


MySQL Crash 
Course



This page intentionally left blank 



MySQL Crash 
Course

Second Edition

Ben Forta



Many of the designations used by manufacturers and sellers to distinguish their 
products are claimed as trademarks. Where those designations appear in this book, and 
the publisher was aware of a trademark claim, the designations have been printed with 
initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make 
no expressed or implied warranty of any kind and assume no responsibility for errors 
or omissions. No liability is assumed for incidental or consequential damages in 
connection with or arising out of the use of the information or programs contained 
herein.

For information about buying this title in bulk quantities, or for special sales 
opportunities (which may include electronic versions; custom cover designs; and 
content particular to your business, training goals, marketing focus, or branding 
interests), please contact our corporate sales department at corpsales@pearsoned.com 
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com. 

For questions about sales outside the U.S., please contact intlcs@pearson.com. 

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023943569

Copyright © 2024 Pearson Education, Inc.

Hoboken, New Jersey

All rights reserved. This publication is protected by copyright, and permission must 
be obtained from the publisher prior to any prohibited reproduction, storage in a 
retrieval system, or transmission in any form or by any means, electronic, mechanical, 
photocopying, recording, or likewise. For information regarding permissions, request 
forms and the appropriate contacts within the Pearson Education Global Rights & 
Permissions Department, please visit 
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-822302-1
ISBN-10: 0-13-822302-5 

$PrintCode

Vice President, IT Professional
Mark Taub

Acquisitions Editor
Kim Spenceley

Development Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Kitty Wilson

Indexer 
Timothy Wright

Proofreader
Jennifer Hinchliffe

Editorial Assistant
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor 
codeMantra

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/


Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. 
We embrace the many dimensions of diversity, including but not limited to race, ethnicity, 
gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs. 

Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As we 
work with authors to create content for every product and service, we acknowledge 
our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that 
everyone can achieve their potential through learning. As the world’s leading learning 
company, we have a duty to help drive change and live up to our purpose to help more 
people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

Q Everyone has an equitable and lifelong opportunity to succeed through learning
Q Our educational products and services are inclusive and represent the rich diversity 

of learners
Q Our educational content accurately reflects the histories and experiences of the 

learners we serve
Q Our educational content prompts deeper discussions with learners and motivates 

them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about 
any concerns or needs with this Pearson product so that we can investigate and address 
them. 

Please contact us with concerns about any potential bias at 
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html


This page intentionally left blank 



Contents

1 Understanding SQL 1
Database Basics  1

What Is a Database? 2
Tables 2
Columns and Datatypes 3
Rows 4
Primary Keys 4

What Is SQL? 6
Try It Yourself 6
Summary 7

2 Introducing MySQL 9
What Is MySQL? 9

Client/Server Software 9
MySQL Versions 10

MySQL Tools 11
mysql Command-Line Utility 11
MySQL Workbench 12
Other Tools 13

Summary 13

3 Working with MySQL 15
Using the Command-Line Tool 15

Selecting a Database 16
Learning About Databases and Tables 17

Using MySQL Workbench 20
Getting Started 20
Using MySQL Workbench 21
Selecting a Database 22
Learning About Databases and Tables 22
Executing SQL Statements 23

Next Steps 23
Summary 24

4 Retrieving Data 25
The SELECT Statement 25
Retrieving Individual Columns 25



Retrieving Multiple Columns 27
Retrieving All Columns 29
Retrieving Distinct Rows 29
Limiting Results 31
Using Fully Qualified Table Names 32
Using Comments 33
Summary 34
Challenges 34

5 Sorting Retrieved Data 35
Sorting Data 35
Sorting by Multiple Columns 37
Sorting by Column Position 38
Specifying Sort Direction 39
Summary 41
Challenges 42

6 Filtering Data 43
Using the WHERE Clause 43
WHERE Clause Operators 44

Checking Against a Single Value 45
Checking for Nonmatches 46
Checking for a Range of Values 47
Checking for No Value 48

Summary 49
Challenges 49

7 Advanced Data Filtering 51
Combining WHERE Clauses 51

Using the AND Operator 51
Using the OR Operator 52
Understanding the Order of 
Evaluation 53

Using the IN Operator 54
Using the NOT Operator 56
Summary 58
Challenges 58

viii Contents



8 Using Wildcard Filtering 59
Using the LIKE Operator 59

The Percent Sign (%) Wildcard 60
The Underscore (_) Wildcard 61

Tips for Using Wildcards 63
Summary 63
Challenges 63

9 Searching Using Regular Expressions 65
Understanding Regular Expressions 65
Using MySQL Regular Expressions 66

Basic Character Matching 66
Performing OR Matches 68
Matching One of Several Characters 68
Matching Ranges 70
Matching Special Characters 70
Matching Character Classes 72
Matching Multiple Instances 72
Anchors 74

Summary 75
Challenges 76

10 Creating Calculated Fields 77
Understanding Calculated Fields 77
Concatenating Fields 78

Using Aliases 80
Performing Mathematical Calculations 81
Summary 83
Challenges 83

11 Using Data Manipulation Functions 85
Understanding Functions 85
Using Functions 86

Text Manipulation Functions 86
Date and Time Manipulation 
Functions 88
Numeric Manipulation Functions 91

Summary 92
Challenges 92

ixContents



x Contents

12 Summarizing Data 93
Using Aggregate Functions 93

The Avg() Function 94
The Count() Function 95
The Max() Function 96
The Min() Function 97
The Sum() Function 98

Aggregates on Distinct Values 99
Combining Aggregate Functions 100
Summary 101
Challenges 101

13 Grouping Data 103
Understanding Data Grouping 103
Creating Groups 104
Filtering Groups 105
Grouping and Sorting 107
Combining Grouping and 
Data Summarization 109
SELECT Clause Ordering 110
Summary 110
Challenges 110

14 Working with Subqueries 113
Understanding Subqueries 113
Filtering by Subquery 113
Using Subqueries As Calculated Fields 117
Summary 119
Challenges 119

15 Joining Tables 121
Understanding Joins 121

Understanding Relational Tables 121
Why Use Joins? 122

Creating a Join 123
The Importance of the WHERE Clause 124
Inner Joins 127
Joining Multiple Tables 128

Summary 130
Challenges 130



xiContents

16 Creating Advanced Joins 133
Using Table Aliases 133
Using Different Join Types 134

Self-Joins 134
Natural Joins 136
Outer Joins 137

Using Joins with Aggregate Functions 138
Using Joins and Join Conditions 139
Summary 140
Challenges 140

17 Combining Queries 141
Understanding Combined Queries 141
Creating Combined Queries 141

Using UNION 141
UNION Rules 143
Including or Eliminating 
Duplicate Rows 144
Sorting Combined Query Results 145

Summary 146
Challenges 146

18 Full-Text Searching 147
Understanding Full-Text Searching 147
Using Full-Text Searching 148

Performing Full-Text Searches 148
Using Query Expansion 151
Boolean Text Searches 153
Full-Text Searching Notes 156

Summary 157
Challenges 157

19 Inserting Data 159
Understanding Data Insertion 159
Inserting Complete Rows 159
Inserting Multiple Rows 163
Inserting Retrieved Data 164
Summary 166
Challenges 166



xii Contents

20 Updating and Deleting Data 167
Updating Data 167
Deleting Data 169
Guidelines for Updating and Deleting Data 170
Summary 171
Challenges 171

21 Creating and Manipulating Tables 173
Creating Tables 173

Basic Table Creation 173
Working with NULL Values 175
Primary Keys Revisited 176
Using AUTO_INCREMENT 177
Specifying Default Values 178
Engine Types 179

Updating Tables 180
Deleting Tables 182
Renaming Tables 182
Summary 182
Challenges 182

22 Using Views 183
Understanding Views 183

Why Use Views 184
View Rules and Restrictions 185

Using Views 185
Using Views to Simplify 
Complex Joins 185
Using Views to Reformat 
Retrieved Data 186
Using Views to Filter Unwanted Data 188
Using Views with Calculated Fields 188
Updating Views 189

Summary 190
Challenges 190

23 Working with Stored Procedures 191
Understanding Stored Procedures 191
Why Use Stored Procedures 192
Using Stored Procedures 193



xiiiContents

Executing Stored Procedures 193
Creating Stored Procedures 193
The DELIMITER Challenge 194
Dropping Stored Procedures 195
Working with Parameters 195
Building Intelligent Stored 
Procedures 199
Inspecting Stored Procedures 201

Summary 202
Challenges 202

24 Using Cursors 203
Understanding Cursors 203
Working with Cursors 204

Creating Cursors 204
Opening and Closing Cursors 205
Using Cursor Data 206

Summary 210

25 Using Triggers 211
Understanding Triggers 211
Creating Triggers 212
Dropping Triggers 213
Using Triggers 213

INSERT Triggers 213
DELETE Triggers 214
UPDATE Triggers 215

More on Triggers 216
Summary 216

26 Managing Transaction Processing 217
Understanding Transaction Processing 217
Controlling Transactions 219

Using ROLLBACK 219
Using COMMIT 220
Using Savepoints 220
Changing the Default Commit 
Behavior 221

Summary 222



xiv Contents

27 Globalization and Localization 223
Understanding Character Sets and 
Collation Sequences 223
Working with Character Sets and 
Collation Sequences 224
Summary 226

28 Managing Security 227
Understanding Access Control 227
Managing Users 228

Creating User Accounts 229
Deleting User Accounts 230
Setting Access Rights 230
Changing Passwords 233

Summary 234

29 Database Maintenance 235
Backing Up Data 235
Performing Database Maintenance 235
Diagnosing Startup Problems 237
Reviewing Log Files 237
Summary 238

30 Improving Performance 239
Improving Performance 239
Summary 240

A Getting Started with MySQL 241
What You Need 241
Obtaining the Software 242
Installing the Software 242
Preparing to Read This Book 242

B The Example Tables 243
Understanding the Example Tables 243
Table Descriptions 244

The vendors Table 244
The products Table 244
The customers Table 245
The orders Table 245



xvContents

The orderitems Table 246
The productnotes Table 246
Creating the Sample Tables 247
Using Data Import 247
Using SQL Scripts 248

C MySQL Statement Syntax 249
ALTER TABLE 249
COMMIT 249
CREATE INDEX 250
CREATE PROCEDURE 250
CREATE TABLE 250
CREATE USER 250
CREATE VIEW 251
DELETE 251
DROP 251
INSERT 251
INSERT SELECT 251
ROLLBACK 252
SAVEPOINT 252
SELECT 252
START TRANSACTION 252
UPDATE 252

D MySQL Datatypes 253
String Datatypes 253
Numeric Datatypes 255
Date and Time Datatypes 256
Binary Datatypes 256

E MySQL Reserved Words 257

Index 265



This page intentionally left blank 



Acknowledgments

Thanks to the team at Pearson for all these years of support, dedication, and encourage-
ment. Over the past two and a half decades, we’ve created 40+ books together, but our 
little Sams Teach Yourself SQL in 10 Minutes series remains my favorite by far. Thank you 
for trusting me with the creative freedom to evolve it as I have seen fit.

Speaking of Sams Teach Yourself SQL in 10 Minutes, that title covers MySQL (as it 
does all major DBMSs), but it cannot provide in-depth lessons on features that are truly 
unique to MySQL. This spinoff book was written in response to numerous requests from 
readers for greater MySQL-specific coverage. Thanks for the nudge. I hope this book 
lives up to your expectations.

Thanks to the many thousands of readers who provided feedback on prior editions of 
these books. Fortunately, most of it was positive; all of it was appreciated. The enhance-
ments and changes in the latest editions are in direct response to your feedback, which 
I continue to welcome.

I write because I love to teach. While nothing compares to hands-on in-classroom 
instruction, turning those lessons into books that can be read far and wide has gifted 
me with expanding my teaching reach. It is thus a source of much gratification to 
see hundreds of colleges and universities use these SQL books as part of their IT and 
computer science curricula. Being included by professors and teachers in this way is both 
rewarding and humbling, and for that trust I am thankful.

And finally, thanks to the almost 1 million of you who bought the previous editions 
of these books (in over a dozen languages), making them not just my best-selling series 
but also the best-selling books on SQL. Your continued support is the highest compli-
ment an author can ever be paid.

—Ben Forta



This page intentionally left blank 



About the Author

Ben Forta is Adobe’s Senior Director of Education Initiatives and has more than 
three decades of experience in the computer industry—in product development, 
support, training, and product marketing. He is the author of the best-selling Sams 
Teach Yourself SQL in 10 Minutes (as well as spinoff titles like this one and versions on 
SQL Server T-SQL, Oracle PL/SQL, and MariaDB), Learning Regular Expressions, and 
Captain Code, which teaches Python to younger coders (and those young at heart), Java, 
Windows, and more. He has extensive experience in database design and development, 
has implemented databases for several highly successful commercial software programs 
and websites, and is a frequent lecturer and columnist on application development and 
Internet technologies. Ben lives in Oak Park, Michigan, with his wife, Dr. Marcy Forta, 
and their children. He welcomes your email at ben@forta.com and invites you to visit 
his website at http://forta.com.

mailto:ben@forta.com
http://forta.com


This page intentionally left blank 



Introduction

MySQL is one of the most popular database management systems in the world. From 
small development projects to some of the best-known and most prestigious sites on the 
Web, MySQL has proven itself to be a solid, reliable, fast, and trusted solution for all 
sorts of data storage needs.

This book is based on my best-selling Sams Teach Yourself SQL in 10 Minutes. That 
book has become one of the most-used SQL tutorials in the world, with an emphasis on 
teaching what you really need to know—methodically, systematically, and simply. But as 
popular and as successful as that book is, it does have some limitations:

Q In covering all of the major database management systems (DBMSs), coverage of 
DBMS-specific features and functionality had to be kept to a minimum.

Q To simplify the SQL taught, the lowest common denominator had to be found—
SQL statements that would (as much as possible) work with all major DBMSs. 
This requirement necessitated that better DBMS-specific solutions not be covered.

Q Although basic SQL tends to be rather portable between DBMSs, more advanced 
SQL most definitely is not. As such, that book could not cover advanced topics, 
such as triggers, cursors, stored procedures, access control, and transactions, in any 
real detail.

And that is where this book comes in. MySQL Crash Course builds on the proven 
tutorials and structure of Sams Teach Yourself SQL in 10 Minutes without getting bogged 
down with anything except MySQL. Starting with simple data retrieval and working on 
to more complex topics, including the use of joins, subqueries, regular expression and 
full text-based searches, stored procedures, cursors, triggers, table constraints, and much 
more, you’ll learn what you need to know methodically, systematically, and simply—in 
highly focused chapters designed to make you immediately and effortlessly productive.

When you turn to Chapter 1 and get to work, you’ll be taking advantage of all 
MySQL has to offer in no time at all.

Who Is This Book For?
This book is for you if:

Q You are new to SQL.
Q You are just getting started with MySQL and want to hit the ground running.
Q You want to quickly learn how to get the most out of MySQL.
Q You want to learn how to use MySQL in your own application development.
Q You want to be productive quickly and easily using MySQL without having to call 

someone for help.



xxii Introduction

Companion Website
This book has a companion website online at http://forta.com/books/9780138223021/. 
At this website, you’ll find:

Q The files used to create the example tables used throughout this book
Q Answers to the questions in the “Challenges” section at the end of each chapter
Q Online errata 

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regular English and 
also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented in monospace
type. It looks like this to mimic the way text looks on your screen.

Placeholders for variables and expressions appear in monospace italic font. You 
should replace a placeholder with the specific value it represents.

Note
A Note presents an interesting piece of information related to the surrounding discussion.

Tip
A Tip offers advice or teaches an easier way to do something.

New Term
A New Term box provides a clear definition of a new essential term.

Caution
A Caution advises you about potential problems and helps you steer clear of disaster.

Figure Credits
Figures 3.1-3.5: Oracle Corporation

http://forta.com/books/9780138223021/


xxiiiIntroduction

Input

The Input icon identifies code that you can type in yourself. It usually appears next 
to a listing.

Output

The Output icon highlights the output produced by running MySQL code. It usually 
appears after input and next to output.

Analysis

The Analysis icon alerts you to the line-by-line analysis of input or output.



This page intentionally left blank 



1
Understanding SQL

In this chapter, you’ll learn about databases and SQL, which are prerequisites to learning 
MySQL.

Database Basics
The fact that you are reading this book indicates that you, somehow, need to interact 
with databases, and MySQL specifically. And so, before diving into MySQL and its 
implementation of the SQL language, it is important that you understand some basic 
concepts about databases and database technologies.

Whether you are aware of it or not, you use databases all the time. Each time you 
select a name from your email address book, you are using a database. When you browse 
contacts on your phone, you are using a database. If you conduct a search on an Internet 
search site, you are using a database. When you log in to your network at work, you 
are validating your name and password against a database. Even when you use your 
ATM card at a cash machine, you are using databases for PIN verification and balance 
checking.

But even though we all use databases all the time, there remains much confusion over 
what exactly a database is. This is especially true because different people use the same 
database terms to mean different things. Therefore, a good place to start our study is 
with a list and explanation of the most important database terms.

Tip
Reviewing Basic Concepts What follows is a very brief overview of some basic 
database concepts. It is intended to either jolt your memory if you already have some 
database experience or to provide you with the absolute basics if you are new to data-
bases. Understanding databases is an important part of mastering MySQL, and you 
might want to find a good book on database fundamentals to brush up on the subject, 
if needed.



2 Chapter 1 Understanding SQL

What Is a Database?
The term database is used in many different ways, but for our purposes in this book, a 
database is a collection of data stored in some organized fashion. The simplest way to 
think of it is to imagine a database as a filing cabinet. The filing cabinet is simply a 
physical location to store data, regardless of what that data is or how it is organized.

New Term
Database A container (usually a file or set of files) for storing organized data.

Caution
Misuse Causes Confusion People often use the term database to refer to the database 
software they are running. This is incorrect, and it is a source of much confusion. Database 
software is actually called a database management system (or DBMS). A database is a container 
created and manipulated via a DBMS. A database might or might not be a file stored on a 
hard drive. And for the most part, this is not even significant as you never access a database 
directly anyway; you always use the DBMS, and it accesses the database for you.

Tables
When you store information in a filing cabinet, you don’t just toss it in a drawer. Rather, 
you create files within the filing cabinet, and then you store related data in specific files.

In the database world, a file is called a table. A table is a structured file that can store 
data of a specific type. A table might contain a list of customers, a product catalog, or 
any other list of information.

New Term
Table A structured list of data of a specific type.

The key here is that the data stored in the table is one type of data or one list. You 
would never store a list of customers and a list of orders in the same database table. 
Doing so would make subsequent retrieval and access difficult. Rather, you’d create two 
tables, one for each list.

Every table in a database has a name that identifies it. That name is always unique—
meaning no other table in that database can have the same name.

Note
Table Names What makes a table name unique is actually a combination of several 
things, including the database name and table name. While you cannot use the same 
table name twice in the same database, you definitely can reuse table names in different 
databases.



3Database Basics

Tables have characteristics and properties that define how data is stored in them. 
These include information about what data may be stored, how it is broken up, how 
individual pieces of information are named, and much more. The set of information 
that describes a table is known as a schema, and a schema can be used to describe specific 
tables within a database, as well as an entire database (and the relationship between tables 
in a database, if any).

New Term
Column A single field in a table. Every table is made up of one or more columns.

Note
Schema or Database? Occasionally the term schema is used as a synonym for database
(and schemata as a synonym for databases). While unfortunate and frequently confusing, 
it is usually clear from the context which meaning of schema is intended. In this book, 
schema is used as defined here.

New Term
Schema Information about database and table layout and properties.

Columns and Datatypes
Tables are made up of columns. A column contains a particular piece of information 
within a table.

Tip
Breaking Up Data It is extremely important to break data into multiple columns 
correctly. For example, city, state, and zip code should always be stored in separate columns. 
By breaking these out, it becomes possible to sort or filter data by specific columns (for 
example, to find all customers in a particular state or in a particular city). If city and state 
are combined into one column, it would be extremely difficult to sort or filter by state.

The best way to understand this is to envision database tables as grids, somewhat like 
spreadsheets. Each column in the grid contains a particular piece of information. In a 
customer table, for example, the customer number is stored in one column, the customer 
name is stored in another, and the address, city, state, and zip code are all stored in their 
own columns.

Each column in a database has an associated datatype. A datatype defines what type of 
data the column can contain. For example, if a column is to contain a number (perhaps 
the number of items in an order), it would be associated with the numeric datatype. 



4 Chapter 1 Understanding SQL

Columns that contain dates, text, notes, currency amounts, and so on would use the 
appropriate datatypes.

New Term
Datatype A type of allowed data. Every table column has an associated datatype that 
restricts (or allows) specific data in that column.

Datatypes restrict the type of data that can be stored in a column (for example, 
preventing the entry of alphabetical characters into a numeric field). Datatypes also help 
sort data correctly and play an important role in optimizing disk usage. As such, special 
attention must be given to picking the right datatype when tables are created.

Rows
Data in a table is stored in rows; each record saved is stored in its own row. Again, if you 
envision a table as a spreadsheet-style grid, the vertical columns in the grid are the table 
columns, and the horizontal rows are the table rows.

For example, a customers table might store one customer per row. The number of 
rows in the table is the number of records in the table.

New Term
Row A record in a table.

Note
Records or Rows? You might hear users refer to database records when referring to 
rows. For the most part, the two terms are used interchangeably, but row is technically the 
correct term.

Primary Keys
Every row in a table should have some column (or set of columns) that uniquely 
identifies it. A table containing customers might use a customer number column for 
this purpose, whereas a table containing orders might use the order ID. Similarly, an 
employee list table might use an employee ID column.

New Term
Primary Key A column (or set of columns) whose values uniquely identify every row 
in a table.



5Database Basics

The column (or set of columns) that uniquely identifies each row in a table is called 
a primary key. The primary key is used to refer to a specific row. Without a primary key, 
updating or deleting specific rows in a table is extremely difficult because there is no 
guaranteed safe way to refer to just the rows that are affected.

Tip
Always Define Primary Keys Although primary keys are not actually required, most 
database designers ensure that every table they create has a primary key so that future 
data manipulation is possible and manageable.

Any column in a table can be established as the primary key, as long as it meets the 
following conditions:

Q No two rows can have the same primary key value.
Q Every row must have a primary key value. (Primary key columns may not allow 

NULL values.)

Note
Primary Key Rules The rules listed here are enforced by MySQL itself.

A primary key is usually defined on a single column within a table. But this is not 
required, and multiple columns may be used together as a primary key. When multiple 
columns are used, the rules previously listed must apply to all columns that make up the 
primary key, and the values of all columns together must be unique. (Individual columns 
need not have unique values.)

Tip
Primary Key Best Practices In addition to following the rules that MySQL 
enforces, you should adhere to several universally accepted best practices:

Q Don’t update values in primary key columns.
Q Don’t reuse values in primary key columns.
Q Don’t use values that might change in primary key columns. (For example, if you 

use a name as a primary key to identify a supplier and the supplier merges with 
another company and changes its name, you have to change the primary key.)

There is another very important type of key, called a foreign key, but I’ll get to that in 
Chapter 15, “Joining Tables.”



6 Chapter 1 Understanding SQL

What Is SQL?
SQL (pronounced as the letters “S-Q-L” or as the word “sequel”) is an abbreviation for 
Structured Query Language. SQL is a language designed specifically for communicating 
with databases.

Unlike other languages (spoken languages such as English or programming languages 
such as Python or Java), SQL is made up of very few words. This is deliberate. SQL is 
designed to do one thing and do it well: provide you with a simple and efficient way to 
read and write data from a database.

What are the advantages of SQL?

Q SQL is not a proprietary language used by specific database vendors. Almost every 
major DBMS supports SQL, and learning this one language enables you to interact 
with just about every database you’ll run into.

Q SQL is easy to learn. The statements are all made up of descriptive English words, 
and there aren’t that many of them.

Q Despite its apparent simplicity, SQL is actually a very powerful language, and 
by cleverly using its language elements, you can perform very complex and 
sophisticated database operations.

Note
DBMS-Specific SQL Although SQL is not a proprietary language and there is a 
standards committee that tries to define SQL syntax that can be used by all DBMSs, the 
reality is that no two DBMSs implement SQL identically. The SQL taught in this book 
is specific to MySQL, and while much of the language taught will be usable with other 
DBMSs, you should not assume complete SQL syntax portability.

Try It Yourself
All of the chapters in this book use working examples, showing you the SQL syntax, 
what it does, and explaining why it does it. I strongly suggest that you try each and 
every example for yourself so that you learn MySQL firsthand.

In addition, starting in Chapter 4, “Retrieving Data,” most chapters conclude with 
a “Challenges” section to help you review and gauge your MySQL proficiency. If you 
get stuck, you can go to the companion website to find the answers to the “Challenges” 
section questions.

Appendix B, “The Example Tables,” describes the example tables used throughout 
this book and explains how to obtain and install them. If you have not done so yet, take 
a look at that appendix before proceeding.



7Summary

Summary
In this first chapter, you learned what SQL is and why it is useful. Because SQL is used 
to interact with databases, you also reviewed some basic database terminology.

Note
You Need MySQL Obviously, you’ll need access to a copy of MySQL to follow 
along. Appendix A, “Getting Started with MySQL,” explains where to get a copy of 
MySQL and provides some pointers for getting started. If you do not have access to a 
copy of MySQL, read that appendix before proceeding.



This page intentionally left blank 



2
Introducing MySQL

In this chapter, you’ll learn what MySQL is, and you’ll learn about the tools you can use 
when working with it.

What Is MySQL?
In the previous chapter, you learned about databases and SQL. As explained, it is the 
database software (the DBMS or database management system) that actually does all the 
work of storing, retrieving, managing, and manipulating data. MySQL is a DBMS; that 
is, it is database software.

MySQL has been around for a long time, and it is now installed and in use at millions 
of installations worldwide. Why do so many organizations and developers use MySQL? 
Here are some of the reasons:

Q Cost: MySQL is open source, and it is usually free to use and even modify the 
software.

Q Performance: MySQL is fast—make that very fast.
Q Trustworthiness: MySQL is used by some of the most important and prestigious 

organizations and sites, all of which entrust it with their critical data.
Q Simplicity: MySQL is easy to install and get up and running.

In fact, historically the only real criticism of MySQL has been that it has not always 
supported the functionality and features offered by other DBMSs. But as new features 
have been added to each new version, that has changed, and it continues to do so.

Client/Server Software
DBMSs fall into two categories: shared file–based and client/server DBMSs. Shared 
file–based DBMSs (which include products such as Microsoft Access and FileMaker) are 
designed for desktop use and are generally not intended for use on higher-end or more 
critical applications.

Databases such as MySQL, Oracle, and Microsoft SQL Server are client/server–based 
databases. Client/server applications are split into two distinct parts. The server portion is 
a piece of software that is responsible for all data access and manipulation. This software 
runs on a computer called the database server.



10 Chapter 2 Introducing MySQL

Only the server software interacts with the data files. All requests for data, data 
additions and deletions, and data updates are funneled through the server software. These 
requests or changes come from computers running client software. The client is the piece 
of software with which the user interacts. If you request an alphabetical list of products, 
for example, the client software submits that request over the network to the server 
software. The server software processes the request; filters, discards, and sorts data as 
necessary; and sends the results back to your client software.

Note
How Many Computers? The client and server software may be installed on two 
computers or on one computer. Either way, the client software communicates with the 
server software for all database interaction.

All this action occurs transparently to you, the user. The fact that data is stored else-
where, or that a database server is performing all this processing for you, is hidden. You 
never need to access the data files directly. In fact, most networks are set up so that users 
have no access to the data or even the drives on which it is stored.

Why is this significant? Because to work with MySQL, you’ll need access to both a 
computer running the MySQL server software and client software with which to issue 
commands to MySQL:

Q The server software is the MySQL DBMS. You can be running a locally installed 
copy, or you can connect to a copy running on a remote server to which you have 
access.

Q The client can be MySQL-provided tools (more on these below), scripting 
languages (such as Python and Ruby), web application development languages 
and platforms (such as ASP.NET, JavaScript, and Node.js), programming languages 
(such as C, C++, and Java), and more.

Note
Cloud-Based DBMSs You may have come across cloud-based DBMSs, which are 
hosted database services that are accessed from a web browser. These are technically 
client/server DBMSs; the client just happens to be code that runs in the browser.

MySQL Versions
We’ll get back to client tools in a moment. First, a quick word about DBMS versions.

The current version of MySQL is version 8. Version 5 (all the way through 5.7) is 
still in use in many organizations. (Version 6 was never fully released, and there was no 
version 7.)

This book was written with MySQL version 8 in mind, but most of the chapters 
apply to version 5, too.

http://ASP.NET


11MySQL Tools

MySQL Tools
As just explained, MySQL is a client/server DBMS, and so to use MySQL, you’ll need a 
client—an application that you use to interact with MySQL (by giving it commands to 
be executed).

There are lots of client application options, but when learning MySQL (and, indeed, 
when writing and testing MySQL scripts), you are best off using a utility designed for 
just that purpose. And there are two tools in particular that warrant specific mention: the 
mysql command-line utility and the interactive MySQL Workbench.

mysql Command-Line Utility
Every MySQL installation comes with a simple command-line utility called mysql. This 
utility does not have any drop-down menus, fancy user interfaces, mouse support, or 
anything like that.

Typing mysql at your operating system command prompt brings up a simple prompt 
that looks like this:

Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 11
Server version: 8.0.31 MySQL Community Server - GPL
Copyright (c) 2000, 2022, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

Note
Version Requirements Noted Any chapter that requires a specific version of 
MySQL clearly notes that at the start of the chapter.

Note
MySQL Options and Parameters If you just type mysql by itself, you might receive 
an error message. If you do, it is likely because security credentials are needed or because 
MySQL is not running locally or on the default port. mysql accepts an array of com-
mand-line parameters you can (and might need to) use. For example, to specify the user 
login name ben, you use mysql -u ben. To specify a username, host name, and port and 
get a prompt for a password, you use mysql -u ben -p -h myserver -P 9999.

You can obtain a complete list of command-line options and parameters by using 
mysql ---help.



12 Chapter 2 Introducing MySQL

Of course, your version and connection information might differ, but you will be 
able to use this utility anyway. You’ll note that:

Q Commands are typed after the mysql> prompt.
Q Commands end with ; or \g; in other words, just pressing Enter will not execute 

a command.
Q Type help or \h to obtain help. You can also provide additional text to obtain 

help on specific commands (for example, help select to obtain help on using the 
SELECT statement).

Q Type quit or exit to quit the command-line utility.

The mysql command-line utility is one of the most used utilities and is invaluable 
for quickly testing and executing scripts. In fact, all of the output examples used in this 
book were created with mysql command-line output.

Tip
Familiarize Yourself with the mysql Command-Line Utility Even if you opt to 
use the graphical tool described next, you should make sure to familiarize yourself with 
the mysql command-line utility, as this is the one client you can safely rely on to always 
be present (as it is part of the core MySQL installation).

MySQL Workbench
MySQL Workbench is a graphical interactive client used to write and execute MySQL 
commands.

MySQL Workbench consolidates and replaces several different interactive tools used 
in prior versions of MySQL. Since its release, this tool has quickly become a developer 
favorite.

Note
Obtaining MySQL Workbench Unlike the command-line utility mysql, MySQL 
Workbench is not always installed as part of the core MySQL DBMS installation. If 
it isn’t, you can download it for free directly from https://dev.mysql.com/downloads/
workbench/. (Versions are available for Linux, macOS, and Windows, and source code is 
downloadable, too.)

We’ll start using MySQL Workbench in the next chapter as we explore connecting to 
and using the MySQL DBMS. For now, note the following:

Q MySQL Workbench features a color-coded editor that can help you write SQL 
statements.

Q You can test your SQL statements right inside MySQL Workbench, and results 
(if there are any) will be displayed in a grid right below your statements.

https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/


13Summary

Q MySQL Workbench also lists all available datasources (called schemas). You can 
expand any datasource to see its tables, and you can expand any table to see its 
columns.

Q You can use MySQL Workbench to edit data, check the server status and settings, 
back up and restore data, and much more.

Tip
Execute Saved Scripts You can use MySQL Workbench to execute saved scripts. To 
do this, select File, Open SQL Script, select the script (which will be displayed in a new 
tab), and click the Execute button (the one with a yellow lightning bolt).

MySQL Workbench is an important tool, and I suggest that you use it for all chapters 
in this book. We’ll look at it in detail in the next chapter.

Other Tools
You are not limited to using MySQL’s provided clients. There are lots of third-party 
clients out there, too, and you can use any of them with MySQL. These are some 
popular ones:

Q DBeaver
Q HeidiSQL
Q phpMyAdmin
Q RazorSQL

To use any of these tools, you generally just need to provide server and login details.

Summary
In this chapter, you learned what exactly MySQL is. You were also introduced to 
two client utilities: an included command-line utility and an optional but highly 
recommended graphical utility.



This page intentionally left blank 



3
Working with MySQL

In this chapter, you’ll learn how to connect and log in to MySQL, how to issue MySQL 
statements, and how to obtain information about databases and tables.

Now that you have a MySQL DBMS and client software to use with it, it would be 
worthwhile to briefly discuss connecting to the database.

MySQL, like all other client/server DBMSs, requires that you log in to the DBMS 
before you can issue commands. Your login name might not be the same as your 
network login name (assuming that you are using a network); MySQL maintains its own 
list of users internally and associates rights with each user.

When you first installed MySQL, you were probably prompted for an administrative 
login (often root) and a password. If you are using your own local server and are simply 
experimenting with MySQL, using that login is fine. In the real world, however, the 
administrative login is closely protected because access to it grants full rights to create 
tables, drop entire databases, change logins and passwords, and more.

To connect to MySQL, you need the following pieces of information:

Q The hostname (the name of the computer), which is localhost if you’re 
connecting to a local MySQL server

Q The port (if a port other than the default 3306 is used)
Q A valid username
Q The user password (if required)

As explained in Chapter 2, “Introducing MySQL,” all of this information can be 
passed to the mysql command-line utility or entered into the server connection screen in 
MySQL Workbench.

Note
Using Other Clients If you are using a client other than the ones mentioned here, 
you still need to provide this information in order to connect to MySQL.

Using the Command-Line Tool
The mysql command-line utility is the one client tool that will always be available 
to you. Even though you are most likely going to use MySQL Workbench as you 



16 Chapter 3 Working with MySQL

learn MySQL with this book, it’s worth learning how to use the command-line 
utility, too.

To start using the command-line tool with a locally installed MySQL DBMS, you can 
use this command:

mysql --user=root –-password

If you are not using the root user, specify your username instead. You can specify the 
password on the command line, or if you just specify --password, you’ll be prompted to 
type it after you press Enter.

You then see text that looks something like this:

Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 31
Server version: 8.0.31 MySQL Community Server - GPL

Copyright (c) 2000, 2022, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

You enter commands at the mysql> prompt.

Selecting a Database
When you first connect to MySQL, you do not have any databases open for use. Before 
you can perform any database operations, you need to select a database. To do this, you 
use the USE keyword.

New Term
Keyword A reserved word that is part of the MySQL language. Never name a table 
or column using a keyword. Appendix E, “MySQL Reserved Words,” lists the MySQL 
keywords.

For example, to use the mysql database, you would enter the following:

 Input

USE mysql;

 Output

Database changed

 Analysis



17Using the Command-Line Tool

The USE statement does not return any results. Depending on the client used, some 
form of notification might be displayed. For example, the mysql command-line utility 
displays the Database changed message shown here upon successful database selection.

Remember that you must always “USE a database” before you can access any data in it.

Learning About Databases and Tables
What if you don’t know the names of the available databases? And, for that matter, how 
is MySQL Workbench able to display a list of available databases?

Information about databases, tables, columns, users, privileges, and more is stored in 
databases and tables themselves. (Yes, MySQL uses MySQL to store this information.) 
But these internal tables are generally not accessed directly. Instead, you use the MySQL 
SHOW command to display this information (which MySQL extracts from those internal 
tables). Look at the following example:

 Input

SHOW DATABASES;

 Output

+--------------------+
| Database           |
+--------------------+
| crashcourse        |
| information_schema |
| mysql              |
| performance_schema |
| sakila             |
| sys                |
| world              |
+--------------------+
7 rows in set (0.00 sec)

 Analysis

SHOW DATABASES; returns a list of available databases. This list might include databases 
used by MySQL internally (such as mysql and information_schema in this example). Of 
course, your own list of databases might not look like the one shown here.

To obtain a list of tables in a database, use SHOW TABLES;, as in this example:

 Input

SHOW TABLES;

 Output

+------------------------------------------------------+
| Tables_in_mysql                                      |
+------------------------------------------------------+
| columns_priv                                         |
| component                                            |
| db                                                   |



18 Chapter 3 Working with MySQL

| default_roles                                        |
| engine_cost                                          |
| func                                                 |
| general_log                                          |
| global_grants                                        |
| gtid_executed                                        |
| help_category                                        |
| help_keyword                                         |
| help_relation                                        |
| help_topic                                           |
| innodb_index_stats                                   |
| innodb_table_stats                                   |
| ndb_binlog_index                                     |
| password_history                                     |
| plugin                                               |
| procs_priv                                           |
| proxies_priv                                         |
| replication_asynchronous_connection_failover         |
| replication_asynchronous_connection_failover_managed |
| replication_group_configuration_version              |
| replication_group_member_actions                     |
| role_edges                                           |
| server_cost                                          |
| servers                                              |
| slave_master_info                                    |
| slave_relay_log_info                                 |
| slave_worker_info                                    |
| slow_log                                             |
| tables_priv                                          |
| time_zone                                            |
| time_zone_leap_second                                |
| time_zone_name                                       |
| time_zone_transition                                 |
| time_zone_transition_type                            |
| user                                                 |
+------------------------------------------------------+
38 rows in set (0.00 sec)
+-----------------------+

Note
Use of the terms master/slave is ONLY in association with the official terminology used 
in industry specifications and standards, and in no way diminishes Pearson’s commitment 
to promoting diversity, equity, and inclusion, and challenging, countering and/or 
combating bias and stereotyping in the global population of the learners we serve.

 Analysis



19Using the Command-Line Tool

SHOW TABLES; returns a list of available tables in the currently selected database.
You can also use SHOW to display a table’s columns:

 Input

SHOW COLUMNS FROM servers;

 Output

+-------------+-----------+------+-----+---------+-------+
| Field       | Type      | Null | Key | Default | Extra |
+-------------+-----------+------+-----+---------+-------+
| Server_name | char(64)  | NO   | PRI |         |       |
| Host        | char(255) | NO   |     |         |       |
| Db          | char(64)  | NO   |     |         |       |
| Username    | char(64)  | NO   |     |         |       |
| Password    | char(64)  | NO   |     |         |       |
| Port        | int       | NO   |     | 0       |       |
| Socket      | char(64)  | NO   |     |         |       |
| Wrapper     | char(64)  | NO   |     |         |       |
| Owner       | char(64)  | NO   |     |         |       |
+-------------+-----------+------+-----+---------+-------+
9 rows in set (0.00 sec)

Tip
The DESCRIBE Statement MySQL supports the use of DESCRIBE as a shortcut for SHOW 
COLUMNS FROM. In other words, DESCRIBE customers; is a shortcut for SHOW COLUMNS FROM 
customers;.

Other SHOW statements are supported, too, including these:

Q SHOW STATUS is used to display extensive server status information.
Q SHOW CREATE DATABASE and SHOW CREATE TABLE are used to display the MySQL 

statements used to create specified databases or tables, respectively.
Q SHOW GRANTS is used to display security rights granted to users (all users or a 

specific user).
Q SHOW ERRORS and SHOW WARNINGS are used to display server error or warning 

messages.

Note that client applications use these same MySQL commands. Applications that 
display interactive lists of databases and tables, that allow for the interactive creation and 
editing of tables, that facilitate data entry and editing, and that allow for user account and 
rights management all accomplish what they do by using the same MySQL commands 
that you can execute directly yourself.



20 Chapter 3 Working with MySQL

Tip
Learning More About SHOW With the mysql command-line utility, you can execute 
the command HELP SHOW; to display a list of allowed SHOW statements.

Using MySQL Workbench
The mysql command-line utility is an invaluable—and readily available—tool. But it’s 
not exactly intuitive or friendly to use. Fortunately, there is a wonderful interactive tool 
called MySQL Workbench that we’ll be using throughout this book.

Tip
Obtaining MySQL Workbench MySQL Workbench is supported on Windows, 
Mac, and Linux. Refer to Appendix A, “Getting Started with MySQL,” for help 
obtaining MySQL Workbench.

Getting Started
MySQL Workbench needs to know what DBMS you will be using. When MySQL 
Workbench first runs, it looks for a local DBMS, and if it finds one, it automatically adds 
the DBMS to the MySQL Connections list, as shown in Figure 3.1.

Figure 3.1 DBMS listed under MySQL Connections.



21Using MySQL Workbench

Double-click on the connection, and you are prompted for the password, as shown in 
Figure 3.2.

Figure 3.2 The password prompt.

If the login information you enter is correct, you’re then connected to the MySQL 
server.

Using MySQL Workbench
Let’s take a few minutes to become familiar with the MySQL Workbench user interface, 
shown in Figure 3.3.

Figure 3.3 The MySQL Workbench user interface.



22 Chapter 3 Working with MySQL

The upper left is the Navigator. It provides options to manage the server, including 
displaying server status (much the same as the information displayed previously using the 
command-line tool).

If you click on the Schemas tab in the Navigator, you can see all of your databases.

Selecting a Database
To select a database in MySQL Workbench, simple double-click it in the Schemas tab. 
The database is expanded, and its name becomes bold to indicate that it’s ready for use.

Note
It’s Using USE Earlier you learned about the USE statement, which opens a database. 
When you double-click on a database in MySQL Workbench, the tool is using a USE
statement for you automatically. In fact, every option in MySQL Workbench uses SQL 
statements for you.

Learning About Databases and Tables
To see details about databases and tables, simply click on them. Details are displayed in 
the Information panel beneath the Navigation panel, as shown in Figure 3.4.

Figure 3.4 The Information panel below the Navigation panel.



23Next Steps

Executing SQL Statements
Throughout this book, you’ll be writing and testing SQL statements, and it’s important 
to know how to do that with MySQL Workbench.

With a database open (any database will do), click the leftmost button on the toolbar; 
this is the New Query button, and it will open an editor window where you can type 
your SQL commands.

Figure 3.5 shows the database world being used, with the following SQL statement 
entered:

SELECT * FROM country;

Figure 3.5 Query results are displayed in a grid below the SQL statement.

To execute (or run) the SQL statement, click the yellow lightning bolt button above 
the query window. The SQL statement is then executed, and results (if there are any) are 
displayed in a grid below.

Now you’re ready to install the example database and tables and proceed with 
learning MySQL.

Next Steps
Now that you know how to connect and log in to your MySQL DBMS, you are ready 
to create the example database and tables used throughout this book.



24 Chapter 3 Working with MySQL

Refer to Appendix B, “The Example Tables,” for a detailed description of the tables 
as well as step-by-step instructions for installing them.

Summary
In this chapter, you learned how to connect and log in to MySQL and how to execute 
SQL commands by using both the command-line utility and MySQL Workbench. 
Armed with this knowledge, you can now dig into the all-important SELECT statement.



4
Retrieving Data

In this chapter, you’ll learn how to use the SELECT statement to retrieve one or more 
columns of data from a table.

The SELECT Statement
As explained in Chapter 1, “Understanding SQL,” SQL statements are made up of plain 
English terms. These terms are called keywords, and every SQL statement is made up of 
one or more keywords. The SQL statement you’ll probably use most frequently is the 
SELECT statement. Its purpose is to retrieve information from one or more tables.

To use SELECT to retrieve table data, you must, at a minimum, specify two pieces of 
information: what you want to select and from where you want to select it.

Tip
Use MySQL Workbench to Follow Along As noted previously, you are strongly 
encouraged to try each and every example as you work through this book. Actually, you 
should also experiment and tweak the SQL yourself. The more you do so, the more 
comfortable you’ll become with MySQL syntax. Use MySQL Workbench to do this, as 
explained in Chapter 3, “Working with MySQL.”

Retrieving Individual Columns
We’ll start with a simple SQL SELECT statement, as follows:

 Input

SELECT prod_name
FROM products;

 Analysis

This statement uses the SELECT statement to retrieve a single column called prod_name
from the products table. The desired column name is specified right after the SELECT



26 Chapter 4 Retrieving Data

keyword, and the FROM keyword specifies the name of the table from which to retrieve 
the data. This statement provides the following output:

 Output

+------------------ +
| prod_name         |
+------------------ +
|.5 ton anvil       |
|1 ton anvil        |
|2 ton anvil        |
|Oil can            |
|Fuses              |
|Sling              |
|TNT (1 stick)      |
|TNT (5 sticks)     |
|Bird seed          |
|Carrots            |
|Safe               |
|Detonator          |
|JetPack 1000       |
|JetPack 2000       |
+------------------ +

Note
Unsorted Data If you tried this query yourself (you did, right?), you might have 
discovered that the data was displayed in a different order than shown here. If this is 
the case, don’t worry; it is working exactly as it is supposed to. If query results are not 
explicitly sorted (we’ll get to that in the next chapter), data will be returned in no order 
of any significance. It might be the order in which the data was added to the table, but it 
might not. As long as your query returned the same number of rows as shown here, then 
it is working.

A simple SELECT statement like the one just shown returns all the rows in a table. 
Data is not filtered (to retrieve a subset of the results), nor is it sorted. We’ll discuss these 
topics in the next few chapters.

Note
Terminating Statements Multiple SQL statements must be separated by semicolons 
(; characters). MySQL (like most other DBMSs) does not require that a semicolon be 
used after a single statement. You can always add a semicolon if you wish. It’ll do no 
harm, even if it isn’t needed.

If you are using the mysql command-line client, the semicolon is always needed 
(as explained in Chapter 2, “Introducing MySQL”).



27Retrieving Multiple Columns

Retrieving Multiple Columns
To retrieve multiple columns from a table, you use the same SELECT statement. The only 
difference is that you must specify multiple column names after the SELECT keyword, and 
you must separate the columns with commas.

Note
SQL Statements and Case It is important to note that SQL statements are not case-
sensitive, so SELECT is the same as select or Select. Many SQL developers find that 
using uppercase for all SQL keywords and lowercase for column and table names makes 
code easier to read and debug. (That’s the formatting style used in this book.)

However, be aware that while the SQL language is not case-sensitive, identifiers 
(the names of databases, tables, and columns) might be.

As a best practice, pick a case convention and use it consistently.

Tip
Use of White Space All extra white space within a SQL statement is ignored when 
the statement is processed. SQL statements can be specified on one long line or broken 
up over many lines. The following statements are thus functionally identical:

SELECT prod_name FROM products;

SELECT

prod_name

FROM

products;

        SELECT

           prod_name

              FROM

                 products;

Most SQL developers find that breaking up statements over multiple lines makes the 
statements easier to read and debug.

White space (spaces, tabs, line breaks, etc.) is ignored when SQL statements are 
processed. So how does the DBMS know when your statement is finished? That’s what 
the ; at the end does.



28 Chapter 4 Retrieving Data

The following SELECT statement retrieves three columns from the products table:

 Input

SELECT prod_id, prod_name, prod_price
FROM products;

 Analysis

Just as in the previous example, this statement uses the SELECT statement to retrieve 
data from the products table. In this example, three column names are specified, 
separated by commas. The output from this statement is as follows:

 Output

+---------+----------------+------------+
| prod_id | prod_name      | prod_price |
+---------+----------------+------------+
| ANV01   | .5 ton anvil   | 5.99       |
| ANV02   | 1 ton anvil    | 9.99       |
| ANV03   | 2 ton anvil    | 14.99      |
| OL1     | Oil can        | 8.99       |
| FU1     | Fuses          | 3.42       |
| SLING   | Sling          | 4.49       |
| TNT1    | TNT (1 stick)  | 2.50       |
| TNT2    | TNT (5 sticks) | 10.00      |
| FB      | Bird seed      | 10.00      |
| FC      | Carrots        | 2.50       |
| SAFE    | Safe           | 50.00      |
| DTNTR   | Detonator      | 13.00      |
| JP1000  | JetPack 1000   | 35.00      |
| JP2000  | JetPack 2000   | 55.00      |
+---------+----------------+------------+

Tip
Take Care with Commas When selecting multiple columns, be sure to include a 
comma after each column name except the last one. Including a comma after the last 
name will generate an error.

Note
Presentation of Data SQL statements typically return raw, unformatted data. Data 
formatting is a presentation issue, not a retrieval issue. Therefore, presentation (for exam-
ple, alignment and displaying the price values as currency amounts with the currency 
symbol and commas) is typically specified in the application that displays the data. Actual 
raw retrieved data (without application-provided formatting) is rarely displayed as is.



29Retrieving Distinct Rows

Retrieving All Columns
In addition to being able to specify one or more columns, SELECT statements can also 
request all columns without having to list them individually. This is done using the 
asterisk (*) wildcard character in lieu of actual column names, as follows:

 Input

SELECT *
FROM products;

 Analysis

When a wildcard (*) is specified, all the columns in the table are returned. Columns 
are returned in the order in which they appear in the table definition. However, changes 
to table schemas (such as adding and removing columns) may cause ordering changes.

Caution
Using Wildcards As a rule, you are better off not using the * wildcard unless you 
really do need every column in the table. Even though using wildcards might save you 
the time and effort needed to list the desired columns explicitly, retrieving unnecessary 
columns usually slows down the performance of your retrieval and your application.

Tip
Retrieving Unknown Columns There is one big advantage to using wildcards. As 
you do not explicitly specify column names (because the asterisk retrieves every column), 
it is possible to retrieve columns whose names are unknown.

Retrieving Distinct Rows
As you have seen, SELECT returns all matched rows. But what if you did not want every 
occurrence of every value? For example, suppose you wanted the vendor ID of every 
vendor with products in your products table and used the following:

 Input

SELECT vend_id
FROM products;

 Output

+---------+
| vend_id |
+---------+
|    1001 |
|    1001 |
|    1001 |



30 Chapter 4 Retrieving Data

|    1002 |
|    1002 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1005 |
|    1005 |
+---------+

 Analysis

This SELECT statement returns 14 rows because there are 14 products listed in the 
products table. But those 14 products are actually sold by just 4 vendors. So how could 
you retrieve a list of distinct vendor values?

The solution is to use the DISTINCT keyword which, as its name implies, instructs 
MySQL to return only distinct values:

 Input

SELECT DISTINCT vend_id
FROM products;

 Analysis

SELECT DISTINCT vend_id tells MySQL to return only distinct (unique) vend_id rows, 
and so only 4 rows are returned, as shown in the following output. When you use the 
DISTINCT keyword, you must place it directly in front of the column names.

 Output

+--------- +
| vend_id  |
+--------- +
|     1001 |
|     1002 |
|     1003 |
|     1005 |
+--------- +

Caution
Can’t Be Partially DISTINCT The DISTINCT keyword applies to all columns, not just 
the one it precedes. If you were to specify SELECT DISTINCT vend_id, prod_price, all 
rows would be retrieved unless both of the specified columns were distinct.



31Limiting Results

Limiting Results
The SELECT statement returns all matched rows—and possibly every row—in the speci-
fied table. To return just the first row or rows, use the LIMIT clause. Here is an example:

 Input

SELECT prod_name
FROM products
LIMIT 5;

 Analysis

This example uses the SELECT statement to retrieve a single column. LIMIT 5 instructs 
MySQL to return no more than 5 rows. The output from this statement is as follows:

 Output

+----------------- +
| prod_name        |
+----------------- +
| .5 ton anvil     |
| 1 ton anvil      |
| 2 ton anvil      |
| Oil can          |
| Fuses            |
+----------------- +

To get the next 5 rows, specify both where to start and the number of rows to 
retrieve, like this:

 Input

SELECT prod_name
FROM products
LIMIT 5,5;

 Analysis

LIMIT 5,5 instructs MySQL to return 5 rows, starting from row 5. The first number 
is where to start, and the second is the number of rows to retrieve. The output from this 
statement is as follows:

 Output

+----------------- +
| prod_name        |
+----------------- +
| Sling            |
| TNT (1 stick)    |
| TNT (5 sticks)   |
| Bird seed        |
| Carrots          |
+----------------- +



32 Chapter 4 Retrieving Data

So, LIMIT with one value specified always starts from the first row, and the specified 
number is the number of rows to return. LIMIT with two values specified can start from 
wherever that first value tells it to.

Caution
Row 0 The first row retrieved is row 0, not row 1. Therefore, LIMIT 1,1 will retrieve 
the second row, not the first one.

Note
When There Aren’t Enough Rows The number of rows to retrieve specified in 
LIMIT is the maximum number to retrieve. If there aren’t enough rows (for example, if 
you specify LIMIT 10,5, but there are only 13 rows), MySQL returns as many as it can.

Tip
Using LIMIT OFFSET Does LIMIT 3,4 mean 3 rows starting from row 4 or 4 rows start-
ing from row 3? As you just learned, it means 4 rows starting from row 3, but it is a bit 
ambiguous.

For this reason, MySQL supports an alternative syntax for LIMIT. LIMIT 4 OFFSET 3
means to get 4 rows starting from row 3, just like LIMIT 3,4. LIMIT OFFSET tends not to 
be used much, and the reason I am mentioning it here is so that you’ll know what it is if 
you see it in the wild.

Using Fully Qualified Table Names
The SQL examples used thus far have referred to columns by using just the column 
names. It is also possible to refer to columns by using fully qualified names (that is, using 
both the table and column names). Look at this example:

 Input

SELECT products.prod_name
FROM products;

 Analysis

This SQL statement is functionally identical to the very first one used in this chapter, 
but here a fully qualified column name is specified. It explicitly states that the prod_name
column it’s referring to is in the products table.



33Using Comments

Table names, too, may be fully qualified, as shown here:

 Input

SELECT products.prod_name
FROM crashcourse.products;

 Analysis

Once again, this statement is functionally identical to the one just used (assuming, of 
course, that the products table is indeed in the crashcourse database).

There are situations when fully qualified names are required, as you will see in later 
chapters. For now, it is worth noting this syntax so you’ll know what it is if you run 
across it.

Using Comments
As you have seen, MySQL statements are instructions that are processed by the MySQL 
DBMS. But what if you want to include text that you do not want to be processed and 
executed? Why would you ever want to do that? Here are a few reasons:

Q The SQL statements we’ve been using here are all very short and very simple. But, 
as your SQL statements grow in length and complexity, you’ll want to include 
descriptive comments (for your own future reference or for whoever must work 
on the project next). These comments need to be embedded in the SQL scripts, 
but they are obviously not intended for actual DBMS processing.

Q The same is true for introductory text at the top of a SQL file, which you’ll often 
want to contain a description and notes and perhaps even programmer contact 
information.

Q Another important use for comments is to temporarily stop SQL code from being 
executed. If you are working with a long SQL statement and want to test just part 
of it, you can comment out some of the code so that the DBMS sees it as comments 
and ignores it.

MySQL supports several forms of comment syntax. We’ll start with inline comments:

 Input

SELECT prod_name   -- this is a comment
FROM Products;

 Analysis

Comments may be embedded inline using -- (two hyphens). Any text on the same 
line that is after the -- is considered comment text, making this a good option for 
describing columns in a CREATE TABLE statement, for example.



34 Chapter 4 Retrieving Data

Here is another form of inline comment:

 Input

# This is a comment
SELECT prod_name
FROM Products;

 Analysis

# can be used anywhere in your SQL. Anything that follows this character is 
comment text, so # at the start of a line makes the entire line a comment.

You can also create multiline comments and comments that stop and start anywhere 
within the script:

 Input

/* SELECT prod_name, vend_id
FROM Products; */
SELECT prod_name
FROM Products;

 Analysis

/* starts a comment, and */ ends it. Anything between /* and */ is comment text. 
This type of comment is often used to comment out code, as shown in this example. Here, 
two SELECT statements are defined, but the first one won’t execute because it has been 
commented out.

Summary
In this chapter, you learned how to use the SQL SELECT statement to retrieve a single 
table column, multiple table columns, and all the columns in a table. You also learned 
how (and why) to comment your SQL code. Next, you’ll learn how to sort the retrieved 
data.

Challenges

1. Write a SQL statement to retrieve every customer ID (cust_id) from the 
customers table.

2. The OrderItems table contains every item ordered (some of which were ordered 
multiple times). Write a SQL statement to retrieve a list of the products (prod_id) 
ordered (not every order, just a unique list of products). Here’s a hint: You should 
end up with nine unique rows displayed.

3. Write a SQL statement that retrieves all columns from the customers table and an 
alternate SELECT statement that retrieves just the customer IDs. Use comments to 
comment out one SELECT statement so you can run the other one. (And, of course, 
test both statements.)



5
Sorting Retrieved Data

In this chapter, you will learn how to use the SELECT statement’s ORDER BY clause to sort 
retrieved data as needed.

Sorting Data
As you learned in the previous chapter, the following SQL statement returns a single 
column from a database table. But look at the output. The data appears to be displayed 
in no particular order.

 Input

SELECT prod_name
FROM products;

 Output

+----------------+
| prod_name      |
+----------------+
| .5 ton anvil   |
| 1 ton anvil    |
| 2 ton anvil    |
| Oil can        |
| Fuses          |
| Sling          |
| TNT (1 stick)  |
| TNT (5 sticks) |
| Bird seed      |
| Carrots        |
| Safe           |
| Detonator      |
| JetPack 1000   |
| JetPack 2000   |
+----------------+

Actually, the retrieved data is not displayed in a merely random order. Unsorted data 
is typically displayed in the order in which it appears in the underlying tables. This could 



36 Chapter 5 Sorting Retrieved Data

be the order in which the data was added to the tables initially. However, if data was 
subsequently updated or deleted, the order is affected by how MySQL reuses reclaimed 
storage space. The end result is that you cannot (and should not) rely on the sort order 
if you do not explicitly control it. Relational database design theory states that the 
sequence of retrieved data cannot be assumed to have significance if ordering was not 
explicitly specified.

New Term
Clauses These are parts of SQL statements are made up of clauses, some required and 
some optional. A clause usually consists of a keyword and supplied data. An example of 
this is the SELECT statement’s FROM clause, which you saw in the previous chapter.

To explicitly sort data retrieved using a SELECT statement, you use the ORDER BY
clause. ORDER BY takes the name of one or more columns by which to sort the output. 
Look at the following example:

 Input

SELECT prod_name
FROM products
ORDER BY prod_name;

 Analysis

This statement is identical to the earlier statement, except that it also specifies an 
ORDER BY clause instructing MySQL to sort the data alphabetically based on the prod_
name column. The results are as follows:

 Output

+----------------+
| prod_name      |
+----------------+
| .5 ton anvil   |
| 1 ton anvil    |
| 2 ton anvil    |
| Bird seed      |
| Carrots        |
| Detonator      |
| Fuses          |
| JetPack 1000   |
| JetPack 2000   |
| Oil can        |
| Safe           |
| Sling          |
| TNT (1 stick)  |
| TNT (5 sticks) |
+----------------+



37Sorting by Multiple Columns

Sorting by Multiple Columns
It is often necessary to sort data by more than one column. For example, if you are 
displaying an employee list, you might want to display it sorted by last name and first 
name (that is, first sort by last name and then, within each last name, sort by first name). 
This is useful, for example, if there are multiple employees with the same last name.

To sort by multiple columns, simply specify the column names separated by commas, 
just as you do when you are selecting multiple columns.

The following code retrieves three columns and sorts the results by two of them—
first by price and then by name:

 Input

SELECT prod_id, prod_price, prod_name
FROM products
ORDER BY prod_price, prod_name;

 Output

+---------+------------+----------------+
| prod_id | prod_price | prod_name      |
+---------+------------+----------------+
| FC      |       2.50 | Carrots        |
| TNT1    |       2.50 | TNT (1 stick)  |
| FU1     |       3.42 | Fuses          |
| SLING   |       4.49 | Sling          |
| ANV01   |       5.99 | .5 ton anvil   |
| OL1     |       8.99 | Oil can        |
| ANV02   |       9.99 | 1 ton anvil    |
| FB      |      10.00 | Bird seed      |
| TNT2    |      10.00 | TNT (5 sticks) |
| DTNTR   |      13.00 | Detonator      |
| ANV03   |      14.99 | 2 ton anvil    |
| JP1000  |      35.00 | JetPack 1000   |
| SAFE    |      50.00 | Safe           |
| JP2000  |      55.00 | JetPack 2000   |
+---------+------------+----------------+

It is important to understand that when you are sorting by multiple columns, the sort 
sequence is exactly as specified. In other words, using the output in this example, the 
products are sorted based on the prod_name column only when multiple rows have the 
same prod_price value. If all the values in the prod_price column are unique, no data is 
sorted by prod_name.

Tip
Sorting by Nonselected Columns More often than not, the columns used in an 
ORDER BY clause are ones that were selected for display. However, this is actually not 
required, and it is perfectly legal to sort data based on a column that is not retrieved.



38 Chapter 5 Sorting Retrieved Data

Sorting by Column Position
In addition to being able to specify sort order by using column names, you can also use 
ORDER BY to order based on relative column position. The best way to understand this is 
to look at an example:

 Input

SELECT prod_id, prod_price, prod_name
FROM Products
ORDER BY 2, 3;

 Output

prod_id    prod_price    prod_name
-------    ----------    --------------------
BNBG02     3.4900        Bird bean bag toy
BNBG01     3.4900        Fish bean bag toy
BNBG03     3.4900        Rabbit bean bag toy
RGAN01     4.9900        Raggedy Ann
BR01       5.9900        8 inch teddy bear
BR02       8.9900        12 inch teddy bear
RYL01      9.4900        King doll
RYL02      9.4900        Queen doll
BR03       11.9900       18 inch teddy bear

 Analysis

As you can see, the output here is identical to that of the query above. The differ-
ence here is in the ORDER BY clause. Instead of specifying column names, you specify the 
relative positions of selected columns in the SELECT list. ORDER BY 2 means sort by the 
second column in the SELECT list, the prod_price column. ORDER BY 2, 3 means sort by 
prod_price and then by prod_name.

The primary advantage of this technique is that it doesn’t require you to retype the 
column names. But there are some downsides, too. First, not explicitly listing column 
names increases the likelihood of mistakenly specifying the wrong column. Second, it is 
easy to mistakenly reorder data when making changes to the SELECT list (such as when 
you forget to make the corresponding changes to the ORDER BY clause). And finally, 
obviously you cannot use this technique when sorting by columns that are not in the 
SELECT list.

Tip
Sorting by Nonselected Columns You cannot use ORDER BY to order based on 
relative column position when sorting by columns that do not appear in the SELECT list. 
However, you can mix and match column names and relative column positions in a 
single statement, if needed.



39Specifying Sort Direction

Specifying Sort Direction
Data sorting is not limited to ascending sort orders (that is, from A to Z). Although 
this is the default sort order, you can also use the ORDER BY clause to sort in descending 
order (that is, from Z to A). To sort in descending order, you need to specify the DESC
keyword.

The following example sorts products by price, in descending order (that is, most 
expensive first):

 Input

SELECT prod_id, prod_price, prod_name
FROM products
ORDER BY prod_price DESC;

 Output

+---------+------------+----------------+
| prod_id | prod_price | prod_name      |
+---------+------------+----------------+
| JP2000  |      55.00 | JetPack 2000   |
| SAFE    |      50.00 | Safe           |
| JP1000  |      35.00 | JetPack 1000   |
| ANV03   |      14.99 | 2 ton anvil    |
| DTNTR   |      13.00 | Detonator      |
| TNT2    |      10.00 | TNT (5 sticks) |
| FB      |      10.00 | Bird seed      |
| ANV02   |       9.99 | 1 ton anvil    |
| OL1     |       8.99 | Oil can        |
| ANV01   |       5.99 | .5 ton anvil   |
| SLING   |       4.49 | Sling          |
| FU1     |       3.42 | Fuses          |
| FC      |       2.50 | Carrots        |
| TNT1    |       2.50 | TNT (1 stick)  |
+---------+------------+----------------+

But what if you were to sort by multiple columns? The following example sorts the 
products in descending order (that is, most expensive first) and based on product name:

 Input

SELECT prod_id, prod_price, prod_name
FROM products
ORDER BY prod_price DESC, prod_name;

 Output

+---------+------------+----------------+
| prod_id | prod_price | prod_name      |
+---------+------------+----------------+
| JP2000  |      55.00 | JetPack 2000   |
| SAFE    |      50.00 | Safe           |
| JP1000  |      35.00 | JetPack 1000   |



40 Chapter 5 Sorting Retrieved Data

| ANV03   |      14.99 | 2 ton anvil    |
| DTNTR   |      13.00 | Detonator      |
| FB      |      10.00 | Bird seed      |
| TNT2    |      10.00 | TNT (5 sticks) |
| ANV02   |       9.99 | 1 ton anvil    |
| OL1     |       8.99 | Oil can        |
| ANV01   |       5.99 | .5 ton anvil   |
| SLING   |       4.49 | Sling          |
| FU1     |       3.42 | Fuses          |
| FC      |       2.50 | Carrots        |
| TNT1    |       2.50 | TNT (1 stick)  |
+---------+------------+----------------+

 Analysis

The DESC keyword only applies to the column name that directly precedes it. In this 
example, DESC is specified for the prod_price column but not for the prod_name column. 
Therefore, the prod_price column is sorted in descending order, but the prod_name
column (within each price) is still sorted in standard ascending order.

Tip
Sorting Descending on Multiple Columns If you want to sort descending on 
multiple columns, be sure each column has its own DESC keyword.

The opposite of DESC is ASC (for ascending), which you can specify to sort in ascending 
order. In practice, however, ASC is not usually used because ascending order is the default 
sequence (and is assumed if neither ASC nor DESC is specified).

Tip
Case-Sensitivity and Sort Orders When you are sorting textual data, is A the same 
as a? And does a come before B or after Z? These are not theoretical questions, and the 
answers depend on how the database is set up.

In dictionary sort order, A is treated the same as a, and that is the default behavior 
in MySQL (and, indeed, in most other DBMSs as well). However, administrators can 
change this behavior, if needed. (If your database contains lots of foreign language 
characters, for example, this might become necessary.)

The key here is that if you need an alternate sort order, you cannot accomplish it 
with a simple ORDER BY clause. You must contact your database administrator.



41Summary

By using a combination of ORDER BY and LIMIT, it is possible to find the highest or 
lowest value in a column. The following example demonstrates how to find the value of 
the most expensive item:

 Input

SELECT prod_price
FROM products
ORDER BY prod_price DESC
LIMIT 1;

 Output

+------------+
| prod_price |
+------------+
|      55.00 |
+------------+

 Analysis

prod_price DESC ensures that rows are retrieved from most to least expensive, and 
LIMIT 1 tells MySQL to return just one row.

Caution
Position of ORDER BY Clause When specifying an ORDER BY clause, be sure that it is 
after the FROM clause. If LIMIT is used, it must come after ORDER BY. If you use clauses out 
of order, you will get an error message.

Tip
A Better Way to Find the Largest Value Here we used ORDER BY and LIMIT to find 
the most expensive product in a table. In Chapter 12, “Summarizing Data,” we’ll look at 
a far more efficient way of finding largest (and smallest and average and other) values.

Summary
In this chapter, you learned how to sort retrieved data by using the SELECT statement’s 
ORDER BY clause. This clause, which must be the last in the SELECT statement, can be 
used to sort data on one or more columns, as needed.



42 Chapter 5 Sorting Retrieved Data

Challenges

1. Write a SQL statement to retrieve all customer names (cust_names) from the 
Customers table and display the results sorted from Z to A.

2. Write a SQL statement to retrieve customer ID (cust_id) and order number 
(order_num) from the Orders table and sort the results first by customer ID and 
then by order date, in reverse chronological order.

3. Our fictitious store obviously prefers to sell more expensive items—and lots of 
them. Write a SQL statement to display the quantity and price (item_price) from 
the OrderItems table, sorted with the highest quantity and highest price first.

4. What is wrong with the following SQL statement? (Try to figure it out without 
running it.)

SELECT vend_name,
FROM Vendors
ORDER vend_name DESC;



6
Filtering Data

In this chapter, you will learn how to use the SELECT statement’s WHERE clause to specify 
search conditions.

Using the WHERE Clause
Database tables usually contain large amounts of data, and you seldom need to retrieve all 
the rows in a table. More often than not, you’ll want to extract a subset of a table’s data 
as needed for specific operations or reports. Retrieving just the data you want involves 
specifying search criteria, also known as filter conditions.

Within a SELECT statement, you filter data by specifying search criteria in the WHERE
clause. You include the WHERE clause right after the table name (the FROM clause) as 
follows:

 Input

SELECT prod_name, prod_price
FROM products
WHERE prod_price = 2.50;

 Analysis

This statement retrieves two columns from the products table, but instead of return-
ing all rows, it returns only rows with the prod_price value 2.50, shown here:

 Output

+---------------+--------------- +
| prod_name     | prod_price     |
+---------------+--------------- +
| Carrots       |        2.50    |
| TNT (1 stick) |        2.50    |
+---------------+------------    +

This example uses a simple equality test: It checks to see if a column has a specified 
value, and it filters the data accordingly. But SQL enables you to do more than just test 
for equality.



44 Chapter 6 Filtering Data

Tip
SQL Versus Application Filtering You can filter data at the application level. To do 
this, you use the SQL SELECT statement to retrieve more data than is actually required for 
the client application, and the client code loops through the returned data to extract just 
the needed rows.

As a rule, this practice is strongly discouraged. Databases are optimized to perform 
filtering quickly and efficiently. Making the client application (or development language) 
do the database’s job dramatically impacts application performance and creates applica-
tions that cannot scale properly. In addition, if data is filtered at the client, the server 
has to send unneeded data across the network connections, resulting in wasted network 
bandwidth resources.

Caution
WHERE Clause Position When using both ORDER BY and WHERE clauses, make sure 
ORDER BY comes after WHERE; otherwise, you will get an error. (See Chapter 5, “Sorting 
Retrieved Data,” for more information on using ORDER BY.)

WHERE Clause Operators

New Term
Operator A special keyword used to join or change clauses within a WHERE clause. Also 
known as a logical operator.

The first WHERE clause we looked at tests for equality to determine whether a column 
contains a specific value. MySQL supports a whole range of conditional operators, some 
of which are listed in Table 6.1.

Table 6.1 WHERE Clause Operators

Operator Description

= Equality

<> Nonequality

!= Nonequality

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

BETWEEN Between two specified values



45WHERE Clause Operators

Checking Against a Single Value
We have already seen an example of testing for equality. Here’s one more:

 Input

SELECT prod_name, prod_price
FROM products
WHERE prod_name = 'fuses';

 Output

+-----------+-------------- +
| prod_name | prod_price    |
+-----------+-------------- +
| Fuses       |        3.42 |
+-----------+-------------- +

 Analysis

WHERE prod_name = 'fuses' returns a single row with the value Fuses. By default, 
MySQL is not case-sensitive when performing matches, and so fuses and Fuses match.

Now let’s look at a few examples that demonstrate the use of other operators.
This example lists all products that cost less than 10:

 Input

SELECT prod_name, prod_price
FROM products
WHERE prod_price < 10;

 Output

+---------------+---------------  +
| prod_name     | prod_price      |
+---------------+---------------  +
| .5 ton anvil   |          5.99  |
| 1 ton anvil    |          9.99  |
| Carrots        |          2.50  |
| Fuses          |          3.42  |
| Oil can        |          8.99  |
| Sling          |          4.49  |
| TNT (1 stick)  |          2.50  |
+--------------- +--------------- +

This statement retrieves all products that cost 10 or less (resulting in two additional 
matches):

 Input

SELECT prod_name, prod_price
FROM products
WHERE prod_price <= 10;



46 Chapter 6 Filtering Data

 Output

+----------------+------------ +
| prod_name       | prod_price |
+----------------+------------ +
| .5 ton anvil   |       5.99  |
| 1 ton anvil    |       9.99  |
| Bird seed      |      10.00  |
| Carrots        |       2.50  |
| Fuses          |       3.42  |
| Oil can        |       8.99  |
| Sling          |       4.49  |
| TNT (1 stick)  |       2.50  |
| TNT (5 sticks) |      10.00  |
+----------------+-------------+

Checking for Nonmatches
This example lists all products not made by vendor 1003:

 Input

SELECT vend_id, prod_name
FROM products
WHERE vend_id <> 1003;

 Output

+---------+---------------- +
| vend_id | prod_name       |
+---------+---------------- +
|     1001 | .5 ton anvil   |
|     1001 | 1 ton anvil    |
|     1001 | 2 ton anvil    |
|     1002 | Fuses          |
|     1005 | JetPack 1000   |
|     1005 | JetPack 2000   |
|     1002 | Oil can        |
+---------+---------------- +

Tip
When to Use Quotes If you look closely at the conditions used in the WHERE clauses 
in the preceding examples, you will notice that some values are enclosed within single 
quotes (such as 'fuses'), and others are not. The single quotes are used to delimit 
strings. If you are comparing a value against a column that is a string datatype, the 
delimiting quotes are required. Quotes are not used to delimit values used with numeric 
columns.



47

The following example is the same as the previous one except that this one uses the 
!= operator instead of <>:

 Input

SELECT vend_id, prod_name
FROM products
WHERE vend_id != 1003;

Tip
Use <> and != Interchangeably The operator != means not equal, so vend_id != 
1003 means “match all vendors where vend_id is not 1003.” The operator <> means less 
than or greater than, so vend_id <> 1003 means “match all vendors where vend_id is less 
than or greater than 1003 (but not the same).” As you can see, these two operators 
effectively do the same thing; you can use whichever one you prefer.

Checking for a Range of Values
To check for a range of values, you can use the BETWEEN operator. Its syntax is a little 
different from that of other WHERE clause operators because it requires two values: the 
beginning of the range and the end of the range. The BETWEEN operator can be used, for 
example, to check for all products that cost between 5 and 10 or for all dates that fall 
between specified start and end dates.

The following example demonstrates the use of the BETWEEN operator to retrieve all 
products with a price between 5 and 10:

 Input

SELECT prod_name, prod_price
FROM products
WHERE prod_price BETWEEN 5 AND 10;

 Output

+----------------+--------------- +
| prod_name        | prod_price   |
+----------------+--------------- +
| .5 ton anvil     |        5.99  |
| 1 ton anvil      |        9.99  |
| Bird seed        |       10.00  |
| Oil can          |        8.99  |
| TNT (5 sticks) |         10.00  |
+----------------+--------------- +

 Analysis

WHERE Clause Operators



48 Chapter 6 Filtering Data

As you can see in this example, when BETWEEN is used, two values must be specified—
the low end and the high end of the desired range. The two values must be separated 
by the AND keyword. BETWEEN matches all the values in the range, including the specified 
range start and end values.

Checking for No Value
When a table is created, the table designer can specify whether individual columns can 
contain no value. When a column contains no value, it is said to contain a NULL value.

New Term
NULL No value, as opposed to a field containing 0, or an empty string, or just spaces.

The SELECT statement has a special WHERE clause that can be used to check for 
columns with NULL values: the IS NULL clause. It looks like this:

 Input

SELECT prod_name
FROM products
WHERE prod_price IS NULL;

 Analysis

This statement returns a list of all products that have no price (that is, an empty prod_
price field, not a price of 0), and because there are none, no data is returned.

The customers table, however, does contain columns with NULL values. The cust_
email column contains NULL if a customer has no email address on file, and IS NULL can 
be used to identify these customers.

 Input

SELECT cust_name
FROM customers
WHERE cust_email IS NULL;

 Output

+------------ +
| cust_name   |
+------------ +
| Mouse House |
| E Fudd      |
+------------ +



49Challenges

Summary
In this chapter, you learned how to filter returned data by using the SELECT statement’s 
WHERE clause. You learned how to test for equality, nonequality, greater than and less 
than, value ranges, and NULL values.

Challenges

1. Write a SQL statement to retrieve the product ID (prod_id) and name (prod_name) 
from the Products table and return only products with a price of 9.49.

2. Write a SQL statement to retrieve the product ID (prod_id) and name (prod_name) 
from the Products table and return only products with a price of 9 or more.

3. Now you’ll test what you learned in Chapter 5 and this chapter. Write a SQL 
statement that retrieves the unique list of order numbers (order_num) from the 
OrderItems table for orders that contain 100 or more of any item.

4. Write a SQL statement that returns the product name (prod_name) and price 
(prod_price) from Products for all products priced between 3 and 6. Oh, and sort 
the results by price. (There are multiple solutions to this one, and we’ll revisit it in 
the next chapter, but you can solve it using what you’ve learned thus far.)

Caution
NULL and Nonmatches You might expect that when you filter to select all rows 
that do not have a particular value, rows with a NULL will be returned. But they will 
not. Because of the special meaning of NULL, the database does not know whether they 
match, and so they are not returned when filtering for matches or when filtering for 
nonmatches.

When filtering data, make sure to verify that the rows with NULL in the filtered 
column are really present in the returned data.



This page intentionally left blank 



7
Advanced Data Filtering

In this chapter, you’ll learn how to combine WHERE clauses to create powerful and sophis-
ticated search conditions. You’ll also learn how to use the NOT and IN operators.

Combining WHERE Clauses
All the WHERE clauses introduced in Chapter 6, “Filtering Data,” filter data using a single 
criterion. For a greater degree of filter control, MySQL allows you to specify multiple 
WHERE clauses. These clauses may be used in two ways: as AND clauses or as OR clauses.

Using the AND Operator
To filter by more than one column, you use the AND operator to append conditions to 
your WHERE clause. The following code demonstrates this:

 Input

SELECT prod_id, prod_price, prod_name
FROM products
WHERE vend_id = 1003 AND prod_price <= 10;

 Analysis

This SQL statement retrieves the product name and price for every product made by 
vendor 1003 as long as the price is 10 or less. The WHERE clause in this SELECT statement 
is made up of two conditions, and the keyword AND is used to join them. AND instructs 
MySQL to return only rows that meet all the conditions specified. If a product is made 
by vendor 1003 but costs more than 10, it is not retrieved. Similarly, products that cost 
less than 10 that are made by a vendor other than the one specified are not retrieved. 
The output generated by this SQL statement is as follows:

 Output

+---------+------------+----------------+
| prod_id | prod_price | prod_name      |
+---------+------------+----------------+
| FB      |      10.00 | Bird seed      |
| FC      |       2.50 | Carrots        |
| SLING   |       4.49 | Sling          |



52 Chapter 7 Advanced Data Filtering

| TNT1    |       2.50 | TNT (1 stick)  |
| TNT2    |      10.00 | TNT (5 sticks) |
+---------+------------+----------------+

New Term
AND A keyword used in a WHERE clause to specify that only rows matching all the 
specified conditions should be retrieved.

This example contains a single AND clause and is thus made up of two filter 
conditions. Additional filter conditions could be used as well, each separated by an AND
keyword.

Using the OR Operator
The OR operator is exactly the opposite of AND. The OR operator instructs MySQL to 
retrieve rows that match either condition.

Look at the following SELECT statement:

 Input

SELECT prod_name, prod_price
FROM products
WHERE vend_id = 1002 OR vend_id = 1003;

 Analysis

This SQL statement retrieves the product name and price for any products made by 
either of the two specified vendors. The OR operator tells MySQL to match either condi-
tion—not both. If an AND operator were used here, no data would be returned. (It would 
create a WHERE clause that can never be matched.) The output generated by this SQL 
statement is as follows:

 Output

+----------------+------------+
| prod_name      | prod_price |
+----------------+------------+
| Detonator      |      13.00 |
| Bird seed      |      10.00 |
| Carrots        |       2.50 |
| Fuses          |       3.42 |
| Oil can        |       8.99 |
| Safe           |      50.00 |
| Sling          |       4.49 |
| TNT (1 stick)  |       2.50 |
| TNT (5 sticks) |      10.00 |
+----------------+------------+



53Combining WHERE Clauses

Understanding the Order of Evaluation
WHERE clauses can contain any number of AND and OR operators. By combining the two 
operators, you can perform sophisticated and complex filtering.

But combining AND and OR operators presents an interesting problem. For example, say 
that you need a list of all products that cost 10 or more and that were made by vendors 
1002 and 1003. The following SELECT statement uses a combination of AND and OR
operators to build a WHERE clause for this search:

 Input

SELECT prod_name, prod_price
FROM products
WHERE vend_id = 1002
   OR vend_id = 1003
   AND prod_price >= 10;

 Output

+----------------+------------+
| prod_name      | prod_price |
+----------------+------------+
| Detonator      |      13.00 |
| Bird seed      |      10.00 |
| Fuses          |       3.42 |
| Oil can        |       8.99 |
| Safe           |      50.00 |
| TNT (5 sticks) |      10.00 |
+----------------+------------+

 Analysis

Look at these results. Two of the rows returned have prices less than 10—so, obvi-
ously, the rows were not filtered as intended. Why did this happen? Because of the order 
of evaluation. SQL (like most other languages) processes AND operators before OR opera-
tors. When SQL sees the preceding WHERE clause, it reads “products made by vendor 
1002 regardless of price and any products costing 10 or more made by vendor 1003.” In 
other words, because AND ranks higher in the order of evaluation, the wrong operators 
are joined together here.

The solution to this problem is to use parentheses to explicitly group related opera-
tors. Take a look at the following SELECT statement and its output:

 Input

SELECT prod_name, prod_price
FROM products

New Term
OR A keyword used in a WHERE clause to specify that any rows matching either of the 
specified conditions should be retrieved.



54 Chapter 7 Advanced Data Filtering

WHERE (vend_id = 1002 OR vend_id = 1003)
   AND prod_price >= 10;

 Output

+----------------+------------+
| prod_name      | prod_price |
+----------------+------------+
| Detonator      |      13.00 |
| Bird seed      |      10.00 |
| Safe           |      50.00 |
| TNT (5 sticks) |      10.00 |
+----------------+------------+

 Analysis

The only difference between this SELECT statement and the earlier one is that, in this 
statement, the first two WHERE clause conditions are enclosed within parentheses. Because 
parentheses have a higher order of evaluation than either AND or OR operators, MySQL 
first filters the OR condition within those parentheses. The SQL statement then looks for 
any products made by either vendor 1002 or vendor 1003 that cost 10 or greater, which 
is exactly what we want.

Tip
Using Parentheses in WHERE Clauses Whenever you write WHERE clauses that use 
both AND and OR operators, use parentheses to explicitly group the operators. Don’t ever 
rely on the default evaluation order, even if it is exactly what you want. There is no 
downside to using parentheses, and you are always better off eliminating any ambiguity.

Using the IN Operator
Parentheses have another very different use in WHERE clauses. The IN operator is used to 
specify a range of conditions, any of which can be matched. IN takes a comma-delimited 
list of valid values, all enclosed within parentheses. The following example demonstrates 
this:

 Input

SELECT prod_name, prod_price
FROM products
WHERE vend_id IN (1002,1003)
ORDER BY prod_name;

 Output

+----------------+------------+
| prod_name      | prod_price |
+----------------+------------+
| Bird seed      |      10.00 |



55Using the IN Operator

| Carrots        |       2.50 |
| Detonator      |      13.00 |
| Fuses          |       3.42 |
| Oil can        |       8.99 |
| Safe           |      50.00 |
| Sling          |       4.49 |
| TNT (1 stick)  |       2.50 |
| TNT (5 sticks) |      10.00 |
+----------------+------------+

 Analysis

The SELECT statement retrieves all products made by vendors 1002 and 1003. The IN
operator is followed by a comma-delimited list of valid values, and the entire list must be 
enclosed within parentheses.

You might be thinking that the IN operator accomplishes the same goal as OR—and 
that is correct. The following SQL statement accomplishes exactly the same thing as the 
previous example:

 Input

SELECT prod_name, prod_price
FROM products
WHERE vend_id  = 1002 OR vend_id = 1003
ORDER BY prod_name;

 Output

+----------------+------------+
| prod_name      | prod_price |
+----------------+------------+
| Bird seed      |      10.00 |
| Carrots        |       2.50 |
| Detonator      |      13.00 |
| Fuses          |       3.42 |
| Oil can        |       8.99 |
| Safe           |      50.00 |
| Sling          |       4.49 |
| TNT (1 stick)  |       2.50 |
| TNT (5 sticks) |      10.00 |
+----------------+------------+

There are several advantages to using the IN operator:

Q When you are working with long lists of valid options, the IN operator syntax is 
far cleaner and easier to read.

Q The order of evaluation is easier to manage when IN is used (as fewer operators 
are used).

Q IN operators almost always execute more quickly than lists of OR operators.
Q The biggest advantage of IN is that the IN operator can contain another SELECT

statement, enabling you to build highly dynamic WHERE clauses. You’ll look at this 
in detail in Chapter 14, “Working with Subqueries.”



56 Chapter 7 Advanced Data Filtering

Using the NOT Operator
The WHERE clause’s NOT operator has one function and one function only: It negates 
whatever condition comes next.

New Term
IN A keyword used in a WHERE clause to specify a list of values to be matched using an 
OR comparison.

New Term
NOT A keyword used in a WHERE clause to negate a condition.

The following example demonstrates the use of NOT. To list the products made by all 
vendors except vendor DLL01, you can use the following:

 Input

SELECT prod_name
FROM Products
WHERE NOT vend_id = ‘DLL01’
ORDER BY prod_name;

 Output

+----------------+
| prod_name      |
+----------------+
| .5 ton anvil   |
| 1 ton anvil    |
| 2 ton anvil    |
| Bird seed      |
| Carrots        |
| Detonator      |
| Fuses          |
| JetPack 1000   |
| JetPack 2000   |
| Oil can        |
| Safe           |
| Sling          |
| TNT (1 stick)  |
| TNT (5 sticks) |
+----------------+

 Analysis

The NOT here negates the condition that follows it. So instead of matching vend_id to 
DLL01, MySQL matches vend_id to anything that is not DLL01.



57Using the NOT Operator

This example could also be written using != instead of NOT (as you saw in Chapter 6):

 Input

SELECT prod_name
FROM Products
WHERE vend_id  != 'DLL01'
ORDER BY prod_name;

Actually, it could also be written as:

 Input

SELECT prod_name
FROM Products
WHERE vend_id  <> 'DLL01'
ORDER BY prod_name;

 Analysis

Why use NOT? Well, for simple WHERE clauses such as the ones shown here, there really 
is no advantage to using NOT.

But NOT is extremely useful in more complex clauses. For example, using NOT in 
conjunction with an IN operator makes it simple to find all rows that do not match a list 
of criteria. The following example demonstrates this. To list the products made by all 
vendors except vendors 1002 and 1003, you can use the following:

 Input

SELECT prod_name, prod_price
FROM products
WHERE vend_id NOT IN (1002,1003)
ORDER BY prod_name;

 Output

+--------------+------------+
| prod_name    | prod_price |
+--------------+------------+
| .5 ton anvil |       5.99 |
| 1 ton anvil  |       9.99 |
| 2 ton anvil  |      14.99 |
| JetPack 1000 |      35.00 |
| JetPack 2000 |      55.00 |
+--------------+------------+

 Analysis

The NOT here negates the condition that follows it. So instead of matching vend_id to 
1002 or 1003, MySQL matches vend_id to anything that is not 1002 or 1003.

So why use NOT? Well, for simple WHERE clauses, there really is no advantage to using 
NOT. NOT is useful in more complex clauses. For example, using NOT in conjunction with 
an IN operator makes it easy to find all rows that do not match a list of criteria.



58 Chapter 7 Advanced Data Filtering

Tip
There Is Often More Than One Solution As you’ve seen here, there is frequently 
more than one way to write a SQL statement. When you’re working with large sets 
of data, there may be performance differences, such as one statement being faster than 
another. But for smaller data sets, the syntax used is usually a matter of personal 
preference.

Note
NOT in MySQL MySQL supports the use of NOT to negate IN, BETWEEN, and EXISTS
clauses. This is quite different from most other DBMSs, which allow NOT to be used to 
negate any conditions.

Summary
This chapter picked up where the previous chapter left off and taught you how to 
combine WHERE clauses with the AND and OR operators. You also learned how to explicitly 
manage the order of evaluation and how to use the IN and NOT operators.

Challenges

1. Write a SQL statement to retrieve the vendor name (vend_name) from the Vendors
table and return only vendors in California. (This requires filtering by both country 
[USA] and state [CA]; after all, there could be a California outside of the United 
States.) Here’s a hint: The filter requires matching strings.

2. Write a SQL statement to find all orders where at least 100 of items BR01, BR02, 
or BR03 were ordered. You’ll want to return the order number (order_num), 
product ID (prod_id), and quantity for the OrderItems table and filter by both the 
product ID and quantity. Here’s a hint: Depending on how you write your filter, 
you may need to pay special attention to the order of evaluation.

3. Now let’s revisit a challenge from the previous lesson. Write a SQL statement that 
returns the product name (prod_name) and price (prod_price) from Products for all 
products priced between 3 and 6. Use the AND operator and sort the results by price.

4. What is wrong with the following SQL statement? Try to figure it out without 
running it.

SELECT vend_name
FROM Vendors
ORDER BY vend_name
WHERE vend_country = 'USA' AND vend_state = 'CA';



8
Using Wildcard Filtering

In this chapter, you’ll learn what wildcards are, how they are used, and how to perform 
wildcard searches by using the LIKE operator for sophisticated filtering of retrieved data.

Using the LIKE Operator
All the operators we have studied so far filter against known values. Whether match-
ing one or more values, testing for greater-than or less-than known values, or checking 
a range of values, the common denominator is that the values used in the filtering are 
known. But filtering data that way does not always work. For example, how could you 
search for all products that contained the text anvil within the product name? You cannot 
do that with simple comparison operators; it’s a job for wildcard searching.

You can use wildcards to create search patterns that can be compared against your 
data. For example, say that to find all products that contain the words anvil, you could 
construct a wildcard search pattern that finds the text anvil anywhere within a product 
name.

New Term
Wildcard A special character used to match part of a value.

New Term
Search pattern A search condition made up of literal text, wildcard characters, or any 
combination of the two.

The wildcards themselves are actually characters that have special meanings within 
SQL WHERE clauses, and SQL supports several wildcard types.

To use wildcards in search clauses, you use the LIKE operator. LIKE instructs MySQL 
to compare the search pattern that follows by using a wildcard match rather than a 
straight equality match.



60 Chapter 8 Using Wildcard Filtering

The Percent Sign (%) Wildcard
The most frequently used wildcard is the percent sign (%). Within a search string, %
means “match any number of occurrences of any character.” For example, to find all 
products that start with the word jet, you can issue the following SELECT statement:

 Input

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE 'jet%';

 Output

+---------+--------------+
| prod_id | prod_name    |
+---------+--------------+
| JP1000  | JetPack 1000 |
| JP2000  | JetPack 2000 |
+---------+--------------+

 Analysis

This example uses the search pattern 'jet%'. When this clause is evaluated, any value 
that starts with jet is retrieved. The % tells MySQL to accept any characters after the 
word jet, regardless of how many characters there are.

Note
Predicates When is an operator not an operator? When it is a predicate. Technically, 
LIKE is a predicate, not an operator. Be aware of this term in case you run across it in the 
MySQL documentation.

Note
Case-Sensitivity Depending on how MySQL is configured, searches might be 
case-sensitive, in which case 'jet%' would not match JetPack 1000.

Wildcards can be used anywhere within the search pattern, and multiple wildcards 
can be used. The following example uses two wildcards, one at either end of the pattern:

 Input

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE '%anvil%';



61Using the LIKE Operator

 Output

+---------+--------------+
| prod_id | prod_name    |
+---------+--------------+
| ANV01   | .5 ton anvil |
| ANV02   | 1 ton anvil  |
| ANV03   | 2 ton anvil  |
+---------+--------------+

 Analysis

The search pattern '%anvil%' means “match any value that contains the text anvil
anywhere within it, regardless of any characters before or after that text.”

You can also use wildcards in the middle of a search pattern, although doing that is 
rarely useful. The following example finds all products that begin with an s and end 
with an e:

 Input

SELECT prod_name
FROM products
WHERE prod_name LIKE 's%e';

It is important to note that, in addition to matching one or more characters, % also 
matches zero characters. % represents zero, one, or more characters at the specified 
location in the search pattern.

Note
Watch for Trailing Spaces Trailing spaces can interfere with wildcard matching. For 
example, if any of the anvils were saved with one or more spaces after the word anvil, 
the clause WHERE prod_name LIKE '%anvil' would not match them as there would be 
additional characters after the final l. One simple solution to this problem is to always 
append a final % to the search pattern. A better solution is to trim the spaces by using 
functions, as discussed in Chapter 11, “Using Data Manipulation Functions.”

Caution
Watch for NULL Although it might seem that the % wildcard matches anything, there is 
one exception: NULL. Not even the clause WHERE prod_name LIKE '%' will match a row 
with the value NULL as the product name.

The Underscore (_) Wildcard
Another useful wildcard is the underscore (_). The underscore is used just like %, but 
instead of matching multiple characters, the underscore matches just a single character.



62 Chapter 8 Using Wildcard Filtering

Take a look at this example:

 Input

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE '_ ton anvil';

 Output

+---------+-------------+
| prod_id | prod_name   |
+---------+-------------+
| ANV02   | 1 ton anvil |
| ANV03   | 2 ton anvil |
+---------+-------------+

 Analysis

The search pattern used in this WHERE clause specifies a wildcard followed by literal 
text. The results shown are the only rows that match the search pattern: The underscore 
matches 1 in the first row and 2 in the second row. It does not match the .5 ton anvil
product because the search pattern matches a single character, not two characters. By 
contrast, the following SELECT statement uses the % wildcard and returns three matching 
products:

 Input

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE '% ton anvil';

 Output

+---------+--------------+
| prod_id | prod_name    |
+---------+--------------+
| ANV01   | .5 ton anvil |
| ANV02   | 1 ton anvil  |
| ANV03   | 2 ton anvil  |
+---------+--------------+

 Analysis

Unlike %, which can match zero characters, _ always matches exactly one character.



63Challenges

Tips for Using Wildcards
As you can see, MySQL’s wildcards are extremely powerful. But that power comes with 
a price: Wildcard searches typically take far longer to process than any of the search types 
discussed to this point. Here are some tips to keep in mind when using wildcards:

Q Don’t overuse wildcards. If another search operator will do, use it instead.
Q When you use wildcards, try to not use them at the beginning of a search pattern 

unless absolutely necessary. Search patterns that begin with wildcards are the 
slowest to process.

Q Pay careful attention to the placement of the wildcard symbols. If they are 
misplaced, the data returned might not be what you intended.

Despite their drawbacks, wildcards are important and useful search tools, and you will 
use them frequently.

Summary
In this chapter, you learned what SQL wildcards are and how to use them in your 
WHERE clauses. You also learned that you should use wildcards carefully and only where 
necessary.

Challenges

1. Write a SQL statement to retrieve the product name (prod_name) and description 
(prod_desc) from the Products table and return only products that have the word 
toy in the description.

2. Now let’s flip things around. Write a SQL statement to retrieve the product name 
(prod_name) and description (prod_desc) from the Products table and return only 
products that don’t have the word toy in the description. This time, sort the results 
by product name.

3. Write a SQL statement to retrieve the product name (prod_name) and description 
(prod_desc) from the Products table and return only products that have both the 
words toy and carrots in the description. There are a couple of ways to do this, 
but for this challenge, use AND and two LIKE comparisons.

4. This one is a little trickier. I didn’t show you this syntax specifically, but see 
whether you can figure it out anyway, based on what you have learned thus far. 
Write a SQL statement to retrieve the product name (prod_name) and description 
(prod_desc) from the Products table and return only products where both the 
words toy and carrots appear in the description, in that order (that is, the word 
toy before the word carrots). Here’s a hint: You’ll only need one LIKE with three 
% symbols to do this.



This page intentionally left blank 



9
Searching Using Regular 

Expressions

In this chapter, you’ll learn how to use regular expressions within MySQL WHERE clauses 
for greater control over data filtering.

Understanding Regular Expressions
The filtering examples in the previous two chapters enabled you to locate data using 
matches, comparisons, and wildcard operators. For basic filtering (and even some not-
so-basic filtering), this might be enough. But as the complexity of filtering conditions 
grows, so does the complexity of the WHERE clauses themselves—and this is where regular 
expressions become useful.

A regular expression is a special string (that is, a set of characters) that is used to 
match text. If you need to extract phone numbers from a text file, for example, you 
might use a regular expression. If you need to locate all files with digits in the middle 
of their names, you might use a regular expression. If you want to find all repeated words 
in a block of text, you might use a regular expression. And if you want to replace all 
URLs on a page with actual HTML links to those same URLs, you might use a regular 
expression (or two).

Regular expressions are supported in all sorts of programming languages, text editors, 
operating systems, and more. Savvy programmers and network managers have long 
regarded regular expressions as a vital component of their technical toolboxes.

Regular expressions are created using the regular expression language, a specialized 
language designed to do everything just discussed and much more. Like any other language, 
regular expression language has special syntax and instructions that you must learn.

Note
To Learn More Full coverage of regular expressions is beyond the scope of this 
chapter. While the basics are covered here, for a more thorough introduction to regular 
expressions, you might want to obtain a copy of my book Learning Regular Expressions
(ISBN 9780134757063).



66 Chapter 9 Searching Using Regular Expressions

Using MySQL Regular Expressions
So what do regular expressions have to do with MySQL? As already explained, regular 
expressions are used to match text by comparing a pattern (the regular expression) with 
a string of text. MySQL provides rudimentary support for regular expressions with WHERE
clauses, allowing you to specify regular expressions that are used to filter data retrieved by 
using SELECT.

Note
Just a Subset of the Regular Expression Language If you are already familiar with 
regular expressions, take note. MySQL supports only a small subset of what most regular 
expression implementations support, and this chapter covers most of what is supported.

This will all become much clearer with some examples.

Basic Character Matching
We’ll start with a very simple example. The following statement retrieves all rows where 
the column prod_name contains the text 1000:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '1000'
ORDER BY prod_name;

 Output

+--------------- +
| prod_name      |
+--------------- +
| JetPack 1000   |
+--------------- +

 Analysis

This statement looks much like the ones that used LIKE in Chapter 8, “Using 
Wildcard Filtering,” except that the keyword LIKE has been replaced with REGEXP. This 
tells MySQL that what follows is to be treated as a regular expression (one that just 
matches the literal text 1000).

So, why bother using a regular expression? Well, in this example, regular expressions 
really add no value (and probably hurt performance), but consider this next example:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '.000'
ORDER BY prod_name;



67Using MySQL Regular Expressions

 Output

+--------------- +
| prod_name      |
+--------------- +
| JetPack 1000   |
| JetPack 2000   |
+--------------- +

 Analysis

Here the regular expression .000 is used. The period (.) is a special character in 
regular expression language. It means “match any single character,” and so both 1000 and 
2000 match and are returned.

Of course, this particular example could also be accomplished by using LIKE and 
wildcards (refer to Chapter 8).

Note
LIKE Versus REGEXP There is one very important difference between LIKE and REGEXP. 
Look at these two statements:

SELECT prod_name

FROM products

WHERE prod_name LIKE '1000'

ORDER BY prod_name;

and:

SELECT prod_name

FROM products

WHERE prod_name REGEXP '1000'

ORDER BY prod_name;

If you were to try them both, you’d discover that the first one returns no data, and 
the second one returns one row. Why is this?

As you saw in Chapter 8, LIKE matches an entire column. If the text to be matched 
exists in the middle of a column value, LIKE will not find it and will not return the 
row (unless wildcard characters are used). REGEXP, on the other hand, looks for matches 
within column values, and so if the text to be matched exists in the middle of a column 
value, REGEXP finds it and returns the row. This is a very important distinction.

So can REGEXP be used to match entire column values (so that it functions like LIKE)? 
Actually, yes, if you also use the ^ and $ anchors, as explained later in this chapter.



68 Chapter 9 Searching Using Regular Expressions

Performing OR Matches
To search for one of two strings (either one or the other), you use the pipe character (|), 
as shown here:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '1000|2000'
ORDER BY prod_name;

 Output

+--------------- +
| prod_name      |
+--------------- +
| JetPack 1000   |
| JetPack 2000   |
+--------------- +

 Analysis

Here the regular expression 1000|2000 is used. | is the regular expression OR operator. 
It means “match one or the other,” and so both 1000 and 2000 match and are returned.

Using | is functionally similar to using OR statements in SELECT statements, with 
multiple OR conditions being consolidated into a single regular expression.

Tip
Matches Are Not Case-Sensitive Regular expression matching in MySQL is not 
case-sensitive; that is, either case will be matched. To force case-sensitivity, you can use 
the BINARY keyword, as in this example:

WHERE prod_name REGEXP BINARY 'JetPack .000'

Tip
More Than Two OR Conditions You can specify more than two OR conditions. For 
example, you can use '1000|2000|3000' to match 1000 or 2000 or 3000.

Matching One of Several Characters
The character . matches any single character. But what if you want to match only 
specific characters? You can do this by specifying a set of characters enclosed within 
[ and ], as shown here:

 Input

SELECT prod_name
FROM products



69Using MySQL Regular Expressions

WHERE prod_name REGEXP '[123] Ton'
ORDER BY prod_name;

 Output

+-------------- +
| prod_name     |
+-------------- +
| 1 ton anvil   |
| 2 ton anvil   |
+-------------- +

 Analysis

Here the regular expression [123] Ton is used. [123] defines a set of characters, and 
it says to match 1 or 2 or 3. In this case, both 1 ton and 2 ton match and are returned 
(and there is no 3 ton).

As you have just seen, [] is another form of an OR statement. In fact, the regular 
expression [123] Ton is shorthand for [1|2|3] Ton, which would also work. But the 
[] characters are needed to define what the OR statement is looking for. To better 
understand this, look at this example:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '1|2|3 Ton'
ORDER BY prod_name;

 Output

+---------------- +
| prod_name       |
+---------------- +
| 1 ton anvil     |
| 2 ton anvil     |
| JetPack 1000    |
| JetPack 2000    |
| TNT (1 stick)   |
+---------------- +

 Analysis

Well, this doesn’t work. The two required rows are retrieved, but so are three others. 
This happens because MySQL assumes that you mean to match 1 ton or 2 ton or 3 
ton. The | character applies to the entire string unless it is enclosed with a set.

Sets of characters can also be negated. That is, you can tell MySQL to match 
anything except the specified characters. To negate a character set, place a ^ at the start of 
the set. So, whereas [123] matches characters 1, 2, or 3, [^123] matches anything except 
those characters.



70 Chapter 9 Searching Using Regular Expressions

Matching Ranges
You can use a set to define one or more characters to be matched. For example, the 
following set matches digits 0 through 9:

[0123456789]

To simplify this type of set, you can use - to define a range. The following is 
functionally identical to [0123456789]:

[0-9]

Ranges are not limited to complete sets, so [1-3] and [6-9] are valid ranges, too. 
In addition, ranges need not be numeric; for example, [a-z] will match any alphabetical 
character.

Here is an example:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '[1-5] Ton'
ORDER BY prod_name;

 Output

+--------------- +
| prod_name      |
+--------------- +
| .5 ton anvil   |
| 1 ton anvil    |
| 2 ton anvil    |
+--------------- +

 Analysis

Here the regular expression [1-5] Ton is used. [1-5] defines a range, and this 
expression means “match 1 through 5.” In this case, three matches are returned. .5 ton
is returned because 5 ton matches (without the . character).

Matching Special Characters
The regular expression language is made up of special characters that have specific 
meanings. You’ve already seen ., [], |, and -, and there are others, too. So if you need to 
match those characters, how can you do it? For example, if you want to find values that 
contain the . character, how can you search for it? Look at this example:

 Input

SELECT vend_name
FROM vendors
WHERE vend_name REGEXP '.'
ORDER BY vend_name;



71Using MySQL Regular Expressions

 Output

+----------------- +
| vend_name        |
+----------------- +
| ACME             |
| Anvils R Us      |
| Furball Inc.     |
| Jet Set          |
| Jouets Et Ours   |
| LT Supplies      |
+----------------- +

 Analysis

This did not work. . matches any character, and so every row is retrieved.
To match special characters, you need to precede them with \\. So, for example, 

\\- means “find -,” and, as shown in this example, \\. means “find .”:

 Input

SELECT vend_name
FROM vendors
WHERE vend_name REGEXP '\\.'
ORDER BY vend_name;

 Output

+--------------- +
| vend_name      |
+--------------- +
| Furball Inc.   |
+--------------- +

 Analysis

This works. \\. matches ., and so only a single row is retrieved. This process is 
known as escaping, and all characters that have special significance within regular 
expressions must be escaped this way—including ., |, [], and all of the other special 
characters used thus far.

\\ can also be used to refer to metacharacters (that is, characters that have specific 
meanings), such as the ones listed in Table 9.1.

Table 9.1 White Space Metacharacters

Metacharacter Description

\\f Form feed

\\n Line feed

\\r Carriage return

\\t Tab

\\v Vertical tab



72 Chapter 9 Searching Using Regular Expressions

Matching Character Classes
There are matches that you’ll find yourself using frequently: digits, all alphabetical 
characters, all alphanumerical characters, and so on. To make working with these 
matches easier, you can use predefined character sets known as character classes. Table 9.2 
describes the available character classes.

Table 9.2 Character Classes

Class Description

[:alnum:] Any letter or digit (same as [a-zA-Z0-9])

[:alpha:] Any letter (same as [a-zA-Z])

[:blank:] Space or tab (same as [\\t ])

[:cntrl:] ASCII control characters (ASCII 0 through 31 and 127)

[:digit:] Any digit (same as [0-9])

[:graph:] Any printable character (same as [:print:] but excludes space)

[:lower:] Any lowercase letter (same as [a-z])

[:print:] Any printable character

[:punct:] Any character that is in neither [:alnum:] nor [:cntrl:]

[:space:] Any white space character, including the space (same as [\\f\\n\\r\\
t\\v ])

[:upper:] Any uppercase letter (same as [A-Z])

[:xdigit:] Any hexadecimal digit (same as [a-fA-F0-9])

Matching Multiple Instances
All of the regular expressions used thus far attempt to match a single occurrence. If 
there is a match, the row is retrieved; if there is not a match, nothing is retrieved. But 
sometimes you’ll require greater control over the number of matches. For example, you 
might want to locate all numbers, regardless of how many digits a number contains, or 

Tip
To Match \ To match the backslash character itself (\), you need to use \\\.

Note
\ or \\? With most regular expression implementations, you use a single backslash to 
escape special characters in order to use them as literals. MySQL, however, requires two 
backslashes. (MySQL interprets one of the backslashes, and the regular expression library 
interprets the other one.)



73Using MySQL Regular Expressions

you might want to locate a word but also want to be able to accommodate a trailing s if 
one exists, and so on.

These sorts of matches can be accomplished by using the regular expressions 
repetition metacharacters, listed in Table 9.3.

Table 9.3 Repetition Metacharacters

Metacharacter Description

* Zero or more matches

+ One or more matches (equivalent to {1,})

? Zero or one match (equivalent to {0,1})

{n} Specified number of matches

{n,} No fewer than a specified number of matches

{n,m} Range of matches (m not to exceed 255)

Consider this example:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '\\([0-9] sticks?\\)'
ORDER BY prod_name;

 Output

+----------------- +
| prod_name        |
+----------------- +
| TNT (1 stick)    |
| TNT (5 sticks)   |
+----------------- +

 Analysis

The regular expression \\([0-9] sticks?\\) requires some explanation. \\( matches 
(, [0-9] matches any digit (1 and 5 in this example), sticks? matches stick and sticks
(the ? after the s makes that s optional because ? matches 0 or 1 occurrence of whatever 
it follows), and \\) matches the closing ). Without the ? metacharacter, it would be very 
difficult to match both stick and sticks.

Here’s an example that tries to match four consecutive digits:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '[[:digit:]]{4}'
ORDER BY prod_name;



74 Chapter 9 Searching Using Regular Expressions

 Output

+--------------- +
| prod_name      |
+--------------- +
| JetPack 1000   |
| JetPack 2000   |
+--------------- +

 Analysis

As explained previously, [:digit:] matches any digit, and so [[:digit:]] is a set 
of digits. {4} requires exactly four occurrences of whatever it follows (in this case, any 
digit), and so [[:digit:]]{4} matches any four consecutive digits.

It is worth noting that when using regular expressions, there is almost always more 
than one way to write a specific expression. The previous example could also be written 
as follows:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '[0-9][0-9][0-9][0-9]'
ORDER BY prod_name;

Anchors
All of the examples thus far have matched text anywhere within a string. To match text 
at specific locations, you need to use anchor metacharacters, as listed in Table 9.4.

Table 9.4 Anchor Metacharacters

Metacharacter Description

^ Start of text

$ End of text

[[:<:]] Start of word

[[:>:]] End of word

For example, what if you wanted to find all products that start with a number 
(including numbers that start with a decimal point)? A simple search for [0-9\\.] (or 
[[:digit:]\\.]) would not work because it would find matches anywhere within the 
text. The solution is to use the ^ anchor, as shown here:

 Input

SELECT prod_name
FROM products
WHERE prod_name REGEXP '^[0-9\\.]'
ORDER BY prod_name;



75Summary

 Output

+--------------- +
| prod_name      |
+--------------- +
| .5 ton anvil   |
| 1 ton anvil    |
| 2 ton anvil    |
+--------------- +

 Analysis

^ matches the start of a string. Therefore, ^[0-9\\.] matches . or any digit only if 
they are the first characters within a string. Without the ^, four other rows would be 
retrieved, too (those that have digits in the middle).

Note
The Dual-Purpose ^ ^ has two uses. It can be used within a set (defined using 
[ and ]) to negate that set. Otherwise, it is used to refer to the start of a string.

Note
Making REGEXP Behave Like LIKE Earlier in this chapter, I mentioned that LIKE and 
REGEXP behave differently in that LIKE matches an entire string, and REGEXP matches 
substrings, too. When you use anchors, you can make REGEXP behave just like LIKE by 
simply starting each expression with ^ and ending it with $.

Tip
Simple Regular Expression Testing You can use SELECT to test regular expressions 
without using database tables. REGEXP checks always return 0 (for no match) or 1 (for 
a match). You can use REGEXP with literal strings to test expressions and to experiment 
with them. Here’s an example:

SELECT 'hello' REGEXP '[0-9]';

This example would return 0 because there are no digits in the text hello.

Summary
In this chapter, you learned the basics of regular expressions and how to use them in 
MySQL SELECT statements via the REGEXP keyword.



76 Chapter 9 Searching Using Regular Expressions

Challenges

1. Use regular expressions to return every product whose name ends with a number.
2. In this chapter, you learned how to use REGEXP to match text containing digits. Can 

you figure out how to match only products with no digits in their names? Here’s a 
hint: You can negate an entire match (as you learned in Lesson 7, “Advanced Data 
Filtering”).

3. This final one is a little trickier. Some of the products listed in products have 
names that are made up of more than one word. Use regular expressions to return 
only the products with names made up of three or more words. Here’s a hint: Look 
for spaces between the words.



10
Creating Calculated Fields

In this chapter, you will learn what calculated fields are, how to create them, and how to 
use aliases to refer to them from within your application.

Understanding Calculated Fields
Data stored within a database’s tables is often not available in the exact format needed by 
your applications. Here are some examples:

Q You need to display a field containing the name of a company along with the 
company’s location, but that information is stored in separated table columns.

Q City, state, and zip code are stored in separate columns (as they should be), 
but your mailing label printing program needs them retrieved as one correctly 
formatted field.

Q Column data is in mixed upper- and lowercase, and your report needs data 
presented in all uppercase.

Q An order items table stores item price and quantity but not the expanded price 
(that is price multiplied by quantity) for each item. To print invoices, you need 
that expanded price.

Q You need totals, averages, or other calculations based on table data.

In each of these examples, the data stored in the table is not exactly what your 
application needs. Rather than retrieve the data as it is and then reformat it within your 
client application or report, you want to be able to retrieve converted, calculated, or 
reformatted data directly from the database.

This is where calculated fields come in. Unlike all the columns retrieved in the 
chapters thus far, calculated fields don’t actually exist in database tables. Rather, a 
calculated field is created on-the-fly within a SQL SELECT statement.

New Term
Field Essentially the same thing as column. These terms are often used interchangeably, 
although database columns are typically called columns and the term fields is normally 
used in conjunction with calculated fields.



78 Chapter 10 Creating Calculated Fields

It is important to note that only the database knows which columns in a SELECT
statement are actual table columns and which are calculated fields. From the perspective 
of a client (for example, your application), a calculated field’s data is returned in the same 
way as data from any other column.

Tip
Client Versus Server Formatting Many of the conversions and reformatting 
operations that can be performed within SQL statements can also be performed 
directly in a client application. However, as a rule, it is far quicker to perform these 
operations on a database server than it is to perform them within a client because 
database management systems (DBMSs) are built to perform this type of processing 
quickly and efficiently.

Concatenating Fields
To demonstrate working with calculated fields, let’s start with a simple example: creating 
a title made up of two columns.

The vendors table contains vendor name and address information. Imagine that you 
are generating a vendor report and need to list the vendor location as part of the vendor 
name in the format name (location).

The report wants a single value, and the data in the table is stored in two columns: 
vend_name and vend_country. In addition, you need to surround vend_country with 
parentheses, and those are definitely not stored in the database table. The SELECT state-
ment that returns the vendor names and locations is simple enough, but how would you 
create the combined value that you need?

The solution is to concatenate the two columns. In MySQL SELECT statements, you 
can concatenate columns by using the Concat() function.

New Term
Concatenate To join values together (by appending them to each other) to form a 
single long value.

Tip
MySQL Is Different Most DBMSs use the operators + or || for concatenation; 
MySQL uses the Concat() function. Keep this in mind when converting SQL statements 
to MySQL.



79Concatenating Fields

Here’s an example of using the Concat() function:

 Input

SELECT Concat(vend_name, ' (', vend_country, ')')
FROM vendors
ORDER BY vend_name;

 Output

+--------------------------------------------+
| Concat(vend_name, ' (', vend_country, ')') |
+--------------------------------------------+
| ACME (USA)                                 |
| Anvils R Us (USA)                          |
| Furball Inc. (USA)                         |
| Jet Set (England)                          |
| Jouets Et Ours (France)                    |
| LT Supplies (USA)                          |
+--------------------------------------------+

 Analysis

Concat() concatenates strings, appending them to each other to create one bigger 
string. Concat() requires one or more values to be specified, and the values need to be 
separated by commas. The SELECT statements in this example concatenate four elements:

Q The name stored in the vend_name column
Q A string containing a space and an open parenthesis
Q The state stored in the vend_country column
Q A string containing the close parenthesis

As you can see in the output, the SELECT statement returns a single column (a calcu-
lated field) that contains all four of these elements as one unit.

Back in Chapter 8, “Using Wildcard Filtering,” I mentioned the need to trim data in 
order to remove any trailing spaces. This can be done using the MySQL RTrim() func-
tion, as shown here:

 Input

SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')')
FROM vendors
ORDER BY vend_name;

 Analysis

The RTrim() function trims all spaces from the right of a value. When you use 
RTrim(), the individual columns are all trimmed properly.



80 Chapter 10 Creating Calculated Fields

Using Aliases
The SELECT statement that is used to concatenate the address field works well, as you can 
see in the previous output. But what is the name of the new calculated column? Well, 
the truth is, it has no name; it is simply a value. Although this can be fine if you are just 
looking at the results in a SQL query tool, an unnamed column cannot be used within a 
client application because the client has no way to refer to that column.

To solve this problem, SQL supports column aliases. An alias is an alternative name 
for a field or value. You assign aliases by using the AS keyword. Take a look at the 
following SELECT statement:

 Input

SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')')
   AS vend_title
FROM vendors
ORDER BY vend_name;

 Output

+-------------------------+
| vend_title              |
+-------------------------+
| ACME (USA)              |
| Anvils R Us (USA)       |
| Furball Inc. (USA)      |
| Jet Set (England)       |
| Jouets Et Ours (France) |
| LT Supplies (USA)       |
+-------------------------+

 Analysis

Note
The Trim() Functions In addition to RTrim() (which, as just seen, trims the right 
side of a string), MySQL supports the use of LTrim() (which trims the left side of a 
string) and Trim() (which trims both the right and left sides).

Tip
Functions Are Not Case-Sensitive As MySQL functions are not case-sensitive, you 
can concatenate by using Concat(), concat() and even CONCAT(). It comes down to 
personal preference, and you can feel free to use any style you prefer. But please be 
consistent: Whatever style you opt for, stick with it. Doing so will make your code 
much easier to read and maintain in the future.



81Performing Mathematical Calculations

This SELECT statement is the same as the one used in the previous code snippet, 
except that here the calculated field is followed by the text AS vend_title. This instructs 
SQL to create a calculated field named vend_title that contains the results of the speci-
fied calculation. As you can see in the output, the results are the same as before, but the 
column is now named vend_title, and any client application can refer to this column by 
name, just as it would to any actual table column.

Tip
Other Uses for Aliases Aliases have other uses, too. Some common uses include 
renaming a column if the table column name contains illegal characters (for example, 
spaces) and expanding a column name if the original name is either ambiguous or easily 
misread.

Note
Derived Columns Aliases are also sometimes referred to as derived columns. These two 
terms mean the same thing.

Performing Mathematical Calculations
Another frequent use for calculated fields is performing mathematical calculations on 
retrieved data. Let’s take a look at an example. The orders table contains all orders 
received, and the orderitems table contains the individual items within each order. The 
following SQL statement retrieves all the items in order number 20005:

 Input

SELECT prod_id, quantity, item_price
FROM orderitems
WHERE order_num = 20005;

 Output

+---------+----------+------------+
| prod_id | quantity | item_price |
+---------+----------+------------+
| ANV01   |       10 |       5.99 |
| ANV02   |        3 |       9.99 |
| TNT2    |        5 |      10.00 |
| FB      |        1 |      10.00 |
+---------+----------+------------+



82 Chapter 10 Creating Calculated Fields

The item_price column contains the per-unit price for each item in an order. To 
expand the item price (item price multiplied by quantity ordered), you simply use the 
following:

 Input

SELECT prod_id,
       quantity,
       item_price,
       quantity*item_price AS expanded_price
FROM orderitems
WHERE order_num = 20005;

 Output

+---------+----------+------------+----------------+
| prod_id | quantity | item_price | expanded_price |
+---------+----------+------------+----------------+
| ANV01   |       10 |       5.99 |          59.90 |
| ANV02   |        3 |       9.99 |          29.97 |
| TNT2    |        5 |      10.00 |          50.00 |
| FB      |        1 |      10.00 |          10.00 |
+---------+----------+------------+----------------+

 Analysis

The expanded_price column shown in the previous output is a calculated field; the 
calculation is simply quantity*item_price. Once this calculated column is created, the 
client application can use it just as it would any other column.

MySQL supports the basic mathematical operators listed in Table 10.1. In addi-
tion, you can use parentheses to establish the order of precedence. Refer to Chapter 7, 
“Advanced Data Filtering,” for an explanation of precedence.

Table 10.1 MySQL Mathematical Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

Tip
How to Test Calculations SELECT provides a great way to test and experiment with 
functions and calculations. Although SELECT is usually used to retrieve data from a table, 
the FROM clause may be omitted to simply access and work with expressions. For exam-
ple, SELECT 3 * 2; would return 6, SELECT Trim('   abc   '); would return abc, and 
SELECT Now() uses the Now() function to return the current date and time. You get the 
idea, and you can learn more by using SELECT to experiment.



83Challenges

Summary
In this chapter, you learned what calculated fields are and how to create them. You saw 
examples demonstrating the use of calculated fields for both string concatenation and 
mathematical operations. In addition, you learned how to create and use aliases so your 
application can refer to calculated fields.

Challenges

1. A common use for aliases is to rename table column fields in retrieved results 
(perhaps to match specific reporting or client needs). Write a SQL statement that 
retrieves vend_id, vend_name, vend_address, and vend_city from Vendors and 
rename vend_name to vname, vend_city to vcity, and vend_address to vaddress. 
Sort the results by vendor name; for this you can use either the original name or 
the new name.

2. Our example store is running a sale, and all products are 10% off. Write a SQL 
statement that returns prod_id, prod_price, and sale_price from the Products
table. sale_price is a calculated field that contains the sale price. Here’s a hint: You 
can multiply by 0.9 to get 90% of the original value (and thus the 10% off price).



This page intentionally left blank 



11
Using Data Manipulation 

Functions

In this chapter, you’ll learn what functions are, what types of functions MySQL supports, 
and how to use these functions.

Understanding Functions
Like almost any other computer language, SQL supports the use of functions to 
manipulate data. Functions are operations that are usually performed on data, typically to 
facilitate conversion and manipulation.

An example of a function is the RTrim() function that we used in the last chapter to 
trim any spaces from the end of a string.

Note
Functions Are Less Portable Than SQL Code that runs on multiple systems is said 
to be portable. Most SQL statements are relatively portable, and when differences between 
SQL implementations occur, they are usually not very difficult to deal with. Functions, 
on the other hand, tend to be far less portable. Just about every major database manage-
ment system (DBMS) supports functions that other DBMSs don’t, and sometimes the 
differences are significant.

With code portability in mind, many SQL programmers opt not to use any 
implementation-specific features. Although this is a somewhat noble and idealistic view, 
it is not always in the best interests of application performance. If you opt not to use 
implementation-specific functions, you make your application code work harder. It must 
use other methods to do what the DBMS could have done more efficiently.

If you decide to use implementation-specific functions, make sure you comment your 
code well, so that at a later date you (or another developer) will know exactly to which 
SQL implementation you were writing.



86 Chapter 11 Using Data Manipulation Functions

Using Functions
Most SQL implementations support the following types of functions:

Q Text: These functions are used to manipulate strings of text (for example, 
trimming or padding values and converting values to upper- and lowercase).

Q Numeric: These functions are used to perform mathematical operations on 
numeric data (for example, returning absolute numbers and performing algebraic 
calculations).

Q Date and time: These functions are used to manipulate date and time values 
and to extract specific components from these values (for example, returning 
differences between dates and checking date validity).

Q System: These functions return information specific to the DBMS being used (for 
example, returning user login information or checking version specifics).

Text Manipulation Functions
You’ve already seen an example of text-manipulation functions in the last chapter: You 
saw how to use the RTrim() function to trim white space from the end of a column 
value. Here is another example, this time using the Upper() function:

 Input

SELECT vend_name, Upper(vend_name) AS vend_name_upcase
FROM vendors
ORDER BY vend_name;

 Output

+----------------+------------------+
| vend_name      | vend_name_upcase |
+----------------+------------------+
| ACME           | ACME             |
| Anvils R Us    | ANVILS R US      |
| Furball Inc.   | FURBALL INC.     |
| Jet Set        | JET SET          |
| Jouets Et Ours | JOUETS ET OURS   |
| LT Supplies    | LT SUPPLIES      |
+----------------+------------------+

 Analysis

As you can see, Upper() converts text to uppercase, and so in this example, each 
vendor is listed twice: The first time it is listed exactly as it is stored in the vendors table, 
and then it is converted to uppercase in the column vend_name_upcase.

Table 11.1 lists some commonly used text-manipulation functions.



87Using Functions

Table 11.1 Commonly Used Text-Manipulation Functions

Function Description

Left() Returns characters from the left of a string

Length() Returns the length of a string

Locate() Finds a substring within a string

Lower() Converts a string to lowercase

LTrim() Trims white space from the left of a string

Right() Returns characters from the right of a string

RTrim() Trims white space from the right of a string

Soundex() Returns a string’s SOUNDEX value

SubString() Returns characters from within a string

Upper() Converts a string to uppercase

One item in Table 11.1 requires further explanation. SOUNDEX is an algorithm 
that converts any string of text into an alphanumeric pattern that describes the phonetic 
representation of that text. SOUNDEX takes into account similar-sounding characters 
and syllables to enable strings to be compared based on how they sound rather than how 
they have been typed. Although SOUNDEX is not a SQL concept, MySQL (like many 
other DBMSs) offers SOUNDEX support.

Here’s an example of using the Soundex() function. Customer Coyote Inc. is in the 
customers table and has a contact named Y. Lee. But what if that is a typo, and the 
contact is actually supposed to be Y. Lie? Obviously, searching by the correct contact 
name will return no data, as shown here:

 Input

SELECT cust_name, cust_contact
FROM customers
WHERE cust_contact = 'Y. Lie';

 Output

+-------------+--------------+
| cust_name   | cust_contact |
+-------------+--------------+

Now try the same search using the Soundex() function to match all contact names 
that sound similar to Y. Lie:

 Input

SELECT cust_name, cust_contact
FROM customers
WHERE Soundex(cust_contact) = Soundex('Y Lie');



88 Chapter 11 Using Data Manipulation Functions

 Output

+-------------+--------------+
| cust_name   | cust_contact |
+-------------+--------------+
| Coyote Inc. | Y Lee        |
+-------------+--------------+

 Analysis

In this example, the WHERE clause uses the Soundex() function to convert both the 
cust_contact column value and the search string to their SOUNDEX values. Because 
Y. Lee and Y. Lie sound alike, their SOUNDEX values match, and so the WHERE clause 
correctly filters the desired data.

Note
Understanding SOUNDEX In case you are curious about how the Soundex()
function works its magic, I’ll tell you the secret: SOUNDEX is a formula that converts 
any string of text into a four-character value that represents its sound. The WHERE state-
ment used above simply obtains the SOUNDEX value for Y Lie and compares it to the 
SOUNDEX value for every contact in the table:

WHERE Soundex(cust_contact) = Soundex('Y Lie');

If you’re interested, you can use this SQL statement to see every contact and its 
SOUNDEX value:

SELECT cust_contact,

       SOUNDEX(cust_contact) AS cust_contact_soundex

FROM customers

Date and Time Manipulation Functions
Dates and times are stored in tables using special datatypes with special internal formats 
so they can be sorted or filtered quickly and efficiently and in order to save physical 
storage space.

The format used to store dates and times is usually of no use to your applications, 
and so date and time functions are almost always used to read, expand, and manipulate 
these values. Because of this, date and time manipulation functions are some of the most 
important functions in the MySQL language.

Table 11.2 lists some commonly used date and time manipulation functions.

Table 11.2 Commonly Used Date and Time Manipulation Functions

Function Description

AddDate() Adds to a date (days, weeks, and so on)

AddTime() Adds to a time (hours, minutes, and so on)



89Using Functions

Function Description

CurDate() Returns the current date

CurTime() Returns the current time

Date() Returns the date portion of a datetime value

DateDiff() Calculates the difference between two dates

Date_Add() Does date arithmetic 

Date_Format() Returns a formatted date or time string

Day() Returns the day portion of a date

DayOfWeek() Returns the day of week for a date

Hour() Returns the hour portion of a time

Minute() Returns the minute portion of a time

Month() Returns the month portion of a date

Now() Returns the current date and time

Second() Returns the second portion of a time

Time() Returns the time portion of a datetime value

Year() Returns the year portion of a date

This would be a good time to revisit data filtering using WHERE. Thus far we have 
filtered data by using WHERE clauses that compare numbers and text, but you frequently 
need to filter data by date. Filtering by date requires some extra care and the use of 
special MySQL functions.

The first thing to keep in mind is the date format used by MySQL. Whenever you 
specify a date, whether to insert or update table values or to filter using a WHERE clause, 
the date must be in the format yyyy-mm-dd. So, for September 1, 2023, you specify 
2023-09-01. Although other date formats might be recognized, this is the preferred date 
format because it eliminates ambiguity. (Is 04/05/06 May 4, 2006, or April 5, 2006, or 
May 6, 2004?)

Tip
Always Use Four-Digit Years MySQL supports two-digit years. For example, it 
treats the years 00–69 as 2000–2069 and the years 70–99 as 1970–1999. While these 
might in fact be the intended years, it is far safer to always use a four-digit year so 
MySQL does not have to make any assumptions for you.



90 Chapter 11 Using Data Manipulation Functions

A basic date comparison is simple enough:

 Input

SELECT cust_id, order_num
FROM orders
WHERE order_date = '2023-09-01';

 Output

+---------+-----------+
| cust_id | order_num |
+---------+-----------+
|   10001 |     20005 |
+---------+-----------+

 Analysis

The SELECT statement worked in this case. It retrieved a single order record—one 
with an order_date of 2023-09-01.

But is using WHERE order_date = '2023-09-01' safe? order_date has the datetime 
datatype. This type stores dates along with time values. The values in our example tables 
all have times of 00:00:00, but that might not always be the case. What if order dates are 
stored using the current date and time (so you not only know the order date but also the 
time of day the order was placed)? In this case, WHERE order_date = '2023-09-01' fails 
if, for example, the stored order_date value is 2023-09-01 11:30:05. Even though a row 
with that date is present, it is not retrieved because the WHERE match fails.

The solution is to instruct MySQL to only compare the specified date to the date 
portion of the column instead of using the entire column value. To do this, you must use 
the Date() function. Date(order_date) instructs MySQL to extract just the date part of 
the column, and so a safer SELECT statement is as follows:

 Input

SELECT cust_id, order_num
FROM orders
WHERE Date(order_date) = '2023-09-01';

Tip
If You Mean Date, Use Date() It’s a good practice to use Date() if what you want is 
just the date, even if you know that the column contains only dates. This way, if a date-
time value somehow ends up in the table in the future, your SQL won’t break. Oh, and 
yes, there is a Time() function, too, and you should use it when you want the time.

Now that you know how to use dates to test for equality, using all of the other 
operators (introduced in Chapter 6, “Filtering Data”) should be self-explanatory.



91Using Functions

But one other type of date comparison warrants explanation. What if you wanted to 
retrieve all orders placed in September 2023? A simple equality test does not work as it 
matches the day of month, too. There are several solutions, one of which follows:

 Input

SELECT cust_id, order_num
FROM orders
WHERE Date(order_date) BETWEEN '2023-09-01'
                       AND '2023-09-30';

 Output

+---------+-----------+
| cust_id | order_num |
+---------+-----------+
|   10001 |     20005 |
|   10003 |     20006 |
|   10004 |     20007 |
+---------+-----------+

 Analysis

Here a BETWEEN operator is used to define 2023-09-01 and 2023-09-30 as the range of 
dates to match.

Here’s another solution (one that won’t require you to remember how many days are 
in each month or worry about February in leap years):

 Input

SELECT cust_id, order_num
FROM orders
WHERE Year(order_date) = 2023
      AND Month(order_date) = 9;

 Analysis

Year() is a function that returns the year from a date (or a datetime). Similarly, 
Month() returns the month from a date. WHERE Year(order_date) = 2023 AND 
Month(order_date) = 9 thus retrieves all rows that have an order_date in year 2023 and 
in month 9.

Tip
How to Ignore Time Using functions like Year(), Month(), and Day() allows you to 
work with dates without worrying about any time values that may be stored with them.

Numeric Manipulation Functions
Numeric manipulation functions do what it sounds like they do: manipulate numeric 
data. These functions tend to be used primarily for algebraic, trigonometric, or geomet-
ric calculations and, therefore, are not as frequently used as string or date and time 
manipulation functions.



92 Chapter 11 Using Data Manipulation Functions

The ironic thing is that of all the functions found in the major DBMSs, the numeric 
functions are the ones that are most uniform and consistent. Table 11.3 lists some of the 
most commonly used numeric manipulation functions.

Table 11.3 Commonly Used Numeric Manipulation Functions

Function Description

Abs() Returns the absolute value of a specified number

Cos() Returns the trigonometric cosine of a specified angle

Exp() Returns the exponential value of a specified number

Mod() Returns the remainder of a division operation

Pi() Returns the value of pi

Rand() Returns a random number

Sin() Returns the trigonometric sine of a specified angle

Sqrt() Returns the square root of a specified number

Tan() Returns the trigonometric tangent of a specified angle

Summary
In this chapter, you learned how to use SQL’s data manipulation functions and paid 
special attention to working with dates.

Challenges

1. Our store is now online, and customer accounts are being created. Every user 
needs a login, and the default login will be a combination of a user’s name and 
city. Write a SQL statement that returns customer ID (cust_id), customer name 
(customer_name), and user_login, which is all uppercase and composed of the first 
two characters of the customer contact (cust_contact) and the first three characters 
of the customer city (cust_city). So, for example, my login (Ben Forta, living 
in Oak Park) would be BEOAK. Here’s a hint: For this one, you’ll use functions, 
concatenation, and an alias.

2. Write a SQL statement to return the order number (order_num) and order date 
(order_date) for every order placed in October 2023 and sort the list by order date.



12
Summarizing Data

In this chapter, you will learn what the SQL aggregate functions are and how to use 
them to summarize table data.

Using Aggregate Functions
It is often necessary to summarize data without actually retrieving it all, and MySQL 
provides special functions for this purpose. You can use these functions in MySQL 
queries to retrieve data for analysis and reporting purposes. These are some examples of 
this type of retrieval: 

Q Determining the number of rows in a table (or the number of rows that meet 
some condition or contain a specific value)

Q Obtaining the sum of a group of rows in a table
Q Finding the highest, lowest, and average values in a table column (either for all 

rows or for specific rows)

In each of these examples, you want a summary of the data in a table, not the actual 
data itself. Therefore, returning the actual table data would be a waste of time and 
processing resources (not to mention bandwidth). To repeat: All you really want is the 
summary information.

To facilitate this type of retrieval, MySQL features a set of aggregate functions, some 
of which are listed in Table 12.1. These functions enable you to perform all the types of 
retrieval just enumerated.

New Term
Aggregate Function A function that operates on a set of rows to calculate and return 
a single value.



94 Chapter 12 Summarizing Data

Table 12.1 SQL Aggregate Functions

Function Description

Avg() Returns a column’s average value

Count() Returns the number of rows in a column

Max() Returns a column’s highest value

Min() Returns a column’s lowest value

Sum() Returns the sum of a column’s values

The use of each of these functions is explained in the following sections.

Note
Standard Deviation A series of standard deviation aggregate functions are also 
supported by MySQL, but they are not covered in this book.

The Avg() Function
Avg() is used to return the average value of a specific column by counting both the 
number of rows in the table and the sum of their values. Avg() can be used to return the 
average value of all columns or of specific columns or rows.

This first example uses Avg() to return the average price of all the products in the 
products table:

 Input

SELECT Avg(prod_price) AS avg_price
FROM products;

 Output

+-----------+
| avg_price |
+-----------+
| 16.133571 |
+-----------+

 Analysis

This SELECT statement returns a single value, avg_price, that contains the average 
price of all products in the products table. avg_price is an alias (refer to Chapter 10, 
“Creating Calculated Fields”).

Avg() can also be used to determine the average value of specific columns or rows.



95Using Aggregate Functions

The following example returns the average price of products offered by a specific 
vendor:

 Input

SELECT Avg(prod_price) AS avg_price
FROM products
WHERE vend_id = 1003;

 Output

+-----------+
| avg_price |
+-----------+
| 13.212857 |
+-----------+

 Analysis

This SELECT statement differs from the previous one only in that this one contains a 
WHERE clause. The WHERE clause filters to show only products with a vend_id of 1003, and, 
therefore, the value returned in avg_price is the average of just that vendor’s products.

Caution
Individual Columns Only You can use Avg() to determine the average of a specific 
numeric column, and that column name must be specified as the function parameter. To 
obtain the average value of multiple columns, you need to use multiple Avg() functions.

Note
NULL Values The Avg() function ignores column rows that contain NULL values.

The Count() Function
Count() does what it sounds like it does: It counts. Using Count(), you can determine 
the number of rows in a table or the number of rows that match a specific criterion.

You can use Count() in two ways:

Q Use Count(*) to count the number of rows in a table, whether columns contain 
values or NULL values.

Q Use Count(column) to count the number of rows that have values in a specific 
column, ignoring NULL values.



96 Chapter 12 Summarizing Data

This example returns the total number of customers in the customers table:

 Input

SELECT Count(*) AS num_cust
FROM customers;

 Output

+----------+
| num_cust |
+----------+
|        5 |
+----------+

 Analysis

In this example, Count(*) is used to count all rows, regardless of values. The count is 
returned in num_cust.

The following example counts just the customers with email addresses provided:

 Input

SELECT Count(cust_email) AS num_cust
FROM customers;

 Output

+----------+
| num_cust |
+----------+
|        3 |
+----------+

 Analysis

This SELECT statement uses Count(cust_email) to count only rows with a value in the 
cust_email column. In this example, cust_email is 3 (meaning that only three of the 
five customers have email addresses listed).

Note
NULL Values The Count() function ignores column rows with NULL values in them if a 
column name is specified but not if the asterisk (*) is used.

The Max() Function
Max() returns the highest value in a specified column. Max() requires that the column 
name be specified, as shown here:

 Input

SELECT Max(prod_price) AS max_price
FROM products;



97Using Aggregate Functions

 Output

+-----------+
| max_price |
+-----------+
|     55.00 |
+-----------+

 Analysis

Here Max() returns the price of the most expensive item in the products table.

Tip
Using Max() with Non-numeric Data Although Max() is usually used to find the 
highest numeric or date values, MySQL allows it to be used to return the highest value 
in any column—including textual columns. When used with textual data, Max() returns 
the row that would be the last row if the data were sorted by that column.

The Min() Function
Min() is exactly the opposite of Max(): It returns the lowest value in a specified column. 
Like Max(), Min() requires that the column name be specified, as shown here:

 Input

SELECT Min(prod_price) AS min_price
FROM products;

 Output

+-----------+
| min_price |
+-----------+
| 2.50      |
+-----------+

 Analysis

Here Min() returns the price of the least expensive item in the products table.

Note
NULL Values The Max() function ignores column rows with NULL values in them.

Tip
Using Min() with Non-numeric Data As with the Max() function, MySQL allows 
Min() to be used to return the lowest value in any columns, including textual columns. 
When used with textual data, Min() returns the row that would be first if the data were 
sorted by that column.



98 Chapter 12 Summarizing Data

The Sum() Function
Sum() is used to return the sum (total) of the values in a specific column. Here is an 
example to demonstrate this. The orderitems table contains the actual items in an order, 
and each item has an associated quantity. The total number of items ordered (the sum 
of all the quantity values) can be retrieved as follows:

 Input

SELECT Sum(quantity) AS items_ordered
FROM orderitems
WHERE order_num = 20005;

 Output

+---------------+
| items_ordered |
+---------------+
| 19            |
+---------------+

 Analysis

The function Sum(quantity) returns the sum of all the item quantities in an order, 
and the WHERE clause ensures that just the right order items are included.

Sum() can also be used with the mathematical operators introduced in Chapter 10. In 
this next example, the total order amount is retrieved by totaling item_price*quantity
for each item:

 Input

SELECT SUM(item_price*quantity) AS total_price
FROM orderitems
WHERE order_num = 20005;

 Output

+-------------+
| total_price |
+-------------+
|      149.87 |
+-------------+

 Analysis

The function Sum(item_price*quantity) returns the sum of all the expanded prices 
in an order, and again the WHERE clause ensures that just the correct order items are 
included.

Note
NULL Values The Min() function ignores column rows with NULL values in them.



99Aggregates on Distinct Values

Aggregates on Distinct Values
The five aggregate functions can all be used in two ways:

Q To perform calculations on all rows, specify the ALL argument or specify no 
argument at all (because ALL is the default behavior).

Q To include only unique values, specify the DISTINCT argument.

Tip
Performing Calculations on Multiple Columns All the aggregate functions can 
be used to perform calculations on multiple columns using the standard mathematical 
operators, as shown in this example.

Note
NULL Values The Sum() function ignores column rows with NULL values in them.

Tip
ALL Is the Default The ALL argument need not be specified because it is the default 
behavior. If DISTINCT is not specified, ALL is assumed.

The following example uses the Avg() function to return the average product price 
offered by a specific vendor. It is the same SELECT statement used in the previous 
example, but here the DISTINCT argument is used so the average takes into account only 
unique prices:

 Input

SELECT Avg(DISTINCT prod_price) AS avg_price
FROM products
WHERE vend_id = 1003;

 Output

+-----------+
| avg_price |
+-----------+
| 15.998000 |
+-----------+

 Analysis

As you can see, in this example, avg_price is higher when DISTINCT is used because 
there are multiple items with the same lower price. Excluding them raises the average 
price.



100 Chapter 12 Summarizing Data

Combining Aggregate Functions
All the examples of aggregate functions used thus far have involved a single function. But 
actually, SELECT statements may contain as few or as many aggregate functions as needed. 
Look at this example:

 Input

SELECT Count(*) AS num_items,
        Min(prod_price) AS price_min,
        Max(prod_price) AS price_max,
        Avg(prod_price) AS price_avg
FROM products;

 Output

+-----------+-----------+-----------+-----------+
| num_items | price_min | price_max | price_avg |
+-----------+-----------+-----------+-----------+
|        14 |      2.50 |     55.00 | 16.133571 |
+-----------+-----------+-----------+-----------+

 Analysis

Here a single SELECT statement performs four aggregate calculations in one step and 
returns four values (the number of items in the products table and the highest, lowest, 
and average product prices).

Caution
No DISTINCT with Wildcards DISTINCT can be used with Count() only if a column 
name is specified. DISTINCT cannot be used with Count(*), and so Count(DISTINCT *)
is not allowed and generates an error. Similarly, DISTINCT must be used with a column 
name and not with a calculation or an expression.

Tip
Using DISTINCT with Min() and Max() Although you can technically use DISTINCT
with Min() and Max(), there is actually no value in doing so. The minimum and maxi-
mum values in a column are the same whether only distinct values are included or not.

Tip
Naming Aliases When specifying the name of an alias to contain the results of an 
aggregate function, try to not use the name of an actual column in the table. Although 
there is nothing actually illegal about doing so, using unique names makes your SQL 
easier to understand and work with (and troubleshoot in the future).



101Challenges

Summary
Aggregate functions are used to summarize data. MySQL supports a range of aggregate 
functions, all of which can be used in multiple ways to return just the results you need. 
These functions are designed to be highly efficient, and they usually return results far 
more quickly than you could calculate them yourself within your own client application.

Challenges

1. Write a SQL statement to determine the total number of items sold (using the 
quantity column in OrderItems).

2. Modify the statement you just created to determine the total number of product 
item (prod_item) BR01 sold.

3. This is a bit of a silly one, but imagine that a customer wants to buy one of every 
single item in the products table. Write a SQL statement to calculate the total 
price.

4. Write a SQL statement to determine the price (prod_price) of the most expensive 
item in the Products table that costs no more than 10. Name the calculated field 
max_price.



This page intentionally left blank 



13
Grouping Data

In this chapter, you’ll learn how to group data so you can summarize subsets of table 
contents. Grouping data involves two SELECT statement clauses that you haven’t learned 
about yet: the GROUP BY clause and the HAVING clause.

Understanding Data Grouping
In the previous chapter, you learned that the SQL aggregate functions can be used to 
summarize data. By using those functions, you can count rows, calculate sums and aver-
ages, and obtain high and low values without having to retrieve all the data.

All the calculations thus far have been performed on all the data in a table or on data 
that matched a specific WHERE clause. As a reminder, the following example returns the 
number of products offered by vendor 1003:

 Input

SELECT Count(*) AS num_prods
FROM products
WHERE vend_id = 1003;

 Output

+------------ +
| num_prods   |
+------------ +
|           7 |
+------------ +

But what if you want to return the number of products offered by each vendor? Or 
products offered by vendors who offer a single product? Or products offered by vendors 
who offer more than 10 products?

This is where groups come into play. Grouping enables you to divide data into logical 
sets so you can perform aggregate calculations on each group.



104 Chapter 13 Grouping Data

Creating Groups
You create groups in MySQL by using the GROUP BY clause in a SELECT statement. 
The best way to understand this is to look at an example:

 Input

SELECT vend_id, Count(*) AS num_prods
FROM products
GROUP BY vend_id;

 Output

+---------+------------- +
| vend_id | num_prods    |
+---------+------------- +
|     1001 |           3 |
|     1002 |           2 |
|     1003 |           7 |
|     1005 |           2 |
+---------+------------- +

 Analysis

This SELECT statement specifies two columns: vend_id, which contains the ID of a 
product’s vendor, and num_prods, which is a calculated field (created using the Count(*)
function). The GROUP BY clause instructs MySQL to sort the data and group it by 
vend_id. This causes num_prods to be calculated once per vend_id rather than once for 
the entire table. As you can see in the output, vendor 1001 has 3 products listed, vendor 
1002 has 2 products listed, vendor 1003 has 7 products listed, and vendor 1005 has 2 
products listed.

By using GROUP BY, you do not have to specify each group to be evaluated and calcu-
lated. That happens automatically. The GROUP BY clause instructs MySQL to group the 
data and then perform the aggregate calculation on each group rather than on the entire 
result set.

Before you use GROUP BY, here are some important rules about its use that you need 
to know:

Q A GROUP BY clause can contain as many columns as you want. You can nest groups, 
which means you have more granular control over how data is grouped.

Q If you have nested groups in your GROUP BY clause, data is summarized at the last 
specified group. In other words, all the columns specified are evaluated together 
when grouping is established (so you won’t get data back for each individual 
column level).

Q Every column listed in GROUP BY must be a retrieved column or a valid expression 
(but not an aggregate function). If an expression is used in the SELECT, that same 
expression must be specified in GROUP BY. You cannot use aliases.

Q Aside from the aggregate calculations statements, every column in your SELECT
statement should be present in the GROUP BY clause.



105Filtering Groups

Q If the grouping column contains a row with a NULL value, NULL will be returned as a 
group. If there are multiple rows with NULL values, they’ll all be grouped together.

Q The GROUP BY clause must come after any WHERE clause and before any ORDER BY
clause.

Tip
Using ROLLUP To obtain values for each group and at a summary level (for each 
group), use the WITH ROLLUP keyword, as shown here:

SELECT vend_id, COUNT(*) AS num_prods

FROM products

GROUP BY vend_id WITH ROLLUP;

Filtering Groups
In addition to allowing you to group data by using GROUP BY, MySQL also allows you to 
filter which groups to include and which to exclude. For example, you might want a list 
of all customers who have made at least two orders. To obtain this data, you must filter 
based on the complete group, not on individual rows.

You’ve already seen the WHERE clause in action (introduced in Chapter 6, “Filtering 
Data”). But WHERE does not work for grouping because WHERE filters specific rows, not 
groups. As a matter of fact, WHERE has no idea what a group is.

So what do you use instead of WHERE? MySQL provides yet another clause for this 
purpose: the HAVING clause. HAVING is very similar to WHERE. In fact, all types of WHERE
clauses you’ve learned about thus far can also be used with HAVING. The only difference 
is that WHERE filters rows, and HAVING filters groups.

Tip
HAVING Supports All of WHERE’s Operators In Chapter 6 and Chapter 7, “Advanced 
Data Filtering,” you learned about WHERE clause conditions (including wildcard conditions 
and clauses with multiple operators). All the techniques and options you learned about 
for WHERE can also be applied to HAVING. The syntax is identical; just the keyword is dif-
ferent.

So how do you filter rows? Look at the following example:

 Input

SELECT cust_id, Count(*) AS num_orders
FROM orders
GROUP BY cust_id
HAVING Count(*) >= 2;



106 Chapter 13 Grouping Data

 Input

+---------+-------------- +
| cust_id | num_orders    |
+---------+-------------- +
|   10001 |           2   |
+---------+-------------- +

 Analysis

The first three lines of this SELECT statement are similar to the statements shown 
previously. The final line adds a HAVING clause that filters on those groups with Count(*) 
>= 2 (that is, two or more orders). As you can see, a WHERE clause does not work here 
because the filtering is based on the group aggregate value, not on the values of specific 
rows.

Note
The Difference Between HAVING and WHERE Here’s another way to look at it: WHERE
filters before data is grouped, and HAVING filters after data is grouped. This is an impor-
tant distinction; rows that are eliminated by a WHERE clause are not included in the group. 
Eliminating rows could change the calculated values, which in turn could affect which 
groups are filtered based on the use of those values in the HAVING clause.

So is there ever a need to use both WHERE and HAVING clauses in one statement? 
Actually, yes, there is. Say that you need a list of all vendors who have 2 or more prod-
ucts priced at 10 or more. To do this, you can add a WHERE clause that filters out products 
that cost less than 10. You then add a HAVING clause to filter just the groups with two or 
more rows in them.

Here’s an example:

 Input

SELECT vend_id, Count(*) AS num_prods
FROM products
WHERE prod_price >= 10
GROUP BY vend_id
HAVING Count(*) >= 2;

 Output

+---------+------------- +
| vend_id | num_prods    |
+---------+------------- +
|     1003 |           4 |
|     1005 |           2 |
+---------+------------- +

 Analysis



107Grouping and Sorting

This statement warrants an explanation. The first line is a basic SELECT that uses an 
aggregate function—much like the examples thus far. The WHERE clause filters all rows 
with prod_price of at least 10. Data is then grouped by vend_id, and then a HAVING
clause filters just those groups with a count of 2 or more. Without the WHERE clause, two 
extra rows would have been retrieved (vendor 1002, who only sells products all priced 
under 10, and vendor 1001, who sells 3 products but only one of them is priced greater 
or equal to 10), as shown here:

 Input

SELECT vend_id, Count(*) AS num_prods
FROM products
GROUP BY vend_id
HAVING Count(*) >= 2;

 Output

+---------+------------- +
| vend_id | num_prods    |
+---------+------------- +
|     1001 |           3 |
|     1002 |           2 |
|     1003 |           7 |
|     1005 |           2 |
+---------+------------- +

Grouping and Sorting
It is important to understand that GROUP BY and ORDER BY are very different, even though 
they often accomplish the same thing. Table 13.1 summarizes the differences between 
them.

Table 13.1 ORDER BY Versus GROUP BY

ORDER BY GROUP BY

Sorts generated output. Groups rows. The output might not be in group order, 
however.

Any columns (even columns 
not selected) may be used. 

Only selected columns or expressions columns may be 
used, and every selected column must be used.

Never required. Required if using columns (or expressions) with aggregate 
functions.

The first difference listed in Table 13.1 is extremely important. More often than not, 
you will find that data grouped using GROUP BY will indeed be output in group order. 
But that is not always the case, and it is not actually required by the SQL specifications. 
Furthermore, you might actually want it sorted differently than it is grouped. 



108 Chapter 13 Grouping Data

Just because you group data one way (to obtain group-specific aggregate values) does 
not mean that you want the output sorted that same way. You should always provide an 
explicit ORDER BY clause as well, even if it is identical to the GROUP BY clause.

Tip
Don’t Forget ORDER BY As a rule, any time you use a GROUP BY clause, you should also 
specify an ORDER BY clause. That is the only way to ensure that data is sorted properly. 
Never rely on GROUP BY to sort your data.

To demonstrate the use of both GROUP BY and ORDER BY, let’s look at an example. The 
following SELECT statement is similar to the ones shown previously. It retrieves the order 
number and total order price of all orders with a total price of 50 or more:

 Input

SELECT order_num,
       Sum(quantity*item_price) AS ordertotal
FROM orderitems
GROUP BY order_num
HAVING Sum(quantity*item_price) >= 50;

 Output

+-----------+-------------- +
| order_num | ordertotal    |
+-----------+-------------- +
|      20005 | 149.87       |
|      20006 | 55.00        |
|      20007 | 1000.00      |
|      20008 | 125.00       |
+-----------+-------------- +

To sort the output by order total, all you need to do is add an ORDER BY clause, as 
follows:

 Input

SELECT order_num,
       Sum(quantity*item_price) AS ordertotal
FROM orderitems
GROUP BY order_num
HAVING Sum(quantity*item_price) >= 50
ORDER BY ordertotal;

 Output

+-----------+-------------- +
| order_num | ordertotal    |
+-----------+-------------- +
|      20006 | 55.00        |



109Combining Grouping and Data Summarization

|      20008 | 125.00       |
|      20005 | 149.87       |
|      20007 | 1000.00      |
+---------- -+------------- +

 Analysis

In this example, the GROUP BY clause is used to group the data by order number (the 
order_num column) so that the Sum(*) function can return the total order price. The 
HAVING clause filters the data so that only orders with a total price of 50 or more are 
returned. Finally, the output is sorted using the ORDER BY clause.

Combining Grouping and Data Summarization
In Chapter 12, “Summarizing Data,” you learned how to use functions like Count(), 
Min(), Sum(), and so on. You can also use these functions when grouping data to 
perform sophisticated reporting.

For example, the orders table contains a list of all orders placed. Each order has an 
order date in a column (appropriately named) order_date. What if you needed to know 
the best sales month? Determining this requires counting sales per month, which in turn 
requires extracting the year and month from order_date.

Here’s the code:

 Input

SELECT Year(order_date) AS order_year,
       Month(order_date) AS order_month,
       Count(*) AS orders_placed
FROM orders
GROUP BY order_year, order_month
ORDER BY orders_placed DESC

 Output

+------------+-------------+---------------+
| order_year | order_month | orders_placed |
+------------+-------------+---------------+
|       2023 |           9 |             3 |
|       2023 |          10 |             2 |
+------------+-------------+---------------+

 Analysis

The Year() and Month() functions extract the year and month, respectively, from 
order_date, and the values are assigned to aliases. GROUP BY uses those aliases to group 
the retrieved data and returns one row per month per year. As data is grouped by year 
and month, Count(*) counts the number of rows for each month, which is exactly what 
we need. The output is sorted by ORDER BY orders_placed DESC so that the months are 
listed in descending order of sales.



110 Chapter 13 Grouping Data

SELECT Clause Ordering
This is probably a good time to review the order in which SELECT statement clauses are 
to be specified. Table 13.2 lists all the clauses you have learned thus far, in the order they 
must be used.

Table 13.2 SELECT Clauses and Their Sequence

Clause Description Required

SELECT Columns or expressions to be 
returned

Yes

FROM Table to retrieve data from Only if selecting data from a 
table

WHERE Row-level filtering No

GROUP BY Group specification Only if calculating aggregates 
by group

HAVING Group-level filtering No

ORDER BY Output sort order No

LIMIT Number of rows to retrieve No

Summary
In Chapter 12, you learned how to use the SQL aggregate functions to perform 
summary calculations on your data. In this chapter, you learned how to use the GROUP BY
clause to perform calculations on groups of data and return results for each group. You 
saw how to use the HAVING clause to filter specific groups. You also learned the difference 
between ORDER BY and GROUP BY and between WHERE and HAVING.

Challenges

1. The OrderItems table contains the individual items for each order. Write a SQL 
statement that returns the number of lines (as order_lines) for each order number 
(order_num) and sort the results by order_lines.

2. Write a SQL statement that returns a field named cheapest_item, which contains 
the lowest-cost item for each vendor (using prod_price in the Products table) and 
sort the results from lowest to highest cost.

3. It’s important to identify the best customers. Write a SQL statement to return 
the order number (order_num in the OrderItems table) for every order of at least 
100 items.



111Challenges

4. Another way to determine the best customers is based on how much they have 
spent. Write a SQL statement to return the order number (order_num in the 
OrderItems table) for every order with a total price of at least 1000. Here’s a hint: 
For this one, you’ll need to calculate and sum the total (item_price multiplied by 
quantity). Sort the results by order number.

5. What is wrong with the following SQL statement? (Try to figure it out without 
running it.)

SELECT order_num, COUNT(*) AS items
FROM OrderItems
GROUP BY items
HAVING COUNT(*) >= 3
ORDER BY items, order_num;



This page intentionally left blank 



14
Working with Subqueries

In this chapter, you’ll learn what subqueries are and how to use them.

Understanding Subqueries
SELECT statements are SQL queries. All the SELECT statements you have seen thus far are 
simple queries: single statements that retrieve data from individual database tables.

New Term
Query Any SQL statement. However, the term is usually used to refer to SELECT
statements.

SQL also enables you to create subqueries: queries that are embedded in other queries. 
Why would you want to do this? The best way to understand this concept is to look at a 
couple of examples.

Filtering by Subquery
The database tables used in all the chapters in this book are relational tables. (See 
Appendix B, “The Example Tables,” for a description of each of the tables and their 
relationships.) Order data is stored in two tables. The orders table stores a single row for 
each order and contains the order number, customer ID, and order date. The individual 
order items are stored in the related orderitems table. The orders table does not store 
any customer information except for the customer ID. The customers table stores the 
other customer information.

Suppose you want a list of all the customers who have ordered item TNT2. What do 
you have to do to retrieve this information? Here are the steps:

1. Retrieve the order numbers of all orders containing item TNT2.
2. Retrieve the customer ID of every customer who has an order in the list of order 

numbers returned in step 1.
3. Retrieve the customer information for each customer ID returned in step 2.



114 Chapter 14 Working with Subqueries

Each of these steps can be executed as a separate query. You can use the results 
returned by one SELECT statement to populate the WHERE clause of the next SELECT
statement.

You can also use subqueries to combine all three queries into a single statement.
The SELECT statement shown here should be self-explanatory by now. It retrieves the 

order_num column for every order item with prod_id of TNT2. The output lists the two 
orders containing this item:

 Input

SELECT order_num
FROM orderitems
WHERE prod_id = 'TNT2';

 Output

+-----------+
| order_num |
+-----------+
|     20005 |
|     20007 |
+-----------+

The next step is to retrieve the customer IDs associated with orders 20005 and 20007. 
Using the IN clause described in Chapter 7, “Advanced Data Filtering,” you can create a 
SELECT statement as follows:

 Input

SELECT cust_id
FROM orders
WHERE order_num IN (20005,20007);

 Output

+---------+
| cust_id |
+---------+
|   10001 |
|   10004 |
+---------+

Now, combine the two queries by turning the first (the one that returned the order 
numbers) into a subquery. Look at the following SELECT statement:

 Input

SELECT cust_id
FROM orders
WHERE order_num IN (SELECT order_num
                    FROM orderitems
                    WHERE prod_id = 'TNT2');



115Filtering by Subquery

 Output

+---------+
| cust_id |
+---------+
|   10001 |
|   10004 |
+---------+

 Analysis

Subqueries are always processed starting with the innermost SELECT statement and 
working outward. When this SELECT statement is processed, MySQL actually performs 
two operations. First, it runs the subquery:

SELECT order_num
FROM orderitems
WHERE prod_id='TNT2'

This query returns the two order numbers 20005 and 20007. Those two values are 
then passed to the WHERE clause of the outer query in the comma-delimited format 
required by the IN operator. The outer query now becomes the following:

SELECT cust_id
FROM orders
WHERE order_num IN (20005,20007)

As you can see, the output is correct and exactly the same as the output returned by 
the previous hard-coded WHERE clause.

Tip
Formatting Your SQL SELECT statements that contain subqueries can be difficult 
to read and debug, especially as they grow in complexity. Breaking up the queries over 
multiple lines and indenting the lines appropriately, as shown here, can greatly simplify 
working with subqueries.

You now have the IDs of all the customers who ordered item TNT2. The next 
step is to retrieve the customer information for each of those customer IDs. The SQL 
statement to retrieve the two columns is as follows:

 Input

SELECT cust_name, cust_contact
FROM customers
WHERE cust_id IN (10001,10004);



116 Chapter 14 Working with Subqueries

Instead of hard-coding those customer IDs, you can turn this WHERE clause into yet 
another subquery:

 Input

SELECT cust_name, cust_contact
FROM customers
WHERE cust_id IN (SELECT cust_id
                  FROM orders
                  WHERE order_num IN (SELECT order_num
                                      FROM orderitems
                                      WHERE prod_id = 'TNT2'));

 Output

+----------------+--------------+
| cust_name      | cust_contact |
+----------------+--------------+
| Coyote Inc.    | Y Lee        |
| Yosemite Place | Y Sam        |
+----------------+--------------+

 Analysis

To execute this SELECT statement, MySQL had to actually perform three SELECT state-
ments. The innermost subquery returned a list of order numbers that were then used as 
the WHERE clause for the subquery above it. That subquery returned a list of customer IDs 
that were used as the WHERE clause for the top-level query. The top-level query actually 
returned the desired data.

As you can see, using subqueries in a WHERE clause enables you to write extremely 
powerful and flexible SQL statements. There is no limit on the number of subqueries 
that can be nested, although in practice you will find that performance tells you when 
you are nesting too deeply.

Caution
Columns Must Match When using a subquery in a WHERE clause (as shown here), 
make sure that the SELECT statements have the same number of columns as in the WHERE
clause. Usually, a single column will be returned by the subquery and matched against a 
single column, but multiple columns may be used, if needed.

Caution
Subqueries and Performance The code shown here works, and it achieves the 
desired result. However, using subqueries is not always the most efficient way to per-
form this type of data retrieval—though sometimes it is. More on this is in Chapter 15, 
“Joining Tables,” where we will revisit this example.

Although usually used in conjunction with the IN operator, subqueries can also be 
used to test for equality (using =), non-equality (using <>), and so on.



117Using Subqueries As Calculated Fields

Using Subqueries As Calculated Fields
Another way to use subqueries is in creating calculated fields. Suppose you want to 
display the total number of orders placed by every customer in your customers table. 
Orders are stored in the orders table along with the appropriate customer IDs.

To perform this operation, follow these steps:

1. Retrieve the list of customers from the customers table.
2. For each customer retrieved, count the number of associated orders in the orders

table.

As you learned in the previous two chapters, you can use SELECT Count(*) to count 
rows in a table, and by providing a WHERE clause to filter a specific customer ID, you can 
count just that customer’s orders. For example, the following code counts the number of 
orders placed by customer 10001:

 Input

SELECT Count(*) AS orders
FROM orders
WHERE cust_id = 10001;

To perform this Count(*) calculation for each customer, you can use Count(*) as a 
subquery. Look at the following code:

 Input

SELECT cust_name,
       cust_state,
       (SELECT COUNT(*)
        FROM orders
        WHERE orders.cust_id = customers.cust_id) AS orders
FROM customers
ORDER BY cust_name;

 Output

+----------------+------------+--------+
| cust_name      | cust_state | orders |
+----------------+------------+--------+
| Coyote Inc.    | MI         |      2 |
| E Fudd         | IL         |      1 |
| Mouse House    | OH         |      0 |
| Wascals        | IN         |      1 |
| Yosemite Place | AZ         |      1 |
+----------------+------------+--------+

 Analysis

This SELECT statement returns three columns for every customer in the customers
table: cust_name, cust_state, and orders. orders (which is a calculated field that is 
set by a subquery provided in parentheses). This subquery is executed once for every 



118 Chapter 14 Working with Subqueries

customer retrieved. In this example, the subquery is executed five times because five 
customers are retrieved.

The WHERE clause in the subquery is a little different from the WHERE clauses used 
previously because it uses fully qualified column names (first mentioned in Chapter 
4, “Retrieving Data”). The following clause tells SQL to compare the cust_id in the 
orders table to the one currently being retrieved from the customers table:

WHERE orders.cust_id = customers.cust_id

This type of subquery is called a correlated subquery.

New Term
Correlated Subquery A subquery that refers to the outer query.

This syntax—the table name and the column name separated by a period—must be 
used whenever there is possible ambiguity about column names. Why? Well, let’s look at 
what happens if fully qualified column names are not used:

 Input

SELECT cust_name,
       cust_state,
       (SELECT Count(*)
        FROM orders
        WHERE cust_id = cust_id) AS orders
FROM customers
ORDER BY cust_name;

 Output

+----------------+------------+--------+
| cust_name      | cust_state | orders |
+----------------+------------+--------+
| Coyote Inc.    | MI         |      5 |
| E Fudd         | IL         |      5 |
| Mouse House    | OH         |      5 |
| Wascals        | IN         |      5 |
| Yosemite Place | AZ         |      5 |
+----------------+------------+--------+

 Analysis

Obviously, the returned results are incorrect; to see this, compare them to the previ-
ous results. Why did this happen? There are two cust_id columns, one in customers and 
one in orders, and those two columns need to be compared to correctly match orders 
with the appropriate customers. If you don’t fully qualify the column names, MySQL 
assumes that you are comparing the cust_id in the orders table to itself. And this 



119Challenges

statement always returns the total number of orders in the orders table (because MySQL 
checks to see that every order’s cust_id matches itself, which it always does, of course):

SELECT Count(*) FROM orders WHERE cust_id = cust_id;

Although subqueries are extremely useful in constructing this type of SELECT state-
ment, care must be taken to properly qualify ambiguous column names.

Tip
Build Queries with Subqueries Incrementally Testing and debugging queries with 
subqueries can be tricky, particularly as these statements grow in complexity. The safest 
way to build (and test) queries with subqueries is to do so incrementally, in much the 
same way that MySQL processes them. Build and test the innermost query first. Then 
build and test the outer query with hard-coded data, and only after you have verified 
that it is working, embed the subquery. Then test it again. Keep repeating these steps for 
each additional query. It will take just a little longer to construct your queries if you do 
it this way, but it will save you lots of time later when you need to try to figure out why 
queries are not working. It will also significantly increase the likelihood that the queries 
will work the first time.

Note
Always More Than One Solution As explained earlier in this chapter, although the 
sample code shown here works, this is often not the most efficient way to perform this 
type of data retrieval. We will revisit this example in Chapter 15.

Summary
In this chapter, you learned what subqueries are and how to use them. The most 
common uses for subqueries are in WHERE clauses, in IN operators, and for populating 
calculated columns. You saw examples of both of these types of operations.

Challenges

1. Using a subquery, return a list of customers who bought items priced 10 or more. 
You’ll want to use the OrderItems table to find the matching order numbers 
(order_num) and then the Orders table to retrieve the customer ID (cust_id) for 
each matched order.

2. You need to know the dates when product BR01 was ordered. Write a SQL 
statement that uses a subquery to determine which orders (in OrderItems) 
purchased items with prod_id of BR01 and then returns the customer ID (cust_id) 



120 Chapter 14 Working with Subqueries

and order date (order_date) for each of them from the Orders table. Sort the results 
by order date.

3. Now let’s make it a bit more challenging. Update the previous challenge to return 
the customer email (cust_email in the Customers table) for any customer who 
purchased an item with prod_id of BR01. Here’s a hint: This involves the SELECT
statement, the innermost query returning order_num from OrderItems, and the 
middle query returning cust_id from Customers.

4. You need a list of customer IDs with the total amount each customer has ordered. 
Write a SQL statement that returns the customer ID (cust_id in the Orders table) 
and total_ordered and uses a subquery to return the total of orders for each 
customer. Sort the results by the amount spent from greatest to the least. Here’s a 
hint: You’ve used SUM() to calculate order totals previously.

5. Write a SQL statement that retrieves all product names (prod_name) from the 
Products table, along with a calculated column named quant_sold that contains the 
total number of this item sold (retrieved using a subquery and SUM(quantity) on 
the OrderItems table).



15
Joining Tables

In this chapter, you’ll learn what joins are, why they are used, and how to create SELECT
statements using them.

Understanding Joins
One of SQL’s most powerful features is the capability to join tables on-the-fly within 
data retrieval queries. Joins are some of the most important operations you can perform 
using SQL SELECT, and a good understanding of joins and join syntax is an extremely 
important part of learning SQL.

Before you can effectively use joins, you must understand relational tables and the 
basics of relational database design. What follows is by no means complete coverage of 
the subject, but it should be enough to get you up and running.

Understanding Relational Tables
The best way to understand relational tables is to look at a real-world example.

Suppose you have a database table containing a product catalog, with each catalog 
item in its own row. The information you store with each item includes a product 
description and price, along with vendor information about the company that creates the 
product.

Now suppose you have multiple catalog items created by the same vendor. Where 
would you store the vendor information—things such as vendor name, address, and 
contact information? You wouldn’t want to store that data along with the products for 
several reasons:

Q Because the vendor information is the same for each product the vendor produces, 
repeating the information for each product would be a waste of time and storage 
space.

Q If vendor information changes (for example, if the vendor moves or contact info 
changes), you would need to update every occurrence of the vendor information.

Q When data is repeated (that is, when the vendor information is used with each 
product), there is a high likelihood that the data will not be entered exactly the 
same way each time. Inconsistent data is extremely difficult to use in reporting.



122 Chapter 15 Joining Tables

The key here is that having multiple occurrences of the same data is never a good 
thing, and this principle is the basis for relational database design. Relational tables are 
designed so information is split into multiple tables, one for each data type. The tables 
are related to each other through common values (and thus the relational in relational 
design).

In our example, you can create two tables: one for vendor information and one 
for product information. The vendors table contains all the vendor information, one 
table row per vendor, along with a unique identifier for each vendor. This value, called 
a primary key, can be a vendor ID or any other unique value. (Primary keys are first 
mentioned in Chapter 1, “Understanding SQL.”)

The products table stores only product information and no vendor-specific informa-
tion other than the vendor ID (the vendors table’s primary key). This key, called a foreign 
key, relates the vendors table to the products table, and using this vendor ID enables you 
to use the vendors table to find details about the appropriate vendor.

New Term
Foreign Key A column in one table that contains the primary key values from another 
table, thus defining the relationships between tables.

What does this do for you? Well, consider the following:

Q Vendor information is never repeated, and so time and space are not wasted.
Q If vendor information changes, you can update a single record in the vendors table. 

Data in related tables does not change.
Q As no data is repeated, the data used is obviously consistent, making data reporting 

and manipulation much simpler.

The bottom line is that relational data can be stored efficiently and manipulated easily. 
Because of this, relational databases scale far better than non-relational databases.

New Term
Scale To be able to handle an increasing load without failing. A well-designed database 
or application is said to scale well.

Why Use Joins?
As just explained, breaking data into multiple tables enables more efficient storage, easier 
manipulation, and greater scalability. But these benefits come with a price.

If data is stored in multiple tables, how can you retrieve that data with a single SELECT
statement?

The answer is to use a join. Simply put, a join is a mechanism used to associate (or 
join) tables within a SELECT statement (thus the name join). By using special syntax, you 
can join multiple tables so a single set of output is returned, and the join associates the 
correct rows in each table on-the-fly.



123Creating a Join

Creating a Join
Creating a join is very simple. You must specify all the tables to be included and how 
they are related to each other. Look at the following example:

 Input

SELECT vend_name, prod_name, prod_price
FROM vendors, products
WHERE vendors.vend_id = products.vend_id
ORDER BY vend_name, prod_name;

 Output

+-------------+----------------+------------+
| vend_name   | prod_name      | prod_price |
+-------------+----------------+------------+
| ACME        | Bird seed      | 10.00      |
| ACME        | Carrots        | 2.50       |
| ACME        | Detonator      | 13.00      |
| ACME        | Safe           | 50.00      |
| ACME        | Sling          | 4.49       |
| ACME        | TNT (1 stick)  | 2.50       |
| ACME        | TNT (5 sticks) | 10.00      |
| Anvils R Us | .5 ton anvil   | 5.99       |
| Anvils R Us | 1 ton anvil    | 9.99       |
| Anvils R Us | 2 ton anvil    | 14.99      |
| Jet Set     | JetPack 1000   | 35.00      |
| Jet Set     | JetPack 2000   | 55.00      |
| LT Supplies | Fuses          | 3.42       |
| LT Supplies | Oil can        | 8.99       |
+-------------+----------------+------------+

Note
Maintaining Referential Integrity It is important to understand that a join is not 
a physical entity; in other words, it does not exist in the actual database tables. MySQL 
creates joins as needed, and a join persists for the duration of the query execution.

When using relational tables, it is important that only valid data is inserted into rela-
tional columns. Going back to our example, if products were stored in the products
table with an invalid vendor ID (one not present in the vendors table), those products 
would be inaccessible because they would not be related to any vendor.

To prevent this from occurring, you can instruct MySQL to allow only valid values 
(ones present in the vendors table) in the vendor ID column in the products table. This 
is known as maintaining referential integrity, and is achieved by specifying the primary and 
foreign keys as part of the table definitions (as will be explained in Chapter 21, “Creating 
and Manipulating Tables”).



124 Chapter 15 Joining Tables

 Analysis

In this code, the SELECT statement starts the same way as all the statements you’ve 
looked at thus far: by specifying the columns to be retrieved. The big difference here is 
that two of the specified columns (prod_name and prod_price) are in one table, whereas 
the other (vend_name) is in another table.

Now look at the FROM clause. Unlike all the prior SELECT statements, this one has two 
tables listed in the FROM clause: vendors and products. These are the names of the two 
tables that are being joined in this SELECT statement. The tables are correctly joined with 
a WHERE clause that instructs MySQL to match vend_id in the vendors table with vend_id
in the products table.

Notice that the columns are specified as vendors.vend_id and products.vend_id. 
Fully qualified column names are required here because if you just specify vend_id, 
MySQL will not be able to tell which vend_id column you are referring to (as there are 
two of them, one in each table).

Caution
Fully Qualifying Column Names You must use the fully qualified column name 
(table name and column name separated by a period) whenever there is possible ambigu-
ity about the column you are referring to. MySQL returns an error message if you refer 
to an ambiguous column name without fully qualifying it with a table name.

The Importance of the WHERE Clause
It might seem strange to use a WHERE clause to set the join relationship, but actually, there 
is a very good reason for this. Remember that when tables are joined in a SELECT state-
ment, the relationship is constructed on-the-fly. Nothing in the database table definitions 
can instruct MySQL how to join the tables. You have to do that yourself. When you 
join two tables, what you are actually doing is pairing every row in the first table with 
every row in the second table. The WHERE clause acts as a filter to include only rows that 
match the specified filter condition—the join condition, in this case. Without the WHERE
clause, every row in the first table is paired with every row in the second table, regardless 
of whether they logically go together.

To understand this, look at the following SELECT statement and its output:

 Input

SELECT vend_name, prod_name, prod_price
FROM vendors, products
ORDER BY vend_name, prod_name;

 Output

+----------------+----------------+------------+
| vend_name      | prod_name      | prod_price |
+----------------+----------------+------------+
| ACME           | .5 ton anvil   | 5.99       |
| ACME           | 1 ton anvil    | 9.99       |
| ACME           | 2 ton anvil    | 14.99      |



125Creating a Join

| ACME           | Bird seed      | 10.00      |
| ACME           | Carrots        | 2.50       |
| ACME           | Detonator      | 13.00      |
| ACME           | Fuses          | 3.42       |
| ACME           | JetPack 1000   | 35.00      |
| ACME           | JetPack 2000   | 55.00      |
| ACME           | Oil can        | 8.99       |
| ACME           | Safe           | 50.00      |
| ACME           | Sling          | 4.49       |
| ACME           | TNT (1 stick)  | 2.50       |
| ACME           | TNT (5 sticks) | 10.00      |
| Anvils R Us    | .5 ton anvil   | 5.99       |
| Anvils R Us    | 1 ton anvil    | 9.99       |
| Anvils R Us    | 2 ton anvil    | 14.99      |
| Anvils R Us    | Bird seed      | 10.00      |
| Anvils R Us    | Carrots        | 2.50       |
| Anvils R Us    | Detonator      | 13.00      |
| Anvils R Us    | Fuses          | 3.42       |
| Anvils R Us    | JetPack 1000   | 35.00      |
| Anvils R Us    | JetPack 2000   | 55.00      |
| Anvils R Us    | Oil can        | 8.99       |
| Anvils R Us    | Safe           | 50.00      |
| Anvils R Us    | Sling          | 4.49       |
| Anvils R Us    | TNT (1 stick)  | 2.50       |
| Anvils R Us    | TNT (5 sticks) | 10.00      |
| Furball Inc.   | .5 ton anvil   | 5.99       |
| Furball Inc.   | 1 ton anvil    | 9.99       |
| Furball Inc.   | 2 ton anvil    | 14.99      |
| Furball Inc.   | Bird seed      | 10.00      |
| Furball Inc.   | Carrots        | 2.50       |
| Furball Inc.   | Detonator      | 13.00      |
| Furball Inc.   | Fuses          | 3.42       |
| Furball Inc.   | JetPack 1000   | 35.00      |
| Furball Inc.   | JetPack 2000   | 55.00      |
| Furball Inc.   | Oil can        | 8.99       |
| Furball Inc.   | Safe           | 50.00      |
| Furball Inc.   | Sling          | 4.49       |
| Furball Inc.   | TNT (1 stick)  | 2.50       |
| Furball Inc.   | TNT (5 sticks) | 10.00      |
| Jet Set        | .5 ton anvil   | 5.99       |
| Jet Set        | 1 ton anvil    | 9.99       |
| Jet Set        | 2 ton anvil    | 14.99      |
| Jet Set        | Bird seed      | 10.00      |
| Jet Set        | Carrots        | 2.50       |
| Jet Set        | Detonator      | 13.00      |
| Jet Set        | Fuses          | 3.42       |
| Jet Set        | JetPack 1000   | 35.00      |
| Jet Set        | JetPack 2000   | 55.00      |
| Jet Set        | Oil can        | 8.99       |



126 Chapter 15 Joining Tables

| Jet Set        | Safe           | 50.00      |
| Jet Set        | Sling          | 4.49       |
| Jet Set        | TNT (1 stick)  | 2.50       |
| Jet Set        | TNT (5 sticks) | 10.00      |
| Jouets Et Ours | .5 ton anvil   | 5.99       |
| Jouets Et Ours | 1 ton anvil    | 9.99       |
| Jouets Et Ours | 2 ton anvil    | 14.99      |
| Jouets Et Ours | Bird seed      | 10.00      |
| Jouets Et Ours | Carrots        | 2.50       |
| Jouets Et Ours | Detonator      | 13.00      |
| Jouets Et Ours | Fuses          | 3.42       |
| Jouets Et Ours | JetPack 1000   | 35.00      |
| Jouets Et Ours | JetPack 2000   | 55.00      |
| Jouets Et Ours | Oil can        | 8.99       |
| Jouets Et Ours | Safe           | 50.00      |
| Jouets Et Ours | Sling          | 4.49       |
| Jouets Et Ours | TNT (1 stick)  | 2.50       |
| Jouets Et Ours | TNT (5 sticks) | 10.00      |
| LT Supplies    | .5 ton anvil   | 5.99       |
| LT Supplies    | 1 ton anvil    | 9.99       |
| LT Supplies    | 2 ton anvil    | 14.99      |
| LT Supplies    | Bird seed      | 10.00      |
| LT Supplies    | Carrots        | 2.50       |
| LT Supplies    | Detonator      | 13.00      |
| LT Supplies    | Fuses          | 3.42       |
| LT Supplies    | JetPack 1000   | 35.00      |
| LT Supplies    | JetPack 2000   | 55.00      |
| LT Supplies    | Oil can        | 8.99       |
| LT Supplies    | Safe           | 50.00      |
| LT Supplies    | Sling          | 4.49       |
| LT Supplies    | TNT (1 stick)  | 2.50       |
| LT Supplies    | TNT (5 sticks) | 10.00      |
+----------------+----------------+------------+

 Analysis

This output shows every product matched with every vendor, including products 
with the incorrect vendor (and even vendors with no products at all). This is a Cartesian
product, and it is seldom what you want.

New Term
Cartesian Product The results returned by a table relationship without a join 
condition. The number of rows retrieved is the number of rows in the first table 
multiplied by the number of rows in the second table.



127Creating a Join

Inner Joins
The type of join you have been using so far—a join based on the testing of equality 
between two tables—is called an equijoin. This kind of join is also called an inner join. 
In fact, you may use slightly different syntax for these joins, specifying the type of join 
explicitly. The following SELECT statement returns exactly the same data as the preceding 
example:

 Input

SELECT vend_name, prod_name, prod_price
FROM vendors INNER JOIN products
ON vendors.vend_id = products.vend_id;

 Analysis

The SELECT in the statement is the same as the preceding SELECT statement, but the 
FROM clause is different. Here the relationship between the two tables is part of the FROM
clause specified as INNER JOIN. When using this syntax, the join condition is specified 
using the special ON clause instead of a WHERE clause. The actual condition passed to ON is 
the same as would be passed to WHERE.

Caution
Don’t Forget the WHERE Clause Make sure all your joins have WHERE clauses, or 
MySQL returns far more data than you want. Similarly, make sure your WHERE clauses are 
correct. An incorrect filter condition causes MySQL to return incorrect data.

Note
Cross Joins Sometimes you’ll hear the type of join that returns a Cartesian product 
referred to as a cross join.

Note
Which Syntax to Use? Per the ANSI SQL specification, the INNER JOIN syntax is 
preferable. Furthermore, although using the WHERE clause to define joins is simpler, using 
explicit join syntax ensures that you will never forget the join condition, and it can affect 
performance, too (in some cases). But, that said, the simpler WHERE clause is supported, so 
feel free to use it if you prefer.



128 Chapter 15 Joining Tables

Joining Multiple Tables
SQL imposes no limit to the number of tables that may be joined in a SELECT statement. 
The basic rules for creating a join remain the same: First list all the tables and then define 
the relationships between them. Here is an example:

 Input

SELECT prod_name, vend_name, prod_price, quantity
FROM orderitems, products, vendors
WHERE products.vend_id = vendors.vend_id
  AND orderitems.prod_id = products.prod_id
  AND order_num = 20005;

 Output

+----------------+-------------+------------+----------+
| prod_name      | vend_name   | prod_price | quantity |
+----------------+-------------+------------+----------+
| .5 ton anvil   | Anvils R Us |       5.99 |       10 |
| 1 ton anvil    | Anvils R Us |       9.99 |        3 |
| TNT (5 sticks) | ACME        |      10.00 |        5 |
| Bird seed      | ACME        |      10.00 |        1 |
+----------------+-------------+------------+----------+

 Analysis

This example displays the items in order number 20005. Order items are stored in the 
orderitems table. Each product is stored by its product ID, which refers to a product in 
the products table. The products are linked to the appropriate vendors in the vendors
table by vendor ID, which is stored with each product record. The FROM clause here lists 
the three tables, and the WHERE clause defines both of those join conditions. An additional 
WHERE condition is then used to filter just the items for order 20005.

Here is the INNER JOIN version of the same SELECT statement:

 Input

SELECT prod_name, vend_name, prod_price, quantity
FROM vendors
INNER JOIN products
   ON vendors.vend_id = products.vend_id
INNER JOIN orderitems
   ON orderitems.prod_id = products.prod_id
WHERE order_num = 20005;

 Analysis

In this version, the SELECT is the same, as is the final WHERE clause. The difference is in 
how the tables are defined and joined together. Here, vendors is the FROM table, and the 
two additional tables are included and joined using INNER JOIN and an ON to define the 
relationship. The syntax is different, but the results will be identical.



129Creating a Join

Now would be a good time to revisit an example from Chapter 14, “Working with 
Subqueries.” As you will recall, this SELECT statement returns a list of customers who 
ordered product TNT2:

 Input

SELECT cust_name, cust_contact
FROM customers
WHERE cust_id IN (SELECT cust_id
                  FROM orders
                  WHERE order_num IN (SELECT order_num
                                      FROM orderitems
                                      WHERE prod_id = 'TNT2'));

As mentioned in Chapter 14, using subqueries might not always be the most efficient 
way to perform complex SELECT operations, and so, as promised, here is the same query 
using joins:

 Input

SELECT cust_name, cust_contact
FROM customers, orders, orderitems
WHERE customers.cust_id = orders.cust_id
  AND orderitems.order_num = orders.order_num
  AND prod_id = 'TNT2';

 Output

+----------------+--------------+
| cust_name      | cust_contact |
+----------------+--------------+
| Coyote Inc.    | Y Lee        |
| Yosemite Place | Y Sam        |
+----------------+--------------+

 Analysis

As explained in Chapter 14, returning the data needed in this query requires the use 
of three tables. But instead of using them within nested subqueries, here two joins are 
used to connect the tables. There are three WHERE clause conditions here. The first two 
connect the tables in the join, and the last one filters the data for product TNT2.

Caution
Performance Considerations MySQL processes joins at runtime, relating each table 
as specified. This process can become very resource intensive, so be careful not to join 
tables unnecessarily. The more tables you join, the more performance degrades.



130 Chapter 15 Joining Tables

For the sake of comparison, here is the INNER JOIN version of the same statement:

 Input

SELECT cust_name, cust_contact
FROM customers
INNER JOIN orders
ON customers.cust_id = orders.cust_id
INNER JOIN orderitems
ON orderitems.order_num = orders.order_num
WHERE prod_id = 'TNT2';

 Output

+----------------+--------------+
| cust_name      | cust_contact |
+----------------+--------------+
| Coyote Inc.    | Y Lee        |
| Yosemite Place | Y Sam        |
+----------------+--------------+

Tip
It Pays to Experiment As you can see, there is often more than one way to 
perform any given SQL operation. And there is rarely a definitive right or wrong way. 
Performance can be affected by the type of operation, the amount of data in the tables, 
whether indexes and keys are present, and a whole slew of other criteria. Therefore, it 
is often worth experimenting with different selection mechanisms to find the one that 
works best in a situation.

Summary
Joins are some of the most important and powerful operations in SQL. To use them 
effectively, you need a basic understanding of relational database design. In this chapter, 
you learned some of the basics of relational database design as an introduction to learning 
about joins. You also learned how to create an equijoin (also known as an inner join), 
which is the most commonly used form of join. In the next chapter, you’ll learn how to 
create other types of joins.

Challenges

1. Write a SQL statement to return the customer name (cust_name) from the 
Customers table and related order numbers (order_num) from the Orders table and 
sort the result by customer name and then by order number. Actually, try this one 
twice: once using simple equijoin syntax and then using INNER JOIN.



131Challenges

2. Let’s make the previous challenge more useful. In addition to returning the 
customer name and order number, add a third column named OrderTotal that 
contains the total price of each order. There are two ways to do this: You can 
create the OrderTotal column using a subquery on the OrderItems table, or you 
can join the OrderItems table to the existing tables and use an aggregate function. 
Here’s a hint: Watch out for where you need to use fully qualified column names.

3. Let’s revisit Challenge 2 from Chapter 14. Write a SQL statement that retrieves the 
dates when product BR01 was ordered, but this time use a join and simple equijoin 
syntax. The output should be identical to the output in the Chapter 14 challenge.

4. That was fun; let’s try it again. Re-create the SQL you wrote for Challenge 3 from 
Chapter 14 but this time using ANSI INNER JOIN syntax. The code you wrote 
there employed two nested subqueries. To re-create it, you’ll need two INNER JOIN
statements, each formatted like the INNER JOIN example earlier in this chapter. And 
don’t forget the WHERE clause to filter by prod_id.

5. One more, and to make things more fun, we’ll mix joins, aggregates functions, 
and grouping, too. Ready? Back in Chapter 13, I challenged you to find all order 
numbers with a value of 1000 or more. Those results are useful, but what would be 
even more useful is the names of the customers who placed orders of at least that 
amount. So, write a SQL statement that uses joins to return the customer name 
(cust_name) from the Customers table and the total price of every order from the 
OrderItems table. Here’s a hint: To join those tables, you’ll also need to include the 
Orders table (because Customers is not related directly to OrderItems, Customers
is related to Orders, and Orders is related to OrderItems). Don’t forget GROUP BY
and HAVING and be sure to sort the results by customer name. You can use simple 
equijoin or ANSI INNER JOIN syntax for this one. Or, if you are feeling brave, try 
writing it both ways.



This page intentionally left blank 



16
Creating Advanced Joins

In this chapter, you’ll learn all about additional join types—what they are and how to 
use them. You’ll also learn how to use table aliases and how to use aggregate functions 
with joined tables.

Using Table Aliases
In Chapter 10, “Creating Calculated Fields,” you learned how to use aliases to refer to 
retrieved table columns. The code to alias a column looks like this:

 Input

SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')')
   AS vend_title
FROM vendors
ORDER BY vend_name;

In addition to using aliases for column names and calculated fields, SQL also enables 
you to alias table names. There are two primary reasons to do this:

Q To shorten the SQL syntax
Q To enable multiple uses of the same table within a single SELECT statement

Take a look at the following SELECT statement. It is basically the same as a statement 
used in the previous chapter, but it has been modified to use aliases:

 Input

SELECT cust_name, cust_contact
FROM customers AS c, orders AS o, orderitems AS oi
WHERE c.cust_id = o.cust_id
  AND oi.order_num = o.order_num
  AND prod_id = 'TNT2';

 Analysis

Notice that the three tables in the FROM clauses all have aliases. customers AS c estab-
lishes c as an alias for customers, and so on. This alias enables you to use the abbreviated 
c instead of the full text customers. In this example, the table aliases are used only in the 



134 Chapter 16 Creating Advanced Joins

WHERE clause, but aliases are not limited to just WHERE. You can use aliases in the SELECT
list, the ORDER BY clause, and any other part of a statement as well.

For the sake of comparison, here is the INNER JOIN version:

 Input

SELECT cust_name, cust_contact
FROM customers AS c
INNER JOIN orders AS o
ON c.cust_id = o.cust_id

INNER JOIN orderitems AS oi
ON oi.order_num = o.order_num
WHERE prod_id = 'TNT2';

 Analysis

As before, aliases are defined by using AS for each table. This time, two of them are in 
INNER JOIN clauses.

Using Different Join Types
So far, you have used only simple joins known as inner joins, or equijoins. Let’s now take 
a look at three additional join types: self-joins, natural joins, and outer joins.

Self-Joins
As mentioned earlier, one of the primary reasons to use table aliases is to be able to refer 
to the same table more than once in a single SELECT statement. Let’s look at an example 
that demonstrates this.

Suppose that a problem has been found with a product (item id DTNTR), and you want 
a list of all the products made by that vendor so you can determine whether the same 
problem applies to them, too. This query requires that you first find out which vendor 
creates item DTNTR and then find which other products are made by the same vendor. 
The following is one way to approach this problem:

 Input

SELECT prod_id, prod_name
FROM products
WHERE vend_id = (SELECT vend_id
                 FROM products
                 WHERE prod_id = 'DTNTR');

Note
Table Aliases Are DBMS Only It is also worth noting that table aliases are only used 
during query execution. Unlike column aliases, table aliases are never returned to the client.



135Using Different Join Types

 Output

+---------+----------------+
| prod_id | prod_name      |
+---------+----------------+
| DTNTR   | Detonator      |
| FB      | Bird seed      |
| FC      | Carrots        |
| SAFE    | Safe           |
| SLING   | Sling          |
| TNT1    | TNT (1 stick)  |
| TNT2    | TNT (5 sticks) |
+---------+----------------+

 Analysis

This first solution uses subqueries. The inner SELECT statement does a simple retrieval 
to return the vend_id of the vendor that makes item DTNTR. That ID is the one used 
in the WHERE clause of the outer query so that all items produced by that vendor are 
retrieved. (You learned all about subqueries in Chapter 14, “Working with Subqueries.” 
Refer to that chapter for more information.)

Now look at the same query using a join:

 Input

SELECT p1.prod_id, p1.prod_name
FROM products AS p1, products AS p2
WHERE p1.vend_id = p2.vend_id
  AND p2.prod_id = ‘DTNTR’;

 Output

+---------+----------------+
| prod_id | prod_name      |
+---------+----------------+
| DTNTR   | Detonator      |
| FB      | Bird seed      |
| FC      | Carrots        |
| SAFE    | Safe           |
| SLING   | Sling          |
| TNT1    | TNT (1 stick)  |
| TNT2    | TNT (5 sticks) |
+---------+----------------+

 Analysis

The two tables needed in this query are actually the same table, and so the products
table appears in the FROM clause twice. Although this is perfectly legal, any references to 
the products table would be ambiguous because MySQL would not know to which 
instance of the products table you were referring.

To resolve this problem, you can use table aliases. The first occurrence of products
has the alias p1, and the second has the alias p2. Now those aliases can be used as table 



136 Chapter 16 Creating Advanced Joins

names. The SELECT statement, for example, uses the p1 prefix to explicitly state the full 
name of the desired columns. If it doesn’t, MySQL returns an error because there are 
two columns named prod_id and prod_name. It cannot know which one you want 
(even though, in truth, they are one and the same). The WHERE clause first joins the tables 
(by matching vend_id in p1 to vend_id in p2), and then it filters the data by prod_id in 
the second table to return only the desired data.

Here is the same statement using INNER JOIN syntax:

 Input

SELECT p1.prod_id, p1.prod_name
FROM products AS p1
INNER JOIN products AS p2
ON p1.vend_id = p2.vend_id
WHERE p2.prod_id = 'DTNTR';

Tip
Self-Joins Instead of Subqueries Self-joins are often used to replace statements 
using subqueries that retrieve data from the same table as the outer statement. Although 
the end result is the same, sometimes these joins execute far more quickly than do sub-
queries. It is usually worth experimenting with both to determine which performs better 
in a particular situation.

Natural Joins
Whenever tables are joined, at least one column appears in more than one table (the 
columns being joined). Standard joins (the inner joins you learned about in the previous 
chapter) return all data—even multiple occurrences of the same column. A natural join
simply eliminates those multiple occurrences so only one of each column is returned.

How does it do this? The answer is it doesn’t; you do it. A natural join is a join in 
which you select only columns that are unique. This is typically done using a wildcard 
(SELECT *) for one table and explicit subsets of the columns for all other tables. The 
following is an example:

 Input

SELECT c.*, o.order_num, o.order_date,
       oi.prod_id, oi.quantity, OI.item_price
FROM customers AS c, orders AS o, orderitems AS oi
WHERE c.cust_id = o.cust_id
  AND oi.order_num = o.order_num
  AND prod_id = 'FB';

 Analysis

In this example, a wildcard is used for the first table only. All other columns are 
explicitly listed so that no duplicate columns are retrieved.



137Using Different Join Types

Tip
Inner Joins and Natural Joins The truth is, every inner join you have created thus 
far is actually a natural join, and you will probably never even need an inner join that is 
not a natural join.

Outer Joins
Most joins relate rows in one table with rows in another. But occasionally, you want to 
include rows that have no related rows. For example, you might use joins to accomplish 
the following tasks:

Q Count how many orders each customer placed, including customers who have yet 
to place an order

Q List all products with order quantities, including products not ordered by anyone
Q Calculate average sale sizes, taking into account customers who have not yet placed 

an order

In each of these examples, the join includes table rows that have no associated rows in 
the related table. This type of join is called an outer join.

The following SELECT statement is a simple inner join. It retrieves a list of all customers 
and their orders:

 Input

SELECT customers.cust_id, orders.order_num
FROM customers INNER JOIN orders
ON customers.cust_id = orders.cust_id;

Outer join syntax is similar. To retrieve a list of all customers, including those who 
have placed no orders, you can use the following:

 Input

SELECT customers.cust_id, orders.order_num
FROM customers LEFT OUTER JOIN orders
ON customers.cust_id = orders.cust_id;

 Output

+---------+-----------+
| cust_id | order_num |
+---------+-----------+
|   10001 |     20005 |
|   10001 |     20009 |
|   10002 |      NULL |
|   10003 |     20006 |
|   10004 |     20007 |
|   10005 |     20008 |
+---------+-----------+



138 Chapter 16 Creating Advanced Joins

 Analysis

Like the inner join shown in the previous chapter, this SELECT statement uses the keyword 
OUTER JOIN to specify the join type (instead of the WHERE clause). But unlike inner joins, 
which relate rows in both tables, outer joins also include rows with no related rows. When 
using OUTER JOIN syntax, you must use the RIGHT keyword or LEFT keyword to specify the 
table from which to include all rows; you use RIGHT for the one on the right of OUTER JOIN
and LEFT for the one on the left. The previous example uses LEFT OUTER JOIN to select all 
the rows from the table on the left in the FROM clause (the customers table). To select all the 
rows from the table on the right, you use RIGHT OUTER JOIN, as shown in this example:

 Input

SELECT customers.cust_id, orders.order_num
FROM customers RIGHT OUTER JOIN orders
ON orders.cust_id = customers.cust_id;

Note
No *= For an OUTER JOIN, you need to use ANSI syntax. MySQL does not support the 
use of the simplified *= and =* syntax popularized by other DBMSs.

Tip
Outer Join Types There are two basic forms of outer joins: the left outer join and 
the right outer join. The only difference between them is the order of the tables that are 
being related. A left outer join can be turned into a right outer join simply by reversing 
the order of the tables in the FROM or WHERE clause. Therefore, the two types of outer join 
can be used interchangeably, and the decision about which one to use is based purely on 
convenience.

Using Joins with Aggregate Functions
As you learned in Chapter 12, “Summarizing Data,” aggregate functions are used to 
summarize data. Although all the examples of aggregate functions thus far have only 
summarized data from a single table, these functions can also be used with joins. To 
demonstrate this, let’s look at an example.

You want to retrieve a list of all customers and the number of orders that each has 
placed. The following code uses the Count() function to achieve this:

 Input

SELECT customers.cust_name,
       customers.cust_id,
       Count(orders.order_num) AS num_ord
FROM customers INNER JOIN orders
ON customers.cust_id = orders.cust_id
GROUP BY customers.cust_id;



139Using Joins and Join Conditions

 Output

+----------------+---------+---------+
| cust_name      | cust_id | num_ord |
+----------------+---------+---------+
| Coyote Inc.    |   10001 |       2 |
| Wascals        |   10003 |       1 |
| Yosemite Place |   10004 |       1 |
| E Fudd         |   10005 |       1 |
+----------------+---------+---------+

 Analysis

This SELECT statement uses INNER JOIN to relate the customers and orders tables 
to each other. The GROUP BY clause groups the data by customer, and the function call 
COUNT(orders.order_num) counts the number of orders for each customer and returns it 
as num_ord.

Aggregate functions can be used just as easily with other join types. See the following 
example:

 Input

SELECT customers.cust_name,
       customers.cust_id,
       Count(orders.order_num) AS num_ord
FROM customers LEFT OUTER JOIN orders
ON customers.cust_id = orders.cust_id
GROUP BY customers.cust_id;

 Output

+----------------+---------+---------+
| cust_name      | cust_id | num_ord |
+----------------+---------+---------+
| Coyote Inc.    |   10001 |       2 |
| Mouse House    |   10002 |       0 |
| Wascals        |   10003 |       1 |
| Yosemite Place |   10004 |       1 |
| E Fudd         |   10005 |       1 |
+----------------+---------+---------+

 Analysis

This example uses a left outer join to include all customers—even those who have 
not placed any orders. The output shows that customer Mouse House (with 0 orders) is 
also included this time.

Using Joins and Join Conditions
Before wrapping up this two-chapter discussion of joins, it is worthwhile to summarize 
some key points regarding joins and their use:

Q Pay careful attention to the type of join being used. More often than not, you’ll 
want an inner join, but there are often valid uses for outer joins, too.



140 Chapter 16 Creating Advanced Joins

Q Make sure you use the correct join condition, or you’ll get incorrect data returned.
Q Make sure you always provide a join condition, or you’ll end up with the 

Cartesian product.
Q You may include multiple tables in a join and even have different join types for 

each one. Although this is legal and often useful, make sure you test each join 
separately before testing them together. Doing so makes troubleshooting far 
simpler.

Summary
This chapter is a continuation of the previous chapter on joins. In this chapter you 
learned how and why to use aliases, and you learned about the different join types and 
various forms of syntax used with each of them. You also learned how to use aggregate 
functions with joins, and you learned some important do’s and don’ts to keep in mind 
when working with joins.

Challenges

1. Write a SQL statement using INNER JOIN to retrieve customer names (cust_name in 
Customers) and all order numbers (order_num in Orders) for each.

2. Modify the SQL statement you just created to list all customers, even those with no 
orders.

3. Use OUTER JOIN to join the Products and OrderItems tables and return a sorted list 
of product names (prod_name) and the order numbers (order_num) associated with 
each.

4. Modify the SQL statement created in the previous challenge so that it returns the 
total number of orders for each item (as opposed to the order numbers).

5. Write a SQL statement that lists vendors (vend_id in Vendors) and the number 
of products they have available, including vendors with no products. You’ll want 
to use OUTER JOIN and the COUNT() aggregate function to count the number of 
products for each of them in the Products table. Pay attention: The vend_id
column appears in multiple tables, so any time you refer to it, you’ll need to fully 
qualify it.



17
Combining Queries

In this chapter, you’ll learn how to use the UNION operator to combine multiple SELECT
statements into one result set.

Understanding Combined Queries
A SQL query usually contains a single SELECT statement that returns data from one or 
more tables. MySQL also enables you to perform multiple queries (multiple SELECT
statements) and return the results as a single query result set. These combined queries are 
usually known as unions or compound queries.

There are basically two scenarios in which you’d use combined queries:

Q To return similarly structured data from different tables in a single query
Q To perform multiple queries against a single table and return the data as one query

Tip
Combining Queries and Multiple WHERE Conditions For the most part, combin-
ing two queries to the same table accomplishes the same thing as using a single query 
with multiple WHERE clause conditions. In other words, any SELECT statement with mul-
tiple WHERE clauses can also be specified as a combined query, as you’ll see in the section 
that follows. The performance of each of the two techniques, however, can vary based 
on the queries used. It is always a good idea to experiment to determine which is prefer-
able in a specific situation.

Creating Combined Queries
You combine SQL queries by using the UNION operator. By using UNION, you can specify 
multiple SELECT statements, and you can combine their results into a single result set.

Using UNION
Using UNION is simple enough. All you do is specify each SELECT statement and place the 
keyword UNION between them.



142 Chapter 17 Combining Queries

Let’s look at an example. Say that you need a list of all products costing 5 or less. You 
also want to include all products made by vendors 1001 and 1002, regardless of price. Of 
course, you can create a WHERE clause to do this, but this time you’ll use a UNION instead.

As just explained, creating a UNION involves writing multiple SELECT statements. Here 
are the individual statements:

 Input

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5;

 Output

+---------+---------+------------+
| vend_id | prod_id | prod_price |
+---------+---------+------------+
|    1003 | FC      |       2.50 |
|    1002 | FU1     |       3.42 |
|    1003 | SLING   |       4.49 |
|    1003 | TNT1    |       2.50 |
+---------+---------+------------+

 Input

SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002);

 Output

+---------+---------+------------+
| vend_id | prod_id | prod_price |
+---------+---------+------------+
|    1001 | ANV01   |       5.99 |
|    1001 | ANV02   |       9.99 |
|    1001 | ANV03   |      14.99 |
|    1002 | FU1     |       3.42 |
|    1002 | OL1     |       8.99 |
+---------+---------+------------+

 Analysis

The first SELECT retrieves all products with a price of no more than 5. The second 
SELECT uses IN to find all products made by vendors 1001 and 1002.

You can combine these two statements like this:

 Input

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5



143Creating Combined Queries

UNION
SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002);

 Output

+---------+---------+------------+
| vend_id | prod_id | prod_price |
+---------+---------+------------+
|    1003 | FC      | 2.50       |
|    1002 | FU1     | 3.42       |
|    1003 | SLING   | 4.49       |
|    1003 | TNT1    | 2.50       |
|    1001 | ANV01   | 5.99       |
|    1001 | ANV02   | 9.99       |
|    1001 | ANV03   | 14.99      |
|    1002 | OL1     | 8.99       |
+---------+---------+------------+

 Analysis

This statement is made up of both of the previous SELECT statements separated by the 
UNION keyword. UNION instructs MySQL to execute both SELECT statements and combine 
the output into a single query result set.

As a point of reference, here is the same query using multiple WHERE clauses instead of 
UNION:

 Input

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5
  OR vend_id IN (1001,1002);

In this simple example, UNION might actually be more complicated than a WHERE
clause. But with more complex filtering conditions, or if the data is being retrieved from 
multiple tables (and not just a single table), UNION could make the process much simpler.

UNION Rules
As you can see, unions are very easy to use. But a few rules govern exactly which unions 
can be combined:

Q A union must be composed of two or more SELECT statements, each separated by 
the keyword UNION. (So, to combine four SELECT statements, three UNION keywords 
would be used.)

Q Each query in a union must contain the same columns, expressions, or aggregate 
functions (although columns need not be listed in the same order).

Q Column datatypes must be compatible: They need not be exactly the same type, 
but they must be of a type that MySQL can implicitly convert (for example, 
different numeric types or different date types).



144 Chapter 17 Combining Queries

Aside from these basic rules and restrictions, unions can be used for any data retrieval 
tasks.

Including or Eliminating Duplicate Rows
Go back to the preceding section, titled “Using UNION,” and look at the sample SELECT
statements used. Notice that when these statements are executed individually, the first 
SELECT statement returns four rows, and the second SELECT statement returns five rows. 
However, when the two SELECT statements are combined with UNION, only eight rows 
are returned—not nine.

UNION automatically removes any duplicate rows from the query result set; in other 
words, it behaves just as multiple WHERE clause conditions in a single SELECT would. 
Because vendor 1002 creates a product that costs less than 5, that row is returned by 
both SELECT statements. When UNION is used, the duplicate row is eliminated.

This is the default behavior of UNION, but you can change it if you so desire. If you 
do, in fact, want all occurrences of all matches returned, you can use UNION ALL instead 
of UNION.

Look at the following example:

 Input

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5
UNION ALL
SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002);

 Output

+---------+---------+------------+
| vend_id | prod_id | prod_price |
+---------+---------+------------+
|    1003 | FC      |       2.50 |
|    1002 | FU1     |       3.42 |
|    1003 | SLING   |       4.49 |
|    1003 | TNT1    |       2.50 |
|    1001 | ANV01   |       5.99 |
|    1001 | ANV02   |       9.99 |
|    1001 | ANV03   |      14.99 |
|    1002 | FU1     |       3.42 |
|    1002 | OL1     |       8.99 |
+---------+---------+------------+

 Analysis

When you use UNION ALL, MySQL does not eliminate duplicates. Therefore, this 
example returns nine rows, one of them occurring twice.



145Creating Combined Queries

Tip
UNION Versus WHERE At the beginning of this chapter, I said that UNION almost always 
accomplishes the same thing as multiple WHERE conditions. UNION ALL is the form of 
UNION that accomplishes what cannot be done with WHERE clauses. If you do, in fact, want 
all occurrences of matches for every condition (including duplicates), you must use UNION 
ALL and not WHERE.

Sorting Combined Query Results
SELECT statement output is sorted using the ORDER BY clause. When you combine queries 
with UNION, only one ORDER BY clause may be used, and it must occur after the final 
SELECT statement. There is very little point in sorting part of a result set one way and 
part another way, and so multiple ORDER BY clauses are not allowed.

The following example sorts the results returned by the previously used union:

 Input

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5
UNION
SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002)
ORDER BY vend_id, prod_price;

 Output

+---------+---------+------------+
| vend_id | prod_id | prod_price |
+---------+---------+------------+
|    1001 | ANV01   |       5.99 |
|    1001 | ANV02   |       9.99 |
|    1001 | ANV03   |      14.99 |
|    1002 | FU1     |       3.42 |
|    1002 | OL1     |       8.99 |
|    1003 | TNT1    |       2.50 |
|    1003 | FC      |       2.50 |
|    1003 | SLING   |       4.49 |
+---------+---------+------------+

 Analysis

This union takes a single ORDER BY clause after the final SELECT statement. Even 
though the ORDER BY appears to only be a part of that last SELECT statement, MySQL 
uses it to sort all the results returned by all the SELECT statements.



146 Chapter 17 Combining Queries

Note
Combining Different Tables For the sake of simplicity, all of the examples in this 
chapter combine queries using the same table. However, everything you learned here 
also applies to using UNION to combine queries of different tables.

Summary
In this chapter, you learned how to combine SELECT statements with the UNION opera-
tor. Using UNION, you can return the results of multiple queries as one combined query, 
either including or excluding duplicates. The use of UNION can greatly simplify complex 
WHERE clauses and the process of retrieving data from multiple tables.

Challenges

1. Write a SQL statement that combines two SELECT statements that retrieve product 
ID (prod_id) and quantity from the OrderItems table, one filtering for rows with a 
quantity of exactly 100 and the other filtering for products with an ID that begins 
with BNBG. Sort the results by product ID.

2. Rewrite the SQL statement you just created to instead use a single SELECT
statement.

3. This one is a little nonsensical, I know, but it does something you learned in this 
chapter. Write a SQL statement that returns and combines the product name 
(prod_name) from Products and the customer name (cust_name) from Customers
and sort the result by product name.

4. What is wrong with the following SQL statement? (Try to figure it out without 
running it.)

SELECT cust_name, cust_contact, cust_email
FROM Customers
WHERE cust_state  = 'MI'
ORDER BY cust_name;
UNION
SELECT cust_name, cust_contact, cust_email
FROM Customers
WHERE cust_state = 'IL'
ORDER BY cust_name;



18
Full-Text Searching

In this chapter, you’ll learn how to use MySQL’s full-text searching capabilities to 
perform sophisticated data querying and selection.

Understanding Full-Text Searching

Note
Not All Engines Support Full-Text Searching As will be explained in Chapter 21, 
“Creating and Manipulating Tables,” MySQL supports the use of several underlying 
database engines. Not all engines support full-text searching as described in this chapter. 
The two most commonly used engines are MyISAM and InnoDB; the former supports 
full-text searching, and the latter does not. This is why although most of the sample 
tables used in this book were created to use InnoDB, one table (the productnotes table) 
was created to use MyISAM. If you need full-text searching functionality in your 
applications, keep this in mind.

In Chapter 8, “Using Wildcard Filtering,” you were introduced to the LIKE keyword that 
is used to match text (and partial text) using wildcard operators. By using LIKE, you can 
locate rows that contain specific values or parts of values, regardless of the location of 
those values within the columns.

In Chapter 9, “Searching Using Regular Expressions,” we took text-based searching 
one step further by using regular expressions to match column values. By using regular 
expressions, it is possible to write very sophisticated matching patterns to locate the 
desired rows.

But as useful as these search mechanisms are, they have several very important 
limitations:

Q Performance: Wildcard and regular expression matching usually requires that 
MySQL try to match each and every row in a table (and table indexes are rarely of 
use in these searches). These searches can therefore be very time-consuming as the 
number of rows to be searched grows.



148 Chapter 18 Full-Text Searching

Q Explicit control: Using wildcard and regular expression matching, it is very 
difficult (and not always possible) to explicitly control what is and what is not 
matched. An example of this is a search specifying a word that must be matched, a 
word that must not be matched, and a word that may or may not be matched but 
only if the first word is indeed matched.

Q Intelligent results: Although wildcard- and regular expression–based searching 
provide for very flexible searching, neither provides an intelligent way to select 
results. For example, searching for a specific word would return all rows that 
contain that word and would not distinguish between rows that contain a single 
match and those that contain multiple matches (ranking them as potentially better 
matches). Similarly, searches for a specific word would not find rows that do not 
contain that word but that do contain other related words.

All of these limitations and more are addressed by full-text searching. When full-text 
searching is used, MySQL does not need to look at each row individually, analyzing 
and processing each word individually. Rather, MySQL creates an index of the words 
(in specified columns), and searches can be made against those words. MySQL can thus 
quickly and efficiently determine which words match (that is, which rows contain them), 
which don’t, how often they match, and so on.

Using Full-Text Searching
Full-text searching can only be performed on tables with columns specifically indexed to 
be searchable in this way. Index creation is generally done at table creation time, and the 
productnotes table has a note_text column that we’ve created for just this purpose.

Performing Full-Text Searches
After indexing, full-text searches are performed using two functions: Match() to specify 
the columns to be searched and Against() to specify the search expression to be used.

Here is a basic example:

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text) Against('rabbit');

 Output

+---------------------------------------------------+
| note_text                                         |
+---------------------------------------------------+
| Customer complaint: rabbit has been able to detect
  trap, food apparently less effective now.         |
| Quantity varies, sold by the sack load. All
  guaranteed to be bright and orange, and suitable
  for use as rabbit bait.                           |
+---------------------------------------------------+



149Using Full-Text Searching

 Analysis

In this example, the SELECT statement retrieves a single column, note_text. For the 
WHERE clause, a full-text search is performed. Match(note_text) instructs MySQL to 
perform the search against that named column, and Against('rabbit') specifies the 
word rabbit as the search text. The two rows that contain the word rabbit are returned.

Note
Using the Full Match() Specification The value passed to Match() must be the same 
as the one used in the FULLTEXT() definition. If multiple columns are specified, all of 
them must be listed (and in the correct order).

Note
Searches Are Not Case-Sensitive Full-text searches are not case-sensitive unless 
BINARY mode (not covered in this chapter) is used.

The search just performed could just as easily use a LIKE clause, as shown here:

 Input

SELECT note_text
FROM productnotes
WHERE note_text LIKE '%rabbit%';

 Output

+--------------------------------------------------------------------------- +
| note_text                                                                  |
+--------------------------------------------------------------------------- |
| Quantity varies, sold by the sack load. All guaranteed to be               |
| bright and orange, and suitable for use as rabbit bait.                    |
| Customer complaint: rabbit has been able to detect trap, food              |
| apparently less effective now.                                             |
+--------------------------------------------------------------------------- +

 Analysis

This SELECT retrieves the same two rows, but the order is different (although that may 
not always be the case).

Neither of the two SELECT statements contains an ORDER BY clause. The latter (using 
LIKE) returns data in no particularly useful order. But the former (using full-text search-
ing) returns data ordered by how well the text matched. Both rows contain the word 
rabbit, but the row that contains the word rabbit as the 3rd word ranks higher than the 
row that contains it as the 20th word. This is important. An important part of full-text 
searching is the ranking of results. Rows with a higher rank are returned first (as there is 
a higher degree of likelihood that those are the rows you really want).



150 Chapter 18 Full-Text Searching

To see how ranking works, look at this example:

 Input

SELECT note_text,
       Match(note_text) Against('rabbit') AS match_rank
FROM productnotes;

 Output

+-------------------------------------------------+------------------------- +
| note_text                                             | match_rank         |
+-------------------------------------------------+------------------------- +
| Customer complaint: Sticks not individually           |       0            |
| wrapped, too easy to mistakenly detonate all          |                    |
| at once. Recommend individual wrapping.               |                    |
| Can shipped full, refills not available. Need         |       0            |
| to order new can if refill needed.                    |                    |
| Safe is combination locked, combination not           |       0            |
| provided with safe. This is rarely a problem          |                    |
| as safes are typically blown up or dropped by         |                    |
| customers.                                            |                    |
| Quantity varies, sold by the sack load. All           | 1.5905543170914    |
| guaranteed to be bright and orange, and               |                    |
| suitable for as rabbit bait.                          |                    |
| Included fuses are short and have been known to       |       0            |
| detonate too quickly for some customers. Longer       |                    |
| fuses are available (item FU1) and should be          |                    |
| recommended.                                          |                    |
| Matches not included, recommend purchase of           |       0            |
| matches or detonator (item DTNTR).                    |                    |
| Please note that no returns will be accepted if       |       0            |
| safe opened using explosives.                         |                    |
| Multiple customer returns, anvils failing to          |       0            |
| drop fast enough or falling backwards on              |                    |
| purchaser. Recommend that customer considers          |                    |
| using heavier anvils.                                 |                    |
| Item is extremely heavy. Designed for dropping,       |      0             |
| not recommended for use with slings, ropes,           |                    |
| pulleys, or tightropes.                               |                    |
| Customer complaint: rabbit has been able to           | 1.6408053837485    |
| detect trap, food apparently less effective           |                    |
| now.                                                  |                    |
| Shipped unassembled, requires common tools            |      0             |
| (including oversized hammer).                         |                    |
| Customer complaint: Circular hole in safe floor       |      0             |
| can apparently be easily cut with handsaw.            |                    |
| Customer complaint: Not heavy enough to               |      0             |
| generate flying stars around head of victim.          |                    |
| If being purchased for dropping, recommend            |                    |
| ANV02 or ANV03 instead.                               |                    |



151Using Full-Text Searching

| Call from individual trapped in safe plummeting       |      0             |
| to the ground, suggests an escape hatch be            |                    |
| added. Comment forwarded to vendor.                   |                    |
+-------------------------------------------------+------------------------- +

 Analysis

Here Match() and Against() are used in the SELECT instead of the WHERE clause. This 
causes all rows to be returned (as there is no WHERE clause). Match() and Against() are 
used to create a calculated column (with the alias match_rank) that contains the ranking 
value calculated by the full-text search. MySQL calculates the ranking based on the 
number of words in the row, the number of unique words, the total number of words in 
the entire index, and the number of rows that contain the word.

As you can see, the rows that do not contain the word rabbit have a rank of 0 (and 
were therefore not selected by the WHERE clause in the previous example). The two rows 
that do contain the word rabbit each have a rank value, and the one with the word 
earlier in the text has a higher rank value than the one in which the word appears later. 
This helps demonstrate how full-text searching eliminates rows (those with a rank of 0), 
and how it sorts results (by rank, in descending order).

Note
Ranking Multiple Search Terms If multiple search terms are specified, those that 
contain the most matching words are ranked higher than those with fewer (or with just a 
single match).

As you can see, full-text searching offers functionality not available with simple LIKE
searches. And as data is indexed, full-text searches are considerably faster, too.

Using Query Expansion
Query expansion is used to try to widen the range of returned full-text search results. 
Consider the following scenario. You want to find all notes with references to anvils in 
them. Only one note contains the word anvils, but you also want any other rows that 
may be related to your search, even if the specific word anvils is not contained within 
them.

This is a job for query expansion. When query expansion is used, MySQL makes two 
passes through the data and indexes to perform the search:

1. First, MySQL performs a basic full-text search to find all rows that match the 
search criteria.

2. MySQL examines those matched rows and selects all useful words. (We’ll talk about 
how MySQL figures out what is useful and what is not shortly.)

3. MySQL performs the full-text search again, this time using not just the original 
criteria but also all of the useful words.

So, by using query expansion, you can find results that might be relevant, even if they 
don’t contain the exact words for which you are looking.



152 Chapter 18 Full-Text Searching

Let’s look at an example. First, a simple full-text search, without query expansion:

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text) Against('anvils');

 Output

+--------------------------------------------------------------------------- +
| note_text                                                                  |
+--------------------------------------------------------------------------- +
| Multiple customer returns, anvils failing to drop fast enough or           |
| falling backwards on purchaser. Recommend that customer considers          |
| using heavier anvils.                                                      |
+--------------------------------------------------------------------------- +

 Analysis

Only one row contains the word anvils, so only one row is returned.
Here is the same search, this time using query expansion:

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('anvils' WITH QUERY EXPANSION);

 Output

+--------------------------------------------------------------------------- +
| note_text                                                                  |
+--------------------------------------------------------------------------- +
| Multiple customer returns, anvils failing to drop fast enough or           |
| falling backwards on purchaser. Recommend that customer considers          |
| using heavier anvils.                                                      |
| Customer complaint: Sticks not individually wrapped, too easy to           |
| mistakenly detonate all at once. Recommend individual wrapping.            |
| Customer complaint: Not heavy enough to generate flying stars              |
| around head of victim. If being purchased for dropping, recommend          |
| ANV02 or ANV03 instead.                                                    |
| Please note that no returns will be accepted if safe opened using          |
| explosives.                                                                |
| Customer complaint: rabbit has been able to detect trap, food              |
| apparently less effective now.                                             |
| Customer complaint: Circular hole in safe floor can apparently be          |
| easily cut with handsaw.                                                   |
| Matches not included, recommend purchase of matches or detonator           |
| (item DTNTR).                                                              |
+--------------------------------------------------------------------------- +



153Using Full-Text Searching

 Analysis

This time, seven rows are returned. The first row contains the word anvils and is 
thus ranked highest. The second row has nothing to do with anvils, but because it 
contains two words that are also in the first row (customer and recommend), it is retrieved, 
too. The third row also contains those same two words, but they are further into the text 
and further apart, and so this row is included but ranked third. And this third row does 
indeed refer to anvils (by their product name).

As you can see, query expansion greatly increases the number of rows returned, 
but in doing so, it also increases the number of items returned that you might not 
actually want.

Tip
The More Rows, the Better The more rows in your table (and the more text within 
those rows), the better the results returned when using query expansion.

Boolean Text Searches
MySQL supports an additional form of full-text searching called Boolean mode. In 
Boolean mode, you can provide specifics about a number of things, including the 
following:

Q Words to be matched
Q Words to be excluded (so that if a row contains this word, it will not be returned, 

even though other specified words are matched)
Q Ranking hints (specifying which words are more important than others so they can 

be ranked higher)
Q Expression grouping

Tip
Usable Even Without a FULLTEXT Index Boolean mode differs from the full-text 
search syntax used thus far in that it may be used even if no FULLTEXT index is defined. 
However, this would be a very slow operation, and the performance would degrade 
further as data volume increased.

To demonstrate what Boolean mode does, here is a simple example:

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('heavy' IN BOOLEAN MODE);



154 Chapter 18 Full-Text Searching

 Output

+--------------------------------------------------------------------------- +
| note_text                                                                  |
+--------------------------------------------------------------------------- +
| Item is extremely heavy. Designed for dropping, not recommended            |
| for use with slings, ropes, pulleys, or tightropes.                        |
| Customer complaint: Not heavy enough to generate flying stars              |
| around head of victim. If being purchased for dropping, recommend          |
| ANV02 or ANV03 instead.                                                    |
+--------------------------------------------------------------------------- +

 Analysis

This full-text search retrieves all rows containing the word heavy (there are two of 
them). The keywords IN BOOLEAN MODE are specified, but no Boolean operators are actu-
ally specified, and so the results are the same as if Boolean mode were not specified.

Note
IN BOOLEAN MODE Behaves Differently Although the results in this example are the 
same as they would be without IN BOOLEAN MODE, there is an important difference in 
behavior (even if it does not manifest itself in this particular example). I'll point out the 
difference later in this chapter.

To match the rows that contain heavy but not any word beginning with rope, you 
can use the following:

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('heavy -rope*' IN BOOLEAN MODE);

 Output

+--------------------------------------------------------------------------- +
| note_text                                                                  |
+--------------------------------------------------------------------------- +
| Customer complaint: Not heavy enough to generate flying stars              |
| around head of victim. If being purchased for dropping, recommend          |
| ANV02 or ANV03 instead.                                                    |
+--------------------------------------------------------------------------- +

 Analysis

This time, only one row is returned. Again, the word heavy is matched, but this 
time -rope* instructs MySQL to explicitly exclude any row that contains rope* (that 
is, any word that begins with rope, including ropes, which is why one of the rows was 
excluded).



155Using Full-Text Searching

You have now seen two full-text search Boolean operators: - excludes a word and *
is the truncation operator (which you can think of as a wildcard used at the end of a 
word). Table 18.1 lists all of the supported Boolean operators.

TABLE 18.1 Full-Text Boolean Operators

Operator Description

+ Include the specified word.

- Exclude the specified word.

> Include the specified word and increase its ranking value.

< Include the specified word and decrease its ranking value.

() Group the specified words into subexpressions (allowing them to be 
included, excluded, ranked, and so forth as a group).

~ Negate the specified word’s ranking value.

* Use as a wildcard at the end of a word.

"" Use a text phrase (as opposed to a list of individual words) to match for 
inclusion or exclusion.

Here are some more examples to demonstrate the use of some of these operators:

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('+rabbit +bait' IN BOOLEAN MODE);

 Analysis

This search matches rows that contain both the words rabbit and bait.

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('rabbit bait' IN BOOLEAN MODE);

 Analysis

Without operators specified, this search matches rows that contain at least one 
instance of rabbit or bait.

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('"rabbit bait"' IN BOOLEAN MODE);



156 Chapter 18 Full-Text Searching

 Analysis

This search matches the phrase rabbit bait instead of the two words rabbit and 
bait.

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('>rabbit <carrot' IN BOOLEAN MODE);

 Analysis

This search matches both rabbit and carrot, increasing the rank of the former and 
decreasing the rank of the latter.

 Input

SELECT note_text
FROM productnotes
WHERE Match(note_text)
      Against('+safe +(<combination)' IN BOOLEAN MODE);

 Analysis

This search matches the words safe and combination, lowering the ranking of the 
latter.

Note
Ranked but Not Sorted In Boolean mode, rows are returned ranked in descending 
order by score but not sorted.

Full-Text Searching Notes
Before finishing this chapter, here are some important notes pertaining to the use of 
full-text searching:

Q When indexing full-text data, short words are ignored and are excluded from the 
index. Short words are by default defined as those having three or fewer characters 
(though this number can be changed, if needed).

Q MySQL comes with a built-in list of stopwords, which are words that are always 
ignored when indexing full-text data. This list can be overridden, if needed. 
(Refer to the MySQL documentation to learn how to accomplish this.)

Q Many words appear so frequently that searching on them would be useless (that 
is, too many results would be returned). To deal with this, MySQL follows a 50% 
rule: If a word appears in 50% or more rows, it is treated as a stopword and is 
effectively ignored. (The 50% rule is not used for Boolean mode.)

Q Full-text searching never returns any results if there are fewer than three rows in a 
table (because every word is always in at least 50% of the rows).



157Challenges

Q Single quote characters in words are ignored. For example, don't is indexed as dont.
Q Languages that don’t have word delimiters (including Japanese and Chinese) do not 

return full-text results properly.
Q As already noted, full-text searching is only supported in the MyISAM database 

engine.

Note
No Proximity Operators One feature supported by many full-text search engines is 
proximity searching, which involves searching for words that are near each other (in the 
same sentence, in the same paragraph, no more than a specific number of words apart, 
and so on). Proximity operators are not yet supported for MySQL full-text searching, 
although this is planned for a future release.

Summary
In this chapter, you learned why full-text searching is used and how to use the MySQL 
Match() and Against() functions to perform these searches. You also learned about 
query expansion as a way to increase the chances of finding related matches and how to 
use Boolean mode for more granular lookup control.

Challenges

1. Write a SQL statement that uses full-text searching to return all rows that contain 
the word safe but that do not contain the word handsaw.

2. Write a SQL statement that uses full-text searching to return all rows that contain 
the words drop, dropped, dropping, and any other word that begins with drop.



This page intentionally left blank 



19
Inserting Data

In this chapter, you will learn how to insert data into tables by using the SQL INSERT
statement.

Understanding Data Insertion
SELECT is undoubtedly the most frequently used SQL statement (which is why the past 
15 chapters are dedicated to it). But there are three other frequently used SQL state-
ments that you should learn. The first one is INSERT. (You’ll get to the other two in the 
next chapter.)

As its name suggests, INSERT is used to insert (add) rows to a database table. INSERT
can be used in several ways:

Q To insert a single complete row
Q To insert a single partial row
Q To insert multiple rows
Q To insert the results of a query

We’ll now look at each of these.

Note
INSERT and System Security Use of the INSERT statement can be disabled per table or 
per user by using MySQL security, as explained in Chapter 28, “Managing Security.”

Inserting Complete Rows
The simplest way to insert data into a table is to use the basic INSERT syntax, which 
requires that you specify the table name and the values to be inserted into the new row. 
Here is an example of this:

 Input

INSERT INTO Customers
VALUES(NULL,
   'Pep E. LaPew',



160 Chapter 19 Inserting Data

   '100 Main Street',
   'Los Angeles',
   'CA',
   '90046',
   'USA',
   NULL,
   NULL);

Note
No Output INSERT statements usually generate no output.

 Analysis

This example inserts a new customer into the customers table. The data to be stored 
in each table column is specified in the VALUES clause, and a value must be provided 
for every column. If a column has no value (as is the case for the cust_contact and 
cust_email columns), the NULL value should be used (assuming that the table allows no 
value to be specified for that column). The columns must be populated in the order in 
which they appear in the table definition. The first column, cust_id, is also NULL. This is 
because MySQL automatically increments that column each time a row is inserted. You 
wouldn’t want to specify a value (that is MySQL’s job), and you can’t omit the column 
(because, as mentioned earlier, every column must be listed). Therefore, a NULL value is 
specified; MySQL ignores it and inserts the next available cust_id value in its place.

Although this syntax is indeed simple, it is not at all safe and should generally be 
avoided at all costs. This SQL statement is highly dependent on the order in which 
the columns are defined in the table. It also depends on information about that order 
being readily available. Even if the information is available, there is no guarantee that 
the columns will be in exactly the same order the next time the table is reconstructed. 
Therefore, writing SQL statements that depend on specific column ordering is very 
unsafe. If you try to do it, something will inevitably break at some point.

The safer (and unfortunately more cumbersome) way to write the INSERT statement is 
as follows:

 Input

INSERT INTO customers(cust_name,
   cust_address,
   cust_city,
   cust_state,
   cust_zip,
   cust_country,
   cust_contact,
   cust_email)
VALUES('Pep E. LaPew',
   '100 Main Street',
   'Los Angeles',
   'CA',



161Inserting Complete Rows

   '90046',
   'USA',
   NULL,
   NULL);

 Analysis

This example does exactly the same thing as the previous INSERT statement, but this 
time, the column names are explicitly stated in parentheses after the table name. When 
the row is inserted, MySQL matches each item in the columns list with the appropri-
ate value in the VALUES list. The first entry in VALUES corresponds to the first specified 
column name. The second value corresponds to the second column name, and so on.

Because column names are provided, the items in the VALUES list must match the 
specified column names in the order in which they are specified—and not necessarily in 
the order that the columns appear in the table. The advantage of this is that, even if the 
table layout changes, the INSERT statement will still work correctly. 

Notice that the NULL for cust_id is not needed, the cust_id column is not listed in 
the column list, and so no value is needed.

The following INSERT statement populates all the row columns (just as before), but it 
does so in a different order. Because the column names are specified, the insertion will 
work correctly:

 Input

INSERT INTO customers(cust_name,
   cust_contact,
   cust_email,
   cust_address,
   cust_city,
   cust_state,
   cust_zip,
   cust_country)
VALUES('Pep E. LaPew',
   NULL,
   NULL,
   '100 Main Street',
   'Los Angeles',
   'CA',
   '90046',
   'USA');

Tip
Always Use a Columns List Avoid using INSERT without explicitly specifying the 
columns list. Using a columns list will greatly increase the probability that your SQL will 
continue to function in the event that table changes occur.



162 Chapter 19 Inserting Data

Caution
Using VALUES Carefully Regardless of the INSERT syntax being used, the correct 
number of items must be specified in the VALUES list. If no column names are provided, 
a value must be present for every table column. If columns names are provided, a value 
must be present for each listed column. If none is present, an error message will be 
generated, and the row will not be inserted.

Using this syntax, you can also omit columns. This means you only provide values 
for some columns and not for others. (You’ve actually already seen an example of this; 
cust_id was omitted when column names were explicitly listed.)

Caution
Omitting Columns You may omit columns from an INSERT operation if the table 
definition allows it. One of the following conditions must exist:

Q The column is defined as allowing NULL values (no value at all).
Q A default value is specified in the table definition. This means the default value 

will be used if no value is specified.
If you omit a value from a table that does not allow NULL values and does not have a 

default, MySQL generates an error message, and the row is not inserted.

Tip
Improve Overall Performance Databases are frequently accessed by multiple 
clients, and it is MySQL’s job to manage which requests are processed and in which 
order. INSERT operations can be time-consuming (especially if there are many indexes to 
be updated), and this can hurt the performance of SELECT statements that are waiting to 
be processed.

If data retrieval is of utmost importance (as it usually is), you can instruct MySQL 
to lower the priority of your INSERT statement by adding the keyword LOW_PRIORITY in 
between INSERT and INTO, like this:

INSERT LOW_PRIORITY INTO

Incidentally, this also applies to the UPDATE and DELETE statements that you’ll learn 
about in the next chapter.



163Inserting Multiple Rows

Inserting Multiple Rows
INSERT inserts a single row into a table. But what if you need to insert multiple rows? 
You can simply use multiple INSERT statements, and you can even submit them all at 
once, with each one terminated by a semicolon, like this:

 Input

INSERT INTO customers(cust_name,
   cust_address,
   cust_city,
   cust_state,
   cust_zip,
   cust_country)
VALUES('Pep E. LaPew',
   '100 Main Street',
   'Los Angeles',
   'CA',
   '90046',
   'USA');
INSERT INTO customers(cust_name,
   cust_address,
   cust_city,
   cust_state,
   cust_zip,
   cust_country)
VALUES('M. Martian',
   '42 Galaxy Way',
   'New York',
   'NY',
   '11213',
   'USA');

Or, if the column names and order are identical in the INSERT statements, you can 
combine the statements as follows:

 Input

INSERT INTO customers(cust_name,
   cust_address,
   cust_city,
   cust_state,
   cust_zip,
   cust_country)
VALUES(
        'Pep E. LaPew',
        '100 Main Street',
        'Los Angeles',
        'CA',
        '90046',
        'USA'



164 Chapter 19 Inserting Data

      ),
     (
        'M. Martian',
        '42 Galaxy Way',
        'New York',
        'NY',
        '11213',
        'USA'
);

 Analysis

Here a single INSERT statement has multiple sets of values, each enclosed within 
parentheses and separated by commas.

Tip
Improve INSERT Performance The technique just described can improve the 
performance of your database processing, as MySQL processes multiple insertions in a 
single INSERT faster than it processes multiple INSERT statements.

Inserting Retrieved Data
INSERT is usually used to add a row to a table by using specified values. There is another 
form of INSERT that can be used to insert the result of a SELECT statement into a table. 
This is known as INSERT SELECT, and, as its name suggests, it is made up of an INSERT
statement and a SELECT statement.

Suppose you want to merge a list of customers from another table into your 
customers table. Instead of reading one row at a time and inserting it with INSERT, you 
can do the following:

Note
Instructions Needed for the Next Example The following example imports data 
from a table named custnew into the customers table. To try this example, you need to 
create and populate the custnew table first. The format of the custnew table should be 
the same as the format of the customers table described in Appendix B, “The Example 
Tables.” When populating custnew, be sure not to use cust_id values that were already 
used in customers (as the subsequent INSERT operation will fail if primary key values are 
duplicated); alternatively, you can just omit that column and have MySQL generate new 
values during the import process.



165Inserting Retrieved Data

 Input

INSERT INTO customers(cust_id,
    cust_contact,
    cust_email,
    cust_name,
    cust_address,
    cust_city,
    cust_state,
    cust_zip,
    cust_country)
SELECT cust_id,
    cust_contact,
    cust_email,
    cust_name,
    cust_address,
    cust_city,
    cust_state,
    cust_zip,
    cust_country
FROM custnew;

 Analysis

This example uses INSERT SELECT to import all the data from custnew into customers. 
Instead of listing the values to be inserted, the SELECT statement retrieves them from 
custnew. Each column in the SELECT corresponds to a column in the specified columns 
list. How many rows will this statement insert? It depends on how many rows are in the 
custnew table. If the table is empty, no rows will be inserted (and no error will be gener-
ated because the operation is still valid). If the table does, in fact, contain data, all that 
data is inserted into customers.

This example imports cust_id (and assumes that you have ensured that cust_id values 
are not duplicated). You could also simply omit that column (from both the INSERT and 
the SELECT), and MySQL generates new values.

Tip
Column Names in INSERT SELECT This example uses the same column names in 
both the INSERT and SELECT statements for simplicity’s sake. But there is no requirement 
that says the column names must match. In fact, MySQL does not even pay attention 
to the column names returned by SELECT. Rather, the column position is used, so the 
first column in the SELECT statement (regardless of its name) is used to populate the first 
specified table column, and so on. This is very useful when you’re importing data from 
tables that use different column names.

The SELECT statement used in an INSERT SELECT can include a WHERE clause to filter 
the data to be inserted.



166 Chapter 19 Inserting Data

Note
More Examples Looking for more examples of the use of INSERT? See the example 
table population scripts (described in Appendix B) used to create the example tables for 
this book.

Summary
In this chapter, you learned how to use INSERT to insert rows into a database table. You 
also learned several other ways to use INSERT and why explicit column specification is 
preferred. You also learned how to use INSERT SELECT to import rows from another 
table. In the next chapter, you’ll learn how to use UPDATE and DELETE to further 
manipulate table data.

Challenges

1. Using INSERT and specifying columns, add yourself to the Customers table. 
Explicitly list the columns you are adding and use only the ones you need.

2. Using INSERT SELECT, make backup copies of your Orders and OrderItems tables.



20
Updating and Deleting Data

In this chapter, you will learn how to use the UPDATE and DELETE statements to further 
manipulate table data.

Updating Data
To update (modify) data in a table, you use the UPDATE statement. UPDATE can be used in 
two ways:

Q To update specific rows in a table
Q To update all rows in a table

Let’s take a look at each of these uses.

Caution
Don’t Omit the WHERE Clause Take special care when using UPDATE because it is 
very easy to mistakenly update every row in a table. Please read this entire section on 
UPDATE before using this statement.

Note
UPDATE and Security Use of the UPDATE statement can be restricted and controlled. 
See Chapter 28, “Managing Security.”

The UPDATE statement is very easy to use—maybe even too easy. An UPDATE statement 
is made up of three parts:

Q The table to be updated
Q The column names and their new values
Q The filter condition that determines which rows should be updated



168 Chapter 20 Updating and Deleting Data

Let’s take a look at a simple example. Customer 10005 now has an email address, and 
his record needs to be updated. The following statement performs this update:

 Input

UPDATE customers
SET cust_email = 'elmer@fudd.com'
WHERE cust_id = 10005;

The UPDATE statement always begins with the name of the table being updated. In 
this example, it is the customers table. The SET command is then used to assign the new 
value to a column. In this example, the SET clause sets the cust_email column to the 
specified value:

SET cust_email = 'elmer@fudd.com'

The UPDATE statement finishes with a WHERE clause that tells MySQL which row to 
update. Without a WHERE clause, MySQL would update all the rows in the customers
table with this new email address—definitely not the desired effect.

Updating multiple columns requires slightly different syntax:

 Input

UPDATE customers
SET cust_name = 'The Fudds',
    cust_email = 'elmer@fudd.com'
WHERE cust_id = 10005;

When updating multiple columns, only a single SET command is used, and each 
column = value pair is separated by a comma. (No comma is specified after the last 
column name.) In this example, columns cust_name and cust_email are both updated 
for customer 10005.

Tip
Use Subqueries in an UPDATE Statement You can use subqueries in UPDATE
statements, which enables you to update columns with data retrieved using a SELECT
statement. Refer to Chapter 14, “Working with Subqueries,” for more information on 
subqueries and their uses.

Tip
The IGNORE Keyword If your UPDATE statement updates multiple rows and an error 
occurs while updating one or more of those rows, the entire UPDATE operation is cancelled 
(and any rows updated before the error occurred are restored to their original values). 
To continue processing updates, even if an error occurs, use the IGNORE keyword, like this:

UPDATE IGNORE customers ...

mailto:'elmer@fudd.com'
mailto:'elmer@fudd.com'
mailto:'elmer@fudd.com'


169Deleting Data

To delete a column’s value, you can set it to NULL (assuming that the table is defined 
to allow NULL values). You can do this as follows:

 Input

UPDATE customers
SET cust_email = NULL
WHERE cust_id = 10005;

Here the NULL keyword is used to save no value to the cust_email column.

Deleting Data
To delete (remove) data from a table, you use the DELETE statement. DELETE can be used 
in two ways:

Q To delete specific rows from a table
Q To delete all rows from a table

You’ll now take a look at each of these.

Caution
Don’t Omit the WHERE Clause Take special care when using DELETE because it is 
very easy to mistakenly delete every row from a table. Please read this entire section on 
DELETE before using this statement.

Tip
DELETE and Security Use of the DELETE statement can be restricted and controlled. 
See Chapter 28.

I stated earlier that UPDATE is very easy to use. The good (and bad) news is that DELETE
is even easier to use.

The following statement deletes a single row from the customers table:

 Input

DELETE FROM customers
WHERE cust_id = 10006;

This statement should be self-explanatory. DELETE FROM requires that you specify the 
name of the table from which the data is to be deleted. The WHERE clause filters which 
rows are to be deleted. In this example, only customer 10006 will be deleted. If the 
WHERE clause were omitted, this statement would delete every customer in the table.

DELETE takes no column names or wildcard characters. DELETE deletes entire rows, not 
columns. To delete specific columns, you use an UPDATE statement (as shown earlier in 
this chapter).



170 Chapter 20 Updating and Deleting Data

Note
Table Contents, Not Tables The DELETE statement deletes rows from tables; it can 
even delete all rows from a table. But DELETE never deletes the table itself.

Tip
Faster Deletes If you really do want to delete all rows from a table, don’t use DELETE. 
Instead, use the TRUNCATE TABLE statement, which accomplishes the same thing but does 
it much more quickly. TRUNCATE actually drops and re-creates the table instead of deleting 
each row individually.

Guidelines for Updating and Deleting Data
The UPDATE and DELETE statements used in the previous sections all have WHERE clauses, 
and there is a very good reason for this. If you omit the WHERE clause, the UPDATE or 
DELETE is applied to every row in the table. In other words, if you execute an UPDATE
without a WHERE clause, every row in the table is updated with the new values. Similarly, 
if you execute DELETE without a WHERE clause, all the contents of the table are deleted.

Here are some best practices that many SQL programmers follow:

Q Never execute an UPDATE or a DELETE without a WHERE clause unless you really do 
intend to update or delete every row.

Q Make sure every table has a primary key and use it as the WHERE clause whenever 
possible. You can specify individual primary keys, multiple values, or value ranges. 
(Refer to Chapter 15, “Joining Tables,” if you have forgotten what a primary 
key is.)

Q Before you use a WHERE clause with UPDATE or DELETE, first test it with a SELECT to 
make sure it is filtering the right records. It is far too easy to write incorrect WHERE
clauses.

Q Use database-enforced referential integrity (refer to Chapter 15 for this one, too) 
so MySQL will not allow the deletion of rows that have data in other tables related 
to them.

Caution
Use with Caution The bottom line is that MySQL has no Undo button. Be very 
careful when using UPDATE and DELETE, or you’ll find yourself updating and deleting the 
wrong data.



171Challenges

Summary
In this chapter, you learned how to use the UPDATE and DELETE statements to manipulate 
the data in your tables. You learned the syntax for each of these statements, as well as the 
danger you face in using them. You also learned why WHERE clauses are so important in 
UPDATE and DELETE statements, and you were given guidelines to follow to help ensure 
that data does not get damaged inadvertently.

Challenges

1. In the United States, state name abbreviations should always be in uppercase. Write 
a SQL statement to update all U.S. addresses in both vendor states (vend_state in 
Vendors) and customer states (cust_state in Customers) so that they are uppercase. 
To do this, you’ll need to use a function that converts text to uppercase (refer to 
Chapter 11, if needed) and a WHERE clause to filter just U.S. addresses.

2. Challenge 1 in Chapter 15 asked you to add yourself to the Customers table. Now 
delete yourself. Make sure to use a WHERE clause (and test it with a SELECT before 
using it in DELETE), or you’ll delete all customers!



This page intentionally left blank 



21
Creating and Manipulating 

Tables

In this chapter, you’ll learn the basics of table creation, alteration, and deletion.

Creating Tables
MySQL statements are not used just for table data manipulation. Indeed, MySQL can 
be used to perform all database and table operations, including to create and manipulate 
tables.

There are generally two ways to create database tables:

Q You can use an administration tool (like the ones discussed in Chapter 2, 
“Introducing MySQL”) to create and manage database tables interactively.

Q You can manipulate tables directly with MySQL statements.

To create tables programmatically, you use the CREATE TABLE SQL statement. It is 
worth noting that when you use interactive tools, you are actually using MySQL 
statements. Instead of writing these statements yourself, however, you have the MySQL 
Workbench interface generate and execute the MySQL for you.

Note
Additional Examples For additional examples of table creation scripts, see the code 
used to create the sample tables used in this book, as explained in Appendix B.

Basic Table Creation
To create a table using CREATE TABLE, you must specify the following information:

Q The name of the new table, which you specify after the CREATE TABLE statement
Q The name and definition of the table columns, separated by commas



174 Chapter 21 Creating and Manipulating Tables

The CREATE TABLE statement can also include other keywords and options, but at 
a minimum, you need the table name and column details. The following MySQL 
statement creates the customers table used throughout this book:

 Input

CREATE TABLE customers
(
  cust_id      int       NOT NULL AUTO_INCREMENT,
  cust_name    char(50)  NOT NULL ,
  cust_address char(50)  NULL ,
  cust_city    char(50)  NULL ,
  cust_state   char(5)   NULL ,
  cust_zip     char(10)  NULL ,
  cust_country char(50)  NULL ,
  cust_contact char(50)  NULL ,
  cust_email   char(255) NULL ,
  PRIMARY KEY (cust_id)
) ENGINE=InnoDB;

 Analysis

As you can see in this statement, the table name is specified immediately following 
the CREATE TABLE statement. The actual table definition (all the columns) is enclosed 
within parentheses. The columns are separated by commas. This particular table is made 
up of nine columns. Each column definition starts with the column name (which must 
be unique within the table), followed by the column’s datatype. (Refer to Chapter 
1, “Understanding SQL,” for an explanation of datatypes. In addition, Appendix D, 
“MySQL Datatypes,” lists the datatypes supported by MySQL.) The table’s primary 
key may be specified at table creation time using the PRIMARY KEY keyword. Here, the 
column cust_id is specified as the primary key column. The entire statement is termi-
nated with a semicolon after the closing parenthesis. (Ignore the ENGINE=InnoDB and 
AUTO_INCREMENT statements for now; we’ll come back to them later.)

Tip
Statement Formatting As you will recall, white space is ignored in MySQL state-
ments. You can type a statement on one long line or break it up over many lines. It 
makes no difference which way you do it. This flexibility enables you to format your 
SQL as best suits you. The preceding CREATE TABLE statement is a good example of 
MySQL statement formatting; the code is specified over multiple lines, with the column 
definitions indented for ease of reading and editing. Formatting your MySQL in this way 
is entirely optional but highly recommended.



175Creating Tables

Tip
Handling Existing Tables When you create a new table, the table name specified 
must not already exist, or you’ll generate an error. To prevent accidental overwriting, 
SQL requires that you first manually remove a table (see later sections for details) and 
then re-create it rather than just overwrite it.

If you want to be sure you’re creating a table that does not already exist, specify IF 
NOT EXISTS after the table name. MySQL does not check to see that the schema of the 
existing table matches the one you are about to create. It simply checks to see if the table 
name exists, and it proceeds with table creation only if it does not.

Working with NULL Values
Back in Chapter 6, “Filtering Data,” you learned that a NULL value is no value or the 
lack of a value. A column that allows NULL values also allows rows to be inserted with no 
value at all in that column. A column that does not allow NULL values does not accept 
rows with no value; in other words, that column will always be required when rows are 
inserted or updated.

Every table column is either a NULL column or a NOT NULL column, and that state is 
specified in the table definition at creation time. Take a look at the following example:

 Input

CREATE TABLE orders
(
  order_num  int      NOT NULL AUTO_INCREMENT,
  order_date datetime NOT NULL ,
  cust_id    int      NOT NULL ,
  PRIMARY KEY (order_num)
) ENGINE=InnoDB;

 Analysis

This statement creates the orders table used throughout this book. orders contains 
three columns: one for the order number, one for the order date, and one for the 
customer ID. All three columns are required, and so each contains the keyword NOT NULL
to prevent the insertion of columns with no value. If someone tries to insert no value, an 
error will be returned, and the insertion will fail.

This next example creates a table with a mixture of NULL and NOT NULL columns:

 Input

CREATE TABLE vendors
(
  vend_id      int NOT  NULL AUTO_INCREMENT,
  vend_name    char(50) NOT NULL ,
  vend_address char(50) NULL ,
  vend_city    char(50) NULL ,



176 Chapter 21 Creating and Manipulating Tables

  vend_state   char(5)  NULL ,
  vend_zip     char(10) NULL ,
  vend_country char(50) NULL ,
  PRIMARY KEY (vend_id)
) ENGINE=InnoDB;

 Analysis

This statement creates the vendors table used throughout this book. The vendor ID 
and vendor name columns are both required, and are, therefore, specified as NOT NULL. 
The five remaining columns all allow NULL values, and so NOT NULL is not specified. NULL
is the default setting, so if NOT NULL is not specified, NULL is assumed.

Caution
Understanding NULL Don’t confuse NULL values with empty strings. A NULL value is 
the lack of a value; it is not an empty string. You could, for example, specify '' (two 
single quotes with nothing in between them) in a NOT NULL column because an empty 
string is a valid value; it is not no value. NULL values are specified with the keyword NULL, 
not with an empty string.

Primary Keys Revisited
As explained earlier, primary key values must be unique. That is, every row in a table 
must have a unique primary key value. If a single column is used for the primary key, it 
must be unique; if multiple columns are used, the combination of those columns must 
be unique.

The CREATE TABLE examples shown thus far use a single column as the primary key. 
The primary key is defined using a statement such as:

PRIMARY KEY (vend_id)

To create a primary key made up of multiple columns, simply specify the column 
names as a comma-delimited list, as shown in this example:

CREATE TABLE orderitems
(
  order_num  int          NOT NULL ,
  order_item int          NOT NULL ,
  prod_id    char(10)     NOT NULL ,
  quantity   int          NOT NULL ,
  item_price decimal(8,2) NOT NULL ,
  PRIMARY KEY (order_num, order_item)
) ENGINE=InnoDB;

The orderitems table contains the order specifics for each order in the orders
table. There may be multiple items per order, but each order will only ever have one 
first item, one second item, and so on. As such, the combination of order number 



177Creating Tables

(column order_num) and order item (column order_item) are unique, and thus the 
combination is suitable to be the primary key, which is defined as follows:

PRIMARY KEY (order_num, order_item)

Primary keys may be defined at table creation time (as shown here) or after table 
creation (as discussed later in this chapter).

Tip
No Defining Primary Keys with NULL Values Back in Chapter 1, you learned that 
primary keys are columns whose values uniquely identify every row in a table. Only 
columns that do not allow NULL values can be used in primary keys. Columns that allow 
no value at all cannot be used as unique identifiers.

Using AUTO_INCREMENT
Let’s take a look at the customers and orders tables again. Customers in the customers
table are uniquely identified by the column cust_id, which includes a unique number 
for each and every customer. Similarly, orders in the orders table each have a unique 
order number, which is stored in the column order_num. These numbers have no special 
significance other than the fact that they are unique. When a new customer or order is 
added, a new customer ID or order number is needed. The numbers can be anything, as 
long as they are unique.

Obviously, the simplest number to use would be whatever comes next—whatever 
is one higher than the current highest number. For example, if the highest cust_id is 
10005, the next customer inserted into the table could have the cust_id 10006.

Simple, right? Well, not really. How would you determine the next number to be 
used? You could, of course, use a SELECT statement to get the highest number (using 
the Max() function introduced in Chapter 12, “Summarizing Data”) and then add 1 to 
it. But that would not be safe, as you’d need to find a way to ensure that no one else 
inserted a row in between the time that you performed the SELECT and the INSERT, 
which is a legitimate possibility in multiuser applications. It also wouldn’t be efficient 
(as performing additional MySQL operations is never ideal).

This is where AUTO_INCREMENT comes in. Look at the following line, which is part of 
the CREATE TABLE statement used to create the customers table:

cust_id      int       NOT NULL AUTO_INCREMENT

AUTO_INCREMENT tells MySQL that this column is to be automatically incremented 
each time a row is added. Each time an INSERT operation is performed, MySQL auto-
matically increments (hence the name AUTO_INCREMENT) the column, assigning it the next 
available value. This way, each row is assigned a unique cust_id, which is then used as 
the primary key value.

Only one AUTO_INCREMENT column is allowed per table, and it must be indexed 
(for example, by being made a primary key).



178 Chapter 21 Creating and Manipulating Tables

Note
Overriding AUTO_INCREMENT Need to use a specific value in a column designated as 
AUTO_INCREMENT? You can. Simply specify a value in the INSERT statement, and as long 
as it is unique (that is, has not been used yet), that value will be used instead of an auto-
matically generated one. Subsequent incrementing will start using the value manually 
inserted. (See the table population scripts in Appendix B for examples of this.)

Tip
Determining the AUTO_INCREMENT Value One downside of having MySQL generate 
primary keys for you (via AUTO_INCREMENT) is that you don’t know what those values are.

Consider this scenario: You are adding a new order. This requires creating a single 
row in the orders table and then a row for each item ordered in the orderitems table. 
The order number is stored, along with the order details, in orderitems. This is how 
the orders and orderitems table are related to each other. And this obviously requires 
that you know the generated order_num after the order’s row is inserted and before the 
orderitems rows are inserted.

So how could you obtain this value when an AUTO_INCREMENT column is used? By 
using the last_insert_id() function, like this:

SELECT last_insert_id();

This returns the last AUTO_INCREMENT value, which you can then use in subsequent 
MySQL statements.

Specifying Default Values
MySQL enables you to specify default values to be used if no value is specified when a 
row is inserted. Default values are specified using the DEFAULT keyword in the column 
definitions in the CREATE TABLE statement.

Look at the following example:

 Input

CREATE TABLE orderitems
(
  order_num  int          NOT NULL ,
  order_item int          NOT NULL ,
  prod_id    char(10)     NOT NULL ,
  quantity   int          NOT NULL DEFAULT 1,
  item_price decimal(8,2) NOT NULL ,
  PRIMARY KEY (order_num, order_item)
) ENGINE=InnoDB;



179Creating Tables

 Analysis

This statement creates the orderitems table, which contains the individual items that 
make up an order. (The order itself is stored in the orders table.) The quantity column 
contains the quantity for each item in an order. In this example, adding the text DEFAULT 
1 to the column description instructs MySQL to use a quantity of 1 if no quantity is 
specified.

Caution
Functions Are Not Allowed Unlike most DBMSs, MySQL does not allow the use 
of functions as DEFAULT values; only constants are supported.

Tip
Using DEFAULT Instead of NULL Values Many database developers use DEFAULT values 
instead of NULL columns, especially in columns that will be used in calculations or data 
groupings.

Engine Types
You might have noticed that the CREATE TABLE statements used thus far have all ended 
with an ENGINE=InnoDB statement.

Like every other DBMS, MySQL has an internal engine that actually manages and 
manipulates data. When you use the CREATE TABLE statement, that internal engine is used 
to actually create the tables, and when you use the SELECT statement or perform any 
other database processing, the engine is used to process your request. For the most part, 
the engine is buried within the DBMS, and you need not pay much attention to it.

But unlike every other DBMS, MySQL does not come with a single engine. Rather, 
it ships with several engines, all buried within the MySQL server and all capable of 
executing commands such as CREATE TABLE and SELECT.

So why bother shipping multiple engines? Because they each have different capabilities 
and features, and being able to pick the right engine for the job gives you unprecedented 
power and flexibility.

Of course, you are free to totally ignore database engines. If you omit the ENGINE=
statement, the default engine is used (most likely MyISAM), and most of your SQL 
statements will work as is. But not all of them will, and that is why this is important 
(and why two engines are used in the sample tables used in this book).

Here are several engines to be aware of:

Q InnoDB is a transaction-safe engine (see Chapter 26, “Managing Transaction 
Processing”). It does not support full-text searching.

Q MEMORY is functionally equivalent to MyISAM, but data is stored in memory 
(instead of on disk), so it is extremely fast (and ideally suited for temporary tables).

Q MyISAM is a very high-performance engine. It supports full-text searching (see 
Chapter 18, “Full-Text Searching”) but does not support transactional processing.



180 Chapter 21 Creating and Manipulating Tables

Note
To Learn More For a complete list of supported engines, see the MySQL 
documentation.

Engine types may be mixed. The example tables used throughout this book all use 
InnoDB with the exception of the productnotes table, which uses MyISAM. The reason 
for this is that I wanted support for transactional processing (and thus used InnoDB) but 
also needed full-text searching support in productnotes (and thus used MyISAM for that 
table).

Caution
Foreign Keys Can’t Span Engines There is one big downside to mixing engine 
types. Foreign keys (used to enforce referential integrity, as explained in Chapter 1) 
cannot span engines. That is, a table using one engine cannot have a foreign key that 
refers to a table that uses another engine.

So, which engine should you use? Well, it depends on what features you need. 
MyISAM tends to be the most popular engine because of its performance and features. 
But if you do need transaction-safe processing, you will need to use a different engine.

Updating Tables
To update table definitions, you use the ALTER TABLE statement. However, ideally, the 
design of a table should never be altered once the table contains data. You should spend 
sufficient time anticipating future needs during the table design process so that extensive 
changes are not required later on.

When you simply must change a table, you can do so by using ALTER TABLE. You 
must specify the following information with it:

Q The name of the table to be altered after the keywords ALTER TABLE (The table you 
specify must exist, or an error will be generated.)

Q The list of changes to be made

The following example adds a column to a table:

 Input

ALTER TABLE vendors
ADD vend_phone CHAR(20);

 Analysis

This statement adds a column named vend_phone to the vendors table. The datatype 
must be specified.



181Updating Tables

To remove this newly added column, you can use the following:

 Input

ALTER TABLE Vendors
DROP COLUMN vend_phone;

One common use for ALTER TABLE is to define foreign keys. The following is the 
code used to define the foreign keys used by the tables in this book:

ALTER TABLE orderitems
ADD CONSTRAINT fk_orderitems_orders
FOREIGN KEY (order_num) REFERENCES orders (order_num);

ALTER TABLE orderitems
ADD CONSTRAINT fk_orderitems_products FOREIGN KEY (prod_id) REFERENCES products

(prod_id);

ALTER TABLE orders
ADD CONSTRAINT fk_orders_customers FOREIGN KEY (cust_id) REFERENCES customers

(cust_id);

ALTER TABLE products
ADD CONSTRAINT fk_products_vendors
FOREIGN KEY (vend_id) REFERENCES vendors (vend_id);

Four ALTER TABLE statements are used here because four different tables are being 
altered. To make multiple alterations to a single table, you can use a single ALTER TABLE
statement and list the alterations, separated by commas.

Complex table structure changes usually require a manual move process involving 
these steps:

1. Create a new table with the new column layout.
2. Use the INSERT SELECT statement to copy the data from the old table to the 

new table. (See Chapter 19, “Inserting Data,” for details on the INSERT SELECT

statement.) Use conversion functions and calculated fields, if needed.
3. Verify that the new table contains the desired data.
4. Rename the old table (or delete it, if you are really brave).
5. Rename the new table with the name previously used by the old table.
6. Re-create any triggers, stored procedures, indexes, and foreign keys, as needed.

Caution
Use ALTER TABLE Carefully Use ALTER TABLE with extreme caution and be sure you 
have a complete set of backups (both schema and data) before proceeding. Database table 
changes cannot be undone—and if you add columns you don’t need, you might not be 
able to remove them. Similarly, if you drop a column that you do need, you might lose 
all the data in that column.



182 Chapter 21 Creating and Manipulating Tables

Deleting Tables
Deleting a table (that is, actually removing the entire table and not just the contents) is 
very easy—arguably too easy. You deleted a table by using the DROP TABLE statement:

 Input

DROP TABLE customers2;

 Analysis

This statement deletes the customers2 table (assuming that it exists). You get no 
confirmation, and there is no undo. When you execute this statement, MySQL perma-
nently removes the table.

Renaming Tables
To rename a table, use the RENAME TABLE statement as follows:

 Input

RENAME TABLE customers2 TO customers;

 Analysis

RENAME TABLE does just what it says it does: It renames a table. You can rename 
multiple tables in one operation like this:

RENAME TABLE backup_customers TO customers,
             backup_vendors TO vendors,
             backup_products TO products;

Summary
In this chapter, you learned several new SQL statements. CREATE TABLE is used to 
create new tables, ALTER TABLE is used to change table columns (or other objects, like 
constraints or indexes), and DROP TABLE is used to completely delete a table. These state-
ments should be used with extreme caution—and only after backups have been made. 
You also learned about database engines, defining primary and foreign keys, and other 
important table and column options.

Challenges

1. Add a website column (vend_web) to the Vendors table. You need a text field big 
enough to accommodate a URL.

2. Use UPDATE statements to update Vendors table records to include a website. (You 
can make up any address.)



22
Using Views

In this chapter, you’ll learn exactly what views are, how they work, and when they 
should be used. You’ll also see how views can be used to simplify some of the SQL 
operations performed in earlier chapters.

Understanding Views

Note
This Chapter Requires MySQL 5 or Later Support for views was added to 
MySQL 5. Therefore, this chapter is applicable to MySQL 5 or later only.

Views are virtual tables. Unlike tables that contain data, views simply contain queries 
that dynamically retrieve data when used.

The best way to understand views is to look at an example. Back in Chapter 15, 
“Joining Tables,” you used the following SELECT statement to retrieve data from three 
tables:

 Input

SELECT cust_name, cust_contact
FROM customers, orders, orderitems
WHERE customers.cust_id = orders.cust_id
  AND orderitems.order_num = orders.order_num
  AND prod_id = 'TNT2';

That query was used to retrieve the customers who had ordered a specific product. 
Anyone needing this data would have to understand the table structure, as well as how 
to create the query and join the tables. To retrieve the same data for another product (or 
for multiple products), the tables would all need to be joined, and the last WHERE clause 
would have to be modified.



184 Chapter 22 Using Views

Now imagine that you could wrap that entire query, complete with all the table 
relationships defined, in a virtual table called productcustomers. You could then simply 
use the following to retrieve the same data:

 Input

SELECT cust_name, cust_contact
FROM productcustomers
WHERE prod_id = 'TNT2';

This is where views come into play. productcustomers is a view, and as a view, it 
does not contain any actual columns or data, as a table would. Instead, it contains a SQL 
query—the same query used previously to join the tables.

Why Use Views
You’ve already seen one use for views. Here are some other common uses:

Q To reuse SQL statements.
Q To simplify complex SQL operations. After a query is written, it can be reused 

easily, without requiring the user to know the details of the underlying query.
Q To expose parts of a table instead of the complete table.
Q To secure data. Users can be given access to specific subsets of tables instead of to 

entire tables.
Q To change data formatting and representation. Views can return data formatted 

and presented differently than in their underlying tables.

For the most part, after views are created, they can be used in the same way as tables. 
You can perform SELECT operations, filter and sort data, join views to other views or 
tables, and possibly even add and update data. (There are some restrictions on this last 
item. More on that in a moment.)

The important thing to remember is that views provide views into data stored else-
where. Views contain no data themselves, and the data they return is retrieved from 
other tables. When data is added or changed in those tables, the views return the 
changed data.

Caution
Performance Issues Because views contain no data, any retrieval needed to execute a 
query must be processed every time the view is used. If you create complex views with 
multiple joins and filters, or if you nest views, you may find that performance is dramati-
cally degraded. Be sure you test execution before deploying applications that use views 
extensively.



185Using Views

View Rules and Restrictions
Here are some of the most common rules and restrictions governing view creation and 
usage:

Q Like tables, views must be uniquely named. (That is, a view cannot be given the 
same name as any other table or view.)

Q There is no limit to the number of views that can be created.
Q To create views, you must have security access. This is usually granted by the 

database administrator.
Q Views can be nested; that is, a view may be built using a query that retrieves data 

from another view.
Q ORDER BY can be used in a view, but it will be overridden if ORDER BY is also used 

in the SELECT that retrieves data from the view.
Q Views cannot be indexed, and they cannot have triggers or default values 

associated with them.
Q Views can be used in conjunction with tables (for example, to create a SELECT

statement that joins a table and a view).

Using Views
Now that you know what views are (and the rules and restrictions that govern them), 
let’s look at view creation:

Q Views are created using the CREATE VIEW statement.
Q To view the statement used to create a view, use SHOW CREATE VIEW viewname;.
Q To remove a view, use the DROP statement. The syntax is simply DROP VIEW 

viewname;.
Q To update a view, you can use the DROP statement and then the CREATE statement 

again, or you can just use CREATE OR REPLACE VIEW, which creates the view if it 
does not exist and replaces it if it does.

Using Views to Simplify Complex Joins
One of the most common uses of views is to hide complex SQL, and this often involves 
joins. Look at the following statement:

 Input

CREATE VIEW productcustomers AS
SELECT cust_name, cust_contact, prod_id
FROM customers, orders, orderitems
WHERE customers.cust_id = orders.cust_id
  AND orderitems.order_num = orders.order_num;

 Analysis



186 Chapter 22 Using Views

This statement creates a view named productcustomers, which joins three tables to 
return a list of all customers who have ordered any product. If you use SELECT * FROM 
productcustomers, you get a list of every customer who has ordered anything.

To retrieve a list of customers who have ordered product TNT2, you can use the 
following:

 Input

SELECT cust_name, cust_contact
FROM productcustomers
WHERE prod_id = 'TNT2';

 Output

+-----------------+-----------------+
| cust_name       |  cust_contact   |
+-----------------+-----------------+
| Coyote Inc.     | Y Lee           |
| Yosemite Place  | Y Sam           |
+-----------------+-----------------+

 Analysis

This statement retrieves specific data from the view by issuing a WHERE clause. When 
MySQL processes the request, it adds the specified WHERE clause to any existing WHERE
clauses in the view query so the data is filtered correctly.

As you can see, views can greatly simplify the use of complex SQL statements. By 
using a view, you can write the underlying SQL once and then reuse it as needed.

Tip
Creating Reusable Views It is a good idea to create views that are not tied to 
specific data. For example, the view created in this example returns customers for all 
products, not just product TNT2 (for which the view was first created). By expanding 
the scope of a view, you enable it to be reused, making it even more useful. You also 
eliminate the need to create and maintain multiple similar views.

Using Views to Reformat Retrieved Data
As mentioned previously, another common use of views is for reformatting retrieved 
data. The following SELECT statement (from Chapter 10, “Creating Calculated Fields”) 
returns the vendor name and location in a single combined calculated column:

 Input

SELECT Concat(RTrim(vend_name),
              ' (', RTrim(vend_country), ')')
       AS vend_title
FROM vendors
ORDER BY vend_name;



187Using Views

 Output

+-------------------------+
| vend_title              |
+-------------------------+
| ACME (USA)              |
| Anvils R Us (USA)       |
| Furball Inc. (USA)      |
| Jet Set (England)       |
| Jouets Et Ours (France) |
| LT Supplies (USA)       |
+-------------------------+

Now suppose that you regularly need results in this format. Rather than perform the 
concatenation each time it is needed, you can create a view and use that instead. To turn 
this statement into a view, you can use the following:

 Input

CREATE VIEW vendorlocations AS
SELECT Concat(RTrim(vend_name),
       ' (', RTrim(vend_country), ')')
       AS vend_title
FROM vendors
ORDER BY vend_name;

 Analysis

This statement creates a view using exactly the same query as the previous SELECT
statement. To retrieve the data to create all mailing labels, simply use the following:

 Input

SELECT *
FROM vendorlocations;

 Output

+-------------------------+
| vend_title              |
+-------------------------+
| ACME (USA)              |
| Anvils R Us (USA)       |
| Furball Inc. (USA)      |
| Jet Set (England)       |
| Jouets Et Ours (France) |
| LT Supplies (USA)       |
+-------------------------+



188 Chapter 22 Using Views

Using Views to Filter Unwanted Data
Views are also useful for applying common WHERE clauses. For example, you might want 
to define a customeremaillist view so it filters out customers without email addresses. 
To do this, you can use the following statement:

 Input

CREATE VIEW customeremaillist AS
SELECT cust_id, cust_name, cust_email
FROM customers
WHERE cust_email IS NOT NULL;

 Analysis

Obviously, when sending email to a mailing list, you’d want to ignore users who have 
no email address. The WHERE clause here filters out rows that have NULL values in the 
cust_email columns so they will not be retrieved.

You can now use the customeremaillist view for data retrieval just as you would any 
table. Consider this example:

 Input

SELECT *
FROM customeremaillist;

 Output

+---------+----------------+------------------------+
| cust_id | cust_name      | cust_email             |
+---------+----------------+------------------------+
|   10001 | Coyote Inc.    | ylee@coyote.com        |
|   10003 | Wascals        | rabbit@wascally.com    |
|   10004 | Yosemite Place | sam@yosemite.com       |
+---------+----------------+------------------------+

Note
WHERE Clauses If a WHERE clause is used when retrieving data from a view, the two sets 
of clauses (the one in the view and the one passed to it) will be combined automatically.

Using Views with Calculated Fields
Views are exceptionally useful for simplifying the use of calculated fields. The follow-
ing is a SELECT statement introduced in Chapter 10 that retrieves the order items for a 
specific order and calculates the expanded price for each item:

 Input

SELECT prod_id,
       quantity,
       item_price,

mailto:ylee@coyote.com
mailto:rabbit@wascally.com
mailto:sam@yosemite.com


189Using Views

       quantity*item_price AS expanded_price
FROM orderitems
WHERE order_num = 20005;

 Output

+---------+----------+------------+----------------+
| prod_id | quantity | item_price | expanded_price |
+---------+----------+------------+----------------+
| ANV01   |       10 | 5.99       | 59.90          |
| ANV02   |        3 | 9.99       | 29.97          |
| TNT2    |        5 | 10.00      | 50.00          |
| FB      |        1 | 10.00      | 10.00          |
+---------+----------+------------+----------------+

To turn this into a view, use the following:

 Input

CREATE VIEW orderitemsexpanded AS
SELECT order_num,
       prod_id, quantity,
       item_price,
       quantity*item_price AS expanded_price
FROM orderitems;

To retrieve the details for order 20005 (the previous output), use the following:

 Input

SELECT *
FROM orderitemsexpanded
WHERE order_num = 20005;

 Output

+-----------+---------+----------+------------+----------------+
| order_num | prod_id | quantity | item_price | expanded_price |
+-----------+---------+----------+-----------------------------+
|   20005   | ANV01   |       10 | 5.99       | 59.90          |
|   20005   | ANV02   |        3 | 9.99       | 29.97          |
|   20005   | TNT2    |        5 | 10.00      | 50.00          |
|   20005   | FB      |        1 | 10.00      | 10.00          |
+-----------+---------+----------+------------+----------------+

As you can see, views are easy to create and even easier to use. When used correctly, 
views can greatly simplify complex data manipulation.

Updating Views
All of the views thus far have been used with SELECT statements. But can view data be 
updated? It depends.

As a rule, yes, views are updatable (that is, you can use INSERT, UPDATE, and DELETE on 
them). Updating a view updates the underlying table. (Recall that the view has no data 



190 Chapter 22 Using Views

of its own.) If you add or remove rows from a view you are actually removing them from 
the underlying table.

But not all views are updatable. Basically, if MySQL is unable to correctly ascertain 
the underlying data to be updated, updates (including insertions and deletions) are not 
allowed. In practice, this means that if any of the following are used, you will not be able 
to update the view:

Q Grouping (using GROUP BY and HAVING)
Q Joins
Q Subqueries
Q Unions
Q Aggregate functions (Min(), Count(), Sum(), and so forth)
Q DISTINCT

Q Derived (calculated) columns

In other words, many of the examples used in this chapter would not be updatable. 
This might sound like a serious restriction, but it really isn’t because views are primarily 
used for data retrieval.

Tip
Use Views for Retrieval As a rule, you should use views for data retrieval (SELECT
statements) and not for updates (INSERT, UPDATE, and DELETE statements).

Summary
Views are virtual tables. They do not contain data; rather, they contain queries that 
retrieve data as needed. Views provide a level of encapsulation around MySQL SELECT 
statements and can be used to simplify data manipulation as well as to reformat or secure 
underlying data.

Challenges

1. Create a view called VendorProducts that joins Vendors and Products tables. Use a 
SELECT to make sure you have the right data.

2. Create a view called CustomersWithOrders that contains all of the columns in 
Customers but includes only customers who have placed orders. Here’s a hint: You 
can use JOIN on the Orders table to filter just the customers you want. Then use 
SELECT to make sure you have the right data.



23
Working with Stored 

Procedures

In this chapter, you’ll learn what stored procedures are, why they are used, and how they 
are used. You’ll also learn the basic syntax for creating and using them.

Understanding Stored Procedures

Note
This Chapter Requires MySQL 5 Support for stored procedures was added to 
MySQL 5. Therefore, this chapter is applicable to MySQL 5 or later only.

Most of the SQL statements that we’ve used thus far are simple in that they use a single 
statement against one or more tables. Not all operations are that simple, though. Often, 
multiple statements are needed to perform a complete operation. For example, consider 
the following scenario:

Q To process an order, checks must be made to ensure that items are in stock.
Q If items are in stock, they need to be reserved so they are not sold to anyone else, 

and the available quantity must be reduced to reflect the correct amount in stock.
Q Any items not in stock need to be ordered; this requires some interaction with the 

vendor.
Q The customer needs to be notified about which items are in stock (and can be 

shipped immediately) and which are back-ordered.

This is obviously not a complete example, and it is even beyond the scope of the 
example tables that we have been using in this book, but it will suffice to help make 
a point. Performing this process requires using many MySQL statements against many 
tables. In addition, the exact statements that need to be performed and their order are 
not fixed; they can (and will) vary according to which items are in stock and which 
are not.



192 Chapter 23 Working with Stored Procedures

How would you write this code? You could write each of the statements individually
 and execute other statements conditionally, based on the result. You’d have to do this 
every time this processing was needed (and in every application that needed it).

Or you could create a stored procedure. A stored procedure is simply a collection of 
one or more MySQL statements saved for future use. You can think of stored procedures 
as batch files, although in truth they are more than that.

Why Use Stored Procedures
Now that you know what stored procedures are, why use them? There are many reasons, 
but here are the primary ones:

Q They simplify complex operations (as illustrated in the previous example) by 
encapsulating processes into a single easy-to-use unit.

Q They ensure data integrity by not requiring that a series of steps be created over 
and over. If all developers and applications use the same (tried and tested) stored 
procedure, the same code will be used by all.
An extension of this is to prevent errors. The more steps that need to be 
performed, the more likely it is that errors will be introduced. Preventing errors 
ensures data consistency.

Q They simplify change management. If tables, column names, or business logic 
(or just about anything else) changes, only the stored procedure code needs to be 
updated, and no one else needs to even be aware that changes were made.
An extension of this is security. Restricting access to underlying data via stored 
procedures reduces the chance of data corruption (unintentional or otherwise).

Q They improve performance, as they typically execute more quickly than do 
individual SQL statements.

Q There are MySQL language elements and features that are available only within 
single requests. Stored procedures can use them to write code that is more 
powerful and flexible. (We’ll see an example of this in the next chapter.)

In other words, there are three primary benefits to stored procedures: simplicity, 
security, and performance. Obviously, all these factors are extremely important. Before 
you run off and turn all your SQL code into stored procedures, though, consider the 
downsides:

Q Stored procedures tend to be more complex to write than basic SQL statements, 
and writing them requires a greater degree of skill and experience.

Q You might not have the security access needed to create stored procedures. Many 
database administrators restrict stored procedure creation rights, allowing users to 
execute them but not necessarily create them.

Nonetheless, stored procedures are very useful and should be used whenever 
possible.



193Using Stored Procedures

Note
Can’t Write Them? You Can Still Use Them MySQL distinguishes the security 
and access needed to write stored procedures from the security and access needed to 
execute them. This is a good thing; even if you can’t (or don’t want to) write your own 
stored procedures, you can still execute them, when appropriate.

Using Stored Procedures
Using stored procedures requires knowing how to execute (that is, run) them. Stored 
procedures are executed far more often than they are written, so we’ll start there. And 
then we’ll look at creating and working with stored procedures.

Executing Stored Procedures
MySQL refers to executing a stored procedure as calling the procedure, and the MySQL 
statement to execute a stored procedure is CALL. CALL takes the name of the stored proce-
dure and any parameters that need to be passed to it. Take a look at this example:

 Input

CALL productpricing(@pricelow,
                    @pricehigh,
                    @priceaverage);

 Analysis

Here a stored procedure named productpricing is executed. It calculates and returns 
the lowest, highest, and average product prices. (And, no, you can’t run this example just 
yet; stay tuned.)

Stored procedures might or might not display results, as you will see shortly.

Creating Stored Procedures
As already explained, writing a stored procedure is not trivial. To give you a taste for 
what is involved, let’s look at a simple example of a stored procedure that returns the 
average product price. Here is the code:

 Input

DELIMITER //

CREATE PROCEDURE productpricing()
BEGIN
   SELECT Avg(prod_price) AS priceaverage
   FROM products;
END//

DELIMITER ;



194 Chapter 23 Working with Stored Procedures

 Analysis

Ignore the first and last lines for a moment; we’ll come back to them shortly. The 
stored procedure is named productpricing and is defined with the statement CREATE 
PROCEDURE productpricing(). If the stored procedure accepted parameters, they would 
be enumerated between the ( and ). This stored procedure has no parameters, but the 
trailing () is still required. BEGIN and END statements are used to delimit the body of the 
stored procedure, and the body in this case is just a simple SELECT statement (using the 
Avg() function you learned about in Chapter 12, “Summarizing Data”).

When MySQL processes this code, it creates a new stored procedure named 
productpricing. No data is returned because the code does not call the stored 
procedure; it simply creates the stored procedure for future use.

The DELIMITER Challenge
Back to the first and last lines in the example you just saw. As you have repeatedly seen, 
MySQL relies on the ; character to terminate SQL statements. The ; character is called 
the delimiter because it delimits (that is, defines boundaries) between SQL statements. 
That creates a problem in our statement. Look at this code:

CREATE PROCEDURE productpricing()
BEGIN
   SELECT Avg(prod_price) AS priceaverage
   FROM products;
END;

The closing END; terminates the CREATE statement. But look carefully, and you see 
that there’s another ; in there, after products, and that ; terminates the statement 
prematurely, before the closing END.

The solution is to temporarily change the command-line utility delimiter, as shown 
here:

DELIMITER //

DELIMITER // instructs MySQL to use // instead of ; as the new end-of-statement 
delimiter. And indeed, the END that closes the stored procedure is defined as END //
instead of the expected END;. This way, the ; within the stored procedure body remains 
intact and is correctly passed to the database engine. And then, things are restored back 
to how they were initially, like this:

DELIMITER ;

Note
Doesn’t Have to Be ; Any character may be used as the delimiter except for \. Just 
be sure to use something that doesn’t have a special meaning in SQL.



195Using Stored Procedures

So how would you use this stored procedure? Like this:

 Input

CALL productpricing();

 Output

+--------------+
| priceaverage |
+--------------+
|    16.133571 |
+--------------+

 Analysis

CALL productpricing(); executes the just-created stored procedure and displays the 
returned result. Because a stored procedure is actually a type of function, () characters 
are required after the stored procedure name (even when no parameters are being 
passed).

Dropping Stored Procedures
After they are created, stored procedures remain on the server, ready for use, until 
dropped. The DROP command (similar to the DROP statement you saw in Chapter 21, 
“Creating and Manipulating Tables”) removes the stored procedure from the server.

To remove the stored procedure just created, use the following statement:

 Input

DROP PROCEDURE productpricing;

 Analysis

This removes the just-created stored procedure. Notice that the trailing () is not used; 
here just the stored procedure name is specified.

Tip
Drop Only if It Exists DROP PROCEDURE will throw an error if the named procedure 
does not actually exist. To delete a procedure if it exists (and not throw an error if it does 
not), use DROP PROCEDURE IF EXISTS.

Working with Parameters
productpricing is a really simple stored procedure. It simply displays the results of a 
SELECT statement. Typically stored procedures do not display results; rather, they return 
them into variables that you specify.

New Term
Variable A named location in memory that is used to temporarily store data.



196 Chapter 23 Working with Stored Procedures

Here is an updated version of productpricing (but note that you won’t be able to 
create the stored procedure again if you did not previously drop it):

 Input

DELIMITER //

CREATE PROCEDURE productpricing(
   OUT pl DECIMAL(8,2),
   OUT ph DECIMAL(8,2),
   OUT pa DECIMAL(8,2)
)
BEGIN
   SELECT Min(prod_price)
   INTO pl
   FROM products;
   SELECT Max(prod_price)
   INTO ph
   FROM products;
   SELECT Avg(prod_price)
   INTO pa
   FROM products;
END//
DELIMITER ;

 Analysis

This stored procedure accepts three parameters: pl to store the lowest product price, 
ph to store the highest product price, and pa to store the average product price (hence 
the variable names). Each parameter must have its type specified; here a decimal value is 
used. The keyword OUT is used to specify that this parameter is used to send a value out 
of the stored procedure (back to the caller).

MySQL supports parameters of types IN (those passed to stored procedures), OUT
(those passed from stored procedures, as we’ve used here), and INOUT (those used to pass 
parameters to and from stored procedures). The stored procedure code itself is enclosed 
within BEGIN and END statements, as shown earlier, and a series of SELECT statements are 
used to retrieve values that are then saved into the appropriate variables (specified with 
the INTO keyword).

Note
Parameter Datatypes The datatypes allowed in stored procedure parameters are the 
same as the ones used in tables. Appendix D, “MySQL Datatypes,” lists these types.

Note that a recordset is not an allowed type, and so multiple rows and columns 
could not be returned via a parameter. This is why three parameters (and three SELECT
statements) are used in the previous example.



197Using Stored Procedures

To call this updated stored procedure, three variable names must be specified, as 
shown here:

 Input

CALL productpricing(@pricelow,
                    @pricehigh,
                    @priceaverage);

 Analysis

As the stored procedure expects three parameters, exactly three parameters must be 
passed—no more and no less. Therefore, three parameters are passed to this CALL state-
ment. These are the names of the three variables that the stored procedure will store the 
results in.

Note
Variable Names A MySQL variable name must begin with @.

When called, this statement does not actually display any data. Rather, it returns 
variables that can then be displayed (or used in other processing).

To display the retrieved average product price, you could use the following:

 Input

SELECT @priceaverage;

 Output

+---------------+
| @priceaverage |
+---------------+
| 16.133571428  |
+---------------+

To obtain all three values, you can use the following:

 Input

SELECT @pricehigh, @pricelow, @priceaverage;

 Output

+------------+-----------+---------------+
| @pricehigh | @pricelow | @priceaverage |
+------------+-----------+---------------+
| 55.00      | 2.50      | 16.133571428  |
+------------+-----------+---------------+



198 Chapter 23 Working with Stored Procedures

Here is another example, this one using both IN and OUT parameters. ordertotal
accepts an order number and returns the total for that order:

 Input

DELIMITER //

CREATE PROCEDURE ordertotal(
   IN onumber INT,
   OUT ototal DECIMAL(8,2)
)
BEGIN
   SELECT Sum(item_price*quantity)
   FROM orderitems
   WHERE order_num = onumber
   INTO ototal;
END //

DELIMITER ;

 Analysis

onumber is defined as IN because the order number is passed into the stored procedure. 
ototal is defined as OUT because the total is to be returned from the stored procedure. 
The SELECT statement uses both of these parameters, the WHERE clause uses onumber to 
select the right rows, and INTO uses ototal to store the calculated total.

To invoke this new stored procedure, you can use the following:

 Input

CALL ordertotal(20005, @total);

 Analysis

Two parameters must be passed to ordertotal; the first is the order number, and the 
second is the name of the variable that will contain the calculated total.

To display the total, you can then use the following:

 Input

SELECT @total;

 Output

+--------+
| @total |
+--------+
| 149.87 |
+--------+

 Analysis

@total has already been populated by the CALL statement to ordertotal, and SELECT
displays the value it contains.



199Using Stored Procedures

To obtain a display for the total of another order, you would need to call the stored 
procedure again and then redisplay the variable:

 Input

CALL ordertotal(20009, @total);
SELECT @total;

Building Intelligent Stored Procedures
All of the stored procedures used thus far have basically encapsulated simple MySQL 
SELECT statements. And while they are all valid examples of stored procedures, they 
really don’t do anything more than what you could do with those statements directly. 
(If anything, they just make things a little more complex.) The real power of stored proce-
dures is realized when business rules and intelligent processing are included within them.

Consider this scenario: You need to obtain order totals as before, and you also need 
to add sales tax to the total for some customers (perhaps the ones in your own state). 
Now you need to do several things:

Q Obtain the total (as before).
Q Conditionally add tax to the total.
Q Return the total (with or without tax).

This a perfect job for a stored procedure:

 Input

DELIMITER //

-- Name: ordertotal
-- Parameters: onumber = order number
--             taxable = 0 if not taxable, 1 if taxable
--             ototal  = order total variable

CREATE PROCEDURE ordertotal(
   IN onumber INT,
   IN taxable BOOLEAN,
   OUT ototal DECIMAL(8,2)
) COMMENT 'Obtain order total, optionally adding tax'
BEGIN

   -- Declare variable for total
   DECLARE total DECIMAL(8,2);
   -- Declare tax percentage
   DECLARE taxrate INT DEFAULT 6;

   -- Get the order total
   SELECT Sum(item_price*quantity)
   FROM orderitems
   WHERE order_num = onumber
   INTO total;



200 Chapter 23 Working with Stored Procedures

   -- Is this taxable?
   IF taxable THEN
      -- Yes, so add taxrate to the total
      SELECT total+(total/100*taxrate) INTO total;
   END IF;

   -- And finally, save to out variable
   SELECT total INTO ototal;

END //

DELIMITER ;

 Analysis

The stored procedure has changed dramatically. First of all, comments have been added 
throughout (preceded by --). Comments are extremely important as stored procedures 
increase in complexity. An additional parameter has been added here: taxable is a BOOLEAN
(that is true if taxable and false if not). Within the stored procedure body, two local variables 
are defined using DECLARE statements. DECLARE requires that a variable name and datatype be 
specified, and it also supports optional default values. (taxrate in this example is set to 6%.) 
The SELECT statement has changed so the result is stored in total (the local variable) instead 
of ototal. Then an IF statement checks to see if taxable is true, and if it is, another SELECT
statement is used to add the tax to the local variable total. Finally, total (which might or 
might not have had tax added) is saved to ototal using another SELECT statement.

Tip
The COMMENT Keyword The stored procedure in this example includes a COMMENT
value in the CREATE PROCEDURE statement. This is not required, but if it is specified, it is 
displayed in SHOW PROCEDURE STATUS results.

This is obviously a more sophisticated and powerful stored procedure. It also demon-
strates a really important use for stored procedures in that it encapsulates all of the details 
pertaining to table and data structures and related business logic. Users could call this 
stored procedure to get the data they need without needing to know all the details of 
how the calculations work.

Now let’s test the new stored procedure by using the following two statements:

 Input

CALL ordertotal(20005, 0, @total);
SELECT @total;

 Output

+--------+
| @total |
+--------+
| 149.87 |
+--------+



201Using Stored Procedures

 Input

CALL ordertotal(20005, 1, @total);
SELECT @total;

 Output

+---------------+
| @total        |
+---------------+
| 158.862200000 |
+---------------+

 Analysis

We’ve added one parameter that specifies whether to calculate tax. BOOLEAN values 
may be specified as 1 for true and 0 for false. (Actually, any nonzero value is considered 
true, and only 0 is considered false.) By specifying 0 or 1 in the middle parameter, you 
can conditionally add tax to the order total.

Note
The IF Statement This example shows the basic use of the MySQL IF statement. IF
also supports ELSEIF and ELSE clauses; the former also uses a THEN clause, and the latter 
does not. We’ll be seeing additional uses of IF (as well as other flow control statements) 
in future chapters.

Inspecting Stored Procedures
To display the CREATE statement used to create a stored procedure, use the SHOW CREATE 
PROCEDURE statement:

 Input

SHOW CREATE PROCEDURE ordertotal;

To obtain a list of stored procedures, including details on when and who created 
them, use SHOW PROCEDURE STATUS.

Note
Limiting Procedure Status Results SHOW PROCEDURE STATUS lists all stored pro-
cedures. To restrict the output, you can use LIKE to specify a filter pattern, as in this 
example:

SHOW PROCEDURE STATUS LIKE 'ordertotal';



202 Chapter 23 Working with Stored Procedures

Summary
In this chapter, you learned what stored procedures are and why they are used. You also 
learned the basics of stored procedure execution and creation syntax, and you saw some 
of the ways stored procedures can be used. We’ll continue this subject when we look at 
cursors in the next chapter.

Challenges

1. Create a stored procedure that accepts a customer ID and returns all orders made 
by that customer.

2. Different locations have different tax rates. The ordertotal stored procedure 
hard-coded the tax rate as 6%. Update that stored procedure so that it accepts the 
tax rate to use, if one is needed. Here’s a hint: You actually don’t need another 
parameter but could replace the taxable flag to accept a tax rate, with 0 meaning 
no tax (yay!).



24
Using Cursors

In this chapter, you’ll learn what cursors are and how to use them.

Understanding Cursors

Note
This Chapter Requires MySQL 5 Support for cursors was added to MySQL 5. 
Therefore, this chapter is applicable to MySQL 5 or later only.

As you have seen in previous chapters, MySQL retrieval operations work with sets of 
rows known as result sets. The rows returned are all the rows (zero or more of them) that 
match a SQL statement. Using simple SELECT statements, there is no way to get the first 
row, the next row, or the previous 10 rows, for example. There is also no way to process 
all rows one at a time (as opposed to processing all of them in a batch).

Sometimes there is a need to step through rows forward or backward and one or 
more at a time. This is what cursors are used for. A cursor is a database query stored on 
the MySQL server; it is not a SELECT statement but the result set retrieved by that state-
ment. Once a cursor is stored, applications can use it to scroll or browse up and down 
through the data as needed.

Cursors are used primarily by interactive applications in which users need to scroll up 
and down through screens of data to browse or make changes.

Note
Only in Stored Procedures Unlike most DBMSs, MySQL cursors may only be used 
within stored procedures (and functions).



204 Chapter 24 Using Cursors

Working with Cursors
Using cursors involves several distinct steps:

1. Before a cursor can be used, it must be declared (defined). This process does 
not actually involve retrieving any data; it merely involves defining the SELECT
statement to be used.

2. After it is declared, the cursor must be opened for use. This process involves 
actually retrieving the data using the previously defined SELECT statement.

3. With the cursor populated with data, individual rows can be fetched (retrieved) as 
needed.

4. When it is done, the cursor must be closed.

After a cursor is declared, it can be opened and closed as often as needed. After it is 
opened, fetch operations can be performed as often as needed.

Creating Cursors
Cursors are created using the DECLARE statement (which you saw in Chapter 23, 
“Working with Stored Procedures”). DECLARE names the cursor and takes a SELECT state-
ment, complete with WHERE and other clauses, if needed. For example, this statement 
defines a cursor named ordernumbers using a SELECT statement that retrieves all orders:

 Input

DELIMITER //
CREATE PROCEDURE processorders()
BEGIN
   DECLARE ordernumbers CURSOR
   FOR
   SELECT order_num FROM orders;
END //
DELIMITER ;

 Analysis

This stored procedure does not do a whole lot. A DECLARE statement is used to define 
and name the cursor—in this case ordernumbers. Nothing is done with the cursor, and 
as soon as the stored procedure finishes processing, it will cease to exist (as it is local to 
the stored procedure).

Note
DROP and CREATE As you saw in Chapter 23, to update a stored procedure, you need 
to use DROP on it and then use CREATE.

Now that the cursor is defined, it is ready to be opened.



205Working with Cursors

Opening and Closing Cursors
Cursors are opened using the OPEN CURSOR statement, like this:

 Input

OPEN ordernumbers;

 Analysis

When the OPEN statement is processed, the query is executed, and the retrieved data is 
stored for subsequent browsing and scrolling.

After cursor processing is complete, the cursor should be closed using the CLOSE
statement, as follows:

 Input

CLOSE ordernumbers;

 Analysis

CLOSE frees up any internal memory and resources used by the cursor, and so every 
cursor should be closed when it is no longer needed.

After a cursor is closed, it cannot be reused without being opened again. However, a 
cursor does not need to be declared again to be used; an OPEN statement is sufficient.

Note
Implicit Closing If you do not explicitly close a cursor, MySQL will close it 
automatically when the END statement is reached.

Here is an updated version of the previous example:

 Input

DELIMITER //
CREATE PROCEDURE processorders()
BEGIN
   -- Declare the cursor
   DECLARE ordernumbers CURSOR
   FOR
   SELECT order_num FROM orders;

   -- Open the cursor
   OPEN ordernumbers;

   -- Close the cursor
   CLOSE ordernumbers;

END//

DELIMITER ;



206 Chapter 24 Using Cursors

 Analysis

This stored procedure declares, opens, and closes a cursor. However, nothing is done 
with the retrieved data.

Using Cursor Data
After a cursor is opened, each row can be accessed individually using a FETCH statement. 
FETCH specifies what is to be retrieved (the desired columns) and where retrieved data 
should be stored. It also advances the internal row pointer within the cursor so the next 
FETCH statement will retrieve the next row (and not the same one over and over).

The first example retrieves a single row from the cursor (the first row):

 Input

DELIMITER //

CREATE PROCEDURE processorders()
BEGIN

   -- Declare local variables
   DECLARE o INT;

   -- Declare the cursor
   DECLARE ordernumbers CURSOR
   FOR
   SELECT order_num FROM orders;

   -- Open the cursor
   OPEN ordernumbers;

   -- Get order number
   FETCH ordernumbers INTO o;

   -- Close the cursor
   CLOSE ordernumbers;

END //

DELIMITER ;

 Analysis

Here FETCH is used to retrieve the order_num column of the current row (starting at 
the first row automatically) into a local declared variable named o. Nothing is done with 
the retrieved data.

In the next example, the retrieved data is looped through from the first row to the 
last:

 Input

DELIMITER //

CREATE PROCEDURE processorders()



207Working with Cursors

BEGIN

   -- Declare local variables
   DECLARE done BOOLEAN DEFAULT 0;
   DECLARE o INT;

   -- Declare the cursor
   DECLARE ordernumbers CURSOR
   FOR
   SELECT order_num FROM orders;

   -- Declare continue handler
   DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done=1;

   -- Open the cursor
   OPEN ordernumbers;

   -- Loop through all rows
   REPEAT

      -- Get order number
      FETCH ordernumbers INTO o;

   -- End of loop
   UNTIL done END REPEAT;

   -- Close the cursor
   CLOSE ordernumbers;

END //

DELIMITER ;

 Analysis

Like the previous example, this example uses FETCH to retrieve the current order_num
into a declared variable named o. Unlike the previous example, the FETCH here is within 
a REPEAT, so it is repeated over and over until done is true (as specified by UNTIL done 
END REPEAT;). To make this work, the variable done is defined with DEFAULT 0 (false, not 
done). So how does done get set to true when done? The answer is this statement:

DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done=1;

This statement defines a CONTINUE HANDLER, which is code that will be executed when 
a condition occurs. Here it specifies that when SQLSTATE '02000' occurs, SET done=1. 
And SQLSTATE '02000' is a not found condition, and so it occurs when REPEAT cannot 
continue because there are no more rows to loop through.



208 Chapter 24 Using Cursors

Caution
DECLARE Statement Sequence There is a specific order in which DECLARE statements, 
if used, must be issued. Local variables defined with DECLARE must be defined before any 
cursors or handlers are defined, and handlers must be defined after any cursors. Failure to 
follow this sequencing will generate an error message.

If you were to call this stored procedure, it would define variables and a CONTINUE 
HANDLER, define and open a cursor, repeat through all rows, and then close the cursor.

With this functionality in place, you can now place any needed processing inside the 
loop—after the FETCH statement and before the end of the loop.

Note
REPEAT or LOOP? In addition to the REPEAT statement used here, MySQL also supports 
a LOOP statement that can be used to repeat code until LOOP is manually exited using a 
LEAVE statement. In general, the syntax of the REPEAT statement makes it better suited for 
looping through cursors.

To put this all together, here is one further revision of our stored procedure with 
cursor, this time with some actual processing of fetched data:

 Input

DELIMITER //

CREATE PROCEDURE processorders()
BEGIN
   -- Declare local variables
   DECLARE done BOOLEAN DEFAULT 0;
   DECLARE o INT;
   DECLARE t DECIMAL(8,2);

   -- Declare the cursor
   DECLARE ordernumbers CURSOR
   FOR
   SELECT order_num FROM orders;

   -- Declare continue handler
   DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done=1;

   -- Create a table to store the results
   CREATE TABLE IF NOT EXISTS ordertotals
      (order_num INT, total DECIMAL(8,2));

   -- Open the cursor
   OPEN ordernumbers;



209Working with Cursors

   -- Loop through all rows
   REPEAT

      -- Get order number
      FETCH ordernumbers INTO o;

      -- Get the total for this order
      CALL ordertotal(o, 1, t);

      -- Insert order and total into ordertotals
      INSERT INTO ordertotals(order_num, total)
      VALUES(o, t);

   -- End of loop
   UNTIL done END REPEAT;

   -- Close the cursor
   CLOSE ordernumbers;

END //

DELIMITER ;

 Analysis

In this example, we’ve added another variable named t (which will store the total 
for each order). The stored procedure also creates a new table named ordertotals
on-the-fly (if it does not already exist). This table will store the results generated by the 
stored procedure. FETCH fetches each order_num as it did before, and then CALL executes 
another stored procedure (the one created in the previous chapter) to calculate the total 
with tax for each order (the result of which is stored in t). Finally, INSERT is used to save 
the order number and total for each order.

Now the stored procedure can be executed using CALL, like this:

 Input

CALL processorders();

 Analysis

Calling the stored procedure returns no data, but it does create and populate another 
table that can then be viewed using a simple SELECT statement:

 Input

SELECT *
FROM ordertotals;

 Output

+-----------+---------+
| order_num | total   |
+-----------+---------+



210 Chapter 24 Using Cursors

|     20005 |  158.86 |
|     20006 |   58.30 |
|     20007 | 1060.00 |
|     20008 |  132.50 |
|     20009 |   40.78 |
+-----------+---------+

And there you have it: a complete working example of stored procedures, cursors, 
row-by-row processing, and even stored procedures calling other stored procedures.

Summary
In this chapter, you learned what cursors are and why they are used. You also saw 
examples demonstrating basic cursor use, as well as techniques for looping through 
cursor results and for row-by-row processing.



25
Using Triggers

In this chapter, you’ll learn what triggers are and why and how they are used. You’ll also 
learn the syntax for creating and using them.

Understanding Triggers

Note
This Chapter Requires MySQL 5 Support For Triggers Was Added To MySQL 5. 
Therefore, This Chapter Is Applicable To MySQL 5 Or Later Only.

MySQL statements are executed when needed, as are stored procedures. But what if you 
want a statement (or statements) to be executed automatically when events occur? For 
example:

Q Every time a customer is added to a database table, you want to check that 
the phone number is formatted correctly and that the state abbreviation is in 
uppercase.

Q Every time a product is ordered, you want to subtract the ordered quantity from 
the number in stock.

Q Whenever a row is deleted, you want to save a copy in an archive table.

What all these examples have in common is that they need to be processed automati-
cally whenever a table change occurs. And that is exactly what triggers do. A trigger is a 
MySQL statement (or a group of statements enclosed within BEGIN and END statements) 
that is automatically executed by MySQL in response to any of these statements:

Q DELETE

Q INSERT

Q UPDATE

No other MySQL statements support triggers.



212 Chapter 25 Using Triggers

Creating Triggers
When creating a trigger, you need to specify four pieces of information:

Q The unique trigger name
Q The table with which the trigger is to be associated
Q The action that the trigger should respond to (DELETE, INSERT, or UPDATE)
Q When the trigger should be executed (before or after processing)

Tip
Keep Trigger Names Unique per Database Unlike most DBMSs, MySQL 
requires trigger names to be unique per table but not per database. This means that two 
tables in the same database can have triggers of the same name.

Triggers are created using the CREATE TRIGGER statement. Here is a really simple 
(and not overly useful) example:

 Input

CREATE TRIGGER newproduct AFTER INSERT ON products
FOR EACH ROW SET @result = 1;

 Analysis

Here CREATE TRIGGER is used to create the new trigger named newproduct.
Triggers can be executed before or after an operation occurs, and here AFTER INSERT

is specified so the trigger will execute after a successful INSERT statement has been 
executed. The trigger then specifies FOR EACH ROW and the code to be executed for each 
inserted row. In this example, a variable named @result will be set to 1.

To test this trigger, use the INSERT statement to add one or more rows to products. 
You can then use SELECT to display the variable.

Note
Only Tables Triggers are only supported on tables, not on views. (They are also not 
supported on temporary tables.)

Triggers are defined per time per event per table, and only one trigger per time per 
event per table is allowed. Up to six triggers are supported per table (before and after 
INSERT, UPDATE, and DELETE). A single trigger cannot be associated with multiple events 
or multiple tables, so if you need triggers to be executed for both INSERT and UPDATE
operations, you’ll need to define two triggers.



213Using Triggers

Note
When Triggers Fail When a BEFORE trigger fails, MySQL does not perform the 
requested operation. In addition, when either a BEFORE trigger or the statement itself 
fails, MySQL does not execute an AFTER trigger (if one exists).

Dropping Triggers
By now the syntax for dropping a trigger should be apparent. To drop a trigger, you use 
the DROP TRIGGER statement, as shown here:

 Input

DROP TRIGGER newproduct;

 Analysis

Triggers cannot be updated or overwritten. To modify a trigger, you must drop it and 
re-create it.

Using Triggers
Now that we’ve covered the basics of triggers, we will now look at each of the 
supported trigger types and the differences between them.

INSERT Triggers
An INSERT trigger is executed before or after an INSERT statement is executed. Be aware 
of the following:

Q In INSERT trigger code, you can refer to a virtual table named NEW to access the 
rows being inserted.

Q In a BEFORE INSERT trigger, the values in NEW may also be updated (so you can 
change values that are about to be inserted).

Q For AUTO_INCREMENT columns, NEW contains 0 before the trigger and the new 
automatically generated value after the trigger.

Let’s look at an example—a really useful one. vendors contains a column named 
vend_state that stores a vendor’s state (as part of its address). Ideally state abbreviations 
should be capitalized, such as CA rather than ca or Ca. You could ask users to always enter 
the data correctly, but, yeah right! Using a trigger is a better solution:

 Input

DELIMITER //

CREATE TRIGGER newvendor AFTER INSERT ON vendors
FOR EACH ROW



214 Chapter 25 Using Triggers

BEGIN
   UPDATE vendors SET vend_state=Upper(vend_state) WHERE vend_id = NEW.vend_id;
END //

DELIMITER ;

 Analysis

This code creates a trigger named newvendor that is executed by AFTER INSERT ON 
vendors. When a new vendor is saved in vendors, a copy is saved in NEW, and NEW.
vend_id contains the ID of the newly inserted vendor. The trigger contains an UPDATE
statement that updates vend_state with Upper(vend_state) and uses NEW.vend_id in the 
WHERE clause so that the right row is updated. Now, no matter what the user enters, the 
data will be stored correctly.

To test this trigger, add a new vendor and then use SELECT to verify that vend_state
was indeed updated.

Tip
BEFORE or AFTER? As a rule, you should use BEFORE for any data validation and 
cleanup to ensure that the data inserted into the table is exactly as needed. This applies 
to UPDATE triggers, too.

DELETE Triggers
A DELETE trigger is executed before or after a DELETE statement is executed. Be aware of 
the following:

Q Within DELETE trigger code, you can refer to a virtual table named OLD to access 
the rows being deleted.

Q The values in OLD are all read-only and cannot be updated.

The following example demonstrates the use of OLD to save rows that are about to be 
deleted into an archive table:

 Input

DELIMITER //

CREATE TRIGGER deleteorder BEFORE DELETE ON orders
FOR EACH ROW
BEGIN
   INSERT INTO archive_orders(order_num,
                              order_date,
                              cust_id)
   VALUES(OLD.order_num,
          OLD.order_date,
          OLD.cust_id);



215Using Triggers

END//

DELIMITER ;

 Analysis

Before any order is deleted, this trigger is executed. It uses an INSERT statement 
to save the values in OLD (the order about to be deleted) into an archive table named 
archive_orders. (To actually use this example, you need to create a table named 
archive_orders with the same columns as orders.)

The advantage of using a BEFORE DELETE trigger (as opposed to an AFTER DELETE
trigger) is that if, for some reason, the order cannot be archived, the DELETE will be 
aborted.

Note
Multi-Statement Triggers Notice that the trigger deleteorder uses BEGIN and 
END statements to mark the trigger body. This is actually not necessary in this example, 
although it does no harm being there. The advantage of using a BEGIN END block is that 
the trigger can then accommodate multiple SQL statements (one after the other within 
the BEGIN END block).

UPDATE Triggers
An UPDATE trigger is executed before or after an UPDATE statement is executed. Be aware 
of the following:

Q Within UPDATE trigger code, you can refer to a virtual table named OLD to access 
the previous (pre-UPDATE statement) values and NEW to access the new updated 
values.

Q In a BEFORE UPDATE trigger, the values in NEW may also be updated so that you can 
change the values that are about to be used in the UPDATE statement.

Q The values in OLD are all read-only and cannot be updated.

The following example revisits the INSERT example used previously and ensures that 
state abbreviations are always in uppercase, even when updated:

 Input

DELIMITER //

CREATE TRIGGER updatevendor BEFORE UPDATE ON vendors
FOR EACH ROW
SET NEW.vend_state = Upper(NEW.vend_state) //

DELIMITER ;



216 Chapter 25 Using Triggers

 Analysis

This version works a little differently than the earlier one. Rather than save the row 
and then update it, this version does data cleanup before using BEFORE UPDATE. Each time 
a row is updated, the value in NEW.vend_state (the value that will be used to update 
table rows) is replaced with Upper(NEW.vend_state).

More on Triggers
Before wrapping up this chapter, here are some important points to keep in mind when 
using triggers:

Q Creating triggers might require special security access. However, trigger execution 
is automatic. If an INSERT, UPDATE, or DELETE statement is executed, any associated 
triggers are executed, too.

Q Triggers should be used to ensure data consistency (case, formatting, and so on). 
The advantage of performing this type of processing in a trigger is that it always 
happens, and it happens transparently, regardless of the client application.

Q One very interesting use for triggers is to create an audit trail. By using triggers, 
it would be very easy to log changes (even before and after states, if needed) to 
another table.

Q Unfortunately, the CALL statement is not supported in MySQL triggers. This means 
that stored procedures cannot be invoked from within triggers. Any needed stored 
procedure code needs to be replicated within the trigger itself.

Summary
In this chapter, you learned what triggers are and why they are used. You learned about 
the trigger types and when they can be executed. You also saw examples of triggers used 
for INSERT, DELETE, and UPDATE operations.



26
Managing Transaction 

Processing

In this chapter, you’ll learn what transactions are and how to use COMMIT and ROLLBACK
statements to manage transaction processing.

Understanding Transaction Processing

Note
Not All Engines Support Transactions—As explained in Chapter 21, “Creating 
and Manipulating Tables,” MySQL supports the use of several underlying database 
engines. Not all engines support explicit management of transaction processing, as will 
be explained in this chapter. The two most commonly used engines are MyISAM and 
InnoDB. The former does not support explicit transaction management and the lat-
ter does. This is why the sample tables used in this book were created to use InnoDB 
instead of the more commonly used MyISAM. If you need transaction processing func-
tionality in your applications, be sure to use the correct engine type.

Transaction processing is used to maintain database integrity by ensuring that batches of 
MySQL operations execute completely or not at all.

As explained back in Chapter 15, “Joining Tables,” relational databases are designed so 
data is stored in multiple tables to facilitate easier data manipulation, management, and 
reuse. Without going into the hows and whys of relational database design, take it as a 
given that well-designed database schemas are relational to some degree.

The orders tables you’ve been using in prior chapters provide a good example of this. 
Orders are stored in two tables: orders stores orders, and orderitems stores the indi-
vidual items ordered. These two tables are related to each other using unique IDs called 
primary keys (as discussed in Chapter 1, “Understanding SQL”). These tables, in turn, are 
related to other tables containing customer and product information.



218 Chapter 26 Managing Transaction Processing

The process of adding an order to the system is as follows:

1. Check if the customer is already in the database (that is, present in the 
customers table). If not, add them.

2. Retrieve the customer’s ID.
3. Add a row to the orders table that associates it with the customer ID.
4. Retrieve the new order ID assigned in the orders table.
5. Add one row to the orderitems table for each item ordered and associate it 

with the orders table by the retrieved ID (and with the products table by the 
product ID).

Now imagine that some database failure (for example, lack of disk space, security 
restrictions, table locks) prevents this entire sequence from completing. What happens to 
your data?

Well, if the failure occurs after the customer is added and before the orders table is 
added, there is no real problem. It is perfectly valid to have customers without orders. 
When you run the sequence again, the inserted customer record will be retrieved and 
used. You can effectively pick up where you left off.

But what if the failure occurs after the orders row is added and before the 
orderitems rows are added? Now you have an empty order sitting in your database.

Worse, what if the system fails during the process of adding the orderitems rows? 
Now you end up with a partial order in your database, but you don’t know it.

How do you solve this problem? This is where transaction processing comes in. 
Transaction processing is a mechanism used to manage sets of MySQL operations that 
must be executed in batches to ensure that databases never contain the results of partial 
operations. With transaction processing, you can ensure that sets of operations are not 
aborted mid-processing; they either execute in their entirety or not at all (unless explic-
itly instructed otherwise). If no error occurs, the entire set of statements is committed 
(written) to the database tables. If an error does occur, a rollback (undo) can occur to 
restore the database to a known and safe state.

So, in the context of this example, here is how the process works:

1. Check if the customer is already in the database. If not, add them.
2. Commit the customer information.
3. Retrieve the customer’s ID.
4. Add a row to the orders table.
5. If a failure occurs while adding the row to orders, roll back.
6. Retrieve the new order ID assigned in the orders table.
7. Add one row to the orderitems table for each item ordered.
8. If a failure occurs while adding rows to orderitems, roll back all the orderitems

rows added and the orders row.
9. Commit the order information.



219Controlling Transactions

When working with transactions and transaction processing, you need to know a few 
important terms:

Q Transaction: A block of SQL statements
Q Rollback: The process of undoing specified SQL statements
Q Commit: The process of writing unsaved SQL statements to the database tables
Q Savepoint: A temporary placeholder in a transaction set to which you can issue a 

rollback (as opposed to rolling back an entire transaction)

Controlling Transactions
Now that you know what transaction processing is, let’s look at what is involved in 
managing transactions.

The key to managing transactions involves breaking your SQL statements into logical 
chunks and explicitly stating when data should be rolled back and when it should not.

The MySQL statement used to mark the start of a transaction is:

 Input

START TRANSACTION;

Using ROLLBACK
The MySQL ROLLBACK command is used to roll back (undo) MySQL statements, as 
shown in this statement:

 Input

SELECT * FROM ordertotals;
START TRANSACTION;
DELETE FROM ordertotals;
SELECT * FROM ordertotals;
ROLLBACK;
SELECT * FROM ordertotals;

 Analysis

Granted, this is not a particularly useful example, but it does help demonstrate the 
logical flow of a SQL transaction. This example starts by displaying the contents of 
the ordertotals table (which was populated in Chapter 24, “Using Cursors”). First, a 
SELECT is performed to show that the table is not empty. Then a transaction is started, 
and all of the rows in ordertables are deleted with a DELETE statement. Another SELECT
verifies that, indeed, ordertotals is empty. Then a ROLLBACK statement is used to roll 
back all statements until START TRANSACTION, and the final SELECT shows that the table is 
no longer empty.

Obviously, ROLLBACK can only be used within a transaction (after a START TRANSACTION
command has been issued).



220 Chapter 26 Managing Transaction Processing

Tip
Which Statements Can You Roll Back? Transaction processing is used to manage 
INSERT, UPDATE, and DELETE statements. You cannot roll back SELECT statements. (There 
would not be much point in doing so anyway.) You cannot roll back CREATE or DROP
operations. These statements may be used in a transaction block, but if you perform a 
rollback, they will not be undone.

Using COMMIT
MySQL statements are usually executed and written directly to the database tables. A 
commit (write or save) operation that happens automatically is known as an implicit 
commit.

Within a transaction block, however, commits do not occur implicitly. To force an 
explicit commit, the COMMIT statement is used, as shown here:

 Input

START TRANSACTION;
DELETE FROM orderitems WHERE order_num = 20010;
DELETE FROM orders WHERE order_num = 20010;
COMMIT;

 Analysis

In this example, order number 20010 is deleted from the system entirely. Because this 
involves updating two database tables, orders and orderitems, a transaction block is used 
to ensure that the order is not partially deleted; you wouldn’t want data deleted from one 
table but not the other. The final COMMIT statement writes the change only if no error 
occurred. If the first DELETE worked but the second failed, the DELETE would not be 
committed; rather, it would effectively be automatically undone.

Note
Implicit Transaction Closes After a COMMIT or ROLLBACK statement has been executed, 
the transaction is automatically closed (and future changes are implicitly committed).

Using Savepoints
Simple ROLLBACK and COMMIT statements enable you to write or undo an entire transac-
tion. Although this works for simple transactions, more complex transactions might 
require partial commits or rollbacks.

For example, the process of adding an order described previously is a single transac-
tion. If an error occurs, you only want to roll back to the point before the orders row 
was added. You do not want to roll back the addition to the customers table (if there 
was one).



221Controlling Transactions

To support the rollback of partial transactions, you must be able to put placeholders 
at strategic locations in the transaction block. Then, if a rollback is required, you can roll 
back to one of the placeholders.

These placeholders are called savepoints, and to create one, you use the SAVEPOINT
statement, as follows:

 Input

SAVEPOINT delete1;

Each savepoint has a unique name that identifies it so that, when you roll back, 
MySQL knows where you are rolling back to. To roll back to the savepoint just created, 
use the following:

 Input

ROLLBACK TO delete1;

Tip
The More Savepoints, the Better You can have as many savepoints as you like 
within your MySQL code, and the more, the better. Why? Because the more savepoints 
you have, the more flexibility you have in managing rollbacks exactly as you need to.

Note
Releasing Savepoints A savepoint is automatically released after a transaction 
completes (that is, after a ROLLBACK or COMMIT is issued). As of MySQL 5, you can also 
explicitly release a savepoint by using RELEASE SAVEPOINT.

Changing the Default Commit Behavior
As already explained, the default MySQL behavior is to automatically commit any and 
all changes. In other words, any time you execute a MySQL statement, that statement is 
actually being performed against the tables, and the changes are made immediately. To 
instruct MySQL to not automatically commit changes, you need to use the following 
statement:

 Input

SET autocommit=0;

 Analysis

The autocommit flag determines whether changes are committed automatically 
without requiring a manual COMMIT statement. Setting autocommit to 0 (false) instructs 
MySQL to not automatically commit changes (until the flag is set back to 1, or true).



222 Chapter 26 Managing Transaction Processing

Note
Flag Is Connection Specific The autocommit flag is per connection, not 
server-wide.

Summary
In this chapter, you learned that transactions are blocks of SQL statements that must 
be executed as a batch. You learned how to use the COMMIT and ROLLBACK statements to 
explicitly manage when data is written and when it is undone. You also learned how to 
use savepoints to provide a greater level of control over rollback operations.



27
Globalization and Localization

In this chapter, you’ll learn the basics of how MySQL handles different character sets and 
languages.

Understanding Character Sets and Collation 
Sequences
Database tables are used to store and retrieve data. Different languages and character sets 
need to be stored and retrieved differently. Therefore, MySQL needs to accommodate 
different character sets (different alphabets and characters) as well as different ways to sort 
and retrieve data.

When discussing multiple languages and characters sets, you will run into the 
following important terms:

Q Character set: A collection of letters and symbols
Q Encoding: The internal representation of the members of a character set
Q Collation: Instructions that dictate how characters are to be compared

Note
Why Collations Are Important Sorting text in English is easy, right? Well, maybe 
not. Consider the words APE, apex, and Apple. Are they in the correct sorted order? 
It depends on whether you want a case-sensitive sorting or a sorting that is not case-
sensitive. The words would be sorted one way using a case-sensitive collation and 
another way for a collation that isn’t case-sensitive. And this affects more than just sorting 
(as in data sorted using ORDER BY); it also affects searches (whether or not a WHERE clause 
looking for apple finds APPLE, for example). The situation gets even more complex 
when characters such as the French à or German ö are used, and it becomes even more 
complex when non-Latin-based character sets are used (Japanese, Hebrew, Russian, and 
so on).



224 Chapter 27 Globalization and Localization

In MySQL there is not much to worry about during regular database activity (SELECT, 
INSERT, and so forth). Rather, the decisions about which character set and collation to 
use occur at the server, database, and table level.

Working with Character Sets and Collation 
Sequences
MySQL supports a vast number of character sets. To see the complete list of supported 
character sets, use this statement:

 Input

SHOW CHARACTER SET;

 Analysis

This statement displays all available character sets, along with a description of each 
one and the default collation for each one.

To see the complete list of supported collations, use this statement:

 Input

SHOW COLLATION;

 Analysis

This statement displays all available collations, along with the character sets to which 
each one applies. Several character sets have more than one collation. latin1, for 
example, has several character sets for different European languages, and many sets appear 
twice: They appear once case-sensitive (designated by _cs) and once not case-sensitive 
(designated by _ci).

A default character set and collation are defined (usually by the system administration 
at installation time). In addition, when databases are created, default character sets and 
collations may be specified, too. To determine the character sets and collations in use, 
use these statements:

 Input

SHOW VARIABLES LIKE 'character%';
SHOW VARIABLES LIKE 'collation%';

In practice, character sets can seldom be server-wide (or even database-wide) settings. 
Different tables, and even different columns, may require different character sets, and so 
both may be specified when a table is created.

To specify a character set and collation for a table, you use CREATE TABLE (seen in 
Chapter 21, “Creating and Manipulating Tables”) with additional clauses:

 Input

CREATE TABLE mytable
(



225Working with Character Sets and Collation Sequences

   column1   INT,
   column2   VARCHAR(10)
) DEFAULT CHARACTER SET hebrew
  COLLATE hebrew_general_ci;

 Analysis

This statement creates a two-column table and specifies both a character set and a 
collate sequence.

In this example, both CHARACTER SET and COLLATE are specified, but if only one of 
them (or neither of them) is specified, this is how MySQL determines what to use:

Q If both CHARACTER SET and COLLATE are specified, those values are used.
Q If only CHARACTER SET is specified, it is used along with the default collation for 

that character set (as specified in the SHOW CHARACTER SET results).
Q If neither CHARACTER SET nor COLLATE is specified, the database default is used.

In addition to being able to specify character set and collation table-wide, MySQL 
also allows them to be set per column, as seen here:

 Input

CREATE TABLE mytable
(
   column1   INT,
   column2   VARCHAR(10),
   column3    VARCHAR(10) CHARACTER SET latin1
                          COLLATE latin1_general_ci
) DEFAULT CHARACTER SET hebrew
  COLLATE hebrew_general_ci;

 Analysis

Here CHARACTER SET and COLLATE are specified for the entire table as well as for a 
specific column.

As mentioned previously, the collation plays a key role in sorting data that is retrieved 
with an ORDER BY clause. If you need to sort specific SELECT statements by using a colla-
tion sequence other than the one used at table creation time, you may do so in the 
SELECT statement:

 Input

SELECT * FROM customers
ORDER BY lastname, firstname
   COLLATE latin1_general_cs;

 Analysis

This SELECT uses COLLATE to specify an alternate collation sequence (in this example, a 
case-sensitive one). This will obviously affect the order in which results are sorted.



226 Chapter 27 Globalization and Localization

Tip
Occasional Case-Sensitivity The SELECT statement just shown demonstrates a 
useful technique for performing case-sensitive searches on a table that is usually not 
case-sensitive. And, of course, the reverse works just as well.

Note
Other SELECT COLLATE Clauses In addition to being used in ORDER BY clauses, as shown 
here, COLLATE can be used with GROUP BY, HAVING, aggregate functions, aliases, and more.

One final point worth noting is that strings may be converted between character sets 
if absolutely needed. To do this, use the Cast() or Convert() functions.

Summary
In this chapter, you learned the basics of character sets and collations. You also learned 
how to define the character sets and collations for specific tables and columns and how 
to use alternate collations when needed.



28
Managing Security

In this chapter, you’ll learn about MySQL access control and user management. Database 
servers usually contain critical data, and ensuring the safety and integrity of that data 
requires that access control be used. 

Understanding Access Control
The basis of security for your MySQL server is this: Users should have appropriate access to 
the data they need—no more and no less. In other words, users should not have too much 
access to too much data.

Consider the following:

Q Most users need to read and write data from tables, but few users will ever need to 
be able to create and drop tables.

Q Some users might need to read tables but might not need to update them.
Q You might want to allow users to add data but not delete data.
Q Some users (managers or administrators) might need rights to manipulate user 

accounts, but most do not.
Q You might want users to access data via stored procedures but never directly.
Q You might want to restrict access to some functionality based on the user’s login 

location.

These are just examples, but they help demonstrate an important point: You need to 
provide users with the access they need—and just the access they need. This is known as 
access control, and managing access control requires creating and managing user accounts.

Tip
Use MySQL Administrator MySQL Workbench (described in Chapter 2, 
“Introducing MySQL”) provides a graphical user interface that can be used to manage 
users and account rights. Internally, MySQL Workbench uses the statements described in 
this chapter, enabling you to manage access control interactively and simply.



228 Chapter 28 Managing Security

Back in Chapter 3, “Working with MySQL,” you learned that you need to log in to 
MySQL in order to perform any operations. When it is first installed, MySQL creates 
a user account named root that has complete and total control over the entire MySQL 
server. You might have been using the root login throughout the chapters in this book, 
and that is fine when experimenting with MySQL on non-live servers. But in the 
real world, you’d never use root on a day-to-day basis. Instead, you’d create a series of 
accounts for administration, for users, for developers, and so on.

Note
Preventing Innocent Mistakes It is important to note that access control is not just 
intended to keep out users with malicious intent. More often than not, data nightmares 
are the result of inadvertent mistakes, mistyped MySQL statements, being in the wrong 
database, or other user errors. Access control helps avoid these situations by ensuring that 
users are unable to execute statements they should not be executing.

Caution
Don’t Use root The root login should be considered sacred. Use it only when 
absolutely needed (perhaps when you cannot get into other administrative accounts). 
root should never be used in day-to-day MySQL operations.

Managing Users
MySQL user accounts and information are stored in a MySQL database named mysql. 
You usually do not need to access the mysql database and tables directly (as you will soon 
see), but sometimes you might. One of those times is when you want to obtain a list of 
all user accounts. To do that, use the following code:

 Input

USE mysql;
SELECT user FROM user;

 Output

+------+
| user |
+------+
| root |
+------+

 Analysis

The mysql database contains a table named user that contains all user accounts. user
contains a column named user that contains the user login name. A newly installed 
server might have a single user listed (as shown in this example) or several default 
accounts; established servers are likely to have far more users.



229Managing Users

Tip
Test Using Multiple Clients The easiest way to test changes made to user accounts 
and rights is to open multiple database clients (multiple copies of the mysql command-
line utility, for example), one logged in with the administrative login and the others 
logged in as the users being tested.

Creating User Accounts
To create a new user account, use the CREATE USER statement, as shown here:

 Input

CREATE USER ben IDENTIFIED BY 'p@$$w0rd';

 Analysis

CREATE USER creates a new user account. A password need not be specified at user 
account creation time, but this example does specify a password, using IDENTIFIED BY
'p@$$w0rd'.

If you were to list the user accounts again, you’d see the new account listed in the 
output.

Tip
Specifying a Hashed Password The password specified by IDENTIFIED BY is plain-
text that MySQL will encrypt before saving the password in the user table. To specify the 
password as a hashed value, use IDENTIFIED BY PASSWORD instead.

Note
Using GRANT or INSERT The GRANT statement (which we will get to shortly) can also 
create user accounts, but generally CREATE USER is the cleanest and simplest option. In 
addition, it is possible to add users by inserting rows into user directly, but to be safe, 
doing this is generally not recommended. The tables that MySQL uses to store user 
account information (as well as table schemas and more) are extremely important, and 
any damage to them could seriously harm the MySQL server. Therefore, it is always bet-
ter to use tags and functions to manipulate these tables than to manipulate them directly.

To rename a user account, use the RENAME USER statement, like this:

 Input

RENAME USER ben TO bforta;



230 Chapter 28 Managing Security

Note
Before MySQL 5 RENAME USER is supported only in MySQL 5 or later. To rename a 
user in earlier versions of MySQL, use UPDATE to update the user table directly.

Deleting User Accounts
To delete a user account (along with any associated rights and privileges), use the DROP 
USER statement, as shown here:

 Input

DROP USER bforta;

Note
Before MySQL 5 As of MySQL 5, DROP USER deletes user accounts and all associ-
ated account rights and privileges. Prior to MySQL 5, DROP USER could only be used to 
drop user accounts with no associated account rights and privileges. Therefore, if you are 
using an older version of MySQL, you will need to first remove associated account rights 
and privileges by using REVOKE and then use DROP USER to delete the account.

Setting Access Rights
Once user accounts are created, you need to assign access rights and privileges. Newly 
created user accounts have no access at all. They can log in to MySQL but will see no 
data and will be unable to perform any database operations.

To see the rights granted to a user account, use SHOW GRANTS FOR, as shown in this 
example:

 Input

SHOW GRANTS FOR bforta;

 Output

+-----------------------------------------------------+
| Grants for bforta@%                               |
+-----------------------------------------------------+
| GRANT USAGE ON *.* TO 'bforta'@'%'              |
+-----------------------------------------------------+

 Analysis

The output shows that user bforta has a single right granted, USAGE ON *.*. USAGE
means no rights at all (not overly intuitive, I know), so the results mean no rights to 
anything on any database and any table.



231Managing Users

Note
Users Are Defined as user@host MySQL privileges are defined using a combination 
of username and hostname. If no hostname is specified, the default hostname % is used 
(effectively granting access to the user regardless of the hostname).

To set rights, you use the GRANT statement. At a minimum, GRANT requires that you 
specify the following:

Q The privilege being granted
Q The database or table being granted access to
Q The username

The following example demonstrates the use of GRANT:

 Input

GRANT SELECT ON crashcourse.* TO bforta;

 Analysis

This statement allows the use of SELECT on crashcourse.* (that is, the crashcourse
database, including all its tables). By granting SELECT access only, user bforta has read-
only access to all data in the crashcourse database.

By using SHOW GRANTS, you can see that this change was made:

 Input

SHOW GRANTS FOR bforta;

 Output

+-------------------------------------------------+
| Grants for bforta@%                           |
+-------------------------------------------------+
| GRANT USAGE ON *.* TO 'bforta'@'%'          |
| GRANT SELECT ON 'crashcourse'.* TO 'bforta'@'%' |
+-------------------------------------------------+

 Analysis

Each GRANT adds (or updates) a permission statement for the user. MySQL reads all of 
the grants and determines the rights and permissions based on them.

The opposite of GRANT is REVOKE, which is used to revoke specific rights and 
permissions. Here is an example:

 Input

REVOKE SELECT ON crashcourse.* FROM bforta;

 Analysis

This REVOKE statement takes away the SELECT access just granted to user bforta. 
The access being revoked must exist, or an error will be thrown.



232 Chapter 28 Managing Security

GRANT and REVOKE can be used to control access at several levels:

Q Entire server, using GRANT ALL and REVOKE ALL

Q Entire database, using ON database.*
Q Specific tables, using ON database.table
Q Specific columns
Q Specific stored procedures

Table 28.1 lists the rights and privileges that may be granted or revoked.

TABLE 28.1 Rights and Privileges

Privilege Description

ALL All privileges except GRANT OPTION

ALTER Use of ALTER TABLE

ALTER ROUTINE Use of ALTER PROCEDURE and DROP PROCEDURE

CREATE Use of CREATE TABLE

CREATE ROUTINE Use of CREATE PROCEDURE

CREATE TEMPORARY TABLES Use of CREATE TEMPORARY TABLE

CREATE USER Use of CREATE USER, DROP USER, RENAME USER, and 
REVOKE ALL PRIVILEGES

CREATE VIEW Use of CREATE VIEW

DELETE Use of DELETE

DROP Use of DROP TABLE

EXECUTE Use of CALL and stored procedures

FILE Use of SELECT INTO OUTFILE and LOAD DATA INFILE

GRANT OPTION Use of GRANT and REVOKE

INDEX Use of CREATE INDEX and DROP INDEX

INSERT Use of INSERT

LOCK TABLES Use of LOCK TABLES

PROCESS Use of SHOW FULL PROCESSLIST

RELOAD Use of FLUSH

REPLICATION CLIENT Access to location of servers

REPLICATION SLAVE Use by replication slaves

SELECT Use of SELECT

SHOW DATABASES Use of SHOW DATABASES

SHOW VIEW Use of SHOW CREATE VIEW



233Managing Users

Privilege Description

SHUTDOWN Use of mysqladmin shutdown (used to shut down 
MySQL)

SUPER Use of CHANGE MASTER, KILL, LOGS, PURGE MASTER, and 
SET GLOBAL. Also allows mysqladmin debug login.

UPDATE Use of UPDATE

USAGE No access

By using GRANT and REVOKE in conjunction with the privileges listed in Table 28.1, 
you have complete control over what users can and cannot do with your precious data.

Note
Granting for the Future When using GRANT and REVOKE, the user account must exist, 
but the objects being referred to need not. This allows administrators to design and 
implement security before databases and tables are even created.

A side effect of this is that if a database or table is removed (with a DROP statement), 
any associated access rights still exist. And if the database or table is re-created in the 
future, those rights will again apply to the database or table.

Tip
Simplifying Multiple Grants You can string together multiple GRANT statements by 
listing the privileges and comma delimiting them, as shown in this example:

GRANT SELECT, INSERT ON crashcourse.* TO bforta;

Changing Passwords
To change user passwords, you use the SET PASSWORD statement. A new password must be 
encrypted by being passed to the Password() function, as shown here:

 Input

SET PASSWORD FOR bforta = Password('n3w p@$$w0rd');

 Analysis

SET PASSWORD updates the user password. 
You can also use SET PASSWORD to set your own password:

 Input

SET PASSWORD = Password('n3w p@$$w0rd');



234 Chapter 28 Managing Security

 Analysis

When no username is specified, SET PASSWORD updates the password for the user who 
is currently logged in.

Summary
In this chapter, you learned about access control and how to secure a MySQL server by 
assigning specific rights.



29
Database Maintenance

In this chapter, you’ll learn how to perform common database maintenance tasks.

Backing Up Data
Like all other data, MySQL data must be backed up regularly. Because MySQL data-
bases are disk-based files, normal backup systems and routines can back up MySQL data. 
However, those files are always open and in use, so normal file copy backups might not 
always work.

Here are possible solutions to this problem:

Q Use the command-line utility mysqldump to dump all database contents to an 
external file. This utility should ideally be run before regular backups occur so the 
dumped file will be backed up properly.

Q Use the command-line utility mysqlhotcopy to copy all data from a database. 
(This utility is not supported by all database engines.)

Q Use MySQL to dump all data to an external file using BACKUP TABLE or SELECT 
INTO OUTFILE. Both statements take the name of a system file to be created; and 
that file must not already exist, or an error will be generated. Data can be restored 
by using RESTORE TABLE.

Tip
Flush Unwritten Data First To ensure that all data is written to disk (including any 
index data), you might need to use a FLUSH TABLES statement before performing your 
backup.

Performing Database Maintenance
MySQL features a series of statements that can (and should) be used to ensure that 
databases are correct and functioning properly.



236 Chapter 29 Database Maintenance

Here are some statements you should be aware of:

Q ANALYZE TABLE is used to check that table keys are correct. ANALYZE TABLE returns 
status information, as shown here:

 Input

ANALYZE TABLE orders;

 Output

+--------------------+---------+----------+----------+
| Table              | Op      | Msg_type | Msg_text |
+--------------------+---------+----------+----------+
| crashcourse.orders | analyze | status   | OK       |
+--------------------+---------+----------+----------+

Q CHECK TABLE is used to check tables for a variety of problems. Indexes are also 
checked on a MyISAM table. CHECK TABLE supports a series of modes for use with 
MyISAM tables. CHANGED checks tables that have changed since the last check, 
EXTENDED performs the most thorough check, FAST checks only tables that were not 
closed properly, MEDIUM checks all deleted links and performs key verification, and 
QUICK performs a quick scan only. In this example, CHECK TABLE finds and repairs a 
problem:

 Input

USE crashcourse;
CHECK TABLE orders, orderitems;

 Output

+------------------------+-------+----------+-----------------------+
| Table                  | Op    | Msg_type | Msg_text              |
+------------------------+-------+----------+-----------------------+
| crashcourse.orders     | check | status   | OK                    |
| crashcourse.orderitems | check | warning  | Table is marked as    |
|                        |       |          | crashed               |
| crashcourse.orderitems | check | status   | OK                    |
+------------------------+-------+----------+-----------------------+

Q If MyISAM table access produces incorrect and inconsistent results, you might 
need to repair the table by using REPAIR TABLE. This statement should not be used 
frequently, and if regular use is required, there is likely a far bigger problem that 
needs to be addressed.

Q If you delete large amounts of data from a table, you should use OPTIMIZE TABLE to 
reclaim previously used space and optimize the performance of the table.



237Reviewing Log Files

Diagnosing Startup Problems
Server startup problems usually occur when a change has been made to the MySQL 
configuration or to the server. MySQL reports errors when startup problems occur, but 
because most MySQL servers are started automatically as system processes or services, 
these messages might not be seen.

When troubleshooting system startup problems, try to manually start the server first. 
You start the MySQL server by executing mysqld on the command line. Here are several 
important command-line options for mysqld:

Q --help displays help as a list of options.
Q --safe-mode loads the server minus some optimizations.
Q --verbose displays full text messages. You can use it in conjunction with --help

for more detailed help messages.
Q --version displays version information and then quits.

Several additional command-line options (pertaining to the use of log files) are listed 
in the next section.

Reviewing Log Files
MySQL maintains a series of log files that administrators rely on extensively. These are 
the primary log files: 

Q Error log: This log contains details about startup and shutdown problems and any 
critical errors. It is usually named hostname.err and located in the data directory. 
You can change this name by using the --log-error command-line option.

Q Query log: This log details all MySQL activity and can be very useful in 
diagnosing problems. This log file can get very large very quickly, so it should not 
be used for extended periods of time. It is usually named hostname.log and located 
in the data directory. You can change this name by using the --log command-line 
option.

Q Binary log: This log logs all statements that updated (or could have updated) 
data. It is usually named hostname-bin and located in the data directory. You can 
change this name by using the --log-bin command-line option. Note that this log 
file was added in MySQL 5; the update log is used in earlier versions of MySQL.

Q Slow query log: As its name suggests, this log details any queries that execute 
slowly. This log can be useful in determining where database optimizations are 
needed. It is usually named hostname-slow.log and located in the data directory. 
You can change this name by using the --log-slow-queries command-line 
option.

When logging is being done, you can use the FLUSH LOGS statement to flush and 
restart all log files.



238 Chapter 29 Database Maintenance

Tip
Use MySQL Workbench for DBMS Maintenance Throughout this book, we’ve 
used MySQL Workbench primarily to write and execute SQL statements. But MySQL 
Workbench has evolved into more than just a SQL editor. In fact, the Server menu 
and the Administration tab of the Navigator provides interactive access to all of the 
commands listed above—and more.

Summary
In this chapter, you learned about some basic MySQL database maintenance tools and 
techniques.



30
Improving Performance

In this chapter, you’ll review some important points pertaining to the performance of 
MySQL.

Improving Performance
Database administrators spend a significant portion of their lives tweaking and 
experimenting to improve DBMS performance. Poorly performing databases (and 
database queries, for that matter) tend to be the most frequent culprits when diagnosing 
application sluggishness and performance problems.

What follows is not, by any stretch of the imagination, the last word on MySQL 
performance. This chapter is intended to review key points made in the previous 29 
chapters, as well as to provide a springboard from which to launch discussion and analysis 
of performance optimization.

So, here goes:

Q First and foremost, MySQL (like all other DBMSs) has specific hardware 
recommendations. Using any old computer as a database server is fine when 
learning and playing with MySQL. But production servers should adhere to all 
recommendations.

Q As a rule, a critical production DBMS should run on its own dedicated server.
Q MySQL is preconfigured with a series of default settings that are usually a good 

place to start. But after a while, you might need to tweak memory allocation, 
buffer sizes, and more. (To see the current settings, use SHOW VARIABLES; and SHOW 
STATUS;.)

Q MySQL is a multi-user multi-threaded DBMS, which means it often performs 
multiple tasks at the same time. If one of those tasks is executing slowly, all 
requests will suffer. If you are experiencing unusually poor performance, use 
SHOW PROCESSLIST to display all active processes (along with their thread IDs and 
execution times). You can also use the KILL command to terminate a specific 
process. (You need to be logged in as an administrator to use KILL.)

Q There is almost always more than one way to write a SELECT statement. 
Experiment with joins, unions, subqueries, and more to find what is optimum for 
you and your data.



240 Chapter 30 Improving Performance

Q Use the EXPLAIN statement to have MySQL explain how it will execute a SELECT
statement.

Q As a general rule, stored procedures execute more quickly than individual MySQL 
statements.

Q Use the right data types—always.
Q Never retrieve more data than you need. For example, don’t use SELECT * unless 

you truly need each and every column.
Q Some operations (including INSERT) support an optional DELAYED keyword that, if 

used, returns control to the calling application immediately and actually performs 
the operation as soon as possible.

Q When importing data, turn off autocommit. You may also want to drop indexes 
(including FULLTEXT indexes) and then re-create them after the import has 
completed.

Q Database tables must be indexed to improve the performance of data retrieval. 
Determining what to index is not a trivial task and involves analyzing the SELECT
statements that have been used to find recurring WHERE and ORDER BY clauses. If 
a simple WHERE clause is taking too long to return results, you can bet that the 
column (or columns) being used is a good candidate for indexing.

Q Have a series of complex OR conditions in your SELECT statement? You might see 
a significant performance improvement by using multiple SELECT statements and 
UNION statements to connect them.

Q Indexes improve the performance of data retrieval but hurt the performance of 
data insertion, deletion, and updates. If you have tables that collect data and are not 
often searched, don’t index them until it’s really necessary. (Indexes can be added 
and dropped as needed.)

Q LIKE is slow. As a general rule, you are better off using FULLTEXT rather than LIKE.
Q Databases are living entities. A well-optimized set of tables might not be so well 

optimized after a while. As table usage and contents change, so might the ideal 
optimization and configuration.

Q The most important rule is simply that every rule will be broken at some point.

Tip
Browse the Documentation The official MySQL documentation at
http://dev.mysql.com/doc/ is full of useful tips and tricks (and even user-provided 
comments and feedback). Be sure to check out this invaluable resource.

Summary
In this chapter, you reviewed some important tips and notes pertaining to MySQL 
performance. Of course, this is just the tip of the iceberg. Now that you have finished 
reading this book, you are encouraged to experiment and learn as you best see fit.

http://dev.mysql.com/doc/


A
Getting Started with MySQL

This appendix gives you what you need to get started with MySQL.

What You Need
To start using MySQL and to follow along with the chapters in this book, you need 
access to a MySQL server and copies of client applications (software used to access the 
server).

You do not need your own installed copy of MySQL, but you do need access to a 
server. You basically have two options:

Q Access to an existing MySQL server, perhaps one provided by your hosting 
company or place of business or school. To use this server, you need to be granted 
a server account (a login name and password).

Q You may download and install a free copy of the MySQL server for installation on 
your own computer. (MySQL runs on all major platforms, including Windows, 
Linux, and macOS.)

Tip
If You Can, Install a Local Server For complete control, including access to com-
mands and features that you will probably not be granted if you are using someone else’s 
MySQL server, install your own local server. Even if you don’t end up using your local 
server as your final production DBMS, you’ll still benefit from having complete and 
unfettered access to all that the server has to offer.

Regardless of whether you use a local server, you need client software (the program 
you use to actually run MySQL commands). The most readily available client software 
is the mysql command-line utility, which is included with every MySQL installation. 
You should also install the official MySQL UI, MySQL Workbench, which will be the 
primary tool you use to interact with MySQL.



242 Appendix A Getting Started with MySQL

Obtaining the Software
To learn more about MySQL, go to dev.mysql.com.

To download a copy of the server, go to dev.mysql.com/downloads/. To follow along 
with this book, it is recommended that you download and install MySQL 5 (or later). 
The exact download process varies by platform, but it is clearly explained.

MySQL Workbench may not be installed as part of the core MySQL installation. If 
needed, you can download it from http://dev.mysql.com/downloads/.

Installing the Software
If you are installing a local MySQL server, do so before installing the optional MySQL 
utilities. The installation procedure varies from platform to platform, but all installations 
prompt you for needed information, including the following:

Q The installation location. The default is usually fine.
Q The password for the root user.
Q Ports, service or process names, and more. As a rule, use default values if you are 

unsure what to specify.

Tip
Multiple Copies of the MySQL Server Multiple copies of the MySQL server may 
be installed on a single machine, as long as each of them uses a different port.

Preparing to Read This Book 
After you have installed MySQL, you can read Chapter 3, “Working with MySQL,” to 
see how to log in and log out of the server, as well as how to execute commands.

The chapters in this book all use real MySQL statements and real data. Appendix B, 
“The Example Tables,” describes the example tables used in this book and explains how 
to obtain and use the table creation and population scripts.

http://dev.mysql.com
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/


B
The Example Tables

This appendix outlines the tables in this book and their use.
Writing SQL statements requires a good understanding of the underlying database 

design. If you don’t know what information is stored in what table, how tables are 
related to each other, and the actual breakdown of data within a row, it is impossible to 
write effective SQL.

You are strongly advised to actually try every example in every chapter in this book. 
All the chapters use a common set of data files. To assist you in better understanding the 
examples and to enable you to follow along with the chapters, this appendix describes 
the tables used, their relationships, and how to obtain them.

Understanding the Example Tables
The tables used throughout this book are part of an order entry system used by an imag-
inary distributor of paraphernalia that might be needed by your favorite cartoon charac-
ters (yes, cartoon characters; learning MySQL doesn’t need to be boring). The tables are 
used to perform several tasks:

Q Manage vendors
Q Manage product catalogs
Q Manage customer lists
Q Enter customer orders

Making this all work requires six tables that are closely interconnected as part of a 
relational database design. The following sections describe these six tables.

Note
Simplified Examples The tables used here are by no means complete. A real-world 
order entry system would have to keep track of lots of other data that has not been 
included here (for example, payment and accounting information, shipment tracking). 
However, these tables demonstrate the kinds of data organization and relationships you 
will encounter in most real installations. You can apply these techniques and technologies 
to your own databases.



244 Appendix B The Example Tables

Table Descriptions
The following sections describe the six tables used in this book, as well as the columns in 
each one.

Note
Why the Order ? If you are wondering why the six tables are listed in the order they 
are, it is due to their dependencies. The products table is dependent on the vendors
table, so vendors is listed first, and so on.

The vendors Table
The vendors table stores data on the vendors whose products are sold. Every vendor has 
a record in this table, and the vend_id column is used to match products with vendors.

TABLE B.1 vendors Table Columns

Column Description

vend_id Unique numeric vendor ID

vend_name Vendor name

vend_address Vendor address

vend_city Vendor city

vend_state Vendor state

vend_zip Vendor zip code

vend_country Vendor country

Every table should have primary keys defined. This table, for example, should use 
vend_id as its primary key. vend_id is an automatically incremented field.

The products Table
The products table contains the product catalog, with one product per row. Each 
product has a unique ID (in the prod_id column) and is related to its vendor by 
vend_id (the vendor’s unique ID).

TABLE B.2 products Table Columns

Column Description

prod_id Unique product ID

vend_id Product vendor ID (which relates to vend_id in the 
vendors table)

prod_name Product name



245Table Descriptions

Column Description

prod_price Product price

prod_desc Product description

Every table should have primary keys defined. This table, for example, should use 
prod_id as its primary key.

To enforce referential integrity, a foreign key should be defined on vend_id, relating 
it to vend_id in vendors.

The customers Table
The customers table stores all customer information. Each customer has a unique ID 
(in the cust_id column).

TABLE B.3 customers Table Columns

Column Description

cust_id Unique numeric customer ID

cust_name Customer name

cust_address Customer address

cust_city Customer city

cust_state Customer state

cust_zip Customer zip code

cust_country Customer country

cust_contact Customer contact name

cust_email Customer contact email address

Every table should have primary keys defined. This table, for example, should use 
cust_id as its primary key. cust_id is an automatically incrementing field.

The orders Table
The orders table stores customer orders (but not order details). Each order is uniquely 
numbered (in the order_num column). Orders are associated with the appropriate 
customers by the cust_id column (which relates to the customer’s unique ID in the 
customers table).

TABLE B.4 orders Table Columns

Column Description

order_num Unique order number

order_date Order date

cust_id Order customer ID (which relates to cust_id in the customers table)



246 Appendix B The Example Tables

Every table should have primary keys defined. This table, for example, should use 
order_num as its primary key. order_num is an automatically incrementing field.

To enforce referential integrity, a foreign key should be defined on cust_id, relating 
it to cust_id in customers.

The orderitems Table
The orderitems table stores the items included in each order, one row per item per 
order. For every row in orders, there are one or more rows in orderitems. Each order 
item is uniquely identified by the order number plus the order item (first item in order, 
second item in order, and so on). Order items are associated with their appropriate order 
by the order_num column (which relates to the order’s unique ID in orders). In addi-
tion, each order item contains the product ID of the item (which relates the item to the 
products table).

TABLE B.5 orderitems Table Columns

Column Description 

order_num Order number (which relates to order_num in the orders
table)

order_item Order item number (sequential within an order)

prod_id Product ID (which relates to prod_id in the products table)

quantity Item quantity

item_price Item price

Every table should have primary keys defined. This table, for example, should use 
order_num and order_item as its primary keys.

To enforce referential integrity, foreign keys should be defined on order_num, relating 
it to order_num in orders, and prod_id, relating it to prod_id in products.

The productnotes Table
The productnotes table stores notes associated with specific products. A product may 
have no associated notes, or it may have many associated notes.

TABLE B.6 productnotes Table Columns

Column Description

note_id Unique note id

prod_id Product ID (which corresponds to prod_id in the 
products table)

note_date Date the note was added

note_text Note text



247Table Descriptions

Every table should have primary keys defined. This table, for example, should use 
note_id as its primary key.

The column note_text must be indexed for FULLTEXT search use.
This table uses full-text searching, so ENGINE=MyISAM must be specified.

Creating the Sample Tables
To follow along with the examples in this book, you need a set of populated tables. 
You can find everything you need to get up and running on this book’s web page, at 
http://www.forta.com/books/9780138223021/.

There are two ways to create the sample tables:

Q The simplest way is to use MySQL Data Import. This is a simple interactive 
process that will create the database and fully populate it (in much the same way 
you’d backup and restore a database).

Q You can create the database manually and then run two SQL scripts to first create 
and then populate the tables.

Both options are described below. Do not use both; use one or the other. The first 
option is recommended if you are using MySQL Workbench.

Using Data Import

Note
For MySQL 8 Only The data export files used here are intended for use with 
MySQL 8 and have not been tested with earlier versions of MySQL.

MySQL enables entire databases to be imported and exported. You can download an 
export file from the book web page and simply import it as follows:

1. Download the data export file and save it somewhere on your computer.
2. In MySQL Workbench, click on the Administration tab in the Navigator panel 

on the left.
3. Select Data Import/Restore.
4. When the Data Import screen is displayed, select Import from Self-Contained 

File and then select the data export file you saved in step 1.
5. Click the Start Import button to create and fully populate the crashcourse

database.

The new crashcourse database should now be displayed in the Schemas tab in the 
Navigator panel.

http://www.forta.com/books/9780138223021/


248 Appendix B The Example Tables

Using SQL Scripts

And now you should be good to go!

Note
For MySQL Only The scripts and files used here to create the sample tables are very 
DBMS specific; they are designed to be used only with MySQL.

The scripts have been tested extensively with MySQL 4.1 through MySQL 8 but 
have not been tested with earlier versions of MySQL.

The book’s web page contains two SQL script files that you can download:

Q create.sql contains the MySQL statements to create the six database tables (and 
define all primary keys and foreign key constraints).

Q populate.sql contains the SQL INSERT statements used to populate these tables.

After you have downloaded the scripts, you can use them to create and populate 
the tables needed to follow along with the chapters in this book. Here are the steps to 
follow:

1. Create a new datasource. (Do not use any existing datasource, just to be on the 
safe side.) The simplest way to do this is by using MySQL Workbench (described 
in Chapter 2, “Introducing MySQL”).

2. Either click the Create a new schema button (fourth from the left, with a 
picture of a cylinder and a + on it) or select the Schemas tab in Navigator, 
right-click, and select Create Schema.

3. Name the new schema crashcourse. You can ignore all other fields. Click Apply
to create the new database.

4. Either double-click the new datasource if you’re using MySQL Workbench (it’ll 
appear in bold if in use) or use the USE command if using the mysql command-
line utility.

5. Execute the create.sql script by using either MySQL Workbench or mysql. If 
you are using MySQL Workbench, select File, Open SQL Script, create.sql and 
then click the Execute button (which has a yellow lightning bolt on it). If using the 
mysql command-line utility, specify create.sql as the source by specifying the full 
path to the create.sql file.

6. Execute the populate.sql script by using either MySQL Workbench or mysql. 
Use the same procedure as in step 5 to populate the new tables.

Note
Create and Then Populate You must run the table creation scripts before you run 
the table population scripts. Be sure to check for any error messages returned by these 
scripts. If the creation scripts fail, you will need to remedy whatever problem exists 
before continuing with table population.



C
MySQL Statement Syntax

To help you find the syntax you need when you need it, this appendix lists the syntax 
for the most frequently used MySQL operations. For each statement, you’ll find a brief 
description followed by the appropriate syntax. For added convenience, you’ll also find 
cross-references to the chapters where specific statements are taught.

When reading statement syntax, remember the following:

Q The | symbol is used to indicate one of several options, so NULL|NOT NULL means 
specify either NULL or NOT NULL.

Q Keywords or clauses enclosed in square brackets [like this] are optional.
Q Not all MySQL statements are listed, nor is every clause and option listed.

ALTER TABLE
ALTER TABLE is used to update the schema of an existing table. To create a new table, 
use CREATE TABLE. See Chapter 21, “Creating and Manipulating Tables,” for more 
information.

 Input

ALTER TABLE tablename
(
    ADD column datatype [NULL|NOT NULL] [CONSTRAINTS],
    CHANGE  column columns datatype [NULL|NOT NULL] [CONSTRAINTS],
    DROP column,
    ...
);

COMMIT
COMMIT is used to write a transaction to a database. See Chapter 26, “Managing 
Transaction Processing,” for more information.

 Input

COMMIT;



250 Appendix C MySQL Statement Syntax

CREATE INDEX
CREATE INDEX is used to create an index on one or more columns. See Chapter 21 for 
more information.

 Input

CREATE INDEX indexname
ON tablename (column [ASC|DESC], ...);

CREATE PROCEDURE
CREATE PROCEDURE is used to create a stored procedure. See Chapter 23, “Working with 
Stored Procedures,” for more information.

 Input

CREATE PROCEDURE procedurename( [parameters] )
BEGIN
...
END;

CREATE TABLE
CREATE TABLE is used to create a new database table. (To update the schema of an 
existing table, use ALTER TABLE.) See Chapter 21 for more information.

 Input

CREATE TABLE tablename
(
       Column datatype [NULL|NOT NULL] [CONSTRAINTS],
       Column datatype [NULL|NOT NULL] [CONSTRAINTS],
       ...
);

CREATE USER
CREATE USER is used to add a new user account to the system. See Chapter 28, 
“Managing Security,” for more information.

 Input

CREATE USER username[@hostname]
[IDENTIFIED BY [PASSWORD] 'password'];



251INSERT SELECT

CREATE VIEW
CREATE VIEW is used to create a new view of one or more tables. See Chapter 22, 
“Using Views,” for more information.

 Input

CREATE [OR REPLACE] VIEW viewname
AS
SELECT ...;

DELETE
DELETE deletes one or more rows from a table. See Chapter 20, “Updating and Deleting 
Data,” for more information.

 Input

DELETE FROM tablename
[WHERE ...];

DROP
DROP permanently removes database objects (tables, views, indexes, and so forth). See 
Chapters 21, 22, 23, 24, “Using Cursors,” 26, and 28 for more information.

 Input

DROP DATABASE|INDEX|PROCEDURE|TABLE|TRIGGER|USER|VIEW
    itemname;

INSERT
INSERT adds a single row to a table. See Chapter 19, “Inserting Data,” for more information.

 Input

INSERT INTO tablename [(columns, ...)]
VALUES(values, ...);

INSERT SELECT
INSERT SELECT inserts the results of a SELECT into a table. See Chapter 19 for more 
information.

 Input

INSERT INTO tablename [(columns, ...)]
SELECT columns, ... FROM tablename, ...
[WHERE ...];



252 Appendix C MySQL Statement Syntax

ROLLBACK
ROLLBACK is used to undo a transaction block. See Chapter 26 for more information.

 Input

ROLLBACK [ TO savepointname];

SAVEPOINT
SAVEPOINT defines a savepoint for use with a ROLLBACK statement. See Chapter 26 for 
more information.

 Input

SAVEPOINT sp1

SELECT
SELECT is used to retrieve data from one or more tables (or views). See Chapter 4, 
“Retrieving Data,” Chapter 5, “Sorting Retrieved Data,” and Chapter 6, “Filtering 
Data,” for more basic information. (Chapters 4–17 also cover aspects of SELECT.)

 Input

SELECT columnname, ...
FROM tablename, ...
[WHERE ...]
[UNION ...]
[GROUP BY ...]
[HAVING ...]
[ORDER BY ...];
;

START TRANSACTION
START TRANSACTION is used to start a new transaction block. See Chapter 26 for more 
information.

 Input

START TRANSACTION;

UPDATE
UPDATE updates one or more rows in a table. See Chapter 20 for more information.

 Input

UPDATE tablename
SET columnname = value, ...
[WHERE ...];



D
MySQL Datatypes

This appendix explains the different datatypes used in MySQL.
As explained in Chapter 1, “Understanding SQL,” datatypes are basically rules that 

define what data may be stored in a column and how that data is actually stored.
Datatypes are used for several reasons:

Q Datatypes enable you to restrict the type of data that can be stored in a column. 
For example, a numeric datatype column accepts only numeric values.

Q Datatypes allow for more efficient storage internally. For example, numbers and 
datetime values can be stored in a more condensed format than can text strings.

Q Datatypes allow for alternate sorting orders. If everything is treated as strings, 1
comes before 10, which comes before 2. (Strings are sorted in dictionary sequence, 
one character at a time starting from the left.) As numeric datatypes, the numbers 
would be sorted correctly.

When designing tables, pay careful attention to the datatypes being used. Using the 
wrong datatype can seriously impact your application. Changing the datatypes of existing 
populated columns is not a trivial task. (In addition, doing so can result in data loss.)

Although this appendix is by no means a complete tutorial on datatypes and how they 
are to be used, it explains the major MySQL datatype types and what they are used for.

String Datatypes
The most commonly used datatype is the string datatype. This datatype stores a string, 
such as names, addresses, phone numbers, or zip codes. As listed in Table D.1, there are 
basically two types of string datatype that you can use: fixed-length strings and variable-
length strings.

A fixed-length string is a datatype that is defined to accept a fixed number of char-
acters, and that number is specified when the table is created. For example, you might 
allow 30 characters in a first name column or 11 characters in a Social Security number 
column (which is the exact number needed plus the two dashes). Fixed-length columns 
do not allow more than the specified number of characters. They also allocate storage 
space for as many characters as specified. So, if the string Ben is stored in a 30-character 
first name field, a full 30 bytes are stored. CHAR is an example of a fixed-length string 
type.



254 Appendix D MySQL Datatypes

Variable-length strings store text of variable length. Some variable-length datatypes 
have a defined maximum size. Others are entirely variable. Either way, only the data 
specified is saved (and no extra data is stored). TEXT is an example of a variable-length 
string type.

If variable-length datatypes are so flexible, why would you ever want to use fixed-
length datatypes? The answer is performance. MySQL can sort and manipulate fixed-
length columns far more quickly than it can sort variable-length columns. In addition, 
MySQL does not allow you to index variable-length columns (or the variable portion of 
a column). This also dramatically affects performance.

Table D.1 String Datatypes

Datatype Description

CHAR Fixed-length string from 1 to 255 characters long. Its size must be 
specified at creation time, or MySQL assumes CHAR(1).

ENUM Accepts one of a predefined set of up to 64KB strings.

LONGTEXT Same as TEXT, but with a maximum size of 4GB.

MEDIUMTEXT Same as TEXT, but with a maximum size of 16KB.

SET Accepts zero or more of a predefined set of up to 64 strings.

TEXT Variable-length text with a maximum size of 64KB.

TINYTEXT Same as TEXT, but with a maximum size of 255 bytes.

VARCHAR Same as CHAR, but stores just the text. The size is a maximum, not a 
minimum.

Tip
Use Quotation Marks Regardless of the form of string datatype being used, string 
values must always be surrounded by quotation marks. (Single quotation marks are often 
preferred.)

Caution
When Numeric Values Are Not Numeric Values You might think that phone 
numbers and zip codes should be stored in numeric fields (after all, they store only 
numeric data), but doing so would not be advisable. If you store the zip code 01234 in a 
numeric field, the number 1234 will be saved, and you’ll actually lose a digit.

The basic rule to follow is this: If the number is a number used in calculations (sums, 
averages, and so on), it belongs in a numeric datatype column. If it is used as a literal 
string (that happens to contain only digits), it belongs in a string datatype column.



255Numeric Datatypes

Numeric Datatypes
Numeric datatypes store numbers. MySQL supports several numeric datatypes, each 
with a different range of numbers that can be stored in it. Obviously, the larger the 
supported range, the more storage space needed. In addition, some numeric datatypes 
support the use of decimal points (and fractional numbers), whereas others support only 
whole numbers. Table D.2 lists the frequently used MySQL numeric datatypes.

Note
Signed or UNSIGNED? All numeric datatypes, with the exception of BIT and BOOLEAN, 
can be signed or unsigned. Signed numeric columns can store both positive and nega-
tive numbers, and unsigned numeric columns store only positive numbers. Signed is the 
default, but if you know that you’ll not need to store negative values, you can use the 
UNSIGNED keyword, which will allow you to store values twice as large.

Table D.2 Numeric Datatypes

Datatype Description

BIGINT Integer value that supports numbers from -9223372036854775808
to 9223372036854775807 (or 0 to 18446744073709551615 if 
UNSIGNED).

BIT Bit field from 1 to 64 bits wide. (Prior to MySQL 5, BIT was 
functionally equivalent to TINYINT.)

BOOLEAN (or BOOL) Boolean flag, either 0 or 1, used primarily for on/off flags.

DECIMAL (or DEC) Floating point value with varying level of precision.

DOUBLE Double-precision floating point value.

FLOAT Single-precision floating point value.

INT (or INTEGER) Integer value that supports numbers from -2147483648 to 
2147483647 (or 0 to 4294967295 if UNSIGNED).

MEDIUMINT Integer value that supports numbers from -8388608 to 8388607
(or 0 to 16777215 if UNSIGNED).

REAL 4-byte floating point value.

SMALLINT Integer value that supports numbers from -32768 to 32767
(or 0 to 65535 if UNSIGNED)

TINYINT Integer value that supports numbers from -128 to 127 (or 0 to 255
if UNSIGNED).

Tip
Don’t Use Quotation Marks Unlike strings, numeric values should never be 
enclosed within quotes.



256 Appendix D MySQL Datatypes

Date and Time Datatypes
MySQL uses special datatypes for the storage of date and time values, as listed in 
Table D.3.

Table D.3 Date and Time Datatypes

Datatype Description

DATE Date from 1000-01-01 to 9999-12-31 in the format YYYY-MM-DD.

DATETIME A combination of DATE and TIME.

TIMESTAMP Functionally equivalent to DATETIME (but with a smaller range).

TIME Time in the format HH:MM:SS.

YEAR A two- or four-digit year; two-digit years support the range 70 (1970) to 
69 (2069), and four-digit years support the range 1901 to 2155.

Binary Datatypes
Binary datatypes are used to store all sorts of data (even binary information), such as 
graphic images, multimedia, and word processor documents (see Table D.4).

Table D.4 Binary Datatypes

Datatype Description

BLOB Blob with a maximum length of 64KB.

MEDIUMBLOB Blob with a maximum length of 16MB.

LONGBLOB Blob with a maximum length of 4GB.

TINYBLOB Blob with a maximum length of 255 bytes.

Tip
Storing Currency There is no special MySQL datatype for currency values. 
Use DECIMAL(8,2) for currency.

Note
Datatypes in Use If you would like to see a real-world example of how different 
datatypes are used, see the sample table creation scripts described in Appendix B, “The 
Example Tables.”



E
MySQL Reserved Words

This appendix lists the MySQL keywords, which are special words used in performing 
SQL operations. Do not use these keywords when naming databases, tables, columns, 
and any other database objects. These keywords are considered reserved.

ACTION

ADD

ALL

ALTER

ANALYZE

AND

AS

ASC

ASENSITIVE

BEFORE

BETWEEN

BIGINT

BINARY

BIT

BLOB

BOTH

BY

CALL

CASCADE

CASE

CHANGE



258 Appendix E MySQL Reserved Words

CHAR

CHARACTER

CHECK

COLLATE

COLUMN

CONDITION

CONNECTION

CONSTRAINT

CONTINUE

CONVERT

CREATE

CROSS

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

DATABASE

DATABASES

DATE

DAY_HOUR

DAY_MICROSECOND

DAY_MINUTE

DAY_SECOND

DEC

DECIMAL

DECLARE

DEFAULT

DELAYED

DELETE

DESC



259MySQL Reserved Words

DESCRIBE

DETERMINISTIC

DISTINCT

DISTINCTROW

DIV

DOUBLE

DROP

DUAL

EACH

ELSE

ELSEIF

ENCLOSED

ENUM

ESCAPED

EXISTS

EXIT

EXPLAIN

FALSE

FETCH

FLOAT

FOR

FORCE

FOREIGN

FROM

FULLTEXT

GOTO

GRANT

GROUP

HAVING

HIGH_PRIORITY

HOUR_MICROSECOND



260 Appendix E MySQL Reserved Words

HOUR_MINUTE

HOUR_SECOND

IF

IGNORE

IN

INDEX

INFILE

INNER

INOUT

INSENSITIVE

INSERT

INT

INTEGER

INTERVAL

INTO

IS

ITERATE

JOIN

KEY

KEYS

KILL

LEADING

LEAVE

LEFT

LIKE

LIMIT

LINES

LOAD

LOCALTIME

LOCALTIMESTAMP

LOCK



261MySQL Reserved Words

LONG

LONGBLOB

LONGTEXT

LOOP

LOW_PRIORITY

MATCH

MEDIUMBLOB

MEDIUMINT

MEDIUMTEXT

MIDDLEINT

MINUTE_MICROSECOND

MINUTE_SECOND

MOD

MODIFIES

NATURAL

NO

NO_WRITE_TO_BINLOG

NOT

NULL

NUMERIC

ON

OPTIMIZE

OPTION

OPTIONALLY

OR

ORDER

OUT

OUTER

OUTFILE

PRECISION

PRIMARY



262 Appendix E MySQL Reserved Words

PROCEDURE

PURGE

READ

READS

REAL

REFERENCES

REGEXP

RELEASE

RENAME

REPEAT

REPLACE

REQUIRE

RESTRICT

RETURN

REVOKE

RIGHT

RLIKE

SCHEMA

SCHEMAS

SECOND_MICROSECOND

SELECT

SENSITIVE

SEPARATOR

SET

SHOW

SMALLINT

SONAME

SPATIAL

SPECIFIC

SQL

SQL_BIG_RESULT



263MySQL Reserved Words

SQL_CALC_FOUND_ROWS

SQL_SMALL_RESULT

SQLEXCEPTION

SQLSTATE

SQLWARNING

SSL

STARTING

STRAIGHT_JOIN

TABLE

TERMINATED

TEXT

THEN

TIME

TIMESTAMP

TINYBLOB

TINYINT

TINYTEXT

TO

TRAILING

TRIGGER

TRUE

UNDO

UNION

UNIQUE

UNLOCK

UNSIGNED

UPDATE

USAGE

USE

USING

UTC_DATE



264 Appendix E MySQL Reserved Words

UTC_TIME

UTC_TIMESTAMP

VALUES

VARBINARY

VARCHAR

VARCHARACTER

VARYING

WHEN

WHERE

WHILE

WITH

WRITE

XOR

YEAR_MONTH

ZEROFILL



Index

Symbols

! operator, 47
<> operator, 47

A
access control, 227–228, 230–233
administrative login, 15
Against() function, 148–151
aggregate functions, 93–94

Avg(), 94–95
combining, 100
Count(), 95–96, 117
DISTINCT argument. See also

keywords and statements
Max(), 96–97
Min(), 97–98
Sum(), 98–99
using with joins, 138–139

algorithm, SOUNDEX, 87
aliases, 80–81, 100
ALTER TABLE statement, 180–181
ANALYZE TABLE statement, 236
anchors, 74–75
application filtering, 44
argument/s, 99–100. See also keywords and 

statements
AS keyword, 80–83, 133–134. See also joins 

and joining
ASC keyword, 40
AUTO_INCREMENT, 177–178
autocommit flag, 221–222
Avg() function, 94–95, 99–100

B
backing up data, 235
backslash ( \ ), 71–72
best practices, primary key, 5
binary datatypes, 256
binary log, 237
Boolean text searches, 153–156

C
calculated fields, 77

performing mathematical calculations, 
81–82

subqueries as, 117–119
using with views, 188–189

calculations, testing, 82
CALL statement, 198
caret ( ^ ), 75
Cartesian product, 126
case

converting, 86
-sensitivity

collocation, 223

function, 80

keyword, 27

regular expression matching, 68

search, 149

SELECT statement, 226

sort order and, 40

Cast() function, 226
changing user passwords, 233–234
character matching, 66–67



266 Index

character classes, 72
escaping, 71
matching multiple instances, 72–74
matching one of several characters, 

68–69
matching ranges, 70
OR operator, 68
special characters, 70–72

character sets, 223, 224–226
CHECK TABLE statement, 236
clause/s

FROM, 36
GROUP BY, 104–105
HAVING, 105–107
LIMIT, 41
ORDER BY, 36–37, 41

versus GROUP BY, 107–109

sorting by column position, 38

sorting by multiple columns, 37

sorting by nonselected columns, 37

specifying sort direction, 39–41

ordering, 110
VALUES, 160–161, 162
WHERE, 43–44

checking against a single value, 45–46

checking for nonmatches, 46–47

checking for NULL value, 48–49

filtering by date, 89–90

NOT operator, 56–57

AND operator, 51–52

OR operator, 52–53

IN operator, 54–56

operators, 44

using in joins, 124–127

client/server-based database, 9–10
closing

cursors, 205
implicit, 205

cloud-based DBMS, 10
code

looping, 208
portability, 85

collocation, 223, 224–226
specifying for a column, 225
table-wide, 224–225

column/s, 3–4
alias, 80–81
AUTO_INCREMENT, 177–178
collocation and character set, 225
datatype, 3–4
derived, 81
fully qualified names, 32–33, 124
individual, retrieving, 25–27
list, 161
listing, 17–19
nonselected, sorting by, 37, 38
omitting, 162
primary key, 4–5, 122, 176–177, 217

best practice, 5

rules, 5

retrieving all, 29
retrieving multiple, 27–28
setting the value to NULL, 169
sorting

by multiple, 37

by position, 38

unknown, retrieving, 29
updating, 168

combining, aggregate functions, 100
comma (,), 28
commands and command-line. See also

keywords and statements
HELP SHOW, 20
keyword/s

ASC, 40

comments, 33–34

DESC, 40

presentation of data, 28

SELECT, 25

unsorted data, 35–36

wildcards, 29



267Index

mysql, 11, 16–17, 22
mysqld, 237
mysqldump, 235
mysqlhotcopy, 235
ROLLBACK, 219–220
selecting a database from, 16–17
semicolon (;), 26
SHOW, 17–20
white space, 27

COMMENT keyword, 200
comments, 33–34, 200
COMMIT statement, 220
compound queries, 141

creating using UNION keyword, 
141–144

including or eliminating duplicate rows, 
144–145

sorting query results, 145
Concat() function, 78–79
concatenating, fields, 78–80
conditions, join, 139–140
connecting to MySQL, selecting a 

database, 16–17
CONTINUE HANDLER, 207–208
Convert() function, 226
converting, case, 86
correlation subquery, 118
Count() function, 95–96, 117
CREATE PROCEDURE statement, 194
CREATE TABLE statement, 173–174
CREATE TRIGGER statement, 212
CREATE USER statement, 229
CREATE VIEW statement, 185
creating

compound queries, 141–144
cursors, 204
groups, 103–105
joins, 123–124
sample tables, 247–248
stored procedures, 193–194
tables, 173–174, 175
triggers, 212
user accounts, 229

cross join, 126
cursors, 203–204

closing, 205
creating, 204
declaring, 204
opening, 205

customers table, 245

D
data

backing up, 235
grouping, 103
importing from a table, 164–166
insertion. See INSERT statement
performing mathematical calculations, 

81–82
reformatting, 186–187
removing, 169–170
sorting, 35–37

by column position, 38

direction, specifying, 39–41

by multiple columns, 37

by nonselected columns, 37

summarizing, 93–94, 109. See also
aggregate functions; summarization

unwanted, filtering, 188
updating, 167–169, 180–181

database/s. See also table/s
client, 10
definition, 2
displaying details about, 22
listing, 17
maintenance, 235–236

ANALYZE TABLE statement, 236

CHECK TABLE statement, 236

mysql, user table, 228
reviewing log files, 237
scalability, 122
selecting



268 Index

from command-line, 16–17

from MySQL Workbench, 22

server, 9–10
software, 2
table/s, 2–3

aliases, 133–134

columns, 3–4

primary key, 4–5

relational, 121–122

rows, 4

schema, 3

datatype/s, 3–4, 253
binary, 256
date and time, 256
numeric, 255–256
stored procedure parameter, 196
string, 253–254

date and time
datatypes, 256
manipulation functions, 88–90

Date(), 90–91

Month(), 91

Year(), 91

Date() function, 90–91
DBMS (database management system), 2, 9

client/server-based, 9–10
cloud-based, 10
shared file–based, 9
-specific SQL, 6

DECLARE statement, 204, 208
declaring, cursors, 203
default values, 178–179
DELETE statement, 169–170
DELETE trigger, 214–215
deleting

tables, 182
user account, 230

delimiter, 194–195
derived column, 81
DESC keyword, 40
DESCRIBE keyword, 19

diagnosing server startup problems, 237
dictionary sort order, 40
DISTINCT keyword, 29–30, 99–100
documentation, MySQL, 240
DROP PROCEDURE statement, 195
dropping

stored procedures, 195
triggers, 213

E
encoding, 223
engine types, 179–180
equijoin, 127
error log, 237
escaping, 71
example tables, 243–244

customers, 245
orderitems, 246
orders, 245–246
productnotes, 246–247
products, 244–245
vendors, 244

executing
SQL statements from MySQL 

Workbench, 23
stored procedures, 193

F
FETCH statement, 206–207
fields. See also columns

calculated, 77
performing mathematical 

calculations, 81–82

subqueries as, 117–119

using with views, 188–189

concatenating, 78–80
filter/ing. See also character matching; 

LIKE operator



269Index

application, 44
conditions, WHERE clause, 43–44
by date, 89–90
groups, 105–107
by more than one column, 51–52
regular expressions, 65–66

character matching, 66–67

escaping, 71

matching one of several characters, 
68–69

matching ranges, 70

matching special characters, 70–72

pipe ( | ), 68

by subquery, 113–116
unwanted data, 188

FLUSH LOGS statement, 237
FLUSH TABLES statement, 235
foreign key, 122, 181
formatting

client versus server, 78
statements, 174
subqueries, 115

Forta, B., Learning Regular Expressions, 65
FROM clause, 36
full-text searches

Boolean mode, 153–156
case-sensitivity, 149
notes, 156–157
performing, 148–151
query expansion, 151–153
support, 147

fully qualified names, 32–33, 124
function/s, 85, 86

Against(), 148–151
aggregate, 93–94

Avg(), 94–95

combining, 100

Count(), 95–96, 117

DISTINCT argument, 99–100

Max(), 96–97

Min(), 97–98

Sum(), 98–99

using with joins, 138–139

case-sensitivity, 80
Cast(), 226
Concat(), 78–79
Convert(), 226
date and time manipulation, 88–90

Date(), 90–91

Month(), 91

Year(), 91

LTrim(), 80
Match(), 148–151
numeric manipulation, 91–92
portability, 85
RTrim(), 79
text manipulation, 87

Soundex(), 87–88

Upper(), 86

G-H
GRANT statement, 229, 231, 233
GROUP BY clause, 104–105, 107–109
groups and grouping, 1

combining with summarization, 109
creating, 103–105
filtering, 105–107

HAVING clause, 105–107
HELP SHOW command, 20

I
IF statement, 201
IGNORE keyword, 168–169
implicit closing, 205
importing, table data, 164–166
improving performance, 162, 239–240
inline comments, 33–34



270 Index

inner join, 127
InnoDB, 179
INSERT SELECT statement, 164–166
INSERT statement, 159, 229

inserting complete rows, 159–162
inserting multiple rows, 163–164
omitting columns, 162
performance, 164
syntax, 159–160

INSERT trigger, 213–214
inspecting stored procedures, 201
intelligent stored procedures, building, 

199–201
IS NULL clause, 48–49

J
joins and joining, 121

conditions, 139–140
creating, 123–124
cross, 126
equi, 127
importance of the WHERE clause, 

124–127
inner, 127
multiple tables, 128–130
natural, 136–137
outer, 137–138
reasons for using, 122–123
self-, 134–136
simplifying, 185–186
table aliases, 133–134
using with aggregate functions, 138–139

K
keywords and statements, see, 46–47. 

See also stored procedures
ALTER TABLE, 180–181
ANALYZE TABLE, 236

AS, 80–83, 133–134
ASC, 40
AUTO_INCREMENT, 177–178
CALL, 198
case, 27
CHECK TABLE, 236
clauses

FROM, 36

LIMIT, 41

ORDER BY, 36–37

VALUES, 160–161, 162

COMMENT, 200
comments, 33–34
COMMIT, 220
CREATE PROCEDURE, 194
CREATE TABLE, 173–174
CREATE TRIGGER, 212
CREATE USER, 229
CREATE VIEW, 185
DECLARE, 204, 208
DELETE, 169–170
DESC, 40
DESCRIBE, 19
DISTINCT, 29–30, 99–100
DROP PROCEDURE statement, 195
FETCH, 206–207
FLUSH LOGS, 237
FLUSH TABLES, 235
formatting, 174
GRANT, 229, 231, 233
IF, 201
IGNORE, 168–169
INSERT, 159, 229

inserting complete rows, 159–162

inserting multiple rows, 163–164

omitting columns, 162

performance, 164

syntax, 159–160

INSERT SELECT, 164–166
LOOP, 208
OPEN, 205
OUT, 196



271Index

presentation of data, 28
REGEXP, 66–67
RENAME TABLE, 182
REPEAT, 206–209
reserved, 257–264
REVOKE, 231–232, 233
ROLLBACK, 219–220
ROLLUP, 105
SELECT, 25

application filtering, 44

combining aggregate functions, 100

fully qualified names, 32–33

LIMIT clause, 31–32

LIMIT OFFSET clause, 32

retrieving all columns, 29

retrieving distinct rows, 29–30

retrieving individual columns, 25–27

retrieving multiple columns, 27–28

unsorted data, 35–36

WHERE clause, 43–44. See also
WHERE clause

separating, 26
SET PASSWORD, 233–234
SHOW CHARACTER SET, 224
SHOW COLLOCATION, 224
SHOW GRANTS FOR, 230
SHOW PROCEDURE STATUS, 201
syntax. See syntax
triggers, 211, 216

creating, 212–213

DELETE, 214–215

dropping, 213

INSERT, 213–214

multi-statement, 215

UPDATE, 215–216

TRUNCATE TABLE, 170
UNION, 141–143
UNION ALL, 145
UPDATE, 167–169, 170
USE, 16–17, 22
white space, 27
wildcards, 29

L
language/s

regular expression, 65
SQL, 6

left outer join, 138
LIKE operator, 59

percent sign (%) wildcard, 60–61
versus REGEXP, 67
underscore (_) wildcard, 61–62

LIMIT clause, 31–32, 41
LIMIT OFFSET clause, 32
log files, reviewing, 237
logging in, 15, 228
LOOP statement, 208
looping

code, 208
through cursor results, 206–207

LTrim() function, 80

M
maintenance. See database/s, maintenance
managing transactions, 219

COMMIT statement, 220
ROLLBACK statement, 219–220
savepoints, 220–221

Match() function, 148–151
mathematical operators, 82
Max() function, 96–97
MEMORY engine, 179
metacharacters, 71

anchor, 74–75
repetition, 73
white space, 71

Min() function, 97–98
Month() function, 91
multiline comments, 34
multi-statement triggers, 215
MyISAM, 179
MySQL, 9. See also commands and 

command-line



272 Index

documentation, 240
engine

transaction support, 217

types, 179–180

logging in, 15
reserved words, 257–264
tools, 11, 13

mysql command-line utility, 11–12

MySQL Workbench, 12–13

versions, 10–11
mysql command-line utility, 11–12

specifying the user and password, 16
USE keyword, 16–17, 22

MySQL Workbench, 12–13
executing SQL statements, 23
MySQL Connections list, 20–21
Navigator, 22
New Query button, 23
password, 21
selecting a database, 22
user interface, 21–22

mysqld command, 237
mysqldump command, 235
mysqlhotcopy command, 235

N
name/s

alias, 80–81, 100
fully qualified, 32–33, 124
table, 2
variable, 197

natural joins, 136–137
Navigator, MySQL Workbench, 22
New Query button, 23
NOT operator, 56–57
NULL value, 175–176

checking for, 48–49
matching, 61
setting a column’s value to, 169

numeric datatypes, 255–256
numeric manipulation functions, 91–92

O
OPEN statement, 205
BETWEEN operator, 47–48
AND operator, 51–52
OR operator, 52–53
IN operator, 54–56
OR operator, 68
BETWEEN operator, 91
operators

AND, 51–52
BETWEEN, 91
Boolean, 155
LIKE, 59

percent sign (%) wildcard, 60–61

versus REGEXP, 67

underscore (_) wildcard, 61–62

mathematical, 82
order of evaluation, 53–54
WHERE clause, 44

!, 47

<>, 47

BETWEEN, 47–48

IN, 54–56

NOT, 56–57

OR, 52–53, 68

Oracle, 11
ORDER BY clause, 36–37, 41

versus GROUP BY, 107–109
sorting by column position, 38
sorting by multiple columns, 37
sorting by nonselected columns, 37
specifying sort direction, 39–41

order of evaluation, 53–54
orderitems table, 246
orders table, 245–246



273Index

OUT keyword, 196
outer joins, 137–138

P
parameter/s

datatypes, 196
stored procedure, 195–199

parentheses, 54
password, 233

changing, 233–234
hashed, 229
mysql command-line utility, 16
MySQL Workbench, 21

percent sign (%) wildcard, 60–61
performance, 130

full-text search, 147
improving, 162, 239–240
INSERT statement, 164
joins, 129
subqueries and, 116
views, 184

period (.), in regular expressions, 67
pipe ( | ), 68
portability, function, 85
predicate, 60. See also operators
primary key, 4–5, 122, 176–177, 217

best practice, 5
rules, 5

productnotes table, 246–247
products table, 244–245

Q
query/ies. See also SELECT statement

compound, 141
creating using UNION keyword, 

141–144

including or eliminating duplicate 
rows, 144–145

sorting the results, 145

expansion, 151–153
log, 237

question mark (?), 73
quotes, 46

R
ranges, matching, 70
records, 4
referential integrity, 123
reformatting retrieved data, 186–187
REGEXP keyword, 66–67
regular expressions, 65–66

anchors, 74–75
backslash ( \ ), 71–72
case-sensitivity, 68
character classes, 72
character matching, 66–67
escaping, 71
limitations, 147–148
OR matches, 68
matching multiple instances, 72–73
matching one of several characters, 

68–69
matching ranges, 70
matching special characters, 70–72
period (.), 67
testing, 75

relational tables, 121–122
removing, table data, 169–170
RENAME TABLE statement, 182
renaming

tables, 182
user account, 229–230

REPEAT statement, 206–209
repetition metacharacters, 73
reserved words, 257–264
reusable views, 186
REVOKE statement, 231–232, 233
right outer join, 138
rights and privileges

user account, 232–233



274 Index

ROLLBACK statement, 219–220
ROLLUP keyword, 105
root login, 228
rows, 4

individual, retrieving, 29–30
inserting, 159–162
multiple, inserting, 163–164

RTrim() function, 79
rules

primary key, 5
UNION keyword, 143–144
view, 185

S
sample tables, creating, 247–248
savepoints, 220–221
scalability, database, 122
schema, 3
scripts, 13
search pattern, 59
security, access control, 227–228
SELECT statement, 25. See also clause; 

keywords and statements; subquery/ies
application filtering, 44
calculated fields, 77
case-sensitivity, 226
clause ordering, 110
combining aggregate functions, 100
fully qualified names, 32–33
GROUP BY clause, 104–105
HAVING clause, 105–107
LIMIT clause, 31–32
retrieving all columns, 29
retrieving distinct rows, 29–30
retrieving individual columns, 25–27
retrieving multiple columns, 27–28
unsorted data, 35–36
WHERE clause, 43–44

checking against a single value, 45–46

checking for nonmatches, 46–47

operators, 44

using in joins, 124–127

self-joins, 134–136
semicolon (;), 26, 27
separating multiple statements, 26
server

database, 9–10
diagnosing startup problems, 237
formatting, 78

SET PASSWORD statement, 233–234
shared file–based DBMS, 9
SHOW CHARACTER SET statement, 

224
SHOW COLLOCATION statement, 

224
SHOW command, 17–20
SHOW GRANTS FOR, 230
SHOW PROCEDURE STATUS 

statement, 201
single quotes (‘ ’), 46
slow query log, 237
software, database, 2
sorting, 35–37

case-sensitivity, 40
by column position, 38
compound query results, 145
dictionary order, 40
direction, specifying, 39–41
by multiple columns, 37
by nonselected columns, 37, 38

SOUNDEX, 87
Soundex() function, 87–88
special characters, matching, 70–72
SQL, 6

DBMS-specific, 6
executing statements, 23

square brackets ( [] )
matching one of several characters, 

68–69
matching ranges, 70

statements. See keywords and statements
stopwords, 156
stored procedures, 191–192



275Index

calling another stored procedure, 
209–210

comments, 200
creating, 193–194
with cursor, 206–208
delimiter, 194–195
dropping, 195
executing, 193
inspecting, 201
intelligent, 199–201
limiting status results, 201
looping, 206–207
opening and closing a cursor, 205–206
parameters, 195–199
reasons for using, 192–193
updating, 197

string datatypes, 253–254
subquery/ies, 113

as calculated fields, 117–119
correlation, 118
filtering by, 113–116
formatting, 115
order of processing, 115
performance and, 116
UPDATE statement, 169

Sum() function, 98–99
summarization, 93–94, 109
syntax

ALTER TABLE statement, 249
comment, 33–34
COMMIT statement, 249
CREATE INDEX statement, 250
CREATE PROCEDURE statement, 250
CREATE TABLE statement, 250
CREATE USER statement, 250
CREATE VIEW statement, 251
DELETE statement, 251
DROP statement, 251
inner join, 127
INSERT SELECT statement, 251
INSERT statement, 159–160, 251
IN operator, 55

ROLLBACK statement, 252
SAVEPOINT statement, 252
SELECT statement, 252
START TRANSACTION statement, 

252
UPDATE statement, 168, 252

T
table/s, 2–3. See also views

aliases, 133–134
column/s, 3–4

alias, 80–81

AUTO_INCREMENT, 177–178

collocation, 225

datatype, 3–4

fully qualified names, 32–33

individual, retrieving, 25–27

listing, 17–19

omitting, 162

primary key, 4–5, 122, 176–177, 217

retrieving all, 29

retrieving multiple, 27–28

setting the value to NULL, 169

sorting by multiple, 37

sorting by position, 38

specifying a character set, 225

creating, 173–174, 175
deleting, 182
displaying details about, 22
example, 243–244

customers, 245

orderitems, 246

orders, 245–246

productnotes, 246–247

products, 244–245

vendors, 244

joins and joining, 122–123



276 Index

creating, 123–124

cross, 126

importance of the WHERE clause, 
124–127

inner, 127

multiple, 128–130

natural, 136–137

outer, 137–138

reasons for using, 122–123

self-, 134–136

listing, 17–19
names, 2
relational, 121–122
removing data from, 169–170
renaming, 182
rows, 4

individual, retrieving, 29–30

inserting, 159–162

multiple, inserting, 163–164

sample, creating, 247–248
schema, 3
specifying a character set and 

collocation, 224–225
updating data, 167–169, 180–181
user, 228

testing
calculations, 82
for equality, 44
queries, 119
regular expressions, 75

text manipulation functions, 87
Soundex(), 87–88
Upper(), 86

tools, 13. See also command/s
mysql command-line utility, 11–12
MySQL Workbench, 12–13

trailing spaces, wildcard, 61
transactions and transaction processing, 

217–219
autocommit flag, 221–222

controlling, 219
COMMIT statement, 220

ROLLBACK statement, 219–220

savepoints, 220–221
triggers, 211, 216

creating, 212–213
DELETE, 214–215
dropping, 213
INSERT, 213–214
multi-statement, 215
UPDATE, 215–216

TRUNCATE TABLE statement, 170

U
underscore (_) wildcard, 61–62
UNION ALL keyword, 145
UNION keyword

compound queries, 141–143
including or eliminating duplicate rows, 

144–145
rules, 143–144

unions. See compound queries
unknown columns, retrieving, 29
unsorted data, 35–36
unwanted data, filtering, 188
UPDATE statement, 167–169

guidelines, 170
IGNORE keyword, 168–169
subqueries, 168
views, 189–190

UPDATE trigger, 215–216
Upper() function, 86
USE keyword, 16–17, 22
user account

access control, 230–233
creating, 229
deleting, 230
password



277Index

changing, 233–234

hashed, 229

mysql command-line utility, 16

MySQL Workbench, 21

renaming, 229–230
rights and privileges, 232–233
specifying hashed password, 229

user interface, MySQL Workbench, 21–22
user table, 228

V
value/s

default, 178–179
deleting, 169
NULL, 175–176

checking for, 48–49

matching, 61

primary key, 4–5, 122, 176–177
best practice, 5

rules, 5

VALUES clause, 160–161, 162
variables, stored procedure, 197
vendors table, 244
versions, MySQL, 10–11
views, 183–184, 185

filtering unwanted data, 188
performance, 184
reasons for using, 184
reformatting retrieved data, 186–187
reusable, 186
rules and restrictions, 185
simplifying complex joins, 185–186
updating, 189–190
using with calculated fields, 188–189

W
WHERE clause, 43–44. See also filter/ing; 

regular expressions
checking against a single value, 

45–46
checking for no value, 48–49
checking for nonmatches, 46–47
filtering by date, 89–90
NOT operator, 56–57
operators, 44

!, 47

<>, 47

AND, 51–52

BETWEEN, 47–48

IN, 54–56

OR, 52–53

order of evaluation, 53–54

parentheses, 54
subqueries, 113–116
using in joins, 124–127

white space
command-line, 27
metacharacters, 71

wildcard/s, 29, 59
limitations, 147–148
percent sign (%), 60–61
tips for using, 63
trailing spaces, 61
underscore (_), 61–62
using with DISTINCT argument, 100

X-Y-Z
Year() function, 91



This page intentionally left blank 



Addison-Wesley  •  Adobe Press  •  Cisco Press  •  Microsoft Press  •  Oracle Press  •  Peachpit Press  •  Pearson IT Certification  •  Que

Register Your Product at informit.com/register
Access additional benefits and save up to 65%* on your next purchase

• �Automatically�receive�a�coupon�for�35%�off�books,�eBooks,�and�web�editions�and�
65%�off�video�courses,�valid�for�30�days.�Look�for�your�code�in�your�InformIT�cart�
or�the�Manage�Codes�section�of�your�account�page.

• Download�available�product�updates.

• Access�bonus�material�if�available.**

• �Check�the�box�to�hear�from�us�and�receive�exclusive�offers�on�new�editions�
and�related�products.

InformIT—The Trusted Technology Learning Source
InformIT�is�the�online�home�of�information�technology�brands�at�Pearson,�the�world’s�
leading�learning�company.�At�informit.com,�you�can

• �Shop�our�books,�eBooks,�and�video�training.�Most�eBooks�are�DRM-Free�and�include�
PDF�and�EPUB�files.

• Take�advantage�of�our�special�offers�and�promotions�(informit.com/promotions).

• Sign�up�for�special�offers�and�content�newsletter�(informit.com/newsletters).

• Access�thousands�of�free�chapters�and�video�lessons.

• Enjoy�free�ground�shipping�on�U.S.�orders.*

* Offers subject to change.  
** Registration benefits vary by product. Benefits will be listed on your account page under Registered Products.

Connect with InformIT—Visit informit.com/community
      twitter.com/informit

http://informit.com/register
http://informit.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community
http://twitter.com/informit

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	1 Understanding SQL
	Database Basics
	What Is a Database?
	Tables
	Columns and Datatypes
	Rows
	Primary Keys

	What Is SQL?
	Try It Yourself
	Summary

	2 Introducing MySQL
	What Is MySQL?
	Client/Server Software
	MySQL Versions

	MySQL Tools
	mysql Command-Line Utility
	MySQL Workbench
	Other Tools

	Summary

	3 Working with MySQL
	Using the Command-Line Tool
	Selecting a Database
	Learning About Databases and Tables

	Using MySQL Workbench
	Getting Started
	Using MySQL Workbench
	Selecting a Database
	Learning About Databases and Tables
	Executing SQL Statements

	Next Steps
	Summary

	4 Retrieving Data
	The SELECT Statement
	Retrieving Individual Columns
	Retrieving Multiple Columns
	Retrieving All Columns
	Retrieving Distinct Rows
	Limiting Results
	Using Fully Qualified Table Names
	Using Comments
	Summary
	Challenges

	5 Sorting Retrieved Data
	Sorting Data
	Sorting by Multiple Columns
	Sorting by Column Position
	Specifying Sort Direction
	Summary
	Challenges

	6 Filtering Data
	Using the WHERE Clause
	WHERE Clause Operators
	Checking Against a Single Value
	Checking for Nonmatches
	Checking for a Range of Values
	Checking for No Value

	Summary
	Challenges

	7 Advanced Data Filtering
	Combining WHERE Clauses
	Using the AND Operator
	Using the OR Operator
	Understanding the Order of Evaluation

	Using the IN Operator
	Using the NOT Operator
	Summary
	Challenges

	8 Using Wildcard Filtering
	Using the LIKE Operator
	The Percent Sign (%) Wildcard
	The Underscore (_) Wildcard

	Tips for Using Wildcards
	Summary
	Challenges

	9 Searching Using Regular Expressions
	Understanding Regular Expressions
	Using MySQL Regular Expressions
	Basic Character Matching
	Performing OR Matches
	Matching One of Several Characters
	Matching Ranges
	Matching Special Characters
	Matching Character Classes
	Matching Multiple Instances
	Anchors

	Summary
	Challenges

	10 Creating Calculated Fields
	Understanding Calculated Fields
	Concatenating Fields
	Using Aliases

	Performing Mathematical Calculations
	Summary
	Challenges

	11 Using Data Manipulation Functions
	Understanding Functions
	Using Functions
	Text Manipulation Functions
	Date and Time Manipulation Functions
	Numeric Manipulation Functions

	Summary
	Challenges

	12 Summarizing Data
	Using Aggregate Functions
	The Avg() Function
	The Count() Function
	The Max() Function
	The Min() Function
	The Sum() Function


	Aggregates on Distinct Values
	Combining Aggregate Functions
	Summary
	Challenges

	13 Grouping Data
	Understanding Data Grouping
	Creating Groups
	Filtering Groups
	Grouping and Sorting
	Combining Grouping and Data Summarization
	SELECT Clause Ordering
	Summary
	Challenges

	14 Working with Subqueries
	Understanding Subqueries
	Filtering by Subquery
	Using Subqueries As Calculated Fields
	Summary
	Challenges

	15 Joining Tables
	Understanding Joins
	Understanding Relational Tables
	Why Use Joins?

	Creating a Join
	The Importance of the WHERE Clause
	Inner Joins
	Joining Multiple Tables

	Summary
	Challenges

	16 Creating Advanced Joins
	Using Table Aliases
	Using Different Join Types
	Self-Joins
	Natural Joins
	Outer Joins

	Using Joins with Aggregate Functions
	Using Joins and Join Conditions
	Summary
	Challenges

	17 Combining Queries
	Understanding Combined Queries
	Creating Combined Queries
	Using UNION
	UNION Rules
	Including or Eliminating Duplicate Rows
	Sorting Combined Query Results

	Summary
	Challenges

	18 Full-Text Searching
	Understanding Full-Text Searching
	Using Full-Text Searching
	Performing Full-Text Searches
	Using Query Expansion
	Boolean Text Searches
	Full-Text Searching Notes

	Summary
	Challenges

	19 Inserting Data
	Understanding Data Insertion
	Inserting Complete Rows
	Inserting Multiple Rows
	Inserting Retrieved Data
	Summary
	Challenges

	20 Updating and Deleting Data
	Updating Data
	Deleting Data
	Guidelines for Updating and Deleting Data
	Summary
	Challenges

	21 Creating and Manipulating Tables
	Creating Tables
	Basic Table Creation
	Working with NULL Values
	Primary Keys Revisited
	Using AUTO_INCREMENT
	Specifying Default Values
	Engine Types

	Updating Tables
	Deleting Tables
	Renaming Tables
	Summary
	Challenges

	22 Using Views
	Understanding Views
	Why Use Views
	View Rules and Restrictions

	Using Views
	Using Views to Simplify Complex Joins
	Using Views to Reformat Retrieved Data
	Using Views to Filter Unwanted Data
	Using Views with Calculated Fields
	Updating Views

	Summary
	Challenges

	23 Working with Stored Procedures
	Understanding Stored Procedures
	Why Use Stored Procedures
	Using Stored Procedures
	Executing Stored Procedures
	Creating Stored Procedures
	The DELIMITER Challenge
	Dropping Stored Procedures
	Working with Parameters
	Building Intelligent Stored Procedures
	Inspecting Stored Procedures

	Summary
	Challenges

	24 Using Cursors
	Understanding Cursors
	Working with Cursors
	Creating Cursors
	Opening and Closing Cursors
	Using Cursor Data

	Summary

	25 Using Triggers
	Understanding Triggers
	Creating Triggers
	Dropping Triggers
	Using Triggers
	INSERT Triggers
	DELETE Triggers
	UPDATE Triggers

	More on Triggers
	Summary

	26 Managing Transaction Processing
	Understanding Transaction Processing
	Controlling Transactions
	Using ROLLBACK
	Using COMMIT
	Using Savepoints
	Changing the Default Commit Behavior

	Summary

	27 Globalization and Localization
	Understanding Character Sets and Collation Sequences
	Working with Character Sets and Collation Sequences
	Summary

	28 Managing Security
	Understanding Access Control
	Managing Users
	Creating User Accounts
	Deleting User Accounts
	Setting Access Rights
	Changing Passwords

	Summary

	29 Database Maintenance
	Backing Up Data
	Performing Database Maintenance
	Diagnosing Startup Problems
	Reviewing Log Files
	Summary

	30 Improving Performance
	Improving Performance
	Summary

	A: Getting Started with MySQL
	What You Need
	Obtaining the Software
	Installing the Software
	Preparing to Read This Book

	B: The Example Tables
	Understanding the Example Tables
	Table Descriptions
	The vendors Table
	The products Table
	The customers Table
	The orders Table
	The orderitems Table
	The productnotes Table
	Creating the Sample Tables
	Using Data Import
	Using SQL Scripts


	C: MySQL Statement Syntax
	ALTER TABLE
	COMMIT
	CREATE INDEX
	CREATE PROCEDURE
	CREATE TABLE
	CREATE USER
	CREATE VIEW
	DELETE
	DROP
	INSERT
	INSERT SELECT
	ROLLBACK
	SAVEPOINT
	SELECT
	START TRANSACTION
	UPDATE

	D: MySQL Datatypes
	String Datatypes
	Numeric Datatypes
	Date and Time Datatypes
	Binary Datatypes

	E: MySQL Reserved Words
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




