

MySQL 5.1 Plugin Development

Extend MySQL to suit your needs with this unique guide
into the world of MySQL plugins

Sergei Golubchik

Andrew Hutchings

BIRMINGHAM - MUMBAI

https://www.packtpub.com/authors/profiles/sergei-golubchik
https://www.packtpub.com/authors/profiles/andrew-hutchings

MySQL 5.1 Plugin Development

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Production Reference: 1190810

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-60-8

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Authors
Sergei Golubchik

Andrew Hutchings

Reviewer
Giuseppe Maxia

Acquisition Editor
Sarah Cullington

Development Editor
Swapna Verlekar

Technical Editors
Priya Darwani

Chris Rodrigues

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Akshara Aware

Project Team Leader
Ashwin Shetty

Project Coordinator
Zainab Bagasrawala

Proofreader
Kevin McGowan

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

https://www.packtpub.com/authors/profiles/sergei-golubchik
https://www.packtpub.com/authors/profiles/andrew-hutchings

About the Authors

Sergei Golubchik started modifying MySQL source code in 1998, and has
continued as a MySQL AB employee since 2000. Working professionally with MySQL
sources, he has had the opportunity to get to know and extend almost every part
of the server code—from the SQL core to the utility functions. He was one of the
primary architects of the Plugin API. After working for ten years in the ever-growing
MySQL AB, and later in Sun Microsystems as a Principal Software Developer, he
resigned to join a small startup company that works on a MariaDB—an extended
version of the MySQL server, where he continues to do what he likes most—hack on
MySQL, architecting, and developing MySQL/MariaDB Plugin API, making it even
more powerful, safe, and easy to use.

He works and lives in Germany, near Cologne, with his lovely wife and two kids.

Andrew Hutchings is currently one of the top MySQL Support Engineers
working at Oracle. He came from failing Computer Science at A-Level (British
exams for 17-18 year olds) to working on, pretty much, every field of computing.
His first development job was as an 8-bit assembly firmware developer for an
environment monitoring company. He then went on to become a senior PHP and C/
C++ developer as well as a DBA and system administrator for a large UK magazine
chain. From there he was snapped up by Sun Microsystems as a MySQL Support
Engineer specializing in MySQL Cluster and C/C++ APIs, much of this work
involving deep analysis of the MySQL source code. Sun has since been bought by
Oracle and Andrew is continuing his role there and was a tutorial speaker at the
2010 O’Reilly MySQL Conference & Expo. In his spare time Andrew is an active
community developer of MySQL, MySQL Cluster, Drizzle, and MySQL Data
Dumper (mydumper for short) as well as other small, related projects.

I’d like to thank my wife, Natalie, and my children, Tomos and
Oliver, for putting up with me while I was writing this book. I also
wish to thank my colleagues, ex-colleagues, and others in the MySQL
community (you know who you are) for their help and support in
getting started with writing a book. And, of course, my co-author
Sergei, without whom this whole book would not have been possible.

About the Reviewer

Giuseppe Maxia, a.k.a. The Data Charmer, is the MySQL Community Team Lead
at Sun Microsystems. He is an active member of the MySQL community and a long
time open source enthusiast. For the past 23 years he has worked in various IT
related fields, with focus on databases, object-oriented programming, and system
administration. He is fluent in Italian, English, Perl, SQL, Lua, C, Bash, and a good
speaker of C++, French, Spanish, and Java.

He works in cyberspace, with a virtual team.

Table of Contents
Preface	 1
Chapter 1: Compiling and Using MySQL Plugins	 9

UDF libraries	 9
Linux	 10
Mac OS X	 10
Windows	 10
Installing a UDF	 15

Plugin libraries	 15
Linux	 15
Mac OS X	 16
Windows	 16
Installing a plugin	 19

Automatic builds, packaging	 19
UDFs and standalone plugins	 19
Plugins that are built from the MySQL source tree	 20

plug.in	 21
Makefile.am	 22
CMakeLists.txt	 24

Summary	 24
Chapter 2: User Defined Functions	 25

Writing UDFs	 25
Why write UDFs	 26
Installing and using UDFs	 27
Defining UDFs	 31
Execution sequence of a UDF	 37
UDF error handling	 37
UDF security	 38
Gotchas with UDFs	 38

Table of Contents

[ii]

A constant integer output UDF	 39
An integer echoing UDF	 41
A simple static text output UDF	 43
A summing aggregate UDF	 46
Further reading	 50
Summary	 50

Chapter 3: Daemon Plugins	 51
A look inside a Daemon plugin	 51

Why write a Daemon plugin	 51
Installing and using Daemon plugins	 52
The role of a version	 54
Defining Daemon plugins	 54
Status variables	 58
System variables	 60

A Hello World! Daemon plugin	 65
A system and status variables demo plugin	 68
A simple monitoring plugin	 72
System Status Variables plugin	 76
Summary	 81

Chapter 4: Information Schema Plugins	 83
Why write Information Schema plugins	 83
Installing and using Information Schema plugins	 84

The creation of Information Schema plugins	 85
Defining Information Schema plugins	 86

A Static Table example	 91
A System Information plugin	 95
Summary	 100

Chapter 5: Advanced Information Schema Plugins	 101
Accessing MySQL internals	 101
Condition pushdown	 102
Using condition pushdown	 103
A condition pushdown example	 105

A User Variables Information Schema plugin	 110
A Binary Logs Information Schema plugin	 115
Summary	 119

Chapter 6: Full-text Parser Plugins	 121
The full-text parser plugin architecture	 122

Three roles of a full-text parser plugin	 122
Installing and using a full-text parser plugin	 123
Structure of a full-text parser plugin	 124

Table of Contents

[iii]

A PHP full-text parser	 130
Summary	 136

Chapter 7: Practical Full-text Parsers	 137
Boolean parsers	 137
A Boolean full-text parser	 139
An Image Metadata processor	 145

How to access Exif data	 145
Writing the plugin	 146
Test run	 150

A Soundex full-text parser	 152
The Soundex algorithm	 153
The plugin	 154
Trying it out	 157

Summary	 159
Chapter 8: Storage Engine Plugins	 161

Introducing storage engines	 161
A read-only storage engine	 162

ha_text.cc	 164
Summary	 179

Chapter 9: HTML Storage Engine—Reads and Writes	 181
An idea of the HTML engine	 181
Flashback	 182
Creating, opening, and closing the table	 184
Reading data	 187
Updating the table	 190
Optimizing and analyzing	 193
What's left	 194

ha_html.h	 195
htmlutils.cc	 197

Compiling and linking	 198
Putting it all together	 199
Summary	 201

Chapter 10: TOCAB Storage Engine—Implementing Indexes	 203
B-tree library	 203
Storage engine API for indexes	 205
Describing the engine	 208
Creating, opening, and closing the table	 213
Searching in the index	 217
Rows and keys	 224
Table scan and random access	 230

Table of Contents

[iv]

Inserting rows	 232
What's left	 234
Compiling and linking	 236
Putting it all together	 237
Possible extensions	 239
Summary	 239

Appendix: Beyond MySQL 5.1	 241
Server services	 241
my_snprintf	 243
thd_alloc	 243

Audit plugins	 244
Authentication plugins	 247

How it works	 247
Authentication plugins—server side	 248
Authentication plugins—client side	 251

SQL extension by Storage Engine plugins	 252
Putting it to use	 254
Test drive	 257

Summary	 258
Index	 259

Preface
Plugin based architecture is not something new, many popular software products
use it. It is good both for the software product itself—if done properly it forces
developers to structure the code and think about clean interfaces, which helps to
keep the code maintainable over years—and for the users—as they can extend it
without waiting for the vendor or choose from numerous third-party extensions.

History of the Plugin API
MySQL used to have "pluggable" extensions in a form of dynamically loaded
functions since version 3.21.24 released in February 1998. Despite being quite limited
in functionality, they were useful and people were using them. In early 2005, one of
the authors of this book together with another MySQL developer, Sergey Vojtovich,
were working on loadable parsers for MySQL full-text search, to be able to load a
very specialized parser that one of their customers wanted. And Brian Aker, who
was MySQL Director of Architecture at that time, suggested creating a unified
interface for loadable "modules". Based on this idea we developed the MySQL Plugin
API—a generic framework that allowed loading of any functionality in the server—
and Full-text Parser plugins were the first plugin type.

Storage Engine API already existed in MySQL at that time—Michael “Monty”
Widenius, the original author of MySQL, had it since the very first MySQL version,
although he only added the handler class few years later, in 1999. This made Storage
Engine plugins an easy target, and we added them as the next plugin type. Soon after
that I, and another MySQL developer, Antony Curtis, extended Plugin API with the
autotools support, the infamous plug.in file and MYSQL_PLUGIN_* macros that go
in it, and implemented support for server variables, MYSQL_SYSVAR_* and MYSQL_
THDVAR_* macros. Brian Aker added two more plugin types—Information Schema
Table plugins and Daemon plugins.

Preface

[2]

Life was going on even after MySQL 5.1 was released—Antony Curtis and
I have developed Audit plugins. And very recently I and an external contributor,
MIT student R.J. Silk, have completed the work on pluggable authentication and
Authentication plugins were born.

Meanwhile, Michael “Monty” Widenius had left MySQL and started a new company
to work on MySQL fork, that he named MariaDB. Another former MySQL developer,
Sanja Byelkin, and I have implemented the latest (at the time of writing) feature in the
Storage Engine API, the engine defined attributes in the CREATE TABLE statement.

Idea of this book
Today, the MySQL Plugin API is a robust and proven feature. There are many
third-party plugins both open and closed source, the most popular being Storage
Engines, often accompanied by Information Schema tables, and Full-text parsers.

However, the API documentation is not very helpful. If you are anything like me,
you prefer fiction to a dictionary and a few good examples to a grammar description
in the Backus-Naur form. The Plugin API documentation describes the functions and
the structures but does not show how to use them. Tutorials, on the other hand, help
the reader to understand how to use the API. Examples are important to illustrate
the concepts and to bootstrap a new plugin project easily.

This is where the idea of this book came from. We wanted to create a book that
would allow readers to start writing plugins right away. With detailed tutorials and
practical plugin examples, thoroughly explained line by line, highlighted common
mistakes and clarified design decisions. And with code samples that you can start
using in your projects. Not just the code you can copy, but more importantly, the
code you understand—every line, every variable—as if you had written it yourself.

But this book is not a reference manual. It does not contain an exhaustive list of all
functions, classes, and macros of the MySQL Plugin API. The API is documented in
the header files and in the MySQL manual. But to use it, you need to know what to
look for. It is often said that asking the right question is half the right answer. This
book teaches you to ask right questions. It gives detailed understanding—not just
knowledge—of the MySQL Plugin API, and even if you will not have every piece of
the puzzle, you will have most of them, you will know how they fit together, and
you will be able to see the whole picture.

Preface

[3]

What this book covers
The book encourages consecutive reading, but chapters can be read in any order
too. They are mostly independent, and, if needed, you can start reading from, for
example, storage engine chapters without reading about full-text search parsers or
UDFs. The book is structured as follows.

Chapter 1, Compiling and Using MySQL Plugins lays the necessary foundation for the
rest of the book, you will need it in all of the following chapters. It describes how
to compile, link, and install UDFs and plugins. Even if you are only interested in,
say, full-text parsers or storage engines, you may want to read this chapter first. It is
not called Read Me First!!! only because we suspected that the editor may not have
wanted a lot of exclamation marks in the chapter title.

Chapter 2, User Defined Functions deals with UDFs - these dynamically loaded server
extensions that first appeared in the server in 3.21.24, the great-grandparents of the
MySQL Plugin API. Although, strictly speaking, UDFs are not MySQL Plugins—not
part of the MySQL Plugin API—they are still used to load functionality in the server
at runtime, just like plugins are, and sometimes they are used to complement the
plugin functionality.

Chapter 3, Daemon Plugins introduces the reader to the MySQL Plugin API. It talks
about the most simple plugin type—Daemon plugins. It starts with the basic
structure of a plugin—what a plugin declaration should look like, what plugin types
are, and so on. Then it describes features common to all plugin types—initialization
and de-initialization callbacks, status variables, and configuration system variables.
After that it describes and analyzes line by line four Daemon plugin examples—from
a simple plugin that prints Hello World! when loaded, to a system monitoring plugin
that periodically logs the number of connections, to a system usage status plugin that
displays the memory and I/O usage of the MySQL server.

Chapter 4, Information Schema Plugins is dedicated to plugins that add tables to
INFORMATION_SCHEMA. It describes all of the necessary data structures and ends
with two plugin examples—a simple INFORMATION_SCHEMA table with versions
of different MySQL subsystems and system usage statistics presented as an
INFORMATION_SCHEMA table.

Chapter 5, Advanced Information Schema Plugins delves more into the topic started in
the previous chapter. It explains how to use condition pushdown and how to extract
and display information from the server internal data structures. It presents three
plugins that demonstrate condition pushdown, list all user variables, and all binary
log files.

Preface

[4]

Chapter 6, Full-text Parser Plugins is about plugins that extend the MySQL built-in
full-text search. It describes all of the data structures and the code execution flow
and illustrates all that with an example plugin that can parse PHP scripts.

Chapter 7, Practical Full-text Parsers is devoted to the advanced applications of the
plugins of this type. It explains how the search in Boolean mode works and contains
more plugin examples—an Exif parser that allows users to search within embedded
comments in image files, a Soundex parser that post-processes all words with a
Soundex algorithm making the search invulnerable to typos and misspelled words,
and a Boolean search parser plugin that supports AND and OR operators.

Chapter 8, Storage Engine Plugins starts the discussion about the most complex and
versatile plugin type in MySQL. It gives an overview of the main concepts of the
Storage Engine API and thoroughly analyzes sources of the very simple read-only
storage engine.

Chapter 9, HTML Storage Engine - Reads and Writes continues the Storage Engine
series. It presents a storage engine plugin that keeps table data in HTML tables and
uses it to explain how to implement an updatable data stores.

Chapter 10, TOCAB Storage Engine - Implementing Indexes concludes the Storage
Engine part of the book. In this chapter, we develop a storage engine that supports
indexes, using it to explain how the indexing part of the MySQL Storage Engine API
works, how to build an engine that uses an external indexing library, and how to
work around the incompatibilities of their APIs.

Appendix talks about new MySQL Plugin API features, those that did not make
it into MySQL 5.1. It describes Server Services, what they are and why they
were introduced, the Audit plugins, the example of a plugin that audits security
violations, Authentication plugins, with a plugin that uses USB devices to identify
users, and engine attributes in the CREATE TABLE, demonstrating the feature with the
help of the storage engine from Chapter 10.

What you need for this book
The book assumes basic knowledge of SQL and MySQL in particular, and until
MySQL developers implement support for plugins in scripting languages, which
would be great but can hardly happen any time soon, a certain level of familiarity
with C, and for storage engines C++, will be required.

Preface

[5]

Who this book is for
We wrote this book for people who want to create MySQL plugins. They could be
developers with a great idea for a new storage engine. But more often than not they
will be application developers that need to solve a specific problem, whether it is
searching text within Microsoft Word or Open Office documents, monitoring the
database server with their company-wide monitoring framework, querying with
SQL the multi-gigabyte files created with a 20 year old custom data storage library
and joining them with new relational data, or adding MySQL to the company-wide
single sign-on setup. All this and much more can be done with MySQL plugins.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “The second argument of the name_init()
function is a pointer to the UDF_ARGS structure.”

A block of code is set as follows:

typedef struct st_field_info
{
 const char* field_name;
 uint field_length;
 enum enum_field_types field_type;
 int value;
 uint field_flags;
 const char* old_name;
 uint open_method;
} ST_FIELD_INFO;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

static int tocab_init(void *p)
{
 handlerton *tocab_hton = (handlerton *)p;
 tocab_hton->create = tocab_create_handler;
 tocab_hton->table_options = table_option_list;
 return 0;
}

Preface

[6]

Any command-line input or output is written as follows:

shell$ mysql_config --cflags

New terms and important words are shown in italics. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
“Then in the C/C++ section we need to add the MySQL include path to
Additional Include Directories”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Compiling and Using MySQL
Plugins

As you progress through this book you will see several examples of how to use
MySQL plugins. This chapter is designed to help you compile and install the UDFs
(User Defined Functions) and MySQL plugins that will be created in the following
chapters. Do not miss it; you will need this knowledge in every single chapter later on.

UDF libraries
MySQL comes with a small utility called mysql_config, which aids the supply of
some of the required options to your compiler. In most cases you need:

shell$ mysql_config --cflags

This will print something such as the following:

-I/opt/mysql-5.1/include/mysql -g -Wreturn-type -Wtrigraphs -W -Wformat
-Wsign-compare -Wunused-function -Wunused-value -Wunused-parameter -m64
-DUNIV_LINUX

Both MySQL plugins and UDFs need to be compiled as shared libraries. How this is
done depends on the platform.

Compiling and Using MySQL Plugins

[10]

Linux
Under Linux, UDFs should be compiled as follows:

gcc -o udf_library.so udf_library.c `mysql_config --cflags` -shared -fPIC

The mysql_config in backticks will apply the results for the command as switches
to gcc, so the include directories as well as other required build options are
automatically inserted. The -shared option tells the compiler that we are creating a
shared library and ‑fPIC enables Position Independent Code, which is required for
dynamic linking of this shared library.

Mac OS X
Compiling on Mac OS X is very much like compiling on Linux, but the way shared
libraries are defined is slightly different:

gcc -o udf_library.so udf_library.c `mysql_config --cflags` -bundle

A bundle is the Mac OS X equivalent of a shared library. If the UDF needs to call
functions in the server binary (for example, if it uses the DBUG debugging facility)
the command line will need to be:

gcc -o udf_library.so udf_library.c `mysql_config --cflags`
-bundle -Wl,-undefined -Wl,dynamic_lookup

Windows
Setting up for compiling UDFs in Windows is generally more involved than in other
operating systems.

As everywhere, we need to have the required libraries and include files installed. To
do this we run the MySQL installer. If you already have MySQL installed, you can
use this tool to modify your installation. The following screenshot shows that we have
selected Custom to do this, but a complete install will also give the required files:

Chapter 1

[11]

Now we need to select Developer Components and then C Include Files / Lib Files
to have them included in the installation. Once this is done the installer should look
similar to this:

Compiling and Using MySQL Plugins

[12]

Also, you need to have Microsoft Visual Studio installed. There are free express
editions available from the Microsoft website, which we can use.

In Visual Studio we need to create a new empty project to put our source code into
and set up the build environment:

Then we need to add a source file to this project. We can either create a new .cpp file
or add an existing one to a project:

Chapter 1

[13]

Now we need to modify the project properties to set up everything required to
compile the UDF. To start with, inside the General configuration section, we need
to set the Configuration Type to a .dll file (a Windows dynamic link library):

Then in the C/C++ section we need to add the MySQL include path to Additional
Include Directories:

Compiling and Using MySQL Plugins

[14]

Finally, we need to create a definitions file that lists the functions from this library
which we wish to export for MySQL to use. It may look as follows:

EXPORTS
 udf_hello_world
 udf_hello_world_init
 udf_hello_world_deinit

This is then added to the Linker configuration in the Input section under Module
Definition File. This gives a hand-typed dialog, so we need to type in the full path to
the definitions file we just created:

We can then compile our UDF and, if successful, we will have a brand new .dll file:

Chapter 1

[15]

Installing a UDF
Now that we have our UDF, we need to install it in the MySQL server. For security
reasons MySQL will only load plugins and UDFs from the location defined in the
plugin_dir system variable. This variable can only be set during the startup of the
MySQL server. By default it is in the lib/mysql/plugin subdirectory inside the
directory where MySQL is installed. So we need to put our UDF library there.

We can then tell MySQL to load the library using:

CREATE FUNCTION my_udf_function RETURNS STRING SONAME 'my_udf_function.so'

More details on how to use this syntax and how to solve UDF loading errors are in
the UDF chapter of this book.

Plugin libraries
Building and installing plugin libraries is very much like building and installing
UDFs. The include and library paths are the same but some further build options
are needed. This is slightly complicated by the fact that some plugin types (namely
Information Schema and Storage Engine plugins) require the MySQL source to be
downloaded for the version of the MySQL server you have installed. This is so that
the plugin can have access to data and functions that are only "half-public" and are
not declared in the installed C header files.

Linux
When compiling on Linux and using just the normal plugin API we can compile in
the same way as with UDFs:

gcc -omy_plugin.so my_plugin.c `mysql_config --cflags` -shared -fPIC
-DMYSQL_DYNAMIC_PLUGIN

Notice that the main difference here is -DMYSQL_DYNAMIC_PLUGIN. This sets up the
necessary environment for the plugin at compile time.

For plugins that require access to the MySQL server source, compiling is slightly
different (suppose, the MySQL source tree is in /Sources/mysql‑5.1.35):

gcc omy_plugin.so my_plugin.cc `mysql_config cflags`
—I/Sources/mysql 5.1.35/include/ I/Sources/mysql 5.1.35/regex
—I/Sources/mysql 5.1.35/sql shared fPIC fno exceptions
—fno rtti DMYSQL_DYNAMIC_PLUGIN

Compiling and Using MySQL Plugins

[16]

Typically, such a plugin will be in C++, not C. It is compiled exactly the same way
the main server is—without exceptions or runtime type identification. Technically,
it could use exceptions, but then it may need to use g++ instead of gcc as a C++
compiler. Either way, it needs extra include paths that point to the include/,
regex/, and sql/ directories of the MySQL source tree.

Mac OS X
Just as in the UDF case, compiling plugins on Mac OS X is almost the same as on
Linux. You can use the same command line and only replace ‑shared ‑fPIC with
‑bundle or –bundle ‑Wl, ‑undefined ‑Wl,dynamic_lookup as explained before.

Windows
In Windows we can compile MySQL plugins that do not require the inclusion of the
MySQL source code (everything except Information Schema and Storage Engine
plugins) using a process very similar to compiling UDFs.

First, we need to create an empty project file to contain the source and
build environment:

Chapter 1

[17]

We can then add or create a .cpp file containing the source for our plugin:

This project needs to be a .dll, not an executable one. We can set this in the project's
Property Pages dialog:

Compiling and Using MySQL Plugins

[18]

We now need to set up the C/C++ include paths so that the MySQL include path is
in them:

This final step is different to compiling the UDFs. We need to add a C/C++
preprocessor definition so that the include files set up everything we need
for a MySQL plugin. To do this we simply add MYSQL_DYNAMIC_PLUGIN to the
definitions list:

Chapter 1

[19]

Installing a plugin
Just as with UDFs, our MySQL plugin needs to be in plugin_dir before it can be
added to MySQL. Once it is located there the syntax is very simple. All of the details
about how to use the plugin are in the plugin itself. So we simply need:

INSTALL PLUGIN my_plugin SONAME 'my_plugin.so'

Automatic builds, packaging
Specifying all compiler options manually, as we did in a previous section, gets more
complicated as the number of files grows. When a plugin consists of more than a
couple of files, an appropriate Makefile becomes almost a requirement. And it is
absolutely unavoidable if we want to distribute our great plugin, as we cannot expect
our users to copy and paste complex command lines from a README file. We want the
process of configuring and building a plugin to be as simple as possible. But first we
need to decide whether a plugin should be built from inside the MySQL source tree
or standalone.

UDFs and standalone plugins
UDFs and certain plugin types (for example, full-text parser plugins, some Daemon
plugins, or newer plugin types added after MySQL 5.1) do not require MySQL
sources for building; the API for them is complete and self-sufficient. These plugins
can be distributed and built independently from MySQL. Writing a Makefile or
configure.ac for such a plugin does not differ from writing them for any other
project—we only need to set the installation path correctly. When using automake
and libtool, a simple Makefile.am can look like this:

plugindir= $(libdir)/mysql/plugin
plugin_LTLIBRARIES= my_plugin.la
my_plugin_la_SOURCES= my_plugin.c
my_plugin_la_LDFLAGS= -module -rpath $(plugindir)
my_plugin_la_CFLAGS= -DMYSQL_DYNAMIC_PLUGIN

Compiling and Using MySQL Plugins

[20]

This file sets the installation directory to be mysql/plugin/ inside the library
path, which is usually /usr/lib. However, strictly speaking, the user has to use
the same library path that his MySQL installation uses. It specifies the build target
to be my_plugin.la—it is a libtool control file, a text file with information about
my_plugin.so. The latter will be built automatically. It tells the libtool that we are
building a library for dynamic loading with dlopen() (the -module option does that)
and where it will be installed. The last line adds ‑DMYSQL_DYNAMIC_PLUGIN to the
compiler command line. There is no need to specify ‑fPIC, ‑shared, or ‑bundle;
libtool will use them automatically, depending on the platform we are building
on. It knows a large number of operating systems, compilers, linkers, and their
corresponding command-line switches for building dynamically loaded modules.

In addition to Makefile.am, a complete project will need a configure.ac file,
AUTHORS, NEWS, ChangeLog, and README files. The last four files are required by
automake, but they can be empty. The configure.ac file is used by autoconf to
generate a configure script, which, in turn, will generate Makefile. A minimal
configure.ac could be as simple as:

AC_INIT(my_plugin, 0.1)
AM_INIT_AUTOMAKE
AC_PROG_LIBTOOL
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

It sets the name and version of our software package, initializes automake and
libtool, and specifies that the result of the configure script should be a Makefile.

Plugins that are built from the MySQL source
tree
If we need to have access to the MySQL source tree for our plugin, we can at least
do it with style. Plugins that are built from the MySQL source tree can be integrated
seamlessly into the MySQL build system. Additionally, we will get support for
Microsoft Windows builds and the ability to link the plugin statically into the server,
so that it becomes a part of the mysqld binary. Unlike standalone plugins, we will
only need three auxiliary files here.

On UNIX-like systems, MySQL 5.1 is built using autotools and make. A plug.in
file will be the source file for autoconf, and Makefile.am for automake. To build
MySQL on Windows one needs CMake, and thus our plugin should come with a
CMakeLists.txt file. All of these three files can use the full power of autotools or
CMake, if necessary, but for a minimal working plugin they only need to contain a
few simple lines.

Chapter 1

[21]

plug.in
The plug.in file describes the plugin to the MySQL configure script. A plugin
is detected automatically by autoconf as long as its plug.in file can be found in a
directory located in the plugin/ or storage/ subdirectory in the MySQL source tree
(in other words, it should be either plugin/*/plug.in or storage/*/plug.in).
A plug.in file can use all autoconf and m4 macros as usual. Additionally, MySQL
defines a few macros specifically for using in the plug.in files. They all are
documented in the config/ac-macros/plugin.m4 file in the MySQL source tree.
The most important of them are described as follows:

•	 MYSQL_PLUGIN([name],[long name], [description],
[group,group...])

This is usually the first line in any plug.in file. This macro is
mandatory. It declares a new plugin. The name will be used
in the configure options such as ‑‑with‑plugin‑foo and
‑‑without‑plugin‑foo. The long name and the description
will be printed in the ./configure ‑‑help output. "Groups"
are preset configuration names that one can specify in the
‑‑with‑plugin=group option. Any group name can be used, but
max, max‑no‑ndb, and default are commonly used. Most plugins
add themselves to the max and max‑no‑ndb groups.

•	 MYSQL_PLUGIN_STATIC([name],[libmyplugin.a])

This macro declares that a plugin name supports static builds, that is,
it can be built as a static library and linked statically into the server
binary. It specifies the name of this static library, which can be later
referred to in Makefile.am as @plugin_myplugin_static_target@.
It will be expanded to libmyplugin.a if a static build is selected,
otherwise it will be empty.

•	 MYSQL_PLUGIN_DYNAMIC([name],[myplugin.la])

Similarly, this macro declares that a plugin can be built as a shared
library and loaded into the server dynamically. It introduces a
Makefile.am substitution @plugin_myplugin_dynamic_target@,
which is myplugin.la if this shared library needs to be built, and
empty otherwise.

•	 MYSQL_PLUGIN_ACTIONS([name],[ACTION-IF-SELECTED])

The ACTION‑IF‑SELECTED code will be executed only if this plugin
is selected by configure either for static or dynamic builds. Here we
can check for system headers, libraries, and functions that are used by
the plugin. Normal AC_ macros can be used here freely.

Compiling and Using MySQL Plugins

[22]

An example of a plug.in file can look like

MYSQL_PLUGIN(my_plugin,[My Plugin Example],
 [An example of My Plugin], [max,max-no-ndb])
MYSQL_PLUGIN_STATIC(my_plugin,[libmy_plugin.a])
MYSQL_PLUGIN_DYNAMIC(my_plugin,[my_plugin.la])

With such a file in place, say in plugin/my_plugin/plug.in, all we need to do
is to run autoreconf ‑f to recreate the configure script. After that, there is no
distinction between our plugin and official MySQL plugins:

$./configure --help
`configure' configures this package to adapt to many kinds of systems.
...
 --with-plugins=PLUGIN[[[,PLUGIN..]]]
 Plugins to include in mysqld. (default is: none)
 Must be a configuration name or a comma separated
 list of plugins.
 Available configurations are: none max max-no-ndb
 all.
 Available plugins are: partition daemon_example
 ftexample archive blackhole csv example federated
 heap ibmdb2i innobase innodb_plugin myisam
 myisammrg my_plugin ndbcluster.
...
 === My Plugin Example ===
 Plugin Name: my_plugin
 Description: An example of My Plugin
 Supports build: static and dynamic
 Configurations: max, max-no-ndb

A new plugin is mentioned in the "available plugins" list and described in detail at
the end of the configure ‑‑help output.

Makefile.am
As in the case of standalone plugins, we need a Makefile.am file. It will be
converted by automake and the configure script to a Makefile, and it defines how
the plugin, static or shared library, should be built. This file is more complex than
for standalone plugins because it needs to cover both static and dynamic builds. Of
course, when a plugin supports only one way of linking, only static or only dynamic,
Makefile.am gets much simpler. Let's analyze it line by line:

Chapter 1

[23]

pkgplugindir = $(pkglibdir)/plugin

INCLUDES = -I$(top_srcdir)/include -I$(top_builddir)/include \
 -I$(top_srcdir)/sql

pkgplugin_LTLIBRARIES = @plugin_my_plugin_shared_target@
my_plugin_la_LDFLAGS = -module -rpath $(pkgplugindir)
my_plugin_la_CXXFLAGS= -DMYSQL_DYNAMIC_PLUGIN
my_plugin_la_SOURCES = my_plugin.c

noinst_LIBRARIES = @plugin_my_plugin_static_target@
libmy_plugin_a_SOURCES= my_plugin.c

EXTRA_LTLIBRARIES = my_plugin.la
EXTRA_LIBRARIES = libmy_plugin.a

EXTRA_DIST = CMakeLists.txt plug.in

The file starts with defining pkgplugindir—a place where a plugin will be installed.

Then we set the search path for the #include directives; it needs to contain at least
the include/ directory where most of the headers are, and often the sql/ directory
too, especially when we need to access internal server structures.

Now we can specify automake build rules for the targets. A shared target is a libtool
library (LTLIBRARIES) that should be installed in pkgplugindir (because we used
the pkgplugin_ prefix). And we specify the source files, compiler and linker flags
that are needed to build the my_plugin.la library. If a user decides not to build
a dynamic version of our plugin, @plugin_my_plugin_shared_target@ will be
empty and no libtool library will be built.

Similarly, we specify rules for the static target. It is a library (LIBRARIES), and
it should not be installed (noinst_). Indeed, as it will be linked into the server
statically, becoming a part of the server binary, there is no need to install it
separately. In this case, we do not need any special compiler or linker flags, we
only specify the sources.

Because a user may decide to build either a static or a shared library, the name of the
build target is not known before the configure script is run. However, automake
needs to know all possible targets in advance, and we list them in the EXTRA_ variables.

We end the file by listing all remaining files that are part of the plugin source
distribution, but are not mentioned in other rules. The automake needs to know
about them, otherwise the make dist command will work incorrectly.

Compiling and Using MySQL Plugins

[24]

CMakeLists.txt
In MySQL 5.1, of all plugin types, only Storage Engine plugins can be integrated into
the MySQL build system on Windows. One does this by providing an appropriate
CMakeLists.txt file. All of the CMake power is available there, but a minimal
CMakeLists.txt file is as simple as this:

INCLUDE("${PROJECT_SOURCE_DIR}/storage/mysql_storage_engine.cmake")
SET(my_plugin_SOURCES my_plugin.c)
MYSQL_STORAGE_ENGINE(my_plugin)

We only specify the name of the storage engine, my_plugin, and the source files, and
include the file that does all of the heavy job.

Summary
Using the information in this chapter we should be able to compile all of the UDFs
and plugins for this book as well as any others. We should be able to prepare all of
the auxiliary files for plugins to be built with configure && make, as a standalone
project or as a part of MySQL, either dynamically or statically. We can package them
for distributing in the source form that allows the user to build and install the
plugin easily.

User Defined Functions
Way back in 1998, MySQL 3.21 introduced a framework that allowed users to
create new SQL functions easily. It made it possible for developers to write their
own functions in C/C++ and load them dynamically into the running server. The
functions loaded within this framework were called User Defined Functions or UDFs.

Today not much has changed with UDFs, they are more stable and slightly more
secure than they used to be, and they can be declared aggregate for use together with
GROUP BY queries. However, many UDFs that worked in 1998 with MySQL 3.21.24
would still work at the time of writing in 2010, with MySQL 5.1.47.

MySQL UDFs are not part of the newer MySQL Plugin API, but there are future
plans to make this happen. In the meantime, they can serve as an introduction
to MySQL plugins. And sometimes UDFs can be used together with plugins to
complement their functionality. In this chapter, we will cover creating User Defined
Functions and write several of our own UDFs, working up from a basic static output
to an aggregate summing function.

Writing UDFs
UDFs can be of two types, normal and aggregate. Normal UDFs take inputs and
deliver an output just like an ordinary function in most programming languages.
When run on a set of rows, they will return a result for every row. Aggregate UDFs
take a group of rows, process each row, and produce a result at the end. In other
words, they will return one result per group. Therefore, aggregate functions are
useful for tasks such as adding up a group of values or calculating an average.

User Defined Functions

[26]

Whether MySQL considers a given UDF as an aggregate or a normal type depends
on how it was installed. However, the API is somewhat different too, and we need to
take care to install UDFs that use the aggregate API as aggregate and normal UDFs
as normal. Otherwise they will not only fail to work correctly, but may as well crash
the whole server.

Why write UDFs
There are several advantages and disadvantages to UDFs that we should be aware
of. UDFs are much easier to develop than is hacking raw code into the MySQL
server. If our function were hacked into the server, we would need to change the
MySQL source every time we upgraded, which is never easy. MySQL code base
evolves quite rapidly and to implement the same function we would need different
code changes in every new version. UDFs, on the other hand, continue to work when
the server is upgraded. They will not even need to be recompiled.

Also, UDFs have many benefits as compared to Stored Functions written in SQL. For
example, UDFs are typically much faster and can be declared aggregate, while stored
functions cannot. There are few alternatives to UDFs when custom aggregation
functionality is needed.

UDFs are designed for development speed, the API is easy to access, and compilation
is much quicker than rebuilding the entire server just to add a tiny function. They are
also designed for portability between different MySQL versions.

Although UDFs are much faster than SQL stored functions, they are slightly
slower in execution when compared to built-in functions. When running the
udf_floatsum() function from the end of this chapter on a table with 10,000,000
rows, I got:

Query Execution time
SELECT UDF_FLOATSUM(a) FROM t1; 1.40 seconds
SELECT SUM(a) FROM t1; 1.36 seconds

As we can see, on my system, MySQL 5.1.47 runs this query about 3% slower when
using UDFs compared to native functions.

Chapter 2

[27]

While UDFs are easier to develop, they offer little extra safety over raw MySQL
server hacking. If your UDF code crashes, it will take the MySQL server with it. This
is due to the UDF code literally getting bolted onto the server code during runtime.

Installing and using UDFs
To install a normal function in MySQL we can use the following command:

CREATE FUNCTION my_func RETURNS INTEGER SONAME 'udf_my_func.so';

Whereas with an aggregate function we do it like this:

CREATE AGGREGATE FUNCTION my_total_func RETURNS INTEGER
 SONAME 'udf_my_total_func.so';

Each shared library can contain multiple UDFs inside, which is useful when
installing a group of related functions. If we have multiple UDFs in one shared
library, we need to perform CREATE FUNCTION for every UDF contained in it. In
Windows, dynamic libraries have the .dll extension, so instead this would be:

CREATE FUNCTION my_func RETURNS INTEGER SONAME 'udf_my_func.dll';

Once installed, the details of a UDF get stored in the mysql.func table, so that
MySQL can automatically load the UDFs back in upon server startup. Once a few
UDFs are installed, the table may look as follows:

mysql> SELECT * FROM mysql.func;

+---------------------+-----+--------------------+-----------+
| name | ret | dl | type |
+---------------------+-----+--------------------+-----------+
udf_staticexample	2	udf_static.so	function
udf_intexample	2	udf_integer.so	function
udf_textexample	0	udf_textexample.so	function
udf_textexample2	0	udf_textexample.so	function
udf_floatsum	1	udf_floatsum.so	aggregate
+---------------------+-----+--------------------+-----------+

5 rows in set (0.00 sec)

If at any point in time you wish to uninstall a UDF, there is a DROP FUNCTION
statement in MySQL. This is run as follows:

mysql> DROP FUNCTION my_func;

User Defined Functions

[28]

When installed, a UDF can be used just like any native MySQL function, for example,
in a SELECT statement. A normal UDF will process and return a result for every row:

mysql> SELECT my_example(my_ints) FROM my_table;

+-----------------------+
| my_example(my_ints) |
+-----------------------+
| 99 |
| 27 |
+-----------------------+

2 rows in set (0.00 sec)

Whereas aggregate functions will return a single result for an entire group of rows:

mysql> SELECT my_aggregate_example(my_ints) FROM my_table;

+---------------------------------+
| my_aggregate_example(my_ints) |
+---------------------------------+
| 126 |
+---------------------------------+

1 row in set (0.00 sec)

An attempt to install a UDF may fail, resulting in an error. In most cases, the causes
are easy to find and normally not too difficult to resolve. A few of the common ones
are as follows:

ERROR 1126 (HY000): Can't open shared library 'my_udf.so' (errno: X)

This error means that there is a problem opening the UDF shared library or one of
its dependencies. There are two things to look out for here. Firstly, the filename in
Windows will always be the UDF dynamic library filename, regardless of which
library cannot be opened. However, in Linux/Unix based operating systems it will
be the name of the library that is causing the problem.

The second thing to look at is the errno part of the error message. In Linux/Unix
this will show a number indicating the error that has occurred. MySQL cannot yet
interpret Windows error codes with regard to opening UDFs, but there is work in
progress to make this happen.

Chapter 2

[29]

When it comes to error codes, MySQL comes with a very useful utility called perror.
Now, say we get this error:

ERROR 1126 (HY000): Can't open shared library 'my_udf.so' (errno: 2)

If we run perror on error code 2 we should see:

shell$ perror 2
OS error code 2: No such file or directory

So we can say that the operating system has reported to MySQL that it cannot find
my_udf.so. MySQL only loads UDFs from the path stored in the plugin_dir server
configuration variable, that is, the UDF shared library needs to be there and it needs to
be readable by the operating system user that MySQL is run under (usually mysql).

If the error is for another shared library, then the operating system cannot find that
library in the library path. We can check this by running ldd on the UDF shared
library to see what the UDF depends on and what it cannot find. For example:

shell$ ldd my_udf.so
 linux-vdso.so.1 => (0x00007ffff22c9000)
 my_dependency.so => not found
 libc.so.6 => /lib64/libc.so.6 (0x00007fb6a91dc000)
 /lib64/ld-linux-x86-64.so.2 (0x00000035d5c00000)

Here we can see that my_dependency.so is not found. There are three ways we can
resolve this:

1.	 Find my_dependency.so and copy it to a known library path
(such as /usr/lib/)

2.	 Alter the list of known library paths to include the directory where
my_dependency.so is located

3.	 Embed the full path to my_dependency.so in my_udf.so

For this second option in Linux, we can do this by adding this directory to the
/etc/ld.so.conf file and then running ldconfig to update the library path cache.

For the third option in Linux we can do it by adding ‑Wl,‑rpath ‑Wl,/path/to/
my_dependency.so to the gcc command line when linking my_udf.so.

User Defined Functions

[30]

As stated earlier, Windows handles things a bit differently. For example, we do not
know the exact filename that caused the problem or the failure error code. Luckily,
Windows has a utility called Process Monitor, which can help us to find this out.
With this utility we can see file open calls as they happen and it will show real errors
when failures happen. You can download it from http://technet.microsoft.
com/en-us/sysinternals/bb896645.aspx. In the following example we try to
install a UDF called my_udf from my_udf.dll. As can be seen here, we get an error
because the file cannot be opened, but the error code is not very helpful. To resolve
the problem we will take a look at the file monitor inside the Process Monitor
window to see what has actually happened:

In the following screenshot there is a filter on the mysqld.exe process and with this
we can see that the file, my_udf.dll, was found and was perfectly readable. The
actual problem comes from a dependency library, libxml2.dll. Windows searches
for it in the predefined library paths, but fails. To fix this problem we simply need to
put libxml2.dll into one of the Windows library paths:

Chapter 2

[31]

There are other common errors we can get when installing UDFs, but they are
normally easier to diagnose:

ERROR 1127 (HY000): Can't find symbol 'my_udf' in library

This error shows that MySQL has loaded the library, but while searching it for the
functions inside, it could not find what it was expecting. This is usually due to the
wrong name for the UDF used in the CREATE FUNCTION command.

ERROR 1044 (42000): Access denied for user 'username'@'localhost' to
database 'mysql'

When installing a UDF, MySQL needs to insert an entry into the func table of the
mysql database because MySQL remembers all installed UDFs to be able to load
them automatically when restarted. To fix this permission error, we need to install
our UDF as a user who has INSERT privileges to the mysql database.

ERROR 1123 (HY000): Can't initialize function 'my_udf'; UDFs are
unavailable with the --skip-grant-tables option

With the --skip-grant-tables option, MySQL server ignores the privileges table,
including the func table required to install UDFs. Without access to this table, UDFs
are disabled. Simply restarting MySQL without this option or issuing the FLUSH
PRIVILEGES statement will let us install and use UDFs again.

ERROR 1146 (42S02): Table 'mysql.func' doesn't exist

Somehow the func table has been dropped, and without it we cannot install UDFs.
MySQL comes packaged with a utility called mysql_upgrade, which will create the
missing table for us.

ERROR 145 (HY000): Table './mysql/func' is marked as crashed and should
be repaired

The func table is a MyISAM table, and as such is not crash-resilient. We could
expect to see this error if the MySQL server crashes when installing or removing
a UDF. To fix this, follow the usual MyISAM repair instructions as found in the
MySQL manual.

Defining UDFs
All functions in the UDF API start with the name of the UDF itself. For example,
if the UDF is called name (that is, installed with CREATE FUNCTION name and
used like SELECT name()) the corresponding C functions may be called: name(),
name_init(), name_deinit(), and so on. The following table lists all UDF API
functions and their purpose:

User Defined Functions

[32]

Function Normal / Aggregate Description
name_init() Both Initialize the UDF for use. It is called for every

statement that uses the UDF name.
name_deinit() Both De-initialize the function and clean up memory

usage. It is called after the statement that used
the UDF name.

name() Both The main body of the UDF name, the function
that returns a result to the user. It is called for
every row (or for every group of rows if the
function is declared aggregate).

name_add() Aggregate Called for every row of the group.
name_clear() Aggregate Called before the first row of every group.
name_reset() Aggregate. Unused

since MySQL 4.1.1
Called for the first row of every group. This
function was doing the job of both name_clear
and name_add for the first row—starting a
new group and processing the first row in this
group. It was removed from the API in MySQL
4.1.1 and replaced with name_clear, because
it could not handle the case of the empty group.
However, you may see it in old UDF examples.

When calling a UDF inside MySQL, firstly name_init() is called with the
following prototype:

my_bool name_init(UDF_INIT *initid, UDF_ARGS *args,
 char *message)

Pay attention to the difference between UDF arguments, which are
arguments passed to the User Defined Function from the SQL (for
example, 1, 2, and "foo" in SELECT name(1,2,"foo")), and
arguments of C functions such as name_init(), name(), and others.

This function should be used to check the metadata of the UDF arguments, such as
their types, and prepare the UDF for execution, for example, allocate the memory.
Typically, for MySQL, the name_init() function should return 0 for success or 1 for
failure. In the latter case, an error message should be written into the buffer pointed
to by message, so that the user could see what went wrong. Two other arguments
of this function are args, which contains the metadata of the UDF arguments, and
initid, which is used to return the metadata of the result (see? argument metadata
are already known here, and MySQL wants to know the result metadata. The way
MySQL works, it needs to know all metadata before it starts executing the query,
that is, before it starts working with the data) and to preserve the internal UDF
context between the calls.

Chapter 2

[33]

A pointer to the UDF_INIT structure, initid, is passed as a first argument to all
C functions that implement the UDF, and it can be used to store the context of the
execution and share it between the different function calls. Typically, we would
allocate some memory for use in the UDF and store a pointer to it inside the
UDF_INIT structure. The second purpose of UDF_INIT is to allow us to tell MySQL
about the metadata of the UDF result. This structure has the following members:

Member Type Description
const_item my_bool Set to 1 if the UDF will always return the same result

in this query.
decimals unsigned int Number of digits after decimal point (this is often

called scale) in the UDF result. Setting it only makes
sense when the UDF is declared as RETURNS REAL.

max_length unsigned long The maximum length of the UDF return result
(length of its string representation if the result
is numeric).

maybe_null my_bool Set to 1 if the UDF can return NULL in this query.
ptr char * A free-to-use pointer. Not used by the server.

Reserved for internal UDF use.

•	 const_item: It is set by MySQL to 1 if all UDF arguments are constants, and
to 0 otherwise, which is a reasonable default for a well-behaving function
without side effects. Thus, we only need to set it to 1 if the UDF is a true
constant and always returns the same value independent of the arguments.
Similarly, we need to set const_item to 0 if the function is truly volatile, and
may return different results even if called with exactly the same arguments.

•	 decimals: It is set by MySQL to the largest scale of the UDF arguments.
The supported values are from 0 to 30. Anything larger than that (MySQL
internally uses 31 here) means that no scale was specified, and MySQL will
not limit the number of digits after a decimal point in the UDF return result.

•	 max_length: Its default value is set depending on the result type. For the
INTEGER return type it is 21, for the REAL return type it is usually 17 plus the
value in decimals, and for the STRING return type it is the largest value of
max_length of all UDF arguments.

•	 maybe_null: It is set to 0 by default unless any of the arguments may be
NULL, which usually works well for functions such as CONCAT() or FORMAT().
If the UDF can never return NULL (such as the ISNULL() function) this should
be set to 0. If the UDF can return NULL even when all arguments are not
NULL (such as the NULLIF() function) this should be set to 1.

User Defined Functions

[34]

•	 ptr: This is a char* pointer that MySQL never uses for anything. We can
store there any data we want. initid is passed to every function in the
UDF API, and if we put any value in initid->ptr in, say name_init(), we
will be able to use it in name(), name_add() or any other function. In other
words, this is an easy way to keep the execution context (such as allocated
memory buffer) around and preserve it between function calls. Unlike using
a global variable, if our UDF is invoked from many SQL statements in many
connections in parallel, every such invocation will have its own initid and
thus its own initid->ptr.

The second argument of the name_init() function is a pointer to the UDF_ARGS
structure. It contains the metadata of the arguments that have been passed from
MySQL to the UDF. It has pointers to the arguments' values too, but only the values
of the constant arguments are filled in at the time when name_init() is called.
In SELECT name(5, t1.c1) the value of 5 is, naturally, known, but the value of
column c1 in the table t1 is not. Later, when the same UDF_ARGS structure is passed
to the name() or name_add() functions all argument values will be filled in, so that
the function can compute the UDF return result. The UDF_ARGS structure has the
following members:

Member Type Description
arg_count unsigned int The number of arguments passed to

the UDF. All arrays below will be of
this length.

arg_type enum Item_result* An array of types of the arguments.
args char** An array of pointers to arguments'

values.
lengths unsigned long* An array of lengths of each

argument value.
maybe_null char* An array indicating whether each

argument can be NULL in this query.
attributes char** An array of names of the arguments.
attribute_lengths unsigned long* An array of the lengths of each

argument name

•	 arg_count: It should be used as a count for the number of array elements in
the rest of the members of the structure.

Chapter 2

[35]

•	 arg_type: This array contains the type of every argument passed to the
UDF. This can be one of STRING_RESULT, INT_RESULT, REAL_RESULT,
and DECIMAL_RESULT.

•	 args array: It contains pointers to the actual argument data. It is either a
char* pointer for the STRING_RESULT or DECIMAL_RESULT arguments,
a long long* for INT_RESULT, a double* for REAL_RESULT, or a null
pointer if the argument value is NULL or unknown. Note that string
values are not zero terminated!

•	 lengths: This array contains the length of each argument value in the args
member. This is most useful for string arguments. For integer and real types
it contains the maximum length of the argument.

•	 maybe_null: This array indicates whether or not each argument could
be NULL.

•	 attributes: This array contains names of each argument. This is either an
appropriate part of the SQL statement that corresponds to this particular
UDF argument, or an alias name, if it was specified. For example, for SELECT
name(1+log(2e3), 15 as bar) the name of the first argument will be
"1+log(2e3)" and the name of the second one will be "bar".

•	 attribute_lengths: It holds the length of each attribute name. Just as with
string attribute values, attribute name strings are not zero terminated.

The name_deinit() function should be used to clean up after the UDF execution.
Often this only entails freeing up any memory pointed to by initid->ptr. The
de-initialization function is called with the following prototype:

void name_deinit(UDF_INIT *initid)

This is the only function inside a UDF that cannot
return an error condition.

The function that does all the work for normal UDFs and the result function for
aggregate UDFs is the name() function.

User Defined Functions

[36]

We can see in the CREATE FUNCTION calls that a return type of the UDF is specified
when loading it into the server. This type should match the function prototype
chosen when writing the code of the UDF (or bad things could happen). The
following table outlines the different return types and the equivalent function
prototypes needed in C:

Type C function
STRING or DECIMAL char *name(UDF_INIT *initid, UDF_ARGS *args,

 char *result, unsigned long *length,
 char *is_null, char *error)

INTEGER long long name(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error)

REAL double name(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

There is no check to see if the type in CREATE FUNCTION
matches the prototype. A user must ensure the type is correct
when installing a UDF or it may not function as desired.

With the STRING type we get a result buffer where we can store a UDF return
value, but it is only 766 bytes long. If a result longer than that is required we need
to use malloc() to allocate memory for it. As a UDF can return a binary string with
null bytes in it, we should always store the length of the returned string in *length,
so that MySQL knows how long the result should be.

Irrespective of the return type, all variants of the name() function get is_null and
error arguments. The *is_null should be set to 1 if we want our UDF to return
NULL in this particular invocation, and *error should be set to 1 if an error has
occurred during execution.

With aggregate functions MySQL repeatedly calls two additional functions,
name_add() and name_clear(). These are designed to perform one calculation
per row, while a result is returned only once per group of rows. For every row
in a group, MySQL calls name_add() and before each group starts, MySQL calls
name_clear(). These functions are declared as follows:

void name_add(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error)
void name_clear(UDF_INIT *initid, char *is_null, char *error)

Chapter 2

[37]

Execution sequence of a UDF
With a normal function MySQL simply calls three functions in sequence upon every
SQL statement that uses the UDF. With aggregate UDFs there are five functions to
call and rows and groups of rows to loop over. This creates the following execution
flow for each UDF type:

UDF error handling
Ideally most, if not all, possible error conditions should be detected in the
name_init() function of the UDF. In case of an error, this function needs to write a
zero-terminated error message string in the message buffer and return 1 to indicate
a failure. Error messages must be less than MYSQL_ERRMSG_SIZE bytes long (which
means less than 512 bytes long in MySQL 5.1) and should preferably be less than 80
characters to fit nicely within a terminal screen.

There is no error message facility in name(), name_add(), or name_clear()
functions; all you can do is set the *error argument to 1. This will return NULL
and if the UDF is to be run on subsequent rows, all further invocations will return
NULL too (in fact, the UDF will not be invoked for these rows).

User Defined Functions

[38]

UDF security
UDFs must be placed in the directory stored in the plugin_dir MySQL
configuration variable. Usually this is lib/mysql/plugin/ or lib/plugin/ relative
to the directory where MySQL is installed. We can find out where this is on our
particular installation by running:

mysql> SHOW VARIABLES LIKE 'plugin_dir';

+---------------+-----------------------------+
| Variable_name | Value |
+---------------+-----------------------------+
| plugin_dir | /opt/mysql/lib/mysql/plugin |
+---------------+-----------------------------+

1 row in set (0.00 sec)

When using MySQL 5.1 any attempt to explicitly specify a path in the CREATE
FUNCTION statement will result in an error.

Both the name_init() and name_deinit() functions are optional and can be omitted
if empty. However, at least one of the functions besides name(), that is name_init(),
name_deinit(), name_add(), or name_clear(), must be present in the UDF shared
library to reduce the chance of loading as a UDF something that was not meant to
be (tricks such as CREATE FUNCTION exit SONAME 'libc.so' were possible in the
past). It is possible to disable this protection by using the ‑‑allow‑suspicious‑udfs
command-line option, but this is not recommended.

Gotchas with UDFs
UDFs are a great way to add functionality, with more flexibility than MySQL Stored
Procedures. They do, however, have drawbacks that developers should be wary of:

•	 The mysql.func table needs to exist. If it does not, running the
mysql_upgrade command-line utility will create it for you.

•	 Running the MySQL server with the ‑‑skip‑grant‑tables option
disables UDFs.

•	 Imagine a UDF as a code that is part of the server. As such, if your UDF
crashes, for example with a Segmentation Fault, it will take out the MySQL
server with it.

•	 All functions in the UDF must be thread-safe. It is possible that the UDF
could be called multiple times simultaneously from different threads. You
need to keep this in mind when using global or static variables. Protect them
from concurrent modifications with mutexes, or avoid them altogether.
Allocate what you need in name_init() and free it in name_deinit().

Chapter 2

[39]

•	 The name() function cannot generate error messages. Hence, you must do all
your error checking in name_init().

•	 You need to have INSERT privileges on the MySQL database to be able to
install UDFs (and DELETE privileges to uninstall them).

•	 MySQL UDFs can only be installed from the plugin_dir path as described
in the UDF security section of this chapter.

A constant integer output UDF
To show the basic construction of a UDF we will start with a simple constant
function that returns an integer. The output of this UDF will be the same no matter
what arguments are passed to the UDF. To make the example a little more complex
and to demonstrate the initid->ptr usage we will allocate a small amount of
memory upon initialization to store our integer. This example will be called
udf_staticexample:

#include <stdlib.h>
#include <string.h>
#include <mysql.h>

These are the standard includes needed for this example. The header mysql.h
contains the structures and constants that we will use.

my_bool udf_staticexample_init(UDF_INIT *initid,
 UDF_ARGS *args, char *message)
{

We are calling this UDF udf_staticexample so all functions need to be prefixed
with this. We start with the udf_staticexample_init() function, which as we have
seen before, prepares the UDF for execution in the context of an SQL statement.

 long long *staticint = malloc(sizeof(long long));
 if (staticint == NULL)
 {
 strcpy(message, "staticexample() allocation error");
 return 1;
 }

Here we declare a pointer to a type long long and allocate memory for it. If the
allocation fails, we put an error message into the message buffer and return 1 to
indicate that an error has occurred. This error will then be passed on to the client.

 *staticint = 318749;
 initid->ptr = (char*) staticint;

User Defined Functions

[40]

Set out new long long to a value of 318749 and put the pointer to this variable into
initid->ptr. Notice that we have to typecast it as a char* so that we do not get
compiler warnings.

 initid->const_item=1;
 initid->maybe_null=0;
 return 0;
}

The result of this UDF is always the same and it cannot be NULL, so we set these
initid members appropriately and return 0 to indicate a success.

void udf_staticexample_deinit(UDF_INIT *initid)
{
 free(initid->ptr);}

Our udf_staticexample_deinit() function needs to clear up the initid->ptr so
that we do not end up with a memory leak. In this case, only a few bytes would be
leaked, but it could be a lot worse in larger UDFs.

long long udf_staticexample(UDF_INIT *initid,
 UDF_ARGS *args, char *is_null, char *error)
{
 return *(long long*) initid->ptr;
}

This UDF is of the INTEGER type so we define the main udf_staticexample()
function to return a long long. We return the value by dereferencing a pointer that
we set up in the initialization function.

Once this UDF is compiled this is what we will get from the MySQL command line:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.1.47 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> CREATE FUNCTION udf_staticexample RETURNS INTEGER SONAME 'udf_
staticexample.so';
Query OK, 0 rows affected (0.00 sec)

Chapter 2

[41]

mysql> SELECT udf_staticexample();

+---------------------+
| udf_staticexample() |
+---------------------+
| 318749 |
+---------------------+

1 row in set (0.00 sec)

An integer echoing UDF
The next example is designed to show how to deal with inputs. It is similar to the
previous one, but will demonstrate how to perform argument checking. As you
remember, this check should happen in the initialization function, so that we can
give a proper error message when there is a problem. We will call this UDF,
udf_intexample, and will make it accept only one argument, which has to
be an integer for the function to succeed:

#include <string.h>
#include <mysql.h>
my_bool udf_intexample_init(UDF_INIT *initid,
 UDF_ARGS *args, char *message)
{

As before, we include everything needed for this example and create an initialization
function with the same prefix as the function name.

 if (args->arg_count != 1)
 {
 strcpy(message,
 "udf_intexample() can only accept one argument");
 return 1;
 }

We want to ensure that only one argument is accepted for this UDF so we check that
arg_count is 1. If it is not, we stick an error message into the message buffer and
return 1 to indicate that the function failed.

 if (args->arg_type[0] != INT_RESULT)
 {
 strcpy(message,
 "udf_intexample() argument has to be an integer");
 return 1;
 }

User Defined Functions

[42]

OK, so we have exactly one argument, but for all we know it could be some string
or a floating point number. That's pretty useless when we are dealing with integers.
So we check arg_type for the first argument to make sure it is an integer. If it is not,
again, we complain to the user that the input is invalid.

 return 0;
}

If we get this far, it's a success! We return 0 to indicate this and go on to the
udf_intexample() function. As for udf_intexample_deinit(), because
we did not allocate any memory in the initialization function and there is
nothing else to de-initialize, we do not need it at all.

long long udf_intexample(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error)
{
 return *(longlong*) args->args[0];
}

Now that we have made sure the argument is an integer we can get its value (by
dereferencing a properly casted pointer) and return it back to the user.

Once we have compiled and installed this UDF we can see the following:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.1.47 Source distribution

mysql> CREATE FUNCTION udf_intexample RETURNS INTEGER SONAME 'udf_
intexample.so';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT udf_intexample('hello');
ERROR 1123 (HY000): Can't initialize function 'udf_intexample'; udf_
intexample() the argument has to be an integer

We do not like this; it is a string so it is getting caught by our integer check.

mysql> SELECT udf_intexample('2');
ERROR 1123 (HY000): Can't initialize function 'udf_intexample'; udf_
intexample() argument has to be an integer

Chapter 2

[43]

Even though this is an integer, it is enclosed in quotes, so it is treated as a string and
fails appropriately.

mysql> SELECT udf_intexample(2.2);
ERROR 1123 (HY000): Can't initialize function 'udf_intexample'; udf_
intexample() argument has to be an integer

As the argument has a decimal point in it, it is a decimal type, thus failing the integer
check again.

mysql> SELECT udf_intexample(2543,3452);
ERROR 1123 (HY000): Can't initialize function 'udf_intexample'; udf_
intexample() can only accept one argument

We have supplied two integers here. However, our UDF can only take one argument.

mysql> SELECT udf_intexample(2543);

+----------------------+
| udf_intexample(2543) |
+----------------------+
| 2543 |
+----------------------+

1 row in set (0.00 sec)

And there we have it! We supplied a single integer and the UDF behaved
exactly as expected!

mysql> SELECT udf_intexample(10*3-CAST(2.2 AS UNSIGNED));

+--+
| udf_intexample(10*3-CAST(2.2 AS UNSIGNED)) |
+--+
| 28 |
+--+

1 row in set (0.00 sec)

Naturally, expressions are fine too, as long as the result type is an integer.

A simple static text output UDF
Returning text in a MySQL UDF can be slightly more complex than dealing with
numbers. MySQL gives us a memory buffer to use when returning a string but it is
only 766 bytes long. This is fine for some tasks, but not big enough to hold a long
string or a blob, so what we do is allocate our own buffer for this purpose. Either
way, we need to tell MySQL how long the resulting string is.

User Defined Functions

[44]

The next piece of example code has two UDFs inside it, the first showing how to
use the memory buffer that MySQL has given us and the second allocating its own
memory. Both are simple UDFs which will just return the MySQL version number
that UDF was compiled against:

#include <stdlib.h>
#include <string.h>
#include <mysql.h>
my_bool udf_textexample_init(UDF_INIT *initid,
 UDF_ARGS *args, char *message)
{
 initid->const_item = 1;
 return 0;
}

As with previous examples we create the initialization function. We set
initid->const_item to 1 here because the return value is always the same.

We do not need the de-initialization function in this example, so we do not create it.

char *udf_textexample(UDF_INIT *initid, UDF_ARGS *args,
 char *result, unsigned long *res_length,
 char *null_value, char *error)
{
 strcpy(result, MYSQL_SERVER_VERSION);
 *res_length = strlen(MYSQL_SERVER_VERSION);
 return result;
}

The return function declaration is different this time to account for the extra
data required for the string result. MYSQL_SERVER_VERSION is declared in
mysql_version.h, which is included via mysql.h. We copy this into result,
which is 766 bytes long, and set the length of our returned string in *res_length.
We then return a pointer to the data.

The following is our second UDF in the same file. It does exactly the same thing, but
allocates the memory for the text first:

my_bool udf_textexample2_init(UDF_INIT *initid,
 UDF_ARGS *args, char *message)
{
 char* statictext = strdup(MYSQL_SERVER_VERSION);

Chapter 2

[45]

Here we have allocated memory and copied MYSQL_SERVER_VERSION into it.

 if (statictext == NULL)
 {
 strcpy(message, "udf_textexample2() allocation error");
 return 1;
 }

Allocation is unlikely to fail, it is hardly possible that you do not have enough RAM
for the few bytes that we wish to allocate. If, however, the worst happens at least we
end up with an error rather than crashing the server.

 initid->max_length = strlen(MYSQL_SERVER_VERSION);
 initid->ptr = statictext;
 initid->const_item = 1;

The initid->max_length is set as strlen() to make it easier to pass to the
main udf_textexample2() function. We then set initid->ptr to the pointer
of statictext and, of course, this function always has the same return value,
so initid->const_item is set.

 return 0;
}
void udf_textexample2_deinit(UDF_INIT *initid)
{
 free(initid->ptr);
}

char *udf_textexample2(UDF_INIT *initid, UDF_ARGS *args,
 char *result, unsigned long *res_length,
 char *null_value, char *error)
{
 *res_length = initid->max_length;
 return initid->ptr;
}

We end this UDF by setting the result length to the same value as initid->
max_length we set earlier and returning the value inside initid->ptr.
We completely ignore the result buffer that has been provided for us.

When running this through MySQL we get:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.1.47 Source distribution

User Defined Functions

[46]

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> CREATE FUNCTION udf_textexample RETURNS STRING SONAME
'udf_textexample.so';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE FUNCTION udf_textexample2 RETURNS STRING SONAME
'udf_textexample.so';
Query OK, 0 rows affected (0.00 sec)

This shows that we can have two UDFs inside one shared library. It can be very
convenient if you have a library of related functions you wish to use.

mysql> SELECT udf_textexample();

+------------------- +
| udf_textexample() |
+------------------- +
| 5.1.47 |
+------------------- +

1 row in set (0.00 sec)

Our first function returns the version string, as expected.

mysql> SELECT udf_textexample2();

+-------------------- +
| udf_textexample2() |
+-------------------- +
| 5.1.47 |
+-------------------- +

1 row in set (0.00 sec)

Also, as expected, the text returned from the second function is exactly the same.

A summing aggregate UDF
As discussed earlier in this chapter, aggregate UDFs are great for performing
operations on groups of rows. Things work slightly differently here, we have a
new keyword to use when installing UDFs and two extra functions to deal with
individual rows and to clean up after every group of rows.

Chapter 2

[47]

Let's write an aggregating UDF that will add up floating point numbers. We will call
it udf_floatsum:

#include <stdlib.h>
#include <string.h>
#include <mysql.h>

my_bool udf_floatsum_init(UDF_INIT *initid, UDF_ARGS *args,
 char *message)
{
 double* float_total = malloc(sizeof(double));
 *float_total = 0;
 initid->ptr = (char*) float_total;

To aggregate we need an accumulator, a variable of the type double to keep the
running totals as we are seeing rows one by one. Different queries invoking our UDF
must have different running totals, in other words, initid->ptr is exactly what's
needed. We allocate memory for one double and save a pointer to it in initid->ptr.

 if (args->arg_count != 1)
 {
 strcpy(message,
 "udf_floatsum() can only accept one argument");
 return 1;
 }
 if (args->arg_type[0] != REAL_RESULT)
 {
 strcpy(message, "udf_floatsum() argument has to be "
 "a floating point number");
 return 1;
 }

Just as we have in previous UDFs, we are setting the restriction of one argument and
the value of this argument has to be a floating point number.

It is always enough to run these sorts of checks only in the name_init()
function. There is no need to repeat them in, say, name_add() or
name(), because metadata (number of arguments and their types)
never change throughout the statement execution.

 initid->decimals = 3;
 return 0;
}

User Defined Functions

[48]

Just for the sake of an example, we have set our UDF to return 3 decimal places.

void udf_floatsum_deinit(UDF_INIT *initid)
{
 free(initid->ptr);
}

void udf_floatsum_add(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error)
{
 double* float_total;
 float_total = (double*)initid->ptr;
 if (args->args[0])
 *float_total += *(double *)args->args[0];
}

This is called for every row, and for the purposes of aggregation we are retrieving
the float_total pointer from initid->ptr and adding the new value to it. We also
take special care of NULL values; in such a case a pointer to the argument value will
be null and we skip this row.

void udf_floatsum_clear(UDF_INIT *initid, char *is_null,
 char *error)
{
 double* float_total;
 float_total = (double*)initid->ptr;
 *float_total = 0;
}

The udf_floatsum_clear() function is called to prepare the UDF before starting to
work on rows from a new group. In this case we need to clear our running total by
setting it to zero.

double udf_floatsum(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error)
{
 double* float_total;
 float_total = (double*)initid->ptr;
 return *float_total;
}

This function is called at the end of every group to retrieve the running total before it
gets cleared again and returns it as the UDF result.

Chapter 2

[49]

When installing and running inside MySQL we will see the following:

mysql> CREATE AGGREGATE FUNCTION udf_floatsum RETURNS REAL SONAME
'udf_floatsum.so';
Query OK, 0 rows affected (0.00 sec)

As we can see here, the installation is slightly different. The keyword AGGREGATE is
used to signify that this is an aggregate function.

mysql> CREATE TABLE t1 (a INT, b FLOAT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES (1,1.1),(2,5.34),(1,8.231),
 -> (1,9.8523),(2,9.37567);
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM t1;

+------+----------+
| a | b |
+------+----------+
1	1.1
2	5.34
1	8.231
1	9.8523
2	9.37567
+------+----------+

5 rows in set (0.00 sec)

We insert five rows of data into this table. The first column has two distinct values,
which we will use for grouping.

mysql> SELECT a, udf_floatsum(b),sum(b) FROM t1 GROUP BY a;

+------+-----------------+------------------+
| a | udf_floatsum(b) | sum(b) |
+------+-----------------+------------------+
| 1 | 19.183 | 19.1832996606827 |
| 2 | 14.716 | 14.7156705856323 |
+------+-----------------+------------------+

2 rows in set (0.00 sec)

When running the UDF in this query we can see that it has added up all of the floats
in both groups separately. Comparing the result with the built-in SUM() we see that
our result is rounded off to the third digit after the decimal point, exactly as specified
in initid->decimals.

User Defined Functions

[50]

Further reading
There is a UDF repository run by Roland Bouman that contains various
useful functions in both source and binary forms. This can be found at
http://www.mysqludf.org/.

To make the UDF API even easier to use, Hartmut Holzgraefe, a MySQL Support
Manager at Sun Microsystems, has created a UDF generator. This generates the
source code for you based on an XML description of what the UDF should do.
More information on this can be found at its PECL site at: http://pear.php.net/
package/CodeGen_MySQL_UDF/

Summary
We can now see that writing a UDF is not too complex. MySQL has a lot of built-in
functionality to help with the task. UDFs make a good compromise between easy
and limited Stored Procedures and the ultimate power and complexity of modifying
the source code of the MySQL server.

Daemon Plugins
We begin with Daemon plugins as an introduction to the new MySQL Plugin API
due to their simplicity. Plugin API is designed to facilitate the adding of extra code
to MySQL without having to recompile the entire server. A typical use of a Daemon
plugin would be to create threads to execute some background code. This gives us a
basic structure to start with which can be followed later with other plugin types.

In this chapter we will cover the basic information needed to write a Daemon plugin
and use some examples to illustrate how this could be applied in practical usage.
Background knowledge of POSIX threads is useful for this chapter, but we will go
through things simply and explain what is going on at every step.

A look inside a Daemon plugin
Unlike UDFs, MySQL plugins store all of the metadata in the plugins shared library.
So when installing a plugin you only need to specify the name of the plugin and
its shared library filename. This eliminates much of the user error while installing.
With UDFs it is very easy to choose the wrong return type or forget the AGGREGATE
keyword, but with plugins this is not possible.

Why write a Daemon plugin
Just like UDFs and other MySQL plugin types the Daemon plugin can be used to add
extra functionality to MySQL with the same advantages and disadvantages.

Daemon plugins are ideal for writing code that needs to reside in the server but
does not need to communicate with it—such as a heartbeat plugin or monitoring
plugins—because the simple Daemon plugin API does not provide any means for a
server and a plugin to communicate with each other.

Daemon Plugins

[52]

Installing and using Daemon plugins
Installing plugins is relatively easy because all of the information about a plugin
is stored inside it. To install a plugin we can use the INSTALL PLUGIN statement
as follows:

mysql> INSTALL PLUGIN my_plugin SONAME 'my_plugin.so';

Likewise, to remove a plugin we use:

mysql> UNINSTALL PLUGIN my_plugin;

When a plugin is installed it is initialized instantly and this means that the code we
write will start automatically when our plugin is installed.

Upon installing a plugin it is added to the mysql.plugin table so MySQL knows
it is installed and can load it again on startup. In other words, similar to UDFs, all
installed plugins are loaded automatically when a server is started.

A plugin is de-initialized when either it is uninstalled or the MySQL server is being
shut down. It is worth noting at this time that if the MySQL server crashes for any
reason the de-initialization of the plugin will not happen.

If a plugin is installed, we can prevent it from being loaded and executed at startup
with the --disable-plugin-my-plugin or --plugin-my-plugin=OFF commands.
If we do not do that MySQL will try to load it because the default behavior is
--plugin-my-plugin=ON. If the plugin fails to load, MySQL will note that fact in the
error log and will continue without this plugin. If we want to be sure that a plugin is
absolutely loaded in the server, and that the server will not simply ignore a plugin
failure, we can use --plugin-my-plugin=FORCE. In this mode the server will exit if
our plugin fails to load.

As we can see below, the mysql.plugin table simply contains the plugin name and
the filename for the shared library containing the plugin:

mysql> SELECT * FROM mysql.plugin;

+-----------+--------------+
| name | dl |
+-----------+--------------+
| my_plugin | my_plugin.so |
+-----------+--------------+

1 row in set (0.01 sec)

Chapter 3

[53]

MySQL has a SHOW command to give us information about installed plugins. This
is very useful to see if a plugin is actually running. If there was a problem during
initialization then the status for the plugin will be marked as DISABLED. A sample
output for SHOW PLUGINS can be seen below:

mysql> SHOW PLUGINS\G

...

*************************** 11. row ***************************

 Name: my_plugin
 Status: ACTIVE
 Type: DAEMON
Library: my_plugin.so
License: GPL
11 rows in set (0.00 sec)

Information Schema also includes a table for use with plugins, and it contains more
detail than SHOW PLUGINS. It shows version information supplied by the plugin as
well as the plugin description:

mysql> SELECT * FROM information_schema.plugins WHERE PLUGIN_NAME='my_
plugin'\G

*************************** 1. row ***************************

 PLUGIN_NAME: my_plugin
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: DAEMON
 PLUGIN_TYPE_VERSION: 50147.0
 PLUGIN_LIBRARY: my_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
 PLUGIN_AUTHOR: Andrew Hutchings
 PLUGIN_DESCRIPTION: Daemon example, shows a declaration
 PLUGIN_LICENSE: GPL
1 row in set (0.00 sec)

Technically, loading of plugins is very similar to loading of UDFs. Problems that can
arise, ways of solving them, and error messages are similar to those of UDFs. They
were described in a previous chapter.

Daemon Plugins

[54]

The role of a version
As we have seen, there are three two-component version numbers in the
INFORMATION_SCHEMA.PLUGINS table. One of them, PLUGIN_VERSION, is purely
informational. It is a number that a plugin author can specify arbitrarily, and MySQL
itself does not do anything with it. The other two are very important though. They
are used to protect the API, to make sure that if a plugin is loaded it uses the same
API version that the server provides. This is one of the main differences to UDFs.
UDF API is not versioned. Hence, it was not developed and still has only those
features that it did in 3.21.24. Extending UDF API is risky; any change and old UDFs
may start crashing the server.

Plugin API, on the other hand, is safe. It is protected by a version, and this version is
part of every plugin library, the API version that the plugin was compiled against.
When a plugin is loaded the server verifies that the version is supported by the
server and refuses to load a plugin otherwise. That is, the server can guarantee that
all loaded plugins are fully compatible with the server, and no crash can happen
because of API mismatch.

The API is protected with two version numbers, as it contains two parts—one is
common to all plugin types. It is version 1.0, as can be seen in the PLUGIN_LIBRARY_
VERSION column above. The other one is specific to each plugin type. For Daemon
plugins this version is 50147.0, as seen in the PLUGIN_TYPE_VERSION column, and it
is derived from the MySQL server version (which was 5.1.47 in my examples).

Defining Daemon plugins
The most basic of Daemon plugins needs no code at all; only a declaration is
required. A plugin declaration is an instance of a st_mysql_plugin structure:

struct st_mysql_plugin
{
 int type;
 void *info;
 const char *name;
 const char *author;
 const char *descr;
 int license;
 int (*init)(void *);
 int (*deinit)(void *);
 unsigned int version;
 struct st_mysql_show_var *status_vars;
 struct st_mysql_sys_var **system_vars;
 void *__reserved1
};

Chapter 3

[55]

The type defines what type of plugin this will be, which in turn defines what it can
do. In MySQL 5.1, type can be set to one of the following enumerated values:

Type Description

MYSQL_UDF_PLUGIN UDF plugin (not yet implemented)

MYSQL_STORAGE_ENGINE_PLUGIN Storage engine plugin

MYSQL_FTPARSER_PLUGIN Full text index parser plugin

MYSQL_DAEMON_PLUGIN Daemon plugin

MYSQL_INFORMATION_SCHEMA_PLUGIN Information Schema plugin

In this chapter we are talking about Daemon plugins so this should be set to
MYSQL_DAEMON_PLUGIN.

The info member is a pointer to the descriptor of the plugin and its members.
It contains the information specific to this particular plugin type (while the
st_mysql_plugin structure itself contains the information applicable to any
plugin, independently of its type). It always starts with an API version number
and for Daemon plugins this is all it contains. For other plugin types it may also
contain plugin methods that the server will call, but Daemon plugins are not
designed to communicate with the server, and their descriptor structure contains
nothing besides the version:

struct st_mysql_daemon my_daemon_plugin =
{ MYSQL_DAEMON_INTERFACE_VERSION };

Next we have the name member, which specifies the name of the plugin as it will
be used by MySQL. This is the name that needs to be used in the INSTALL PLUGIN
statement, the name that will be seen in SHOW PLUGINS and SHOW ENGINES, the name
that all plugin configuration variables and command-line options will start from.
That is, the name of the plugin should be a valid SQL identifier and should be good
for the command line too. A safe choice would be a name that consists of only Latin
letters, digits, and an underscore. Plugin names are not case-sensitive.

The author member is a string containing details about the author; it can contain
anything we wish. It must be in UTF-8 and can be arbitrarily long, but MySQL will
only show the first 64 characters of it.

The final string member is descr, which should contain a description of the plugin.
Again we are free to put whatever we like here, but we would normally put a short
line stating what the plugin does. Again, it is supposed to be UTF-8, but it can be as
long as you want.

Daemon Plugins

[56]

In the next member, each plugin specifies its license. This does not strictly do
anything as such, but should help with accidental distribution of a plugin under the
wrong license. There are currently three possible values for the license member:

License Description

PLUGIN_LICENSE_PROPRIETARY Any proprietary license

PLUGIN_LICENSE_GPL GPL license

PLUGIN_LICENSE_BSD BSD license

Then we come to the init and deinit members, which are pointers to the plugin
initialization and de-initialization functions. The initialization function is called when
the plugin is loaded during INSTALL PLUGIN or server startup. The de-initialization
function is called when a plugin is unloaded, which, again, can happen for two
reasons, UNINSTALL PLUGIN or server shutdown. In a Daemon plugin the initialization
function is often used to fork a thread to run the main function of the plugin. Both
the initialization and the de-initialization functions should return 0 on success or 1
on failure.

The version member should be used for the current version of our plugin. A
two-component version is encoded as a hexadecimal number, where the lower 8
bits store the second component (minor version) and all others bits store the first
component (major version). For example, if the version is set to 0x205, MySQL will
show it as "2.5", and if the version is set to 0x123FF, MySQL will show it as "291.255".
Unfortunately, there is no way to store in this member a more complex version such
as "1.10.14b‑RC2".

MySQL has many status variables that can be seen with the SHOW STATUS statement,
and there are different third-party tools that analyze this data, how the status
variables change over time, draw graphs, and so on. A plugin can benefit from that
and make its status and various statistics and performance values visible as MySQL
status variables. A pointer to the list of the plugin status variables is stored in the
status_vars member.

Similarly, there is a SHOW VARIABLES statement. It lists all MySQL system variables,
variables that are used to alter the behavior of the server. They can have server-
wide or session-only effect, some of them can be set on the command line or in the
configuration file. They can be modifiable run-time or read-only. This is all available
to plugins too. A plugin can add new system variables to the server, global or session,
with or without command-line option support, modifiable or read-only. As we would
expect, a pointer to the array of these variables goes into the system_vars member.

Finally there is one __reserved1 member, which is unused in MySQL 5.1 and
should be set to NULL.

Chapter 3

[57]

MySQL provides two macros that help to declare plugins. A plugin declaration starts
from the mysql_declare_plugin() macro. It takes one argument, a unique identifier
for this plugin library, it will be used automatically as needed to avoid name clashes
when plugins are linked statically into the server. This identifier must be the same
one that was used as a plugin name in the plug.in file (see Chapter 1). We can put
many plugins in one library, but they all need to be declared in one place, after the
mysql_declare_plugin() macro, separated by commas. We end the list of plugin
declarations with a mysql_declare_plugin_end macro.

A complete example of the plugin declarations can be seen as follows:

mysql_declare_plugin(my_plugin)
{
 MYSQL_DAEMON_PLUGIN,
 &my_plugin_info,
 "my_plugin",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "Daemon example, shows a declaration",
 PLUGIN_LICENSE_GPL,
 my_plugin_init,
 my_plugin_deinit,
 0x0100,
 NULL,
 NULL,
 NULL
},
{
 MYSQL_DAEMON_PLUGIN,
 &my_plugin2_info,
 "my_plugin2",
 "Sergei Golubchik (serg@mariadb.org)",
 "Another Daemon example, shows a declaration",
 PLUGIN_LICENSE_GPL,
 my_plugin2_init,
 NULL,
 0xC0FFEE,
 status,
 vars,
 NULL
}
mysql_declare_plugin_end;

Daemon Plugins

[58]

This declares two plugins. We can see that the first one:

•	 is a Daemon plugin
•	 has an info structure called my_plugin_info
•	 is called my_plugin and was written by me (Andrew Hutchings)
•	 is described as an example plugin
•	 is GPL licensed
•	 has initialization and de-initialization functions
•	 is of version 1.0
•	 has no system or status variables

The second plugin can be interpreted similarly. It is also a Daemon plugin of version
49407.238 with initialization function, without de-initialization function, with both
status and system variables.

Status variables
Status variables can be used to give feedback to the user and any application that
reads status variables. To create them we need to define a zero-terminated array of
structures of the type st_mysql_show_var. This structure is defined in plugin.h as:

struct st_mysql_show_var {
 const char *name;
 char *value;
 enum enum_mysql_show_type type;
};

In this structure name is the name of the status variable that will be seen when
executing SHOW STATUS. The value member is a pointer to the memory that will
contain the data for this status variable. It will be casted to the appropriate pointer
type and dereferenced as needed. What it will be casted to depends on the type
member, according to the following table:

Type C type
SHOW_BOOL bool *

SHOW_INT unsigned int *

SHOW_LONG long *

SHOW_LONGLONG long long *

SHOW_DOUBLE double *

SHOW_CHAR char *

SHOW_CHAR_PTR char **

Chapter 3

[59]

Type C type
SHOW_ARRAY st_mysql_show_var *

SHOW_FUNC int (*)(MYSQL_THD,
struct st_mysql_show_var*, char *)

The last two types are special. Elements of these types do not define rows in
SHOW STATUS, they define other elements of the st_mysql_show_var structure.

SHOW_ARRAY specifies that value is not really a value, but a pointer to another
zero-terminated array of status variables. The corresponding name of the SHOW_ARRAY
element will be used as a prefix added to all the names of status variables in the
referenced array. The variables beginning with Com_ in the normal SHOW STATUS
output is an example of this in action.

The SHOW_FUNC function is more interesting. The value is interpreted as a pointer to a
function that generates the st_mysql_show_var structure. This function should have
the following prototype:

int my_status_var(MYSQL_THD thd,
 struct st_mysql_show_var *var, char *buff)

The first argument is a pointer to the thread object of the current connection, var
points to a st_mysql_show_var structure that we need to fill in, and buff is a
preallocated 1024-byte buffer. The function needs to set var->type and var->value
(the var->name member will be ignored by MySQL) to form a valid status variable
structure. And if needed, var->type can be set to SHOW_ARRAY or even to SHOW_FUNC
again, and MySQL will handle this situation correctly. A buffer buff is provided as
convenience storage; the function may store the value there and point var->value to
it. The return value of this function is ignored.

So, putting this together we can have something similar to the following to make our
plugin add new status variables to a server:

struct st_mysql_show_var my_status_vars[]=
{
 {"data_size", (char *)&data_size, SHOW_LONG},
 {"avg_text_size", (char *)&avg_text_size, SHOW_LONGLONG},
 {0,0,0}
};

We would then use my_status_vars in the plugin declaration.

Daemon Plugins

[60]

System variables
If status variables can be seen as output variables, then system variables can be
seen as input variables. MySQL plugins can have variables that are visible in
SHOW VARIABLES so that users can modify the settings of a plugin. They can also
be set at the command line when starting mysqld if the options are set to do this.
To create system variables we use an array of macros as follows:

struct st_mysql_sys_var* my_sysvars[]= {
 MYSQL_SYSVAR(my_var),
 MYSQL_SYSVAR(my_other_var),
 NULL
};

It does not create any system variables by itself, it only creates a list of variables to
put into a plugin declaration. The MYSQL_SYSVAR() macro is expanded into a pointer
to a system variable structure. Such a structure needs to be created first. In other
words, our system variables my_var and my_other_var need to be declared before
we can put them in an array. We do this by using other macros depending on the
type of variable we require. Macros to create global variables are summarized in the
following table:

Macro to Create a Global Variable Corresponding C Type
MYSQL_SYSVAR_BOOL(name, varname, opt, comment,
check, update, def)

char

MYSQL_SYSVAR_STR(name, varname, opt, comment,
check, update, def)

char*

MYSQL_SYSVAR_INT(name, varname, opt, comment,
check, update, def, min, max, blk)

int

MYSQL_SYSVAR_UINT(name, varname, opt, comment,
check, update, def, min, max, blk)

unsigned int

MYSQL_SYSVAR_LONG(name, varname, opt, comment,
check, update, def, min, max, blk)

long

MYSQL_SYSVAR_ULONG(name, varname, opt,
comment, check, update, def, min, max, blk)

unsigned long

MYSQL_SYSVAR_LONGLONG(name, varname, opt,
comment, check, update, def, min, max, blk)

long long

MYSQL_SYSVAR_ULONGLONG(name, varname, opt,
comment, check, update, def, min, max, blk)

unsigned long long

MYSQL_SYSVAR_ENUM(name, varname, opt, comment,
check, update, def, typelib)

unsigned long

MYSQL_SYSVAR_SET(name, varname, opt, comment,
check, update, def, typelib)

unsigned long long

Chapter 3

[61]

To create session, or thread-local, variables we need to use a different set of macros.
They start with MYSQL_THDVAR instead of MYSQL_SYSVAR, and they do not take the
varname parameter:

Macro to Create a Session Variable Corresponding C Type
MYSQL_THDVAR_BOOL(name, opt, comment, check,
update, def)

char

MYSQL_THDVAR_STR(name, opt, comment, check,
update, def)

char*

MYSQL_THDVAR_INT(name, opt, comment, check,
update, def, min, max, blk)

int

MYSQL_THDVAR_UINT(name, opt, comment, check,
update, def, min, max, blk)

unsigned int

MYSQL_THDVAR_LONG(name, opt, comment, check,
update, def, min, max, blk)

long

MYSQL_THDVAR_ULONG(name, opt, comment, check,
update, def, min, max, blk)

unsigned long

MYSQL_THDVAR_LONGLONG(name, opt, comment, check,
update, def, min, max, blk)

long long

MYSQL_THDVAR_ULONGLONG(name, opt, comment,
check, update, def, min, max, blk)

unsigned long
long

MYSQL_THDVAR_ENUM(name, opt, comment, check,
update, def, typelib)

unsigned long

MYSQL_THDVAR_SET(name, opt, comment, check,
update, def, typelib)

unsigned long
long

The parameters of all these macros are as follows:

Name Description
name The name of the system variable, excluding the plugin name. It will be shown

in SHOW VARIABLES; it can be used in SELECT and SET, or on the command
line. The name of the plugin will be prepended to the name automatically.

varname The associated C or C++ variable. A global system variable (MYSQL_SYSVAR)
will store its value in this C or C++ variable. Session variables (MYSQL_THDVAR)
have no varname parameter; the storage for the value will be created
automatically in every thread as necessary.

opt System variable options, see the following table.
comment The comment describing the system variable. If a variable can

be set on the command line, this comment will be visible in the
mysqld ‑‑help ‑‑verbose output.

check A pointer to a function that checks if the value is valid. It can be NULL.
update A pointer to a function used to store the new value. It can be NULL too.

Daemon Plugins

[62]

Name Description
def The default value for the variable.
min The minimum value for the variable. It can only be specified for numeric

system variables.
max The maximum value for the variable. It can only be specified for numeric

system variables.
blk Block size, a value will be a multiple of this number. It can only be specified

for numeric system variables.
typelib A structure defining the list of values of entities for an ENUM or SET

system variable

The opt parameter helps you define extra options for the variable. Multiple options
can be used by using an or ('|') to join them together. A description of these options
can be seen as follows:

Option Description
PLUGIN_VAR_READONLY System variable cannot be modified at runtime.
PLUGIN_VAR_NOSYSVAR It is not a system variable (only a command-line option).
PLUGIN_VAR_NOCMDOPT It is not a command-line option (only a system variable).
PLUGIN_VAR_NOCMDARG Command-line option does not take an argument.
PLUGIN_VAR_RQCMDARG Command-line option must be used with an argument.
PLUGIN_VAR_OPCMDARG Command-line option can optionally take an argument.
PLUGIN_VAR_MEMALLOC If set, the memory will be allocated for the value of this string

variable. If unset, the variable can only be set on the command
line, not at runtime, and it will point directly into the
*argv[] array.

For ENUM and SET variables we need to create a TYPELIB structure that provides a list
of allowed values. A TYPELIB structure is defined in include/typelib.h as follows:

typedef struct st_typelib {
 unsigned int count;
 const char *name;
 const char **type_names;
 unsigned int *type_lengths;
} TYPELIB;

However, we only need to set count correctly and put the list of values into
type_names as an array of strings. Other TYPELIB members are used in different
places in MySQL, but not for system variables.

Chapter 3

[63]

Now, let's look at the examples:

static char turbo;
static MYSQL_SYSVAR_BOOL(turbo_mode, turbo,
 PLUGIN_VAR_READONLY | PLUGIN_VAR_NOCMDARG,
 "Enabled <<turbo>> mode", NULL, NULL, 0);

Suppose, our plugin (called "ourplugin") supports a turbo mode, and when enabled
everything works much faster. Unfortunately, it cannot activate this turbo mode
at runtime, and once a plugin is started, the mode cannot be changed. The variable
declaration above does just that. First, it declares a static C variable turbo. If we
need to check if the turbo mode is active, we simply write if (turbo). Then we
create a global MySQL system variable that is bound to our turbo variable. The
variable is called turbo_mode, and being a variable of ourplugin, its full name will
be ourplugin_turbo_mode. For example, to see its value with a SELECT statement, a
user will need to type:

mysql> SELECT @@global.ourplugin_turbo_mode;

We have declared this variable with the PLUGIN_VAR_READONLY flag to prevent
runtime modifications of it with the SET statement. Our plugin simply cannot enable
turbo mode at runtime. But it can be activated at startup with a
command-line option:

shell$ mysqld_safe --enable-ourplugin-turbo-mode

It can also be activated from a configuration file. This variable has no custom check
or update functions, and by default (see the last parameter in the declaration), the
turbo mode is disabled.

static unsigned long long log_size;
static MYSQL_SYSVAR_ULONGLONG(log_size, log_size,
 PLUGIN_VAR_RQCMDARG, "Upper limit for a log file size",
 NULL, NULL, 102400, 1024, 1099511627776, 1024);

The second example for our hypothetical plugin introduces a variable that limits
the size of log files. It is a global updatable system variable, one can modify its
value with

mysql> SET GLOBAL ourplugin_log_size=20480;

or on the command line

shell$ mysqld_safe --ourplugin-log-size=20480

Daemon Plugins

[64]

Because we have specified PLUGIN_VAR_RQCMDARG, the corresponding command-line
option must be used with an argument. It will be an error to write ––ourplugin-log-
size and not provide a number. In the declaration, we have specified that a value of
our variable must between 1024 and 1099511627776 (in other words, 1KB-1TB), and
must be always divisible by 1024. If a user tries to set it to an incorrect value, MySQL
will adjust it automatically.

static const char *mode_names[] = {
 "NORMAL", "TURBO", "SUPER", "HYPER", "MEGA"
};
static TYPELIB modes = { 5, NULL, mode_names, NULL };
static MYSQL_THDVAR_ENUM(mode, PLUGIN_VAR_NOCMDOPT,
 "one of NORMAL, TURBO, SUPER, HYPER, MEGA",
 NULL, NULL, 0, &modes);

This is a very advanced turbo mode from the first example. It can be in one of the
five modes, can be changed at runtime, and even per thread. Different clients may
enable different modes; the mode of one connection does not affect others.

The above means that we need to have a session variable for the mode, not a global
one. And because it takes one value out of a fixed list of values, MYSQL_THDVAR_ENUM
is a good match here. As explained above, we need to create a TYPELIB with the list
of allowed values, and use it when declaring our system variable. Just for the sake
of this example we make it PLUGIN_VAR_NOCMDOPT and MySQL will not create a
––ourplugin-mode command-line option for this variable. As a result, this variable
can only be changed in SQL, with the SET statement. However, usually it is better
and certainly more user friendly to provide a corresponding command-line option
for every system variable, and a system variable for every command-line option.
Now, this is a session variable. How can we access its value from our plugin? Unlike
a global system variable, it cannot store its value in a normal C or C++ variable,
because such a variable cannot have different values in different threads. This is
why MySQL provides a special macro to access a value of a session system
variable. We cannot write simply if (mode == 0) as before, but we use if
(THDVAR(thd,mode) == 0) instead. It can be assigned too; THDVAR(thd,mode)=3
will work as expected. The type of the THDVAR(thd,mode) will be unsigned long,
as listed in the table previously.

Chapter 3

[65]

There are two parameters of the MYSQL_SYSVAR_* and MYSQL_THDVAR_* macros
that we have not touched yet. The check() and update() function callbacks are
called when the system variable is altered. The check() function is used to add
custom checks to a variable to make sure the setting is acceptable. The update()
function can be used to perform additional actions when a variable is updated,
for example, when a variable memory_buffer_size is updated one may want to
resize the corresponding memory buffer. There are two functions instead of one,
check_and_update(), because a SET statement can modify many variables at once.
In this case, MySQL first calls the check() function for all these variables, and
then their update() functions. In other words, MySQL tries to maintain an "all or
nothing" behavior. An update() function, if provided, should try not to fail as all the
preconditions for it to succeed should have been verified in a check() function. And
a check() function, in turn, should avoid having any side effects, because they will
persist even if the update is canceled. These functions have the following prototypes:

int check(MYSQL_THD thd, struct st_mysql_sys_var *var,
 void *save, struct st_mysql_value *value);

Here thd is the thread object for the connection that is changing the variable, var
is the structure of the system variable, save is a pointer to where the data should
be saved, and value is the value passed to the function. A minimal check function
should get the result of the expression behind the value in the appropriate type
and store it in a *save. If a check function is not provided at all, MySQL will do
it automatically.

void update(MYSQL_THD thd, struct st_mysql_sys_var *var,
 void *var_ptr, const void *save);

Here we, again, have thd and var pointers. A save pointer gives a new value of the
updated variable, and var_ptr is a pointer to the variable to be updated. A minimal
update function needs to update the *val_ptr with the value of *save. Again, if no
update function is provided, MySQL will do it automatically.

A Hello World! Daemon plugin
Now, let's look at our first complete plugin example. This plugin is probably the
most basic plugin we can have. It simply prints a message into the MySQL error log
when loaded:

#include <stdio.h>
#include <mysql/plugin.h>
#include <mysql_version.h>

Daemon Plugins

[66]

These are the basic includes required for most Daemon plugins. The most important
being mysql/plugin.h, which contains macros and data structures necessary for a
MySQL plugin.

static int hello_world_plugin_init(void *p)
{
 fprintf(stderr, "Hello World: "
 "This is a static text daemon example plugin!\n");
 return 0;
}

In the plugin initialization function we simply write a message to stderr. MySQL
redirects stderr to the error log (if there is one) so our message will end up there.
We then return 0 to indicate that the initialization was successful.

struct st_mysql_daemon hello_world_info =
{ MYSQL_DAEMON_INTERFACE_VERSION };

This structure is used for the info part of the plugin declaration. In Daemon
plugins it simply contains the API version that this plugin was compiled against.
The Daemon plugin API version matches the MySQL server version, which means
MySQL Daemon plugins can only be used with a MySQL server version they have
been compiled against. Indeed, for a Daemon plugin to do something non-trivial it
will invariably need access to the server's internal functions and data structures that
change with every MySQL version. Other plugins that are implemented according
to a certain functionality API are separated from the server internals and are binary
compatible with a wide range of server releases.

Having defined all of the functions and auxiliary structures, we can declare a plugin:

mysql_declare_plugin(hello_world)
{

This is a Daemon plugin so we need to specify it as such with this defined constant:

 MYSQL_DAEMON_PLUGIN,

info points to the structure declared earlier. With other plugin types this may
contain additional information valuable to the plugin functionality:

 &hello_world_info,

We are calling this plugin "hello_world". This is its name for the INSTALL PLUGIN
command and any plugin status:

 "hello_world",

Chapter 3

[67]

The author string, is useful for providing contact information about the author
of the plugin:

 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",

A Simple line of text that gives a basic description of what our plugin does:

 "Daemon hello world example, outputs some static text",

This plugin is licensed under GPL so we set the license type to this:

 PLUGIN_LICENSE_GPL,

This is our initialization function that has been defined earlier in the code:

 hello_world_plugin_init,

As our simple plugin does not need a de-initialization function, we put NULL here:

 NULL,

This plugin is given version 1.0 because it is our first GA release of the plugin. In
future versions we can increment this:

 0x0100,

There are no status or system variables in this example. Hence, everything below the
version is set to NULL:

 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

We can now install this plugin using the INSTALL PLUGIN syntax as described earlier
in this chapter:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.1.47 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> INSTALL PLUGIN hello_world SONAME 'hello_world.so';
Query OK, 0 rows affected (0.00 sec)

Daemon Plugins

[68]

Going to the error log we see:

090801 22:18:00 [Note] /home/linuxjedi/Programming/Builds/mysql-5.1.47/
libexec/mysqld: ready for connections.
Version: '5.1.47' socket: '/tmp/mysql.sock' port: 3306 Source
distribution
Hello World: This is a static text daemon example plugin!

A system and status variables demo
plugin
Let's see a more complex example. This plugin shows how to create system and
status variables. It has one global system variable and one status variable, both
defined as long long. When you set the global system variable, its value is copied
into the status variable.

#include <stdio.h>
#include <mysql/plugin.h>
#include <mysql_version.h>

long long system_var = 0;
long long status_var = 0;

struct st_mysql_show_var vars_status_var[] =
{
 {"vars_status_var", (char *) &status_var, SHOW_LONGLONG},
 {0, 0, 0}
};

We have one status variable in this plugin called vars_status_var which is bound
to the status_var variable defined near the top of this source code. We are defining
this variable as long long so we use the SHOW_LONGLONG type.

int sysvar_check(MYSQL_THD thd,
 struct st_mysql_sys_var *var,
 void *save, struct st_mysql_value *value)
{

This function is to be called before our system variable is updated. A plugin is not
required to provide it but it can be used to check if the data entered is valid and, as
an example, we will only allow values that are not too close to status_var.

 long long buf;
 value->val_int(value, &buf);

Chapter 3

[69]

First we retrieve the new value-to-be and store it in buf.

 (longlong) save = buf;

We then set save to the contents of buf, so that the update function could access it
and store the value in our system_var variable. If we do not implement our own
sysvar_check() function for our system variable, MySQL will provide a default one
that performs all of the above (but nothing of the following).

 if (buf * 2 < status_var || buf > status_var * 3)
 return 0;
 else
 return 1;
}

This is our special condition. In this example we allow an update only if the new
value is either less than a half of or three times bigger than the value of status_var.
We return 0 when the new value is valid, and an update should be allowed, and 1
when an update should be canceled. In our update function we copy the value of the
system_var to a status_var, to see how its value changes in SHOW STATUS and to get
a different range on valid values for the system_var on every update. Note that the
update function cannot return a value. It is not supposed to fail!

void sysvar_update(MYSQL_THD thd,
 struct st_mysql_sys_var *var,
 void *var_ptr, const void *save)
{
 system_var = *(long long *)save;
 status_var = system_var;
}

We update our system_var variable without any mutex protection, even though
many threads may try to execute the SET statement at the same time. Nevertheless,
it is safe. MySQL internally guards all accesses to global system variables with a
mutex, which means we do not have to.

MYSQL_SYSVAR_LONGLONG(vars_system, system_var, 0,
 "A demo system var", sysvar_check, sysvar_update,
 0, 0, 123456789, 0);

Daemon Plugins

[70]

This is the declaration for our system variable. It is a long long and is called
vars_system. In fact as this is a variable for the vars plugin, the full name will
be vars_vars_system in SHOW VARIABLES. It is associated with the system_var
variable in the code, has the check function sysvar_check() and an update
function sysvar_update() as defined above, and it can only take values
between 0 and 123456789.

struct st_mysql_sys_var* vars_system_var[] = {
 MYSQL_SYSVAR(vars_system),
 NULL
};

This is the structure which stores all system variables to be passed to the declaration
for this plugin. As we only have one variable we shall only include that.

struct st_mysql_daemon vars_plugin_info=
{ MYSQL_DAEMON_INTERFACE_VERSION };

mysql_declare_plugin(vars)
{
 MYSQL_DAEMON_PLUGIN,
 &vars_plugin_info,
 "vars",
 "Andrew Hutchings",
 "A system and status variables example",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0100,
 vars_status_var,
 vars_system_var,
 NULL
}
mysql_declare_plugin_end;

This is very similar to the declaration of our first plugin, but this one has structures
for the status variables and system variable listed.

Chapter 3

[71]

When putting our new plugin into action we should see the following:

mysql> INSTALL PLUGIN vars SONAME 'vars.so';
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW STATUS LIKE 'vars_%';

+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| vars_status_var | 0 |
+-----------------+-------+

1 row in set (0.00 sec)

mysql> SHOW VARIABLES LIKE 'vars_%';

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| vars_vars_system | 0 |
+------------------+-------+

1 row in set (0.00 sec)

Our status and system variables are both set to 0 by default.

mysql> SET GLOBAL vars_vars_system=2384;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW STATUS LIKE 'vars_%';

+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| vars_status_var | 2384 |
+-----------------+-------+

1 row in set (0.00 sec)

mysql> SHOW VARIABLES LIKE 'vars_%';

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| vars_vars_system | 2384 |
+------------------+-------+

1 row in set (0.00 sec)

Daemon Plugins

[72]

Setting our system variable to 2384 has altered both the system variable and the
status variable, so we have success!

mysql> SET GLOBAL vars_vars_system=2383;
ERROR 1210 (HY000): Incorrect arguments to SET

Our special check function works too. The variable cannot be updated to a value that
is too close to its old value!

A simple monitoring plugin
Our previous examples have demonstrated how to create a plugin and how to use
status and system variables, but they did not do anything practically useful. The next
plugin will record the connection statistics every five seconds into a log file so that
load spikes can be recorded or monitored using an external application.

This plugin will remove any previous copy of the log file, create a new one, and
then start a thread to retrieve the data and record it every five seconds. Upon
removal of the plugin or shutdown, the plugin will record the shutdown time and
close the file gracefully:

#include <string.h>
#include <mysql/plugin.h>
#include <mysql_version.h>
#include <my_global.h>
#include <my_sys.h>

#define MONITORING_BUFFER 1024

extern ulong thread_id;
extern uint thread_count;
extern ulong max_connections;

There are three internal MySQL variables we wish to monitor in our example. They
are declared in sql/mysqld.cc so we need to declare them here as extern to be
able to access them. The thread_id variable is used for the Connections status
variable, thread_count for the Threads_connected, and max_connections is the
max_connections system variable.

In theory, our plugin could read as well as alter them, and this can be a very
powerful tool. But remember, with great power comes great responsibility.

static pthread_t monitoring_thread;
static int monitoring_file;

Chapter 3

[73]

We will need these variables in our plugin. Because there can be only one
monitoring file and only one monitoring thread, we can declare these
variables on the global scope.

pthread_handler_t monitoring(void *p)
{

This function will be run in our monitoring thread, which is created during
initialization. It has an endless loop retrieving data. This loop will sleep for five
seconds, retrieve the current time and date, and then write the statistics to the file.

 char buffer[MONITORING_BUFFER];
 char time_str[20];
 while(1)
 {
 sleep(5);
 get_date(time_str, GETDATE_DATE_TIME, 0);
 sprintf(buffer, "%s: %u of %lu clients connected, "
 "%lu connections made\n",
 time_str, thread_count,
 max_connections, thread_id);
 write(monitoring_file, buffer, strlen(buffer));
 }
}

get_date() is a function that can be found in MySQL sources in mysys/mf_getdate.c.
It is designed to return the current date and time in a MySQL format. Using MySQL
functionality in this way is convenient, but it makes our plugin dependent on
MySQL internals, which are not part of the plugin API and can change virtually
anytime. Luckily, Daemon plugins already depend on the MySQL server version,
they cannot be made more dependent than that. However, if a plugin is separated
from the server by an API, adding such a dependency on the server internals may be
undesirable. An ultimate solution for this problem, Server Services, is described in
the Appendix for this book.

static int monitoring_plugin_init(void *p)
{

Daemon Plugins

[74]

Our initialization function has more work to do this time. We need to open the file
we are recording to and create the thread that will handle the monitoring.

 pthread_attr_t attr;
 char monitoring_filename[FN_REFLEN];
 char buffer[MONITORING_BUFFER];
 char time_str[20];

 fn_format(monitoring_filename, "monitor", "", ".log",
 MY_REPLACE_EXT | MY_UNPACK_FILENAME);

The fn_format() function is designed to build a filename and path compatible
with the current operating system given a set of parameters. More details on its
functionality can be found in mysys/mf_format.c.

In this example our output file will be called monitor.log and should be found in
the data directory of your MySQL installation.

 unlink(monitoring_filename);
 monitoring_file = open(monitoring_filename,
 O_CREAT | O_RDWR, 0644);
 if (monitoring_file < 0)
 {
 fprintf(stderr, "Plugin 'monitoring': "
 "Could not create file '%s'\n",
 monitoring_filename);
 return 1;
 }

We wish to unlink (delete) any old file with the same filename and create a new one
to write to. We could instead append and/or rotate the file, but we are aiming for
simplicity in this example. If the file cannot be created then the plugin will fail with
an error.

 get_date(time_str, GETDATE_DATE_TIME, 0);
 sprintf(buffer, "Monitoring started at %s\n", time_str);
 write(monitoring_file, buffer, strlen(buffer));

A line of text is written to our new file to signify when the monitoring was started.

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,
 PTHREAD_CREATE_JOINABLE);

Chapter 3

[75]

Pthreads (POSIX threads) is a GNU library to control the creation and handling
of threads. This initializes the new thread and sets its state as a joinable thread.
This means that this thread can pass its exit status back to the main thread upon
termination. We could alternatively create a detached thread here.

 if (pthread_create(&monitoring_thread, &attr,
 monitoring, NULL) != 0)
 {
 fprintf(stderr, "Plugin 'monitoring': "
 "Could not create monitoring thread!\n");
 return 1;
 }

This creates a new thread for monitoring. If the thread creation fails, an error
message is written to the error log and the initialization function returns a failure.

 return 0;
}

If we have managed to get this far we should have the file successfully opened and a
thread started and running.

static int monitoring_plugin_deinit(void *p)
{
 char buffer[MONITORING_BUFFER];
 char time_str[20];

 pthread_cancel(monitoring_thread);
 pthread_join(monitoring_thread, NULL);

Now that we are shutting down this plugin we need to clean things up. We start
from the monitoring thread. The first function tells the thread to terminate, the
second waits until it actually does.

 get_date(time_str, GETDATE_DATE_TIME, 0);
 sprintf(buffer, "Monitoring stopped at %s\n", time_str);
 write(monitoring_file, buffer, strlen(buffer));
 close(monitoring_file);

To complete the log file we write a message signifying the termination of the plugin.
The file is then closed.

 return 0;
}

struct st_mysql_daemon monitoring_plugin =
{ MYSQL_DAEMON_INTERFACE_VERSION };

mysql_declare_plugin(monitoring)

Daemon Plugins

[76]

{
 MYSQL_DAEMON_PLUGIN,
 &monitoring_plugin,
 "monitoring",
 "Andrew Hutchings",
 "Daemon monitoring example, monitors MySQL",
 PLUGIN_LICENSE_GPL,
 monitoring_plugin_init,
 monitoring_plugin_deinit,
 0x0100,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

The plugin called monitoring is declared exactly as before, nothing new here.

When we install this plugin, run a few connections, and then uninstall the plugin, we
should see in the file monitor.log something similar to the following:

Monitoring started at 2009-08-01 22:22:57
2009-08-01 22:23:02: 2 of 151 clients connected, 7 connections made
2009-08-01 22:23:07: 2 of 151 clients connected, 8 connections made
2009-08-01 22:23:12: 3 of 151 clients connected, 9 connections made
2009-08-01 22:23:17: 3 of 151 clients connected, 9 connections made
2009-08-01 22:23:22: 4 of 151 clients connected, 10 connections made
2009-08-01 22:23:27: 3 of 151 clients connected, 10 connections made
2009-08-01 22:23:32: 2 of 151 clients connected, 10 connections made
2009-08-01 22:23:37: 2 of 151 clients connected, 10 connections made
Monitoring stopped at 2009-08-01 22:23:41

System Status Variables plugin
At the end of the chapter, let's try to create a different Daemon plugin. This plugin,
called sys_status, does not start any threads and does not do anything in the
background. It uses the status variables to provide access to the getrusage()
statistics. The getrusage() system call returns information about the process
resource usage such as number of page faults, number of signals received, and
number of context switches. How could we let MySQL users see this information?

Chapter 3

[77]

As we remember, status variables are defined in terms of pointers to data. That is,
SHOW STATUS takes the st_mysql_show_var structure and shows the data pointed
to by its value member. It works well when a value to show is stored in a variable;
for example, in our vars plugin, where we have stored the value in a status_vars C
variable. But in this case we want to show the result of a function call. In other words,
we need to use SHOW_FUNC type of a "status variable". And because we have many
variables to show and all of their data are obtained from one function call, we put all of
these variables in an array and use SHOW_ARRAY to display it. Let's put it all together.

We start by including all headers that we will need:

#include <mysql/plugin.h>
#include <mysql_version.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <stdlib.h>

In addition to MySQL headers we will need a few system headers to be able to use
getrusage(). Now we declare our status variables. We declare only one "variable"
of the SHOW_FUNC type; MySQL will invoke the specified function to obtain the real
status variable and we will be able to collect getrusage() data and convert it into
status variables:

static struct st_mysql_show_var sys_status_var[] =
{
 {"Sys", (char *) &make_var_array, SHOW_FUNC},
 {0, 0, 0}
};

Let's write this function now. According to the table above, it should be declared as
taking a thread context, a status variable structure to fill in, and a convenience buffer
as arguments:

static int make_var_array(MYSQL_THD thd,
 struct st_mysql_show_var* var,
 char *buff)
{

In this function we will need to call getrusage() and create an array of status
variables. We may as well declare needed local variables now:

 struct st_mysql_show_var *status;
 struct rusage *rusage;

Daemon Plugins

[78]

We start by allocating the memory we need. MySQL has provided us with a buffer,
and unless we need more than 1024 bytes we can simply use that buffer. However,
we will need both an array of status variables and a rusage structure, which may
not fit into the buffer. Also, we cannot simply malloc() the memory, because we
will not be able to free it as the plugin API has no call for freeing a memory allocated
in the SHOW_FUNC function. Luckily, there is a better solution. The thd_alloc()
function allocates the memory in the connection's local memory pool. This memory
is freed automatically at the end of the statement. We do not need to worry about
memory leaks. Additionally, thd_alloc() can be much faster than malloc(), as
explained in the Appendix. So, as rusage structure has 14 long members, we use
thd_alloc() to allocate an array of 15 status variables—14 for values and one to
terminate the array. We also need a memory for the rusage structure itself, but that
we can safely put in the buff buffer:

 status = thd_alloc(thd, sizeof(*status)*15);
 rusage = (struct rusage*) buff;

Having done that, we configure our var status variable, which is of SHOW_ARRAY
type, and its value points to the array to show:

 var->type = SHOW_ARRAY;
 var->value = (char*)status;

There is no need to set a name of the var variable—it will be ignored. MySQL will use
the name that we have specified in the sys_status_var[] array for the SHOW_FUNC
type. The name was "Sys" and the new type is SHOW_ARRAY. As we remember from
before, it means that all variables in the array will automatically get the "Sys_" prefix.

Now, that we have prepared the array, all that is left is to fill it. Now is a good time
to invoke getrusage() to grab the data. We check the return value, as the function
may fail:

 if (getrusage(RUSAGE_SELF, rusage) == 0)
 {

And now we create status variables for every long member of the rusage structure.
Basically, we will need to do something like the following and repeat it for all 14
members of the structure:

 status->name = "maxrss";
 status->value = (char*) & (rusage->ru_maxrss);
 status->type = SHOW_LONG;
 status++;

Chapter 3

[79]

To save on typing and reduce the amount of copy-pasted code we can define a
convenience macro for it:

#define show_rusage(X) \
 status->name = #X; \
 status->value = (char*) & (rusage->ru_ ## X); \
 status->type = SHOW_LONG; \
 status++;

This makes filling the array as easy as the following:

 show_rusage(maxrss);
 show_rusage(ixrss);
 show_rusage(idrss);
 show_rusage(minflt);
 show_rusage(majflt);
 show_rusage(nswap);
 show_rusage(inblock);
 show_rusage(oublock);
 show_rusage(msgsnd);
 show_rusage(msgrcv);
 show_rusage(nsignals);
 show_rusage(nvcsw);
 show_rusage(nivcsw);
 }

The members of the rusage structure have quite cryptic
names. You can find the complete description of all information
returned by getrusage()by typing man getrusage either at
the shell prompt or in the Google search form.

The array is done. We just need to terminate it with a zero element—an element with
no name:

 status->name = 0;
 return 0;
}

Daemon Plugins

[80]

This is it. We declare the plugin as usual, and we are done:

static struct st_mysql_daemon sys_status =
{ MYSQL_DAEMON_INTERFACE_VERSION };

mysql_declare_plugin(sys_status)
{
 MYSQL_DAEMON_PLUGIN,
 &sys_status,
 "sys_status",
 "Sergei Golubchik",
 "Export getrusage() via SHOW STATUS",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0100,
 sys_status_var,
 NULL,
 NULL
}
mysql_declare_plugin_end;

Now we can build, install it, and try it out:

mysql> show status like 'sys%';

+---------------+-------+
| Variable_name | Value |
+---------------+-------+

| Sys_maxrss | 0 |

| Sys_ixrss | 0 |

| Sys_idrss | 0 |

| Sys_minflt | 3584 |

| Sys_majflt | 0 |

| Sys_nswap | 0 |

| Sys_inblock | 0 |

| Sys_oublock | 0 |

| Sys_msgsnd | 0 |

| Sys_msgrcv | 0 |

| Sys_nsignals | 0 |

| Sys_nvcsw | 10 |

| Sys_nivcsw | 19 |

+---------------+-------+

13 rows in set (0.00 sec)

Works!

Chapter 3

[81]

Summary
Daemon plugins, even if very limited in functionality, can serve as a good introduction
into MySQL plugin programming. In this chapter we have learned the basics of the
plugin API which are features common to all plugin types. We know how to declare a
plugin, why API versions are needed, how to create new status and system variables,
and new command-line options. To understand better the concepts in this chapter we
have developed four Daemon plugins and tried them out. We will use this knowledge
in all of the following chapters where we will study other more complex, plugin types.
And we start in the next chapter with the Information Schema plugins.

Information Schema Plugins
The Information Schema was introduced in MySQL 5.0 as a standard way of
providing database metadata accessible using normal SELECT queries. To make
this work the metadata is made available via read-only tables in a database called
INFORMATION_SCHEMA. In the MySQL mailing lists these tables are often informally
referred to as I_S tables. The name of the schema, names of tables, and their structure
is defined in the SQL standard (ISO/IEC 9075-11:2003 part 11). However, MySQL
extends the standard by providing more tables than the standard dictates. This is
where plugins come into the game. There is an Information Schema plugin type in
MySQL 5.1. Plugins of this type can add new tables to the INFORMATION_SCHEMA
database. These plugins are great for exposing information (possibly a lot of it) to
the user in tabular form. Often these plugins are not distributed as standalone, but
accompany other plugins, for example, complex storage engines, and expose their
statistics or other internal information to the user.

In this first chapter on Information Schema plugins we will go over the basics of this
plugin type and illustrate them with two simple example plugins.

Why write Information Schema plugins
The MySQL plugin API provides plugin developers with two ways of reporting
status or statistical information to the user. Status variables were discussed in the
previous chapter. They are best suited for reporting a small number of values that
can be sorted into a fixed number of categories.

Information Schema Plugins

[84]

For example, we can use status variables to report the total number of disk syncs
that our storage engine plugin has done, or the total number of different words that
our full-text parser plugin has seen in the text. But we cannot use status variables to
report, for example, a frequency distribution of words or word lengths—how many
words of each length our full-text parser plugin has seen or (for a storage engine
plugin) how many blocks each index takes and the block fill factor per index because
the number of words or indexes may be very large, and because it is not known in
advance, we cannot create a static array of all needed status variables.

Information Schema plugins, on the other hand, are perfect for that. They allow us
to present large amounts of information in tabular form. The user can easily filter
or group the information as necessary and generate reports using all of the power
of SQL. Sometimes, Information Schema plugins are used as standalone if they
expose information about the system or MySQL internals, like all of the working
plugin examples in this book do. However, often they supplement other plugins; for
example, full-text parsers or storage engines, like in the usage examples above.

Installing and using Information Schema
plugins
As with all MySQL plugins the Information Schema plugins are installed and
removed using INSTALL PLUGIN and UNINSTALL PLUGIN as follows:

mysql> INSTALL PLUGIN is_my_plugin SONAME 'is_my_plugin.so';
mysql> UNINSTALL PLUGIN is_my_plugin;

Upon initialization our table is created in the INFORMATION_SCHEMA. It is visible,
in SHOW TABLES. However, it is not populated until queried, and every time it is
queried its content is generated anew; it works as a kind of virtual table that is
materialized whenever it is queried.

When running SHOW PLUGINS we should see:

mysql> SHOW PLUGINS\G

...

*************************** 10. row ***************************

 Name: IS_MY_PLUGIN
 Status: ACTIVE
 Type: INFORMATION SCHEMA
Library: is_my_plugin.so
License: GPL
...

Chapter 4

[85]

Alternatively, we can get this from one of the predefined tables
in INFORMATION_SCHEMA:

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS WHERE PLUGIN_NAME='IS_MY_
PLUGIN'\G

*************************** 1. row ***************************

 PLUGIN_NAME: IS_MY_PLUGIN
 PLUGIN_VERSION: 0.16
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: INFORMATION SCHEMA
 PLUGIN_TYPE_VERSION: 50137.0
 PLUGIN_LIBRARY: is_my_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
 PLUGIN_AUTHOR: Andrew Hutchings
 PLUGIN_DESCRIPTION: An information schema plugin
 PLUGIN_LICENSE: GPL
1 row in set (0.00 sec)

Tables in INFORMATION_SCHEMA are read-only, as dictated by the SQL Standard.
According to the Standard, write access to them should be denied to everyone. If we
try to run an update query on such a table we will see:

mysql> UPDATE MY_IS_TABLE SET VERSION=1;
ERROR 1044 (42000): Access denied for user 'root'@'localhost' to database
'information_schema'

Yes, even the almighty root user that has ALL PRIVILEGES ON *.* cannot modify
these tables!

The creation of Information Schema
plugins
The basic structure of the Information Schema plugins in similar to that of Daemon
plugins. They need to be declared with mysql_declare_plugin, and can have status
and system variables. The initialization function, though, is a requirement for them,
not an option, as this is the function where we define a new Information Schema
table and tell MySQL what should happen when it is queried.

Information Schema Plugins

[86]

Defining Information Schema plugins
Just like with any other plugin type we use a macro to declare a plugin. This time
we set the plugin type to MYSQL_INFORMATION_SCHEMA_PLUGIN. An example of the
definition may look like this:

mysql_declare_plugin(mysql_is_my_plugin)
{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &mysql_is_my_plugin,
 "IS_MY_PLUGIN",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "An information schema plugin",
 PLUGIN_LICENSE_GPL,
 is_my_plugin_init,
 is_my_plugin_deinit,
 0x0010,
 NULL,
 NULL,
 NULL
}

The differences start when we get to the initialization function. It still has the
same prototype:

int static_table_init(void *p);

However, this time p is a pointer to an ST_SCHEMA_TABLE structure that we need to
fill in. It is a structure that defines the layout of the Information Schema table and the
function calls for it. This structure is defined in sql/table.h as follows:

typedef struct st_schema_table
{
 const char* table_name;
 ST_FIELD_INFO *fields_info;
 TABLE *(*create_table)(THD *thd, TABLE_LIST *table_list);
 int (*fill_table)(THD *thd, TABLE_LIST *tables, COND *cond);
 int (*old_format)(THD *thd,
 struct st_schema_table *schema_table);
 int (*process_table)(THD *thd, TABLE_LIST *tables,
 TABLE *table, bool res,
 LEX_STRING *db_name,
 LEX_STRING *table_name);
 int idx_field1, idx_field2;
 bool hidden;
 uint i_s_requested_object;
} ST_SCHEMA_TABLE;

Chapter 4

[87]

The fact that we need to include anything from sql/ and may
work with types such as TABLE_LIST or COND automatically
means that plugins of this type strongly depend on internal
MySQL data structures. These plugins will typically only work
with the MySQL version they were compiled for.

The following table outlines the usage of elements for the structure:

Name Description
table_name The name for the Information Schema table. After calling the plugin

initialization function MySQL sets this member to match the plugin
name; that is, we do not need to do anything with it.

fields_info An array of ST_FIELD_INFO structures describing the fields of the
table.

create_table A function that creates a TABLE structure for our table. It is always
the same for any Information Schema table, and MySQL sets it
automatically to the necessary function.

fill_table The main function of our plugin. It generates the data that will be
shown in our Information Schema table.

old_format This is only used for built-in MySQL Information Schema tables that
have SHOW statement counterparts (For example, the INFORMATION_
SCHEMA.PLUGINS table has a SHOW PLUGINS counterpart). As
plugins cannot add or replace SHOW statements, this member is never
used for them.

process_table This function is only used by built-in MySQL Information Schema
tables that have their fill_table member set to get_all_tables()
defined in sql_show.cc. It is never used in plugins.

idx_field1 and
idx_field2

These members, again, are normally only used by built-in MySQL
Information Schema tables; the functions and data structures to use
them are not available to plugins.

hidden Set to true if the data should only be available via the corresponding
SHOW command, not as a table in the INFORMATION_SCHEMA. Plugins
should never set it, as they cannot provide a new SHOW command.

i_s_request
ed_object

The table opening method, not used here. This member, too, is only
used by get_all_tables and is completely ignored for plugins

In other words, the only members of ST_SCHEMA_TABLE that we would ever need to
set are fields_info and fill_table.

Information Schema Plugins

[88]

The fields_info member is an array of structures that defines the fields of our
Information Schema table. The structure itself is defined in sql/table.h as
the following:

typedef struct st_field_info
{
 const char* field_name;
 uint field_length;
 enum enum_field_types field_type;
 int value;
 uint field_flags;
 const char* old_name;
 uint open_method;
} ST_FIELD_INFO;

A fields_info array needs to have as many elements (these very structures) as
there are fields in our Information Schema table, plus one more with field_name
being NULL to denote the end of the array. The following table details the elements
of this structure:

Name Description
field_name The name of this field, usually defined in uppercase.
field_length This is complicated. It means the maximum number of characters

if the field is of a VARCHAR or TEXT type, the number of bytes
for BLOB, the display width for integers, the number of digits for
FLOAT or DOUBLE, and both the precision and scale (encoded as
precision*100+scale) for DECIMAL.

field_type An enum denoting the field type. See below.
value Unused.
field_flags Field attributes. MY_I_S_UNSIGNED if the field is unsigned,

MY_I_S_MAYBE_NULL if the field may have NULL values (that is,
if the field is not NOT NULL), or both as MY_I_S_UNSIGNED |
MY_I_S_MAYBE_NULL.

old_name The field name for the corresponding SHOW statement. It is
only used for Information Schema tables that have a SHOW
statement counterpart.

open_method This is only used by get_all_tables and is of no importance
for plugins

Chapter 4

[89]

A field_type denotes the type of the field. It uses the same enum_field_types that
should be familiar to anybody who has used the MySQL C client library. However,
only a subset of types is supported for fields of the Information Schema tables.
The supported types and the corresponding enum_field_types constants are
listed as follows:

Constant MySQL Type
MYSQL_TYPE_TINY TINYINT

MYSQL_TYPE_SHORT SMALLINT

MYSQL_TYPE_INT24 MEDIUMINT

MYSQL_TYPE_LONG INT

MYSQL_TYPE_LONGLONG BIGINT

MYSQL_TYPE_TIME TIME

MYSQL_TYPE_DATE DATE

MYSQL_TYPE_DATETIME DATETIME

MYSQL_TYPE_TIMESTAMP TIMESTAMP

MYSQL_TYPE_FLOAT FLOAT

MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TYPE_DECIMAL DECIMAL

MYSQL_TYPE_NEWDECIMAL DECIMAL

MYSQL_TYPE_TINY_BLOB TINYBLOB

MYSQL_TYPE_MEDIUM_BLOB MEDIUMBLOB

MYSQL_TYPE_BLOB BLOB

MYSQL_TYPE_LONG_BLOB LONGBLOB

MYSQL_TYPE_STRING VARCHAR or TEXT (depending on the length)

Out of these only MYSQL_TYPE_STRING, MYSQL_TYPE_LONGLONG, MYSQL_TYPE_LONG,
MYSQL_TYPE_DECIMAL, and MYSQL_TYPE_DATETIME are really used by built-in
MySQL Information Schema tables. It would be a safe bet to limit ourselves to
these five types, whenever possible.

So, for example, we can define the fields_info array as follows:

ST_FIELD_INFO my_is_fields[] =
{
 {"A_VARCHAR", 30, MYSQL_TYPE_STRING, 0, 0, 0, 0},
 {"AN_INT", 10, MYSQL_TYPE_LONG, 0, 0, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

Information Schema Plugins

[90]

The fill_table() function is used to fill our table with data when it is about to be
queried. As we have seen above, it should have the following prototype:

int fill_table(THD *thd, TABLE_LIST *tables, COND *cond);

The arguments of this function are as follows:

Argument Description

thd The thread context object for the connection that executes the query

tables A pointer into the list of tables of the current query to the element that
corresponds to our Information Schema table. More precisely, it corresponds
to the automatically created temporary table that will substitute our
table in the query. This is the table that we need to fill with data in
the fill_table() function.

cond The WHERE clause for the query. It can be used for the so called condition
pushdown. This means evaluating the condition (or a part of it) directly in the
fill_table() and putting only those rows into the temporary table that
can satisfy the WHERE clause, as opposed to putting all rows into it and relying
on MySQL to filter the garbage out. In certain cases this trick can speed up the
queries significantly. We will discuss condition pushdown in the next chapter.

To fill the destination temporary table with data we have store() methods of the
MySQL Field class and the schema_table_store_record() utility function. First,
we go over all fields of the table using their store() methods to store data in the
row. When all fields have got the values, that is when we have completely filled
one row with data, we call schema_table_store_record() to write this row to
the temporary table. We repeat this procedure until we have written all of the
rows we wanted.

There are five store methods in the Field class. Any one of them can be used
depending on the type of the data we want to store:

•	 Field::store(const char *to, uint length, CHARSET_INFO *cs)

•	 Field::store(longlong nr, bool unsigned_val)

•	 Field::store(double nr)

•	 Field::store_decimal(const my_decimal *d)

•	 Field::store_time(MYSQL_TIME *ltime, timestamp_type t_type)

For example, to store a UTF-8 string in the first field of the table we use:

tables->table->field[0]->store(my_str, strlen(my_str),
 system_charset_info);

Chapter 4

[91]

This example shows that all fields (objects of the Field class) are accessed via
the tables->table->field[] array. And that to store a string MySQL needs
to know its character set. If the string is in UTF-8 or pure 7-bit ASCII we can use
system_charset_info (which is always UTF-8). If we are lucky and the string is in
binary or in the Latin1 character set we can use my_charset_bin or my_charset_
latin1 respectively. Otherwise, we will need to use one of the get_charset(),
get_charset_by_name(), or get_charset_by_csname() functions, but details on
working with the MySQL character sets are beyond the scope of this book. Further
information is available in the include/m_ctype.h and mysys/charset.c files in the
MySQL source distribution.

There is an important detail to keep in mind. If the field is declared with the
MY_I_S_MAYBE_NULL flag, in other words if the field value can be NULL, we need
to set its "nullness" for every row, as the store methods will not do it for us. For
example, if the field in question could be NULL the previous example should be
modified to:

tables->table->field[0]->set_notnull();
tables->table->field[0]->store(my_str, strlen(my_str),
 system_charset_info);

On the other hand, to set it to NULL we simply write:

tables->table->field[0]->set_null();

Now, to write a row with data to the temporary table we will need a MySQL utility
function whose prototype, unfortunately, is not exported to plugins. That is, we have
to declare it in our plugin. This is done as follows:

bool schema_table_store_record(THD *thd, TABLE *table);

And we use it simply as:

 result = schema_table_store_record(thd, tables->table);

As almost always in MySQL this function returns 0 on success and 1 on failure.

A Static Table example
To familiarize ourselves with the extra structures and functions required for an
Information Schema plugin, we will start with a simple example. This plugin will
create an Information Schema table called VERSIONS that will return a few rows of
data with the version numbers for various MySQL internals:

#include <mysql_priv.h>

Information Schema Plugins

[92]

To see MySQL internal data structures such as TABLE_LIST, TABLE, and Field we
need to include the mysql_priv.h file. This is a mega-header that includes almost
everything else and a kitchen sink too. At least this is the case in MySQL 5.1 and
earlier versions, but it will change in one of the future MySQL releases. Still in 5.1 it
is the only header we include, everything else we may need is included by it.

bool schema_table_store_record(THD *thd, TABLE *table);

As discussed above we need to declare a schema_table_store_record() function.

static ST_FIELD_INFO versions_fields[] =
{
 {"NAME", 30, MYSQL_TYPE_STRING, 0, 0, 0, 0},
 {"VERSION", 10, MYSQL_TYPE_LONG, 0, 0, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

Now we define the structure of our table. It has two columns—one of type
VARCHAR(30) called NAME, and the other of type INT(10) called VERSION. The array is
terminated with an empty element.

static int fill_versions(THD *thd, TABLE_LIST *tables,
 COND *cond)
{

We start implementing our fill_table function—the one that fills the temporary
table with data. As we will need the table and character set pointers quite often, we
copy them into local variables for convenience:

CHARSET_INFO *cs = system_charset_info;
TABLE *table = tables->table;

These are the values we put into the first column:

 const char *version_str = "MySQL Version ID";
 const char *protocol_str = "MySQL Protocol Version";
 const char *frm_str = "MySQL FRM Version";

Let's put them into the table, one by one. As shown previously, we store the string in
the first field:

 table->field[0]->store(version_str,
 strlen(version_str), cs);

And the corresponding number (MYSQL_VERSION_ID is MySQL version as a number,
for example, 50147 for 5.1.47) in the second field:

 table->field[1]->store(MYSQL_VERSION_ID);

Chapter 4

[93]

Having done that, we insert the row into the temporary table:

 if (schema_table_store_record(thd, table))
 return 1;

Similarly we insert two more rows:

 table->field[0]->store(protocol_str,
 strlen(protocol_str), cs);
 table->field[1]->store(PROTOCOL_VERSION);
 if (schema_table_store_record(thd, table))
 return 1;

 table->field[0]->store(frm_str, strlen(frm_str), cs);
 table->field[1]->store(FRM_VER);
 if (schema_table_store_record(thd, table))
 return 1;

We are done, and if we have not failed so far, we report a success:

 return 0;
}

In the initialization function we set up the ST_SCHEMA_TABLE structure, as
described previously:

static int versions_init(void *p)
{
 ST_SCHEMA_TABLE *schema = (ST_SCHEMA_TABLE*) p;
 schema->fields_info = versions_fields;
 schema->fill_table = fill_versions;
 return 0;
}

Our simple plugin has neither a de-initialization function nor system or status
variables. What is left is to declare the plugin, and we are done:

static struct st_mysql_information_schema versions =
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

mysql_declare_plugin(versions)
{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &versions,
 "VERSIONS",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "A simple static information schema table",

Information Schema Plugins

[94]

 PLUGIN_LICENSE_GPL,
 versions_init,
 NULL,
 0x0100,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

When we build and install this plugin we should see something like:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'VERSIONS';

+---+
| Tables_in_INFORMATION_SCHEMA (VERSIONS) |
+---+
| VERSIONS |
+---+

1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE INFORMATION_SCHEMA.VERSIONS\G

*************************** 1. row ***************************

 Table: VERSIONS
Create Table: CREATE TEMPORARY TABLE 'VERSIONS' (
 `NAME` varchar(30) NOT NULL DEFAULT '',
 `VERSION` int(10) NOT NULL DEFAULT '0'
) ENGINE=MEMORY DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

See? It says TEMPORARY and ENGINE=MEMORY, because for the duration of the query
our Information Schema table is materialized using a temporary table.

mysql> SELECT * FROM INFORMATION_SCHEMA.VERSIONS;

+------------------------+---------+

| NAME | VERSION |
+------------------------+---------+
MySQL Version ID	50147
MySQL Protocol Version	10
MySQL FRM Version	6
+------------------------+---------+

3 rows in set (0.00 sec)

Chapter 4

[95]

Here we can see that the new Information Schema table has been created successfully
and we can query it to get the data.

mysql> SELECT * FROM INFORMATION_SCHEMA.VERSIONS

 --> WHERE NAME LIKE '%FRM%';

+-------------------+---------+
| NAME | VERSION |
+-------------------+---------+
| MySQL FRM Version | 6 |
+-------------------+---------+

1 row in set (0.00 sec)

We do not need to do anything special to support WHERE or ORDER BY or any other
SQL features; everything just works automatically.

A System Information plugin
In the previous chapter we created a Daemon plugin that exported getrusage()
data via status variables. For the sake of the example we will now do the same with
the Information Schema table. However, to not repeat ourselves we will go beyond
getrusage() and will also use other Linux system information functions. Yes,
unfortunately this plugin is unlikely to work on anything except Linux. One can
create a portable system information plugin by using, for example, the SIGAR library
(http://sigar.hyperic.com) but for simplicity we will keep the example free from
external dependencies.

#include <mysql_priv.h>
#include <sys/sysinfo.h>
bool schema_table_store_record(THD *thd, TABLE *table);

We start the plugin as usual, with the exception of sys/sysinfo.h that we need for
system information functions. Then we declare fields; for simplicity we will use a
name/value pair, the value being a long long integer:

static ST_FIELD_INFO sys_usage_fields[] =
{
 {"RESOURCE", 255, MYSQL_TYPE_STRING, 0, 0, 0, 0},
 {"VALUE", 20, MYSQL_TYPE_LONGLONG, 0, 0, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

Information Schema Plugins

[96]

Now we can perform our fill_table function starting by declaring local
variables, as usual:

int fill_sys_usage(THD *thd, TABLE_LIST *tables, COND *cond)
{
 CHARSET_INFO *cs= system_charset_info;
 TABLE *table= tables->table;
 rusage rusage;
 rlimit limit;

Now we need to write rows into the table, one by one. As we have seen in the
previous example, the procedure is always the same—set the value of the first
column, set the value of the second column, and store the row. Let's create a macro to
avoid copy-pasting the same lines over and over:

#define INSERT(NAME,VALUE) \
 table->field[0]->store(NAME, sizeof(NAME)-1, cs); \
 table->field[1]->store(VALUE); \
 if (schema_table_store_record(thd, table)) \
 return 1;

Now we can start inserting rows:

 INSERT("Total physical memory",
 get_phys_pages() * getpagesize());

We get the total number of physical memory pages and then multiply this by the
page size to obtain the total memory size in bytes.

 INSERT("Available physical memory",
 get_avphys_pages() * getpagesize());

Then do the same with the amount of free physical memory. This value may turn out
to be lower than expected because it does not include caches and buffers, which often
take up most of the available system memory.

 INSERT("Number of CPUs", get_nprocs());

This simply gives the total number of CPUs available to the operating system. This
also includes the multiple cores of a CPU and will show double the amount for
Hyper Threaded CPUs.

if (getrusage(RUSAGE_SELF, &rusage))
 return 1;

Chapter 4

[97]

This function gets details about the current CPU and block I/O usage for the current
process. In fact, it is supported in other operating systems and may give more
information in those operating systems.

 INSERT("CPU user time (seconds)", rusage.ru_utime.tv_sec);

The operating system records the amount of user CPU time the current process uses,
and we can display this information.

 INSERT("CPU system time (seconds)", rusage.ru_stime.tv_sec);

Likewise the system time used by the current process is recorded, and this can be
displayed as well.

 INSERT("Block input operations", rusage.ru_inblock);
 INSERT("Block output operations", rusage.ru_oublock);

Block I/O is also reported by the getrusage() function. We display this as two
separate rows.

 if (getrlimit(RLIMIT_AS, &rlimit))
 return 1;

In POSIX operating systems we can define limits to things such as the number of
open files on a per-user basis. It is often interesting to know this from a MySQL
perspective, because if the limits are too low unusual error messages can be
displayed in MySQL.

 INSERT("Maximum virtual memory", rlimit.rlim_cur);
 if (getrlimit(RLIMIT_DATA, &rlimit))
 return 1;
 INSERT("Maximum data memory", rlimit.rlim_cur);

Using the user limits data we obtained we can give the maximum amount of virtual
and data memory available to the process.

 if (getrlimit(RLIMIT_FSIZE, &rlimit))
 return 1;
 INSERT("Maximum file size", rlimit.rlim_cur);

The maximum file size can limit the size of the tables in MySQL, so it is important
that this is set high. This variable will show us what this is currently set to.

 if (getrlimit(RLIMIT_NOFILE, &rlimit))
 return 1;
 INSERT("Maximum number of files", rlimit.rlim_cur);

Information Schema Plugins

[98]

Finally we get the number of files limit. If set too low, it can cause problems for
installations with many tables. Knowing it will help to diagnose and prevent
these problems.

 return 0;
}

There are many more values that getrusage() reports and many more limits that
getrlimit() knows about. New rows can be added easily, but the mentioned
examples are enough to illustrate the concept.

We finish the plugin with the initialization function and a declaration, just as in the
first example:

int sys_usage_init(void *p)
{
 ST_SCHEMA_TABLE *schema= (ST_SCHEMA_TABLE*) p;
 schema->fields_info= sys_usage_fields;
 schema->fill_table= fill_sys_usage;
 return 0;
}

struct st_mysql_information_schema is_sys_usage =
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

mysql_declare_plugin(is_sys_usage)
{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &is_sys_usage,
 "SYS_USAGE",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "Information about system resource usage",
 PLUGIN_LICENSE_GPL,
 sys_usage_init,
 NULL,
 0x0010,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

Chapter 4

[99]

So we should now have a table in Information Schema called SYS_USAGE and
when queried it will give us live data about the system. Running on a Linux
system gives us:

mysql> select * from information_schema.sys_usage;

+---------------------------+---------------------+
| RESOURCE | VALUE |
+---------------------------+---------------------+
Total physical memory	4050092032
Available physical memory	1227526144
Number of CPUs	2
CPU user time (seconds)	0
CPU system time (seconds)	0
Block input operations	17832
Block output operations	48
Maximum virtual memory	9223372036854775807
Maximum data memory	9223372036854775807
Maximum file size	9223372036854775807
Maximum number of files	1024
+---------------------------+---------------------+

11 rows in set (0.01 sec)

mysql> select benchmark(100000000, 2*2);

+---------------------------+
| benchmark(100000000, 2*2) |
+---------------------------+
| 0 |
+---------------------------+

1 row in set (4.36 sec)

mysql> select * from information_schema.sys_usage;

+---------------------------+---------------------+
| RESOURCE | VALUE |
+---------------------------+---------------------+
Total physical memory	4050092032
Available physical memory	1226723328
Number of CPUs	2
CPU user time (seconds)	4
CPU system time (seconds)	0
Block input operations	17832
Block output operations	48
Maximum virtual memory	9223372036854775807
Maximum data memory	9223372036854775807
Maximum file size	9223372036854775807
Maximum number of files	1024
+---------------------------+---------------------+

11 rows in set (0.00 sec)

Information Schema Plugins

[100]

In this example we have shown one set of results, run a query that takes just over 4
seconds of user CPU time to execute, and got another set of results that shows the
increase in user CPU time. We now have a diagnostics tool inside MySQL!

Summary
In this chapter we have learned the basic structure of an Information Schema plugin.
We have discussed how it works, how it defines the table structure, and how it fills it
with the data. At the end of the chapter we have used this knowledge to develop two
fully functional Information Schema plugins.

In the next chapter we will look into more complex aspects of Information Schema
plugins such as condition pushdown and exposing internal MySQL data structures.

Advanced Information
Schema Plugins

We have seen in the previous chapter how to create a basic Information Schema
plugin and then further adapt this knowledge to expose the information about the
server operating system. In this chapter we will talk about advanced features of
the Information Schema plugins. We will discuss how to access MySQL internal
data structures and display them in Information Schema tables, and we will look at
condition pushdown optimization.

Accessing MySQL internals
One of the important use cases for the Information Schema plugin is to provide more
server diagnostics to the user, that is, to expose the data about the MySQL internals.
To do it we need to be able to find and use the internal data structures. Of course
MySQL is an open source project and we can see where the data is that we need to
capture. Typically, the data we need will be declared in the sql/ directory of the
source code, but sometimes they can be in mysys/ or elsewhere.

In order to access the internals we need to define a MYSQL_SERVER macro that the
server uses internally to see all of the declarations. Without it we only get a highly
filtered view, appropriate for plugins. In particular, we need this macro to access the
THD object. There are other tricks that may be needed to get the data we want. For
instance, we may want to make our plugin access a private class member, in which
case we need to extend the class so there are public accessors for the private data. An
example of this can be seen in the Information Schema cached queries plugin created
by Roland Bouman at: http://rpbouman.blogspot.com/2008/07/inspect-
query-cahce-using-mysql.html (yes, the word "cache" is spelled incorrectly in the
URL, it's not a typo in the book).

Advanced Information Schema Plugins

[102]

Condition pushdown
Condition pushdown is not a new kind of wrestling move but a special optimization
in the MySQL server. It allows the Storage Engine and Information Schema plugins
to use the WHERE condition to filter the rows returned to MySQL, as opposed to
letting MySQL process the WHERE condition internally after the rows have been
received. So it is effectively pushing down the WHERE condition into the plugin.
This optimization is not always meaningful to use. However, if the total number of
rows is large, while the number of rows that satisfy the WHERE clause is small, and
generating rows is relatively expensive—in such a case this optimization can bring
huge performance benefits. For example, the INFORMATION_SCHEMA.COLUMNS table
uses it, because it needs to open a table to get the information about its columns, and
it is far better to open only one table that the user is interested in, than to open every
table in every database, potentially thousands of them.

In these flowcharts, we can see the roles of the MySQL server in light gray and the
Information Schema plugin in dark gray. In the first flowchart, without condition
pushdown, all rows for the table are generated and returned. MySQL then filters
them to satisfy the WHERE condition for the user. A similar thing happens when
you query a normal table that does not use indexing. In the second example, the
Information Schema plugin takes the WHERE condition and uses it so that unneeded
rows are not even generated. The results are also filtered by MySQL but it will be
applying the filter on a lot less rows, and in many cases it will not filter anything out
(it depends on the implementation of the condition pushdown).

Chapter 5

[103]

Depending on the plugin this optimization may or may not be beneficial. For
example, condition pushdown is used quite a lot by the MySQL NDB Cluster storage
engine that converts the WHERE clause to NDBAPI calls to filter rows in the cluster
storage nodes rather than the MySQL server. In many situations this will give a
good performance gain, because different cluster nodes can perform the filtering
in parallel and, most importantly, rows that fail the WHERE condition will not be
sent over the network to the MySQL server. Similarly, condition pushdown is very
important for other engines that store the data remotely, such as the Federated
storage engine. As for Information Schema tables, condition pushdown makes sense
when generating a row is an expensive operation. All tables that provide information
about tables fall into this category. To know table metadata MySQL has to open this
table, and opening a table is not cheap. As big MySQL installations can potentially
have many thousands of tables, opening them all when only one table will match
the WHERE clause is simply not acceptable. This is why tables such as INFORMATION_
SCHEMA.TABLES, INFORMATION_SCHEMA.COLUMNS, INFORMATION_SCHEMA.TRIGGERS,
and a few others have to utilize condition pushdown to be usable.

Using condition pushdown
Condition pushdown is quite complex to implement and there will not be many
cases where it will be advantageous to use it in an Information Schema. That said, we
will cover the basics here.

The conditions are stored in a tree of Item objects. The hierarchy of Item classes is
huge (hundreds of classes) and even the base class is very complex. It is one of the
most fundamental classes in MySQL. It is used for expressions, and anything that may
have a value. There is an Item class (more precisely, a class derived from the base Item
class) for a field in a table, for a user variable, for a parameter in a prepared statement,
for an SQL function, for a subquery, for each comparison, mathematical or logical
operator, and so on. There are also very special Item classes, for example, for using in
GROUP BY or HAVING clauses with an expression that refers to another expression in the
SELECT clause. Luckily, for condition pushdown we will only need a few percent of all
that functionality and complexity. Don't let item.h header scare you!

We will not go into deep detail here, because although pushed conditions can bring
dramatic performance improvements they are not exactly easy to use and could well
span a few chapters on their own. In fact, Item classes were never designed to be
used by plugins and working with them is not much easier than hacking MySQL
server source code directly.

Advanced Information Schema Plugins

[104]

For the purpose of optimizing Information Schema tables, we are only interested
in the conditions of the form field=constant, where field is a field in our
Information Schema table. Alternatively, other comparison operators such as <=,>,
or BETWEEN can be used. Possibly many of these conditions can be used together in
a WHERE clause, combined with OR or AND operators. The corresponding part of the
Item hierarchy is shown in the following simplified graph (it is simplified, because
it omits seven intermediate classes—between Item and Item_field, between Item
and Item_func, and so on):

An expression in MySQL is represented as a tree of Item objects. Every class derived
from Item_func has the arguments() method that returns an array of arguments
of this function or operator. To parse the expression tree and extract constants for
early checking, which is the whole point of condition pushdown, one needs to do
something like the following:

1.	 Check if COND is, in fact, an Item_cond_or or Item_cond_and instance.
2.	 If yes, repeat the procedure recursively for each of the COND arguments.

 Otherwise, check if it is one of the operators we support, for example, if it is
Item_func_eq or Item_func_equal.

3.	 If yes, check if one of its arguments is Item_field that corresponds to the
field of our table that we can optimize on. Also, check if the other argument
is a constant. If everything is good, remember that the user only wants rows
where a given field must be equal to the given constant.

Chapter 5

[105]

We will not go into details about how to check the Item type, how to find if the Item
is a constant, or how to map Item_field to a table. This is because, not surprisingly,
MySQL already has a function that implements all of the above. Unfortunately, this
function, just like schema_table_store_record(), was not designed to be used
by plugins. We need to declare its prototype in our plugin. Furthermore, it uses a
structure that is declared in sql/sql_show.cc; we need to declare it in our plugin
too. We do this as follows:

typedef struct st_lookup_field_values
{
 LEX_STRING value1, value2;
 bool value1_is_wildcard, value2_is_wildcard;
} LOOKUP_FIELD_VALUES;

bool calc_lookup_values_from_cond(THD *thd, COND *cond,
 TABLE_LIST *table, LOOKUP_FIELD_VALUES *lookups);

This function will traverse the cond recursively, as explained before, and look for
conditions like field1=constant and field2=constant. Here, field1 and field2
are fields of our table indicated by the idx_field1 and idx_field2 members of
our ST_SCHEMA_TABLE structure, the one that we set up in the plugin initialization
function. If such a condition is found, the string representation of the value of the
constant will be stored in value1 or value2 as appropriate. Two other members of
the LOOKUP_FIELD_VALUES structure are not used by this function; they are set only
for SHOW … LIKE statements.

Using calc_lookup_values_from_cond() allows us to implement condition
pushdown quickly and easily, but it has its limitations. This function was written
to support condition pushdown for INFORMATION_SCHEMA.TABLES, INFORMATION_
SCHEMA.COLUMNS, and other similar MySQL built-in Information Schema tables, in
other words, to be able to avoid directory scan by extracting the table and directory
name from the query. That is, it assumes that constants are strings, it supports at
most two lookup fields and assumes that they cannot have NULL values, and it only
supports comparison for equality—that is, = and <=>. If we would like to support,
say, >= or LIKE, or filter on three fields, we would need to implement our own cond
traversal function, using calc_lookup_values_from_cond() as a good start.

A condition pushdown example
In this example, however, we will not do anything like that—calc_lookup_values_
from_cond() is good enough for that.

Advanced Information Schema Plugins

[106]

We will create an Information Schema table that contains a list of words. With the
WHERE condition we can limit what words are returned, as usual. But in our table
all the generated rows are numbered. Depending on whether condition pushdown
worked or not, a different number of rows will be generated and we will see it,
because row numbers will change.

We start by including mysql_priv.h and declaring functions and types that are
missing in it:

#include <mysql_priv.h>

typedef struct st_lookup_field_values
{
 LEX_STRING value1, value2;
 bool value1_is_wildcard, value2_is_wildcard;
} LOOKUP_FIELD_VALUES;

bool calc_lookup_values_from_cond(THD *thd, COND *cond,
 TABLE_LIST *table, LOOKUP_FIELD_VALUES *lookups);
bool schema_table_store_record(THD *thd, TABLE *table);

And we declare the fields of our table, one for the word and one for the number:

ST_FIELD_INFO cond_push_fields[] =
{
 {"NUMBER", 10, MYSQL_TYPE_LONG, 0, 0, 0, 0},
 {"TEXT", 100, MYSQL_TYPE_STRING, 0, 0, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
}

Now, let's do it. Fill the table, taking the WHERE clause into account. First, we declare
our local variables—for the character set and the table, as usual, the array or words
that we will put in the table, a sequence number for counting generated rows, and a
condition pushdown lookup structure.

int fill_cond_push(THD *thd, TABLE_LIST *tables, COND *cond)
{
 CHARSET_INFO *cs = system_charset_info;
 TABLE *table = tables->table;
 const char **ptr, *output[] = {"hello", "world", "this",
 "is", "a", "test", 0};
 int num;
 LOOKUP_FIELD_VALUES lookups;

Chapter 5

[107]

Then we initialize the lookups structure and call the magic function that will analyze
the WHERE clause and store the constants in this structure:

 bzero((char*) &lookups, sizeof(lookups));
 if (calc_lookup_values_from_cond(thd, cond,
 tables, &lookups))
 return 0;

The calc_lookup_values_from_cond() returns 1 when a field value is compared
to NULL. As our field cannot be NULL, we can return right away—nothing that we can
put in the table will satisfy the WHERE condition.

Otherwise we try to fill the table:

 for (num = 0, ptr = output; *ptr; ptr++)
 {
 if (lookups.value1.str &&
 my_strnncoll(cs, (const uchar*)*ptr, strlen(*ptr),
 (const uchar*)lookups.value1.str,
 lookups.value1.length))
 continue;

If the WHERE clause has given us a value that we can filter on—that is, if the str
pointer of the lookups.value1 is not 0—we compare it with the word that we
want to put into the row. For comparison we use the my_strnncoll() function that
compares two strings using the collation, passed as the first argument (system_
charset_info is utf8_general_ci), and takes both strings and their lengths too
(indeed, the string is not necessarily zero terminated; after all, one can write WHERE
field='a\0b').

If the value matches the word or if there is no value in the lookups.value1 at all, we
store a new row in the table:

 table->field[0]->store(++num);
 table->field[1]->store(*ptr, strlen(*ptr), cs);
 if (schema_table_store_record(thd, table))
 return 1;
 }
 return 0;
}

Advanced Information Schema Plugins

[108]

That's all. It was not too difficult. Now we only need to set the idx_field1 in the
initialization function and declare the plugin:

int cond_push_init(void *p)
{
 ST_SCHEMA_TABLE *schema = (ST_SCHEMA_TABLE*) p;
 schema->fields_info = cond_push_fields;
 schema->fill_table = fill_cond_push;
 schema->idx_field1 = 1;
 return 0;
}

struct st_mysql_information_schema cond_push=
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

mysql_declare_plugin(cond_push)
{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &cond_push,
 "COND_PUSH",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "A simple condition pushdown demo table",
 PLUGIN_LICENSE_GPL,
 cond_push_init,
 NULL,
 0x0010,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

If we compile and install this plugin, we should see:

mysql> select * from information_schema.cond_push;

+-----------+-------+
| INCREMENT | TEXT |
+-----------+-------+
1	hello
2	world
3	this
4	is
5	a
6	test
+-----------+-------+

6 rows in set (0.01 sec)

Chapter 5

[109]

There's nothing surprising here. There are six rows in the table.

mysql> select * from information_schema.cond_push where text='test';

+--------+------+
| NUMBER | TEXT |
+--------+------+
| 1 | test |
+--------+------+

1 row in set (0.00 sec)

Yes! Note that condition pushdown worked—we have put only one single row in the
table! Compare this to the result without condition pushdown:

mysql> select * from information_schema.cond_push where
concat(text)='test';

+--------+------+
| NUMBER | TEXT |
+--------+------+
| 6 | test |
+--------+------+

1 row in set (0.00 sec)

In this case the plugin has put all six rows in the table and MySQL has filtered out
the first five. We can use more complex conditions too:

mysql> select * from information_schema.cond_push where text='test' and
rand()<2;

+--------+------+
| NUMBER | TEXT |
+--------+------+
| 1 | test |
+--------+------+

1 row in set (0.00 sec)

As expected, adding more conditions with AND does not stop condition pushdown.

mysql> select * from information_schema.cond_push where
text=concat('te','st');

+--------+------+
| NUMBER | TEXT |
+--------+------+
| 1 | test |
+--------+------+

1 row in set (0.00 sec)

Advanced Information Schema Plugins

[110]

It is only important that the field is compared with the constant value. However, the
value does not have to be a literal—it can be a result of the expression.

But not everything is perfect:

mysql> select * from information_schema.cond_push where text='test' or
text='this';

+--------+------+
| NUMBER | TEXT |
+--------+------+
| 3 | this |
| 6 | test |
+--------+------+

2 rows in set (0.00 sec)

We would have naturally preferred this query to use condition pushdown, but it did
not. Simply because the calc_lookup_values_from_cond() function cannot extract
two constants corresponding to one field. To be able to optimize such a condition,
we would need our own implementation of COND tree parsing. Similarly, LIKE is not
optimized either:

mysql> select * from information_schema.cond_push where text LIKE 'test';

+--------+------+
| NUMBER | TEXT |
+--------+------+
| 6 | test |
+--------+------+

1 row in set (0.01 sec)

A User Variables Information Schema
plugin
In this plugin we will show how to access MySQL's internal data structures—the list
of user variables created in a connection. User variables are used to store data that
will persist just for one connection inside the MySQL server. Unfortunately, one of
their limitations is that there is no way to see what variables have been created. In
this example we will develop an Information Schema table that shows them.

User variables are stored in the user_vars member of the THD structure. It is a hash
that maps variable names to corresponding user_var_entry objects. We simply
need to traverse the hash, and for every user_var_entry element print its name and
its value converted to a string.

Chapter 5

[111]

To be able to see the user_var_entry and THD definitions we have to define the
following macro:

#define MYSQL_SERVER

Now we can include the obligatory mysql_priv.h and we will get many more
declarations than we were getting before. Basically, we can see and do everything
that the MySQL server core can see and do. But it comes with a price. Our plugin
becomes even more dependent on the server. It not only needs to be compiled
for exactly the same server version that it will later work with (this limitation is
nothing new for Information Schema plugins) but it also needs to be built exactly
as the server was. For example, if the server was built with the safemalloc memory
debugging facility or with the safemutex mutex debugging facility (that is, if the
server was built with -DSAFEMALLOC or with -DSAFE_MUTEX) our plugin will have to
do exactly the same. Otherwise, a plugin may not load, but more likely it will load,
and crash the MySQL. Whether the server was built with any of these facilities can be
seen in the server Makefile. Unfortunately, mysql_config does not tell us that.

#include <mysql_priv.h>

bool schema_table_store_record(THD *thd, TABLE *table);
ST_FIELD_INFO user_variables_fields[]=
{
 {"NAME", 255, MYSQL_TYPE_STRING, 0, 0, 0, 0},
 {"VALUE", 65535, MYSQL_TYPE_STRING, 0,
 MY_I_S_MAYBE_NULL, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

We declare the table fields as usual, but this time we use the MY_I_S_MAYBE_NULL
flag, as the variable values may be NULL.

Now we create the main function that will fill the table:

int fill_user_variables(THD *thd, TABLE_LIST *tables,
 COND *cond)
{
 CHARSET_INFO *cs= system_charset_info;
 TABLE *table= tables->table;
 HASH *user_vars = &thd->user_vars;
 char buf[1024];
 String tmp(buf, sizeof(buf), cs);

Advanced Information Schema Plugins

[112]

First, we have defined all the required local variables. Everything is straightforward
here. However, the String class deserves a clarification. We need a String object
to be able to get the value of a user variable—the user_var_entry::val_str()
method takes a pointer to a String as an argument. An instance of this class
represents, as we could easily guess a string. A string, as a sequence of characters,
its length in bytes, and the associated character set. The String class has quite a lot
of utility methods, such as set(), append(), and many others. The string can grow
automatically using malloc(), if needed, the memory will be freed in the destructor.
What is important for us here is the String can be constructed from a memory
buffer. In this case it will not allocate memory but will store the data in the buffer
as long as the buffer size is sufficient. If the string grows too large the String will
transparently allocate memory and copy the data into it. Practically, it means that if
we use a reasonably large buffer (but not too large—it is allocated on the stack) we
can avoid almost all malloc() calls in the String class. This is extremely convenient,
and indeed, we can see this pattern almost everywhere in MySQL server code.

 for (ulong idx= 0; idx < user_vars->records; idx++)

 {

HASH objects store a counter which contains the number of records in the hash. We
use it to figure out how many records we need to go through.

 my_bool is_null;
 user_var_entry *current_var =
 (user_var_entry*) hash_element(user_vars, idx);

Records in the HASH can be retrieved not only by a key (the user variable name, in
this case), but also by the number (because a HASH is built on top of an array). We use
it to iterate over all records in the hash.

 String *str = current_var->val_str(&is_null, &tmp,
 NOT_FIXED_DEC);

We need the string representation of the value of the user variable regardless of what
type the value actually is at the moment. Luckily, the user_var_entry object has a
var_str() method that does just that. We use it to get the value of the variable.

Chapter 5

[113]

The method val_str()—and in MySQL many objects, including Item and Field,
have method val_str()—always returns the value of the object as a string,
performing the conversion if necessary. It takes a String buffer as an argument and
returns a pointer to a String with the result. Strictly speaking, the returned pointer
does not have to be the same as the argument; it can be a completely different String.
In user_var_entry this method takes two more arguments—a pointer to a variable
where it returns whether the value is NULL, and a number of decimals, that will be used
in a float-to-string conversion if the value of a variable happens to be a float. A value
of NOT_FIXED_DEC means that the floating point value should be printed as is, and not
rounded to a particular number of decimals after the decimal point.

 table->field[0]->store(current_var->name.str,
 current_var->name.length, cs);

We store the name of the user variable in the first column of this row.

 if (is_null)
 table->field[1]->set_null();
 else
 {
 table->field[1]->set_notnull();
 table->field[1]->store(str->ptr(),
 str->length(), str->charset());
 }

Then we store the user variable value in the second column of this row. As the
second column is nullable, we need to use set_null() and set_notnull() methods
as appropriate.

 if (schema_table_store_record(thd, table))
 return 1;
 }
 return 0;
}

The rest of the plugin is the same as in other Information Schema plugins:

int user_variables_init(void *p)
{
 ST_SCHEMA_TABLE *schema = (ST_SCHEMA_TABLE*) p;
 schema->fields_info = user_variables_fields;
 schema->fill_table = fill_user_variables;
 return 0;
}

Advanced Information Schema Plugins

[114]

struct st_mysql_information_schema user_variables =
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

mysql_declare_plugin(user_variables)
{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &user_variables,
 "USER_VARIABLES",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "Lists the user variables for a current session",
 PLUGIN_LICENSE_GPL,
 user_variables_init,
 NULL,
 0x0010,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

We should now have a plugin that gives a table in Information Schema listing all
user variables in a current connection. When using it we should see something like
the following:

mysql> set @my_var="Hello world";
Query OK, 0 rows affected (0.00 sec)

mysql> set @int_var=123456, @real_var=123e+45, @null_var=NULL;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from information_schema.user_variables;

+----------+-------------+
| NAME | VALUE |
+----------+-------------+
null_var	NULL
my_var	Hello world
int_var	123456
real_var	1.23e+47
+----------+-------------+

4 rows in set (0.00 sec)

Chapter 5

[115]

A Binary Logs Information Schema
plugin
MySQL has quite a few SHOW commands, many of which have Information Schema
equivalents. There are, however, exceptions to this. One of them is the SHOW BINARY
LOGS command. For this plugin we will take the function from the MySQL server
that implements SHOW BINARY LOGS and convert it to an Information Schema plugin.
This will also demonstrate another aspect important to Information Schema plugins
that deal with MySQL internals—the fact that they need to handle locking. With the
user variables it was not an issue, because only the current connection can access its
variable. But multiple threads can access binary logs simultaneously so we need to
take appropriate precautions to make sure that it does not happen.

#define MYSQL_SERVER
#include <mysql_priv.h>
bool schema_table_store_record(THD *thd, TABLE *table);

ST_FIELD_INFO binary_logs_fields[] =
{
 {"LOG_NAME", 255, MYSQL_TYPE_STRING, 0, 0, 0, 0},
 {"FILE_SIZE", 20, MYSQL_TYPE_LONGLONG, 0, 0, 0, 0},
 {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

This table has two fields—a filename, which can be a maximum 255 bytes long, and a
current file size, which is defined as a long long int.

int fill_binary_logs(THD *thd, TABLE_LIST *tables, COND *cond)
{
 TABLE *table = tables->table;
 IO_CACHE *index_file;
 LOG_INFO cur;
 File file;
 char fname[FN_REFLEN];

 uint length;
 int cur_dir_len;

The code below was copied with minor adjustments from the sql/sql_repl.cc
function show_binlogs()—the very function that implements SHOW BINARY LOGS:

 if (!mysql_bin_log.is_open())
 return 0;

Advanced Information Schema Plugins

[116]

If the binary logging is currently disabled we return an empty result set.

 pthread_mutex_lock(mysql_bin_log.get_log_lock());
 mysql_bin_log.lock_index();

Lock the binary log mutex and the binary log index mutex to protect shared data
structures that we will be accessing below.

 index_file = mysql_bin_log.get_index_file();
 mysql_bin_log.raw_get_current_log(&cur);

We get the index file handle—to read old binary log filenames from it—and the
LOG_INFO structure that describes the current binary log.

 pthread_mutex_unlock(mysql_bin_log.get_log_lock());

We are done with the current log for now, so we can unlock its mutex. But we keep
the other mutex locked, because we will work with the index file below.

 cur_dir_len = dirname_length(cur.log_file_name);
 reinit_io_cache(index_file, READ_CACHE, (my_off_t) 0, 0, 0);

The index_file, as returned by the get_index_file() method, is not a simple OS
file handle, but a pointer to the IO_CACHE structure (IO_CACHE is a MySQL utility
functionality that optimizes I/O by using a memory buffer to cache file accesses). It
means we need to use corresponding functions to work with it. We want to read the
whole file—that is, we need to prepare the IO_CACHE for reading and reposition it to
the beginning of file.

 while ((length = my_b_gets(index_file, fname,
 sizeof(fname))) > 1)
 {

Loop through every line of the index file.

 int dir_len;
 ulonglong file_length = 0;
 fname[--length] = '\0';
 dir_len = dirname_length(fname);
 length -= dir_len;
 table->field[0]->store(fname + dir_len, length,
 &my_charset_bin);

Retrieve and store the filename of the binary log file.

 if (!(strncmp(fname+dir_len, cur.log_file_name +
 cur_dir_len, length)))
 file_length = cur.pos;

Chapter 5

[117]

If it corresponds to the current active log file then we use the current log position
from the LOG_INFO structure retrieved safely under a mutex.

 else
 {
 if ((file = my_open(fname, O_RDONLY|O_SHARE|O_BINARY,
 MYF(0))) >= 0)
 {
 file_length = (ulonglong)
 my_seek(file, 0L, MY_SEEK_END, MYF(0));
 my_close(file, MYF(0));
 }
 }

Otherwise this is an older log file; so open it, seek to the end, and use this as
the file length.

 table->field[1]->store(file_length);

Then we store this information in the table as well.

 if (schema_table_store_record(thd, table))
 {
 mysql_bin_log.unlock_index();
 return 1;
 }
 }
 mysql_bin_log.unlock_index();
 return 0;

Unlock the index file now that we are finished with it.

}

int binary_logs_init(void *p)
{
 ST_SCHEMA_TABLE *schema = (ST_SCHEMA_TABLE*) p;
 schema->fields_info = binary_logs_fields;
 schema->fill_table = fill_binary_logs;
 return 0;
}

struct st_mysql_information_schema binary_logs=
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

mysql_declare_plugin(binary_logs)

Advanced Information Schema Plugins

[118]

{
 MYSQL_INFORMATION_SCHEMA_PLUGIN,
 &binary_logs,
 "BINARY_LOGS",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "Lists the binary logs in use",
 PLUGIN_LICENSE_GPL,
 binary_logs_init,
 NULL,
 0x0010,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

We expect the result to appear as follows:

mysql> show binary logs;

+-----------------------------+-----------+
| Log_name | File_size |
+-----------------------------+-----------+
linuxjedi-laptop-bin.000001	106
linuxjedi-laptop-bin.000002	191
linuxjedi-laptop-bin.000003	106
linuxjedi-laptop-bin.000004	373
+-----------------------------+-----------+

4 rows in set (0.00 sec)

These are the results of the standard SHOW BINARY LOGS command. If the plugin
works correctly we should see the same in our Information Schema table:

mysql> select * from information_schema.binary_logs;

+-----------------------------+-----------+
| LOG_NAME | FILE_SIZE |
+-----------------------------+-----------+
linuxjedi-laptop-bin.000001	106
linuxjedi-laptop-bin.000002	191
linuxjedi-laptop-bin.000003	106
linuxjedi-laptop-bin.000004	373
+-----------------------------+-----------+

4 rows in set (0.00 sec)

Success! The Information Schema table contains exactly the same data.

Chapter 5

[119]

Summary
We have learned what condition pushdown is and how it can be used to optimize
Information Schema plugins that need a lot of processing time per row. We have also
looked into some real world examples of Information Schema plugins that access
internal MySQL data structures and expose them to the user.

This chapter concludes the subject of Information Schema plugins. In the next
chapter we will start looking at full-text parsers.

Full-text Parser Plugins
Traditionally, SQL only supported searches for values (stored in columns and rows
of tables), but not searches within values, unless we count LIKE, that lacks expressive
power. Still, often users need an ability to search within values (within text
documents, that is), so called full-text search.

In 2000, with the version 3.23.23, MySQL introduced a full-text search capability
and a new index type called FULLTEXT to support it. Full-text indexes contain
individual words from the TEXT, CHAR, or VARCHAR columns, and they can be
used by the MATCH … AGAINST() syntax.

Full-text parser is a component of the full-text search that breaks the value of the
TEXT, CHAR, or VARCHAR column into words that will go into the full-text index. It is
also used by MATCH … AGAINST() to split a query string into words and, optionally,
recognize Boolean full-text search operators.

Full-text plugins can replace this component or modify its behavior. For example,
they can extract the text from the column value (if the column value is a PDF or, say,
a URL), they can use a different algorithm for splitting text into words (for example,
more suitable for Asian languages), or they can modify the words before they are
stored in the index (for example, apply stemming). They can do all of that, or they
can replace only part of the built-in full-text parser functionality, and let the rest have
the default behavior.

In this chapter we will look at the structure of a full-text parser plugin and create an
example parser that uses special rules for splitting text into words.

Full-text Parser Plugins

[122]

The full-text parser plugin architecture
Full-text parsers were the first plugin type implemented in the Plugin API. In fact,
both the Plugin API and the full-text parsers were developed at the same time within
the same project. Unlike Information Schema tables or storage engines, MySQL did
not support multiple full-text parsers originally. The support for them was added
together with the full-text parser plugins. No wonder the full-text parser API was
carefully designed specifically for plugins, and it managed to achieve almost a
complete separation of a plugin from the server internals. As a result, the full-text
parser API is simple and very stable; it has hardly changed since its inception in
2005, and full-text parser plugin binaries that worked back then can still be loaded in
MySQL now and they will work as designed.

Three roles of a full-text parser plugin
When MySQL needs to parse a piece of text, be it for insertion into a full-text index,
deletion from a full-text index, or during a full-text search to parse a search query, it
does the following:

1.	 Take the column values if it is an INSERT, UPDATE, or DELETE. Take a query
string if it is MATCH … AGAINST()

2.	 Split the text into words, and discard the rest
3.	 For every word: do the required work (insert into the index, delete from the

index, search in the index, whatever is needed)

A full-text parser plugin can add itself to the above in three different places. First, it
can crawl between step one and step two, and modify the text before it gets parsed.
It would be an "extractor" plugin, its job is to convert the data as stored in a table to
a text that can be parsed and indexed. If we store PDF or DOC files in MySQL, such
a plugin can allow MATCH … AGAINST() to search in them. If we store only filenames
in the table, an "extractor" plugin can open the file, read it, and let MySQL search
within file contents even if the table column has only filenames. Or it can allow
indexing of remote content and only store URLs in the table.

Chapter 6

[123]

Second, a full-text parser plugin can replace step two and split the text into words
itself. It would be a "tokenizer" plugin. Granted, MySQL's built-in algorithm for
word-splitting in the full-text search is not very sophisticated. It does not work with
languages where words typically are not separated by spaces. It may make mistakes
when parsing words with apostrophes. It is not very flexible; for example, it can
ignore all words shorter than the ft_min_word_len configuration option, but often
one wants to ignore almost all short words, and still keep a few important acronyms.
A "tokenizer" plugin can remove these limitations.

And, third, a full-text parser plugin can put itself between step two and step three.
That is, MySQL will split the words using a built-in parser (which is quite often still
good enough), but a plugin will see and possibly modify every word before MySQL
does anything with it (like, stores in the index). It would be a "post-processor"
plugin. Such a plugin can, for example, do stemming to improve the quality of the
search, or for every word add all related terms to the list (so that, say, searching for
"Linux" would find an article about "Ubuntu" or "Gentoo").

We have seen that there are three roles a full-text parser plugin can take—an
"extractor", a "tokenizer", or a "post-processor". Of course, it can also take two or all
of the three roles, it all depends on how we write it.

Installing and using a full-text parser plugin
Not surprisingly, the full-text parser plugins are installed just like any other plugins.
Their use is, however, quite unique. When creating a table or adding an index we
need to specify which full-text parser plugin we will use for an index. For example:

mysql> CREATE TABLE t1 (a TEXT, FULLTEXT INDEX(a) WITH PARSER my_parser_
plugin);

or

mysql> ALTER TABLE t1 ADD FULLTEXT INDEX(a) WITH PARSER my_parser_plugin;

Full-text Parser Plugins

[124]

After that everything works automatically; the server transparently invokes a plugin
when some parsing is due. When executing, for example, an INSERT statement on a
table that uses one of these plugins the following execution flow will apply:

Structure of a full-text parser plugin
The full-text parser plugin is declared similar to any other plugin we have seen so
far. The difference is in the info structure, which always depends on the particular
plugin type.

For the full-text plugins it is defined as:

struct st_mysql_ftparser
{
 int interface_version;
 int (*parse)(MYSQL_FTPARSER_PARAM *param);

Chapter 6

[125]

 int (*init)(MYSQL_FTPARSER_PARAM *param);
 int (*deinit)(MYSQL_FTPARSER_PARAM *param);
};

Besides the obligatory API version number it contains the callback functions that
MySQL will use to perform the parsing job. The parser init() function is called
once per statement before any parsing is done. The deinit() function is called at
the end of the statement if the init() function was called. The parse() function is
called somewhere between init() and deinit() calls, as many times as necessary,
and does the actual parsing.

Do not confuse parser init() and deinit() functions from
the st_mysql_ftparser structure with the plugin init()
and deinit() functions from the st_mysql_plugin structure.
These, as we remember, can be specified for a plugin of any type,
and they are called when a plugin is loaded and unloaded.

All of these parser functions take a structure called MYSQL_FTPARSER_PARAM as an
argument. This structure contains a pointer to the text that needs to be parsed and
pointers to server functions that parse the text and consume parsed words. The
complete definition of this structure is as follows:

typedef struct st_mysql_ftparser_param
{
 int (*mysql_parse)(struct st_mysql_ftparser_param *,
 char *doc, int doc_len);
 int (*mysql_add_word)(struct st_mysql_ftparser_param *,
 char *word, int word_len,
 MYSQL_FTPARSER_BOOLEAN_INFO *);
 void *ftparser_state;
 void *mysql_ftparam;
 struct charset_info_st *cs;
 char *doc;
 int length;
 int flags;
 enum enum_ftparser_mode mode;
} MYSQL_FTPARSER_PARAM;

The following table describes each of the elements inside this structure:

Element Description
mysql_parse() MySQL's built-in full-text parser. The server would have used it to

split a text into words if there were no plugin specified.

Full-text Parser Plugins

[126]

Element Description
mysql_add_word() A function to process individual words. A full-text parser must call

it for every word extracted from the text.
ftparser_state Not used by MySQL. A plugin can use it for any purpose, to store

anything it wants.
mysql_ftparam Used internally by MySQL to pass information down to

mysql_parse() and mysql_add_word(). A plugin
should never touch it.

doc The text to parse.
length The length of the text to parse
cs The character set of the text to parse
flags Either MYSQL_FTFLAGS_NEED_COPY or 0. No other flags exist.
mode The parsing mode in which the parser should operate. See below

The mysql_parse() function invokes the original MySQL full-text parser. It can be
used by "extractor" plugins to let MySQL parse the text that a plugin has extracted.
Or by "post-processor" plugins that are not interested in the original text, but only in
individual words, and want to kick in after MySQL has parsed the text. In both cases,
a plugin invokes the original MySQL parser via the mysql_parse member of the
MYSQL_FTPARSER_PARAM structure.

mysql_add_word(), on the other hand, is not an optional function that a plugin may
invoke—it must be invoked for every parsed word. It is this function that consumes
parsed words, the words are extracted from the text for the sole reason of being
passed into mysql_add_word(). What it will do with them is not always the same,
but typically it will accumulate them (add to a list or a tree) and after parsing all
words will be inserted in the index, deleted from the index, or searched in the index,
as appropriate. A plugin may redefine this function, by changing mysql_add_word
pointer to its own function, and then this plugin's own function will be called for
every word. This is what "post-processor" plugins do. Of course any such function
needs to invoke the original mysql_add_word() at the end, otherwise no parsed
word will ever reach MySQL.

The ftparser_state member could be used to share the parsing context between
the init(), deinit(), and parse() functions. For example, a "post-processor"
plugin may store the original value of the mysql_add_word member there to be able
to call it later.

Chapter 6

[127]

Then, there are, of course, doc, length, and cs members that give us the text to
parse, its length in bytes, and its character set. The length is essential, because the text
is not necessarily zero terminated. The character set is important, but unfortunately
not all MySQL functions that work with it are part of the Plugin API. By using them
we would inevitably break the versioning protection and risk a crash any time
MySQL developers make a change in the character set code. A complete solution to
this problem will come after MySQL 5.1, in the framework of Server Services, which
are described in the Appendix. Meanwhile, we will ignore the character set in our
plugins below.

Although the flags element is there to set flags, currently there is only one flag
available called MYSQL_FTFLAGS_NEED_COPY. To understand it, we will need an
example. Let's say we have an "extractor" plugin that allows us to index files having
only their names in the database. That is, we will treat doc as a filename, open the file
and use mysql_parse() to parse it. Such a plugin can be implemented like this:

 char buf[1024];
 FILE *f = fopen(param->doc, "r");
 while (fgets(buf, sizeof(buf), f))
 param->mysql_parse(param, buf, strlen(buf));
 fclose(f);

This is, of course, a very simplified example. It has no error checking, and
param->doc may be not zero terminated, but it shows the problem. The parsing
function mysql_parse() will find words in our buf and will call mysql_add_word()
with pointers to words—pointers into our buf. However, when we read the next
line from the file, buf will be overwritten with new content and old words, defined
as pointers into it, will change to garbage. Furthermore, when we return from our
parse() function, buf will cease to exist, because it is declared as a local variable
on the stack. For our example to work we want mysql_add_word() to make a
copy of every word that it needs, or to use and discard words right away and not
expect them to persist. And we should tell mysql_add_word() that it needs to copy
words by setting this flag—MYSQL_FTFLAGS_NEED_COPY. Sometimes this flag may
be set by MySQL too, before invoking our parse() function, if MySQL needs
mysql_add_word() to copy words even if the plugin does not require it. Note that
copying all words (and allocating memory for them) adds significant overhead to
the full-text processing, so try to use this flag sparingly. For example, MySQL's
built-in mysql_parse() function does not need to set it; it defines words as pointers
into doc text, and all words will stay valid as long as the doc text itself will, which
is long enough for MySQL and does not require copying of words.

Full-text Parser Plugins

[128]

Finally there are different modes in which our parser may operate, and the mode
member tells us which one to use:

Parse mode Description
MYSQL_FTPARSER_SIMPLE_MODE This is used, for example, for indexing. The

parser should return only words that need to
be in the index—that is, stop words, or very
short and very long words should be filtered
out and not passed to mysql_add_word().

MYSQL_FTPARSER_WITH_STOPWORDS This mode is used in Boolean searches for
phrase matching. When matching a phrase
MySQL needs to consider all words, and in
this mode the parser must return all words—
including stop words, very short and long
words, and so on. No word can be filtered out
by a parser.

MYSQL_FTPARSER_FULL_BOOLEAN_
INFO

This mode is used to parse a query string
for Boolean searches. A query string may
contain Boolean operators, and a parser
must properly recognize them all and set the
MYSQL_FTPARSER_BOOLEAN_INFO structure
accordingly. This is the only mode where this
structure is used. In this mode no stop word
should be ignored either.

Now, if we go back to the definition of the mysql_add_word() function we will
see the last argument, which is of the type MYSQL_FTPARSER_BOOLEAN_INFO. This
structure is only used in MYSQL_FTPARSER_FULL_BOOLEAN_INFO parsing mode;
we need to use it to pass the information about Boolean operators to MySQL. It is
defined as follows:

typedef struct st_mysql_ftparser_boolean_info
{
 enum enum_ft_token_type type;
 int yesno;
 int weight_adjust;
 char wasign;
 char trunc;
 char prev;
 char *quot;
} MYSQL_FTPARSER_BOOLEAN_INFO;

Chapter 6

[129]

Let's look at the individual members of this structure:

Element Description
type The type of token passed to mysql_add_word() in the word argument.
yesno It is greater than 0 if this word should absolutely be present in text for

a match to occur. It is less than 0 if the word must not be present in
any matching text. It is 0 if the word may be present in matching text
(which will increase its relevance), but it is not a requirement. In the
default MySQL settings this member corresponds to + (plus) and –
(minus) full-text search operators.

weight_adjust A relative importance of the word in this query. A value greater than 0
increases a word's importance, a value less than zero decreases it.
In the default MySQL settings this corresponds to > (greater than)
and < (less than) full-text search operators.

wasign The sign of the word's weight. If it is non-zero the word is considered
a noise word; its presence in the text decreases the relevance. In the
default MySQL settings this corresponds to the ~ (tilde) full-text
search operator.

trunc If non-zero, the word argument is treated as a prefix. Any word in the
text that starts from this prefix will make a match. In the default MySQL
settings this corresponds to the * (asterisk) full-text search operator.

prev It is used by the mysql_parse() function. A plugin can ignore
it completely.

quot It should be initialized to null, and changed to not null on every
token that starts a phrase search. In the default MySQL settings this
corresponds to " (double quotes) full-text search operator. MySQL
automatically changes it back to null at the end of the phrase.

The type, type of token, can be any of the following:

Type Description
FT_TOKEN_EOF It is ignored by MySQL. A plugin does not need to use it

either. It is enough to return from the parse() function at
the end of the text; there is no need to pass the FT_TOKEN_
EOF token down to the mysql_add_word() function.

FT_TOKEN_WORD A word. Just any normal word in the Boolean full-text
search query.

FT_TOKEN_STOPWORD A stop word. A word that is ignored during indexing, it is
never present in a full-text index.

Full-text Parser Plugins

[130]

Type Description
FT_TOKEN_LEFT_PAREN Start of a subexpression. In the default MySQL settings this

corresponds to ((left parenthesis) full-text search operators.
This token type is also used to mark the beginning of a
phrase (because a phrase is also a subexpression, in a sense).
MySQL distinguishes between these two cases by looking at
the quot member.

FT_TOKEN_RIGHT_PAREN Right parenthesis, end of a subexpression or a phrase search.

For the last two tokens mysql_add_word() ignores the word argument.

So, in a simple case we can use MYSQL_FTPARSER_BOOLEAN_INFO as follows:

MYSQL_FTPARSER_BOOLEAN_INFO boolean_info =
 { FT_TOKEN_WORD, 0, 0, 0, 0, 0, 0 };
param->mysql_add_word(param, word, len, &boolean_info);

The official documentation for all of these structures, constants, and functions can
be found in the plugin header file plugin.h. It is well worth looking through when
writing plugins of this type.

A PHP full-text parser
To show the layout of a full-text parser plugin we will create a simple parser to parse
PHP scripts. PHP syntax has a few peculiarities that are not taken into account by the
MySQL built-in full-text parser. In particular, all variable names in PHP start with
a dollar sign, which is, in fact, a part of the name; a variable $while is not the same
as a loop statement while. But a dollar sign is not just another character that can be
used in variable names—the string "foobar" contains two PHP variables, not one.
Also, variables can have different scopes; a variable foo::$bar is not the same as a
variable $bar. Let's try to solve this in our full-text parser plugin. According to the
above, it will be a "tokenizer" plugin—a plugin that splits the text into words.

As usual, we start by including the required header files:

#include <mysql/plugin.h>
#include <stdio.h>
#include <ctype.h>

Chapter 6

[131]

A valid PHP variable name can contain letters, underscores, digits, or bytes with
values from 127 to 255. As we will need this check quite often, it makes sense to
create a function for it:

static int isphpvar(unsigned char x)
{
 return isalnum(x) || x == '_' || (x >= 127 && x <=255);
}

Now we can start our main function of a plugin—the parsing function:

static int parse_php(MYSQL_FTPARSER_PARAM *param)
{
 char *end = param->doc + param->length;
 char *s = param->doc;

In our first full-text parser example we will not bother supporting Boolean mode
operators, all tokens will be of the FT_TOKEN_WORD type:

 MYSQL_FTPARSER_BOOLEAN_INFO bool_info =
 { FT_TOKEN_WORD, 0, 0, 0, 0, 0, 0 };

Now we start going through the text, looking for words (according to our definition
of a "word"). The dollar sign sometimes means the end of a previous word and a
beginning of a new identifier, like in "foobar", but not always. Sometimes it
can be in the middle of a word, like in MyClass::$myvar. We will maintain a
dollar_ok variable to know if a dollar sign can happen at that place without
breaking the current word:

 for (;;)
 {
 char *word_start;
 int dollar_ok;

First we skip characters that cannot be part of a word:

 while (s < end && !isphpvar(*s) && *s != '$')
 s++;

And we finish when we have parsed all of the text:

 if (s >= end)
 break;

Full-text Parser Plugins

[132]

Otherwise we are at the first character of a new word. We remember the position,
and, of course, a dollar sign can happen here—it can be at the beginning of a word:

 word_start = s;
 dollar_ok = 1;

Then we go through valid characters (letters, digits, underscore, but excluding a
dollar sign). Note that as soon as we have seen one of these characters, we do not
expect to see a dollar sign anymore:

 while (s < end && isphpvar(*s))
 {
 dollar_ok = 0;
 while (s < end && isphpvar(*s))
 s++;

Here, we have stopped at the first character, which is not a letter, digit, or
underscore. We need to check if it is a scope resolution operator—two colons (::). If
yes, we skip it and read the next part of the identifier. After two colons we can see a
dollar sign again:

 if (s >= end-1 || s[0] != ':' || s[1] != ':')
 break;
 s+=2;
 dollar_ok = 1;
 }

We come here after reading as many letters, digits, underscores, and double colons
as possible. If the next character is a dollar sign, and it does not end the word at its
current place, we read it too, and a part of the identifier after it:

 if (s < end && *s == '$' && dollar_ok)
 {
 s++;
 while (s < end && isphpvar(*s))
 s++;
 }

Chapter 6

[133]

Having read as much as we could without breaking the word, we pass that part of
the text to MySQL using the mysql_add_word() function, as explained previously:

 param->mysql_add_word(param, word_start, s – word_start,
 &bool_info);
 }
 return 0;
}

We end the plugin with declarations, as usual:

static struct st_mysql_ftparser ft_php=
{
 MYSQL_FTPARSER_INTERFACE_VERSION,
 parse_php,
 NULL,
 NULL
};

mysql_declare_plugin(fulltext_demo)
{
 MYSQL_FTPARSER_PLUGIN,
 &ft_php,
 "php_code",
 "Sergei Golubchik",
 "Simple Full-Text Parser for PHP scripts",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0100,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

When we go ahead, compile, and install our plugin, we can use it as follows:

mysql> CREATE TABLE ft_demo (php TEXT, FULLTEXT(php) WITH PARSER php_
code) ENGINE=MyISAM;
Query OK, 0 rows affected (0.01 sec)

Full-text Parser Plugins

[134]

We create a table with a full-text index, and tell MySQL that this index should use
our own parser—php_code.

mysql> INSERT ft_demo VALUES ('$a=15; echo $this->var;'), ('echo
$classname::CONST_VALUE;'), ('echo "foobar";'), ('echo
AnotherClass::$varvar;'), ('echo MyClass::CONST_VALUE;');
Query OK, 5 rows affected (0.00 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM ft_demo;

+-------------------------------+
| php |
+-------------------------------+
| $a=15; echo $this->var; |
| echo $classname::CONST_VALUE; |
| echo "foobar"; |
| echo AnotherClass::$varvar; |
| echo MyClass::CONST_VALUE; |
+-------------------------------+

5 rows in set (0.01 sec)

We have inserted a few rows with pieces of PHP code into our table. Now, let's try a
couple of queries:

mysql> select * from ft_demo where MATCH php AGAINST('this');
Empty set (0.00 sec)

mysql> select * from ft_demo where MATCH php AGAINST('$this');

+-------------------------+
| php |
+-------------------------+
| $a=15; echo $this->var; |
+-------------------------+

1 row in set (0.01 sec)

Chapter 6

[135]

See, how $this was found, while this was not—because the variable name includes
the dollar sign, exactly as we wanted. A few more queries:

mysql> select * from ft_demo where MATCH php AGAINST('$varvar');
Empty set (0.00 sec)

mysql> select * from ft_demo where MATCH php AGAINST
('AnotherClass::$varvar');

+-----------------------------+
| php |
+-----------------------------+
| echo AnotherClass::$varvar; |
+-----------------------------+

1 row in set (0.00 sec)

Again, a complete variable name includes the class name. Simple $varvar is just not
in the index.

But not only variable names were indexed:

mysql> select * from ft_demo where MATCH php AGAINST('15');

+-------------------------+
| php |
+-------------------------+
| $a=15; echo $this->var; |
+-------------------------+

1 row in set (0.01 sec)

mysql> select * from ft_demo where MATCH php AGAINST('echo' in
boolean mode);

+-------------------------------+
| php |
+-------------------------------+
| $a=15; echo $this->var; |
| echo $classname::CONST_VALUE; |
| echo "foobar"; |
| echo AnotherClass::$varvar; |
| echo MyClass::CONST_VALUE; |
+-------------------------------+

5 rows in set (0.00 sec)

Full-text Parser Plugins

[136]

At last, we can see the complete content of the index with the myisam_ftdump
utility. Note that it internally puts all words into lower case before printing them,
independent of how they are stored in the index:

shell$ myisam_ftdump -c ft_demo 0
 1 1.3862944 $a
 1 1.3862944 $bar
 1 1.3862944 $classname
 1 1.3862944 $foo
 1 1.3862944 $this
 1 1.3862944 15
 1 1.3862944 anotherclass::$varvar
 1 1.3862944 const_value
 5 0.0000000 echo
 1 1.3862944 myclass::const_value
 1 1.3862944 var

The columns are: number of rows that contain the word, word's global weigh (it is
zero for echo, because this word is present in every row; that is, it cannot be used
for distinguishing rows), and the word itself. It is the ultimate proof that our parser
worked as we wanted it, and dollar signs and double colons were taken as part of
the word.

Summary
In this chapter we have learned the full-text parser API, and created a "tokenizer"
plugin which, despite being simple, solves a specific problem that cannot be solved
by MySQL's built-in full-text parser. In the next chapter we will look more into the
full-text parsers, creating "extractor" and "post-processor" plugins, and a plugin that
supports Boolean search operators.

Practical Full-text Parsers
In the previous chapter we covered the basics of what a full-text parser plugin can
do, how it works, and what is required to create one. In this chapter we will expand
on this by going deeper into Boolean mode queries and creating full-text parsers that
can be used in real-world applications.

Boolean parsers
The default, natural language, full-text search mode works well for inexperienced
users who can simply describe what they want to find using plain English (or
any other language) and let the system figure out, with complex statistical and
probabilistic analysis, what rows are relevant to them. Other users want more control
over what will be found. This is where Boolean search mode is used. It allows users
to specify exactly which words must be present in all found rows and which words
must not be present. It can search for "phrases"—sequences of words—for prefixes
of words, and fine tune the importance of individual words for the result of a query.
For Boolean search mode to work, the full-text parser needs to support it; it needs
to be able to extract the Boolean search operators from a query and to convey this
information to MySQL.

In our example from the previous chapter we ignored Boolean search mode and only
sent the search words—not Boolean operators—from the query to the server. In this
chapter we will implement a working full-text parser plugin that supports Boolean
search operators.

Practical Full-text Parsers

[138]

A full-text parser plugin sends the information about Boolean operators to MySQL
using the same mysql_add_word() function. A parser, of course, can implement
any syntax for Boolean operators. In the following table we show the Boolean search
syntax as implemented by the MySQL built-in full-text parser:

Operator Semantics In the parser
+ The following word must be present

in any matched row.
boolinfo.yesno = 1; or any
positive number

- The following word must not be
present in any matched row.

boolinfo.yesno = -1; or any
negative number

(no
operator)

A row can match with or without the
word. But if the word is present in the
row, it increases the row relevance.

boolinfo.yesno = 0;
boolinfo.wasign = 0;

~ A row can match with or without the
word. But if a word is present in the
row, it decreases the row relevance.
The word is a noise word.

boolinfo.wasign = 1; or
anything besides zero. In a sense, this
member defines the sign of the word's
weight adjusting.

> Increase a word's weight. This word,
if present in a row, increases its
relevance more (or decreases more,
depending on the wasign) than other
words.

boolinfo.weight_adjust++;
where each increment increases the
weight by 50%.

< Decrease a word's weight. This word,
if present, increases the row relevance
less (or decreases less, depending on
the wasign).

boolinfo.weight_adjust‑‑;
where each decrement decreases the
weight by 33%.

(Start of a subexpression boolinfo.type =
FT_TOKEN_LEFT_PAREN;

) End of a subexpression boolinfo.type =
FT_TOKEN_RIGHT_PAREN;

* Wildcard prefix search boolinfo.trunc = 1;

"..." Literal phrase search boolinfo.type =
FT_TOKEN_LEFT_PAREN;
boolinfo.quot = "";

for a phrase start, or
boolinfo.type =
FT_TOKEN_RIGHT_PAREN;

for a phrase end. The quot member
can be anything as long as it is not
zero. As all words in a phrase must be
present for a phrase to match, they all
should have boolinfo.yesno > 0.

Chapter 7

[139]

Now let's put this knowledge into practice and create a plugin that supports
Boolean operators.

A Boolean full-text parser
We know the Boolean syntax of the MySQL built-in full-text parser. MySQL already
supports it; there is no fun in reimplementing the same thing. To do something
new we could make a parser that supports AND, OR, and NOT keywords, which is
supposedly a more user-friendly syntax and our users may like it more than
MySQL plus and minus prefixes.

How could our parser support such a syntax? It could, for example, by doing
look-ahead, reading the next word before sending the current one to MySQL. If the
next word is AND, the current one must have yesno=1. The idea is simple, but the
devil, as always, is in the detail:

•	 Both words before and after AND must have yesno=1.
•	 To support foo AND NOT bar we may need to look two words ahead.
•	 Typically, both words around OR must have yesno=0. But not if an AND is

involved. In foo OR bar AND bla the second word must have yesno=1.
•	 In a query string such as foo AND bar OR some AND thing we cannot

simply have yesno=1 in all four words. It would mean that all four are
necessary, as if it were foo AND bar AND some AND thing. For our query
the equivalent MySQL syntax would be (+foo +bar) (+some +thing).
This is how we need to parse this and similar queries. In other words, we
will use subexpressions to separate AND and OR words.

•	 If no operator is used, as in foo bar, we will parse it as foo OR bar.

Can we pull it off? We start, as always, by including the necessary headers:

#include <mysql/plugin.h>
#include <stdio.h>
#include <ctype.h>

And to finish with the simple stuff we can declare the plugin at once:
static struct st_mysql_ftparser ft_andor =
{
 MYSQL_FTPARSER_INTERFACE_VERSION,
 andor_parse,
 NULL,
 NULL
};

mysql_declare_plugin(andor)

Practical Full-text Parsers

[140]

{
 MYSQL_FTPARSER_PLUGIN,
 &ft_andor,
 "andor",
 "Sergei Golubchik",
 "A Full-Text AND/OR boolean parser",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0100,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

A "word" extracted from the text is described by a pointer and a length. For
convenience we put it in a structure:

typedef struct {
 char *start;
 int len;
 int yesno;
} WORD;

Having a yesno property in the same structure will allow us to manipulate it easily
when we see an AND or NOT. We can also introduce a handy utility function to read
the next word from a piece of text:

static char *get_word(WORD *word, char *s, char *end)
{
 word->yesno = 0;
 while (s < end && !isalnum(*s))
 s++;
 word->start = s;
 while (s < end && isalnum(*s))
 s++;
 word->len = s - word->start;
 return s;
}

It gets one word from text located between s and end, and returns the new value
of the s pointer. It sets the word argument to the found word. If the end of text is
reached and no word was extracted, it makes word->start >= end. This function
has a very useful property—it can be called many times, even after the end of the text
(s >= end) is reached.

Chapter 7

[141]

Being armed with the get_word() function we can now write the main
parsing function:

static int andor_parse(MYSQL_FTPARSER_PARAM *param)
{
 char *end = param->doc + param->length;
 char *s = param->doc;
 WORD word, next;
 MYSQL_FTPARSER_BOOLEAN_INFO bool_info =
 { FT_TOKEN_WORD, 0, 0, 0, 0, 0, 0 };

First, we read the "next" word. Then we start the loop:

 s = get_word(&next, s, end);
 for (;;)
 {

We never need to read the current word as it is already read, in advance, as next.
We simply copy the next word into the current one, and read the new next word.
Remember, we can safely call get_word() as many times as we want, even if the s
pointer has already reached the end of the text:

 word = next;
 s = get_word(&next, s, end);

If there is no current word, it means that we have parsed everything and can return:
 if (word.start >= end)
 return 0;

Otherwise, we go into the details of extracting and interpreting our Boolean
operators, of course, if the parsing mode requires it:

 if (param->mode == MYSQL_FTPARSER_FULL_BOOLEAN_INFO)
 {

First we check if the next word is AND. If it is, and the current (before the next) word
has yesno==0, which means there was no AND before the current word, we tell
MySQL to start a subexpression. Then we read the next word:

 if (next.start < end &&
 strncasecmp(next.start, "and", next.len) == 0)
 {
 if (word.yesno == 0)
 {
 bool_info.yesno = 0;
 bool_info.type = FT_TOKEN_LEFT_PAREN;
 param->mysql_add_word(param, 0, 0, &bool_info);
 word.yesno = 1;
 }
 s = get_word(&next, s, end);

Practical Full-text Parsers

[142]

If the next word after AND is NOT, we read the word after it and mark it with
yesno=-1, otherwise we mark the next word with yesno=1 because it is the
word that follows AND.

 if (next.start < end &&
 strncasecmp(next.start, "not", next.len) == 0)
 {
 s = get_word(&next, s, end);
 next.yesno = -1;
 }
 else
 next.yesno = 1;
 }
 else

If the next (after the current) word was not AND but OR we simply ignore it.
Remember that OR has the same effect as no Boolean operator at all:

 if (next.start < end &&
 strncasecmp(next.start, "or", next.len) == 0)
 s = get_word(&next, s, end);

At this moment we have read the word (in word), the Boolean operator that follows
it, if any, and the word after the Boolean operator (in next). We can now set up
bool_info appropriately and pass the word down to MySQL.

 bool_info.type = FT_TOKEN_WORD;
 bool_info.yesno = word.yesno;
 }
 param->mysql_add_word(param, word.start, word.len,
 &bool_info);

Now, if there was an AND before the current word and no AND after it (which we can
find out by looking at the yesno of the current and next words) we need to end the
subexpression that we started for this AND group:

 if (word.yesno && !next.yesno)
 {
 bool_info.type = FT_TOKEN_RIGHT_PAREN;
 param->mysql_add_word(param, 0, 0, &bool_info);
 }
 }
}

Chapter 7

[143]

This is it. Together with the plugin declaration, which we have done previously, this
makes a complete plugin. We can build and install it to see:

mysql> create table toc (chapter int, title varchar(255), fulltext(title)
with parser andor) engine=myisam;
Query OK, 0 rows affected (0.01 sec)

mysql> insert toc values (0, 'Preface'), (1, 'Compiling and Using
MySQL Plugins'), (2, 'User Defined Functions'), (3, 'Daemon Plugins'),
(4, 'Information Schema Plugins'), (5, 'Advanced Information Schema
Plugins'), (6, 'Full-Text Parser Plugins'), (7, 'Practical Full-Text
Parsers'), (8, 'Storage Engine Plugins'), (9, 'HTML Storage Engine -
reads and writes'), (10, 'TOCAB Storage Engine - implementing indexes'),
(11, 'Appendix: Beyond MySQL 5.1');
Query OK, 12 rows affected (0.02 sec)
Records: 12 Duplicates: 0 Warnings: 0

mysql> select * from toc;

+---------+---+
| chapter | title |
+---------+---+
0	Preface
1	Compiling and Using MySQL Plugins
2	User Defined Functions
3	Daemon Plugins
4	Information Schema Plugins
5	Advanced Information Schema Plugins
6	Full-Text Parser Plugins
7	Practical Full-Text Parsers
8	Storage Engine Plugins
9	HTML Storage Engine - reads and writes
10	TOCAB Storage Engine - implementing indexes
11	Appendix: Beyond MySQL 5.1
+---------+---+

12 rows in set (0.00 sec)

You have probably noticed that this is the table of contents of this very book. Now
the searches:

mysql> select * from toc where match title against('full');

+---------+-----------------------------+
| chapter | title |
+---------+-----------------------------+
| 6 | Full-Text Parser Plugins |
| 7 | Practical Full-Text Parsers |
+---------+-----------------------------+

Practical Full-text Parsers

[144]

2 rows in set (0.00 sec)

mysql> select * from toc where match title against('using mysql');

+---------+-----------------------------------+
| chapter | title |
+---------+-----------------------------------+
| 1 | Compiling and Using MySQL Plugins |
| 11 | Appendix: Beyond MySQL 5.1 |
+---------+-----------------------------------+

2 rows in set (0.00 sec)

Natural language queries work as before, no surprises here.

mysql> select * from toc where match title against('using mysql' in
boolean mode);

+---------+-----------------------------------+
| chapter | title |
+---------+-----------------------------------+
| 1 | Compiling and Using MySQL Plugins |
| 11 | Appendix: Beyond MySQL 5.1 |
+---------+-----------------------------------+

2 rows in set (0.01 sec)

Nothing interesting happens in Boolean mode if we use no Boolean operators. But if
we do, we see:

mysql> select * from toc where match title against('using and mysql' in
boolean mode);

+---------+-----------------------------------+
| chapter | title |
+---------+-----------------------------------+
| 1 | Compiling and Using MySQL Plugins |
+---------+-----------------------------------+

1 row in set (0.00 sec)

It works! We asked for a row that contains both "using" and "mysql" and this is
exactly what was found. More complex queries work too:

mysql> select * from toc where match title against('using and mysql
or full and practical or storage and engine and not plugins' in
boolean mode);

Chapter 7

[145]

+---------+---+
| chapter | title |
+---------+---+
1	Compiling and Using MySQL Plugins
7	Practical Full-Text Parsers
9	HTML Storage Engine - reads and writes
10	TOCAB Storage Engine - implementing indexes
+---------+---+

4 rows in set (0.00 sec)

An Image Metadata processor
In the previous examples we have discussed full-text parser plugins that were actually
doing the parsing—extracting words from a text. But as we have seen in Chapter 6, a
full-text parser plugin does not necessarily have to do that. Only "tokenizer" plugins
do. In this example we will create an "extractor" plugin—a plugin that merely converts
the data to plain text and lets MySQL parse it with a built-in parser.

As many know, digital cameras store inside an image file the metadata that contains
various details about the photo. It is stored using a format called Exif (Exchangeable
image file format).

This full-text parser plugin will take the image filenames from the database, parse
the Exif data, and allow MySQL to index it. In other words, one can INSERT rows
with filenames in the table, but MATCH … AGAINST() will search in the Exif metadata
of these images!

How to access Exif data
To extract the image metadata we will use the libexif library. It is included in most
Linux distributions, and it has also been ported to Mac OS X, Windows, FreeBSD,
Solaris, and other operating systems. The binaries and the source code can be found
at http://libexif.sourceforge.net/. We will need to tell the compiler to
link our plugin with this library. For gcc this is done by adding -lexif to the
command line.

The libexif library has many different objects and types, and a lot of different
functions that manipulate them. But we are only interested in reading (not writing)
all (not selected) values of Exif tags. For this very limited task we need to know just a
few libexif functions:

Function Description
exif_data_new_from_file(
 const char *path)

Creates an ExifData object and fills it
with the data from an image file.

Practical Full-text Parsers

[146]

Function Description
exif_data_foreach_content(
 ExifData *data,
 ExifDataForeachContentFunc func,
 void * user_data)

Exif data inside a file is organized in
data structures called IFD (Image File
Directory). There can be many of them,
and this function iterates over them
all and invokes a user defined callback
func for every IDF in turn.

exif_content_foreach_entry(
 ExifContent *content,
 ExifContentForeachEntryFunc func,
 void *user_data)

Exif data are stored in tags inside an IDF.
Similar to the previous function, this one
iterates over all tags in a given IDF and
invokes a user defined callback func for
every tag.

exif_entry_get_value(
 ExifEntry *entry,
 char *buf,
 unsigned int buflen)

And, finally this function takes an Exif
tag, represented by an ExifEntry
object, and stores a textual representation
of its value in the supplied buffer. It is
this textual representation that we will
feed to the MySQL parser.

According to the above, we need to call exif_data_new_from_file() and then call
exif_data_foreach_content(). From its callback function we call exif_content_
foreach_entry() and from its callback we invoke exif_entry_get_value(), that
returns us the data to parse.

There is also one tag, Maker Notes, which contains other tags in a manufacturer-
specific binary format. The format is proprietary, but some of the manufacturer
formats have been decoded and libexif understands them. To access Maker Notes
one needs to extract them with the exif_data_get_mnote_data() function, which
returns the ExifMnoteData object, and get individual tag values with the exif_
mnote_data_get_value() function.

Writing the plugin
Headers first, as always. Note the libexif header below:

#include <mysql/plugin.h>
#include <libexif/exif-data.h>
#include <stdio.h>
#include <string.h>

Chapter 7

[147]

For convenience we will introduce a system variable with the path to the images. So
that we, or end users of our plugin, can then simply store filenames in the table, and
the path will be added automatically:

static char *exif_path;
static MYSQL_SYSVAR_STR(path, exif_path,
 PLUGIN_VAR_RQCMDARG | PLUGIN_VAR_MEMALLOC,
 "The path to image files", NULL, NULL, "");

And let's write a plugin declaration now, while we're at it:

static struct st_mysql_ftparser ft_exif =
{
 MYSQL_FTPARSER_INTERFACE_VERSION,
 exif_parse,
 NULL,
 NULL
};

static struct st_mysql_sys_var* exif_system_var[] =
{
 MYSQL_SYSVAR(path),
 NULL
};

mysql_declare_plugin(ftexif)
{
 MYSQL_FTPARSER_PLUGIN,
 &ft_exif,
 "exif",
 "Andrew Hutchings <Andrew.Hutchings@Sun.COM>",
 "A graphic file EXIF Full-Text Parser",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0100,
 NULL,
 exif_system_var,
 NULL
}
mysql_declare_plugin_end;

Practical Full-text Parsers

[148]

Now, the real thing—the parsing function. In fact, it will not parse anything, but we
will call it exif_parse() anyway. Just to remember, it needs to generate a full path
to the image file, load Exif data from it, iterate the tags with two "foreach" functions,
and invoke mysql_parse() for every extracted piece of data. Additionally, it needs to
extract Maker Notes, iterate them, and again invoke mysql_parse(), as appropriate.

static int exif_parse(MYSQL_FTPARSER_PARAM *param)
{
 ExifData *exif_data;
 ExifMnoteData *maker_notes;
 char buf[4096];
 int path_len, i, mnote_count;

Local variable declarations are not interesting, apart from the buffer. It is worth an
explanation. What do we need a buffer for? We need to create a full path to an image
file, to concatenate an exif_path and a filename. It may require up to PATH_MAX
bytes, which is 4096 on my system—in any case, a few kilobytes. We need to use
a buffer to store Exif tag values; exif_entry_get_value() takes a buffer as an
argument. Examples that come with libexif use a buffer of 1024 bytes, so presumably
one kilobyte is enough. And we need a buffer for the values of Maker Notes, which
can be also 1024 bytes. There is little reason to allocate these buffers with malloc()—
they are only needed until we call mysql_parse() so we can safely allocate them on
the stack. But remember, MySQL is a multi-threaded program. It is used to run a lot
of threads simultaneously, and stacks of all threads will exist at the same time. To
save memory MySQL sets the thread-stack size to a relatively low value. There are
many tricks we can use to not allocate all multi-kilobyte buffers on the stack at the
same time. For example, we could split the code in different functions, one function
per buffer. Or we could simply allocate only one buffer and reuse it. In our plugin
we do the latter.

Having decided on the buffer, we use it immediately to concatenate the image path
and a filename. As we store filenames in the table, it is the filename, from the MySQL
point of view, which is the data, and we get it in param‑>doc. To create a full file
path we simply append param‑>doc to exif_path.

path_len = snprintf(buf, sizeof(buf), "%s/%.*s", exif_path,
 param->length, param->doc);

if (path_len == sizeof(buf) || path_len < 0)
 exif_data = 0;
else
 exif_data = exif_data_new_from_file(buf);

Chapter 7

[149]

It is an interesting detail—what should we do if we fail to open the file? The
parsing function is called not only for indexing, but also for searching. As our
previous Boolean example very well shows, the parser is used to parse the
query string as well as the table data. Practically it means that if someone writes
MATCH col AGAINST("taken with sony and flash") our parser plugin will get
param‑>doc="taken with sony and flash" and not a filename. And when we
concatenate it with a path and try to open the result, it will certainly fail. In short, if
we cannot open param‑>doc as a file, we have to treat it as a query string:

 if (!exif_data)
 return param->mysql_parse(param,
 param->doc, param->length);

But if we did open a file, we're in. We extract the Exif tag values and parse them. As
they will all be extracted into the same buffer, overwriting each other, we need to tell
MySQL to copy the parsed words to a safe place:

 param->flags |= MYSQL_FTFLAGS_NEED_COPY;
 param->doc = buf;
 param->length = sizeof(buf);

We have also stored a pointer to our buffer in param‑>doc to be able to access it and
reuse the buffer in our callback function. Now we are ready to go:

 exif_data_foreach_content(exif_data, get_exif_content,
 param);

The get_exif_content() is our callback function that will be called for every IFD
(Image File Directory) section from our file. This function is very simple:

static void get_exif_content(ExifContent *content, void *arg)
{
 exif_content_foreach_entry(content, get_exif_entry, arg);
}

It only invokes another libexif iterator function that goes over all tags in a given IFD.
The iterator will call yet another callback, get_exif_entry(), which is also
quite simple:

static void get_exif_entry(ExifEntry *entry, void *arg)
{
 MYSQL_FTPARSER_PARAM *param = arg;
 exif_entry_get_value(entry, param->doc, param->length);
 param->mysql_parse(param, param->doc, strlen(param->doc));
}

Practical Full-text Parsers

[150]

It extracts the Exif tag value into our buffer, as param‑>doc points to our buffer now,
and calls the built-in MySQL parser via the mysql_parse() function. This is exactly
how "extractor" plugins work; they convert param‑>doc to a text that needs to be
indexed and invoke the MySQL built-in parser. This technique allows us, plugin
writers, to concentrate on the main plugin functionality and not waste time on
implementing something that MySQL already can do on its own.

Now, let's get back to the exif_parse() function. We interrupted it in the middle
to look at the callbacks, but now we can continue. Now that all of the Exif tags
are parsed, it's time to do Maker Notes. It is very straightforward—obtain the
corresponding ExifMnoteData object, iterate over all Maker Notes, get the note
value into our buffer, and parse it:

 ExifMnoteData maker_notes = exif_data_get_mnote_data(exif_data);
 mnote_count = exif_mnote_data_count(maker_notes);
 for (i = 0; i < mnote_count; i++)
 {
 if (exif_mnote_data_get_value(maker_notes, i,
 buf, sizeof(buf)))
 param->mysql_parse(param, buf, strlen(buf));
 }
 return 0;
}

That's all. Now we naturally want to see whether it works.

Test run
First we compile the plugin, with -lexif of course, and install it.

We will use the following four images for testing:

They are included in the code bundle and can be downloaded from the
Packt website.

Chapter 7

[151]

We need to create a table, configure the path to the image files, and insert the data.
We insert only filenames, but we will search within file contents!

mysql> create table test (jpeg text, fulltext(jpeg) with parser exif)
engine=myisam;

Query OK, 0 rows affected (0.00 sec)

mysql> set global exif_path='/opt/images';

Query OK, 0 rows affected (0.00 sec)

mysql> insert test values ('2688188166_c1be338744_o.jpg'),
('3439686345_6bfcd62538_o.jpg'),('3881772447_d957742a33_o.jpg'),
('3999772754_b433240fce_b.jpg');

Query OK, 4 rows affected (0.09 sec)

Records: 4 Duplicates: 0 Warnings: 0

This is how the search works:

mysql> select * from test where match jpeg against('bookend');

+-----------------------------+
| jpeg |
+-----------------------------+
| 3999772754_b433240fce_b.jpg |
+-----------------------------+

1 row in set (0.00 sec)

This picture has bookends on it. But, of course, our plugin did not look at the
picture, it found the file because it has the matching description tag (as shown by the
exiftool command-line utility):
shell$ exiftool -UserComment 3999772754_b433240fce_b.jpg

User Comment : Bookend spiral art

Our parser does no image recognition. It is only as good as the image description is.
Other tags are filled in automatically by the camera, they thus have a better chance of
being set correctly. We can search, for example, by camera model:
mysql> select * from test where match jpeg against('sony');

+-----------------------------+
| jpeg |
+-----------------------------+
| 3881772447_d957742a33_o.jpg |
+-----------------------------+

1 row in set (0.01 sec)

Practical Full-text Parsers

[152]

And indeed:

shell$ exiftool -Make 3881772447_d957742a33_o.jpg

Make : SONY

We can even search from the command line and display the found image at once:

shell$ display `mysql -N -e 'select * from test where match jpeg
against("easy street")'`

If ImageMagick is installed, the above command will show the corresponding image.
Alternatively, you can use any other image viewer instead of display. To make
these searches really convenient we can create a shell script, like this:

#!/bin/sh
display `mysql -N -e "select concat(@@exif_path, \
 '/', jpeg) from test \
 where match jpeg against('$*')"`

If called show, it can be used as:

shell$ show spiral art

or

shell$ show flower

A Soundex full-text parser
We have seen the "tokenizer" and "extractor" plugins. We finish this chapter with
a "post-processor" plugin. Such a plugin is interested in doing something with the
individual words of the text, but not in splitting the text into words. It puts itself
after the mysql_parse() function, but before mysql_add_word(). In this position
it can see every word and modify it if needed, but it will be MySQL that will do the
parsing job. Again, just as in the case of "extractor" plugins, this technique allows us
to implement only the main functionality of the plugin, only what makes it unique,
and not repeat the parsing code that already exists in the server. As an example of
a "post-processor" plugin we will create a Soundex plugin—a plugin that replaces
every word with its Soundex code, making the full-text search insensitive to typos.

Chapter 7

[153]

The Soundex algorithm
The Soundex algorithm was patented in 1918. It is a phonetic algorithm that converts
words to codes, which mainly corresponds to the word pronunciation, and much
less to the word spelling. Using this algorithm, words can be often matched even
in the presence of misspellings. There are many variations and improvements of
the original Soundex algorithm that are mostly aimed at increasing the accuracy of
the algorithm. We will use the original Soundex algorithm—it is the same one that
MySQL uses for its SOUNDEX function.

In this original Soundex version the code is computed according to the
following rules:

1.	 Keep the first letter of the word
2.	 Replace all other letters with numbers as follows:

°° b, f, p, v = 1
°° c, g, j, k, q, s, x, z = 2
°° d, t = 3
°° l = 4
°° m, n = 5
°° r =6

3.	 Remove all other letters
4.	 Collapse adjacent duplicate numbers
5.	 Right-pad with zeros if the result has less than three digits
6.	 Return the first letter of the word and the first three code digits

The built-in MySQL SOUNDEX function differs in the last step—it does not truncate
the result and may return more than four characters. But we will stick to the
original algorithm.

According to the above rules the word "blast" has a Soundex code of B423, as well as
the word "blacked", while the word "hello" becomes H400.

Practical Full-text Parsers

[154]

The plugin
We need our plugin to work after the MySQL parser has split the text into words,
but before these words were inserted into the index or used for searching. We can
do that by replacing the param‑>mysql_add_word pointer. If we change it to point
to our function and invoke param‑>mysql_parse(), MySQL's built-in parser will do
the parsing and, naturally, it will call param‑>mysql_add_word() for every word.
And this is exactly what we need—we can calculate the Soundex code of the word
and invoke the original mysql_add_word() function. This way we will not need to
implement the parsing and only do the Soundex processing of words.

#include <mysql/plugin.h>
#include <stdio.h>
#include <ctype.h>

As in previous examples, we start with the simple stuff—the end of the file. A plugin
declaration here is no different from all the other plugin declarations we have done:

static struct st_mysql_ftparser ft_soundex =
{
 MYSQL_FTPARSER_INTERFACE_VERSION,
 soundex_parse,
 NULL,
 NULL
};

mysql_declare_plugin(ftsoundex)
{
 MYSQL_FTPARSER_PLUGIN,
 &ft_soundex,
 "soundex",
 "Andrew Hutchings <Andrew.Hutchings@Sun.COM>",
 "A Full-Text Soundex parser",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0100,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

Chapter 7

[155]

A parsing function is new to us, but completely predictable. The only detail to keep
in mind is to remember the old value of param‑>mysql_add_word to be able to
invoke it at the end:

static int soundex_parse(MYSQL_FTPARSER_PARAM *param)
{
 param->ftparser_state = param->mysql_add_word;
 param->mysql_add_word = soundex_add_word;
 return param->mysql_parse(param, param->doc, param->length);
}

Now, let's create the main functionality of our plugin, which in this case is not the
soundex_parse() but the soundex_add_word() function.

 /* ABCDEFGHIJKLMNOPQRSTUVWXYZ */
static const char *codemap = "-123-12‑‑22455-12623-1-2-2";

This is our letter to number map, starting with "A" and ending in "Z".

static int soundex_add_word(MYSQL_FTPARSER_PARAM *param,
 char *word, int len,
 MYSQL_FTPARSER_BOOLEAN_INFO *info)
{
 char soundex[4];
 int soundex_len = 0;
 char ch, prev = 0;
 char *word_end = word+len;
 int (*real_add_word)(MYSQL_FTPARSER_PARAM *, char *, int,
 MYSQL_FTPARSER_BOOLEAN_INFO *);
 real_add_word = param->ftparser_state;

We declare a function pointer of the same type as mysql_add_word, and assign the
old value of param‑>mysql_add_word to it. Note that our own soundex_add_word()
also has exactly the same prototype.

Now we iterate the characters of the word:

 for (; word < word_end; word++)
 {

Convert to uppercase, skip if not a letter:

 ch = toupper(*word);
 if (ch < 'A' || ch > 'Z')
 continue;

Practical Full-text Parsers

[156]

If it's a first letter, copy it to the result buffer verbatim, otherwise map it to a digit:

 if (soundex_len == 0)
 {
 soundex[soundex_len++] = ch;
 continue;
 }
 ch = codemap[ch – 'A'];

If there is no digit for this letter or if it is the same as the previous digit, we skip
it (see steps 3 and 4 in the Soundex algorithm mentioned previously), otherwise
append it to the output buffer:

 if (ch == '-' || ch == prev)
 continue;
 else
 soundex[soundex_len++] = ch;

We can stop if the Soundex code has four characters:

 if (soundex_len == 4)
 break;
 prev = ch;
 }

If the word was too short and did not generate a four-character code, we pad the
output buffer with zeros:

 while (soundex_len < 4)
 soundex[soundex_len++] = '0';

Remember to set the "need copy" flag, because all words (really, Soundex codes) are
generated in the same buffer, overwriting each other. And the last step—we call the
original mysql_add_word() function to let MySQL process the word:

 param->flags |= MYSQL_FTFLAGS_NEED_COPY;
 return real_add_word(param, soundex, soundex_len, info);
}

Ready. Now we can try it out.

Chapter 7

[157]

Trying it out
We build and install the plugin as usual. Then we create a table and populate it
with data:

mysql> create table test (t text, fulltext(t) with parser soundex)
engine=myisam;

Query OK, 0 rows affected (0.01 sec)

mysql> insert test values ('The Soundex algorithm was patented in
1918.'), ('It is a phonetic algorithm'), ('that converts words to
codes.'), ('Codes mainly correspond to the word pronunciation,'),
('and much less to the word spelling.');

Query OK, 5 rows affected (0.01 sec)

Records: 5 Duplicates: 0 Warnings: 0

mysql> select * from test;

+--+
| t |
+--+
| The Soundex algorithm was patented in 1918. |
| It is a phonetic algorithm |
| that converts words to codes. |
| Codes mainly correspond to the word pronunciation, |
| and much less to the word spelling. |
+--+

5 rows in set (0.00 sec)

Simple searches work as usual:

mysql> select * from test where match t against ('algorithm');

+---+
| t |
+---+
| It is a phonetic algorithm |
| The Soundex algorithm was patented in 1918. |
+---+

2 rows in set (0.00 sec)

Practical Full-text Parsers

[158]

Even if badly misspelled, the word can be found:

mysql> select * from test where match t against ('alkareetm');

+---+
| t |
+---+
| It is a phonetic algorithm |
| The Soundex algorithm was patented in 1918. |
+---+

2 rows in set (0.00 sec)

As we have used the built-in MySQL parser, all of its features are available; for
example, Boolean searches:

mysql> select * from test where match t against ('+word' in boolean
mode);

+--+
| t |
+--+
| Codes mainly correspond to the word pronunciation, |
| and much less to the word spelling. |
+--+

2 rows in set (0.00 sec)

mysql> select * from test where match t against ('+word -pronansiashn' in
boolean mode);

+-------------------------------------+
| t |
+-------------------------------------+
| and much less to the word spelling. |
+-------------------------------------+

1 row in set (0.00 sec)

But Soundex has its limitations, for example:

mysql> select * from test where match t against ('kodezz');

Empty set (0.00 sec)

Chapter 7

[159]

The above did not find lines with the word "codes". Why? This is because Soundex
code unconditionally starts from the first letter of the word, not a mapped letter. We
can see it in MySQL:

mysql> select soundex('codes'),soundex('kodezz');

+------------------+------------------+
| soundex('codes') | soundex('kodez') |
+------------------+------------------+
| C320 | K320 |
+------------------+------------------+

1 row in set (0.00 sec)

Using a more complex phonetic algorithm, for example, Metaphone, would solve this
particular problem; Metaphone code for both "Codes" and "Kodezz" is KTS.

Summary
In this chapter we have learned how to write parsers that support searches in
Boolean mode. We have developed three parser plugins that show different ways
of using a full-text parser plugin API—"extractor", "tokenizer", and "post-processor"
approaches. We have seen how full-text parser plugins can be used to implement
searches within image metadata, and how to create search-enabled applications that
are insensitive to typos and misspelled words.

This chapter is the last one dedicated to full-text parser plugins. The next chapter
starts with the topic of the most complex and broad MySQL plugin type of all—the
Storage Engine plugins.

Storage Engine Plugins
One of the great strengths of MySQL and one of the main features which sets it apart
from other RDBMSs is its ability to use different storage engines for different tables.
These different storage engines can control where and how the data is stored and
retrieved. Every storage engine has strengths and weaknesses, which means that
MySQL can be tailored to the user's need through its use of storage engines.

In this chapter, we will outline everything you need to create your own storage
engine. We will then finish off the chapter with an example of a simple read-only
storage engine plugin.

Introducing storage engines
Earlier in this book we covered Information Schema plugins. Although very
differently defined, these plugins work a little like partially implemented read-only
storage engines. We just have to provide the table layout and fill the rows when
queried. With a basic storage engine plugin we have to do exactly the same, but
there are many other methods which can be implemented to cover indexes, updates,
inserts, and so on.

The storage engine plugins are implemented using two main structures:

•	 A class, inherited from a MySQL class, called handler
•	 A structure called handlerton

Storage Engine Plugins

[162]

The handler class provides the methods that work on a single table such as open(),
index_read(), write_row(), and so on. There can be many objects of the handler
class. The handlerton object is created only once per storage engine (it is a singleton,
thus the name) and provides methods that affect the whole storage engine, such as
commit(), savepoint_rollback(), show_status(), and so on. There are roughly
150 methods in the handler class and about 30 methods in handlerton, which we can
implement in our storage engine plugins covering many of the functions that MySQL
can provide, but most of these are not required. We will cover the commonly used
ones in this chapter, but for further reading, the sql/handler.h and sql/handler.cc
files in the MySQL source could be looked into.

A read-only storage engine
This simple storage engine plugin, called STATIC_TEXT, supports only read-only
tables. It defines two system variables, which we use to change its behavior. The
first variable is @@static_text_text, which specifies the text returned in VARCHAR
fields ("Hello world!" by default) and the second variable is @@static_text_rows,
which specifies the number of rows to return (the default is 3). When a table in
this storage engine is queried, any VARCHAR field will contain the contents of
@@static_text_text and any integer field will contain the current row number:

mysql> install plugin STATIC_TEXT soname 'ha_text.so';
Query OK, 0 rows affected (0.03 sec)

mysql> create table t1 (a int, b varchar(50)) engine=static_text;
Query OK, 0 rows affected (0.37 sec)

mysql> select * from t1;

+------+--------------+
| a | b |
+------+--------------+
1	Hello World!
2	Hello World!
3	Hello World!
+------+--------------+

3 rows in set (0.00 sec)

Chapter 8

[163]

The number of rows and the contents of the VARCHAR column can be modified by
assigning new values to the system variables:

mysql> show variables like 'static%';

+------------------+--------------+
| Variable_name | Value |
+------------------+--------------+
| static_text_rows | 3 |
| static_text_text | Hello World! |
+------------------+--------------+

2 rows in set (0.00 sec)

mysql> set global static_text_rows = 5;
Query OK, 0 rows affected (0.00 sec)

mysql> set global static_text_text = 'This is a test!';
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t1;

+------+-----------------+
| a | b |
+------+-----------------+
1	This is a test!
2	This is a test!
3	This is a test!
4	This is a test!
5	This is a test!
+------+-----------------+

5 rows in set (0.00 sec)

More complex queries should work too:

mysql> select * from t1 where a > 3 order by a desc;

+------+-----------------+
| a | b |
+------+-----------------+
| 5 | This is a test! |
| 4 | This is a test! |
+------+-----------------+

2 rows in set (0.00 sec)

Looking at the data directory for this database we see a t1.frm file. This is the
MySQL internal file that stores the table's definition. Without it MySQL will not
know the table exists.

Storage Engine Plugins

[164]

Now, let us look at how such a storage engine can be implemented. Typically, a
storage engine plugin consists of at least two files, ha_xxx.h and ha_xxx.cc, "xxx"
being the engine name. For more complex engines these two files define only the
interface code between MySQL and the actual storage library, which occupies its
own set of files. In the case of our simple engine, though, one file, ha_text.cc, is all
that is needed.

ha_text.cc
As always, it starts by including the obligatory header file. Despite the historical
priv (private) in the name, this header is needed for storage engine plugins,
providing declarations for all interface data structures and functions:

#include <mysql_priv.h>

We want to declare two system variables. As we remember from the preceding
chapters, it is done as follows:

static char *static_text_varchar;
static ulong static_text_rows;

static MYSQL_SYSVAR_STR(text, static_text_varchar,
 PLUGIN_VAR_MEMALLOC,
 "The value of VARCHAR columns in the static engine tables",
 NULL, NULL, "Hello World!");

static MYSQL_SYSVAR_ULONG(rows, static_text_rows, 0,
 "Number of rows in the static engine tables",
 NULL, NULL, 3, 0, 0, 0);

static struct st_mysql_sys_var* static_text_sys_var[] = {
 MYSQL_SYSVAR(text),
 MYSQL_SYSVAR(rows),
 NULL
};

These declarations create two system variables:

•	 @@static_text_text: String variable of a global scope with the default
value of "Hello World!"

•	 @@static_text_rows: Integer variable (based on C++ unsigned long type)
of a global scope that has a default value of 3

Chapter 8

[165]

Both variables are recognized on the command line too, as ‑‑static‑text‑text
and ‑‑static‑text‑rows accordingly. Note that we have specified variable
names simply as text and rows because MySQL will add the plugin name
as a prefix automatically.

Similar to other plugin types, when defining a storage engine plugin, we need the
following incantation:

struct st_mysql_storage_engine static_text_storage_engine =
{ MYSQL_HANDLERTON_INTERFACE_VERSION };

mysql_declare_plugin(static_text)
{
 MYSQL_STORAGE_ENGINE_PLUGIN,
 &static_text_storage_engine,
 "STATIC_TEXT",
 "Andrew Hutchings (Andrew.Hutchings@Sun.COM)",
 "An example static text storage engine",
 PLUGIN_LICENSE_GPL,"
 static_text_init,
 NULL,
 0x0001,
 NULL,
 static_text_sys_var,
 NULL
}
mysql_declare_plugin_end;

The main job of the plugin initialization function is to set up the handlerton
structure. For an engine as simple as ours, we only need to provide the create()
method. This is a handlerton method that creates a new handler object, more
precisely, a new instance of our ha_static_text class that inherits from the
handler class:

static int static_text_init(void *p)
{
 handlerton *static_text_hton = (handlerton *)p;
 static_text_hton->create = static_text_create_handler;
 return 0;
}

static handler* static_text_create_handler(handlerton *hton,
 TABLE_SHARE *table, MEM_ROOT *mem_root)
{
 return new (mem_root) ha_static_text(hton, table);
}

Storage Engine Plugins

[166]

The ha_static_text class that implements interfaces defined by the handler class
is the heart of our storage engine. The handler class itself is quite big and has many
virtual methods that we can implement in ha_static_text. But luckily only a few
are defined as abstract—and it is only these methods that we are absolutely required
to implement. They are:

Method name Description
table_type This method simply returns the name of a storage engine,

STATIC_TEXT in our case.
bas_ext When an engine puts different tables in different files, like MyISAM

does, this method returns a list of filename extensions that the engine
uses. Otherwise it is an empty list.

table_flags A combination of flags that define table capabilities. It is a handler
method, not a handlerton method, as different tables are allowed
to have different capabilities.

index_flags A combination of flags that define index capabilities. It does not
matter what we return here; this method will never be called, as our
engine does not support indexes.

create This method is invoked to create a new table in the storage engine.
It will be empty in our case, because our engine does not need to do
anything on table creation, but we still have to provide this method.

store_lock Another method that every engine is required to implement. It is
used by the MySQL locking subsystem. This method takes two
arguments, lock level and a pointer to a variable, and stores a lock of
this (or modified) lock level in this variable. That is where the name
of the method comes from. Engines that rely on MySQL table level
locking store the unaltered lock level, while engines that support a
higher lock granularity—page or row-level locking—downgrade the
lock to allow concurrent write access to the tables.

open This method opens an existing table.
close The opposite of open()—to close an open table.
rnd_init This method is called before random reads or sequential table scans

(but not before an index lookup or traversal). It should prepare the
table for this kind of access.

rnd_next In sequential table scans this method returns the next record of the
table. When invoked in a loop it works like an iterator, advancing
the cursor, and returning the next record on each invocation until the
end of table is reached.

position This method remembers a current record position in the internal
handler variable. A position is whatever the engine uses to uniquely
identify the record; for example, a primary key value, a row ID, an
address in memory, or an offset in the data file.

Chapter 8

[167]

Method name Description
rnd_pos The opposite of position()—this method takes a position as an

argument and returns a record identified by it.
info MySQL invokes this method to query various information about the

table, such as approximate number of records, the date of the last
modification, the average record length, index cardinalities, and so on.

ha_static_text The constructor is not abstract, of course, but it still needs to be
implemented. At least to pass the arguments to the constructor of the
parent class.

Keeping the above table in mind, this is how we can start declaring the
ha_static_text class:

class ha_static_text: public handler
{
public:
 ha_static_text(handlerton *hton, TABLE_SHARE *table_arg)
 : handler(hton, table_arg) { }
 const char *table_type() const { return "STATIC_TEXT"; }
 const char **bas_ext() const {
 static const char *exts[] = { 0 };
 return exts;
 }
 ulonglong table_flags() const;
 ulong index_flags(uint inx, uint part, bool all_parts) const
 { return 0; }
 int create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info) { return 0; }
 THR_LOCK_DATA **store_lock(THD *thd, THR_LOCK_DATA **to,
 enum thr_lock_type lock_type);
 int open(const char *name, int mode, uint test_if_locked);
 int close(void);
 int rnd_init(bool scan);
 int rnd_next(unsigned char *buf);
 void position(const uchar *record);
 int rnd_pos(uchar * buf, uchar *pos);
 int info(uint flag);
};

Storage Engine Plugins

[168]

We have defined all the simple methods inline. Now let us consider more complex
methods one by one.

int ha_static_text::open(const char *name, int mode,
 uint test_if_locked)
{
 share = find_or_create_share(name, table);
 if (share->use_count++ == 0)
 thr_lock_init(&share->lock);
 thr_lock_data_init(&share->lock,&lock,NULL);

 return 0;
}

There was no table to create in the create() method, and there is nothing to open
here. The only thing we need to do is to initialize the THR_LOCK and THR_LOCK_DATA
objects. They are used by the MySQL locking subsystem and every storage engine
must provide them.

As we remember, there can be many instances of the handler class. If a table is used
in one query more than once, for example, in a self-join, or a table is accessed in many
connections simultaneously, MySQL will create many handler objects for this table,
and each of them will need to have its very own THR_LOCK_DATA object. Still, all of
these handler objects refer to the same table and they must use the same THR_LOCK
object. To repeat, for MySQL locking code to work there should be one THR_LOCK
object per table and one THR_LOCK_DATA object per table opening. The latter is easy—
we add a new member lock of the THR_LOCK_DATA type to the ha_static_text class
and initialize it in the open() method with the thr_lock_data_init() function.

However, the former needs more work, as it requires us to have some kind of a shared
object—we will call it STATIC_SHARE—to put THR_LOCK in. Two handler objects that
refer to a same table should use the same STATIC_SHARE object, otherwise they should
use different STATIC_SHARE objects. The function find_or_create_share(), used
previously, finds a corresponding STATIC_SHARE or creates a new one, if this is the first
time a given table is being opened. Let us see how it can be implemented.

Chapter 8

[169]

When we need to find a STATIC_SHARE object for a specific table, we are given a
MySQL TABLE object and a table name. The first and obvious solution is to use a
hash to create a mapping from table names to their corresponding STATIC_SHARE
objects and protect it from concurrent accesses with a mutex. Indeed, many storage
engines use this approach. But perhaps we can do better—simpler, faster, and with
less concurrency overhead? Note that besides a table name we are given a TABLE
object. The MySQL TABLE object, just like a handler, is created as many times as
the table is used. In fact, with few exceptions, there are as many TABLE objects as
there are handler objects. But MySQL also has a TABLE_SHARE object which, as
we can expect, is created only once per table. If table is a pointer to TABLE, then
table->s is its TABLE_SHARE pointer, and table->s->ha_data is an unused void*
pointer in the TABLE_SHARE that a storage engine can use for any purpose. It would
be easy for us to store our STATIC_SHARE in the table->s->ha_data, and make the
find_or_create_share() function as simple as return table->s->ha_data. In
fact, it would be too easy to be true. When a table is partitioned, all partitions share
the same TABLE object, and, of course, the same TABLE_SHARE. However, partitions
are different tables from the storage engine point of view, and the only way to
distinguish them is by a "table name", which in this case will have a partition (and a
subpartition, if any) number embedded in it. To solve this problem we will link all
STATIC_SHARE objects for a given TABLE_SHARE in a linked list and will search the list
to find the matching table name:

typedef struct st_static_text {
 const char *name;
 THR_LOCK lock;
 uint use_count;
 struct st_static_text *next;
} STATIC_SHARE;

static STATIC_SHARE *find_or_create_share(
 const char *table_name, TABLE *table)
{
 STATIC_SHARE *share;
 for (share = (STATIC_SHARE*)table->s->ha_data;
 share; share = share->next)

 if (my_strcasecmp(table_alias_charset,
 table_name, share->name) == 0)
 return share;

Storage Engine Plugins

[170]

Note the detail—we use table_alias_charset to compare table names. It
 will give a case-sensitive or case-insensitive comparison, depending on the
lower_case_table_names MySQL configuration variable. To avoid bugs it is
important to use exactly the same case sensitivity rules as elsewhere in the server.

 share = (STATIC_SHARE*)alloc_root(&table->s->mem_root,
 sizeof(*share));
 bzero(share, sizeof(*share));
 share->name = strdup_root(&table->s->mem_root, table_name);
 share->next = (STATIC_SHARE*)table->s->ha_data;
 table->s->ha_data = share;
 return share;
}

If no matching STATIC_SHARE is found in the list, we create a new one and link it
in. As all memory is allocated in the TABLE_SHARE memory root, it will be freed
automatically along with TABLE_SHARE. Very handy.

A thought about locking and concurrent accesses: In MySQL 5.1 a
table is opened under a mutex. We can safely access and modify
table->s->ha_data and not worry about other threads. In later MySQL
versions this mutex is removed. It has improved the concurrency, but
our code is no longer correct. There is an easy fix though—these MySQL
versions provide a dedicated mutex table->s->LOCK_ha_data that we
will need to use to protect table->s->ha_data.

It seems logical to initialize share->lock directly in find_or_create_share(),
when a new STATIC_SHARE is created, but unfortunately MySQL will not give us a
chance to destroy it before freeing STATIC_SHARE along with TABLE_SHARE. Hence,
we have no choice but to maintain a usage counter for STATIC_SHARE and call the
initialization and destruction functions accordingly.

int ha_static_text::close(void)
{
 if (--share->use_count == 0)
 thr_lock_delete(&share->lock);
 return 0;
}

Chapter 8

[171]

The close() method does the opposite of open(). It decrements the STATIC_SHARE
usage counter and destroys its THR_LOCK object if necessary. The THR_LOCK_DATA
object does not need to be destroyed.

ulonglong ha_static_text::table_flags() const
{
 return HA_NO_TRANSACTIONS | HA_STATS_RECORDS_IS_EXACT |
 HA_REC_NOT_IN_SEQ;
}

This method returns the capabilities of the particular table. In MySQL-5.1 there are
35 different capability flags. The complete list is as follows:

Flag Description
HA_NO_TRANSACTIONS The table is not transactional.
HA_PARTIAL_COLUMN_READ The table that does not have this capability bit set can only

read complete rows. In any row image returned by such
a table all field values will be known. If this capability
flag is set, MySQL will use the read_set bitmap in the
TABLE object to specify which fields must be present in
the row image.

HA_TABLE_SCAN_ON_INDEX Usually, MySQL prefers a full table scan over a large
index scan, because sequential disk I/O is many times
faster than random disk I/O. If the data storage is index
based and any "sequential table scan" means an index
scan internally, the above optimization strategy will
not work as expected. The flag tells MySQL to disable
this optimization.

HA_REC_NOT_IN_SEQ If this flag is set, MySQL will always call position()
to get a value for a later rnd_pos() call. If it is not set,
in sequential table scans a position will be increased by
table->s->db_record_offset per row, starting
from 0. In this case, remember to initialize
table->s->db_record_offset to the correct
value in the info() method.

HA_CAN_GEOMETRY The engine supports spatial data types. This only means
that the engine can store and retrieve spatial data. It does
not mean that the engine knows how to index them.

HA_CAN_RTREEKEYS The engine supports indexes over spatial data types.

Storage Engine Plugins

[172]

Flag Description
HA_FAST_KEY_READ MySQL tries to use sequential disk I/O if possible. When

looking up a set of values in the index it sorts them first
to make the I/O pattern more sequential. If random index
lookups are as fast as sequential lookups, for example, if
the index is completely in memory, then MySQL will not
sort the values before looking them up in the index.

HA_REQUIRES_KEY_
COLUMNS_FOR_DELETE

HA_PRIMARY_KEY_
REQUIRED_FOR_DELETE

The delete() method takes a previously read row as
an argument. Storage engine can tell MySQL what fields
should have values in this row for deletion to work, and
MySQL will configure the read_set bitmap accordingly.
For example, the engine may need primary key fields to
be present— to be able to identify the row, or all indexed
fields to be present—to make removing their values from
indexes easier. Or it may need no field values at all—as
a deletion is always performed for the last read row, the
engine can simply delete the row at the cursor position.
Of course, if HA_PARTIAL_COLUMN_READ is not set, all
field values will be present in the row anyway.

HA_NULL_IN_KEY The engine can index fields that store NULL values. If
unset, all indexed fields will have to be declared NOT
NULL.

HA_DUPLICATE_POS If set, on a duplicate key error in INSERT or UPDATE,
MySQL will read the position of the other row that caused
the conflict (not the row that was inserted/updated) from
the dup_pos member of the handler object (after the
info(HA_STATUS_ERRKEY) method call—see below). If
not set, MySQL will do an extra index lookup to find the
conflicting row.

HA_NO_BLOBS BLOB columns are not supported.
HA_CAN_INDEX_BLOBS BLOB columns can be indexed.
HA_AUTO_PART_KEY Auto-increment column does not have to be the first

column in the index.
HA_REQUIRE_PRIMARY_KEY The table is required to have a primary key,

CREATE TABLE will fail otherwise.

Chapter 8

[173]

Flag Description
HA_STATS_RECORDS_IS_
EXACT

Number of records returned in stats.records by the
info() method is exact, not an estimate, and can be
used as a result for SELECT COUNT(*). If this flag is
not set, the value will only be used as an estimate when
choosing a best query execution plan. But note that if
stats.records is 0, MySQL considers the table to be
completely empty. In other words, the value of 0 is always
exact. Only when stats.records is 1 or larger and
HA_STATS_RECORDS_IS_EXACT is not set, the number is
treated as an inexact estimate.

HA_HAS_RECORDS This flag tells MySQL that the record() method returns
an exact number of rows in the table. It is only used when
HA_STATS_RECORDS_IS_EXACT is not set.

The logic is as follows: certain engines maintain the live
row counter, and at any time they know the number
of rows in a table. These engines return this number in
stats.records using the info() method and have the
flag HA_STATS_RECORDS_IS_EXACT set. Other engines
do not maintain a row counter, but they can calculate it
reasonably fast (although slower than simply consulting
stats.records). They implement this calculation in the
records() method and set the HA_HAS_RECORDS flag. If
neither flag is set, to get an exact record counter, MySQL
will have to resort to the slowest possible approach—full
table scan.

HA_CAN_INSERT_DELAYED INSERT DELAYED works correctly with this engine.
HA_PRIMARY_KEY_IN_
READ_INDEX

This tells MySQL that any row returned as a result of an
index lookup or an index scan will always have values in
primary key fields, independent of read_set. In other
words, any index access returns primary key values too,
for free, without increasing the cost of the query.

HA_PRIMARY_KEY_
REQUIRED_FOR_POSITION

A storage engine needs to know the value of the primary
key to execute the position() method. If primary key
fields are not part of the read_set, the position()
method will not work.

HA_NOT_DELETE_WITH_
CACHE

Obsolete. No engine has used it since 2001.

HA_NO_PREFIX_CHAR_KEYS The engine does not support indexes over a prefix of a
CHAR or VARCHAR column (created using the KEY
(col_name(length)) syntax).

HA_CAN_FULLTEXT The engine supports FULLTEXT indexes.
Only MyISAM does.

Storage Engine Plugins

[174]

Flag Description
HA_CAN_SQL_HANDLER The HANDLER statement works correctly with this table.
HA_NO_AUTO_INCREMENT AUTO_INCREMENT columns are not supported.
HA_HAS_CHECKSUM If this flag is set, CHECKSUM TABLE will use the

checksum() method of the handler object to get a live
table checksum. If this flag is not set, CHECKSUM TABLE
will do a full table scan to calculate the checksum. Of
course, the live checksum, if supported, should use
exactly the same algorithm as CHECKSUM TABLE does.

HA_FILE_BASED This flag means that tables are stored in files, filename
being the table name. In other words, table name
searching and matching is done by the file system (table
names are treated case sensitively or case insensitively
depending on the file system case sensitivity).

HA_NO_VARCHAR VARCHAR columns are not supported. MySQL will convert
them to CHAR automatically.

HA_CAN_BIT_FIELD BIT fields can be stored in the row image in one of the
two ways—either as a part of the NULL bitmap in the
beginning of the row or as a separate VARCHAR column. If
this flag is set, MySQL uses the first approach, otherwise
the second.

HA_NEED_READ_RANGE_
BUFFER

This is used by the optional multi-read-range
optimization. In MySQL 5.1 only NDBCluster has this
flag on.

HA_ANY_INDEX_MAY_BE_
UNIQUE

Only MERGE tables need this; it enables a special
workaround for MERGE tables with differently defined
underlying MyISAM tables.

HA_NO_COPY_ON_ALTER Only MERGE tables need this; it is used to avoid rebuilding
the MERGE table in ALTER TABLE ... UNION=(...)

HA_HAS_OWN_BINLOGGING This flag means that in row-based binary logging the
server will not log operations on this table. The engine
is supposed to do that itself, using a special binary log
injector. Only NDBCluster uses that. See the MySQL
Cluster Replication section in the MySQL manual
for details.

HA_BINLOG_ROW_CAPABLE Changes to the table can be logged in the row-based
replication mode.

HA_BINLOG_STMT_CAPABLE Changes to the table can be logged in the statement-based
replication mode. A transactional table may need to
disable this flag conditionally, depending on the
isolation level.

Chapter 8

[175]

We have set our table flags in the ha_static_text::table_flags() method to
specify the table is not transactional, the number of rows in the stats.records is
exact, and that the server should always call the position() method to calculate
the position.

THR_LOCK_DATA **ha_static_text::store_lock(THD *thd,
 THR_LOCK_DATA **to, enum thr_lock_type lock_type)
{
 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 lock.type = lock_type;
 *to ++= &lock;
 return to;
}

As we remember, this method stores the lock of the level lock_type (or possibly
of different lock level, as the primary purpose of this method is to give the engine a
possibility to modify the lock level) in *to. Using unmodified lock level will give us
a standard MySQL table-level locking. Downgrading the lock will result in a higher
concurrency and put the burden of maintaining the data protection and correctness on
the engine itself. We do not want to complicate our engine by adding a lock manager
to it, so we will use MySQL table-level locking. The function store_lock(), as above,
is identical in all table-level locking engines.

Now, let us look at the functions that return rows. MySQL uses its own row format
internally. There are storage engines (for example, MyISAM) that natively read
and write rows in this format, but most engines need to do the conversion. Fields,
represented as objects of the Field class, and available via the TABLE object, know
how to store and convert themselves. We have seen how to use the Field classes in
the Information Schema chapters; storage engines use them similarly. This is how
one can use them to fill in a row buffer:

static void fill_record(TABLE *table, unsigned char *buf,
 ulong row_num)

Our engine shows the row number in integer columns, so this function needs
to know it.

{
 my_bitmap_map *old_map =
 dbug_tmp_use_all_columns(table, table->write_set);

Storage Engine Plugins

[176]

MySQL tries to ensure that only the fields listed in the table->write_set bitmap
are modified in a query. The check is in the Field::store() method – presumably,
MySQL should never call this method for any field that is not in the write_set.
Unfortunately, this logic is flawed, because this method can be also used to fill in the
row inside a storage engine. As a workaround, to be able to use the Field::store()
method without triggering an assert we have to temporarily reset the
table->write_set bitmap.

 for (uint i = 0; i < table->s->fields; i++)
 {
 Field *field = table->field[i];
 my_ptrdiff_t offset;
 offset = (my_ptrdiff_t) (buf - table->record[0]);
 field->move_field_offset(offset);

Fields always operate with the row image at table->record[0]. If we want to write
our data elsewhere we need to move the field pointer there and restore it later.

 field->set_notnull();
 if (field->type() == MYSQL_TYPE_VARCHAR)
 field->store(static_text_varchar,
 strlen(static_text_varchar),
 system_charset_info);
 else if (field->type() == MYSQL_TYPE_LONG)
 field->store(row_num, false);

As mentioned before, we store the value of the @@static_text_varchar variable in
the VARCHAR field and a row number in the integer field.

 field->move_field_offset(-offset);
 }
 dbug_tmp_restore_column_map(table->write_set, old_map);
}

At the end we restore the field pointers and the table->write_set bitmap.

Having this function ready we can finish the remaining handler methods. As all
integer fields contain the current row number we will need a counter, returned_data,
which will be stored in these fields. Thus, we extend the ha_static_text class with
the following:

private:
 THR_LOCK_DATA lock;
 STATIC_SHARE *share;
 ulong returned_data;

Chapter 8

[177]

To start a new table scan we initialize the row counter:

int ha_static_text::rnd_init(bool scan)
{
 returned_data = 0;
 return 0;
}

Returning the next row is easy too:

int ha_static_text::rnd_next(unsigned char *buf)
{
 if (returned_data >= static_text_rows)
 return HA_ERR_END_OF_FILE;

 fill_record(table, buf, ++returned_data);
 return 0;
}

As a position, to identify the row, we can simply use the row number:

void ha_static_text::position(const uchar *record)
{
 (ulong)ref = returned_data;
}

Given a position, we can easily return the corresponding row. There is a fine detail
though, before using the position we copy it to a local variable. This is done for better
portability—pos pointer is not necessarily aligned in memory and dereferencing an
unaligned pointer as *(ulong*)pos will cause a crash on some architectures (for
example, on Sparc).

int ha_static_text::rnd_pos(uchar * buf, uchar *pos)
{
 ulong row_num;
 memcpy(&row_num, pos, sizeof(row_num));
 fill_record(table, buf, row_num);
 return 0;
}

Storage Engine Plugins

[178]

The last method we implement is info(). It can return a lot of different information
about the table, depending on the argument. The argument is a bitmap of flags; the
server requests the storage engine to update different data by setting different flags:

Flag Description
HA_STATUS_CONST Update the "constant" part of the information—constant, because

it does not change after a table is opened. It includes
stats.max_data_file_length,
stats.max_index_file_length,
stats.create_time,
stats.block_size,
table->s->db_options_in_use,
table->s->keys_in_use
(a bitmap that shows what indexes are enabled, usually all
indexes are),
table->s->keys_for_keyread
(a bitmap of indexes usable as covering indexes),
table->s->db_record_offset,
(see the description of HA_REC_NOT_IN_SEQ table flag),
table->key_info[].rec_per_key
(inverted index cardinalities),
data_file_name, and index_file_name.

HA_STATUS_VARIABLE Update the "variable" part of the information, in particular
stats.records, stats.deleted,
stats.data_file_length,
stats.index_file_length,
stats.delete_length,
stats.check_time,
stats.mean_rec_length.

HA_STATUS_ERRKEY MySQL uses this info() flag after a duplicate key error.
The engine is supposed to put the number of the key that
has caused a conflict in the errkey and the position of the
conflicting row, if the HA_DUPLICATE_POS table flag is set, in
the dup_ref.

HA_STATUS_TIME Update the value of stats.update_time.
HA_STATUS_AUTO Update the value of stats.auto_increment_value.
HA_STATUS_NO_LOCK This is not a request for information, but a hint to the engine

that the engine can provide possibly outdated information
from a local cache (if the engine caches it, that is) and avoid
taking the lock to access the actual shared objects that store the
up-to-date engine information. An engine is free to ignore this
hint and most engines do.

Chapter 8

[179]

From all of the above we provide only one piece of "variable" information—a
number of rows in the table:

int ha_static_text::info(uint flag)
{
 if (flag & HA_STATUS_VARIABLE)
 stats.records = static_text_rows;
 return 0;
}

That's it! Our first storage engine plugin is complete. Now we can compile it, install
it, and start playing with it.

This example could be easily extended to generate random data. We could then
populate another table by creating a similar schema, setting the number of rows
required, and doing:

mysql> insert into t1 select * from t2;

where t1 is a normal table and t2 is using our random data generator table.

Summary
In this chapter, we have seen the basics of creating a new storage engine plugin and
have written a simple read-only engine. We will use this knowledge as a basis for
more advanced engines in the following chapters.

HTML Storage Engine—
Reads and Writes

In the previous chapter, we created a simple read-only MySQL storage engine. Now,
we will consider a more complex example, a complete read-write storage engine, but
with no support for indexes. Let's say, it will be an "html" engine—an engine that
stores tables in HTML files. Such a file can be later loaded in a web browser and the
table will be shown as an HTML table.

An idea of the HTML engine
Ever thought about what your tables might look like? Why not represent a table as a
<TABLE>? You would be able to see it, visually, in any browser. Sounds cool. But how
could we make it work?

We want a simple engine, not an all-purpose Swiss Army Knife HTML-to-SQL
converter, which means we will not need any existing universal HTML or XML
parsers, but can rely on a fixed file format. For example, something like this:

<html><head><title>t1</title></head><body><table border=1>
<tr><th>col1</th><th>other col</th><th>more cols</th></tr>
<tr><td>data</td><td>more data</td><td>more data</td></tr>
<!-- this row was deleted ... -->
<tr><td>data</td><td>more data</td><td>more data</td></tr>

... and so on ...
</table></body></html>

HTML Storage Engine—Reads and Writes

[182]

But even then this engine is way more complex than the previous example, and it
makes sense to split the code. The engine could stay, as usual, in the ha_html.cc
file, the declarations in ha_html.h, and if we need any utility functions to work with
HTML we can put them in the htmlutils.cc file.

Flashback
As we have seen in a previous chapter, a storage engine needs to declare a plugin
and an initialization function that fills a handlerton structure. Again, the only
handlerton method that we need here is a create() method.

#include "ha_html.h"

static handler* html_create_handler(handlerton *hton,
 TABLE_SHARE *table, MEM_ROOT *mem_root)
{
 return new (mem_root) ha_html(hton, table);
}

static int html_init(void *p)
{
 handlerton *html_hton = (handlerton *)p;
 html_hton->create = html_create_handler;
 return 0;
}

struct st_mysql_storage_engine html_storage_engine =
{ MYSQL_HANDLERTON_INTERFACE_VERSION };

mysql_declare_plugin(html)
{
 MYSQL_STORAGE_ENGINE_PLUGIN,
 &html_storage_engine,
 "HTML",
 "Sergei Golubchik",
 "An example HTML storage engine",
 PLUGIN_LICENSE_GPL,
 html_init,
 NULL,
 0x0001,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

Chapter 9

[183]

Now we need to implement all of the required handler class methods, as described
in the previous chapter. Let's start with simple ones:

const char *ha_html::table_type() const
{
 return "HTML";
}

const char **ha_html::bas_ext() const
{
 static const char *exts[] = { ".html", 0 };
 return exts;
}

ulong ha_html::index_flags(uint inx, uint part, bool all_parts) const
{
 return 0;
}

ulonglong ha_html::table_flags() const
{
 return HA_NO_TRANSACTIONS | HA_REC_NOT_IN_SEQ | HA_NO_BLOBS;
}

THR_LOCK_DATA **ha_html::store_lock(THD *thd,
 THR_LOCK_DATA **to, enum thr_lock_type lock_type)
{
 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 lock.type = lock_type;
 *to ++= &lock;
 return to;
}

These methods are familiar to us. They say that the engine is called "HTML", it stores
the table data in files with the .html extension, the tables are not transactional, the
position for ha_html::rnd_pos() is obtained by calling ha_html::position(), and
that it does not support BLOBs. Also, as we have seen in the previous chapter, we
need a function to create and initialize an HTML_SHARE structure:

static HTML_SHARE *find_or_create_share(
 const char *table_name, TABLE *table)
{
 HTML_SHARE *share;
 for (share = (HTML_SHARE*)table->s->ha_data;

HTML Storage Engine—Reads and Writes

[184]

 share; share = share->next)

 if (my_strcasecmp(table_alias_charset,
 table_name, share->name) == 0)
 return share;
 share = (HTML_SHARE*)alloc_root(&table->s->mem_root,
 sizeof(*share));
 bzero(share, sizeof(*share));
 share->name = strdup_root(&table->s->mem_root, table_name);
 share->next = (HTML_SHARE*)table->s->ha_data;
 table->s->ha_data = share;
 return share;
}

It is exactly the same function, only the structure is now called HTML_SHARE,
not STATIC_SHARE.

Creating, opening, and closing the table
Having done the basics, we can start working with the tables. The first operation,
of course, is the table creation. To be able to read, update, or even open the table we
need to create it first, right? Now, the table is just an HTML file and to create a table
we only need to create an HTML file with our header and footer, but with no data
between them. Just like in the previous chapter, we do not need to create any TABLE
or Field objects, or anything else—MySQL does it automatically. To avoid repeating
the same HTML tags over and over we will define the header and the footer in the
ha_html.h file as follows:

#define HEADER1 "<html><head><title>"
#define HEADER2 "</title></head><body><table border=1>\n"
#define FOOTER "</table></body></html>"
#define FOOTER_LEN ((int)(sizeof(FOOTER)-1))

As we want a header to include a table name we have split it in two parts. Now, we
can create our table:

int ha_html::create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info)
{
 char buf[FN_REFLEN+10];
 strcpy(buf, name);
 strcat(buf, *bas_ext());

Chapter 9

[185]

We start by generating a filename. The "table name" that the storage engine gets is
not the original table name, it is converted to be a safe filename. All "troublesome"
characters are encoded, and the database name is included and separated from the
table name with a slash. It means we can safely use name as the filename and all we
need to do is to append an extension. Having the filename, we open it and write
our data:

 FILE *f = fopen(buf, "w");
 if (f == 0)
 return errno;
 fprintf(f, HEADER1);
 write_html(f, table_arg->s->table_name.str);
 fprintf(f, HEADER2 "<tr>");

First, we write the header and the table name. Note that we did not write the value
of the name argument into the header, but took the table name from the TABLE_SHARE
structure (as table_arg->s->table_name.str), because name is mangled to be a
safe filename, and we would like to see the original table name in the HTML page
title. Also, we did not just write it into the file, we used a write_html() function—
this is our utility method that performs the necessary entity encoding to get a well-
formed HTML. But let's not think about it too much now, just remember that we
need to write it, it can be done later.

Now, we iterate over all fields and write their names wrapped in <th>…</th> tags.
Again, we rely on our write_html() function here:

 for (uint i = 0; i < table_arg->s->fields; i++) {
 fprintf(f, "<th>");
 write_html(f, table_arg->field[i]->field_name);
 fprintf(f, "</th>");
 }
 fprintf(f, "</tr>");
 fprintf(f, FOOTER);
 fclose(f);
 return 0;
}

Done, an empty table is created.

HTML Storage Engine—Reads and Writes

[186]

Opening it is easy too. We generate the filename and open the file just as in the
create() method. The only difference is that we need to remember the FILE pointer
to be able to read the data later, and we store it in fhtml, which has to be a member
of the ha_html object:

int ha_html::open(const char *name, int mode,
 uint test_if_locked)
{
 char buf[FN_REFLEN+10];
 strcpy(buf, name);
 strcat(buf, *bas_ext());
 fhtml = fopen(buf, "r+");
 if (fhtml == 0)
 return errno;

When parsing an HTML file we will often need to skip over known patterns in the
text. Instead of using a special library or a custom pattern parser for that, let's try
to use scanf()—it exists everywhere, has a built-in pattern matching language,
and it is powerful enough for our purposes. For convenience, we will wrap it in a
skip_html() function that takes a scanf() format and returns the number of bytes
skipped. Assuming we have such a function, we can finish opening the table:

 skip_html(fhtml, HEADER1 "%*[^<]" HEADER2 "<tr>");
 for (uint i = 0; i < table->s->fields; i++) {
 skip_html(fhtml, "<th>%*[^<]</th>");
 }
 skip_html(fhtml, "</tr>");

 data_start = ftell(fhtml);

We skip the first part of the header, then "everything up to the opening angle
bracket", which eats up the table name, and the second part of the header. Then we
skip individual row headers in a loop and the end of row </tr> tag. In order not to
repeat this parsing again we remember the offset where the row data starts. At the
end we allocate an HTML_SHARE and initialize lock objects:

 share = find_or_create_share(name, table);
 if (share->use_count++ == 0)
 thr_lock_init(&share->lock);
 thr_lock_data_init(&share->lock,&lock,NULL);
 return 0;
}

Chapter 9

[187]

Closing the table is simple, and should not come as a surprise to us. It is almost the
same as ha_static_text::close() from the previous chapter:

int ha_html::close(void)
{
 fclose(fhtml);
 if (--share->use_count == 0)
 thr_lock_delete(&share->lock);
 return 0;
}

Reading data
As we have learned in the previous chapter, an indexless table can be read using two
access patterns—either sequential, with rnd_init() and rnd_next() methods, or a
random one with position() and rnd_pos() methods. Let's start with the former:

int ha_html::rnd_next(unsigned char *buf)
{
 fseek(fhtml, current_row_end, SEEK_SET);
 for (;;) {

This is one of the most complex methods in our storage engine. Let's analyze it line
by line. We started by positioning the stream at the end of the last read row, and will
be looking for the first non-deleted row (remember that a row starts with a <tr> tag,
while a deleted row starts with <!‑‑).

But first we save the offset of the row that we will read, as it may be needed for
position(), and check it against the end of data offset:

 current_row_start= ftell(fhtml);
 if (current_row_start >= data_end)
 return HA_ERR_END_OF_FILE;

HTML Storage Engine—Reads and Writes

[188]

This check allows us to skip any processing and return an error at once if we have
read all of the rows. It is a minor optimization for a read-only table, but for an
updatable table it is of paramount importance. Imagine that we are doing a table
scan and the same SQL statement adds new data at the end of the table (which
can easily happen in an UPDATE statement). Our table scan should ignore all of the
rows that were added in the same statement, and if we remember where the row
data ends in the file, we can stop reading at that offset. For this to work, data_end
needs to be recalculated at the beginning of every statement. Indeed, as the table
may be growing, it is not enough to do it in the open() method. We will talk about
statement boundaries later. On the other hand, data_start can never change, we
can determine it only once.

 if (skip_html(fhtml, "<tr>") == 4)
 break;

Now, we can start reading the data. First, we read and skip over the <tr> tag. If it
was successful, and we have skipped over four characters, we have found our row,
and can break out of the loop.

 if (skip_html(fhtml, "!--%*[^-]-->\n") >=7)
 continue;

Otherwise we try to match a deleted row. As the opening angle bracket was already
matched and consumed by the previous skip_html() we omit it from the pattern. If
there was a match, we restart the loop.

 return HA_ERR_CRASHED;
 }

Otherwise we return an error, complaining that the table is corrupted.

 my_bitmap_map *old_map =
 dbug_tmp_use_all_columns(table, table->write_set);
 my_ptrdiff_t offset = (my_ptrdiff_t)(buf-table->record[0]);

 for (uint i = 0; i < table->s->fields; i++) {
 Field *field = table->field[i];
 field->move_field_offset(offset);

This loop over all fields and the two assignments before it are the same as in the
previous chapter.

 if (skip_html(fhtml, "<%*[td/]>") == 5)
 field->set_null();
 else {

Chapter 9

[189]

Here we skip "an angle bracket, any sequence of characters t, d, /, and a closing
angle bracket". If we have skipped five characters, it was a <td/> tag, which stands
for a NULL value, otherwise it was an opening <td> tag, and we need to read the
value of the field:

 char *buf = (char*)
 malloc(field->max_display_length() + 1);
 int buf_len = read_html(fhtml, buf);
 field->set_notnull();
 field->store(buf, buf_len, &my_charset_bin);
 skip_html(fhtml, "</td>");
 free(buf);

To read the value we allocate a buffer, big enough to hold the string representation of
the field value, and read the value using our read_html() function—a counterpart
of write_html() that converts HTML entities back into characters. Then we mark
the field as holding a NOT NULL value, and store the string value in the field. As we
have seen in the Information Schema chapters, the field—an object of the Field
class—automatically performs all of the necessary conversion from a string to a
number, a date, or whatever the field type is. Then we skip the closing </td> tag
and free the buffer.

An inquisitive reader may have noticed that calling malloc() and free() for every
field in every row during a table scan does not indicate performance-conscious
programming. He would be right—it would be better to allocate the buffer once, big
enough to hold a value of any field. It could have been done in the ha_html::open()
method, because field lengths cannot change after a table is opened. We will do this
optimization in the next chapter.

 }
 field->move_field_offset(-offset);
 }
 skip_html(fhtml, "</tr>\n");
 dbug_tmp_restore_column_map(table->write_set, old_map);
 current_row_end = ftell(fhtml);
 return 0;
}

We finish reading a row by restoring field offsets and a write_set bitmap, skipping
the closing </tr> tag, and remembering the offset where the row ended.

int ha_html::rnd_init(bool scan)
{
 current_row_start = 0;
 current_row_end = data_start;
 return 0;
}

HTML Storage Engine—Reads and Writes

[190]

In this function, we need to prepare for a sequential table scan. All we need to do
is to initialize current_row_start and current_row_end. As we start reading a
new row from the current_row_end offset, we should set it here to the data_start
offset, that is to the beginning of the very first row. Additionally, we reset
current_row_start to indicate that no row has been read yet.

void ha_html::position(const uchar *record)
{
 (ulong)ref = current_row_start;
}

This method is very simple. A unique row identifier, in our case, is the file offset to
the row data. That is, all we need to do here is to store the offset of the current row at
the ref pointer.

int ha_html::rnd_pos(uchar * buf, uchar *pos)
{
 memcpy(¤t_row_end, pos, sizeof(current_row_end));
 return rnd_next(buf);
}

Reading a row at the given position is easy too. We only restore the position into
current_row_end and let our rnd_next() method to do the rest of the job.

Updating the table
There are three primary methods that modify the table data. They are write_row(),
delete_row(), and update_row(), which are used by the INSERT, DELETE, and
UPDATE statements accordingly. In our engine, write_row() is the most complex one.

int ha_html::write_row(uchar *buf)
{
 if (table->timestamp_field_type &
 TIMESTAMP_AUTO_SET_ON_INSERT)
 table->timestamp_field->set_time();
 if (table->next_number_field && buf == table->record[0]) {
 int error;
 if ((error= update_auto_increment()))
 return error;
 }

Chapter 9

[191]

Almost every engine's write_row() method starts with these lines. They update the
values of the TIMESTAMP and AUTO_INCREMENT fields, if necessary. Strictly speaking,
the second—AUTO_INCREMENT—block is not needed here. Our engine does not
support indexes, that is, it can never have an AUTO_INCREMENT field.

 fseek(fhtml, -FOOTER_LEN, SEEK_END);
 fprintf(fhtml, "<tr>");

We write a new row at the end of the file. That is, we position the stream at the end,
just before the footer, and start a new row with an opening <tr> tag.

 my_bitmap_map *old_map =
 dbug_tmp_use_all_columns(table, table->read_set);
 my_ptrdiff_t offset = (my_ptrdiff_t)(buf-table->record[0]);

 for (uint i = 0; i < table->s->fields; i++) {
 Field *field = table->field[i];
 field->move_field_offset(offset);

Now we iterate over the fields in a loop very similar to the one in rnd_next(), only
it modifies the read_set bitmap, not the write_set.

 if (field->is_null())
 fprintf(fhtml, "<td/>");

If the field value is NULL we write it down as <td/> to be able to distinguish it from
the empty string (which is written as <td></td>), otherwise we take the field value
and write it to the file:

 else {
 char tmp_buf[1024];
 String tmp(tmp_buf, sizeof(tmp_buf), &my_charset_bin);
 String *val = field->val_str(&tmp, &tmp);

The val_* family of Field methods—val_str(), val_int(), val_real(), and
val_decimal()return the value of the Field, converted to a corresponding type.
To store it in the HTML file, obviously, we want the value converted to a string,
that is, we need to use val_str(). This method takes two arguments, pointers to
String objects. The Field::val_str() method may use either the first or a second,
depending on whether it needs a memory buffer or not. However, as a caller we can
simply pass the same String in both arguments.

HTML Storage Engine—Reads and Writes

[192]

To recall the Information Schema chapter, the class String is a utility class for
working, well, with strings. An object of the String class represents a string as a
pointer, string length in bytes, and string character set. It knows whether the string
was allocated or not. It can reallocate it as the string grows and as expected, it will
free the allocated memory on destruction. What is important for us is that it can start
off from a fixed buffer and allocate the memory automatically if the string value does
not fit. It means that if we create a buffer on the stack we can hope to avoid memory
allocations in most cases. Indeed, the above declarations with tmp_buf and String
tmp show a typical String usage pattern that can be seen everywhere in the
MySQL code.

 fprintf(fhtml, "<td>");
 write_html(fhtml, val->c_ptr());
 fprintf(fhtml, "</td>");

Here we have used the String::c_ptr() method. It returns the string value as a
zero terminated string, appropriate for passing to the fprintf() function.

 }
 field->move_field_offset(-offset);
 }
 dbug_tmp_restore_column_map(table->read_set, old_map);
 if (fprintf(fhtml, "</tr>\n" FOOTER) < 6 + FOOTER_LEN)
 return errno;
 else
 return 0;
}

Having written all of the fields, we restore field offsets and read_set, write the
closing </tr> tag and the file footer, and return. Just in case the disk was full we
verify that the footer was written in whole.

int ha_html::delete_row(const uchar *buf)
{
 assert(current_row_start);
 fseek(fhtml, current_row_start, SEEK_SET);
 fprintf(fhtml, "<!--");
 fseek(fhtml, current_row_end-4, SEEK_SET);
 fprintf(fhtml, "-->\n");
 return 0;
}

Chapter 9

[193]

Compared to write_row(), our delete_row() method is much simpler. MySQL can
only call delete_row() for the current row. And because we know where it starts—at
the current_row_start offset, we can even assert this fact—and we know where it
ends, we can easily comment the complete row out, "deleting" it from the HTML table.

int ha_html::update_row(const uchar *old_data,
 uchar *new_data)
{
 assert(current_row_start);
 if (table->timestamp_field_type &
 TIMESTAMP_AUTO_SET_ON_UPDATE)
 table->timestamp_field->set_time();

 delete_row(old_data);
 table->timestamp_field_type = (timestamp_auto_set_type)
 (table->timestamp_field_type &
 ~TIMESTAMP_AUTO_SET_ON_INSERT);

 return write_row(new_data);
}

The update_row() method is simple too. Just like write_row() it starts by updating
the TIMESTAMP field, but after that we can simply delete the old row and insert
the new one at the end of the table. We just need to remember to remove the
TIMESTAMP_AUTO_SET_ON_INSERT bit to avoid unnecessary TIMESTAMP updates;
MySQL will restore it for the next statement automatically. Because we have
remembered the original "end of table" offset at the beginning of the statement,
we do not need to worry that our table scan will read newly inserted data.

Optimizing and analyzing
In our storage engine, even deleted rows take space, and if the table is regularly
updated, it will grow even if the number of rows does not increase. It would be nice
to implement OPTIMIZE TABLE so that users could have a simple tool to reclaim
the unused space. Luckily, there is a very easy shortcut, we almost do not need
to do anything:

int ha_html::optimize(THD* thd, HA_CHECK_OPT* check_opt)
{
 return HA_ADMIN_TRY_ALTER;
}

HTML Storage Engine—Reads and Writes

[194]

This tells MySQL that for our engine, OPTIMIZE TABLE xxx should be mapped to
ALTER TABLE xxx ENGINE=HTML. That is, to optimize our table MySQL will create a
new table with the same structure, copy all data over to it, and replace the old table
with the new one. Nice, isn't it? Unfortunately, at least in MySQL 5.1.47 there is a bug
that will cause our OPTIMIZE TABLE to fail unless our engine can do ANALYZE TABLE
too. As a workaround we implement a dummy analyze() that succeeds without
actually doing anything:

int ha_html::analyze(THD* thd, HA_CHECK_OPT* check_opt)
{
 return 0;
}

What's left
Not much. The obligatory info() method—although we cannot do much here,
we do not even know the number of rows in the table. Let's just return something—
MySQL will not take this value too seriously, because we do not have the
HA_STATS_RECORDS_IS_EXACT flag in table_flags():

int ha_html::info(uint flag)
{
 if (flag & HA_STATUS_VARIABLE)
 stats.records = 10;
 return 0;
}

Then, there is the external_lock() method. It is an important method—with a few
exceptions MySQL calls it at the beginning and at the end of every statement. The
name is historical, MyISAM and pre-MyISAM engines stored tables in files—just like
our engine does—but used file locking to prevent multiple processes from modifying
the same table file in parallel. The method "external lock" was designed to allow
the engine to take this (external for MySQL) lock, after MySQL has taken its own
"internal" table lock. The second argument of external_lock() is either F_UNLCK (at
the end of the statement) or F_RDLCK or F_WRLCK (at the beginning of the statement).
We can use this method to remember the data_end offset, as discussed before:

int ha_html::external_lock(THD *thd, int lock_type)
{
 if (lock_type != F_UNLCK) {
 fseek(fhtml, -FOOTER_LEN, SEEK_END);
 data_end = ftell(fhtml);
 }

Chapter 9

[195]

 else
 fflush(fhtml);
 return 0;
}

See how we flush the write buffer at the end of the statement? When the statement
ends, MySQL removes its table lock from our table and another thread may start
using it. If that thread opens the file and starts reading it, it needs to see all of the
data—we cannot allow half of the inserted rows to sit in the write buffer after the
statement ends.

So far so good, but there is one problem—under LOCK TABLES the method
external_lock() is not called at the beginning of every statement. Because
external_lock() has already locked its file during the LOCK TABLES statement,
MySQL does not see a reason to call external_lock() again as the file is still
locked. It may be fine for file locking and MyISAM, but we need to know when the
statement starts even under LOCK TABLES! For this very reason MySQL developers
have introduced a separate method, start_stmt(), which is called at the beginning
of every statement under LOCK TABLES. For our engine we can simply call
external_lock() here, to save the data_end offset.

int ha_html::start_stmt(THD *thd, thr_lock_type lock_type)
{
 return external_lock(thd, F_WRLCK);
}

There is no end_stmt() method, but we do not need one anyway—we do not have
to flush the write buffer at the end of every statement under LOCK TABLES, because
while LOCK TABLES is in effect no other thread can read the table we are writing to.

ha_html.h
Having written all of the methods, we can complete the class declaration. This is
what our ha_html.h header should look like:

#include <mysql_priv.h>

#define HEADER1 "<html><head><title>"
#define HEADER2 "</title></head><body><table border=1>\n"
#define FOOTER "</table></body></html>"
#define FOOTER_LEN ((int)(sizeof(FOOTER)-1))

typedef struct st_html_share {
 const char *name;
 THR_LOCK lock;

HTML Storage Engine—Reads and Writes

[196]

 uint use_count;
 struct st_html_share *next;
} HTML_SHARE;

class ha_html: public handler
{
private:
 THR_LOCK_DATA lock;
 HTML_SHARE *share;
 FILE *fhtml;
 off_t data_start, data_end;
 off_t current_row_start, current_row_end;

public:
 ha_html(handlerton *hton, TABLE_SHARE *table_arg)
 handler(hton, table_arg) { }

 const char *table_type() const;
 const char **bas_ext() const;
 ulong index_flags(uint inx,
 uint part, bool all_parts) const;
 ulonglong table_flags() const;
 THR_LOCK_DATA **store_lock(THD *thd,
 THR_LOCK_DATA **to, enum thr_lock_type lock_type);
 int create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info);
 int open(const char *name, int mode,
 uint test_if_locked);
 int close(void);
 int rnd_next(unsigned char *buf);
 int rnd_init(bool scan);
 void position(const uchar *record);
 int rnd_pos(uchar * buf, uchar *pos);
 int write_row(uchar *buf);
 int delete_row(const uchar *buf);
 int update_row(const uchar *old_data,
 uchar *new_data);
 int optimize(THD* thd, HA_CHECK_OPT* check_opt);
 int analyze(THD* thd, HA_CHECK_OPT* check_opt);
 int info(uint flag);
 int external_lock(THD *thd, int lock_type);
 int start_stmt(THD *thd, thr_lock_type lock_type);
};

void write_html(FILE *f, char *str);
int read_html(FILE *f, char *buf);
int skip_html(FILE *f, const char *pattern);

Chapter 9

[197]

htmlutils.cc
Implementing the utility functions that we used—write_html(), read_html(), and
skip_html()—is straightforward:

#include "ha_html.h"

void write_html(FILE *f, char *str)
{
 for (; *str; str++)
 {
 switch (*str) {
 case '<': fputs("<", f); break;
 case '>': fputs(">", f); break;
 case '&': fputs("&", f); break;
 case '-': fputs("–", f); break;
 default: fputc(*str, f); break;
 }
 }
}

This function writes a string to an HTML file, encoding "unsafe" characters. As a
bonus it also encodes a hyphen (-), because it allows us to skip deleted rows—HTML
comments—very easily. As no row can ever contain a hyphen, we skip "from <!--
and up to the next hyphen".

int read_html(FILE *f, char *buf)
{
 int c;
 char *start = buf;
 while ((c = fgetc(f)) != '<') {
 if (c == '&') {
 char entity[21];
 fscanf(f, "%20[^;];", entity);
 if (strcmp(entity, "lt") == 0) { c = '<'; }
 else
 if (strcmp(entity, "gt") == 0) { c = '>'; }
 else
 if (strcmp(entity, "amp") == 0) { c = '&'; }
 else
 if (strcmp(entity, "ndash") == 0) { c = '-'; }
 }
 *buf++ = c;
 }
 ungetc(c, f);
 *buf=0;
 return buf - start;
}

HTML Storage Engine—Reads and Writes

[198]

This function does the opposite to write_html()—it reads the data from the HTML
file up to the angle bracket, replacing entities with characters.

int skip_html(FILE *f, const char *pattern)
{
 long old=ftell(f);
 fscanf(f, pattern);
 return ftell(f) - old;
}

This is our fscanf() wrapper that parses a text using a scanf() pattern and returns
the number of skipped characters. Of course, when we call it we should take extra
care to use only "skipping" (%*) patterns, that mean "parse the input and discard it",
and not any of the "normal" patterns, that mean "parse the input and store it in the
supplied variable".

Compiling and linking
Our engine from the previous chapter and all other plugins had to be built
manually—anybody wanting to use them needed to invoke the compiler with the
correct options. This is error prone and if we were to distribute a storage engine like
this our users certainly would not appreciate this manual building process. For this
engine, we will try to automate the building as described in the first chapter. We will
need to create three files—plug.in, Makefile.am, and CMakeLists.txt.

We can copy the plug.in file from the first chapter almost verbatim. Our new engine
will only work with HTML files of a predefined fixed structure. It will not use a
general purpose HTML parser, and thus we will not need to check for any libraries
in MYSQL_PLUGIN_ACTIONS. Our plug.in file can be just:

MYSQL_PLUGIN(html,[HTML Storage Engine],
 [Storage Engine that writes an HTML file], [max])
MYSQL_PLUGIN_STATIC(html, [libha_html.a])
MYSQL_PLUGIN_DYNAMIC(html, [ha_html.la])

Similarly we create a Makefile.am file from the example in the first chapter:

pkgplugindir = $(pkglibdir)/plugin

INCLUDES = -I$(top_srcdir)/include \
 -I$(top_builddir)/include \
 -I$(top_srcdir)/sql

pkgplugin_LTLIBRARIES = @plugin_html_shared_target@
ha_html_la_LDFLAGS = -module -rpath $(pkgplugindir)
ha_html_la_CXXFLAGS= -DMYSQL_DYNAMIC_PLUGIN

Chapter 9

[199]

ha_html_la_SOURCES = ha_html.cc htmlutils.cc

noinst_LIBRARIES = @plugin_html_static_target@
libha_html_a_SOURCES= ha_html.cc htmlutils.cc

EXTRA_LTLIBRARIES = ha_html.la
EXTRA_LIBRARIES = libha_html.a

EXTRA_DIST = CMakeLists.txt plug.in
noinst_HEADERS = ha_html.h

The only new line is the one with noinst_HEADERS. This variable lists all header files
that should not be installed, but should be included in a source distribution, our
ha_html.h being such a file.

As with the two previous files, we copy CMakeLists.txt from the first chapter:

INCLUDE(
 "${PROJECT_SOURCE_DIR}/storage/mysql_storage_engine.cmake")
SET(HTML_SOURCES ha_html.cc htmlutils.cc)
MYSQL_STORAGE_ENGINE(HTML)

All files in place, we need to re-run autotools—autoreconf –f—configure the
source—simply ./configure for a dynamically built plugin, or ./configure
--with-plugin-html for a statically built plugin (while ./configure --without-
plugin-html will prevent the plugin from being built at all)—build the MySQL
together with our plugin—make—and install it—make install.

Putting it all together
Let's install the plugin and see how it works:

mysql> install plugin html soname 'ha_html.so';

Query OK, 0 rows affected (0.00 sec)

Keep in mind that if a plugin was built statically into the server, it does not need to
be installed.

mysql> create table test (number int, timestamp timestamp, string
varchar(50)) engine=html;

Query OK, 0 rows affected (0.01 sec)

mysql> insert test values (1,null,"foo"), (2, "2010-01-02 03:04:05",
"barbarbar"), (5,0,NULL);

Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

HTML Storage Engine—Reads and Writes

[200]

mysql> select * from test;

+--------+---------------------+-----------+
| number | timestamp | string |
+--------+---------------------+-----------+
1	2010-06-29 18:23:18	foo
2	2010-01-02 03:04:05	barbarbar
5	0000-00-00 00:00:00	NULL
+--------+---------------------+-----------+

3 rows in set (0.00 sec)

It looks like it works. INSERT works, SELECT works, NULL values can be stored, and
the TIMESTAMP column is automatically updated.

mysql> update test set number=10 where string="foo";

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> delete from test where string is null;

Query OK, 1 row affected (0.00 sec)

mysql> select * from test;

+--------+---------------------+-----------+
| number | timestamp | string |
+--------+---------------------+-----------+
| 2 | 2010-01-02 03:04:05 | barbarbar |
| 10 | 2010-06-29 18:23:18 | foo |
+--------+---------------------+-----------+

2 rows in set (0.00 sec)

mysql> optimize table test\G

*************************** 1. row ***************************

 Table: test.test

 Op: optimize

Msg_type: note

Msg_text: Table does not support optimize, doing recreate + analyze
instead

*************************** 2. row ***************************

 Table: test.test

 Op: optimize

Msg_type: status

Chapter 9

[201]

Msg_text: OK

2 rows in set (0.01 sec)

mysql> insert test values (100,"2001-09-08 07:06:05", "a row"), (101,
"2020-03-14 17:18:28", "one more row");

Query OK, 2 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

Everything works! And this is what our table looks like:

Summary
In this chapter, we have learned the methods needed to create a storage engine with
a full read/write support, and created an example engine that stores the data in
HTML files.

In the next, the last in the storage engine series, chapter, we will see what it takes to
write a storage engine that supports indexes.

TOCAB Storage Engine—
Implementing Indexes

In this chapter, we will implement the most complex plugin of the book. Indexes are
crucial for the performance of the storage engine and a big part of Storage Engine
API deals with indexes, different types of indexes, various ways of using them, and
numerous index-related optimizations. We will inevitably have to cut corners to
keep the size of this chapter in bounds. Although the plugin that we will develop
here will be a fully working storage engine, it will be by no means feature complete.
At the end of the chapter, we will discuss what this engine is missing and what
features it could get to become a usable general purpose storage engine.

B-tree library
There are many different data structures that can be used as "indexes". Most popular
are those of the B-tree family and hash tables. However, discussing details of
different B-tree or hash table implementations is beyond the scope of this book. For
our purposes, we will simply take an existing B-tree implementation. There are many
libraries providing that or another implementation of some of the B-tree variant. We
will build a MySQL storage engine on top of the LGPL licensed Tokyo Cabinet library
(http://1978th.net/tokyocabinet/) by Mikio Hirabayashi. It is fast, simple to
use, and reasonably portable. Unfortunately, it does not fit exactly into the MySQL
Storage Engine API model—indeed, probably no third-party library does it out of
the box—we will need to work around their differences. But first, let's see what the
Tokyo Cabinet API looks like.

http://1978th.net/tokyocabinet/
http://1978th.net/tokyocabinet/

TOCAB Storage Engine—Implementing Indexes

[204]

The library provides different types of storage. It can do hash tables (in memory
and on disk), B+ trees (a variant of B-trees), and other, more specialized types. In
our engine we will only use the B+tree API of Tokyo Cabinet, although an advanced
storage engine could have used them all, selecting the most appropriate storage
automatically, depending on the table structure.

A Tokyo Cabinet library supports multi-threaded access to data, but any table file
can be opened only once in any process and all threads should access the same open
TCBDB (which apparently stands for "Tokyo Cabinet B+tree Data-Base") handle. All
records are identified by the corresponding keys. Tokyo Cabinet supports unique as
well as non-unique B+tree indexes. It has a notion of cursors, and can use them for
scanning and updating the tree. It supports transparent data compression. It allows
the caller to specify a custom comparison function for index entries. Any single
Tokyo Cabinet data file can have only one index—for example, only one B+tree or
one hash table.

What does that mean for us? The table can be opened once and its handle is shared
between threads—that is, logically, the TCBDB handle belongs to our TOCAB_SHARE
structure, not to the ha_tocab class. Cursors and compression—great, we can use
them. Custom comparison function—perfect, no external library would do string
comparison in the same way as MySQL does, using all MySQL collations and
character sets. In fact, most probably, any B-tree library without the ability to use
a custom comparison function would be unusable for us. One index per file—not
good, because in MySQL tables may have many indexes, and we need to support
it. It is not too difficult though. We could simply create as many files as there are
indexes in the table. For example, a table t1 with three indexes would generate at
least four files—t1.frm, t1.index1, t1.index2, and t1.index3. An alternative
solution would be to put all indexes in one B-tree, prefixing all index values with the
index number to be able to distinguish them. This second approach looks cleaner
from the end user point of view—only one file per table—and we will give it a try.

We put all indexes in one file, but where do we put the row data? There are two basic
approaches—MyISAM stores row data in a separate file, uses an offset in a file as a
row position and all indexes refer to a row by its position. InnoDB and NDB identify
a row by its primary key—rows are stored in the index tree of primary keys, and all
secondary keys refer to a row by its primary key. In the previous chapter, we saw
how to use file offset as a position, so let's try the primary key approach here. As a
primary key is an index too, it will naturally go into the same B+tree with all other
indexes, and our table will nicely fit in one file, all indexes and row data together.

Chapter 10

[205]

Storage engine API for indexes
There are quite a few methods in the handler class that deal with indexes. Luckily,
we do not have to implement every single one of them. Still, it is good to know
what methods exist and what possibilities we have. The table below lists most of the
handler methods related to indexes:

Name Description
index_type This is a purely informational method, similar to the

table_type() method, and it returns a string with
the index type. Often, it is either "HASH" or "BTREE",
but it can be just anything. For example, Federated
engine returns "REMOTE" here. This method takes an
index number as an argument, as different indexes may
be of different types.

index_flags This is, too, similar to the table_flags() method.
It returns a bitmap defining index capabilities that,
depending on arguments, describe a whole index, a
specific key part (one column in a multi-column index),
or an index prefix up to and including a given key part.
Index capability flags are listed in the next table.

max_supported_keys
max_supported_key_parts
max_supported_key_length
max_supported_key_part_
length

These methods tell MySQL about the engine limits—
how many keys per table and key parts per key it
supports, and what is the maximal supported key and
key part length. MySQL will allow CREATE and ALTER
TABLE statements only if the resulting table will stay
within these limits. Most have reasonable defaults, but
max_supported_keys() has to be overridden. In the
base class it returns zero, meaning the engine cannot
do indexing.

index_init This method is called before starting index lookups or
traversals. It takes the index number as an argument,
and allows the engine to prepare the table for index-
based access. The base class implementation simply
saves the index number in the active_index member

index_end This is the opposite of index_init(). It is called when
MySQL has finished accessing the index.

index_read This is the method that MySQL uses to search in
the index. It takes a key to search for, its length,
a find_flag, and a result buffer as arguments.
The index number is specified in the preceding
index_init().

TOCAB Storage Engine—Implementing Indexes

[206]

Name Description
index_read_map Certain index search functions exist in two flavors—

one that takes a key and key length as arguments, and
another that takes a key and a bitmap of used key parts
as arguments. For example, if a key is created over
five columns:
KEY(a,b,c,d,e,f)

and MySQL searches for a key prefix that has only the
first three columns set:
WHERE a=1 AND b=2 AND c=3

the bitmap will be 00111 in binary; that is, 7.
index_read_idx_map The only difference between the index_read_idx_

map() method and the index_read_map() method
is that it takes the index number as an argument, and
does not use index_start() or index_end().
The implementation of this method in the base class
simply converts it into a sequence of index_init()…
index_read_map()… index_end().

index_read_last
index_read_last_map

This is similar to the index_read() method, but
asks for the last matching key. MySQL can use it, for
example, in ORDER BY … DESC queries.

index_next This method can be called after index_read(), when
MySQL wants to get the next value in the index order
after the last found. This is used in index scans or for
getting all matching values from a non-unique index.

index_prev This is just like index_next(), but asks for a
previous key in the index order. It can be used
 in ORDER BY … DESC.

index_first This asks for the very first value in the index, or, more
precisely, for a row that corresponds to the very first
key in the index. MySQL may do that in case of a full
index scan or a range query with an upper bound, but
without a lower bound.

index_last This is similar, but asks for the very last value in
the index.

Chapter 10

[207]

Name Description
index_next_same It works just like index_next(), but the engine is only

expected to return the next row if it has exactly the same
key as the one that was searched for. On the other hand,
index_next() returns the next row independent of its
key. This method is implemented in the base handler
class by calling index_next() and comparing the key
of the returned row.

records_in_range This method is used by the optimizer. It takes a range
(a pair or keys—lower and upper bounds of a range;
either one can be unset, meaning an open range) and
returns an approximate number of rows that fit into this
range. This method does not need to be precise, but it
is expected to be fast—the optimizer may call it many
times for different indexes and ranges, before it decides
which one to use to resolve the query.

read_range_first
read_range_next

These two methods work not with individual keys,
but with ranges. The first method takes a range, finds
a matching row and stores it in table‑>record[0].
The second method finds another matched row. Just
like index_next() it is usually called in a loop until
no more rows are found. Only engines that benefit from
knowing both range ends in advance will benefit from
implementing these methods; others can rely on the
base class implementation that converts them into a
sequence of index_read() and index_next() calls.

read_multi_range_first
read_multi_range_next

This is an even higher level of batching. The methods
work with an array of ranges. This can be useful for
a clustered storage—the engine can feed all ranges
to the appropriate nodes and start receiving the data
in parallel, instead of requesting one row at time,
wasting a network round-trip per row. Most engines
do not implement these methods—the base class
implementation turns them into a sequence of read_
range_first() and read_range_next().

preload_keys This is called when a user runs the LOAD INDEX INTO
CACHE statement. The engine can use it to read index
pages into the memory cache to speed up future index
reads. This is only used by MyISAM.

TOCAB Storage Engine—Implementing Indexes

[208]

Describing the engine
We already know a great deal about storage engine plugins and can write the basic
skeleton fairly quickly:

#include "ha_tocab.h"

static handler* tocab_create_handler(handlerton *hton,
 TABLE_SHARE *table, MEM_ROOT *mem_root)
{
 return new (mem_root) ha_tocab(hton, table);
}

static int tocab_init(void *p)
{
 handlerton *tocab_hton = (handlerton *)p;
 tocab_hton->create = tocab_create_handler;
 return 0;
}

struct st_mysql_storage_engine tocab_storage_engine =
{MYSQL_HANDLERTON_INTERFACE_VERSION };

mysql_declare_plugin(tocab)
{
 MYSQL_STORAGE_ENGINE_PLUGIN,
 &tocab_storage_engine,
 "TOCAB",
 "Sergei Golubchik",
 "An example storage engine that uses Tokyo Cabinet library",
 PLUGIN_LICENSE_GPL,
 tocab_init,
 NULL,
 0x0001,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

Chapter 10

[209]

This declares a plugin and provides an initialization function. As usual, we need a
function to create a share:

static TOCAB_SHARE *find_or_create_share(
 const char *table_name, TABLE *table)
{
 TOCAB_SHARE *share;
 for (share = (TOCAB_SHARE*)table->s->ha_data;
 share; share = share->next)
 if (my_strcasecmp(table_alias_charset,
 table_name, share->name) == 0)
 return share;
 share = (TOCAB_SHARE*)alloc_root(&table->s->mem_root,
 sizeof(*share));
 bzero(share, sizeof(*share));
 share->name = strdup_root(&table->s->mem_root, table_name);
 share->next = (TOCAB_SHARE*)table->s->ha_data;
 table->s->ha_data = share;
 return share;
}

This looks exactly as in previous chapters. The same applies to the store_lock()
method—it has not changed at all either:

THR_LOCK_DATA **ha_tocab::store_lock(THD *thd,
 THR_LOCK_DATA **to, enum thr_lock_type lock_type)
{
 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 lock.type = lock_type;
 *to ++= &lock;
 return to;
}

Our table_type() and bas_ext() methods, although not completely identical, are
still very similar to what we have seen earlier:

const char *ha_tocab::table_type() const { return "TOCAB"; }

const char **ha_tocab::bas_ext() const {
 static const char *exts[] = { ".tocab", 0 };
 return exts;
}

TOCAB Storage Engine—Implementing Indexes

[210]

Unfortunately, we cannot copy the rest of the engine from the previous chapter.
Everything else here needs to be written anew, and, simple things first, we start with
the index_type() and max_supported_keys() methods:

const char *ha_tocab::index_type(uint key_number)
{
 return "BTREE";
}

uint ha_tocab::max_supported_keys() const { return 128; }

We say that our indexes are of the "BTREE" type (ignoring the detail that they will
be, in fact, B+trees), and we say that our engine supports up to 128 indexes per table.
The limit comes from using seven bits—one byte minus one bit that will be needed
later—to store the index number in the key prefix. We could have used more bytes or
implemented a variable length encoding here and supported more indexes, but let's
keep things simple. Besides, MySQL by default only supports 64 indexes per table,
and no engine will be allowed to use more than that.

Now, let's do the index_flags() method. It is not completely unfamiliar, we had it
in previous chapters too, as an abstract method of the base handler class, defined in
every descendant class. But, until now, we did not really care what it returned, it
was never expected to be called, as max_supported_keys() was always returning
zero. In this chapter, we changed max_supported_keys() and we need to use
index_flags() to tell MySQL what our indexes can do out of the following:

Flag Description
HA_READ_NEXT It is supposed to mean that the table supports the

index_next() method for this index. But in fact, this
flag is never checked; MySQL assumes that index_next()
is always supported.

HA_READ_PREV This flag means that index_prev() is supported. Unlike
HA_READ_NEXT, MySQL actually checks this capability and
will not invoke index_prev() unless this flag is set.

HA_READ_ORDER Traversing the index with index_next() or index_prev()
will return values in the sort order. For example, MySQL
can read rows from the index and avoid sorting them for an
ORDER BY clause. This is usually true for B-tree based indexes,
and usually not true for hash-based indexes.

Chapter 10

[211]

Flag Description
HA_READ_RANGE The index can be used to find all records in a range. If an

index returns values in the sort order, it can do ranges
too, automatically. Indexes that do not preserve sort order
sometimes can do ranges anyway, but they will need the
special read_range_first() and read_range_next()
methods, the default implementation will not work correctly
for them.

HA_ONLY_WHOLE_INDEX The index cannot search for a prefix of a key, say, when
only the first two columns out of a three-column index have
values. Hash indexes usually have this flag set.

HA_KEYREAD_ONLY The index supports a so called keyread optimization. MySQL
gives a HA_EXTRA_KEYREAD hint to an engine for a query
when it decides to use an index and this index is covering—
all columns that this query uses are part of the index. For
example:
SELECT a FROM tbl WHERE a > 5;

assuming the column a is indexed. In such a case, the
engine does not need to return the complete row, but can
only restore the columns that are part of the key; in a sense,
"unpack" the key into a row. The HA_KEYREAD_ONLY flag
tells MySQL that the engine can do that and it will be faster
than reading the whole row.

Now, we can write our very own index_flags() method. Our indexes are B-tree
like, and they can do pretty much everything from the previous table:

ulong ha_tocab::index_flags(uint inx, uint part,
 bool all_parts) const
{
 return HA_READ_NEXT | HA_READ_PREV | HA_READ_ORDER |
 HA_READ_RANGE | (inx ? HA_KEYREAD_ONLY : 0);
}

TOCAB Storage Engine—Implementing Indexes

[212]

The index_flags() method returns a bitmap of flags describing the capabilities
of the key part part of the index inx. If all_parts is set, the bitmap describes
capabilities of the index prefix from the first and up to the key part part (including
all of the intermediate key parts, that is), otherwise it describes only the key part
part. However, in our engine the capabilities do not depend on the key part, they
are always the same—a B+tree in Tokyo Cabinet can be traversed either forward,
using tcbdbcurnext(), or backward, using tcbdbcurprev(). All keys in B+tree
are naturally ordered according to our custom comparison functions, and thus can
do ranges too. Since we will store column values in their original form, we will
be able to copy them from the key back into the row buffer, thus supporting the
keyread optimization.

Let's talk a bit more about keyread. Remember that our position is the primary key
and all secondary keys refer to a row by its primary key. It means that for every
search by a secondary key we need to perform two B+tree lookups—first, we look
up this secondary key and find a corresponding primary key, then we look up the
primary key to find the actual row data. But if this secondary key is covering, we do
not need to do a second lookup, we can restore key columns in the row buffer from
the key. Other columns' values will be undefined, but that is fine, MySQL does not
need them. It looks like not only our engine can do keyread, but it will also get twice
the speed with this optimization! But this is only for secondary keys. For a primary
key, this brings no benefits—that is, we should enable HA_KEYREAD_ONLY only for
secondary keys in our index_flags() method. A primary key in MySQL is always
the first, key number 0, and we disable keyread for it.

And note another fine detail—when we read from a secondary index we know not
only the secondary key, but also a corresponding primary key. That is, in the keyread
optimization we know values for all columns that are part of this secondary key and
all columns that are part of the primary key—and after just one index lookup, not
two! We can convey this information to MySQL in table_flags():

ulonglong ha_tocab::table_flags() const
{
 return HA_NO_TRANSACTIONS |
 HA_TABLE_SCAN_ON_INDEX |
 HA_REC_NOT_IN_SEQ |
 HA_NULL_IN_KEY |
 HA_STATS_RECORDS_IS_EXACT |
 HA_CAN_INDEX_BLOBS |
 HA_AUTO_PART_KEY |
 HA_PRIMARY_KEY_IN_READ_INDEX |
 HA_REQUIRE_PRIMARY_KEY ;
}

Chapter 10

[213]

Recalling the table from Chapter 8, Storage Engine Plugins, we see that:

•	 The tables of the TOCAB engine are not transactional
•	 Any "sequential table scan" means a random disk access anyway, the

optimizer should not assume that sequential table access is much faster than
random

•	 MySQL should use the position() method to obtain the position
•	 NULL values in indexes are supported
•	 The number of records that the info() method provides is exact,

not approximate
•	 Our engine supports indexes over BLOB fields
•	 An auto-increment column does not need to be at the beginning of the key
•	 In the keyread optimization the primary key columns are always included no

matter what index is selected
•	 Our engine expects a primary key to exist in all tables

The last requirement is not very user friendly. Most other engines that need a
primary key, such as InnoDB, do not force a user to specify it, but generate a hidden
primary key automatically, if necessary. However, for simplicity, we will require the
end user to create a primary key explicitly—when HA_REQUIRE_PRIMARY_KEY flag is
set the CREATE TABLE statement will fail if no primary key is present.

Creating, opening, and closing the table
To open a table in a Tokyo Cabinet one needs to create a new handle with tcbdbnew()
and actually open a file with tcbdbopen(). Before opening, one can prepare the handle
for multi-threaded use with tcbdbsetmutex(), set a custom comparison function with
tcbdbsetcmpfunc(), and set various tuning parameters with tcbdbtune(). MySQL
is multi-threaded, so we will use that handle concurrently, and, of course, we will
need our comparison function, but we won't do any tuning in our example. There is
no special function to create a Tokyo Cabinet file, it is created by opening. That is, both
ha_tocab::open() and ha_tocab::create() will open a Tokyo Cabinet file, and we
can factor out this functionality in a helper function:

static TCBDB *open_tcdb(const char *name, TABLE *table,
 int *error)
{
 char fname[FN_REFLEN+10];
 strcpy(fname, name);
 strcat(fname, ".tocab");
 *error = 0;

TOCAB Storage Engine—Implementing Indexes

[214]

 TCBDB *dbh = tcbdbnew();
 if (!dbh) {
 *error = HA_ERR_OUT_OF_MEM;
 return 0;
 }
 if (tcbdbsetmutex(dbh) &&
 tcbdbsetcmpfunc(dbh, tocab_compare, table->s) &&
 tcbdbopen(dbh, fname, BDBOWRITER|BDBOCREAT))
 return dbh;
 *error = tc_error(dbh);
 tcbdbdel(dbh);
 return 0;
}

This function is not very complex. We generate a filename just like in the previous
chapter, create a new TCBDB handle, and call other necessary functions listed earlier.
In Tokyo Cabinet most functions return true to indicate a success and false to
signal a failure (which can be very confusing if you are used to MySQL conventions,
where 0 is returned for a success). The third argument of tcbdbsetcmpfunc() is
an arbitrary void* pointer that Tokyo Cabinet will give to the custom comparison
function. We use the TABLE_SHARE pointer there, so that in tocab_compare() we see
the table structure. It must be TABLE_SHARE, not a TABLE or ha_tocab object, because
the TCBDB handler is shared between all threads, it is stored in the TABLE_SHARE
structure, and TABLE_SHARE may live longer than any individual TABLE or ha_tocab
object. In the case of a failure, we remember the error code and destroy the
TCBDB handle.

With this helper function, a create() method looks almost trivial:

int ha_tocab::create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info)
{
 int err;
 TCBDB *dbh = open_tcdb(name, table_arg, &err);
 if (dbh) {
 tcbdbclose(dbh);
 tcbdbdel(dbh);
 }
 return err;
}

We open a table, which creates it as a side-effect, and close it at once because this
method should not leave open tables around, the job of opening in the handler class
is delegated to the open() method. We do not need to worry that this may overwrite
an existing table, MySQL does this check for us using its .frm files.

Chapter 10

[215]

The open() method is a bit more complex. First of all, it does not necessarily need
to open anything, as we decided to put the TCBDB handle in TOCAB_SHARE, it may
as well find the table file already opened. But it will need to create a BDBCUR cursor
handle as we need a cursor to iterate the table, to allocate memory for a key buffer,
and set ref_length correctly, and… let's just look at it:

int ha_tocab::open(const char *name, int mode,
 uint test_if_locked)
{
 int err;
 ref_length = table->key_info[0].key_length + 1;

First, we set ref_length—the length of the position—as explained in previous
chapters. In this case, our position is the primary key. Conveniently, MySQL orders
all indexes in a table, putting UNIQUE indexes before non-UNIQUE, and PRIMARY KEY
before all others. This means that the primary key is always the key number 0, the
first element of the table‑>key_info[] array. We add 1 to the primary key length,
because—remember?—we prefix every key with one byte containing the index
number to be able to put all indexes in one B+tree.

Later, we will need a buffer to hold one key—for example, in write_row() we
generate a key based on the row data and insert this key in the index—we can
allocate this key buffer now, once, instead of doing it in write_row() every time:

 int max_key_len = 0;
 for (int i = 1; i < table->s->keys; i++)
 if (max_key_len < table->key_info[i].key_length)
 max_key_len = table->key_info[i].key_length;
 key_buffer = (uchar*)malloc(max_key_len + 1 + ref_length);

First, we iterate over all secondary keys (as we start from 1, not from 0) to find the
longest one. We want the buffer to be big enough to hold any possible key. But note
that we allocate a buffer of max_key_len + 1 + ref_length, that is, the length of the
longest secondary key plus the prefix byte plus the length of the primary key. It is a
trick, and to understand it, we need to look at how the keys will be stored.

Tokyo Cabinet provides an API for storing and retrieving key/value pairs, for
example, tcbdbput() takes a pointer to a key, this key length, a pointer to a value,
and this value length. The API supports both unique and non-unique keys. What
it does not support is SQL NULL values. The comparison function returns -1, 0, or 1,
and one can expect that if compare(a,b) > 0 then, logically, compare(b,a) < 0. But,
if both a and b are NULL, we can only say that they are not equal, not which one is
larger. And if we return 1, just arbitrarily, to indicate non-equality, how could we
know to return -1 when our comparison function is called with exactly the same two
arguments (NULL and NULL), but swapped?

TOCAB Storage Engine—Implementing Indexes

[216]

What we need here is to make these two NULL values unique in some way, to be
able to distinguish between them and provide a stable sorting order. The trick we
use in our engine is to use combined keys. Remember that the task of secondary
key indexes is to map a secondary key to a corresponding primary key? NULL is not
a problem for primary keys, as all primary key columns are always NOT NULL. But,
for every secondary key, instead of using {secondary key, primary key} as a key/
value pair in the Tokyo Cabinet B+trees, we will use {secondary key concatenated
with primary key, empty string} as a key/value pair. This immediately solves
our problem—if two secondary keys are exactly identical, but should be reported
as different because they are both NULL, we return -1 or 1 depending on the
corresponding primary keys, which are guaranteed to be unique. But the key buffer
needs to be big enough to hold the largest secondary key and the primary key
together. It is exactly how we allocated it above.

 if (key_buffer == 0)
 return HA_ERR_OUT_OF_MEM;
 share = find_or_create_share(name, table);
 if (share->use_count == 0) {
 share->dbh = open_tcdb(name, table, &err);
 if (err) {
 free(key_buffer);
 key_buffer = 0;
 return err;
 }
 thr_lock_init(&share->lock);
 }

As usual, in the open() method we find (or create) a TOCAB_SHARE structure, and
if this share was created we initialize its THR_LOCK member. But we also open our
.tocab table file here, because we decided to store its handle in the share.

 share->use_count++;
 thr_lock_data_init(&share->lock,&lock,NULL);
 dbcur = tcbdbcurnew(share->dbh);
 if (!dbcur) {
 close();
 return HA_ERR_OUT_OF_MEM;
 }
 keyread = false;
 return 0;
}

Chapter 10

[217]

At the end, we create a cursor using the tcbdbcurnew() function, initialize the
keyread optimization indicator, and return. The cursor should be in the handler, not
in the share, as there may be many threads reading the table in parallel, all using
their own private cursors.

For a change, the close() method is very simple—it frees the buffer, destroys the
cursor, and, if necessary, closes and destroys the TCBDB handler:

int ha_tocab::close(void)
{
 free(key_buffer);
 key_buffer = 0;
 tcbdbcurdel(dbcur);
 dbcur = 0;
 if (--share->use_count == 0) {
 thr_lock_delete(&share->lock);
 tcbdbclose(share->dbh);
 tcbdbdel(share->dbh);
 }
 return 0;
}

Searching in the index
index_read() is, perhaps, the most complex function in our engine. Not because
it is difficult to look up a key in the B+tree, but because there are too many "search
modes" in MySQL. But let's get started:

int ha_tocab::index_read(uchar *buf, const uchar *key,
 uint key_len, enum ha_rkey_function find_flag)
{

Just like rnd_next(), from the previous chapter this method takes a pointer to a
row buffer as an argument. The row that we will find should be written there. Not
surprisingly, two other arguments of this method are key and key length—it is what
we will need to search for. But the last argument—what is it? It is this very "search
mode" that makes our lives complicated. It can take one of the following values:

Value Description
HA_READ_KEY_EXACT In this mode, index_read() should find a

first row with the key exactly matching the key
argument. If no such row exists, it should return
HA_ERR_KEY_NOT_FOUND.

TOCAB Storage Engine—Implementing Indexes

[218]

Value Description
HA_READ_AFTER_KEY In this mode, index_read() should find a row

with the key that follows the key in the index, in
other words, the smallest key that is larger than the
key argument.

HA_READ_KEY_OR_NEXT Here it should find a smallest key that is larger
than or equal to the key. That is, if the row with
the key of key exists, this mode behaves exactly as
HA_READ_KEY_EXACT, but if such a row does not
exist it behaves as HA_READ_AFTER_KEY.

HA_READ_PREFIX In this mode, the key should match the prefix of
the key of the found row. Although in all search
modes MySQL can search for a prefix of a key
(for example, for a specific value of the a field
in a KEY (a,b) index), only in this mode can it
search for a prefix of a field (first 5 characters in the
20-character string key). This search mode is never
used in MySQL 5.1.

HA_READ_KEY_OR_PREV This is similar to HA_READ_KEY_OR_NEXT—
MySQL wants a row with the key, which is smaller
than or equal to key. In other words, when looking
for a key, if we find it, we return it at once. If we do
not find it, we take the previous key in the index,
the key that had been directly preceding to our
key if it would have been in the index. Only the
HANDLER statement may use this search mode.

HA_READ_BEFORE_KEY Similar to HA_READ_AFTER_KEY, this means a
request for a largest key which is less than the
value of the key argument.

HA_READ_PREFIX_LAST This means a search for a last (in the index order)
key that starts from the key.

HA_READ_PREFIX_LAST_OR_PREV This means, not surprisingly, a search for a last
key that starts from the key or a previous key if a
matching key was not found.

HA_READ_MBR_CONTAIN
HA_READ_MBR_INTERSECT
HA_READ_MBR_WITHIN
HA_READ_MBR_DISJOINT
HA_READ_MBR_EQUAL

These modes are only used for spatial indexes and
we will not discuss them in this book.

Chapter 10

[219]

These are eight different search modes, all packed in one index_read() function.
And, of course, Tokyo Cabinet does not support them all natively, we have to
implement them in our engine. But fear not, we will do it, one by one.

 int reclen;
 const void *rec;
 table->status = STATUS_NOT_FOUND;

There are places in the MySQL storage engine API that exist for obscure
historical reasons and have no logical explanation these days. One of them is an
oh-not-so-easy way of marking the beginning and end of a statement. As we
remember, external_lock() is invoked at the beginning and at the end of the
statement, but not under LOCK TABLES, where start_stmt() is called at the
beginning of the statement and not at the end, and it is even more difficult in case
of nested statements (for example, statements that are part of the trigger that is
invoked in the context of another statement). Another is table‑>status. In the early
days old MySQL storage engines used the status member of the TABLE structure
to communicate the result of a search back to the SQL layer. It was never changed
and our engine still needs to set table‑>status appropriately, as if the return value
of index_read() was not enough. The only two values of the table‑>status that
we are interested in are STATUS_NOT_FOUND, which should be set when nothing was
found and the return value is HA_ERR_KEY_NOT_FOUND, and 0 when the search was
successful and the return value is also 0. To satisfy that requirement we start our
index_read() method from setting table‑>status to STATUS_NOT_FOUND—it will
allow us to return any time without a second thought.

 key_buffer[0] = active_index;
 memcpy(key_buffer+1, key, key_len);
 key_len++;

The next thing we do is generate a key to search for. Our internal search key is the
MySQL search key with a one-byte prefix that contains the key number. We take
the key number from the active_index member of the handler class where the
index_init() method put it.

 switch (find_flag) {

Now, having the key buffer ready, we are fully equipped to perform the search
as instructed by the find_flag argument. The Tokyo Cabinet API has two sets of
functions to search in the B+tree. Functions of the tcbdbget* family return the value
corresponding to the given key. Functions of the tcbdbcurjump* family position
the cursor. As after an index_read() search MySQL may decide to continue
scanning with index_next() or index_prev() we need to use functions that
work with cursors.

TOCAB Storage Engine—Implementing Indexes

[220]

We can start with the simple one. tcbdbcurjump() has the semantics that matches
exactly the HA_READ_KEY_OR_NEXT mode. That is, in this mode all we need to do is to
call tcbdbcurjump():

 case HA_READ_KEY_OR_NEXT:
 if (!tcbdbcurjump(dbcur, key_buffer, key_len))
 return tc_error(share->dbh);
 break;

Similarly, tcbdbcurjumpback() does almost exactly what we need for the
HA_READ_PREFIX_LAST_OR_PREV mode, but only when we work with complete
keys. Prefix searches are difficult, though.

Let's consider an example:

CREATE TABLE t (a int, b int, key (a,b));
INSERT INTO t VALUES (1,2),(2,3),(2,3),(3,4);
SELECT * FROM t WHERE a>=2;

In such a query MySQL will use HA_READ_KEY_OR_NEXT. The index will have four
two-part keys: {1,2}, {2,3}, {2,3}, {3,4}, sorted in this order. We are looking for the first
key that starts from {2}, and the only way to influence Tokyo Cabinet is by the return
value of our tocab_compare() function. There are only three ways we can compare
a key {2,3} with a key prefix {2}. We can say that the prefix is less than a key, that it is
equal to a key, or that it is greater than a key, returning -1, 0, or 1 accordingly. We cannot
say that a prefix is equal to a key, in this case Tokyo Cabinet will decide that a match is
found and it will return that key. If it is doing a binary search in the sorted list of keys,
we can get any of the matching keys returned; if there were a hundred matching keys,
any arbitrary one from that hundred. We simply have to say that a prefix is less than or
greater than a key, otherwise we will never get stable results. Now think of it—if
we need a first matching key, like in the HA_READ_KEY_OR_NEXT mode, we have to say
that the prefix is less than a key. But if we want the last matching key, for example,
for HA_READ_PREFIX_LAST_OR_PREV, we want to pretend that the prefix is greater
than a key! The logic of the prefix comparison depends on the search mode!
Unfortunately, Tokyo Cabinet does not allow us to pass the search mode information
to the comparison function. We cannot use TABLE_SHARE for that because it is shared
between threads, and many threads could be searching the index in parallel. We work
around this problem, by passing the necessary information to the search function
embedded in the key we are searching for. As the max_supported_keys() function
returns 128, the largest index number that is stored in the key_buffer[0] is 127, and
we can use the highest bit of the first byte of the key to say that we want a prefix to be
larger than a key.

Chapter 10

[221]

Our implementation of the HA_READ_PREFIX_LAST_OR_PREV mode simply calls
tcbdbcurjumpback() (as this function does almost exactly what we need here), but
sets the first bit of the key, to indicate that we need the last key with a given prefix:

 case HA_READ_PREFIX_LAST_OR_PREV:
 key_buffer[0] |= 0x80;
 if (!tcbdbcurjumpback(dbcur, key_buffer, key_len))
 return tc_error(share->dbh);
 break;

Now let's try something more complex—HA_READ_KEY_EXACT mode. As
tcbdbcurjump() finds either the matching or the next key, to make sure we have
the exactly matching key, we simply need to retrieve the key at the cursor position
with the tcbdbcurkey3() function and compare it with the requested key using our
tocab_compare() comparison function:

 case HA_READ_KEY_EXACT:
 if (!tcbdbcurjump(dbcur, key_buffer, key_len))
 return tc_error(share->dbh);
 rec = tcbdbcurkey3(dbcur, &reclen);
 if (tocab_compare((char*)rec, key_len,
 (char*)key_buffer, key_len, table->s))
 return HA_ERR_KEY_NOT_FOUND;
 break;

In HA_READ_AFTER_KEY mode we are interested in the first key that is greater than
the key argument. We can find it by calling tcbdbcurjump() and then moving
the cursor forward until we find a non-matching key or reach the end of the
index. But it would be much better to jump to the last matching key using the
tcbdbcurjumpback() function—it would allow us to avoid a loop over all matching
keys, as there can be thousands of them:

 case HA_READ_AFTER_KEY:
 key_buffer[0] |= 0x80;
 if (!tcbdbcurjumpback(dbcur, key_buffer, key_len)) {
 if (!tcbdbcurjump(dbcur, key_buffer, key_len))
 return HA_ERR_KEY_NOT_FOUND;
 }
 else
 if (!tcbdbcurnext(dbcur))
 return HA_ERR_KEY_NOT_FOUND;
 break;

TOCAB Storage Engine—Implementing Indexes

[222]

To understand this, let's look at our example—{1,2}, {2,3}, {2,3}, {3,4}—again. After
the first tcbdbcurjumpback() the cursor will point to the last matching key or to
a previous key if the exact matching key cannot be found. It means that if we are
looking for {2}, or {2,3}, or {3,1}, in all of these cases the cursor will be at the last
{2,3} key. In this case we call tcbdbcurnext(), the cursor is moved to the next key,
and we get what is needed for HA_READ_AFTER_KEY. On the other hand, if the first
tcbdbcurjumpback() fails, it can only mean that neither exact matching nor any
lesser key exists. For example, if we searching for the {0,1} key; in this case, we can
simply position the cursor on the next larger key with tcbdbcurjump() and it will
be the key we want. We do not even need to reset the bit in the key_buffer[0] for a
forward search, as it only affects how a prefix is compared with a matching key, and
at that line we know that no matching key exists.

HA_READ_BEFORE_KEY mode is, in a sense, a reverse of HA_READ_AFTER_KEY. We can
expect that the reverse code of HA_READ_AFTER_KEY will work for it:

 case HA_READ_BEFORE_KEY:
 if (!tcbdbcurjump(dbcur, key_buffer, key_len)) {
 if (!tcbdbcurjumpback(dbcur, key_buffer, key_len))
 return HA_ERR_KEY_NOT_FOUND;
 }
 else
 if (!tcbdbcurprev(dbcur))
 return HA_ERR_KEY_NOT_FOUND;
 break;

Just as HA_READ_BEFORE_KEY is a reverse of HA_READ_AFTER_KEY,
HA_READ_PREFIX_LAST is the reverse of HA_READ_KEY_EXACT:

 case HA_READ_PREFIX_LAST:
 key_buffer[0] |= 0x80;
 if (!tcbdbcurjumpback(dbcur, key_buffer, key_len))
 return tc_error(share->dbh);
 rec = tcbdbcurkey3(dbcur, &reclen);
 if (tocab_compare((char*)rec, key_len,
 (char*)key_buffer, key_len, table->s))
 return HA_ERR_KEY_NOT_FOUND;
 break;

MySQL should never use any other search mode with our engine, but just in case:

 default: return HA_ERR_WRONG_COMMAND;
 }

Chapter 10

[223]

Having positioned the cursor on the right row we read it into a buffer and return:

 return get_cursor_row(active_index, buf);
}

Now, we can easily implement the rest of the index searching functions. For example,
index_first()is just a search for an empty prefix with HA_READ_KEY_OR_NEXT, while
index_last() searches for an empty prefix with HA_READ_PREFIX_LAST, and
index_read_last() can also be implemented in terms of HA_READ_PREFIX_LAST:

int ha_tocab::index_first(uchar *buf)
{
 return index_read(buf, 0, 0, HA_READ_KEY_OR_NEXT);
}

int ha_tocab::index_last(uchar *buf)
{
 return index_read(buf, 0, 0, HA_READ_PREFIX_LAST);
}

int ha_tocab::index_read_last(uchar *buf,
 const uchar *key, uint key_len)
{
 return index_read(buf, key, key_len, HA_READ_PREFIX_LAST);
}

Only two functions are left—index_next() and index_prev()—and they are quite
straightforward to implement:

int ha_tocab::index_next(uchar *buf)
{
 table->status = STATUS_NOT_FOUND;
 if (!tcbdbcurnext(dbcur))
 return HA_ERR_END_OF_FILE;
 return get_cursor_row(active_index, buf);
}

int ha_tocab::index_prev(uchar *buf)
{
 table->status = STATUS_NOT_FOUND;
 if (!tcbdbcurprev(dbcur))
 return HA_ERR_END_OF_FILE;
 return get_cursor_row(active_index, buf);
}

TOCAB Storage Engine—Implementing Indexes

[224]

Rows and keys
Now we discuss the row and key formats. The naive approach would be to store
rows in a MySQL format—what is passed to the write_row() function is written
to disk. Thus retrieval would be easy too. Unfortunately, this does not work. For
example, this format has all CHAR and VARCHAR fields space padded to their full
length. Storing them that way would waste a lot of space. But the main reason why
this simple approach is fundamentally flawed is the BLOB type. In memory, all BLOB
(and TEXT) fields are kept outside of the row buffer; the row buffer only keeps a
pointer to the actual BLOB field content. This is why we use a special packed row
format, which makes our code only slightly more complex, as MySQL conveniently
provides a Field::pack() method that will do all of the packing job. First, we
need a buffer for a packed row. A growing String object (briefly discussed in the
previous chapter) would be very handy here. As we do not need more than one row
buffer per table, we can put it in the ha_tocab object:

bool ha_tocab::pack_row(const uchar *from)
{
 uint max_length = table->s->reclength;
 for (int i = 0; i < table->s->blob_fields ; i++) {
 Field_blob *blob = (Field_blob*)
 table->field[table->s->blob_field[i]];
 max_length += blob->get_packed_size(from +
 blob->offset(table->record[0]),
 table->s->db_low_byte_first);
 }

We start by calculating the required buffer size. The row length without BLOB fields
is table->s->reclength, and for all BLOB fields we add up the sizes of their packed
values to get the buffer size that we need. MySQL has a blob_field[] array in
TABLE_SHARE, it is an array of field numbers—indexes in the table->field[] array
of Field objects—for all BLOB fields. We simply iterate over this array, find the
corresponding Field_blob object, and use its get_packed_size() method, which
returns the number of bytes that the packed image of the actual BLOB field value will
need. Unlike table>s‑>reclength, which is a fixed length of the row, and does not
depend on the row content, we need to use a sizes of an actual BLOB field content,
unless we want to allocate 4 GB of memory for every BLOB field in the table up front.

 if (row_buf.realloc(max_length))
 return 1;

Chapter 10

[225]

Knowing the row size, we increase the size of the buffer, if necessary. The
String::realloc() method never decreases the size of the String object buffer.
It means we only need to allocate memory when a new row has larger BLOB values
than all rows this ha_tocab object has seen so far.

 uchar *to = (uchar*)row_buf.ptr();
 memcpy(to, from, table->s->null_bytes);
 to += table->s->null_bytes;

Having the row buffer ready, we copy the NULL bitmap first—MySQL row format
starts with a bitmap that shows which fields are NULL; it has one bit per any field that
can be NULL. Its length is in the null_bytes member of TABLE_SHARE, and we copy
this bitmap verbatim into our packed row.

 for (Field **field = table->field ; *field ; field++)
 if (!((*field)->is_null()))
 to = (*field)->pack(to,
 from + (*field)->offset(table->record[0]));
 row_buf.length(to - (uchar*)row_buf.ptr());
 return 0;
}

After the NULL bitmap we simply invoke the pack() method of every field that is
not NULL, packing them one after another in the row buffer, and update the String
length accordingly. We have our packed row now.

The unpacking procedure, as expected, does the reverse of packing. In our case it is
even simpler than that, as we do not need to allocate a buffer for BLOB fields:

void ha_tocab::unpack_row(const uchar *from, uchar *to)
{
 memcpy(to, from, table->s->null_bytes);
 from += table->s->null_bytes;
 for (Field **field = table->field ; *field ; field++)
 if (!((*field)->is_null()))
 from = (*field)->unpack(to +
 (*field)->offset(table->record[0]), from);
}

In this unpack_row() method we copy the NULL bitmap, and invoke the unpack()
method of all fields that are not NULL. Note that a field knows whether it is NULL
by consulting the NULL bitmap. That is why we have to copy the NULL bitmap first,
before using the Field::is_null() method.

TOCAB Storage Engine—Implementing Indexes

[226]

Now, the key format. We should be able to construct a key from the row buffer, that
is, given values for all columns, create a corresponding key. We need it, for example,
when inserting new rows into the table. We will need the reverse procedure too—
reconstructing the column values in the row buffer from a key; this is the keyread
optimization that we have discussed before.

There could be many key formats one can think of, but just as with rows, we will use
MySQL help to simplify our example. We have used the Field::pack() method for
our row format; we will use MySQL's key_copy() function for our key format. This
function, defined in the sql/key.cc file, generates a key in the MySQL key format
from a row buffer. It comes with a companion function, key_restore(), which fills
in a row buffer from a MySQL key. As prototypes of both functions are not visible to
plugins, we need to declare them in our engine:

void key_copy(uchar *to_key, uchar *from_record,
 KEY *key_info, uint key_length);
void key_restore(uchar *to_record, uchar *from_key,
 KEY *key_info, uint key_length);

Equipped with these two helpers we can easily write our methods. To generate a
key from the row buffer we start by writing the first byte with the key number, then
invoking key_copy() to put the key into the output buffer. After that, if we are
generating a secondary key (not a key number 0), we append a primary key, again
using key_copy(), to the key buffer:

int ha_tocab::pack_key(uchar *key, int key_num,
 const uchar *record)
{
 *key++ = key_num;
 key_copy(key, const_cast<uchar*>(record),
 &table->key_info[key_num], 0);
 if (key_num == 0)
 return ref_length;
 key+= table->key_info[key_num].key_length;
 *key++ = 0;
 key_copy(key, const_cast<uchar*>(record),
 &table->key_info[0], 0);
 return table->key_info[key_num].key_length + 1 + ref_length;
}

Chapter 10

[227]

We have already used our helper function get_cursor_row() a few times. Now,
having decided on the key and row format, we can actually implement it:

int ha_tocab::get_cursor_row(int key, uchar *buf)
{
 int reclen;
 const void *rec;
 rec = tcbdbcurkey3(dbcur, &reclen);
 if (*(uchar*)rec != key)
 return HA_ERR_END_OF_FILE;

First, we need to retrieve the key at the cursor position and verify that this is the key
that we need. Indeed, because we have put all indexes in one B+tree sorted by the
index number, tcbdbcurnext() can move from the last key of the index N to the
first key of the index N+1. For Tokyo Cabinet it is still the same index, but we
know that the index N (the one we are interested in) has no more values, and
it is HA_ERR_END_OF_FILE.

 table->status = 0;

At this moment, we know that the row is found, and we can reset table‑>status.

 if (key == 0) {
 rec = tcbdbcurval3(dbcur, &reclen);
 unpack_row((uchar*)rec, buf);
 return 0;
 }

If the current index is the primary key, the value corresponding to it is the row data;
all we need is to unpack it. Otherwise, we try to use the keyread optimization:

 int klen = table->key_info[key].key_length;
 if (keyread) {
 key_restore(buf, (uchar*)rec + 1,
 &table->key_info[key], klen);
 key_restore(buf, (uchar*)rec + klen + 2,
 &table->key_info[0], ref_length - 1);
 return 0;
 }

TOCAB Storage Engine—Implementing Indexes

[228]

If MySQL has allowed us to use keyread, we simply invoke the MySQL key_restore()
function to fill in the row buffer from the current key (retrieved previously with the
tcbdbcurkey3() function). We restore both the secondary key (number key) and the
primary key (number 0) as we have both in the key buffer. Otherwise, we need to use
the primary key (the position) to find the corresponding row data. Remembering that
reading the row by its position is precisely what the rnd_pos() method does, we can
end our get_cursor_row() function with:

 return rnd_pos(buf, (uchar*)rec + klen + 1);
}

The last and very important function that needs intimate knowledge of the key
format, and thus belongs to this section, is our custom comparison function,
tocab_compare(). It is a callback function that we give to Tokyo Cabinet using the
tcbdbsetcmpfunc() call, and Tokyo Cabinet invokes it when it needs to compare
two keys. That is, the number and type of the arguments of this function are defined
by the Tokyo Cabinet API.

static int tocab_compare(const char *aptr, int asiz,
 const char *bptr, int bsiz,
 void *op)
{
 TABLE_SHARE *table = (TABLE_SHARE*)op;

The callback comparison function in Tokyo Cabinet takes five arguments—the first
key and its length, the second key and its length, and a pointer that was passed to
the tcbdbsetcmpfunc() function. The caller can use it to pass any information down
to the comparison function, and we use the opportunity to pass TABLE_SHARE, the
structure that has all of the information about the table structure, field types, and keys
of the table in question.

We start by deciding how to compare key prefixes—the first bit of the key is
responsible for that:

 int prefix_retval = -1;
 if (*aptr & 0x80 || *bptr & 0x80)
 prefix_retval = 1;

Having done that, we start the comparison. The first byte of every key is the index
number. If two keys belong to different indexes, we can stop immediately:

 int keynum = *aptr & 0x7F;
 int keynumb = *bptr & 0x7F;
 if (keynum != keynumb)
 return keynum - keynumb;

Chapter 10

[229]

Otherwise, we scan both keys, and compare them, part by part:

 int null_found = 0;
 const char *aend = aptr+asiz;
 const char *bend = bptr+bsiz;
 for (;;) {
 aptr++;
 bptr++;
 KEY *key_info = &table->key_info[keynum];
 for (int i = 0; i < key_info->key_parts; i++) {
 if (aptr >= aend)
 return bptr >= bend ? 0 : prefix_retval;
 if (bptr >= bend)
 return -prefix_retval;

We need to make sure that we are not comparing past the end of the key prefix. If we
have reached the end of one of the keys, we return prefix_retval, which was set to
be -1 or 1 depending on the first bit, exactly the way we wanted it.

 KEY_PART_INFO *key_part = & key_info->key_part[i];
 int off = 0;
 if (key_part->null_bit) {
 if (*aptr != *bptr) return *bptr - *aptr;
 null_found |= *aptr;
 off = 1;
 }

If the key part value can be NULL, the first byte of the key part value in the MySQL
key format will be 1 or 0, depending on whether the key part value is NULL or not.
If one of the compared keys is NULL and the other is not, we can stop comparing;
otherwise we go on, remembering whether we have compared two NULL values.

 int cmp = key_part->field->key_cmp((uchar*)aptr + off,
 (uchar*)bptr + off);
 if (cmp) return cmp;

To perform the actual value comparison we use the Field::key_cmp() method. It
will compare the values correctly, taking their type, character set, collation, and other
such details into account.

 aptr += key_part->store_length;
 bptr += key_part->store_length;

TOCAB Storage Engine—Implementing Indexes

[230]

And if everything is equal so far we move to the next key part.

 }
 if ((key_info->flags & HA_NOSAME) && !null_found)
 return 0;
 keynum = 0;

We reach these lines if we have successfully compared all key parts of the index
keynum and found no differences so far. What do we do now? If the index keynum
was declared UNIQUE—we see that by looking at the HA_NOSAME flag—we can report
the equality right now, and let Tokyo Cabinet propagate the unique constraint
violation error up the stack. But only if we have not seen any NULL values! According
to the SQL standard and the NULL value semantics, one can store many NULL values
even in the UNIQUE index. For all practical purposes, it means that the UNIQUE index
is only unique unless the key contains NULL. And this is exactly what we have done.
If the index is UNIQUE and no NULL values have contaminated our comparison, we
report the equality. Otherwise, we repeat the whole comparison again, for the key
number 0, that is for the primary key, which we append to any secondary key for
this very reason.

 }
 return 0;
}

Table scan and random access
Compared to indexes, sequential and random table access (rnd_* methods) are much
simpler. We have discussed them extensively in previous chapters. In our engine
there is no way to scan all of the rows in a sequential order—Tokyo Cabinet has no
API for that. Like other engines that store the row data in the index by primary key,
we convert the table scan into the primary key index scan.

There is only one detail worth mentioning. As we remember, the call sequence for
the sequential table scan is rnd_init(), rnd_next() many times, and rnd_end().
While for the index scan it is index_init(), index_first(), index_next() many
times, and index_end(). See? In the indexed case, MySQL calls a special method to
retrieve the first row in the sequence. In the table scan case, the same method is used
to get the first and all subsequent rows. The indexed call sequence fits the Tokyo
Cabinet logic pretty well, as we have seen already. The table scan does not; we need
to know whether MySQL asks for the first or any of the subsequent rows. We will
use a Boolean member in the ha_tocab object to solve this problem:

int ha_tocab::rnd_init(bool scan)
{
 first_row = true;

Chapter 10

[231]

 active_index = 0;
 return 0;
}

int ha_tocab::rnd_next(uchar *buf)
{
 if (first_row) {
 first_row = false;
 return index_first(buf);
 }
 else
 return index_next(buf);
}

In the rnd_init() method we set first_row to be true, and in rnd_next() we
either call index_first() or index_next(), depending on the first_row property.
As active_index is 0, index_* methods will use the primary key,
as desired.

void ha_tocab::position(const uchar *record)
{
 pack_key(ref, 0, record);
}

int ha_tocab::rnd_pos(uchar *buf, uchar *pos)
{
 int reclen;
 const void *rec = tcbdbget3(share->dbh, pos,
 ref_length, &reclen);
 table->status = 0;
 unpack_row((uchar*)rec, buf);
 return 0;
}

Both methods for the random table access are just as simple. As our position is the
primary key, and we need to store it in the buffer pointed to by ref, the position
method is reduced to a single pack_key() call. To retrieve the row by its position
we use the tcbdbget3() function. It does not affect the cursor position, and directly
returns the value corresponding to a key.

TOCAB Storage Engine—Implementing Indexes

[232]

Inserting rows
We have done almost everything MySQL needs to read the table data. But we do
not know yet how to populate the table. No problem, we will do our write_row()
method now.

int ha_tocab::write_row(uchar *buf)
{
 if (table->timestamp_field_type &
 TIMESTAMP_AUTO_SET_ON_INSERT)
 table->timestamp_field->set_time();
 if (table->next_number_field && buf == table->record[0]) {
 int error;
 if ((error= update_auto_increment()))
 return error;
 }

As we know from previous chapters, the write_row() method starts with
the obligatory incantation that sets values for the TIMESTAMP and
AUTO_INCREMENT columns.

 if (pack_row(buf))
 return HA_ERR_OUT_OF_MEM;
 int key_len = pack_key(ref, 0, buf);

Then we prepare the packed row and the primary key in the ref buffer, and
use Tokyo Cabinet's transactional features to simplify our write_row()
method significantly.

Even in non-transactional engines, MySQL expects the write_row() method to be
atomic. However, it performs a set of table updates that can fail the operation in
the middle, that is, it needs to insert the row data into the table, and for any index
insert the corresponding key/value pair in the appropriate index. Having many
UNIQUE indexes in the table, it is possible that after a few indexes are updated the
next UNIQUE index will report a constraint violation. In such a case, the engine needs
to undo all of the effects of write_row(), and most non-transactional engines do it
by explicitly deleting all of the already inserted keys from their indexes. But with
Tokyo Cabinet transactions we can simply wrap the complete update operation in a
transaction and roll it back in case of a failure:

 tcbdbtranbegin(share->dbh);
 last_key = 0;
 if (!tcbdbputkeep(share->dbh, ref, key_len,
 row_buf.ptr(), row_buf.length()))
 goto error;

Chapter 10

[233]

We start our update operation by inserting the primary key with the packed row
data into the B+tree. The tcbdbputkeep() function tries to "put" the key/value pair
into the index, but "keep" the old value for this key if it already exists in the index.
In other words, it is the function to use when inserting into a UNIQUE index, and we
abort the operation if we get a duplicate primary key. Before modifying the index,
we remember what index is to be modified in last_key to be able to report the index
of conflict back to MySQL.

 for (int idx=1; idx < table->s->keys; idx++) {
 int key_len = pack_key(key_buffer, last_key = idx, buf);
 if (!tcbdbputkeep(share->dbh, key_buffer, key_len, "", 0))
 goto error;
 }

After the primary key, we insert all secondary indexes one by one. The value has
zero length here, as everything is in the key itself.

 tcbdbtrancommit(share->dbh);
 return 0;
error:
 int err=tc_error(share->dbh);
 tcbdbtranabort(share->dbh);
 return err;
}

At the end, we commit the Tokyo Cabinet transaction and return 0, which means
success, or abort the transaction and return an error code.

Because of space constraints we will not implement delete_row() or update_row()
in this example. But there is one more method that MySQL may use to delete rows
from a table. For the DELETE statement without a WHERE clause and for the TRUNCATE
statement MySQL first tries to delete all rows at once using the delete_all_rows()
method. If it is not implemented, MySQL resorts to deleting rows one by one with
the delete_row() method. We will implement delete_all_rows() in our engine,
because Tokyo Cabinet provides a function, tcbdbvanish() that does just that:

int ha_tocab::delete_all_rows()
{
 if (tcbdbvanish(share->dbh))
 return 0;
 return tc_error(share->dbh);
}

TOCAB Storage Engine—Implementing Indexes

[234]

What's left
Not much. We need to know when to use the keyread optimization. MySQL tells
it using the HA_EXTRA_KEYREAD hint. The extra() method is used by MySQL
to give various hints to the engine that are safe to ignore. In other words, this
method is completely optional. In our case, though, we are interested in the keyread
optimization hint:

int ha_tocab::extra(enum ha_extra_function hint)
{
 if (hint == HA_EXTRA_KEYREAD)
 keyread=true;
 if (hint == HA_EXTRA_NO_KEYREAD)
 keyread=false;
 return 0;
}

In table_flags() we had the HA_STATS_RECORDS_IS_EXACT flag, that is, we need
to return the exact number of records in stats.records. On a unique constraint
violation we need to tell MySQL what index has caused the failure. The method
info() is used for both purposes:

int ha_tocab::info(uint flag)
{
 if (flag & HA_STATUS_VARIABLE)
 stats.records = tcbdbrnum(share->dbh) / table->s->keys;
 if (flag & HA_STATUS_ERRKEY)
 errkey = last_key;
 return 0;
}

When optimizing, MySQL uses the records_in_range() method to get an estimate
for a number of records that fall into a certain range of values for a given key inx.
These estimates are used to choose the best query execution plan, for example, the
range with the least number of records. Unfortunately, the Tokyo Cabinet API does
not provide a way of obtaining this estimate. We could traverse the index from the
lower to the upper range limits and count keys, but this method would be too slow
if the range contains, say, many millions of keys. It is not too difficult to add this
feature to Tokyo Cabinet, but for the purpose of this example, we will just return a
fixed number, because we do not know better:

ha_rows ha_tocab::records_in_range(uint inx,
 key_range *min_key,
 key_range *max_key)
{
 return 10;
}

Chapter 10

[235]

In many of the previous methods we used the tc_error() function—it is our utility
function that maps the Tokyo Cabinet error code to the MySQL error code:

static int tc_error(TCBDB *dbh)
{
 int err;
 switch(err = tcbdbecode(dbh)) {
 case TCESUCCESS: return 0;
 case TCEKEEP: return HA_ERR_FOUND_DUPP_KEY;
 case TCENOREC: return HA_ERR_KEY_NOT_FOUND;
 case TCENOFILE: return HA_ERR_NO_SUCH_TABLE;
 case TCENOPERM: return HA_ERR_TABLE_READONLY;
 case TCEMETA: return HA_ERR_NOT_A_TABLE;
 case TCERHEAD: return HA_ERR_CRASHED;
 default: return err+10000;
 }
}

The tcbdbecode() function returns the error code from the last failed operation. If
there is no mapping for any particular error code, we return it plus a big number
to make sure it never matches an existing MySQL error number. Although such a
collision would not cause any bugs, it would be confusing for the user.

As an extra bit of user-friendliness, we implement the get_error_message()
method. MySQL calls it to turn the unknown (read: engine specific) error code to a
string. Without it a user may see, for example:

Got error 10014 from storage engine

But with it, the error will be:

Got error 10014 'write error' from TOCAB

The method takes an error number as an argument, and needs to store the message
in the supplied String buffer. It returns false for the error message as above, and
true for a transient error. The error message in this case would have been:

Got temporary error 10014 'write error' from TOCAB

TOCAB Storage Engine—Implementing Indexes

[236]

MySQL does not do anything special for transient errors besides using a slightly
different error message.

bool ha_tocab::get_error_message(int error, String *buf)
{
 const char *msg=tcbdberrmsg(error-10000);
 buf->set(msg, strlen(msg), &my_charset_bin);
 return false;
}

Compiling and linking
We will need a Makefile.am file, which looks almost exactly as in the
previous chapter:

pkgplugindir = $(pkglibdir)/plugin
INCLUDES = -I$(top_srcdir)/include \
 -I$(top_builddir)/include \
 -I$(top_srcdir)/sql

noinst_HEADERS = ha_tocab.h

EXTRA_LTLIBRARIES = ha_tocab.la
pkgplugin_LTLIBRARIES= @plugin_tocab_shared_target@
ha_tocab_la_LDFLAGS = -module -rpath $(pkgplugindir)
ha_tocab_la_CXXFLAGS= -DMYSQL_DYNAMIC_PLUGIN
ha_tocab_la_SOURCES = ha_tocab.cc

EXTRA_LIBRARIES = libha_tocab.a

noinst_LIBRARIES = @plugin_tocab_static_target@
libha_tocab_a_SOURCES= ha_tocab.cc

EXTRA_DIST = plug.in

We will also require a plug.in file that has two new lines:

MYSQL_PLUGIN(tocab, [TOCAB Storage Engine],
 [Storage Engine that uses Tokyo Cabinet storage library],
 [max,max-no-ndb])
MYSQL_PLUGIN_STATIC(tocab, [libha_tocab.a])
MYSQL_PLUGIN_DYNAMIC(tocab, [ha_tocab.la])

AC_CHECK_HEADER([tctdb.h],,[with_plugin_tocab=no])
AC_CHECK_LIB(tokyocabinet,tcbdbopen,,[with_plugin_tocab=no])

Chapter 10

[237]

Besides declaring a storage engine plugin and specifying that it supports both static
and dynamic linking with the server, we check for the installed Tokyo Cabinet
library. If it is not installed, we disable our plugin and it will not be built. If a Tokyo
Cabinet is installed, it will be detected and a plugin will be built, dynamically by
default, or statically, if a user said so. Of course, a user may decide to disable the
plugin nevertheless. We just do what we can to gracefully handle the situation when
a Tokyo Cabinet library is not present, to avoid failing the build with an unsightly
compilation error.

Putting it all together
It was a long and exhausting chapter with lots of code and lots of details. We deserve
to see what we have created:

mysql> create table t (a int primary key, b int, c int, d int, e blob,
key bcd_key (b,c,d)) engine=tocab;
Query OK, 0 rows affected (0.01 sec)

mysql> insert t values (1,2,3,4,"foo"),(2,3,4,5,"bar"),(3,4,5,6,"abc"),(
4,5,6,7,"serg"),(5,6,7,8,"andrew"),(6,7,8,9,"mysql"),(0,4,6,7,"tocab"),
(7,5,6,7,"something");
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> insert t values (7,5,6,7,"this will fail");
ERROR 1062 (23000): Duplicate entry '7' for key 'PRIMARY'

Yes, this has worked, the error message is correct.

mysql> select * from t;

+---+------+------+------+-----------+
| a | b | c | d | e |
+---+------+------+------+-----------+
0	4	6	7	tocab
1	2	3	4	foo
2	3	4	5	bar
3	4	5	6	abc
4	5	6	7	serg
5	6	7	8	andrew
6	7	8	9	mysql
7	5	6	7	something
+---+------+------+------+-----------+

8 rows in set (0.00 sec)

TOCAB Storage Engine—Implementing Indexes

[238]

mysql> explain select a,b,c,d from t\G

*************************** 1. row ***************************

 id: 1
 select_type: SIMPLE
 table: t
 type: index
possible_keys: NULL
 key: bcd_key
 key_len: 15
 ref: NULL
 rows: 8
 Extra: Using index
1 row in set (0.00 sec)

This is interesting. See how EXPLAIN shows "Using index" (it means keyread
optimization) on the bcd_key index? But bcd_key is not covering! We have selected
columns a, b, c, and d while bcd_key only covers b, c, and d. Could that be a bug in
MySQL? No, column a is part of the primary key, and MySQL knows that any of our
indexes includes a primary key implicitly, because in our table_flags() method
we have used the HA_PRIMARY_KEY_IN_READ_INDEX flag. This allows MySQL to
allow the keyread optimization even in cases when a key is not covering according to
the table definition.

mysql> select * from t force index (b) where b < 5 order by b desc;

+---+------+------+------+-------+
| a | b | c | d | e |
+---+------+------+------+-------+
0	4	6	7	tocab
3	4	5	6	abc
2	3	4	5	bar
1	2	3	4	foo
+---+------+------+------+-------+

4 rows in set (0.00 sec)

This is one of the cases when MySQL uses the HA_READ_BEFORE_KEY search mode.
As the example shows, this mode, as well as the index_prev() method, seem to
work correctly. We need to use the FORCE INDEX hint in the query, otherwise the
MySQL optimizer would prefer to use a table scan, not an index scan. The table has
only 8 rows, and a table scan would need to touch only 8 rows, while an index range
would contain 10 rows (that's what our fake records_in_range() method says),
and MySQL prefers a cheaper table scan. If the table had few times more rows, the
FORCE INDEX hint would not be needed.

Chapter 10

[239]

More queries that provide almost complete coverage of our example engine source
code can be found in the tocab.test file that is a part of the code bundle for this
book and can be downloaded from the Packt website.

Possible extensions
Our TOCAB engine, although fully functional, is still missing few features, before it
can be truly called a general purpose storage engine for MySQL. For example:

•	 Working delete_row() and update_row() methods.
•	 Auto-increment implemented in the engine—this is the only way to make

sure that auto-increment numbers are not reused. If it is implemented in the
server, as is the case with our engine, every new auto-increment number is
the largest auto-increment number in the table plus one. Obviously, when we
delete the row with the largest auto-increment number and insert a new row
we get the same auto-increment number.

•	 A working records_in_range() method. Most probably it would require
some modifications in the Tokyo Cabinet source code.

•	 Our engine should not require the user to specify a primary key, but needs to
generate a hidden primary key automatically, if necessary.

•	 Working optimize() and analyze() methods (there is the
tcbdboptimize() method that can be used here).

•	 Make use of the tcbdbtune() method—with tuning parameters available
as MySQL server variables (MYSQL_SYSVAR_* macros) or as CREATE TABLE
attributes (see Appendix).

•	 Tokyo Cabinet supports hash indexes too. In MySQL a user can specify
whether an index should use a B-tree or hash algorithm with the USING
BTREE or USING HASH clause. If our engine used hash indexes provided
by Tokyo Cabinet, it could support this clause, allowing a user to use the
algorithm that is best suited for any given index.

Summary
In this chapter we have studied, in excruciating detail, the inner workings of a
MySQL storage engine that supports B-tree indexes. We have seen how to implement
a translation layer between the MySQL storage engine API and a third-party B-tree
storage library API, and how to work around their incompatibilities.

This chapter concludes the storage engine part of the book.

Beyond MySQL 5.1
In the Appendix, we will briefly look at changes in the Plugin API that you may
expect to see in MySQL versions after MySQL 5.1.

Server services
Over the years, MySQL developers have implemented a lot of functionality for the
server to use. There are wrappers over the system functions such as my_open(),
my_sync(), and my_malloc() that add additional features such as error checking
and reporting. Compatibility wrappers such as my_snprintf() and pthread_mutex_
lock() behave identically on all platforms and add additional features too. There are
also various useful data structures such as red-black binary trees, dynamically growing
hash tables, priority queues, and so on. Useful utility functions such as connection
local memory allocator and character set support were developed specifically for the
MySQL server run-time environment.

In many cases, plugins would like to use all of this and not reinvent the wheel.
But how can they do that? Just calling any of these functions directly will create an
additional dependency on the server—a dependency not covered by the Plugin API.
Although not always possible, it is wise to avoid dependencies like that. MySQL
developers can change internal details of the server implementation anytime—it
is only the API that they promised to keep stable. If our plugin depends on such
internal details, and they are changed, the best we can hope for is that the plugin
will not load. However, it could cause a crash on load, or it may appear to work but
produce incorrect results. There is no way to know in advance.

Beyond MySQL 5.1

[242]

A safe, though time consuming, solution would be to ask MySQL developers to add
functions we need to the plugin.h header. By doing this they add these functions to
the Plugin API and promise to keep them stable. Or at least protected them with an
API version number, as sometimes changes are unavoidable. If such an unavoidable
change happens, the Plugin API version is incremented and old plugins stop
loading. There will be no crash or incorrect results, MySQL will simply complain that
the plugin requires an incompatible API version and will refuse to load a plugin.

This approach is safe, no crash, but not perfect. There is only one version
number—the Plugin API version—but there can be hundreds of utility functions.
An incompatible change of any single one of them requires the version to be
incremented, and all plugins are invalidated—although most, if not all, plugins do
not need or use this particular utility function and are not affected by the change.
But MySQL does not know it, because there is one global version number that
covers everything.

What is really needed is a fine-grained version control, to track interface changes on
a function level, one version per function, or at least per a group of related functions.
A plugin stores version numbers for all of the functions it uses and MySQL checks
them when it loads a plugin. Ideally, it should be completely automatic—we do not
want to maintain a list of all functions (and their versions) that our plugin needs.

This is exactly what Server Services are. Fine-grained version control—one version
per service, that is a group of functions (a group can be as small as one function
though). Automatic dependency tracking—we do not need to think about it, it just
works; the versions for all services that we have used in our plugin are automatically
recorded in the plugin binary (.dll or .so file). They are automatically checked
when a plugin is loaded to guarantee complete API compatibility. Changes in
functions that our plugin does not use will not affect the compatibility of our plugin,
even if they may affect other plugins. It is completely transparent and does not
require any changes in the plugin source code—calling a function from a service is as
simple as calling a normal function. We can simply write:

my_snprintf(buf, sizeof(buf), "string=%s", str);

This will call an appropriate function from an appropriate service.

What are the drawbacks? It is almost automatic and transparent, but not quite. There
is one manual step—we need to link our plugin with libmysqlservices.a. Usually,
it means adding -lmysqlservices to LDFLAGS in the Makefile.am file. In Windows,
there is no need to do even that.

Appendix

[243]

Another issue is that services do not cover all MySQL internal functionality yet. Their
number is growing, we can expect more services to appear. Eventually, everything
that MySQL developers want to make accessible for plugins will be available via
services. But at the time of writing, there are only two services in the MySQL 5.5
source tree: my_snprintf and thd_alloc.

my_snprintf
This service provides two functions: my_snprintf() and my_vsnprintf(). They are
roughly equivalent to the system snprintf() and vsnprintf() (leaving aside the
fact that not all systems provide them) with the following differences:

•	 They do not support all printf() format features. For example, left-padding
is not implemented.

•	 They produce identical results on all operating systems, compilers, and
architectures—passing a null pointer for %s prints (null) (while system
printf() either does that or crashes). Floating point numbers are printed
identically everywhere as they use MySQL internal routines for conversion.
Printing a pointer with %p always adds the 0x prefix (a system printf()
either does it or not).

•	 They support a few non-standard extensions, such as printing a string with
embedded null bytes (using %b format) or quoting identifiers with backticks
according to MySQL quoting rules (using %`s format).

The complete documentation for this service is in the mysql/service_my_
snprintf.h file.

thd_alloc
This service gives us a specialized memory allocation function thd_alloc() as
well as helper functions thd_calloc(), thd_strdup(), thd_strmake(), and
thd_memdup().

There are two main differences between malloc() and thd_alloc():

•	 The system malloc() typically allocates memory from a global memory
pool. It means that when many threads want to allocate memory in parallel,
malloc() needs to protect its shared data structures, which causes mutex
locks and reduces concurrency. The thd_alloc() function takes memory
from a thread local memory pool, and as different threads use different pools
the concurrency overhead disappears. In other words, thd_alloc() is much
faster than malloc() when MySQL is serving many connections at the
same time.

Beyond MySQL 5.1

[244]

•	 There is no need to free the memory. All memory allocated with thd_alloc()
is automatically freed when the processing of the current SQL statement ends.
It significantly simplifies plugin memory management as we do not need to
worry about memory leaks anymore.

It all means that this service is perfect for small and medium-sized allocations that
we need only for a short time, otherwise we are better off with a good old malloc().

The complete documentation for this service is in the mysql/service_thd_alloc.h
file.

Audit plugins
Besides many other features, MySQL 5.5 adds a new plugin type—Audit plugin. As
the name suggests, it allows us to do auditing and logging of whatever happens in
the server. At certain points, the MySQL server emits audit events. An audit plugin
can subscribe to receive them, all or only a subset, for further processing. Let's look at
what the audit event looks like:

struct mysql_event
{
 unsigned int event_class;
};

Every audit event is characterized by its class. The event structure may have more
members, but what they are depends on the event class.

Now, what makes the audit plugin API different from all other plugin type APIs—it
is not feature complete. It does not try to anticipate all possible audit use cases and
generate all possible audit events for everything that anyone may want to audit
some day. Instead, MySQL developers (including one of the authors of this book)
have only implemented one audit event class—general—as new audit classes can be
added later, when they will be needed for real, not hypothetical, plugins. The event
of the general audit class is defined as:

#define MYSQL_AUDIT_GENERAL_LOG 0
#define MYSQL_AUDIT_GENERAL_ERROR 1
#define MYSQL_AUDIT_GENERAL_RESULT 2

struct mysql_event_general
{
 unsigned int event_class;
 unsigned int event_subclass;
 int general_error_code;
 unsigned long general_thread_id;

Appendix

[245]

 const char *general_user;
 unsigned int general_user_length;
 const char *general_command;
 unsigned int general_command_length;
 const char *general_query;
 unsigned int general_query_length;
 struct charset_info_st *general_charset;
 unsigned long long general_time;
 unsigned long long general_rows;
};

All events of the general class are sorted into one of the three subclasses—log, error,
and result. Events of the log subclass are emitted when a statement is received by
the MySQL server, but before its execution starts. It is also the point when logging
into the MySQL general query log takes place. Events of the error subclass are
emitted when an error happens during the execution of the SQL statements. The
general_error_code member of the mysql_event_general structure is non-zero
only for the events of this subclass. Finally, events of the result subclass are emitted
when the execution of the SQL statement is finished, almost where logging into the
slow query log takes place. The general_time and general_rows members are
defined only for events of this subclass.

Let's look at a simple audit plugin to understand the API better:

mysql_declare_plugin(securlog)
{
 MYSQL_AUDIT_PLUGIN,
 &securlog_struct,
 "SecurLog",
 "Sergei Golubchik",
 "Log Security Violations",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0001,
 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

Beyond MySQL 5.1

[246]

The audit plugin, like any other plugin, must be declared with the help of the
mysql_declare_plugin macro. The only element specific to auditing here is the
pointer to the securlog_struct structure—the descriptor of our audit plugin:

static struct st_mysql_audit securlog_struct =
{
 MYSQL_AUDIT_INTERFACE_VERSION,
 NULL,
 securlog_log,
 { MYSQL_AUDIT_GENERAL_CLASSMASK }
};

The audit plugin descriptor starts from the API version number—any plugin
descriptor structure starts from that, independently from the plugin type. The last
member in the structure is the bitmap of the event classes we are interested in. In
this way we declare what events we want to see, and MySQL will do the filtering for
us. Of course, there is only one event class for now, so there is not much to filter. We
specify that we want to see events in the general class.

The third member is the most important one—it is a pointer to the function that will
be called for every event, a notification function, securlog_log(). This function takes
two arguments, the calling THD and the event descriptor of the mysql_event type.
The second member is a pointer to the release function—the function that should
remove any dependency that exists between THD and the plugin, as if the THD would
be destroyed the very next moment. For example, if our notification function wants
to cache data in the THD, it needs to invalidate the cache here. If we ever allocate the
memory and store the pointer in THD, we would have to free it now. And if we use
the thd_alloc service to allocate memory in the current thread memory pool, we
should consider this memory to be gone after the release function is called.

However, we are not going to do anything like that in this example, and our release
function pointer is NULL. We just want to log all of the attempts to violate a security
policy—that is, all cases when somebody tries to access a database, a table, or a
column that he has no right to. It can be done easily by intercepting the error subclass
of events and looking for all error codes that can be used to deny access to a resource:

static void securlog_log(MYSQL_THD thd,
 const struct mysql_event *ev)
{
 struct tm t;
 const struct mysql_event_general *event = ev;
 switch (event->general_error_code) {
 case ER_ACCESS_DENIED_ERROR:
 case ER_DBACCESS_DENIED_ERROR:

Appendix

[247]

 case ER_TABLEACCESS_DENIED_ERROR:
 case ER_COLUMNACCESS_DENIED_ERROR:
 localtime_r(&event->general_time, &t);
 fprintf(stderr, "%04d-%02d-%02d %2d:%02d:%02d "
 "[%s] ERROR %d: %s\n",
 t.tm_year + 1900, t.tm_mon + 1,
 t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec,
 event->general_user, event->general_error_code,
 event->general_command);
 }
}

As we can see, it is as simple as it can be—for all matching error codes it prints a log
entry with the time of the event, username, the error code, and the error message.

Authentication plugins
Having talked about the features in the MySQL 5.5 branch—both Server Services and
the Audit Plugin API are present in the latest MySQL 5.5.4-m3 release—it is time to
look into the more distant future. Authentication plugins first appeared in MariaDB—
the extended version of MySQL, developed independently as a fork—version 5.2. The
code was contributed to MySQL though, and may appear in a post-5.5 release.

How it works
An authentication plugin is specified per user, in the CREATE USER or GRANT statement:

CREATE USER serg IDENTIFIED VIA three_attempts USING 'secret';
GRANT USAGE ON *.* TO ''@'%' IDENTIFIED VIA ldap;

The second statement specifies a plugin to use for an anonymous user, it means that
if the username was not found in the mysql.user table it will be looked up in the
LDAP. This allows storage of the list of users in the LDAP without duplicating it in
the MariaDB (or MySQL).

Pluggable authentication adds a new concept to the MySQL plugin architecture—
client-side plugins. Indeed, an authentication process is a dialog, if the server
wants to use, for example, Kerberos, the client needs to support it too. Client-side
plugins do just that: they are loadable modules that are loaded into the client by the
libmysqlclient library, and provide the client side of the pluggable authentication.

Beyond MySQL 5.1

[248]

According to a MySQL client-server protocol, on a new connection, the server sends
to a client a so called handshake packet with the server version and capabilities. The
client replies with a packet containing the client capabilities and the username.
Both packets carry the authentication data provided by the corresponding plugins.
They have to use default plugins, because neither a server nor a client can know
what plugin was specified for this user in the mysql.user table until the server
receives the username from the client. After the server finds out what plugin to use,
it switches to the correct plugin and tells the client to do so, as necessary. But the
switch happens—if at all—completely transparent for plugins; they do not need to
implement anything special to support it.

Now, to get a taste of it, let's write a working plugin that uses USB sticks for logging
into the MariaDB server. Sounds cool? A USB mass storage device should (according
to the specifications, although not all manufactures adhere to them) have a unique
serial number. In Linux, one can easily get serial numbers of all plugged in, even not
mounted, USB devices from the /proc/bus/usb/devices file. We will use the serial
number of a USB device to authenticate a user.

Authentication plugins—server side
A server-side authentication plugin starts by including the necessary API
header file:

#include <mysql/plugin_auth.h>

We also include a few system headers, we will need them:

#include <string.h>
#include <fcntl.h>
#include <unistd.h>

Just like any other plugin, this needs the usual plugin mumbo-jumbo:

mysql_declare_plugin(usbsn)
{
 MYSQL_AUTHENTICATION_PLUGIN,
 &usbsn_handler,
 "usbsn",
 "Sergei Golubchik",
 "USB Serial Number",
 PLUGIN_LICENSE_GPL,
 NULL,
 NULL,
 0x0100,

Appendix

[249]

 NULL,
 NULL,
 NULL
}
mysql_declare_plugin_end;

We declare an authentication plugin, called usbsn, version 1.0. The plugin declaration
refers to the authentication plugin handler, which we declare as follows:

static struct st_mysql_auth usbsn_handler=
{
 MYSQL_AUTHENTICATION_INTERFACE_VERSION,
 "usbsn",
 usbsn_verify
};

This structure contains three members. It starts with the obligatory API version
number. Then, it names the client-side plugin that our server-side plugin should
work with. It does not need to have the same name as the server plugin. In
fact, in many cases, the server plugin only needs to ask the user to enter some
information—a password, a key phrase, or a PIN—and MariaDB comes with a useful
client-side plugin called dialog that can do just that, ask questions as instructed by the
server. That is, in many cases a server plugin can simply use the dialog client plugin.
In our case, we need a client to retrieve the serial number of a USB device—and this
requires us to write a dedicated client-side plugin. For simplicity, we have called it
usbsn too.

The third member of the st_mysql_auth structure is the function that actually
performs the authentication. Our authentication function needs to check whether a
user—on the client side, not on the server side—has the correct USB stick plugged
in. This is not too complex. We will let the client-side authentication plugin read the
complete /proc/bus/usb/devices file and send it to the server. The server-side
plugin will then see if it contains the serial number that is needed for a given user.

static int usbsn_verify(MYSQL_PLUGIN_VIO *vio,
 MYSQL_SERVER_AUTH_INFO *info)

This is how the authentication function has to be defined. The first argument, vio
(from "Virtual I/O") structure, provides methods to communicate with the client—
the read_packet() and write_packet() functions. The info structure gives us a
username, that we should authenticate, and—in the auth_string member—the string
that was specified in the USING clause of the GRANT or CREATE USER statement. In our
case, it will be the serial number of the USB device:

CREATE USER test IDENTIFIED VIA usbsn USING '1A08051410110';

Beyond MySQL 5.1

[250]

All we need to do is use the vio‑>read_packet() function to read the data that
the client plugin has sent, and search it for the serial number, as specified in the
info‑>auth_string. The /proc/bus/usb/devices file looks like:

T: Bus=01 Lev=01 Prnt=01 Port=06 Cnt=01 Dev#= 4 Spd=480 MxCh= 0
P: Vendor=0ea0 ProdID=2126 Rev= 2.00
S: Manufacturer=OTi
S: Product=USB Multi- Card Reader
S: SerialNumber=0123456789abcdef
....

We better search for the complete line, with the "S: SerialNumber=" prefix, to make
sure we did not, accidentally, find a match in the middle of a longer serial number of
some other device:

{
 unsigned char *pkt;
 int pkt_len;
 size_t buflen=strlen(info->auth_string) + 20;
 char *buf=alloca(buflen);
 my_snprintf(buf, buflen, "S: SerialNumber=%s\n",
 info->auth_string);

First, we allocate a buffer, and create a string to search for. Note that it uses the
my_snprintf() function, which is exported via the my_snprintf service, as explained
earlier in this Appendix.

 if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
 return CR_ERROR;

Now we read the data, as sent by the client. The vio->read_packet() function
returns the number of bytes read and stores the pointer to the data in pkt. The data
itself is in the internal buffer of the MySQL network layer, and it will be overwritten
on the next I/O operation. In our case it is fine, but if we need the data for a longer
time, we will have to copy it.

 return strstr(pkt, buf) ? CR_OK : CR_ERROR;
}

Done! After reading the data, all we need is one strstr() call to determine if any of
the connected USB devices, on the client side, has the correct serial number or not.

Now, we need to write the client part of our USB authentication.

Appendix

[251]

Authentication plugins—client side
Similarly, it starts by including the header:

#include <mysql/client_plugin.h>

Client plugins are much simpler than their server counterparts. They cannot be
unloaded at runtime. There can be only one plugin in the .so or .dll file and
its name has to match the filename. There is only one structure—not two—that
describes the plugin.

mysql_declare_client_plugin(AUTHENTICATION)
 "usbsn",
 "Sergei Golubchik",
 "USB Serial Number",
 {0,0,1},
 NULL,
 NULL,
 usbsn_send
mysql_end_client_plugin;

The client plugin declaration starts with mysql_declare_client_plugin() with the
argument being the plugin type. It is followed by the plugin name, plugin author,
plugin description, plugin version (an array of three integers), and three function
pointers—for the initialization, de-initialization, and authentication functions. Only
the last function is required, the others are optional, and our plugin does not need
and does not provide them.

The authentication function of the client plugin has a prototype similar to its
server-side partner:

static int usbsn_send(MYSQL_PLUGIN_VIO *vio,
 struct st_mysql *mysql)

It also takes two arguments—the vio structure and the informational structure with
the password in the username. The information structure in the client case is the
st_mysql (better known as MYSQL) structure used everywhere in the MySQL
client C API.

{
 int len, res, fd;
 char buf[10240];

 fd=open("/proc/bus/usb/devices", O_RDONLY);
 if (fd == -1)

Beyond MySQL 5.1

[252]

 return CR_ERROR;

 len=read(fd, buf, sizeof(buf)-1);
 close(fd);
 if (len == 0)
 return CR_ERROR;

 buf[len++]=0;

 res=vio->write_packet(vio, buf, len);

 return res ? CR_ERROR : CR_OK;
}

The function itself is very simple, it only reads the file and sends it to the server.

This is all. When this plugin is built and loaded we can try it out. Plug any USB stick
into the computer and look up its serial number in the /proc/bus/usb/devices file.
For my Sony Micro Vault Tiny 8GB, it is 1A08051410110. Now, I can create a test
user with:

CREATE USER test IDENTIFIED VIA usbsn USING '1A08051410110';

After that I can connect to the MariaDB server as this user only if my Micro Vault
stick is plugged in—plugged in the computer where I start the command line client,
not in the computer that runs the server. Congratulations, it works!

SQL extension by Storage Engine
plugins
This is another new feature that is at the moment only available in MariaDB 5.2.
In various storage engines, tables, fields, and indexes often have properties that
a user may want to tune, but has no way of doing it. There is only a fixed set of
attributes accessible from SQL such as MAX_ROWS, AVG_ROW_LENGTH, INSERT_METHOD,
CONNECTION, KEY_BLOCK_SIZE, ROW_FORMAT, PACK_KEYS, and so on. Lucky engine
authors, who had access to the MySQL source code, could modify the parser to
add support for new attributes—such as InnoDB or MyISAM-specific values of
ROW_FORMAT, MERGE-specific parameter INSERT_METHOD, or Federated only
attribute CONNECTION. Other engines had to use the COMMENT field, as in
the following:

CREATE TABLE ugly (
 a INT
) ENGINE=unlucky COMMENT='count=1200:mode="wrap"'

Appendix

[253]

This has limited functionality, prevents the user from using the table comment for its
original purpose, forces every engine to implement the same code of parsing of the
comment string, and simply looks unprofessional from the end user point of view.

The new extension of the Storage Engine API allows engines to provide a list of
attributes that will be supported in the CREATE TABLE and ALTER TABLE statements.
For example:

CREATE TABLE data (
 name VARCHAR(255) APPROVED=YES,
 cv BLOB AVG_SIZE=2048,
 UNIQUE (name) BUCKET=adaptive
) ENGINE=hypothetical TAGS="data,name,CV" TRAIL=ON;
ALTER TABLE data COMPRESSION=gzip LEVEL=9;

These statements show that tables in some hypothetical engine may have four
additional attributes—TAGS, which takes a string, TRAIL, which is a Boolean attribute
and can be on or off, COMPRESSION, that takes not an arbitrary string, but a value
from a predefined set, similar to the ENUM column type in SQL, and, lastly, LEVEL,
which is a numeric attribute. Also, we see two field attributes—APPROVED and
AVG_SIZE, and one index attribute—BUCKET.

This hypothetical engine only needs to declare these attributes, parsing and saving
them in the .frm file would be done by the server. In this example, there are four
table attributes—one string, one number, one enumeration, and one Boolean. First,
the engine declares a structure to store them:

struct ha_table_option_struct
{
 char *tags;
 ulonglong comp_level;
 uint compr;
 bool is_trailed;
};

This is the structure that stores the values of the attributes. The only detail worth
noting is that it uses unsigned int for the enumeration, not C enum type. The size,
in bytes, of the enum type can depend on the compiler and compilation options, and
this structure should only use stable types that have the same size in the server and
in the loadable engine.

Beyond MySQL 5.1

[254]

Now, having the structure, we can map it to the SQL attribute names:

ha_create_table_option table_option_list[]=
{
 HA_TOPTION_STRING("tags", tags),
 HA_TOPTION_BOOL("trail", is_trailed, false),
 HA_TOPTION_ENUM("compression", compr, "none,gzip,bzip2", 0),
 HA_TOPTION_NUMBER("level", comp_level, 4, 0, 9, 1),
 HA_TOPTION_END
};

This is all. The array declares four table options (HA_TOPTION_*):

•	 TAGS: accepts a string as a value and stores it in the tags member of
the structure

•	 TRAIL: accepts a Boolean value (that is, one of ON, OFF, YES, NO, 1, 0) with the
default being false, and stores it in the is_trailed member of the structure

•	 COMPRESSION: accepts one of NONE, GZIP, BZIP2 with the default being NONE,
and stores the ordinal number of the value in the compr member of the structure

•	 LEVEL: accepts a number from 0 to 9 with the step 1 and the default 4, which is
stored in the comp_level member of the ha_table_option_struct structure.

Field and index attributes are declared similarly using HA_FOPTION_* and HA_
IOPTION_* macros.

Putting it to use
We could have used this feature in the book, for example with our HTML engine:

create table test (
 a int,
 b timestamp,
 c varchar(50)
) engine=html style='border:1; color:#001177';

We could also use it with the TOCAB engine (with the option names and values as
documented in the Tokyo Cabinet manual):

create table t (
 a int primary key,
 b int,
 c int,
 d int,
 e blob,
 key bcd_key (b,c,d)
) engine=tocab lmemb=64 nmemb=128 bnum=32767 apow=6 fpow=8;

Appendix

[255]

Let's try to implement the second example. To add support for table attributes to
our TOCAB engine, we need to start with the Tokyo Cabinet manual. The function
tcbdbtune() takes a closed database handle and six tuning parameters:

lmemb Number of elements in the leaf page; the default is 128.
nmemb Number of elements in the node page; the default is 256.
bnum Number of elements in the bucket array; the default is 16381.
apow Record alignment. The record will be aligned by the 2apow bytes. The default

is 8, which means the alignment at the 256-byte boundary.
fpow Maximum number of elements in the free block pool. Again, the actual value

will be 2fpow. The default is 10, that is 1024 elements.
opts Bitwise OR of flags BDBTLARGE (the file can be larger than 2GB),

BDBTDEFLATE, BDBTBZIP, BDBTTCBS (what compression algorithm to use).

To map them to SQL, we can create five numeric attributes, one Boolean—for
BDBTLARGE—and one enumeration:

struct ha_table_option_struct
{
 ulonglong lmemb, nmemb, bnum, apow, fpow;
 bool large;
 uint compression;
};

ha_create_table_option table_option_list[]=
{
 HA_TOPTION_NUMBER("lmemb", lmemb, 128, 1, 65535, 1),
 HA_TOPTION_NUMBER("nmemb", nmemb, 256, 1, 65535, 1),
 HA_TOPTION_NUMBER("bnum", bnum, 16381, 1, 65535, 1),
 HA_TOPTION_NUMBER("apow", apow, 8, 0, 256, 1),
 HA_TOPTION_NUMBER("fpow", fpow, 10, 0, 256, 1),
 HA_TOPTION_BOOL("large", large, false),
 HA_TOPTION_ENUM("compression", compression,
 "none,deflate,bzip2,tcbs", 0),
 HA_TOPTION_END
};

Beyond MySQL 5.1

[256]

Now, we need to tell the server about these attributes by setting the
handlerton appropriately:

static int tocab_init(void *p)
{
 handlerton *tocab_hton = (handlerton *)p;
 tocab_hton->create = tocab_create_handler;
 tocab_hton->table_options = table_option_list;
 return 0;
}

It is the same tocab_init() function as before, with one new, highlighted line. We
have told the server about new table attributes; the server will handle the rest. The only
thing that the server cannot do is to use them. Indeed, the job of calling tcbdbtune() is
ours. But the server makes it easy, by giving us a ha_table_option_struct structure
filled with values:

static TCBDB *open_tcdb(const char *name, TABLE *table,
 int *error)
{
 char fname[FN_REFLEN+10];
 strcpy(fname, name);
 strcat(fname, ".tocab");
 *error = 0;
 TCBDB *dbh = tcbdbnew();
 if (!dbh) {
 *error = HA_ERR_OUT_OF_MEM;
 return 0;
 }

So far, it is the same open_tcdb() function as in the last chapter. Now, we can add a
few more lines to it:

 ha_table_option_struct *opts=
 (ha_table_option_struct*)table->s->option_struct;

We take the structure, table‑>s‑>option_struct, and cast it from the generic
void* to a pointer to our table option structure. We call tcbdbtune() with all of the
tuning parameters:

 if (tcbdbsetmutex(dbh) &&
 tcbdbtune(dbh, opts->lmemb, opts->nmemb, opts->bnum,
 opts->apow, opts->fpow,
 (opts->large ? BDBTLARGE : 0) |
 (opts->compression == 1 ? BDBTDEFLATE : 0) |
 (opts->compression == 2 ? BDBTBZIP : 0) |

Appendix

[257]

 (opts->compression == 3 ? BDBTTCBS : 0)) &&
 tcbdbsetcmpfunc(dbh, tocab_compare, table->s) &&
 tcbdbopen(dbh, fname, BDBOWRITER|BDBOCREAT))
 return dbh;
 *error = tc_error(dbh);
 tcbdbdel(dbh);
 return 0;
}

As usual, the added lines are highlighted. Done. The server ensures that all members of
the structure get the values—as specified by the user or defaults—and that these values
are valid, within the ranges that we specified. The server stores the values in the .frm
file and gives them to us both when a table is created and every time it is opened—
which is important, as open_tcdb() is called both from ha_tocab::create()
and ha_tocab::open(), and both times it needs to know the values of the
tuning parameters.

Test drive
We can create a table and see how options are recognized by the server:

mysql> create table t (a int primary key, b int, c int, d int, e blob,
key bcd_key (b,c,d)) engine=tocab lmemb=64 nmemb=128 bnum=32767 apow=6
fpow=8 compression=tcbs large=yes;
Query OK, 0 rows affected (0.01 sec)

Looking in the debugger, you would have noticed that tcbdbtune() is correctly
called with these values. The server takes care of showing them too:

mysql> set sql_quote_show_create=0;
Query OK, 0 rows affected (0.00 sec)

mysql> show create table t\G

*************************** 1. row ***************************

 Table: t
Create Table: CREATE TABLE t (
 a int(11) NOT NULL,
 b int(11) DEFAULT NULL,
 c int(11) DEFAULT NULL,
 d int(11) DEFAULT NULL,
 e blob,
 PRIMARY KEY (a),
 KEY bcd_key (b,c,d)
) ENGINE=TOCAB DEFAULT CHARSET=latin1 lmemb=64 nmemb=128 bnum=32767
apow=6 fpow=8 compression=tcbs large=yes

1 row in set (0.00 sec)

Beyond MySQL 5.1

[258]

Note that invalid values are not accepted:

mysql> create table t1 (a int primary key) engine=tocab compression=gzip;
ERROR 1651 (HY000): Incorrect value 'gzip' for option 'compression'

Summary
MySQL 5.1 has been released and new features are being added to MySQL 5.5
and later versions, and to independently developed MariaDB—a backward
compatible fork of MySQL with additional features. Plugin API is being changed
and extended too. In the Appendix, we have seen a few large features that are
already implemented and available, but which did not make it to MySQL 5.1. Of
course, there are numerous smaller changes of differing importance both in MySQL
and MariaDB—this Appendix simply cannot cover them all. And surely even more
features are planned or being developed as you read these lines.

Good luck in your plugin development adventure, and have fun!

Index
Symbols
$varvar 135
$while 130
--disable-plugin-my-plugin command 52
.dll extension 27
-lexif 145
-ourplugin-log-size 64
-ourplugin-mode command-line option 64
--plugin-my-plugin=OFF command 52
__reserved1 member 56
--skip-grant-tables option 31
@@static_text_rows 162, 164
@@static_text_text 164
@@static_text_text variable 162
@@static_text_varchar variable 176

A
aggregate UDFs 25, 46-49
analyze() 194
apow parameter 255
arg_count member 34
args array member 35
args member 34
arg_type member 34, 35
arguments() method 104
attribute_lengths member 35
attributes member 34, 35
audit plugins

about 244
example 245

authentication plugin
about 247
client side 251, 252
dialog 249

handshake packet 248
libmysqlclient library 247
my_snprintf() function 250
read_packet() function 249
server side 248-250
st_mysql_auth structure 249
strstr() call 250
vio->read_packet() function 250
vio structure 251
working 247, 248
write_packet() function 249

author 55
AUTO_INCREMENT field 191

B
bas_ext method 166
bas_ext() method 209
BDBCUR cursor handle 215
Binary Logs Information Schema plugin

about 115-118
get_index_file() method 116
index_file 116
LOG_INFO structure 116
SHOW BINARY LOGS command 115
show_binlogs() function 115

blk parameter 62
BLOB field content 224
BLOBs 183
bnum parameter 255
boolean full-text parser 139-144
boolean parsers 137, 139
B-tree library

about 203, 204
storage, types 204

[260]

C
calc_lookup_values_from_cond() 105
calc_lookup_values_from_cond()

function 110
check() function 65
check parameter 61
close method 166
close() method 171, 217
CMakeLists.txt 24
comment parameter 61
COMPRESSION, table option 254
cond argument 90
condition pushdown

about 102-105
arguments() method 104
calc_lookup_values_from_cond() 105
calc_lookup_values_from_cond()

function 110
example 105, 107, 108, 110
idx_field1, setting 108
INFORMATION_SCHEMA.COLUMNS

table, example 102
Item 104
Item classes 103
Item_field 104
Item_func 104
Item objects 103
lookups structure 107
my_strnncoll() function 107
schema_table_store_record() 105
SELECT clause 103
using 103
WHERE clause 103
WHERE condition 102, 103
without pushdown 102
with pushdown 102

configure.ac file 20
constant integer output UDF 39, 40
const_item member 33
CREATE FUNCTION command 31
create method 166
create() method 165, 168, 182, 186, 214
create_table 87
cs element 126
current_row_end method 190
current_row_start offset 193

D
daemon plugins

--disable-plugin-my-plugin command 52
--plugin-my-plugin=FORCE 52
--plugin-my-plugin=OFF command 52
--plugin-my-plugin=ON 52
__reserved1 member 56
about 51
author 55
defining 54-56
deinit members 56
descr string 55
Hello World! 65-68
info member 55
init members 56
installing 52, 53
installing, INSTALL PLUGIN statement

used 52
INSTALL PLUGIN statement 55
MYSQL_DAEMON_PLUGIN type 55
mysql_declare_plugin_end macro 57
mysql_declare_plugin() macro 57
MYSQL_FTPARSER_PLUGIN type 55
mysql.plugin table 52
MYSQL_STORAGE_ENGINE_PLUGIN

type 55
MYSQL_UDF_PLUGIN type 55
need for 51
plugin declarations, example 57
PLUGIN_LIBRARY_VERSION 54
PLUGIN_LICENSE_GPL license 56
PLUGIN_LICENSE_PROPRIETARY

license 56
PLUGIN_VERSION 54
removing 52
SHOW command 53
SHOW PLUGINS 53
SHOW STATUS statement 56
SHOW VARIABLES statement 56
status variables 58, 59
status_vars member 56
st_mysql_plugin structure 54, 55
system variables 60, 61
type 55
UNINSTALL PLUGIN 56
uses 51

[261]

version member 56
version, role 54

data
current_row_end method 190
data_end 188
data_start 188
free() 189
ha_html::open() method 189
malloc() 189
open() method 188
read_html() function 189
reading 187
rnd_init() method 187
rnd_next() method 187, 190
skip_html() 188
write_set bitmap 189

data_end offset 194, 195
data_start 188
decimals member 33
def parameter 62
deinit() function 125
deinit members 56
delete_all_rows() method 233
delete_row() method 190, 193, 239
DELETE statement 233
dialog 249
doc element 126
dollar_ok variable 131
DROP FUNCTION statement 27

E
end_stmt() method 195
engine

describing 208-210
error argument 36
exif_content_foreach_entry() 146
exif_data_foreach_content() 146
exif_data_get_mnote_data() function 146
exif_data_new_from_file() 146
exif_entry_get_value() 146, 148
Exif (Exchangeable image file format)

about 145
data, accessing 145, 146
exif_content_foreach_entry(ExifContent*c

ontent,ExifContentForeachEntryFunc
func,void *user_data) 146

exif_data_foreach_content(ExifData *data,E
xifDataForeachContentFunc func,void
* user_data) 146

exif_data_new_from_file
(const char *path) 145

exif_entry_get_value(ExifEntry *entry,char
*buf,unsigned int buflen) 146

exif_mnote_data_get_value() function 146
ExifMnoteData object 146
exif_parse() 148
exif_parse() function 150
exif_path 148
exiftool command-line utility 151
external_lock() 219
external_lock() method 194, 195
extra() method 234
EXTRA_ variables 23

F
Field class

about 90
Field::store(const char *to, uint length,

CHARSET_INFO *cs) 90
Field::store_decimal

(const my_decimal *d) 90
Field::store(double nr) 90
Field::store(longlong nr,

bool unsigned_val) 90
Field::store_time(MYSQL_TIME *ltime,

timestamp_type t_type) 90
field_flags 88
Field::is_null() method 225
Field::key_cmp() method 229
field_length 88
field_name 88
Field::pack() method 224
fields_info 87
fields_info array 88
fields_info array, elements

field_flags 88
field_length 88
field_name 88
field_type 88, 89
old_name 88
value 88

fields_info member 88

[262]

Field::store() method 176
field_type 88, 89
Field::val_str() method 191
fill_table 87
fill_table function 92, 96
fill_table() function 90

cond argument 90
tables argument 90
thd argument 90

fill_table() function, arguments
cond argument 90
tables argument 90
thd argument 90

find_flag argument 219
find_or_create_share() 170
find_or_create_share() function 168, 169
flags element 126, 127
Flashback 182
float_total pointer 48
fn_format() function 74
foreach functions 148
fpow parameter 255
fprintf() function 192
free() 189
fscanf() wrapper 198
ft_min_word_len configuration option 123
ftparser_state element 126
ftparser_state member 126
FT_TOKEN_WORD type 131
full-text parser plugin

- operator 138
(operator 138
) operator 138
+ operator 138
< operator 138
> operator 138
~ operator 138
about 138
architecture 122
cs element 126
deinit() function 125
doc element 126
flags element 126, 127
ft_min_word_len configuration option 123
ftparser_state element 126
ftparser_state member 126
init() function 125

INSERT statement 124
installing 123
length element 126
MATCH�AGAINST() 122
mode element 126
mysql_add_word() element 126
mysql_add_word() function 126, 128
mysql_add_word member 126
mysql_ftparam element 126
MYSQL_FTPARSER_BOOLEAN_INFO

structure, parse mode 128
MYSQL_FTPARSER_FULL_BOOLEAN_

INFO, parse mode 128
MYSQL_FTPARSER_FULL_BOOLEAN_

INFO parsing mode 128
MYSQL_FTPARSER_SIMPLE_MODE,

parse mode 128
MYSQL_FTPARSER_WITH_STOPWORDS,

parse mode 128
mysql_parse() element 125
mysql_parse() function 126, 127
mysql_parse() parsing function 127
no operator 138
parse() function 125-127
roles 122, 123
st_mysql_ftparser structure 125
structure 124, 125
using 124

func table 31
F_UNLCK 194

G
gcc command line 29
general_rows members 245
general_time members 245
get_charset_by_csname() function 91
get_charset_by_name() function 91
get_charset() function 91
get_cursor_row() function 227, 228
get_date() function 73
get_error_message() method 235
get_exif_content() 149
get_exif_entry() 149
get_index_file() method 116
get_packed_size() method 224
getrlimit() 98

[263]

getrusage() 77, 78
getrusage() function 97
getrusage() system 76
get_word() function 141
global variables

macros, for 60
GROUP BY queries 25

H
HA_ANY_INDEX_MAY_BE_UNIQUE

flag 174
HA_AUTO_PART_KEY flag 172
HA_BINLOG_ROW_CAPABLE flag 174
HA_BINLOG_STMT_CAPABLE flag 174
HA_CAN_BIT_FIELD flag 174
HA_CAN_FULLTEXT flag 173
HA_CAN_GEOMETRY flag 171
HA_CAN_INDEX_BLOBS flag 172
HA_CAN_INSERT_DELAYED flag 173
HA_CAN_RTREEKEYS flag 171
HA_CAN_SQL_HANDLER flag 174
HA_DUPLICATE_POS flag 172
HA_FAST_KEY_READ flag 172
HA_FILE_BASED flag 174
HA_HAS_CHECKSUM flag 174
HA_HAS_OWN_BINLOGGING flag 174
HA_HAS_RECORDS flag 173
ha_html.h header 195, 196
ha_html::open() method 189
ha_html::position() 183
ha_html::rnd_pos() 183
HA_KEYREAD_ONLY flag 211
handler class 162, 166, 214
handler class methods 183
handler methods

index_end 205
index_first 206
index_flags, handler method 205
index_init 205
index_last 206
index_next 206
index_next_same 207
index_prev 206
index_read 205
index_read_idx_map 206
index_read_last 206

index_read_last_map 206
index_read_map 206
index_type 205
max_supported_key_length 205
max_supported_key_part_length 205
max_supported_key_parts 205
max_supported_keys 205
preload_keys 207
read_multi_range_first 207
read_multi_range_next 207
read_range_first 207
read_range_next 207
records_in_range 207

handler objects 169
handlerton method 165, 182
handlerton object 162
handshake packet 248
HA_NEED_READ_RANGE_BUFFER

flag 174
HA_NO_AUTO_INCREMENT flag 174
HA_NO_BLOBS flag 172
HA_NO_COPY_ON_ALTER flag 174
HA_NO_PREFIX_CHAR_KEYS flag 173
HA_NOT_DELETE_WITH_CACHE

flag 173
HA_NO_TRANSACTIONS flag 171
HA_NO_VARCHAR flag 174
HA_NULL_IN_KEY flag 172
HA_ONLY_WHOLE_INDEX flag 211
HA_PARTIAL_COLUMN_READ flag 171
HA_PRIMARY_KEY_IN_READ_INDEX

flag 173
HA_PRIMARY_KEY_REQUIRED_FOR_

DELETE flag 172
HA_PRIMARY_KEY_REQUIRED_FOR_

POSITION flag 173
HA_READ_AFTER_KEY mode 221, 222
HA_READ_AFTER_KEY value 218
HA_READ_BEFORE_KEY mode 222
HA_READ_BEFORE_KEY value 218
HA_READ_KEY_EXACT mode 221
HA_READ_KEY_EXACT value 217
HA_READ_KEY_OR_NEXT value 218
HA_READ_KEY_OR_PREV value 218
HA_READ_MBR_CONTAIN value 218
HA_READ_MBR_DISJOINT value 218
HA_READ_MBR_EQUAL value 218

[264]

HA_READ_MBR_INTERSECT value 218
HA_READ_MBR_WITHIN value 218
HA_READ_NEXT flag 210
HA_READ_ORDER flag 210
HA_READ_PREFIX_LAST 222
HA_READ_PREFIX_LAST_OR_PREV

mode 221
HA_READ_PREFIX_LAST_OR_PREV

value 218
HA_READ_PREFIX_LAST value 218
HA_READ_PREFIX value 218
HA_READ_PREVIEW flag 210
HA_READ_RANGE flag 211
HA_REC_NOT_IN_SEQ flag 171
HA_REQUIRE_PRIMARY_KEY flag 172
HA_REQUIRES_KEY_COLUMNS_FOR_

DELETE flag 172
ha_static_text class 165, 166, 168, 176
ha_static_text::close() 187
ha_static_text::table_flags() method 175
HA_STATS_RECORDS_IS_EXACT flag

173, 194, 234
HA_STATUS_AUTO flag 178
HA_STATUS_CONST flag 178
HA_STATUS_ERRKEY flag 178
HA_STATUS_NO_LOCK flag 178
HA_STATUS_TIME flag 178
HA_STATUS_VARIABLE flag 178
HA_TABLE_SCAN_ON_INDEX flag 171
ha_tocab class 204
ha_tocab::create() 213
ha_tocab object 224, 225
ha_tocab::open() 213
hidden 87
HTML engine

about 181, 182
compiling 198
data, reading 187-190
Flashback 182-184
ha_html.h header 195, 196
htmlutils.cc 197, 198
linking 199
plugin, installing 199-201
table, analyzing 194
table, closing 187
table, creating 184, 185
table, opening 186

table, optimizing 193
table, updating 190-193

HTML_SHARE structure 183
htmlutils.cc

about 197, 198
fscanf() wrapper 198
functions, implementing 197, 198

I
idx_field1 87
idx_field1, setting 108
idx_field2 87
image metadata

exif_data_foreach_content(ExifData *data,E
xifDataForeachContentFunc func,void
* user_data) 146

image metadata processor
about 145
exif_content_foreach_entry(ExifContent*c

ontent,ExifContentForeachEntryFunc
func,void *user_data) 146

exif_data_new_from_file
(const char *path) 145

exif_entry_get_value(ExifEntry *entry,char
*buf,unsigned int buflen) 146

Exif (Exchangeable image file format),
accesssing 145

plugin, writing 146-150
test run 150, 151

index_end, handler methods 205
indexes

storage engine API 205
index_file 116
index_first, handler methods 206
index_flags 205
index_flags method 166
index_flags() method 210, 212
index_init, handler methods 205
index_init() method 219
index_last, handler methods 206
index_next() function 223
index_next, handler methods 206
index_next() method 210
index_next_same, handler methods 207
index_prev() function 223
index_prev, handler methods 206

[265]

index_prev() method 238
index_read() 217
index_read() function 219

HA_READ_AFTER_KEY value 218
HA_READ_BEFORE_KEY value 218
HA_READ_KEY_EXACT value 217
HA_READ_KEY_OR_NEXT value 218
HA_READ_KEY_OR_PREV value 218
HA_READ_MBR_CONTAIN value 218
HA_READ_MBR_DISJOINT value 218
HA_READ_MBR_EQUAL value 218
HA_READ_MBR_INTERSECT value 218
HA_READ_MBR_WITHIN value 218
HA_READ_PREFIX_LAST_OR_PREV

value 218
HA_READ_PREFIX_LAST value 218
HA_READ_PREFIX value 218

index_read, handler methods 205
index_read_idx_map, handler methods 206
index_read_last, handler methods 206
index_read_last_map, handler methods 206
index_read_map, handler methods 206
index_read() method 162, 219
index_type, handler method 205
index_type() method 210
info member 55
info method 167
info() method 178, 194, 213
INFORMATION_SCHEMA.COLUMNS

table, example 102
INFORMATION_SCHEMA database 83, 84
Information Schema plugins

about 83, 84
advanced 101
create_table 87
creating 85
defining 86
fields_info 87
fill_table 87
hidden 87
idx_field1 87
idx_field2 87
installing 84
INSTALL PLUGIN 84
old_format 87
process_table 87
SHOW PLUGINS 84

static table example 91-94
table_name 87
UNINSTALL PLUGIN 84
user variables 110

init() function 125
initid->max_length 45
initid->ptr 47
init members 56
INSERT statement 124
INSTALL PLUGIN 84
INSTALL PLUGIN statement 55
integer echoing UDF 41-43
is_null argument 36
Item classes 103
Item objects 103

J
joinable thread 75

K
key_copy() function 226
key_restore() function 228
key_store() function 226

L
length element 126
lengths member 34, 35
LEVEL, table option 254
libexif library 145
Linux

plugin libraries 15, 16
UDF libraries 10

lmemb parameter 255
LOCK TABLES statement 195
LOG_INFO structure 116
long long integer 95
lookups structure 107
lower_case_table_names 170

M
Mac OS X

plugin libraries 16
UDF libraries 10

macros, for global variables

[266]

MYSQL_SYSVAR_BOOL(name, varname,
opt, comment, check, update, def) 60

MYSQL_SYSVAR_ENUM(name, varname,
opt, comment, check, update, def,
typelib) 60

MYSQL_SYSVAR_INT(name, varname,
opt, comment, check, update, def, min,
max, blk) 60

MYSQL_SYSVAR_LONGLONG(name,
varname, opt, comment, check,
update, def, min, max, blk) 60

MYSQL_SYSVAR_LONG(name, varname,
opt, comment, check, update, def, min,
max, blk) 60

MYSQL_SYSVAR_SET(name, varname,
opt, comment, check, update, def,
typelib) 60

MYSQL_SYSVAR_STR(name, varname,
opt, comment, check, update, def) 60

MYSQL_SYSVAR_UINT(name, varname,
opt, comment, check, update, def, min,
max, blk) 60

MYSQL_SYSVAR_ULONGLONG(name,
varname, opt, comment, check,
update, def, min, max, blk) 60

MYSQL_SYSVAR_ ULONG(name,
varname, opt, comment, check,
update, def, min, max, blk)unsigned
long 60

macros, for session variables
MYSQL_THDVAR_BOOL(name, opt,

comment, check, update, def) 61
MYSQL_THDVAR_ENUM(name, opt,

comment, check, update, def,
typelib) 61

MYSQL_THDVAR_INT(name, opt,
comment, check, update, def, min,
max, blk) 61

MYSQL_THDVAR_LONGLONG(name,
opt, comment, check, update, def, min,
max, blk) 61

MYSQL_THDVAR_LONG(name, opt,
comment, check, update, def, min,
max, blk) 61

MYSQL_THDVAR_SET(name, opt,
comment, check, update, def,
typelib) 61

MYSQL_THDVAR_STR(name, opt,
comment, check, update, def) 61

MYSQL_THDVAR_UINT(name, opt,
comment, check, update, def, min,
max, blk) 61

MYSQL_THDVAR_ULONGLONG(name,
opt, comment, check, update, def, min,
max, blk) 61

MYSQL_THDVAR_ULONG(name, opt,
comment, check, update, def, min,
max, blk) 61

make dist command 23
Makefile.am file

about 22, 23
make dist command 23

malloc() 78, 189
malloc() calls 112
malloc() function

and alloc() function, differences 243, 244
MATCH�AGAINST() syntax 121
max_length member 33
max parameter 62
max_supported_key_length, handler

methods 205
max_supported_key_part_length, handler

methods 205
max_supported_key_parts, handler

methods 205
max_supported_keys() function 205, 220
max_supported_keys, handler methods 205
max_supported_keys() method 210
maybe_null member 33-35
message buffer 41
min parameter 62
mode element 126
monitoring plugin 72-76
my_dependency.so 29
myisam_ftdump utility 136
MY_I_S_MAYBE_NULL flag 91, 111
my_snprintf function 243
my_snprintf() function 250
mysql_add_word() element 126
mysql_add_word() function 126, 128, 130,

133, 154
about 128
FT_TOKEN_EOF, token type 129
FT_TOKEN_LEFT_PAREN, token type 130

[267]

FT_TOKEN_STOPWORD, token type 129
FT_TOKEN_WORD, token type 129
prev element 129
trunc element 129
type element 129
type (type of token) 129
wasign element 129
weight_adjust element 129
yesno element 129

mysql_add_word member 126
MYSQL_DAEMON_PLUGIN, plugin

type 55
mysql database 31
mysqld binary 20
mysql_declare_plugin 85
mysql_declare_plugin_end macro 57
mysql_declare_plugin() macro 57
mysql_event_general structure 245
mysql_ftparam element 126
MYSQL_FTPARSER_FULL_BOOLEAN_

INFO, parse mode 128
MYSQL_FTPARSER_FULL_BOOLEAN_

INFO parsing mode 128
MYSQL_FTPARSER_PARAM 125
MYSQL_FTPARSER_PLUGIN,

plugin type 55
MYSQL_FTPARSER_SIMPLE_MODE,

parse mode 128
MYSQL_FTPARSER_WITH_

STOPWORDS, parse mode 128
MYSQL_INFORMATION_SCHEMA_

PLUGIN 86
MySQL internals

accessing 101
mysql_parse() 148
mysql_parse() element 125
mysql_parse() function 126, 127, 152
mysql_parse() parsing function 127
MYSQL_PLUGIN_ACTIONS([name],[

ACTION-IF-SELECTED]) 21
MYSQL_PLUGIN_

DYNAMIC([name],[myplugin.la]) 21
MYSQL_PLUGIN([name],[long name],

[description], [group,group...]) 21
MySQL Plugins 9
MYSQL_PLUGIN_

STATIC([name],[libmyplugin.a]) 21

MYSQL_STORAGE_ENGINE_PLUGIN,
plugin type 55

MYSQL_SYSVAR_BOOL(name, varname,
opt, comment, check, update, def) 60

MYSQL_SYSVAR_ENUM(name, varname,
opt, comment, check, update, def,
typelib) 60

MYSQL_SYSVAR_INT(name, varname,
opt, comment, check, update, def,
min, max, blk) 60

MYSQL_SYSVAR_LONGLONG(name,
varname, opt, comment, check,
update, def, min, max, blk) 60

MYSQL_SYSVAR_LONG(name, varname,
opt, comment, check, update, def,
min, max, blk) 60

MYSQL_SYSVAR() macro 60
MYSQL_SYSVAR_SET(name, varname,

opt, comment, check, update, def,
typelib) 60

MYSQL_SYSVAR_STR(name, varname,
opt, comment, check, update, def) 60

MYSQL_SYSVAR_UINT(name, varname,
opt, comment, check, update, def,
min, max, blk) 60

MYSQL_SYSVAR_ULONGLONG(name,
varname, opt, comment, check,
update, def, min, max, blk) 60

MYSQL_SYSVAR_ ULONG(name,
varname, opt, comment, check,
update, def, min, max, blk)unsigned
long 60

MYSQL_THDVAR_BOOL(name, opt,
comment, check, update, def) 61

MYSQL_THDVAR_ENUM(name, opt,
comment, check, update, def,
typelib) 61

MYSQL_THDVAR_INT(name, opt,
comment, check, update, def, min,
max, blk) 61

MYSQL_THDVAR_LONGLONG(name,
opt, comment, check, update, def,
min, max, blk) 61

MYSQL_THDVAR_LONG(name, opt,
comment, check, update, def, min,
max, blk) 61

[268]

MYSQL_THDVAR_SET(name, opt,
comment, check, update, def,
typelib) 61

MYSQL_THDVAR_STR(name, opt,
comment, check, update, def) 61

MYSQL_THDVAR_UINT(name, opt,
comment, check, update, def, min,
max, blk) 61

MYSQL_THDVAR_ULONGLONG(name,
opt, comment, check, update, def,
min, max, blk) 61

MYSQL_THDVAR_ULONG(name, opt,
comment, check, update, def, min,
max, blk) 61

MYSQL_UDF_PLUGIN, plugin type 55
my_strnncoll() function 107
my_vsnprintf() function 243

N
name_add() function 32, 36
name_clear() function 32, 36
name_deinit() function 32, 35
name() function 32, 35, 36
name_init() function 32, 37
name parameter 61
nmemb parameter 255
normal UDFs 25

O
old_format 87
old_name 88
open method 166
open method() 215
open() method 162, 188
open_tcdb() function 256
OPTIMIZE TABLE 193
opt parameter 61
opts parameter 255
ourplugin_turbo_mode 63

P
pack() method 225
parameters, macros

blk parameter 62
check parameter 61

comment parameter 61
def parameter 62
max parameter 62
min parameter 62
name parameter 61
opt parameter 61
update parameter 61
varname parameter 61

parse() function 125, 127
PHP full-text parser 130

$this 135
$varvar 135
about 130, 132
dollar_ok variable 131
foo::$bar variable 130
mysql_add_word() function 133
this 135

Plugin API version 54
plugin_dir server 29
plug.in file

about 21
MYSQL_PLUGIN_ACTIONS([name],

[ACTION-IF-SELECTED]) 21
MYSQL_PLUGIN_

DYNAMIC([name],[myplugin.la]) 21
MYSQL_PLUGIN_

STATIC([name],[libmyplugin.a]) 21
MYSQL_PLUGIN([name],[long name],

[description], [group,group...]) 21
plugin.h, status variables 58
plugin libraries

in Linux 15, 16
in Mac OS X 16
in Windows 16, 17, 18
plugin, installing 19

PLUGIN_LICENSE_GPL license 56
PLUGIN_LICENSE_PROPRIETARY

license 56
PLUGIN_VAR_MEMALLOC 62
PLUGIN_VAR_NOCMDARG 62
PLUGIN_VAR_NOCMDOPTIt 62
PLUGIN_VAR_NOSYSVAR 62
PLUGIN_VAR_OPCMDARG 62
PLUGIN_VAR_READONLY 62
PLUGIN_VAR_READONLY flag 63
PLUGIN_VAR_RQCMDARG 62, 64
PLUGIN_VERSION 54

[269]

position method 166
position() method 175, 187, 213
pos pointer 177
prefix_retval 229
preload_keys, handler methods 207
prev element 129
process_table 87
ptr member 34

Q
query string 139

R
read_html() function 189
read_multi_range_first, handler

methods 207
read_multi_range_next, handler

methods 207
read_packet() function 249
read_range_first, handler methods 207
read_range_next, handler methods 207
read_set 192
records_in_range, handler methods 207
records_in_range() method 234, 238, 239
returned_data 176
rnd_init method 166
rnd_init() method 187, 231
rnd_* methods 230
rnd_next method 166
rnd_next() method 187, 190, 191, 217
rnd_pos method 167
rnd_pos() method 187, 228
Roland Bouman

URL 50
row format 224
rows

delete_all_rows() method 233
DELETE statement 233
extra() method 234
get_error_message() method 235
HA_STATS_RECORDS_IS_EXACT flag 234
inserting 232
records_in_range() method 234
table_flags() 234
tcbdbecode() function 235
tcbdbputkeep() function 233

tcbdbvanish() 233
tc_error() function 235
UNIQUE index reports 232
write_row() method 232

S
save pointer 65
scanf() format 186
schema_table_store_record() 90, 105
schema_table_store_record() function 92
schema_table_store_record() utility 90
SELECT clause 103
SELECT statement 28
SELECT SUM(a) FROM t1; query 26
SELECT UDF_FLOATSUM(a) FROM t1;

query 26
server services

about 241, 242
drawbacks 242
my_snprintf function 243
my_vsnprintf() function 243
thd_alloc() function 243
thd_calloc() function 243

session variables
macros, for 61

set_notnull() method 113
set_null() method 113
SET statement 64
SHOW_ARRAY 59
SHOW_ARRAYst_mysql_show_var 59
SHOW BINARY LOGS command 115
show_binlogs() function 115
SHOW_BOOL 58
SHOW_CHAR 58
SHOW_CHAR_PTRchar 58
SHOW command 53
SHOW_DOUBLE 58
SHOW_FUNC function 59, 78
SHOW_FUNCint (*)(MYSQL_THD, struct

st_mysql_show_var*, char *) 59
SHOW_INT 58
SHOW_LONG 58
SHOW_LONGLONG 58
SHOW PLUGINS 53, 84
show_status() method 162
SHOW STATUS output 59

[270]

SHOW STATUS statement 56
SHOW VARIABLES statement 56
simple static text output UDF 43-46
skip_html() 188
skip_html() function 186
soundex_add_word() function 155
Soundex full-text parser

about 152
plugin 154-159
Soundex algorithm 153

SOUNDEX function 153
SQL extension

apow parameter 255
bnum parameter 255
by storage engine plugins 252-254
COMPRESSION, table option 254
example, implementing 255-257
fpow parameter 255
LEVEL, table option 254
lmemb parameter 255
nmemb parameter 255
open_tcdb() function 256
opts parameter 255
table, creating 257, 258
TAGS, table option 254
tocab_init() function 256
TRAIL, table option 254

standalone plugins
and UDFs 19, 20

STATIC_SHARE 168
STATIC_SHARE object 169
STATIC_TEXT plugin 162
status variables

about 58
demo plugin 68-72
plugin.h 58
SHOW_ARRAY 59
SHOW_ARRAYst_mysql_show_var 59
SHOW_BOOL 58
SHOW_CHAR 58
SHOW_CHAR_PTRchar 58
SHOW_DOUBLE 58
SHOW_FUNC function 59
SHOW_FUNCint (*)(MYSQL_THD, struct

st_mysql_show_var*, char *) 59
SHOW_INT 58
SHOW_LONG 58

SHOW_LONGLONG 58
SHOW STATUS output 59
st_mysql_show_var 58
st_mysql_show_var structure 59
var->name member 59

status_vars member 56
st_mysql_auth structure 249
st_mysql_ftparser structure 125
st_mysql_plugin structure 55
st_mysql_show_var 58
st_mysql_show_var structure 59, 77
storage engines plugins

@@static_text_rows 162, 164
@@static_text_text 164
@@static_text_text variable 162
@@static_text_varchar variable 176
bas_ext method 166
close method 166
close() method 171
commit() method 162
create method 166
create() method 165, 168
describing 208-210
Field::store() method 176
find_or_create_share() 170
find_or_create_share() function 168, 169
HA_ANY_INDEX_MAY_BE_UNIQUE

flag 174
HA_AUTO_PART_KEY flag 172
HA_BINLOG_ROW_CAPABLE flag 174
HA_BINLOG_STMT_CAPABLE flag 174
HA_CAN_BIT_FIELD flag 174
HA_CAN_FULLTEXT flag 173
HA_CAN_GEOMETRY flag 171
HA_CAN_INDEX_BLOBS flag 172
HA_CAN_INSERT_DELAYED flag 173
HA_CAN_RTREEKEYS flag 171
HA_CAN_SQL_HANDLER flag 174
HA_DUPLICATE_POS flag 172
HA_FAST_KEY_READ flag 172
HA_FILE_BASED flag 174
HA_HAS_CHECKSUM flag 174
HA_HAS_OWN_BINLOGGING flag 174
HA_HAS_RECORDS flag 173
handler class 162, 166
handler objects 169
handlerton method 165

[271]

handlerton object 162
HA_NEED_READ_RANGE_BUFFER

flag 174
HA_NO_AUTO_INCREMENT flag 174
HA_NO_BLOBS flag 172
HA_NO_COPY_ON_ALTER flag 174
HA_NO_PREFIX_CHAR_KEYS flag 173
HA_NOT_DELETE_WITH_CACHE

flag 173
HA_NO_TRANSACTIONS flag 171
HA_NO_VARCHAR flag 174
HA_NULL_IN_KEY flag 172
HA_PARTIAL_COLUMN_READ flag 171
HA_PRIMARY_KEY_IN_READ_INDEX

flag 173
HA_PRIMARY_KEY_REQUIRED_FOR_

DELETE flag 172
HA_PRIMARY_KEY_REQUIRED_FOR_

POSITION flag 173
HA_REC_NOT_IN_SEQ flag 171
HA_REQUIRE_PRIMARY_KEY flag 172
HA_REQUIRES_KEY_COLUMNS_FOR_

DELETE flag 172
ha_static_text class 165-168, 176
ha_static_text::table_flags() method 175
HA_STATS_RECORDS_IS_EXACT flag 173
HA_STATUS_AUTO flag 178
HA_STATUS_CONST flag 178
HA_STATUS_ERRKEY flag 178
HA_STATUS_NO_LOCK flag 178
HA_STATUS_TIME flag 178
HA_STATUS_VARIABLE flag 178
HA_TABLE_SCAN_ON_INDEX flag 171
ha_text.cc 164
index_flags() method 212
index_flags method 166
index_read() method 162
info method 167
info() method 178
lower_case_table_names 170
open method 166
open() method 162
position method 166
position() method 175
pos pointer 177
read only 162
returned_data 176

rnd_init method 166
rnd_next method 166
rnd_pos method 167
savepoint_rollback() method 162
show_status() method 162
SQL extension by 252
STATIC_SHARE 168
STATIC_SHARE object 169
STATIC_TEXT plugin 162
store_lock() function 175
store_lock method 166
structure 161
table_alias_charset 170
table_flags method 166
TABLE_SHARE 170
TABLE_SHARE memory 170
table_type method 166
thr_lock_data_init() function 168
THR_LOCK_DATA object 171
THR_LOCK object 168
VARCHAR column 163
write_row() method 162

store_lock() function 175
store_lock() method 166, 209
store() method 90
String::c_ptr() method 192
String class 112
String::realloc() method 225
String tmp 192
strlen() 45
strstr() call 250
ST_SCHEMA_TABLE structure 86
sys_status plugin 76
System Information plugin 95, 96, 98-100
system Status Variables plugin 76

getrusage() 77, 78
getrusage() system 76
malloc() 78
rusage structure 78
SHOW_FUNC function 78
st_mysql_show_var structure 77
thd_alloc() 78
vars plugin 77

system variables
-ourplugin-log-size 64
-ourplugin-mode command-line option 64
about 60

[272]

check() function 65
demo plugin 68-72
ENUM variable 62
global variable, macro for creating 60
macros, parameters 61
my_other_var 60
MYSQL_SYSVAR() macro 60
my_var 60
ourplugin_turbo_mode 63
PLUGIN_VAR_MEMALLOC 62
PLUGIN_VAR_NOCMDARG 62
PLUGIN_VAR_NOCMDOPTIt 62
PLUGIN_VAR_NOSYSVAR 62
PLUGIN_VAR_OPCMDARG 62
PLUGIN_VAR_READONLY 62
PLUGIN_VAR_READONLY flag 63
PLUGIN_VAR_RQCMDARG 62, 64
save pointer 65
session variable, macro for creating 61
SET statement 64
SET variable 62
SHOW VARIABLES 60
thd pointer 65
turbo variable 63
TYPELIB members 62
TYPELIB structure 62
type_names 62
update() function 65
var_ptr pointer 65

T
table

analyze() 194
analyzing 194
AUTO_INCREMENT field 191
close() method 217
closing 187
create() method 186
creating 184, 185
current_row_start offset 193
data_end offset 194, 195
delete_row() method 190, 193
end_stmt() method 195
external_lock() method 194, 195
Field::val_str() method 191
fprintf() function 192

F_UNLCK 194
ha_html.h header 195, 196
ha_static_text::close() 187
HA_STATS_RECORDS_IS_EXACT flag 194
htmlutils.cc 197, 198
info() method 194
LOCK TABLES statement 195
opening 186
OPTIMIZE TABLE 193
optimizing 193
read_set 192
rnd_next() method 191
scanf() format 186
skip_html() function 186
String::c_ptr() method 192
String tmp 192
table_flags() 194
TABLE_SHARE structure 185
TIMESTAMP_AUTO_SET_ON_INSERT 193
TIMESTAMP field 191
tmp_buf 192
update_row() method 190, 193
updating 190
val_decimal() 191
val_* family 191
val_int() 191
val_real() 191
val_str() 191
write_html() function 185
write_row() method 190, 191, 193

table_alias_charset 170
table_flags() method 166, 194, 205, 234
table >key_info[] array 215
table_name 87
tables argument 90
TABLE_SHARE 170
TABLE_SHARE pointer 214
TABLE_SHARE structure 185, 214
table >status 219
table, Tokyo cabinet

closing 217
creating 213, 214
opening 214, 215

table_type method 166
table_type() method 205, 209
tcbdbcurjump() 220-222
tcbdbcurjumpback() function 221

[273]

tcbdbcurkey3() function 221, 228
tcbdbcurnew() function 217
tcbdbecode() function 235
tcbdbnew() 213
tcbdbopen() 213
tcbdbputkeep() function 233
tcbdbsetcmpfunc() 214
tcbdbsetcmpfunc() function 228
tcbdbsetmutex() 213
tcbdbtune() method 239
tcbdbvanish() 233
tc_error() function 235
thd_alloc() 78
thd_alloc() function 243
thd argument 90
thd_calloc() function 243
thd pointer 65
thr_lock_data_init() function 168
THR_LOCK_DATA object 171
THR_LOCK member 216
THR_LOCK object 168
TIMESTAMP_AUTO_SET_ON_INSERT

193
TIMESTAMP field 191
tmp_buf 192
tocab_compare() comparison function 221
tocab_compare() function 220
tocab_init() function 256
TOCAB_SHARE structure 204
TOCAB storage engine

analyze() method 239
compiling 236, 237
delete_row() method 239
describing 208, 210, 212, 213
extensions 239
index, searching 217, 219
linking 236, 237
optimize() method 239
random access 230, 231
records_in_range() method 239
row and key format 224-226
rows, inserting 232, 233
table scan 230, 231
tcbdbtune() method 239
update_row() method 239

tokenizer plugin 130
Tokyo Cabinet library

about 204
ha_tocab class 204
table, closing 217
table, creating 214
table, opening 213, 215, 216
TOCAB_SHARE structure 204
URL 203

TRAIL, table option 254
trunc element 129
turbo variable 63
type element 129
TYPELIB members 62
type_names 62

U
udf_floatsum_clear() function 48
udf_floatsum() function 47
udf_intexample_deinit() function 42
udf_intexample() function 42
UDF libraries

about 9
in Linux 10
in Mac OS X 10
in Windows 10-14
UDF, installing 15

UDFs
.dll extension 27
--skip-grant-tables option 31
advantages 26, 27
AGGREGATE keyword 49
aggregate UDFs 25
and standalone plugins 19, 20
arg_count member 34
args array member 35
args member 34
arg_type member 34, 35
attribute_lengths member 35
attributes member 34, 35
constant integer output 39
const_item member 33
CREATE FUNCTION command 31
decimals member 33
DECIMAL type 36
defining 31-33
disadvantages 26, 27
drawbacks 38

[274]

DROP FUNCTION statement 27
error argument 36
error handling 37
execution sequence 37
float_total pointer 48
func table 31
gcc command line 29
gotchas 38, 39
initid->max_length 45
initid->ptr 47
installing 27-30
integer, echoing 41-43
INTEGER type 36
is_null argument 36
lengths member 34, 35
max_length member 33
maybe_null member 33-35
message buffer 41
my_dependency.so 29
MyISAM table 31
mysql database 31
MYSQL_SERVER_VERSION 45
name_add() function 32, 36
name_clear() function 32, 36
name_deinit() function 32, 35
name() function 32, 35, 36
name_init() function 32, 37
normal UDFs 25
plugin_dir server 29
ptr member 34
Roland Bouman 50
secutity 38
SELECT statement 28
SELECT SUM(a) FROM t1; query 26
SELECT UDF_FLOATSUM(a) FROM t1;

query 26
simple static text output 43-46
STRING type 36
strlen() 45
summing aggregate 46-49
types 25
udf_floatsum_clear() function 48
udf_floatsum() function 26, 47
udf_intexample_deinit() function 42
udf_intexample() function 42
udf_staticexample_deinit() function 40
udf_staticexample() function 40

udf_staticexample_init() function 39
writing 26

udf_staticexample_deinit() function 40
udf_staticexample() function 40
udf_staticexample_init() function 39
UNINSTALL PLUGIN 56, 84
UNIQUE index reports 232
Universal Disk Formats. See UDFs
unpack_row() method 225
update() function 65
update parameter 61
update_row() method 190, 193, 239
user_var_entry 111
user_var_entry method 113
user_var_entry objects 110
user_var_entry::val_str() method 112
User Variables Information Schema plugin

about 110
malloc() calls 112
MY_I_S_MAYBE_NULL flag 111
set_notnull() method 113
set_null() method 113
String class 112
user_var_entry method 113
user_var_entry::val_str() method 112
user_vars member 110
val_str() method 113

user_vars member 110

V
val_* family 191
val_str() method 113
value 88
VARCHAR column 163
var->name member 59
varname parameter 61
var_ptr pointer 65
vars plugin 77
VERSION 92
version member 56
vio->read_packet() function 250
vio structure 251

W
wasign element 129
weight_adjust element 129

[275]

write_set bitmap 189

Y
yesno element 129
yesno property 140

Z
zero-terminated array 59

WHERE clause 103
WHERE condition 103
Windows

plugin libraries 16-18
UDF libraries 10, 12-14

write_html() function 185
write_packet() function 249
write_row() function 224
write_row() method 162, 190, 191, 193, 232,

234

Thank you for buying
MySQL 5.1 Plugin Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Websites with e107
ISBN: 978-1-904811-31-2 Paperback: 260 pages

A step by step tutorial to getting your e107 website
up and running fast

1.	 Get your e107 website up fast

2.	 Simple and practical guide to mastering e107

3.	 Customize and extend your e107 site with new
templates and the CMS plug-in

Learning Joomla! 1.5 Extension
Development
ISBN: 978-1-847196-20-0 Paperback: 284 pages

A practical tutorial for creating your first Joomla! 1.5
extensions with PHP, written and tested against the
final release of Joomla! 1.5

1.	 Program your own Joomla! extensions

2.	 Master Model-View-Controller design

3.	 Build configurable site modules to show
information on every page

4.	 Use built-in HTML and JavaScript functions

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1:
Compiling and Using MySQL Plugins
	UDF libraries
	Linux
	Mac OS X
	Windows
	Installing a UDF

	Plugin libraries
	Linux
	Mac OS X
	Windows
	Installing a plugin

	Automatic builds, packaging
	UDFs and standalone plugins
	Plugins that are built from the MySQL source tree
	plug.in
	Makefile.am
	CMakeLists.txt

	Summary

	Chapter 2:
User Defined Functions
	Writing UDFs
	Why write UDFs
	Installing and using UDFs
	Defining UDFs
	Execution sequence of a UDF
	UDF error handling
	UDF security
	Gotchas with UDFs

	A constant integer output UDF
	An integer echoing UDF
	A simple static text output UDF
	A summing aggregate UDF
	Further reading
	Summary

	Chapter 3:
Daemon Plugins
	A look inside a Daemon plugin
	Why write a Daemon plugin
	Installing and using Daemon plugins
	The role of a version
	Defining Daemon plugins
	Status variables
	System variables

	A Hello World! Daemon plugin
	A system and status variables demo plugin
	A simple monitoring plugin
	System Status Variables plugin
	Summary

	Chapter 4:
Information Schema Plugins
	Why write Information Schema plugins
	Installing and using Information Schema plugins
	The creation of Information Schema plugins
	Defining Information Schema plugins

	A Static Table example
	A System Information plugin
	Summary

	Chapter 5:
Advanced Information Schema Plugins
	Accessing MySQL internals
	Condition pushdown
	Using condition pushdown
	A condition pushdown example

	A User Variables Information Schema plugin
	A Binary Logs Information Schema plugin
	Summary

	Chapter 6:
Full-text Parser Plugins
	The full-text parser plugin architecture
	Three roles of a full-text parser plugin
	Installing and using a full-text parser plugin
	Structure of the full-text parser plugin

	A PHP full-text parser
	Summary

	Chapter 7: Practical Full-text Parsers
	Boolean parsers
	A Boolean full-text parser
	An Image Metadata processor
	How to access Exif data
	Writing the plugin
	Test run

	A Soundex full-text parser
	The Soundex algorithm
	The plugin
	Trying it out

	Summary

	Chapter 8:
Storage Engine Plugins
	Introducing storage engines
	A read-only storage engine
	ha_text.cc

	Summary

	Chapter 9:
HTML Storage Engine—Reads and Writes
	An idea of the HTML engine
	Flashback
	Creating, opening, and closing the table
	Reading data
	Updating the table
	Optimizing and analyzing
	What's left
	ha_html.h
	htmlutils.cc

	Compiling and linking
	Putting it all together
	Summary

	Chapter 10:
TOCAB Storage Engine—Implementing Indexes
	B-tree library
	Storage engine API for indexes
	Describing the engine
	Creating, opening and closing the table
	Searching in the index
	Rows and keys
	Table scan and random access
	Inserting rows
	What is left
	Compiling and linking
	Putting it all together
	Possible extensions
	Summary

	Appendix:
Beyond MySQL 5.1
	Server services
	my_snprintf
	thd_alloc

	Audit plugins
	Authentication plugins
	How it works
	Authentication plugins—server side
	Authentication plugins—client side

	SQL extension by Storage Engine plugins
	Putting it to use
	Test drive

	Summary

	Index

