:00' AND '04:00');

e i +------ +----- e i tommmmmm - +-------- +
| RouteID | From | To | Distance | Duration | Status |
+----mm- - +------ +----- +---------- +----mm- - +-------- +
| 1133 | 74 | 126 | 6336 | 470 | 1|
| 1141 | 126 | 201 | 3913 | 320 | 1|
to--mmmm - +------ +----- +-—-mmm- - - e it +-------- +

2 rows in set (0.02 sec)

In this case, because the inner query contains a reference to a field in the outer
query, MySQL cannot run the inner query only once. Rather, it has to run it over and
over—once for every record in the outer table—substitute the value of the named field
from that record in the subquery, and then decide whether to include that outer record
in the final result set on the basis of whether the corresponding subquery returns a
result set. This is obviously expensive in terms of performance, and so outer references
should be avoided unless absolutely necessary.

For situations where an outer reference is unavoidable, the EXISTS operator comes
in handy as a filter for the outer query’s result set. Here’s an example, which prints
those routes for which no flights exist:

mysqgl> SELECT * FROM route AS r
-> WHERE NOT EXISTS
-> (SELECT 1 FROM flight AS f
-> WHERE f.RouteID = r.RoutelID);

92

Part I: Usage

| 1167 | 92 | 56 | 777 | 70 | 0 |
| 1071 | 132 | 72 | 505 | 65 | 0 |

2 rows in set (0.00 sec)

Subqueries, the IN Operator and Performance

MySQL 4.x and 5.x are particularly bad at optimizing subqueries that use the IN
operator. This is because the MySQL optimizer automatically rewrites these
subqueries as correlated subqueries, increasing the performance cost by adding
unnecessary outer references. As an example, consider that given the following
uncorrelated subquery:

SELECT r.RoutelID, r.From, r.To
FROM route AS r WHERE r.RouteID IN
(SELECT f.RoutelID
FROM flight AS f WHERE
f.FlightID BETWEEN 600 AND 700) ;

MySQL will rewrite it to:

SELECT r.RouteID, r.From, r.To
FROM route AS r WHERE EXISTS
(SELECT 1 FROM flight AS £
WHERE f.RouteID = r.RoutelD
AND f.FlightID BETWEEN 600 AND 700) ;

For this reason, correlated subqueries (or uncorrelated subqueries that you
know will be rewritten into correlated form by MySQL) should be avoided as
much as possible and alternative methods of combining data (for example, self-
joins or unions) should be explored, as they are often less costly in terms of both
time and resource usage.

Subqueries and the FROM Clause

You can also use the results generated by a subquery as a table in the FROM clause of an
enclosing SELECT statement. For example, consider the following query, which
identifies the most popular aircraft type used by the airline:

mysgl> SELECT MAX(sqg.count), sg.AircraftName FROM
-> (SELECT COUNT (a.AircraftID) AS count, at.AircraftName
-> FROM aircraft AS a, aircrafttype AS at

Chapter 4: Using Joins, Subqueries, and Views

-> WHERE a.AircraftTypeID = at.AircraftTypelD
-> GROUP BY a.AircraftTypelD)

-> AS sq;
R R T T T +
| MAX(sq.count) | AircraftName |
o mmm oo e e +
| 6 | Boeing 747 |
oo mm oo T +

1 row in set (0.01 sec)

Notice that, in this case, the result set generated by the inner query is stored in a
temporary table and used in the FROM clause of the outer query. Such a table is referred
to as a derived table or a materialized subquery. Notice also that when using subquery
results in this manner, the derived table must be first aliased to a table name or else
MySQL will not know how to refer to fields within it. As an example, look what
happens if you re-run the previous query without the table alias:

mysgl> SELECT MAX(sg.count), sqg.AircraftName FROM
-> (SELECT COUNT (a.AircraftID) AS count, at.AircraftName
-> FROM aircraft AS a, aircrafttype AS at
-> WHERE a.AircraftTypelID = at.AircraftTypelD
-> GROUP BY a.AircraftTypeID);
ERROR 1248 (42000): Every derived table must have its own alias

Another example might involve finding out on which days of the week is the
number of flights operated by the airline above average. Here, too, a subquery can be
used to generate a table containing a count of the number of flights on each day, and
this table can then be used (within the outer query’s FROM clause) to compare each
day’s count with the average value:

mysgl> SELECT x.DepDay FROM
-> (SELECT fd.DepDay, COUNT (fd.FlightID) AS c
-> FROM flightdep AS fd
-> GROUP BY fd.DepDay)
-> AS x
-> WHERE x.c >
-> (SELECT COUNT (f£4.FlightID) /7 FROM flightdep AS £d);

5 rows in set (0.00 sec)

93

Part I: Usage

Subqueries and Other DML Statements

The examples you've seen thus far have only used subqueries in the context of a
SELECT statement. However, subqueries can just as easily be used to constrain UPDATE
and DELETE statements. Here’s an example that deletes all routes originating from
Changi Airport:

mysgl> DELETE FROM route
-> WHERE route.From =
-> (SELECT AirportID FROM airport
-> WHERE AirportCode = 'SIN');
Query OK, 3 rows affected (0.00 sec)

The IN membership test works here, too—consider the next example, which deletes
all routes originating in the United Kingdom:

mysqgl> DELETE FROM route
-> WHERE route.From IN
-> (SELECT AirportID FROM airport
-> WHERE CountryCode = 'UK');
Query OK, 5 rows affected (0.05 sec)

UPDATES can be performed in a similar manner. Consider the following query,
which turns all Boeing aircraft into Airbus A330 aircraft:

mysgl> UPDATE aircraft
-> SET AircraftTypelD =
-> (SELECT AircraftTypeID
-> FROM aircrafttype
-> WHERE AircraftName = 'Airbus A330')
-> WHERE AircraftTypeID IN
-> (SELECT AircraftTypeID
-> FROM aircrafttype
-> WHERE AircraftName LIKE 'Boeing%');
Query OK, 5 rows affected (0.01 sec)
Rows matched: 5 Changed: 5 Warnings: 0

Another example might involve reading flight departure times from the flightdep
table and writing them to the flight table, using the flight number as link. Here’s how:

mysgl> ALTER TABLE flight ADD DepTime TIME NOT NULL;
Query OK, 32 rows affected (0.05 sec)
Records: 32 Duplicates: 0 Warnings: 0

mysqgl> UPDATE flight SET DepTime =
-> (SELECT DepTime FROM flightdep
-> WHERE flightdep.FlightID = flight.FlightID
-> GROUP BY flightdep.FlightID) ;

Query OK, 32 rows affected (0.02 sec)

Rows matched: 32 Changed: 32 Warnings: 0

Chapter 4: Using Joins, Subqueries, and Views 95

Circular References in UPDATE and DELETE Statements MySQL won't let you delete or
update a table’s data if you're simultaneously reading that same data with a subquery,
as doing so raises the possibility that your subquery might reference rows that have
already been deleted or altered. Therefore, the table named in an outer DELETE or
UPDATE DML statement cannot appear in the FROM clause of an inner subquery.

To illustrate this, consider the situation where the airline needs to remove “orphan”
routes—routes without a corresponding flight—from the database. This appears simple
at first glance: Find these routes using a LEFT JOIN between the route and flight tables
with an IS NULL clause and then delete them using a subquery. Here’s the query:

mysgl> DELETE FROM route

-> WHERE RouteID IN

-> (SELECT r.RouteID

-> FROM route AS r

-> LEFT JOIN flight AS £

-> USING (RoutelID)

-> WHERE f.FlightID IS NULL) ;
ERROR 1093 (HY000): You can't specify target table 'route' for update
in FROM clause

MySQL will not permit this operation, as it creates a circular reference. A more
appropriate way to accomplish this would be with a correlated subquery, as follows:

mysgl> DELETE FROM route

-> WHERE NOT EXISTS

-> (SELECT 1 FROM flight

-> WHERE flight.RouteID = route.RouteID) ;
Query OK, 2 rows affected (0.07 sec)

Using Views

Joins and subqueries make it easy to combine data from normalized tables and obtain
different perspectives of a database. However, in highly normalized databases with
multiple foreign key relationships between tables, getting just the data you need is a
reasonably complex task requiring a deep understanding of the underlying table
relationships.

To illustrate, consider the SQL query you’d write in order to get a flight timetable
for the week:

mysgl> SELECT DISTINCT r.RouteID, al.AirportCode AS FromAirport,
-> a2.AirportCode AS ToAirport, f.FlightID,
-> fd.DepTime, £fd.DepDay
-> FROM route AS r, flight AS £,
-> flightdep AS fd, airport AS al,
-> airport AS a2
-> WHERE £.FlightID = £d.FlightID
-> AND r.RouteID = f.RouteID

96

Part I: Usage

-> AND r.From = al.AirportID
-> AND r.To = a2.AirportID;

+--------- t---- - - - - - t------ - - - t---------- +t---------- +-------- +
| RouteID | FromAirport | ToAirport | FlightID | DepTime | DepDay |
+--------- e i - - - - - +---------- - +-------- +
1005	ORY	LGw	535	15:30:00	2
1005	ORY	LGw	535	15:30:00	4
1175	MAD	LHR	876	07:10:00	1
1175	MAD	LHR	876	07:10:00	2
1175	MAD	LHR	876	07:10:00	3
1175	MAD	LHR	876	07:10:00	4
1175	MAD	LHR	876	07:10:00	5
1018	ORY	BUD	652	14:10:00	1
tommm - tommmmm - - e i tommmm - - tommmm - - - +o-mmm- - +

108 rows in set (0.38 sec)

This is a reasonably complex join, which collects and presents data from four
different tables to answer a specific question. If the question is asked repeatedly, or
with minor variations, it makes sense to store this query in the database and expose it
to the outside world as a predefined view that can be further manipulated by users
through standard SQL. These prepackaged views provide a simple interface to complex
data sets, and have been supported in MySQL since v5.0.

A Simple View

Think of a view as a “virtual table” whose contours are defined by the parameters of
the SELECT statement that was used to generate it. The fields of this table are derived
directly from the fields specified in the SELECT statement, while the contents of the
table correspond to the set of records returned by the SELECT statement. Because
SELECT statements can span multiple tables, a view can (and usually does) contain
records from different tables.

Like a regular table, a view has a name; therefore, it can itself be the subject of other
SELECT queries and—in some cases—it can even be modified via INSERT, UPDATE, and
DELETE statements. To illustrate, consider the following example, which creates a
simple view:

mysgl> CREATE VIEW v _round trip routes AS

-> SELECT rl.RouteID, rl.From, rl.To, rl.Distance
-> FROM route AS rl, route AS r2

-> WHERE rl.From = r2.To

-> AND r2.From = rl.To;

Query OK, 0 rows affected (0.13 sec)

To create a view, MySQL offers the CREATE VIEWcommand. This command must
be followed by the view name, the keyword AS, and the SELECT statement that
generates the view. This is illustrated in the previous example, which creates a view
named v_round_trip_routes to display only round-trip routes.

Chapter 4: Using Joins, Subqueries, and Views 97

This view can now be accessed as though it were a regular table:

mysgl> SELECT v.RouteID, v.From, v.To
-> FROM v_round trip_ routes AS v;

+--------- +------ +----- +
| RouteID | From | To |
tommmmmm - +o---- +----- +
1175	132	56
1176	56	132
1142	201	126
1141	126	201
1192	92	201
1140	87	83
1139	83	87
1193	201	92
+--------- +------ +----- +

8 rows in set (0.10 sec)

Records from the view can be filtered using a WHERE clause, as with any other table.
Consider the next example, which displays round-trip routes with distances greater
than 3,000 kilometers:

mysgl> SELECT v.RouteID, v.From, v.To, v.Distance
-> FROM v _round trip routes AS v
-> WHERE v.Distance > 3000;

t--mmmm-- +------ +----- tommmm - - - +
| RouteID | From | To | Distance |
+----m-- - +------ +----- +---------- +
1142	201	126	3913
1141	126	201	3913
1192	92	201	10310
1193	201	92	10310
+---- - +------ +----- +---------- +

4 rows in set (0.01 sec)

The key thing to note about a view is that it automatically reflects changes in its
underlying tables. Consider, for example, what happens when a new round-trip route
is added:

mysgl> INSERT INTO route
-> (RoutelID, “From~, "To , Distance, Duration, Status)
-> VALUES
-> (1016, 129, 132, 1235, 150, 1),
-> (1017, 132, 129, 1235, 150, 1);
Query OK, 2 rows affected (0.02 sec)
Records: 2 Duplicates: 0 Warnings: 0

Part I: Usage

The view automatically reflects the change in the underlying table:

mysgl> SELECT v.RouteID, v.From, v.To, v.Distance
-> FROM v_round_ trip routes AS v;

+o------- - +------ +----- +t-------- - +
| RouteID | From | To | Distance |
tommmm - +o----- +----- tommmm - - +
1175	132	56	1267
1176	56	132	1267
1142	201	126	3913
1141	126	201	3913
1192	92	201	10310
1140	87	83	2474
1139	83	87	2474
1193	201	92	10310
1017	132	129	1235
1016	129	132	1235
+--------- +------ +----- +t---------- +

10 rows in set (0.16 sec)

It’s also possible to join the fields in a view to other tables, as in this next example,
which joins the airport table to retrieve airport names for each round-trip route:

mysgl> SELECT v.RouteID, a.AirportName AS FromAirport
-> FROM v_round trip routes AS v, airport AS a
-> WHERE v.From = a.AirportID;

B B e e et +
| RouteID | FromAirport |
e e e TR +
1175 Barajas Airport
1176 Heathrow Airport
1142 Changi Airport
1141 Chhatrapati Shivaji International Airport
1192 Zurich Airport

1140	Budapest Ferihegy International Airport

1139 Lisbon Airport
1193 Changi Airport
1017 Barajas Airport
1016 Bristol International Airport

10 rows in set (0.01 sec)

A view only allows access to the fields listed in its SELECT statement; any attempt
to access other fields, even if they exist in the underlying table, will generate an error.
Consider what happens when you try accessing the route.Status field, which is not part
of the view definition, through the view:

Chapter 4: Using Joins, Subqueries, and Views

mysgl> SELECT v.RouteID, a.AirportName AS FromAirport,
-> v.Status FROM v_round trip routes AS v,
-> airport AS a WHERE v.From = a.AirportID;
ERROR 1054 (42S22): Unknown column 'v.Status' in 'field list'

Tip Looking for an easy way to restrict access to certain table fields? Grant access to a view
that contains only the allowed fields while restricting access to the underlying table.
MySQL’s privilege system, which is the key to defining these access rules, is discussed in
Chapter 11.

Views are listed in the output of the SHOW TABLES command, as shown:

mysqgl> SHOW TABLES;

et +
| Tables in dbl |
e +
| aircraft |
| aircrafttype |
| airport |
| user |
| v_round trip routes |
oo m oo +

13 rows in set (0.00 sec)

It’s a good idea to prefix your view names with a character or label, such as v, v_, or

view_, so that you can identify them easily in the output of the SHOW TABLES command.

However, you can’t use the DROP TABLE command to remove a view; instead, use
the DROP VIEW command with the view name as an argument. It’s worth noting,
however, that dropping a table does not automatically remove any views that depend
on it.

mysgl> DROP VIEW v_timetable;
Query OK, 0 rows affected (0.03 sec)

To view (pardon the pun) the SELECT statement used for a particular view, use the

SHOW CREATE VIEWcommand with the view name as an argument. Here’s an example:

mysgl> SHOW CREATE VIEW v_round trip routes\G
hhkhkkhkhhkhhhhkhhkhhkhhhkhkhhkhkhhkhkhdhd] 1OwWw ***kdkkhkhkhhhhhhhhhhhhhhhhhhhkk
View: v_round trip routes

Create View: CREATE ALGORITHM=UNDEFINED
DEFINER="root @ localhost™ SQL SECURITY DEFINER
VIEW “v_round trip routes™ AS
SELECT “rl°. RouteID™ AS “RoutelD
S, rl . From~ AS “From~, rl . To~ AS "To~, rl . Distance”™ AS "Distance”

FROM (“route™ “rl1~ JOIN “route™ “r2°) WHERE (("rl . From™ = “r2 . To")

99

100

Part I: Usage

and ("r2 . From™ = “rl~. To"))
character_set client: latinl

collation connection: latinl swedish ci
1 row in set (0.01 sec)

NorTE To create a view, a user must have the CREATE VIEW privilege. To see the SQL
commands used to create a view, a user must have the SHOW VIEW privilege. Privileges are
discussed in greater detail in Chapter 11.

View Security

One of the biggest benefits of views is that they make it possible to restrict the amount
of raw information users can access. In this context, the CREATE VIEW command
supports an additional SQL. SECURITY clause, which specifies the user account whose
privileges should be considered when granting access to the view: the user who created
it (DEFINER) or the user who invoked it (INVOKER). By default, MySQL allows access to
the user who created the view (DEFINER).

Here’s an example:

mysgl> CREATE
-> DEFINER = 'joe'@'localhost' SQL SECURITY DEFINER
-> VIEW v_round trip routes AS
-> SELECT rl.RouteID, rl.From, rl.To, rl.Distance
-> FROM route AS rl, route AS r2
-> WHERE rl.From = r2.To
-> AND r2.From = rl.To;

Query OK, 0 rows affected, 1 warning (0.00 sec)

Tip MySQL is always able to automatically identify the definer of a view. However, if you have
the appropriate administrative privileges, you can change this to reflect a different user by
adding a DEFINER clause to the CREATE VIEW statement. To avoid errors when doing this,
make sure that the user registered as DEFINER has all the privileges necessary to perform
the SELECT statement used by the view.

Multitable Views

As noted earlier, a view can itself contain fields from different tables. To illustrate,
here’s a view that produces the flight timetable from an earlier example, containing
fields from four different tables:

mysgl> CREATE VIEW v timetable AS
-> SELECT DISTINCT r.RouteID, al.AirportCode AS FromAirport,
-> a2.AirportCode AS ToAirport, f£.FlightID,

Chapter 4: Using Joins, Subqueries, and Views

-> fd.DepTime, £fd.DepDay
-> FROM route AS r, flight AS f,
-> flightdep AS £fd, airport AS al,
-> airport AS a2
-> WHERE f.FlightID = f£d.FlightID
-> AND r.RouteID = f.RouteID
-> AND r.From = al.AirportID
-> AND r.To = a2.AirportID;

Query OK, 0 rows affected (0.60 sec)

And here’s an example of using the view to list all flights on Tuesdays:

mysqgl> SELECT v.RouteID, v.FromAirport,
-> v.ToAirport, v.FlightID, v.DepTime
-> FROM v_timetable AS v
-> WHERE v.DepDay = 2 ORDER BY v.DepTime;

+----mm - tommmmm - +-mmmmm - +---- - - +
| RouteID | FromAirport | ToAirport | FlightID | DepTime |
e i tomm s s m oo tommm e e e oo tommmmmm - e i +
1141	BOM	SIN	896	00:30:00
1133	MUC	BOM	765	01:45:00
1175	MAD	LHR	876	07:10:00
1009	ORY	ZRH	663	09:10:00
1173	BCN	aMS	872	12:50:00
1209	LHR	cIa	826	13:45:00
1018	ORY	BUD	652	14:10:00
+----m-- - tommm - +o—mm - +---- - +---------- +

17 rows in set (0.10 sec)

Views can also be generated from SELECT statements that contain subqueries.
Here’s a simple example, which displays a list of all flights to Changi Airport:

mysgl> CREATE VIEW v_flights to changi AS
-> SELECT FlightID, RouteID, AircraftID
-> FROM flight AS f
-> WHERE f.RouteID IN

-> (SELECT r.RouteID

-> FROM route AS r

-> WHERE r.To=

-> (SELECT a.AirportID

-> FROM airport AS a

-> WHERE a.AirportCode='SIN')

-)
-> ORDER BY FlightID DESC;

Query OK, 0 rows affected (0.02 sec)

mysgl> SELECT * FROM v _flights to changi;

102 PartI: Usage

- +----mm- - tommm e - +
| FlightID | RouteID | AircraftID |
e i to--m-mm - tommm s +
| 898 | 1141 | 3145 |
| 896 | 1141 | 3145 |
| 725 | 1192 | 3125 |
- +----mm - R i +

3 rows in set (0.00 sec)

Nested Views

Views can also reference one another. Consider the next example, which builds on an
example from the previous section to create a child view that only shows the weekend
flight timetable:

mysgl> CREATE VIEW v weekend timetable AS
-> SELECT * FROM v timetable AS vt
-> WHERE vt.DepDay = 6 OR vt.DepDay = 7;
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT v.RouteID, v.FromAirport,
-> v.ToAirport, v.FlightID, v.DepTime, v.DepDay
-> FROM v _weekend timetable AS v
-> ORDER BY v.DepTime;

+-------=-- F---mmm - m - +---mmm - - +---------- +----mm- - +-------- +
| RouteID | FromAirport | ToAirport | FlightID | DepTime | DepDay |
+--------- tommmm - - - +-—-mmm - - - +---- - +----mm- - - +
1141	BOM	SIN	896	00:30:00	6
1141	BOM	SIN	896	00:30:00	7
1133	MUC	BOM	765	01:45:00	6
+--------- - - m - - - - +---------- +---- - +-------- +

22 rows in set (0.02 sec)

Note, however, that when two views depend on each other and the parent is
dropped, MySQL will generate an error on any attempt to use the child view:

mysgl> CREATE VIEW v_temp AS
-> SELECT * FROM v_weekend timetable;
Query OK, 0 rows affected (0.02 sec)
mysgl> DROP VIEW v _weekend timetable;
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT * FROM v _temp;
ERROR 1356 (HY000): View 'dbl.v_temp' references invalid table(s)
or column(s) or function(s) or definer/invoker of view lack rights to
use them

Chapter 4: Using Joins, Subqueries, and Views 103

Updatable Views

Under certain conditions, it’s also possible to execute INSERT, UPDATE, or DELETE
statements on a view and have the resulting changes applied to the underlying table.
To illustrate, consider this next view, which generates a subset of the airport table:

mysgl> CREATE VIEW v_small airports AS
-> SELECT * FROM airport
-> WHERE NumTerminals <= 2;

Query OK, 0 rows affected (0.00 sec)

mysqgl> SELECT AirportID, AirportCode, NumTerminals, CityName
-> FROM v _small airports;

R il o m - to-mm - +o--- - - - - +
34	ORY	2	Pparis
48	LGW	1	London
59	CIA	1	Rome
62	AMS	1	Amsterdam
74	MUC	2	Munich
83	LIS	2	Lisbon
87	BUD	2	Budapest
92	ZRH	1	Zurich
126	BOM	2	Bombay
129	BRS	1	Bristol
165	NCE	2	Nice
+t----m-m- - o - to-mm - e i +

11 rows in set (0.02 sec)

You can add a new record to the underlying table through the view by using an
INSERT statement:

mysgl> INSERT INTO v _small airports
-> (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)

-> VALUES
-> (198, 'GOI', 'Dabolim Airport',
-> 'Goa', 'IN', 1, 2);

Query OK, 1 row affected (0.00 sec)
In a similar vein, you can update the underlying table, again through the view:

mysgl> UPDATE v_small airports
-> SET NumTerminals = 1
-> WHERE AirportCode = 'GOI';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysgl> SELECT AirportID, AirportCode, NumTerminals, CityName
-> FROM v_small airports;

104 Part1: VUsage

+o--- - - - - oo m-m-mmm - m - e i R il +
| AirportID | AirportCode | NumTerminals | CityName |
t------ - - - t---- - - - - t---m - +t----------- +
34	ORY	2	paris
48	LGW	1	London
59	cIa	1	Rome
62	AMS	1	Amsterdam
74	MUC	2	Munich
83	LIS	2	Lisbon
87	BUD	2	Budapest
92	ZRH	1	Zurich
126	BOM	2	Bombay
129	BRS	1	Bristol
165	NCE	2	Nice
198	GoOI	1	Goa
tommmm - - e i tommm s oo to—mm - +

12 rows in set (0.02 sec)
And you can also delete records through the view, as shown:

mysgl> DELETE FROM v small airports
-> WHERE AirportCode = 'GOI';
Query OK, 1 row affected (0.00 sec)

In more general terms, a view will allow UPDATE and DELETE operations if it does
not make use of:

¢ Temporary tables
* Group functions and/or the GROUP BY and HAVING clauses
¢ Unions or outer joins

e Correlated subqueries

In addition, a view allows INSERT statements when all of the fields needed for a
successful INSERT are present in the view.

Views that make use of noncorrelated subqueries are also updatable, subject to
these conditions. Consider this next example, which adds a new record to the v_flights_
to_changi view, created in a previous section with a subquery:

mysgl> INSERT INTO v flights to changi

-> VALUES (991,1141,3145);
Query OK, 1 row affected (0.00 sec)
mysgl> SELECT * FROM v flights to changi;

Chapter 4: Using Joins, Subqueries, and Views

898	1141	3145
896	1141	3145
725	1192	3125
991	1141	3145
+----mm-- - +--------- Fo—mmmm - +

4 rows in set (0.00 sec)
mysgl> DELETE FROM v_flights to changi
-> WHERE FlightID = 991;
Query OK, 1 row affected (0.00 sec)
mysgl> SELECT * FROM v flights to changi;

+--—-———==- +-------=-- F---m - - - +
| FlightID | RouteID | AircraftID |
+-—-m - - +--------- tommm - m - +
898	1141	3145
896	1141	3145
725	1192	3125
+----—-—=--- +--------- F-—-m - +

3 rows in set (0.01 sec)

Joins
Multitable views that make use of inner joins can be updated, so long as the INSERT or
UPDATE statement references fields from only one of the tables used in the join.
However, DELETE statements will fail when executed on a multitable view.

Here’s an example:

mysgl> CREATE VIEW v_fra join AS

-> SELECT f.FlightID, f.RouteID, “From , "To~,
-> Distance, Duration, Status, f.AircraftID,
-> AircraftTypeID, RegNum, LastMaintEnd,

-> NextMaintBegin, NextMaintEnd FROM

-> flight AS £,

-> route AS r, aircraft AS a

-> WHERE f.RouteID = r.RouteID

-> AND f.AircraftID = a.AircraftID;

Query OK, 0 rows affected (0.00 sec)

mysgl> INSERT INTO v_fra join (FlightID, RouteID, AircraftID)
-> VALUES (901, 1142, 3469);

Query OK, 1 row affected (0.00 sec)

The previous INSERT succeeds because the three fields referenced in the INSERT
statement all belong to the flight table. However, look what happens if you try to insert
a record that spans two tables, flight and route:

mysgl> INSERT INTO v _fra join
-> (RouteID, “From~, "To~, Distance,
-> Duration, Status) VALUES (1301, 87,
-> 201, 1000, 150, 1);
ERROR 1393 (HY000): Can not modify more than one base table

105

106

Part I: Usage

through a join view 'dbl.v_fra join'
mysqgl> UPDATE v _fra join SET Distance = 3915,
-> AircraftTypeID = 626 WHERE FlightID=901;
ERROR 1393 (HY000): Can not modify more than one base table
through a join view 'dbl.v fra join'

View Constraints

The CREATE VIEW statement also supports an additional clause, the WITH CHECK
OPTION clause. This clause can help enforce data integrity by only allowing those
records to be inserted or updated that match the constraints specified in the view.

To illustrate, consider the v_small_airports view created in a previous example. This
view generates a list of all airports with two or fewer terminals. However, in its current
incarnation, you can still insert records into this view (and hence into the underlying
airport table) for airports containing more than two terminals:

mysgl> INSERT INTO v _small airports
-> (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES
-> (198, 'GOI', 'Dabolim Airport',
-> 'Goa', 'IN', 1, 5);
Query OK, 1 row affected (0.00 sec)

To disallow this and only allow records that match the view constraint (NumTerminals
<= 2), re-create the view with the WITH CHECK OPTION clause and then try repeating the
previous INSERT statement:

mysgl> DROP VIEW v_small airports;
Query OK, 0 rows affected (0.05 sec)
mysgl> CREATE VIEW v small airports AS
-> SELECT * FROM airport
-> WHERE NumTerminals <= 2
-> WITH CHECK OPTION;
Query OK, 0 rows affected (0.05 sec)
mysgl> INSERT INTO v small airports
-> (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)

-> VALUES
-> (198, 'GOI', 'Dabolim Airport',
-> 'Goa', 'IN', 1, 5);

ERROR 1369 (HY000): CHECK OPTION failed 'dbl.v_small airports'

However, a record that satisfies the view constraint (NumTerminals <= 2) will be
allowed:

mysgl> INSERT INTO v_small airports
-> (AirportID, AirportCode, AirportName,

Chapter 4: Using Joins, Subqueries, and Views 107

-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES
-> (198, 'GOI', 'Dabolim Airport',
-> 'Goa', 'IN', 1, 2);
Query OK, 1 row affected (0.00 sec)

By default, MySQL “cascades” the checks performed by the WITH CHECK OPTION
clause so that constraints specified both in the target view and its parents are taken into
account. To illustrate, consider the next example, which creates a new view for UK
airports only, based on the v_small_airports view:

mysgl> CREATE VIEW v_small airports uk AS
-> SELECT * FROM v_small airports
-> WHERE CountryCode = 'UK'
-> WITH CHECK OPTION;

Query OK, 0 rows affected (0.00 sec)

Now, MySQL will only allow records to be inserted if they match the constraints
specified for this view (CountryCode = "UK’) as well as for the parent view
(NumTerminals <= 2):

mysgl> INSERT INTO v_small airports uk
-> (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES
-> (199, 'LCY', 'London City Airport’',
-> 'London', 'GB', 1, 2);
ERROR 1369 (HY000): CHECK OPTION failed 'dbl.v_small airports_uk'
mysgl> INSERT INTO v _small airports uk
-> (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES
-> (199, 'LCY', 'London City Airport',
-> 'London', 'UK', 1, 5);
ERROR 1369 (HYO000): CHECK OPTION failed 'dbl.v_small_airports_uk'
mysgl> INSERT INTO v_small airports uk
-> (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways, NumTerminals)
-> VALUES
-> (199, 'LCY', 'London City Airport',
-> 'London', 'UK', 1, 2);
Query OK, 1 row affected (0.00 sec)

Tip To force MySQL to only consider the constraints of the named view (and not its parents),
replace the WITH CHECK OPTION clause with a WITH LOCAL CHECK OPTION clause.

108

Part I: Usage

Summary

This chapter discussed joins, subqueries, and views—three common methods of
exploiting relationships between tables and retrieving record subsets. Joins are table
combinations created by linking together common fields. Subqueries are nested
SELECT queries whose results serve as filters for the queries enclosing them. Views are
prepackaged SQL queries that serve as “virtual tables” and that come in handy for
repeated use of the same (complex) query. This chapter offered an overview of the
different join types—cross joins, inner joins, outer joins, self-joins, and unions—and
explored how subqueries and views can be used within the WHERE and FROM clauses of
a SELECT statement, as well as with other DML statements such as UPDATE and DELETE.

At press time, MySQL'’s subquery implementation is still far from perfect, and joins
tend to display better performance than subqueries in most cases. Subqueries can also
be problematic to debug when the data sets returned by them are large or complex.
Therefore, at least for the near future, it’s recommended that you use joins, unions, and
other SQL constructs to ensure optimal performance of your application and minimal
resource wastage on the RDBMS.

To learn more about the topics discussed in this chapter, consider visiting the
following links:

® Detailed information on MySQL join syntax at http://dev.mysql.com/doc/
refman/5.1/en/join.html

¢ Information on how MySQL optimizes outer joins and left joins at http://
dev.mysql.com/doc/refman/5.1/en/outer-join-simplification.html and http://
dev.mysql.com/doc/refman/5.1/en/left5join-optimization.html

e Information on how MySQL optimizes nested joins at http://dev.mysql.com/
doc/refman/5.1/en/nested-joins.html

® Detailed information on MySQL subquery syntax at http://dev.mysql.com/
doc/refman/5.1/en/subqueries.html

® Restrictions on MySQL subqueries at http://dev.mysql.com/doc/refman/5.1/
en/subquery-restrictions.html

* Optimizing MySQL subqueries at http://dev.mysql.com/doc/refman/5.1/en/
in-subquery-optimization.html

e Current information on the state of MySQL subquery optimization at http://
forge.mysql.com/wiki/Subquery_Works

® Detailed information on MySQL view syntax at http://dev.mysql.com/doc/
refman/5.1/en/views.html

* Restrictions on MySQL views at http://dev.mysql.com/doc/refman/5.1/en/
view-restrictions.html

CHAPTER 5

Using Transactions

110

Part I: Usage

regard for what had gone before or what has yet to come. A series of INSERT or
UPDATE statements, for example, is executed sequentially, regardless of whether
any of the queries in the series fail or generate errors. This is because MySQL treats
each query as a self-contained unit, bearing no relationship to other queries before
or after it.

Most often, this stateless approach works well, especially in the case of small- and
medium-sized applications associated with simple business logic. In more complex
situations, however, where the actions carried out by a set of SQL statements are “all or
nothing” propositions, this approach is often less desirable. In such situations, not only
are the queries in a sequence dependent on each other (and, thus, impossible to execute
in total isolation), but a failure in one query of the sequence means that the entire
sequence should be aborted and the changes made by previous queries in the same
sequence be reversed so as to return the database to its earlier state.

These requirements are met by MySQL's transaction model, which makes it
possible to group a series of SQL statements into a single unit (or transaction) and
execute them as a collective proposition. While commercial products such as Oracle
and Microsoft SQL Server have supported this transaction model for a while, as have
open-source alternatives like PostgreSQL, MySQL introduced support for transactions
only in version 4.0, and limited it to specific storage engines in order to give users more
flexibility and choice.

This chapter takes a closer look at the MySQL transaction model, explaining what it
is, how it works, and how it helps in building more robust applications. This chapter
also looks at alternative approaches to the native transaction model, explaining how it
is possible to achieve similar functionality through the use of MySQL table locks with
the older nontransactional table types.

Usually, MySQL queries are executed independently of each other, with little

Understanding Transactions

In the SQL context, a transaction consists of one or more SQL statements that operate as
a single unit. Each SQL statement in such a unit is dependent on the others, and the
unit as a whole is indivisible. If one statement in the unit does not complete
successfully, the entire unit will be rolled back and all the affected data will be returned
to the state it was in before the transaction was started. Thus, a transaction is said to be
successful only if all the individual statements within it are executed successfully.

You might find it hard to think of situations where this all-for-one and one-for-all
approach would be useful. In reality, transactions abound all around us—in bank
transfers, stock trades, web-based shopping carts, inventory control—the list goes
on and on. In all these cases, the success of the transaction depends on a number of
interdependent actions executing successfully and in harmony with each other.

A failure in any of them must cancel the transaction and return the system back to its
earlier, pre-transaction state.

The best way to understand this is with a simple example. Consider a stock trade
on any stock exchange (Figure 5-1), in which Trader A sells 400 shares in ACME Corp.
to Trader B.

Chapter 5: Using Transactions 111

FiGURE 5-1
A stock exchange Begin
transaction

Trader A: 1000
Trader B: 1000

Debit A’s account by 400
shares

Trader A: 600
Trader B: 1000 Error .

Credit B’s account with 400
shares

Trader A: 600
Trader B: 1400 Error

Success

End

Somewhere behind the hullabaloo of the trading ring is a complex database
system tracking all such deals. In this system, a trade such as the previous one is
deemed complete only when Trader A’s account is debited by 400 ACME Corp.
shares and Trader B’s account is simultaneously credited with those shares. If either
of the previous two steps fail, the exchange would have the unenviable situation of
400 ACME Corp. shares floating around the system with no owner...not very
pleasant, I'm sure you'd agree.

Thus, the transfer of 400 ACME Corp. shares from Trader A to Trader B in the
previous example can be considered a transaction—a single unit of work that internally
encompasses several SQL statements (delete 400 shares from Trader A’s account records,
add 400 shares to Trader B’s records, perform commission calculations for both traders,
and save the changes). In keeping with the previous transaction definition, all of these
statements should execute successfully. If any one of them fails, the transaction should
be reversed so the system goes back to its earlier, stable state. Or, to put it another way,
at no point in time should the ownership of the 400 shares be ambiguous.

Let’s take another example, this one from our example database: adding a new
flight (Figure 5-2). When adding a flight, the airline has to perform three steps: define
the flight’s source, destination and aircraft; define the flight’s departure days and times;
and define the number of classes and seats available in each class. At the database level,
these operations require three different tables to be modified. If any of these three steps
were to fail, the system should cancel all the changes made to avoid an inconsistent or
incomplete flight record.

112 PartI: \Usage

FiGure 5-2
An airline flight addition Begin

Error

Add departure record

Error

Add classes and seats

LA
VARVARV

Error

Success vy

End

The three previous tasks constitute a single transaction. A failure in any one of
them should cause the entire transaction to be cancelled and the system returned to
its previous state.

The ACID Properties

The MySQL transaction architecture fully satisfies the ACID tests for transaction safety
via its InnoDB storage engine. Older table types, such as the MyISAM type, do not
support transactions. Transactions in such systems, therefore, can only be implemented
through the use of explicit table locks (although this may not be ACID-compliant).

The term “ACID” is an acronym, stating four properties that every transactional
RDBMS must comply with. To qualify for ACID compliance, an RDBMS must exhibit
the following characteristics, as described in the following sections.

Atomicity

Atomicity means that every transaction must be treated as an indivisible unit. Given a
transaction consisting of two or more tasks, all the statements within it must be successful
for the transaction to be considered successful. In the event of a transaction failure, the
system should be returned to its pre-transaction state.

Chapter 5: Using Transactions 113

With reference to the previous stock exchange example, atomicity means the sale of
shares by Trader A and the purchase of the same by Trader B cannot occur independently
of each other, and both must take place for the transaction to be considered complete.
Similarly, in the airline example, atomicity implies that it would not be possible for the
system to add a flight without also adding corresponding departure timings and class/
seat information.

For a transaction to meet the atomicity requirement, if any of the statements in the
transaction fail, all of the preceding statements must be rolled back to ensure the
integrity of the database is unaffected. This is particularly important in mission-critical,
real-world applications (like financial systems) that perform data entry or updates and
require a high degree of safety from undetected data loss.

Consistency

Consistency means that every transaction must ensure that the database is in a consistent
state once it completes executing. Or, to put it another way, consistency means that the
database must never reflect a partially completed transaction at any time.

With reference to the previous stock exchange example, consistency means that
every debit from a seller’s account results in a corresponding and equal credit to a
buyer’s account. If a transaction reduces Trader A’s account by 400 shares, but only
credits 300 shares to Trader B’s account, the consistency constraint will be violated
because the total number of shares in the system changes. Similarly, the consistency
property would ensure that if a flight is removed, all data related to that flight,
including departure timings and seat/class information, would also be removed.

Isolation

Isolation means that every transaction must occur in its own separate and independent
“transaction space,” and its impact on the database only becomes visible once the
transaction has completed executing (regardless of whether the transaction was
successful or not). This is particularly important in multiuser, multitransaction systems,
because it implies that the effects of a particular transaction are not “felt” until the
transaction is complete. In the absence of the isolation property, two conflicting
transactions might quickly produce data corruption, because each transaction would
violate the other’s integrity.

With reference to the previous stock exchange example, for instance, isolation implies
the transaction between the two traders is independent of all other transactions on the
exchange and its result is visible to the public at large only once it has been completed.
When considering a flight modification, it implies that the list of available flights is
updated only once the transaction is complete, and does not reflect other transactions
that might still be in process at any given instant.

In reality, of course, the only way to obtain absolute isolation is to ensure that only a
single user can access the database at any time. This is not a practical solution at all when
dealing with a multiuser RDBMS like MySQL. Instead, most transactional systems use
either page-level locking or row-level locking to isolate the changes made by different
transactions from each other, at some cost in performance.

114

Part I: Usage

Durability

Durability means that changes made by a successful transaction will not be lost, even if
the system crashes. Most RDBMS products ensure data durability by keeping a log of
all activity that alters data in the database in any way. This database log keeps track of
any and all updates made to tables, queries, reports, and so on.

In the event of a system crash or a corruption of the data storage media, the system is
able to recover to the last successful update on restart and reflect the changes carried out
by transactions that were still in progress when it went down through the use of its logs.

In the context of the previous share transfer example, durability means that once
the transfer of shares from Trader A to Trader B has completed successfully, the system
should reflect that state, even if a system failure subsequently takes place. Or, when
dealing with the airline database, flights that have been added should not vanish from
the database in the event of a system failure.

MySQL and the ACID Properties
MySQL fully satisfies the ACID requirements for a transaction-safe RDBMS, as follows:

e Atomicity is handled by storing the results of transactional statements (the
modified rows) in a memory buffer and writing these results to disk and to the
binary log from the buffer only once the transaction is committed. This ensures
that the statements in a transaction operate as an indivisible unit and that their
effects are seen collectively, or not at all.

e Consistency is primarily handled by MySQL’s logging mechanisms, which
record all changes to the database and provide an audit trail for transaction
recovery. In addition to the logging process, MySQL provides locking
mechanisms that ensure that all of the tables, rows, and indexes that make up
the transaction are locked by the initiating process long enough to either
commit the transaction or roll it back.

¢ Server-side semaphore variables and locking mechanisms act as traffic managers
to help programs manage their own isolation mechanisms. For example, MySQL’s
InnoDB engine uses fine-grained row-level locking for this purpose.

¢ MySQL implements durability by maintaining a binary transaction log file that
tracks changes to the system during the course of a transaction. In the event of
a hardware failure or abrupt system shutdown, recovering lost data is a
relatively straightforward task by using the last backup in combination with
the log when the system restarts. By default, InnoDB tables are 100 percent
durable (in other words, all transactions committed to the system before the
crash are liable to be rolled back during the recovery process), while MyISAM
tables offer partial durability.

A Simple Transaction

MySQL comes with a number of commands related to beginning, ending, and rolling
back transactions. This section examines them in detail.

Chapter 5: Using Transactions 115

MySQL supports transactions natively via its InnoDB storage engine, which means
the following commands can only be used with those engines. The default type for new
tables in MySQL is MyISAM, but you can tell MySQL you want an InnoDB table by
adding the optional ENGINE = INNODB clause to your CREATE TABLE command. For
existing tables, you can change the table type on the fly through the ALTER TABLE
command, again by specifying a new ENGINE clause. Here are some examples:

mysgl> ALTER TABLE flight ENGINE=INNODB;
Query OK, 32 rows affected (0.06 sec)
Records: 32 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE flightdep ENGINE=INNODB;
Query OK, 108 rows affected (0.09 sec)
Records: 108 Duplicates: 0 Warnings: 0

mysqgl> ALTER TABLE flightclass ENGINE=INNODB;
Query OK, 7 rows affected (0.06 sec)
Records: 7 Duplicates: 0 Warnings: 0

CAUTION The ALTER TABLE command works by backing up the data in the table, erasing it,
re-creating it with the specified modifications, and then reinserting the backed-up records.
A failure in any of these steps could result in the loss or corruption of your data. Therefore,
a good idea is always to create a table backup prior to using the ALTER TABLE command.

To initiate a transaction and tell MySQL that all subsequent SQL statements should
be considered a single unit, MySQL offers the START TRANSACTION command to mark
the beginning of a transaction.

mysgl> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

You can also use the BEGIN or BEGIN WORK commands to initiate a transaction.

Typically, the START TRANSACTION command is followed by the SQL statements
that make up the transaction. Let’s suppose the transaction here consists of adding a
new flight to the system and the steps involved include (1) creating a record for the
flight, (2) defining the flight’s departure day and time, and (3) defining the flight’s class
and seat structure.

mysgl> INSERT INTO flight (FlightID, RouteID, AircraftID)
-> VALUES (834, 1061, 3469);

Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (834, 4, '16:00');

Query OK, 1 row affected (0.02 sec)

mysgl> INSERT INTO flightclass (FlightID, ClassID, MaxSeats,
-> BasePrice) VALUES (834, 'A', 20, 200);

Query OK, 1 row affected (0.00 sec)

116

Part I: Usage

Look inside these tables to see if the data has been correctly entered with a quick
SELECT query:

mysgl> SELECT COUNT (FlightID)
-> FROM flight WHERE FlightID=834;

R il +
| COUNT (FlightID) |
R il +
| 1
o m - m - m - m - m - m - m— - +

1 row in set (0.03 sec)
mysgl> SELECT COUNT (FlightID)
-> FROM flightdep WHERE FlightID=834;

tommm s m oo +
| COUNT(FlightID) |
- - +
| 1
tomm s +

1 row in set (0.00 sec)

Once the SQL statements have all been executed, you can either save the entire
transaction to disk with the COMMIT command or undo all the changes made with the
ROLLBACK command. Here’s an example of rolling it back:

mysgl> ROLLBACK;
Query OK, 0 rows affected (0.02 sec)
mysgl> SELECT COUNT (FlightID)

-> FROM flightdep WHERE FlightID=834;

oo mmmmm - m - m - m - m - +
| COUNT (FlightID) |
e il +
| 0|
to-mm oo oo +

1 row in set (0.02 sec)
mysgl> SELECT COUNT (FlightID)
-> FROM flight WHERE FlightID=834;

Fommmm e m o +
| COUNT(FlightID) |
Fommmmm - +
| 0 |
R il +

1 row in set (0.00 sec)

Chapter 5: Using Transactions 117

NortE If your transaction involves changes to both transactional and nontransactional tables,
the portion of the transaction dealing with nontransactional tables cannot be reversed with a
ROLLBACK command. In such a situation, MySQL will return an error notifying you of an
incomplete rollback, as in the following:

mysgl> ROLLBACK;
ERROR 1196: Some non-transactional changed tables couldn't be rolled back

Now, perform the transaction again, this time with a view to saving it.

mysgl> START TRANSACTION;

Query OK, 0 rows affected (0.00 sec)

mysgl> INSERT INTO flight (FlightID, RouteID, AircraftID)
-> VALUES (834, 1061, 3469);

Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (834, 4, '16:00');

Query OK, 1 row affected (0.02 sec)

mysgl> INSERT INTO flightclass (FlightID, ClassID, MaxSeats,
-> BasePrice) VALUES (834, 'A', 20, 200);

Query OK, 1 row affected (0.00 sec)

There’s an interesting experiment you can perform at this point. Open another
client connection to the server and check if the previous SQL queries have resulted in
any changes to the database.

mysgl> SELECT COUNT (FlightID)
-> FROM flight WHERE FlightID=834;

- - +
| COUNT (FlightID) |
B +
| 0 |
tomm oo +

1 row in set (0.02 sec)

This is an example of isolation in action. As noted in the preceding section, isolation
means that the results of a transaction become visible only when the transaction is
successfully committed. Because the transaction is still in progress and has not yet been
saved to disk, it is effectively invisible to any other user of the same database (if visibility
between transactions is desired, it can be attained by setting a different transaction
isolation level; this is discussed in detail in the section “Transaction Isolation Levels”).

The COMMIT command saves the changed records to the database:

mysqgl> COMMIT;
Query OK, 0 rows affected (0.01 sec)

The COMMIT command also marks the end of the transaction block. Once the
transaction has been committed to the database, the committed data will become
visible to other client sessions.

118 PartI: \Usage

FiGURE 5-3
Transaction life cycle INITIAL DB STATE

y
START
TRANSACTION

A

INSERT . ..
UPDATE. ..
DELETE. ..

. '

COMMIT ROLLBACK

NEW DB STATE

Figure 5-3 summarizes the life cycle of a transaction with a simple flow diagram.

Can | Start a New Transaction from Within an Existing One?

No. Beginning a second transaction within the first one with START TRANSACTION
or BEGIN automatically commits the previous one. In a similar manner, many
other MySQL commands will implicitly perform a COMMIT when invoked. Here’s
a brief list:

CREATE DATABASE/CREATE TABLE

DROP DATABASE/TRUNCATE TABLE/DROP TABLE
CREATE INDEX/DROP INDEX

ALTER TABLE/RENAME TABLE

LOCK TABLES/UNLOCK TABLES

CREATE USER/DROP USER/RENAME USER
GRANT/REVOKE/SET PASSWORD

SET AUTOCOMMIT = 1

The ADD CHAIN and RELEASE Clauses

By default, once a transaction has completed, MySQL simply awaits the next command.
However, MySQL's START TRANSACTION command also supports two additional
clauses, which can be used to modify what happens after a transaction completes.

Chapter 5: Using Transactions 119

e The ADD CHAIN clause causes MySQL to immediately start a new transaction
(with the same isolation level as the previous one) following a commit or rollback.

e The RELEASE clause causes MySQL to terminate the client connection following
a commit or rollback.

Adding the NO prefix to either of these two clauses negates the operation.

Tip It’s also possible to modify this behavior by setting the MySQL completion_type variable,
either on a per-session basis with SET or globally via the MySQL configuration file.

Savepoints

The InnoDB storage engine supports an additional useful feature: the ability to roll
back a transaction partially instead of completely. This is accomplished through the use
of savepoints—user-defined points that can be used to mark substages within a
transaction. In the event of a transaction failure, these savepoints make it possible to
roll back only specific parts of a transaction rather than the entire transaction.

Savepoints within a transaction are set with the SAVEPOINT command, which
accepts a user-defined identifier. The ROLLBACK TO SAVEPOINT command can then be
used to roll an in-progress transaction back to the named savepoint, reversing all
changes made after the savepoint.

Here’s an example of savepoints in action:

mysqgl> START TRANSACTION;

Query OK, 0 rows affected (0.02 sec)

mysgl> INSERT INTO flight (FlightID, RouteID, AircraftID)
-> VALUES (834, 1061, 3469);

Query OK, 1 row affected (0.02 sec)

mysqgl> SAVEPOINT flightl;

Query OK, 0 rows affected (0.04 sec)

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (834, 4, '16:00');

Query OK, 1 row affected (0.00 sec)

mysgl> SAVEPOINT flight2;

Query OK, 0 rows affected (0.02 sec)

mysgl> INSERT INTO flightclass (FlightID, ClassID, MaxSeats,
-> BasePrice) VALUES (834, 'A', 20, 200);

Query OK, 1 row affected (0.00 sec)

mysgl> SAVEPOINT flight3;

Query OK, 0 rows affected (0.01 sec)

At this point, there are three savepoints, each one corresponding to a table
modification. Verify that the tables have indeed been modified:

mysgl> SELECT COUNT (FlightID) FROM flightclass
-> WHERE FlightID=834;

120 PartI: \Usage

R il +
| COUNT (FlightID) |
t---m - m - m - m - +
| 1|
o mmm - m - m - m - m - mm - +

1 row in set (0.02 sec)
Now, roll back only the last modification:

mysgl> ROLLBACK TO SAVEPOINT flight2;
Query OK, 0 rows affected (0.02 sec)

Check the concerned table to verify the rollback:

mysgl> SELECT COUNT (FlightID) FROM flightclass
-> WHERE FlightID=834;

Fommmm e m o +
| COUNT(FlightID) |
Fommmmm - +
| 0 |
R il +

1 row in set (0.03 sec)
Notice that the changes made to other tables persist:

mysgl> SELECT COUNT (FlightID) FROM flightdep
-> WHERE FlightID=834;

tommmm s m o m oo +
| COUNT(FlightID) |
o= +
| 1
Fommmm s s e m - +

1 row in set (0.01 sec)

It’s important to note that the transaction is still in progress; issuing a ROLLBACK TO
SAVEPOINT command doesn’t commit or roll back the transaction. Conclude the
transaction by rolling back all the remaining changes as well:

mysgl> ROLLBACK;

Query OK, 0 rows affected (0.05 sec)

mysgl> SELECT COUNT (FlightID) FROM flightdep
-> WHERE FlightID=834;

R il +
| COUNT (FlightID) |
e il +
| 0 |
o mmmmm - m - m - m - m - +

1 row in set (0.01 sec)

Chapter 5: Using Transactions 121

There are some important things to learn about savepoints from the previous example.

e Multiple savepoints can be set per transaction, so long as they each have a
unique identifier. Repeating an identifier overwrites previously set savepoints
with the same identifier.

¢ Rolling back to a savepoint does not end the transaction. To end the transaction,
use the COMMIT or ROLLBACK commands. However, rolling back to a specified
savepoint deletes all savepoints set after that point. If the savepoint specified in
the ROLLBACK TO SAVEPOINT command does not exist, MySQL will generate
an error.

* Asavepoint can be removed using the RELEASE SAVEPOINT command, which
accepts a savepoint identifier and removes that savepoint from the stack. Note
that this command does not perform an implicit COMMIT or ROLLBACK, so the
transaction remains in progress until an explicit COMMIT or ROLLBACK is issued.

Controlling Transactional Behavior

MySQL offers two variables to control transactional behavior—the AUTOCOMMIT
variable and the TRANSACTION ISOLATION LEVEL variable. The following sections
examine these in greater detail.

Automatic Commits

By default, MySQL implicitly commits the results of every SQL query to the database
once it is executed. This is referred to as autocommit mode and is the reason you needn’t
begin every MySQL session with a START TRANSACTION statement or end it with a
COMMIT or ROLLBACK. Or, to put it another way, MySQL treats every query as a single-
statement transaction.

This default behavior can be modified via the special AUTOCOMMIT variable, which
controls MySQL’s autocommit mode. The following snippet demonstrates, by turning
off the MySQL behavior of internally issuing a COMMIT command after each SQL
interaction:

mysqgl> SET AUTOCOMMIT = 0;
Query OK, 0 rows affected (0.02 sec)

Subsequent to this, any update to a table will not be saved to the database until an
explicit COMMIT command is issued. In fact, terminating a MySQL session without
issuing a COMMIT will cause the database to automatically fire a ROLLBACK and undo all
the changes made, thereby negating all the work done during the session. The
following example demonstrates this:

mysqgl> SET AUTOCOMMIT = 0;
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT COUNT (FlightID)

-> FROM flight WHERE FlightID=834;

122 Part1: Usage

R il +
| COUNT (FlightID) |
t---m - m - m - m - +
| 0 |
o mmm - m - m - m - m - mm - +

1 row in set (0.02 sec)

mysqgl> INSERT INTO flight (FlightID, RouteID, AircraftID)
-> VALUES (834, 1061, 3469);

Query OK, 1 row affected (0.00 sec)

mysqgl> exit

Bye

Start a new session and check the table. It will not contain the changes made, as
they were not committed at the end of the last session.

mysgl> SELECT COUNT (FlightID)
-> FROM flight WHERE FlightID=834;

Fommmm e m o +
| COUNT(FlightID) |
Fommmmm - +
| 0 |
R il +

1 row in set (0.02 sec)
To turn autocommit mode back on, reset the AUTOCOMMIT variable to its initial state.

mysgl> SET AUTOCOMMIT = 1;
Query OK, 0 rows affected (0.00 sec)

The AUTOCOMMIT variable is a session variable and always defaults to 1 when a new
client session begins.

NoOTE The AUTOCOMMIT variable only affects transactional table types like InnoDB. When
dealing with nontransactional table types like MyISAM, the AUTOCOMMIT variable has no
impact and changes to such tables are always saved immediately.

Transaction Isolation Levels

One of the most important properties of a transaction-capable RDBMS is its capability
to “isolate” the different sessions in progress at any given instance on the server. In a
single-user environment, this property is largely irrelevant for obvious reasons: There
is nothing to isolate because usually only a single session is active at any time. In more
complex real-world scenarios, however, it is unlikely this assumption will remain true.
In a multiuser environment, many RDBMS sessions will usually be active at any
given time. In the stock trading example discussed previously, for instance, it is unlikely
that only a single trade will be taking place at a particular point in time. Far more likely
is that hundreds of trades will occur simultaneously. In such a situation, it is essential
that the RDBMS isolate transactions so that they do not interfere with each other, while
simultaneously ensuring the database’s performance does not suffer as a result.

Chapter 5: Using Transactions

To understand the importance of isolation, consider what would happen if it wasn’t
enforced. In the absence of transaction isolation, different SELECT statements would
retrieve different results within the context of the same transaction because the
underlying data was modified by other transactions in the interim. This would create
inconsistency and make it difficult to trust a particular result set or use it as the basis
for calculations with any degree of confidence. Isolation thus imposes a degree of
insulation between transactions, guaranteeing that an application only sees consistent
data within the scope of a transaction.

MySQL provides the following four isolation levels in accordance with the ANSI/
ISO SQL specification:

READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

These transaction isolation levels determine the degree to which other transactions
can “see” inside an in-progress transaction, and are arranged in hierarchical order,
beginning with the least secure (and most problematic) level and gradually moving to
the most secure level. These isolation levels can be manipulated with the TRANSACTION
ISOLATION LEVEL variable, which is discussed in greater detail in the section
“Modifying the Transaction Isolation Level.”

Let’s now look at what each of the isolation levels does.

The READ UNCOMMITTED Isolation Level
The READ UNCOMMITTED isolation level provides the minimum amount of insulation
between transactions. In addition to being vulnerable to phantom reads and
unrepeatable reads, a transaction at this isolation level can read data that has not yet
been committed by other transactions. If this transaction now uses the uncommitted
changes made by other transactions as the basis for calculations of its own, and those
uncommitted changes are then rolled back by their parent transactions, it can result in
massive data corruption.

As an example, consider Figure 5-4. Because the second transaction is able to view
the uncommitted changes of the first transaction, the number of flights it sees varies

Transaction 1

START INSERT
TRANS. (FlightID ROLLBACK
COUNT=0 COUNT=1 COUNT=0
B e e R B B B B B ettt >
0 1 2 3 4 5 6 7 8 9 10 11 Time
COUNT=0 COUNT=0 COUNT=1 COUNT=0 COUNT=0
START
TRANS. COMMIT

Transaction 2

Ficure 5-4 The READ UNCOMMITTED isolation level and a dirty read

123

124

Part I: Usage

during the lifetime of the first transaction. As a result, at any given instant, the second
transaction may be operating on faulty data, depending on whether the first transaction
commits or rolls back its changes (hence, the term “dirty read” for this kind of error).

The READ COMMITTED Isolation Level

Even less secure than the REPEATABLE READ isolation level is the READ COMMITTED
isolation level. At this level, a transaction can see the committed changes of other
transactions during its lifetime. Put another way, this means multiple SELECT statements
within the same transaction might return different results if the corresponding tables
have been modified by other transactions in the intervening period.

Figure 5-5 shows an example of this. In this case, the second transaction will
continue to see zero records during the lifetime of the first transaction. However, once
the first transaction commits its changes, the second one will see one flight, even
though it is still in progress.

This is obviously a problem—if the second transaction sees two different results
for the same operation, it isn’t going to know which one to trust as the correct one.
Extrapolate a little and assume that instead of a single transaction, many transactions
are committing updates to the database, and you'll see every query executed by a
transaction could produce a different result set (hence, the term “unrepeatable read”
for this kind of situation).

The REPEATABLE READ Isolation Level

For applications that are willing to compromise a little on security for better performance,
MySQL offers the REPEATABLE READ isolation level. At this level, a transaction will not
see the changes carried out by concurrent transactions until it itself has concluded.
Figure 5-6 demonstrates how this works.

In this case, the second transaction can see the new flight added by the first
transaction only once both transactions are complete. This is, in fact, the way most
users expect transactions to work, and it should come as no surprise that this is
MySQL’s default transaction isolation level. The InnoDB storage engine accomplishes

Transaction 1

START INSERT
TRANS. (FlightID COMMIT
COUNT=0 COUNT=1 COUNT=1
Rt e Rt e e B e e B e e >
0 1 2 3 4 5 6 7 8 9 10 1 Time
COUNT=0 COUNT=0 COUNT=1 COUNT=1
START
TRANS. COMMIT

Transaction 2

Ficure 5-5 The READ COMMITTED isolation level

Chapter 5: Using Transactions

Transaction 1

START INSERT
TRANS. (FlightID COMMIT
COUNT=0 COUNT=1 COUNT=1
et B s e et e B P e B e >
0 1 2 3 4 5 6 7 8 9 10 11 Time
COUNT=0 COUNT=0 COUNT=0 COUNT=1
START
TRANS. COMMIT

Transaction 2

Ficure 5-6 The REPEATABLE READ isolation level

this by using multiversioning to store a snapshot of the query results when the query
is executed for the first time; it then reuses this snapshot for all subsequent queries
until the transaction is committed.

The SERIALIZABLE Isolation Level

This SERIALIZABLE isolation level offers the maximum amount of insulation between
transactions by treating concurrent transactions as though they were executing
sequentially, one after the other. Figure 5-7 illustrates.

Here, the first transaction is adding a new flight to the database, while the second is
attempting to view the total number of flights. However, because MySQL is executing
these transactions serially, the INSERT operation in the first transaction will lock the
table until the transaction is complete. This will force the SELECT operation in the
second transaction to wait until the lock is released before it can obtain a result.

This “serialized” approach to handling transactions is the most secure: Sequentially
locking and unlocking the table ensures that each transaction only sees data that has
actually been committed to the database, with no possibility of dirty or unrepeatable
reads. However, this comes at a price: MySQL will take a performance hit if every
transaction runs at this isolation level because of the large amount of resources required
to handle the various transactional locks at any given instant.

Transaction 1

START INSERT
TRANS. (FlightID COMMIT

COUNT=0 COUNT=1 COUNT=1

———— 44— ——d——— - —— - —— - —— e ——H— ——H——— - ——— >
0 1 2 3 4 5 6 7 8 9 0 1 Time

COUNT=0 COUNT=?? COUNT=1 COUNT=1
START (waiting)
TRANS. COMMIT

Transaction 2

Ficure 5-7 The SERIALIZABLE isolation level

125

126

Part I: Usage

Modifying the Transaction Isolation Level

Starting from MySQL 4.0.5, you can alter the transaction isolation level using the
TRANSACTION ISOLATION LEVEL variable. MySQL defaults to the REPEATABLE READ
isolation level. You can change this using the SET command, as in the following example:

mysgl> SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
Query OK, 0 rows affected (0.00 sec)

You can obtain the current value of the TRANSACTION ISOLATION LEVEL variable
at any time with a quick SELECT, as in the following:

mysgl> SELECT @@tx isolation;

| @@tx isolation |

1 row in set (0.00 sec)

By default, this value of the TRANSACTION ISOLATION LEVEL variable is set on a
per-session basis, but you can set it globally for all sessions by adding the GLOBAL
keyword to the SET command line, as shown in the following:

mysgl> SET GLOBAL TRANSACTION ISOLATION LEVEL READ COMMITTED;
Query OK, 0 rows affected (0.00 sec)

You can also set the default transaction isolation level at startup with the special
--transaction-isolation argument to the mysqld server process.

NOTE You need the SUPER privilege to set the global transaction isolation level. Chapter 11
has more information on how to obtain this (and other) privileges in the MySQL access
control system.

Pseudo-Transactions

So far, you've seen transactions in the context of InnoDB tables, the only native
MySQL storage engine to support ACID-compliant transactions. The older MySQL
table types, still in use in many MySQL installations, do not support transactions, but
MySQL still enables users to implement a primitive form of transactions through the
use of table locks. This section examines these “pseudo-transactions” in greater detail,
with a view to offering some general guidelines on performing secure transactions
with nontransactional tables.

MySQL supports a number of different table types, and the locking mechanisms
available differ from type to type. Therefore, a clear understanding of the different levels

Chapter 5: Using Transactions 127

of locking available is essential to implementing a pseudo-transaction environment with
MySQL’s nontransactional tables.

e Tablelocks The entire table is locked by a client for a particular kind of access.
Depending on the type of lock, other clients will not be allowed to insert records
into the table, and could even be restricted from reading data from it.

® Pagelocks MySQL will lock a certain number of rows (called a page) from the
table. The locked rows are only available to the thread initiating the lock. If
another thread wants to write to data in these rows, it must wait until the lock is
released. Rows in other pages, however, remain available for use.

* Row locks Row-level locks offer finer control over the locking process than
either table-level locks or page-level locks. In this case, only the rows that are
being used by the thread are locked. All other rows in the table are available to
other threads. In multiuser environments, row-level locking reduces conflicts
between threads, making it possible for multiple users to read and even write to
the same table simultaneously. This flexibility must be balanced, however,
against the fact that it also has the highest performance overhead of the three
locking levels.

The MyISAM table type supports only table-level locking, which offers performance
benefits over row- and page-level locking in situations involving a larger number of
reads than writes. The InnoDB table type automatically performs row-level locking in
transactions.

Table Locks as a Substitute for Transactions

Because MyISAM (and other older MySQL table formats) do not support InnoDB-style
COMMIT and ROLLBACK syntax, every change made to the database is immediately
saved to disk. As noted previously, in a single-user scenario, this does not present much
of a problem; however, in a multiuser scenario, it can cause problems because it is no
longer possible to create transaction “bubbles” that isolate the changes made by one
user from those made by other users. In such a situation, the only way to ensure
consistency in the data seen by different client sessions is a brute-force approach:
Prevent other users from accessing the tables being changed for the duration of the
change (by locking them), and permit them access only once the changes are complete.

Previous sections of this chapter have already discussed the InnoDB engine, which
natively supports row- and page-level locking to safely execute simultaneous
transactions. The MyISAM table type, however, does not support these fine-grained
locking mechanisms. Instead, explicit table locks have to be set to avoid simultaneous
transactions from infringing on each other’s space.

The following example sets a read-only lock on the flight table:

mysqgl> LOCK TABLE flight READ;
Query OK, 0 rows affected (0.05 sec)

128

Part I: Usage

Locking more than one table at the same time is not uncommon. This can be easily
accomplished by specifying a comma-separated list of table names and lock types after
the LOCK TABLES command, as in the following:

mysgl> LOCK TABLES flight READ, flightdep WRITE
Query OK, 0 rows affected (0.05 sec)

The previous statement locks the flight table in read mode and the flightdep table in
write mode.
Tables can be unlocked with a single UNLOCK TABLES command, as in the following:

mysgl> UNLOCK TABLES;
Query OK, 0 rows affected (0.05 sec)

There is no need to name the tables to be unlocked. MySQL automatically unlocks
all tables that were locked previously via LOCK TABLES.

There are two main types of table locks: read locks and write locks. Let’s take a
closer look.

The READ Lock
A READ lock on a table implies that the thread (client) setting the lock can read data
from that table, as can other threads. However, no thread can modify the locked table
by adding, updating, or removing records for so long as the lock is active.

Here’s a simple example you can try to see how READ locks work. Begin by placing
a READ lock on the £1ight table:

mysgl> LOCK TABLE flight READ;
Query OK, 0 rows affected (0.05 sec)

Then, read from it:

mysql> SELECT FlightID FROM flight LIMIT 0,4;

+--------=- +
| flightid |
to--- - - - +
| 345 |
| 535 |
| 589 |
| 652 |
+o----- - +

4 rows in set (0.00 sec)
No problems there. Now, write to it:

mysgl> INSERT INTO flight (FlightID, RouteID, AircraftID)

-> VALUES (834, 1061, 3469);
ERROR 1099 (HY000): Table 'flight' was locked with a READ lock and
can't be updated

Chapter 5: Using Transactions

MySQL rejects the INSERT because the table is locked in read-only mode.

What about other threads (clients) accessing the same table? For these threads,
reads (SELECTs) will work without a problem. However, writes (INSERTs, UPDATES,
or DELETEs) will cause the initiating thread to halt and wait for the lock to be released
before proceeding. Thus, only after the locking thread executes an UNLOCK TABLES
command and releases its locks will the next thread be able to proceed with its write.

NoTE A variant of the READ lock is the READ LOCAL lock, which differs from a regular READ
lock in that other threads can execute INSERT statements that do not conflict with the
thread initiating the lock. This was created for use with the mysqldump utility to allow
multiple simultaneous INSERTS into a table.

The WRITE Lock

AWRITE lock on a table implies that the thread setting the lock can modify the data in
the table, but other threads cannot either read or write to the table for the duration of
the lock. Here’s a simple example that illustrates how WRITE locks work. Begin by
placing a WRITE lock on the flight table:

mysqgl> LOCK TABLE flight WRITE;
Query OK, 0 rows affected (0.05 sec)

Then, try reading from it:

mysqgl> SELECT FlightID FROM flight LIMIT O0,4;

e i +
| £lightid |
to-mm - - +
| 345 |
| 535 |
| 589 |
| 652 |
t--mmmm - +

4 rows in set (0.00 sec)
Because a WRITE lock is on the table, writes should take place without a problem.

mysgl> INSERT INTO flight (FlightID, RouteID, AircraftID)
-> VALUES (834, 1061, 3469);

Now, what about other MySQL sessions? Open a new client session and try reading
from the same table while the WRITE lock is still active.

mysql> SELECT FlightID FROM flight LIMIT 0,4;

The MySQL client will now halt and wait for the first session to release its locks
before it can execute the previous command. Once the first session issues an UNLOCK

129

130

Part I: Usage

TABLES command, the SELECT command invoked in the second session will be accepted
for processing because the table is no longer locked.

mysgl> SELECT FlightID FROM flight LIMIT O0,4;

+o--- - +
| flightid |
+t-------- - +
| 345 |
| 535 |
| 589 |
| 652 |
+o--- - - +

4 rows 1in set (3 min 32.98 sec)

Notice from the output the time taken to execute the simple SELECT command: This
includes the time spent waiting for the table lock to be released. This should illustrate
one of the most important drawbacks of table locks: If a thread never releases its locks,
all other threads attempting to access the locked table(s) are left waiting for the lock to
time out, leading to a significant degradation in overall performance.

Which Type of Lock Has Higher Priority?

In situations involving both WRITE and READ locks, MySQL assigns WRITE locks
higher priority to ensure that modifications to the table are saved to disk as soon as
possible. This reduces the risk of updates getting lost in case of a disk crash or a
system failure.

Implementing a Pseudo-Transaction with Table Locks

This section will now illustrate a transaction through the use of table locks by rewriting
one of the earlier transactional examples with locks and MyISAM tables. In the earlier
example, the steps included creating a record for the flight, defining the flight’s
departure day and time, and defining the flight’s class and seat structure.

Because each of the three tables concerned will be modified when a new flight is
added, they must be locked in WRITE mode so that other threads do not interfere with
the transaction.

mysgl> LOCK TABLES flight WRITE,
-> flightdep WRITE, flightclass WRITE;
Query OK, 0 rows affected (0.00 sec)

As explained previously, WRITE mode implies that other threads will neither be able
to read from nor write to the locked tables for so long as the lock is active. Hence, the
transaction must be as short and sweet as possible to avoid a slowdown in other
requests for data in these tables.

Chapter 5: Using Transactions 131

Insert the new records into the various tables:

mysgl> INSERT INTO flight (FlightID, RouteID, AircraftID)
-> VALUES (834, 1061, 3469);

Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (834, 4, '16:00');

Query OK, 1 row affected (0.02 sec)

mysgl> INSERT INTO flightclass (FlightID, ClassID, MaxSeats,
-> BasePrice) VALUES (834, 'A', 20, 200);

Query OK, 1 row affected (0.00 sec)

Verify the data has been correctly entered with a quick SELECT:

mysgl> SELECT COUNT (FlightID)
-> FROM flight WHERE FlightID=834;

Fmm +
| COUNT (FlightID) |
tomm s mmmm s mm o - +
| 1
tomm s s s m o m - m - +

1 row in set (0.02 sec)
Unlock the tables, and you're done!

mysql> UNLOCK TABLES;
Query OK, 0 rows affected (0.09 sec)

Until the tables are unlocked, all other threads trying to access the three locked tables
will be forced to wait. The elegance of the transactional approach, in which page- and
row-level locks allow other clients to work with the data, even during the course of a
transaction, is missing here. That said, however, table locks do help to isolate updates in
different client sessions from each other (albeit in a somewhat primitive manner) and, in
doing so, help users constrained to older, nontransactional table types to implement an
“almost-transactional” environment for their application.

Summary

This chapter discussed transactions, a MySQL feature that lets developers group
multiple SQL statements into a single unit and have that unit execute atomically. This
feature makes it possible to execute SQL queries in a more secure manner and revert
the RDBMS to a previous, stable snapshot in the event of an error.

Transactions can impose a substantial performance drain on an RDBMS because of
the resources needed to keep transactions separate from each other in a multiuser
environment. As this chapter demonstrated, MySQL is unique in that it lets application

132 Part1: Usage

developers choose whether to use transactional features on a per-table basis in order to
optimize performance. MySQL also exposes a number of variables that developers can
adjust to control transactional behavior and performance. Most notable among these is
the transaction isolation level, which sets the degree to which transactions are insulated
from each other’s actions.

To learn more about the topics discussed in this chapter, consider visiting the
following links:

e Transactions, at http://dev.mysql.com/doc/refman/5.1/en/commit.html

* Savepoints, at http://dev.mysql.com/doc/refman/5.0/en/savepoints.html

* Pseudo-transactions and table locking, at http://dev.mysql.com/doc/
refman/5.1/en/lock-tables.html

e Transaction isolation levels, at http://dev.mysql.com/doc/refman/5.1/en/
set-transaction.html

* Deviations between the MySQL transaction model and the ANSI SQL specification,
at http://dev.mysql.com/doc/refman/5.1/en/ansi-diff-transactions.html

CHAPTER 6

Using Stored Procedures
and Functions

134

Part I: Usage

independent code segments that encapsulate specific tasks and can be “called

upon” as needed from different applications. However, this construct isn’t limited
only to programming languages: one of the key new features introduced in MySQL 5.0
was its support for stored routines, which bring similar reusability to SQL statements.

Of course, stored routines are not new to the SQL world. Both commercial and

open-source alternatives to MySQL have had this feature for many years. When this
book went to press, MySQL’s implementation of stored routines was not as fully
featured or as optimized as that of many of its counterparts, but it improves with each
new release. Nevertheless, the material in this chapter, which includes coverage of
conditional tests, loops, cursors, and error handlers in the context of MySQL stored
routines, should give you more than enough information to get started building some
fairly useful stored routines of your own.

Most programmers will be familiar with the concept of functions—reusable,

Understanding Stored Routines

As your SQL business logic becomes more complex, you might find yourself repeatedly
writing blocks of SQL statements to perform the same database operation at the
application level—for example, inserting a set of linked records or performing
calculations on a particular result set. In these situations, it usually makes sense to turn
this block of SQL code into a reusable routine, which resides on the database server
(rather than in the application) so that it can be managed independently and invoked
as needed from different modules in your application.

Packaging SQL statements into server-side routines has four important advantages.

* A stored routine is held on the database server, rather than in the application.
For applications based on a client-server architecture, calling a stored routine is
faster and requires less network bandwidth than transmitting an entire series of
SQL statements and taking decisions on the result sets. Stored routines also
reduce code duplication by allowing developers to extract commonly used SQL
operations into a single component. The end result is that application code
becomes smaller, more efficient, and easier to read.

* A stored routine is created once but used many times, often from more than one
program. If the routine changes, the changes are implemented in one spot (the
routine definition) while the routine invocations remain untouched. This fact
can significantly simplify code maintenance and upgrades. Debugging and
testing an application also becomes easier, as errors can be traced and corrected
with minimal impact to the application code.

¢ Implementing database operations as stored routines can improve application
security, because application modules can be denied access to particular tables
and only granted access to the routines that manipulate those tables. This not
only ensures that an application only sees the data it needs, but also ensures
consistent implementation of specific tasks or submodules across the application
(because all application modules will make use of the same stored routines
rather than attempting to directly manipulate the base tables).

Chapter 6: Using Stored Procedures and Functions

¢ Using stored routines encourages abstract thinking, because packaging SQL
operations into a stored routine is nothing more or less than understanding how
a specific task may be encapsulated into a generic component. In this sense, using
stored routines encourages the creation of more robust and extensible
application architecture.

It’s worth noting also that in the MySQL world, the term “stored routines” is used
generically to refer to two different animals: stored procedures and stored functions.
While both types of routines contain SQL statements, MySQL imposes several key
restrictions on stored functions that are not applicable to stored procedures, as follows:

e Stored functions cannot use SQL statements that return result sets.

¢ Stored functions cannot use SQL statements that perform transactional commits
or rollbacks.

e Stored functions cannot call themselves recursively.

e Stored functions must produce a return value.

NorTE Stored routines, although useful, are yet to be fully optimized in MySQL 5.x. Therefore,
as much as possible, you should avoid using complex stored routines in MySQL, as they can
significantly increase overhead. The lack of a fully optimized cache or debugging tools for
stored routines are also a hindrance to users and developers.

Creating and Using Stored Procedures
There are three components to every stored routine (function or procedure).

e Input parameters, or arguments, which serve as inputs to the routine
e Qutput parameters, or return values, which are the outputs returned by the routine

e The body, which contains the SQL statements to be executed

NOTE To create a stored routine, a user must have the CREATE ROUTINE privilege. To execute
a stored routine, a user must have the EXECUTE privilege. Privileges are discussed in greater
detail in Chapter 11.

To begin with, let’s see a simple example of a stored procedure, one that doesn’t use
either arguments or return values.

mysqgl> DELIMITER //

mysgl> CREATE PROCEDURE count airports()
-> BEGIN
-> SELECT COUNT (AirportID) FROM airport;
-> END//

Query OK, 0 rows affected (0.62 sec)

135

136

Part I: Usage

To define a stored procedure, MySQL offers the CREATE PROCEDURE command.
This command must be followed by the name of the stored procedure and parentheses.
Input and output arguments, if any, appear within these parentheses, and the main
body of the procedure follows. Routine names cannot exceed 64 characters, and names
that contain special characters or consist entirely of digits or reserved words must be
quoted with the backtick (~) operator.

Can | Override MySQLs Built-in Functions by Creating New

Ones with the Same Name?

No. In fact, as a general rule, you should avoid using existing built-in function
names as the names for your stored routines; however, if you must do this, MySQL
permits it as long as there is an additional space between the procedure or function
name and the parentheses that follow it.

The main body of the procedure can contain SQL statements, variable definitions,
conditional tests, loops, and error handlers. In the preceding example, it is enclosed
within BEGIN and END markers. These BEGIN and END blocks are only mandatory when
the procedure body contains complex control structures; in all other cases (such as the
previous example, which contains only a single SELECT), they are optional. However,
it’s good practice to always include them so that the body of the procedure is clearly
demarcated.

Notice also in the previous example that the DELIMITER command is used to
change the statement delimiter used by MySQL from ; to //. This is to ensure that the ;
used to terminate statements within the procedure body does not prematurely end the
procedure definition. The delimiter is changed back to normal once the fully defined
procedure has been accepted by the server.

Of course, defining a stored procedure is only half the battle—the other half is using
it. MySQL offers the CALL command to invoke a stored procedure; this command must
be followed with the name of the procedure (and arguments, if any). Here’s how:

mysgl> CALL count airports();

o +
| COUNT (AirportID) |
R +
| 15 |
o +

1 row in set (0.12 sec)
Here’s another example, this one using stored procedures to create and drop a table:

mysgl> DELIMITER //
mysgl> CREATE PROCEDURE create log table()
-> BEGIN
-> CREATE TABLE log(RecordID INT NOT NULL
-> AUTO INCREMENT PRIMARY KEY, Message TEXT);
-> END//

Chapter 6: Using Stored Procedures and Functions

Query OK, 0 rows affected (0.00 sec)
mysgl> CREATE PROCEDURE remove log table()
-> BEGIN
-> DROP TABLE log;
-> END//
Query OK, 0 rows affected (0.00 sec)

Here’s the output when these procedures are invoked:

mysgl> CALL create log table();

Query OK, 0 rows affected (0.13 sec)

mysgl> CALL create log table();

ERROR 1050 (42S01): Table 'log' already exists
mysgl> SHOW TABLES;

| Tables in dbl |

| aircraft |
| aircrafttype |
| airport |
| flight |
| £lightclass |
| flightdep |
| log |
| |

+

8 rows in set (0.00 sec)

mysgl> CALL remove log table;

Query OK, 0 rows affected (0.05 sec)
mysgl> CALL remove log table;

ERROR 1051 (42S02): Unknown table 'log'
mysgl> SHOW TABLES;

| aircraft |
| aircrafttype |
| airport |
| f£light |
| flightclass |
| f£lightdep |
| route |

7 rows in set (0.00 sec)

To remove a stored procedure, use the DROP PROCEDURE command with the
procedure name as argument:

mysgl> DROP PROCEDURE count airports;
Query OK, 0 rows affected (0.01 sec)

131

138 PartI: Usage

Can | Alter the Body of a Procedure After It's Been Created?

No. MySQL does offer an ALTER PROCEDURE command, but this currently only
permits changes to the characteristics, not the body, of the procedure. To alter the
body of a procedure, it is necessary to first drop and then re-create it.

To view the body of a specific stored procedure, use the SHOW CREATE PROCEDURE
command with the procedure name as argument. This is a restricted command; it will
be executed only if you are the creator of the procedure or have SELECT privileges on
the proc grant table (privileges are discussed in greater detail in Chapter 11). Here’s an
example:

mysgl> SHOW CREATE PROCEDURE create log table\G
dhhkdhkdkhkhhdhkhhhhhhhhkhhkdhhdkhddt 7 pow Fhdhkdhdhhdhhhhhhhhhhhhhhhhhhh
Procedure: create log table
sql_mode: STRICT TRANS TABLES
Create Procedure: CREATE DEFINER="root @ localhost™
PROCEDURE “create log table” ()
BEGIN
CREATE TABLE log(RecordID INT NOT NULL
AUTO INCREMENT PRIMARY KEY, Message TEXT) ;
END
character set client: latinl
collation connection: latinl swedish ci
Database Collation: latinl_swedish ci
1 row in set (0.00 sec)

To view a list of all stored procedures on the server, use the SHOW PROCEDURE
STATUS command. You can filter the output of this command with a WHERE clause,
as shown:

mysgl> SHOW PROCEDURE STATUS WHERE name LIKE '%log%'\G
EE R S R 1. TOW ***kkkkkkkkhkhkkkkhkkkkkhkhkkkkkx
Db: dbl
Name: create log table
Type: PROCEDURE
Definer: root@localhost
Modified: 2008-12-24 13:32:38
Created: 2008-12-24 13:32:38
Security type: DEFINER
Comment :
character set client: latinl
collation_connection: latinl_swedish ci
Database Collation: latinl_swedish ci
EEEE SRR EEEEEEEEEEEEEEEEE RS N TOW ***kkkkkkkkkkkkkkkkkhkhkhkkhkx
Db: dbl
Name: remove log table

Chapter 6: Using Stored Procedures and Functions 139

Type: PROCEDURE
Definer: root@localhost
Modified: 2008-12-24 13:21:39
Created: 2008-12-24 13:21:39
Security type: DEFINER
Comment :
character set client: latinl
collation connection: latinl swedish ci
Database Collation: latinl swedish ci
2 rows in set (0.01 sec)

Using Input and Output Parameters

A stored procedure that always returns the same output is a lot like a radio station that
plays the same song all day—not very useful or interesting at all! What you’d really
like is the ability to change the music the station plays in response to feedback that you,
the listener, provides—in effect, to create an audience-request show. In stored
procedure terms, this amounts to creating procedures that can accept input parameters
at run-time and use these input parameters to calculate and return different output.

That’s where input parameters or arguments come in. Arguments are “placeholder”
variables within a procedure definition; they’re replaced at run-time by values
provided to the procedure from the calling program. The processing code within the
procedure then manipulates these values and generates output parameters or return
values, which are returned to the calling program. Since the input to the procedure will
differ each time it is invoked, the output will necessarily differ too.

Input and output parameters are defined within the parentheses that follow a
stored procedure name, and are prefixed with one of three keywords—1IN, OUT, or
INOUT—to define their purpose. IN parameters serve only as inputs to the procedure;
OUT parameters represent output values; INOUT parameters can be used both as
procedure inputs and outputs. If none of these keywords are specified, MySQL
assumes that the parameter is an IN parameter.

IN Parameters The IN keyword is used to mark input parameters for a stored
procedure. It is followed by the parameter name and its data type (which can be any
one of MySQL’s built-in data types).

The following procedure illustrates the use of input parameters by defining a stored
procedure that accepts a numeric airport identifier and returns the corresponding
airport name:

mysql> DELIMITER //

mysgl> CREATE PROCEDURE get airport name (IN aid INT)
-> BEGIN
-> SELECT AirportName FROM airport WHERE AirportID = aid;
-> END//

Query OK, 0 rows affected (0.04 sec)

140

Part I: Usage

You can now call this procedure with an airport identifier as argument, as shown:

mysgl> CALL get airport name(129);

oo +
| AirportName

oo +
| Bristol International Airport |
e e e +

1 row in set (0.01 sec)
Change the argument, and the output changes, too:

mysgl> CALL get airport name(201);

B +
| AirportName |
e e +
| Changi Airport |
R T e +

1 row in set (0.00 sec)

You can use multiple IN parameters as well. Here’s an example, which uses a stored
procedure to insert a new aircraft type record:

mysqgl> DELIMITER //
mysgl> CREATE PROCEDURE add aircraft type(
-> IN aid INT,
-> IN atype VARCHAR(255)
->)
-> BEGIN
-> INSERT INTO aircrafttype (AircraftTypeID,
-> AircraftName) VALUES (aid, atype):;
-> SELECT AircraftTypeID, AircraftName
-> FROM aircrafttype WHERE AircraftTypeID
-> END//
Query OK, 0 rows affected (0.10 sec)
mysgl> CALL add aircraft type(711l, 'Boeing 777');

aid;

1 row in set (0.05 sec)
Query OK, 0 rows affected (0.05 sec)

Tip Stored routines are always associated with a specific MySQL database (usually the one in
use at the time the routine is defined). To specify that a routine be associated with a different
database, or to execute, modify, or delete a routine that belongs to a different database, prefix
the database name to the routine name in the format database-name.routine-name, in your
CREATE, ALTER, CALL, or DROP commands.

Chapter 6: Using Stored Procedures and Functions 141

OUT Parameters The OUT keyword is used to mark a procedure’s output parameters.
As with the IN keyword, it is followed by a parameter name and data type, and it is
automatically initialized to NULL within the body of the procedure. Here’s a revision of
the previous example, which stores the airport name in an output parameter instead of
displaying it:

mysqgl> DELIMITER //
mysgl> CREATE PROCEDURE get airport name (
-> IN aid INT,
-> OUT aname VARCHAR(255)
->)
-> BEGIN
-> SELECT AirportName INTO aname
-> FROM airport WHERE AirportID = aid;
-> END//
Query OK, 0 rows affected (0.00 sec)

Notice that the procedure uses the SELECT INTO command to assign the result of
the query to the specified output variable. It's now possible to call the procedure,
storing the output in a session variable for later retrieval:

mysgl> CALL get airport name (201, @var);
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT @var;

1 row in set (0.00 sec)

Of course, you could also write the output value directly into a session variable
within the body of the procedure, if you prefer. Here’s a revision of the previous
example, which demonstrates this:

mysqgl> DELIMITER //
mysgl> CREATE PROCEDURE get airport name (
-> IN aid INT
>)
-> BEGIN
-> SELECT AirportName INTO @aname
-> FROM airport WHERE AirportID = aid;
-> END//
Query OK, 0 rows affected (0.01 sec)
mysgl> DELIMITER ;
mysgl> CALL get airport name(201);
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT @aname;

142 Part I: Usage

o mm oo +
| @aname |
T +
| Changi Airport |
4o mm e +

1 row in set (0.00 sec)

INOUT Parameters The INOUT keyword is used for parameters that serve as both input
and output, and has the same syntax as the IN and OUT keywords. This is typically
used for parameters that are likely to be modified during the course of the procedure.
Here’s a simple example, which demonstrates this:

mysql> DELIMITER //
mysgl> CREATE PROCEDURE add one (
-> INOUT num INT
-5)
-> BEGIN
-> SELECT (num+1l) INTO num;
-> END//
Query OK, 0 rows affected (0.05 sec)
mysqgl> DELIMITER ;
mysgl> SET @a = 9;
mysgl> CALL add one (@a) ;
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT @a;

Fomm - +
| ea |
o +
| 10|
Fommm - +

1 row in set (0.00 sec)

Creating and Using Stored Functions

Stored functions are defined in a similar manner to stored procedures, except that the
command to use is the CREATE FUNCTION command. And while it isn’t mandatory for
a stored procedure to return output to the caller, stored functions must necessarily
produce a return value.

Here’s a simple example of a stored function, which returns a formatted version of
the current date:

mysql> DELIMITER //
mysgl> CREATE FUNCTION today ()
-> RETURNS VARCHAR (255)

-> BEGIN
-> RETURN DATE FORMAT (NOW(), '%D %M %Y');
-> END//

Query OK, 0 rows affected (0.00 sec)

Chapter 6: Using Stored Procedures and Functions

As with the CREATE PROCEDURE command, the CREATE FUNCTION command must
be followed by the name of the stored function. The same rules that govern procedure
names also apply to function names. Input parameters to the function, if any, appear
within parentheses following the function name, together with their data type. The
function’s return value (only a single return value is possible) is represented by a
mandatory RETURNS clause that follows the parentheses; this RETURNS clause specifies
the data type of the return value.

The main body of the function can contain SQL statements, variable definitions,
conditional tests, loops, and error handlers. It must also include a RETURN statement,
which specifies the value to return to the caller. However, because stored functions
cannot return result sets, take care to ensure that your RETURN statement does not
return the output of a SELECT (or any other command that returns a result set).

NoTte When MySQL encounters a RETURN statement inside a stored function, it halts
processing at that point and exits the function with the specified return value.

To invoke a stored function, you don’t need to use the CALL command; instead, use
the function name within a SQL statement, as you would for any other built-in function.
Here’s an example:

mysgl> SELECT today():;

e +
| today () |
e +
| 25th December 2008 |
R +

1 row in set (0.00 sec)

To remove a stored function, use the DROP FUNCTION command with the function
name as argument:

mysqgl> DROP FUNCTION today () ;
Query OK, 0 rows affected (0.01 sec)

To view the body of a specific stored function, use the SHOW CREATE FUNCTION
command with the function name as argument. This is a restricted command; it will
be executed only if you are the creator of the procedure or have SELECT privileges on
the proc grant table (privileges are discussed in greater detail in Chapter 11). Here's
an example:

mysgl> SHOW CREATE FUNCTION today\G
khkkhkkhkkhkhkkhkhkhkhkhkdkhkhkhkhkhkhkhkdkhhkkhhdkk l TrOow PR R R R R RS EEEEEEEEEEEEEEEEEEES
Function: today
sgl_mode: STRICT_TRANS TABLES
Create Function: CREATE DEFINER="root @ localhost”
FUNCTION “today” () RETURNS varchar (255) CHARSET latinl

143

144

Part I: Usage

BEGIN

RETURN DATE FORMAT (NOW(), '%D %M %Y');

END

character set client: latinl

collation connection: latinl swedish ci
Database Collation: latinl_swedish ci

1 row in set (0.00 sec)

To view a list of all stored functions on the server, use the SHOW FUNCTION STATUS
command. You can filter the output of this command with a WHERE clause, as shown:

mysgl> SHOW FUNCTION STATUS WHERE Db='test'\G
hhhkkhhhhhhhhhhhhhhhhhhdhdhdkd] pOW *F dhkdhhhhhhhdhdhdhdhdhdhdhh
Db: test
Name: get circle area
Type: FUNCTION
Definer: root@localhost
Modified: 2008-12-25 16:12:09
Created: 2008-12-25 16:12:009
Security type: DEFINER
Comment :
character set client: latinl
collation_connection: latinl_swedish ci
Database Collation: latinl swedish ci
1 row in set (0.01 sec)

Input Parameters

Because stored functions use a separate RETURNS clause to define their output, all the
parameters that appear within the parentheses in the function definition are assumed to
be input parameters, and the OUT and INOUT keywords are not required (or supported)
for the input argument list. These input parameters can then be manipulated or used for
calculations within the function body;, as illustrated in the following example:

mysql> DELIMITER //
mysgl> CREATE FUNCTION get circle area(radius INT)
-> RETURNS FLOAT

-> BEGIN
-> RETURN PI() * radius * radius;
-> END//

Query OK, 0 rows affected (0.00 sec)

You can now pass this function the length of a circle’s radius and receive the
corresponding circle area, as shown:

mysgl> SELECT get circle area(1l0);

Chapter 6: Using Stored Procedures and Functions

| 314.15927124023 |

1 row in set (0.02 sec)

You can also read and write directly to session variables from a stored function.
Consider the next example, which revises the previous example and uses session

variables for both input and output:

mysql> DELIMITER //

mysgl> CREATE FUNCTION get circle area()

-> RETURNS INT

-> BEGIN

-> SET @area = PI() * @radius * @radius;
-> RETURN NULL;

-> END//

Query OK, 0 rows affected (0.01 sec)
mysgl> DELIMITER ;

mysgl> SET @radius=2;

Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT get circle area();

e T +
| get circle area() |
e +
| NULL |
o mmmmm oo +

1 row in set (0.00 sec)
mysgl> SELECT @area;

e e il +
| @area |
e e +
| 12.566370614359 |
t----m o - +

1 row in set (0.03 sec)

Stored functions can also manipulate tables, just like stored procedures. Here’s an

example:

mysql> DELIMITER //

mysgl> CREATE FUNCTION add flight dep(fid INT, depday INT, deptime

TIME)
-> RETURNS INT
-> BEGIN
-> INSERT INTO flightdep (FlightID, DepDay, DepTime)
-> VALUES (fid, depday, deptime);
-> RETURN 1;
-> END//

Query OK, 0 rows affected (0.28 sec)
mysgl> DELIMITER ;

mysgl> SELECT add flight dep(l, 2, '12:35');

146

Part I: Usage

R e i +
| add flight dep(1, 2, '12:35') |
oo oo oo m e m - m - — e — e —m——— - —m +
| 1|
R e i +

1 row in set (0.19 sec)
mysqgl> SELECT DepDay, DepTime FROM flightdep
-> WHERE FlightID = 1;

e e +
| DepDay | DepTime |
R Hmmmm - +
| 2 | 12:35:00 |
R Hmmmm oo +

1 row in set (0.08 sec)

Setting Routine Characteristics

Both the CREATE PROCEDURE and the CREATE FUNCTION commands support additional
clauses, which are used to define various characteristics of the stored routine. Here’s a list:

e The DETERMINISTIC clause indicates that the routine is “deterministic”—that
is, given the same input, it always produces the same output. Routines that
make use of random numbers, are tied to the current time, or use functions that
return a different value on each invocation, such as CONNECTION ID (), should
instead use the NOT DETERMINISTIC clause.

e The LANGUAGE clause specifies the language for the routine. At the time of this
writing, the only legal value for this clause is 'SQL'.

¢ The CONTAINS SQL clause indicates that the routine contains SQL statements.
Valid alternatives for this clause include READS SQL DATA (routine contains
statements that read table data), MODIFIES SQL DATA (routine contains statements
that write table data), and NO SQL (routine contains no SQL statements).

* The SQL. SECURITY clause specifies which user’s privileges should be
considered when executing the routine: the user who created it (DEFINER) or the
user who invoked it (INVOKER).

e The COMMENT clause specifies a human-readable descriptive label for the routine.
Here’s an example of how these characteristics can be added to a routine definition:

mysql> DELIMITER //
mysgl> CREATE PROCEDURE get airport name(IN aid INT)
-> DETERMINISTIC
-> LANGUAGE SQL
-> READS SQL DATA
-> SQL SECURITY INVOKER

Chapter 6: Using Stored Procedures and Functions 147
-> BEGIN
-> SELECT AirportName FROM airport WHERE AirportID = aid;
-> END//
Query OK, 0 rows affected (0.68 sec)

How Do I Return a Collection of Values from a Stored Function?

Under MySQL’s current implementation, a stored function can only return a single
value. However, there is a not-so-pretty workaround: create a temporary table
within the function body to store the values returned, and then access this table
outside the function. Here’s an example:

mysqgl> DELIMITER //

mysgl> CREATE FUNCTION get airport names (min terminals INT)
-> RETURNS INT
-> BEGIN

->

->

->

->

->

->

->

DECLARE count INT DEFAULT O0;
CREATE TEMPORARY TABLE

IF NOT EXISTS

get airport names out (value VARCHAR(255));
DELETE FROM get airport names out;
INSERT INTO get airport names out (value)
SELECT AirportName FROM airport

= WHERE NumTerminals >= min terminals;
=5 SELECT COUNT (value) INTO count
=5 FROM get airport names out;
= RETURN count;
-> END//
Query OK, 0 rows affected
mysqgl> DELIMITER ;
mysgl> SELECT get airport names(3);

(0.00 sec)

e it +
| get airport names(3) |
R i +
| 4 |
o mm e mm e me oo +

1 row in set, 1 warning (0.03 sec)
mysgl> SELECT value FROM get airport names out;

| Heathrow Airport |
| Barcelona International Airport |
| Barajas Airport |
| Changi Airport |

4 rows in set (0.00 sec)

148

Part I: Usage

Doing More with Stored Routines

MySQL also allows you to use variables, conditional tests, and loops within stored
routines, making possible some fairly complex programming. The following sections
examine these constructs in greater detail.

Variables

In addition to allowing you to create, access, and manipulate session variables from
within a stored procedure, MySQL offers the DECLARE keyword, which can be used to
declare variables that are “local” to a given routine. Here’s an example:

mysql> DELIMITER //
mysgl> CREATE PROCEDURE decl ()
-> BEGIN
-> DECLARE count INT;
-> END//
Query OK, 0 rows affected (0.00 sec)

A DECLARE statement must be followed by the variable name and its data type.
The same rules that govern user-defined variable names also apply to variables in
stored routines. Multiple variables of the same type can be initialized in a single
DECLARE statement by separating the variable names with commas. Here’s how:

mysql> DELIMITER //

mysgl> CREATE PROCEDURE decl ()
-> BEGIN
-> DECLARE count, retwval, x INT;
-> END//

Query OK, 0 rows affected (0.00 sec)

The DECLARE statement also supports an optional DEFAULT keyword, which can be
used to assign a default value to a variable.

mysqgl> DELIMITER //

mysgl> CREATE PROCEDURE decl ()
-> BEGIN
-> DECLARE count INT DEFAULT O0;
-> END//

Query OK, 0 rows affected (0.00 sec)

Once defined, these variables can be assigned values using either SET or SELECT
INTO statements, and can be accessed by name from other statements within the
routine. Note that when accessing a local variable defined with DECLARE, there is no
need to prefix the variable name with the @ symbol.

mysqgl> DELIMITER //
mysqgl> CREATE PROCEDURE add one ()

Chapter 6: Using Stored Procedures and Functions

-> BEGIN
-> DECLARE count INT DEFAULT 99;
-> SELECT (count+l);
-> END//
Query OK, 0 rows affected (0.00 sec)
mysqgl> DELIMITER ;
mysgl> CALL add one();

oo mmmm oo +
| (count+1) |
Hmmmmmm o +
| 100 |
e +

1 row in set (0.05 sec)

Conditional Tests

In addition to storing and retrieving values in variables, MySQL lets programmers
evaluate different conditions that occur during routine execution and take decisions
based on whether these conditions evaluate to true or false. These conditions can be
expressed using two types of conditional constructs: the IF construct and the CASE

construct.

The IF Construct

MySQL’s IF construct provides a convenient way to alter the control flow within a stored
routine. In its simplest form, it tests a condition and executes a block of statements if the
condition is true. There are three general forms of this construct, as follows:

IF [val 1]
THEN [result 11];
END IF;

IF [val 1]
THEN [result 1];
ELSE [result 2];
END IF;

IF [val 1] THEN [result 1]
ELSEIF [val 2] THEN [result 2]
ELSEIF [val 3] THEN [result 3]

ELSEIF [val n] THEN [result n]
ELSE [default result]
END IF;

Here’s an example, which illustrates the first form:

mysqgl> DELIMITER //
mysgl> CREATE FUNCTION what is today ()

149

150 PartI: VUsage

-> RETURNS VARCHAR (255)
-> BEGIN
-> DECLARE message VARCHAR (255) ;
-> IF DAYOFWEEK (NOW()) BETWEEN 2 AND 6 THEN
-> SET message = 'Today is a weekday';
-> END IF;
-> RETURN message;
-> END//
Query OK, 0 rows affected (0.01 sec)

In this example, the function will return a message only on weekdays:

mysgl> SELECT what is today () ;

e e T e +
| what _is today () |
R i T +
| Today is a weekday |
e e +

1 row in set (0.00 sec)

A slightly more complex version of the IF construct allows you to define an
alternative set of actions for when the condition evaluates to false. Consider the next
example, which returns different messages on weekdays and weekends:

mysql> DELIMITER //
mysgl> CREATE FUNCTION what is today ()
-> RETURNS VARCHAR (255)
-> BEGIN
-> DECLARE message VARCHAR(255);
-> IF DAYOFWEEK (NOW()) BETWEEN 2 AND 6 THEN

-> SET message = 'Today is a weekday';
-> ELSE
-> SET message = 'Today is a Saturday or Sunday';

-> END IF;
-> RETURN message;
-> END//
Query OK, 0 rows affected (0.00 sec)

The IF construct can come in handy when writing stored procedures that insert or
update table data. As an example, consider the next procedure, which only inserts a
new aircraft type record if it does not already exist:

mysql> DELIMITER //
mysgl> CREATE PROCEDURE
-> add aircraft type(IN aname VARCHAR(255))
-> BEGIN
-> DECLARE count, lastid, retval INT;
-> SELECT COUNT (AircraftTypeID) INTO count
-> FROM aircrafttype WHERE AircraftName = aname;

Chapter 6: Using Stored Procedures and Functions 151

-> IF count = 0 THEN

-> SELECT MAX (AircraftTypeID) INTO lastid

-> FROM aircrafttype;

-> INSERT INTO aircrafttype (AircraftTypeID, AircraftName)
-> VALUES ((lastid+1l), aname);

-> SET retval = 1;

-> ELSE

-> SET retval = 0;

-> END IF;
-> SELECT retval;
-> END//
Query OK, 0 rows affected (0.00 sec)

In this example, the procedure accepts an aircraft type name as input argument. It
then checks the aircrafttype table to see if a record with the same data already exists and
inserts the new record only if it does not. An IF construct is used to make this decision,
and the procedure’s return value is set to 0 or 1, depending on whether the INSERT
took place.

Here’s the output:

mysgl> CALL add aircraft type('Boeing 747'):;

oo moo - +
| retval |
Hommm - +
| 0 |
oo mm oo +

1 row in set (0.16 sec)
mysgl> CALL add _aircraft type('Cessna C60');

mmm-m-m - +
| retval |
Rt +
| 1
oo moo - +

1 row in set (0.03 sec)
mysqgl> SELECT AircraftName FROM aircrafttype;

| Boeing 747 |
| Boeing 767 |
| Airbus A300/310 |
| Airbus A330 |
| Airbus A340 |
| Airbus A380 |
| Cessna C60 |

7 rows in set (0.00 sec)

152

Part I: Usage

As demonstrated already, the IF-ELSE version of the IF construct lets you define
actions for two eventualities: a true condition and a false condition. In reality, however,
it’s likely that you will have more than just two outcomes to contend with. For these
situations, MySQL offers a more complex version of the IF construct. Consider the next
example, which illustrates by displaying a different message for each day of the week:

mysqgl> DELIMITER //

mysgl> CREATE FUNCTION todays child()
-> RETURNS VARCHAR (255)
-> BEGIN
-> DECLARE message VARCHAR(255);
-> IF DAYOFWEEK (NOW()) = 2 THEN

-> SET message = 'Monday\'s child is fair of face.';

-> ELSEIF DAYOFWEEK (NOW()) = 3 THEN

-> SET message = 'Tuesday\'s child is full of grace.';

-> ELSEIF DAYOFWEEK (NOW()) = 4 THEN

-> SET message = 'Wednesday\'s child is full of woe.';

-> ELSEIF DAYOFWEEK (NOW()) = 5 THEN

-> SET message = 'Thursday\'s child has far to go.';

-> ELSEIF DAYOFWEEK (NOW()) = 6 THEN

-> SET message = 'Friday\'s child is loving and giving.';
-> ELSEIF DAYOFWEEK (NOW()) = 7 THEN

-> SET message = 'Saturday\'s child works hard for a living.';
-> ELSE

-> SET message = 'Sunday\'s child is bonny and blithe

-> and good and gay.';

-> END IF;
-> RETURN message;
-> END
-> DELIMITER ;
Query OK, 0 rows affected (0.03 sec)

In this example, the optional ELSEIF clause to the IF construct is used to define
various other values that the condition might have. Depending on what the
DAYOFWEEK () function returns, a different message will be set and returned by this
function. Here’s an example:

mysgl> SELECT todays child();

e e R +
| todays child() |
oo oo +
| Saturday's child works hard for a living. |
e e e e +

1 row in set (0.00 sec)

Chapter 6: Using Stored Procedures and Functions 153

The CASE Construct

An alternative to the IF-ELSEIF-ELSE version of the IF construct is the CASE
construct, which also allows for multiple conditions to be tested. The format of the
CASE construct is somewhat complex, and usually looks like this:

CASE [expression to be evaluated]
WHEN [val 1] THEN [result 17;
WHEN [val 2] THEN [result 2];

WHEN [val n] THEN [result n];
ELSE [default result];
END CASE;

Here, the first argument is the value or expression to be evaluated; this is followed
by a series of WHEN-THEN blocks, each of which specifies the value against which the
first argument is to be compared and the result to be returned if the comparison is true.
The entire series of WHEN-THEN blocks is terminated by an ELSE block, which specifies
the default result in case none of the preceding blocks match, with an END closing the
outer CASE block. In the event no ELSE block is specified and none of the WHEN-THEN
comparisons return true, MySQL returns a NULL.

Here’s a revision of the previous example using CASE:

mysgl> DELIMITER //

mysgl> CREATE FUNCTION todays child()
-> RETURNS VARCHAR (255)
-> BEGIN
-> DECLARE message VARCHAR (255) ;
-> CASE DAYOFWEEK (NOW ())

-> WHEN 2 THEN

-> SET message = 'Monday\'s child is fair of face.';

-> WHEN 3 THEN

-> SET message = 'Tuesday\'s child is full of grace.';

-> WHEN 4 THEN

-> SET message = 'Wednesday\'s child is full of woe.';

-> WHEN 5 THEN

-> SET message = 'Thursday\'s child has far to go.';

-> WHEN 6 THEN

-> SET message = 'Friday\'s child is loving and giving.';
-> WHEN 7 THEN

-> SET message = 'Saturday\'s child works hard for a living.';
-> ELSE

-> SET message = 'Sunday\'s child is bonny and blithe

-> and good and gay.';

-> END CASE;
-> RETURN message;
-> END//
Query OK, 0 rows affected (0.04 sec)

154 Partl: \Usage

Here’s the output:

mysgl> SELECT todays child();

e e R +
| todays child() |
oo oo +
| Saturday's child works hard for a living. |
e e e e +

1 row in set (0.00 sec)

And here’s a simple example of using the CASE construct in a stored procedure to
toggle the status of a route using the UPDATE statement:

mysqgl> DELIMITER //
mysgl> CREATE PROCEDURE change route status(

-> IN rid INT, IN color VARCHAR(10))

-> BEGIN

-> CASE color

-> WHEN 'red' THEN

-> UPDATE route SET Status = 0 WHERE RouteID = rid;
-> WHEN 'green' THEN

-> UPDATE route SET Status = 1 WHERE RouteID = rid;
-> ELSE

-> BEGIN

-> END;

-> END CASE;

-> END//

Query OK, 0 rows affected (0.00 sec)

In this example, the inputs 'red' and 'green' are used to set a route’s status to 0 or 1,
respectively. Notice, however, the ELSE clause of the CASE construct, which contains
an empty BEGIN. . .END block. This is done to prevent an error being displayed if
a nonmatching input is supplied to the procedure. Here’s some output explaining how
it works:

mysgl> SELECT RouteID, Status FROM route
-> WHERE RouteID = 1192;

+--------- +-------- +
| RouteID | Status |
+-------=-- +-------- +
| 1192 | 1|
+--------- - +

1 row in set (0.03 sec)
mysgl> CALL change route status (1192, 'red');
Query OK, 1 row affected (0.05 sec)
mysgl> SELECT RoutelID, Status FROM route
-> WHERE RouteID = 1192;

Chapter 6: Using Stored Procedures and Functions 155

+----mm- - +-------- +
| RouteID | Status |
to-m-mm - t----m--- +
| 1192 | 0 |
+----mm- - +-------- +

1 row in set (0.00 sec)
mysgl> CALL change_route status (1192, 'green');
Query OK, 0 rows affected (0.01 sec)

Loops

MySQL also supports loops in stored routines, thus enabling routines that repeat a
series of actions until a prespecified condition is fulfilled. Three different loop
constructs are currently supported: the LOOP construct, the REPEAT construct, and the
WHILE construct. The following sections discuss each of these in greater detail.

The LOOP Construct
The LOOP construct is the simplest type of loop in MySQL, allowing for a set of
statements to be repeatedly executed. It looks like this:

loop-name: LOOP
statement 1;
statement 2;

statement n;
END LOOP loop-name;

The statements enclosed within the LOOP. . .END LOOP block are executed
repeatedly until interrupted with a LEAVE statement. This, combined with the IF
construct, makes it possible to create loops that execute until a specified condition is
fulfilled. Consider the next example, which illustrates by building a factorial calculator:

mysql> DELIMITER //
mysgl> CREATE FUNCTION factorial (num INT UNSIGNED)
-> RETURNS INT
-> BEGIN
-> DECLARE result INT DEFAULT 1;
-> IF num = 0 THEN
-> RETURN O0;
-> END IF;
-> fact: LOOP

-> IF num > 0 THEN

-> SET result = result * num;
-> SET num = num - 1;

-> ELSE

-> LEAVE fact;

-> END IF;

156

Part I: Usage

-> END LOOP fact;
-> RETURN result;
-> END//
Query OK, 0 rows affected (0.01 sec)

In this function, the number entered by the user is decremented by 1 on each
iteration and multiplied by the previously calculated product. This continues until the
number entered by the user reaches 0, at which point the LEAVE statement is used to
exit the loop. The end result is the factorial of the input number.

mysgl> SELECT factorial (4);

1 row in set (0.00 sec)

Notice the use of the UNSIGNED attribute to the data type, which ensures that only
positive numbers are provided to the function as input. MySQL will generate an error
if the function receives a negative value as input, as shown:

mysgl> SELECT factorial(-1);
ERROR 1264 (22003): Out of range value for column 'num' at row 1

The WHILE Construct
A WHILE loop repeats continuously while a prespecified condition is true. The typical
structure of this loop is as follows:

loop-name: WHILE condition DO
statement 1;
statement 2;

statement n;
END WHILE loop-name;

It's possible to revise the previous example in terms of a WHILE loop. Here it is:

mysgl> DELIMITER //

mysgl> CREATE FUNCTION factorial (num INT UNSIGNED)
-> RETURNS INT
-> BEGIN
-> DECLARE result INT DEFAULT 1;
-> IF num = 0 THEN
-> RETURN O0;
-> END IF;
-> fact: WHILE num > 0 DO
-> SET result = result * num;
-> SET num = num - 1;

Chapter 6: Using Stored Procedures and Functions 157

-> END WHILE fact;
-> RETURN result;
-> END//
Query OK, 0 rows affected (0.00 sec)

Notice the condition specified after the WHILE keyword; so long as this condition
evaluates to true, the code within the loop block is executed. As soon as the condition
becomes false, the loop stops repeating, and control returns to the lines following the loop.

The REPEAT Construct
A REPEAT loop is slightly different from a WHILE loop: it repeats continuously until a
prespecified condition becomes true. Here’s what it looks like:

loop-name: WHILE condition DO
statement 1;
statement 2;

statement n;
END WHILE loop-name;

The difference in structure between WHILE and REPEAT constructs should be
apparent: with a REPEAT loop, the condition to be evaluated appears at the bottom of
the loop block, rather than the beginning. Here’s the factorial calculator again, this time
written as a REPEAT loop:

mysqgl> DELIMITER //
mysgl> CREATE FUNCTION factorial (num INT UNSIGNED)
-> RETURNS INT
-> BEGIN
-> DECLARE result INT DEFAULT 1;
-> IF num = 0 THEN
-> RETURN O0;
-> END IF;
-> fact: REPEAT

-> SET result = result * num;
-> SET num = num - 1;
-> UNTIL num <= 0

-> END REPEAT fact;
-> RETURN result;
-> END//
Query OK, 0 rows affected (0.02 sec)

NoOTE There is a subtle difference between a WHILE loop and a DO-WHILE loop that has one
important implication. With a WHILE loop, if the conditional expression evaluates to false on
the first pass itself, the loop will never be executed. With a REPEAT loop, on the other hand,
the loop will always be executed once, even if the conditional expression is false, because the
condition is evaluated at the end of the loop iteration rather than at the beginning.

158

Part I: Usage

The LEAVE and ITERATE Statements

MySQL offers two additional statements to assist in loop control: the LEAVE statement,
which breaks out of a loop, and the ITERATE statement, which forces the loop to run
once again. Here’s a trivial example that illustrates the LEAVE statement:

mysql> DELIMITER //

mysgl> CREATE PROCEDURE f ()
-> BEGIN
-> DECLARE i INT DEFAULT 1;
-> f: WHILE i <= 5 DO

-> IF i = 3 THEN
-> LEAVE f;

-> END IF;

-> SELECT 1i;

-> SET i = i + 1;
-> END WHILE f£;

-> END//

Query OK, 0 rows affected (0.01 sec)

In this case, the LEAVE statement will force the loop to exit on the third iteration, as
illustrated in the output:

mysgl> CALL £ \G

R R R R R R R R R R R SRR R R EEEEEEEREEE] 1. TOow IR R R R R R RS SRR R R R SRR R SRR EEEEE]
i: 1

1 row in set (0.00 sec)

R SRR RS R EE S EEEEEEE S EEEEEEE R 1. TOW R R SRR RS EEEEEEE S EEE S EEEEE LR
i: 2

1 row in set (0.00 sec)

And here’s an example that demonstrates the ITERATE statement:

mysql> DELIMITER //
mysql> CREATE PROCEDURE g ()
-> BEGIN
-> DECLARE i INT DEFAULT 1;
-> DECLARE j INT DEFAULT 0;
-> f: WHILE i <= 5 AND j < 2 DO

-> SELECT 1i;

-> IF i = 3 THEN
-> SET j = j + 1;
-> ITERATE f;

-> END IF;

-> SET i = 1 + 1;
-> END WHILE £;

-> END//

Query OK, 0 rows affected (0.01 sec)

Chapter 6: Using Stored Procedures and Functions 159

In this example, when the loop counter reaches 3, the ITERATE statement will force
an additional iteration of the loop:

mysgl> CALL g \G

R R SR RS SR EE S EEEEEEEEEEEEE LR l‘ TOwW IR SRR RS EE RS EEEEEEE S EEEEEEE R
i: 1

1 row in set (0.01 sec)

IR R R R R RS EE RS EEEEEEEE RS EEEEE] l_ TrOow R R R R R R R SRR R SRR E R EEEEEEEEE R
i: 2

1 row in set (0.01 sec)

IR R SR RS S EEESEEE S EEEEEEEEEESE] l‘ TOwW RS SRR SRR RS EEEEEEEEEEEEEEE S
i: 3

1 row in set (0.01 sec)

IR R R R SRS EE RS EEEEEEEEEEEEEEE] l_ TrOow R R R R R R RS EEEEEEEEEEEEEEEEE R
i: 3

1 row in set (0.01 sec)

Cursors

Quite often, you'll be using loops closely with SELECT queries to process the collection
of records returned by a SELECT. To do this, there’s one additional ingredient needed:
a cursor.

Wikipedia, at http://en.wikipedia.org/wiki/Cursor_(databases), defines a cursor as
“a control structure for the successive traversal (and potential processing) of records in a
result set...[it] is used for processing individual rows returned by the database system
for a query.” In simpler terms, if a database result set is analogous to a collection of files
in a filing cabinet, a cursor is the equivalent of your finger, flipping through them one
after another. At any point in time, your finger is pointing at a specific file; this is the
current record. You can trail your finger forward to the next file or backward to the
previous one; in database terms, this is accomplished with a loop construct, such as
LOOP or REPEAT, which moves the cursor forward to the next record or backward to
the previous one.

That said, cursors are a relatively new addition to MySQL and, as such, are still
subject to a few important limitations.

* MySQL cursors are forward-only; unlike your finger, they can’t be used to go
back to a previous record.

* MySQL cursors are read-only; they can only be used to read values from
a result set, not write or update existing values.

* When used in transactions, MySQL cursors are automatically closed after
a COMMIT.

Cursors are initialized with a DECLARE statement, much like variables (although
cursor declarations must come after variable declarations). Each cursor is identified

160

Part I: Usage

with a unique name and associated with a particular SELECT statement. Here’s
an example:

DECLARE mycur CURSOR FOR SELECT AirportName, NumTerminals FROM airport;

Once the cursor has been declared, MySQL offers the OPEN, FETCH, and CLOSE
commands to iterate through the result set returned by the cursor’s SELECT statement.

e The OPEN command opens the cursor for reading.

¢ The FETCH command reads the contents of the current record into one or more
variables and then advances the cursor to the next record. To process an entire
result set, it is necessary to call FETCH as many times as there are records in the
result set. This is typically accomplished with a loop.

* The CLOSE command closes the cursor. Cursors are also automatically closed
when the stored routine that initialized them ends.

Here’s an example of using a cursor in a stored procedure, which iterates through
the airport list and marks each airport as 'big' or 'small,’ depending on how many
terminals it has:

mysql> DELIMITER //
mysgl> CREATE PROCEDURE get airport size()
-> BEGIN
-> DECLARE a VARCHAR(255) ;
-> DECLARE b,x INT;
-> DECLARE c¢ CURSOR FOR
-> SELECT AirportName, NumTerminals FROM airport;
-> OPEN c;
-> size: LOOP

-> FETCH c¢ INTO a,x;

-> IF x > 2

-> THEN SELECT a AS Name, 'big' AS Size;
-> ELSE

-> SELECT a AS Name, 'small' AS Size;

-> END IF;

-> END LOOP size;
-> CLOSE c;
-> END//
Query OK, 0 rows affected (0.57 sec)

This procedure declares a cursor, which operates on the result set returned by the
SELECT statement. This cursor is opened for reading with the OPEN command, and a
LOOP is then used to iterate over the result set, with the FETCH command returning each
record from the collection in a sequential manner. An IF conditional test is then used to
check the number of terminals and mark each airport as 'big’ or 'small,’ respectively.
Once the loop ends, the CLOSE command is used to close the cursor.

Chapter 6: Using Stored Procedures and Functions

Here’s a snippet of the output:

mysgl> CALL get airport size()\G

R R R R R R EEEEEEEEEEEEEEEEEEEE] l‘ TOwW *khkkkhkkhkhkhkkhkkhkkhkhkhkhkkkhx
Name: Orly Airport

Size: small

1 row in set (0.00 sec)

IR R R R R R EEEEEEEEEEEEESEEEEEEE] 1' TOow ERE SRR R RS EEEEEEEEEEEEEEEEEEE]

Name: Changi Airport

Size: big

1 row in set (0.04 sec)

ERROR 1329 (02000): No data - zero rows fetched, selected, or processed

Handlers

If you're sharp-eyed, you'll have noticed one problem with the output of the previous
example: the error message at the end. This error occurs because the loop, as shown,
contains no exit condition and, as a result, the cursor reaches the end of the record
collection and keeps executing, attempting to access records that don’t exist.

One solution to this problem is, of course, to use an additional SELECT COUNT () ...
query at the beginning of the procedure, and use that result to force the loop to run only
a specified number of times. However, MySQL also offers a somewhat more elegant
option, one that doesn’t require the overhead of an additional query: an error handler.

There are two steps to defining an error handler for a stored procedure, as explained
in the following sections.

Declare the Error Condition to Be Handled

The first step is to decide which error code to trap and assign a unique name to that
error condition. This is accomplished by using a DECLARE ... CONDITION FOR
statement. Here’s an example, which specifies a name for MySQL error code 1050
(table already exists):

DECLARE err_table_exists CONDITION FOR 1050;

Instead of the MySQL error code, it’s possible to trap errors using their SQLSTATE
code. Here’s an example of this approach:

DECLARE err table exists CONDITION FOR SQLSTATE '42S01';

Tip A complete list of MySQL error codes and their equivalent SQLSTATE wvalues can be
obtained from the MySQL manual at http://dev.mysql.com/doc/refman/5.1/en/error-
messages-server.html.

161

162

Part I: Usage

Declare a Handler for the Named Error Condition

The second step is to define a handler for the error condition. This is accomplished by
using a DECLARE ... HANDLER FOR statement, which contains the SQL commands
that will be executed when the error occurs. Here’s an example, which sets a variable to
a new value when the “table already exists” error occurs and then exits the routine:

DECLARE EXIT HANDLER FOR err table exists
BEGIN

SET @table=-1;
END;

It’s also possible to define the error condition to be trapped within the DECLARE
. HANDLER FOR statement itself. To illustrate, consider that the following two sets of
statements are equivalent:

DECLARE err_table_exists CONDITION FOR 1050;
DECLARE EXIT HANDLER FOR err_table_exists
BEGIN

SET @table=-1;
END ;

DECLARE EXIT HANDLER FOR 1050
BEGIN

SET @table=-1;
END;

Once the handler code is executed, MySQL will either exit the stored routine or
continue processing it, depending on the type of handler used. Within a stored routine,
two types of handlers are currently possible: an EXIT handler, which causes the stored
routine to stop executing when the error takes place, and a CONTINUE handler, which
causes the stored procedure to continue executing after the error takes place. The
following sections look at each of these in greater detail.

Tip When using DECLARE statements in stored routines, MySQL is finicky about the order in
which these can appear. To avoid error messages, place variable and condition declarations
before cursor and handler declarations.

The EXIT Handler

An EXIT handler causes MySQL to terminate processing of a stored routine when the
specified error condition occurs. Here’s a revision of the previous example, which
demonstrates by using an exit handler to gracefully terminate processing when the
“zero rows” error is triggered:

Chapter 6: Using Stored Procedures and Functions

mysqgl> DELIMITER //
mysgl> CREATE PROCEDURE get airport size()
-> BEGIN
-> DECLARE a VARCHAR(255) ;
-> DECLARE b,x,e INT;
-> DECLARE err no_more_records CONDITION FOR 1329;
-> DECLARE c¢ CURSOR FOR SELECT AirportName, NumTerminals

-> FROM airport;

-> DECLARE EXIT HANDLER FOR err no more records
-> BEGIN

-> END;

-> OPEN c;
-> size: LOOP

-> FETCH c¢ INTO a,x;

-> IF x > 2

-> THEN SELECT a AS Name, 'big' AS Size;
-> ELSE

-> SELECT a AS Name, 'small' AS Size;

-> END IF;

-> END LOOP size;
-> CLOSE c;
-> END//
Query OK, 0 rows affected (0.00 sec)

In this example, an exit handler is defined for error 1329, which is the error code
corresponding to the “zero rows” error. When this handler is triggered, it exits the
procedure cleanly without generating an error message.

The CONTINUE Handler

A CONTINUE handler causes MySQL to continue processing a stored routine when the
specified error condition occurs. Here’s an example, which tries to drop a nonexistent
table, intercepts the resulting error, and continues processing the routine:

mysql> DELIMITER //
mysgl> CREATE PROCEDURE drop table()

-> BEGIN

-> DECLARE CONTINUE HANDLER FOR 1051

-> BEGIN

-> SELECT 'ERROR: Attempt to drop a non-existent table’
-> AS message;

-> END;

-> SELECT 'START procedure' AS message;
-> DROP TABLE i dont exist;
-> SELECT 'END procedure' AS message;
-> END//

Query OK, 0 rows affected (0.00 sec)

163

164

Part I: Usage

And here’s the output:

mysqgl> CALL drop table\G

khkkhkkhkhkhkkhkhkkhhkhkkhkhkdkhkhkdhkhkkhhrhhhkxkx 1. TOW khkkhkkhkkhkhkkhkkhkhkkhhkkkkkk*k

message: START procedure

1 row in set (0.00 sec)
R R R R R R RS EEE SRR E R EEEEEEEEE R 1. TOW ERE R R R EEEEEEEEEEEE S

message: ERROR: Attempt to drop a non-existent table

1 row in set (0.00 sec)
IR SRR RS EE RS EEEEEEEEEEEEEEE R 1‘ TOW PR RS R EEEEEEEEEE SRR

message: END procedure
1 row in set (0.00 sec)

It’s possible to use a CONTINUE handler to replicate the behavior of an EXIT handler
by setting a variable in the handler code and then manually exiting the stored
procedure if that variable is set. Here’s a revision of one of the previous examples,
which demonstrates this by using a CONTINUE handler instead of an EXIT handler to
avoid the “zero rows” error:

mysgl> CREATE PROCEDURE get airport size()

-> BEGIN

-> DECLARE a VARCHAR(255);

-> DECLARE b,x,e INT;

-> DECLARE c¢ CURSOR FOR SELECT AirportName, NumTerminals FROM airport;
-> DECLARE CONTINUE HANDLER FOR NOT FOUND

-> BEGIN
-> SET e = 1;
-> END;

-> OPEN c;
-> size: LOOP

-> IF e = 1 THEN

-> LEAVE size;

-> END IF;

-> FETCH c¢ INTO a,x;

-> IF x > 2

-> THEN SELECT a AS Name, 'big' AS Size;
-> ELSE

-> SELECT a AS Name, 'small' AS Size;

-> END IF;

-> END LOOP size;
-> CLOSE c;
-> END//

Query OK, 0 rows affected (0.00 sec)

In this example, the loop construct checks for an error variable at the beginning of
each iteration and executes the cursor FETCH statement only if the error variable
remains unset. When the cursor advances past the end of its record set, the CONTINUE
handler is triggered; it sets the error variable and then continues executing the stored
routine without exiting. On the next loop iteration, because the error variable will be
set, the loop will terminate gracefully without executing the FETCH statement.

Chapter 6: Using Stored Procedures and Functions 165

Tip The NOT FOUND keyword serves as a “catch-all” shortcut that represents all errors
occurring due to a cursor reaching the end of its record set.

And here’s another example, this one accepting a weekday number and returning
the number of flights on that day, classified by time of day:

mysqgls> DELIMITER //
mysgl> CREATE PROCEDURE get flights day (IN daynum INT)
-> BEGIN
-> DECLARE morning,afternoon, evening,night, total INT DEFAULT O0;
-> DECLARE dt TIME;
-> DECLARE ¢ CURSOR FOR SELECT DepTime

-> FROM flightdep WHERE DepDay = daynum;

-> DECLARE EXIT HANDLER FOR NOT FOUND

-> BEGIN

-> SET total = morning + afternoon + evening + night;
-> SELECT morning, afternoon, evening, night, total;
-> END;

-> OPEN c;
-> seg: LOOP

-> FETCH ¢ INTO dt;

-> IF dt BETWEEN '00:00:00' AND '05:59:59' THEN

-> SET night = night + 1;

-> ELSEIF dt BETWEEN '06:00:00' AND '11:59:59' THEN
-> SET morning = morning + 1;

-> ELSEIF dt BETWEEN '12:00:00' AND '17:59:59' THEN
-> SET afternoon = afternoon + 1;

-> ELSEIF dt BETWEEN '18:00:00' AND '23:59:59' THEN
-> SET evening = evening + 1;

-> END IF;

-> END LOOP seg;
-> CLOSE c;
-> END//
Query OK, 0 rows affected (0.01 sec)

This procedure accepts a day number as input and then retrieves all the flights on
that day. A loop-and-cursor combination processes the flight list, with an IF construct
taking care of assigning each flight to a specific segment of the day on the basis of its
departure time. Once the cursor has reached the end of the result set, the exit handler is
triggered and the final count of flights for each day segment is displayed.

Here’s an example of the output:

mysgl> CALL get flights day(2):;

166

+
I
I
I
I
I
I
I
I
I
+
I
I
I
I
I
I
I
I
I
I
I
- 4+ —
I
I
I
I
I
I
I
I
I
+
I
I
I
I
I
I
I

Part I: Usage

1 row in set (0.00 sec)
mysgl> CALL get flights day(7):;

Hmmmmmmo - oo mmo oo Hmmmmmmo - Hmmmmm o Hmmmmm o +
| morning | afternoon | evening | night | total |
4o m - e 4o m - 4o mmm - 4o mmm - +
1| 4 4 | 1 | 10 |

4o mmm o +

row in set (0.01 sec

How Do | Back Up My Stored Routines?

You can export the functions and procedures associated with a given database by
passing the --routines argument to the mysqldump program. Chapter 12 has more
information on this program.

Summary

This chapter discussed stored routines, one of the key new features introduced in
MySQL 5.0. Stored routines allow developers to transfer some of the application’s
business logic to the database server, thereby benefitting from greater security and
consistency in database-related operations. Support for programming constructs like
variables, arguments, return values, conditional statements, loops, and error handlers
allow developers to create complex and sophisticated stored routines that can reduce
the time spent on application development.

To learn more about the topics discussed in this chapter, consider visiting the

following links:

e Stored routines, at http://dev.mysql.com/doc/refman/5.1/en/stored-routines

html

e Handlers, at http://dev.mysql.com/doc/refman/5.1/en/conditions-and-
handlers.html

* Frequently asked questions about stored routines, at http://dev.mysql.com/
doc/refman/5.1/en/faqs-stored-procs.html

e Limitations on stored routines, at http://dev.mysql.com/doc/refman/5.1/en/
stored-program-restrictions.html

* MySQL’s internal implementation of stored routines, at http://forge.mysql
.com/wiki/MySQL_Internals_Stored_Programs

* A discussion of problems with MySQL'’s current implementation of stored
procedures, at http://www.mysqlperformanceblog.com/2007/06/12/
mysql-stored-procedures-problems-and-use-practices

CHAPTER 7

Using Triggers
and Scheduled Events

168

Part I: Usage

basis, MySQL 5.0 introduced database triggers, which allow these actions to be

performed automatically by the server. This was not entirely unexpected—triggers
and stored routines tend to go hand-in-hand, and both items were in demand from the
user community—but it was a pleasant surprise to see MySQL 5.1 improve on this even
further by introducing a new subsystem for scheduled events.

This event scheduler, together with MySQL'’s support for triggers, provide a
powerful framework for automating database operations, one that can come in handy
when constructing complex or lengthy application workflows. This chapter builds on
the material in the previous chapter, introducing you to MySQL’s implementation of
triggers and scheduled events, and providing examples that demonstrate how they can
be used in real-world applications.

In addition to executing SQL statements and calling stored routines on an ad-hoc

Understanding Triggers

A trigger, as the name suggests, refers to one or more SQL statements that are
automatically executed (“triggered”) by the database server when a specific event
occurs. Triggers can come in handy when automating database operations, and thereby
reduce some of the load carried by an application. Common examples of triggers in use
include:

e Logging changes in data
* Creating “snapshots” of data prior to a change (for undo functionality)
¢ Performing automatic calculations

e Changing data in one table in response to a change in another

A trigger is always associated with a particular table, and it can be set to execute
either before or after the trigger event takes place. MySQL currently supports three
types of trigger events: INSERTSs, UPDATES, and DELETES.

A Simple Trigger

To understand how triggers work, let’s consider a simple example: logging changes to
the airline’s flight database. Let’s suppose that every time an administrator adds a new
flight to the database, this action should be automatically logged to a separate table,
along with the administrator’s MySQL username and the current time. With a trigger,
this is easy to do:

mysgl> CREATE TRIGGER flight ai

-> AFTER INSERT ON flight

-> FOR EACH ROW

-> INSERT INTO log (ByUser, Note, EventTime)

-> VALUES (CURRENT USER(), 'Record added: flight', NOW());
Query OK, 0 rows affected (0.04 sec)

To define a trigger, MySQL offers the CREATE TRIGGER command. This command
must be followed by the trigger name and the four key trigger components, namely:

Chapter 7: Using Triggers and Scheduled Events 169

The trigger event, which can be any one of INSERT, UPDATE, or DELETE

The trigger activation time, which can be either AFTER the event or BEFORE it

The trigger’s subject table, which is the table the trigger should be attached to

The trigger body, which contains the SQL statements to be executed

NoTE To create a trigger, a user must have the TRIGGER privilege (in MySQL 5.1.6+) or the
SUPER privilege (in MySQL 5.0.x). Privileges are discussed in greater detail in Chapter 11.

These components are illustrated in the previous example, which creates a trigger
named flight_ai. The FOR EACH ROW clause in the trigger ensures that it is activated
after every operation that adds a new record to the flight table and it, in turn, adds a
record to the log table recording the operation. To see this trigger in action, try adding a
new record to the flight table, as shown:

mysgl> INSERT INTO flight (FlightID, RouteID, AircraftID)
-> VALUES (900, 1141, 3452);
Query OK, 1 row affected (0.08 sec)
mysgl> SELECT * FROM log\G
hhkhkkhkhkhkhkhkhhhkhhhhhhhhhhhhdhdhkdd,x] 1yoOw ***kdkkhkkhhhhhhhhhhhhkk
RecordID: 2
ByUser: root@localhost
Note: Record added: flight
EventTime: 2009-01-09 15:40:46
1 row in set (0.00 sec)

It’s easy to add another trigger, this one to log record deletions. Here’s an example:

mysqgl> CREATE TRIGGER flight ad

-> AFTER DELETE ON flight

-> FOR EACH ROW

-> INSERT INTO log (ByUser, Note, EventTime)

-> VALUES (CURRENT_USER(), 'Record deleted: flight', NOW()):;
Query OK, 0 rows affected (0.08 sec)

And now, when you delete a record, that operation should also be recorded in the
log table:

mysgl> DELETE FROM flight

-> WHERE flightid = 900;
Query OK, 1 row affected (0.01 sec)
mysgl> SELECT * FROM log\G
Fhhkkkhkhkhkhkhkhkhkhhhhhhkhhkkkkkkx*x*x] prow ***dxkhkhhkhkhkhkhkxx
RecordID: 3

ByUser: root@localhost

Note: Record deleted: flight

EventTime: 2009-01-09 15:42:42

khkkkkhkhhkhhhkhdhkhhdhkhdhkhkdhdhdxhkdx D poOw *xkkkkkkhkdkhkhhxk

RecordID: 2

170

Part I: Usage

ByUser: root@localhost
Note: Record added: flight
EventTime: 2009-01-09 15:40:46
2 rows in set (0.00 sec)

How Do | Name My Triggers?

Peter Gulutzan has suggested an easy-to-understand and consistent naming
scheme for triggers in his article at http:/ /dev.mysql.com/tech-resources/articles/
mysql-triggers.pdf, which is also followed in this chapter: Name each trigger with
the name of the table to which it is linked, with an additional suffix consisting of
the letters a (for “after”) or b (for “before”), and i (for “insert”), u (for “update”)
and d (for “delete”). So, for example, an AFTER INSERT trigger on the pax table
would be named pax_ai.

The main body of the trigger is not limited only to single SQL statements; it can
contain any of MySQL’s programming constructs, including variable definitions,
conditional tests, loops, and error handlers. BEGIN and END blocks are mandatory when
the procedure body contains these complex control structures. In all other cases (such
as the previous example, which contains only a single INSERT), they are optional.

NoTE To avoid ambiguity, MySQL does not allow more than one trigger with the same trigger
event and trigger time per table. This means that, for example, a table cannot have two
AFTER INSERT triggers (although it can have separate BEFORE INSERT and AFTER
INSERT triggers). Or, to put it another way, a table can have, at most, six possible triggers.

To remove a trigger, use the DROP TRIGGER command with the trigger name as
argument:

mysgl> DROP TRIGGER flight ad;
Query OK, 0 rows affected (0.03 sec)

Tip Dropping a table automatically removes all triggers associated with it.

To view the body of a specific trigger, use the SHOW CREATE TRIGGER command
with the trigger name as argument. Here’s an example:

mysgl> SHOW CREATE TRIGGER flight ad\G
dhhkhkhkhhkhkhkhkhhhhhhhhhhhhhdkdhddt 7 pow *dkdhkdhdhhhhhhhhhhhhhhhhhhhh
Trigger: flight ad
sql_mode: STRICT_TRANS_ TABLES
SQL Original Statement: CREATE DEFINER="root @ localhost™
TRIGGER flight ad
AFTER DELETE ON flight
FOR EACH ROW

Chapter 7: Using Triggers and Scheduled Events

11

INSERT INTO log (ByUser, Note, EventTime)
VALUES (CURRENT USER(), 'Record deleted:
character set client: latinl
collation connection: latinl swedish ci
Database Collation: latinl swedish ci
1 row in set (0.00 sec)

flight', NOW());

To view a list of all triggers on the server, use the SHOW TRIGGERS command. You
can filter the output of this command with a WHERE clause, as shown:

mysgl> SHOW TRIGGERS FROM dbl WHERE ~Table™ =

kkhkhkkhkkhkhkkhhkhkkhkhkkhhkhkkhhkhhkhkkhkhrkhkkhhkkhk*x l‘

Trigger:

Event:

Table:

Statement:

VALUES
Timing:

Created:

sgl mode:

Definer:
character set client:
collation connection:
Database Collation:

LEEE R R ERE SRR EEEEEEEEEEEEEE N

Trigger:

Event:

Table:

Statement:

VALUES
Timing:

Created:

sgl mode:

Definer:
character_set client:
collation connection:
Database Collation:

2 rows in set

Trigger Security

(CURRENT USER (),

(CURRENT USER() ,

'flight'\G

TOwW ERE R R E R RS EEEEEEEEEEEEEEEEEEE]
flight ai

INSERT

flight

INSERT INTO log (ByUser, Note,
'Record added:

EventTime)
flight', NOW()) ;
AFTER

NULL

STRICT_TRANS TABLES

root@localhost

latinl

latinl_swedish_ci

latinl_ swedish ci

Trow R RS SRS EE SRS SRS SR EEEEEEEEEES
flight ad

DELETE

flight

INSERT INTO log (ByUser, Note,
'Record deleted:

EventTime)
flight', NOW());
AFTER

NULL

STRICT_ TRANS TABLES

root@localhost

latinl

latinl swedish ci

latinl swedish ci

(0.00 sec)

The CREATE TRIGGER command supports an additional DEFINER clause, which
specifies the user account whose privileges should be considered when executing the
trigger. For the trigger to execute successfully, this user should have all the privileges
necessary to perform the statements listed in the trigger body. By default, MySQL sets
the DEFINER value to the user who created the trigger.

Here’s an example:

mysqgl> CREATE DEFINER =
-> TRIGGER flight ad

'jack@example.com'

172

Part I:

->
->
->

->

Query OK,

Usage

AFTER DELETE ON flight
FOR EACH ROW

INSERT INTO log (ByUser, Note, EventTime)
VALUES (USER(), 'Record deleted: flight', NOW());
0 rows affected (0.08 sec)

Which Is Better: a BEFORE Trigger or an AFTER Trigger?

There’s no hard-and-fast rule as to which trigger is “better”—it’s like asking which
flavor of ice cream is best. But if you're stuck trying to decide whether your code
should run before or after a DML operation, the following rule of thumb (posted
by Scott White in the online MySQL manual, at http://dev.mysql.com/doc/
refman/5.0/en/create-trigger.html) might help: “Use BEFORE triggers primarily for
constraints or rules, not transactions. Stick with AFTER triggers for most other
operations, such as inserting into a history table or updating a denormalization.”

Triggers and Old/New Values

Within the body of a trigger, it’s possible to reference field values from both before and
after the trigger event by prefixing the field name with the OLD and NEW keywords. This
means that, for example, if you have an UPDATE trigger on a table, the SQL statements
within the trigger body can access both the existing field values (OLD) and the new,
incoming field values (NEW).

To illustrate this, consider the next example, which logs changes to the flight table
and specifies the changed values as part of the log message:

mysql> DELIMITER //

mysgl> CREATE TRIGGER flight au
-> AFTER UPDATE ON flight
-> FOR EACH ROW

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

BEGIN

DECLARE str VARCHAR(255) DEFAULT '‘';
IF OLD.FlightID != NEW.FlightID THEN
SET str = CONCAT (str, 'FlightID ',

OLD.FlightID, ' -> ', NEW.FlightID, ' ');
END IF;
IF OLD.RouteID != NEW.RoutelID THEN
SET str = CONCAT (str, 'RoutelID ',
OLD.RouteID, ' -> ', NEW.RouteID, ' ');
END IF;
IF OLD.AircraftID != NEW.AircraftID THEN
SET str = CONCAT(str, 'AircraftID ',
OLD.AircraftID, ' -> ', NEW.AircraftID);
END IF;

INSERT INTO log (ByUser, Note, EventTime)

Chapter 7: Using Triggers and Scheduled Events

-> VALUES (USER(),

-> CONCAT ('Record updated: flight: ', str),
-> NOw ()) ;

-> END//

Query OK, 0 rows affected (0.00 sec)

In this example, the prefix OLD returns the pre-update value of the corresponding
field, while the prefix NEW returns the post-update value of the field. Within the trigger
body, IF conditional tests are used to check if the old and new values are the same; if
not, the field is flagged and its old and new values are inserted as part of the log string.

OLD and NEW values typically appear together only in UPDATE triggers. This is only
logical: OLD values are neither relevant nor supported in the case of INSERT triggers,
while the same applies to NEW values for DELETE triggers.

Triggers and More Complex Applications

Let’s look at another, more complex example. Consider that an airline has a limited
inventory of seats per flight and flight class, and the seat inventory for each flight needs
to be updated on a continual basis as passengers book their flights. Consider also that
the airline would like to automatically increase the price of tickets as the flight begins
to fill up in order to increase its profit margin.

Figure 7-1 explains how this information is stored in the example database.

e Passenger records for each flight and class combination are recorded in the
pax table.

¢ The live seat inventory for a particular flight-and-class combination can be
found in the stats table.

* The pax and stats tables are linked to each other by means of the common
FlightID, FlightDate, and ClassID fields.

¢ The maximum number of seats possible in each class of a particular flight,
together with the base (starting) ticket price, is recorded in the flightclass table.

So, for example, flight #652 which operates on the Orly-Budapest route, has a
maximum of 10 seats available in Gold class at a base price of $200 and 20 seats
available in Silver class at a base price of $100.

mysqgl> SELECT FlightID, ClassID, MaxSeats, BasePrice
-> FROM flightclass WHERE FlightID=652;

+----mm- - +--------- - +-—mmmm - +
| FlightID | ClassID | MaxSeats | BasePrice |
to-mmmm - +----m--—- +-—-mmmm - - tommm e e +
| 652 | 2 | 10 | 200 |
| 652 | 3 | 20 | 50 |
e il +-------=-- +---------- e +

2 rows in set (0.00 sec)

173

174

Part I: Usage
ClassID ClassName
1| Platinum
2| Gold
3|Silver
FlightID ClassID MaxSeats BasePrice
535 2 50 200
535 3 150 50
652 2 10 200
652 3 20 50
876 2 85 250
876 3 100 35
876 1 10 300
FlightID FlightDate | ClassID CurrSeats CurrPrice
652 1/20/2009 2 9 200
652 1/20/2009 3 18 50
RecordID FlightID FlightDate ClassID PaxName PaxRef
197 652 1/20/2009 2 |Henry Rabbit TG75850303
198 652 1/20/2009 3 |Harry Hippo TG75847493
199 652 1/20/2009 3 |Henrietta Hippo |TG75847493
Ficure 7-1 Passenger, flight, and seat information

Looking into the stats table for this flight on January 20, 2009, we see that there are
currently 9 seats available in Gold class and 18 seats available in Silver class—that is,
three passengers are currently scheduled to fly on that day.

mysgl> SELECT ClassID, CurrSeats, CurrPrice
-> FROM stats WHERE FlightID=652
-> AND FlightDate '2009-01-20"';

B et e e e R +
| ClassID | CurrSeats | CurrPrice |
S e e +
| 2 | 9 | 200 |
| 3| 18 | 50 |
R R e e +

With this information at hand, it becomes possible to construct a trigger that
automatically handles updating the live seat inventory in the stats table. Every time a
passenger books a flight, a new record is inserted into the pax table. So an AFTER
INSERT trigger on this table can be used to automatically reduce the seat inventory in
the stats table by 1 on every record insertion.

Chapter 7: Using Triggers and Scheduled Events 175

Here’s the code:

mysgl> DELIMITER //

mysgl> CREATE TRIGGER pax ai
-> AFTER INSERT ON pax
-> FOR EACH ROW

-> BEGIN

-> UPDATE stats AS s

-> SET s.CurrSeats = s.CurrSeats - 1
-> WHERE s.FlightID = NEW.FlightID
-> AND s.FlightDate = NEW.FlightDate
-> AND s.ClassID = NEW.ClassID;

-> END//

Query OK, 0 rows affected (0.03 sec)

Similarly, every time a cancellation occurs, the corresponding record will be deleted
from the passenger manifest, and an AFTER DELETE trigger can be used to simultaneously
increase the seat inventory by 1:

mysql> DELIMITER //

mysgl> CREATE TRIGGER pax ad
-> AFTER DELETE ON pax
-> FOR EACH ROW

-> BEGIN

-> UPDATE stats AS s

-> SET s.CurrSeats = s.CurrSeats + 1
-> WHERE s.FlightID = OLD.FlightID
-> AND s.FlightDate = OLD.FlightDate
-> AND s.ClassID = OLD.ClassID;

-> END//

Query OK, 0 rows affected (0.01 sec)

See this in action by inserting a new passenger record into the pax table and then
reviewing the stats table:

mysgl> INSERT INTO pax
-> (FlightID, FlightDate, ClassID, PaxName, PaxRef)
-> VALUES (652, '2009-01-20', 3,
-> 'Igor Iguana', 'TR58304888');
Query OK, 1 row affected (0.01 sec)
mysgl> SELECT ClassID, CurrSeats, CurrPrice
-> FROM stats WHERE FlightID=652
-> AND FlightDate = '2009-01-20"';
+

R T i +
| ClassID | CurrSeats | CurrPrice |
+--------- $o--mmmm - - $o--mmmm - - +
| | 9 | 200 |
| 3| 17 | 50 |
R T R e T R e T +

2 rows in set (0.00 sec)

176 Part I: Usage

And if you remove a passenger record, the seat inventory should tick upwards by one.

Automatically increasing (or decreasing) the ticket price as the seat count reduces
(or increases) can be accomplished by defining different “slabs” of seat utilization and
adjusting the current price upwards or downwards by a fixed percentage depending
on the current slab. So, for example, the airline might decide that once 25 percent of the
seats in a class are sold, the price should automatically increase by 50 percent. Similarly,
once 75 percent of the seats are sold, the price should once again increase by 50 percent.

Adding this logic entails modifying the previously defined triggers, as shown:

mysqgl> DELIMITER //

mysgl> CREATE TRIGGER pax ai
-> AFTER INSERT ON pax
-> FOR EACH ROW

-> BEGIN

-> DECLARE u FLOAT DEFAULT O0;

-> DECLARE cs, ms, bp, cp INT DEFAULT O0;

-> UPDATE stats AS s

-> SET s.CurrSeats = s.CurrSeats - 1

-> WHERE s.FlightID = NEW.FlightID

-> AND s.FlightDate = NEW.FlightDate

-> AND s.ClassID = NEW.ClassID;

-> SELECT s.CurrSeats, s.CurrPrice INTO cs, cp
-> FROM stats AS s

-> WHERE s.FlightID = NEW.FlightID

-> AND s.FlightDate = NEW.FlightDate

-> AND s.ClassID = NEW.ClassID;

-> SELECT fc.MaxSeats, fc.BasePrice INTO ms, bp
-> FROM flightclass AS fc

-> WHERE fc.FlightID = NEW.FlightID

-> AND fc.ClassID = NEW.ClassID;

-> SET u = 1 - (cs/ms);

-> IF (u >= 0.25 AND u < 0.75 AND cp != ROUND(bp * 1.5)) THEN
-> UPDATE stats AS s

-> SET s.CurrPrice = ROUND(bp * 1.5)

-> WHERE s.FlightID = NEW.FlightID

-> AND s.FlightDate = NEW.FlightDate

-> AND s.ClassID = NEW.ClassID;

-> END IF;

-> IF (u >= 0.75 AND cp != ROUND(bp * 2.25)) THEN
-> UPDATE stats AS s

-> SET s.CurrPrice = ROUND(bp * 2.25)

-> WHERE s.FlightID = NEW.FlightID

-> AND s.FlightDate = NEW.FlightDate

-> AND s.ClassID = NEW.ClassID;

-> END IF;

-> END//

Query OK, 0 rows affected (0.00 sec)

Chapter 7:

This looks complicated, but it really isn't! The trigger begins by first updating the seat

Using Triggers and Scheduled Events

inventory and then retrieving the current seat availability, the maximum seats possible,
the current price, and the base price for that particular flight/class combination. It then
calculates the seat utilization ratio and updates the current price, depending on whether
this ratio is between 25 and 75 percent or greater than 75 percent.

It’s also necessary to update the price if passengers cancel their reservation. Here’s

the revised AFTER DELETE trigger:

mysgl> DELIMITER //

mysgl> CREATE TRIGGER pax ad
-> AFTER DELETE ON pax
-> FOR EACH ROW

-> BEGIN

-> DECLARE u FLOAT DEFAULT O0;

-> DECLARE c¢s, ms, bp, cp INT DEFAULT O0;

-> UPDATE stats AS s

-> SET s.CurrSeats = s.CurrSeats + 1

-> WHERE s.FlightID = OLD.FlightID

-> AND s.FlightDate = OLD.FlightDate

-> AND s.ClassID = OLD.ClassID;

-> SELECT s.CurrSeats, s.CurrPrice INTO cs, cp
-> FROM stats AS s

-> WHERE s.FlightID = OLD.FlightID

-> AND s.FlightDate = OLD.FlightDate

-> AND s.ClassID = OLD.ClassID;

-> SELECT fc.MaxSeats, fc.BasePrice INTO ms, bp
-> FROM flightclass AS fc

-> WHERE fc.FlightID = OLD.FlightID

-> AND fc.ClassID = OLD.ClassID;

-> SET u = 1 - (cs/ms);

-> IF (u < 0.25 AND cp != bp) THEN

-> UPDATE stats AS s

-> SET s.CurrPrice = bp

-> WHERE s.FlightID = OLD.FlightID

-> AND s.FlightDate = OLD.FlightDate

-> AND s.ClassID = OLD.ClassID;

-> END IF;

-> IF (u >= 0.25 AND u < 0.75 AND cp != ROUND(bp * 1.5)) THEN
-> UPDATE stats AS s

-> SET s.CurrPrice = ROUND(bp * 1.5)

-> WHERE s.FlightID = OLD.FlightID

-> AND s.FlightDate = OLD.FlightDate

-> AND s.ClassID = OLD.ClassID;

-> END IF;

-> IF (u >= 0.75 AND cp != ROUND(bp * 2.25)) THEN
-> UPDATE stats AS s

-> SET s.CurrPrice = ROUND(bp * 2.25)

-> WHERE s.FlightID

= OLD.FlightID

111

178

Part I: Usage

-> AND s.FlightDate = OLD.FlightDate
-> AND s.ClassID = OLD.ClassID;

-> END IF;

-> END//

Query OK, 0 rows affected (0.00 sec)
Let’s try it by booking two passengers in Gold class on that flight:

mysgl> INSERT INTO pax
-> (FlightID, FlightDate, ClassID, PaxName, PaxRef)
-> VALUES (652, '2009-01-20', 2,
-> 'Gerry Giraffe', 'TR75950888');

Query OK, 1 row affected (0.01 sec)

mysgl> INSERT INTO pax
-> (FlightID, FlightDate, ClassID, PaxName, PaxRef)
-> VALUES (652, '2009-01-20', 2,
-> 'Adam Anteater', 'TR88404015');

Query OK, 1 row affected (0.00 sec)

Since 7 of the 10 available seats are now booked, the 25 percent threshold has been
crossed and a price rise should automatically occur. Look in the stats table, and you'll see
that the ticket price for the flight in Gold class has risen by 50 percent, from $200 to $300.

mysgl> SELECT ClassID, CurrSeats, CurrPrice
-> FROM stats WHERE FlightID=652
-> AND FlightDate = '2009-01-20"';
+

+--------- R s +
| ClassID | CurrSeats | CurrPrice |
+o------- - +o-—- - m-m - +o-—- - m-m - +
| 2 | 7 | 300 |
| 3| 17 | 50 |
tommmm - tommmmm o - tommmmm o - +

2 rows in set (0.01 sec)

Triggers and Constraints

Now, if you're sharp-eyed, you'll have noticed that there’s a glaring problem in the
previous example: It’s possible to keep adding passengers until the seat inventory falls
below zero. While this is theoretically possible in one sense (a negative seat inventory
might well be considered overbooking, a fairly common airline practice these days),
let’s assume that, for our airline at least, showing a negative value for seats available on
a flight is a Bad Thing.

This occurs, quite naturally, because while the trigger in the previous example is
pretty good at increasing and decreasing the seat inventory in response to passenger
bookings and cancellations, it doesn’t include any checks that prevent the available seat
count falling below zero or rising above the maximum number of seats specified for
that class. To make things even more...ahem, airtight, the trigger should be updated to
check for these upper and lower limits, and allow the INSERT into the pax table only if
these range constraints are not violated.

Chapter 7: Using Triggers and Scheduled Events

And therein lies the problem. Unlike Oracle, which allows you to abort a trigger
with the RAISE APPLICATION ERROR statement, MySQL does not currently offer any
mechanism to abort a trigger or to raise an error in the event that a user-specified
constraint is not met. This is a key limitation of MySQL’s current implementation of
triggers, and has generated a large amount of discussion in the MySQL user forums...
as well as a creative workaround!

The fundamental principle of this workaround is simple: Deliberately generate a
MySQL error by performing an illegal operation, thereby forcing MySQL to abort
execution of the trigger. There are various ways in which this can be done, including:

¢ Inserting a value into a nonexistent field
¢ Inserting a NULL value into a field with the NOT NULL constraint

¢ (alling a nonexistent stored routine

The end result of all these operations is the same: a fatal error, which will cause MySQL
to terminate execution of the statement causing the error. If this statement is enclosed
within a BEFORE trigger, the resulting error will force MySQL to abort trigger execution, as
well as the INSERT, UPDATE, or DELETE statement that is supposed to follow it.

To illustrate this in action, consider the following trivial example: a trigger that only
allows new airports to be registered in the airport table if they have at least three runways:

mysql> DELIMITER //
mysgl> CREATE TRIGGER airport bi
-> BEFORE INSERT ON airport
-> FOR EACH ROW
-> BEGIN
-> IF NEW.NumRunways < 3 THEN
-> CALL i dont exist;
-> END IF;
-> END//
Query OK, 0 rows affected (0.06 sec)

Now, try it out:

mysgl> INSERT INTO airport
-> (AirportID, AirportCode, AirportName,
-> CityName, CountryCode, NumRunways,
-> NumTerminals) VALUES (207, 'LTN',
-> 'Luton Airport', 'London', 'GB',
-> 2,1);
ERROR 1305 (42000): PROCEDURE dbl.i dont exist does not exist

In this case, because the specified constraint in the BEFORE INSERT trigger isn't
met, a deliberate error is generated, which causes the failure of the INSERT altogether.
On the other hand, if you were to try the same query specifying three or more runways,
the INSERT statement would execute successfully.

179

180 Part I: Usage

Now, let’s use a couple of BEFORE triggers on the pax table to enforce the constraints
discussed at the beginning of this section:

mysqgl> DELIMITER //
mysgl> CREATE TRIGGER pax bi
-> BEFORE INSERT ON pax
-> FOR EACH ROW
-> BEGIN
-> DECLARE cs INT DEFAULT O0;
-> SELECT s.CurrSeats INTO cs

-> FROM stats AS s

-> WHERE s.FlightID = NEW.FlightID

-> AND s.FlightDate = NEW.FlightDate

-> AND s.ClassID = NEW.ClassID;

-> IF cs <= 0 THEN

-> SET @trigger error = 'No seats available';
-> CALL i dont exist();

-> END IF;

-> END//

Query OK, 0 rows affected (0.01 sec)
mysgl> CREATE TRIGGER pax bd
-> BEFORE DELETE ON pax
-> FOR EACH ROW
-> BEGIN
-> DECLARE cs, ms INT DEFAULT O0;
-> SELECT s.CurrSeats INTO cs

-> FROM stats AS s

-> WHERE s.FlightID = OLD.FlightID
-> AND s.FlightDate = OLD.FlightDate
-> AND s.ClassID = OLD.ClassID;

-> SELECT fc.MaxSeats INTO ms

-> FROM flightclass AS fc

-> WHERE fc.FlightID = OLD.FlightID
-> AND fc.ClassID = OLD.ClassID;

-> IF cs >= ms THEN

-> SET @trigger error = 'Cannot increase seat count';
-> CALL i dont exist();

-> END IF;

-> END//

Query OK, 0 rows affected (0.01 sec)

In this case, whenever one of the range constraints is violated and the trigger
aborts, a message indicating the cause of the error will be placed in the @trigger
error session variable. This suggestion (which must be again credited to the MySQL
forum, which developed the workaround in the first place) allows applications to
access a human-readable error message and display it to the user.

Chapter 7: Using Triggers and Scheduled Events 181

Understanding Scheduled Events

The triggers discussed in the previous section are written for, and activated by, a
particular type of event, such as a new record insertion or modification. However,
MySQL 5.1 also supports a slightly different approach to database automation in the
form of scheduled events.

Scheduled events, as the name suggests, are triggered at particular times. They
provide a framework to perform one or more SQL operations on a time-based schedule.
Scheduled events, like triggers, are always associated with a particular table, and can
be set to execute either once or repeatedly at predefined intervals. This can come in
handy for tasks that need to take place periodically, such as log rotation, statistics
generation, or counter updates.

A Simple Scheduled Event

To understand how scheduled events work, let’s consider a simple example: archiving
old passenger data. Let’s suppose that a database administrator wishes to automatically
move all passenger records for flights that are 30 days old out of the pax table and into a
different archive table. A scheduled event makes this easy to do:

mysgl> CREATE TABLE paxarchive LIKE pax;
Query OK, 0 rows affected (0.03 sec)

mysgl> ALTER TABLE paxarchive ENGINE=ARCHIVE;
Query OK, 0 rows affected (0.12 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysqgl> DELIMITER //
mysqgl> CREATE EVENT pax day
-> ON SCHEDULE EVERY 1 DAY
-> STARTS '2009-01-14 22:45:00' ENABLE

-> DO

-> BEGIN

-> INSERT INTO paxarchive

-> SELECT * FROM pax

-> WHERE FlightDate <=

-> DATE SUB (CURRENT DATE(), INTERVAL 30 DAY) ;
-> DELETE FROM pax

-> WHERE FlightDate <=

-> DATE SUB (CURRENT DATE(), INTERVAL 30 DAY);
-> END//

Query OK, 0 rows affected (0.01 sec)

To define a scheduled event, MySQL offers the CREATE EVENT command. This
command must be followed by the event name, the event schedule, an active/inactive
flag, and the main body, which contains the SQL statements to be executed when the
event fires.

182

Part I: Usage

These components are illustrated in the previous example, which creates a scheduled
event named paxarchive. The ON SCHEDULE EVERY 1 DAY clause in the event definition
ensures that it is activated daily, while the STARTS clause specifies the event’s start date
and time. The ENABLE keyword tells the system that this is an active event, while the DO
clause contains the main body of the trigger; this can contain either a single SQL
statement or (as in the previous example) multiple SQL statements enclosed within a
BEGIN. . . END block.

Defining an event is not, however, sufficient to have it fire automatically. By default,
MySQL’s event scheduling engine is deactivated and must be activated with the
following command:

mysgl> SET GLOBAL event scheduler = ON;
Query OK, 0 rows affected (0.38 sec)

This command starts the global event scheduling daemon, which periodically
checks for scheduled events and runs them at the appropriate time.

As a result of these actions, MySQL will, on a daily basis, copy all passenger records
that relate to flights 30 days in the past to the paxarchive table and then delete the same
records from the pax table.

NotE To create a scheduled event, a user must have the EVENT privilege. To turn the global
event scheduler on or off, a user must have the SUPER privilege. Privileges are discussed in
greater detail in Chapter 11.

To modify a scheduled event, use the ALTER EVENT command and provide new
parameters for the event. Here’s an example, which alters the previous event to run
every two hours instead:

mysql> DELIMITER //
mysgl> ALTER EVENT pax day
-> ON SCHEDULE EVERY 2 HOUR
-> STARTS '2009-01-14 22:45:00' ENABLE

-> DO

-> BEGIN

-> INSERT INTO paxarchive

-> SELECT * FROM pax

-> WHERE FlightDate <=

-> DATE SUB (CURRENT DATE (), INTERVAL 30 DAY);
-> DELETE FROM pax

-> WHERE FlightDate <=

-> DATE SUB(CURRENT DATE (), INTERVAL 30 DAY);
-> END//

Query OK, 0 rows affected (0.24 sec)

Chapter 7: Using Triggers and Scheduled Events 183

Here’s another example, which disables a specified event (disabled events will not
fire at all):

mysgl> ALTER EVENT pax day DISABLE;
Query OK, 0 rows affected (0.00 sec)

By default, once an event has completed, it is automatically removed from the event
queue by the event scheduler. However, you can manually remove it at any time; use
the DROP EVENT command with the event name as argument:

mysgl> DROP EVENT pax day;
Query OK, 0 rows affected (0.03 sec)

Tip To prevent an event from being automatically removed from the event queue once it is
completed (for audit or other reasons), attach an ON COMPLETION PRESERVE clause to the
CREATE EVENT command.

Alternatively, to turn off all scheduled events, turn off the global scheduler, as
shown:

mysgl> SET GLOBAL event scheduler = OFF;
Query OK, 0 rows affected (0.38 sec)

To view the body of a specific event, use the SHOW CREATE EVENT command with
the event name as argument. Here’s an example:

mysgl> SHOW CREATE EVENT pax day\G
LR R R S S R l‘ TOwW khkkhkkhkhkhkkhkhkdhkhkkhkhkhkkhhkdhkhkkhkrkdkhkxkx
Event: pax day
sgl mode: STRICT TRANS TABLES
time zone: SYSTEM
Create Event: CREATE EVENT “pax day’
ON SCHEDULE EVERY 1 DAY
STARTS '2009-01-14 22:45:00' ON COMPLETION NOT PRESERVE
ENABLE DO
BEGIN
INSERT INTO paxarchive
SELECT * FROM pax
WHERE FlightDate <=
DATE SUB (CURRENT DATE (), INTERVAL 30 DAY) ;
DELETE FROM pax
WHERE FlightDate <=
DATE_ SUB (CURRENT DATE (), INTERVAL 30 DAY) ;
END
character set client: latinl
collation connection: latinl swedish ci
Database Collation: latinl swedish ci
1 row in set (0.00 sec)

184

Part I: Usage

To view a list of all events scheduled on the server, use the SHOW EVENTS command,

as shown:

mysgl> SHOW EVENTS\G

khkkhkkhkhkhkkhkhkkhhkhkkhkhkdkhkhkdhkhkkhhrhhhkxkx 1.

Db:

Name:

Definer:

Time zone:

Type:

Execute at:

Interval value:
Interval field:
Starts:

Ends:

Status:

Originator:
character set client:
collation connection:
Database Collation:
(0.00 sec)

1 row in set

Event Security

TOW khkkhkkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhhkhhkhhkkkx

dbl

pax day
root@localhost
SYSTEM

RECURRING

NULL

1

DAY

2009-01-14 22:45:00
NULL

ENABLED

0

latinl

latinl swedish ci
latinl swedish ci

The CREATE EVENT command supports a DEFINER clause, which specifies the user
account whose privileges should be considered when executing the event code. For the
event to execute successfully, this user should have all the privileges necessary to
perform the statements listed in the event body. By default, MySQL sets the DEFINER
value to the user who created the trigger.

Here’s an example:

mysql> DELIMITER //

mysqgl> CREATE DEFINER

-> EVENT pax day

= 'jack@example.com'

-> ON SCHEDULE EVERY 1 DAY

-> STARTS '2009-01-14 22:45:00' ENABLE

-> DO

-> BEGIN

-> INSERT INTO paxarchive

-> SELECT * FROM pax

-> WHERE FlightDate <=

-> DATE SUB(CURRENT DATE (), INTERVAL 30 DAY);
-> DELETE FROM pax

-> WHERE FlightDate <=

-> DATE SUB (CURRENT DATE (), INTERVAL 30 DAY);
-> END//

Query OK,

0 rows affected

(0.01 sec)

Chapter 7: Using Triggers and Scheduled Events 185

Recurring Events

Let’s take a closer look at recurring events. As the previous section illustrated, a
recurring event contains the EVERY clause in the event definition; this clause tells
MySQL that the event is one that repeats “every XX time units.” The EVERY clause also
contains the repeat interval—typically, this consists of a number and a keyword
representing the time unit. Valid time units include YEAR, QUARTER, MONTH, DAY, HOUR,
MINUTE, WEEK, and SECOND.

Here’s an example, which checks the percentage of seats that have been booked for
each flight every hour and logs flights that are more than 80 percent full:

mysql> DELIMITER //
mysgl> CREATE EVENT util hour
-> ON SCHEDULE EVERY 1 HOUR ENABLE
-> DO
-> BEGIN
-> DECLARE fid INT;
-> DECLARE fdate DATE;
-> DECLARE str TEXT DEFAULT '';
-> DECLARE util FLOAT;
-> DECLARE c CURSOR FOR
-> SELECT s.FlightID, s.FlightDate, 1-(SUM(s.CurrSeats) /

-> (SELECT SUM(fc.MaxSeats)

-> FROM flightclass AS fc

-> WHERE fc.FlightID = s.FlightID
-> GROUP BY FlightID))

-> AS u FROM stats AS s

-> GROUP BY s.FlightID, s.FlightDate
-> HAVING u > 0.80;

-> OPEN c;
-> 1l: LOOP

-> FETCH ¢ INTO fid, fdate,util;

-> SET str = CONCAT('Flight # ', fid, ' on ',
-> fdate, ": ", ROUND(util*100), '%');

-> INSERT INTO log (ByUser, Note, EventTime)
-> VALUES (CURRENT USER(), str, NOW());

-> END LOOP 1;
-> CLOSE c;
-> END//
Query OK, 0 rows affected (0.00 sec)

CAUTION Open-ended recurring events that write new data to a table and have no defined end
time (like the previous example) are dangerous, because they could cause the target table to
grow in size quite quickly, with no end in sight. Avoid using these as much as possible (the
previous example is only illustrative and should not be used in a production environment),
and if you must do so, always specify an end time and as many additional constraints as
possible to limit the event’s action.

186

Part I: Usage

You can also configure the event to fire only within a certain time period by
specifying optional STARTS and ENDS clauses, which contain the starting and ending
times for the event. Here’s a revision of the previous example, which configures the
event to fire only during a particular month:

mysqgl> DELIMITER //
mysgl> CREATE EVENT util hour
-> ON SCHEDULE EVERY 1 HOUR
-> STARTS '2009-04-01 00:00:01"
-> ENDS '2009-04-30 23:59:01"
-> ENABLE
-> DO
-> BEGIN
-> DECLARE fid INT;
-> DECLARE fdate DATE;
-> DECLARE str TEXT DEFAULT '';
-> DECLARE util FLOAT;
-> DECLARE c CURSOR FOR
-> SELECT s.FlightID, s.FlightDate, 1- (SUM(s.CurrSeats) /

-> (SELECT SUM(fc.MaxSeats)

-> FROM flightclass AS fc

-> WHERE fc.FlightID = s.FlightID
-> GROUP BY FlightID))

-> AS u FROM stats AS s

-> GROUP BY s.FlightID, s.FlightDate
-> HAVING u > 0.80;

-> OPEN c;
-> 1l: LOOP

-> FETCH ¢ INTO fid, fdate,util;

-> SET str = CONCAT('Flight # ', f£id, ' omn ',
-> fdate, ": ", ROUND(util#*100), '%"'):;

-> INSERT INTO log (ByUser, Note, EventTime)
-> VALUES (CURRENT USER(), str, NOW());

-> END LOOP 1;
-> CLOSE c;
-> END//
Query OK, 0 rows affected (0.01 sec)

One-Off Events

Although MySQL's event scheduler is great for setting up recurring events, it also
supports events that only fire once, at a predefined time and date. To set up such an
event, replace the EVERY clause in the CREATE EVENT statement with an AT clause that
contains the date and time at which the event should fire. Here’s an example, which
sets up an event to fire at 1:25 A.M. on April 1, 2009:

Chapter 7: Using Triggers and Scheduled Events 187

mysgl> CREATE EVENT log onetime

-> ON SCHEDULE AT '2009-04-01 01:25' ENABLE

-> DO

-> INSERT INTO log (ByUser, Note, EventTime)

-> VALUES (CURRENT USER(), 'Updating all accounts', NOW());
Query OK, 0 rows affected (0.50 sec)

Tip To force an event to fire at the instant it is created, use the NOW() function in the AT
clause instead of a timestamp.

Summary

This chapter focused on database automation, explaining how database triggers and
scheduled events can be used to easily perform operations that would otherwise need
separate application-level workflows and/or integration with scheduling agents such
as cron. Utilizing simple applications, it showed you how to construct various types of
triggers, schedule events for either one-time or repeated execution, and build in
complex programming logic using the conditional tests, loops, and cursors discussed in
the previous chapter.

To learn more about the topics discussed in this chapter, consider visiting the
following links:

o Triggers, at http://dev.mysql.com/doc/refman/5.1/en/create-trigger.html and
http://forge.mysql.com/wiki/Triggers

e Scheduled events, at http://dev.mysql.com/doc/refman/5.1/en/events-overview
html

e Key limitations on triggers and scheduled events, at http://dev.mysql.com/
doc/refman/5.1/en/stored-program-restrictions.html

* AMySQL forum discussion of raising errors inside triggers, at http://forums
.mysql.com/read.php?99,55108,55108#msg-55108 and http://rpbouman
.blogspot.com/2005/11/using-udf-to-raise-errors-from-inside.html

This page intentionally left blank

CHAPTER 8

Working with Data
in Different Formats

190

Part I: Usage

o far, all of the examples in this book have had you entering records into tables

using INSERT statements. However, in the real world, data comes in all shapes

and sizes, and entering records one by one is not a feasible technique, especially
when migrating data sets containing hundreds of thousands of records.

To assist developers in tackling this issue, MySQL has, for many years, shipped
with various tools that significantly aid the process of importing and exporting data in
different formats, such as comma- or tab-delimited formats. And, keeping in mind the
near-ubiquity of XML-encoded data, MySQL 5.1 adds a bunch of new functions and
statements designed specifically for working with XML documents. This chapter
discusses these tools and functions in greater detail.

Importing Records

The INSERT statement isn’t the only way to insert data into a table. MySQL also permits
insertion of multiple records in one fell swoop with the LOAD DATA INFILE statement.
This statement can be used to read raw data from a text file (located on either the server
or the client end of the connection), parse it on the basis of column and row delimiters,
and automatically generate INSERT statements to write the data to a table.

This approach comes in handy when you need to enter a large volume of
information into a database but the data, though structured, is not available in the form
of SQL statements. Manually creating INSERT statements for every single record would
be tedious and time-consuming; LOAD DATA INFILE offers a faster and more reliable
alternative.

The best way to understand LOAD DATA INFILE is with an example. Consider the
following text file containing passenger information, separated with commas, in the
temporary area on the server:

"201","652","2009-01-20","3", "Rich Rabbit", "HH83282949",""
"202","652","2009-01-27","2", "Zoe Zebra","JY64940400",""
"203","652","2009-01-27","2", "Zane Zebra", "JY64940401",""
"204","652","2009-01-20","2", "Barbara Bear","JD74391994",""
"205","652","2009-01-27","3", "Harriet Horse",b"JG74860994", ""

Now, this comma-separated data could be imported into a table, as illustrated here:

mysqgl> CREATE TABLE p LIKE pax;
Query OK, 0 rows affected (0.08 sec)
mysql> LOAD DATA INFILE '/tmp/in.txt'
-> INTO TABLE p
-> FIELDS TERMINATED BY ','
-> ENCLOSED BY '™"!
-> LINES TERMINATED BY '\r\n';
Query OK, 5 rows affected (0.00 sec)
Records: 5 Deleted: 0 Skipped: 0 Warnings: 0

Chapter 8: Working with Data in Different Formats

Your data should now have been inserted correctly into the table, as a quick SELECT
verifies:

mysgl> SELECT ClassID, PaxName
-> FROM p WHERE RecordID > 200;

3	Harriet Horse
2	Barbara Bear
3	Rich Rabbit
2	Zoe Zebra
2	Zane Zebra

5 rows in set (0.03 sec)

By default, MySQL assumes the data file is on the server in the location specified in
the LOAD DATA INFILE statement. If, instead, you want to use a data file on the client,
you can add the keyword LOCAL to the statement to tell MySQL to look for the file on
the client’s file system. The following example demonstrates this by loading data from
a file on the client machine:

mysqgl> TRUNCATE TABLE p;
Query OK, 0 rows affected (0.01 sec)
mysgl> LOAD DATA LOCAL INFILE '/tmp/in.txt'
-> INTO TABLE p
-> FIELDS TERMINATED BY ','
-> ENCLOSED BY '"!
-> LINES TERMINATED BY '\r\n';
Query OK, 5 rows affected (0.00 sec)
Records: 5 Deleted: 0 Skipped: 0 Warnings: 0

NoOTE When using data files on the server, if no file path is specified in the call to LOAD DATA
INFILE (or if a relative path is specified), MySQL looks in the corresponding database
directory on the server for the file (or uses it as the relative path root). Absolute paths,
however, will be used as is.

If fewer fields are in the data file than in the table, or if the values in the file are not
ordered in the same sequence as the fields in the table, you can tell MySQL how to map
the data in the file to the fields of the table by specifying a list of field names after the
LOAD DATA INFILE statement. For example, if the input file looked like this:

"Rich Rabbit","e52","2009-01-20","3"
"Zoe Zebra","652","2009-01-27","2"
"Zane Zebra","652","2009-01-27","2"
"Barbara Bear","652","2009-01-20","2"
"Harriet Horse","652","2009-01-27","3"

191

192 Partl: VUsage

you could have MySQL import only these fields into the table with the following
statement:

mysqgl> TRUNCATE TABLE p;
Query OK, 0 rows affected (0.01 sec)
mysgl> LOAD DATA LOCAL INFILE '/tmp/in.txt'
-> INTO TABLE p
-> FIELDS TERMINATED BY ','
-> ENCLOSED BY '"!'
-> LINES TERMINATED BY '\r\n'’
-> (PaxName, FlightID, FlightDate, ClassID, PaxRef);
Query OK, 5 rows affected (1.02 sec)
Records: 5 Deleted: 0 Skipped: 0 Warnings: 0

Here’s how the result would look:

mysqgl> SELECT FlightID, ClassID, PaxName,
-> PaxRef, Note FROM p;

to-mmm - - - +---m---- Fomm - e i +o----- +
| FlightID | ClassID | PaxName | PaxRef | Note |
- +----m-- - tomm s m s mm s mm - R i +------ +
| 652 | 3 | Rich Rabbit | NULL | NULL |
| 652 | 2 | Zoe Zebra | NULL | NULL |
| 652 | 2 | Zane Zebra | NULL | NULL |
| 652 | 2 | Barbara Bear | NULL | NULL |
| 652 | 3 | Harriet Horse | NULL | NULL |

5 rows in set (0.00 sec)

It should be clear that MySQL inserts NULL values (if permitted to do so by the table
and field constraints) when it encounters missing field values.

A number of keywords can be used to modify the behavior of the LOAD DATA
INFILE statement.

¢ The LOW_PRIORITY keyword causes the server to wait until no other threads are
using the table before beginning the import process. The CONCURRENT keyword,
on the other hand, permits clients to read data from the table while the import
is in process (although this keyword applies only to MyISAM tables).

* The IGNORE keyword ensures that if any of the new records has a key that
duplicates an existing record, MySQL will simply step over it to the next one
(instead of aborting the entire operation, which is the default action in such a
situation). Or, you can choose to replace existing records with new records from
the data file. This can be accomplished by using the keyword REPLACE instead
of IGNORE.

e The LINES TERMINATED BY clause specifies the end-of-record delimiter
(by default, the newline character \n).

Chapter 8: Working with Data in Different Formats

¢ The FIELDS clause specifies field delimiters, and must be followed by one or
more of the keywords TERMINATED BY, ESCAPED BY, or ENCLOSED BY.
These specify the end-of-field delimiter (default is the tab character \t), the
sequence used to escape special characters when reading and writing
values (default is a backslash), and the character used to enclose field values
(no default), respectively.

e The IGNORE LINES clause tells MySQL to skip the specified number of lines at
the beginning of the file. This is useful if your data file contains field metadata
in its first few lines.

Exporting Records

Just as you can import data into a table from a file with the LOAD DATA INFILE
statement, you can extract records from a table into a file with the SELECT ... INTO
OUTFILE construct. This construct lets you do everything you would do with the
regular SELECT statement and then send the resulting record collection to a file.

To illustrate, consider the following statement, which would extract all records from
the airport table to a text file:

mysqgl> SELECT AirportID, AirportName
-> FROM airport
-> INTO OUTFILE '/tmp/airport.txt'
-> FIELDS TERMINATED BY ','
-> LINES TERMINATED BY '\r\n';
Query OK, 15 rows affected (0.02 sec)

Here’s what the result looks like:

34,0rly Airport

48,Gatwick Airport

56 ,Heathrow Airport

59,Rome Ciampino Airport

62,Schiphol Airport

72 ,Barcelona International Airport

74 ,Franz Josef Strauss Airport

83,Lisbon Airport

87,Budapest Ferihegy International Airport
92,Zurich Airport

126,Chhatrapati Shivaji International Airport
129,Bristol International Airport
132,Barajas Airport

165,Nice Cbte d'Azur Airport

201, Changi Airport

193

194

Part I: Usage

Obviously, you can use a WHERE clause (and any other clause or keyword usable in
a normal SELECT statement) to further constrain the output. The following example
demonstrates by only writing records for those airports with at least three runways to
the file /tmp/airport.txt:

mysgl> SELECT AirportID, AirportName
-> FROM airport
-> WHERE NumRunways >= 3
-> INTO OUTFILE '/tmp/airport.txt'
-> FIELDS TERMINATED BY ','
-> LINES TERMINATED BY '\r\n';
Query OK, 8 rows affected (0.01 sec)

Here’s the result:

34,0rly Airport

48,Gatwick Airport

62,Schiphol Airport

72 ,Barcelona International Airport
74 ,Franz Josef Strauss Airport
92,Zurich Airport

132,Barajas Airport

201, Changi Airport

To retrieve binary data, such as the contents of BLOB fields, from the database into a
file, replace the INTO OUTFILE clause with the INTO DUMPFILE clause. This causes
MySQL to write the data to the file as a single line (without field or record termination
characters), thereby avoiding corruption of the binary data.

The file specified in the INTO OUTFILE and INTO DUMPFILE clauses will be written
to the server’s file system and must not already exist there. Because this file will be
written by the user the MySQL server process runs as, that user must have appropriate
permissions to write files to the specified location. For security reasons, MySQL does
not allow the target file to be written to the client file system using this method. The
client application, therefore, needs to retrieve it from the server using external methods.

NoTE To use either the SELECT ... INTO OUTFILE or LOAD DATA INFILE statements, a
user must have the FILE privilege. Privileges are discussed in greater detail in Chapter 11.

As with the LOAD DATA INFILE statement, you can specify field and record
delimiters for the data being dumped. The following example demonstrates how to
create a tab-delimited output file:

mysgl> SELECT AirportID, AirportName
-> FROM airport
-> INTO OUTFILE '/tmp/airport.txt'
-> FIELDS TERMINATED BY '\t'
-> LINES TERMINATED BY '\r\n';
Query OK, 15 rows affected (0.10 sec)

Chapter 8: Working with Data in Different Formats 195

Here’s a sample of the output:

34 Orly Airport

48 Gatwick Airport

56 Heathrow Airport

59 Rome Ciampino Airport

This next one demonstrates how to create a file using custom delimiters:

mysgl> SELECT AirportID, AirportName
-> FROM airport
-> INTO OUTFILE '/tmp/airport.txt'
-> FIELDS TERMINATED BY '|'
-> LINES TERMINATED BY '\n';
Query OK, 15 rows affected (0.00 sec)

Here’s a sample of the output:

34 |Orly Airport

48 |Gatwick Airport

56 |Heathrow Airport
59|Rome Ciampino Airport

Tip You can also use the mysqldump utility to extract the contents of a database or table into
a file. Chapter 12 has more information on how to use this utility to back up and restore
your MySQL databases.

MySQL also supports combining the INSERT and SELECT statements to export
records from one table into another. Here’s an example, which copies passenger names
from the pax table to a separate user table:

mysql> CREATE TABLE user (
-> FirstName VARCHAR (255),
-> LastName VARCHAR (255)
->)3

Query OK, 0 rows affected (0.25 sec)

mysgl> INSERT INTO user (FirstName, LastName)
-> SELECT SUBSTRING INDEX (PaxName, ' ', 1),
-> SUBSTRING INDEX (PaxName, ' ', -1)
-> FROM pax;

Query OK, 8 rows affected (0.47 sec)

Records: 8 Duplicates: 0 Warnings: 0

196

Part I: Usage

The field list specified in the INSERT statement must obviously match the columns
returned by the SELECT clause. A mismatch can cause MySQL to produce an error like
the following one:

mysgl> INSERT INTO tbll (f1d1, £1d2) SELECT £f1d1l, f1d2, £f1d43 FROM tbl2;
ERROR 1136 (21S01): Column count doesn't match value count at row 1

Naturally, you can also attach a WHERE clause to the SELECT statement to copy only
a subset of the original table’s records into the new table:

mysgl> INSERT INTO user (FirstName, LastName)
-> SELECT SUBSTRING INDEX (PaxName, ' ', 1),
-> SUBSTRING INDEX (PaxName, ' ', -1)
-> FROM pax WHERE ClassID = 2;

Query OK, 4 rows affected (0.49 sec)

Records: 4 Duplicates: 0 Warnings: 0

Working with XML Data

XML is a powerful tool for the management and effective exploitation of information,
and is widely used today as a way to describe almost any kind of data. MySQL 5.1
includes limited support for XML, providing various functions that can be used to
import and search XML fragments, while MySQL 6.0 (in alpha at the time of this
writing) provides a new statement, the LOAD XML statement, which allows easier
conversion of XML-encoded records into MySQL tables.

Obtaining Results in XML

The easiest way to get started with XML in MySQL is to exit and restart the MySQL
command-line client, this time passing it the --xml option, as shown:

[user@host] # mysqgl --xml -u root -p
Password: ***%%%

This option puts the command-line client in “XML mode,” forcing its output to be
formatted as well-formed XML. To illustrate, try running a SELECT query:

mysgl> SELECT AirportName, AirportID, AirportCode
-> FROM airport
-> LIMIT 0,3;
<?xml version="1.0"?>
<resultset statement="SELECT AirportName, AirportID, AirportCode
FROM airport LIMIT 0,3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<row>
<field name="AirportName">Orly Airport</field>
<field name="AirportID">34</field>
<field name="AirportCode">ORY</field>
</row>

Chapter 8: Working with Data in Different Formats

<row>
<field name="AirportName">Gatwick Airport</field>
<field name="AirportID">48</field>
<field name="AirportCode">LGW</field>

</rows

<row>
<field name="AirportName">Heathrow Airport</field>
<field name="AirportID">56</field>
<field name="AirportCode">LHR</field>
</row>
</resultset>
3 rows in set (0.03 sec)

Using XML Functions

MySQL 5.1 introduced two new built-in functions that make it easier to handle data
encoded in XML. These functions, which make use of XPath expressions to access and
update node values, are a significant addition to the MySQL toolkit. The following
sections introduce the basics of XPath and how it can be used in the context of MySQL's
XML-handling functions.

XPath

If you've worked with XML data, you already know that the XML specification defines
certain rules that a document must adhere to in order to be well formed. One of the
most important rules is that every XML document must have a single outermost
element, called the “root element,” which, in turn, may contain other elements, nested
in a hierarchical manner.

Now, it seems logical to assume that if an XML document is laid out in this
structured, hierarchical tree, it’s possible to move at will from any node on the tree to
any other node on the tree. And that’s where XPath comes in—it provides a standard
addressing mechanism for an XML document that makes it possible to access and
manipulate any element, attribute, or text node on the tree.

XPath is an important component of both XML stylesheet transformations (XSLT)
and the XPointer linking language. By providing XML developers with a standard
method of addressing any part of an XML document, XPath is a small, yet important
piece of the whole XML jigsaw. XSLT uses it extensively to match nodes in an XML
source tree, while XPointer uses it in combination with XLink to identify specific
locations in an XML document.

Location Paths XPath represents an XML document as a tree containing a number of
different node types. In order to illustrate this, consider the following XML document:

<?xml version="1.0"?>

<recipe>
<name source="India">Chicken Tikka</names>
<author>Anonymous</author>
<date>1 June 1999</date>

197

198

Part I: Usage

<ingredients>
<item>Boneless chicken breasts</item>
<item>Chopped onions</items>
<item>Ginger</item>
<item>Garlic</item>
<item>Red chili powder</item>
<item>Butter</item>
</ingredients>
<process>
<step num="1">Cut chicken into cubes, wash and apply lime juice and
salt</step>
<step num="2">Add ginger, garlic, chili, coriander and lime juice in
a separate bowl</step>
<step num="3">Mix well, and add chicken to marinate for 3-4 hours</step>
<step num="4">Place chicken pieces on skewers and barbeque</step>
<step num="5">Remove, apply butter, and barbeque again until meat is
tender</step>
<step num="6">Garnish with lemon and chopped onions</step>
</process>
</recipe>

XPath makes it possible to locate a node, or set of nodes, at any level of this tree,
using a location path. A location path may be either an absolute path, which expresses a
location with reference to the root node, or a relative path, which expresses a location
with reference to the current node (also known as the context node). Location paths are
made up of a series of location steps, each identifying one level in the XPath tree and
separated from each other by a forward slash (/).

A location step is expressed as the sum of three components in the format axis::node-
test[predicates]. The axis defines the relationship to use when selecting nodes, a node-test
specifies the types of nodes to select, and optional predicates filter out unwanted nodes
from the resulting collection.

Axes, Node Tests, and Predicates An axis defines the relationship between the current
node and the nodes to be selected—whether, for example, they are children of the
current node, siblings of the current node, or the parent of the current node.

The XPath specification defines a number of axes; the most important ones are
listed in Table 8-1.

CAUTION The “following” and “preceding” axes are not supported in MySQL at the time of
this writing.

Once the relationship to be established has been defined and an appropriate node
collection obtained, a node test can be used to further filter the items in the collection.
This node test is connected to the axis by a double colon (: :) symbol. A node test can
be specified either on the basis of node name or node type; XPath offers various
predefined node tests, such as the text () function to select text nodes, the comment ()
function to select comments, and so on.

Chapter 8: Working with Data in Different Formats 199

Axis Description

self The context node

parent The parent of the context node

child The children of the context node

attribute The attributes of the context node

ancestor All ancestors of the context node

descendant All descendants (children) of the context node

following All nodes that follow (are placed after) the context node
preceding All nodes that precede (are placed before) the context node
namespace All nodes in the same namespace as the context node

TaBLE 8-1 XPath Axes

Finally, in case the resulting collection needs to be broken down further, XPath allows
you to add optional predicates to each location step, enclosed within square brackets.

Retrieving Records and Fields

With the basic theory out of the way, let’s see how this works in the MySQL context.
MySQL 5.1 and later provides an ExtractValue () function, which can be used

to retrieve a specific value from an XML document using location paths. This
ExtractValue () function accepts two arguments: the source XML document and
the location path to the value.

To illustrate how this works in practice, let’s first load the example XML file shown
earlier into a MySQL session variable using the LOAD FILE () function. This function
can be used to read the contents of a file (which must already exist on the server) into
either a variable or a table field.

mysgl> SET @xml = LOAD FILE('/tmp/in.xml');
Query OK, 0 rows affected (0.18 sec)

Now, consider that the location path /child::recipe/child::author/child::text() references
the name of the recipe author. Calling the MySQL ExtractValue () function with this
location path produces the necessary result, as shown:

mysgl> SELECT ExtractValue (@xml,
-> '/child::recipe/child: :author/child::text ()"
->) AS value;

R R +
| value |
R +
| Anonymous |
R e +

1 row in set (0.02 sec)

200

Part I: Usage

This location path can also be more simply written as /recipe/author, because XPath
assumes a default axis of 'child' if none is specified.

mysqgl> SELECT ExtractValue(@xml, '/recipe/author')
-> AS value;

e +
| value |
R R +
| Anonymous |
oo mmmm— oo +

1 row in set (0.00 sec)

In a similar vein, the location path /recipe/ingredients/item[3] would reference the
third ingredient, 'Ginger', while the location path /recipe/process/step[1] would reference
the first step of the cooking process. Notice also that the square brackets represent a
predicate—in this case, the <item> in position 3. The following output demonstrates:

mysgl> SELECT ExtractValue (@xml,
-> '/recipe/ingredients/item[3] /text ()"
->) AS wvalue;

e +
| value |
I +
| Ginger |
R +

1 row in set (0.00 sec)

mysgl> SELECT ExtractValue (@xml,
-> '/recipe/process/step[l] /text ()"
->) AS value;

B e e e +
| value |
e e e +
| cut chicken into cubes, wash and apply lime juice and salt |
B e e e +

1 row in set (0.01 sec)

CAUTION When dealing with a collection of nodes generated by a location path, remember that
indexing starts at 1, not 0.

The // shortcut is equivalent to the "descendant-or-self" axis and selects elements
matching the supplied node test anywhere below the current context node. So, the path
//item would reference all <itern> elements within the document, while the path //item[6]
would be a quick shortcut to the sixth <item> element, 'Butter'.

mysgl> SELECT ExtractValue (@xml,
-> '//item[6]"
->) AS value;

Chapter 8: Working with Data in Different Formats 201

oo moo - +
| value |
Hommm - +
| Butter |
4o mm oo +

1 row in set (0.00 sec)

NoTE Notice that although the location path //ingredients should actually return a collection
of <item> nodes, the ExtractValue () function will instead return the character data of
these nodes.

mysql> SELECT ExtractValue(@xml, '//item');

oo m oo oo oo +
| ExtractValue (@xml, '//item') |
o e e e e e e - +
| Boneless chicken breasts Ginger Garlic Red chili powder Butter |
o e e e e e e e —— - +

1 row in set (0.00 sec)

This is a limitation of the ExtractValue () function, as currently implemented in
MySQL, and it also explains why the call to text () in the location paths of previous
example is unnecessary ... although MySQL will not return an error if you use it.

The @ prefix indicates that attributes, rather than elements, are to be matched. So,
for example, the location path /recipe/name/@source would represent the value 'India’,
while the location path //step[@num=3] contains a predicate that references the <step>
element with the attribute value num=3"

mysqgl> SELECT ExtractValue (@xml,
-> '/recipe/name/@source’
->) AS value;

1 row in set (0.00 sec)

mysgl> SELECT ExtractValue (@xml,
-> '//stepl[@num=3]"
->) AS wvalue;

e e e T TP +
| value |
B e e e e R +
| Mix well, and add chicken to marinate for 3-4 hours |
e et e +

1 row in set (0.01 sec)

202

Part I: Usage

Finally, XPath supports a number of different functions to work with nodes and
node collections. While it’s not possible to discuss them all here, it’s worthwhile
mentioning the count () function, which counts the number of nodes in a node
collection returned by a location path. Here’s an example, which counts the number
of ingredients in the recipe:

mysgl> SELECT ExtractValue (@xml,
-> 'count(//ingredients/item)
->) AS value;

R e +
| value |
S et +
| 6 |
dommmmo- +

1 row in set (0.01 sec)

Note Other XPath functions, such as name () and 1d (), are not currently supported
by MySQL.

Updating Records and Fields

To update values in an XML document, MySQL offers the UpdateXML () function. This
function accepts three arguments: the source XML document, the location path to the
node to be updated, and the replacement XML. To illustrate, consider the next example,
which updates the author name:

mysgl> SET @xml = UpdateXML (@xml,

-> '//author', '<author>John Doe</author>');
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT ExtractValue(@xml, '//author');

B +
| ExtractValue(@xml, '//author') |
B +
| John Doe |
e +

1 row in set (0.03 sec)
Here’s another example, which updates the second ingredient:

mysgl> SET @xml = UpdateXML (@xml,

-> '//item[2]', '<item>Coriander</item>"');
Query OK, 0 rows affected (0.01 sec)
mysql> SELECT ExtractValue(@xml, '//item[2]');

Chapter 8: Working with Data in Different Formats

mm = e m e oo +
| ExtractValue(@xml, '//item[2]') |
T T +
| Coriander |
i +

1 row in set (0.00 sec)
And here’s one that removes the final step from the recipe:
mysgl> SET @xml = UpdateXML(@xml, '//stepl[@num=6]"', '');

Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT ExtractValue(@xml, '//step[num=6]"');

e +
| ExtractValue (@xml, '//step[num=6]"') |
o mm e m +
o +

1 row in set (0.01 sec)

Importing XML

When it comes to importing XML data into a MySQL database, MySQL 5.1 is fairly
limited. It does not offer any easy way to convert structured XML data into table
records and fields, and only allows XML fragments to be imported “as is.” To illustrate,
consider the following simple XML document, which contains passenger records:

<?xml version='1.0'"?>
<doc>

<pax>
<paxname>Rich Rabbit</paxname>
<flightid>652</flightid>
<flightdate>2009-01-20</flightdate>
<classid>3</classid>

</pax>

<pax>
<paxname>Zoe Zebra</paxname>
<flightid>652</flightid>
<flightdate>2009-01-27</flightdate>
<classid>2</classid>

</pax>

<pax>
<paxname>Zane Zebra</paxnames
<flightid>652</flightid>
<flightdate>2009-01-27</flightdate>
<classid>2</classid>

</pax>

203

204 Partl: VUsage

<pax>
<paxname>Barbara Bear</paxname>
<flightid>652</flightid>
<flightdate>2009-01-20</flightdate>
<classid>2</classid>
</pax>
<pax>
<paxname>Harriet Horse</paxname>
<flightid>652</flightid>
<flightdate>2009-01-27</flightdate>
<classid>3</classid>
</pax>
</doc>

The LOAD FILE () function, discussed in the previous section, can be used to import
the contents of a file into a table field, as follows:

mysgl> CREATE TABLE p tmp (

-> xmldata TEXT) ;
Query OK, 0 rows affected (0.46 sec)
mysgl> INSERT INTO p tmp (xmldata)

-> VALUES (LOAD FILE('/tmp/in.xml'));
Query OK, 1 row affected (0.27 sec)

Look in the table, and you'll see the imported XML document:

mysgl> SELECT xmldata FROM p tmp\G
RS RS SRS EE SRS EEEEEEEEEEEEEES 1. TOow EE RS SRS SR SRS SR SRR EEEEEEEEEE]
xmldata: <?xml version='1.0'?>
<doc>
<pax>
<paxname>Rich Rabbit</paxname>
<flightid>652</flightid>
<flightdate>2009-01-20</flightdate>
<classid>3</classid>
</pax>
<pax>
<paxname>Zoe Zebra</paxname>
<flightid>652</flightid>
<flightdate>2009-01-27</flightdate>
<classid>2</classid>
</pax>
<pax>
<paxname>Zane Zebra</paxname>
<flightid>652</flightid>
<flightdate>2009-01-27</flightdate>
<classid>2</classid>
</pax>

Chapter 8: Working with Data in Different Formats 205

<pax>
<paxname>Barbara Bear</paxname>
<flightid>652</flightid>
<flightdate>2009-01-20</flightdate>
<classid>2</classid>
</pax>
<pax>
<paxname>Harriet Horse</paxnames>
<flightid>652</flightid>
<flightdate>2009-01-27</flightdate>
<classid>3</classid>
</pax>
</doc>
1 row in set (0.00 sec)

The downside of this, of course, is that while the LOAD FILE () function provides a
way to get XML data into MySQL, you can’t easily generate result sets from that data
using normal SELECT statements. MySQL 5.1 does include some support for XPath (as
discussed earlier in this chapter), and this can make your task easier ... but this
approach is still far from perfect!

Other approaches to import structured XML documents into MySQL, such as that
shown in the previous example, involve using XSLT to reformat the XML data into
INSERT statements, which can then be executed through the MySQL client, or writing a
customized stored routine that parses the XML and inserts the values found into a
table. Here’s an example of the latter approach, which uses the ExtractValue ()
function discussed earlier:

mysqgl> TRUNCATE TABLE p;
Query OK, 0 rows affected (0.01 sec)
mysql> DELIMITER //
mysgl> CREATE PROCEDURE import xml pax(
-> IN xml TEXT
>)
-> BEGIN
-> DECLARE i INT DEFAULT 1;
-> DECLARE c INT DEFAULT O;
-> SET ¢ = ExtractValue(xml, 'count(//pax)');
-> WHILE (i <= ¢) DO

-> INSERT INTO p (FlightID, FlightDate,

-> ClassID, PaxName, Note)

-> VALUES (

-> ExtractValue(xml, '//pax[$i]l/£flightid"),
-> ExtractValue (xml, '//pax[$il/flightdate'),
-> ExtractValue (xml, '//pax[$il/classid'),

-> ExtractValue (xml, '//pax[$i]/paxname'),

-> 'XML import via stored routine'

206

Part I: Usage

->) ;

-> SET i = 1 + 1;
-> END WHILE;
-> END//

Query OK, 0 rows affected (0.01 sec)
You can now call this stored routine and pass it the source XML file:
mysgl> CALL import xml pax(
-> LOAD FILE('/tmp/in.xml')
->);

A quick SELECT will verify that the records have been imported:

mysgl> SELECT RecordID, FlightDate, ClassID, PaxName

-> FROM p;
R R Hmmmmmmmmmoo - R e B T +
| RecordID | FlightDate | ClassID | PaxName |
et 4o mmmmmo o oo mm oo oo mmm o mmo oo +
234 2009-01-27 Zoe Zebra

		2	
	2009-01-20	3	Rich Rabbit
235	2009-01-27	2	Zane Zebra
	2009-01-20	2	Barbara Bear
	2009-01-27	3	Harriet Horse

5 rows in set (0.00 sec)

Needless to say, this is a somewhat tedious approach, because you need to rewrite
the stored routine for different XML documents and tables (although you can certainly
make it more generic than the previous example).

If you're using MySQL 6.0, things are much cheerier. This is because MySQL 6.0
includes a new statement, the LOAD XML statement, which can directly import
structured XML data as table records. This function, which is analogous to the LOAD
DATA INFILE statement discussed in the previous section, can read XML data that is
formatted using any of the following three conventions:

¢ Element attributes correspond to field names, with attribute values representing
field values:
<?xml version='1.0?>
<resultset>
<row PaxName='Zoe Zebra' FlightID='652' FlightDate='2009-01-27"
ClassID='2"' />

</resultsets>

* Elements correspond to field names, with the enclosed content representing
field values:

Chapter 8: Working with Data in Different Formats

<?xml version='1.0'?>
<resultset>
<rows
<PaxName>Rich Rabbit</PaxName>
<FlightID>652</FlightID>
<FlightDate>2009—Ol—20</F1ightDate>
<ClassID>3</ClassID>
</rows>

</resultset>

e Element 'name’ attributes specify field names, with element content
representing field values:

<?xml version='1.0'?>
<resultsets>
<rows>
<field name='PaxName'>Rich Rabbit</field>
<field name='FlightID'>652</field>
<field name='FlightDate'>2009-01-20</field>
<field name='ClassID'>3</field>
</rows>

</resultsets>

To illustrate, consider the following XML file, which is formatted according to the
second convention listed previously:

<?xml version='1.0'?>
<resultset>
<rows
<RecordID>201</RecordID>
<PaxName>Rich Rabbit</PaxName>
<FlightID>652</FlightID>
<F1ightDate>2009—Ol—20</FlightDate>
<ClassID>3</ClassID>
<PaxRef>HH83282949</PaxRef>
</rows>
<row>
<RecordID>202</RecordID>
<PaxName>Zoe Zebra</PaxName>
<FlightID>652</F1ightID>
<FlightDate>2009-01-27</FlightDate>
<ClassID>2</ClassID>
<PaxRef>JY64940400</PaxRef>
</rows

207

208 Partl: Usage

<rows

<RecordID>203</RecordID>
<PaxName>Zane Zebra</PaxNames>
<FlightID>652</FlightID>
<FlightDate>2009—Ol—27</FlightDate>
<ClassID>2</ClassID>
<PaxRef>JY64940401</PaxRef>

</rows>

<rows
<RecordID>204</RecordID>
<PaxName>Barbara Bear</PaxName>
<FlightID>652</FlightID>
<FlightDate>2009-01-20</FlightDate>
<ClassID>2</ClassID>
<PaxRef>JD74391994</PaxRef>

</row>

<rows
<RecordID>205</RecordID>
<PaxName>Harriet Horse</PaxName>
<FlightID>652</FlightID>
<FlightDate>2009-01-27</FlightDate>
<ClassID>3</ClassID>
<PaxRef>JG74860994</PaxRef>

</row>

</resultsets>

Here’s an example of how it could be loaded into a table:

mysqgl> TRUNCATE TABLE p;
Query OK, 0 rows affected (0.00 sec)
mysqgl> LOAD XML LOCAL INFILE '/tmp/in.xml'
-> INTO TABLE p;
Query OK, 5 rows affected (0.00 sec)
Records: 5 Deleted: 0 Skipped: 0 Warnings: 0
mysgl> SELECT RecordID, PaxName, PaxRef FROM p;

to--- - - - - +t----mmm- - +
| RecordID | PaxName | PaxRef |
t---------- tomm - t--mmm oo - +
201	Rich Rabbit	HH83282949
202	Zoe Zebra	JY64940400
203	Zane Zebra	JY64940401
204	Barbara Bear	JD74391994
205	Harriet Horse	JG74860994

Needless to say, the LOAD XML function can save you a great deal of custom
programming!

Chapter 8: Working with Data in Different Formats

The LOAD XML statement supports an additional ROWS IDENTIFIED BY clause,
which specifies the XML element that marks the beginning and end of a single record

in the XML file, and comes in handy when working with XML data in different formats.

For example, if the input file looked like this:

<?xml version='1.0'"?>
<resultset>
<paxdatas>
<PaxName>Rich Rabbit</PaxName>
<FlightID>652</FlightID>
<F1ightDate>2009—Ol—20</FlightDate>
<ClassID>3</ClassID>
<PaxRef>HH83282949</PaxRef>
</paxdatas>
<paxdatas>
<PaxName>Zoe Zebra</PaxName>
<FlightID>652</FlightID>
<FlightDate>2009-01-27</FlightDate>
<ClassID>2</ClassID>
<PaxRef>JY64940400</PaxRef>
</paxdatas>
<paxdatas>
<PaxName>Zane Zebra</PaxName>
<FlightID>652</FlightID>
<FlightDate>2009-01-27</FlightDate>
<ClassID>2</ClassID>
<PaxRef>JY64940401</PaxRef>
</paxdata>
<paxdatas>
<PaxName>Barbara Bear</PaxName>
<FlightID>652</FlightID>
<FlightDate>2009-01-20</FlightDate>
<ClassID>2</ClassID>
<PaxRef>JD74391994</PaxRef>
<Note>Special meal</Note>
</paxdata>
<paxdatas>
<PaxName>Harriet Horse</PaxName>
<FlightID>652</FlightID>
<FlightDate>2009—Ol—27</FlightDate>
<ClassID>3</ClassID>
<PaxRef>J374860994</PaxRef>
<Note>Special service</Note>
</paxdata>
</resultsets>

209

210

Part I: Usage

you could still import it using the following command:

mysgl> LOAD XML LOCAL INFILE '/tmp/in.xml'
-> INTO TABLE p
-> ROWS IDENTIFIED BY '<paxdata>';
Query OK, 5 rows affected (0.01 sec)
Records: 5 Deleted: 0 Skipped: 0 Warnings: 0

Like the LOAD DATA INFILE statement, the LOAD XML statement also supports the
LOW_PRIORITY, CONCURRENT, REPLACE, and IGNORE keywords for greater control over
how XML data is imported.

Exporting XML
When it comes to exporting XML, MySQL currently lacks an equivalent to the SELECT
INTO OUTFILE statement, so XML-based export can only be accomplished using either
the mysql or mysqldump command-line tools.

To export the contents of a table using mysqldump, pass it the --xml command-line
option, together with other connection-specific parameters. Here’s an example, which
generates an XML file containing airport records:

[user@host] mysgldump --xml -u root -p dbl airport > /tmp/airport.xml
Password: ***k*x%*

Here’s an example of the output:

<?xml version="1.0"?>
<mysqgldump xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<database name="dbl">
<table data name="airport"s>
<row>
<field name="AirportID">34</field>
<field name="AirportCode">ORY</field>
<field name="AirportName">Orly Airport</field>
<field name="CityName">Paris</field>
<field name="CountryCode">FR</field>
<field name="NumRunways">3</field>
<field name="NumTerminals">2</field>
</row>
<row>
<field name="AirportID">48</field>
<field name="AirportCode">LGW</field>
<field name="AirportName">Gatwick Airport</fields>
<field name="CityName">London</field>
<field name="CountryCode">GB</field>
<field name="NumRunways">3</field>
<field name="NumTerminals">1l</field>
</rows>

Chapter 8: Working with Data in Different Formats 211

</table datax>
</database>
</mysqgldump>

If you're trying to generate custom output using a SELECT query and WHERE clause,
you’d be better off using the MySQL command-line client, which also supports the --xml
argument. Here’s an example, which generates an XML file listing only those airports
with three or more runways:

[user@host] mysqgl --xml -u root -p --execute="SELECT AirportID,
AirportName FROM airport WHERE NumRunways >= 3" dbl > /tmp/airport.xml
Enter password: **%*%%

And here’s a sample of the output:

<?xml version="1.0"?>

<resultset statement="SELECT AirportID, AirportName
FROM airport WHERE NumRunways >= 3"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<rows
<field name="AirportID">34</field>
<field name="AirportName">Orly Airport</fields>
</row>
<row>
<field name="AirportID">48</field>
<field name="AirportName">Gatwick Airport</fields>
</row>
<row>
<field name="AirportID">62</field>
<field name="AirportName">Schiphol Airport</fields>
</row>
<row>
<field name="AirportID">72</field>
<field name="AirportName"s>Barcelona International Airport</fields>
</row>
</resultset>
Summary

This chapter discussed the many ways of getting data into, and out of, MySQL. While
MySQL offers fairly sophisticated tools for importing and exporting data in standard
comma-separated or tab-delimited formats, its support for XML-encoded data is still
fairly primitive. MySQL 5.1 provides some XML-handling functions that are useful
when accessing and changing values in an XML document, while MySQL 6.0 offers a
new LOAD XML function that significantly simplifies the task of importing structured
XML data into a MySQL table.

212

Part I: Usage

In summary, however, while it is fairly easy to store an entire XML document “as
is” in a MySQL table, separating and storing XML data sets as individual records is still
a hard task—expect improvements to this aspect of the RDBMS in future releases.

To read more about the topics discussed in this chapter, consider visiting the
following links:

e Importing records using the LOAD DATA INFILE statement, at http://dev.mysql
.com/doc/refman/5.1/en/load-data.html

¢ Exporting records using the SELECT ... INTO OUTFILE statement, at http://
dev.mysql.com/doc/refman/5.1/en/select.html

¢ Importing structured XML data using the LOAD XML statement, at http://
dev.mysql.com/doc/refman/6.0/en/load-xml.html

e XML functions in MySQL, at http://dev.mysql.com/doc/refman/5.1/en/
xml-functions.html

CHAPTER 9

Optimizing Performance

214

Part I: Usage

better performance from them. While processor speed, bigger and faster disks,

and additional memory certainly have something to do with performance,
they're outside the scope of this discussion. Instead, the intent of this chapter is to teach
you some techniques to improve server and query performance using the tools available
within MySQL to ensure that you're getting the best possible performance from your
MySQL setup.

Newer MySQL features, such as stored routines and subqueries, can significantly
simplify complex database operations, but because of their relative new-ness, are not
yet completely optimized and so always incur some performance cost. This chapter
considers each of these features and offers some tips to help you improve their
performance.

Database design is another aspect to consider when discussing performance. Various
strategies for optimizing a table for better performance are, therefore, also a part of this
chapter. Most of the optimization you should do, however, first involves refining your
queries, adding indexes, and so forth. Accordingly, query optimization is considered
first in this chapter.

g s your databases grow, you'll find yourself constantly looking for ways to extract

Optimizing Queries

One of the first places to look to improve performance is queries, particularly the ones
that run often. Big gains can be achieved by analyzing a query and rewriting it more
efficiently. You can use MySQL's slow query log (described in Chapter 12) to get an
idea of which queries might be fine-tuned, and then try applying some of the techniques
in the following sections to improve their performance.

Indexing

A surprising number of people in online forums request information about slow
queries without having tried to add an index to a frequently accessed field. As you
know from Chapter 3, tables with fields that are accessed frequently can be ordered
by creating an index. An index points to the place on a database where specific data is
located, and creating an index on a field sorts the information in that field. When the
server needs to access that information to execute a query, it knows where to look
because the index points to the relevant location.

Indexing is even more important on multitable queries. If it takes a while to do a
full table scan on one table, imagine how much longer it would take if you have several
tables to check. If optimization of your queries is a goal, the first thing to do is to try
implementing an index.

Deciding which fields should be indexed involves several considerations. If you
have a field involved in searching, grouping, or sorting, indexing it will likely result in
a performance gain. These include fields that are part of join operations or fields that
appear with clauses such as WHERE, GROUP BY, or ORDER BY.

Chapter 9: Optimizing Performance

Consider the following example:

SELECT a.AircraftID, at.AircraftName FROM
alircraft AS a JOIN aircrafttype AS at
ON a.AircraftTypeID = at.AircraftTypelD;

The fields that should be indexed here are aircraft. Aircraft Typel D and aircrafttype
AircraftTypelD because they're part of a join. If this query is commonly repeated with
the same WHERE or HAVING clause, then the fields used in those clauses would also be
a good choice for indexing.

Another factor to consider here is that indexes on fields with many duplicate
values won’t produce good results. A table column that contains only “yes” or “no”
values won’t be improved by indexing. On the other hand, a field where the values
are unique (for example, employee Social Security numbers) can benefit greatly from
indexing.

You can associate multiple nonunique indexes with a table to improve performance.
No limit exists to the number of nonunique indexes that can be created.

Taking this to its logical extreme, then, you might think the more indexes, the
merrier. This is a fallacy: Adding an index doesn’t necessarily improve performance.
Small tables, for example, don’t need indexing. In addition, every index takes up
additional space on the disk—each indexed field requires MySQL to store information
for every record in that field and its location within the database. As your indexes
build, these tables begin to take up more room. Furthermore, indexing speeds up
searches, but slows down write operations, such as INSERT, DELETE, or UPDATE.
Until you work with indexing on your database, your first few attempts might not
achieve much performance gain.

Certain administrative counters can help you monitor your indexes or come up
with candidates for adding an index. Both the SHOW STATUS or mysqladmin extended-
status commands display values to consider in terms of indexes.

e If your indexes are working, the value of Handler_read_key should be high. This
value represents the number of times a record was read by an index value. A low
value indicates that not much performance improvement has been achieved by
the added indexing because the index isn’t being used frequently.

* A high value for Handler_read_rnd_next means your queries are running
inefficiently and indexing should be considered as a remedy. This value
indicates the number of requests to read the next row in sequence. This
occurs when a table is scanned sequentially from the first record to the last
to execute the query. For frequent queries, this is a wasteful use of resources.
An associated index points directly to the record(s), so this full table scan
doesn’t need to occur. Poorly functioning indexes could also result in a high
number here.

215

216

Part I: Usage

To view these counters, run a command like the one shown here:

mysgl> SHOW STATUS LIKE 'handler read%';

| Handler read first |
| Handler read key

| Handler read next |
| Handler read_prev

| Handler read rnd |
| Handler read rnd next |

6 rows in set (0.01 sec)

Tip If your SELECT statements frequently end up sorting results by a particular field, use the
ALTER TABLE statement with an ORDER BY clause to re-sort the contents of the table by
that field. Your SELECT statements will then no longer need an ORDER BY clause, resulting
in faster and more efficient reads.

Once you've got your tables loaded with data and indexed the way you want them,
you should run the ANALYZE TABLE command on them. This command analyzes the
data in the table and creates table statistics on the average number of rows that share
the same value. This information is used by the MySQL optimizer when deciding
which index to use in table joins.

mysqgl> ANALYZE TABLE airport, aircraft, flight;

tommmmmmm o tommmm - e o s s m e m— i mm— - m oo +
| Table | op | Msg type | Msg text |
tmm e — - fommm - e il e +
l.airport analyze status OK
db i 1
l.aircraft analyze status Table i1s already up to date
db i f 1 ble 4 1 d d
1.flight analyze status OK
dbl.fligh 1
tommmmmmmm - fommmmmm - fommmmmm - o s s s mm o mm— - - - +

3 rows in set (0.00 sec)

It’s a good idea to run the ANALYZE TABLE command frequently, especially after
you've added a significant amount of data to your table, to ensure that the optimizer is
always using the most efficient index.

Query Caching

When you run a SELECT query, MySQL “remembers” both the query and the results it
returns. This is accomplished by storing the result set in a special cache (called the
query cache) each time a SELECT query is executed. Then, the next time you ask the
server for the same query, MySQL will retrieve the results from the cache instead of
running the query again. As you can imagine, this speeds up the process considerably.

Chapter 9: Optimizing Performance 217

Although enabled by default, you must always verify that query caching is turned
on, which can be done by checking the server variables. The following example illustrates:

mysgl> SHOW VARIABLES LIKE '%query cache%';

Fm o m oo Fommmm - +
| Variable name | Value |
Fm e Fommmm - +
have query cache YES
query cache limit 1048576

query cache min res unit	4096

query_cache size 0
query cache type ON
query cache wlock invalidate OFF

6 rows in set (0.00 sec)

o The first variable, have_query_cache, indicates the server was configured for
query caching when it was installed (the default).

e The query_cache_size variable indicates the amount of memory allotted for the
cache in bytes. If this value is 0, query caching will be off.

® The values for the query_cache_type variable range from 0 to 2. A value of 0 or
OFF indicates that query caching is turned off. ON or 1 means that query caching
is turned on, with the exception of SELECT statements using the SQL. NO CACHE
option. DEMAND or 2 provides query caching on demand for SELECT statements
running with the SQL._CACHE option.

e The query_cache_limit variable specifies the maximum result set size that should
be cached. Result sets larger than this value will not be cached.

You can alter any of these variables using the SET GLOBAL or SET SESSION
statements, as shown:

mysgl> SET GLOBAL query cache size = 16777216;
Query OK, 0 rows affected (0.00 sec)

To see for yourself what impact the query cache is having on performance, run the
same query with and without query caching to compare the performance difference.
Here’s the version without using the query cache:

mysgl> SELECT SQL NO CACHE r.RouteID, al.AirportCode, a2.AirportCode,
-> r.Distance, r.Duration, r.Status FROM route AS r,
-> airport AS al, airport AS a2
-> WHERE r.From LIKE al.AirportID
-> AND r.To LIKE a2.AirportID
-> AND r.RouteID IN
-> (SELECT f.RouteID
-> FROM flight AS £, flightdep AS fd
-> WHERE f.FlightID = £d.FlightID

218 Partl: \Usage

-> AND f.RouteID = r.RouteID
-> AND fd.DepTime BETWEEN '00:00' AND '04:00');

dommmm - - R T R T e T to-mmmmmm - - +o----- - +
| RouteID | AirportCode | AirportCode | Distance | Duration | Status |
R e B T B T R e e R e +
| 1133 | MUC | BOM | 6336 | 470 | 1|
| 1141 | BOM | SIN | 3913 | 320 | 1|
R T B T B T R e T R to-m-m - +

2 rows in set (0.21 sec)
Now perform the same query with the cache:

mysgl> SELECT SQL CACHE r.RouteID, al.AirportCode,
-> a2.AirportCode, r.Distance, r.Duration, r.Status FROM
-> route AS r, airport AS al, airport AS a2
-> WHERE r.From LIKE al.AirportID
-> AND r.To LIKE a2.AirportID
-> AND r.RouteID IN
-> (SELECT f.RouteID
-> FROM flight AS f, flightdep AS fd
-> WHERE f.FlightID = f£d.FlightID
-> AND f.RouteID = r.RouteID
-> AND fd.DepTime BETWEEN '00:00' AND '04:00');

R T R T R T e T Fo-mmmm—m - to-mmm - +
| RouteID | AirportCode | AirportCode | Distance | Duration | Status |
R e Hmmmmmmmm—oo o Hmmmmmmmm—oo o R e R e Rt +
| 1133 | MUC | BOM | 6336 | 470 | 1
| 1141 | BOM | SIN | 3913 | 320 | 1|
R e R T R T e T R e e +

2 rows in set (0.02 sec)

Dramatic improvements in performance aren’t unusual if query caching is enabled
on frequent queries.

CAUTION Once a table is changed, the cached queries that use this table become invalid and are
removed from the cache. This prevents a query from returning inaccurate data from the old
table. While this makes query caching much more useful, a constantly changing table won't
benefit from caching. In this situation, you might want to consider eliminating query
caching. This can be done by adding the SQL._NO_CACHE option, as previously shown, to
a SELECT statement.

Query Analysis

Attaching the EXPLAIN keyword to the beginning of a SELECT query tells MySQL to
return a chart describing how this query will be processed. Included within this chart
is information on which tables the query will access and the number of rows the query
is expected to return. This information comes in handy to see which tables should be
indexed to speed up performance and to analyze where the bottlenecks are.

Chapter 9: Optimizing Performance 219

CAautioN Only queries that are textually exact will match what’s in the query cache; any
difference will be treated as a new query. For example, SELECT * FROM airport won't
return the result from select * FROM airport in the cache.

As an example, consider the following query:

SELECT p.PaxName,
FROM pax AS p,
flight AS f, route AS r
WHERE p.FlightID = f£.FlightID
AND p.ClassID = 2 AND r.Duration =

f.FlightID

85;

Now, by adding the EXPLAIN keyword to the beginning of the query, one can obtain
some information on how MySQL processes it:

mysqgl> EXPLAIN SELECT p.PaxName,
-> FROM pax AS p,

£.FlightID

-> flight AS £,
-> WHERE p.FlightID =
-> AND p.ClassID =

kkhkhkkhkkhkhkkhhkhkkhkhkkhhkhkkhhdhhkhkkhhkkhkhhkhk*x l‘

route AS r
f.FlightID
2 AND r.Duration = 85\G

TOwW R R S

id: 1
select type: SIMPLE
table: p
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 30
Extra: Using where
R R R R R R EEEEEEEEEEEEESEEEEEEE] 2‘ TOwW PR R R E R EEEEEEEEEEEEEEEEEEEEE]
id: 1
select type: SIMPLE
table: r
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 290
Extra: Using where; Using join buffer
R R R R R R EEE RS EEEEEEEEEEEEEEE] 3‘ TOow PR R R E R EEEEEEEEEEEEEEEEEEEEE]
id: 1
select type: SIMPLE
table: £
type: eqg_ref

220

Part I: Usage

possible keys: PRIMARY
key: PRIMARY

key len: 2
ref: dbl.p.FlightID
rows: 1

Extra: Using where
3 rows in set (0.00 sec)

This might all seem a little intimidating, so an explanation is in order. The result of
EXPLAIN SELECT is a table listing all the SELECTs in the query, together with how
MySQL plans to process them.

¢ The id field indicates the position of the SELECT within the complete query,
while the table field holds the name of the table being queried.

* The select_type field indicates the type of query: a simple query without
subqueries, a UNION, a subquery, an outer query, a subquery within an outer
query, or a subquery in a FROM clause.

e The type field indicates how the join will be performed. A number of values are
possible here, ranging from const (the best kind of join, since it means the table
contains a single matching record only) to all (the worst kind, because it means
that MySQL has to scan every single record to find a match to records in the
other joined tables).

¢ The possible_keys field indicates the indexes available for MySQL to use in order
to speed up the search.

* The key field indicates the key it will actually use, with the key length displayed
in the key_len field.

e The rows field indicates the number of rows MySQL needs to examine in the
corresponding table to successfully execute the query. To obtain the total
number of rows MySQL must scan to process the complete query, multiply the
rows value for each table together.

* The Extra field contains additional information on how MySQL will process the
query—say, by using the WHERE clause, by using an index, with a temporary
table, and so on.

Now, from the previous output, it’s clear that in order to execute the query, MySQL will
need to examine all the rows in two of the named tables. The total number of rows MySQL
needs to scan, then, is approximately 290 x 30 = 8,700 rows—an extremely large number!

However, by reviewing the output of the EXPLAIN SELECT command output, it’s
clear that there is room for improvement. For example, the possible_keys field for some
of the tables is NULL, indicating that MySQL couldn’t find any indexes to use. This can
quickly be rectified by reviewing the tables and adding indexes wherever possible:

mysgl> ALTER TABLE pax ADD INDEX (ClassID);
Query OK, 30 rows affected (0.06 sec)
Records: 30 Duplicates: 0 Warnings: 0

Chapter 9: Optimizing Performance

mysgl> ALTER TABLE route ADD INDEX (Duration);

Query OK,

Records: 290

290 rows affected
Duplicates: 0

(0.06 sec)
Warnings: 0

Now, try running the query again with EXPLAIN:

mysqgl> EXPLAIN SELECT p.PaxName,

-> FROM pax AS p,

-> flight AS £,
-> WHERE p.FlightID =

-> AND p.ClassID =
hhkhkhhhhhhhhhhhhhhhhhhhddhdddx]

id: 1
select type: SIMPLE
table: p
type: ref
possible keys: ClassID
key: ClassID
key len: 4
ref: const
rows: 1
Extra:
R R R R R R RS S EEEEEEEEEEEEEEEEE] 2 .
id: 1
select type: SIMPLE
table: r
type: ref
possible keys: Duration
key: Duration
key len: 2
ref: const
rows: 1
Extra: Using index
R R R R R R E S EEEEEEEEEEEEEEEEEE] 3 .
id: 1
select type: SIMPLE
table: £
type: eqg_ref
possible keys: PRIMARY
key: PRIMARY
key len: 2
ref: dbl.p.FlightID
rows: 1
Extra:

3 rows 1in set

route AS r
f.FlightID

2 AND r.Duration =
Trow *khkhkkhkhkhkhkhkdhdhkhkhhkdkdhkhhhdkdhhhhddkxx

£.FlightID

85\G;

TOW ** kkkkkhkdhhkhdhkhhhhdhrhdhhrhirx

TOow R R S R

Using where; Using index

(0.00 sec)

As you can see, MySQL is now using the newly added indexes to cut down on the
number of rows that need to be examined. Looking at the rows field for each table, we
now see that MySQL only needs to scan one row in each table to process the query—a
significant improvement over the earlier, nonindexed approach.

221

222

Part I: Usage

Optimizing Joins and Subqueries

A join is a multitable query performed across tables that are connected to each other
by means of one or more common fields. It is commonly used to exploit relationships
between the normalized tables of an RDBMS, and it gives SQL programmers the ability
to link records from separate tables to create different views of the same data.

A subquery is a SELECT statement nested inside another SELECT statement. A
subquery is often used to break down a complicated query into a series of logical steps
or to answer a query with the results of another query. As a result, instead of executing
two (or more) separate queries, you execute a single query containing one (or more)
subqueries.

Although MySQL comes with built-in intelligence to automatically optimize joins
and subqueries, this optimization is far from perfect. An experienced database
architect can often improve query performance by orders of magnitude through
simple tweaks to the way queries are written. With this in mind, the following section
outlines some common tips and tricks to help you maximize the performance of your
joins and subqueries.

Use Joins Instead of Subqueries

MySQL is better at optimizing joins than subqueries, so if you find the load averages
on your MySQL server hitting unacceptably high levels, examine your application code
and try rewriting your subqueries as joins or sequences of joins. For example, while the
following subquery is certainly legal:

SELECT r.RouteID, f.FlightID FROM route AS r, flight AS f
WHERE r.RouteID = f.RouteID AND r.Status = 1 AND f.AircraftID IN
(SELECT AircraftID FROM aircraft
WHERE AircraftTypeID = 616) ;

the following equivalent join would run faster due to MySQL’s optimization algorithms:

SELECT r.RouteID, f.FlightID FROM route AS r, flight AS f, aircraft AS a
WHERE r.RouteID = f.RouteID AND f.AircraftID = a.AircraftID
AND r.Status = 1 AND a.AircraftTypelD = 616;

It’s a good idea to match the fields being joined in terms of both type and length.
MySQL tends to be a little inefficient when using indexes on joined fields that are of
different lengths and/or types.

You can also turn inefficient queries into more efficient ones through creative use of
MySQL’s ORDER BY and LIMIT clauses. Consider the following subquery:

SELECT RouteID, Duration FROM route
WHERE Duration =
(SELECT MAX (duration) FROM route) ;

Chapter 9: Optimizing Performance 223

This works better as the following query, which is simpler to read and also runs
much faster:

SELECT RouteID, Duration FROM route
ORDER BY duration DESC
LIMIT 0,1;

Use Session Variables and Temporary Tables

for Transient Data and Calculations

Session-based server variables can also come in handy if you want to avoid nesting
queries within each other. Therefore, while the following query will list all flights
where the current price is above average:

SELECT FlightID FROM stats
WHERE CurrPrice >
(SELECT AVG (CurrPrice) FROM stats) ;

you can accomplish the same thing by splitting the task into two queries and using
a server-side MySQL variable to connect them:

SELECT @avg:=AVG(CurrPrice) FROM stats;
SELECT FlightID FROM stats WHERE CurrPrice > @avg;

These two queries combined will run faster than the first subquery.

MySQL also lets you create temporary tables with the CREATE TEMPORARY TABLE
command. These tables are so-called because they remain in existence only for the
duration of a single MySQL session and are automatically deleted when the client that
instantiates them closes its connection with the MySQL server. These tables come in
handy for transient, session-based data or calculations, or for the temporary storage of
data. And because they're session-dependent, two different sessions can use the same
table name without conflicting.

Since temporary tables are stored in memory, they are significantly faster than
disk-based tables. Consequently, they can be effectively used as intermediate storage
areas, to speed up query execution by helping to break up complex queries into simpler
components, or as a substitute for subquery and join support.

MySQL’s INSERT. . . SELECT syntax, together with its IGNORE keyword and its
support for temporary tables, provides numerous opportunities for creative rewriting
of SELECT queries to have them execute faster. For example, say you have a complex
query that involves selecting a set of distinct values from a particular field and the
MySQL engine is unable to optimize your query because of its complexity. Creative
SQL programmers can improve performance by breaking down the single complex
query into numerous simple queries (which lend themselves better to optimization)
and then using the INSERT IGNORE. . .SELECT command to save the results generated
to a temporary table, after first creating the temporary table with a UNIQUE key on the
appropriate field. The result: a set of distinct values for that field and possibly faster
query execution.

224

Part I: Usage

Here’s another example: Assume you have a table containing information on a
month’s worth of transactions, say about 300,000 records. At the end of each day, your
application needs to generate a report summarizing that day’s transactions. In such a
situation it’s not a good idea, performance-wise, to run SUM () and AVG () functions on
the entire set of 300,000 records on a daily basis. A more efficient solution here would
be to extract only the transactions for the day into a temporary table using INSERT. . .
SELECT, run summary functions on the temporary table to generate the required
reports, and then delete the temporary table. Since the temporary table would contain
a much smaller subset of records, performance would be better and the server load
would also be lower.

CREATE TEMPORARY TABLE t stats

SELECT CurrPrice FROM stats WHERE FlightDate = '2009-04-01"';
SELECT @avg:=AVG (CurrPrice) FROM t_ stats;
DROP TABLE t_stats

Explicitly Name Output Fields

It’s common to see queries like these:

SELECT (*) FROM airport;
SELECT COUNT (*) FROM airport;

These queries use the asterisk (*) wildcard for convenience. However, this convenience
comes at a price: The * wildcard forces MySQL to read every field or record in the table,
adding to the overall query processing time. To avoid this, explicitly name the output
fields you wish to see in the result set, as shown:

SELECT AirportID FROM airport;
SELECT COUNT (AirportID) FROM airport;

In a similar vein, when using subqueries with a WHERE or HAVING clause, it’s also a
good idea to be as specific as possible in the WHERE or HAVING clause to reduce the size
of the result set that needs to be processed by the outer query. If you're using MySQL
from a client application over TCP/IP, following these simple rules will also reduce the
size of the result set that is transmitted to the client by the server, reducing bandwidth
consumption and improving performance.

Index Join Fields

Fields that are accessed frequently should be indexed. As a general rule, if you have
a field involved in searching, grouping, or sorting, indexing it will likely result in a
performance gain. Indexing should include fields that are part of join operations or
fields that appear with clauses such as WHERE, GROUP BY, or ORDER BY. In addition,
joining tables on integer fields, rather than on character fields, will produce better
performance.

Chapter 9: Optimizing Performance 225

Rewrite Correlated Subqueries as Joins

When MySQL encounters a correlated subquery, it has to reevaluate the subquery once
for every record generated by the outer query. This is obviously expensive in terms of
performance, and so correlated subqueries should be avoided unless absolutely
necessary. Thus, you are far better off using joins, unions, multitable updates or
deletes, and temporary tables instead of correlated subqueries. As an example, consider
the following correlated subquery:

SELECT r.RoutelID, r.From, r.To
FROM route AS r WHERE EXISTS
(SELECT 1 FROM flight AS £,
flightdep AS fd
WHERE f.FlightID = fd.FlightID
AND f.RouteID = r.RoutelID
AND fd.DepTime BETWEEN '00:00' AND '04:00'");

This would execute faster if rewritten as a join, as shown:

SELECT DISTINCT r.RouteID, r.From, r.To
FROM route AS r, flight AS f, flightdep AS fd
WHERE f.FlightID = fd.FlightID
AND r.RouteID = f.RoutelD
AND fd.DepTime BETWEEN '00:00' AND '04:00°';

Replace Materialized Subqueries with Temporary Tables

When subqueries are used in the FROM clause, MySQL materializes them by storing the
results in a temporary table. This temporary table is not automatically indexed, which
often results in MySQL having to perform a full table scan in order to satisfy the outer
query. Here’s an example:

SELECT x.DepDay FROM
(SELECT fd.DepDay, COUNT (fd.FlightID) AS c
FROM flightdep AS fd
GROUP BY fd.DepDay)
AS x
WHERE x.c >
(SELECT COUNT (fd.FlightID) /7 FROM flightdep AS £fd);

An easy way to improve performance in these cases is to manually create (and index)
your own temporary table containing the result set of the inner query, and rewrite the
outer query to reference this temporary table. Here’s how you’d apply this principle to
the previous query:

CREATE TEMPORARY TABLE x (
INDEX (DepDay),
INDEX (c)) ENGINE=MEMORY

226

Part I: Usage

SELECT fd.DepDay, COUNT (fd.FlightID) AS c
FROM flightdep AS fd
GROUP BY fd.DepDay;
SELECT DepDay FROM x WHERE x.c >
(SELECT COUNT (fd.FlightID) /7 FROM flightdep AS fd) ;

Optimizing Transactional Performance

Because a database that supports transactions has to work a lot harder than a
nontransactional database at keeping different user sessions isolated from each other,
it’s natural for this to be reflected in the system’s performance. Compliance with the
other ACID rules, specifically the ones related to maintaining the integrity of the
database in the event of a system failure through the use of a transaction log, adds
additional overhead to such transactional systems. MySQL is no exception to this
rule—other things remaining the same, nontransactional MyISAM tables are much
faster than the transactional InnoDB and BDB table types.

That said, if you have no choice but to use a transactional table type, you can still do
a few things to ensure that your transactions don’t add undue overhead to the system.

Use Small Transactions

Clichéd though it might be, the KISS (Keep It Simple, Stupid!) principle is particularly
applicable in the complex world of transactions. This is because MySQL uses a row-level
locking mechanism to prevent simultaneous transactions from editing the same record
in the database and possibly corrupting it. The row-level locking mechanism prevents
more than one transaction from accessing a row at the same time—this safeguards the
data, but has the disadvantage of causing other transactions to wait until the transaction
initiating the locks has completed its work. So long as the transaction is small, this wait
time is not very noticeable. When dealing with a large database and many complex
transactions, however, the long wait time while the various transactions wait for each
other to release locks can significantly affect performance.

For this reason, it is generally considered a good idea to keep the size of your
transactions small and to have them make their changes quickly and exit so that other
transactions queued behind them do not get unduly delayed. At the application level,
two common strategies exist for accomplishing this.

e Ensure that all user input required for the transaction is available before issuing
a START TRANSACTION command. Often, novice application designers initiate
a transaction before the complete set of values needed by it is available. Other
transactions initiated at the same time now have to wait while the user inputs
the required data and the application processes it, and then asks for more data,
and so on. In a single-user environment, these delays will not matter as much
because no other transactions are trying to access the database. In a multiuser
scenario, however, a delay caused by a single transaction can have a ripple
effect on all other transactions queued in the system, resulting in severe
performance degradation.

Chapter 9: Optimizing Performance

¢ Try breaking down large transactions into smaller subtransactions and executing
them independently. This will ensure that each subtransaction executes quickly,
freeing up valuable system resources that would otherwise be used to maintain
the state of the system.

Select an Appropriate Isolation Level

As you move from the carefree READ UNCOMMITTED isolation level to the more secure
SERIALIZABLE level, the performance of the RDBMS is affected as well. The reason for
this is fairly simple: The greater the data integrity you demand from the system, the
more work it has to do and the slower it runs. Therefore, as a database administrator
or a system analyst, you will usually have to walk a tightrope between the RDBMS’s
isolation requirements and its performance.

At the SERIALIZABLE level of isolation, the RDBMS executes transactions
sequentially and, thereby, offers the highest level of protection against data corruption.
However, because this often involves waiting for locks set by other transactions to be
released, it can significantly reduce the speed of your application. At the other end of
the spectrum, the READ UNCOMMITTED isolation level allows parallel transactions to see
the unsaved changes made by each other, providing much improved performance at a
greater risk of inconsistent data. Figure 9-1 illustrates the inverse relationship between
transaction security and performance.

MySQL defaults to the REPEATABLE READ isolation level. This isolation level is
suitable for most applications, and you would usually only need to alter it if your
application has specific need of a higher or lower level. There is no standard formula

High +

Medium +

Performance

Low +

| | | | »
T T T T Ll

Read Read Repeatable Serializable
uncommitted = committed Read

Security

Ficure 9-1 The relationship between transaction isolation levels and performance

221

228

Part I: Usage

for deciding what isolation level is right for your application—most often, it is a
subjective decision reached on the basis of the application’s tolerance for errors and
of the application developer’s judgment of the impact of potentially incorrect data.
This selection of isolation level need not even be standard across an application. It's
quite likely, for example, that different transactions within the same application
might require different isolation levels based on the tasks each is performing.

Avoid Deadlocks

No discussion of transactional performance is complete without a brief look at deadlocks.
If you're familiar with OS programming, you might already know what a deadlock is—a
situation wherein two processes are locked in limbo while accessing the same resource,
each waiting for the other to finish.

In a transactional context, a deadlock occurs when two or more clients try to
update the same data simultaneously, but in a different sequence. To illustrate,
consider Figure 9-2, in which two different transactions are working with the same
set of tables, but in a different sequence.

The first transaction is attempting to remove 400 shares from a portfolio account,
while the second is trying to add 1,000. Both transactions are initiated at the same time,
but the first proceeds by (1) reducing the portfolio account by 400 shares and (2) updating
the portfolio net worth table, while the second tries to (1) update the portfolio net worth
table to reflect the lower value and (2) deduct 1,000 shares from the portfolio account.

As is clearly visible from the previous example, the result is a deadlock wherein
each transaction waits for the other one to finish working with the table it needs to
access. If left unresolved, a deadlock such as this would result in each transaction
waiting indefinitely for the other one to release its lock on the data. Fortunately, MySQL's
InnoDB table handler comes with built-in intelligence to detect deadlock situations.

Table flight
locked

Transaction 1

b4 Fails, as table flight is locked by
START INSERT INSERT Transaction 2 :
TRANS. (flight) (flightdep) V
——————————— F——————— 4——————— F———— > Deadlock!
0 2 4 6 Time
START INSERT INSERT 4
TRANS > | (flightdep) > | (flight) :
. - ilid 4 i Fails, as table flight is locked by
Transaction 2 ® Transaction 1

Table flightdep
locked

Ficure 9-2 A transactional deadlock

Chapter 9: Optimizing Performance 229

If it notices one, the InnoDB table handler immediately resolves the deadlock situation
by rolling back one of the transactions and releasing its locks, thereby permitting the
other one to proceed to its logical end. As in the previous sample output, the client
owning the cancelled transaction is notified of the rollback via an error message.

NotE A postmortem of the previous deadlock example would reveal that, more than a database
issue, it was a result of poor application design. The order in which the tables were
manipulated by the two clients was completely different, resulting in the creation of a
deadlock. Most often, deadlocks can be avoided through careful planning and design at the
application level. This can ensure that resources are shared gracefully between competing
processes and that circular chains (such as the one previously demonstrated) are detected
and resolved at the earliest possible opportunity.

A developer can do a number of fundamental things at the application level to
avoid deadlocks: obtain all needed locks at the beginning of a session, always process
tables in the same order, or include built-in recovery routines to try the transaction
again in case it is cancelled by the RDBMS to resolve a deadlock situation.

Optimizing Stored Routines

Stored routines are one of the newer additions to MySQL and, as such, are significantly
less optimized than other components of the server. As a result, it’s generally not
advisable for your application to rely entirely on stored routines, as doing so will likely
degrade performance significantly. That said, stored routines do have a role to play in
application development and cannot be ignored completely. The following section
provides some tips that should help in developing stored routines that don’t add undue
overhead to an application.

Follow the KISS Principle

MySQL compiles and stores execution plans for stored routines per connection thread.
As a result, as the number of clients accessing a stored routine increases, so does the
CPU and memory usage required by the stored routine parser. In addition, because
there currently exists no mechanism to track cache hits per client or per routine, the
server cannot dynamically optimize its caching plan for stored routines. This too results
in memory being consumed without necessarily being reclaimed in an optimal fashion.

Keeping these limitations in mind, it’s important that stored procedures and
functions in MySQL be as simple as possible. Not only do complex stored routines
consume more memory, but they take longer to process, straining both the CPU and
your application user’s patience. In a similar vein, recursive or deeply nested stored
routines and stored routines that perform large transactions or use long prepared
statements can quickly gobble up server memory and CPU cycles, slowing down other
threads accessing the server and affecting overall performance.

230 Partl: \Usage

Optimize SQL Statements Within Routines

In the final analysis, stored routines are simply containers for blocks of SQL statements.
Therefore, it follows that optimizing those SQL statements is the best way to improve
stored routine performance. Stored routines that contain loops are the ideal targets for
this kind of optimization; keeping in mind that statements within a loop are repeatedly
executed, it’s often possible to improve performance by “cutting loop flab” and moving
out unnecessary statements from the loop. Consider the following simple example,
which illustrates:

seg: LOOP
SET @total = @total + 1;
IF dt BETWEEN '00:00:00' AND '05:59:59' THEN
UPDATE summary SET night = night + 1;
ELSEIF dt BETWEEN '06:00:00' AND '11:59:59' THEN
UPDATE summary SET morning = morning + 1;
ELSEIF dt BETWEEN '12:00:00' AND '17:59:59' THEN
UPDATE summary SET afternoon = afternoon + 1;
ELSEIF dt BETWEEN '18:00:00' AND '23:59:59' THEN
UPDATE summary SET evening = evening + 1;
END IF;
END LOOP seg;

A better way to do this might be to store the separate counts in individual variables
and write them to the summary table after the loop has completed. Similarly, it makes
more sense to calculate the total after the loop has completed executing, instead of on
each iteration. Here’s the revised loop:

seg: LOOP
IF dt BETWEEN '00:00:00' AND '05:59:59' THEN
SET n =n + 1;
ELSEIF dt BETWEEN '06:00:00' AND '11:59:59' THEN
SET m =m + 1;
ELSEIF dt BETWEEN '12:00:00' AND '17:59:59' THEN
SET a = a + 1;
ELSEIF dt BETWEEN '18:00:00' AND '23:59:59' THEN
SET e = e + 1;
END IF;
END LOOP seg;
INSERT INTO summary (morning, afternoon, evening, night)
VALUES (m, a, e, n);
SET @total = morning + afternoon + evening + night;

Tip For an example of improving performance by rewriting MySQL cursors as joins, read
Roland Bouman'’s blog post on the topic, at http://rpbouman.blogspot.com/2006/09/
refactoring-mysql-cursors.html.

Chapter 9: Optimizing Performance 23]

Don’t Mix Stored Procedures and Triggers

Triggers with the FOR EACH ROW clause are executed for each record in a table. If these
triggers are, in turn, linked to a stored procedure, MySQL will execute the stored
procedure as many times as there are records in the table. Needless to say, this is
expensive and usually unnecessary. A better approach is to make the trigger as specific
as possible, making use of session variables or temporary tables for interim data storage
or conditional testing, such that the stored procedure is called only when needed.

Optimizing Table Design
In the context of keeping your queries lean and mean, you need to consider several
things in terms of table design. First, if a frequently queried table also gets a lot of
changes, the way to improve performance is to stay with fixed-length fields, rather
than variable-length ones. The trade-off is this: By definition, fixed-length fields take
up a certain amount of space, regardless of the content, whereas variable-length fields
adjust themselves depending on the data entered. Thus, you're bound to waste more
disk space using fixed-length fields. If it'’s speed you're after, however, MySQL will
perform better with fixed- rather than variable-length fields.

If one field in a frequently changed table cannot be formatted to a fixed length,
consider moving that field to a separate table and converting the rest of the fields in
the original table to fixed-length fields. Although this might not be workable in all
circumstances, it is a viable way to achieve the performance gain of using fixed-length
fields rather than variable-length fields.

NoOTE InnoDB tables handle row storage differently from MyISAM or ISAM tables. Using
fixed-length fields instead of variable-length ones won't result in a performance boost with
these table types.

This being said, if you are going to use fixed-length fields, make sure the field size is
kept to a minimum. For example, when designing a table, creating a CHAR (255) field
is often easier than worrying about exactly how big you need to make it. In practice,
you might find that a field half that size can adequately take care of your needs.
Paring the field size not only takes up less disk space, it also means less I/O when
processing—and deleting unnecessary fields entirely can also increase performance.

Another technique to improve performance is to use the OPTIMIZE TABLE
command frequently on tables that are modified often (discussed more fully in
Chapter 12). Frequent modification results in fragmentation, which, in turn, leads to
extra time spent reading unused blocks of space to get at the desired data.

When considering ways of improving performance, check to see if you need all the
tables you have set up. Again, when originally designing a table, dividing your data
might have seemed like a good idea, but extra tables mean your performance will suffer.
Look at the tables you join frequently. Is it possible to combine the data into one table
instead? If you find you cannot, for whatever reason, try to match the fields you join.
Queries will run more efficiently if joined fields are of the same data type and length.

232

Part I: Usage

Optimizing Server Settings

If you want your server to perform optimally, the best solution is to get tons of memory
and big, fast drives. However, in most situations, these brute-force techniques won't
be an option. Given that we operate under less-than-ideal conditions, getting a handle
on some subtler techniques for optimizing server performance makes more sense.
Accordingly, this section gives a brief overview of some of the major things you can do
to fine-tune your server.

As Chapter 10 discusses in detail, MySQL exposes a large number of variables
whose values can be modified to meet custom requirements. Some of these variables
can be set at the time of starting the MySQL server, and others can be set while the
server is running.

When it comes to tuning server variables for maximum performance, the MySQL
manual recommends that you first look at the key_buffer_size and table_cache variables.

* The key_buffer_size variable controls the amount of memory available for the
MySQL index buffer. The higher this value, the more memory available for
indexes and the better the performance. Typically, you would want to keep this
value near 25 to 30 percent of the total available memory on the server.

* The table_cache variable controls the amount of memory available for the table
cache, and thus the total number of tables MySQL can hold open at any given
time. For busy servers with many databases and tables, this value should be
increased so that MySQL can serve all requests reliably. Also relevant here is the
max_connections variable, because the MySQL manual recommends setting the
table_cache value using the formula (table_cache = max_connections x N), where N
is the number of tables in a typical join.

As noted in Chapter 10, these values can be changed using the SET command, as in
the example shown:

mysgl> SET GLOBAL table cache=200;
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT @@table cache;

Hmmmmmmmmmo oo +
| @etable cache |
T +
| 200 |
oo mmmm oo +

1 row in set (0.01 sec)

Note that once you change a global server variable, it remains in effect until the
server is shut down. This means if you find a beneficial setting, you need to reset it on
startup every time. Because this is cumbersome, it’s useful to know a way of making
your changes permanent. This can be accomplished by setting a variable in an option
file (discussed in Chapter 10).

Chapter 9: Optimizing Performance 233

Once you've got your table cache and index buffer set up the way you want them,
you can turn your attention to the various other memory buffers MySQL uses.

® You can speed up queries that use the ORDER BY or GROUP BY clause to sort the
result set by increasing the value of MySQL's sort buffer, controlled via the sort_
buffer variable. Also consider increasing the read_rnd_buffer_size variable to speed
up reading of the sorted rows.

* You can speed up SELECT queries that scan the table sequentially by increasing
the size of MySQL'’s read buffer via the read_buffer_size variable.

* When performing a transaction, MySQL stores the statements that make up the
transaction in a cache until it receives instructions to write them to the binary
log and commit them to the database. For long or complex transactions, the size
of this cache should be increased to obtain better performance via the binlog_
cache_size variable.

e If you're planning on so-called “bulk inserts” (that is, inserting multiple records
using a single INSERT command), you can speed things up by increasing the
value of the bulk_insert_buffer_size variable. However, this only works with the
MyISAM table type.

¢ If you're anticipating a lot of new connections to the server, it’s a good idea to
increase the value of the thread cache size variable. This variable controls
the size of the cache where server threads go when the client they’re servicing
disconnects. Threads from this cache are then reused to service new connections.
The higher this value, the more threads can be cached, and the better the response
time to new connection requests.

Benchmarking

Altering the server configuration and optimizing your queries is all very well, but how
do you measure the results of your changes and test if there is any appreciable change
in performance? Well, the folks at MySQL have got you covered on that one, too. Every
MySQL source distribution includes a benchmarking suite called (what else?) the
MySQL Benchmark Suite, which does exactly what its name says: It stresses a database
server to detect weaknesses, verify compliance with SQL standards, and measure
performance.

Tip The MySQL Benchmark Suite isn’t the only game in town. Alternatives exist in the form
of SuperSmack, available from http://vegan.net/tony/supersmack, and the Open Source
Database Benchmark, available from http://osdb.sourceforge.net.

In order to run the MySQL Benchmark Suite, you must have Perl installed on
your system, together with the Perl DBI package and a MySQL database driver (DBD).

Part I: Usage

Script name Test case description

copy-db Measures copy speed between two servers

crash-me Tests capabilities of the SQL server by executing different queries

Innotest Stress test for concurrent inserts, updates, and commits in both
transactional (InnoDB) and nontransactional (MylISAM) contexts

test-alter-table Measures performance of the ALTER TABLE command

test-big-tables Measures performance with extremely large tables

test-connect Measures server connection speed

test-create Measures speed of creating and dropping tables

test-insert Measures speed of inserting records into a table and then running
SELECT queries on it

test-select Measures SELECT speed with multipart field indexes

test-transactions Measures speed of transaction rollback

test-wisconsin Performs the Wisconsin benchmark test

test-ATIS Performs the ATIS benchmark test

TaBLE 9-1 Test Cases in the MySQL Benchmark Suite

If you're using a stock UNIX system, it’s quite likely that these packages are already
installed. A simple way to test for their presence is to run the following command at
your shell prompt:

[user@host]$ perl -e "use DBI"

If Per]l doesn’t exit with an error, it’s a good bet that the module is installed. If the
module isn’t installed, you’ll have to download it from http:/ /www.cpan.org and
install it according to the installation instructions for your platform.

The MySQL Benchmark Suite is located in the sgl-bench/ directory of your MySQL
installation. It consists of a number of scripts, together with the raw data for the
various benchmark tests. Table 9-1 has a list of these scripts, together with a brief
description of what each one does.

The MySQL Benchmark Suite includes support for the Wisconsin benchmark, a
widely accepted benchmark for relational database systems. A controlled single-user
experiment that uses so-called “synthetic” data instead of “real” data, this benchmark is
primarily designed to measure query performance using the metric of elapsed time per
query. Test cases include selection, inserts, updates, table joins, and data aggregation.

The simplest way to get started with the MySQL Benchmark Suite is to change to
the sql-bench/ directory and run all the tests using the run-all-tests script, like this:

[user@host]# /usr/local/mysql/sqgl-bench/run-all-tests --server=mysql

Figure 9-3 illustrates what the output of this might look like.

Chapter 9: Optimizing Performance

=101 x|

[rootfproduction sgl-bench]# ./run-all-tests —-server=mysgl _:J

Benchmark DED suite: &.15

Date of test: 2009-02-20 1a:58:31
Funning tests on: Linux 2.6.9-42 . ELsmp 1686
Aroguments:

Conments:

Limits from:

Server wversion: My3QL 5.0.37 commnity log
Optimization: MNone

Hardware:

alter-tabhle: Total time: 33 wallclock secs [0.03 usr 0.02 sys + 0.00 cusr 0O,

o0 esys = 0.05 CPU)

ATIZ: Total time: & wallclock secs [5.60 usr 0.25 =y= + 0.00 cusr 0.00 csys
= 5.85 CFD

big-tables: Total time: 9 wallelock secs [4.35 usr 0.41 sys + 0.00 cuse 0.0
0 o=sy=s = 4,76 CPU)

connect: Total time: 115 walleclock secs (29.96 usr 11.33 sys 4+ 0.00 cusr 0.00
csys = 41.29 CPO)

create: Total time: 116 wallclock secs | 2.46 usr 0.76 =2vs + 0.00 cusr 0.00 o
sys = 3J.2Z2 CPI

insert:

Ficure 9-3 The output of the run-all-tests script

As you can see, this script runs each of the test cases listed in Table 9-1, returning
the time taken by each. More information on the details of each test case can be
obtained by invoking the corresponding script without any parameters. Most of the
scripts print a brief description of their purpose before starting.

If you'd like to run a specific test only, you can do that, too, simply by invoking the
appropriate script. Consider the following example, which runs the test-connect script
to benchmark the time taken to connect to the server and send data to it:

[user@host]# /usr/local/mysql/sql-bench/test-connect

Figure 9-4 illustrates what this might look like.

Notable among the various test scripts included in the MySQL Benchmark Suite is
crash-me, a utility designed specifically for the purpose of evaluating a SQL server’s
capabilities by pushing it up to (and beyond) its limits. Crash-me works by sending a
variety of legal SQL queries to the server and, from its response, determining the
feature set, capabilities, and limitations of the server.

CAUTION In order to test server functionality, crash-me pushes the database server to its limits.
It will almost certainly affect system performance while it is running and may even cause the
server to crash. Therefore, it should be used with care, and never on a production server.

Figure 9-5 illustrates the output of a crash-me run.

235

236

Part I: Usage

-~ =1
[rootlproduction sgl-bench] # -
[rootlproduction agl-bench]# ./test-connect

Testing server 'MyZQL 5.0.37 community log' at Z0059-02Z-2Z0 17:04:50

Testing the speed of connecting to the server and sending of data
Connect tLests are done 10000 times and other tests 100000 times

Testing connection/disconnect
Titee to connect [(10000): & wallelock secs [3.96 usr 0.73 =sy= 4+ 0.00 cusr O,
00 esys = 4,65 CPO)

Test conhect/Zimple select/disconnect
Time for connect+select_simple (10000): & wallclock secs | 4.36 usr 0.83 sys +
0.00 cusr 0.00 csys = §5.19 CPI)

Test =simple select
Time for select_simple (100000): 9 wallclock secs { 2.45 usr 1.36 sys + 0.00
cusr 0.00 csys = 3.81 CPI)

Test =imple select

Time for select simple cache (100000) @ 9 wallclock secs ([2.04 usr 1.44 svs + &
0.00 cusr 0.00 csys = 3.45 CPI)
Testing conhect/select 1 row from table/disconnect _:J

Ficure 9-4 The output of the test-connect script

EN————— =IOl
Group function COUNT (%) : yes= _:J
Group function COUNT column name: yes

Group function COUNT(DISTINCT expr): yes

Group function MAX on nunbers: yes

Group function MAY on strings: yes

Group function MIN on nunbers: yes (-
Group function MIN on strings: yes

Group function 3UM: yes

Group function ANY: no

Group function EVERY: no

Group function 30ME: no

Supported extra group functions

Group function BIT AND: yes

Group function BEIT_OR: yes

Group function COUNT(DISTINCT expr,expr,...): yeI
Group function 3TD: yes

Group function STDLDEV: yes

Group function VARIANCE: yes

mixing of integer and float in expression: yes

MNo need to cast frow integer to float: yes

I= 14MNULL = NULL: wes=

Is concati'a',NULL) = NULL: yes _:J

FiGure 9-5 An example crash-me run

Summary

Chapter 9: Optimizing Performance 237

This chapter explored the important topic of MySQL performance optimization,
discussing some of the techniques and options available to help you squeeze a little
more speed out of your MySQL installation. Various strategies for query optimization
were covered, including:

Using indexes to speed up access to frequently used fields
Using the MySQL query cache to improve query response time

Analyzing queries with the EXPLAIN SELECT command to understand and then
improve the query plan

Rewriting subqueries as joins to take advantage of MySQL’s optimization
algorithms

Using server variables, aggregate functions, and sorting to make multitable
queries more efficient

Selecting an isolation level appropriate to your needs
Avoiding deadlocks by keeping the internal flow of database transactions consistent
Using session variables for transient data within stored routines

Creating data subsets with the INSERT. . . SELECT command and one or more
temporary tables to simplify the processing of complex queries

Choosing field sizes appropriately, and removing unnecessary tables from your
database design

Tuning the server’s cache and memory buffers to obtain better performance

Benchmarking server performance with the MySQL Benchmark Suite to
evaluate the results of your changes

Query optimization is almost a science unto itself, and impossible to cover in the
limited space available in this chapter. However, these techniques (as well as the
additional following links) are essential reading for the efficient operation of your
database, and they should be part of every administrator’s tool box.

Here are some links for further reading:

An overview of optimization issues, at http://dev.mysql.com/doc/refman/5.1/
en/optimize-overview.html

Extensive information, tips, and techniques to speed up your MySQL queries
and make them run more efficiently, at http://dev.mysql.com/doc/refman/5.1/
en/query-speed.html

Information on optimizing server performance, at http://dev.mysql.com/doc/
refman/5.1/en/optimizing-the-server.html

The MySQL Benchmark Suite, at http://dev.mysql.com/doc/refman/5.1/en/
mysql-benchmarks.html

The MySQL Performance blog, at http://www.mysqlperformanceblog.com

This page intentionally left blank

PART II
Administration

CHAPTER 10
Performing Basic Server
Administration

CHAPTER 11
Managing Users and
Controlling Access

GHAPTER 12
Performing Maintenance,
Backup, and Recovery

CHAPTER 13
Replicating Data
APPENDIX A
Installing MySQL
and the Sample Database

This page intentionally left blank

CHAPTER 10

Performing Basic Server
Administration

242

Part Il: Administration

work—creating databases and running queries, defining triggers and events,

building stored routines—than on the administrative end of things—managing
security, assigning user privileges, and backing up data. More and more often, however,
and especially where open-source products are concerned, users are also administrators,
responsible for all aspects of system performance, reliability, and data security.

In these cases, merely understanding the intricacies of SQL queries is not sufficient.
Users also need to know how to administer a MySQL RDBMS and take over responsibility
for ensuring that MySQL services are always available to users of the system. This role
involves a number of different facets: securing the MySQL server against unauthorized
usage or mischief, assigning users privileges appropriate to their intended use of the
system, performing regular checks and backups of the MySQL databases to avoid data
corruption or loss, and optimizing the server to ensure that it always delivers the best
performance possible.

The next few chapters will explore the different aspects of MySQL server
administration, showing you how to accomplish common tasks quickly and efficiently.
This chapter serves as a brief introduction to the topic, covering common tasks like
starting and stopping the server, obtaining server status, altering server configuration,
and using the MySQL log files. It also discusses one of the major new features in
MySQL 5.x, the information_schema database, which provides run-time access to
information about database objects.

Previous chapters of this book have focused more on using MySQL for day-to-day

Database Administration and MySQL

A database administrator holds an important position in an organization’s management
information system (MIS) team. As the person tasked with the responsibility of ensuring
smooth and efficient access to network databases, the job description involves ensuring
24/7/365 database uptime for users and applications, performing regular backups to
avoid data corruption or loss in the event of a system crash, tuning server parameters
for maximum performance, and securing the database against malicious mischief and
unauthorized access. Even individually, none of these tasks can be called simple; taken
together, they constitute one of the most demanding—and challenging—positions in
the industry.

Luckily, MySQL comes with sophisticated tools to help the beleaguered database
administrator in his or her daily chores.

Uptime
Intelligent design decisions by the developers of MySQL have meant that, so far as
uptime is concerned, there’s almost nothing a database administrator need worry
about. MySQL is designed to offer maximum reliability and uptime, and has been
tested and certified for use in high-volume, mission-critical applications by companies
like SAP, Motorola, Sony, Yahoo!, NASA, and HP (just to name a few).

A common cause of system crashes involves glitches, or “bugs,” in the application
code. MySQL’s open-source history makes this less of a problem than with its more
commercial counterparts. Since MySQL development occurs in full view of the public,

Chapter 10: Performing Basic Server Administration 243

a final release has the unique benefit of being exhaustively tested by users all over the
world, on a variety of different platforms and in a range of different environments,
before it is certified for use in production environments. This approach has resulted in
an RDBMS that is both exceedingly stable and virtually bug-free.

Data Backup

While MySQL is certainly extremely stable and reliable, and quite capable of running
itself without any special care required, basic maintenance and an established backup
and restoration process is required from the administrator in any production
environment. A backup regimen, in particular, is critical to ensuring that the data stored
in an organization’s databases does not get corrupted or lost in the event of a disk
failure or system crash.

With this in mind, MySQL comes with a number of tools designed to speed up this
process and make it more efficient. The most important of these is the mysqldump utility,
discussed in Chapter 12, which makes it possible to write MySQL table structures, table
data, or both to backup files in a variety of different formats. The output of mysqldump
can be used to easily and quickly restore one or more MySQL databases, either from the
command-line with the mysqglimport utility or via the LOAD DATA INFILE command,
discussed in Chapter 8. In the event of table corruption, MySQL improves the chances of
data recovery through a suite of recovery utilities, which are extremely good at delving
into the innards of a corrupted table and either fixing it completely or repairing the
damage to a point where most of its data can be recovered.

MySQL also comes with built-in replication, which makes it possible to mirror the
changes made on one database server to other servers using predefined master-slave
relationships. Earlier versions of MySQL only supported one-way replication; newer
versions now support two-way replication as well, for more sophisticated mirroring
and load-balancing.

Security and Access Control

MySQL comes with a sophisticated access control and privilege system to prevent
unauthorized users from accessing the system. This system, implemented as a five-
tiered privilege hierarchy, makes it possible to create comprehensive access rules that
MySQL uses when deciding how to handle a particular user request.

* Connections to the server are allowed only if they match the access rules laid
down in the MySQL privilege system. These access rules can be specified on the
basis of user and/or host, and can be used to restrict access from hosts outside a
specific subnetwork or IP address range. Further, such connections to the server
are permitted only after the user provides a valid password.

* Once a connection has been established, MySQL checks every action performed
by a user to verify whether he or she has sufficient privileges to perform it.
Users can be restricted to performing operations only on specified databases
or fields, and MySQL even makes it possible to control which types of queries
a user can run: at database, table, or field level.

244

Part Il: Administration

The security of the system is further enhanced through the use of a one-way
encryption scheme for user passwords. Newer versions of MySQL also support Secure
Sockets Layer (SSL), which can be used to encrypt the data sent out over the MySQL
client-server connection (such as query results) for greater security.

Performance Optimization

Once the routine matters—backing up data and securing the system—have been taken
care of, a database administrator must usually focus on squeezing the maximum
performance out of the RDBMS. MySQL'’s multithreaded engine and numerous
optimization algorithms make this activity less critical than it usually is. An out-of-the-
box MySQL installation is usually blazingly fast and requires very little alteration.

That said, it is certainly possible to tune MySQL to specific needs. MySQL exposes
a fair number of its internal parameters via system variables, and allows developers
and administrators to easily modify them to meet custom requirements. Many of the
features that degrade performance—transactions, referential integrity, and stored
procedures—can be enabled or disabled at the user’s choice, thereby making it possible
to select the optimal mix of features and performance on a per-application basis.
Commands like ANALYZE TABLE and EXPLAIN SELECT assist SQL developers in
benchmarking queries and identifying performance bottlenecks, while new features
like the query cache (which works by caching the results of common queries and
returning this cached data to the caller without having to reexecute the query every
time) help in improving performance without too much extra programming. Many of
these features have already been discussed in detail in Chapter 9.

An important issue when discussing performance is scalability. Too many database
systems work exceedingly well when dealing with a few thousands of records, but
display a significant drop in performance when the numbers jump into the millions.
No such problems with MySQL, though. The RDBMS is built to be extremely scalable,
and can handle extremely large and complex databases (tables of several gigabytes
containing hundreds of thousands of records) without breaking a sweat. This makes
MySQL suitable for everything ranging from simple content-based websites to
extremely large and diversified data networks, such as the ones used in e-tailing, data
warehousing, or business knowledge management.

Understanding Basic Server Administration

The MySQL distribution ships with a command-line tool designed specifically to help
administrators perform common tasks, such as changing the MySQL administrator
password or reloading MySQL privileges. This tool, called mysqladmin, can be found in
the bin/ directory of your MySQL installation, and it is usually invoked with one or
more commands, as shown:

[root@host]# /usr/local/mysql/bin/mysqladmin shutdown

Table 10-1 lists the more useful commands supported by mysqladmin.

Chapter 10: Performing Basic Server Administration

Command What It Does

status Returns information on server state
password Changes a user password

shutdown Shuts down the MySQL server
reload Reloads the MySQL grant tables
refresh Resets all caches and logs

variables Returns values of all server variables
version Returns the server version
processlist Returns a list of all processes active on the server
kill Kills an active server process

ping Tests if the server is alive

TaBLE 10-1 Commands Supported by mysqladmin

You can obtain a complete list of available commands by running mysqladmin --help.

Tip If you don't like command-line administration, there are two graphical alternatives to the
mysqladmin tool: phpMyAdmin, a browser-based interface to MySQL administration, and
MySQL Administrator, a visual tool for user administration, database backup and restore,
log analysis, and server fine-tuning.

Starting and Stopping the Server

On UNIX, MySQL comes with a startup/shutdown script, which is the recommended
way of starting and stopping the MySQL database server. This script, named mysql.server,
is available in the support-files/ subdirectory of your MySQL installation, and it can be
invoked as follows to start the MySQL server:

[root@host]# /usr/local/mysql/support-files/mysqgl.server start

An alternative approach is to invoke the server directly by calling the mysqld_safe
wrapper, as shown:

[root@host]# /usr/local/mysql/bin/mysqld safe --user=mysql &

While you can certainly invoke MySQL by directly executing the mysqld binary
from your installation’s bin/ directory, this is not a recommended approach. Using the
mysqld_safe wrapper is considered a safe approach, as this wrapper takes care of
automatically logging errors and runtime information to a file and of restarting the
MySQL daemon in case of an unexpected shutdown.

245

246

Part Il: Administration

NoOTE In older versions of MySQL, mysqld_safe is called safe_mysqld.

On Windows, the easiest way to start the MySQL server is by diving into the bin/
subdirectory of your MySQL installation and launching the mysgld.exe program.
Alternatively, you can install MySQL as a Windows service, such that it starts and stops
automatically with Windows, by changing to the bin/ subdirectory of your MySQL
installation directory and launching the mysgld.exe program with the special --install
argument, as shown:

C:\mysgl\bin> mysqgld.exe --install

You can verify that the server is running by using the mysqladmin ping command, as
shown,; this returns a status message indicating whether the server is active:

[root@host]# /usr/local/mysql/bin/mysgladmin ping
mysqgld is alive

The mysqladmin utility can also be used to reload the server’s grant tables, as shown
(this example is for UNIX; simply replace the path with the correct path to your MySQL
installation for Windows):

[root@host]# /usr/local/mysql/bin/mysgladmin reload

Once the server is running, you can shut it down at any time with the mysgladmin
shutdown command. On UNIX, it looks like this:

[root@host]# /usr/local/mysql/bin/mysqgladmin shutdown
mysgld is alive

On UNIX, you can also use the provided mysql.server startup /shutdown script to
shut down the server, as shown:

[root@host]# /usr/local/mysqgl/support-files/mysql.server stop

On Windows, you will usually need to open a new Command Prompt window, or
use the Start | Run dialog box to execute these commands, as shown:

C:\> c:\mysqgl\bin\mysqladmin shutdown

CAUTION Resist the urge to shut down MySQL by abruptly killing the mysqld process with
the kill command (UNIX) or the Task Manager (Windows), as such premature termination
can cause data loss or corruption if the server is in the process of writing data to the disk
when it receives the termination signal.

Chapter 10: Performing Basic Server Administration

Checking MySQL Server Status

You can find out the current state of the server (server uptime, queries per second,
number of currently open tables, and so on) via the mysqladmin status command. Here’s
an example:

[root@host]# /usr/local/mysql/bin/mysgladmin status
Uptime: 10208 Threads: 1 Questions: 540 Slow queries: 0 Opens: 49
Flush tables: 1 Open tables: 0 Queries per second avg: 0.52

The mysqladmin version command offers a more concise summary, together with
information on the MySQL server version:

[root@host]# /usr/local/mysql/bin/mysqladmin version

Server version 5.1.30-community
Protocol version 10

Connection localhost via TCP/IP
TCP port 3306

Uptime: 3 hours 23 min 38 sec

Threads: 1 Questions: 541 Slow queries: 0 Opens: 49
Flush tables: 1 Open tables: 0 Queries per second avg: 0.44

An equivalent approach is to use the VERSION () built-in function, as shown:

mysql> SELECT VERSION();

R T +
| VERSION() |
Fmm - - +
| 5.1.30-community |
fmm +

1 row in set (0.02 sec)

Extended status information is also available via the mysqladmin extended-status
command, or with the SHOW STATUS command:

mysql> SHOW STATUS;

e e e T R e +
| Variable name | value |
e oo mmmmm o +
Aborted clients	o
Aborted connects	o
Binlog cache disk use	o
Binlog cache use	o
Bytes received	116
Bytes sent	255

241

248

Part Il: Administration

Threads cached	1
Threads connected	1
Threads created	2
Threads_ running	1
Uptime	12300
Uptime since flush status	12300
R R e +

290 rows 1in set (0.11 sec)

As you can see, this extended status message provides a great deal of real-time
status information. The report contains the amount of traffic the server has received
since it was last started, including the number of bytes sent and received and the client
connections, together with a breakdown of how many succeeded, how many failed,
and how many were aborted. It also contains statistics on the total number of queries
processed by the server since startup, together with information on the number of
queries in each type (SELECT, DELETE, INSERT, ...), the number of threads active, the
number of current client connections, the number of running queries, and the number
of open tables.

Managing MySQL Client Processes
It’s also possible to obtain a complete list of all client processes connected to the server
with the SHOW PROCESSLIST command, as shown:

mysql> SHOW PROCESSLIST\G
EE R RS E RS EEEREEEEEEEEEEEEEEEES 1 TOwW EE R EE SRS EEEEEEEEEEEEEEEEEESES
Id: 57
User: root
Host: localhost:3390

db: NULL
Command: Query
Time: O

State: NULL
Info: SHOW PROCESSLIST
EE R R R R R R R R R RS EEEEEEEEEEEEEE 2 . TOow EE R R R R R E S EEEEEEEEEEEEEEEEEE]
Id: 64
User: propertysg
Host: localhost:3399

db: NULL
Command: Sleep
Time: 128
State:
Info: NULL
dhhkhkhkhhkhhkhhhhhhkhhdhdhhdhhdkhddt 3 pow Fdkdhkdhdhhhdhhhhhhhhhhhhhhhh
Id: 65
User: gwl

Host: localhost:3400
db: gwl

Chapter 10: Performing Basic Server Administration 249

Command: Sleep

Time: 18
State:
Info: NULL

3 rows in set (0.00 sec)

A “regular” user will only be able to see his or her own threads in the output of
SHOW PROCESSLIST. Users with the PROCESS privilege will, however, be able to see all
running threads, and users with the all-powerful SUPER privilege will even be able to
kill running threads with the KILL command. Here’s an example:

mysgl> KILL 64;
Query OK, 0 rows affected (0.01 sec)

The mysqladmin tool offers equivalent processlist and kill commands as well.

NofTE It’s important to note that a thread does not die immediately on receiving a kill signal.
Rather, MySQL sets a kill flag for that particular thread, which is checked by the thread once
it has completed whatever operation it is currently performing. This approach is considered
safer than an immediate kill, since it allows the thread to complete whatever it’s doing and
release any locks it’s created before terminating. Threads typically check for a kill flag after
every significant read or write operation.

More information on the MySQL privilege system, together with instructions on
how to assign privileges to users, is available in Chapter 11.

Altering the Server Configuration

Most of the time, you won’t need to alter MySQL's default configuration—the software
comes preconfigured to meet most common needs. However, in case the default
configuration doesn’t work for you, MySQL exposes a large number of variables whose
values can be modified to meet custom requirements. Some of these variables can be set
at the time of starting the MySQL server; others can be set while the server is running.

Using an Option File

The recommended method of setting MySQL options is through an option file—
essentially, an ASCII configuration file containing variable-value pairs that the MySQL
server reads when it starts up. MySQL looks for this option file in some standard places
when it starts up.

* On Windows, MySQL will look for option files named myy.ini or my.cnf in the
MySQL installation directory, the Windows installation directory, or the drive
root directory.

e On UNIX, MySQL will look for an option file named my.cnf in /etc, fetc/mysql,
the MySQL installation directory, and the user home directory.

250

Part Il: Administration

You can tell MySQL client programs, such as mysql and mysqladmin, to look for
startup options in a different place by invoking these programs with the --defaults-file
option and the file path.

The format of an option file is fairly simple, and resembles a Windows INI file; it is
broken up into groups, each containing variable-value pairs. Any option that can be
given on the command line can be placed in this file, without the leading double dash.
Here’s an example:

[mysqgld]
port=3306
skip-locking
log-bin
skip-bdb

Tip A number of sample configuration files ship with the MySQL distribution. Take a look
inside my-large.cnf, my-huge.cnf, my-medium.cnf, and my-small.cnf to get a better
idea of how these files can be used.

Typically, MySQL looks in the groups [mysgl] and [mysgld] for configuration
options. On UNIX, if you're using the mysqld_safe wrapper script to start MySQL, you
can also use the [mysgld safe] group to pass options to MySQL.

All the binary programs that ship with MySQL can read options from an options
file. Simply specify the program name as a group (by enclosing it within square
brackets) in the option file and follow it with the variables you want to set. MySQL
client programs can also make use of a special [client] group, which is typically used
to store user and password connection parameters. Here’s a simple example of how
this works:

[client]
user=timothy
password=greenpeas

In this case, whenever any MySQL client program attempts a connection to a MySQL
server, it will default to connecting as “timothy” with the password ”greenpeas.”

Table 10-2 lists the more common and useful options available to configure the
MySQL server (refer to the MySQL manual for the complete list).

It’s important to note that all of these options can be specified on the MySQL
command line as well, simply by prefixing the option name with a double dash. The
following example illustrates:

[root@host]# /usr/local/mysql/bin/mysqld safe --socket=/usr/tmp/mysql.socket
--user=mysql --skip-networking &

In case multiple option files exist, or the same option is specified multiple times
with different values, MySQL uses the last found value. Since MySQL reads option files
before command-line arguments, this means that options specified on the command
line take precedence over options in an option file.

Chapter 10: Performing Basic Server Administration

Option What It Means

ansi Uses stricter ANSI SQL-99 syntax

basedir Sets location of MySQL installation directory

datadir Sets location of MySQL data directory

debug Creates a debug file

default-character-set Sets default character set

default-table-type Sets default table type for new tables

init-file Sets a file containing SQL commands to be executed at startup
language Sets the language for error messages

log Writes MySQL messages (connections and queries) to log
log-error Writes critical error messages to log

log-warnings Writes warning messages to log

port Sets port to accept client connections

safe-show-database Only shows databases to which user has access

skip-innodb Disables the InnoDB table handler

skip-grant-tables Bypasses grant tables when performing access control
skip-networking Only allows local requests; stops listening for TCP/IP requests
socket Sets name of socket/named pipe to use for local connections

transaction-isolation

Sets default transaction isolation level

user

Specifies the user the server should run as

tmpdir

Sets location for temporary files

TaBLE 10-2 MySQL Server Command-Line Options

Tip If your application is on the same physical machine as the MySQL server and you don’t
anticipate MySQL client connections from other hosts, using the --skip-networking option

to turn off TCP/IP listening can significantly enhance the security of your MySQL

installation.

Using the SET Command

MySQL also allows you to modify server variables while the server is running, using
the SET command. Here’s an example, in which the SET command is used to set the

default table type for new tables:

mysgl> SET table type = innodb;
Query OK, 0 rows affected (0.00 sec)

251

252 Part Il:

Administration

Variables set using the SET command can be set globally for all sessions, or only for
the current session, by following the SET keyword with either the GLOBAL or SESSION
keyword. The default, when no keyword is specified, is to assume the SESSION
keyword. The following example limits the server to 10 client connections at any time
and sets the size of the read buffer to 250KB:

mysgl> SET GLOBAL max user connections=10, SESSION read buffer size=250000;

Query OK,

0 rows affected (0.08 sec)

Note that the SUPER privilege is required for setting GLOBAL variables. You can read
more about the MySQL privilege system in Chapter 11.

Table 10-3 lists some important variables that can be set using the SET command
(refer to the MySQL manual for the complete list).

Variable

What It Does

autocommit

Toggles autocommit mode on/off

key_buffer_size

Sets the size of the buffer used for indexes

table_cache

Sets the total number of tables MySQL can hold open at any
given time

table_type

Sets the default table type

concurrent_inserts

Permits concurrent INSERTS and SELECTs on MyISAM tables

interactive_timeout

Sets the timeout for interactive client connections

language

Sets the language used for error messages

lower_case_table_names

Automatically lowercases table names

sort_buffer_size

Sets the maximum size of the buffer used for sorting results

read_buffer_size

Sets the size of the buffer used for table reads

max_binlog_size

Sets the maximum size of the binary log

max_connections

Sets the maximum number of client connections allowed at any
given time

max_user_connections

Sets the maximum number of connections a single user can have
active at any given time

max_tmp_tables

Sets the maximum number of temporary tables a client can keep
open at any given time

query_cache_type

Toggles the query cache on/off

query_cache_size

Sets the maximum size of the query cache

sqgl_mode Sets the server’s SQL mode
tmpdir Sets the location of the temporary file area
tx_isolation Sets the transaction isolation level

TaBLE 10-3 MySQL Server Variables

Chapter 10: Performing Basic Server Administration 253

Retrieving Variable Values

Once a variable has been set, either via SET or through a startup option, its value can be
retrieved using the SHOW VARIABLES command or by invoking the mysqladmin variables
command. Since the output of SHOW VARIABLES is somewhat prodigious, MySQL
allows you to filter it down to just the variable you want through the addition of a
LIKE clause, as shown:

mysgl> SHOW VARIABLES LIKE 'table type';

oo mm oo oo mm oo +
| Variable name | Value |
oo mm oo oo mm oo +
| table type | InnoDB |
oo mm oo oo mm o +

1 row in set (0.08 sec)

mysgl> SHOW VARIABLES LIKE '$%innodb%';

Fommm oo e i +
| Variable name | Value |
e e +

have_innodb YES

innodb_adaptive_hash_ index ON

innodb_additional_ mem pool_ size 2097152

innodb_autoextend_increment 8

innodb autoinc lock mode 1

innodb_buffer pool_size 48234496

innodb checksums ON

innodb commit concurrency 0

innodb concurrency tickets 500

innodb data file path ibdatal:10M:autoextend

innodb data home dir

innodb doublewrite ON
innodb fast shutdown 1
innodb file io threads 4
innodb file per table OFF

innodb flush method

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
innodb flush log at trx_commit | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

innodb force recovery 0
innodb lock wait timeout 50
innodb locks unsafe for binlog OFF
innodb log buffer size 1048576
innodb log file size 24117248
innodb log files in group 2
innodb log group home dir A
innodb max dirty pages pct 90
innodb max purge lag 0
innodb mirrored log groups 1
innodb open files 300
innodb rollback on timeout OFF
innodb support xa ON
innodb sync spin loops 20

254 Part Il: Administration

innodb table locks	on
innodb thread concurrency	8
innodb thread sleep delay	10000
e R e +

You can also obtain the value of a system variable using the SELECT @@GLOBAL
.variable or SELECT @@LOCAL.variable syntax, as shown:

mysgl> SELECT @@GLOBAL.tx isolation;

oo m e m e m e m s m s e m - — - +
| @@GLOBAL.tx isolation |
oo m s m e m e m e m o m o m— - +
| REPEATABLE-READ |
tom oo +

1 row in set (0.00 sec)

Setting the Server’s SQL Mode

With newer versions of MySQL, it is possible to alter the server’s default behavior in
certain situations by changing its SQL mode. Think of the SQL mode as a modifier for
how the server reacts in certain situations—for example, when an invalid date value is
entered or when a division-by-zero error occurs. MySQL comes with a number of SQL
modes, some of which are listed in Table 10-4.

SQL Mode Description

ANSI Operate as per ANSI SQL conventions

STRICT ALL TABLES Abort operations containing invalid values

STRICT TRANS TABLES Abort operations containing invalid values on
transactional tables

ONLY_ FULL_ GROUP_BY Reject SELECT statements containing fields other than
those specified in the GROUP BY clause

NO_ENGINE_ SUBSTITUTION Disable automatic substitution of one storage engine
by another

NO_ BACKSLASH ESCAPES Disable use of the backslash (\) character to escape strings

NO_AUTO_CREATE USER Disable automatic creation of MySQL user accounts

unless a password is provided

ERROR_FOR_DIVISION BY ZERO | Reject INSERT/UPDATE statements containing a division-
by-zero operation (only in STRICT ALL TABLES or
STRICT TRANS_TABLES modes)

NO_ZERO_DATE Reject date values containing zeroes (only in STRICT _
ALL TABLES or STRICT TRANS TABLES modes)

ALLOW_INVALID_DATES Allow invalid date values (only in STRICT ALL TABLES or
STRICT TRANS_TABLES modes)

TaBLE 10-4 MySQL SQL Modes

Chapter 10: Performing Basic Server Administration

These SQL modes can be set independently of each other. They are controlled by
the sql_mode variable, and can be altered using the SET command (separate multiple
modes with commas). Here’s an example, which enables “strict” checking of values
on all tables:

mysgl> SET GLOBAL sql mode = 'STRICT ALL TABLES';
Query OK, 0 rows affected (0.00 sec)

mysgl> SELECT @@GLOBAL.sgl mode;

1 row in set (0.00 sec)

Here’s another example, which forces the server to generate an error when a division-
by-zero operation occurs:

mysgl> SET sqgl mode = '';
Query OK, 0 rows affected (0.00 sec)

mysgl> CREATE TEMPORARY TABLE x (f INT);
Query OK, 0 rows affected (0.13 sec)

mysgl> INSERT INTO x VALUES (1/0);
Query OK, 1 row affected (0.05 sec)

mysgl> SET sql mode = 'ERROR FOR DIVISION BY ZERO,STRICT TRANS TABLES';
Query OK, 0 rows affected (0.00 sec)

mysgl> INSERT INTO x VALUES (1/0);
ERROR 1365 (22012): Division by 0

Troubleshooting with the Error Log

In case of difficulties starting the server, or if errors appear during its operation, it’s
always a good idea to check the MySQL error log in order to identify the cause(s) of the
error. As the following brief sample illustrates, this log file stores information on server
startup and shutdown, together with a list of critical error messages and warnings
about corrupted tables:

090224 9:42:52 InnoDB: Database was not shut down normally!

InnoDB: Starting crash recovery.

InnoDB: Reading tablespace information from the .ibd files...

InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...

255

256

Part Il: Administration

090224 9:42:54 InnoDB: Started; log sequence number 0 359286

090224 9:42:54 [Note] Event Scheduler: Loaded 0 events

090224 9:42:54 [Note] C:\Program Files\MySQL\bin\mysgld.exe: ready for
connections.

Version: '5.1.30-community' socket: '' port: 3306 MySQL Community
Server (GPL)

By default, this file is called hostname.err in Windows and UNIX, and is always located
in the MySQL data/ directory. It’s possible to specify a different location for the error log
file by adding the —-log-error argument to the MySQL server command line, as illustrated:

[root@host]# /usr/local/mysql/bin/mysqld safe --log-error=/tmp/mysqld.errors
--user=mysql &

More information on how to repair corrupted tables is available in Chapter 12, as is
information on other log files maintained by MySQL.

Obtaining Database Meta-Information

In this and previous chapters, you've seen various examples of MySQL’s SHOW
statement in action. This statement provides information on various aspects of a
database and its tables. For example, the SHOW TABLES statement displays a list of all
the tables in a database, while the SHOW CREATE PROCEDURE statement displays the
internals of a particular stored procedure.

Up until MySQL 5.0, SHOW statements were the only way to access so-called “meta-
information” about database objects. However, MySQL 5.0 introduced a new database,
the information_schema database, which now serves as a central repository of
information about all database objects, including tables, stored routines, triggers,
events, views, system variables, user accounts ... simply put, anything and everything
related to the database server!

This central information_schema database can be accessed using standard SELECT
statements, eliminating the need for SHOW statements and providing a consistent,
standards-compliant interface to database meta-information. The information within
this database is automatically updated by the MySQL server, and thus provides a
snapshot of the database in operation at any given instant.

The information_schema database contains a number of tables, each holding
information on a different type of database object. Table 10-5 has a list of the tables
and a description of what each one contains.

Table Name Type of Information

CHARACTER_SETS Character sets

COLLATIONS Collations
COLLATION_CHARACTER_SET_APLICABILITY | Mapping between character sets and collations

TaBLE 10-5 Tables in the information_schema Database

Chapter 10: Performing Basic Server Administration
Table Name Type of Information
COLUMNS Field names, data types, and modifiers
COLUMN_PRIVILEGES Field-level privileges
ENGINES Storage engines
EVENTS Events
FILES Files used by NDB (clustered) tables
GLOBAL_STATUS Server status information (global variables)
GLOBAL_VARIABLES Other global variables
KEY_COLUMN_USAGE Index names, source fields, and types
PARTITIONS User-defined table partitions
PLUGINS Plug-ins
PROCESSLIST Active server processes
PROFILING Server profiling and benchmarking statistics
REFERENTIAL_CONSTRAINTS Foreign keys
ROUTINES Stored routines
SCHEMATA Databases

SCHEMA_PRIVILEGES

Database-level privileges

SESSION_STATUS

Server status information (session variables)

SESSION_VARIABLES

Other session variables

STATISTICS

Index statistics

TABLES

Table names and types

TABLE_CONSTRAINTS

Table constraints

TABLE_PRIVILEGES

Table-level privileges

TRIGGERS Triggers
USER_PRIVILEGES User-level privileges
VIEWS Views

TaBLE 10-5 Tables in the information_schema Database (continued)

To illustrate, consider the next example, which produces a list of all the tables in the
db1 database by querying the information_schema. TABLES table (and generating output

similar to that of the SHOW TABLES statement):

mysgl> SELECT TABLE NAME, TABLE TYPE, ENGINE,
-> TABLE ROWS, AVG ROW_LENGTH FROM TABLES

-> WHERE TABLE SCHEMA = 'dbl';

251

258 Part Il: Administration

- m - tommm e - - tommm e - tommmmm - m e mm - - +
| TABLE NAME | TABLE TYPE | ENGINE | TABLE ROWS | AVG ROW LENGTH |
tommmm e m e tommm s +-------- tommm s Fommmm s m s mm o +
| aircraft | BASE TABLE | MyISAM | 16 | 32 |
| aircrafttype | BASE TABLE | MyISAM | 6 | 20 |
| airport | BASE TABLE | MyISAM | 15 | 47 |
| class | BASE TABLE | MyISAM | 3 | 20 |
| £light | BASE TABLE | MyISAM | 32 | 7 |
| £lightclass | BASE TABLE | MyISAM | 7 | 12 |
| f£lightdep | BASE TABLE | MyISAM | 108 | 7 |
| log | BASE TABLE | MyISAM | 13 | 60 |
| pax | BASE TABLE | MyISAM | 3| 45 |
| route | BASE TABLE | MyISAM | 29 | 12 |
| stats | BASE TABLE | MyISAM | 8 | 20 |
tommm s e +ommmm - tommm - tommm oo oo +

11 rows in set (0.00 sec)

Here’s another example, which lists the triggers on db1 by querying the information_
schema. TRIGGERS table (producing output similar to that of the SHOW TRIGGERS
FROM. . . statement):

mysgl> SELECT TRIGGER NAME, EVENT MANIPULATION,
-> ACTION TIMING FROM TRIGGERS WHERE

-> TRIGGER SCHEMA = 'dbl’';
to-mmmmm - m - m - R e et to-m-mmmmm-m - — - +
| TRIGGER NAME | EVENT MANIPULATION | ACTION TIMING |
t---m - - t---- - - t---- - - - - +
| £light au | UPDATE | AFTER |
| flight ad | DELETE | AFTER |
R i o m - R il +

2 rows in set (0.52 sec)

Want to obtain a list of user accounts and the privileges for each? Query the
information_schema.USER_PRIVILEGES table, as shown:

mysgl> SELECT GRANTEE, PRIVILEGE TYPE FROM USER PRIVILEGES;

o m s s s s mm s m s m e m - B e il +
| GRANTEE | PRIVILEGE TYPE |
e e T Fom e - +
'moodle'@'localhost!' USAGE
'propertysg'@'localhost' USAGE
'metsons'@'localhost' USAGE
'oxid'@'localhost' USAGE

'library'@'localhost' USAGE
'root'@'127.0.0.1" SELECT
'root'@'127.0.0.1" INSERT

|
|
|
|
'goalee'@'localhost' | USAGE
|
|
|
|

'root'@'127.0.0.1" UPDATE

Chapter 10: Performing Basic Server Administration

| ''"@'localhost!’ | USAGE
64 rows in set (0.00 sec)

To obtain a list of active client connections, such as that shown with the SHOW
PROCESSLIST statement, query the information_schema. PROCESSLIST table, as shown:

mysgl> SELECT ID, USER, HOST, DB, STATE FROM PROCESSLIST;

et e T R e T R Hmmmmmm o +
| ID | USER | HOST | DB | STATE |
et e Fommmmm—m————— - R i T e +
5	gwl	localhost:3131	information schema	
4	moodle	localhost:3130	information schema	
3	root	localhost:3094	information schema	executing
et e T R e T R Hmmmmmm o +

3 rows in set (0.00 sec)

MySQL only permits reading data from tables within the information_schema
database. Any attempt to insert new records or modify existing ones will be rejected:

mysqgl> INSERT INTO USER_ PRIVILEGES

-> VALUES ('dummy@localhost', NULL, 'INSERT', 'YES');
ERROR 1044 (42000) : Access denied for user 'root'@'localhost' to database
'information schema'

It’s also important to note that MySQL will automatically take note of user
privileges when displaying information from tables in the information_schema database.
So, for example, if user gwl@Iocalhost only has access privileges to database gw!, SELECT
statements executed by this user on the information_schema database will only return
information for the gw! database and not for any other. To illustrate, consider the
following examples, which demonstrate how MySQL automatically restricts the
information shown to gwl@Iocalhost for various SELECT queries:

mysgl> SELECT CURRENT USER() ;

e il +
| CURRENT USER() |
tomm s m e mm s m oo +
| gwlelocalhost |
tomm s s s s e +

1 row in set (0.00 sec)

mysgl> SHOW GRANTS FOR 'gwl'@'localhost'\G

R R R R R l‘ TOw R R S

Grants for gwl@localhost: GRANT USAGE ON *.* TO 'gwl'@'localhost'
B R R ae) VAR
Grants for gwl@localhost: GRANT ALL PRIVILEGES ON “gwl™.* TO
'gwl'@'localhost'

2 rows in set (0.00 sec)

259

260

Part Il: Administration

mysgl> SELECT SCHEMA NAME FROM SCHEMATA;

R e +
| SCHEMA NAME |
oo mmmmmmm oo +
| information schema |
| gwl |
| test |
R i T +

3 rows in set (0.00 sec)

mysgl> SELECT GRANTEE, PRIVILEGE TYPE FROM USER PRIVILEGES;

Fommmmm s mm e mm s - - mm - m e m - - +
| GRANTEE | PRIVILEGE TYPE |
Fommm s s s s s e Fommmm s mm e m e +
| 'gwl'@'localhost' | USAGE |
Fomm s m o mmm oo tommmm s m oo +

1 row in set (0.00 sec)

mysqgl> SELECT ID, USER, HOST, DB, STATE FROM PROCESSLIST;

e e T e e +
| ID | USER | HOST | DB | STATE |
R e e B Fommmm e m—m - R e +
| 5 | gwl | localhost:3131 | information schema | executing |
R R e e dommmmm—m - +

1 row in set (0.02 sec)

Summary

This chapter offered a brief introduction to MySQL database administration, outlining
the most common tasks database administrators are expected to perform and providing
a brief look at the MySQL tools available to accomplish these tasks. Chief among these
is the mysqladmin utility, which makes it possible to reload or shut down the server,
view a list of active processes, and obtain current values of server variables—you’ll be
seeing a lot of this tool in your administrative role.

This chapter then proceeded to a discussion of the more basic tasks in the pantheon
of MySQL administration, including starting and stopping the MySQL server,
configuring the server to start automatically at boot time, obtaining server status,
managing server processes, altering the server configuration through a configuration
file or the SET command, and troubleshooting problems using the MySQL error log. It
also discussed the new information_schema database that ships with MySQL 5.0 and
later, and illustrates how this database could be used to obtain “live” information on
various database objects.

Of course, this is just the tip of the iceberg. MySQL offers the database administrator
a number of powerful features to help him or her maintain the server effectively and
efficiently. The next few chapters will examine some of these features in greater depth.
In the meanwhile, here are some links for further reading:

Chapter 10: Performing Basic Server Administration

The mysqladmin utility program, at http://dev.mysql.com/doc/refman/5.1/en/
mysqladmin.html

Server SQL modes, at http://dev.mysql.com/doc/refman/5.1/en/server-sql-
mode.html

Server options and variables, at http://dev.mysql.com/doc/refman/5.1/en/
mysqld-option-tables.html

The SET and SHOW statements, at http://dev.mysqgl.com/doc/refman/5.1/en/
set-option.html and http://dev.mysql.com/doc/refman/4.1/en/show.html

The information_schema database, at http://dev.mysql.com/doc/refman/5.1/
en/information-schema.html

261

This page intentionally left blank

CHAPTER 11

Managing Users
and Controlling Access

264

Part Il: Administration

prevent unauthorized clients from accessing the system. This system,

implemented as a hierarchy, makes it possible to create comprehensive
access rules that MySQL uses when deciding how to handle a particular client
operation.

This chapter examines the MySQL access control system and throws some light on
the MySQL grant tables. These tables, which are an integral part of the server’s security
system, offer database administrators a great deal of power and flexibility in deciding
the rules that govern access to the system. In addition, this chapter discusses the
management of user accounts and passwords in the MySQL access control system,
explaining how passwords (especially the all-important root password) can be
modified and how to reset a lost superuser password.

MySQL comes with a sophisticated access control and privilege system to

Understanding the Access Control System

The typical MySQL server installation has two levels of security in operation:

¢ Connections to the server are allowed only if they match the access rules laid
down in the MySQL grant tables. These access rules can be specified on the
basis of user and/or host, and can be used to restrict access from hosts outside a
specific subnetwork or IP address range. Further, such connections to the server
are permitted only after the user provides a valid password.

* Once a connection is established, MySQL checks every action performed by a
user to verify whether the user has sufficient privileges to perform it. Users can
be restricted to performing operations only on specified databases or fields, and
MySQL even makes it possible to control which types of queries a user can run:
at database, table, or field level.

The security of the system is further enhanced through the use of a one-way
encryption scheme for user passwords. This encryption scheme, originally rather
primitive, has been significantly improved since MySQL 4.1. Newer versions of
MySQL also support SSL, which can be used to encrypt the data sent out over the
MySQL client-server connection (such as query results) for greater security.

When MySQL is first installed, the MySQL installer automatically creates
a database—the mysql database—which contains the six MySQL grant tables, as
shown in Figure 11-1.

Each of these tables has a different role to play in deciding whether a user has
access to a specific database, table, table field, or stored procedure. Access rules can be
set up on the basis of username, connecting host, or database requested. The following
sections examine each of these tables in greater detail.

Chapter 11:

Managing Users and Controlling Access

db - hiosk - user -
¥ Host ¥ Host W Host
@ Ob ¥ Db W User
¥ User @ Select_priv @ Password
G Select_priv G Insert_priv @ Seleck_priv
@ Insert_priv @ Update_priv @ Insert_priv
& Update_priv & Delete_priv @ Update_priv
G Delete_priv G Create_priv G Delete_priv
@ Create_priv @ Drop_priv @ Create_priv
@ Drop_priv @ Grank_priv @ Drop_priv
@ Grant_priv @ References_priv @ Reload_priv
@ References_priv @ Index_priv @ Shutdawn_priv
& Index_priv @ Alter_priv @ Process_priv
G Alker_priv G Create_tmp_table_priv @ File_priv
& Create_tmp_table_priv @ Lock_tables_priv @ Grank_priv
@ Lock_tables_priv @ Create_view_priv @ References_priv
@ Create_view_priv @ Show_view_priv @ Index_priv
@ Show_view_priv @ Create_routine_priv @ Alker_priv
@ Create_routine _priv @ Alter_routine_priv G Show_db_priv
& Alter_routine_priv @ Execute_priv & Super_priv
G Execute_priv & Trigger_priv @ Create_tmp_table_priv
& Ewent_priv @ Lock_tables_priv
& Trigger_priv @ Execute_priv
G Repl_slave_priv
G Repl_client_priv
columns_priv_ tables_priv. = procs_priv " @ Create_view_priv
¥ Host # Host ¥ Host @ Show_wiew_priv
7 Cb % Db % b G Create_routing_priv
¥ User W User # User @ Alker_routine_priv
¥ Table_name ¥ Table_name % Routine_name @ Create_user_priv
Colurmn_name @ Grankor # Routine_type @ Event_priv
& Timeskamp & Timestamp @ Grankor @ Trigger_priv
@ Column_priv @ Table_priv G Proc_priv @ ssl_type
@ Column_priv @ Timestamp @ ssl_cipher
G x509_issuer
@ x509_subject
& max_guestions
@ max_updates
& max_connections
@ max_user_connections

Ficure 11-1 The MySQL grant tables

The user Table

MySQL uses a combination of both user and host identification as the basis for its
security system. This identification information begins in the user table, which may
be considered the most important of the six grant tables. Figure 11-2 illustrates what
it looks like.

Within this table, the first three fields (referred to as scope fields) define which users
are allowed to connect to the database server, their passwords, and the hosts from

265

266 Part 1l: Administration

FiGURE 11-2 Vg -
The user table ¥ Host

¥ User

@ Password
Select_priv
Insert_priv
Update_priv
Delete_priv
Zreake_priv
Drop_priv
Reload_priv
Shutdown_priv
Process_priv
File_priv
Grank_priv
References_priv
Index_priv
Alter_priv
Show_db_priv
Super_priv
Create_tmp_table_priv
Lock_tables_priv
Execute_priv
Repl_slave_priv
Repl_client_priv
Zreake_view_priv
Show _view _priv
Create_routine_priv
Alker_routine_priv
Creake_user_priv
Event_priv

Trigger _priv
ssl_bvpe

ssl_cipher
xa09_issuer
*509_subiject
mazx_queskions
max_updates
mazx_conneckions
max_user_connections

cCoeRlccCoCcOoCOCOCOOCOCOOCOCO

cCoCooCoCoCoCoOoCCoCOCOoOOCOCOoCOoCO

oo

which they can connect. The remaining fields in the table (privilege fields) specify the
global privileges available to each user. Table 11-1 specifies what each of these privilege
fields represents.

Consider an example record in this table:

mysgl> SELECT Host, User, Password,
-> Event priv FROM user WHERE User='joe'\G
ERE SR E R RS EEEEEEEEEEEEEEEEEEE] 1‘ row IR R R R R R EEEEEEEEEEEEESEEEEEEE]
Host: web.example.com
User: joe
Password: *0C23056193ED4CAE80DC86A535829C2BDE6688B6
Event priv: Y
1 row in set (0.00 sec)

Chapter 11:

Managing Users and Controlling Access

Field Privilege Name Users with This Privilege Can:
Select_priv SELECT Execute a SELECT query
Insert_priv INSERT Execute an INSERT query
Update_priv UPDATE Execute an UPDATE query
Delete_priv DELETE Execute a DELETE query
Create_priv CREATE Create databases and tables
Drop_priv DROP Delete databases and tables
Reload_priv RELOAD Reload/refresh the server
Shutdown_priv SHUTDOWN Shut down a running server
Process_priv PROCESS Track activity on the server
File_priv FILE Read and write files on the server
Grant_priv GRANT OPTION Grant other users the same
privileges as the user
Index_priv INDEX Create, edit, and delete table indexes
Alter_priv ALTER Modify table structures
References_priv REFERENCES Create, edit, and delete foreign key

references

Show_db_priv SHOW DATABASES View available databases on the
server
Super_priv SUPER Execute administrative commands

Create_tmp_table_priv

CREATE TEMPORARY TABLES

Create temporary tables

Lock_tables_priv

LOCK TABLES

Create and delete table locks

Repl_slave_priv

REPLICATION SLAVE

Read master binary logs in a
replication context

Repl_client_priv

REPLICATION CLIENT

Request information on masters
and slaves in a replication context

Create_view_priv

CREATE VIEW

Create table views

Show_view_priv

SHOW VIEW

Execute the SHOW CREATE VIEW
command

Create_routine_priv

CREATE ROUTINE

Create stored functions and
procedures

Execute_priv

EXECUTE

Execute stored functions and
procedures

Alter_routine_priv

ALTER ROUTINE

Modify or delete stored functions
and procedures

Create_user_priv

CREATE USER

Create and delete MySQL user
accounts

Event_priv

EVENT

Create, modify, and delete events

Trigger_priv

TRIGGER

Create and delete triggers

TaBLE 11-1 MySQL Privilege Levels

267

268

Part Il: Administration

This record allows clients authenticating as joe@web.example.com and supplying the
correct password to connect to the MySQL server and create or modify MySQL events.
Note that the password is not stored in cleartext, but as a hashed value.

IP addresses can be used instead of host names, and wildcards are also supported.
Here’s an example:

mysgl> SELECT Host, User, Password,
-> Select priv FROM user WHERE User='joe'\G
R R S 1. TOow R R R S R
Host: %.example.com
User: joe
Password: *0C23056193ED4CAE80DC86A535829C2BDE6688B6
Select priv: Y
1 row in set (0.00 sec)

It’s also possible to specify wildcards when setting up such access rules. The
following example would allow access to both joe@host.example.com and joe@uweb.example
.com, assuming the password was correctly supplied.

These security privileges, when assigned to a user in the user table, are globally
valid; they apply to every database on the system. Consider the following user record:

mysgl> SELECT Host, User, Password,
-> Delete priv FROM user WHERE User='joe'\G
hhhkkhhhhhhhhhhdhdhdhdhdhdhdkd] pOWw *F dhkdhhhdhdhdhdhdhhhdhdhdhh
Host: apple.example.com
User: joe
Password: *0C23056193ED4CAE80DC86A535829C2BDE6688B6
Delete priv: Y
1 row in set (0.00 sec)
mysgl> SHOW GRANTS FOR 'joe'@'apple.example.com'\G
hhhkhhhhhhhhdhhhdhdhdhdhddhddx T pow *dddkdkhdhdhdhdhdhdhdhdhhhhhh
Grants for joe@apple.example.com: GRANT DELETE ON *.*
TO 'joe'@'apple.example.com' IDENTIFIED BY PASSWORD
'*667F407DE7C6AD07358FA38DAED7828A72014B4E"'
1 row in set (0.00 sec)

This implies that user joe@apple.example.com has the ability to DELETE records from
any table in any database on the server—a “lazy” setting that could result in massive
data corruption if Joe’s account was ever compromised. For this reason, the MySQL
manual recommends leaving all privileges in this table to N (the default value) for each
user, and instead using the host and db tables to set more specific access rules.

NoOTE The user table also includes some fields related to SSL encryption and resource usage
limits per user; these are discussed in the section “Limiting Resource Usage.”

Chapter 11: Managing Users and Controlling Access

What Is the Relationship Between MySQL User Accounts

and System User Accounts?

Absolutely none. MySQL users are not the same as system users on either Windows
or UNIX. MySQL users exist only within the context of the MySQL RDBMS and
need not have accounts or home directories on the system. While the MySQL
command-line client on UNIX does default to using the currently logged-in user’s
name to connect to the server, this behavior can be overridden by specifying a
username to the client via the --user parameter.

The db and host Tables

The db and host tables go together because they control which databases are available to
which users and which operations are possible on those databases. Figure 11-3 illustrates
what they look like.

Within the db table, the first three fields are scope fields, which specify the privileges
available to a particular user/host combination on a particular database. The remaining
privilege fields are used to specify the type of operations that user/host combination
can perform on the named database. These fields have the same meaning as those in the
user table, except that their effect is more “local” than “global.”

FiGURE 11-3 db - hiost -
The db and host tables @ Host ¥ Host

? Db ¥ Db

® User @ Select_priv

Select_priv G Insert_priv
Insert_priv @ Update_priv
|Update_priv @ Delete_priv
Delete_priv & Create_priv
Create_priv < Drop_priv

Drop_priv @ \Grant_priv

Grant_priv @ References_priv
References_priv @ Index_priv

Index_priv @ Alcer _priv

alker_priv @ Create_tmp_table_priv
Create_tmp_table_priv @ Lock_tables_priv
Lock_tables_priv & Create_view_priv
Create_view_priv G Show_view_priv
Show_wiew_priv G Create_roukine_priv
Create_routine_priv G Alter_routine_priv
Alker_routine_priv & Execute_priv
Execute_priv & Trigger_priv
Evenk_priv
Trigger_priv

CCOCOCO0COoOOoOOCOOOCUOCOCO0OCOCO0OOOCO

269

210

Part Il: Administration

To illustrate, consider the following record:

mysgl> SELECT * FROM db WHERE user='bill'\G
Fhhkhkhkdkhkdhkhhhhhhdhdhdhdhdhddt 7 pow Fhddkdhdhdhhhdhhbhhhhbhhhhbhhh

Host: cranberry.example.com

Db: dbl
User: bill
Select priv: Y

Insert priv:
Update priv:
Delete priv:
Create priv:
Drop priv:
Grant _priv:
References priv:
Index _priv:
Alter priv:
Create tmp table priv:
Lock tables priv:
Create view priv:
Show_view_priv:
Create_routine priv:
Alter routine priv:
Execute priv:
Event priv:
Trigger priv:

Z2KZzZ2222222222222K2K

A record like the previous one would imply that the client connecting as bill@
cranberry.example.com would be able to execute SELECT, INSERT, and DELETE queries
and manipulate events on the db1 database only. This is verified by a quick call to

SHOW GRANTS:

mysgl> SHOW GRANTS FOR 'bill'@'cranberry.example.com'\G
khkkhkkhkkhkhkhkdhhkhkdhhkdhkhrddhrkdhhhkrx*x 1' TrOow khkkhkkhkkhkhkkhhkhkdhkhhkdkhkhdkhkhkdkhkxrdkhhx*k
Grants for bill@cranberry.example.com: GRANT USAGE ON *.* TO
'bill'@'cranberry.example.com' IDENTIFIED BY PASSWORD
'*667F407DE7C6AD07358FA38DAED7828A72014B4E"'

R R R R RS S EEEEEEEEEEEEEEEEEE] 2. TrOow PR R R SRR S SR EEEEEEEEEEEEEEEES]
Grants for bill@cranberry.example.com: GRANT SELECT, INSERT, DELETE,
ON “dbl™.* TO 'bill'@'cranberry.example.com'

2 rows in set (0.00 sec)

Here’s another example:

mysgl> SELECT * FROM db WHERE db='test'\G

khkkkkkkkkhkhkhkhkhkhkhkhkhhdhkhkhkdxddk*] pow *hdkdkhkhkhkkkkkdhkhkhkhkhrkkhhkhhkhhhx

Host: %
Db: test
User:

Select priv: Y
Insert priv: Y

EVENT

Chapter 11: Managing Users and Controlling Access 271

Update priv:

Delete priv:

Create priv:

Drop priv:

Grant priv:

References priv:

Index priv:

Alter priv:
Create tmp table priv:
Lock tables priv:
Create view priv:

Show view priv:
Create_routine priv:
Alter routine priv:
Execute priv:

Event priv:

Trigger priv:

1 row in set (0.00 sec)

KK Z 2 KKK KKK KK Z KKK K

This would imply that any user, connecting from any host, would have reasonably
complete access to the test database.

If the Host field for a particular user/database combination in the db table is empty;,
MySQL will automatically look up the host table for host-specific privilege information.
Only those privileges that are enabled in both tables will then be granted access to the
connecting client. To illustrate, consider the following records:

mysgl> SELECT Host, User, Db, Select priv,
-> Insert priv FROM db WHERE user='bill'\G

khkkhkkkkhhkhkhhhkhkhhhkhdhhkhdhhkhhhkdkkd] 1Ow **dkrkkdhkkdhhhhhhdhrhdhhhhhdhx

Host:
User: bill
Db: dbl
Select priv: Y
Insert priv: Y
1 row in set (0.01 sec)

mysgl> SELECT Host, Db, Select priv,
-> Insert priv FROM host
-> WHERE db='dbl'\G
B I I e) VAR
Host: banana.example.com
Db: dbl
Select priv: Y
Insert priv: N
Fhhkkkkkkhkhkdkddkdhkdkdxdxdxdxkdx*x*x D poOw Frxxrdkdddkddhdhhdhdhhhhhhrhkx*x
Host: cranberry.example.com
Db: dbl
Select priv: Y
Insert priv: Y
2 rows in set (0.00 sec)

212

Part Il: Administration

This structure implies that clients connecting as bill@banana.example.com and bill@
cranberry.example.com will both be able to connect to the MySQL server. However, the
client connecting as bill@banana.example.com will only be able to execute SELECT
queries, while the client connecting as bill@cranberry.example.com will be able to execute
both SELECT and INSERT queries.

This separation between the host and db tables is more useful than it appears at first
glance. In the absence of the host table, if the same user needed different privileges based
on the host from which he or she was connecting, a separate record for each host, with
appropriate privileges, would need to be maintained in the db table (this, incidentally, is
what the GRANT command does). However, because the host table exists, there’s an
alternative approach: The various host names can be maintained as separate records in
the host table, each with its own privilege settings, and linked to a single entry in the db
table. When a connection is attempted from one of the named hosts, MySQL will first
look up the db table, then the host table, and assign privileges based on the intersection
of the two tables.

Why Do the db and host Tables Not Include All

the Privilege Fields Seen in the user Table?

Some of the privilege fields in the user table—for example, user.Shutdown_priv, user
.Reload_priv, and user.Super_priv—are related to server administration and are not
specific to a particular database or table. Therefore, these fields are only available
in the user table and not in other grant tables.

The tables_priv and columns_priv Tables

For even more fine-grained control, MySQL offers the tables_priv and columns_priv
tables. These allow a database administrator to restrict access to specific tables in a
database and to specific fields of a table, respectively. Figure 11-4 illustrates the
structure of these tables.

FiGuRE 11-4 columns_priv. tables_priv. =
The tables_priv and @ Host # Host
columns_priv tables @ Db F Db
User W User
Table_name ¥ Table_name
% Column_name @ Garantor
@ Timesktamp @ Timeskamp
@ Column_priv @ Table_priv
@ Column_priv

Chapter 11: Managing Users and Controlling Access

Within the tables_priv table, the Table_priv field contains the table-level privileges for a
particular user/host/database combination. The privileges are specified as a comma-
separated list. Here’s an example that restricts the user joe@localhost to only performing
SELECT queries on the airport table:

mysgl> SELECT * FROM tables priv WHERE db='dbl'\G

khkkhkkhkkhkhkkhkhkhkkhhkhkkhkhkhhkhkkhhkhkhkhkhxkk l‘

TOwW khkkhkkhkhkhkkhkhkdhkhkhkkhhkhkkhkhkdhkhkkhhrhkhkxkx

Host: localhost
Db: dbl
User: joe
Table name: airport
Grantor: root@localhost
Timestamp: 2008-11-13 21:15:34
Table priv: Select
Column priv:
1 row in set (0.01 sec)

mysgl> SHOW GRANTS FOR 'joe'@'localhost'\G

kkhkhkkhkkhkhkkhhkhkkhkhkkhhkhkkhhkdhhkhkkhhrkhkhhkkk*x l‘

Grants for joe@localhost: GRANT USAGE ON *.* TO
hhkhkkhkhhkhhhhkhhhhhhhhhhhhhhdddx

Grants for joe@localhost: GRANT SELECT ON ~“dbl~.

'localhost!

2 rows 1in set

TOow EE R S R

'joe'@'localhost'
TOW ***k*kkkkkhhhhhhhhhkhhkrhkrhkrkxx

“airport® TO 'joe'@

(0.00 sec)

Similarly, the following record indicates that the user writer@localhost can perform
SELECT, INSERT, and UPDATE (but not DELETE) queries on the db1.flight table:

mysgl> SELECT * FROM tables priv WHERE db='dbl'\G

hhkhkhkkhkkhhhhdhhhhhhhdhdhrrrx]

TOW ** *kkkkkhkhhhhhhhhhhhdhdrrhhkhd

Host: localhost
Db: dbl
User: writer
Table name: flight
Grantor: root@localhost
Timestamp: 2008-11-13 21:58:31

Table priv:
Column priv:

1 row in set

Select, Insert,Update

(0.02 sec)

mysgl> SHOW GRANTS FOR 'writer'@'localhost'\G
khkkkhkhkhkhkhhhhkdhhhhhdhdhhhrhxkx 1‘ TOW **x*xkkkkkdkhhhkkkhkhhdbhhrkkkd

Grants for writer@localhost: GRANT USAGE ON *.* TO 'writer'@'localhost'
IR R SRR RS SRR SRR EEEEEEEEEEEEES 2' Trow IR SRR S S EEEEEEE SR EEEEEEEEESESS

Grants for writer@localhost: GRANT SELECT, INSERT, UPDATE ON “dbl~. flight"
TO 'writer'@'localhost'

2 rows in set (0.00 sec)

213

274 Part Il: Administration

It’s possible to specify access rules at the field level with the columns_priv table.
Consider the following example, which allows clients logging in as editor@localhost to
only read the aircraft number and last maintenance date, and clients logging in as

supervisor@localhost to view and update the next maintenance date:

mysgl> SELECT * FROM columns priv\G

khkkhkkhkhkhkkhkhkhhkhkkhkhkdhkhkhkdhkhkkhhrhhhdxkx 1.

Host: localhost
Db: dbl
User: editor
Table name: aircraft
Column_name: RegNum

Timestamp:
Column priv:
hhkhkhkhhhkhhhhdhdhdhdhdhdhdhddr D

2008-11-13 22:23:

Select

TOW khkkhkkhkkhkhkkhkhkhkkhhkhkkhkhkhhkhkkhhkhkhkhkhhkk

23

TOW ** kkkkkhhhkhdhhkhkdhhkhdhrhhhhdk

Host: localhost
Db: dbl
User: editor
Table_name: aircraft
Column name: LastMaintEnd
Timestamp: 2008-11-13 22:23:23
Column priv: Select
dhhkhkhkhkhkhkhkhhkhhkhhhhhhdhhhhdkhddt 3 pow Fhdhkdhhhhhhhhhhhhhhhhhhhhhh
Host: localhost
Db: dbl
User: supervisor
Table name: aircraft
Column name: RegNum

Timestamp:
Column_priv:
khkkkhkkhhhkdhhkhhdkhdrhrdhkrhdxdt 4

2008-11-13 22:24:

Select

Host: localhost
Db: dbl
User: supervisor
Table name: aircraft
Column_name: LastMaintEnd

Timestamp:

Column priv:
hhhkhhkhhhhkdhdhdhdhdhdhdhddhdxdx 5

2008-11-13 22:24:

Select

15

TOwW kkhkhkkhkkhkhkkhkkhkhkhkkhhkhkkhhdkhkhkkhhkhkhhkkhx*x

15

TOW ** kkkhkkdhdhhkhdhhhdhhhhdhhhdhhdx

Host: localhost
Db: dbl
User: supervisor
Table name: aircraft
Column name: NextMaintBegin
Timestamp: 2008-11-13 22:24:15
Column_priv: Select,Update
PR R R E R EEEEEEEEEEEEEEEEEEEEE] 6. TOW R R R R R R EEEEEEEEEEEEESEEEEEEE]
Host: localhost
Db: dbl
User: supervisor

Chapter 11: Managing Users and Controlling Access

Table name: aircraft

Column_name: NextMaintEnd
Timestamp: 2008-11-13 22:24:15

Column priv: Select,Update

6 rows in set (0.00 sec)

mysgl> SHOW GRANTS FOR 'editor'@'localhost'\G
hhkhkkhkhhkhhkhhkhhhkhhhhhhhhhkhdhdhkhd] 1yOw ***khkkhkhdhhdhhhhhhhhhhhhhhhkhhik

Grants for editor@localhost: GRANT USAGE ON *.* TO 'editor'@'localhost'
IR R R R R R EEEEEEEEEEEEEE S EEEEE] 2_ TOow R R R EEEEEEEEEEEEEEEEEEEEEEE]

Grants for editor@localhost: GRANT SELECT (LastMaintEnd, RegNum) ON
“dbl”. aircraft™ TO 'editor'@'localhost'
2 rows in set (0.00 sec)

mysgl> SHOW GRANTS FOR 'supervisor'@'localhost'\G
B Y I e\ VAR

Grants for supervisor@localhost: GRANT USAGE ON *.* TO

'supervisor'@'localhost'
hhkhkhkhhhhhhhhhhhhhhkhhkhhkhdhdhdd D 1pOwWw ***kkhkhdhhhhhhdhhhhhhdhhdhhhdhhdhik

Grants for supervisor@localhost: GRANT SELECT (NextMaintBegin, RegNum,
NextMaintEnd, LastMaintEnd), UPDATE (NextMaintBegin, NextMaintEnd) ON
“dbl”. aircraft®™ TO 'supervisor'@'localhost'

2 rows in set (0.00 sec)

And look what happens if an editor tries to read or modify a field to which he or
she hasn’t been given access:

mysgl> SELECT AircraftID FROM aircraft\G

ERROR 1143 (42000) : SELECT command denied to user 'editor'@'localhost'
for column 'AircraftID' in table 'aircraft'

mysgl> UPDATE aircraft SET RegNum='ZX6822' WHERE RegNum='ZX6821'\G
ERROR 1142 (42000): UPDATE command denied to user 'editor'@'localhost'
for table 'aircraft'

The procs_priv Table

A new addition to MySQL 5.0 is the procs_priv table (Figure 11-5). Largely independent
of the other five grant tables, this table specifies which stored procedures a particular
user /host/database combination can call or modify. Within this table, the Proc_priv
field specifies privileges as a comma-separated list; allowed privileges are EXECUTE,
ALTER ROUTINE, and GRANT.

FIGURE 11-5

. procs_priv v
The procs_priv @ Host
table F Db
¥ User

¥ Routine_narme
F Routine_tvpe
& G@ranbor

& Proc_priv

& Timeskamp

215

216

Part Il: Administration

Here’s an example rule, which allows editor@localhost to run the getFlightsPerDay()
stored procedure:

mysgl> SELECT * FROM procs priv\G
ERE R R E R EEEEEEEEEEEEEEEEEEEEE] 1. TOW R R R R R R EEEEEEEEEEEEESEEEEEEE]
Host: localhost
Db: dbl
User: editor
Routine name: getflightsperday
Routine type: FUNCTION
Grantor: root@localhost
Proc_priv: Execute
Timestamp: 2008-11-13 22:47:59
1 row in set (0.00 sec)

mysgl> SHOW GRANTS FOR 'editor'@'localhost'\G

EE R S 1. TOW kkhkhkkhkkhkhkkhkkhkkhkhkkhhkhkkhhkdhkhkkhkhkkhkhhkkhk*x

Grants for editor@localhost: GRANT USAGE ON *.* TO 'editor'@'localhost'
R R R R R R R SRR R SRR E R EEEEEEEEE R 2 . TOwW IR R R R R R RS SRR SRR EEE R EEEEEEEE]

Grants for editor@localhost: GRANT EXECUTE ON FUNCTION
“dbl”. getflightsperday™ TO 'editor'@'localhost'
2 rows in set (0.00 sec)

Interaction Between the Grant Tables

The various grant tables discussed in the previous sections interact with each other to
create comprehensive access rules that MySQL uses when deciding how to handle a
particular user request. In the hierarchy of the MySQL grant tables, the user table comes
first, with the db and host tables below it, and the tables_priv, columns_priv, and procs_
priv tables at the bottom. A table at a lower level is referred to only if a higher-level
table fails to provide the necessary scope or privileges.

Access control takes place at two stages: the connection stage and the request stage.

* The connection stage When a user requests a connection to the database
server from a specific host, MySQL will first check whether an entry exists for
the user in the user table, if the user’s password is correct, and if the user is
allowed to connect from that specific host. If the check is successful, a connection
will be allowed to the server.

* The request stage Once a connection is allowed, every subsequent request to
the server—SELECT, DELETE, UPDATE, and other queries—will first be vetted to
ensure that the user has the privileges necessary to perform the corresponding
action. To make an appropriate decision, MySQL takes the privilege fields in all
six grant tables into account, beginning with the user table and proceeding
downwards through the grant table hierarchy until it reaches the columns_priv
and procs_priv tables. Only after performing a logical intersection of the privileges
listed in these different tables does MySQL allow or disallow a specific operation.

Chapter 11: Managing Users and Controlling Access 277

When MySQL encounters a request for an administrative action—RELOAD, PROCESS,
and so forth—by a user, it decides whether to permit that action based solely on the
corresponding permissions for that user in the user table. None of the other grant tables
are consulted to make this determination. This is because these administrative privileges
apply to the system as a whole and not to specific databases or tables; therefore, the
corresponding columns make an appearance in the user table only.

What Default Privileges Does MySQL Come With?
Out of the box, MySQL:

* Gives the client connecting as root@localhost complete access to all databases
on the system

* Gives clients connecting as %@Iocalhost complete access to the test database

* Denies access to all clients connecting from other hosts

Managing User Privileges
MySQL offers two methods of altering user privileges in the grant tables—you can
either use INSERT, UPDATE, and DELETE DML queries to hand-alter the information in
the tables or you can use the GRANT and REVOKE commands. The latter is the preferred
method; direct modification of the grant tables is advisable only for unusual tasks or
situations, and is generally not recommended.

Granting and Revoking Privileges

To illustrate the GRANT command in action, consider the following example, which
assigns SELECT, INSERT, UPDATE, and DELETE privileges on the table db1.airport to the
user supervisor@localhost with password “timber”:

mysgl> GRANT SELECT, INSERT, UPDATE ON dbl.airport
-> TO 'supervisor'@'localhost' IDENTIFIED BY 'timber';
Query OK, 0 rows affected (0.01 sec)

MySQL allows the use of the * wildcard when referring to databases and tables.
This next example assigns RELOAD, PROCESS, SELECT, DELETE, and INSERT privileges
on all databases to the user admin@medusa.example.com:

mysgl> GRANT RELOAD, PROCESS, SELECT, DELETE, INSERT ON *.*
-> TO 'admin'@'medusa.example.com' IDENTIFIED BY 'secret';
Query OK, 0 rows affected (0.01 sec)

This next example assigns SELECT privileges on the table db1.flightdep to the
supervisor user only:

mysgl> GRANT SELECT ON dbl.employees TO 'supervisor'@'localhost';
Query OK, 0 rows affected (0.01 sec)

218

Part Il: Administration

This next example takes things one step further, assigning SELECT and UPDATE
privileges to specific fields of the airport table to editor@localhost and supervisor@localhost,
respectively:

mysgl> GRANT SELECT (RegNum, LastMaintEnd)
-> ON dbl.aircraft TO 'editor'@'localhost';
Query OK, 0 rows affected (0.01 sec)
mysgl> GRANT
-> SELECT (RegNum, LastMaintEnd, NextMaintBegin, NextMaintEnd),
-> UPDATE (NextMaintBegin, NextMaintEnd) ON dbl.aircraft
-> TO 'supervisor'@'localhost';
Query OK, 0 rows affected (0.01 sec)

The GRANT command can also be used to grant or deny access to stored procedures
and functions. Here’s an example, which allows editor@localhost to execute the
getFlightsPerDay() function:

mysgl> GRANT EXECUTE ON FUNCTION dbl.getFlightsPerDay
-> TO 'editor'@'localhost';
Query OK, 0 rows affected (0.01 sec)

NoOTE The tables, fields, and procedures named in the GRANT command must exist prior to
assigning corresponding table-level, field-level, and procedure-level privileges. However,
this rule does not hold true when dealing with database-level privileges. MySQL permits
you to assign database-level privileges, even if the corresponding database does not exist.
This difference in treatment of table- and database-level privileges is a common cause of
error, so be forewarned!

The REVOKE command does the opposite of the GRANT command, making it possible
to revoke privileges assigned to a user. Consider the following example, which rescinds
the INSERT and UPDATE privileges granted to supervisor@localhost:

mysgl> REVOKE INSERT, UPDATE ON dbl.airport
-> FROM 'supervisor'@'localhost';
Query OK, 0 rows affected (0.01 sec)

The following command rescinds tim@Ilocalhost’s CREATE and DROP rights on the
db1 database:

mysgl> REVOKE CREATE, DROP ON dbl.* FROM 'tim'@'localhost';
Query OK, 0 rows affected (0.01 sec)

And this one takes away the UPDATE rights to the aircraft table previously granted to
supervisor@localhost:

mysgl> REVOKE UPDATE (NextMaintBegin, NextMaintEnd)
-> ON dbl.aircraft FROM 'supervisor'@'localhost';
Query OK, 0 rows affected (0.01 sec)

Chapter 11: Managing Users and Controlling Access 279

There’s one other important point to note about the GRANT and REVOKE commands.
When the GRANT command is invoked for a particular user, it automatically creates an
entry for that user in the user table, if one does not already exist. However, a REVOKE
command does not delete that entry from the user table, even if its invocation results in
all the user’s privileges being stripped. Thus, though a user record can be automatically
added to the system via GRANT, it is never automatically removed using REVOKE. To
remove a user record, use the DROP USER command, explained in the section “Working
with User Accounts and Passwords.”

The ALL and USAGE Privileges

MySQL provides the ALL privilege level as shorthand for “all privileges,” and the
USAGE privilege level as shorthand for “no privileges.” These can help to make your
GRANT and REVOKE statements more compact. Consider the next example, which
assigns all privileges on the web database to the user admin connecting from any host
in the melonfire.com domain:

mysgl> GRANT ALL ON web.* TO 'admin'@'$%.melonfire.com';
Query OK, 0 rows affected (0.01 sec)

In contrast, the following command would assign no privileges to the user test
(and is, therefore, equivalent to running a simple CREATE USER command):

mysgl> GRANT USAGE ON web.* TO 'test'@'%.melonfire.com';
Query OK, 0 rows affected (0.01 sec)

The GRANT Privilege

MySQL lets users grant other users the same privileges they themselves possess via the
special WITH GRANT OPTION clause of the GRANT command. When this clause is added
to a GRANT command, users to whom it applies can assign the privileges they have

to other users. Consider the following example, which illustrates this by allowing
supervisor@localhost to give other users the same rights he has:

mysgl> GRANT SELECT, DELETE, INSERT, UPDATE, CREATE, DROP, INDEX
-> ON dbl.* TO 'supervisor'@'localhost' WITH GRANT OPTION;
Query OK, 0 rows affected (0.01 sec)
mysgl> SHOW GRANTS FOR 'supervisor'@'localhost'\G
RS R SRS SR SRR EEEEEEEEEEEEE S 1 TOW RS R SRS SR SRR EEEEEEEEEEEEE S
Grants for supervisor@localhost: GRANT USAGE ON *.* TO
'supervisor'@'localhost'
RS R SRS SR SRR EEEEEEEEEEEEE S 2 TrOow RS R SRS SR SRR EEEEEEEEEEEEE S
Grants for supervisor@localhost: GRANT SELECT, INSERT, UPDATE, DELETE,
CREATE, DROP, INDEX ON “dbl~.* TO 'supervisor'@'localhost' WITH GRANT OPTION
2 rows in set (0.00 sec)

The user supervisor@localhost can now log in to MySQL and GRANT other users all or
some of the privileges he possesses, as the following shows:

mysgl> GRANT SELECT ON dbl.* TO 'joe'@'localhost';
Query OK, 0 rows affected (0.01 sec)

280

Part Il: Administration

The GRANT privilege can be reversed by using the GRANT OPTION clause in a
standard REVOKE command, as the following shows:

mysgl> REVOKE GRANT OPTION ON dbl.* FROM 'supervisor'@'localhost';
Query OK, 0 rows affected (0.01 sec)

CAuTION Care should be taken when assigning users the GRANT privilege. Users with
different access levels can combine them and thereby obtain a higher level of access than
they are normally allowed.

The SUPER and PROCESS Privileges
The SUPER and PROCESS privileges are noteworthy because they allow administrative
control over server processes. Users with the PROCESS privilege can view the commands
being executed by connecting clients in real time, while users with the SUPER privilege
can terminate client connections and alter global server settings.

Here’s an example of assigning a user the SUPER privilege:

mysgl> GRANT SUPER ON *.* TO 'admin'@'localhost';
Query OK, 0 rows affected (0.01 sec)

CAuTION Care should be taken when assigning the SUPER and PROCESS privileges, as they
permit users to exercise a high degree of control over almost all aspects of server operation.

Limiting Resource Usage

MySQL also allows administrators to limit resource usage on the MySQL server on a

per-user basis. This is accomplished via four optional clauses to the GRANT command.
The first of these is the MAX QUERIES PER HOUR clause, which limits the number of

queries that can be run by a user in an hour. Here’s an example:

mysgl> GRANT SELECT ON *.* TO 'supervisor'@'localhost'
-> WITH MAX QUERIES PER HOUR 5;
Query OK, 0 rows affected (0.00 sec)

The MAX QUERIES PER HOUR clause controls the total number of queries permitted
per hour, regardless of whether these are SELECT, INSERT, UPDATE, DELETE, or other
queries. If this is too all-encompassing, an alternative is to set a limit on the number of
queries that change the data in the database via the MAX UPDATES PER HOUR clause, as
in the following;:

mysgl> GRANT SELECT, INSERT, UPDATE ON *.*
-> TO 'supervisor'@'localhost' WITH MAX UPDATES PER HOUR 5;
Query OK, 0 rows affected (0.00 sec)

Chapter 11: Managing Users and Controlling Access

The number of new connections opened by the named user(s) in an hour can be
controlled via the MAX CONNECTIONS PER HOUR clause, as the following shows.

mysgl> GRANT USAGE ON *.* TO 'supervisor'@'localhost'
-> WITH MAX CONNECTIONS PER HOUR 3;
Query OK, 0 rows affected (0.00 sec)

The maximum number of simultaneous connections that the same user may have
open at any one time is specified via the MAX USER CONNECTIONS clause, as in the
following example:

mysgl> GRANT USAGE ON *.* TO 'supervisor'@'localhost'
-> WITH MAX USER CONNECTIONS 1;
Query OK, 0 rows affected (0.00 sec)

These clauses can also be used in combination with each other. The following is
a perfectly valid GRANT:

mysgl> GRANT SELECT, INSERT, UPDATE, DELETE ON *.*
-> TO 'supervisor'@'localhost' WITH
-> MAX QUERIES PER HOUR 50
-> MAX UPDATES PER _HOUR 10
-> MAX CONNECTIONS PER HOUR 4;
Query OK, 0 rows affected (0.00 sec)

It’s important to realize that these usage limits cannot be specified per-database or
per-table. They can only be specified in the global context by using an ON *.* clause in
the GRANT command. A value of 0 for any of these clauses removes the corresponding
limitation.

The server maintains internal counters on a per-user basis for each of these three
resource limits. These counters could be reset at any time with the new FLUSH USER
RESOURCES command, as in the following:

mysgl> FLUSH USER RESOURCES;
Query OK, 0 rows affected (0.00 sec)

Note that you need the RELOAD privilege to execute the FLUSH command.

Viewing Privileges

To view the privileges assigned to a particular user, use the SHOW GRANTS command,
which accepts a username as argument and displays a list of all the privileges granted
to that user. There are numerous examples of this command in previous sections, but
here’s another one:

mysgl> SHOW GRANTS FOR 'supervisor'@'localhost'\G
Fhhkkhkhkdhkhhkhhkhhhhkhkhhhhkhkhkhkdxdxx] pow **dxdkhkhhhhhhhhhhhhhhhhhhkhix
Grants for supervisor@localhost: GRANT USAGE ON *.* TO
'supervisor'@'localhost'

281

282

Part Il: Administration

EE R S R S 2. TOW khkkhkkhkkhkhkkhkhkhkkhhkhkkhkhkkhkhkhkkhhkkhkhkhhk*

Grants for supervisor@localhost: GRANT SELECT, INSERT, UPDATE, DELETE,
CREATE, DROP, INDEX ON “dbl~.* TO 'supervisor'@'localhost'

WITH GRANT OPTION

2 rows in set (0.00 sec)

Restoring Default Privileges

If you want to reset the grant tables to their initial default settings, the process is
as follows:

1. If the server is running, stop it in the usual manner:
[root@host]# /usr/local/mysql/support-files/mysql.server stop

2. Change to the data directory of your MySQL installation, and then delete the
mysql/ folder. Because databases in MySQL are represented as directories on the
file system, this will effectively erase the grant tables.

[root@host]# rm -rf /usr/local/mysql/data/mysql

On UNIX, reinstall the grant tables by running the initialization script, mysql_
install_db, which ships with the program:
[root@host]# /usr/local/mysql/scripts/mysql_ install db

Then, change back to the data directory of your MySQL installation and alter
the ownership of the newly created MySQL directory so it is owned by the
mysql user:

[root@host]# chown -R mysqgl.mysql /usr/local/mysql/data/mysql

On Windows, because this initialization script is not part of the binary
distribution, you need to reinstall the package into the same directory to revert
to the original grant tables.

3. Restart the server.
[root@host]# /usr/local/mysql/support-files/mysql.server stop

The MySQL grant tables should now be reset to their default values. You can now log
in as root@localhost and make changes to them using the GRANT and REVOKE commands.

Working with User Accounts and Passwords

To simplify the task of user account management, MySQL offers the CREATE USER and
DROP USER commands. A password for the user can be specified with the optional
IDENTIFIED BY clause. Here’s an example:

mysgl> CREATE USER 'joe'@'localhost'
-> IDENTIFIED BY 'guessme';
Query OK, 0 rows affected (0.02 sec)

Chapter 11: Managing Users and Controlling Access

The GRANT command will also automatically create user accounts, if they don’t
already exist at the time of specifying the grant. Again, the optional IDENTIFIED BY
clause can be used to set the user password. Here’s an example:

mysgl> GRANT SELECT ON *. *

-> TO 'joe'@'localhost'

-> IDENTIFIED BY 'guessme';
Query OK, 0 rows affected (0.01 sec)

The IDENTIFIED BY clause of the GRANT command is optional, and creating a grant
for a new user without this clause will set an empty password for that user. This opens
a security hole in the system, so administrators should always make it a point to assign
a password to new users. Alternatively, setting the NO AUTO CREATE USER SQL mode
will ensure that the GRANT command only creates new user accounts if they are
accompanied by a password (see Chapter 10 for more information on SQL modes).

Passwords can also be set with the MySQL SET PASSWORD command. In its most
basic form, this command changes the password for the currently logged-in user. Here’s
an example:

mysgl> SET PASSWORD = PASSWORD('secret');
Query OK, 0 rows affected (0.01 sec)

To change the password for another user on the system, add the FOR clause and
specify the target user account, as in the following example:

mysgl> SET PASSWORD FOR 'joe'@'localhost' = PASSWORD('lrock');
Query OK, 0 rows affected (0.01 sec)

Note, however, that the ability to change the passwords of other users is restricted

to those user accounts that have been granted UPDATE privileges on the mysgl database.

When setting a password using the IDENTIFIED BY clause of the GRANT or CREATE
USER commands, or via the mysgladmin tool, MySQL will automatically encrypt the
password string for you. However, this does not apply to passwords set with the SET
PASSWORD command, which requires you to manually encrypt the password. Therefore,
the following three commands are equivalent:

mysgl> SET PASSWORD FOR 'joe'@'localhost' = PASSWORD('lrock');
mysgl> CREATE USER 'joe'@'localhost' IDENTIFIED BY 'lrock';
mysgl> GRANT USAGE ON *.* TO 'joe'@'localhost' IDENTIFIED BY 'lrock';

How Does MySQL Password Authentication Work?

Passwords are stored in the Password field of the user grant table, and are encrypted
with the MySQL PASSWORD () function. When a user logs in to the MySQL server
and provides a password, MySQL first encrypts the supplied password string
using the PASSWORD () function, and then compares the resulting value with

the value in the Password field of the corresponding user record in the user table.

283

284

Part Il: Administration

If the two values match (and other access rules permit it), the user is granted
access. If the values do not match, access is denied.

CAuTION The PASSWORD () function in MySQL 4.1 and later generates a longer,
41-byte hash value that is not compatible with older versions (which used a
16-byte value). Therefore, when you upgrade a pre-4.1 MySQL server
installation to MySQL 4.1 or better, you must run the mysql_fix_privilege_
tables script in the scripts/ directory of your MySQL installation to update the

grant tables so they can handle the longer hash value.

The Administrator Password
For both UNIX and Windows systems, when MySQL is first installed, the administrative
account root@localhost is initialized with an empty password. This default setting implies
that any one could log in as root without a password, and would be granted administrative
privileges on the server. Needless to say, this is a significant security hole.

To rectify this, set a password for root@localhost as soon as possible using any of the
following commands:

[root@host]# /usr/local/mysql/bin/mysqgladmin -u root password 'secret'
mysgl> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('secret');

This password change goes into effect immediately, with no need to restart the
server or reload the grant tables.

If you later forget the password for root@localhost and are locked out of the grant
tables, take a deep breath, and then follow these steps to get things up and running again:

1. Log in to the system as the system administrator (root on UNIX) and stop the
MySQL server. This can be accomplished via the mysgl.server startup and
shutdown script in the support-files/ directory of your MySQL installation,
as follows:

[root@host]# /usr/local/mysql/support-files/mysqgl.server stop

On UNIX systems that come with MySQL preinstalled, an alternative is to stop
(and start) MySQL with the /etc/rc.d/init.d/mysqld scripts.

2. Start MySQL again with the special --skip-grant-tables startup option.
[root@host]# /usr/local/mysql/bin/safe mysqgld --skip-grant-tables

--skip-networking

This bypasses the grant tables, enabling server login as the MySQL root user
without providing a password. The additional --skip-networking option tells
MySQL not to listen for TCP/IP connections and ensures that no one can break
in over the network while you are resetting the password.

Chapter 11: Managing Users and Controlling Access

3. Use the SET PASSWORD command, as described in the preceding section, to set
a new password for the MySQL root user:

mysgl> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('secret');
4. Log out of the server, stop it, and restart it again in the normal manner:

[root@host]# /usr/local/mysql/support-files/mysql.server stop
[root@host]# /usr/local/mysql/support-files/mysql.server start

This procedure should reset the password for the root@localhost account and permit
logins with the new password set in step 3.

Summary

MySQL comes with a hierarchical access control system that allows administrators to
precisely define which clients and hosts can access which parts of the database server.
This access control system, implemented through six grant tables, was discussed in
detail throughout this chapter. The chapter also examined the topics of limiting server
resource usage, changing user passwords, recovering from a lost administrator password,
and resetting the grant tables.

To learn more about the topics discussed in this chapter, consider visiting the
following links:

* The MySQL access control system, at http://dev.mysql.com/doc/refman/5.1/
en/privilege-system.html

* MySQL privilege levels, at http://dev.mysql.com/doc/refman/5.1/en/
privileges-provided.html

e The CREATE USER, DROP USER, and SET PASSWORD commands, at http://
dev.mysql.com/doc/refman/5.1/en/account-management-sql.html

® The GRANT and REVOKE commands, at http://dev.mysql.com/doc/refman/5.1/
en/grant.html

285

This page intentionally left blank

CHAPTER 12

Performing Maintenance,
Backup, and Recovery

288 Part Il: Administration

an ideal database tool for many types of production environments where a
dedicated database administrator is neither feasible nor desired. Despite this,
a certain amount of basic maintenance needs to be done, regardless of the size of your
installation. This chapter will introduce you to MySQL's tools for table maintenance and
data backup, and prepare you for when disaster strikes (and yes, that’s “when,” not “if”).

ﬁ s you've discovered by now, MySQL is relatively easy to use, which makes it

Using Database Log Files

A significant amount of maintenance needed by MySQL is done through the various log
files. Logging is essential for situations where troubleshooting is necessary, or where
you want to be proactive and avoid problems in advance.

When the MySQL server starts up, it checks which logging options are marked for
activation. If indicated, the server starts the logs as part of the startup process. Log files
provide the information necessary to manage your server. Analyzing performance and
investigating problems are some of the main reasons for consulting these logs. The files
are stored in the same directory as the MySQL data files.

Although these are all standard text files, several different types of logs are available:

¢ The error log

¢ The general query log
* The slow query log

¢ The binary log

The Error Log

The error log does exactly what you think it would do—it keeps a record of every error
that occurs on the server. As such, this is a basic diagnostic tool, and one that comes in
handy when troubleshooting hard-to-diagnose problems.

To activate the error log, add the —-log-error option to the server’s startup command
line or option file, as shown:

[root@host]# /usr/local/mysql/bin/mysqld safe --log-error
Here’s a sample snippet from the error log:

Version: '5.1.30-community' socket: '' port: 3306 MySQL Community Server
(GPL)

InnoDB: The log sequence number in ibdata files does not match

InnoDB: the log sequence number in the ib logfiles!

090309 20:02:55 InnoDB: Database was not shut down normally!

InnoDB: Starting crash recovery.

InnoDB: Reading tablespace information from the .ibd files...

InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...

090309 20:02:57 InnoDB: Started; log sequence number 0 389374

Chapter 12: Performing Maintenance, Backup, and Recovery 289

By default, this file is called hostname.err and is located in the MySQL data/ directory.
You can specify a different filename and location by passing it to the --log-error option
as an argument, as in the following example:

[root@host]# /usr/local/mysqgl/bin/mysqld safe --log-error=/tmp/mysql.errors

The General Query Log

The general query log is another useful log because it (surprise, surprise!) keeps track
of every query sent to the server by a client. It also displays details about which clients
are connected to the server and what these clients are doing. If you want to monitor
activity for the purpose of troubleshooting, you should activate the query log by adding
the --general_log option to the server’s startup command line or option file:

[root@host]# /usr/local/mysql/bin/mysqld safe --general log

Here’s a sample snippet from the query log;:

090310 15:32:15 1 Query SELECT DATABASE ()
1 Init DB dbl
090310 15:32:17 1 Query SELECT DATABASE ()
1 Init DB gwl
090310 15:32:19 1 Query select 8 from users
090310 15:32:24 1 Query select * from user
090310 15:32:27 1 Query select * from userdataset
090310 15:32:35 1 Query select * from userfielddataset
090310 15:34:25 1 Query SELECT DATABASE ()
1 Init DB dbl
090310 15:34:43 1 Query select * from route left join flight on
routeid
090310 15:34:51 1 Query select * from route left join flight on

route.routeid

By default, this file is called hostname.log, and it, too, is located in the MySQL data/
directory. You can specify a different filename and location by passing it to the --general_
log option as an argument, as explained earlier.

The Slow Query Log

A related log is the slow query log, which lists all the queries that exceed a predefined
amount of time (specified by the long_query_time variable). Any query that takes longer
than this value is listed in this log. If you're looking for a way to optimize performance,
this log is a good place to start.

NoTE Query optimization is discussed in detail in Chapter 9.

Typically, you would look at the queries in this log as candidates for revision to lessen
the impact on your server’s performance. Remember, though, the length of time a query

290

Part Il: Administration

takes can be the result of factors other than poorly written code. Queries that usually run
under the “long” threshold can appear in this log if the server is tied up elsewhere.

The slow query log is activated by using the --slow-query-log option at server
startup, as in the example shown:

[root@host]# /usr/local/mysql/bin/mysqld safe --slow-query-log

The default filename for the log is hostname-slow.log, also located in the MySQL data/
directory. As specified earlier, you can specify a custom name and location for this log
by passing it to the --slow-query-log option.

The Binary Log

MySQL 3.23.14 and later also support logging of all the commands that make changes
to a table’s data. Commands such as INSERT, REPLACE, DELETE, GRANT, and REVOKE,
along with UPDATE, CREATE TABLE, and DROP TABLE are all in this category. This
information is stored in a binary log, which provides a more efficient storage format
for data and also records a larger amount of information. A utility named mysqlbinlog
converts the binary log back to text so you can read it. The binary log can be activated
by using the --log-bin option when starting MySQL, as shown:

[root@host]# /usr/local/mysql/bin/mysqld safe --log-bin

The default filename for the log is hostname-bin, with the file extension containing a
number identifying the log in the sequence. You can specify a different location for the
binary log by passing it to the --log-bin option as an argument.

Tip Because the binary log is critical for crash recovery, it’s always a good idea to save it to
a different drive or device than the one which holds the MySQL database files.

NortEe Versions of MySQL prior to MySQL 5.0 used a more primitive version of the binary log,
the “update log,” which recorded all the queries that changed a table’s data. Statements such
as INSERT, REPLACE, DELETE, GRANT, and REVOKE, along with UPDATE, CREATE
TABLE, and DROP TABLE, were all recorded in this log. However, this update log is no
longer supported in MySQL 5.0 and later, and is instead replaced by the binary log.

Why Would | Need to Use the Binary Log?

Updates that are part of a transaction are not executed immediately; they are kept
in a cache until the transaction is committed. Once a COMMIT command is received
by the MySQL server, the entire transaction is first written to the binary log, and
then the changes are saved to the database. If a part of the transaction fails for
whatever reason, the whole transaction is rolled back and no changes are written
to the binary log. Also, if you're setting up master and slave servers for replication,
you must enable the binary log (more about replication in Chapter 13).

Chapter 12: Performing Maintenance, Backup, and Recovery

To refresh the logs, use the FLUSH LOGS command. This command causes the
server to close and then reopen the log files. For the binary logs, this command closes
the current log and creates a new log with a new sequence number so the old one can
be archived, if desired.

The value of log flushing becomes more evident when you consider issues of log
rotation, which are covered in the next section.

Rotating Logs

Your logs will become huge quickly (and your disks full) if your server is busy. So logs
must be managed via expiration dates and rotation to keep them from becoming

a hindrance rather than a help.

Log rotation is one method used to alleviate this problem. Log rotation works by
creating a finite number of log files and then overwriting them in succession so the
oldest one is dropped in each cycle. For example, if you have a file named hostname.log,
the first time rotation takes place, it’s renamed hostname.log.1 and a new hostname.log
file is created. At the next rotation, hostname.log.1 is renamed hostname.log.2, hostname.log
is renamed hostname.log.1, and a new file named (you guessed it!) hostname.log is
created. When the last rotation in the cycle is reached, the oldest file is overwritten.

How much log information you keep depends on how often you rotate and how
many files you create. These numbers vary, depending on your circumstances, but a
common arrangement is to create new logs daily and rotate them seven times through
a cycle, one for each day of the week.

Sending Log Output to a Table
If writing data to log files isn’t your style, MySQL also lets you redirect the output of the
general query log and the slow query log to a database table instead of, or in addition
to, a disk file. To do this, add the --log-output argument to the server command line,
followed by one or more of the options FILE, TABLE, or NONE in a comma-separated list.
The default value is FILE, which writes log messages to the corresponding log file;
TABLE tells MySQL to write log messages to the general_log or slow_log table in the mysql
database, while NONE disables logging.

Here’s an example, which logs queries to both the mysql.general_log table and the
hostname.log file:

[root@host]# /usr/local/mysql/bin/mysqld safe --general log --log-
output=FILE, TABLE

Here’s an example of what the mysqgl.general_log table might then contain:

mysgl> SELECT event time, command type, argument
-> FROM mysql.general log LIMIT O0,6;

e R B +
| event time | command type | argument |
e R e e +
2009-03-10 20:14:53	Connect	root@localhost on gwl
2009-03-10 20:14:53	Query	desc post
2009-03-10 20:14:59	Query	desc forumpost

291

292 Part Il: Administration

2009-03-10 20:15:03	Query	select * from forumpost
2009-03-10 20:15:05	Query	SELECT DATABASE ()
2009-03-10 20:15:05	Init DB	db1
tmmm oo tommm oo Fm e +

6 rows in set (0.00 sec)

Checking and Repairing Tables

You might need to restore corrupted tables (or even an entire database) from your
backups and use the update logs if a table gets damaged or deleted by accident. In case
of relatively minor damage, however, MySQL provides several options for table repair.
This next section deals with what you can do if this is the case.

Checking Tables for Errors

The first thing to do if you suspect something is wrong is to check the table for errors.
The myisamchk utility is one way to check a table. To invoke this utility, execute the
command myisamchk table-file.

Because myisamchk requires exclusive access to the tables, a good idea is to take the
server offline before running it. This way, you needn’t worry about coordinating access
between clients. In addition, you can run several options when you check a table for
errors, as shown in Table 12-1.

The following example runs myisamchk with the extended option enabled. If you're
following along, don’t use a large table to see how this works because you’ll tie up
your server for quite a while. If no errors are detected using the extended option, you
can be certain the specified table isn’t the problem.

[root@production ~]# /usr/local/bin/myisamchk --extend-check
/usr/local/mysqgl/data/dbl/airport.MYI

Checking MyISAM file: /usr/local/mysqgl/data/dbl/airport.MYI

Data records: 15 Deleted blocks: 0

myisamchk: warning: 1 client is using or hasn't closed the table properly
- check file-size

- check record delete-chain

- check key delete-chain

- check index reference

- check data record references index: 1

- check record links

MyISAM-table '/usr/local/mysgl/data/dbl/airport.MYI' is usable but should be
fixed

The downside of myisamchk is this database-checking tool requires locking out
clients while the diagnosis is performed. Moreover, no client can hold a lock on the
table being checked while myisamchk is running. On a big table, where myisamchk can
take a few minutes to perform its checks, this can be a problem.

Chapter 12: Performing Maintenance, Backup, and Recovery

Option Name Description

—fast Fast check Only checks irregularly closed files
—-medium-check Medium check A more detailed check
—-extend-check Extended check Slowest, most thorough check
—check Basic check Basic table check

TaBLe 12-1 Additional myisamchk Table Check Options

One alternative here is to set myisamchk to use large buffers (use myisamchk --help to
see the options for changing the various buffers). Another alternative is to use a different
method to check your tables: the CHECK TABLE command.

The myisamchk utility requires exclusive access to the tables it’s checking because it
works directly with the table files. The CHECK TABLE command, on the other hand,
has the server check the tables. This means less work for you, as you don’t have to
take the server down and remove all the locks from the table. Here’s an example of it
in action:

mysgl> CHECK TABLE airport;

oo mmm oo R R e R +
| Table | op | Msg type | Msg text |
e T R R T Hmmmmmmo - +
| dbl.airport | check | status | ok |
oo oo oo mmmm o oo mm o +
1 row in set (0.08 sec)

In case you were wondering, you can also add the keywords FAST, MEDIUM, and
EXTENDED to the CHECK TABLE command to perform the desired type of check.

Why not run CHECK TABLE all the time then, instead of myisamchk, you might ask?
The main reason is this: The server does all the work when using CHECK TABLE. If
your server is down, CHECK TABLE isn’t an option. On the other hand, myisamchk
works at the file level and, therefore, can work even if the server is down. Since CHECK
TABLE is a SQL command that can only be sent via a client, the server must be running
to accept it. If you have a choice, however, by all means let MySQL do the work.

CAauTtioN myisamchk only works with the MyISAM storage engine. To check InnoDB tables,
use the CHECK TABLE command instead.

Repairing Tables

If you find errors exist after checking a table, you must repair the table. The best practice
is to make a copy of the table in question before you try to repair it. This gives you the
option of trying a different way to recover it if your first solution doesn’t work.

293

294

Part Il: Administration

The myisamchk tool discussed previously can also be used to repair a damaged table.
Use the --recover option with the table filename to start this process. Here’s an example:

[root@host]# /usr/local/mysql/bin/myisamchk --recover
/usr/local/mysqgl/data/dbl/airport. .MYI

- recovering (with sort) MyISAM-table

' /usr/local/mysqgl/data/dbl/airport .MYI'

Data records: 15

- Fixing index 1

If the --recover option fails to take care of the problem, the --safe-recover option attempts
a slow recovery of the table. Other options are also available, and Table 12-2 explains what
they mean.

As noted in the preceding section, keep in mind that the myisamchk tool works at the
file level and, therefore, requires that all locks be removed and all clients be excluded.

As when checking a table, you should try the fastest options first and move to the
slower, more thorough, options only if needed. You might find many common problems
are fixed without having to resort to the slower options. If you still have a problem after
running even the most intensive repair possibilities, you'll have to restore the table from
your backups. Restoring is covered in detail in the section “Restoring Databases and
Tables from Backup.”

The other option you have when repairing a table is the REPAIR TABLE command,
coupled with the table name. Similar to myisamchk, you have the option of using the
QUICK or EXTENDED keyword to set the type of repair. Simply add the option name to
the end of the REPAIR TABLE statement, as in the example shown:

mysgl> REPAIR TABLE airport QUICK;

B T R e e R e +
| Table | op | Msg type | Msg text |
R T to-mmm- - R e R e T +
| dbl.airport | repair | status | OK |
fmmmmm - fmm - fmmmmmmmmm o fmmmmm - +

1 row in set (0.00 sec)

TiP You can use either myisamchk or REPAIR TABLE to fix a damaged table, but remember
(as discussed earlier in the context of the CHECK TABLE command), the server must be
running in order to use REPAIR TABLE, while you must only use myisamchk if the
server is down.

Option Name Description

~-recover Repair and recover Standard recovery

-safe-recover Safe mode for recovery | Slow, thorough recovery

—quick Quick recovery Only checks index and not data files

TaBLE 12-2 Additional myisamchk Table Repair Options

Chapter 12: Performing Maintenance, Backup, and Recovery 295

Optimizing Tables
There are a number of times when optimizing a table is a good idea. A common example
is if a table gets considerable activity, especially many deletions. In such a situation, it
can quickly get fragmented, resulting in performance degradation. Running the
OPTIMIZE TABLE command flushes these deleted records and frees up space.

For example, the following command optimizes the route table:

mysqgl> OPTIMIZE TABLE route;

e e R e e +
| Table | op | Msg type | Msg text |
e R e R e T R e +
| dbl.route | optimize | status | ok |
o mmm o R e Hmmmmmm-o - R e +

1 row in set (0.06 sec)

The OPTIMIZE TABLE command is like your mother coming in and tidying your
room. In addition to getting rid of old, deleted files, it sorts indexed files, places the
contents of variable table rows into contiguous spaces, and updates table statistics.
Remember, though, that the table is locked and can’t be accessed by clients while it’s
being serviced.

Backing Up and Restoring Data

In addition to logging and table optimization, the other essential task of any database
administrator is to make sure the data is protected from loss. This is accomplished by
regular backup and test restorations of your database. When disaster strikes (and it
will, make no mistake about that), you will be better equipped to deal with it if you
perform the steps suggested in this next section.

Backing Up Databases and Tables

The MySQL distribution comes with a utility called mysqldump that can be used to back
up an entire database and/or individual tables from a database to a text file. Besides
the obvious need to back up your data, this action is also useful if you need to export
your database contents to a different RDBMS, or if you simply need to move certain
information from one system to another quickly and easily. Chapter 8 has an example
of this, using mysqldump to export the contents of a database in XML format.

[user@host]# /usr/local/mysql/bin/mysqldump --user=john --password=hoonose
dbl

This procedure displays the contents of the entire example database, db1, on your
screen. The output should look similar to Figure 12-1.

Notice from Figure 12-1 that SQL statements are included in the output of mysqldump
to facilitate rebuilding tables. As with the mysql command, you need to use the --user
and --password options to designate an authorized user and password to perform the
dump function.

296 Part Il: Administration

DECOFP TAELE IF EXISTS "route’;
CEEATE TAELE ‘“route’ |
"RoutelIl” smallint (4) unsigned NOT NULL auto_increment,
"From® smallint (4) unsigned NOT NULL,
"To* swallinc (4) unsigned NOT WULL,
"Distance’ smallint (4) unsigned NOT WULL,
"Duration’ smallint (4) unsigned NOT WULL,
"Status’ tinvint(l) NOT NULL,
PRIMARY KEY | RouteIDl'),
KEY "Duration” ("Duration’)
| ENGINE=MyISAM AUTO INCREMENT=1210 DEFAULT CHARSET=utfs:

—— Dumping data for tabhle ‘route’

LOCK TAELES "route’ WRITE: -
/%140000 ALTER TAELE ‘route® DISAELE EEYS +/:

INSERT INTO ‘route' VALUES (1003,12&,58,7200,550,1), (1005,34,48,343,585,1), (1178,
56,132,1267,150,1), (1175,132,56,1267,150,1) , (101,334,587, 1248, 135, 1), (1023, 48,59,
1434,150,1), (1008,34, 165, 656, 60, 1), (1009,34,92,459,70,1), (1165,92, 59, 653, 50,17, (
1167,92,56,777,70,0), (1123,92, 48, 777,60, 1), {1133, 74,126, 6336,470, 1), (1141,126,20 |

Ficure 12-1 The output of the mysqldump command

Tip If the data you are backing up has been corrupted, it is a best practice to execute a
DROP TABLE or a DROP DATABASE command before restoration. This creates a clean
slate for your restoration. Fortunately, the mysqldump utility does this for you; if you
look at the SQL statements resulting from a call to mysqldump, you will see these
commands included.

What if you don’t need the entire database to be dumped? A simple change enables
you to specify which tables from within the database should be backed up. Here’s an
example:

[user@host]# /usr/local/mysql/bin/mysqldump --user=john --password=hoonose
dbl route flight

This command dumps only the contents of the dbl.name and db1.address tables.

In the real world, you'll want to save the output of mysqldump to a file, not watch it
scroll by on a console. On both UNIX and Windows, this can be accomplished via the >
redirection operator, as shown in the following example:

[user@host]# /usr/local/mysqgl/bin/mysgldump --user=john --password=hoonose
dbl route flight > mydump.sql

The result of this command will be a text file, called mydump.sql, containing the SQL
commands needed to re-create the dbl.name and db1.address tables.

Chapter 12: Performing Maintenance, Backup, and Recovery 297

Backing Up Multiple Databases
To back up more than one database at a time, use the —B option, as in the following
example:

[user@host]# /usr/local/mysqgl/bin/mysgldump --user=john --password=hoonose
-B dbl db2

Note that no tables are specified in this case, because when you use the -B option to
back up more than one database, the entire database will be dumped. Individual tables
cannot be designated in this operation.

To back up all the databases on the system, use the shortcut --all-databases option,
as shown:

[user@host]# /usr/local/mysqgl/bin/mysgldump --user=john --password=hoonose
--all-databases

Tip When using the mysqldump utility, you can control the characters used to enclose and
separate the fields from the column output by adding any or all of the options --fields-
enclosed-by, --fields-terminated-by, --fields-escaped-by, and --lines-terminated-by.
This is similar to the features provided by the LOAD DATA INFILE, and SELECT
INTO OUTFILE commands discussed in Chapter 8, and it is particularly useful if you
need to port the dumped data into a system that requires records to be encoded in a custom
format before importing them.

Backing Up Table Structures

What if you want to create a table with the same structure but different data from the
one you have? Again, the mysqldump utility comes to the rescue. The --no-data option
produces the same table in form, but empty of content. To see this in action, try the
following command:

[user@host]# /usr/local/mysql/bin/mysgldump --user=john --password=hoonose
--no-data dbl airport > airport.sql

This generates a dump file containing SQL commands to create an empty copy of
the dbl.airport table.

Backing Up Table Contents
The other side of the coin is a situation where you only need the contents of a table—
for example, to dump them into a different table. Again you use mysqldump, but with
the --no-create-info option. This yields a file containing all the INSERT statements that
have been executed on the table. What doesn’t get duplicated are the instructions for
creating the table.

Here’s an example:

[user@host]# /usr/local/mysql/bin/mysqldump --user=john --password=hoonose
--no-create-info dbl flight > flight.sql

298

Part Il: Administration

The records from the flight table are now ready to be imported into any other
application that understands SQL.

Backing Up Other Database Objects

It’s worth noting that, by default, mysgqldump does not back up database events or stored
routines. To add these database objects to the output of a mysgldump run, add the --events
and --routines options, as shown:

[user@host]# /usr/local/mysql/bin/mysqldump --user=john --password=hoonose
--events --routines dbl > dbl.sql

Triggers and views are, however, automatically included in the output of mysqldump.
To skip these, use the --skip-triggers and --ignore-table options, as shown:

[user@host]# /usr/local/mysql/bin/mysqldump --user=john --password=hoonose
--skip-triggers --ignore-table=dbl.v small airports gb dbl > dbl.sql

Restoring Databases and Tables from Backup

Most books on the subject emphasize the importance of backing up your data regularly
(and rightly so), but restoring the data is an often-overlooked aspect of this process.
Backed-up files are useless if they can’t be accessed. Accordingly, you should regularly
restore your files from backup to make certain they can be used in an emergency. In fact,
it might not be too much to say that a backup job isn’t complete until you've confirmed
that the backup files can be restored. Besides the peace of mind you’ll achieve, it pays to
be thoroughly familiar with the process, because you certainly don’t want to waste time
learning the restore procedure after the system goes down.

In the preceding section, you learned that the output of the mysgldump utility
includes SQL statements such as CREATE TABLE to simplify the process of rebuilding
lost data. Because of this, you can take a file generated by mysgldump and pipe it
through the mysgl command-line client to quickly re-create a lost database or table.

Here’s an example:

[user@host]# /usr/local/mysql/bin/mysqgl dbl < mydump.sqgl

In this example, mydump.sql is the text file containing the output of a previous
mysqldump run. The contents of this file (SQL commands) are executed through the
mysgl command-line client using standard input redirection. Note that the database
must exist prior to piping the contents of the backup file through it.

CAUTION The user who performs the restoration must have permission to create tables and
databases. Accordingly, you might need to use the --user, --password, or --host options
with the previous command.

Chapter 12: Performing Maintenance, Backup, and Recovery 299

If you don’t have access to (or don’t like) the command line, another option is to
use the SOURCE command, as shown:

mysgl> SOURCE mydump.sql

The SOURCE command uses the SQL instructions in the named text file to rebuild
the database(s) or table(s) specified. To see the results of the restoration, use a simple
SELECT statement to verify that the data has been successfully restored.

Another option is to use the LOAD DATA INFILE command to import data from
a text file. Here’s an example:

mysgl> LOAD DATA LOCAL INFILE '/tmp/mydump.sqgl'
-> INTO TABLE p
-> FIELDS TERMINATED BY ','
-> ENCLOSED BY '"!'
-> LINES TERMINATED BY '\r\n';
Query OK, 5 rows affected (0.00 sec)
Records: 5 Deleted: 0 Skipped: 0 Warnings: 0

See Chapter 8 for more details on the LOAD DATA INFILE command.

Once you're comfortable with the procedures to back up and restore your data,
you'll likely want to set up a regular schedule of backups for your organization. Both
Windows and UNIX come with built-in tools that you can use for this purpose.

e The crontool is a UNIX scheduling utility that can be used for this purpose. It
allows you to schedule the mysgqldump utility to run at designated times and
dates. Type man cronat your UNIX command prompt to find out more about
how to use this tool.

¢ In Windows NT, Windows 2000, or Windows XP, you can use either the AT
command from the command prompt or the Task Scheduler (Start | Control
Panel | Scheduled Tasks) to automate backups.

Summary

One of the qualities that has made MySQL popular is its ease of use; however, it won’t do
everything for you. Basic maintenance and an established backup and restoration process
are required from the administrator in any production environment. This chapter has
focused on the minimum steps you should take to ensure smooth performance of your
installation, such as using the various logs to monitor the database and pinpoint areas of
potential trouble. Methods of checking and repairing tables were reviewed. Finally, the
all-important topics of backup and restoration were considered using various utilities
that MySQL provides.

300 PartIl: Administration

To learn more about the topics discussed in this chapter, consider visiting the
following links from the MySQL manual:
e Types of server logs, at http://dev.mysql.com/doc/refman/5.1/en/log-files.html

* Log file maintenance, at http://dev.mysql.com/doc/refman/5.1/en/
log-file-maintenance.html

¢ Table maintenance, at http://dev.mysqgl.com/doc/refman/5.1/en/
table-maintenance-sql.html

e Example backup and recovery strategy, at http://dev.mysql.com/doc/
refman/5.1/en/backup-strategy-example.html

CHAPTER 13

Replicating Data

302

Part Il: Administration

snapshot of the database and copying it to another location. This kind of
backup is suited for databases that are not in constant use, or where server
uptime isn’t a business-critical requirement.

For companies that live and die by their databases, however, this kind of one-shot
backup isn’t really the perfect solution. Typically for such companies (think Yahoo! or
Google), database access is a near-constant process, and database content changes
continually, often on a second-by-second basis. Data replication, which involves
continual data transfer between two (or more) servers to maintain a replica of the
original database, is a better backup solution for these situations.

This chapter discusses the basics of data replication, demonstrating how to set up a
master-slave replication system with MySQL and introducing the commands needed to
manage it.

ﬁ s discussed in the previous chapter, backing up a database involves taking a

Understanding Replication

Replication in MySQL is the dynamic process of synchronizing data between a primary
(master) database server and one or more secondary (slave) database servers in near-real
time. Using this process, it’s possible to create copies of one or more databases so that even
if the primary server fails, data can still be recovered from one of the secondary servers.
Replication is essential for many applications, and the lack of replication support
was a major drawback to MySQL compared to other relational database management
systems (RDBMSs). MySQL 3.23 was the first version to introduce replication support,
and support has improved continually in subsequent versions. However, MySQL is still
best suited for one-way replication, where you have one master and one or more slaves.

Tip As much as possible, try to use the same version of MySQL for both the master and slave
server(s). A version mismatch can sometimes result in erratic replication behavior.

Why replication? There are four common reasons.

¢ To create a standby database server. If the primary server fails, the standby can
step in, take over, and immediately be current. For any organization that has
mission-critical, time-sensitive tasks involving its database, this is a must!

¢ To enable backups without having to bring down or lock out the master server.
After replication takes place, backups are done on the slave, rather than on the
master. This way, the master can be left to do its job without disturbance.

¢ To keep data current across multiple locations. Replication is necessary if
several branches of an organization need to work from a current copy of the
same database.

¢ To balance the workload of multiple servers. By making it possible to create
mirror images of one database on multiple servers, replication can help alleviate
the woes of a single overloaded database server by splitting queries between
multiple servers, each running on separate hardware.

Chapter 13: Replicating Data 303

Now that you have an idea why you might want to set up replication, let’s look at
some of the concepts on which it’s based.

The Master-Slave Relationship

As previously stated, replication requires at least two servers. The servers are set up
such that the first server, called the master, enters into a relationship with the other
server, called the slave. Periodically, the latest changes to the database on the master are
transferred to the slave. Through this replication relationship, an updated database can
be propagated throughout an enterprise into multiple slave servers, but only one master
can be in a replication relationship at any one time. It’s also possible to “promote” a
slave to a master, if necessary.

As a necessary prelude to configuring servers for replication, both master and slave
servers must be synchronized so that the databases being replicated are the same at
both ends of the replication connection. Once this is accomplished, it becomes critical
for all updates to be done on the master, and not on the slave(s), to avoid confusion
about the sequence of the updates.

In addition, binary update logging must be enabled on the master for replication to
take place. This is because updates are transferred from the master to the slave via the
master server’s binary update logs. Replication is based on the concept that the master
keeps track of the changes to the database through the binary logs and the slave
updates its copy of the database by executing the changes recorded on the same logs.

Once the master and slave servers are configured, the process begins with the slave
contacting the master and requesting updates. Permissions for this must be enabled on
the slave server(s). The slave informs the master of the point in the binary log where
the last update occurred, and then it begins the process of adding the new updates.
Once completed, the slave notes where it left off and connects periodically to the
master, checking for the next round of changes. This process continues for as long as
replication is enabled. Figure 13-1 illustrates this relationship.

Master Slave
Server Server
SQL Thread
P 1/0O Thread
Binary Log) R Relay Log
Binary Log Dump Thread -

Ficure 13-1 The master-slave replication relationship

304

Part Il: Administration

Replication Threads

Three threads are involved in replication: one on the master and two on the slave. The
I/0 thread on the slave connects to the master and requests the binary update log. The
binary log dump thread on the master sends the binary update log to the slave on
request. Once on the slave, the I/O thread reads the data sent by the master and copies
it to the relay log in the slave’s data directory. The third thread, also on the slave, is the
SQL thread, which reads and executes the queries from the relay log to bring the slave
in alignment with the master.

The relay logs on the slave are in the same format as binary logs. Once all the events
in the relay log are executed, the SQL thread automatically deletes the log. A new relay
log is automatically created when an I/O thread starts. It’s worth pointing out that
MySQL replication is asynchronous and so the slave needn’t be connected to the master
all the time; it has the capability to keep track of where it left off and automatically get
itself current, regardless of how much time has passed since the last update took place.

NOTE The reason for two separate slave threads? Performance! By being independent of
each other, the processes of reading and writing on the slave can occur simultaneously.
Because the execution of the SQL commands on the slave takes longer than reading and
copying the binary logs to the relay logs, splitting these two functions also makes sense in
terms of efficiency on the master. The binary logs can be safely purged from the master
because a copy of them already exists on the slave, even if all the updates to the slave haven't
yet been committed.

Replication Methods

MySQL supports two (or three, depending on how you look at it) different methods of
replicating databases from master to slave. All of these methods use the binary log;
however, they differ in the type of data that is written to the master’s binary log.

¢ Statement-based replication Under this method, the binary log stores the
SQL statements used to change databases on the master server. The slave reads
this data and reexecutes these SQL statements to produce a copy of the master
database. This is the default replication method in MySQL 5.1.11 and earlier and
MySQL 5.1.29 onwards.

* Row-based replication Under this method, the binary log stores the record-
level changes that occur to database tables on the master server. The slave reads
this data and manipulates its records accordingly to produce a copy of the
master database.

* Mixed-format replication Under this method, the server can dynamically
choose between statement-based replication and row-based replication,
depending on certain conditions. Some of these conditions include using a user-
defined function (UDF), using an INSERT command with the DELAYED clause,
using temporary tables, or using a statement that uses system variables. This is
the default replication method in MySQL 5.1.12 to MySQL 5.1.28.

Chapter 13: Replicating Data 305

If you're unsure which replication method to use and your replication needs aren’t
complex, it’s best to stick to statement-based replication, as it’s been around longest and
therefore has had the most time to have its kinks worked out. That said, certain types of
statements cannot be replicated using this method, and it also tends to require a higher
number of table locks. Row-based replication is useful for these situations. Because it
replicates changes to rows, any change can be replicated, and it also requires fewer table
locks. The summary section of this chapter includes links for a detailed comparison of
the two methods.

The replication method currently in use on the server is listed in the binlog_format
server variable.

mysgl> SHOW VARIABLES LIKE 'binlog format';

e +----m-m- - +
| Variable name | Value |
+t--mm - +-------- - +
| binlog format | STATEMENT |
tomm - tommmmmmm - +

1 row in set (0.08 sec)

To alter the replication method, set a new value for this variable, as shown, using
the SET command with either GLOBAL or SESSION scope. Note that using GLOBAL scope
requires a server restart for the change in method to take effect.

mysgl> SET binlog format = 'MIXED';
Query OK, 0 rows affected (0.02 sec)
mysgl> SELECT @@SESSION.binlog format;

e +
| @@SESSION.binlog format |
e ittt +
| MIXED |
e e +

1 row in set (0.00 sec)

mysgl> SET GLOBAL binlog format = 'ROW';
Query OK, 0 rows affected (0.00 sec)
mysgl> SELECT @@GLOBAL.binlog format;;

o m oo +
| @@GLOBAL.binlog format |
e +
| ROW |
oo +

1 row in set (0.00 sec)

306 PartIl: Administration

Configuring Master-Slave Replication

The process of creating master and slave servers, and then configuring them is fairly
straightforward. This section will discuss the steps involved, under the assumption that
the db1 database on the master server (cerberus) should be replicated to the slave server
(achilles).

1. The first step is to grant permission for the slave server to contact the master
server for updates. This is done on the master server by creating a user account
for the slave server and issuing it with the necessary privileges. Here’s an
example, which grants the appropriate privileges to db1-slave@achilles with the
password “rosebud”:

(Master server)
mysgl> GRANT REPLICATION SLAVE ON *.*

-> TO 'dbl-slave'@'achilles' IDENTIFIED BY 'rosebud';
Query OK, 0 rows affected (0.00 sec)

2. The next step involves configuring the master server’s replication ID, activating
its binary log, and (optionally) specifying which databases should be replicated.
The easiest way to do this is to add the following directives to the my.cnf option
file and then restart the MySQL server. On restart, these new options should
take effect, and all updates should now be written to the binary update log.

(Master server)
[mysqgld]

server-id = 10
log-bin = mysgl-bin
replicate-do-db = dbl

Note that both master and slave server(s) must have replication IDs, which are
unique values in the range 1 to 4294967295.

Tip If binary logging has already been enabled on the master server, make a backup of the
binary logs before shutting down and restarting. Then, when you restart, use the RESET
MASTER statement to clear the existing binary logs.

3. The next step is to copy the database from the master server to the slave. As
previously mentioned, you must start with an exact duplicate to assure proper
replication. One way to do this is by exporting data to a backup file on the
master server using the mysqldump command, as discussed in Chapter 12.

Before doing this, you need to determine the current position of the master
server’s binary log by running the SHOW MASTER STATUS command on the
master server. Note that you should lock tables prior to executing this command
to ensure that no changes take place and produce inaccurate information.

Chapter 13: Replicating Data 307

(Master server)

mysqgl> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.00 sec)
mysqgl> SHOW MASTER STATUS;

Fommmmmmm—m o — - Fo-mmm-—- - R e Fommmmmmm—mm—— - +
| File | Position | Binlog Do DB | Binlog Ignore DB |
e R B e T Fommmmm e —m—m— - +
| mysgl-bin.000001 | 106 | | |
R e LR L LT R R T e R E T T TR +

1 row in set (0.00 sec)

The output of this command reveals that the master server is on binary log #1,
position 106.

In a different window, export the contents of the database to a text file:

(Master server)
[user@cerberus] # /usr/local/mysql/bin/mysqgldump --user=root
- -password=guessme dbl > /tmp/dbl.sql

Release the table locks to return the server to normal operation:

mysgl> UNLOCK TABLES;
Query OK, 0 rows affected (0.00 sec)

4. Next, copy the exported database to the slave server using the mysql command,
as discussed in Chapter 12:

(Slave server)

mysgls> CREATE DATABASE dbi;

Query OK, 1 row affected (0.00 sec)

[user@cerberus]# /usr/local/mysqgl/bin/mysql --user=root
--host=achilles --password=root dbl < /tmp/dbl.sqgl

NortE Earlier versions of MySQL provided a LOAD DATA FROM MASTER command to
transfer the database from the master to the slave server. However, several restrictions were
involved in using this command. It was usually only suitable when the source database
was small and used the MyISAM engine, and having a read lock on the master server for
a long time wasn’t a problem. In real-world implementations, these conditions were found
too restrictive and the command was deprecated in MySQL 4.1. Currently, the MySQL
manual recommends transferring the master database with the mysqldump command, as
explained previously.

5. The next step is to update the slave server’s configuration. All that’s needed is
to assign each slave a unique replication ID and then restart the server for the
change to take effect. Here’s an example of a slave server’s option file:

(Slave server)
[mysqgld]
server-id = 7

308

Part Il: Administration

6. It's necessary to tell the slave server the position of the binary log to begin
processing from by running the CHANGE MASTER TO command on the slave
server:

(Slave server)
mysgl> CHANGE MASTER TO
-> MASTER_ HOST='cerberus',
-> MASTER USER='dbl-slave',
-> MASTER PASSWORD='rosebud',
-> MASTER LOG FILE='mysqgl-bin.000001',
-> MASTER LOG P0OS=106;
Query OK, 0 rows affected (0.00 sec)

7. The final step is to start the replication threads on the slave server by issuing the
START SLAVE command. The slave will use the options in the CHANGE MASTER
command to determine how to connect to the master and will also create master.info
and relay-log.info files in the data directory to store information about the replication
process.

(Slave server)
mysqgl> START SLAVE;
Query OK, 0 rows affected (0.00 sec)

If you decide later to change the replication options, you must again execute the
CHANGE MASTER TO command to update the slave with new information.

Configuring Master-Master Replication

It’s also possible to configure replication with two (or more) master servers, such that
changes to data on any one of them are automatically replicated to the other(s). This is
referred to as master-master replication or, if there are only two master servers involved,
bi-directional replication.

The usual problem that occurs in this type of replication is related to AUTO INCREMENT
PRIMARY KEY fields. Consider the following situation: A new record is added to a table
containing this field type on the first master server. Simultaneously, a new record (with
different field values) is added to the same table on the second master server. Both
records will share the same auto-generated record ID, as the insertions have occurred on
two independent servers. Replication will fail in this case, as the record added on one
master server will be blocked from insertion on the second due to a primary key conflict.

CAutION While master-master replication is technically possible under MySQL, it’s certainly
not the recommended configuration. The very nature of this type of replication makes it
inherently risky, with significant data loss possible if any of the servers in the relationship
fails. There's also a high risk of duplicate data when both master servers write to the same
table. As far as possible, stick to regular master-slave replication and use master-master
replication only if you have a full understanding of the risks involved, as well as adequate
redundancies that will take over in case of problems.

Chapter 13: Replicating Data

Fortunately, MySQL comes with a solution to this problem, wherein each master
“knows” about other masters in the relationship and automatically avoids such
primary key conflicts. This section will discuss the steps involved, under the
assumption that the db1 database is to be replicated between two master servers
(cerberus and achilles).

1. The first step is to grant permission for each master server to contact the other
for updates, as though it were a slave. This is done by creating a user account on
each master server and issuing it the necessary privileges. Here’s an example:

(Master server 'cerberus')
mysgl> GRANT REPLICATION SLAVE ON *. *

-> TO 'master'@'achilles' IDENTIFIED BY 'rosebud';
Query OK, 0 rows affected (0.00 sec)

(Master server 'achilles')
mysgl> GRANT REPLICATION SLAVE ON * ., *

-> TO 'master'@'cerberus' IDENTIFIED BY 'twilight';
Query OK, 0 rows affected (0.00 sec)

2. The next step involves configuring replication IDs and binary logs on each
master server. The easiest way to do this is to add the following directives to
the my.cnf option file on each server and then restart them. On restart, these
new options should take effect, and all updates should now be written to the
binary update log.

(Master server 'cerberus')
[mysqgld]

server-id = 10

log-bin = mysqgl-bin
replicate-do-db = dbl
auto-increment-increment = 2
auto-increment-offset = 1

(Master server 'achilles')
[mysqgld]

server-id = 20

log-bin = mysqgl-bin
replicate-do-db = dbl
auto-increment-increment = 2
auto-increment-offset = 2

The auto-increment-increment option specifies the interval between auto-
generated values for AUTO_INCREMENT fields, while the auto-increment-offset
option specifies the starting value. In a master-master relationship, the auto-
increment-increment option should be set to the total number of master servers,
while the auto-increment-offset should hold a different value, beginning with 1
and ending with the value of auto-increment-increment, on each master server.
Note also that each master server must have a unique replication ID.

309

310

Part Il: Administration

3. The next step is to copy the database from either one of the master servers to

the other. It doesn’t really matter which one you use as the source; all that
matters is that both servers exactly mirror each other’s data prior to starting the
replication process. One way to do this is by exporting data to a backup file on
the source server using the mysqldump command, as discussed in Chapter 12.

Before doing this, you need to determine the current position of the source
master server’s binary log by running the SHOW MASTER STATUS command.
Note that you should lock tables prior to executing this command to ensure
that no changes take place and produce inaccurate information.

(Master server 'cerberus')
mysqgl> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.00 sec)
mysgl> SHOW MASTER STATUS;

e e T 4o mmmm oo e o mmmmmmm oo +
| File | Position | Binlog Do DB | Binlog Ignore DB |
o R e Hmmmmmm e e T +
| mysgl-bin.000006 | 213 | | |
e T 4o mmmmm oo Hmmmmmmmmmmo o o mm oo +

1 row in set (0.01 sec)

The output of this command reveals that the source server is on binary log #6,
position 213.
In a different window, export the contents of the database to a text file:

(Master server 'cerberus')
[user@cerberus]l# /usr/local/mysql/bin/mysqldump --user=root
--password=guessme dbl > /tmp/dbl.sql

Release the table locks to return the server to normal operation:

mysgl> UNLOCK TABLES;
Query OK, 0 rows affected (0.00 sec)

. Next, copy the exported database to the second master server(s) using the mysgl

command, as discussed in Chapter 12:

(Master server 'achilles')

mysgl> CREATE DATABASE dbl;

Query OK, 1 row affected (0.00 sec)

[user@cerberus]# /usr/local/mysql/bin/mysql --user=root
--host=achilles --password=root dbl < /tmp/dbl.sql

At this point, you need to determine the current position of the second master
server’s binary log by running the SHOW MASTER STATUS command. Note that
you should lock tables prior to executing this command to ensure that no changes
take place and produce inaccurate information.

(Master server 'achilles')
mysqgl> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.00 sec)
mysgl> SHOW MASTER STATUS;

Chapter 13: Replicating Data 311

oo mmmm oo e T oo mmmmmm oo +
| File | Position | Binlog Do DB | Binlog Ignore DB |
R T R e R T o mmmmmmm—mo o +
| mysgl-bin.000001 | 106 | | |
oo mmmmmm oo 4o mmmmm o oo mmmmmm oo e +

1 row in set (0.00 sec)

The output of this command reveals that the second server is on binary log #1,
position 106.

Release the table locks to return the server to normal operation:

mysgl> UNLOCK TABLES;
Query OK, 0 rows affected (0.00 sec)

5. It’s necessary to tell each master server the position of the other’s binary log by
running the CHANGE MASTER TO command:

(Master server 'cerberus')
mysqgl> CHANGE MASTER TO
-> MASTER HOST='achilles',
-> MASTER USER='master',
-> MASTER PASSWORD=' twilight',
-> MASTER LOG FILE='mysql-bin.000001',
-> MASTER LOG P0OS=106;
Query OK, 0 rows affected (0.00 sec)
(Master server 'achilles')
mysgl> CHANGE MASTER TO
-> MASTER HOST='cerberus',
-> MASTER USER='master',
-> MASTER PASSWORD='rosebud',
-> MASTER LOG FILE='mysqgl-bin.000006',
-> MASTER LOG POS=213;
Query OK, 0 rows affected (0.00 sec)

6. The final step is to start the replication threads on each master server by issuing
the START SLAVE command:

(Master server 'cerberus')

mysgl> START SLAVE;

Query OK, 0 rows affected (0.00 sec)
(Master server 'achilles')

mysgl> START SLAVE;

Query OK, 0 rows affected (0.00 sec)

Changes made on any one of the two servers should now be replicated to the other.
If you take a close look, you'll also see that auto-generated primary keys on cerberus are
odd numbers, while those on achilles are even numbers. This is entirely due to the
auto-increment-increment and auto-increment-offset options specified earlier and ensures
that primary key conflicts do not occur.

312 Part Il: Administration

Managing the Replication Process

Now that your master and slave servers are running smoothly, some commands exist
that let you manage their relationship. All these commands are executed within the
MySQL interface. In the process of examining these statements, you'll learn more about
the details of replication.

Changing Replication Parameters

The CHANGE MASTER TO command instructs the slave to check a different binary log in
the master server for updates and/or to write to a different relay log in the slave. This
statement also is used to change the connection and binary log parameters. For example,
let’s say your company just bought a brand-new, super-big, super-fast dedicated server
(since you're imagining, you might as well make it interesting!) for the database. You
want to change masters from the old server to the new one. Here’s an example of the
command you’d use:

(Slave server)
mysgl> STOP SLAVE;
Query OK, 0 rows affected (0.00 sec)
mysqgl> CHANGE MASTER TO
-> MASTER HOST ='cerberus',

-> MASTER USER = 'slave',
-> MASTER PASSWORD = 'slavepass',
-> MASTER PORT = '3306°',

-> MASTER LOG FILE = 'mysqgl-bin.001',
-> MASTER LOG POS = 7,
-> MASTER CONNECT RETRY = 15;
-> RELAY LOG_FILE = 'slave-relay-bin.010',
-> RELAY LOG POS = 6084;
Query OK, 0 rows affected (0.00 sec)
mysgl> START SLAVE;
Query OK, 0 rows affected (0.00 sec)

Table 13-1 contains a quick reference chart for these parameters. Only the parameters
specified will change; if a parameter is unspecified, the existing value remains as is. The
exceptions to this rule are the host name and the port number. If either of these changes,
MySQL assumes you're changing master servers and it automatically drops the binary
update log name and position values; you'll need to remember to specify these values.

Starting and Stopping Slave Servers

The START SLAVE command is used to begin or resume replication, while the STOP
SLAVE command is used to pause or end replication. Note that executing the START
SLAVE command in itself is no guarantee that replication has begun. If the slave is
unable to connect to the master or read the binary logs, it might stop on its own without
providing an error message.

Chapter 13: Replicating Data

Parameter

What It Means

MASTER HOST

Host name for the master server

MASTER USER

Slave name to use when connecting to the master

MASTER PASSWORD

Slave’s password to connection to master

MASTER PORT

Port number to connect to master

MASTER LOG FILE

Name of master’s binary log file from which to start reading
when replication begins

MASTER_LOG_POS

Position in the master’s binary log file from which to start
reading when replication begins

MASTER CONNECT_ RETRY

Number of seconds to wait between connection attempts

RELAY LOG FILE

Name of the slave relay log from which to begin execution
when replication begins

RELAY_ LOG_POS

Position in slave relay log from which to begin execution when
replication begins

MASTER _SSL

Whether to connect to the master server using SSL

TaBLe 13-4 Common Options for the CHANGE MASTER TO Command

Tip Don't assume everything is fine because you issued the START SLAVE command
successfully—monitor the slave’s activities by using the SHOW SLAVE STATUS command.
You can also read the slave’s error log to make sure everything is okay.

Checking Replication Status

The SHOW SLAVE STATUS command provides information about the slave server’s
status. It should be run on the slave database server. Here’s what it looks like:

(Slave server)

mysgl> SHOW SLAVE STATUS\G

khkkhkkhkkhkhkkhkkhkhkkhhkhkkhkhkhhkhkkhhkkdhkhkhhkk l‘ TrOow khkkhkkhkhkhkkhkhkdhhkhkkhhkdkkhkhkdkhkhkkhhrhdkhkxkx

Slave IO State: Waiting for master to send event
Master Host: cerberus
Master User: dbl-slave
Master Port: 3306
Connect_Retry: 60
Master Log File: mysgl-bin.000004
Read Master Log Pos: 106
Relay Log File: ACHILLES-relay-bin.000006
Relay Log Pos: 251
Relay Master Log File: mysgl-bin.000004
Slave IO Running: Yes
Slave_SQL_Running: Yes
Replicate Do DB:

313

Part Il: Administration

Replicate_Ignore_DB:
Replicate Do Table:
Replicate Ignore Table:
Replicate Wild Do Table:
Replicate Wild Ignore Table:
Last_Errno: 0
Last_Error:
Skip Counter: 0
Exec_Master Log Pos: 106
Relay Log Space: 554
Until Condition: None
Until Log File:
Until Log Pos: 0

1 row in set (0.00 sec)

In addition to displaying information on the current server and user credentials,
the SHOW SLAVE STATUS command provides information on how many times the
slave server will attempt to connect to the master server, the status of slave I/O and
SQL threads, the name and position in the master’s binary log, the name and position
in the slave’s relay log, the size of relay log files, the databases and tables excluded
from replication, and whether SSL connections are in use.

The SHOW PROCESSLIST command displays information about the threads on the
server, and was discussed in Chapter 10. In a replication context, it can be used to
obtain status information on both the master and the slave. For each thread, the output
is shown in various fields, as illustrated:

(Master server)
mysgl> SHOW PROCESSLIST\G
dhhkhkhkhkhkhhkhhhhhhhhhhhhdhhhhddt T pow *dkdhkdhdhhhhhhhhhhhhhhhhhhhhh
Id: 2
User: dbl-slave
Host: ACHILLES:43424
db: NULL
Command: Binlog Dump
Time: 2128
State: Has sent all binlog to slave; waiting for binlog to be updated

Info: NULL
RS RS SRS EE SRS SRS SR EEEEEEEEEES 2 TOow EE RS SRS SR SRS SR SRR EEEEEEEEEE]
Id: 6

User: root
Host: localhost:1302

db: NULL
Command: Query
Time: 0

State: NULL
Info: show processlist
2 rows in set (0.00 sec)

Chapter 13: Replicating Data 315

(Slave server)
mysgl> SHOW PROCESSLIST\G
EE RS SRS SR SRS SR EEEEEEEEEEEEE] 1 Trow R R RS SRS EE SRS SRS EEEEEEEEEEES
Id: 12
User: root
Host: localhost:43422

db: NULL
Command: Sleep
Time: 1937
State:
Info: NULL
khkkhkkhkkhkhkkhkkhkhkkhhkhkkhkhkkhkhkhkkhhkhhkhkhxkk 2‘ TOwW khkkhkkhkhkhkkhkhkkhkhkhkkhhkdkhhkdhkhkkhkhrdhhkxkx
Id: 13
User: system user
Host:
db: NULL

Command: Connect
Time: 1941
State: Waiting for master to send event

Info: NULL
B R T s o) VAR
Id: 14
User: system user
Host:
db: NULL

Command: Connect

Time: 1941

State: Has read all relay log; waiting for the slave I/O thread to
update it

Info: NULL
hhkhkhkhhkhhhhkhhhkhkhhhkhkhhhkhhkhkhdkd 4 1OW ***kkhkkhkkhkhhhhhhhhhhhhhhhhhhhkk

Id: 16
User: root
Host: CERBERUS:1294

db: NULL
Command: Query
Time: 0

State: NULL
Info: SHOW PROCESSLIST
4 rows in set (0.03 sec)

Of these various fields, the one you'll usually be most interested in is the State
field, which contains information about what the server is doing. For example, on the
master server, you could see something like ‘Sending binlog event to slave.” On the
slave’s I/O thread, you might see ‘Connecting to master’ or ‘Requesting binlog
dump.” On the slave’s SQL thread, a common state is ‘Reading event from the relay
log.” You'll also find information (where appropriate) about which database the thread
is accessing, the statement it’s currently executing, and how long (in seconds) the
thread has been executing.

316

Part II:

Administration

Working with Master Server Binary Logs

As discussed earlier, when replicating, everything is based on the binary log on the
master server. To display events in this log, the SHOW BINLOG EVENTS command can
be used. Here’s an example:

(Master server)
mysgl> SHOW BINLOG EVENTS FROM 4 LIMIT 0,10\G

khkkhkkhkhkhkkhkhkhkhkhkkhkhkdhkhkdhkhkkhkhrhdhhdxkx 1.

TOW khkkhkkhkkhkhkkhkhkhkkhhkhkkhkhkkhkhkhkkhhkhhkhkhhkk

Log _name: mysgl-bin.000001
Pos: 4
Event type: Format desc
Server id: 10
End log pos: 106

Info:
IR R RS SRS SR SRS EE SR EEEEEEEEEES 2 .

Server ver: 5.1.30-community-log, Binlog ver: 4

TOW ** kkkkkkhkhkhdhkhkhhkhdhkrhhhkrdx

Log_name: mysgl-bin.000001
Pos: 106
Event_ type: Query

Server_id: 10
End log pos: 203
Info:
2 rows in set

use ~dbl”;
(0.00 sec)

delete from log where RecordID = 37

By itself, this command displays all events in the binary log. This can be a time-
consuming process when dealing with large binary logs. Therefore, the MySQL manual
suggests limiting the output of this command by only showing events starting from a
specific position in the log (the FROM clause) and displaying a specified number of events
(the LIMIT clause), as in the previous example.

The PURGE MASTER command deletes all binary logs on the master server prior to a
specified date or log number. As an example, suppose you want to purge all the master
binary update logs prior to the one named bin_Ilog.999. You would execute the following:

(Master server)
mysgl> PURGE MASTER LOGS TO mysgl-bin.000999;
Query OK, 0 rows affected (0.00 sec)

Note that this statement requires the SUPER privilege.

For additional information about the master server’s binary logs, use the SHOW
MASTER STATUS command, which displays the current binary log name and position
being written to. Here’s an example:

(Master server)
mysqgl> SHOW MASTER STATUS\G
PR R R E R RS EEEEEEEEEEEEEEEEEEE] 1. TOwW IR R R R R R EEEEEEEEEEEEESEEEEEEE]
File: mysgl-bin.000004
Position: 106

Binlog Do DB:
Binlog Ignore DB:
1 row in set (0.00 sec)

Chapter 13: Replicating Data 317

Summary

This chapter introduced many of the basic replication concepts, such as the master-slave
relationship, binary logging, and relay logging. It reviewed and analyzed the three
threads that carry out replication on the master and slave servers, and provided step-by-
step instructions for taking two servers and configuring them for ongoing replication in
two different configurations. Finally, it looked at various SQL commands that are useful
for configuring and troubleshooting replication, and that provide considerable information
about the processes involved.

To learn more about the topics discussed in this chapter, consider visiting the
following links:

® A comparison of replication methods, at http://dev.mysql.com/doc/refman/5.1/
en/replication-sbr-rbr.html

® Replication variables and options, at http://dev.mysql.com/doc/refman/5.1/
en/replication-options.html

e Replication thread states, at http://dev.mysql.com/doc/refman/5.1/en/
master-thread-states.html

® Replication tips, at http://dev.mysql.com/doc/refman/5.1/en/replication-notes
html

This page intentionally left blank

APPENDIX

Installing MySQL
and the Sample Database

320

Part Il: Administration

to store, manipulate, and retrieve data in databases. In case you're new to MySQL

and don’t already have a working installation of the software, this appendix
guides you through the process of obtaining, installing, configuring, and testing the
MySQL server. It discusses the different versions of MySQL, covers installation of binary
versions on both UNIX and Microsoft Windows, and helps create a server environment
suitable for running the code examples in this book.

This book discusses the MySQL RDBMS and the tools and commands it provides

CAUTION This appendix is intended to provide an overview and general guide to the process
of installing and configuring MySQL on UNIX and Windows. It is not intended as a
replacement for the installation instructions that ship with MySQL. If you encounter
difficulties installing or configuring MySQL, visit the online MySQL manual or search the
Web for detailed troubleshooting information and advice (some links are provided at the end
of this chapter).

Obtaining MySQL

The first order of business is to drop by the official MySQL website at www.mysql.com
and get a copy of the most current release of the software. This isn’t necessarily as easy
as it sounds—like ice-cream, MySQL comes in many flavors, and you'll need to select
the one that’s most appropriate for your needs.

There are two primary decisions to be made when selecting which MySQL distribution
to download and use.

¢ Choosing which version to install

¢ Choosing between binary and source distributions

Choosing Which Version to Install

Sun Microsystems currently makes two versions of the MySQL database server available
on their website.

e MySQL Community Server This is the General Public License (GPL) version
of the MySQL database server, which includes support for both regular,
nontransactional storage engines and transaction-safe tables. It is suited for
production environments requiring a stable, flexible, and robust database
engine, and can be downloaded free of charge.

* MySQL Enterprise Server This version is only available as part of the MySQL
Enterprise platform, a commercial offering aimed at enterprise customers with
business-critical applications. It includes all the features of the Community
Server, along with automated updates and hot fixes, consulting support, and
monitoring services.

So long as you're willing to put in the time and effort needed to manage the
MySQL database server and don’t mind resolving technical issues yourself, the

Appendix: Installing MySQL and the Sample Database

MySQL Community Server is the most appropriate choice. It’s the version used in all
the examples in this book, and it’s stable, feature-rich, and suited for most common
applications. However, business customers who need automated updates, continuous
system monitoring, and access to 24/7 technical and consulting support would
probably be better served by a MySQL Enterprise subscription.

Choosing Between Binary and Source Distributions

Sun Microsystems makes both source and binary distributions of the MySQL database
server available for download on their website. As of this writing, binary distributions
are available for Linux (Red Hat, SuSE, and generic distributions), Solaris, FreeBSD,
Mac OS X, 32-bit and 64-bit Windows, HP-UX, and IBM AIX and IBM i5, and source
distributions are available for both Windows and UNIX platforms.

Windows users must further choose between three different binary distributions: the
“Essentials” distribution, which includes the minimum set of files and an automated
installer; the “Complete” distribution, which includes everything in the “Essentials”
distribution plus additional tools such as the MySQL Benchmark Suite; and the
“Noinstall” distribution, which includes everything in the “Complete” distribution
except the automated installer.

In most cases, it’s preferable to use a precompiled binary distribution rather than a
source distribution, for two reasons: It is easier to install, and it has been optimized for
maximum performance on different platforms by the MySQL development team. That
said, there are a number of possible situations where a source distribution might be
preferable to a binary distribution.

® You need to recompile MySQL with different compile-time options from the
defaults provided by the MySQL team (for example, to set a different value for
the default installation path).

* You need to compile a smaller, lighter version of MySQL that doesn’t include all
the features (and overhead) of the standard binary distribution.

* You need newer, experimental features that are disabled by default in the
standard binaries.

* You need to make modifications to the server’s source code.

Source distributions are typically used only by experienced developers who either
need to tweak MySQL’s default values for their own purposes or who are interested in
studying the source code to see how it works. Such users usually also have the time,
inclination, and expertise to diagnose and troubleshoot compilation and configuration
issues that may arise during the installation process.

MySQL versions that don’t come with an automated installer are usually packaged
in either TGZ or ZIP format. Therefore, users on both UNIX and Windows platforms
will need a decompression tool capable of dealing with Tape Archive (TAR) and GNU
Zip (GZ) files. On UNIX, the tar and gzip utilities are appropriate, and are usually
included with the operating system. On Windows, a good decompression tool is
WinZip, available from www.winzip.com.

321

322

Part Il: Administration

The instructions in the following sections assume that you will be using a binary
distribution of MySQL Community Server. This distribution can be downloaded from
the MySQL website. The MySQL software is also mirrored on a number of other sites
around the world, and you can make your download more efficient by selecting the
site that is geographically closest to you. Once downloaded, move to the section titled
“Installing and Configuring MySQL.”

Installing and Configuring MySQL

The next step is to install and configure MySQL for your specific platform. The following
sections outline the steps for both Windows and UNIX platforms.

Installing on UNIX

MySQL is available in binary form for almost all versions of UNIX, and can be compiled
from source for those UNIX variants for which no binary distribution exists. This section
will discuss installing and configuring MySQL on Linux using a binary distribution; the
process for other UNIX variants is similar, though you should refer to the documentation
included with the MySQL distribution for platform-specific notes.

To install MySQL from a binary distribution, use the following steps:

1. Ensure that you are logged in as the system’s “root” user.

[user@host]# su - root

2. Extract the contents of the MySQL binary archive to an appropriate directory on
your system—for example, /usr/local/:

[root@host]# ed /usr/local
[root@host]# tar -xzvf /tmp/mysql-5.1.30-linux-i686-glibc23.tar.gz

The MySQL files should get extracted into a directory named according to the
format mysql-version-os-architecture—for example, mysql-5.1.30-linux-i686-glibc23.

3. For ease of use, set a shorter name for the directory created in the previous step
by creating a soft link named mysql pointing to this directory in the same location:

[root@host]# 1n -s mysgl-5.1.30-1linux-i686-glibc23 mysqgl

4. For security reasons, the MySQL database server process should never run as
the system superuser. Therefore, it is necessary to create a special “mysql” user
and group for this purpose. Do this with the groupadd and useradd commands,
and then change the ownership of the MySQL installation directory to this user
and group:

[root@host] # groupadd mysqgl

[root@host] # useradd -g mysgl mysqgl
[root@host]# chown -R mysqgl /usr/local/mysql
[root@host]# chgrp -R mysqgl /usr/local/mysql

Appendix: Installing MySQL and the Sample Database

5. Initialize the MySQL tables with the mysql_install_db initialization script,
included in the distribution:

[root@host]# /usr/local/mysql/scripts/mysqgl install db --user=mysql
Figure A-1 demonstrates what you should see when you do this.

As this output suggests, this initialization script prepares and installs the various
MySQL base tables and sets up default access permissions for MySQL.

6. Alter the ownership of the MySQL binaries so that they are owned by “root”:
[root@host]# chown -R root /usr/local/mysql

and ensure that the “mysql” user created in step 4 has read /write privileges to
the MySQL data directory:

[root@host]# chown -R mysql /usr/local/mysql/data
7. Start the MySQL server by manually running the mysqld_safe script:
[root@host]# /usr/local/mysqgl/bin/mysqld safe --user=mysql &

MySQL should now start up normally.

Once installation has been successfully completed and the server has started up,
move down to the section entitled “Testing MySQL” to verify that it is functioning as
it should.

4 2l
mysgl_install db

Installing all prepared tables

Fill help tahles

To =start myagld at hoot tiwme vou have to copy support—-files/wysdgl.server
to the right place for your system

PLEASE REMEMEER TO ZET A PASSWORD FOR THE MySQL root USER !

To do so, start the server, then issue the following conmands:
fusr/bin/mysgladwin —u root password 'nev-password'

fusr/bin/mysgladmin —u root -h production.securities.comw password 'new-password!
See the manual for more instructions.

NCTE: If you are upgrading from a My30L <= 3.22.10 you should run
the Jfusr/binfmysgl fix privilege tables. Otherwise you will not be
ahle to use the new GRANT command!

FTou can start the My3Q0L daemon with:
cd / ; Sfusr/bin/wysqgld safe &

Fou can test the My3QL daewon with the benclhmarks in the 'sgl-hench' directory:
cd sgl-bench ; perl run-all-tests b

Ficure A-1 The output of the mysql_install_db script

323

324

Part Il: Administration

Installing on Windows
MySQL is available in both source and binary forms for both 32-bit and 64-bit versions
of Microsoft Windows. Most often, you will want to use either the “Essentials” or
“Complete” binary distribution, which includes an automated installer to get MySQL
up and running in just a few minutes.

To install MySQL from a binary distribution, use the following steps:

1. Log in as an administrator (if you're using Windows NT/2000/XP/ Vista).

2. Double-click the mysql-*.msi file to begin the installation process. You should
see a welcome screen (Figure A-2).

3. Select the type of installation required (Figure A-3).

Most often, a Typical Installation will do; however, if you're the kind who likes
tweaking default settings, or if you're just short of disk space, select the Custom
Installation option, and decide which components of the package should be
installed.

4. MySQL should now begin installing to your system (Figure A-4).

i MySOL Server 5.1 - Setup Wizard |

Welcome to the Setup Wizard for MySOL
Server 5.1

The Setup Wizard will allow vou ta madify, repair, or remove
%’IVSQL Server 5.1. To continue, click Mext,

AN

MysaoL

< Back I Mext = I Cancel

Ficure A-2 Beginning MySQL installation on Windows

Appendix: Installing MySQL and the Sample Database 325

:'.:1 MySQL Server 5.1 - Setup Wizard

Setup Type

Choose the setup bvpe that best suits vour needs,

Ficure A-3 Selecting the MySQL installation type

i'.:] MySOL Server 5.1 - Setup Wizard
Installing MySQL Server 5.1

The program features vou selected are being installed.

Ficure A-4 MySQL installation in progress

326

Part Il: Administration

MySQL Server Instance Configuration Wizard x|

Welcome to the MySOL Server Instance
Configuration Wizard 1.0.14.0

The Configuration Wizard will allow you to configure the
MySOL Server 5.1 server instance. To Continue, click.
Mewxt,

AN

MysQql:

Cancel

Ficure A-5 Beginning MySQL configuration on Windows

. Once installation is complete, you should see a success notification. At this

point, you will have the option to launch the MySQL Server Instance Config
Wizard to complete configuration of the software. Select this option, and you
should see the corresponding welcome screen (Figure A-5).

. Select the type of configuration (Figure A-6). In most cases, the Standard

Configuration will suffice.

. Install MySQL as a Windows service, such that it starts and stops automatically

with Windows (Figure A-7).

. Enter a password for the MySQL administrator (“root”) account (Figure A-8).

9. The server will now be configured with your specified settings and automatically

started. You will be presented with a success notification once all required tasks
are complete (Figure A-9).

You can now proceed to test the server, as described in the section “Testing MySQL,”
to ensure that everything is working as it should.

Appendix: Installing MySQL and the Sample Database

MySQL Server Instance Configuration Wizard

MySQL Server Instance Configuration

Configure the My3QL Server 5.1 server instance,

Please select a configuration tvpe,

= Detailed Configuration

B Choose this configuration bype to create the optimal server setup For
this machine,

* standard Configuration:
@ Use this only on machines that do not already have a MySGQL server

inskallation. This will use a general purpose configuration For the
server that can be tuned manually.

< Back | Mexk = I Cancel
L

Ficure A-6 Selecting the configuration type

MySOL Server Instance Configuration Wizard

MySOL Server Instance Configuration

Configure the My3QL Server 5.1 server instance,

Please set the Windows options,

v Install As Windows Service

This is the recommended way to run the My30L server
on Windows,

Service Mame: IMvSQL VI

¥ Launch the MySOL Server automatically

[~ Include Bin Directory in Windows PATH

Check this option to include the directory containing the
server | cient executables in the Windows PATH variable
so they can be called frarm the command line.

< Back. Cancel

Ficure A-7 Setting up the MySQL service

321

328 PartIl: Administration

MySQL Server Instance Configuration Wizard

MySQL Server Instance Configuration

Configure the MySOL Server 5.1 server instance,

FicuRe A-8 Setting the administrator password

MyS0L Server Instance Configuration Wizard

MyS0L Server Instance Configuration

Configure the MySQL Server 5.1 server instance.

Ficure A-9 MySQL configuration successfully completed

Appendix: Installing MySQL and the Sample Database 329

Testing MySQL
First, start up the MySQL command-line client by changing to the bin/ subdirectory of
your MySQL installation directory and typing the following command:

prompt# mysqgl -u root
You should be rewarded with a prompt, as shown:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1

Server version: 5.1.30-community MySQL Community Server (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysqgl>

At this point, you are connected to the MySQL server and can begin executing SQL
commands or queries to test whether the server is working as it should. Here are a few
examples, with their output:

mysql> SHOW DATABASES;

e +
| Database |
R e +
| mysql |
| test |
R e +

2 rows in set (0.13 sec)
mysgl> USE mysql;
Database changed

mysgl> SHOW TABLES;

| Tables in mysqgl |

columns_priv
db

event

func

general log
help category
help keyword
help relation
help topic
host
ndb_binlog index

330

Part Il: Administration

| plugin

| proc

| procs priv

| servers

| slow_log

| tables priv

| time zone

| time zone leap second

| time zone name

| time zone transition

| time zone transition type
| user

+

23 rows in set (0.23 sec)
mysqgl> SELECT VERSION() ;

Fom e - +
| VERSION () |
Fmm e +
| 5.1.30-community |
LR e L +

1 row in set (0.00 sec)

If you see output similar to that, your MySQL installation is working as it should.
Exit the command-line client by typing the following command, and you’ll be returned
to your command prompt:

mysgl> exit

If you don’t see output like that shown here, or if MySQL throws warnings and
errors at you, review the installation procedure in the previous section, as well as the
documents that shipped with your version of MySQL, to see what went wrong.

Performing Post-Installation Steps

Once testing is complete, you may wish to perform the following two tasks.

Setting the MySQL Superuser Password

On UNIX, when MySQL is first installed, access to the database server is restricted to
the MySQL administrator, aka “root.” By default, this user is initialized with a blank
password, which is generally considered a Bad Thing. You should, therefore, rectify
this as soon as possible by setting a password for this user via the included mysgladmin
utility, using the following syntax in UNIX:

[root@host]# /usr/local/mysql/bin/mysqladmin -u root password 'new-password'

Appendix: Installing MySQL and the Sample Database 331

In Windows, you can use the MySQL Server Instance Config Wizard, which allows
you to set or reset the MySQL administrator password (see the section entitled “Installing
on Windows” for more details).

This password change goes into effect immediately, with no requirement to restart
the server.

NoTE The MySQL “root” user is not the same as the system superuser (“root”) on UNIX, so
altering one password does not affect the other.

Configuring MySQL and Apache to Start Automatically

On UNIX, MySQL comes with startup /shutdown scripts, which can be used to start
and stop the server. These scripts are located within the MySQL installation hierarchy.
Here’s an example of how to use the MySQL server control script:

[root@host]# /usr/local/mysql/support-files/mysql.server start
[root@host]# /usr/local/mysql/support-files/mysql.server stop

¢ To have MySQL start automatically at boot time on UNIX, simply invoke the
respective control scripts with appropriate parameters from your system’s
bootup and shutdown scripts in the /etc/rc.d/* hierarchy.

¢ To start MySQL automatically on Windows, simply add a link to the mysqld.exe
server binary to your Startup group. You can also start MySQL automatically
by installing it as a Windows service (see the section entitled “Installing on
Windows” for instructions).

TiP In case you have problems starting the MySQL server, you can obtain fairly detailed
information on what went wrong by looking at the MySQL error log. By default, this file is
called hostname.err in Windows and UNIX, and is always located in the MySQL data/
directory. Other common problems, such as a forgotten superuser password or incorrect
path settings, can also be discovered and resolved via a close study of this error log.

Setting Up the Example Database

The code listings in this book all make use of a sample database containing flight, route,

and passenger information for a fictitious airline. The following sections discuss how to

re-create this sample database on your development system and take a closer look at the
tables that make up this database.

332

Part Il: Administration

Re-creating the Example Database

The SQL commands needed to re-create the example database can be found in a single file,
available from this book’s website, at www.mysql-usage.com. Once you've downloaded
this file, drop to your shell prompt, fire up the MySQL command-line client, and execute
the following commands:

prompt# mysqgl -u root -p

Enter password: ***

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 14

Server version: 5.1.30-community MySQL Community Server (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysgl> CREATE DATABASE dbl;

Query OK, 1 row affected (0.00 sec)

mysgl> exit

Bye

prompt# mysgl -u root -p -D dbl < dbl.sql

Enter password: ***

These commands will create a new, empty database and then read in the SQL
commands from the source file to create the example database (see Chapter 12 for more
information on these commands).

You can verify that the database has been correctly created by issuing a few quick
SELECT commands and checking the output, as shown:

mysgl> SHOW TABLES;
| Tables in dbl |

| aircraft |
| aircrafttype |
| airport |
| class |
| flight |
| flightclass |
| £lightdep |
| log |
| pax |
| route |
| stats |

11 rows in set (0.02 sec)

Appendix: Installing MySQL and the Sample Database 333

mysgl> SELECT COUNT (*) FROM flightdep;

+t-------- - +
| COUNT (*) |
t---------- +
| 108 |
- +

1 row in set (0.09 sec)

Understanding the Example Database

It’s worthwhile spending a few minutes to understand the structure of the example
database. Table A-1 provides a concise summary of the tables in this database, together
with an explanation of what each table contains.

The relationships between these tables can be visually understood from the entity-
relationship (E-R) diagram in Figure A-10.

Table Name Description

airport Master list of airports serviced by the airline. For each airport, specifies
information on the host country, number of runways, and number of terminals.

route Master list of routes between airport pairs. For each route, specifies flying
time, distance, and route status (active or inactive).

flight Master list of flight numbers servicing each route

flightdep Departure schedule for each flight (weekday and time)

aircraft Master list of aircraft used for each flight number. For each aircraft, specifies
aircraft registration number, type, and maintenance cycle.

aircrafttype Master list of aircraft types in use

class Master list of seating classes

flightclass Master list of seating classes available on each flight. For each class,
specifies maximum number of available seats and base price per seat.

pax Master list of passengers on each flight

stats Current inventory of seat availability and price per seat on each flight

log Activity log

TaBLE A-1 Tables in the Example Database

334 PartIl: Administration
| 7] aircrafttype v | _] aircraft v] flightdep v
 BircraftTypelD SMALLINT(4) * AircraftID SMALLINT(4) 4 Flight1D SMALLINT(E)
H—
& Bircrafthlame VARCHAR(25S) | @ AircraftTypelD SMALLINT(4) < DepDay TINYINT(4)
i !_ & Reghlum CHAR(E) % DepTime TIME
—<) H=—+
< LastMaintEnd DATE | »
& NextMaintBegin DATE | Ty
& NextMaintEnd DATE | I
= | |
Lo
] 1
] log v |] stats v | | _] flight v | | _] flightclass v |
* RecordID INT{11) 4 FlightID INT{11) * FlightID SMALLINT(4) 4 FlightID SMALLINT(E)
& ByUser YARCHAR(S0) & FlightDate DATE r— —iH ¢ RoutelD SMALLINT() (4——| @ ClassID CHAR(1)
% Mote TEXT & ClassID INT(11) — I @ BircraftiD SMALLINT(4) ~ 7N & Maxseats SMALLINT(E)
< EventTime TIMESTAMP & CurrSeats INT(11) > < BasePrice INT(11)
| & CurrPrice INT(11) R F g >
> Lo T
- L I |
I . e 1 |
| | - _i
| 1
— __F iy 4
airport v [| i N B
:. 1]] route v | pax v _J class v
AfrportID SMALLINT(S) * RoubsID SMALLINT(4) * RecordID INT{11} * ClassID INT(11)
& AfrportCode CHAR(Z) < From SMALLINT(4) 4 FlightID INT{11) <& Classhame YARCHAR(2S)
< Airportiame YARCHAR(Z55) g % To SMALLIMT(4) < FlightDate DATE >
< CibyMame YVARCHAR(2SS) [y < Distance SMALLINT(4) & ClassID INT(11) k g
4 CountryCode CHAR(Z) < Duration SMALLINT(4) & Paxhame YARCHAR(Z55)
< MumRurmays TINYINT(L) < Status TINYINT(L) < PaxRef WARCHAR(255)
< MumTerminals TINYINT{1) > & Make TEXT
B e ———— B

Ficure A-10 E-R diagram for the example database

Summary

As a popular open-source application, MySQL is available for a wide variety of platforms
and architectures, in both binary and source forms. This chapter explained the differences
between the different versions of MySQL and demonstrated the process of installing a
binary version of MySQL on the two most common platforms, UNIX and Windows. It
also provided information on testing, securing, and automatically starting the MySQL

server on both platforms.
For more detailed installation and troubleshooting information, consider visiting

the following links:

¢ General installation notes, at http://dev.mysql.com/doc/refman/5.1/en/
general-installation-issues.html

¢ MySQL installation from binary tarballs on UNIX/Linux, at http://dev.mysqgl
.com/doc/refman/5.1/en/installing-binary.html

* MySQL installation from RPM packages on UNIX/Linux, at http://dev.mysq]l
.com/doc/refman/5.1/en/linux-rpm.html

e MySQL installation on Windows, at http://dev.mysql.com/doc/refman/5.1/
en/windows-installation.html

A
abstract thinking, 135
Access. See Microsoft Access
access control system, 243-244, 264-277
ACID tests, 11
compliance, 16
transactions and, 112-114, 226
activation time, 169
ADD CHAIN clause, 118-119
ADD clause, 31
ADD PRIMARY KEY clause, 32
AFTER DELETE trigger, 175, 177
AFTER INSERT trigger, 174
AGAINST () function, 66-67
all field, 220
ALL privilege, 279
ALLOW_INVALID_DATES mode, 254
ALTER EVENT command, 182
ALTER privilege, 267
ALTER PROCEDURE command, 138
ALTER ROUTINE statement, 267
procs_priv table and, 275-276

ALTER TABLE command, 30-31, 32, 61, 115

ORDER BY clause and, 216
American National Standards Institute
(ANSI), 11
mode, 254
ANALYZE TABLE command, 216
performance optimization and, 244
ancestor node, 199
AND operator, 40
subqueries and, 87
ANSI. See American National Standards
Institute
ansi option, 251

Index

Apache, automating, 331

APIs. See application programming interfaces

application programming interfaces (APIs), 7, 14

application support, 7

applications, 14-16

Archive storage engine, 54

arguments, 135. See also input parameters

* wildcard, 224

asynchronous 1/0, 54

AT clause, 186

at command, 299

atomicity, 11, 112-114

attribute node, 199

autocommit mode, 121

AUTOCOMMIT variable, 121-122

autocommit variable, 252

AUTO_INCREMENT modifier, 28, 30, 309
automating, 34

AUTO_INCREMENT PRIMARY KEY field, 308

auto-increment-increment option, 309, 311

auto-increment-offset option, 309, 311

AVG () function, 45, 224

axes, 198-199

Axmark, David, 4

B
backup files, 243, 295-298, 302
mysqldump utility and, 310
restoring from, 298-299
scheduling, 299
stored routines and, 166
basedir option, 251
BDB, 11-12
BEFORE INSERT trigger, 179
BEFORE trigger, 180

335

336

MySQL Database Usage & Administration

BEGIN command, 115, 136
BEGIN WORK command, 115
benchmarking, 5, 233-236
test cases, 234
BIGINT type, 28, 50
binary distributions, 321-322
binary logs, 290-292
master servers, 316
master-slave relationship and, 303
purging, 304
replication and, 306
binary types, 51
binlog_cache_size variable, 233
binlog_format variable, 305
BIT type, 28
BLOB fields, 28, 53
exporting records and, 194
body, 135
triggers and, 169
Boolean searches, 67-68
Bouman, Roland, 230
buddy algorithm, 54
buffers, index, 232-233
built-in functions, 4344
overriding, 136
bulk_insert_buffer_size variable, 233
business applications, 16

C

C++
drivers and connectors, 10
libraries, 12-13
caches
query, 216-218
table, 232-233
calculations
with built-in functions, 43-44
transient, 223-224
CALL command, 136
stored functions and, 143
CASCADE keyword, 63
CASE construct, 153-155
CHANGE MASTER TO command, 308, 311
options, 313
replication parameters, 312
CHAR type, 28, 51
CHARACTER SET modifier, 29, 30
character types, 51
CHARACTER_SETS table, 256
CHECK TABLE command, 293
-check option, 293
CHECKSUM modifier, 30
child node, 199

circular references, 95
client processes
listing, 259
managing, 248-249
client-side programs, 25
CLOSE command, 160
clustering, 8, 16
COLLATE modifier, 30
COLLATION_CHARACTER_SET_
APPLICABILITY table, 256
COLLATIONS table, 256
COLUMN_PRIVILEGES table, 257
columns. See fields
COLUMNS table, 257
columns_priv table, 272-275
command-line interface, 6
commands, 24
COMMENT clause, 146
COMMIT command, 116-117
automating, 121-122
binary logs and, 290
cursors and, 159-160
comparison operators, 40
subqueries and, 86-87
CONCURRENT keyword, 210
concurrent_inserts variable, 252
conditional tests, 149-155
configuration files, 250
connection management, 10
connection stage, 276
connectivity, 11
connectors, 10
consistency, 11, 113-114
const field, 220
constraints, 178-180
CONTAINS SQL clause, 146
context nodes, 198
continuation character, 26
CONTINUE handler, 162-166
copy-db script, 234
corruption, 114
COUNT () function, 43-44, 202
outer joins and, 79
CPU cycles, 229
crashes. See system crashes
crash-me script, 234-236
CREATE DATABASE command, 26
CREATE EVENT command, 181
one-off events and, 186
CREATE FUNCTION command, 13, 142-143
clauses for, 146
CREATE INDEX command, 64-65
CREATE privilege, 267, 278

CREATE PROCEDURE command, 136
clauses for, 146
CREATE ROUTINE privilege, 135, 267
CREATE TABLE command, 27
binary logs and, 290
CREATE TEMPORARY TABLE command,
223,267
CREATE TRIGGER command, 168-169
CREATE USER command, 267, 282-283
CREATE VIEW command, 96, 267
privileges and, 100
view constraints and, 106
cron tool, 187, 299
CROSS JOIN keyword, 76
CSV storage engine, 55
cursors, 159-161
rewriting as joins, 230

D

data. See also backup files

integrity, 15

recovery, 114

slice, 23

synchronizing, 302

transient, 223-224
Data Control Language (DCL), 24
Data Definition Language (DDL), 24
DATA DIRECTORY modifier, 30
Data Manipulation Language (DML), 24

subqueries and, 94-95
data types, 28

binary, 51

character, 51

date and time, 51-52

field, 27, 50-53

numeric, 50-51

selection checklist, 52-53

string, 51

text, 51
database administration, 242-244, 302

security and, 243-244
database management system (DBMS), 20
databases

backing up, 295-298

concepts, 20-25

creating, 26-27

example, 331-334

multiple, 297

naming, 26-27

removing, 32

restoring, 298-299

showing, 47

working with, 25-32

Index 337

datadir option, 251
date and time types, 51-52
DATE () function, 44
DATE type, 28, 51
DATETIME type, 28, 52
DAY unit, 185
DAYOFWEEK () function, 152
db table, 269-272
DB2,5
DBMS. See database management system
DCL. See Data Control Language
DDL. See Data Definition Language
deadlocks, 228-229
debug option, 251
debugging, 134
DECIMAL type, 28
DECLARE ... CONDITION FOR statement, 161
DECLARE ... HANDLER FOR statement, 162
DECLARE statement, 148
cursors and, 159-160
DEFAULT modifier, 28, 148
default-character-set option, 251
default-table-type option, 251
DEFINER clause, 100, 146
event security and, 184
trigger security and, 171-172
DELAY_KEY_WRITE modifier, 30
DELETE statement, 34, 267-268, 277
binary logs and, 290
circular references in, 95
columns_priv tables and, 273
db table and, 270-272
security and, 13
subqueries and, 94
tables_priv tables and, 273
triggers and, 168, 173
updateable views and, 103-104
DELIMITER command, 136
descendant node, 199
DESCRIBE statement, 47
DETERMINISTIC clause, 146
diagnostic tools, 9
dirty reads, 123-124
DISTINCT keyword, 42
division-by-zero operations, 255
DML. See Data Manipulation Language
.NET, 10
DOUBLE type, 28, 50
DO-WHILE loop, 157
drivers, 10
DROP command, 31, 61, 267, 278
DROP DATABASE command, 32, 296
DROP EVENT command, 183

338

MySQL Database Usage & Administration

DROP FOREIGN KEY command, 61
DROP FUNCTION command, 13, 143
DROP INDEX command, 65
DROP PRIMARY KEY command, 32
DROP PROCEDURE command, 137-138
DROP TABLE command, 32, 296
binary logs and, 290
DROP TRIGGER command, 170
DROP USER command, 279, 282-283
DROP VIEW command, 99
durability, 12, 114

E
ease of use, 6-7
ELSE clause, 153-154
ELSEIF clause, 152
ENABLE keyword, 182
ENCLOSED BY keyword, 193
encryption, 14
END LOOP statement, 155
END marker, 136
ENDS clause, 186
ENGINE clause, 29, 32
transactions and, 115
ENGINE-MEMORY modifier, 56
ENGINES table, 257
entity-relationship (E-R) diagram, 333-334
entries. See records
ENUM type, 28, 52
enumerations, 52
= symbol, 39
equality operator, 74-75
equi-join, 74-75
E-R diagram. See entity-relationship diagram
ERROR_FOR_DIVISION_BY_ZERO mode, 254
errors
codes, 161
deliberate, 179
handlers and, 161-166
logs, 255-256, 288-289
zero rows, 162-164
ESCAPED BY keyword, 193
EVENT privilege, 182, 267
events. See scheduled events
EVENTS table, 257
EVERY clause, 185
EXECUTE statement, 135, 267
procs_priv table and, 275-276
EXISTS operator, 86
subqueries and, 89-92
EXIT handler, 162-164
EXPLAIN keyword, 218-221

EXPLAIN SELECT command, 244
exporting, 193-196

-extended-check option, 293

EXTENDED keyword, 294
extensibility, 12-13

Extensible Markup Language. See XML
Extra field, 220

ExtractValue () function, 199-201, 205

F
~fast check option, 293
Federated storage engine, 54
FETCH command
CONTINUE handler and, 164
cursors and, 160
fields, 21
adding and removing, 31-32
data types, 27, 50-53
definitions, 27
duplicate values in, 215
explicitly named output, 224
index join, 224
keys, 28-29
modifiers, 28-29
names, altering, 31
privilege, 266
properties, altering, 31
retrieving, 38, 199-202
scope, 265
showing, 47
specificity of, 224
XML, 199-203
FIELDS clause, 193
file paths, 191
FILE privilege, 194, 267
FILES table, 257
filtering, 38
FLOAT type, 28, 50-51
floating point values, 50
FLUSH LOGS command, 291
FLUSH USER_RESOURCES command, 281
following node, 199
FOR clause, 283
FOR EACH ROW clause, 169, 231
FOREIGN KEY modifier, 29, 60-62
FOUND_ROWS () function, 47
FreeBSD, 321
FROM clause
subqueries and, 84, 92-93
temporary tables and, 225-226
FULLTEXT statement, 65-67
functions. See built-in functions; stored functions

G
--general_log option, 289
General Public License (GPL), 4
GNU, 5,7
MySQL Community Server, 320
GLOBAL keyword, 252, 305
GLOBAL_STATUS table, 257
GLOBAL_VARIABLES table, 257
GNU, 5,7
GNU Zip (GZ) files, 321
GPL. See General Public License
GRANT command, 277-279
binary logs and, 290
limiting resource usage and, 281
procs_priv table and, 275-276
user accounts and, 283
GRANT OPTION clause, 267, 279-280
grant tables, 264-265
interaction between, 276-277
resetting, 282
graphical tools, 6
GROUP BY clause, 29, 44-45
indexes and, 64, 214
optimizing, 233
outer joins and, 79
subqueries and, 84
groupadd command, 322
grouping, 44-45
Gulutzan, Peter, 170
GZ files. See GNU Zip files

H
handlers, 161-166
HAVING clause, 45
indexes and, 215
subqueries and, 84, 86-92
host table, 269-272
HOUR unit, 185
HP-UX, 321
Hughes, David, 4

|
IBM, 23. See also DB2
AIX, 321
i5, 321
id field, 220
IDENTIFIED BY command, 282-283
IF construct, 149-152
IF-ELSE construct, 152
IGNORE keyword, 31, 192
LOAD XML statement and, 210
IGNORE LINES clause, 193

Index 339

importing
records, 190-193
XML, 203-210
IN BOOLEAN MODE modifier, 67
IN operator, 86, 92
membership test, 94
stored procedures and, 139-140
subqueries and, 87-89
subquery performance and, 92
INDEX DIRECTORY modifier, 30
INDEX modifier, 29, 64, 267
indexes, 29, 63-68
buffer, 232-233
join fields, 224
optimizing queries and, 214-215
specificity of, 65
information_schema database, 242, 256
Ingres RDBMS, 23
init-file option, 251
INNER JOIN keyword, 76
InnoDB storage engine, 11-12, 53-54
CHECK TABLE command and, 293
deadlocks and, 228-229
tables, 231
transactions and, 115
Innotest script, 234
INOUT keyword, stored procedures and,
138,142
input parameters, 139, 144-146. See also
arguments
INSERT ... SELECT command, 223-224
INSERT statement, 33, 267, 277
alternatives to, 190
binary logs and, 290
bulk, 233
columns_priv tables and, 273-275
db table and, 270-272
host table and, 270-272
IF construct and, 151
importing XML and, 205
replication and, 304
security and, 13
SELECT statement and, 195
SERIALIZABLE isolation level and, 125
tables_priv tables and, 273-275
triggers and, 168, 173
updateable views and, 103
views and, 96
INT type, 28
integers, 50, 224
interactive_timeout variable, 252
internationalization, 7
inter-relationships, 22

340

MySQL Database Usage & Administration

INTO DUMPFILE clause, 194
INTO keyword, 33
INTO OUTFILE clause, 194
INVOKER keyword, 100, 146
ISAM storage engine, 53, 55-56
isolation level, 12, 113-114, 117
modifying, 126
performance v., 227
selecting, 227-228
types, 122-126
ITERATE statement, 158-159

J

Java, 10

JDBC, 10

joins, 72-83. See also self-joins; unions
cross, 73-74
cursors, rewriting as, 230
indexing fields in, 224
inner, 74-76
limitations of, 95-96
optimizing, 222-225
outer, 76-79
rewriting correlated subqueries as, 225
subqueries v., 222-223
views and, 105-106

K
Keep It Simple, Stupid! principle.
See KISS principle
key field, 220
KEY modifier, 64
key_buffer_size variable, 232, 252
KEY_COLUMN_USAGE table, 257
key_len field, 220
keys
adding and removing, 31-32
automatic updates and deletions
of, 62-63
field, 28-29
foreign, 21-23, 58-63
primary, 21-23, 57-58
KILL command, 249
kill command, 245, 246
KISS (Keep It Simple, Stupid!) principle, 226
stored routines and, 229-230

L
LAMP stack, 14-15
LANGUAGE clause, 146
language variable, 251, 252
Larsson, Allan, 4

LEAVE statement, 156, 158-159
LEFT JOIN statement, 95
LENGTH () function, 44
LIKE clause, 40, 253
LIMIT clause, 43, 222-223
LINES TERMINATED BY clause, 192
Linux, 321
LinuxThreads, 13
LOAD DATA FROM MASTER command, 307
LOAD DATA INFILE command, 190-192,
243,299
LOAD XML statement, 196
importing XML and, 206-210
LOAD_FILE () function, 199
importing XML and, 204-205
LOCAL keyword, 191
location paths, 197, 200-201
location steps, 198
LOCK TABLES command, 128, 267
locking mechanisms, 12, 114
priority of, 130
row level, 127, 226
types of, 126-131
locks, table, 127-128, 130-131
--log-bin option, 288-289
--log-error option, 251, 288-289
log files, 288-292. See also binary logs
consistency and, 11
error, 255-256, 288-289
general query, 289
relay, 303
rotating, 291
slow query, 289
log option, 251
--log-output option, 291
log-warnings option, 251
LONGBLOB type, 28
long_query_time variable, 289290
LONGTYPE type, 28
LOOP construct, 155-156
loop-and-cursor combination, 165
loops, 155-160
lower_case_table_names variable, 252
LOW_PRIORITY keyword, 192
LOAD XML statement and, 210

M
management information system (MIS)
team, 242
master servers, 303-304
binary logs, 316
configuration, 306-311
starting and stopping, 312-313

MASTER_CONNECT_RETRY parameter, 313

MASTER_HOST parameter, 313
MASTER_LOG_FILE parameter, 313
MASTER_LOG_POS parameter, 313
MASTER_PASSWORD parameter, 313
MASTER_PORT parameter, 313
master-slave relationship, 303
MASTER_SSL parameter, 313
MASTER_USER parameter, 313
MATCH () function, 6667
MAX () function, 45
Max OS X, 321
max_binlog_size variable, 252
MAX_CONNECTIONS clause, 281
max_connections variable, 232, 252
MAX_CONNECTIONS_PER_HOUR
clause, 281
MAX_QUERIES_PER_HOUR clause, 280
MAX_ROWS modifier, 30
max_tmp_tables variable, 252
MAX_UPDATES_PER_HOUR clause, 280
max_user_connections variable, 252
MEDIUMBLOB type, 28
-medium-check option, 293
MEDIUMINT type, 28, 50
MEDIUMTYPE type, 28
memory
management, 10
server settings and, 232
settings, 55
Memory storage engine, 54-55
MERGE storage engine, 55
meta-information, 256260
Microsoft Access, 9
Microsoft Excel, 55
Microsoft SQL Server, 5
MySQL Migration Toolkit and, 9
transaction model and, 110
T-SQL, 11
MIN () function, 45
MIN_ROWS modifier, 30
MINUTE unit, 185
MIS team. See management information
system team
modifiers, 28-29
MODIFIES SQL DATA clause, 146
MONTH unit, 185
multiprocessing support, 13
multithreading, 16
multiuser support, 7
My SQL Test Labs, 5-6
MyISAM engine, 53
autocommit mode and, 122

Index 341

FULLTEXT indexes and, 66
transactions and, 112
myisamchk utility, 292-294
MySQL
51v.6.0,211
ACID tests and, 114
automatic starting of, 331
binary v. source, 321-322
configuring, 322-328
distributions, 321-322
features, 5-8
history of, 4-5
installing, 322-328
obtaining, 320-322
overriding, 136
post-installation steps, 330-331
standards compliance, 11
testing, 329-330
version mismatch, 302
versions, 320-321
MySQL AB, 4-5
MySQL Administrator, 9, 245
MySQL Benchmark Suite, 233-236
MySQL Cluster, 8
mysql command, 25
MySQL Community Server, 320-322
MySQL Database Server, 9
MySQL Embedded Sever, 9
MySQL Enterprise Server, 320
MySQL Migration Toolkit, 9
mysql prompt, 26
MySQL Proxy, 8
MySQL Query Browser, 9
MySQL Server, 8
command-line options, 251
passwords, 250
MySQL Server Instance Config Wizard, 326
MySQL Workbench, 9
mysqladmin extended-status command, 215, 247
mysqladmin shutdown command, 246
mysqladmin status command, 247
mysqladmin utility, 244-245, 246
mysqladmin variables command, 253
mysqladmin version command, 247
mysqlbinlog utility, 290
mysqld.exe server binary, 331
mysqld_safe wrapper, 245-246, 250
mysqldump utility, 195, 210, 295-298, 306-307
backup files and, 310
data backup and, 243
mysqlimport utility, 243
mysql_install_db script, 323
mysql.server script, 245

342

MySQL Database Usage & Administration

namespace node, 199
naming schemes, trigger, 170
NDB storage engine, 56-57
networking, 9
NEW keyword, 172-173
NO ACTION keyword, 63
NO SQL clause, 146
NO_AUTO_CREATE_USER mode, 254, 283
NO_BACKLASH_ESCAPES mode, 254
--no-create-info option, 297
--no-data option, 297
node tests, 198-199
NO_ENGINE_SUBSTITUTION mode, 254
normal forms, 25
normalization, 24-25
NOT DETERMINISTIC clause, 146
NOT FOUND keyword, 165
NOT NULL modifier, 28-29
NOT operator, subqueries and, 87, 89
NOW () function, 52, 187
NO_ZERO_DATE mode, 254
NULL modifier, 28

LOAD DATA INFILE statement and, 192
numeric data types, 50-51

0
ODBC, 10
OLD keyword, 172-173
ON *.* clause, 281
ON COMPLETION PRESERVE clause, 183
ON DELETE clause, 62—-63
ON SCHEDULE EVERY 1 DAY clause, 182
ON UPDATE clause, 62-63
one-to-many relationship, 59
one-to-one relationship, 59
ONLY_FULL_GROUP_BY mode, 254
OPEN command, cursors and, 160
Open Source Database Benchmark, 233
open-source code, 7-8

history, 242-243
operating systems, 26-27
operators, 39-40
OPTIMIZE TABLE command, 231, 295
optimizing

joins, 222-225

performance, 244

queries, 214-221

statements, 230-231

stored routines, 229-231

subqueries, 92, 222-225

table design, 231

transactions, 226-229

option file, 249-251

OR operator, 40
subqueries and, 87

Oracle, 5
MySQL Migration Toolkit and, 9
MySQLv., 5
transaction model and, 110
triggers and, 179

Oracle RDBMS, 23

ORDER BY clause, 29, 41, 222-223
ALTER TABLE statement and, 216
indexes and, 64, 214
LIMIT clause and, 43
optimizing, 233
unions and, 82-83

OUT keyword, 138, 141

outer references, 91

output parameters, 139. See also return values

P
PACK_KEYS modifier, 30
page locks, 127
pages, 127
parent node, 199
PARTITIONS table, 257
PASSWORD () function, 283-284
password option, 245, 295
passwords, 250, 282-285
administrator, 284-285, 326, 328
authenticating, 283-284
superuser, 330-331
performance
isolation level v., 227
optimization, 244
subqueries and, 83, 92
Perl, 233-234
drivers and connectors, 10
Perl DBI package, 233
PHP, 10
phpMyAdmin, 245
ping command, 245
pluggable architecture, 10
PLUGINS table, 257
point-of-sale (POS) systems, 9
port option, 251
portability, 7
POS systems. See point-of-sale systems
POSIX threads, 13
possible_keys field, 220
PostgreSQL, 110
preceding node, 199
precision specifier, 51
predicates, 198-199

PRIMARY KEY modifier, 28-29, 57-58
automating, 34
privileges
access control system and, 243-244, 264
client processes and, 249
columns_priv table and, 272-275
CREATE VIEW COMMAND and, 100
db table and, 269-272
exporting records and, 194
fields, 266
GLOBAL variable and, 252
granting, 277-281
host table and, 269-272
levels, 267
listing, 258
procs_priv table and, 275-276
restoring default, 282
revoking, 277-281
scheduled events and, 182
SHOW VIEW command and, 100
systems, 16
tables_priv table and, 272-275
triggers and, 169
user, 277-282
viewing, 281-282
procedures. See stored procedures
PROCESS privilege, 249, 267, 277, 280
processlist command, 245
PROCESSLIST table, 257, 259
procs_priv table, 275-276
product family, 8-10
PROFILING table, 257
pseudo-transactions, 126-131
PURGE MASTER command, 316
Python, 10

QUARTER unit, 185

queries, 23. See also query caching
analysis, 218-221
independence of, 110
optimizing, 10, 214-221

query caching, 6, 12, 216-218
response times and, 15-16

query execution, 10

query parsing, 10

query_cache_limit variable, 217

query_cache_size variable, 252

query_cache_type variable, 252

QUICK keyword, 294

-quick option, 294

quit command, 26

Index 343

R
RAISE APPLICATION ERROR statement, 179
RDBMS. See relational database management
system
READ COMMITTED isolation level,
123-124
READ locks, 128-129
READ UNCOMMITTED isolation level, 227
read_buffer_size variable, 233, 252
read-only mode, 128-129
read_rnd_buffer_size variable, 233
READS SQL DATA clause, 146
records, 33-47
creating, 33-34
definition of, 20-21
duplicates, eliminating, 41-42
exporting, 193-196
filtering, 38
grouping, 44-45
importing, 190-193
modifying, 34-35
orphan, 62, 78
removing, 34-35
retrieving, 35, 199-202
sorting, 41-42
XML, 199-203
-recover option, 294
Red Hat, 321
REFERENCES clause, 60-62, 267
referential integrity, 22-23
REFERENTIAL_CONSTRAINTS table, 257
refresh command, 245
relational database management system
(RDBMS), 4, 20
multiuser, 113
referential integrity and, 23
RELAY_LOG_FILE parameter, 313
RELAY_LOG_POS parameter, 313
RELEASE clause, 118-119
RELEASE SAVEPOINT command, 121
reliability, 5, 242243
reload command, 245
RELOAD privilege, 267, 277, 281
RENAME clause, 31
REPAIR TABLE command, 294
REPEAT construct, 157
repeat interval, 185
REPEATABLE READ isolation level, 124-126,
227-228
REPLACE command, 192
binary logs and, 290
LOAD XML statement and, 210

344

MySQL Database Usage & Administration

replication, 302-305
managing, 312-316
master-master configuration, 308-311
master-slave configuration, 306-308
methods, 304-305
mixed-format, 304
parameters, changing, 312
row-based, 304-305
statement-based, 304
status, checking, 313-315
threads, 304
REPLICATION CLIENT privilege, 267
REPLICATION SLAVE privilege, 267
request stage, 276
RESET MASTER command, 306
resource usage, limiting, 280-281
response times, 15-16
RESTRICT keyword, 63
result set, 23
result-set caching, 12
RETURN statement, 143
return values, 135. See also output parameters
RETURNS clause, 143-144
REVOKE command, 277-279
binary logs and, 290
ROLLBACK command, 116-117
savepoints and, 120-121
ROLLBACK TO SAVEPOINT command,
119-121
root account, 284
routes, orphan, 95
ROUTINES table, 257
row locks, 127
rows field, 220-221
ROWS IDENTIFIED BY clause, 209
Ruby, 10
run-all-tests script, 234-235

S

-safe-recover option, 294
safe_mysqld. See mysqld_safe wrapper
safe-show-database option, 251
SAVEPOINT command, 119-121
savepoints, 119-121
scalability, 5-6, 244
scheduled events, 168, 169, 181-185. See also
triggers

end time for, 185

one-off, 186

privileges and, 182

recurring, 185-187

security, 184

SCHEMA_PRIVILEGES table, 257
SCHEMATA table, 257
scope fields, 265
searches
Boolean, 67-68
text, 65-66
SECOND unit, 185
Secure Shell (§SH) protocol, 14
Secure Socket Layer (SSL) protocol, 14
access control and, 244
security, 13-14
database administration and, 243-244
event, 184
stored routines and, 134
trigger, 171-172
views, 100
SELECT ... INTO OUTFILE command,
193-196
SELECT COUNT () ... query, 161
SELECT INTO command, 46, 141, 148
SELECT statement, 26, 29, 35-38, 267,
277-278
columns_priv tables and, 273-275
cursors and, 159-160
db table and, 270-272
EXPLAIN keyword and, 218-220
exporting XML and, 211
host table and, 270-272
indexes and, 64
INSERT statement and, 195
modifying, 4647
nested, 222
optimizing, 233
query caching and, 216-218
READ COMMITTED isolation level
and, 124
sorting with, 41
subqueries and, 83-84
tables_priv tables and, 273-275
transaction isolation and, 123
unions and, 81-83
views and, 96
select_type field, 220
self node, 199
self-joins, 80-81
semaphore variables, 12
semicolons, 24, 26
SEQUEL (Structured English Query
Language), 23
sequential read-ahead buffer, 54
SERIALIZABLE isolation level, 125, 227
server administration, 244-256

server control scripts, 331
servers, 25. See also master servers; slave servers
configuration, 249-254
multiple, 302
optimized settings, 232-233
standby, 302
status, 247-248
stopping and starting, 245246
variables, 251-252
server-side semaphore variables, 114
SESSION keyword, 252, 305
SESSION_STATUS table, 257
SESSION_VARIABLES table, 257
SET GLOBAL statement, 217
SET NULL keyword, 63
SET PASSWORD command, 283, 285
SET SESSION statement, 217
SET statement, 28, 34-35, 52, 148
replication and, 305
server settings and, 232
server variables and, 251-252
user-defined variables and, 4546
SHOW BINLOG EVENTS command, 316
SHOW CREATE EVENT command, 183
SHOW CREATE FUNCTION command, 143
SHOW CREATE PROCEDURE command, 138
SHOW CREATE TABLE statement, 61
SHOW CREATE TRIGGER command, 170
SHOW CREATE VIEW command, 99
SHOW DATABASES privilege, 267
testing MySQL and, 329
SHOW FUNCTION STATUS command, 144
SHOW GRANTS command, 281-282
SHOW MASTER STATUS command, 306,
310, 316
SHOW PROCEDURE STATUS command, 138
SHOW PROCESSLIST command, 248-249,
314-315
SHOW SLAVE STATUS command, 313-314
SHOW statement, 47, 256
SHOW STATUS command, 215, 247
SHOW TABLES command, 99
testing MySQL and, 329
SHOW TRIGGERS command, 170
SHOW VARIABLES command, 253-254
SHOW VIEW command, 100, 267
shutdown command, 245
SHUTDOWN privilege, 267
skip-grant-tables option, 251
skip-innodb option, 251
—-skip-networking option, 251, 284
slave servers, 303-304
configuration, 306-308
starting and stopping, 312-313

345

Index

--slow-query-log option, 290
SMALLINT type, 28, 50
socket option, 251
Solaris, 321
sort_buffer variable, 233
sort_buffer_size variable, 252
sorting
direction, 41
limiting results, 43
records, 41-42
source code, 12
SOURCE command, 299
source distributions, 321-322
speed, 5-8
SQL (Structured Query Language), 20
definition of, 11
history of, 4-5, 23-24
modes, 254-255
SQL SECURITY clause, 100, 146
SQL Server. See Microsoft SQL Server
SQL8&9, 23
SQL92, 23
SQL_BIG_RESULT keyword, 4647
SQL_BUFFER_RESULT keyword, 4647
SQL_CACHE keyword, 46-47, 217
SQL_CALC_FOUND_ROWS keyword, 47
SQL_HIGH_PRIORITY keyword, 4647
sql_mode variable, 252
SQL_NO_CACHE keyword, 46, 217-218
SQL_SMALL_RESULT keyword, 4647
SQLSTATE values, 161
SSH. See Secure Shell protocol
SSL. See Secure Socket Layer protocol
standards compliance, 7, 11
START SLAVE command, 308, 312
START TRANSACTION command, 115, 226
STARTS clause, 182, 186
startup options, 250
startup /shutdown script, 245-246
statements, 24
optimizing, 230-231
terminating, 26
transactions and, 110-111
STATISTICS table, 257
stock exchange transaction, 111
STOP SLAVE command, 312-313
stopwords, 67
storage, 10
indexes and, 63
storage engines, 29-30
checklist, 56
store routines, 134-135
stored functions, 142-146
returning collection of values from, 147

346

MySQL Database Usage & Administration

stored procedures, 135-142
altering, 138
triggers and, 231
stored routines. See also stored functions;
stored procedures
additional, 148-166
backing up, 166
optimizing, 229-231
specifying databases in, 140
strict mode, 51
STRICT_ALL_TABLES mode, 254
string types, 51
Structured English Query Language.
See SEQUEL
Structured Query Language. See SQL
subqueries, 83-95
comparison operators and, 86-87
correlated, 91-92, 225
DML and, 94-95
EXISTS operator and, 89-92
FROM clause and, 92-93
HAVING clause and, 84, 86-92
joins v., 222-223
materialized, 93, 225-226
nesting, 85
optimizing, 92, 222-225
performance and, 92
rewriting as joins, 225
simple, 83-85
types of, 85-86
subsystems, 10
SUM () function, 45, 224
Sun Microsystems, 5, 321-322
SUPER privilege, 126, 249, 267, 280
GLOBAL variable and, 252

PURGE MASTER command and, 316

scheduled events and, 182
triggers and, 169
SuperSmack, 233
superuser, 330-331
SuSE, 321
syntax, 24
parser, 10
system crashes
binary logs and, 290
durability and, 114
uptime and, 242-243
System/R, 23

T
table type specifier, 27
table_cache variable, 232, 252
TABLE_CONSTRAINTS table, 257
TABLE_PRIVILEGES table, 257

tables

. See also grant tables

altering, 30-32

backing up, 295-298

cache, 232-233

checking, 292-293

corruption, 243

creating, 27-30

definition of, 20-21

derived, 93

examples, 20-22

InnoDB, 231

listing, 257258

locks, 127-128, 130-131

names, altering, 31

one-to-many relationship between, 59
one-to-one relationship between, 59
optimizing, 231, 295

removing, 32

repairing, 293-294

restoring, 298-299

showing, 47

storage engines, 53-57

“stub,” 54

subject, 169

temporary, 56, 223-226
transactional v. nontransactional, 117
transactions and, 11

types, altering, 32

working with, 25-32

TABLES table, 257

tables_priv table, 272-275

table_type variable, 252

Tape Archive (TAR) files, 321

Task Manager, 246

Task Scheduler, 299

TCP/IP (Transmission Control Protocol/
Internet Protocol), 11

TcX, 4

security and, 13

technical architecture, 10-14
TERMINATED BY keyword, 193
test cases, for benchmarking, 234
test-alter-table script, 234
test-ATIS script, 234
test-big-tables script, 234

test-co

nnect script, 234-236

test-create script, 234

test-in

sert script, 234

test-select script, 234
test-transactions script, 234
test-wisconsin script, 234

text

searches, 65-66
types, 51

TEXT fields, 28, 51
MyISAM engine and, 53
TGZ format, 321
thread_cache_size variable, 233
threads
1/0, 304
KILL command and, 249
packages, 13
replication, 304
TIME type, 28, 51
time units, 185
TIMESTAMP field, 28, 52
automating, 34
TINYBLOB type, 28
TINYINT type, 28, 50
TINYTEXT type, 28
tmpdir option, 251, 252
TRANSACTION ISOLATION LEVEL
variable, 123
modifying, 126
transaction-isolation option, 251
transactions, 11-12, 110-121. See also
pseudo-transactions
alternates to, 126-131
breaking down, 227
bubbles, 127
controlling, 121-126
deadlocks and, 228
example, 112
isolation levels, 122-126
life cycle, 118
model, 110
modifying isolation level, 126
optimizing, 226-229
simple, 114-121
small, 226-227
space, 113-114
within transactions, 118
Transact-SQL. See T-SQL
Transmission Control Protocol/Internet
Protocol. See TCP /1P
TRIGGER privilege, 169, 267
triggers, 168-172. See also scheduled events
BEFORE vs. AFTER, 172
complex, 173-178
constraints and, 178-180
listing, 258
multiple, 170
naming schemes, 170
old/new values and, 172-173
security, 171-172
stored procedures and, 231
workarounds, 179

Index 347

TRIGGERS table, 257-258
troubleshooting, 255-256
TRUNCATE TABLE statement, 32
T-SQL (Transact-SQL), 11
tx_isolation variable, 252

type field, 220

U

UDE. See user-defined function
Unicode support, 7
UNION ALL clause, 83
UNION operator, 30, 81-82
unions, 81-83
UNIQUE statement, 29
automating, 34
indexes and, 65
key, 223
UNIREG, 4
UNIX
backup files scheduling, 299
installing MySQL on, 322-323
option file and, 249-250
source distributions and, 321
startup/shutdown script, 245-246
TCP/IP and, 11
UNLOCK TABLES command, 128-131
UNSIGNED attribute, 51, 156
UPDATE statement, 25, 34, 267, 277-278
binary logs and, 290
CASE construct and, 154
circular references in, 95
columns_priv tables and, 273-275
passwords and, 283
security and, 13
subqueries and, 94
tables_priv tables and, 273-275
triggers and, 168
updateable views and, 103-104
views and, 96
UpdateXML () function, 202-203
uptime, 242-243
USAGE privilege, 279
user accounts, 282-285
MySQL v. system, 269
user table, 265-268, 276-277, 295
useradd command, 322
user-defined function (UDF), 304
USER_PRIVILEGES table, 257-258
USING clause, 78
self-joins and, 80

348

MySQL Database Usage & Administration

'}
VALUES clause, 33
VARCHAR type, 28, 50-51
variables
retrieving value of, 253-254
server, 251-252
server-side semaphore, 114
session, 223-224
stored routines and, 148-149
user-defined, 45-46
variables command, 245
version command, 245
VERSION () function, 247
version mismatch, 302
views, 95-107
constraints, 106-107
joins and, 105-106
multitable, 100-102
nested, 102
security, 100
simple, 96-100
updatable, 103-105
VIEWS table, 257

w
Web applications, 14-15
WEEK unit, 185
WHEN-THEN blocks, 153
WHERE clause, 29, 34
comparison operator and, 40
exporting records and, 194
exporting XML and, 211
filtering records with, 38
indexes and, 64, 214-215
joins and, 72
MATCH () function and, 67
SHOW FUNCTION STATUS command
and, 144
subqueries and, 84, 86-92
views and, 97
WHILE construct, 156-157
Widenius, Michael, 4

width specifier, 50

wildcard, 224

Windows
backup files scheduling, 299
installing MySQL on, 324-328
MySQL distributions and, 321
option file and, 249
server administration and, 246
threads, 13

WinZip, 321

WITH CHECK OPTION clause, 106-107

WITH LOCAL CHECK OPTION clause, 107

WRITE locks, 129-130

X
XML (Extensible Markup Language), 11
exporting, 210-211
fields, 199-203
functions, 197-203
importing, 203-210
location paths, 197-198
mode, 196
records, 199-203
results in, 196-197
ubiquity of, 190
working with, 196-211
XML stylesheet transformations (XSLT), 197
importing XML and, 205
XPath, 201-202
axes, 199
expressions, 197
XPointer language, 197
XSLT. See XML stylesheet transformations

Y
YEAR type, 28, 52, 185

YA
zero rows error, 162-164
ZEROFILL attribute, 51
ZIP format, 321
zlib library, 54

	McGraw Hill - MySQL Database Usage and Administration (December 2009) (ATTiCA)
	Contents
	Foreword
	Acknowledgments
	Introduction
	Part I: Usage
	1 An Introduction to MySQL
	History
	Unique Features
	Product Family
	Technical Architecture
	Applications
	Summary

	2 Understanding Basic Commands
	Understanding Basic Concepts
	Working with Databases and Tables
	Working with Records
	Viewing Database, Table, and Field Information
	Summary

	3 Making Design Decisions
	Selecting Field Data Types
	Selecting Table Storage Engines
	Using Primary and Foreign Keys
	Using Indexes
	Summary

	4 Using Joins, Subqueries, and Views
	Using Joins
	Using Subqueries
	Using Views
	Summary

	5 Using Transactions
	Understanding Transactions
	Controlling Transactional Behavior
	Pseudo-Transactions
	Summary

	6 Using Stored Procedures and Functions
	Understanding Stored Routines
	Doing More with Stored Routines
	Summary

	7 Using Triggers and Scheduled Events
	Understanding Triggers
	Understanding Scheduled Events
	Summary

	8 Working with Data in Different Formats
	Importing Records
	Exporting Records
	Working with XML Data
	Summary

	9 Optimizing Performance
	Optimizing Queries
	Optimizing Joins and Subqueries
	Optimizing Transactional Performance
	Optimizing Stored Routines
	Optimizing Table Design
	Optimizing Server Settings
	Benchmarking
	Summary

	Part II: Administration
	10 Performing Basic Server Administration
	Database Administration and MySQL
	Understanding Basic Server Administration
	Obtaining Database Meta-Information
	Summary

	11 Managing Users and Controlling Access
	Understanding the Access Control System
	Managing User Privileges
	Working with User Accounts and Passwords
	Summary

	12 Performing Maintenance, Backup, and Recovery
	Using Database Log Files
	Checking and Repairing Tables
	Backing Up and Restoring Data
	Summary

	13 Replicating Data
	Understanding Replication
	Configuring Master-Slave Replication
	Configuring Master-Master Replication
	Managing the Replication Process
	Summary

	A: Installing MySQL and the Sample Database
	Obtaining MySQL
	Installing and Configuring MySQL
	Testing MySQL
	Performing Post-Installation Steps
	Setting Up the Example Database
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

