

Mastering SQL
Mastering SQL helps the readers gain a firm understanding of the Structured
Query Language.

Structured Query Language, more often known as SQL, is the de facto
standard language for working with databases. It is a specialised language
for handling data-related tasks like creating a database, putting information
into tables, modifying and extracting that information, and much more.
MySQL, PostgreSQL, Oracle, SQL light, etc. are only a few examples of SQL
implementations.

SQL is a fast and efficient database system. SQL allows for the rapid and
efficient retrieval of huge numbers of data entries from a database. It’s a rela-
tional database. Thus, the data is described in a more orderly fashion than
in an unstructured database like MongoDB. Insertions, deletions, inquiries,
manipulations, and computations of data through analytical queries in a
relational database may all be performed in a matter of seconds.

With Mastering SQL, learning SQL becomes straightforward; using this
book and resource will undoubtedly help readers advance their careers.

About the Series

Mastering Computer Science covers a wide range of topics, spanning from
programming languages to modern-day technologies and frameworks. The
series has a special focus on beginner-level content and is presented in an
easy-to-understand manner, comprising:

•	 Crystal-clear text, spanning various topics sorted by relevance,

•	 Special focus on practical exercises, with numerous code samples and
programs,

•	 A guided approach to programming, with step-by-step tutorials for the
absolute beginners,

•	 Keen emphasis on real-world utility of skills, thereby cutting the redun-
dant and seldom-used concepts and focusing instead on industry-prev-
alent coding paradigm,

•	 A wide range of references and resources, to help both beginner- and
intermediate-level developers gain the most out of the books.

The Mastering Computer Science series of books start from the core con-
cepts and then quickly move on to industry-standard coding practices, to
help learners gain efficient and crucial skills in as little time as possible. The
books assume no prior knowledge of coding, so even the absolute newbie
coders can benefit from this series.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with over a decade of experience in the computing field.

For more information about this series, please visit https://www.routledge.
com/Mastering-Computer-Science/book-series/MCS

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS

Mastering SQL
A Beginner’s Guide

Edited by
Sufyan bin Uzayr

First Edition published 2024
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and
let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@
tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data
Names: Bin Uzayr, Sufyan, editor.
Title: Mastering SQL : a beginner’s guide / edited by Sufyan bin Uzayr.
Description: Boca Raton : CRC Press, 2024. | Series: Mastering computer science |
Includes bibliographical references and index.
Identifiers: LCCN 2023007431 (print) | LCCN 2023007432 (ebook) |
ISBN 9781032415062 (paperback) | ISBN 9781032415093 (hardback) |
ISBN 9781003358435 (ebook)
Subjects: LCSH: SQL (Computer program language) |
Database management. Classification: LCC QA76.73.S67 M324 2024 (print) |
LCC QA76.73.S67 (ebook) | DDC 005.75/6—dc23/eng/20230502
LC record available at https://lccn.loc.gov/2023007431
LC ebook record available at https://lccn.loc.gov/2023007432

ISBN: 9781032415093 (hbk)
ISBN: 9781032415062 (pbk)
ISBN: 9781003358435 (ebk)

DOI: 10.1201/9781003358435

Typeset in Minion Pro
by codeMantra

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov
https://lccn.loc.gov
https://doi.org/10.1201/9781003358435

For Mom

https://taylorandfrancis.com

vii

Contents

About the Editor, xix

Acknowledgements, xxi

Zeba Academy – Mastering Computer Science, xxiii

Chapter 1    ◾   � Basics about SQL	 1
IN THIS CHAPTER	 1

RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS)	 2

KEYS IN SQL	 2

WHAT IS STRUCTURED QUERY LANGUAGE (SQL)?	 3

ORIGINS OF STRUCTURED QUERY LANGUAGE (SQL)	 4

PURPOSE OF STRUCTURED QUERY LANGUAGE (SQL)	 4

INSTALLATIONS OF SQL	 5

OPERATIONS IN STRUCTURED QUERY LANGUAGE (SQL)	 5

WHAT ARE THE DIFFERENT TYPES OF FUNCTIONS?	 6

Aggregated Functions	 6
Scalar Functions	 7

CHARACTERISTICS OF STRUCTURED QUERY
LANGUAGE (SQL)	 7

Foundational Relationships	 7
High Performance	 7
Scalability	 8
Authentication and Security	 8
Independent Vendors	 8

viii    ◾    Contents

Adaptability to a Variety of Computer Systems	 9
Endorsement and Commitment from IBM (DB2)	 9
Structure Similar to That of English	 9
Database Access through Programming	 9
Transaction Control Language	 10
Various Viewpoints on Data	 10
Dynamic	 10
Architecture of Client/Server	 10
SQL with Java Integration	 10

SOME SQL STATEMENTS	 11

ADVANTAGES OF STRUCTURED QUERY LANGUAGE (SQL)	 11

DISADVANTAGES OF STRUCTURED QUERY
LANGUAGE (SQL)	 12

DATA TYPES IN STRUCTURED QUERY LANGUAGE (SQL)	 12

Exact Numeric Data Types	 13
Types of Numeric Data	 14
Types of Date and Time Data	 14
Data Types for Character Strings	 15
Character String Data Types in Unicode	 15
Types of Binary String Data	 15
Other Data Types	 16

COMMANDS OF STRUCTURED QUERY LANGUAGE (SQL)	 16

Data Definition Language (DDL)	 16
Make a Database	 17
Make a Table	 17
Add to Table	 19
Drop a Table	 19
Data Manipulation Language (DML)	 20
Data Control Language (DCL)	 21
Transition Control Language (TCL)	 22

TRANSACTIONS IN SQL	 23

Contents    ◾    ix

Characteristics of Transactional	 23
Commands for Controlling Transactions	 24
Commands for Transactional Control	 24

Set Transaction	 28
VIEWS IN SQL	 29

Views Are Being Removed	 31
Views Are Being Updated	 32
Delete a Row from a View	 34

With Check Option	 34
VIEWS AND THEIR APPLICATIONS	 35

SQL COMMENTS	 36

CONSTRAINTS IN SQL	 38

SQL CREATING ROLE	 42

Making a Role and Assigning It	 42
SQL INDEXES	 43

Unique Indexes	 44
Clustered Index	 45
Non-Clustered Indexes	 45
When Should You Construct Indexes?	 45
When Indexes Should Be Avoided	 45

DROP INDEX	 46

ALTERING INDEX	 46

CONFIRMING INDEXES	 46

RENAMING AN INDEX	 46

SEQUENCES IN SQL	 47

Query Processing in SQL	 49
COMMON TABLE EXPRESSIONS (CTE) IN SQL	 50

Defining CTEs	 50
Creating a Common Table Expression (Recursive)	 50
Types of Common Table Expressions	 51

TRIGGERS IN SQL	 52

x    ◾    Contents

Before and After Triggers	 53
BOOK MANAGEMENT DATABASE IN SQL TRIGGER	 54

INTRODUCTION TO NoSQL (NON-RELATIONAL SQL)	 56

A BRIEF HISTORY OF NoSQL DATABASES	 57

Types of NoSQL Databases	 57
KEY-VALUE	 57

COLUMN-BASED	 57

DOCUMENT-ORIENTED	 58

GRAPH-BASED	 58

FEATURES OF NoSQL	 58

Non-Relational Database Management System (NoSQL) Features	 58
Schema-Free	 59
API That Is Easy to Use	 59
Distributed	 59
NoSQL Query Mechanism Tools	 60

WHAT IS THE CAP THEOREM, AND HOW DOES IT WORK?	 60

Consistency	 60
Availability	 60
Tolerance for Partitions	 60

CONSISTENCY IN THE LONG RUN	 60

WHEN SHOULD YOU UTILISE NoSQL?	 61

ADVANTAGES	 61

DISADVANTAGES	 62

SUMMARY	 62

NOTE	 62

Chapter 2    ◾   � Clauses/Operators	 63
IN THIS CHAPTER	 63

WITH CLAUSE IN SQL	 63

WITH TIES CLAUSE IN SQL	 66

ARITHMETIC OPERATORS IN SQL	 66

Addition Operator (+)	 67

Contents    ◾    xi

Subtraction Operator (–)	 68
Operator for Multiplication (*)	 69

Division Operator (/)	 70
Modulus Operator(%)	 71

WILDCARD IN SQL: AN OVERVIEW	 72

SQL Wildcards Syntax	 72
EXCEPT AND INTERSECT OPERATORS	 73

EXCEPT CLAUSE	 74

USING CLAUSE 	 75

KNOWING HOW TO USE THE SQL MERGE STATEMENT	 77

SQL MERGE COMMAND AND ITS APPLICATIONS 	 78

IMPROVING THE SQL MERGE STATEMENT’S PERFORMANCE	 78

MERGE STATEMENT IN SQL EXPLAINED 	 78

DDL, DML, DCL AND TCL COMMANDS 	 81

Create Domain in SQL	 81
Create a New Domain	 83

DESCRIBE STATEMENT	 85

CASE STATEMENT IN SQL	 87

Syntax of SQL Case Statements	 87
UNIQUE CONSTRAINTS IN SQL	 92

Contrasting the Primary Key and Unique Constraints	 94
Unique Constraints for a Group of Columns 	 95

Add Unique Constraints to Existing Columns 	 95
The Alter Table Drop Constraint Statement 	 96

CREATE TABLE EXTENSION	 97

RENAME IN SQL	 98

ADD, DROP, MODIFY	 99

Table Change – Add	 99
Change Table – Drop	 100
Modify the Table	 100

LIMIT CLAUSE	 101

xii    ◾    Contents

A Limit Clause: What Is It?	 101
What are the Definition, Syntax, and Parameter Values of a
Select Limit Statement?	 102
Parameters or Arguments	 104
Using the Limit Keyword	 104
When Should the Limit Clause Be Used?	 105
The Limit Clause’s Benefits	 105

INSERT IGNORE STATEMENT 	 105

How Does MySQL’s Insert Ignore Function Work?	 105
Drawback	 106

LIKE OPERATOR	 107

SOME SQL OPERATOR	 110

OFFSET FETCH IN SQL SERVER	 112

Application of Offset and Fetch Offset	 112
Fetch and Offset	 113
Offset Only	 114
Fetch Only	 114

SQL STATEMENT EXCEPT	 114

Prerequisites for the SQL Except Statement	 114
USING JOINS AND THE OVER CLAUSE IN SQL TO
COMBINE AGGREGATE AND NON-AGGREGATE VALUES	 116

UTILISING JOINS 	 117

OVER CLAUSE	 118

OPERATORS FOR SQL ANY AND ALL	 118

ANY Operator in SQL	 118
SQL Operator ALL	 119

EXISTS IN SQL	 119

GROUP BY STATEMENT IN SQL	 121

UNION CLAUSE 	 123

Union Versus Union All	 124
In SQL, An Example of the Union Operator	 124

Contents    ◾    xiii

Where Clause Is Combined with the Union Operator	 126
Union All Operator in SQL	 127
Example of Union All	 127

SQL IN ALIASES	 130

ORDER BY CLAUSE IN SQL	 133

SELECT TOP CLAUSE IN SQL	 135

Top Clause Syntax in SQL Server	 135
SQL Select the Highest Percentage of Records to Return	 136
Multiple Select Top Statements	 137

SQL UPDATE COMMAND	 138

DELETE STATEMENT IN SQL	 140

INSERT INTO SQL STATEMENT	 141

AND AND OR SQL OPERATORS	 144

AND Operator	 145
Combining AND and OR	 147

CLAUSE WHERE	 147

UNIQUE CLAUSE IN SQL	 149

SELECT IN SQL STATEMENT	 151

Where Clause in Select Statement	 151
Group by Clause in SQL Select Statement	 152
Select Statement with Group by Clause Example	 152
Having Clause in SQL Select Statement	 154
Order by Clause in Select Statement	 155

DROP AND TRUNCATE TABLE IN SQL 	 156

Truncate Table in SQL	 157
Table Drop in SQL	 158

CREATE IN SQL	 159

Make a Database	 159
Table Creation	 160

JOINS IN SQL	 161

ALTERNATE QUOTE OPERATOR	 162

xiv    ◾    Contents

OPERATOR FOR CONCATENATION	 162

OPERATOR MINUS	 163

DIVISION OPERATOR	 164

THE NOT OPERATOR IN SQL	 164

BETWEEN AND IN OPERATOR	 166

Between Operator	 166
The SQL Syntax	 166

In Operator	 166
JOIN (INNER, LEFT, RIGHT AND FULL JOINS)	 166

Different Types of Joins	 167
How to Determine Which SQL Join to Use	 167

Inner Joining	 168
Full Joining	 169
Join on the Left	 170
Right Joining	 171

SQL CONSTRAINT CHECK	 172

SUMMARY	 174

Chapter 3    ◾   � SQL Injections	 175
IN THIS CHAPTER	 175

WHAT IS SQL INJECTION (SQLi)?	 175

GOALS OF SQLi	 176

MECHANISM OF SQL INJECTION ATTACK	 177

SQL INJECTION TYPES	 178

DETECTION AND PREVENTION OF SQL INJECTION
ATTACKS	 179

Simple SQLi Example	 180
SQLMAP: TEST A WEBSITE SQL INJECTION VULNERABILITY 	 182

SQLMAP	 182

Features of Sqlmap	 182
How to Download 	 184

WHERE SQLMAP MAY BE USED	 184

Contents    ◾    xv

DAMN VULNERABLE WEB APPLICATION (DVWA)	 184

Determine the Database Management System (DBMS) in the
Site	 185
Listing of Tables in a Database	 186
Getting Rid of a Table	 187
Mitigating the SQL Injection Attack with Prepared
Declarations	 188
Prepared Statements	 188
Mechanism of Action of Prepared Statements 	 189

Terminology	 190
What is the Benefit of Utilising a Prepared Statement in Java?	 194
What about Sanitization of the Input?	 195

SUMMARY	 195

NOTES	 195

Chapter 4    ◾   � SQL Functions	 197
IN THIS CHAPTER	 197

SQL FUNCTIONS	 197

Aggregate Functions	 198
Analytic Functions	 199
Scalar SQL Functions	 199
SQL Server Mathematical Functions	 200

CONVERSION FUNCTION	 202

Explicit vs. Implicit	 202
Conversion of Implicit Data Types	 202
SQL Conversion of Explicit Data Types Conversion	 203

Using the TO CHAR Function with Dates	 204
Using the TO CHAR Function with Numbers	 204
The to Number and to Date Functions	 205

GENERAL FUNCTIONS IN SQL	 205

NVL()	 206

xvi    ◾    Contents

NVL2 Function	 206
DECODE()	 207
COALESCE()	 207
NULLIF()	 208
LVL()	 208

CONDITIONAL STATEMENTS IN SQL	 208

Case Statement in SQL	 209
IF Proclamation in SQL	 210

CHARACTER FUNCTIONS	 211

Case-Manipulative Functions	 211
Character-Manipulative Functions	 213

Listing Function	 216
THE ON OVERFLOW STATEMENT	 216

Distinct	 217
COMBINING LISTING WITH FILTER AND OVER	 218

COMPATIBILITY	 218

ARRAYS	 218

DOCUMENT TYPES	 219

Using with Recursive	 219
Proprietary Extensions	 220
Proprietary Alternatives	 221

AGGREGATE FUNCTION IN SQL	 221

DATE FUNCTIONS	 222

NULL VALUES IN SQL	 226

Why Are Null Functions Necessary?	 227
How Can Null Values Be Tested?	 227

Is Null Syntax	 227
Is Not Null Syntax	 227

NUMERIC FUNCTIONS	 229

Contents    ◾    xvii

STRING FUNCTIONS	 231

Deterministic and Nondeterministic	 233
Built-in Function Determinism	 233

SUMMARY	 234

NOTE	 234

BIBLIOGRAPHY, 235

INDEX, 239

https://taylorandfrancis.com

xix

About the Editor

Sufyan bin Uzayr �is a writer, coder, and entrepreneur with over a
decade of experience in the industry. He has authored several books in
the past, pertaining to a diverse range of topics, ranging from History to
Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cialising in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specialises in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in management, IT, literature, and political science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. He takes a keen interest in technology, politics, literature, his-
tory, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com

sufyanism.com

https://taylorandfrancis.com

xxi

Acknowledgements

There are many people who deserve to be on this page, and this book
would not have come into existence without their support. That said, some
names deserve a special mention, and I am genuinely grateful to

•	 My parents, for everything they have done for me.

•	 The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Simran Rao, for offering great amounts of help and assistance during
the book-writing process.

•	 The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

•	 Reviewers of this book for going through the manuscript and pro-
viding their insight and feedback.

•	 Typesetters, cover designers, printers, and everyone else for their
part in the development of this book.

•	 All the folks associated with Zeba Academy, either directly or
indirectly, for their help and support.

•	 The programming community in general, and the web development
community in particular, for all their hard work and efforts.

– Sufyan bin Uzayr

https://taylorandfrancis.com

xxiii

Zeba Academy –
Mastering Computer
Science

The ‘Mastering Computer Science’ series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr, consisting of

•	 Divya Sachdeva.

•	 Jaskiran Kaur.

•	 Simran Rao.

•	 Aruqqa Khateib.

•	 Suleymen Fez.

•	 Ibbi Yasmin.

•	 Alexander Izbassar.

Zeba Academy is an EdTech venture that develops courses and content for
learners primarily in STEM fields, and offers educational consulting and
mentorship to learners and educators worldwide.

Additionally, Zeba Academy is actively engaged in running IT schools
in the CIS countries and is currently working in partnership with numer-
ous universities and institutions.

For more info, please visit https://zeba.academy

https://zeba.academy

https://taylorandfrancis.com

1

C h a p t e r 1

Basics about SQL

IN THIS CHAPTER

➣➣ Basics about SQL

➣➣ Purpose of SQL

➣➣ Features of SQL

➣➣ SQL and its components

➣➣ Introduction to NoSQL

➣➣ Advantages and disadvantages

Data is nowadays the groundwork of any professional. Enterprise com-
puting is the pinnacle of data-driven organisations. The significance of
organised data storage is undeniably highlighted. Every day, we generate
vast amounts of data. At our current rate, more than 2.5 quintillion bytes
of data are created each day. It is anticipated that by 2025, the world would
generate ~463 exabytes of data every day. This demonstrates the impor-
tance of data management, which is where databases come into play. We
all know that data originates from various sources and is unstructured. A
database is a place where this data can be stored in an organised manner.
A database consists of rows and columns. Data is classified and kept in the
form of tables here. A database is a structured collection of data that can
be retrieved quickly. Database Management Systems (DBMS) are used to
manage these databases (Figure 1.1).

DOI: 10.1201/9781003358435-1	

https://doi.org/10.1201/9781003358435-1

2    ◾    Mastering SQL

It is therefore important to have a basic understanding of this hierarchi-
cal data storage and retrieval paradigm. On the other hand, a beginner will
surely feel lost in the vast amount of knowledge available in the wild eco-
sphere. Structured Query Language (SQL) is a query language for working
with relational databases. We can use SQL to update, delete, and retrieve
data from a database. A table is used to define the data/object. These tables
consist of rows and columns and are uniquely identified by their field names.

RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS)
It takes into account the relationship between tables using primary keys,
foreign keys, and indexes. This gives it a significant advantage over DBMS
in terms of data retrieval and storage. It is used in enterprises to store huge
amounts of complex data.

KEYS IN SQL
Keys are a fundamental part of the relational database paradigm. They
are used to define and identify relationships between tables, as well as to
identify any record or row of data in a table.

•	 A super key is used to identify rows in a table.

•	 A primary key is a collection of one or more table fields that uniquely
identify a record in a database table. It is unable to accept null or
duplicate values. A table contains only one primary key.

•	 Alternate Key: A field or set of fields that uniquely identify each row
in the database. A table can have various primary keys, but only one
can be set as the primary key. Another key is any key that is not a
primary key.

•	 A unique key is a collection of one or more fields that uniquely iden-
tify a record in a database. It is comparable to a primary key except
that it can have one null value.

FIGURE 1.1  Types of databases.

Basics about SQL    ◾    3

•	 A foreign key is a field in one table that is a primary key in another
table. It creates a relationship between two tables while ensuring data
integrity and navigation.

SQL has been around for more than four decades. Nonetheless, it really
has changed massively. Throughout our academics, we all encountered
SQL at a certain point. We are all here to make things better by moving
away from outdated tools and methods. When we learn a system utilising
old methods and procedures, we must internalise it and reconsider its use
in modern industry after you become a member of it. SQL is an abbre-
viation for Structured Query Language. It is a computer language that is
commonly used for Relational Database Management Systems (RDBMS)
and data manipulation.

Understand that SQL is not going away anytime soon. It has only become
stronger as a consequence of corporate objectives such as Microsoft, which
has recently made SQL available for Linux as well. The numerous cloud
products, such as Microsoft Azure and Amazon Web Services – the two
biggest participants in the market – take a much focused approach to the
relational database model, and SQL in particular. And, this is only the
start of a new epoch. When you enter this period, it’s critical that you
understand how things function so that you can take the company you
own or support to new heights.

WHAT IS STRUCTURED QUERY LANGUAGE (SQL)?
It is a computer language used to perform database operations such as
upgrading, adding, eliminating, and building and editing tables in the
database and views. SQL is a query language, not a database system.
Assume you want to use the SQL language to run queries on the data-
base’s data. Any database management system, such as Oracle, MySQL,
MongoDB, PostgreSQL, SQL Server, and DB2, must be installed in your
systems. The major purpose of this database language is to maintain data
in relational database management systems. Data experts utilise this spe-
cialised tool to work with structured data (data which is stored in the form
of tables). It’s also made for RDSMS’s stream processing. Among other
things, you may rapidly create and manage the database as well as access
and alter table rows and columns. In 1986, the ANSI approved this query
language as a standard, and in 1987, the ISO followed suit. If you want to
work in the field of data science, it is crucial to grasp this query language.

4    ◾    Mastering SQL

SQL is used by big companies like Facebook, Instagram, and LinkedIn to
store data in the backend.

ORIGINS OF STRUCTURED QUERY LANGUAGE (SQL)
In 1970, the eminent computer scientist E.F. Codd wrote an informa-
tion retrieval titled ‘A Relational Model of Data for Large Shared Data
Banks’.1 After learning from E.F. Codd’s article, two of the IBM research-
ers Raymond Boyce and Donald Chamberlin developed the SEQUEL
(Structured English Query Language). In 1970, they worked together at
IBM’s San Jose Research Laboratory to create SQL. Relational Software
Inc. created the first SQL around the end of the 1970s, following the ideas
of E.F. Codd, Raymond Boyce, and Donald Chamberlin. This SQL was
entirely RDBMS-based. In June 1979, Relational Software Inc., which is
now known as Oracle Corporation, released the Oracle V2, the first imple-
mentation of SQL.

PURPOSE OF STRUCTURED QUERY LANGUAGE (SQL)
SQL is commonly used in data science and analytics lately. The foregoing
is among some of the grounds for its widespread need:

•	 For data professionals and SQL users, the most fundamental uses of
SQL are for inserting, updating, and removing data from a relational
database.

•	 SQL can be used to get data from relational database management
systems for users and data professionals.

•	 Additionally, it helps with structured data description.

•	 Databases and tables can be created, deleted, and managed by SQL
users.

•	 It also facilitates the creation of relational database views, stored pro-
cedures, and functions.

•	 It enables users to define and update the information maintained in
a relational database.

•	 SQL clients can also define access and conditions for table columns,
views, and stored procedures.

Basics about SQL    ◾    5

INSTALLATIONS OF SQL
MySQL is an open-source relational database management system that
may be downloaded from the official website at https://dev.mysql.com/
downloads. Start MySQL service after it has been installed (Figure 1.2).

OPERATIONS IN STRUCTURED QUERY LANGUAGE (SQL)
When we run a SQL command on a relational database management sys-
tem, the system will automatically locate the appropriate routine to carry out
our request, and the SQL engine will decide how to interpret that command.

The four components of the Structured Query Language procedure are
as follows:

•	 Optimisation Engines.

•	 SQL Query Engine.

•	 Classic Query Engine.

•	 Query Dispatcher.

Data professionals and users can use a classic query engine to maintain
non-SQL queries. Figure 1.3 illustrates the SQL architectural style.

FIGURE 1.2  MySQL installation page.

https://dev.mysql.com
https://dev.mysql.com

6    ◾    Mastering SQL

WHAT ARE THE DIFFERENT TYPES OF FUNCTIONS?
Methods for performing data operations are called functions. SQL pro-
vides a number of built-in functions for text concatenation, mathematical
calculations, and other tasks.

The following are the different types of SQL functions:

•	 Aggregated Functions.

•	 Scalar Functions.

Let’s examine each of them separately.

Aggregated Functions

In SQL, an aggregate function adds up a set of values and returns a single
result. A handful of the most regularly used Aggregate Functions are listed
below:

Function Description

SUM() Is used to calculate the total of a set of values.
COUNT() Gets the total number of rows, either with or without a condition.
AVG() To calculate the avg value of a numeric column, use this function.
MIN() The minimal value of a column is returned.
MAX() Returns a maximum value of a column.
FIRST() The first value of the column is returned.
LAST() The final value of the column is returned.

FIGURE 1.3  Framework of SQL.

Basics about SQL    ◾    7

Scalar Functions

Scalar functions in SQL return a single value based on the input value.
Some of the most widely used Aggregate Functions are listed below:

CHARACTERISTICS OF STRUCTURED
QUERY LANGUAGE (SQL)
In today’s technological environment, regardless of how it appears on
the surface, every programme or development tool ends up translating
queries and other commands into SQL. The characteristics of SQL are
numerous and may be described in greater depth, but we’ve focused on
the most popular and crucial elements that have helped SQL maintain its
prominence to this day. Because of these significant capabilities, no other
database system has been able to attain the same level of success as SQL.

Foundational Relationships

SQL is a relational database language. The tabular layout of a relational
database provides an intuitive user interface, making SQL simple to learn
and use. Furthermore, relational models have a strong theoretical founda-
tion that has influenced relational database development and deployment.
SQL has become the database language for relational databases as a result
of the popularity of the relational paradigm.

High Performance

A significant volume of data is swiftly and efficiently retrieved. Furthermore,
simple data manipulation tasks such as inserting, deleting, and modifying
data can be completed in a short amount of time. SQL is so fast because
a database product must deliver sets of data quickly when requested in
order to be successful. Many of the company’s brightest individuals labour

Function Description

LCASE() Convert string column values to lowercase.
UCASE() Convert a string column values to Uppercase.
LEN() Returns the length of the text values in the column.
MID() Extracts substrings in SQL from column values having

String data type.
ROUND() Rounds off a numeric value to the nearest integer.
NOW() Return the current system date and time.
FORMAT() Format how a field must be displayed.

8    ◾    Mastering SQL

around the clock on the query engine to ensure that it generates ‘optimal’
query strategies that operate quickly.

Scalability

The SQL database is vertically scalable, which means that by adding more
RAM, SSDs, or CPUs, you may increase the load on a single server. Because
of the way data is stored (connected tables vs unrelated collections), SQL
databases can only scale vertically – horizontal scalability is only possible
with NoSQL databases.

Authentication and Security

Several security-enhancing features are included in SQL Server, includ-
ing encrypted communication over SSL/TLS, the Windows Data
Protection API (DPAPI) to encrypt data at rest, authentication, and
permission. The process of identifying a user or a person based on
their login and password is known as authentication. The credentials
of SQL Server’s users are used to authenticate them. SQL Server has
two authentication modes: Windows authentication and mixed-mode
authentication.

•	 Windows authentication is the default authentication technique
also known as integrated security due to its tight integration with
Windows. To connect to SQL Server, specific Windows user and
group accounts are trusted. Additional credentials are not required
for users who have already been authenticated.

•	 Mixed-mode authentication works with both Windows and SQL
Server. Mode and mixed-mode keep track of user names and
passwords.

Independent Vendors

No new DBMS product has been very successful over the last decade,
despite SQL support being available from all major DBMS manufacturers.
With minimal conversion work, SQL-based databases and programmes
can be moved from one DBMS to another vendor’s DBMS. As a result, ven-
dor independence is one of SQL’s most fundamental characteristics and a
key reason for its early appeal.

Basics about SQL    ◾    9

Adaptability to a Variety of Computer Systems

Mainframes, PCs, workstations, specialised servers, and even handhelds
are all supported by SQL-based database products.

As a result of SQL’s feature,

•	 As applications grow, they can be transferred from single-user or
departmental servers to bigger server systems.

•	 Data from corporate SQL databases can also be extracted and down-
loaded into departmental or personal databases.

•	 Before moving to a more expensive multiuser system, a prototype
of a SQL-based database application can be constructed on a less
expensive personal computer.

Endorsement and Commitment from IBM (DB2)

SQL was established by IBM researchers and has now evolved into a key
product based on IBM’s flagship DB2 database. SQL is supported on all
major IBM platforms, from personal computers through midrange sys-
tems to mainframes. As a result of IBM’s early efforts, other database and
system suppliers followed IBM’s lead in the development of SQL and rela-
tional databases, and SQL was accepted more swiftly by the market as a
result of IBM’s widespread support and dedication. The SQL-based prod-
ucts that IBM has produced run on hardware from developing competi-
tors such as HP and Sun, in addition to IBM’s own products.

Structure Similar to That of English

SQL is basic and easy to understand because it uses English-like words like
create, select, delete, and update. Columns and tables in SQL databases
can have long, descriptive names. As a result, the majority of SQL state-
ments have a clear meaning and can be read as natural sentences.

Database Access through Programming

When writing apps, programmers utilise SQL to access databases. Because
interactive and programmatic access to the database is made possible by
using the same SQL statements, unlike traditional databases that have
separate tools for programmatic and unscheduled requests, database

10    ◾    Mastering SQL

access components of a programme can be tested first with interactive
SQL before being embedded into a programme.

Transaction Control Language

The propagation of a change in the database is referred to as a transaction
in transaction control language. Transactions are an important part of a
database management system, and TCL (Transaction Control Language)
is used to manage them. TCL includes commands like commit, rollback,
and save point.

Various Viewpoints on Data

A database’s creator can use SQL to provide various users with distinct
views of the database’s structure and content. For example, an organisa-
tion’s database can be set up so that each user can only access data from his
or her own department. Furthermore, data from many database tables can
be merged and displayed to the user as a simple row/column table.

Dynamic

One of the most significant advantages of SQL over other static databases
is the ability to update and expand a database’s structure dynamically,
even while users are accessing database material. As a result, SQL offers
the most flexibility, allowing online applications to run uninterrupted as a
database adapts to changing needs.

Architecture of Client/Server

A client–server relationship is one in which a client (or a group of clients) is
connected to a server (one). SQL implementation is a natural fit for appli-
cations with distributed client/server systems. A SQL database connects
‘front-end’ computer systems that focus on user interface with ‘back-end’
computer systems that focus on database management, allowing each sys-
tem to perform what it does best. SQL also enables personal computers to
act as a front end to network servers or mainframe databases, allowing
access to corporate data via a desktop application.

SQL with Java Integration

Integration of SQL with Java has become a prominent focus of SQL devel-
opment in recent years. To connect the Java language to existing relational
databases, Sun Microsystems (the creator of JAVA) released Java Database

Basics about SQL    ◾    11

Connectivity JDBC (a standard API that allows Java programs to use SQL
for database access). It ensured that SQL would continue to be relevant in
the emerging Java-based programming environment.

SOME SQL STATEMENTS
The SQL commands are used to create and manage databases. The list con-
tains some of the most used SQL commands:

•	 Create: The function facilitates the creation of the new database,
table, table view, and other database objects.

•	 Update: This operation is used to update or change the database’s
stored data.

•	 Delete: The saved records can be deleted or removed from database
tables using this function. It purges one or more tuples at a time from
database tables.

•	 Select: This function allows you to access a single or more rows from
one or more database tables. This command can also be used with
the WHERE clause.

•	 Drop: This function can be used to delete an entire table, table view,
or any database item.

•	 Insert: This function facilitates the entry of data or records into data-
base tables. The records can be readily inserted into single or many
rows of the table.

ADVANTAGES OF STRUCTURED QUERY LANGUAGE (SQL)
In the world of data science, SQL has grown in popularity thanks to a
variety of benefits. It’s an excellent query language for users and data pro-
fessionals to communicate with databases. The advantages or benefits of
Structured Query Language are as follows:

•	 There Is No Requirement for Programming: For database man-
agement, SQL does not necessitate a huge amount of coding lines.
Using simple SQL syntactical rules, we can quickly access and main-
tain the database. The SQL is user-friendly thanks to these simple
guidelines.

12    ◾    Mastering SQL

•	 Query Processing at a High Rate: SQL queries are used to quickly
and effectively access a large amount of data from the database. Less
time is required for data operations like insertion, deletion, and
updating.

•	 Language That Is Standardised: SQL complies with ISO and ANSI
standards, giving its users a uniform platform around the globe.

•	 Convenience: The Structured Query Language can be used on desk-
top computers, laptops, tablets, and even smartphones.

•	 Language That Is Interactive: The SQL language is simple to learn
and comprehend. Because it is a basic query language, we can also
use it to communicate with the database. This language is also uti-
lised for receiving instant replies to difficult queries.

•	 There Are Multiple Data Views: The construction of numerous data-
base structure views for diverse database users is also made easier by
the SQL language.

DISADVANTAGES OF STRUCTURED
QUERY LANGUAGE (SQL)
Despite all of SQL’s advantages, it also has certain disadvantages, includ-
ing the following:

•	 Price: Some SQL versions have a significant operational cost. As
a result, some programmers are unable to use Structured Query
Language.

It Has a Difficult User Interface: The Structured Query Language
interface’s complexity makes it challenging for SQL users to use and
administer, which is another important drawback.

•	 Database Control in Part: The corporate regulations are kept under
wraps. As a result, data professionals and users who utilise this query
language are unable to have complete database control.

DATA TYPES IN STRUCTURED QUERY LANGUAGE (SQL)
Each column, local variable, expression, and parameter in SQL Server have
a corresponding data type. The kind of data that an object can store, such

Basics about SQL    ◾    13

as binary strings, dates and times, characters, money, dates, and integers,
as specified by the data type attribute of the object. SQL Server comes with
a collection of system data types that describe all of the data types that can
be used with it.

For each database, data types are divided into three categories (Figure 1.4):

•	 Types of String Data.

•	 Types of Numeric Data.

•	 Time and date Types of data.

Exact Numeric Data Types

They are used to hold precise numbers such as integers, decimals, and
monetary amounts. The bit can store one of three values: 0 (zero), 1 (one),
or NULL (null). Integer data is stored in the int, bigint, smallint, and
tinyint data types. Numbers with fixed accuracy and scale are stored in
decimal and numeric data types. It’s worth noting that the terms decimal
and numeric are interchangeable. Currency values are stored in the money
and small money data types.

The features of the exact numeric data types are shown in the following
table:

FIGURE 1.4  Data types of SQL.

14    ◾    Mastering SQL

Types of Numeric Data

Floating point numeric data is stored in the approximation numeric data
type. In scientific computations, they are frequently utilised.

Types of Date and Time Data

Date and time data, as well as the date time offset, are stored in the date
and time data types.

Data Type Lower Limit Upper Limit Memory Precision

float(n) −1.79E + 308 1.79E + 308 Depends on the value of n 7 Digit
real −3.40E + 38 3.40E + 38 4 bytes 15 Digit

Data Type Storage Size Accuracy Lower Range Upper Range

Date time 8 bytes Rounded to increments
of .000, .003, .007

1753-01-01 9999-12-31

Small date
time

4 bytes,
fixed

1 minute 1900-01-01 2079-06-06

date 3 bytes,
fixed

1 day 0001-01-01 9999-12-31

time 5 bytes 100 nanoseconds 00:00:00.0000000 23:59:59.9999999
Date time

offset
10 bytes 100 nanoseconds 0001-01-01 9999-12-31

datetime2 6 bytes 100 nanoseconds 0001-01-01 9999-12-31

Data Type Lower Limit Upper Limit Memory

Big int −2^63 (−9,223,372,
036,854,775,808)

2^63−1 (−9,223,362,
036,854,775,807)

8 bytes

int −2^31 (−2,147, 483,648) 2^31−1 (−2,147, 483,647) 4 bytes
smallint −2^15 (−32,767) 2^15 (−32,768) 2 bytes
tinyint 0 255 1 byte
bit 0 1 1 byte/8 bit

column
decimal −10^38+1 10^381−1 5−17 bytes
numeric −10^38+1 10^381−1 5−17 bytes
money −922,337, 203, 685,477.5808 +922,337, 203, 685,477.5807 8 bytes
Small money −214,478.3648 +214,478.3647 4 bytes

Basics about SQL    ◾    15

When developing a new application, use the time, date, datetime2,
and datetimeoffset data types. Because these types are more portable and
conform to the SQL Standard. Furthermore, time, datetime2, and date-
timeoffset offer greater precision in seconds, and datetimeoffset supports
time zones.

Data Types for Character Strings

You can store either fixed-length (char) or variable-length (var) data in
character strings data types (varchar). In the server’s code page, the text
data type can store non-Unicode data.

Character String Data Types in Unicode

Unicode character string data types store Unicode character data that is
either fixed-length (nchar) or variable-length (nvarchar).

Types of Binary String Data

The binary data types store binary data with fixed and variable lengths.

Data Type Lower Limit Upper Limit Memory

char 0 chars 8000 chars n bytes
varchar 0 chars 8000 chars n bytes + 2 bytes
varchar (max) 0 chars 2^31 chars n bytes + 2 bytes
text 0 chars 2,147,483,647 chars n bytes + 4 bytes

Data Type Lower Limit Upper Limit Memory

nchar 0 chars 4,000 chars 2 times n bytes
nvarchar 0 chars 4,000 chars 2 times n bytes + 2 bytes
ntext 0 chars 1,073,741,823 char 2 times the string length

Data Type Lower Limit Upper Limit Memory

binary 0 bytes 8,000 bytes n bytes
varbinary 0 bytes 8,000 bytes The length of data entered + 2 bytes
image 0 bytes 2,147,483,647 bytes

16    ◾    Mastering SQL

Other Data Types

COMMANDS OF STRUCTURED QUERY LANGUAGE (SQL)
SQL is a data management solution that is free to use. The data from the
table is retrieved and manipulated using a SQL query. It is used to run
commands on a database or to create one. We can query, filter, sort, join,
group, and alter data in a database using SQL commands. All of these
commands in SQL Server are divided into four categories: DML, DDL,
DCL, and TCL commands (Figure 1.5).

Data Definition Language (DDL)

The SQL instructions that can be used to define the database schema are
known as DDL, or Data Definition Language. It only manages descriptions

Data Type Description

cursor For variables or stored procedure OUTPUT
parameter that contains a reference to a cursor

row version Open up a database to automatically created,
distinct binary numbers.

A tree location in a tree hierarchy It is represented by a hierarchyid.
unique identifier 16-byte GUID
sql_variant Store values of other data types
XML XML data should be stored in a column or

XML-type variable.
spatial geometry Use a flat coordinate system to represent data.
Type of spatial geography Keep information that is ellipsoidal (round-

earth), such as GPS latitude and longitude
coordinates.

a table temporarily stores a result set for processing
later.

FIGURE 1.5  SQL commands.

Basics about SQL    ◾    17

of database schemas and is used to build and alter the structure of data-
base objects in the database. In contrast to data, DDL refers to a set of SQL
instructions for adding, removing, and altering database structures. These
steps should not be carried out by a regular user who should be using an
application to access the database.

The DDL commands are listed below:

•	 Create: The database and its objects are created by this command
(like table, index, function, views, store procedure, and triggers).

In SQL, you can use one of two CREATE statements:

•	 CREATE A TABLE.

•	 CREATE A DATABASE.

Make a Database

A database is a planned gathering of data. To store data in a well-struc-
tured manner, the first step with SQL is to establish a database. To build a
new database in SQL, use the CREATE DATABASE statement.

Syntax:

CREATE DATABASE data_name;

Example:
It creates a new database in SQL and name the database as m database.

CREATE DATABASE m_database;

Make a Table

We have already learned how to create databases. To save the information,
we’ll need a table. In SQL, the CREATE TABLE statement is used to make
a table. A table is made of rows and columns, as we all know. As a result,
when building tables, we must give SQL with all relevant information,
such as the names of the columns, the type of data to be kept in the col-
umns, the data size, and so on. Let us look at how to utilise the Construct
TABLE statement to create tables in SQL in more detail.

18    ◾    Mastering SQL

Syntax:

CREATE TABLE t_name
(
col1 data_type (size),
col2 data_type (size),
col3 data_type (size),
);

where t_name: name of the table; col1, col2, col3: names of the first, sec-
ond and third columns of the table, and data_type: stores the type of data
types we want to store in the particular column.

For example, the data type declared is int for integer data; size: defines
the size we can store in a particular column like we specify the data_type
as int and size as 15 then this column can store an integer with a maxi-
mum capacity limit of 15 digits.

This query will construct a table called Stud_Info, which will have three
columns: R_NO, NAME, and SUBJECT.

CREATE TABLE Stud_info
(
R_NO int (5),
NAME varchar(35),
SUBJECT varchar(35),
);

A table called Stud_Info will be created as a result of this query. The R_NO
field is of type int and can hold a five-digit integer value. The following two
columns, NAME and SUBJECT, are of type varchar and can store charac-
ters, with the size 35 indicating that these two fields can hold a maximum
of 35 characters.

•	 Drop: It is used to destroy database objects (whole database or sim-
ply a table). The DROP statement deletes existing objects such as
databases, tables, indexes, and views. In SQL, a DROP command
deactivates a component in a relational database management sys-
tem (RDBMS).

Syntax:

DROP object object_name

Basics about SQL    ◾    19

Examples:

DROP TABLE t_name; //t_name: Name of the table to be
deleted.
DROP DATABASE data_name; //data_name: Name of the
database to be deleted.

•	 Alter: It is used to change the database’s structure. ALTER TABLE
is used to modify an existing table by adding, deleting, or dropping
columns. It can be used to create and remove constraints from a
table that already exists.

Add to Table

To add columns to an existing table, use ADD. We may occasionally need
to add extra information; in this instance, we do not need to recreate the
entire database; instead, ADD comes to our rescue.

Syntax:

ALTER TABLE t_name
ADD (Col name_1 datatype,
 Col name_2 datatype,
 Col name_n datatype);

Drop a Table

The DROP COLUMN command is used to remove a column from a table.
The table’s unnecessary columns are removed.

Syntax:

ALTER TABLE t_name
DROP COLUMN col_name;

•	 Truncate: It is used to delete all records from a table, as well as all
spaces reserved for the records.

Syntax:

TRUNCATE TABLE t_name;

20    ◾    Mastering SQL

Example:

TRUNCATE TABLE Stud_Info;

•	 Comment: This will put your remarks in the data dictionary.
Syntax:

--(notes, examples)

Example:

--select the student data
SELECT * FROM Stud_Info;

•	 Rename: This is used to rename an existing database object.
Syntax:

RENAME old_ob_type ob name TO new_ob_name;

To give a proper explanation for above code, if we hadn’t dropped
the ‘customers old data’ table, we can have renamed it ‘customer new
data’ as follows:

RENAME TABLE customers TO customer old_data;

Data Manipulation Language (DML)

The Data Manipulation Language is a set of data manipulation operators.
We can alter data in the database by using these operators to add, modify,
delete, or unload data.

The frequent SQL language operators are included in the group:

Select: collects data samples;
To begin, use the SELECT command to retrieve data from the

database objects such as tables:

SELECT * FROM Stud_Info;

Insert: inserts new information;
this will help to insert data into tables. While working with

the table, you can add additional records or rows. The sentence

Basics about SQL    ◾    21

is done by the keywords INTO and VALUES. Consider the case
below:

INSERT INTO Student_Info (joining date , year of
Birth) VALUES
(2014-2-21, ‘1995’);

Update modifies existing info.
We can select & insert data with SQL, but we can change it.

To change current existing data in your tables, use the UPDATE
command. It has a unique that is best described with an example.

We can replace the old inserted date of joining 2014-2-21 and
year of birth as 1995-to something different using the following
code. In our instance, that would be September 12, 2014:

UPDATE Stud_Info
SET Date of joining = ‘2014-09-12’
WHERE year of Birth = 1995;

Delete is a command that deletes data.
The DELETE command is identical to the TRUNCATE, with

one notable exception. DELETE allows us to delete only the
records you want from a table, as opposed to TRUNCATE, which
allows us to delete every record in a table.

For instance, the below line of below will remove every record
from the “sales” table:

DELETE FROM Student_Info;

Data Control Language (DCL)

The data control language is a SQL syntax that lets you govern user access
to a database with just a couple of instructions. If database administrators
have complete access to a database, they can also manage user access.

There are two DCL Commands:

Grant: GRANT gives users access to particular features. To run the
command, use the following syntax:

DELETE FROM sales;GRANT type_of_permission ON
database_name.table_name TO ‘@username’@’localhost’

22    ◾    Mastering SQL

The line of code can be used to grant a certain kind of permission,
such as complete or restricted access to the resources in a particu-
lar data table.

Revoke: The REVOKE clause, which is the opposite of the GRANT
statement, is used to revoke database user permissions and privi-
leges. On the other hand, their syntax is identical:

REVOKE type_of_permission ON database_name.table_name
FROM ‘username’@’localhost’

In other words, instead of granting someone permission, you can
revoke their privilege.

Transition Control Language (TCL)

When working with relational database management systems in a profes-
sional setting, it’s vital to maintain control over your transactions. To put
it another way, anytime you insert, delete, or change data in your database.

To deal with it, you must be conversant with TCL commands,
specifically:

Commit: The changes you’ve made will be preserved in the database
indefinitely, and other users will be able to access the updated version.

Assume you want to change the second client’s last name from
Amit to Astitiva in a record in the “Customers” table:

UPDATE customers
SET last_name = ‘Astitiva’
WHERE customer_id = 2;

The task is not yet complete, though, as the other users of the data-
base system won’t be able to detect if we have made any modifica-
tions. To complete the operation, add a COMMIT statement at the
end of the UPDATE block:

UPDATE customers
SET last_name = ‘Astitiva’
WHERE customer_id = 2
COMMIT;

Basics about SQL    ◾    23

The transaction is saved to the database when you use COMMIT.
The modifications are irreversible.

Rollback: The number of countries that are dedicated to the cause may
quickly increase. For example, if you’re the administrator, you might
need to use COMMIT 20 times daily.

As a result, you may unintentionally insert or change data. The
transaction control language function ROLLBACK allows you to
undo any changes you don’t want to keep permanently by restor-
ing the database to its original committed state.

Add the ROLLBACK; to the end of your code to use this feature:

UPDATE customers
SET last_name = ‘Astitiva’
WHERE customer_id = 2
COMMIT;
ROLLBACK;

Savepoint: A SAVEPOINT is a logical rollback point within a transac-
tion. If you make a save point and then get an error, you can utilise
the rollback option to undo everything you’ve done up to that point.

SAVEPOINT savepoint_name;

TRANSACTIONS IN SQL
It is a logical unit of work performed on a database. Transactions are logi-
cally ordered units or sequences of work that can be completed manually
by a human or automatically by a database application. A transaction is
the transmission of one or more changes to the database. An example of
a table transaction would be the creation, update, or deletion of a record
from that table. It is essential to maintain track of these transactions in
order to protect data integrity and handle database concerns.

In practise, you’ll group several SQL queries together and run them all
at the same time as part of a transaction.

Characteristics of Transactional

Transactions contain the four standard qualities listed below, which are
frequently abbreviated as ACID.

24    ◾    Mastering SQL

Atomicity ensures the successful completion of all processes inside the
work unit. Otherwise, the transaction will be aborted at the point of
failure, and all preceding activities would be reversed.

When a transaction is successfully committed, consistency ensures
that the database changes states properly.

Isolation allows transactions to execute independently of one another
while remaining transparent to them.

Durability ensures that a committed transaction’s outcome or effect is
preserved in the event of a system failure.

Commands for Controlling Transactions
The commands below are used to manage transactions:

•	 To save your changes, press Commit.

•	 TO REVERSE THE CHANGES, USE ROLLBACK.

•	 ROLLBACK POINTS are created by SAVEPOINT inside groups of
transactions.

•	 SET TRANSACTION gives a transaction a name.

Commands for Transactional Control
DML commands like INSERT, UPDATE, and DELETE are the only ones
that use transactional control commands. They can’t be utilised when
adding or removing tables because the database commits these activities
automatically.

Commit (Command)
The transactional command COMMIT is used to save changes made by
a transaction to the database. To save changes done by a transaction to
the database, use the transactional verb COMMIT. The COMMIT com-
mand saves all transactions to the database that have occurred since the
last COMMIT or ROLLBACK command.

The COMMIT command has the following syntax:

COMMIT;

Basics about SQL    ◾    25

Example:
Consider the following records in the CUSTOMERS table:

The example below will delete all records in the table with an age of 30 and
then COMMIT the changes to the database.

SQL> DELETE FROM CUSTOMERS
 WHERE AGE = 30;
SQL> COMMIT;

As a result, one row from the table will be removed, and the SELECT com-
mand yields the following result:

Rollback (Command)
It is a command that allows you to go back in time. The transactional com-
mand is used to undo transactions that have not yet been recorded in the
database. This command can only be used to reverse transactions that
have occurred the last COMMIT or ROLLBACK command.

The ROLLBACK command has the following syntax:

ROLLBACK;

Sr. No. ID Name Age Address Salary (USD)

1 LBR114 Alex 23 New York 25,000
2 LBR115 Joshua 21 Vegas 52,000
3 LBR116 Nick 22 Maryland 47,000
4 LBR117 Johnny 20 Boston 89,000
5 LBR118 Chris 28 Ohio 53,000
6 LBR119 Zyndaya 25 Omaha 48,000
7 LBR120 Tom 30 California 36,000

Sr. No. ID Name Age Address Salary (USD)

1 LBR114 Alex 23 New York 25,000
2 LBR115 Joshua 21 Vegas 52,000
3 LBR116 Nick 22 Maryland 47,000
4 LBR117 Johnny 20 Boston 89,000
5 LBR118 Chris 28 Ohio 53,000
6 LBR119 Zyndaya 25 Omaha 48,000

26    ◾    Mastering SQL

Example:
Consider the following records in the CUSTOMERS table:

The following is an example that would delete all records in the table with
the age of 30 and then ROLLBACK the database modifications.

SQL> DELETE FROM CUSTOMERS
 WHERE AGE = 25;
SQL> ROLLBACK;

As a result, the delete action has no effect on the table, and the SELECT
command yields the following result.

Savepoint (Command)
It allows you to save a point in time and let us revert to a previous state
without reverting the entire transaction.

The SAVEPOINT command has the following syntax.

SAVEPOINT SAVEPOINT_NAME;

Sr. No. ID Name Age Address Salary (USD)

1 LBR114 Alex 23 New York 25,000
2 LBR115 Joshua 21 Vegas 52,000
3 LBR116 Nick 22 Maryland 47,000
4 LBR117 Johnny 20 Boston 89,000
5 LBR118 Chris 28 Ohio 53,000
6 LBR119 Zyndaya 25 Omaha 48,000
7 LBR120 Tom 30 California 36,000

Sr. No. ID Name Age Address Salary (USD)

1 LBR114 Alex 23 New York 25,000
2 LBR115 Joshua 21 Vegas 52,000
3 LBR116 Nick 22 Maryland 47,000
4 LBR117 Johnny 20 Boston 89,000
5 LBR118 Chris 28 Ohio 53,000
6 LBR119 Zyndaya 25 Omaha 48,000
7 LBR120 Tom 30 California 36,000

Basics about SQL    ◾    27

This command is only used to create a SAVEPOINT in the middle of all
transactional statements. To undo a collection of transactions, use the
ROLLBACK command.

The following is the syntax for rolling back to a SAVEPOINT.

ROLLBACK TO SAVEPOINT_NAME;

The example below shows how to delete three separate records from
the CUSTOMERS database. Before each delete, you should create a
SAVEPOINT so that you can ROLLBACK to any SAVEPOINT at any
moment to restore the required data to its previous state.

Example:
Consider the following records in the CUSTOMERS table.

The operations are listed in the following code block.

SQL> SAVEPOINT SP1;
Savepoint created.
SQL> DELETE FROM CUSTOMERS WHERE ID=LBR114;
1 row deleted.
SQL> SAVEPOINT SP2;
Savepoint created.
SQL> DELETE FROM CUSTOMERS WHERE ID= LBR117;
1 row deleted.
SQL> SAVEPOINT SP3;
Savepoint created.
SQL> DELETE FROM CUSTOMERS WHERE ID=LBR120;
1 row deleted.

Sr. No. ID Name Age Address Salary (USD)

1 LBR114 Alex 23 New York 25,000
2 LBR115 Joshua 21 Vegas 52,000
3 LBR116 Nick 22 Maryland 47,000
4 LBR117 Johnny 20 Boston 89,000
5 LBR118 Chris 28 Ohio 53,000
6 LBR119 Zyndaya 25 Omaha 48,000
7 LBR120 Tom 30 California 36,000

28    ◾    Mastering SQL

Now that the three deletions have occurred, let us pretend that you
have changed your mind and have decided to ROLLBACK to the SP3
SAVEPOINT. The last two deletions are undone because SP2 was estab-
lished after the initial deletion.

SQL> ROLLBACK TO SP3;
Rollback complete.

Since you rolled back to SP3, only the first deletion has occurred.

SQL> SELECT * FROM CUSTOMERS;

Six Rows selected

Release Savepoint
It is a command that allows you to release a saved state.

The RELEASE SAVEPOINT command is used to delete a previously
established SAVEPOINT.

The RELEASE SAVEPOINT command has the following syntax.

RELEASE SAVEPOINT SAVEPOINT_NAME;

We can no longer use the ROLLBACK command to undo transactions
made since the last SAVEPOINT if a SAVEPOINT has been released.

Set Transaction

It is a command that allows you to set up a transaction. A database trans-
action can be started with the SET TRANSACTION command. This com-
mand is used to define the properties of the next transaction. You can, for
example, make a transaction read-only or read-write.

Sr. No. ID Name Age Address Salary (USD)

1 LBR114 Alex 23 New York 25,000
2 LBR115 Joshua 21 Vegas 52,000
3 LBR116 Nick 22 Maryland 47,000
4 LBR117 Johnny 20 Boston 89,000
5 LBR118 Chris 28 Ohio 53,000
6 LBR119 Zyndaya 25 Omaha 48,000

Basics about SQL    ◾    29

The SET TRANSACTION command has the following syntax.

SET TRANSACTION [READ WRITE | READ-ONLY];

VIEWS IN SQL
Views in SQL are comparable to virtual tables. A view’s rows and columns
are identical to those in a database table. By selecting fields from one or
more database tables, a view can be made. Based on a criteria, a view may
include all of a table’s rows or only a subset of them.

In this article, we will discover how to build, remove, and update views.

To create a View, use the Build VIEW statement. A View can be built using
a single table or several tables.

Syntax:

CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE condition;
view_name: Name for the View
table_name: Name of the table
condition: Condition to select rows

Examples:
Using a single table to create a View:

In this example, we’ll use the table StudentDetails to create a View
called DetailsView.

Sn_ID Name Address Sn_ID Name Age Marks

LRB123 Alex New York LRB123 Alex 15 91
LRB124 Joshua Vegas LRB124 Joshua 16 95
LRB125 Nick Maryland LRB125 Nick 14 80
LRB126 Johnny Boston LRB126 Johnny 16 87
LRB127 Chris Ohio LRB127 Chris 14 98
LRB128 Zyndaya Omaha LRB128 Zyndaya 15 99

Student Details Student Marks

30    ◾    Mastering SQL

Query:

CREATE VIEW DetailsView AS
SELECT NAME, ADDRESS
FROM StudentDetails
WHERE S_ID < LRB127;

To see the data in a view, we can query it similarly to how we query a table.

SELECT * FROM DetailsView;

Output:

•	 In this example, we’ll use the table StudentDetails to create a view
called StudentNames.

Query:

CREATE VIEW StudentNames AS
SELECT S_ID, NAME
FROM StudentDetails
ORDER BY NAME;

If we now query the view as, we’ll get the following results.

SELECT * FROM StudentNames;

Output:

Name Address

Alex New York
Joshua Vegas
Nick Maryland
Johnny Boston

Sn_ID Name

LRB123 Alex
LRB124 Joshua
LRB125 Nick
LRB126 Johnny

Basics about SQL    ◾    31

•	 Creating a View from Multiple Tables: In this example, we’ll use
two tables, StudentDetails and StudentMarks, to create a View called
MarksView. To create a View from many tables, we can just add addi-
tional tables to the SELECT statement.

Query:

CREATE VIEW MarksView AS
SELECT StudentDetails.NAME, StudentDetails.ADDRESS,
StudentMarks.MARKS
FROM StudentDetails, StudentMarks
WHERE StudentDetails.NAME = StudentMarks.NAME;

View MarksView data should be displayed as follows:

SELECT * FROM MarksView;

Output:

Views Are Being Removed

We learned how to make views, but what happens if they are no longer
needed? We will obviously wish to get rid of it. SQL can be used to delete
an existing View. A View can be dropped or deleted via DROP statement.

Syntax:

DROP VIEW view_Name;
view_Name: Name of the View which we want to delete.

If we wish to delete the View MarksView, for example, we can do so as
follows:

DROP VIEW MarksView;

Name Age Marks

Alex 15 91
Joshua 16 95
Nick 14 80
Johnny 16 87

32    ◾    Mastering SQL

Views Are Being Updated

•	 A view can only be updated if certain conditions are satisfied. If any
one of the following requirements are not satisfied, we won’t be able
to update the view:

•	 Neither the GROUP BY clause nor the ORDER BY clause should be
present in the SELECT statement used to generate the view.

•	 The DISTINCT keyword shouldn’t be used in the SELECT statement.

•	 The View’s values should all be NOT NULL.

•	 Complex or nested queries shouldn’t be used to construct the view.

•	 A single table should be used to generate the view. If the view was
created using multiple tables, it cannot be modified.

The CREATE OR REPLACE VIEW statement can be used to add or delete
fields from a view.

Syntax:

CREATE OR REPLACE VIEW view_name AS
SELECT column1,coulmn2,..
FROM table_name
WHERE condition;

For illustrate, if you wanted to modify the MarksView view and include
the AGE field from the StudentMarks Table, we could accomplish it as
follows:

CREATE OR REPLACE VIEW MarksView AS
SELECT StudentDetails.NAME, StudentDetails.ADDRESS,
StudentMarks.MARKS, StudentMarks.AGE
FROM StudentDetails, StudentMarks
WHERE StudentDetails.NAME = StudentMarks.NAME;

If we now retrieve all of the data from MarksView as:

SELECT * FROM MarksView;

Basics about SQL    ◾    33

Output:

•	 Row Insertion in Views: Row insertion in views works similarly to
row insertion in tables. The SQL INSERT INTO statement can be
used to add a row to a View.

Syntax:

INSERT INTO view_name(column1, column2 , column3,..)
VALUES(value1, value2, value3..);
view_name: Name of the View

Example: In the example below, we will add a new row to the View
DetailsView that we constructed before in the “building views from
a single table” section.

INSERT INTO DetailsView (NAME, ADDRESS)
VALUES(“Jaques”, Texas”);

If we now retrieve all of the data from DetailsView as,

SELECT * FROM DetailsView;

Output:

Name Address Age Marks

Alex New York 15 91
Joshua Vegas 16 95
Nick Maryland 14 80
Johnny Boston 16 87

Name Address

Alex New York
Joshua Vegas
Nick Maryland
Johnny Boston
Jaques Texas

34    ◾    Mastering SQL

Delete a Row from a View

Just like deleting rows from a table, deleting rows from a view is simple.
Using the SQL DELETE statement, we can remove rows from a view.
Additionally, after deleting a row from a table, deleting it from a view
causes the change to appear in the view.

Syntax:

DELETE FROM view_Name
WHERE condition;
view_Name: Name of view from where we want to delete rows
condition: Condition to select rows

Example:
In this case, we’ll delete the last row from the DetailsView view, which we
just put in the previous row-inserting example.

DELETE FROM DetailsView
WHERE NAME=”Jaques”;

If we now retrieve all of the data from DetailsView as,

SELECT * FROM DetailsView;

Output:

With Check Option
In SQL, the WITH CHECK OPTION clause is highly useful for views. It
can be used with an updatable view. If the view is not updatable, insert-
ing this clause in the CREATE VIEW statement is pointless. The WITH
CHECK OPTION is used to prohibit rows from being inserted into the
view of the condition in the CREATE VIEW statement’s WHERE clause is
not met. If the WITH CHECK OPTION clause was used in the CREATE

Name Address

Alex New York
Joshua Vegas
Nick Maryland
Johnny Boston

Basics about SQL    ◾    35

VIEW statement, and the UPDATE or INSERT clause does not meet the
conditions, an error will be returned.

Example: Using the WITH CHECK OPTION clause, we create a View
SampleView from the StudentDetails Table.

CREATE VIEW SampleView AS
SELECT S_ID, NAME
FROM StudentDetails
WHERE NAME IS NOT NULL
WITH CHECK OPTION;

This view was constructed with the NOT NULL condition for the NAME
column, so if we attempt to insert a new row with a null value in the Name
column, we would see an error.

For example, despite the fact that the view is updatable, the following
query for this View is invalid:

INSERT INTO SampleView(S_ID)
VALUES(8);

The NAME column’s default value is null.

VIEWS AND THEIR APPLICATIONS
Views are necessary in a decent database for the reasons listed below:

•	 Data access is restricted.

•	 Views add another level of table protection by limiting access to a
predetermined set of rows and columns in a database.

•	 Keeping data complexity hidden – a view can be used to mask the
complexities of a multiple table join.

•	 Simplify user instructions − views allow users to choose data from
several tables without having to know how to execute a join.

•	 Store complex queries in views − views can be used to keep track of
complex queries.

•	 As the number of columns in the view matches the number of col-
umns specified in the select statement, views can also be used to

36    ◾    Mastering SQL

rename columns without affecting the underlying tables. As a result,
altering the base tables’ columns can help hide the names of the
columns.

•	 Ability to switch between multiple views for various users on the
same table.

SQL COMMENTS
Comments can help you read and manage your application more easily.
For example, you can add a comment to a statement that explains what the
statement’s purpose is in your application. Comments in SQL statements,
with the exception of hints, have no effect on the statement’s execution.

In a statement, a comment can exist between any keywords, param-
eters, or punctuation marks. There are two ways to include a comment in
a statement:

Use a slash and an asterisk (/*) to start your comment. Continue with
the comment’s text. This text may be split across numerous lines. An aster-
isk and a slash (*/) should be used to close the comment. A space or a line
break is not required to separate the opening and closing characters from
the text. Begin your comment with the word – (two hyphens). Continue
with the comment’s text. This text isn’t long enough to fill a new line. A
line break should be used to end the comment. Additional limits apply to
certain of the tools used to enter SQL. Multiple comments of both forms
can be found in a SQL statement. The text of a remark may contain any
printable characters from your database’s character set.

The following three formats are available for making comments:

•	 Comments on a single line (Single line comments)
Single line comments are those that start and end on a single line.
A comment is a line that starts with ‘–’ and will not be performed.
Syntax:

-- single line comment
-- another comment
SELECT * FROM Customers;

•	 Comments with multiple lines (Multi-line comments)
Comments that begin on one line and end on a different line

are referred to as multi-line comments. Lines beginning with ‘/*’

Basics about SQL    ◾    37

are regarded to be the start of a comment and are deleted when ‘*/’
appears.

Syntax:

/* multi-line comment
another comment */
SELECT * FROM Customers;

•	 Comments in the margins (In line comments)
Comments can be mentioned in between statements and are

enclosed in between ‘/*’ and ‘*/’. An expansion of multi-line com-
ments is n line comments; they can be stated in between statements
and are enclosed in between ‘/*’ and ‘*/’.

Syntax:

SELECT * FROM /* Customers; */

Example:
There are numerous comments in these statements:

SELECT last_name, salary + NVL(commission_pct, 0),
 job_id, e.department_id
/* To select all employees whose compensation is
greater than that of Pataballa.*/
 FROM employees e, departments d
 /*The table DEPARTMENTS is used to get the
department name.*/
 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct,0) > /*
Subquery: */
 (SELECT salary + NVL(commission_pct,0)
 /* To total compensation is salary + commission_pct */
 FROM employees
 WHERE last_name = ‘Pataballa’);

SELECT last_name, -- select the name
 salary + NVL(commission_pct, 0),-- total compensation
 job_id, -- job
 e.department_id -- and department
 FROM employees e, -- of all employees
 departments d

38    ◾    Mastering SQL

 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct, 0) > -- whose
compensation
 -- is
greater than
 (SELECT salary + NVL(commission_pct,0) -- the
compensation
 FROM employees
 WHERE last_name = ‘Pataballa’) -- of Pataballa.
;

CONSTRAINTS IN SQL
Constraints are the guidelines that the data columns in a table must adhere
to. These are used to restrict what kinds of data can be added to tables. This
guarantees the database’s data’s dependability and accuracy. At the level of
the column or table, constraints can be used. The column level constraints
only apply to one column, while the table level constraints are applied to
the entire table.

In SQL, the following constraints are available:
The following restrictions are possible in SQL:

Not Null: According to this constraint, a null value cannot be kept in a
column. That is, we won’t be able to save null values in a column if it
is marked as NOT NULL.

When coupled with a column, the UNIQUE constraint
demands that each and every value within the column be distinct.
In other words, a column’s values cannot be repeated in any row.

A field known as a PRIMARY KEY allows for the identifica-
tion of each row in a table. And a table field is designated as the
main key using this constraint.

Each row in another table can be uniquely identified by a field
known as a FOREIGN KEY. A field may also be designated as a
foreign key using this restriction.

Check: This constraint assists in comparing a column’s values to a list
of requirements. In other words, it helps to ensure that the value in a
column meets a set of requirements.

When no value is entered by the user, this constraint specifies a
default value for the column.

Basics about SQL    ◾    39

How should constraints be specified?
It can be specified when a table is created using the CREATE

TABLE statement. After a table has been built, restrictions can
also be specified using the ALTER TABLE statement.

The syntax for creating restrictions with the CREATE TABLE
statement at the time of table creation is as follows.

CREATE TABLE sample_table
(
col1 data_type(size) constraint_name,
col2 data_type(size) constraint_name,
col3 data_type(size) constraint_name,
....
);
sample table is the name of the upcoming table.
data type: The category of information that can be
kept in the field.
constraint name: The constraint’s name. UNIQUE,
PRIMARY KEY, and so on are a few examples.

Let’s examine each restriction in further detail.

•	 Not Null: This stipulation must be fulfilled. If a table field is marked
as NOT NULL. After that, a null value will never be accepted in the
field. In other words, if you don’t enter a value for this column, you
won’t be able to add a new row to the database. For instance, the fol-
lowing query generates a table. Student with the fields ID and NAME
set to NOT NULL. That is, whenever we want to insert a new row, we
must specify values for these two fields.

CREATE TABLE Student
(
ID int(8) NOT NULL,
NAME varchar(12) NOT NULL,
ADDRESS varchar(25)
);

•	 Unique: Each table row can be uniquely identified with the help of
this constraint. In other words, all rows should have the same value
for a given column. We can have a lot of unique columns in a table.

40    ◾    Mastering SQL

The given following query, for example, creates a table Student
with the field ID UNIQUE. To put it in another way, it is noted that
no two students can have the same ID.

CREATE TABLE Student
(
ID int(6) NOT NULL UNIQUE,
NAME varchar(10),
ADDRESS varchar(20)
);

•	 Primary Key: A primary key is a field in a table that uniquely identi-
fies each row. If a field in a table is specified as a primary key, all rows
must have unique values for this field, and it cannot include NULL
values. In other words, this combines the NOT NULL and UNIQUE
restrictions.

This key can only be one field in a table. The following query will
create a table called Student with the field ID as the primary key.

CREATE TABLE Student
(
ID int(6) NOT NULL UNIQUE,
NAME varchar(10),
ADDRESS varchar(20),
PRIMARY KEY(ID)
);

•	 Foreign Key: It is a table field that uniquely identifies each row of a
different table. That is, this field refers to a table’s main key. This usu-
ally results in a connection between the tables.

Consider the following two tables:

Orders

ID O_NO C_ID

1 22 2
2 33 4
3 44 3
4 55 1

Basics about SQL    ◾    41

Customers

The field C_ID in the Orders table is clearly the main key in the Customers
table, i.e., it uniquely identifies each row in the Customers dataset. As a
result, the Orders table has a Foreign Key.

Syntax:

CREATE TABLE Orders
(
O_ID int NOT NULL,
ORDER_NO int NOT NULL,
C_ID int,
PRIMARY KEY (O_ID),
FOREIGN KEY (C_ID) REFERENCES Customers(C_ID)
)

•	 Check: We can provide a requirement for a field’s fulfilment while
entering data by using the CHECK constraint.

For instance, the query below creates a table called Student with
the column AGE and the condition (AGE >= 18). In that case, the
user won’t be allowed to add any records with an age of under 18 to
the database.

CREATE TABLE Student
(
ID int(6) NOT NULL,
NAME varchar(10) NOT NULL,
AGE int NOT NULL CHECK (AGE >= 18)
);

•	 Default: The fields’ default value is provided by this restriction. In
other words, the default value will be set to these fields if the user
does not specify one while adding new records to the database.

ID NAME ADDRESS

1 NAME NOIDA
2 MAHESH GURGAON
3 SURESH DELHI

42    ◾    Mastering SQL

For instance, the following query will create a table called Student
and set the column AGE’s default value to 18.

CREATE TABLE Student
(ID int(6) NOT NULL,
NAME varchar(10) NOT NULL,
AGE int DEFAULT 18
);

SQL CREATING ROLE
A role is designed to make the security model’s setup and maintenance
easier. It is a designated set of related privileges that a user can be awarded.
It’s tough to assign or revoke rights to users when there are a lot of them in
a database. As a result, if you define roles as follows.

You can automatically grant or revoke privileges to users by providing
or removing privileges. We can either create our own roles or use the pre-
defined system roles. The following are some of the privileges offered to
system roles:

Making a Role and Assigning It

The role must first be created by the (Database Administrator) DBA. The
DBA can then provide the role privileges and assign users to it.

Syntax:

CREATE ROLE manager;
Role created.

The syntax for the role that has to be formed is called ‘manager’.

•	 Now that the role has been formed, the DBA can assign users to it
and assign privileges to it using the GRANT statement.

System Roles Role Connect is Granted

Certain privileges Create a table, view, synonym, sequence, or session, for example.
Resource Create a trigger, a table, a procedure, a sequence, etc. The Resource

role’s main function is to limit access to database objects.
DBA Every system right.

Basics about SQL    ◾    43

•	 In comparison to granting a permission to each user individually, it
is simpler to GRANT or REVOKE privileges to users through a role.

•	 If a role is recognised by a password, the password must also be used
to identify GRANT and REVOKE privileges.

Give a Role Privileges:

GRANT create table, create view
TO manager;
Grant succeeded.

Users Should Be Assigned a Role:

GRANT manager TO Johnny, Alex;
Grant succeeded.

Removing a Role’s Privileges:

REVOKE create table FROM manager;

Drop a Role:

DROP ROLE manager;

Explanation to the above Syntax:
It first establishes a manager role, after which it permits managers to cre-
ate tables and views. The role of manager is subsequently given to Johnny
and Alex. Johnny and Alex are now able to construct tables and views. If
a user has numerous roles assigned to them, they will have access to all
of the roles’ privileges. Then, using Revoke, the create table privilege is
withdrawn from the role ‘manager’. Drop is used to remove the role from
the database.

SQL INDEXES
A SQL index is a type of index that allows you to quickly access data from
a database. Without a question, one of the best methods to improve query
and application performance is to index a database or view. A SQL index
is a rapid lookup table used to find frequently sought records. An index
is a data structure that is tiny, fast, and optimised for speedy lookups.

44    ◾    Mastering SQL

It’s great for linking relational tables and searching huge databases. In
SQL Server, indexes are utilised to speed up the query process, resulting
in excellent performance. They’re a lot like textbook indexes. If you need
to get to a certain chapter in a textbook, you go to the index, identify the
chapter’s page number, and go straight to that page. Finding your selected
chapter would have been extremely time consuming without indexes.

The same can be said for database indexes. Without indexes, a data-
base management system (DBMS) must go through all of the records in a
table to extract the needed results. This is known as table-scanning, and
it is a very slow procedure. When you create indexes, on the other hand,
the database looks for the index first and then obtains the table records
directly.

Syntax for creating Index

 CREATE INDEX index
 ON TABLE column;

where the index is given a name, TABLE is the name of the table on which
the index is constructed, and column is the name of the column to which
it is applied.

For multiple columns:
Syntax:

CREATE INDEX index
ON TABLE (column1, column2,.....);

Unique Indexes

Unique indexes are used to maintain the integrity of the data in the table
as well as to improve performance by preventing multiple entries from
being entered into the table.

Syntax:

CREATE UNIQUE INDEX index
 ON TABLE column;

Basics about SQL    ◾    45

There are two types of indexes:

•	 Clustered index (index with clusters)

•	 Non-clustered index (index that isn’t clustered)

Clustered Index

A clustered index specifies the physical order in which data is stored in a
table. Each table can only include one clustered index since there is only
one manner in which table data can be sorted. The primary key constraint
in SQL Server automatically constructs a clustered index on that column.

Non-Clustered Indexes

The physical data inside the table is not sorted by a non-clustered index. In
reality, a non-clustered index is kept in one location while table data is kept
in another. This is similar to how a textbook is organised, with the infor-
mation in one location and the index in another. This allows each table to
have multiple non-clustered indexes.

It’s worth noting that the data inside the table will be sorted using a
clustered index. However, data is saved in the desired order within the
non-clustered index. The index contains the index’s column values as well
as the address of the record to which the column value belongs.

When Should You Construct Indexes?

•	 A column can have a broad variety of values in it.

•	 A column does not have a lot of null values in it.

•	 In a when clause or a join condition, one or more columns are typi-
cally used together.

When Indexes Should Be Avoided

There are certain conditions mentioned below that should be considered:

•	 The table is modest in size.

•	 The columns aren’t frequently used as a query condition.

•	 The column is frequently updated.

46    ◾    Mastering SQL

DROP INDEX
This command, you can delete an index from the data dictionary.

Syntax:

DROP INDEX index;

You must be the index owner or have the DROP ANY INDEX privilege to
drop an index.

ALTERING INDEX
Altering an Index entails rebuilding or restructuring the index of an exist-
ing table.

ALTER INDEX IndexName
ON TableName REBUILD;

CONFIRMING INDEXES
You can verify the uniqueness of the different indexes present in a table
given by the user or the server.

Syntax:

select * from USER_INDEXES;

It will display all of the server’s indexes, where you may also find your own
tables.

RENAMING AN INDEX
You can rename any index in the database using the system stored func-
tion sp rename.

Syntax:

EXEC sp_rename
 index_name,
 new_index_name,
 N’INDEX’;

Basics about SQL    ◾    47

SEQUENCES IN SQL
A sequence is a collection of integers, such as 1, 2, 3, and so on, that some
database systems construct and support in order to instantly produce
unique values. A sequence is a schema-bound user-defined object that gen-
erates a list of numeric values. Many databases employ sequences because
many applications need that each row in a table include a unique value,
and sequences give an easy way to do so. The sequence of numeric num-
bers is generated at defined intervals in ascending or descending order,
and it can be adjusted to resume when the max value is exceeded.

Syntax:

CREATE SEQUENCE “sequence_name”
START WITH “initial_value”
INCREMENT BY “increment_value”
MINVALUE “minimum value”
MAXVALUE “maximum value”
CYCLE|NOCYCLE ;
sequence_name: Name of the sequence.
initial_value: starting value from where the sequence
starts.
Initial_value should be greater than or equal to
minimum value and less than equal to maximum value.
increment_value: The value by which sequence will
increment itself. Increment_value can be positive or
negative.

minimum_value:The Minimum value of the sequence.
maximum_value: The Maximum value of the sequence.
cycle: When the sequence reaches its set_limit it
starts from the beginning.
nocycle: An exception will be thrown if sequence
exceeds its max_value.

Example:
The sequence query that creates the sequence in ascending order is shown
below.

48    ◾    Mastering SQL

Example 1:

CREATE SEQUENCE sequence_1
start with 1
increment by 1
min value 0
maxvalue 100
cycle;

The query above will result in the creation of a sequence named sequence
1. The sequence will begin at 1 and will be incremented by 1 until it reaches
a maximum value of 100. After exceeding 100, the sequence will repeat
itself from the beginning.

Example 2:
Create a series in descending order using the sequence query.

CREATE SEQUENCE sequence_2
start with 100
increment by -1
min value 1
maxvalue 100
cycle;

The sequence 2 will be created as a result of the query above. The sequence
will begin at 100 and will be incremented by −1 with a minimum value of
1 and should be less than or equal to the maximum value.

Create a table called students with the columns id and name as an
example of how to utilise sequence.

CREATE TABLE students
(
ID number(10),
NAME char(20)
);

Insert values into the table now.

INSERT into students VALUES(sequence_1.nextval, ‘Johnny’);
INSERT into students VALUES(sequence_1.nextval, ‘Simon’);

Basics about SQL    ◾    49

where sequence 1. Nextval will add ids to the id column in the sequence
defined in sequence 1.

Query Processing in SQL

Query processing entails translating high-level queries into low-level
expressions that may be employed at the file system’s physical level, query
optimisation, and query execution to obtain the desired result (Figure 1.6).

The figure shows the first step as the transformation of the query into a
standard form. A query is translated into SQL and into a relational algebraic
expression. During this process, the Parser checks the syntax and verifies
the relations and the attributes which are used in the query. The second
step is Query Optimiser, in which helps in transformation of the query

ID Name

LB 1 Johnny
LB 2 Simon

FIGURE 1.6  Query processing in SQL.

50    ◾    Mastering SQL

into equivalent expressions that are more efficient to execute. The third
step is Query evaluation which will execute the above query execution
plan and returns the result.

COMMON TABLE EXPRESSIONS (CTE) IN SQL
Common Table Expressions (CTE) were added into standard SQL to ease a
variety of SQL queries for which a derived table was just not appropriate. It
is a brief named result set that you can reference within a SELECT, INSERT,
UPDATE, or DELETE query. It was introduced in SQL Server 2005. You
may also utilise a CTE as part of the SELECT query in a CREATE a view.
Furthermore, starting with SQL Server 2008, you can use a CTE with the
new MERGE statement.

Defining CTEs

CTEs can be defined by including a WITH clause before any SELECT,
INSERT, UPDATE, DELETE, or MERGE statement. One or more CTEs
can be separated by commas in the WITH clause. You can use the follow-
ing syntax:

[WITH [, ...]]
 ::=
cte_name [(column_name [, ...])]
AS (cte_query)

You can then refer to the CTEs as you would any other table after you’ve
defined your Using clause with the CTEs. You can only refer to a CTE
within the execution scope of the statement that comes after the WITH
clause. The result set is not available to other statements once you’ve run
your statement.

Creating a Common Table Expression (Recursive)

A recursive CTE is one that refers back to itself inside itself. When work-
ing with hierarchical data, the recursive CTE is handy since it continues
to execute until the query returns the whole hierarchy. A table with a list
of employees is a good example of hierarchical data. The table includes
a link to the manager’s contact information for each employee. Within
the same table, such reference is an employee ID. A recursive CTE can be

Basics about SQL    ◾    51

used to show the hierarchy of employee data. A CTE might become stuck
in an infinite loop if it is built incorrectly. The MAXRECURSION hint
can be appended to the OPTION clause of the primary SELECT, INSERT,
UPDATE, DELETE, or MERGE statement to prevent this.

Types of Common Table Expressions

CTEs are divided into two categories: There are two types of recursive
functions: recursive and non-recursive.

•	 Non-Recursive CTEs
Non-Recursive CTEs are simple CTEs that do not employ

recursion or repeat processing in a subroutine. We’ll make a sim-
ple non-recursive CTE to show the number of rows from 1 to 10.
Each and every CTE query will begin with a “With,“ followed by
the CTE Expression name and column list, according to the CTE
Syntax.

Example: Create a table

CREATE TABLE Empl_Info
(
 Emp_ID int NOT NULL PRIMARY KEY,
 F_Name varchar(50) NOT NULL,
 L_Name varchar(50) NOT NULL,
 M_ID int NULL
)
INSERT INTO Employees VALUES (1, ‘Kalvin’, ‘Thom’, NULL)
INSERT INTO Employees VALUES (2, ‘Troy’, ‘Bolton’, 1)
INSERT INTO Employees VALUES (3, ‘Rob’, ‘Durello’, 1)
INSERT INTO Employees VALUES (4, ‘Robby’, ‘Bailey’, 2)
INSERT INTO Employees VALUES (5, ‘Ken’, ‘Erickson’, 2)
INSERT INTO Employees VALUES (6, ‘Bill’, ‘Goldberg’, 3)
INSERT INTO Employees VALUES (7, ‘Robert’, ‘Miller’, 3)
INSERT INTO Employees VALUES (8, ‘Duke’, ‘Mark’, 5)
INSERT INTO Employees VALUES (9, ‘Chugs’, ‘Matthew’, 6)
INSERT INTO Employees VALUES (10, ‘Morson’, ‘Jhonson’, 6)

After the Empl_Info is created, following SELECT statement, which
is preceded by a WITH clause that includes a CTE named cte Reports
is created:

52    ◾    Mastering SQL

WITH
 cteReports (Emp_ID, F_Name, L_Name, M_ID, EmpLevel)
 AS
 (
 SELECT Emp_ID, F_Name, L_Name, M_ID, 1
 FROM Empl_Info
 WHERE M_ID IS NULL
 UNION ALL
 SELECT e.Emp_ID, e.F_Name, e.L_Name, e.M_ID,
 r.EmpLevel + 1
 FROM Empl_Info e
 INNER JOIN cteReports r
 ON e.M_ID = r.Emp_ID
)
SELECT
 F_Name + ‘ ‘ + L_Name AS Full Name,
 EmpLevel,
 (SELECT F_Name + ‘ ‘ + L_Name FROM Empl_Info
 WHERE Emp_ID = cteReports.M_ID) AS Manager
FROM cteReports
ORDER BY EmpLevel, M_ID

When you need to build temporary result sets that can be retrieved in a
SELECT, INSERT, UPDATE, DELETE, or MERGE statement, CTEs can
be a handy tool.

TRIGGERS IN SQL
A trigger is a database stored procedure that is automatically invoked
whenever a specific event happens in the database. A trigger can be trig-
gered when a row is entered into a table or when particular table columns
are modified, for example.

create trigger [trig_name]
[before | after]
{insert | update | delete}
on [table_name]
[for each row]
[trigger_body]

Basics about SQL    ◾    53

Syntax Explanation:

•	 Make a Trigger [Trigger Name]: The trigger name creates or replaces
an existing trigger.

•	 [Before | After]: This determines the order in which the trigger will
be run.

•	 This Indicates the DML Operation: insert | update | delete.

•	 On [Table Name]: This indicates the name of the table that the trig-
ger is linked with.

•	 [For Each Row]: This is a row-level trigger, which means it will be
executed for each row that is affected.

•	 [Trigger Body]: This specifies the action to be taken when the trigger
is triggered.

Before and After Triggers

BEFORE triggers execute the trigger action prior to the execution of the
triggering statement. AFTER triggers execute the trigger action following
the execution of the triggering statement.

As an example, consider a Student Report Database in which student
grades are kept. Create a trigger in such a scheme to automatically insert
the total and average of specified marks whenever a record is inserted.
BEFORE Tag can be used here since the trigger will fire before the record
is inserted.

Assume you have a Database schema –

mysql> desc Student;

Field Type Null Key Default Extra

tid int(4) NO PRI NULL auto _increment
name varchar(30) YES NULL
subj1 int(2) YES NULL
Subj2 int(2) YES NULL
Subj3 int(2) YES NULL
Total int(3) YES NULL
Per int(3) YES NULL

54    ◾    Mastering SQL

To the problem statement, add a SQL trigger

create trigger stud_marks
before INSERT
on
Student
for each row
set Student.total = Student.subj1 + Student.subj2 +
Student.subj3, Student.per = Student.total * 60 / 100;

The above SQL line will build a trigger in the student database so that any-
time subjects marks are entered, the trigger will compute those two values
and insert them with the entered values before entering the data into the
database. i.e.

mysql> insert into Student values(0, “ABCDE”, 20, 20,
20, 0, 0);

Query OK, 1 row affected (0.09 sec)

mysql> select * from Student;

Triggers can be created and executed in databases in this manner.

BOOK MANAGEMENT DATABASE IN SQL TRIGGER
Given a Library Book Management database schema and a Student data-
base structure, for example. A student who takes out a book from the
library, the count of that specific book should be decremented in these
databases. In order to do so,

Assume the schema has some data:

mysql> select * from book_det;

Tid Name Subj1 Subj2 Subj3 Total Per

100 ABCDE 20 20 20 60 36

Bid Battle Copies

1 MySql 10
2 C++ 5
3 Java 15
4 Oracle DBMS 10

Basics about SQL    ◾    55

mysql> select * from book_issue;

To create such a mechanism, a trigger should automatically invoke and
decrease the copies attribute by 1 if the system enters data into the book
issue database, allowing for accurate book tracking.

The system’s trigger:

create trigger book_copies_deducts
after INSERT
on book_issue
for each row
update book_det set copies = copies -1 where bid =
new.bid;

When an insertion operation is conducted in a book issue database, the
above trigger is triggered, and the book det schema setting copies decre-
ments by 1 of the current book id (bid).

Results –

mysql> insert into book_issue values(1, 100, “Java”);

Query OK, 1 row affected (0.09 sec).

mysql> select * from book_det;

mysql> select * from book_issue;

As shown in the findings above, as soon as data is inserted, copies of the
book are deducted from the system’s book schema.

Bid sid title

Bid Battle Copies

1 MySql 10
2 C++ 5
3 Java 15
4 Oracle DBMS 10

Bid Sid Title

1 100 MySql

56    ◾    Mastering SQL

INTRODUCTION TO NoSQL (NON-RELATIONAL SQL)
A NoSQL database, which stands for ‘non-SQL’ or ‘non-relational’, is a
database that allows for data storage and retrieval. Other than the tabular
relations utilised in relational databases, this data is modelled in a dif-
ferent way. Although these databases first debuted in the late 1960s, the
term ‘NoSQL’ wasn’t coined for them until the early 2000s. Large-scale
data analytics and real-time internet applications increasingly use NoSQL
databases. The phrase ‘not only SQL’ is used to highlight the possibility of
SQL-like query languages being supported by NoSQL systems. An advan-
tage of a NoSQL database is its ease of design, horizontal scaling to server
clusters, and tighter control over availability. NoSQL databases employ
different default data structures than relational databases, which enables
NoSQL to carry out some operations more quickly. The problem that a
NoSQL database is meant to solve determines how applicable it is. There
is a misconception that NoSQL databases’ data structures are more adapt-
able than relational databases’ tables.

Many NoSQL databases make trade-offs between consistency and
availability, performance, and partition tolerance. The usage of low-level
query languages, a lack of standardised interfaces, and large prior invest-
ments in relational databases are all barriers to wider adoption of NoSQL
storage. Although most NoSQL databases lack true ACID transactions
(atomicity, consistency, isolation, and durability), a few databases, includ-
ing MarkLogic, Aerospike, FairCom c-treeACE, Google Spanner (though
technically a NewSQL database), Symas LMDB, and OrientDB, have
incorporated them into the core of their designs.

The majority of NoSQL databases allow for eventual consistency, which
allows for the gradual propagation of database modifications across all
nodes. Stale readings, a problem caused by reading outdated data, might
occur as a result of data searches that don’t immediately return new results.
Additionally, lost writes and other types of data loss may occur in some
NoSQL systems. Some NoSQL systems provide solutions like write-ahead
logging to prevent data loss. When doing distributed transaction process-
ing over numerous databases, achieving data consistency is much more
challenging. Both NoSQL and relational databases struggle with this. Even
today’s relational databases don’t allow cross-database referential integ-
rity constraints. Few systems support both the X/Open XA standards and
ACID transactions for distributed transactions processing.

Basics about SQL    ◾    57

A BRIEF HISTORY OF NoSQL DATABASES

•	 1998: Carlo Strozzi used the name ‘NoSQL’ to describe his light-
weight, open-source relational database Neo4j is released in 2000.

•	 Google BigTable was launched in 2004.

•	 CouchDB was launched in 2005.

•	 The research paper on Amazon Dynamo is published in 2007.

•	 Facebook releases the Cassandra project to the public in 2008.

•	 The phrase NoSQL was resurrected in 2009.

Types of NoSQL Databases

NoSQL databases come in four different varieties: key-value pair, column-
oriented, graph-based, and document-oriented. Each group has its own set
of characteristics and limits. None of the databases listed above is better
at solving all of the difficulties. Users should choose a database that meets
their product requirements.

NoSQL databases are available in a range of forms and dimensions.

•	 Key-value

•	 Column-oriented based on pairs

•	 Graphs-based

•	 Document-oriented Graphs

KEY-VALUE
They are used to store data, and they are made to withstand tremendous
loads and big amounts of data. Key-value pair storage databases employ
hash tables to store data; each key must be unique, and the value may be in
text, JSON, BLOBs (Binary Large Objects), or another format.

COLUMN-BASED
These are based on Google’s BigTable paper and function with columns.
Each column is dealt with independently. The values of single-column
databases are kept together.

58    ◾    Mastering SQL

DOCUMENT-ORIENTED
The value part of a NoSQL DB’s data is kept as a document, while the key-
value pair is stored as a key-value pair. JSON or XML formats are used to
store the document. The database recognises the value and can be queried.
CMS systems, blogging platforms, real-time analytics, and e-commerce
apps all use this document type. It should not be used for complex trans-
actions involving several operations or queries against different aggregate
models.

Popular Document DBMS systems include Amazon SimpleDB,
CouchDB, MongoDB, Riak, Lotus Notes, and MongoDB.

GRAPH-BASED
This maintains both entities and the relationships between them. The
entity is represented as a node, while the relationships are represented as
edges. An edge establishes a connection between nodes. A unique iden-
tifier is assigned to each node and edge. It is multi-relational in nature,
as opposed to a relational database, which has loosely connected tables.
Traversing relationships is quick because they are already stored in the
database and don’t need to be calculated. Graph databases are commonly
used for social networks, logistics, and geographic data.

Popular graph-based databases include Neo4J, Infinite Graph,
OrientDB, and FlockDB.

FEATURES OF NoSQL
The following are the feature:

Non-Relational Database Management System (NoSQL) Features

•	 The relational model is never followed by NoSQL databases.

•	 Tables with flat fixed-column records should never be used.

•	 Work with BLOBs or self-contained aggregates.

•	 Data normalisation and object-relational mapping are not required.

•	 There are no advanced features such as query languages, query plan-
ners, referential integrity joins, or ACID compliance.

Basics about SQL    ◾    59

Schema-Free

•	 NoSQL databases are either schema-free or contain schemas that are
more loose.

•	 There is no requirement for any kind of data schema specification.

•	 Provides data structures that are heterogeneous within the same
domain.

API That Is Easy to Use

•	 Provides APIs that provide low-level data manipulation and selec-
tion methods, as well as easy-to-use interfaces for storing and access-
ing data.

•	 Protocols based on text; typically used in conjunction with HTTP
REST and JSON.

•	 Web-enabled databases that run as internet-facing services mostly
employ the NoSQL query language, which is not based on any
standard.

Distributed

•	 A distributed execution of many NoSQL databases is possible.

•	 Auto-scaling and fail-over capabilities are included.

•	 The ACID principle is frequently overlooked in favour of scalability
and throughput.

•	 Asynchronous replication across remote nodes is almost non-exis-
tent. HDFS Replication, Asynchronous Multi-Master Replication,
Peer-to-Peer.

•	 Only ensuring long-term consistency.

•	 Nothing is shared in the architecture. As a result, there is less coordi-
nation and more dispersal.

60    ◾    Mastering SQL

NoSQL Query Mechanism Tools

The most common method of data retrieval is the REST-based GET
resource, which retrieves a value based on its key or ID. Because they grasp
the value in a key-value combination, document store databases allow for
more challenging searches. With MapReduce, CouchDB, for example,
allows you to define views.

WHAT IS THE CAP THEOREM, AND HOW DOES IT WORK?
Brewer’s theorem is another name for the CAP theorem. It claims that a dis-
tributed data store cannot provide more than two out of three guarantees.

•	 Consistency

•	 Availability

•	 Tolerance for Partitions

Consistency

Even after an operation has been completed, the data should stay consis-
tent. This indicates that once data is written, it should be included in any
subsequent read requests. After altering the order status, for example, all
clients should be able to see the same information.

Availability

The database should be accessible and responsive at all times. There should
be no downtime.

Tolerance for Partitions

Partition Tolerance means that the system should keep working even if
the connection between the servers isn’t always reliable. The servers, for
example, can be divided into several groups that may or may not commu-
nicate with one another. If one portion of the database is down, the other
sections are always up and running.

CONSISTENCY IN THE LONG RUN
To achieve high availability and scalability, ‘eventual consistency’ refers
to having copies of data on several machines. Any modifications made
to a data item on one system must be duplicated on all other replicas as a
result. Data replication may not be instantaneous since some copies will
be updated right once while others will take longer. These copies may be

Basics about SQL    ◾    61

inconsistent at first, but with time, they become consistent. As a result, the
term ‘ultimate consistency’ was coined.

BASE stands for Basic Availability, Soft State, and Eventual Consistency.
According to the CAP theorem, availability indicates that the database

is available at all times.
The term ‘soft state’ refers to a system’s ability to alter even when no

input is provided.
The term ‘eventual consistency’ refers to the system’s ability to become

consistent over time.

WHEN SHOULD YOU UTILISE NoSQL?

•	 When you need to store and retrieve a large volume of data.

•	 The relationship between the data you keep isn’t as significant as you
might think.

•	 The information is fragmented and dynamic.

•	 At the database level, support for constraints and joins is not necessary.

•	 The data is always growing, and you’ll need to scale the database on
a regular basis to keep up with it.

ADVANTAGES
Working with NoSQL databases such as MongoDB and Cassandra has
numerous advantages like high scalability and availability:

•	 High Scalability: NoSQL databases use sharding to provide hori-
zontal scale. Data division and distribution across several machines
while preserving the data’s order is known as sharding. In order to
manage the data, new machines must be added horizontally, and
existing machines must have more resources added vertically. While
horizontal scaling is simple to perform, vertical scaling is more
challenging. Examples of databases with horizontal scaling include
MongoDB, Cassandra, and others. NoSQL can handle a lot of data
since it is scalable. As the data expands, NoSQL scales to handle
effectively and efficiently.

•	 High Availability: The auto-replication functionality in NoSQL
databases makes them highly available because data replicates itself
to a previous consistent state in the event of a failure.

62    ◾    Mastering SQL

DISADVANTAGES
NoSQL has the following drawbacks:

•	 Narrow Focus: NoSQL databases have a very restricted focus because
they are primarily built for storage and provide very little function-
ality. In the topic of Transaction Management, relational databases
outperform NoSQL databases.

•	 Open Source: NoSQL is a database that is free to use. There is cur-
rently no reliable NoSQL standard. Thus, there is a considerable like-
lihood that two database systems will differ from one another.

•	 Management Challenge: The goal of big data tools is to make man-
aging vast amounts of data as simple as feasible. But it isn’t that sim-
ple. Data administration in a NoSQL is far more complicated than it
is in a relational database. It is known for being difficult to set up and
far more difficult to administer on a daily basis.

•	 GUI Mode Not Available: GUI mode tools to access the database are
not flexible in the market.

•	 Backup: For some NoSQL databases, such as MongoDB, backup is a
major flaw. MongoDB does not include a method for backing up data
in a consistent manner.

•	 Large Document Size: Data is stored in JSON format in some data-
base systems, such as MongoDB and CouchDB. This means that
documents are quite huge (due to BigData, network bandwidth, and
speed), and having detailed key names actually harms the document
size by increasing it.

SUMMARY
In this chapter, we have covered all the fundamentals of SQL, including
commands, statements, data types, views, comments that create roles,
indexes, query processing, CTE, database management, and a quick intro-
duction to NoSQL.

NOTE
	 1	 Codd, E.F., 1983. A relational model of data for shared data banks.

Communications of the ACM, 26(1), pp. 64–69.

63

C h a p t e r 2

Clauses/Operators

IN THIS CHAPTER

ØØ Basics clauses/operators of SQL

ØØ Features of various clauses/operators in SQL

ØØ Syntax and examples

An operator is a reserved word or character that is used in the WHERE
clause of a SQL statement to conduct operations like comparisons and
arithmetic computations. These operators are used to express conditions
in SQL statements and to act as conjunctions for numerous conditions in
a single query.

•	 Operators in arithmetic

•	 Operators for comparison

•	 Operators logical

•	 Negative operators were employed to negate conditions

WITH CLAUSE IN SQL
Oracle introduced the WITH clause in the Oracle 9i release two data-
bases. The SQL WITH clause enables you to give a sub query block a name

DOI: 10.1201/9781003358435-2	

https://doi.org/10.1201/9781003358435-2

64    ◾    Mastering SQL

(a process known as subquery refactoring) that can be referred from vari-
ous locations within the SQL query.

•	 The clause is used to define a temp relation so that the output of this
temporary relation is available and can be used by the query con-
nected with it.

•	 Queries with a linked WITH clause can be created with nested sub-
queries, which improves the readability and debug ability of the SQL
query.

•	 All database systems don’t support the WITH clause.

•	 The name given to the sub query is treated as if it were a table or
inline view.

•	 Oracle introduced the WITH clause in the Oracle release 2 database.

Syntax:
WITH temporaryTable (averageValue) as
 (SELECT avg(Attr1)
 FROM Table)
 SELECT Attr1
 FROM Table, temporary Table
 WHERE Table.Attr1 > temporary Table.average value;

The WITH clause is used to create a temp table with only one attribute,
average Value. The average value of column Attr_1 in relation Table
is stored in average Value. Following the WITH clause, the SELECT
statement will return those tuples in which the value of Attr1 in rela-
tion Table is greater than the avg value acquired from the that clause
statement.

When a query with a WITH clause is run, the clause query is evalu-
ated first, and the result of that evaluation is saved in a temporary rela-
tion. The primary query linked with the WITH clause is then eventually
executed, that uses the temporary relation created.

Queries:
Example 1: Here, we identify all employees whose salaries are higher than
the average of all employees.

Clauses/Operators    ◾    65

Relationship name: Employee

Query in SQL:
WITH temporary Table(averageValue) as
 (SELECT avg(Salary)
 from Employee)
 SELECT EmployeeID,Name, Salary
 FROM Employee, temporaryTable
 �WHERE Employee.Salary > temporaryTable.

averageValue;

Explanation: The avg salary of all employees is 74,258. As a result, all
employees whose salaries are higher than the average are included in the
output relationship.

Output:
Example 2: Locate those airlines in which the whole salary of all pilots in
that airline exceeds the database’s average total salary of all pilots. Pilot is
the name of the relationship.

E_ID Name Salary

11 Steve 45,000
22 Johnny 95,000
27 Simon 78,550
45 Waltz 60,000
85 Sheldon 68,000
97 Katherine 99,000

E_ID Name Salary
22 Johnny 95,000
27 Simon 78,550
97 Katherine 99,000

E_ID Airline Name Salary (Rupees)

40007 Air India Kumar 80,000
40002 Jet Airways Lawrence 50,000
20027 Air India Watson 40,050
60778 Indigo Crick 80,780
85585 Jet Airways Steve 25,000
94070 Air India Kim 78,000

66    ◾    Mastering SQL

Explanation: The overall income of all Air India pilots is 66,016.6, while
the total salary of all Jet Airways pilots is 37,500. In the table Pilot, the
average income of all pilots is 58,971.6. Because only the total income of all
Air India pilots is more than the average salary, Air India is in the output
relationship.

Output:

When dealing with sophisticated SQL statements rather than basic ones,
the SQL WITH clause comes in handy. It also allows you to split down
large SQL queries into smaller chunks, making debugging and processing
the queries much easier. The WITH clause in SQL is essentially a drop-in
replacement for the subquery.

WITH TIES CLAUSE IN SQL
WITH TIES enables you to return more rows with values matching the
last row in the limited result set. It is important to note that WITH TIES
may result in more rows being returned than you specified in the expres-
sion. The clause WITH TIES can only be used in conjunction with TOP
and ORDER BY; both clauses are necessary.

The SQL Server SELECT TOP command retrieves records from one
or more SQL Server tables while limiting the number of entries returned
based on a specified value or percentage.

Syntax:

SELECT TOP (top_value) [PERCENT] [WITH TIES]
expressions
FROM tables
[WHERE conditions]
[ORDER BY expression [ASC | DESC]];

ARITHMETIC OPERATORS IN SQL
The arithmetic operators in SQL are used to perform mathematical opera-
tions on data stored in database tables, such as addition, subtraction,
multiplication, division, and modulus, among others. These arithmetic

Airline

Air India

Clauses/Operators    ◾    67

operators can be used with a WHERE clause in a SQL statement if there
are multiple conditions in the query that need to be satisfied, but if there is
any Null value present in the table, performing arithmetic operations on
the Null value will result in an error.

The Top five Arithmetic Operators in SQL are:
Addition (+), subtraction (−), multiplication (*), division (/), and

modulus (percent) are the various arithmetic operators in SQL that are
used to conduct mathematical operations on data stored in database tables.
Let’s look at the examples below to see how the various arithmetic opera-
tors in SQL function.

Addition Operator (+)

The addition of something is denoted by the plus sign (+). This operator ‘+’
is used to add two digits together. We can see how the addition operator is
used to add 110 and 320 in the example below.

SELECT 110 + 320 as Addition;

Output:

Example: To illustrate how the operators function, consider the table
‘EMPLOYEES’ shown below:

The table lists numerous employees and their contact information. Let’s
combine the two columns together in the SALARY column. The SALARY
column is increased by 10,000 in the query below.

SELECT SALARY+10000 as new_salary FROM EMPLOYEES;

Addition

430

ID Name Age Salary

100 SARESH 27 30,000
150 SUNIL 21 45,000
185 RISHABH 22 50,000
200 SHASHANK 25 35,000

68    ◾    Mastering SQL

Output:

Let’s add two columns together using the addition operator, as indicated
in the query below.

SELECT SALARY+ID as add_salary FROM EMPLOYEES;

The above query has following results, along with the salary and ID
columns.

Output:

Subtraction Operator (–)
Using the subtraction operator ‘–,’ the right-hand operand is subtracted
from the left-hand operand. Let us see at the example below to see how to
subtract 100 from 360.

SELECT 360-100 as Subtract;

Subtract
260
Take, for example, the table ‘EMPLOYEES’ that was previously men-

tioned. We can see that 500 is deducted from the SALARY column in the
query below.

SELECT SALARY-500 as S_Sal FROM EMPLOYEES;

N_Salary

40,000
55,000
60,000
45,000

Add_Salary

40,100
55,150
60,185
452,000

Clauses/Operators    ◾    69

Output:

The subtraction of two columns, i.e., in the query below, is performed.
The following information is displayed: SALARY and ID.

SELECT SALARY-ID as N_Sal FROM EMPLOYEES;

The ID column is deducted from the SALARY columns in the above query,
and the result is as follows:

Operator for Multiplication (*)
The multiplication of two operands is performed by this operator.
The multiplication of 10 and 80 can be seen in the example below.

SELECT 10*80 as Multiplication;

Output:
Multiplication

800
Using the EMPLOYEES table as a starting point, multiply the column

SALARY by 15 as indicated below:

SELECT SALARY*10 as Multi_Salary FROM EMPLOYEES;

The above query has following results, and we can see that the SALARY
column is multiplied by 10.

S_Sal

29,500
44,500
49,500
34,500

N_Sal

29,400
44,350
49,315
34,300

70    ◾    Mastering SQL

The following query shows the multiplication of two columns from the
table EMPLOYEES, namely, SALARY and ID.

SELECT SALARY*ID as A_Salary FROM EMPLOYEES;

Output:

Division Operator (/)

The left-hand side operand is divided by the right-hand side operand with
this operator. The division process is performed in the example below,
where 20 is divided by 5.

SELECT 20/5 as Division;

The output of the aforementioned operation is the quotient of the division,
which is four in this case.

Output:
Division

4
Consider the table ‘EMPLOYEES’, which we previously discussed. The

query below shows how the column SALARY is divided by 5 in the divi-
sion operation.

SELECT SALARY/5 as Sal_Div FROM EMPLOYEES;

A_Salary

300,000
6,750,000
9,250,000
7,000,000

Multi_Salary

300,000
450,000
500,000
350,000

Clauses/Operators    ◾    71

Modulus Operator(%)
The residual of the division of the left-hand side operand by the right-hand
side operand is obtained using this arithmetic operator.

SELECT 12%4 as result;

The preceding question indicates that when 12 is divided by 4, the remain-
der of the division, 0 is returned as the output, as shown in the result.

Result:
0

The SALARY column of the EMPLOYEES table below is used to per-
form the modulus operation.

SELECT SALARY%100 as result FROM EMPLOYEES;

The above query conducts the modulus operation, and when the employ-
ees’ salaries are divided by 100, the result shows the division’s remaining
values, is mentioned as output.

If we execute any arithmetic operation on NULL, the result will always
be null. The SQL arithmetic operators are essential for executing complex
mathematical calculations on data in database tables. It is critical for devel-
opers to have a strong grasp of these operators.

Salary

300
450
500
350

Sal_Div

6,000
9,000
10,000
7,000

72    ◾    Mastering SQL

WILDCARD IN SQL: AN OVERVIEW
In SQL, a wildcard character replaces zero to any number of characters in a
string. These wildcard characters are usually found in conjunction with the
SQL operator LIKE. This is a character search operator that is widely used in
SQL’s WHERE clause to find a specific set of characters. Regular Expressions
and Wildcards both have the same aim. This character that can be substi-
tuted for any other character or characters in a string. These wildcards come
in handy when we need to conduct a rapid search in the database.

In SQL, there are two frequent wildcard characters. The % sign can be
used to represent zero, one, or any number of characters. The underscore
symbol designates a single character, which can be either a letter or a num-
ber. There are numerous ways to arrange these symbols.

We’ll take a closer look at these wildcard characters, as well as a few
additional essential wildcard characters.

To match zero or more characters, Microsoft Access utilises the character
asterisk symbol (*) instead of the percent symbol (percent) wildcard char-
acter, and it uses the character question mark (?) instead of the underscore
wildcard character to indicate a single character.

SQL Wildcards Syntax

Let’s see how the wildcard characters ‘percent’ and ‘_’ might be written in
several ways:

SELECT FROM table_name
WHERE column LIKE ‘BB%’

BB% allows us to search for strings that start with BB and end with another
single character or multiple characters.

Wildcard Description Example

% (Percent sign) Zero or more character bl% finds bl, black, blue, and blob
_ (Underscore) Only one character p, t discover pot, pit, and put, is

matched.
[] (Square

brackets)
matches a single character
supplied within the brackets

The wildcard p[oi]t find pot and
pit, but not put,

^ (Caret) This wildcard matches characters
that appear outside brackets

p[oi]t finds put but not pot and pit

Clauses/Operators    ◾    73

 Or

SELECT FROM table_name
WHERE column LIKE ‘%BB%’

We can use %BB% percent to find strings that start with any number of
characters but contain the string BB in the middle and end with any num-
ber of characters between 0 and infinity.

 Or

SELECT FROM table_name
WHERE column LIKE ‘_BB’

_BB allows us to search for strings that start with a single distinct charac-
ter and end with the character BB.

 Or

SELECT FROM table_name
WHERE column LIKE ‘BB_’

We can use BB_ to find any strings that start with the BB pattern and ter-
minate with a single different character.

 Or

SELECT FROM table_name
WHERE column LIKE ‘_ BB _’

BB allows us to search for strings that start with a unique charac-
ter, contain the pattern BB in the middle, and end with a single unique
character.

Regular Expressions and wildcard characters both perform the same
thing. To improve search outcomes and results, we can mix numerous
wildcards in a single string. A distinct SQL wildcard could be used for a
similar function in a few databases, such as MS Access.

EXCEPT AND INTERSECT OPERATORS
Let us learn about each operators individually as mentioned below.

Intersect Clause: It is used to convey the result of the intersection of
two select statements, as the name implies. This means that the result will
include all of the rows that are common to both SELECT commands.

74    ◾    Mastering SQL

Syntax:
SELECT column-1, column-2 ……
FROM table 1
WHERE…..
INTERSECT
SELECT column-1, column-2 ……
FROM table 2
WHERE…..

Consider the following scenario:
Employee Information (Table 1) Employee Information (Table 2)

Syntax:
SELECT ID, Name, Bonus
FROM
table1
LEFT JOIN
table2
ON table1.ID = table2.Employee_ID
INTERSECT
SELECT ID, Name, Bonus
FROM
table1
RIGHT JOIN
table2
ON table1.ID = table2.Employee_ID;

EXCEPT CLAUSE

ID Name City ID Bonas_ID Bonas(Dollar)

1 William Vegas 1 44 45,000
2 Kevin California 2 49 72,000
3 Nick Texas 3 51 30,000

ID Name Bonas(Dollar)

1 William 45,000
2 Kevin 72,000
3 Nick 30,000

Clauses/Operators    ◾    75

The inverse of the INTERSECT clause is the EXCEPT clause. In this case,
all rows outside of the shared rows between the two SELECT statements
are included in the result.

The syntax is as follows:

SELECT column-1, column-2 ……
FROM table 1
WHERE…..
EXCEPT
SELECT column-1, column-2 ……
FROM table 2
WHERE…..

Citing an example from the above example of Employee Information
(Table 1) and Employee Information (Table 2)

Query:
SELECT ID, Name, Bonus
FROM
table1
LEFT JOIN
table2
ON table1.ID = table2.Employee_ID
EXCEPT
SELECT ID, Name, Bonus
FROM
table1
RIGHT JOIN
table2
ON table1.ID = table2.Employee_ID;

USING CLAUSE

If numerous columns have the same names but different datatypes, the
NATURAL JOIN clause can be changed with the USING clause to desig-
nate which columns should be used for an EQUIJOIN. When more than
one column matches, the USING Clause is used to match only one of them.

3 Nick Null

76    ◾    Mastering SQL

•	 The terms NATURAL JOIN and USING CLAUSE are mutually
exclusive.

•	 There should be no qualifiers (table name or Alias) in the referred
columns.

•	 NATURAL JOIN joins tables by using all columns with matching
names and datatypes. The USING Clause allows you to define which
columns should be utilised for an EQUIJOIN.

Syntax:
SELECT <table_name>.<column_name> AS <column_name>
 FROM <table_name> JOIN <table_name> USING
(<column_name>)

As an illustration, consider the two tables that follow in this section.

Table: Owner

Query: To learn the names of the pet’s owners.

SELECT Owner.name AS owners, PETS.name AS pet, PETS.
Animal
FROM Owner JOIN PETS USING (ownerid);

Pet_ID Animal Name Owner ID

101 Dog Rika 123
202 Cat Charms 134
303 Mouse Mick 123
404 Parrot Howdy 156
505 Rabbit Smith 134
606 Hamster Muffin 156

Owner ID Nick

123 Tiru
134 Tarous
156 Surfit

Clauses/Operators    ◾    77

Output:

KNOWING HOW TO USE THE SQL MERGE STATEMENT
The SQL MERGE clause is a popular clause that allows you to manage inserts,
updates, and deletes all in one transaction without having to create separate
logic for each. You can specify, among other things, the circumstances in
which the MERGE statement should insert, update, or delete data. You have
additional possibilities for changing your intricate SQL scripts while also
increasing readability when you use the MERGE SQL function. The MERGE
command updates an existing table based on the results of a key field com-
parison with another table in the context (Figure 2.1).

The accompanying diagram demonstrates the basic operation of a SQL
MERGE command. As you can see, two circles – referred to as a Source
and a Target, respectively – represent two tables. The MERGE command
compares the source and destination tables based on a key field and then
does some processing. The MERGE statement combines the INSERT,
UPDATE, and DELETE actions into a single statement. Although the
MERGE statement is more complicated than basic INSERTs or UPDATEs,
if you understand the fundamental principle, you’ll be able to utilise it
more frequently than individual INSERTs or UPDATEs.

Owners Pet Animal

Tiru Rocky Dog
Tarous Charles Cat
Tiru Mickey Mouse
Surfit Honey Parrot
Tarous Smudge Rabbit
Surfit Fluffy Hamster

FIGURE 2.1  Illustration of merge statement.

78    ◾    Mastering SQL

SQL MERGE COMMAND AND ITS APPLICATIONS
Maintaining a history of data in the warehouse with a reference to the source
data given to the ETL tool is frequently necessary in a standard SQL Data
warehouse system. This is a typical use case when trying to handle Slowly
Changing Dimensions (SCD) in the data warehouse. In such cases, updat-
ing the values of records in the warehouse whose values have changed in the
source and deleting or flagging records that are no longer in the data source
are required. With the addition of the SQL MERGE command in SQL Server
2008, database programmers may now more easily implement the logic nec-
essary to conduct SCD in ETL while also streamlining their cumbersome
code surrounding the INSERT, UPDATE, and DELETE commands.

IMPROVING THE SQL MERGE STATEMENT’S PERFORMANCE
By concentrating on a few criteria, you may be able to enhance the
efficiency of your MERGE statements. You can now create a single
statement that contains all of your DML statements as a consequence
(INSERT, UPDATE, and DELETE). From the perspective of data pro-
cessing, this is highly beneficial because it reduces the number of disc
I/O operations for each of the three assertions and now only reads data
once from the source.

The indexes that are utilised to match both the source and target tables
have a significant impact on how quickly the MERGE command executes.
Optimising join conditions is essential in addition to using indexes.
Additionally, we ought to consider filtering the source table so that the
statement only retrieves the records necessary for the actions.

MERGE STATEMENT IN SQL EXPLAINED
As mentioned in the last essay, the MERGE statement in SQL is a mix of
three INSERT, DELETE, and UPDATE commands. So, if a Source table
and a Target table need to be merged, the MERGE statement can do all
three actions (INSERT, UPDATE, and DELETE) at the same time.

The use of the MERGE Statement will be demonstrated with a simple
example.

Let’s pretend there are two tables:
PRODUCT LIST is a table that includes current information on avail-

able items, with fields Prd_ ID, Prd _NAME, and Prd_ PRICE relating to
each product’s ID, name, and price.

Clauses/Operators    ◾    79

UPDATED LIST is a table that holds updated information about the
products, with fields Upd_ ID, Upd_ NAME, and Upd_ PRICE relating to
the product’s ID, name, and price.

Product List:

Updated List:

The goal is to update the PRODUCT LIST’s product data to match the
UPDATED LIST.

Solution
Let’s break down this example into steps to make it easier to understand.

Step 1: Recognise the TARGET and SOURCE tables.
Because the PRODUCT LIST is the TARGET table and

the UPDATED LIST is the SOURCE table in this example,
the PRODUCT LIST will serve as the TARGET table and the
UPDATED LIST will act as the SOURCE table.

Step 2: Recognise the tasks that must be completed.
As can be observed, there are three mismatches between the

TARGET and SOURCE tables, which are as follows:

ØØ The price of COFFEE in TARGET is 15.00, but it is 25.00 in SOURCE.

 PRODUCT_LIST
12 Bakery 30.00

 UPDATED_LIST
12 Bakery 39.00

Prd_ID Prd_Name Prd_Price

10 Sauces 22.00
12 Bakery 30.00
14 Tea 45.00

Prd_ID Prd_Name Prd_Price

10 Sauces 25.00
12 Bakery 39.00
17 Juices 75.00

80    ◾    Mastering SQL

ØØ SOURCE does not have a tea product, but TARGET does.

PRODUCT_LIST
14 tea 45.00

ØØ TARGET does not have a Juices product, but SOURCE does.

UPDATED_LIST
17 Juices 75.00

As a result of the foregoing inconsistencies, three operations
must be performed in the TARGET. They are as follows:

	 1.	UPDATE operation

	 10 SAUCE 25.00

	 2.	Operation DELETE

	 14 TEA 45.00

	 3.	 the INSERT command

	 104 JUICES 75.00

Step 3: Compose a SQL query.

/* Selecting the Target and the Source */
MERGE PRODUCT_LIST AS TARGET
	 USING UPDATE_LIST AS SOURCE
	 /* 1. Performing the UPDATE operation */
	 /* If the Prd_ID is same,
	 check for change in Prd_NAME or Prd_PRICE */
	 ON (TARGET. Prd_ID = SOURCE.Prd_ID)
	 WHEN MATCHED
		 AND TARGET. Prd_NAME <> SOURCE.Prd_NAME
		 OR TARGET. Prd_PRICE <> SOURCE.Prd_PRICE
	 /* Update the records in TARGET */
	 THEN UPDATE
		 SET TARGET. Prd_NAME = SOURCE.Prd_NAME,
		 TARGET. Prd_PRICE = SOURCE.Prd_PRICE
	 /* 2. executing the INSERT */
	 /* Insert the records into the target table

Clauses/Operators    ◾    81

 when there are no records that match the TARGET
table. */
	 WHEN NOT MATCHED BY TARGET
	 THEN INSERT (Prd_ID, Prd_NAME, Prd_PRICE)		
		 VALUES (SOURCE.Prd_ID, SOURCE.Prd_NAME,
SOURCE.Prd_PRICE)
	 /* 3. Executing the DELETE */
	 /* eliminate the records
from the target table when no records match the SOURCE
table. */
	 WHEN NOT MATCHED BY SOURCE
	 THEN DELETE
/* END OF MERGE */

Output: PRODUCT_LIST

So, with the help of the MERGE statement, we can conduct all three pri-
mary statements in SQL at the same time.

DDL, DML, DCL AND TCL COMMANDS
Structured Query Language (SQL), as we all know, is a database language
that allows us to execute specific operations on existing databases as well
as construct new databases. SQL performs the essential activities by using
commands such as Create, Drop, and Insert.

These SQL commands are divided into four types, namely, Data
Modification Language (DML), Data Definition Language (DDL), Data
Control Language (DCL), and Transaction Control Language (TCL).
Details about individual commands are already being described in
Chapter 1.

Create Domain in SQL

This statement can be used to create and define domains. CREATE
DOMAIN is a command that creates a new domain. A domain is just a
data type with constraints that can be applied (restrictions on the allowed

Prd_ID Prd_Name Prd_Price

10 Sauces 25.00
12 Bakery 39.00
17 Juices 75.00

82    ◾    Mastering SQL

set of values). The user who creates a domain becomes the owner of that
domain. The domain is formed in the supplied schema if a schema name is
specified (for example, CREATE DOMAIN myschema.mydomain...).

If not, it will be created in the current schema. The domain name must
be distinct from the other kinds and domains in the schema. Domains are
useful for storing and maintaining common field constraints in a single
location. For example, numerous tables may contain email address col-
umns, all of which require the same CHECK constraint to ensure that
the address syntax is correct. Rather of setting up each table’s constraint
individually, define a domain.

Parameters: There are various parameters in create domain:

üü Name

The domain’s name that will be created (optionally schema-qualified).

üü Data type

The domain’s underlying data type. Array specifiers are an example of this.

üü Collation

A collation for the domain that is optional. If no collation is supplied, the
default collation of the underlying data type is utilised. If COLLATE is
given, the underlying type must be collatable.

üü EXPRESSION BY Default

The default value is provided via the DEFAULT clause for columns with
the domain data type. Any variable-free expression can be used as the
value (but subqueries are not allowed). The default expression’s data type
must match the domain’s data type. If no default value is supplied, the null
value is used as the default.

Any insert operation that does not specify a value for the column will
use the default expression. Any default connected with the domain is
overridden if a default value is provided for a specific column. As a result,
any default value associated with the underlying data type is overridden
by the domain default.

üü NOT NULL

Clauses/Operators    ◾    83

This domain’s values aren’t allowed to be null.

üü NULL

This domain’s values are allowed to be null. This is the default behaviour.
This clause is only for compatibility with SQL databases that aren’t stan-
dard. Its use in new applications is discouraged.

üü CHECK (expression)

The CHECK clauses define the integrity restrictions or tests that the domain’s
data must pass. Each constraint must be a Boolean result-producing expres-
sion. The key term VALUE should be used to refer to the value being exam-
ined. TRUE or UNKNOWN evaluating expressions succeed. If the result of
the expression is FALSE, an error is reported, and the value cannot be changed
to the domain type. CHECK expressions can’t have subqueries or refer to
variables other than VALUE right now. When there are several CHECK con-
straints in a domain, they are tested in alphabetical order by name.

Create a New Domain

In order to create a new domain, follow the steps below (SQL)

•	 Make a connection to a database.

•	 Use the CREATE DOMAIN statement to create a new domain.

Simple domains (example 1)
Some of the database’s columns will be used to store people’s names,

while others will be used to hold addresses. The type following domains
can then be defined.

CREATE DOMAIN persons_Name CHAR (30)
CREATE DOMAIN street_Address CHAR (35)

After you’ve specified these domains, you may use them in the same way
that you’d use the built-in data types. These definitions, for example, can
be used to create the following tables.

CREATE TABLE customer (
 id INT DEFAULT AUTOINCREMENT PRIMARY KEY
 name persons_name
 address street_address
)

84    ◾    Mastering SQL

Example 2: Default values, check restrictions, and identifiers.
The table’s primary key is declared to be of type integer in the exam-

ple above. Many of your tables may require identifiers that are identical.
Creating an identifier domain for usage in these applications is signifi-
cantly more convenient than saying that they are integers.

You can define a default value and a check constraint when creating a
domain to ensure that no improper values are typed into any column of
this kind.

Table identifiers are frequently made up of integer values. Positive num-
bers are a solid choice for unique IDs. Because such identifiers are likely to
be used in multiple tables, the following domain could be defined:

CREATE DOMAIN identifier INT
DEFAULT AUTOINCREMENT
CHECK (@col > 0)

The variable @col is used in this check constraint. You can rewrite the
above-mentioned definition of the customer table using this definition.

CREATE TABLE customer (
 id identifier PRIMARY KEY
 name persons_name
 address street_address
)

Example 3: Built-in domains
Some domains are predefined in Adaptive Server Anywhere. You can

use these predefined domains in the same way that you would a custom
domain. The following monetary domain, for example, has already been
constructed for you.

Syntax:
CREATE DOMAIN name [AS] data_type
 [COLLATE collation]
 [DEFAULT expression]
 [constraint [...]]
where constraint is:
[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

Clauses/Operators    ◾    85

Examples:
The Indian postal code data type is created in this example, and it is then
used in a table definition. To ensure that the value appears like a genuine
Indian postal code, a regular expression test is used:

CREATE DOMAIN Indian_postal_code AS TEXT
CHECK(
 VALUE ~ ‘^\d{5}$’
OR VALUE ~ ‘^\d{5}-\d{4}$’
);
CREATE TABLE us_snail_addy (
 address_id SERIAL PRIMARY KEY,
 street1 TEXT NOT NULL,
 street2 TEXT,
 street3 TEXT,
 city TEXT NOT NULL,
 postal Indian_postal_code NOT NULL
);

DESCRIBE STATEMENT
The SQL DESCRIBE TABLE command is responsible for providing infor-
mation about a certain table in the database. To display the structure
of a database table or tables on the server, we’ll use the SQL command
DESCRIBE or another term DESC, which is equal to DESCRIBE. We’ll
use either DESCRIBE or DESC to retrieve information about the table in
the database and locate the properties associated with it. Both are Case
Insensitive and yield comparable results. We use the DESCRIBE TABLE
query to acquire information on the name of the column, its data type, its
NULL or NOT NULL properties, and the table’s database size accuracy, as
well as the If NUMERIC type scale.

Syntax:
DESCRIBE one;
 OR
DESC one;

Note that we can use DESCRIBE or DESC (both are Case Insensitive).
Assume our table, named one, has three columns: F_NAME, L_NAME,
and SALARY, each of which can have null values.

86    ◾    Mastering SQL

Output:

We may see the structure of a table using DESC or DESCRIBE, but not on
the console tab; the structure of a table is visible in the describe tab of the
Database System Software. So, the desc or describe command displays the
table’s structure, which includes the column name, data type, and nullabil-
ity, which indicates whether the column may store null values or not. All
of these characteristics of the table are described at the time of its creation.

Consider the following scenario:

•	 Creating a table or specifying a table’s structure

create table one
(
S_id int not null,
S_name char(25)
)

We built a table with the name one and the columns S_ID, S_NAME,
and S_ID is of the non-null type, which means we can’t put null values in
the S_ID column but can in the S_NAME field.

To explain DESC, consider the following example:

•	 Defining the table’s structure, or creating a table:

create table one
(
 S_id int not null,
 S_name char(25),
 city varchar2(25)
)

•	 Showing the table’s structure

DESC one
 OR
DESCRIBE one

Name Null Type

F_NAME CHAR (25)
L_NAME CHAR (25)
SALARY NUMBER (6)

Clauses/Operators    ◾    87

Output:

The ID field is not null; however, the other two columns can have null val-
ues. We must use the DESC command solely on your system software; it
will not work in any editor. Make sure you’re only running this command
on your own database.

CASE STATEMENT IN SQL
If you need to conditionally add a value to a cell dependent on other cells,
you’ll use SQL’s case statement.

The case statement in SQL is equivalent to an if statement or a switch
statement in other languages. It enables you to define a value in a
conditional manner, changing the cell’s value according to whether the
condition is satisfied.

Syntax of SQL Case Statements

The syntax is complex, but it is still simple: the term CASE indicates the
start of a case statement, and the keyword END indicates the end. Then,
you may enter the keyword WHEN followed by the condition that must
be met for a single condition. The term THEN is followed by the value for
that condition, such as WHEN condition> THEN stuff>.

Other WHEN/THEN statements can be added after that. With the
ELSE keyword, you can add a value to use by default if none of the criteria
are true, as shown below.

CASE
 WHEN condition1 THEN stuff
 WHEN condition2 THEN other stuff
 ...
 ELSE default stuff
END

Name Null Type

S_ID Not Null INT
S_NAME CHAR (25)
CITY VARCHAR2 (25)

88    ◾    Mastering SQL

Let’s put this into practise to better comprehend it.
Examples of SQL Case Statements are as follows:
Let’s look at an example of the CASE statement. There is a table with a

list of students and their exam results. We need to assign a grade to each
student, and we can do so automatically with the case statement.

We may use the CASE statement to assign a grade to each student, which
will be stored in a new column called grade. Let’s start by writing the
CASE statement, which will include the grade breakdown. If the score is 94
or higher, the row will be given the value of A. If the score is 90 or greater,
it will be assigned the letter A-, and so on.

ID Name Score

1 Simon 60

2 Iris 80

3 Maliki 52

4 Chrissy 98

5 Lemma 84

6 Alex 82

7 Uranus 69

8 Raza 78

9 Calvin 87

10 Alvin 57

11 Gabriela 89

12 Marcel 99

13 Christopher 55

14 Nick 81

15 Elvin 71

16 Leo 90

17 Johnny 90

18 Anais 90

19 Ryan 97

20 Simpson 61
21 Elena 63
22 Kathrin 51

Clauses/Operators    ◾    89

CASE
 WHEN score >= 94 THEN “A++”
 WHEN score >= 90 THEN “A+”
 WHEN score >= 87 THEN “B++”
 WHEN score >= 83 THEN “B+”
 WHEN score >= 80 THEN “B-”
 WHEN score >= 77 THEN “C++”
 WHEN score >= 73 THEN “C+”
 WHEN score >= 70 THEN “C-”
 WHEN score >= 67 THEN “D++”
 WHEN score >= 60 THEN “D+”
 ELSE “F”
 END

We’ll use the CASE statement in a query after we’ve written it. Then, using
the AS keyword, we’ll give the column the name grade:

SELECT *,
 CASE
 WHEN score >= 94 THEN “A++”
 WHEN score >= 90 THEN “A+”
 WHEN score >= 87 THEN “B++”
 WHEN score >= 83 THEN “B+”
 WHEN score >= 80 THEN “B-”
 WHEN score >= 77 THEN “C++”
 WHEN score >= 73 THEN “C+”
 WHEN score >= 70 THEN “C-”
 WHEN score >= 67 THEN “D++”
 WHEN score >= 60 THEN “D+”
 ELSE “F”
 END AS grade
FROM students_grades;

The table returned by this query looks like this – each student now has a
grade based on their performance.

ID Name Score Grade

1 Simon 60 D+
2 Iris 80 B-
3 Maliki 52 F
4 Chrissy 98 A++

(Continued)

90    ◾    Mastering SQL

Example 1 of a Case Statement: We can, for example, use ORDER BY to
arrange the rows so that the highest grades appear first.

SELECT name,
 CASE
 WHEN score >= 94 THEN “A++”
 WHEN score >= 90 THEN “A+”
 WHEN score >= 87 THEN “B++”
 WHEN score >= 83 THEN “B+”
 WHEN score >= 80 THEN “B-”
 WHEN score >= 77 THEN “C++”
 WHEN score >= 73 THEN “C+”
 WHEN score >= 70 THEN “C-”
 WHEN score >= 67 THEN “D++”
 WHEN score >= 60 THEN “D+”
 ELSE “F”
 END AS grade
FROM students_grades
ORDER BY score DESC;

Because the alphabetical order is not the same as the order of the grades
based on their worth, we rank by score, which is a number, rather than the

ID Name Score Grade

5 Lemma 84 B++
6 Alex 82 B+
7 Uranus 69 D++
8 Raza 78 B-
9 Calvin 87 B++
10 Alvin 57 F
11 Gabriela 89 B++
12 Marcel 99 A++
13 Christopher 55 F
14 Nick 81 B-
15 Elvin 71 C-
16 Leo 90 A+
17 Johnny 90 A+
18 Anais 90 A+
19 Ryan 97 A++
20 Simpson 61 D+
21 Elena 63 D+
22 Kathrin 51 F

Clauses/Operators    ◾    91

grade column. To render it in descending order, we use the DESC keyword,
with the highest value at the top.

The table that we obtain looks like this:

Example 2 of a Case Statement: Let us look at these numbers in more
detail. To count how many kids received each grade, we can use GROUP
BY and COUNT.

SELECT
 CASE
 WHEN score >= 94 THEN “A++”
 WHEN score >= 90 THEN “A+”
 WHEN score >= 87 THEN “B++”
 WHEN score >= 83 THEN “B+”
 WHEN score >= 80 THEN “B-”
 WHEN score >= 77 THEN “C++”

Name Grade

Simon D+
Iris B-
Maliki F
Chrissy A++
Lemma B++
Alex B+
Uranus D++
Raza B-
Calvin B++
Alvin F
Gabriela B++
Marcel A++
Christopher F
Nick B-
Elvin C-
Leo A+
Johnny A+
Anais A+
Ryan A++
Simpson D+
Elena D+
Kathrin F

92    ◾    Mastering SQL

 WHEN score >= 73 THEN “C+”
 WHEN score >= 70 THEN “C-”
 WHEN score >= 67 THEN “D++”
 WHEN score >= 60 THEN “D+”
 ELSE “F”
 END AS grade,
 COUNT(*) AS number_of_students
FROM students_grades
GROUP BY grade
ORDER BY score DESC;

Because score is a number, we use Sort BY to order the grades from highest
to lowest (because ordering by the grade column would employ an alpha-
betical order, which is different from the order of the grades by value).

The case statement is a helpful tool when you need values based on specific
conditions.

UNIQUE CONSTRAINTS IN SQL
To ensure that no duplicate values are put in certain columns that do not
participate in a primary key, you can use SQL Server Management Studio
or Transact-SQL to define a unique constraint. When you construct a
unique constraint, you’ll also get a matching unique index. UNIQUE con-
straints in SQL Server allow you to make sure that the data in a column, or
a combination of columns, is unique across all rows in a table.

The following statement produces a table in which the email column has
data that is unique among the entries in the Hr_people table:

CREATE SCHEMA Hr;
GO

Grade Number_of_Students

A++ 3
A- 3
B++ 2
B+ 1
B- 3
C+ 1
C- 1
D+ 1
D 3
F 4

Clauses/Operators    ◾    93

CREATE TABLE Hr_persons(
 E_id INT IDENTITY PRIMARY KEY,
 F_name VARCHAR (255) NOT NULL,
 L_name VARCHAR (255) NOT NULL,
 Email VARCHAR(255) UNIQUE
);

The UNIQUE constraint is defined as a column constraint in this syn-
tax. The UNIQUE constraint can also be defined as a table constraint, as
shown below:

CREATE TABLE Hr_persons(
 E_id INT IDENTITY PRIMARY KEY,
 F_name VARCHAR (255) NOT NULL,
 L_name VARCHAR (255) NOT NULL,
 Email VARCHAR (255) UNIQUE
UNIQUE (email)
);

To ensure that the information stored in the columns that are a part of the
UNIQUE constraint is unique, SQL Server creates a UNIQUE index in the
background. As a result, attempting to insert a duplicate record will result
in SQL Server rejecting the modification and returning an error message
stating that the UNIQUE constraint has been violated.

The sentence below creates a new row in the Hr_persons table:

INSERT INTO Hr_persons (F_name, L_name, Email)
VALUES (‘Joe’,’Johnas’,’J.johnas@king.burger’);

The statement performs just as intended. However, due to the duplicate
email, the following sentence fails.

INSERT INTO Hr_persons (F_name, L_name, Email)
VALUES (‘Joe’,’Johnas’,’J.johnas@king.burger’);

The following error message was issued by SQL Server:

Violation of UNIQUE KEY constraint ‘UQ__persons__
LR7E617240E’. In the object “HR people,” a duplicate
key cannot be inserted. The value of the second key is
(J.johnas@king.burger).

94    ◾    Mastering SQL

If you don’t give the UNIQUE constraint a unique name, SQL Server will
come up with one for you. The constraint name in this case is UQ people
LR7E617240E, which is not very readable.

The CONSTRAINT keyword is used to assign a specific name to a
UNIQUE constraint, as shown below:

CREATE TABLE Hr_persons (
 E_id INT IDENTITY PRIMARY KEY,
 F_name VARCHAR (255) NOT NULL,
 L_name VARCHAR (255) NOT NULL,
 Email VARCHAR (255),
 CONSTRAINT unique_email UNIQUE(email)
);

The benefits of giving a UNIQUE constraint a unique name include the
following:

ØØ It’s a lot easier to categorise the error message now.

ØØ When you want to change a constraint, you can refer to its name.

Contrasting the Primary Key and Unique Constraints

Despite the fact that UNIQUE and PRIMARY KEY restrictions are pres-
ent data uniqueness, you should use UNIQUE instead of PRIMARY KEY
when you want to enforce the uniqueness of a column or a collection of
columns that aren’t primary key columns.

UNIQUE constraints, unlike PRIMARY KEY constraints, allow NULL.
Furthermore, because UNIQUE constraints consider NULL as a regular
value, only one NULL per column is allowed.

The statement below inserts a record with a NULL value in the email
column:

INSERT INTO hr.persons(F_name, L_name)
VALUES(‘Johny’,’Depp’);

If you try to insert another NULL into the email column now, you’ll get
the following error:

INSERT INTO Hr_persons(F_name, L_name)
VALUES(‘Amber’,’Turd’);

Clauses/Operators    ◾    95

The following is the result:

Violation of UNIQUE KEY constraint ‘UQ__persons__
LR7E617240E’. In the object “Hr people,” a duplicate
key cannot be inserted. The value for the duplicate
key is (NULL>).

Unique Constraints for a Group of Columns

You construct a UNIQUE constraint for a group of columns as a table
constraint, with column names separated by commas, as shown below:

CREATE TABLE table_name (
 key_column data_type PRIMARY KEY,
 column1 data_type,
 column2 data_type,
 column3 data_type,
 ...,
 UNIQUE (column1,column2)
);

The example below creates a UNIQUE constraint with two columns,
person id and skill id:

CREATE TABLE hr.person_skills (
 id INT IDENTITY PRIMARY KEY,
 person_id int,
 skill_id int,
 updated_at DATETIME,
 UNIQUE (person_id, skill_id)
);

Add Unique Constraints to Existing Columns
When you add a UNIQUE constraint to an existing column or a group of
columns in a database, SQL Server looks at the existing data in those columns
to make sure that all of the values are unique. If SQL Server detects duplicate
values, an error is generated and the UNIQUE constraint is not added.

The syntax for addition of a UNIQUE constraint to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
UNIQUE(column1, column2,...);

96    ◾    Mastering SQL

Assume you have the Hr_persons table as follows:

CREATE TABLE Hr_persons (
 E_id INT IDENTITY PRIMARY KEY,
 F_name VARCHAR (255) NOT NULL,
 L_name VARCHAR (255) NOT NULL,
 Email VARCHAR (255),
 Phone VARCHAR (20),
);

In the email column, the following statement introduces a UNIQUE
constraint:

ALTER TABLE Hr_persons
ADD CONSTRAINT unique_email UNIQUE (email);

The following sentence, for example, adds a UNIQUE constraint on the
phone column:

ALTER TABLE Hr_persons
ADD CONSTRAINT unique_phone UNIQUE (phone);
UNIQUE limitations should be removed.

The Alter Table Drop Constraint Statement
It is used to define a UNIQUE constraint like follows:

ALTER TABLE table_name
DROP CONSTRAINT constraint_name;

The unique phone constraint in the Hr_persons table is removed using the
following statement:

ALTER TABLE hr.persons
DROP CONSTRAINT unique_phone;

Change the Limitations that are Unique. Because there is no direct query
in SQL Server to modify a UNIQUE constraint, you must drop the con-
straint first and then recreate it if you wish to update it.

Clauses/Operators    ◾    97

CREATE TABLE EXTENSION
The CREATE TABLE clause in SQL has an extension that generates a new
table with the same schema as an existing table in the database. It’s used
to temporarily store the results of difficult searches in a new table. The
schema of the new table is identical to that of the referring table. The new
table inherits the referring table’s column names and data type by default.

Syntax:
CREATE TABLE newTable LIKE pets;

Example:
CREATE TABLE newTable as
 (SELECT *FROM pets
 WHERE pets.BREED = ‘shitzu’)

Queries:

Pets Table:

Query 1:
CREATE TABLE newTable LIKE pets;
SELECT *
FROM newTable
where newTable.GENDER = ‘Female’;

Result:

ID Name Breed Gender

441 Tom Lasa Male
442 Pizu Golden Retriever Male
443 Simba Poodle Male
444 Pixel Shitzu Female
445 Lobby Labrador Female
446 Liza German Shepherd Male

ID Name Breed Gender

444 Pixel Shitzu Female
445 Lobby Labrador Female

98    ◾    Mastering SQL

Explanation: The newTable is a duplicate of the pets table. As a result, select-
ing female pets from newTable only provides two rows with female pets.

Query 2:
CREATE TABLE newTable as
 (SELECT *
 FROM pets
 WHERE pets.BREED = ‘German Shepherd’);
SELECT * from newTable;

Output:

Primary, the inner query is executed, then the results are saved in a new
temporary relation. The outer query is then evaluated, which creates
newTable and adds the output of the inner query to it.

RENAME IN SQL
Database administrators and users may want to change the name of a
table in a SQL database in order to give it a more relevant name in some
cases. By using the RENAME TABLE and ALTER TABLE statements in
Structured Query Language, any database user can quickly modify the
name. The RENAME TABLE and ALTER TABLE syntax can be used to
change the table’s name.

In SQL, the RENAME query has the following syntax.

RENAME old_table _name to new_table_name;

In SQL, there are several examples of the RENAME statement.
We’ve picked the following two SQL examples to demonstrate how to use

the RENAME statement to modify the name of a SQL table in a database:
Let’s look at an example of a table called Cars:

ID Name Breed Gender

446 Liza German shepherd Male

Car Name Car Colour Car Cost

Hyundai i20 White 1,085,000
Renault KWID White 950,000
Toyota Fortuner Red 900,000
Mahindra Scorpio White 1,000,000
Kia Seltos Black 800,000
Lamborghini Urus Red 795,000

Clauses/Operators    ◾    99

Table: Automobiles

•	 Let’s say you wish to rename the above table ‘Car 2022 Details’. You
must type the following RENAME query in SQL to accomplish this.

RENAME Cars To Car_2022_Details;

•	 Following this statement, the table ‘Cars’ will be renamed ‘Car 2021
Details’.

Let’s look at an example of a table called Employee:

Let’s say you wish to use an ALTER TABLE statement to rename the afore-
mentioned table to ‘Coding Employees’. The SQL query to enter for this is
as follows:

ALTER TABLE Employee RENAME To Coding Employees;

The table ‘Employee’ will now be known as ‘Coding Employees’ as a result
of this statement.

ADD, DROP, MODIFY
To perform addition, removal, or modification of columns in an existing
table, use the ALTER TABLE command. It is also used to add and remove
constraints from an existing table.

Table Change – Add

ADD is used to insert new columns into an existing table. When we need
to add more information, we don’t have to recreate the entire database;
instead, ADD comes to our rescue.

E_Id E_Name E_Salary E_City

01 Amirah 25,000 Goa
02 Anisette 45,000 Delhi
03 Bheem 30,000 Goa
04 Rashid 29,000 Goa
05 Suyash 40,000 Delhi

100    ◾    Mastering SQL

Syntax:
ALTER TABLE table_name
 ADD (Columnname_1 datatype,
 Columnname_2 datatype,
 …
 Columnname_n datatype);

Change Table – Drop

The DROP COLUMN command is used to remove a column from a table.
The unneeded columns are removed from the table.

Syntax:
ALTER TABLE table_name
DROP COLUMN column_name;

Modify the Table

It is used to make changes to the existing columns in a table. Multiple
columns can also be changed at the same time. The syntax of different
databases may differ slightly.

Syntax:
ALTER TABLE table_name
ALTER COLUMN column_name column_type;

Let us understand it using an example:
Sample Table: Student

Query:

ØØ To ADD 2 columns AGE and COURSE to table Student.
    o  �ALTER TABLE Student ADD (AGE number(3),COURSE

varchar(40));

Roll_No. Name

1 Ram
2 Abhi
3 Tanu
4 Rahul

Clauses/Operators    ◾    101

Output:

•	 MODIFY the COURSE column in the Student table.

ALTER TABLE Student MODIFY COURSE varchar(20);

After running the preceding query, the maximum size of the Course
Column is reduced from 40 to 20.

•	 REMOVE the column COURSE from the Student table.

ALTER TABLE Student DROP COLUMN COURSE;

Output:

LIMIT CLAUSE
One of the most crucial clauses in SQL is LIMIT. Developers must filter
their scripts when working with enormous databases in order to get to the
precise number. This is the function of LIMIT, which aids in providing you
with the necessary outcomes in the manner you desire, in a well filtered
manner.

A Limit Clause: What Is It?

Large tables benefit greatly from the SQL LIMIT clause, which makes it sim-
ple to code for multi-page results or SQL pagination. When they are returned,
numerous records can have an impact on success. Only a few tuples can be

Roll_No. Name Age Course

1 Ram
2 Abhi
3 Rahul
4 Tanu

Roll_No. Name Age

1 Ram
2 Abhi
3 Rahul
4 Tanu

102    ◾    Mastering SQL

shown at once even if the question requirements are met for many of them.
The LIMIT clause limits the number of tuples that SQL can return.

•	 Not all SQL versions, it should be noted, support this clause.

•	 You can also define the SQL2008 OFFSET/FETCH FIRST clause.

•	 For LIMIT/offset expressions, there must be a non-negative integer.

The SQL LIMIT operator can be used when you need to pick the top three
students in a class without using any conditional statements.

•	 When using the LIMIT x OFFSET y command, the initial y inputs
are saved before the next x input is returned.

•	 Offset will only be used in ORDER BY clauses. You can’t see it by
yourself.

The value of OFFSET must be larger than zero or equal to it. Negative feed-
back is not an option since errors would then recur.

Give an Example to Clarify: The LIMIT clause in MySQL controls how
many logs are returned.

If you decide to choose any record between 1 and 30 from the ‘Orders’
table, the SQL query will look like this:

$sql = “SELECT * FROM Orders LIMIT 30”;

When the aforementioned SQL query was run, they returned the first 30
records.

What if you wish to choose 16 to 25 records (including)?
Using OFFSET in MySQL is another option.
The SQL statement “return only 10 records, launch record 16 (OFFSET

15)” reads as follows: $sql = “SELECT * FROM Orders LIMIT 10
OFFSET 15”;

What are the Definition, Syntax, and Parameter
Values of a Select Limit Statement?

The SELECT parameter uses the LIMIT clause to LIMIT the number of
records to return. One or two claims are accepted by the LIMIT clause.
Both of the statements’ values must either be true or false.

Clauses/Operators    ◾    103

The LIMIT clause syntax is demonstrated by the next two arguments:

SELECT

select list

FROM

table name

LIMIT [offset], “row count;”

Let’s say we are related, Student.
Student Table:

Queries:

SELECT *
FROM Student
LIMIT 5;

Output:

Roll No. Name Grade

1200 Adi 7
1202 Suhail 8
1203 Himani 9
1204 Rob 10
1205 Simar 11
1206 Annei 12
1207 Yusufa 13
1208 Ali 14

1201 Adi 9

1202 Suhail 6
1203 Himani 8
1204 Rob 9
1205 Sita 7

104    ◾    Mastering SQL

SELECT *
FROM Student
ORDER BY Grade DESC
LIMIT 3;

Output:

When we need to identify the top three students in a class but do not want
to use any conditional statements, we can utilise the LIMIT operator in
cases like the one described above.

Parameters or Arguments

•	 Expressions: The computations or columns that you want to get back.

•	 Tables: The tables from which you want to get records. The FROM
clause must list one table at a minimum.

•	 Where Conditions: the prerequisites that must be satisfied in order
to choose the records.

•	 Order by Expression: It is used in the SELECT LIMIT statement to
help you target the records you want to return and order the results.
Ascending order is ASC, and descending order is DESC.

•	 Limit Number_Rows: It determines the maximum number of result
set rows depending on number rows that will be returned. With
LIMIT 10, for instance, the first 10 entries that satisfy the SELECT
criteria would be returned. Sort order is important in this situation,
therefore employ an ORDER BY clause wisely.

•	 Offset_Value: LIMIT will use offset value to select which row to
return first.

Using the Limit Keyword

The LIMIT keyword restricts the number of rows in a result set that are
returned.

•	 The LIMIT number can be any number between 0 and 255. If the
LIMIT is set to zero (0), no rows are returned from the set result.

12006 Anne 10
12001 Aditya 9
12004 Robin 9

Clauses/Operators    ◾    105

•	 You can choose which line to start the data recovery on using the
OFFSET value.

•	 The Syntax of LIMIT works well with the Choose Update or DELETE
order.

When Should the Limit Clause Be Used?

Consider that you are developing a programme that makes use of the
MyFlixDB database. The system designer instructed you to limit the amount
of records displayed on a screen to 20 records in order to combat slow load
times. How should the framework that satisfies those customer needs be
implemented? The LIMIT keyword is helpful in these circumstances. The
data returned from the inquiry can be limited to just 20 documents per tab.

The Limit Clause’s Benefits

Only the maximum amount of rows are included in the result collection,
according to the LIMIT clause (or exactly the maximum rows, in the
event that max row count is less than the number of qualifying rows).
There are no additional rows returned that satisfy the question collection
condition. It can also set the maximum value using a host variable or a
local variable set to the SPL input value. The rows returned are sorted
by ORDER BY if the LIMIT clause comes after the ORDER BY clause.
ORDER BY may only be effective for searches that return a subset of the
qualified rows by limiting the order of rows because query results are
typically not delivered in a precise order.

INSERT IGNORE STATEMENT
The INSERT statement is used to carry out this action when inserting data
into the tables of the database. The IGNORE keyword can be added to the
INSERT statement syntax. It is usually recommended to use the INSERT
IGNORE statement rather than the INSERT statement. This is so that
records in MySQL databases don’t become inconsistent or redundant by
handling errors that arise during the addition of duplicate records with the
INSERT IGNORE statement.

How Does MySQL’s Insert Ignore Function Work?

When using the INSERT statement to attempt to insert many records
into a specific table of the MySQL database and an error occurs for some
reason, MySQL will stop the execution of the query and report the error
without adding any rows to the table that we attempted to insert. However,

106    ◾    Mastering SQL

Mysql will issue a warning and insert all the proper records while leaving
out and excluding the rows that were the cause of the mistake if we use
INSERT IGNORE instead of simply a simple insert command.

Syntax:
The INSERT IGNORE statement’s syntax is as follows:

INSERT IGNORE INTO table(list_of_columns)
VALUES(record1),
(record2),

Where list of columns is the comma-separated names of the column that
you intend to include in the record, and record1, record2, are the values of
the columns you have indicated in the list of columns in the same order as
they have been given in the list.

Drawback

Since certain errors could go unreported, most users do not favour
INSERT IGNORE over INSERT. This might lead to discrepancies in the
table, which would prevent some tuples from being inserted without giv-
ing the user an opportunity to fix them. Thus, INSERT IGNORE must
only be used in very particular circumstances.

Example: Say we have a relation, Employee.

Employee Table:

As we can notice, the entries are not sorted on the basis of their primary
key, i.e., Emp_ID.

Sample Query:

INSERT IGNORE INTO Employee (EmployeeID, Name, City)
VALUES (15010, ‘Rameshwar’, ‘Mumbai’);

Emp_ID Name City

1501 Aakash Dehradun
1503 Salil Bangalore
1509 Joe Hyderabad
1508 Shelli Delhi
1502 Ana Mumbai
1504 Semma Pune

Clauses/Operators    ◾    107

Output:
No entry inserted.

Inserting Multiple Records:
When inserting multiple records at once, any that cannot be inserting will
not be, but any that can will be:

INSERT IGNORE INTO Employee (EmployeeID, Name, City)
VALUES (15007, ‘Shikha’, ‘Delhi’), (15002, ‘Ram’, ‘Mumbai’), (15009,

‘Sam’, ‘Ahmedabad’);

Output:
The first and last entries are added; the intermediate entry is merely disre-
garded. No error message flashes.

As Mysql attempts to change the values to arrange them in the cor-
rect manner and inserts the correct records except the one that can create
an issue, using the INSERT IGNORE statement rather than just inserting
statements is always a recommended practise.

LIKE OPERATOR
To determine whether a particular character string matches a given pat-
tern, the logical operator SQL Like is employed. It is typically utilised in a
Where clause to search for a specific pattern in a column. When pattern
matching is required rather than equal or not equal, this operator can be
helpful. When we wish to return a row if a given character string matches
a predetermined pattern, we utilise the SQL Like function. Regular char-
acters and wildcard characters may both be used in the pattern. Regular
characters must exactly match the characters supplied in the character
string in order to return a row. Any portion of the character string can be
matched using the wildcard characters.

Syntax:

SELECT * FROM table_name
WHERE column_name LIKE ‘pattern’

The following wildcard characters can be used with the LIKE operator to
specify a pattern:

108    ◾    Mastering SQL

When using the LIKE operator, these wildcard characters can be used sin-
gly or in combination.

For example: Let us use Employee info table in all the examples:

Query 1:

SELECT *
FROM Employee
WHERE FirstName LIKE ‘john’;

The query WHERE FirstName LIKE ‘john’ above searches all the records
in the MS SQL Server, SQLite, and MySQL databases where the value of
the FirstName column is ‘john’ or ‘John’. But with Oracle and PostgreSQL
databases, the LIKE operator is case-sensitive, so it only retrieves entries
where the value is ‘john,’ not ‘John. The outcome in the MS SQL Server,
SQLite, and MySQL databases is as follows.

EmpId FirstName LastName Email Salary HireDate

1 ‘John’ ‘King’ ‘john.king@abc.com’ 33,000 2018-07-25
2 ‘James’ ‘Bond’ 2018-07-29
3 ‘Neena’ ‘Kochhar’ ‘neena@test.com’ 17,000 2018-08-22
4 ‘Lex’ ‘De Haan’ ‘lex@test.com’ 15,000 2018-09-8
5 ‘Amit’ ‘Patel’ 18,000 2019-01-25
6 ‘Abdul’ ‘Kalam’ ‘abdul@test.com’ 25,000 2020-07-14

EmpId FirstName LastName Email Salary HireDate

1 ‘John’ ‘King’ ‘john.king@abc.com’ 33,000 2018-07-25

Pattern Description

%

The percentage matches 0–1, multiple capital or small-capital characters, or
numbers.

E.g., ‘B%’ will match all string starting with ‘B’ further followed by any number of
characters or numbers.

_
Any single letter or number can be represented by the underscore (_) symbol.
E.g., ‘B_’ will match all strings with two chars where the first character must be ‘B’
and second character can be anything.

[] The [] searches any single character within the specified range in the [].
E.g., ‘B[e,l,p]’ will match ‘Ball’, ‘Bat’, ‘Bird’ etc.

[^]
The [^] seaches any single character except the specified range in the [^].
E.g., ‘B [^e,l,p]’ will match anything that starts with ‘B’, but not ‘Bpple’, ‘Belp’,
‘Blep’, ‘Bple’, etc.

https://john.king@abc.com
https://neena@test.com
https://lex@test.com
https://abdul@test.com
https://john.king@abc.com

Clauses/Operators    ◾    109

Any number of characters may be specified with the wildcard char %.

SELECT *
FROM Employees
WHERE FirstName LIKE ‘j%’;

The aforementioned query retrieves all records from the MS SQL Server,
SQLite, and MySQL databases where the value of the First Name col-
umn begins with either “j” or “J” followed by any number of characters.
It will retrieve records in Oracle or PostgreSQL that begin with “j,” but
not “J.” The outcome in the MS SQL Server, SQLite, and MySQL data-
bases is as follows:

The next query returns information where the value of FirstName is “% a
%”. It implies that “a” must appear somewhere in the value.

SELECT *
FROM Employee
WHERE FirstName LIKE ‘%a%’;

The results of the aforementioned query are shown below:

Records with a FirstName value of three letters and ‘e’ in the second posi-
tion will be returned by the query below. Any one character is indicated
by the ‘_’.

SELECT *
FROM Employee
WHERE FirstName LIKE ‘_e_’;

EmpId FirstName LastName Email Salary HireDate

1 ‘John’ ‘King’ ‘john.king@abc.com’ 33,000 2018-07-25
2 ‘James’ ‘Bond’ 2018-07-29

EmpId FirstName LastName Email Salary HireDate

2 ‘James’ ‘Bond’ 2018-07-29
3 ‘Neena’ ‘Kochhar’ ‘neena@test.com’ 17,000 2018-08-22
5 ‘Amit’ ‘Patel’ 18,000 2019-01-25
6 ‘Abdul’ ‘Kalam’ ‘abdul@test.com’ 25,000 2020-07-14

https://john.king@abc.com
https://neena@test.com
https://lex@test.com

110    ◾    Mastering SQL

The [] wildcard pattern is used in the following query

SELECT *
FROM Employee
WHERE FirstName LIKE ‘B [i,m,t,y,s]’;

The [̂] wildcard pattern is used in the following query.

SELECT *
FROM Employee
WHERE FirstName LIKE ‘B [^i,m,t,y,s]’;

LIKE NOT
Filter records that do not match the provided string by combining the

NOT operator with the LIKE operator.

SELECT *
FROM Employee
WHERE FirstName NOT LIKE ‘j%’;

FirstName NOT LIKE ‘j%’ in the above sentence retrieves entries where
the FirstName values do not begin with ‘j’.

SOME SQL OPERATOR
When a value is compared to each value in a list of query results, SQL
Server’s SOME operator is used to determine whether at least one row is
present in the result of an inner query. The comparison operators must

EmpId FirstName LastName Email Salary HireDate

6 ‘Abdul’ ‘Kalam’ ‘abdul@test.com’ 25,000 2020-07-14

EmpId FirstName LastName Email Salary HireDate

3 ‘Neena’ ‘Kochhar’ ‘neena@test.com’ 17,000 2018-08-22
4 ‘Lex’ ‘De Haan’ ‘lex@test.com’ 15,000 2018-09-8
5 ‘Amit’ ‘Patel’ 18,000 2019-01-25
6 ‘Abdul’ ‘Kalam’ ‘abdul@test.com’ 25,000 2020-07-14

EmpId FirstName LastName Email Salary HireDate

4 ‘Lex’ ‘De Haan’ ‘lex@test.com’ 15,000 2018-09-8

https://abdul@test.com
https://neena@test.com
https://lex@test.com
https://abdul@test.com
https://lex@test.com

Clauses/Operators    ◾    111

come before SOME in order for it to match at least one entry in the sub-
query. Consider that when SOME is used, greater than (>) signifies greater
than at least one value.

Syntax:

SELECT [col_name... | express1]
FROM [t_name]
WHERE express2 comparison_operator {ALL | ANY | SOME}
(subquery)

Parameters:

Let us understand some operators using an example:

Instructor Table:

Name Description

Col_name Name of the column of the table.
Express1 Expressions can be parts of a SQL query that do computations or value

comparisons against other values and are composed of a single constant,
variable, scalar function, or column name.

Table name The table’s name.
Where

expression2
Until the SOME operator finds a match, compares a scalar expression.
For the SOME operator to return a Boolean TRUE value, one or more
rows must match the expression.

Comparison
operator

Compares the subquery and the expression. A standard comparison
operator (=, >,!=, >, >=,, or =) must be used in the comparison.

Name Department Salary

Chandra Computational Biology 1
Visweswaran Electronics 1.5
Abraham Computer Science 1.3
John Electronics 1.2
Samantha Computer Science 2
Jyoti Electronics 1.2
Debarka Computer Science 2
Ganesh Computational Biology 0.9

112    ◾    Mastering SQL

Sample Queries and Outputs:

select name
from instructor
where Salary > some(select Salary
from instructor
where dept=’Computer Science’);

Output:
Visweswaran

Samantha
Debarka

Explanation:
The teachers whose salaries exceed one or more instructors’ salaries in
the “Computer Science” department are asked to leave. The “Computer
Science” department pays 1.3, 2, and 2 in wages. This implies that any
instructor earning more than 1.3 can be counted in the outcome.

OFFSET FETCH IN SQL SERVER
The usage of OFFSET FETCH capabilities in fetching a record with
restricted memory and avoiding an out-of-memory exception. In SQL
Server, the SELECT and ORDER BY clauses are combined with the
FETCH and OFFSET clauses to specify a range of records to be returned
by the query. For performing result set pagination, it was first introduced
with SQL Server version 2012. When our database has a tonne of data, it
is helpful.

Application of Offset and Fetch Offset

OFFSET: The starting point for returning rows from a result set is specified
using this clause. In essence, it disregards the first batch of records. Only
the ORDER BY clause can be used with it in SQL Server. An error will be
returned if its value is negative. It must therefore always be higher than or
equal to zero.

FETCH: In a query, this optional clause specifies how many rows we
want to return after the OFFSET. Without OFFSET, we cannot use it.
Similar to OFFSET, its value cannot be negative. As a result, it must always
be bigger than or equal to zero in order to avoid an error.

Clauses/Operators    ◾    113

Syntax:
The syntax used to demonstrate how to utilise OFFSET and FETCH clause
is as follows:

SELECT * FROM table_name
ORDER BY columns [ASC |DESC]
OFFSET no_of_rows_to_skip
FETCH {FIRST | NEXT} no_of_rows_to_return {ROW | ROWS}
ONLY

We have specified the table name from which the data will be obtained in
this syntax. For records shown in ascending or descending order, we then
specified the ORDER BY clause. The amount of records was then skipped
using the OFFSET specification, and the set of records was then returned
using FETCH.

Let’s look at how the OFFSET and FETCH clauses are used practically.
Let’s say we have “my table” with the information below:

Fetch and Offset

SELECT * from “my table” order by a offset 3 rows
fetch next 2 rows only;

Result:

a b

1 100
2 99
3 98
4 97
5 96
6 95
7 94

a b

4 97
5 96

114    ◾    Mastering SQL

Offset Only
Query: SELECT * from “my table” order by a offset 3
rows;

Results:

Fetch Only
Query:
SELECT * from “my table” order by a fetch next 2 rows
only;

Results:

SQL STATEMENT EXCEPT
When two SELECT queries are being used to select records, the SQL
EXCEPT statement is one of the most often utilised statements to filter
records. It returns the entries from the left SELECT query that are not
present in the results given by the SELECT query on the right side of the
EXCEPT statement. The way a SQL EXCEPT statement operates is quite
similar to how a math minus operator operates. Microsoft SQL Server
2005 introduces the EXCEPT statement.

Prerequisites for the SQL Except Statement

Before using the EXCEPT statement in SQL Server, a few prerequisites
must be satisfied:

•	 The tables used to execute the SELECT operations should have the
same number of columns and order.

a b

4 97
5 96
6 95
7 94

a b

1 100
2 99

Clauses/Operators    ◾    115

•	 The related SELECT queries should use data types that are compat-
ible or the same for the corresponding columns in both tables.

Consider the following scenario: Students and TA (Teaching Assistant).
All of the students who aren’t teaching assistants should return, as shown
in the following form of the question:

Students Table:

TA Table:

Syntax:

SELECT Name
 FROM Students
EXCEPT
SELECT NAME
 FROM TA;

Output:
Rohan
Mansi
Megha
We must specifically use EXCEPTALL rather than EXCEPT in order to

keep duplication.

StudentID Name Course

1 Rohan DBMS
2 Kevin OS
3 Mansi DBMS
4 Mansi ADA
5 Rekha ADA
6 Megha OS

StudentID Name Course

1 Kevin TOC
2 Sita IP
3 Manik AP
4 Rekha SNS

116    ◾    Mastering SQL

SELECT Name
 FROM Students
EXCEPTALL
SELECT Name
 FROM TA;

Output:
Rohan
Mansi
Mansi
Megha

USING JOINS AND THE OVER CLAUSE IN SQL TO
COMBINE AGGREGATE AND NON-AGGREGATE VALUES
Aggregate functions add together several numbers and give back a single
result. Consider the following structure for the employee table EMP and
the department table DEPT:

Table – Employee Table

Table – Department Table

Name Name Course

EMPNO NOT NULL NUMBER(4)
ENAME VARCHAR2(10)
JOB VARCHAR2(9)
MGR NUMBER(4)
HIREDATE DATE
SAL NUMBER(7, 2)
COMM NUMBER(7, 2)
DEPTNO NUMBER(2)

Name Null Type

DEPTNO NUMBER(2)
DNAME VARCHAR2(14)
LOC VARCHAR2(13)

Clauses/Operators    ◾    117

Moreover, the following outcomes are required:

•	 Display the name, sal, and job of the emp, as well as the maximum,
minimum, average, and total sal of all the employees doing the
same job.

•	 Display the department name and the number of employees in it.

A result cannot be obtained by directly combining aggregated and non-
aggregated values. Consequently, one can use the following ideas:

UTILISING JOINS

•	 Make a subtable that contains the values that have been aggregated.

•	 Use Join to display the results from the subtable with their raw values.

Solutions for problem 1 using JOIN:

SELECT ENAME, SAL, EMP.JOB,
 SUBTABLE.MAXSAL, SUBTABLE.MINSAL,
 SUBTABLE.AVGSAL, SUBTABLE.SUMSAL
FROM EMP
INNER JOIN
 (SELECT JOB, MAX(SAL) MAXSAL, MIN(SAL)
 MINSAL, AVG(SAL) AVGSAL, SUM(SAL)
SUMSAL
 FROM EMP
 GROUP BY JOB) SUBTABLE
 ON EMP.JOB = SUBTABLE.JOB;

Output for Sample Data:

Ename Sal Job MaxSal MinSal AvgSal SumSal

SCOTT 3,300 ANALYST 3,300 1,925 2,841.67 8,525
HENRY 1,925 ANALYST 3,300 1,925 2,841.67 8,525
FORD 3,300 ANALYST 3,300 1,925 2,841.67 8,525
SMITH 3,300 CLERK 3,300 1,045 1,746.25 6,985
MILLER 1,430 CLERK 3,300 1,045 1,746.25 6,985

118    ◾    Mastering SQL

OVER CLAUSE

•	 Partition by and over clause are used to break down data into
partitions.

•	 For each partition, the specified function is active.

Solutions for problem 2 using OVER Clause:

SELECT DISTINCT(DNAME),
COUNT(ENAME) OVER (PARTITION BY EMP.DEPTNO) EMP
FROM EMP
RIGHT OUTER JOIN DEPT
ON EMP.DEPTNO=DEPT.DEPTNO
ORDER BY EMP DESC;

OPERATORS FOR SQL ANY AND ALL
You can compare a single column value to a variety of other values using
the ANY and ALL operators.

ANY Operator in SQL

THE ANY OPERATING SYSTEM: As a result, returns TRUE if ANY of
the subquery values satisfy the condition ANY signifies that the condition
will be true if the operation is true for any of the values in the range.

Syntax:

SELECT column_name(s)
FROM table_name
WHERE column_name operator ANY
 (SELECT column_name
 FROM table_name
 WHERE condition);

Dname Emp

SALES 6
RESEARCH 5
ACCOUNTING 3
OPERATIONS 0
OTHERS 0

Clauses/Operators    ◾    119

SQL Operator ALL

A logical operator called the SQL ALL compares a single result to a set of
values from a subquery that are returned in a single column. The SQL ALL
operator’s syntax is demonstrated by the following:

WHERE column_name comparison_operator ANY (subquery);

A comparison operator like >, >=, =, >, or = must come before the SQL ALL
operator, and a subquery must come after it. A list of literal values may be
used in place of a subquery in some database systems, such as Oracle. Keep
in mind that the WHERE clause’s condition is always true if the subquery
returns no rows. The following table demonstrates the significance of the
SQL ALL operator, assuming that the subquery produces one or more rows:

Demonstration Database

EXISTS IN SQL
One of the key SQL operators, exists, enables you to specify a subquery to
check whether a specific object exists in the database. It executes the query
using the syntax listed below.

Syntax:

SELECT [column_name... | expression1]
FROM [table_name]
WHERE EXISTS (subquery)

If the subquery returns any rows, the operator returns TRUE; otherwise, it
returns FALSE. The SELECT, UPDATE, INSERT, or DELETE commands
can all be used with the exists operator. The following is an explanation of
the syntax’s parameters.

Parameter Description

Col_name Name of the column
Express 1 This could be any expression composed of a single variable, constant, or

even the name of a column.
t_name The title of the column on which we are working
Where exists It looks for the presence of one or more rows in the subquery. If there is a

row, the Boolean value is TRUE; otherwise, it is FALSE

120    ◾    Mastering SQL

Query:

SELECT col_name FROM t_name
WHERE EXISTS
(SELECT col_name FROM t_name WHERE condition);

Value returned
It gives back a True or False Boolean value.

Example:
The Employee table in the code snippet below includes the following col-
umns: Employee id, first name, last name, salary, and department.

-- Creating a worker table
CREATE table Employee(
 Employee_id int,
 first_name varchar(100),
 last_name varchar(100),
 salary int,
 department varchar(100),

PRIMARY KEY(Employee_id));

-- Creating a bonus table
CREATE table bonus(
 Employee_id int,
 bonus_amt int,

FOREIGN KEY(Employee_id) REFERENCES
Employee(Employee_id));

-- Inserting record in Employee table
INSERT INTO Employee

values (1, “Charlie”, “Arora”, 100000, “Engineering”),
 (2, “Niharika”, “Verma”, 80000, “Admin”),
 (3, “Thomas”, “Martin”, 300000, “HR”),
 (4, “William”, “O’Brien”, 500000, “Admin”),
 (5, “Vivek”, “Bhati”, 500000, “Admin”),
 (6, “Vipul”, “Diwan”, 200000, “Account”),
 (7, “Satish”, “Kumar”, 75000, “Account”),
 (8, “Anderson”, “Lee”, 90000, “Admin”);

Clauses/Operators    ◾    121

-- Inserting record in bonus table
INSERT INTO bonus

values (1, 5000),
 (2, 5500),
 (3, 4000),
 (1, 4500),
 (2, 3500);

-- This nested query will return unique employee ids
-- where employee ids in bonus table equals to
employee
-- ids in employee table and bonus amount less than
5500
SELECT Employee_id FROM Employee

WHERE EXISTS (SELECT Employee_id FROM bonus WHERE
 bonus.Employee_id = Employee.Employee_id
 AND bonus_amt < 5500);

Output:
Employee_id
1
2
3

GROUP BY STATEMENT IN SQL
To group similar data into groups, the SELECT statement and the SQL
GROUP BY clause are employed. In a SELECT statement, this GROUP BY
clause comes after the WHERE clause and before the ORDER BY clause.

Syntax:
The following code block illustrates the fundamental grammar of a
GROUP BY clause. If there is an ORDER BY clause, it must come after the
GROUP BY clause and come before the constraints in the WHERE clause.

SELECT col1, col2
FROM t_name
WHERE [conditions]
GROUP BY col1, col2
ORDER BY col1, col2

122    ◾    Mastering SQL

Example:
Consider the following records in the CUSTOMERS table:

The following GROUP BY query would be used if you wanted to discover
the entire amount of each customer’s salary.

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
 GROUP BY NAME;

Result:

Let’s take a look at a table where the CUSTOMERS table has the records
with the following names twice:

ID Name Age Address Salary

111 Muffin 24 Indore 10,000.00
124 Kamal 22 MP 4,500.00
126 Hardin 27 Bhopal 8,500.00
145 Chantal 25 Mumbai 6,500.00
149 Ramesh 32 Ahmedabad 2,000.00
152 Khilan 25 Delhi 1,500.00
178 kaushik 23 Kota 2,000.00

Name Salary

Muffin 10,000.00
Kamal 4,500.00
Hardin 8,500.00
Chantal 6,500.00
Ramesh 2,000.00
Khilan 1,500.00
kaushik 2,000.00

ID Name Age Address Salary

111 Muffin 24 Indore 10,000.00
124 Muffin 22 MP 4,500.00
126 Hardin 27 Bhopal 8,500.00
145 Hardin 25 Mumbai 6,500.00
149 Ramesh 32 Ahmedabad 2,000.00
152 Khilan 25 Delhi 1,500.00
178 kaushik 23 Kota 2,000.00

Clauses/Operators    ◾    123

Once more, the GROUP BY query might be as follows if you wanted to
know the total amount of salary for each customer:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
 GROUP BY NAME;

This would produce the following result:

UNION CLAUSE
As its name suggests, this operator/clause is used to join the results of two
or more SELECT queries. We can also use this command to access a spe-
cific record from a certain column of the table. The number of columns
in each SELECT statement and the order in which they are used in the
UNION statement must match. In addition, the data type of each column
must be the same in all SELECT statements. The UNION clause returns
only distinct values. For good measure you need to copy the values, then
you need to use the UNION ALL clause.

Syntax:

SELECT column_1, column_2,...column_n
FROM table_1
UNION
SELECT column_1, column_2,...column_n
FROM table_2;

Duplicate rows in the result table are removed using the UNION clause.
To keep copies, check UNION ALL. Quite a few SELECT statements can
be merged using the UNION statement, both UNION and UNION ALL
can be used to join different tables. If you want to consolidate from differ-
ent SELECT statements are one of a kind, on the off chance that unique-
ness is not a concern, then use UNION ALL for better performance.

ID Name Age Address Salary

111 Muffin 24 Indore 10,000.00
126 Hardin 27 Bhopal 8,500.00
149 Ramesh 32 Ahmedabad 2,000.00
152 Khilan 25 Delhi 1,500.00
178 kaushik 23 Kota 2,000.00

124    ◾    Mastering SQL

The following limitations apply to unions:

•	 The SELECT statements must return the same number of columns.

•	 Even though the column names need not match, the columns that
the return of SELECT operations must match in order and data type.

•	 Individual ORDER BY clauses are not allowed in SELECT statements.

After the last SELECT statement, add an ORDER BY clause to the result-
ing table to sort the data. A union names the columns it returns as results
based on the initial SELECT statement. Connections are often parsed
from left to right by default. You can use parentheses to define an evalua-
tion sequence. The UNION clause allows you to combine any number of
SELECT statements.

Union Versus Union All

One of the major difference between UNION and UNION ALL is that
UNION eliminates duplicate rows and UNION ALL does not remove
duplicate rows.

In SQL, An Example of the Union Operator

Let’s make two separate tables and insert records into each.
The query below generates the Old Employee table, which has four

fields:

CREATE TABLE Old_Employee
(
Employee_Id INT NOT NULL,
Employee_Name Varchar (40),
Emp_Age INT,
Emp_Salary INT
);

The query generates the New Employee table, which has four fields:
CREATE TABLE New_Employee

(
Emp_Id INT NOT NULL,
Emp_Name Varchar (40),

Clauses/Operators    ◾    125

Emp_Age INT,
Emp_Salary INT
);

The query generates the new Employee table, which has four fields:

INSERT INTO Old_Employee (Emp_Id, Emp_Name, Emp_Age,
Emp_Salary) VALUES (11, Akhima, 12 , 15000),
(12, Abhi, 17, 16000),
(13, Surya, 16, 19000),
(14, Abhimak, 17, 26000),
(15, Ritika, 26, 29000),
(16, Yashi, 29, 28000);

The following INSERT query adds a new employee record into the Old
Employee table:

Query: SELECT * FROM Old_Employee;

Table: Old Employee
The following INSERT query adds a new employee record to the New

Emp table:

INSERT INTO New_Employee (Emp_Id, Emp_Name, Emp_Age,
Emp_Salary) VALUES (01, Jack, 18, 45000),
(202, Berry, 19, 35000),
(15, Ritika, 16, 29000),
(203, Shyam, 17, 26000),
(204, Ritik, 18, 38000),
(16, Yashi, 19, 28000);

Employee_Id Employee_Name Emp_Age Emp_Salary

11 Akhima 28 25,000
12 Abhi 27 26,000
13 Surya 26 29,000
14 Abhimak 27 26,000
15 Ritika 26 29,000
16 Yashi 29 28,000

126    ◾    Mastering SQL

The following query displays the New Employee table’s details:
SELECT * FROM New_Emp;

Table: New_Emp
Using the UNION operator, the following query displays all data from

both tables in a single table:

SELECT * FROM Old_Emp UNION SELECT * FROM
New_Employee;

Output:

Where Clause Is Combined with the Union Operator

To filter records from one or both tables, use the WHERE clause in con-
junction with the UNION operator.

UNION syntax with WHERE clause

SELECT Col_Name_1, Col_Name_2, Col_NameN FROM
T_Name_1 [WHERE condition]

Emp_Id Emp_Name Emp_Salary Emp_City

201 Jack 28 45,000
202 Berry 29 35,000
15 Ritika 26 29,000
203 Shyam 27 26,000
204 Ritik 28 38,000
16 Yashi 29 28,000

Emp_Id Emp_Name Emp_Age Emp_Salary

11 Akhima 28 25,000
12 Abhi 27 26,000
13 Surya 26 29,000
14 Abhimak 27 26,000
15 Ritika 26 29,000
16 Yashi 29 28,000
201 Jack 28 45,000
202 Berry 29 35,000
203 Shyam 27 26,000
204 Ritik 28 38,000

Clauses/Operators    ◾    127

UNION
SELECT Col_Name1, Col_Name_2, Col_Name_N FROM
T_Name_2 [WHERE condition];

UNION with WHERE Clause Example
The following query returns the records of employees from the preced-

ing tables whose salaries are greater than or equal to $29,000:

SELECT * FROM Old_Emp WHERE Emp_Salary >= 29000UNION
SELECT * FROM New_Emp WHERE Emp_Salary >= 29000;

Output:

Union All Operator in SQL

The SQL Union is same as the Union ALL Operator, yet the main distinc-
tion is that UNION ALL administrator likewise shows the normal lines in
the outcome. Administrator, yet the main distinction is that UNION ALL
administrator likewise shows the normal lines in the outcome.

Syntax of Union All Set operator:

SELECT Col_Name_1, Col_Name_2, Col_Name_N FROM
T_Name_1 [WHERE condition]
UNION ALL
SELECT Col_Name_1, Col_Name_2, Column_Name_N FROM
Table_Name_2 [WHERE condition];

Example of Union All

Let’s make two separate tables and insert records into each. The query
below generates the Passed Students database, which has four fields:

Emp_Id Emp_Name Emp_Age Emp_Salary

13 Surya 26 29,000
15 Ritika 26 29,000
201 Jack 28 45,000
202 Berry 29 35,000
204 Ritik 28 38,000

128    ◾    Mastering SQL

CREATE TABLE Passed_Students
(
Stud_Id INT NOT NULL,
Stud_Name Varchar (40),
Stud_Age INT,
Stud_Marks INT
);

The query below generates the New Students table, which has four fields:

CREATE TABLE New_Students
(
Stud_Id INT NOT NULL,
Stud_Name Varchar (40),
Stud_Age INT,
Stud_Marks INT
);

The INSERT query below adds a record of passed students to the Passed
Students table:

INSERT INTO Passed_Students (Stud_Id, Stud_Name, Stud_
Age, Stud_Marks) VALUES (11, Akhima, 28, 95),
(12, Abhi, 27, 86),
(13, Surya, 26, 79),
(14, Abhimak, 27, 66),
(15, Ritika, 26, 79),
(16, Yashi, 29, 88);

The following query displays the Passed Students table’s details:

SELECT * FROM Passed_Students;

Stud_Id Stud_Name Stud_Age Stud_Marks

11 Akhima 28 95
12 Abhi 27 86
13 Surya 26 79
14 Abhimak 27 66
15 Ritika 26 79
16 Yashi 29 88

Clauses/Operators    ◾    129

Table: Passed Students
The following INSERT query adds a new student record to the New

Students table:

INSERT INTO New_Students (Stud_Id, Stud_Name, Stud_
Age, Stud_Marks) VALUES (201, Jack, 28, 77),
(202, Berry, 29, 68),
(15, Ritika, 26, 82),
(203, Shyam, 27, 70),
(204, Ritik, 28, 99),
(16, Yashi, 29, 86);

The following query displays the New Students table’s details:

SELECT * FROM New_Students;

Table: New Students
The query below returns all duplicate and unique records from both

tables:

SELECT * FROM Passed_Stud UNION ALL SELECT * FROM
New_Stud;

Output:

Stud_Id Stud_Name Stud_Age Stud_Marks

201 Jack 28 77
202 Berry 29 66
15 Ritika 26 82
203 Shyam 27 70
204 Ritika 28 99
16 Yashi 29 86

Stud_Id Stud_Name Stud_Age Stud_Marks

11 Akhima 28 95
12 Abhi 27 86
13 Surya 26 79
14 Abhimak 27 66
15 Ritika 26 79

(Continued)

130    ◾    Mastering SQL

SQL IN ALIASES
Aliases are temporary names assigned to tables or columns for the sake
of a certain SQL query. It is used when the name of a column or table is
changed from its original name, but the change is just temporary.

•	 Aliases are used to make table or column names easier to read.

•	 The renaming is only a temporary alteration, and the table name in
the original database remains unchanged.

•	 When table or column names are long or difficult to understand,
aliases come in handy.

•	 These are preferred when a query involves more than one table.

Syntax:
As a Column Alias:

SELECT column as alias_name FROM table_name;
column: fields in the table
alias_name: the temporary alias name to be used in
replacement of original column name
table_name: name of table

Example of Aliasing a Column Name
Aliases are typically used to make the column heads in your result set

easier to read. Most frequently, you will alias a column in your query when
using an aggregate function such as MIN, MAX, AVG, SUM, or COUNT.

We should examine an illustration of how to pseudonym a segment
name in SQL.

Stud_Id Stud_Name Stud_Age Stud_Marks

16 Yashi 29 88
201 Jack 28 77
202 Berry 29 68
15 Ritika 26 82
203 Shyam 27 70
204 Ritik 28 99
16 Yashi 29 86

Clauses/Operators    ◾    131

In this model, we have a table called representatives that contains the
accompanying data:

Let’s go over how to alias a column. Enter the SQL statement below:

SELECT dept_id, COUNT(*) AS total
FROM employees
GROUP BY dept_id;

There will be two records chosen. You should see the following outcomes:

We’ve aliased the COUNT (*) field as total in this example. As a result,
when the result set is returned, total will appear as the heading for the
second column. Because our alias name does not contain any spaces, we
do not need to wrap it in quotes.

Change our query such that the column alias has a space:

SELECT dept_id, COUNT(*) AS “total employees”
FROM employees
GROUP BY dept_id;

There will be two records chosen. You should see the following outcomes:

Emp_Number l_Name f_Name Salary Dept_ID

101 Smithy Johnny 62,000 50
102 Ander Janae 57,500 50
103 Ever Brady 71,000 51
104 Horvath Jacky 42,000 51

Dept_ID Total

50 2
51 2

Dept_ID Total Employees

50 2
51 2

132    ◾    Mastering SQL

In this example, we’ve aliased the COUNT(*) field to ‘total workers’,
which will serve as the header for the second column in our result set.
Because this column alias contains spaces, ‘total employees’ must be con-
tained in quotes in the SQL statement.

As a Table Alias:

SELECT column FROM table_name as alias_name;
column: fields in the table
table_name: name of table
alias_name: temporary alias name to be used in
replacement of original table name

A Table Name Aliasing Example
When you alias a table, you either want to shorten the table name to

make the SQL statement more concise and understandable, or you want
to utilise the same table name in the FROM clause more than once (i.e.,
self-join).

Let’s look at how a table name can be aliased in SQL.
In this illustration, we have a table called products with the following

data:

And, a table called categories, which has the following information:

Product_ID Product_Name Category_ID

1 Pear 50
2 Banana 50
3 Orange 50
4 Apple 50
5 Bread 75
6 Sliced Ham 25
7 Kleenex NULL

Category_ID Category_Name

25 Deli
50 Produce
75 Bakery
100 General Merchandise
125 Technology

Clauses/Operators    ◾    133

Let us now combine these two tables and alias the table names. Enter the
SQL statement as follows:

SELECT p.product_name, c.category_name
FROM products AS p
INNER JOIN categories AS c
ON p.category_id = c.category_id
WHERE p.product_name <> ‘Pear’;

There will be five records chosen. You should see the following outcomes:

We’ve built an alias for the goods table and an alias for the categories table
in this example. We may now refer to the products table as p and the cat-
egories table as c within this SQL expression.

It is not essential to generate aliases for all of the tables provided in the
FROM clause when establishing table aliases. You have the option of creat-
ing aliases on any or all of the tables.

ORDER BY CLAUSE IN SQL
Depending on one or more columns, the ORDER BY clause in SQL is used
to sort data in either ascending or descending order. By default, some data-
bases sort query results in ascending order.

Syntax:
The basic syntax is as follows:

SELECT col-list
FROM t_name
[WHERE condition]
[ORDER BY column1, column2, .. columnN] [ASC | DESC];

The ORDER BY clause might include more than one column. Make sure
the column you’re sorting by is in the column list.

Product_Name Category_Name

Banana Produce
Orange Produce
Apple Produce
Bread Bakery
Sliced Ham Deli

134    ◾    Mastering SQL

Example:
Consider the CUSTOMERS table, which contains the following records:

An example is provided in the following code block, which sorts the results
in ascending order by NAME and SALARY.

SQL> SELECT * FROM CUSTOMERS
 ORDER BY NAME, SALARY;

This would yield the following result:

An example is provided in the following code block, which sorts the result
in descending order by NAME.

SQL> SELECT * FROM CUSTOMERS
 ORDER BY NAME DESC;

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00
7 Muffin 24 Indore 10,000.00

ID Name Age Address Salary

4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
3 kaushik 23 Kota 2,000.00
2 Khilan 25 Delhi 1,500.00
6 Kamal 22 MP 4,500.00
7 Muffin 24 Indore 10,000.00
1 Ramesh 32 Ahmedabad 2,000.00

Clauses/Operators    ◾    135

This would yield the following result:

SELECT TOP CLAUSE IN SQL
We may want to extract a certain quantity of records from a SQL table
rather than all table records. The WHERE provision can be utilised to con-
fine the number of lines returned by a SELECT explanation. Assume you
have a customer table and wish to obtain records for customers from a
specific country. There could be a large number of records that meet the
criteria. To meet the conditions, we need top ‘N’ customer records. TOP or
ROW Number () clauses can be used to meet this need.

Top Clause Syntax in SQL Server

SELECT TOP Expression | Percentage [Column_Names] [
WITH TIES]
FROM [Table_Name]

Expression: We can use a numeric expression to define the number of
rows to be returned.

Percent: In this case, we can use the PERCENT value to return the per-
centage number of rows from the total number of rows in the output.

With Ties: The WITH TIES clause can be used to return more rows
with values that match the previous row in the result set. For example, we
want the top ten consumers in terms of purchase value. If we do not utilise
WITH TIES, SQL Server provides exactly 10 records, despite the fact that
we may have additional customers with comparable purchase costs. In this
situation, we can retrieve more rows by using WITH TIES. We must use
WITH TIES in conjunction with the ORDER BY Clause.

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
7 Muffin 24 Indore 10,000.00
6 Kamal 22 MP 4,500.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
5 Hardin 27 Bhopal 8,500.00
4 Chantal 25 Mumbai 6,500.00

136    ◾    Mastering SQL

By supplying the number of records to return as the result set, we will
attempt to comprehend the syntax for utilising SQL SELECT TOP.

Syntax:
SELECT TOP number column name FROM table name WHERE con-
dition; the syntax above retrieves data from all columns depending on
the WHERE clause and is limited by the number provided as part of the
SELECT TOP.

Consider the following Customer Table to learn how to use the SELECT
TOP command to copy all of the columns’ data depending on a
criterion.

Scenario: Retrieve the first row of data from the Customer table where the
gender is male.

SELECT TOP 1 * FROM Customer WHERE CustomerGender = ‘M’;

Output:

SQL Select the Highest Percentage of Records to Return

By specifying the percentage of records to return as the result set, we will
attempt to comprehend the syntax for utilising SQL SELECT TOP.

Syntax:

SELECT TOP number PERCENT column_name FROM table_name
WHERE condition;

Cust_Id Cust_Name Cust_Age Cust_Gender

1 John 31 M
2 Amit 25 M
3 Annie 35 F
4 Tom 38 M

Cust_Id Cust_Name Cust_Age Cust_Gender

1 John 31 M

Clauses/Operators    ◾    137

The syntax above retrieves data from all columns based on the WHERE
clause and is limited by the percent provided as part of the SELECT TOP.

Consider the following Customer Table to learn how to use the SELECT
INTO command to copy all of the columns’ data depending on a criterion.

Scenario: Get data from the Customer table for 50% of the entries where
the gender is male.

Query:

SELECT TOP 50 PERCENT * FROM Customer WHERE Cust_
Gender = ‘M’;

Multiple Select Top Statements

To achieve our goal, we can combine numerous SELECT TOP commands.

Syntax:

SELECT TOP number column_name FROM table_name WHERE
condition (the select statement with another SELECT
TOP);

Scenario:
Retrieve the first row of data from the Customer table where the gender is
male.

Query:

SELECT TOP 1 * FROM Customer WHERE Cust_Age = (SELECT
TOP 1 Cust_Age FROM Customer ORDER BY Cust_Age desc);

Output:

Cust_Id Cust_Name Cust_Age Cust_Gender

1 John 31 M
2 Amit 25 M

Cust_Id Cust_Name Cust_Age Cust_Gender

4 Tom 38 M

138    ◾    Mastering SQL

SQL UPDATE COMMAND
Databases are used to store data in tables. After writing data to such tables,
it is usual to need to update individual fields at some point throughout the
data’s existence. To accomplish this, we can use the SQL UPDATE com-
mand. An Update query is a type of action query that performs numerous
updates on many records at the same time.

In SQL, the UPDATE order is utilised to alter or change existing records
in a table If we wish to update a specific value, we use the WHERE clause in
conjunction with the UPDATE clause. On the off chance that the WHERE
proviso isn’t utilised, all columns will be impacted. Furthermore, depend-
ing on our requirements, we can utilise the UPDATE statement to update
a single or several columns.

Syntax:

UPDATE table_name
SET column1 = value1, column2 = value2...., columnN =
valueN
WHERE [condition];

where the keywords are UPDATE, SET, and WHERE table name is the
name of the table that has to be updated, col1, col2,... are the columns val1,
val2,... considered to be updated? assign new values, and the condition sec-
tion, which is followed by a semicolon, contains the condition.

Example:
Consider the CUSTOMERS table, which contains the following records:

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00
7 Muffin 24 Indore 10,000.00

Clauses/Operators    ◾    139

The query below will change the ADDRESS for a customer whose ID num-
ber in the table is 6.

SQL> UPDATE CUSTOMERS
SET ADDRESS = ‘Pune’
WHERE ID = 6;

The CUSTOMERS table would now contain the following records:

If you wish to change all of the ADDRESS and SALARY column values
in the CUSTOMERS table, you may use the UPDATE query instead, as
illustrated in the following code block.

SQL> UPDATE CUSTOMERS
SET ADDRESS = ‘Pune’, SALARY = 1000.00;

The CUSTOMERS table would now contain the following records:

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 Pune 4,500.00
7 Muffin 24 Indore 10,000.00

ID Name Age Address Salary

1 Ramesh 32 Pune 1,000.00
2 Khilan 25 Pune 1,000.00
3 kaushik 23 Pune 1,000.00
4 Chantal 25 Pune 1,000.00
5 Hardin 27 Pune 1,000.00
6 Kamal 22 Pune 1,000.00
7 Muffin 24 Pune 1,000.00

140    ◾    Mastering SQL

DELETE STATEMENT IN SQL
To erase lines from a table, utilise the SQL DELETE explanation. The
DELETE statement often deletes one or more records from a table.

Syntax:

DELETE FROM table_name WHERE some_condition;
table_name: name of the table
some_condition: condition to choose particular record.

Example:
Take a look at the ‘Customer’ table.

The number of records we can delete will depend on the criteria we give
in the WHERE clause. If we leave out the WHERE clause, all of the records
are destroyed and the table is empty.

Table: Customer

•	 Single record deletion: Remove all rows where NAME = ‘Ram.’ This
will only erase the first row.

Query:

DELETE FROM Customer WHERE NAME = ‘Muffy ‘;

Result: The above query deletes only the first row, and the table
Customer now looks like this:

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00
7 Muffin 24 Indore 10,000.00

Clauses/Operators    ◾    141

•	 Multiple Record Deletion: Delete the rows in the Customer table
where the Salary is 2000.

Query:

DELETE FROM Customer WHERE Salary = 2000.00;

Results: The query above will eliminate two rows (first and third),
and the table Customer will now look like this:

•	 Delete Every Single Record: There are two queries that can be used
to accomplish this, as illustrated below.

Query 1: “DELETE FROM Student”;
Query 2: “DELETE * FROM Student”;
Output: The table’s records will all be deleted; no records will be

displayed. Customer’s table will soon be empty.

INSERT INTO SQL STATEMENT
To insert a new row into a table, use the SQL INSERT INTO statement.
For inserting rows, the INSERT INTO statement can be used in two ways:

•	 Simply Values: The first technique is to specify only the data value to
be added without specifying the column names.

ID Name Age Address Salary

2 Khilan 25 Delhi 1,500.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00

142    ◾    Mastering SQL

Syntax:

INSERT INTO t_name VALUES (value1, value2, value3,…);
t_name: name of the table.
value1, value2,.. : value of first col, second col,…
for the new record

•	 Both Column Names and Values: In the second approach, we will
specify both the columns to be filled and their associated values, as
shown below:

Syntax:

INSERT INTO table_name (col1, column2, column3,..)
VALUES (value1, value2, value3,..);
table_name: name of the table.
column1: name of first column, second column …
value1, value2, value3 : value of first column, second
column,… for the new record

Table Customer:

Table Lateral Customer:

Query 1: Method 1 (all rows and columns inserted):
INSERT INTO Customer SELECT * FROM Lateral

Customer;

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00

ID Name Age Address Salary

7 Ravi 35 Kolkata 2,900.00
8 Ashish 45 Dharamshala 3,500.00
9 Kamal 43 Jaipur 2,080.00

Clauses/Operators    ◾    143

Output: The data from the table LateralCustomer will be inserted
into the table Customer using this query. Student’s table will now
look like this:

•	 Method 2 (Particular Column Inserting):
INSERT INTO Student (ID,NAME,Age) SELECT ID,

NAME,Age FROM LateralCustomer;
Output: This query will insert data into the columns ROLL NO,

NAME, and Age of the table Lateral Student in the table Student,
with the remaining columns in the Student table filled with null,
which is the default value for the remaining fields. Student’s table will
now look like this:

•	 Choose which rows to insert:
INSERT INTO Customer SELECT * FROM Lateral

Customer WHERE Salary = 2000;

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00
7 Ravi 35 Kolkata 2,900.00
8 Ashish 45 Dharamshala 3,500.00
9 Kamal 43 Jaipur 2,000.00

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00
7 Ravi 35 null null
8 Ashish 45 null null
9 Kamal 43 null null

144    ◾    Mastering SQL

Output: This query will only insert the last row from table Lateral
customer into table customer. Customer’s table will now look like this:

•	 Using a single SQL statement to insert several entries into a table
INSERT INTO table _ name(Col1,Col2,Col3,.......)
VALUES (Value1, Value2,Value3,.....),
 (Value1, Value2,Value3,.....),
 (Value1, Value2,Value3,.....),
 ;
t_name: name of the table
Col1: name of first column, second column …
Value1, Value2, Value3: Value of first column, second column,…

for each new row inserted.
Multiple lists of values, each separated by ‘,’ must be provided.

Every value list corresponds to the values that should be added to
each new table row.

The following list of values instructs data to be entered in the
table’s next row.

AND AND OR SQL OPERATORS
The AND and OR operators are used in SQL to filter data and produce exact
results based on requirements. Multiple conditions can also be combined
using the SQL AND & OR operators. These two operators can be combined
in a SELECT, INSERT, UPDATE, or DELETE query to test for various con-
ditions. It is critical to use parenthesis when combining these conditions so
that the database knows what order to examine each condition in:

•	 The WHERE clause employs the AND and OR operators.

•	 Conjunctive operators are the names given to these two operators.

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Kota 2,000.00
4 Chantal 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00
9 Kamal 43 Jaipur 2,000.00

Clauses/Operators    ◾    145

AND Operator

This operator returns only records where both condition1 and condition2
evaluate to True.

Syntax:

SELECT * FROM table_name WHERE condition1 AND
condition2 and ...conditionN;

table_name: name of the table
condition1,2,..N: first condition, second condition
and so on

OR Operator
This operator returns records where either of the conditions condition1

or condition2 is True. That is, either condition 1 or condition 2 is true.

Syntax:

SELECT * FROM table_name WHERE condition1 OR
condition2 OR... conditionN;

table_name: name of the table
condition1,2,..N : first condition, second condition
and so on

Now we’ll look at a table database to demonstrate AND and OR operators
with various cases:

ID Name Age Address Salary

1 Ramesh 32 Ahmedabad 2,000.00
2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Delhi 2,000.00
4 kaushik 25 Mumbai 6,500.00
5 Hardin 27 Bhopal 8,500.00
6 Kamal 22 MP 4,500.00
7 Ravi 35 Kolkata 2,900.00
8 Ashish 45 Dharamshala 3,500.00
9 Kamal 43 Delhi 2,000.00

146    ◾    Mastering SQL

Assume we wish to retrieve all records from the Student table where the
Salary is ≤3,000 and the ADDRESS is Delhi. The question will then be as
follows:

Query:

SELECT * FROM Student WHERE Salary ≤ 3000 AND ADDRESS
= ‘Delhi’;

Output:

As another model, assume you need to get every one of the records from
the Student table where the NAME is Kamal and the Salary is 2,000.

Query:

SELECT * FROM Student WHERE Salary = 2000 AND NAME =
‘Kamal’;

Output:

To recover all records from the Student table where
the NAME is Kamal or kaushik.

Query:

SELECT * FROM Student WHERE NAME = ‘Kamal’ OR NAME =
‘Kaushik’;

ID Name Age Address Salary

2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Delhi 2,000.00
9 Kamal 43 Delhi 2,000.00

ID Name Age Address Salary

9 Kamal 43 Delhi 2,000.00

Clauses/Operators    ◾    147

Output:

Combining AND and OR

To build complex queries, we can combine AND and OR operators as
shown below.

Syntax:

SELECT * FROM table_name WHERE condition1 AND
(condition2 OR condition3);

Consider retrieving all data from the Student table where the Age is 18 and
the NAME is Ram or RAMESH.

Query:

SELECT * FROM Student WHERE Salary ≥ 5000 AND (Address
= ‘Delhi’ OR Address = ‘MP’);

Output:

CLAUSE WHERE
The SQL WHERE statement is utilised to determine a condition while
recovering information from a solitary table or interfacing numerous tables.
Only if the provided condition is met does it return a specific value from the
table. You should utilise the WHERE clause to filter the records and retrieve
only those that are required. The WHERE clause is utilised not just in the
SELECT statement, but also in the UPDATE and DELETE statements.

ID Name Age Address Salary

3 kaushik 23 Delhi 2,000.00
4 kaushik 25 Mumbai 6,500.00
9 Kamal 43 Delhi 2,000.00

ID Name Age Address Salary

2 Khilan 25 Delhi 1,500.00
3 kaushik 23 Delhi 2,000.00
6 Komal 22 MP 4,500.00
9 Kamal 43 Delhi 2,000.00

148    ◾    Mastering SQL

Syntax:
The following is the basic syntax of the SELECT statement with the
WHERE clause:

SELECT column1, column2, column N
FROM table_name
WHERE [condition]

A condition can be specified using comparison or logical operators such
as >, =, LIKE, and NOT. The accompanying models can assist you with
figuring out this idea.

Example:
Consider the CUSTOMERS table, which contains the following records:

The code beneath is an illustration of how to recover the ID, Name, and
Salary information from the CUSTOMERS table where the compensation
is bigger than 5000.

Query:

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 5000;

Output:

ID Name Age Address Salary

1 Ravi 32 Ahmedabad 2,000.00
2 Kaushik 25 Delhi 1,500.00
3 Kevin 23 Delhi 2,000.00
4 Kula 25 Mumbai 6,500.00
5 Hendrik 27 Bhopal 8,500.00
6 Kiwi 22 MP 4,500.00

ID Name Salary

4 Kula 6,500.00
5 Hendrik 8,500.00
6 Kiwi 4,500.00

Clauses/Operators    ◾    149

An example query would retrieve the ID, Name, and Salary fields from the
CUSTOMERS table for a client named kiwi.

It is vital to notice that all strings should be enclosed in single quotes
(‘’). Numeric values, on the other hand, should be presented without any
quotation marks, as seen in the preceding example.

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE NAME = ‘Kiwi’;
The output will be as follows:

UNIQUE CLAUSE IN SQL
To delete duplicate columns from the result set, use the SQL DISTINCT
clause. The unique keyword is used in conjunction with the choose key-
word. It is useful in avoiding duplicate values in specific columns/tables.
When we utilise the distinct keyword, we get the unique values.

•	 Only distinct (different) values are returned by SELECT DISTINCT.

•	 The DISTINCT function removes duplicate records from the table.

•	 DISTINCT can be used with aggregates such as COUNT, AVG,
MAX, and so on.

•	 DISTINCT only works on a single column.

•	 DISTINCT does not allow multiple columns.

Syntax:

SELECT DISTINCT column1, column2
FROM table_name

column 1 and column 2 are the names of the table’s fields.
table name: The name of the table from which we wish to retrieve the

records.

ID Name Salary

6 Kiwi 4,500.00

150    ◾    Mastering SQL

This query will return all of the distinct combinations of rows in the
table with the fields column1, column2.

If the distinct keyword is used with multiple columns, the distinct com-
bination will be shown in the result set.

Example:
Consider the CUSTOMERS table, which contains the following records:

Queries:

•	 Obtaining unique names from the NAME field –

SELECT DISTINCT NAME
FROM Student;

•	 To obtain a one-of-a-kind combination of rows from the entire table,

SELECT DISTINCT *
FROM Student;

ID Name Age Address Salary

1 Ravi 32 Ahmedabad 2,000.00
2 Kaushik 25 Delhi 1,500.00
3 Kevin 23 Delhi 2,000.00
4 Kaushik 25 Delhi 1,500.00
5 Hendrik 27 Bhopal 8,500.00
6 Kaushik 25 Delhi 1,500.00

Name

Ravi
Kaushik
Kevin
Kula
Hendrik
Kiwi

Clauses/Operators    ◾    151

Output:

Without the term distinct, six entries would have been fetched instead of
four, because the original table contains six records with duplicate values.

SELECT IN SQL STATEMENT
The most widely used command in Structured Query Language is the
SELECT statement. It’s used to get data from one or more database tables
and views. It also obtains the selected data that meets the criteria we specify.

Where Clause in Select Statement

It is used in combination with the SELECT statement to retrieve only those
entries from the table that satisfy the query’s given condition.

Example: A SELECT statement with a WHERE clause.
First, we must build a new table and then populate it with dummy infor-

mation. To create the Employee Details table in SQL, run the following
query:

SELECT Statement Syntax with WHERE Clause

CREATE TABLE Emp_Details
(
Empl_ID INT AUTO_INCREMENT PRIMARY KEY,
Emp_Name VARCHAR (50),
Emp_City VARCHAR (20),
Emp_Salary INT NOT NULL,
Emp_Panelty INT NOT NULL
) ;

The following INSERT query inserts an employee entry into the Employee
Details table:

INSERT INTO Empl_Details (Empl_ID, Emp_Name, Emp_City,
Emp_Salary, Emp_Panelty) VALUES (11, Anupam,
Ghaziabad, 25000, 500),

ID Name Age Address Salary

1 Ravi 32 Ahmedabad 2,000.00
2 Kaushik 25 Delhi 1,500.00
3 Kevin 23 Delhi 2,000.00
5 Hendrik 27 Bhopal 8,500.00

152    ◾    Mastering SQL

(12, Tus, Lucknow, 29000, 1000),
(13, Vive, Kolkata, 35000, 500),
(14, Shiva, Goa, 22000, 500);

The data from the Employee Details table is shown in the following
SELECT query:

SELECT * FROM Emp_Details;

The following query returns the list of employees from the preceding table
whose Emp Panelty is 500:

SELECT * FROM Emp_Details WHERE Emp_Panelty = 500;

This SELECT query returns the following table:

Group by Clause in SQL Select Statement

The GROUP BY condition is utilised related to the SELECT explanation to
show the section’s normal information:

SELECT Statement Syntax with GROUP BY Clause is as follows:

SELECT col_Name_1, col_Name_2....., col_Name_N
aggregate_function_name(col_Name2) FROM table_name
GROUP BY col_Name1;

Select Statement with Group by Clause Example

To create the Cars Details table, run the following query:

Emp_Id Emp_Name Emp_City Emp_Salary Emp_Panelty

11 Anupam Ghaziabad 25,000 500
12 Tus Lucknow 29,000 1,000
13 Vive Kolkata 35,000 500
14 Shiva Goa 22,000 500

Emp_Id Emp_Name Emp_City Emp_Salary Emp_Panelty

11 Anupam Ghaziabad 25,000 500
13 Vive Kolkata 35,000 500
14 Shiva Goa 22,000 500

Clauses/Operators    ◾    153

CREATE TABLE Cars_Details
(
Car_Number INT PRIMARY KEY,
Car_Name VARCHAR (50),
Car_Price INT NOT NULL,
Car_AmountINT NOT NULL
) ;

The following INSERT query adds a car entry to the Cars Details table:

INSERT INTO Cars_Details (Car_Number, Car_Name, Car_
Amount, Car_Price)
VALUES (2578, Creta, 3, 1500000),
(9258, Audi, 2, 3000000),
(8233, Venue, 6, 900000),
(6214, Nexon, 7, 1000000);

The values in the output are displayed by the following SELECT query:

SELECT * FROM Cars_Details;

The following SELECT query with GROUP BY returns the number of
autos with the same price:

SELECT COUNT (Car_Name), Car_Price FROM Cars_Details
GROUP BY Car_Price;

The outcome of the preceding GROUP BY query is displayed below.

Car_Number Car_Name Car_Amount Car_Price

2578 Creta 3 1,000,000
9258 Audi 2 900,000
8233 Venue 6 900,000
6214 Nexon 7 1,000,000

Count (Car_Name) Car_Price

2 1,000,000
2 900,000

154    ◾    Mastering SQL

Having Clause in SQL Select Statement

The SELECT statement’s HAVING clause creates a selection inside the
groups defined by the GROUP BY clause.

Syntax of SELECT Statement with HAVING clause is as follows:

SELECT col_Name_1, col_Name_2,, col_Name_N
aggregate_function_name(column_Name_2) FROM table_name
GROUP BY column_Name1 HAVING ;

SELECT Statement with HAVING Clause Example
Let’s use the CREATE command below to create the Employee Having

table in SQL:

CREATE TABLE Emp_Having
(
Emp_Id INT PRIMARY KEY,
Emp_Name VARCHAR (50),
Emp_Salary INT NOT NULL,
Emp_City VARCHAR (50)
) ;

The following INSERT query installs an employee record into the
Employee Having table:

INSERT INTO Emp_Having (Emp_Id, Emp_Name, Emp_Salary,
Emp_City)
VALUES (01, Jonas, 20000, Goa),
(02, Basanti, 40000, Delhi),
(03, Rasheta, 80000,Jaipur),
(04, Aunpam, 20000, Goa),
(05, Sumitra, 50000, Delhi);

The following SELECT query shows the values of Emp_Having table in
the output:

SELECT * FROM Emp_Having;

Emp_Id Emp_Name Emp_Salary Emp_City

01 Jonas 20,000 Goa
02 Basanti 40,000 Delhi
03 Rasheta 80,000 Jaipur
04 Anupam 20,000 Goa
05 Sumitra 50,000 Delhi

Clauses/Operators    ◾    155

The following query displays the total salary of employees with more than
5,000 in the Employee Having table:

SELECT SUM (Emp_Salary), Emp_City FROM Emp_Having
GROUP BY Emp_City HAVING SUM(Emp_Salary)>5000;

The following table is displayed by this HAVING query with a SELECT
statement:

Output:

Order by Clause in Select Statement

With the SQL SELECT statement, the ORDER BY clause sorts the records
or rows. The ORDER BY phrase orders the values ascending and descend-
ing. By default, few database systems arrange column values in ascending
order.

SELECT Statement Syntax with ORDER BY Clause is as follows:

SELECT Col_Name_1, Col_Name_2,, col_Name_N FROM
t_name WHERE [Condition] ORDER BY[col_Name_1, col_
Name_2,, column_Name_N asc | desc];

Example of SELECT Statement with ORDER BY clause in SQL

CREATE TABLE Employee_Order
(
Id INT NOT NULL,
FirstName VARCHAR (50),
Salary INT,
City VARCHAR (50)
) ;

The following INSERT query installs an employee record into the Employee
Having table:

Sum (Emp_Salary) Emp_City

90,000 Delhi
80,000 Jaipur

156    ◾    Mastering SQL

INSERT INTO Emp_Order (Id, FirstName, Salary, City)
VALUES (01, Jonas, 20000, Goa),
(02, Basanti, 15000, Delhi),
(03, Rasheta, 80000,Jaipur),
(04, Aunpam, 90000, Goa),
(05, Sumitra, 50000, Delhi);

The following SELECT query displays the table values in the output:

SELECT * FROM Emp_Order;

The following query sorts the salaries of employees from the above
Employee Order table in descending order:

SELECT * FROM Employee_Order ORDER BY Emp_Salary DESC;

This SQL query returns the following table:

Output:

DROP AND TRUNCATE TABLE IN SQL
The DROP order in SQL is utilised to erase the whole data set or table files,
and information, and that’s only the tip of the iceberg. The TRUNCATE
order, then again, is utilised to eliminate all columns from a table.

Id First_Name Salary City

01 Jonas 20,000 Goa
02 Basanti 15,000 Delhi
03 Rasheta 80,000 Jaipur
04 Anupam 90,000 Goa
05 Sumitra 50,000 Delhi

Emp_Id Emp_Name Emp_Salary Emp_City

04 Anupam 90,000 Goa
03 Rasheta 80,000 Jaipur
05 Sumitra 50,000 Delhi
01 Jonas 20,000 Goa
02 Basanti 15,000 Delhi

Clauses/Operators    ◾    157

Truncate Table in SQL

Begin by issuing the TRUNCATE TABLE command. When you wish
to empty a SQL table, you’ll use TRUNCATE TABLE. In other words,
when you wish to erase all of the data from a database but keep the table
itself. Why would you want to preserve a table that doesn’t have any data?
Because you won’t have to CREATE the structure again: you won’t have to
supply column names or data types.

The SQL TRUNCATE command comes in helpful in data science, for
example, when you discover a flaw in your automatic data loading scripts
that populate your SQL tables. A common example of such an issue is
when a daily data load occurs twice. The simplest solution is to empty the
table and reload the right data.

Another popular use case is when working with million-line tables with
fields that must be updated daily. Instead of changing each row individu-
ally, it is sometimes more efficient to empty the table and then reload the
modified data.

By the way, the syntax is really simple. It goes

TRUNCATE TABLE table_name;

TRUNCATE TABLE is the SQL command, and table name is the name of
the existing table that you want to empty.

Example:
Consider the following records in a CUSTOMERS table:

Here’s an example of a Truncate command.

SQL >TRUNCATE TABLE CUSTOMERS;

The CUSTOMERS table has now been shortened, and the output of the
SELECT operation is as seen in the code block below.

ID Name Age Address Salary

1 Ravi 32 Ahmedabad 2,000.00
2 Kaushik 25 Delhi 1,500.00
3 Kevin 23 Delhi 2,000.00
4 Kula 25 Mumbai 6,500.00
5 Hendrik 27 Bhopal 8,500.00
6 Kiwi 22 MP 4,500.00

158    ◾    Mastering SQL

SQL>SELECT * FROM CUSTOMERS

Set is empty (0.00 sec)

Table Drop in SQL

DROP TABLE is our second command. Unlike TRUNCATE TABLE,
DROP TABLE deletes the SQL table rather than just emptying it. It implies
that you will destroy its structure, previously defined column names, data
types, and, of course, the data contained within it.

Regardless, it is sometimes required. In data science, we will use it when
you update your entire database structure and no longer need some of your
SQL tables. Or when you inadvertently construct a table you don’t want to
use. (It happens, people.) Also, when you mistype something in a table
(table name, column name, data type), it’s sometimes easier and faster to
DROP it than to fix it with ALTER TABLE.

The syntax for removing a SQL table is as follows:

DROP TABLE table_name;

Let’s look at the syntax for removing the table from the database.

DROP TABLE table_name;

We would first verify the STUDENTS table before deleting it from the
database.

SQL> DESC STUDENTS;

This indicates that the STUDENTS table is present in the database, there-
fore we may drop it as follows:

SQL>DROP TABLE STUDENTS;

Field Type Null Key Default Extra

ID Int(11) NO PRI
NAME Varchar(20) NO
AGE Int(11) NO
ADDRESS Varchar(25) YES NULL

Clauses/Operators    ◾    159

Presently, utilise the accompanying order to check regardless of whether
the table exists.

SQL> DESC STUDENTS;

Output: Query OK, 0 rows affected (0.01 sec)
As you can see, the table has been dropped, therefore it is not displayed.
DROP TABLE is the command, and table name is the name of the table

to be deleted. Here’s a nice warning now that you know how to empty
or delete a table in SQL. Be extremely cautious when using the SQL
TRUNCATE TABLE or DROP TABLE commands! Yes, if you use SQL
Workbench (or pgadmin4), you must commit your changes before they
become irreversible... Aside than that, there is no undo button. Deleting
or emptying a table can result in significant – and unpleasant – data loss,
so think twice before running them. Particularly in real-world projects.
Particularly if you don’t have a backup of your data.

CREATE IN SQL
In SQL, there are two CREATE statements:

•	 CREATE TABLE

•	 CREATE DATABASE

Make a Database

A database is a systematic collection of data. To store data in a well-struc-
tured manner, the first step with SQL is to establish a database. In SQL, the
CREATE DATABASE statement is used to create a new database.

Syntax:

CREATE DATABASE database_name;
database_name: name of the database.

Example Query: This query will establish a new SQL database and call it
my database.

CREATE DATABASE my_database;

160    ◾    Mastering SQL

Table Creation

We learned about database creation before. To save the data, we will need
a table. In SQL, the Construct TABLE statement is used to create a table.
We all know that a table is made up of rows and columns. So, while con-
structing tables, we must give SQL with information such as the names of
the columns, the type of data to be stored in the columns, the quantity of
the data, and so on. Let us now go through how to utilise the Construct
TABLE statement to create tables in SQL.

Syntax:

CREATE TABLE table_name
(
column1 data_type(size),
column2 data_type(size),
column3 data_type(size),
....
);

Table_Name: name of the table.
column1 name of the first column.
Data_Type: Type of data we want to store in the particular column.
For example, int for integer data.
Size: Size of the data we can store in a particular column. For example,

if for a column, we specify the data_type as int and size as 15, then this
column can store an integer number of maximum 15 digits.

This query will generate a table called Students with three columns:
ROLL NO, NAME, and SUBJECT.

CREATE TABLE Students
(
ROLL_NO int(3),
NAME varchar(20),
SUBJECT varchar(20),
);

This query will generate the table Students. The ROLL NO field is of type int
and can hold a three-digit integer value. The following two columns, NAME
and SUBJECT, are of the type varchar and may store characters, with the size
20 indicating that these two fields can hold a maximum of 20 characters.

Clauses/Operators    ◾    161

JOINS IN SQL
A JOIN clause is used to join rows from two or more tables based on a
common column.

In this article, we will go over the last two JOINS:

•	 Cartesian Join: The CARTESIAN JOIN is also known as the CROSS
JOIN. Each row of one table is joined to every row of another table in
a CARTESIAN JOIN. This typically occurs when no matching col-
umn or WHERE criteria is supplied.

•	 The CARTESIAN JOIN and CARTESIAN PRODUCT both
behave similarly in the absence of a WHERE condition. In other
words, the sum of the rows in the two tables makes up the num-
ber of rows in the result-set.

•	 In general, a cross join is comparable to an inner join in that the
join-condition always evaluates to True.

Syntax:

SELECT table1.column1 , table1.column2, table2.
column1...
FROM table1
CROSS JOIN table2;
table1: First table.
table2: Second table

•	 Self-Join: A table is joined to itself with SELF JOIN, as the name
implies. That is, based on the circumstances, each row of the table
is connected to itself and all other rows. In other words, it’s a join
between two copies of the same table.

Syntax:

SELECT a.coulmn1 , b.column2
FROM table_name a, table_name b
WHERE some_condition;

table_name: Name of the table.
some_condition: Condition for selecting the rows.

162    ◾    Mastering SQL

ALTERNATE QUOTE OPERATOR
Character literals are used in many SQL statements as expressions or con-
ditions. If the literal contains a single quotation mark, you can use the
quote (q) operator and specify your own delimiter. You can use any appro-
priate delimiter, single-byte or multibyte, or any of the character pairings
[], (), {}, or >.

OPERATOR FOR CONCATENATION
The generic SQL expression diagram illustrates the syntax of the binary
concatenation operator. Use the concatenation operator (||) to combine
two expressions that evaluate to character or numeric data types.

Let us have a look at an example:

Syntax:

SELECT id, f_name, l_name, f_name || last_name,
 salary, first_name || salary FROM
myTable

Output (Third and Fifth Columns show values concatenated by operator ||)
id salary

In the example above, we used the || Concatenation operator, which is
used to link two or as many columns as you like in a select query and is
independent of column datatype. We’ve linked two columns above: first
name + last name and first name + salary.

Literals can also be used in the concatenation operator. Let’s have a look:
Exemplification 1: Using Character Literal

Syntax:

SELECT id, first_name, last_name, salary,
 first_name||’ has salary ‘||salary as “new” FROM
myTable

id f_name l_name f_name||last_name salary first_name||salary

101 Rajat Rawat RajatRawat 10,000 Rajat10000
120 Geeks ForGeeks GeeksForGeeks 20,000 Geeks20000
156 Shane Watson ShaneWatson 50,000 Shane50000
145 Kedar Jadhav KedarJadhav 90,000 Kedar90000

Clauses/Operators    ◾    163

Output: (Concatenating three values and giving a name ‘new’)

In our choice statement above, we utilised has salary as a character literal.
Similarly, we can use a number literal or a date literal depending on our
needs.

OPERATOR MINUS
In SQL, the Minus Operator is used with two SELECT statements. The
MINUS operator is used to deduct the first SELECT query’s result set from
the second SELECT query’s result set. In other words, the MINUS opera-
tor will return only those rows that are unique in only the first SELECT
query and not those that are common to both the first and second SELECT
searches.

Basic Syntax:

SELECT column1 , column2 , ... columnN
FROM table_name
WHERE condition
MINUS
SELECT column1 , column2 , ... columnN
FROM table_name
WHERE condition;
columnN: column1, column2.. are the name of columns of
the table.

Important Point:

•	 In the given query, the WHERE clause is optional.

•	 Both SELECT statements must have the same amount of columns.

•	 Both SELECT statements’ associated columns must have the same
data type.

id first_name last_name salary new

101 Rajat Rawat 10,000 Rajat has salary10,000
120 Geeks ForGeeks 20,000 Geeks has salary 20,000
156 Shane Watson 50,000 Shane has salary 50,000
145 Kedar Jadhav 90,000 Kedar has salary 90,000

164    ◾    Mastering SQL

DIVISION OPERATOR
In SQL, the division operator is an arithmetic operator. Addition (+), sub-
traction (–), multiplication (*), division (/), and modulus are the arithme-
tic operators (%).

In SQL, the division operator has the following syntax:

SELECT <expression> / <expression>
FROM table
[WHERE expression]

The division operator is illustrated in the following example:

Query:

SELECT 4 / 2

You may run this query, and it will return the result, which in this example
is 2. However, you are more likely to be working with numbers stored in
columns in your database tables.

THE NOT OPERATOR IN SQL
It can be used before any conditional statement to select rows that meet
the condition.

Syntax:
The NOT condition in SQL has the following syntax:

NOT condition

Using NOT with the IN Condition as an example
Let’s begin by looking at how NOT can be used with the IN condition.

We establish a NOT IN condition when we apply the NOT operator with
the IN condition. This will check to see if an expression isn’t already in a
list. In this example, we have a table called products that contains the fol-
lowing information:

Product_ID Product_Name Category_ID

1 Pear 50
2 Banana 50
3 Orange 50

(Continued)

Clauses/Operators    ◾    165

Enter the SQL statement below:

SELECT *
FROM products
WHERE product_name NOT IN (‘Pear’, ‘Banana’, ‘Bread’);

There will be four records chosen. You should see the following outcomes:

This example returns all entries from the products table where the product
name does not match Pear, Banana, or Bread. It is sometimes more eco-
nomical to mention the values that you do not want rather than the ones
that you do want. It corresponds to the following SQL statement:

SELECT *
FROM products
WHERE product_name <> ‘Pear’
AND product_name <> ‘Banana’
AND product_name <> ‘Bread’;

Output:

Product_ID Product_Name Category_ID

3 Orange 50
4 Apple 50
6 Sliced Ham 25
7 Kleenex NULL

Product_ID Product_Name Category_ID

3 Orange 50
4 Apple 50
6 Sliced Ham 25
7 Kleenex NULL

Product_ID Product_Name Category_ID

4 Apple 50
5 Bread 75
6 Sliced Ham 25
7 Kleenex NULL

166    ◾    Mastering SQL

BETWEEN AND IN OPERATOR
SQL provides many techniques for getting meaningful information from
many types of data. Sometimes, we need to extract a range of values from
all the column values in a table. For example, to retrieve information about
all employees of a company who were born in a specific year, we need to
use various operators and clauses to retrieve that data from databases.
Here is one such operator that is used to perform such task.

Between Operator

The SQL Between operator is used to determine whether an expression falls
inside a certain value range. This operator is inclusive, meaning it includes
the range’s start and end values. The values can be textual, numeric, or date
based. This operator is compatible with the SELECT, INSERT, UPDATE,
and DELETE commands. Let’s look at the syntax of this operator to gain a
better understanding of it.

The SQL Syntax
This operator is most frequently used in conjunction with the SELECT
command. The following is the syntax:

SELECT column_names
FROM table_name
WHERE column_name BETWEEN range_start AND range_end;

In Operator

You can define several values in a WHERE clause by using the IN opera-
tor. The numerous OR conditions are abbreviated as the IN operator.

Syntax:

SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1, value2, ...);

JOIN (INNER, LEFT, RIGHT AND FULL JOINS)
Our database contains vast amounts of data saved in thousands of tables.
When we need to look into a specific group of data that meets multiple
criteria, we run into issues when combining a huge number of data.

Clauses/Operators    ◾    167

Because the data is dispersed over different tables, we use various joins to
combine the tables into a single table to extract the data. SQL join com-
mands allow us to merge the rows, columns, and sections of many tables
and see them as a single entity. We may quickly integrate and present data
into a single table by using joins.

This makes it simple for us to run queries and transactions on the data
we require. Joins are performed based on one or more common fields in
two or more tables. They are commonly utilised when a user attempts to
extract data from tables that have one-to-many or many-to-many relation-
ships. Now that we have understood what joins are, let’s look at the many
forms of joins.

Different Types of Joins

Four types of joins that one should be aware of which are (Figure 2.2):

•	 Right join

•	 Inner join

•	 Full join

•	 Left join

Please see the image below.

How to Determine Which SQL Join to Use
Let us investigate each of them. I’ll use the following three tables to dem-
onstrate how to conduct Join operations on them for a better grasp of
this topic.

FIGURE 2.2  Types of joins in SQL.

168    ◾    Mastering SQL

Employee Table:

Project Table:

Client Table:

Inner Joining

This type of join delivers records that have values in both tables that match.
As a result, if you run an INNER join operation between the Employee and
Projects databases, all tuples with matching values in both tables will be
returned as output.

Emp_ID EmpF_name EmpL_name Age Email ID Phone No. Address

1 Vardha Kumar 22 vard@abc.com 9889543210 Delhi
2 Hema Sharma 32 hema@abc.com 9989554422 Mumbai
3 Aayush Shreshth 24 aayush@abc.com 9977222121 Kolkata
4 Hemant Sharma 25 hemant@abc.com 9878945666 Bengaluru
5 Swati Kapoor 26 swati@abc.com 9544567875 Hyderabad

Project ID Emp ID Client ID Project Name Project Start Date

111 1 3 Project1 2022-04-21
222 2 1 Project2 2022-02-12
333 3 5 Project3 2022-01-10
444 3 2 Project4 2022-04-16
555 5 4 Project5 2022-05-23
666 9 1 Project6 2022-01-12
777 7 2 Project7 2022-07-25
888 8 3 Project8 2022-08-20

C_ID CF_name CL_name Age C_Email PhoneNo Address Emp_ID

101 Sus Smit 30 sus@adn.com 9789511231 Kolkata 3
225 Moi Alia 27 moi@jsq.com 9889543561 Kolkata 3
356 Sohil Pank 22 so@wja.com 9966332000 Delhi 1
478 Zai Dagin 40 zai@qkq.com 9955889522 Hyderabad 5
558 Bhas Paiska 32 bhas@xyz.com 9638953269 Mumbai 2

https://vard@abc.com
https://hema@abc.com
https://aayush@abc.com
https://hemant@abc.com
https://swati@abc.com
https://sus@adn.com
https://moi@jsq.com
https://so@wja.com
https://zai@qkq.com
https://bhas@xyz.com

Clauses/Operators    ◾    169

Syntax:

SELECT Table1.Column1,Table1.Column2,Table2.
Column1,....
FROM Table1
INNER JOIN Table2
ON Table1.MatchingColumnName = Table2.
MatchingColumnName;

Example:

SELECT Emp.EmpID, Emp.EmpF_name, Emp.EmpL_name,
Proj.P_ID, Proj.P_Name
FROM Emp
INNER JOIN Projects ON Employee.EmpID=Projects.EmpID;

Output:

Full Joining

The Full Join, also known as the Full Outer Join, retrieves all entries that
have a match in either the left (Table1) or right (Table2) table.

Syntax:

SELECT Table1.Column1,Table1.Column2,Table2.
Column1,....
FROM Table1
FULL JOIN Table2
ON Table1.MatchingColumnName = Table2.
MatchingColumnName;

EmpID EmpF_name EmpL_name P_ID P_Name

112 Vardha Kumar 111 Project1
215 Hema Sharma 222 Project2
325 Aayush Shreshtha 333 Project3
385 Aayush Shreshtha 444 Project4
598 Swati Kapoor 555 Project5

170    ◾    Mastering SQL

Example:

SELECT Emp.EmpF_name, Emp.EmpL_name, Proj.P_ID
FROM Emp
FULL JOIN Proj
ON Emp.EmpID = Proj.EmpID;

Output:

Join on the Left

The LEFT JOIN or LEFT OUTER JOIN returns all records from the left
table as well as those that satisfy criteria in the right table. Furthermore, if
there are no matching entries in the correct table, the output or result-set
will contain NULL values.

Syntax:

SELECT Table1.Column1,Table1.Column2,Table2.
Column1,....
FROM Table1
LEFT JOIN Table2
ON Table1.MatchingColumnName = Table2.
MatchingColumnName;

Example:

SELECT Emp.EmpF_name, Emp.EmpL_name, Proj.P_ID,
Proj.P_Name
FROM Emp
LEFT JOIN
ON Emp.EmpID = Proj.EmpID ;

EmpFname EmpLname ProjectID

Vardha Kumar 111
Hema Sharma 222
Aayush Shreshtha 333
Aayush Shreshtha 444
Hemantha Sharma NULL
Swati Kapoor 555
NULL NULL 666
NULL NULL 777
NULL NULL 888

Clauses/Operators    ◾    171

Output:

Right Joining

The RIGHT JOIN or RIGHT OUTER JOIN returns all records from
the right table as well as those that satisfy a condition in the left table.
Furthermore, for records with no matching values in the left table, the
output or result-set will contain NULL values.

Syntax:

SELECT Table1.Column1,Table1.Column2,Table2.
Column1,....
FROM Table1
RIGHT JOIN Table2
ON Table1.MatchingColumnName = Table2.MatchingColumnName;

Example:

SELECT Emp.EmpFname, Emp.EmpLname, Proj.P_ID,
Proj.P_Name
FROM Emp
RIGHT JOIN
ON Emp.EmpID = Proj.EmpID;

Output:

EmpF_name EmpL_name P_ID P_Name

Vardha Kumar 111 Project1
Hema Sharma 222 Project2
Aayush Shreshtha 333 Project3
Aayush Shreshtha 444 Project4
Swati Kapoor 555 Project5
Hemanthi Sharma NULL NULL

EmpF_name EmpL_name P_ID P_Name

Vardha Kumar 111 Project1
Hema Sharma 222 Project2
Aayush Shreshtha 333 Project3
Aayush Shreshtha 444 Project4
Swati Kapoor 555 Project5
NULL NULL 666 Project6
NULL NULL 777 Project7
NULL NULL 888 Project8

172    ◾    Mastering SQL

SQL CONSTRAINT CHECK
The check constraints are the rule or group of rules that aid in the verifica-
tion of inserted (or updated) data values to tables depending on a certain
circumstance. As a result, we may test freshly inserted data values against a
predefined rule before allowing them into the table. The primary benefit of
check constraints is that ensure all data in a column contains validated val-
ues based on the check constraint rule. The CHECK constraint limits the
value range that can be entered into a column. When we specify a CHECK
constraint on a column, we are saying, it restricts the values that can be
assigned to that column. A CHECK constraint on a table might limit the
values in some columns based on the values in other columns in the row.

Syntax:

CREATE TABLE pets(
 ID INT NOT NULL,
 Name VARCHAR(30) NOT NULL,
 Breed VARCHAR(20) NOT NULL,
 Age INT,
 GENDER VARCHAR(9),
 PRIMARY KEY(ID),
 check(GENDER in (‘Male’, ‘Female’, ‘Unknown’))
);

The check constraint in the preceding SQL query limits the GENDER to
only the categories supplied. The associated database update is cancelled
if a new tuple is introduced or an existing tuple in the relation is altered
with a GENDER that does not belong to any of the three categories stated.

Query:
From the table mentioned above, the condition is where Students must be
over the age of >=17 to enrol in a university.

Student database schema at a university permitted to enrol in a
university.

University student database schema is as follows:

CREATE TABLE student(
 StudentID INT NOT NULL,
 Name VARCHAR(30) NOT NULL,
 Age INT NOT NULL,
 GENDER VARCHAR(9),

Clauses/Operators    ◾    173

 PRIMARY KEY(ID),
 check(Age >= 17)
);

Student Relation:

According to the constraint indicated in the check statement in the rela-
tion’s schema, the age of all students in the above relation is more than or
equal to 17 years. However, if the following SQL command is executed:

INSERT INTO student(STUDENTID, NAME, AGE, GENDER)
VALUES (1006, ‘Emma’, 16, ‘Female’);

There will be no database updates, and the age is 17 years.
Check constraint application possibilities entail as follows:

•	 Alter: Check constraint can also be introduced to an existing relation
with the syntax:

alter table TABLE_NAME modify COLUMN_NAME
check(Predicate);

•	 Giving a variable name to the constraint check: The following syntax
can be used to name check constraints:

alter table TABLE_NAME add constraint CHECK_CONST
check (Predicate);

•	 Remove check constraint: A check constraint can be removed from a
database relation using the syntax:

alter table TABLE_NAME drop constraint
CHECK_CONSTRAINT_NAME;

StudentID Name Age Gender

1001 Ron 18 Male
1002 Sam 17 Male
1003 Georgia 17 Female
1004 Erik 19 Unknown
1005 Christine 17 Female

174    ◾    Mastering SQL

•	 Drop check constraint: In MySQL, a check constraint can be removed
from a relation by using the syntax:

alter table TABLE_NAME drop check CHECK_CONSTRAINT_NAME;

SUMMARY
SQL clauses and operators were created to assist programmers who are
newbies with Structured Query Language in learning and applying the
language in their daily job. This chapter gives a brief demonstrates about
use of various SQL clauses, SQL commands, SQL statements, and SQL
operators. This chapter gives an overview about the SQL clauses and
commands like SELECT, INSERT, UPDATE, DELETE, WHERE, JOIN,
DISTINCT, ORDER BY, GROUP BY, HAVING, and UNION. The basic
objective of this chapter is to provide a very brief introduction you to this
powerful language and its clauses and lay the groundwork for you to con-
tinue your SQL learning.

175

C h a p t e r 3

SQL Injections

IN THIS CHAPTER

➣➣ What is SQLi

➣➣ Goals, types, and its mechanism

➣➣ Detection and prevention of SQL injection attacks

➣➣ Sqlmap and its features

➣➣ Prepared statements

The previous chapter taught us about the various SQL statements, clauses,
and related commands. In this chapter, we will be learning about a fre-
quent attack vector that involves backend database modification with
malicious SQL code to gain access to information that was not intended
to be displayed called as SQL injection (SQLi). So, we are moving on with
the brief introduction about SQLi and then go on to its mode of operation
with examples.

WHAT IS SQL INJECTION (SQLi)?
SQL Injection (SQLi) is an injection attack that allows malicious SQL state-
ments to be executed. These commands are used to control the database
server that is connected to the web application. Its flaws can be used by
attackers to bypass application security. They can bypass the authentica-
tion and authorization of a website or application to obtain the complete
contents of a SQL database. It can also be used to create, modify, and delete

DOI: 10.1201/9781003358435-3	

https://doi.org/10.1201/9781003358435-3

176    ◾    Mastering SQL

database records. Any website or web application that uses an SQL data-
base such as MySQL, Oracle, SQL Server or others can be vulnerable to
SQL Injection. It could be used by criminals to illegally access your sensi-
tive data such as customer information, personal data, secrets, intellectual
property and more. One of the oldest, most common and deadliest online
application vulnerabilities is SQL Injection.

SQL injection can have a high impact on a company bottom line. A suc-
cessful attack can result in an attacker reading lists of illegal users, deleting
entire tables, and in some situations gaining administrator rights to the
database, all of which are extremely damaging to a company. Consider
the client’s loss of trust in your SQLi cost estimate if personal information
such as phone numbers, addresses, and credit card information is com-
promised. Although any SQL database can be attacked using the vector,
websites are the most popular targets. As evidenced by their ranking in
OWASP’s top 10 online application security risks list, one of the most wide-
spread types of security attacks is SQL injection.1 With the availability of
automated SQL injection tools, the risk of exploiting SQLi has expanded,
as has the damage it can cause. In the past, attackers had to perform these
attacks manually, as the chances of targeting a company using SQL injec-
tion were very limited.

GOALS OF SQLi
Following are the goals attained by SQLi:

•	 To Extract Data: The attacker will seize sensitive information. If the
admin database is compromised, the entire database is at risk.

•	 To Gain Access to Data: They attempt to circumvent security and
gain access to the full database in order to modify the data.

•	 Fingerprinting the Database: In this approach, the attacker will
determine the database version and type. This technique allows
them to experiment with various types of queries in various
applications.

•	 Injectable Parameters are Discovered: susceptible param-
eters will be discovered for assault using some of the automated
technologies.

•	 Authentication Bypass: To gain access to the database, application
authentication methods will be circumvented.

SQL Injections    ◾    177

•	 Database Schema Identification: To successfully gather informa-
tion, the database table name, data type of each field, column name,
and so on will be acquired from the database table name.

•	 To Cause a Denial of Service: This includes dropping tables and
shutting down the system. The attacker attempts to get access to
the system in order to carry out a specified command within the
database.

MECHANISM OF SQL INJECTION ATTACK
A SQL query is a request to perform a certain action on an application
database. Queries can also be used to execute commands on the operating
system. When a user executes a query, a set of parameters ensures that only
the desired records are returned. Attackers take advantage of this during a
SQL injection by introducing malicious code into the query’s input form.
The first step in a SQL injection attack is to research how the database in
question works. This is accomplished by inserting a variety of random val-
ues into the query and watching the server’s response. After that, attackers
utilise what they’ve learned about the database to create a query that the
server will interpret and execute as a SQL command. A database might,
for example, store information about customers who have made purchases
and have customer ID numbers. An attacker might type “C_ID = 1,045
OR 2 = 2” into the input field instead of searching for a specific customer
ID. The SQL query would return all available customer IDs and any rel-
evant data because the statement 2 = 2 is always true. The intruder now
can obtain administrative privileges by avoiding verification. In addition
to offering fake access, SQL exploits could be programmed to delete an
entire database, get around password requirements, delete records, or add
undesirable data.

SQL is a query language developed for managing data in relational
databases. It allows you to see, amend, and delete data. Many web apps
and websites use SQL databases to store all of their data. Additionally, you
can utilise SQL statements to execute specific operating system functions.
As a result, a successful SQLi attack can have catastrophic complications:

•	 Attackers can use it to reveal the credentials of other users in the
database. They can then misuse the identities of these users to imper-
sonate them. It is possible that the impersonated user is a database
administrator with full access to the database.

178    ◾    Mastering SQL

•	 A database query language called SQL allows data to be selected and
output from a database. An SQL Injection vulnerability can give an
attacker complete access to database server data.

•	 Additionally, SQL enables you to update and add data to a database.
In a financial application, for instance, an attacker could use SQL
Injection to modify balances, invalidate transactions, or transfer
funds to their own account.

•	 SQL can be used to drop tables and delete records from a database.
Even if the administrator backs up the database, data destruction
may cause application downtime until the database is recovered.
Furthermore, backups could not include the most recent data.

•	 You can use the database server to access the operating system on
some database servers. This could be deliberate or unintentional. In
this situation, an attacker could start with a SQL Injection and then
go on to the internal network behind a firewall.

SQL INJECTION TYPES
The three different kinds of SQL injections are in-band SQLi (Classic),
inferential SQLi (Blind), and out-of-band SQLi. The ways that SQL injec-
tions access the backend data and the level of damage they can do are
categorised.

•	 In-band SQLi: The attacker uses the same line of communication
to initiate assaults and acquire information. Because of its simplic-
ity and efficiency, in-band SQLi is one of the most prevalent SQLi
attacks. This approach is divided into two sub-variations:

•	 SQLi Based on Error Messages: The attacker takes steps that
cause the database to generate error messages. The data provided
by these error messages could be used by the attacker to obtain
knowledge about the database’s structure.

•	 Union-Based SQLi: this technique makes use of the UNION
SQL operator, which combines many database select statements
into a single HTTP response. This response may contain infor-
mation that the attacker can use.

SQL Injections    ◾    179

•	 Blind (Inferential) SQLi: In order to understand the structure of
the server, the attacker delivers data payloads to it and then observes
its behaviour and reaction. Because data is not communicated from
the website database to the attacker, this method is known as blind
SQLi. As a result, the attacker is unable to view information about
the attack in-band. The Blind SQL injections rely on the server’s
response and behaviour patterns, thus they’re slower to execute but
just as dangerous. The various kinds of blind SQL injections include
the following:

•	 Boolean: The attacker sends a SQL query to the database, request-
ing a response from the application. Depending on whether the
query is true or false, the response will differ. The information in
the HTTP response will alter or remain unchanged depending
on the outcome. The attacker can then determine if the message
produced a true or false response.

•	 Time-based: The attacker sends a SQL query to the database,
which causes it to wait (for a specified number of seconds) before
responding. The attacker can tell whether a query is valid or false
based on how long it takes the database to answer. An HTTP
response will be generated immediately or after a waiting period
based on the result. Without relying on database data, the attacker
can determine if the message they used returned true or false.

•	 Out of Band SQLi: Only if specific functions on the database server
used by the web application are enabled, this type of attack is con-
ceivable. Usually, this kind of attack is used in conjunction with
in-band and inferential SQLi assaults. When a server is too slow or
unreliable to carry out these tasks, or when an attacker is unable to
start an attack and gather information over the same channel, SQLi
is utilised. To send data to an attacker, these techniques rely on the
server’s capacity to deliver DNS or HTTP requests.

DETECTION AND PREVENTION OF
SQL INJECTION ATTACKS
A successful SQL injection attack could cause serious harm by disclosing
private information and eroding customer trust. Detection of this kind
of attack must be made as soon as possible for this reason. Web applica-
tion firewalls are the solution that is most frequently used to stop SQLi

180    ◾    Mastering SQL

threats (WAFs). WAFs are based on a library of up-to-date attack signa-
tures and can be configured to warn against hazardous SQL queries in
online applications.

The following steps can be taken by businesses to prevent a SQL injec-
tion attack:

•	 Employees Should Be Educated On Preventative Techniques: It’s
critical that IT personnel, such as DevOps professionals, system
administrators, and software development teams, undergo compre-
hensive security training to understand how SQLi attacks occur and
how to prevent them in web applications.

•	 Don’t Place Your Faith On User Input: Input from a user in a SQL
query improves the chances of a successful SQL injection. Putting
security controls around user input is the best method to mitigate
this type of danger.

•	 Instead of A Blocklist, use an Allowlist: Because hackers can usu-
ally bypass a blocklist, using an allowlist instead of a blocklist to vali-
date and filter user input is suggested.

•	 Make Sure Your Applications are Current and that Your Route is
Updated: Outdated software is one of the most common SQL injec-
tion issues. Older technology is less likely to have SQLi security built
in, and unpatched software is often easier to manipulate. This also
applies to programming languages. Languages and syntax from
the past are more vulnerable. Use PDO as a replacement for older
MySQL, for example.

•	 Make use of Tried-and-True Preventative Techniques: Insufficient
protection against a SQLi attack is provided by query strings built
from scratch. Input validation, prepared statements, and parameter-
ised queries are the best ways to safeguard web applications.

•	 Regularly Scan for Security Threats: Scanning web applications on
a regular basis will detect and fix potential vulnerabilities before they
do major harm.

Simple SQLi Example

The first example is extremely straightforward. It demonstrates how
an attacker can bypass application security and authenticate as the

SQL Injections    ◾    181

administrator by exploiting a SQL Injection vulnerability. The script below
is pseudocode that runs on a web server. It is a simple example of using a
username and password to authenticate. The users table in the sample data-
base has the following columns: username and password.

Define POST variables

username = request.POST[‘u_name’]
password = request.POST[‘p_word’]

SQL query vulnerable to SQLi

SQL = “SELECT C_id FROM users WHERE username=’” +
username + “’ AND password=’” + password + “’”

Execute the SQL statement

database.execute(SQL)

SQL Injection is possible in these input fields. An attacker could utilise
SQL commands in the input to change the SQL statement that the data-
base server executes. They could, for example, use a single quote trick to
set the password field to:

Password’ OR 2=2

As a consequence, the database server runs the following SQL query:

SELECT C_id FROM users WHERE username=’username’ AND
password=’password’ OR 2=2’

No matter what the username or password is, the WHERE clause always
returns the first id from the users table because of the OR 2=2 state-
ment. The administrator is frequently the first user id in a database.
The attacker not only gets administrator rights but also bypasses authenti-
cation. To have additional control over how the query is executed, they can
also comment out the remaining SQL statement:

-- MySQL, MSSQL, Oracle, PostgreSQL, SQLite
‘ OR ‘2’=’2’ --
‘ OR ‘2’=’2’ /*

182    ◾    Mastering SQL

-- MySQL
‘ OR ‘2’=’2’ #
-- Access (using null characters)
‘ OR ‘2’=’2’ %00
‘ OR ‘2’=’2’ %16

SQLMAP: TEST A WEBSITE SQL INJECTION VULNERABILITY
The risk of cyberattacks is rising as technology advances. For a variety
of reasons, websites are growing more vulnerable to these attacks. SQL
injection attacks are on the rise, putting web application security at risk.
Scanning your online application can help you avoid data loss, cyber-
attacks, and business disruption. As a web developer, you should con-
stantly take precautions to safeguard your web application against SQL
vulnerabilities that hackers can exploit. The sqlmap utility is a popular
tool for identifying and exploiting SQL injection threats.

SQLMAP
Sqlmap is a free and open source penetration testing tool for detecting and
leveraging SQL injection vulnerabilities and gaining control of database
systems. It comes with a powerful detection engine, a slew of specialised
features for the ultimate penetration tester, and a slew of switches for data-
base fingerprinting, data extraction from databases, access to the under-
lying file system, and out-of-band command execution on the operating
system.

Features of Sqlmap

•	 It provides full support for MySQL, Firebird, PostgreSQL, Microsoft
Access, Oracle, IBM DB2, SQLite, Sybase, SAP MaxDB, Informix,
MariaDB, MemSQL, TiDB, CockroachDB, Microsoft SQL
Server, H2, MonetDB, Apache Derby, Amazon Redshift, Vertica,
Mckoi, HSQLDB, Altibase, MimerSQL, CrateDB, Greenplum,
Cubrid, Presto database system.

•	 Full Boolean-based blind, time-based blind, error-based, query-
based, stacked queries, and out-of-band SQL injection capabilities.

•	 By giving DBMS credentials, IP address, port, and database name,
it is possible to connect to the database directly without using SQL
injection.

SQL Injections    ◾    183

•	 It is possible to list down the users, password hashes, privileges, roles,
databases, tables, and columns.

•	 It is possible to crack password hash types using a dictionary-based
attack because they are automatically recognised.

•	 According to the user’s preferences, there is support for dumping
entire database tables, a selection of records, or certain fields. From
each column entry a subset of characters can also be chosen by the
user to be unloaded.

•	 Support for searching across all databases for specified database
names, specific tables, or specific columns. For instance, it may be
used to search tables holding custom application credentials where
the appropriate columns’ names contain strings such as name and
pass.

•	 When using MySQL, PostgreSQL, or Microsoft SQL Server, you can
download and upload any file from the database server’s underlying
file system.

•	 When using MySQL, PostgreSQL, or Microsoft SQL Server as the
database software, support is given for running arbitrary commands
on the database server’s underlying operating system and receiving
its standard output.

•	 Support for establishing an out-of-band stateful TCP connection
between the database server’s operating system and the attacker
workstation. This channel may be an interactive command prompt,
a Meterpreter session, or a graphical user interface (VNC) session,
depending on the user’s preferences.

•	 Support for user privilege escalation in database operations using the
Meterpreter getsystem command of Metasploit.

The detailed description of all the features can be learned from wiki2
(Figure 3.1).

184    ◾    Mastering SQL

How to Download

You can get the most recent zip ball or tarball here. The best way to get
sqlmap is to clone the Git repository:

git clone --depth 1 https://github.com/sqlmapproject/
sqlmap.git sqlmap-dev

WHERE SQLMAP MAY BE USED
If you see a web address that ends in “.php?id=“, the website may be vulner-
able to SQL injection in this mode, and an attacker may be able to access
information in the database.

To assess security weaknesses in targeted online applications, Sqlmap
accepts GET and POST protocols. If the URL has a bold GET parameter, the
website is more vulnerable to SQL injection. Hackers will be able to access
information in the database this way. By substituting the GET parameter
with an asterisk (*), we can check the website’s vulnerability.

For instance, go to http://checkphp.vulnerableweb.com/artists22.
php?artist=4*.

If this URL returns an error, the site is allowed. You can use sqlmap to
scan or exploit web vulnerabilities. Here, we learn how to use sql map to
check for SQL injection vulnerabilities on the web. For “.php? id=“ to “/”,
developers use a URL rewrite rule in .htaccess. It doesn’t mean it’s safe.

DAMN VULNERABLE WEB APPLICATION (DVWA)
The Damn Insecure Online Application is a highly vulnerable PHP/
MySQL web application. Its primary goal is to help security professionals
test their skills and tools in a legal environment, help web developers bet-
ter understand web application security processes, and help students and

FIGURE 3.1  Download link for Sqlmap.

https://github.com
https://github.com
http://checkphp.vulnerableweb.com
http://checkphp.vulnerableweb.com

SQL Injections    ◾    185

teachers learn about web application security in a controlled classroom
environment.

The goal of DVWA is to practice some of the common web vulnerabili-
ties in a basic, straightforward interface with various levels of difficulty.
Please be aware that this program has both documented and undocu-
mented vulnerabilities. This is done on purpose. It is recommended to
research as many issues as possible.

We will use DVWA as a demo environment to test our sqlmap com-
mands in this section, but first, we need to install the following software:

•	 Sqlmap install it using following code : $ sudo apt-get install
sqlmap

•	 DWV
The procedure is simple; simply follow the guide to install DVWA

on your system.3

Pass -h to sqlmap to display the command’s help menu and verify that
it is installed.

$ sqlmap –h

If you don’t want to install DVWA, you can use this publicly accessible
vulnerable website instead:

http://checkphp.vulnerableweb.com/artists22.php?artist=4*.
Let us get started now that everything is set up.

Determine the Database Management System (DBMS) in the Site

I want you to login to DVWA using admin as username and password
as password, then go to DVWA Security in the bottom left and set the
Security level to Low, which will allow us to exploit the website in its most
vulnerable state (Figure 3.2).

Returning to the hacker terminal, the following command is used to
determine the database list for this website:

$ sqlmap -u “http://localhost/vulnerabilities/
sqli/?id=1&Submit=Submit” --cookie “PHPSESSID=u8e7b7vb
kkienkafe68a6pabzf; security=low” –dbs

First, we use the -u parameter to specify our target URL, which in my case
is localhost/, but you should specify where your DVWA is installed,

http://checkphp.vulnerableweb.com
http://localhost
http://localhost

186    ◾    Mastering SQL

for example, if it’s on another machine in the same network and in the
DVWA folder.

192.168.1.3/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit.
We also pass the —cookie argument, because DVWA requires login to

begin performing SQL injection, so simply passing our cookie will log us
in. You can find your cookie by going to Developer Console > Network,
looking for any request, scrolling down to the Request Headers section,
and looking for Cookie.

We use –DBS to retrieve a list of the website’s available databases; the
following is the result:

available databases [2]:
[*] dvwadb
[*] information_schema

Listing of Tables in a Database

If you want to search a certain database, use the -D parameter to indicate
the database name, and then use the - table parameter to display a list of
all tables in that database:

$ sqlmap -u “http://localhost/vulnerabilities/
sqli/?id=1&Submit=Submit” --cookie “PHPSESSID=u8e7b7vb
kkienkafe68a6pabzf; security=low” -D dvwadb –tables

Output:
Database: dvwadb
[2 tables]

FIGURE 3.2  DVWA login page.

http://localhost
http://localhost

SQL Injections    ◾    187

Guestbook

Customers

Great, we have two tables in this database; we will dump the Customers
table in the next part.

Getting Rid of a Table

We must give the database, the table, and the - columns parameter to
examine the available columns of a certain table:

$ sqlmap -u “http://localhost/vulnerabilities/
sqli/?id=1&Submit=Submit” --cookie “PHPSESSID=u8e7b7vb
kkienkafe68a6pabzf; security=low” -D dvwadb -T
customers –columns

Here’s what happens when we use the -T argument to define the table
name:

Output:
Database: dvwadb
Table: Customer

Let’s dump this table so we can see all of its rows:

$ sqlmap -u “http://localhost/vulnerabilities/
sqli/?id=1&Submit=Submit” --cookie “PHPSESSID=u8e7b7vb
kkienkafe68a6pabzf; security=low” -D dvwadb -T
Customer –dump

Column Type

password varchar(32)
user varchar(15)
avatar varchar(70)
failed_login int(3)
first_name varchar(15)
last_login timestamp
last_name varchar(15)
user_id int(6)

http://localhost
http://localhost
http://localhost
http://localhost

188    ◾    Mastering SQL

We just substituted - dump for - columns; this will prompt you with vari-
ous questions, including whether you want to save the hashes to a tempo-
rary file or crack the passwords using a dictionary-based attack; I selected
Y (yes) for both, and the result.4

Mitigating the SQL Injection Attack with Prepared Declarations

When user-supplied data is utilised as part of a SQL query, SQL Injection
is a software vulnerability. An attacker can submit a legal SQL statement
that affects the logic of the application’s initial query due to faulty data val-
idation. As a consequence, the attacker has access to sensitive data belong-
ing to other users, as well as unlawful access to the entire system. SQL
Injection vulnerabilities are still common, despite being simple to address.
In this section, we’ll look at how to avoid these flaws by using good coding
methods also we will discuss about prepared statements, how they func-
tion, and how to use them.

Prepared Statements

A prepared statement is a parameterised, reusable SQL query that requires
the developer to create the SQL command and user-supplied data separately.
SQL Injection risks are avoided since the SQL command is executed safely.

In PHP, here’s an example of an unsafe approach:

$query = “SELECT * FROM users WHERE user = ‘$user_
name’ and password = ‘$password ‘“;
$result = mysql_query ($query);

From the above code it is clearly evident that the data that the user has
provided is directly inserted into the SQL query mentioned. If the user
pungin or inputs admin and ‘a’ or ‘2’=’2, the user will be able to access the
login credentials of the admin account without even having knowledge of
user login pin or password because the SQL statement declared above has
been tampered/modified.

Here is an example of a prepared statement approach in PHP:

$stmt = $mysqli->prepare (“SELECT * FROM users WHERE
username =? AND password =?”);
$stmt->Jheeta_Lal (“jl”, $username, $password);
$stmt->execute();

SQL Injections    ◾    189

In this example, the user-supplied data is not directly incorporated into
the SQL query. The user’s data has been replaced by a symbol. That serves
as a stand-in and temporarily replaces the data. The user’s data is added
afterwards after the SQL query has already been pre-compiled using
placeholders. If the user inserts admin and a’ or ‘2’ = ‘2, the initial SQL
query logic would not be changed. Instead, the database will search for the
entries where user admin whose password is literally a’ or ‘2’ = ‘2.

Mechanism of Action of Prepared Statements

Before we talk about how the prepared statement works, let’s take a look at
SQL query processing. It involves six basic steps:

•	 Parsing: The query in SQL is chunked down tokens (Individual
words). It will run then run a syntax error and misspelling checks to
ensure the validity of the SQL query.

•	 The Database Management System (DBMS) determines the query’s
legitimacy using a semantics check. Exist the columns and table that
are specified? The major question here is does the user have the nec-
essary rights to run this query?

•	 Binding: Byte code is used to translate the query into a form that
computers can interpret. The query is then put together and deliv-
ered to the database server to be optimised and run.

•	 Query Optimization: The DBMS selects the most cost-effective
algorithm to execute the query.

•	 Cache: The best method is saved in the cache so that the next time
the identical query is conducted, the first four steps will be skipped,
and the execution will begin immediately.

•	 Execution: The query is carried out, and the user receives the
results.

But given that they are distinct from a regular query, how does a prepared
statement go through this process?

Although the process is the same, there are a few differences:
Semantics Checking is equivalent to parsing. After the database engine

detects the placeholders, binding builds the query with placeholders. Later,

190    ◾    Mastering SQL

the user’s data will be added. The step called ‘Cache’ doesn’t change. The
query is cached so it can be used again.

There is still a phase after caching and before execution: placeholder
replacement. The user’s information is now entered in place of the place-
holders. The final query won’t go through the compilation process again
because the query has already been pre-compiled (Binding). Because of
this, the user-provided data will always be treated as a basic string and
is unable to alter the logic of the original query. The query will therefore
be resistant to SQL Injection flaws for that data. That is a method of tak-
ing advantage of a SQL statement’s inherent weakness by injecting mali-
cious SQL statements into its entry field for final execution, as described
in the chapter about SQLi above. Since 1998, when it initially surfaced,
it has mostly targeted stores and bank accounts. It can produce signifi-
cant effects when combined with other types of attacks like DDOS attacks,
cross-site scripting (XSS), or DNS hijacking.

Terminology

•	 Validation: It is a process of checking or confirming if the user input
fulfils the criteria predefined viz., string contains no stand alone
single quotation marks.

•	 Sanitization: It is the process of modifying the input to ensure that
it is valid (such as doubling single quotes); basically, it can be called
as validity check.

To prevent SQL injection, all input to be concatenated in dynamic SQL
must be properly filtered and sanitised.

Anatomy of a SQL Attack: An SQL attack has the following two parts:

•	 Research: Examine the vulnerable parts of the user application that
connect to the database.

•	 Attack: Enter malicious fields that can change the query to your
advantage.

Example 1: Consider the following piece of Java code for an authentication
form:

SQL Injections    ◾    191

String query = “SELECT userName, balance FROM accounts”
   + “WHERE userID=“ + request.getParameter(“userID”) +
“and password=’“ + request.getParameter(“Password”) + “‘“;
try
{
   Statement statement = connection.createStatement();
   ResultSet rs = statement.executeQuery(query);
   while (rs.next())
   {
	 page.addTableRow(rs.getString(“userName”),
			 rs.getFloat(“balance”));
   }
}
catch (SQLException e)
   {}

When a user inputs his or her UserID and password in normal circum-
stances, the following statement is generated for execution:

SELECT userName, balance
FROM accounts
WHERE userID=510 and password=’whatislife’

A hypothetical SQL injection attack would take advantage of the password
field to construct a boolean expression that would evaluate to true in all
situations. Consider the following settings for the userID and password
fields:

userID = 2’ or ‘2’ = ‘2
password = 2’ or ‘2’ = ‘2

The SQL statement is then transformed into

SELECT userName, balance
FROM accounts
WHERE userID=’2’ OR ‘2’=’2’ and
 password=’2’ OR ‘2’=’2’

Because the criteria (OR 2 = 2) is always true, the query will return a value.
Without knowing the user’s username or password, the system has suc-
cessfully authenticated the user.

192    ◾    Mastering SQL

Using a prepared statement to build a parameterised query, the vulner-
ability can be mitigated as follows:

String query = “SELECT userName, balance “+
		 “FROM accounts WHERE userID = ?
			 and password = ?”;
try {
PreparedStatement statement = connection.
prepareStatement(query);
statement.setInt(1, request.getParameter(“userID”));
ResultSet rs = statement.executeQuery();
while (rs.next())
{
   page.addTableRow(rs.getString(“userName”),
				 rs.getFloat(“balance”));
}
} catch (SQLException e)
   { ... }

If an attacker tries to set a value for the userID column that isn’t a basic
integer, statement.setInt() will throw a SQLException instead of
allowing the query to finish.

Example 2: Consider another form of attack that could occur during
authentication:

String query = “SELECT u_ID,Name, password Hash”+
		    “ FROM users WHERE Name = ‘“
		    + request.getParameter(“user”) + “‘“;
int userID = -1;
HashMap userGroups = new HashMap();
try
{
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery(query);
rs.first();
userID = rs.getInt(“u_ID”);
	
if (!hashOf(request.getParameter(“password”)).
equals(rs.getString(“password_Hash”)))
{

SQL Injections    ◾    193

   throw BadLoginException();
}

String userGroupQuery = “SELECT group FROM
groupMembership”+
				   “ WHERE u_ID = “ + u_ID;
	
rs = statement.executeQuery(userGroupQuery);
	
while (rs.next())
{
   userGroup.put(rs.getString(“group”), true);
}
}
catch (SQLException e){}
catch (BadLoginException e){}

Here’s an illustration of a typical inquiry:

SELECT userID, userName, passwordHash
FROM users
WHERE userName = ‘Anam’

The following could be injected into the userName field by the attacker.

Anam’;
INSERT INTO groupMmbership (userID, group)
VALUES (SELECT userID FROM users
WHERE userName=’Anam’, ‘Administrator’); --

As a result, the real question will become:

SELECT u_ID, Name, password hash FROM
 users WHERE Name = ‘Anam’;
INSERT INTO groupMmbership (u_ID, group)
VALUES (SELECT u_ID FROM users
WHERE userName=’Anam’, ‘Administrator’); --’

Another SQL statement will be appended to the original statement, result-
ing in the user being added to the Administrator database. The following
example shows how to minimise the attack by utilising a prepared state-
ment with a parameterised query.

194    ◾    Mastering SQL

String query = “SELECT u_ID, Name, passwordHash”+
		    “ FROM users WHERE userName = ?”;

try
{
PreparedStatement statement =
	 connection.prepareStatement(userLoginQuery);
statement.setString(1, request.getParameter(“user”));
ResultSet rs = statement.executeQuery();
}

Consider this third example of a query vulnerability, which is addressed
further down:

String query = “INSERT INTO users VALUES(“ +
	 request.getParameter(“userName”) + “);”;

The following is a broad question:

INSERT INTO users VALUES(“Anam”)

Consider what would happen if the attacker typed the following into the
userName field:

“Anam); DROP TABLE users;”

After that, the inquiry will become:

INSERT INTO users VALUES (“Anam”); DROP TABLE users;

When this query is run, it entirely deletes the users table. Again, a
prepared statement can be used as a workaround.

What is the Benefit of Utilising a Prepared Statement in Java?

The input is ‘sanitised’ by a prepared sentence. This ensures that whatever
the user types are, they are regarded as a string literal in SQL rather than
being included in the SQL query. It may also detect and eliminate danger-
ous code as well as escape particular characters. In other languages, like
PHP, the filter input or filter input array can be used to sanitise the string.

SQL Injections    ◾    195

What about Sanitization of the Input?

The technique of deleting any undesired characters from user-supplied
data (e.g.,’/ “) is known as input sanitization. This strategy, however, is
insufficient to avoid all sorts of SQL Injection and is extremely difficult
to master. To get around sanitization, there are a variety of bypass strate-
gies available, such as encoding data. As much as possible, avoid utilising
input sanitization. Prepared statements or stored procedures should be
used instead.

SUMMARY
In this chapter, we learned about SQL Injection, a type of attack that
makes use of weak SQL statements. Using SQL injection, it is possible to
access, insert, update, and delete data as well as circumvent authentication
processes. Use sound security practices while writing SQL statements to
reduce the risk of SQL injection. We also talked about the SQL injection
tools, including Sqlmap, and we got a quick explanation of prepared state-
ments and input sanitization.

NOTES
	 1	 https://owasp.org/www-project-top-ten/Wasp to ten, Wasp.
	 2	 Feature-Miroslav Stampar, Github.com.
	 3	 How To Setup DVWA Using XAMPP (Windows Tutorial)-Effecthacking.

com
	 4	 How to Scan SQL Injection Vulnerable Sites using Sqlmap-Rimsha Ashraf,

Root Install.

https://owasp.org
http://Github.com
http://Effecthacking.com
http://Effecthacking.com

https://taylorandfrancis.com

197

C h a p t e r 4

SQL Functions

IN THIS CHAPTER

➣➣ What are Functions in SQL

➣➣ Different types of function

➣➣ Syntax and Examples

In the previous chapter, we learned about SQLi, how to prevent SQLi attack,
and sqlmap and its functions, and we also discussed a brief introduction
about prepared statements and their function in SQL. A function is a for-
mula that accepts one or more arguments as input, processes them, and
then returns output. It is a programming construct that returns a single
value and accepts parameters. Function parameters can change the result
or return the result. The beauty of a function is that it can be embedded in
an expression because it is self-contained. An expression in Oracle SQL is
a statement of SQL code or even another function by definition.

SQL FUNCTIONS
SQL functions are a very powerful feature that can be used to perform cal-
culations on data, change individual data items, change output for groups
of rows, format data and numbers for display, and convert column data
types. An SQL function always outputs a value and can accept input.

SQL functions are regularly used routines that help with database
processing, modification, and maintenance. SQL functions are simple

DOI: 10.1201/9781003358435-4	

https://doi.org/10.1201/9781003358435-4

198    ◾    Mastering SQL

subroutines that are often used and reused in SQL database systems to
process and manipulate data. In order to create and manage databases, all
SQL database systems include DDL (Data Definition Language) and DML
(Data Manipulation Language) tools.

There are five general categories of functions in SQL. Object reference
functions that provide access to unique object pointers, aggregation func-
tions that group rows into groups, analytic functions that also group but
allow in-depth data analysis, and user-defined functions that you can
create using a programming language such as PL/SQL, are other types of
functions.

•	 Single-Row Function: Individual rows of a query can be operated
on individually. In other words, the same process can be performed
for each row that the query retrieves using the single-row function.

•	 Aggregation Functions: These functions combine repeating group-
ings into a set of rows and aggregate repeating values into things like
sums or averages.

•	 Analytical Functions: Summaries of subsets of aggregates are pro-
duced by analytics, not aggregates that break iterations into distinct
parts.

•	 Object Reference Functions: These functions refer to values using
pointers. Object reference functions typically dereference values
from objects or refer to other objects.

•	 User-Defined Functions: PL/SQL can be used to create custom func-
tions, extending Oracle SQL’s extensive built-in capability library.

Aggregate functions, scalar (non-aggregate) functions, and analytical
functions are major forms of SQL functions, which are discussed in detail
in this chapter. Non-aggregate functions work with GROUP BY and oper-
ate on each record individually, whereas aggregate functions operate on
several records and produce a summary. SQL has a plethora of built-in
functions for performing various data calculations.

Aggregate Functions

It returns a single value after performing a calculation on a set of
values. They can be used in a SELECT statement’s select list or the

SQL Functions    ◾    199

HAVING clause. To calculate the aggregation on categories of data, use
an aggregation in conjunction with the GROUP BY clause. To calculate
the aggregation on a given range of values, use the OVER clause. The
GROUPING or GROUPING _ID aggregations cannot be followed by the
OVER clause.

When executed on the same input data, all aggregate functions are
deterministic, which means they always return the same output.

Analytic Functions

Analytic functions calculate a total value from a set of rows. Analytic
functions, unlike aggregate functions, can return numerous rows for each
group. Within a group, analytic functions can be used to generate moving
averages, running totals, percentages, or top-N outcomes.

Scalar SQL Functions

The Scalar Functions in SQL are used to return a single value from the
given input value. Here are some of the most popular aggregate functions.
Let us look into each one of the above functions in depth.

Function Description

SUM() This returns the sum of a group of values.
COUNT() It returns the number of rows either based on a

condition, or without a condition.
AVG() Returns the average value of a column (numeric).
MIN() Returns the minimum value of a column.
MAX() Returns a maximum value of a column.
FIRST() Return the first value of the column.
LAST() Returns the last value of the column.

Function Description

LCASE() convert string column values to lowercase
UCASE() It converts a string column values to uppercase.
LEN() It returns the length of the text values in the column.
MID() It extracts substrings from column values having string data type.
ROUND() It rounds off a numeric value to the nearest integer.
NOW() It returns the current system date and time.
FORMAT() Format how a field must be displayed.

200    ◾    Mastering SQL

SQL Server Mathematical Functions

Capabilities are objects that have a bunch of SQL proclamations. Each
capability acknowledges boundaries as information and plays out a suc-
cession of tasks prior to bringing output back. A solitary outcome set is
returned by a capability. SQL Server gives a few numerical capabilities to
perform essential numerical estimations. SQL has numerous numerical
capabilities that permit you to perform business and designing estima-
tions. Not all the SQL math capabilities are utilised in normal everyday
activities.

For instance, we can use these functions to find the square root, loga-
rithmic, round, floor, elementary exponential value, and trigonometric
functions. However, there are several commonly used functions cited
below:

Name Description and Syntax

ABS Returns the absolute value
Syntax: ABS (number|expression)
Example: Select abs(-2);
Returns 2

ACOS Returns the arc cosine of an argument
Syntax: ACOS(numeric_expression)
Example: Select acos(0);
Returns 1.57079632679

ASIN Returns the arc sine of an argument
Syntax: ASIN(numeric_expression)
Example: SELECT
ASIN(0.5) angle_1_radians,
Returns 0.523598775598299

ATAN Returns the arc tangent of an argument
Syntax: ATAN(x)
Example: SELECT ATAN(1);
Returns 0.7855398163

CEILING,CEIL It floats values are rounded to the nearest integer value.
Syntax: CEIL(numeric_expression)
Example: SELECT CEIL(50.49);
Returns 61

COS Returns the cosine of an argument
Syntax: COS(numeric_expression)
Example: SELECT COS(0) cos_zero;
Returns 1

(Continued)

SQL Functions    ◾    201

Name Description and Syntax

COT Returns the cotangent of an argument
Syntax: COT(numeric_expression)
Example: SELECT COT(PI()/5) cot_one_fifth_pi;
Returns 11.4300523

EXP Returns the value of the e constant (2.71828...) raised to a certain
number’s power.

Syntax: EXP(number | expression)
Example: SELECT EXP(5);
Returns 148.413159103

LN Returns the argument’s natural logarithm.
LOG Returns the first argument’s natural logarithm.
LOG10 It returns the argument’s base-10 logarithm.
LOG2 It returns the argument’s base-2 logarithm.
MOD It returns the leftover part (modulo) after dividing a number by

another.
Syntax: MOD(a,b);
Example: SELECT 20/5 as integer, MOD
(20,5) as remainder;
Returns 20, 5

PI The result is pi, which is 3.14159265358979.
Syntax : SELECT PI()

POWER POWER returns a value that has been raised to the power of a given
number.

Syntax: POWER(numeric_expression,power)
Example: SELECT POWER(5,1);
Returns 5

RAND Returns a random floating-point value
Syntax: SELECT RAND();

ROUND Rounds a number to a specific precision
Syntax: SELECT ROUND(..value.., number_of_decimal_places)

SIGN Returns the sign of an argument
Syntax:

SIN Returns the sine of an argument
Syntax: SIN(numeric_expression)

SQRT Returns the square root of an argument
Syntax: SQRT(number | expression)

TAN Returns the tangent of an argument
Syntax: tan A = a/b

TRUNCATE Truncates to a specified number of decimal places
Syntax: TRUNCATE(n, d)

202    ◾    Mastering SQL

CONVERSION FUNCTION
The Oracle built-in function library includes type conversion functions
in addition to SQL utility functions. In some cases, the query may expect
input of a certain data type but receives it in a different data type. In some
circumstances, Oracle tries implicitly to transform the unexpected value
to a compatible data type that can be substituted in place without com-
promising application continuity. Oracle can convert types intuitively or
explicitly, depending on the programmer’s preference (Figure 4.1).

Explicit vs. Implicit

Practically, all programming languages provide processes or facilities for
data type conversion, which is the process of changing the data type of a
value into a different data type. When we shift our focus to SQL Server
in order to discuss the specifics of SQL data conversion procedures, we
can divide the data conversion process into two categories: implicit and
explicit conversions. SQL Server performs implicit conversion for internal
purposes, and you can learn more about it in the later section of Server
Implicit Conversion. Explicit conversion is done explicitly by a database
programmer or administrator, and it is done with the help of any data
conversion function at the same time.

Conversion of Implicit Data Types

Oracle can implicitly convert a VARCHAR2 or CHAR value to a NUMBER
or DATE type value. Similarly, an Oracle server can convert a NUMBER
or DATA type value to character data automatically. It’s worth noting that
the implicit interconversion only occurs when the character represents a
valid numeric or date type value.

FIGURE 4.1  Types of conversions.

SQL Functions    ◾    203

Example: Take a look at the SELECT queries below. Because Oracle inter-
nally interprets 2000 and ‘2000’ as the same, both queries will return the
same answer.

Query 1:

SELECT emp_id, F_name, Bonas
FROM employees Data
WHERE bonas > ‘20000’;

Query 2:

SELECT emp_id, F_name, Bonas
FROM employees Data
WHERE bonas > ‘20000’;

Output:

SQL Conversion of Explicit Data Types Conversion

It is functions are single-row functions that can typecast the value of a
column, a literal, or an expression. The three functions that conduct data
type cross-modification are TO CHAR, TO NUMBER, and TO DATE.

Syntax:

TO_CHAR (number1, [format], [nls_parameter])

Emp_ID F_Name Bonas

10524 Stevan 34,000
10785 Naive 27,000
10289 Lexi 30,000

From To

VARCHAR2 or CHAR NUMBER
VARCHAR2 or CHAR DATE
DATE VARCHAR2
NUMBER VARCHAR

204    ◾    Mastering SQL

Using the TO CHAR Function with Dates

Syntax:

TO_CHAR (date, ’format_model’)

The format model is as follows:

•	 It is case sensitive and must be contained in single quote marks.

•	 Any valid date format element can be used.

•	 Has an FM element to suppress leading zeros or erase padded blanks.

•	 A comma separates it from the date value.

Example:

SELECT Emp_id, TO_CHAR (J_date, ’MM/YY’) Month_Hired
FROM employees data
WHERE L_name = ’DEPP’;

Using the TO CHAR Function with Numbers

Syntax:

 TO_CHAR (number, ’format_model’)

To show a number value as a character, you can use the TO CHAR func-
tion with the following format elements:

Example:

SELECT TO_CHAR(salary, ’$55,555.00’) SALARY
FROM employees data
WHERE L_name = ’TUD’;

Output:

Salary

$9,000

SQL Functions    ◾    205

The to Number and to Date Functions
Using the TO NUMBER function, convert a character string to a numeric
format:

Syntax:

TO_NUMBER(char[, ’format_model’])

Using the TO DATE function, convert a character string to a date format:

TO_DATE(char[, ’format_model’])

There is a fx modifier on these functions. This modification provides the
exact match for a TO DATE function’s character parameter and date for-
mat model.

Example:

SELECT L_name, J_date
FROM employees data
WHERE J_date = TO_DATE (’JUNE 24, 1995’, ’fx Month DD,
YYYY’);

Output:

The conversion function lets us to alter date formats for display, convert
column datatypes, perform calculations on data, modify individual data
items, and manipulate output for groups of rows

GENERAL FUNCTIONS IN SQL
The functions are used to handle null values and deal with any data type.
Numerous mathematical functions, component manipulation functions,
including virtual components, Date Time functions, forward and reverse
geocoding, interactive selection, and system functions such as reporting
GPU types, table caching, manual thread configuration, value sequences,
and vector numeric functions are all included in these general-purpose
functions (Figure 4.2).

Last Name Hire Date

True 24-June-95

206    ◾    Mastering SQL

NVL()

It is a SQL function that converts a null value to a valid value. Date, let-
ter, and integer are examples of data types that can be employed. The data
types must be compatible, i.e., expr1 and expr2 must be of the same data
type.

Syntax:

NVL (expr1, expr2);

expr1 is the source worth or articulation that is equipped for containing
an invalid.

expr2 is the desired outcome for converting the null.

NVL2 Function

The NVL2 capability assesses the underlying articulation (expr1, expr2,
expr3). The NVL2 capability returns the subsequent articulation on the
off chance that the principal articulation isn’t invalid. In the event that
the primary articulation is invalid, the third articulation is returned, for
example, NVL2 returns expr2, assuming expr1 isn’t invalid. NVL2 returns
expr3 on the off chance that expr1 is invalid. Any information type can be
utilised in the expr1 contention.

FIGURE 4.2  General function in SQL.

SQL Functions    ◾    207

Syntax:

NVL2 (expr1, expr2, expr3)

expr1 is the source value or expression, which may or may not contain a
null value.

If expr1 is not null, the value returned is expr2.
If expr1 is null, the value returned is expr3.

DECODE()

It performs the duties of an IF-THEN-ELSE or CASE statement, simplify-
ing conditional searches. With the help of IF-THEN-ELSE logic, which
is ubiquitous in computer languages, the DECODE function decodes an
expression. The DECODE function decodes the expression after compar-
ing each search value to it. If the expression matches the search, the result
is returned.

When a search value does not match any of the result values and the
default value is omitted, a null value is returned.

Syntax:

DECODE(col|expression, search1, result1
 [, search2, result2,...,][, default])

COALESCE()

It really takes a look at the main articulation, and in the event that the
principal articulation isn’t invalid, it returns that articulation; otherwise,
it does a COALESCE of the excess articulations.

The benefit of the COALESCE() capability over the NVL() capability is
that the COALESCE capability can take different substitute qualities. In
basic words, COALESCE() capability returns the main non-invalid articu-
lation in the rundown.

Syntax (Sentence Structure):

COALESCE (expr_1, expr_2, ... expr_n)

208    ◾    Mastering SQL

NULLIF()

The NULLIF capability looks at two articulations. Assuming that they are
equivalent, the capability brings invalid back. In the event that they are
not equivalent, the capability returns the principal articulation. You can’t
indicate the strict NULL for first articulation.

Syntax (Sentence Structure):

NULLIF (expr_1, expr_2)

LVL()

LVL assesses a condition when one of the two operands of the condition
might be invalid. The capability can be utilised exclusively in the WHERE
provision of a question. It takes as a contention a condition and returns
TRUE in the event that the condition is FALSE or UNKNOWN and FALSE
assuming the condition is TRUE.

Syntax (Sentence Structure):

LVL(condition(s))

CONDITIONAL STATEMENTS IN SQL
They are utilised to characterise what rationale is to be executed in view
of the situation with some condition being fulfilled. There are two sorts of
contingent articulations upheld in SQL strategies:

•	 CASE

•	 IF

The CASE explanation goes through conditions and returns a worth when
the primary condition is met (like an on the off chance that else procla-
mation). In this way, when a condition is valid, it will quit perusing and
return the outcome. Expecting no conditions are substantial, it returns the
value in the ELSE statement. If there is no ELSE condition and no circum-
stances are authentic, it brings NULL back

SQL Functions    ◾    209

Syntax (Sentence Structure):

CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 WHEN condition THEN resultN
 ELSE result
END;

Case Statement in SQL

CASE Statement can be utilised to restrictively go into some rationale in
view of the situation with a condition being fulfilled. There are two sorts
of CASE Statement:

Straightforward Case Explanation: used to go into some rationale in
view of a strict worth.

Looked through Case Explanation: used to go into some rationale
in view of the worth of an expression. The WHEN provision of the
CASE proclamation characterises the worth that when fulfilled
decides the progression of control.

Here is an illustration of a SQL methodology with a CASE explanation
with a basic case-proclamation when-condition:

 CREATE PROCEDURE UPDATE_DEPT (IN p_workdept)
 LANGUAGE SQL
 BEGIN
DECLARE v_workdept CHAR(7);
SET v_workdepart = p_workdepart;
CASE v_workdepart
 WHEN ‘A1’ THEN
 UPDATE department SET d_name = ‘D1’;
 WHEN ‘B1’ THEN
 UPDATE department SET d_name = ‘D2’;
 ELSE
 UPDATE department SET d_name = ‘D3’;
 END CASE
END

210    ◾    Mastering SQL

Here is an illustration of CASE proclamation with a looked case-explana-
tion when-provision:

 CREATE PROCEDURE UPDATE_DEPART (IN p_workdepart)
 LANGUAGE SQL
 BEGIN
DECLARE v_workdept CHAR(3);
SET v_workdept = p_workdept;
CASE
WHEN v_workdept = ‘A1’ THEN
UPDATE department SET departname = ‘D1’;
WHEN v_workdept = ‘B1’ THEN
UPDATE department SET departname = ‘D2’;
ELSE
UPDATE department SET departname = ‘D3’;
END CASE
END

IF Proclamation in SQL

In the event that assertions can be utilised to restrictively go into some
rationale in view of the situation with a condition being fulfilled. The IF
proclamation is consistently identical to CASE explanations with a looked
case-proclamation when proviso. The IF proclamation upholds the utilisa-
tion of discretionary ELSE IF provisos and a default ELSE condition. An
END IF condition is expected to show the finish of the assertion.

Here is an illustration of procedure that contains an IF statement:

CREATE PROCEDURE UPDATE_SAL (IN empNum CHAR(10),
INOUT rating SMALLINT)
LANGUAGE SQL
BEGIN
IF rating = 2 THEN
UPDATE employee
SET salary = salary * 2.10, bonus = 2000
WHERE empno = empNum;
ELSEIF rating = 4 THEN
UPDATE employee
SET salary = salary * 2.05, bonus = 1000
WHERE empno = empNum;
ELSE
UPDATE employee

SQL Functions    ◾    211

SET salary = salary * 1.03, bonus = 500
WHERE empno = empNum;
END IF;
END

CHARACTER FUNCTIONS
Character capabilities acknowledge character inputs and can return either
characters or number qualities as a result. SQL gives various different
person datatypes which incorporates – CHAR, VARCHAR,VARCHAR2,
LONG, RAW, and LONG RAW. The different data types are arranged into
three distinct data types:

•	 VARCHAR2: A variable-length character datatype whose informa-
tion is changed over by the RDBMS.

•	 Burn: The fixed-length datatype.

•	 Crude: A variable-length datatype whose information isn’t changed
over by the RDBMS, yet entirely left in ‘crude’ structure.

At the point when a person’s capability returns a person’s esteem that worth
is dependably of type VARCHAR2 (variable length), with the accompany-
ing two exemptions: UPPER and LOWER. These capabilities convert to
upper and to bring down case, individually, and return the CHAR values
(fixed length), assuming that the strings they are approached to change
over are fixed-length CHAR contentions.

SQL gives a rich arrangement of character works that permit you to
get data about strings and change the items in those strings in more than
one way.

•	 Character capabilities are of the accompanying two sorts:

•	 Case-Manipulative Functions (LOWER, UPPER and INITCAP)

•	 Character-Manipulative Functions (REPLACE, CONCAT,
LENGTH, SUBSTR, INSTR, LPAD, RPAD, and TRIM)

Case-Manipulative Functions

•	 Lower: It has the ability switches alpha individual qualities over
totally to lowercase. LOWER will really return a fixed-length string

212    ◾    Mastering SQL

in the event that the approaching string is fixed-length. LOWER
won’t change any characters in the string that are not letters, since
the case is unimportant for numbers and unique characters, for
example, the dollar sign ($) or modulus (%).

Syntax (Language Structure):

LOWER(SQL course)
Input1: SELECT LOWER(‘TechFORTech’) FROM DUAL;
Output1: TechFORTech
Input2: SELECT LOWER(‘DATABASE@456’) FROM DUAL;
Output2: database@456

•	 Upper: This capability switches alpha person values over completely
to capitalised. Likewise, as well as UPPER capability will really return
a fixed-length string on the off chance that the approaching string is
fixed-length. UPPER won’t change any characters in the string that
are not letters, since the case is unessential for numbers and extraor-
dinary characters, for example, the dollar sign ($) or modulus (%).

Syntax (Language Structure):

UPPER (SQL course)
Input1: SELECT UPPER (‘techpoint’) FROM DUAL;
Output1: techpoint
Input2: SELECT UPPER(‘Abcd $407%10’) FROM DUAL;
Output2: Abcd $407%10

•	 Initcap: It has the capability to change alpha character values over
completely to uppercase for the first letter of each word and rest oth-
ers in lowercase. The words in the string should be isolated by either
or _ space. The words in the string should be isolated by either # or
_ space.

Syntax (Sentence Structure):

INITCAP(SQL course)
Input1: SELECT INITCAP(‘Tech point is a software
engineering gateway for nerds’) FROM DUAL;

SQL Functions    ◾    213

Output1: Tech point is A Computer Science Portal For
Geeks
Input2: SELECT INITCAP (‘LEARN_CODES_FOR_GOOD’) FROM
DUAL;
Output2: Learn_Codes_For_Good

Character-Manipulative Functions

•	 Concat: This capability generally annexes (links) string2 to the
furthest limit of string1. On the off chance that both of the string
is NULL, CONCAT capability returns the non-NULL contention.
On the off chance that the two strings are NULL, CONCAT brings
NULL back.

•	 Syntax:

CONCAT(‘String1’, ‘String2’)
Input1: SELECT CONCAT (‘Data’ ,’Learning’) FROM DUAL;
Output1: DataLearning
Input2: SELECT CONCAT(NULL ,’Operating System’) FROM
DUAL;
Output2: Operating System
Input3: SELECT CONCAT(NULL ,NULL) FROM DUAL;
Output3: -

•	 Length: This capability returns the length of the information string.
On the off chance that the info string is NULL, LENGTH capabil-
ity returns NULL and not Zero. Likewise, assuming the informa-
tion string contains additional areas towards the beginning, in the
middle between or toward the finish of the string, then, at that point,
the LENGTH capability incorporates the additional areas as well and
returns the total length of the string.

Syntax:

LENGTH (Column|Expression)
Input1: SELECT LENGTH (‘Dancing Is Love ‘) FROM DUAL;
Output1: 20
Input2: SELECT LENGTH (‘ Write an Experience ‘) FROM
DUAL;
Output2: 24

214    ◾    Mastering SQL

 Input3: SELECT LENGTH (‘’) FROM DUAL; or SELECT
LENGTH (NULL) FROM DUAL;

•	 Substr: It has capability returns a piece of a string from a given
beginning point to an endpoint. In the event that a substring length
isn’t given, then SUBSTR returns every one of the characters till the
finish of string (from the beginning position determined).

Syntax:

SUBSTR(‘String’,start-index,length_of_extracted_
string)
Input1: SELECT SUBSTR (‘Data management, 15) FROM
DUAL;
Output1: Data
Input2: SELECT SUBSTR (‘Data Manage System’, 9, 7)
FROM DUAL;
Output2: Manage

•	 Instr: This capability returns numeric place of a person or a string in a
given string. Alternatively, you can give a position m to begin looking,
and the event n of string. Likewise, on the off chance that the beginning
position isn’t given, then, at that point, it begins search from record 1, as
a matter of course. In the event that subsequent to looking through in
the string, no match is found, INSTR capability brings 0 back.

Syntax:

INSTR (Column|Expression, ‘String’, [,m], [n])
Input: SELECT INSTR (‘Google applications are great
applications’,’app’,1,2) FROM DUAL;
Output: 23

•	 LPAD and RPAD: These capabilities return the strings cushioned to
the left or right (according to the utilisation), consequently, the ‘L’ in
‘LPAD’ and the ‘R’ in ‘RPAD’, to a predefined length, and with a pre-
determined cushion string. On the off chance that the cushion string
isn’t indicated, then, at that point, the given string is cushioned on
the left or right (according to the utilisation) with spaces.

SQL Functions    ◾    215

Syntax:

LPAD(Column|Expression, n, ‘String’)
Syntax: RPAD(Column|Expression, n, ‘String’)
LPAD Input1: SELECT LPAD (‘105’,5,’*’) FROM DUAL;
LPAD Output1: **105
LPAD Input2: SELECT LPAD(‘hey’, 29, ‘Tech’) FROM DUAL;
LPAD Output2: TechTechTechTechhey
 RPAD Input1: SELECT RPAD(‘8000’,7,’*’) FROM DUAL;
RPAD Output1: 8000***
RPAD Input1: SELECT RPAD(‘Lern’, 25, ‘time’) FROM DUAL;
RPAD Output1: Lerntimetimetimetime

•	 Trim: This capability manages the string input all along or end (or
both). Assuming that no string or burn is indicated to be managed
from the string and there exists some additional room at start or end
of the string, then those additional areas are managed off

Syntax:

TRIM(Leading|Trailing|Both, trim_character FROM
trim_source)
Input1: SELECT TRIM(‘T’ FROM ‘TECH’) FROM DUAL;
Output1: ECH
Input2: SELECT TRIM(‘techpoint’) FROM DUAL;
Output2: Techpoint

•	 Replace: This capability looks for a person string and, whenever
found, replaces it with a given substitution string at every one of the
events of the string. Substitute is valuable for looking through exam-
ples of characters and afterwards changing all cases of that example
in a solitary capability call. If a substitution string isn’t given, then
REPLACE capability eliminates every one of the events of that char-
acter string in the info string. In the event that neither a match string
nor a substitution string is determined, REPLACE brings NULL

Syntax:

REPLACE(Text, search_string, replacement_string)
Input1: SELECT REPLACE(‘DATA MANAGEMENT’,
‘DATA’,’DATABASE’) FROM DUAL;

216    ◾    Mastering SQL

Output1: DATABASE MANAGEMENT
Input2: SELECT REPLACE(‘abcdeabcccabdddeeabcc’, ‘ABC’)
FROM DUAL;
Output2: deccabdddeec

Listing Function

The listing capability changes values from a gathering of columns into a
rundown of values that are delimited by a configurable separator. Listing
is regularly used to denormalise columns into a line of comma-isolated
values (CSV) or other similar configurations reasonable for human perus-
ing. Listing doesn’t make a difference any getting away: it isn’t by and large
conceivable to tell whether an event of the separator in the outcome is a
real separator, or simply an aspect of a worth. The protected utilisation
of listing for electronic information connection points is hence restricted
to cases in which an unambiguous separator can be chosen, for example,
while amassing numbers, dates, or strings that are known to not contain
the separator.

Syntax:
Listing is an arranged set capability, which requires the inside bunch
statement to indicate a request. The insignificant language structure is as
follows:

LISTAGG(<expression>, <separator>) WITHIN GROUP(ORDER
BY …)

The <expression> should not contain window capabilities, total capabili-
ties, or subqueries.0 The standard just permits character literals in <sepa-
rator> – for example, no articulation and no tight spot parameter.1 Bind
boundaries are by and by all around upheld in practice. Listing eliminates
invalid qualities before aggregation2 like most other total capabilities. In
the event that no not invalid worth remaining parts, the aftereffect of list-
ing is invalid. If necessary, blend can be utilised to supplant invalid quali-
ties before conglomeration.

THE ON OVERFLOW STATEMENT
The return sort of listing is either varchar or clob with an execution charac-
terised length limit. In practice, it is a varchar type. Listing acknowledges

SQL Functions    ◾    217

the discretionary on flood provision to characterise the way of behaving
assuming that the outcome surpasses the length furthest reaches of the
bring type back:

LISTING(, ON OVERFLOW …)

The default is on flood blunder. For this situation, the standard requires an
exemption with SQLSTATE 22001 to be brought – up practically speak-
ing, this necessity isn’t satisfied. The on flood shorten statement forestalls
the flood by just linking; however, many qualities as the outcome type can
oblige. Moreover, the on flood shorten condition permits one to determine
how the outcome is ended:

ON OVERFLOW TRUNCATE [] WITH [OUT] COUNT

The discretionary defaults to three periods (...) and will be added as the
last component in the event that truncation occurs. If with count is deter-
mined and truncation occurs, the quantity of overlooked values is placed
in sections and annexed to the outcome. The SQL standard doesn’t need
an admonition to be given on truncation. To know regardless of whether
the outcome is finished, clients can parse the result or look at the genuine
length of the outcome to the determined length for an outcome containing
all qualities.

Distinct

The listing capability acknowledges the discretionary set quantifiers all
and particular:

LISTAGG([ALL|DISTINCT] , …) …

Assuming nor is determined, everything is default. Assuming particular
is indicated, copy values are eliminated before conglomeration. Note that
the end of copies is dependent upon the resemblance basically. Particular
can be carried out physically by eliminating copies before collection – for
example in a subquery. This works for data sets not supporting unmistak-
able in listing and furthermore permits to keep a specific event on the off
chance that copies exist.

The accompanying model shows this methodology. The sections g and
o address the gathering by and request by keys separately. The model

218    ◾    Mastering SQL

purposes min (o) to keep the main event on the off chance that one worth
seems on various occasions.

SELECT g
 , LISTAGG(val, ‘,’) WITHIN GROUP (ORDER BY o) list
 FROM (SELECT g, min(o) o, Val
 FROM dist_listagg
 GROUP BY g, Val
) dt
 GROUP BY g

COMBINING LISTING WITH FILTER AND OVER
Listing can be combined with the filter and over clauses:

LISTING(…) WITHIN GROUP(…) [FILTER(WHERE …)] [OVER(…)]

The effect of the filter clause is to remove rows before aggregation. Case
can be used for the same effect. The over clause must not contain an order
by clause10 because the mandatory within group clause must contain an
order by clause anyway. It is not possible to narrow the window frame: the
set of aggregated rows is always the full partition.

COMPATIBILITY
Listing was introduced with SQL: 2016 as optional feature T625. Even
though listing is not yet widely supported, most databases offer similar
functionality using a proprietary syntax.

ARRAYS
In the event that the question doesn’t rigorously need the arrival of a delim-
ited string, exhibits can be utilised to return a variety of values. A cluster
can be developed utilising the array_agg total capability or by means of a
subquery.

ARRAY_AGG(ORDER BY …)
ARRAY()

The subsequent structure can contain particular and bring first to elim-
inate copies and breaking point the exhibit length. Neither one nor the
other methodologies play out a verifiable cast: The exhibit components

SQL Functions    ◾    219

have a similar kind as. That implies that the recovering application can get
the qualities in a sort of safe way and apply designing whenever required.
The sort safe nature of exhibits permits them to likewise convey invalid
qualities in an unambiguous manner. Array_agg does subsequently not
eliminate invalid qualities like other total capabilities do (counting list-
ing). The channel provision can be utilised to eliminate invalid qualities
before conglomeration with array_agg. On the off chance that the chan-
nel condition eliminates all columns, array_agg returns invalid – not an
unfilled exhibit. The subquery sentence structure permits eliminating
invalid qualities in the where proviso of the and returns a vacant exhibit
if the subquery returns no lines. On the off chance that the request for
components is superfluous, multisets and gather can likewise be utilised
to pass a sort of safe rundown to an application.

DOCUMENT TYPES
Like array_agg, the SQL standard characterises total capabilities that
return JSON or XML pieces: for example, json_arrayagg and xmlagg. The
principal benefit contrasted with listing is that they apply the separate get-
away rules.

JSON_ARRAYAGG(ORDER BY … [NULL ON NULL])
XMLAGG(XMLELEMENT(NAME ,) ORDER BY …)

Using with Recursive

Albeit the listing usefulness can be carried out utilising with recursive, it is
much of the time the better decision to utilise exhibits, reports or the restric-
tive options to listagg as displayed below. The following unique case can be
executed utilising just with recursive and middle of the road SQL-92:

LISTING (DISTINCT , …) WITHIN GROUP(ORDER BY)

The example below makes use of g as group by key, value as

, and ‘,’as
DUE TO RECURSIVE
list_agg(g, val, list)
AS (
 SELECT g, min(val), CAST(null AS VARCHAR(255))
FROM listagg_demo

220    ◾    Mastering SQL

GROUP BY g
UNION ALL
SELECT prev.g,
(SELECT min(val)
FROM listagg_demo this
 WHERE this.g = prev.g
AND this.Val > prev.val) Val
, COALESCE(list || ‘, ‘, ‘’) || val
FROM list_agg prev
WHERE prev.Val IS NOT NULL
)

SELECT g, list
FROM list_agg
WHERE val IS NULL
ORDER BY g

This specific execution utilises the ‘free record filter’ procedure and the
presentation will stay at a fairly low level even with a file on (g, val). The
particular way of behaving is a symptom of this technique. The right treat-
ment of invalid in Val is a significant exceptional case: albeit invalid is
by and large disregarded in totals, a gathering that comprises of invalid
qualities just should in any case be available in the outcome. This implies
that invalid should not be taken out in the event that there is no not invalid
worth in the gathering. The execution above utilises min(Val) in the
non-recursive articulation to get this social more conventional execution
that upholds all semantics and erratic request by conditions is conceiv-
able utilising with recursive and window capabilities. Aaron Bertrand’s
post ‘Assembled Concatenation in SQL Server’ presents an illustration
of this methodology.1 In the two cases, erratic on flood conduct can be
executed.

Proprietary Extensions

The main helpful expansion that is generally accessible is the help of tie
boundaries and consistent articulations in. The standard neither per-
mits precluding the nor discarding the inside bunch provision. However,
a few information bases treat them as discretionary and apply execution

SQL Functions    ◾    221

characterised defaults or uncover indistinct way of behaving if inside
bunch is precluded.

Proprietary Alternatives

There are two broadly accessible restrictive options to listagg: group_con-
cat and string_agg. Despite the fact that a few data sets utilise a similar
exclusive capability name, they actually utilise an alternate sentence struc-
ture. Fortunately, the exclusive capabilities have a similar default semantic
as listing: they channel invalid qualities before collection yet don’t elimi-
nate copies.

AGGREGATE FUNCTION IN SQL
Aggregate functions are unquestionably one of the many interesting
features – well, functions – of SQL. Although they are not unique to SQL,
they are frequently used. They are a component of the SELECT statement,
which combines the strength of these operations with the advantages of
SELECT (joining tables, filtering only the data and columns we require).
A total capability in SQL plays out a computation on various qualities and
returns a solitary worth. SQL gives many total capabilities that incorpo-
rate avg, count, aggregate, min, max, and so forth. A total capability over-
looks NULL qualities when it plays out the computation, aside from the
count capability. A total capability in SQL returns one worth subsequent
to working out different upsides of a section. We frequently utilise total
capabilities with the GROUP BY and HAVING conditions of the SELECT

Different sorts of SQL total capabilities are as follows:

•	 Count()

•	 Sum()

•	 Avg()

•	 Min()

•	 Max()

222    ◾    Mastering SQL

The accompanying table shows the SQL Server total capabilities:

DATE FUNCTIONS
One of the most crucial SQL functions is the date, but it can be challeng-
ing for beginners to understand because there are numerous forms in
which dates can be stored in databases and numerous formats in which
users want to access dates depending on the particular needs. When
storing both the date and time values at once in a single column in SQL,
Date Time (time is also used together with the date) is usually utilised.
Date time is sometimes used in place of dates because dates and times are
related.

Aggregate Function Description

AVG The AVG () total capability computes the normal of non-
NULL qualities in a set.

CHECKSUM_AGG The CHECKSUM_AGG () capability computes a checksum
esteem in a group of rows.

COUNT The COUNT () total capability returns the quantity of columns
in a gathering, incorporating lines with NULL qualities.

COUNT_BIG The COUNT_BIG () total capability returns the number of
rows (with BIGINT information type) in a gathering,
incorporating columns with NULL qualities.

MAX The MAX () total capability returns the highest value (greatest)
in a bunch of non-NULL qualities.

MIN The MIN () total capability returns the lowest value (least) in a
bunch of non-NULL qualities.

STDEV The STDEV () capability returns the measurable standard
deviation of all values given in the expression based on a
sample of the data population.

STEVE The STDEVP() capability likewise returns the standard
deviation for all qualities in the given expression, however
does so in light of the whole information populace.

SUM () The SUM () total capability returns the summation of all
non-NULL qualities a set.

VAR The VAR () capability returns the factual fluctuation of values
in an articulation in light of an example of the predefined
populace.

CARP The VARP () capability returns the measurable difference of
values in an articulation however does so in view of the whole
information populace.

SQL Functions    ◾    223

Let’s understand each date function used in SQL one by one in detail:

Function Description with Examples

NOW() Returns the current date and time
Query: Select NOW();
Returns: 2022-06-22 11:17:52

CURATE() Returns the current date
Query: Select CURDATE();
Returns: 2022-06-22

OUR TIME() Returns the current time
Query: Select CURTIME();
Returns: 11:17:52

DATE() Separates the date part of a date or date/time articulation
Info Table:

Id Name Birth Time
120 Patrick 1998-09-16 10:40:15

Query: SELECT Name, DATE(Birth Time) AS Birthdate FROM Info;

Output:
Name Birthdate
Patrick 1998-09-16

EXTRACT() Returns a solitary piece of a date/time
Syntax: EXTRACT(unit FROM date);
Only some of the possible units – including the microsecond, second,
minute, hour, day, week, month, quarter, and year – are actually
utilised.

Also an acceptable date phrase is “date.
For instance, consider the “Info” table below:

Id Name Birth Time
120 Patrick 1998-09-16 10:40:15

Query 1: SELECT Name, Extract(DAY FROM BirthTime) AS
BirthDay FROM Info;

Output:
Name Birthday
Patrick 16

(Continued)

224    ◾    Mastering SQL

Function Description with Examples

Query 2: SELECT Name, Extract(YEAR FROM BirthTime)
AS BirthYear FROM Info;

Output:
Name Birth year
Patrick 1998

Query 3: SELECT Name, Extract(SECOND FROM BirthTime)
AS BirthSecond FROM Info;

Output: Name Birth year
Patrick 15

DATE_ADD() Adds a predefined time stretch to a date
Syntax: DATE_ADD(date, INTERVAL expr type);
Where expr is the number of intervals to be added and date is a valid
date expression and the following categories, and types are
acceptable: Minute, Second, Second, Hour, Day, Week, Month,
Quarter, Year, etc.

For instance, consider the ‘Info’ table below.

Id Name Birth Time
120 Patrick 1998-09-16 10:40:15

Query 1: SELECT Name, DATE_ADD(BirthTime, INTERVAL
1 YEAR) AS BirthTimeModified FROM Test;

Output:

Id Name Birth Time
120 Patrick 1999-09-16

Query 2: SELECT Name, DATE_ADD(BirthTime, INTERVAL
30 DAY) AS BirthDayModified FROM Test;

Output:

Id Name Birth Time
120 Patrick 1999-10-16

DATE_SUB() Deducts a predetermined time stretch from a date
Query: Select DATE_SUB();

DATEDIFF() Returns the quantity of days between two dates
Syntax: DATEDIFF(date1, date2);
date1 & date2- date/time expression
Query: SELECT DATEDIFF(‘2018-01-10’,’2019-01-20’) AS DateDiff;
Output: 10

DATE_
FORMAT()

Displays date/time data in different formats
Syntax: DATE_FORMAT(date,format);
Query: DATE_FORMAT(NOW(),’%d %b %y’;
Output:10 Jan 2017

SQL Functions    ◾    225

Date is a substantial date and configuration indicates the result design for
the date/time. The configurations that can be utilised are:

%a-Abbreviated work day name (Sun–Sat)

%b-Abbreviated month name (Jan–Dec)

%c-Month, numeric (0–12)

%D-Day of month with English postfix (0th, first, second, third)

%d-Day of month, numeric (00–31)

%e-Day of month, numeric (0–31)

%f-Microseconds (000000–999999)

%H-Hour (00–23)

%h-Hour (01–12)

%I-Hour (01–12)

%I-Minutes, numeric (00–59)

%j-Day of year (001–366)

%k-Hour (0–23)

%l-Hour (1–12)

%M-Month name (January–December)

%m-Month, numeric (00–12)

%p-AM or PM

%r-Time, 12-hour (hh:mm:ss followed by AM or PM)

%S-Seconds (00–59)

%s-Seconds (00–59)

%T-Time, 24-hour (hh:mm:ss)

%U-Week (00–53) where Sunday is the primary day of week

%u-Week (00–53) where Monday is the primary day of week

%V-Week (01–53) where Sunday is the primary day of week, utilised
with %X

226    ◾    Mastering SQL

%v-Week (01–53) where Monday is the main day of week, utilised
with %x

%W-Weekday name (Sunday–Saturday)

%w-Day of the week (0 = Sunday, 6 = Saturday)

%X-Year for the week where Sunday is the principal day of week, four
digits, utilised with %V

%x-Year for the week where Monday is the primary day of week, four
digits, utilised with %v

%Y-Year, numeric, four digits

%y-Year, numeric, two digits

Some of the fundamental date functions used in SQL are those that were
just mentioned. Other date functions are utilised in various contexts.
Before utilising any of them, one must be aware of the syntax and argu-
ments supplied into the function to prevent unexpected outcomes.

NULL VALUES IN SQL
A field with a NULL value has no value at all. It is possible to create a
new record or update an existing record without providing a value for a
field that is optional in a table. The field will then be saved with the value
NULL. A column is said to be null, or to contain null, if it contains no
value in a row of columns. Sections of any information type that are not
obliged by NOT NULL or PRIMARY KEY uprightness imperatives can
contain nulls. When the true value is unknown or when a value would be
meaningless, use a null. Since NULL is not itself a value and lacks a data
type, it serves as a placeholder for attributes that have uncertain or missing
values. Codd suggested separating NULLs into two categories:

•	 A-marks: Info that could be relevant but is unknown (such as some-
one’s age).

•	 I-marks indicate that the data are not appropriate (for example, a
phone number for someone without a phone or a spouse’s name for
someone not married).

SQL Functions    ◾    227

Oracle Database considers a character value with a length of zero to be
invalid. However, as they are not equal, they do not use null to represent
a numeric value of zero. Null is the result of any arithmetic expression
that contains one. For instance, null is null when added to 10. In actuality,
when given a null operand, all operators (apart from concatenation) return
null.

Why Are Null Functions Necessary?

To perform operations on the null values kept in our database, null func-
tions are necessary. On NULL values, we can run functions that explicitly
identify if a value is null or not.

With the use of this ability to recognise null values, additional actions
on them can be carried out, much like the aggregate procedures in SQL.
The following are a few of the functions:

How Can Null Values Be Tested?

With comparison operators like =, <, or < .it is not possible to check for
NULL values. We will have to use the IS NULL and IS NOT NULL opera-
tors instead.

Is Null Syntax
SELECT column_names
FROM table_name
WHERE column_name IS NULL;

Is Not Null Syntax
SELECT column_names
FROM table_name
WHERE column_name IS NOT NULL;

Sr. No. Function Description

1 ISNULL() Assists us to supplant NULL qualities with the desired worth.
2 IFNULL() Permits us to return the main worth on the off chance that the

worth is NULL, and in any case returns the subsequent worth.
3 COALESCE() Assists us with returning the first non-invalid qualities in quite

a while.
4 NVL() Assists with supplanting the NULL worth with the ideal worth

given by the client.

228    ◾    Mastering SQL

Syntax:
The basic syntax of NULL while creating a table:

SQL> CREATE TABLE CUSTOMERS (
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)
);

NOT NULL in this case denotes that the column must always accept an
explicit value of the specified data type. We did not apply NOT NULL in
two columns; hence, these columns are open to NULL values. When a field
contains a NULL value, it means that the record creation process left the
field empty.

However, when comparing an unknown number to any other value, the
result is always unknown and not included in the final results, which is
why the NULL value might be problematic when picking data. To check
for a NULL value, you must use the IS NULL or IS NOT NULL operators.
Take a look at the CUSTOMERS table, which contains the following
records:

The IS NOT NULL operator is now used as follows:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM CUSTOMERS
WHERE SALARY IS NOT NULL;

ID Name Age Address Salary

1022 Ravish 32 Los Angles 7,000.00
1028 Kevin 23 Texas 8,000.00
1030 Chris 25 Ohio 6,500.00
1042 Humpty 27 Omaha 5,500.00
1051 Kevin 22 Manchester
1055 Khalessi 25 California 3,500.00
1060 Maven 24 San Francisco

SQL Functions    ◾    229

Output:

The IS NULL operator is now used as follows:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM CUSTOMERS
WHERE SALARY IS NULL;

Output:

NUMERIC FUNCTIONS
The numerical functions accept a numeric expression as input and output
numeric results. The majority of mathematical functions have NUMBER
as their return type. The following table lists the included numerical
functions:

ID Name Age Address Salary

1022 Ravish 32 Los Angles 7,000.00
1028 Kevin 23 Texas 8,000.00
1030 Chris 25 Ohio 6,500.00
1042 Humpty 27 Omaha 5,500.00
1055 Khalessi 25 California 3,500.00

ID Name Age Address Salary

1051 Kevin 22 Manchester
1060 Maven 24 San Francisco

Function Description

ABS(numeric_exp) Returns the outright worth of numeric_exp.
ACOS(float_exp) Returns the arccosine of float_exp as a point, communicated

in radians.
ASIN(float_exp) Returns the arcsine of float_exp as a point, communicated in

radians.
ATAN(float_exp) Returns the arctangent of float_exp as a point, communicated

in radians.
ATAN2(float_

exp1, float_exp2)
Returns the arctangent of the x and, not set in stone by
float_exp1 and float_exp2, independently, as a point,
imparted in radians.

(Continued)

230    ◾    Mastering SQL

Function Description

CEILING(numeric_
exp)

Returns the littlest number more noteworthy than or
equivalent to numeric_exp. The return esteem is of similar
information type as the info boundary.

COS(float_exp) gives the cosine of float exp, where float exp is the radian-
based coordinate of the point.

COT(float_exp) Returns the cotangent of float_exp, where float_exp is a point
communicated in radians.

DEGREES(numeric_
exp)

Returns the quantity of degrees changed over from numeric_
exp radians.

EXP(float_exp) Returns the exponential value of float_exp.
FLOOR(numeric_exp) Returns the biggest number not exactly or equivalent to

numeric_exp. The return esteem is of similar information
type as the information parameter.

LOG(float_exp) returns the float exp’s natural logarithm.
LOG10(float_exp) gives back the base The float exp 10 logarithm.
MOD(integer_

exp1, integer_exp2)
Returns the amount left over (modulus) after dividing integer
exp1 by integer exp2.

PI() gives a floating-point value that is equal to the constant value
of pi.

POWER(numeric_
exp, integer_exp)

returns the result of scaling numeric exp by integer exp.

RADIANS(numeric_
exp)

gives the number of radians created when numeric exp
degrees were converted.

RAND([integer_exp]) Returns a random floating-point number using the specified
seed value of integer exp.

ROUND(numeric_
exp, integer_exp)

returns the numeric exp rounded to integer exp places to the
right of the decimal. Numeric exp is rounded to |integer exp|
places to the left of the decimal point if integer exp is
negative.

SIGN(numeric_exp) gives back a numeric exp sign signal. –1 is returned if numeric
exp is less than zero. 0 is returned if numeric exp is equal to
zero. One is returned if numeric exp is larger than 0.

SIN(float_exp) Returns the sine of float_exp, where float_exp is an angle
expressed in radians.

SQRT(float_exp) Returns the square root of float_exp.
TAN(float_exp) Returns the tangent of float_exp, where float_exp is an angle

expressed in radians.
TRUNCATE(numeric_

exp, integer_exp)
Returns numeric_exp shortened to integer_exp puts right of
the decimal point. Assuming integer_exp is negative,
numeric_exp is shortened to |integer_exp| spots to one side of
the decimal point.

SQL Functions    ◾    231

With the exception of ABS, ROUND, TRUNCATE, SIGN, FLOOR, and
CEILING, which return upsides of similar information type as the infor-
mation boundaries, all numerical capabilities return upsides of the sort
SQL FLOAT. The value of another scalar function, the name of a col-
umn, or a numeric literal can all be used as arguments for the numeric
exp function. The underlying data type can be one of the following: SQL
NUMERIC, SQL TINYINT, SQL SMALLINT, SQL INTEGER, SQL
BIGINT, SQL FLOAT, SQL DECIMAL, SQL REAL, or SQL DOUBLE.
The name of a column, the output of another scalar function, or a numeric
literal with SQL FLOAT as the underlying data type can all be used as float
exp arguments.

STRING FUNCTIONS
A string function always accepts a string value as an input, no matter what
data type is returned. There are numerous built-in string functions in SQL
Server that developers can use. The SQL Server string functions listed
below examine an input string and output a string or a number:

Function Description

ASCII Return the value of the character in terms of ASCII code value
CHAR Convert the value of the character as an ASCII value
CHARINDEX Look for a substring inside a string beginning from a predefined

area and return the place of the substring
CONCAT join at least two strings into one string
CONCAT_WS Connect various strings with a separator into a solitary string
DIFFERENCE Analyse the SOUNDEX() upsides of two strings
FORMAT Return a worth designed with the predefined design and

discretionary culture
LEFT Separate a given various characters from a character string

beginning from the left
LEN Return various characters of a character string
LOWER Lowercase a string by changing it
LEITRIM Remove all leading blanks from the provided string to produce a

new string.
NEAR Return the Unicode character that corresponds to the requested

integer code in accordance with the Unicode standard.
PATINDEX The starting location of a pattern’s first appearance in a string is

returned.
(Continued)

232    ◾    Mastering SQL

Except for FORMAT, all built-in string functions are deterministic. This
indicates that they always produce the same result when called with a
particular set of input values.

The input type is implicitly changed to a text data type when inputs to
string functions are not strings.

Function Description

QUOTE NAME provides a response that is a Unicode string with the delimiters
appended to make the input string a legitimate delimited identifier.

REPLACE Anywhere a substring appears in a string, replace it with a different
substring.

REPLICATE Get a string that has been repeated a certain amount of times.
REVERSE Return a character string’s reverse order.
RIGHT Extract a specified number of characters, starting on the right, from

a character string.
RTRIM Remove any trailing blanks from the provided string to create a new

string.
SOUNDEX If a string is spoken, return a four-character (SOUNDEX) code for it.
SPACE Returns a string of repeated spaces.
STR Returns character data converted from numeric data.
STRING_AGG Concatenate rows of strings with a specified separator into a new

string
STRING_ESCAPE Escapes special characters in a string and returns a new string with

escaped characters
STRING_SPLIT A table-valued function that splits a string into rows of substrings

based on a specified separator.
STUFF Delete a part of a string and then insert another substring into the

string starting at a specified position.
SUBSTRING Extract a substring within a string starting from a specified location

with a specified length
TRANSLATE Replace several single-characters, one-to-one translation in one

operation.
TRIM To make a new string, take off the leading and trailing blanks from

the given string.
UNICODE returns a character’s integer value according to the Unicode standard.
UPPER Make a string all uppercase.

SQL Functions    ◾    233

Deterministic and Nondeterministic

When invoked with a certain set of input values and the same database
state, deterministic functions always provide the same output. Even though
the database state that they access remains constant, nondeterministic
functions may produce different outcomes each time they are called with
a particular set of input values. Given the aforementioned restrictions, the
function AVG, for instance, consistently produces the same outcome, yet
the GETDATE function, which returns the current date time value, con-
sistently produces a different outcome.

In order for the SQL Server Database Engine to be able to index the
results of user-defined functions, either through indexes on computed col-
umns that call the function or through indexed views that reference the
function, a number of criteria must be met. One of these characteristics is
a function’s determinism. For instance, if a view contains any references
to nondeterministic functions, a clustered index cannot be generated on
that view.

Built-in Function Determinism

Any built-in function’s determinism cannot be changed. Depending on
how SQL Server implements the function, each built-in function is either
deterministic or nondeterministic. For instance, adding an ORDER BY
clause to a query doesn’t alter the query’s use of a deterministic function.
With the exception of FORMAT, every built-in function for strings is
deterministic. See String Functions for a list of these functions.

The following built-in functions are always predictable since they fall
within built-in function categories other than string functions:

ABS, POWER, ACOS, DAY, RADIANS, ASIN, DEGREES, ROUND,
ATAN, EXP, SIGN, ATN2, FLOOR, SIN, CEILING, ISNUMERIC, SQRT,
LOG, TAN, COT, LOG10, YEAR, DATALENGTH, MONTH, NULLIF

The following functions can be used in indexed views or indexes on
calculated columns even if they are not always deterministic when they
are provided that way.

234    ◾    Mastering SQL

The system’s statistical functions, metadata, security, and configuration
are all nondeterministic.

SUMMARY
In the chapter, we learned about the functions, which are pre-written pro-
grammes that may take variables and return a value, and Oracle offers
various built-in functions. Function can be used alone or can be used in
combination with several other functions like string, math, date, transla-
tion etc. There may be several uses for a function depending on the kind of
information that is given to carry out code.

NOTE
	 1	 Grouped Concatenation in SQL Server- Aaron Bertrand, SQL Performance.

com

Function Comments

All aggregate These are deterministic unless they are specified with the OVER and
ORDER BY clauses.

CAST Deterministic unless used with sql_variant, small date time, or
DateTime.

CONVERT Deterministic unless any of the following circumstances apply:
SQL variant is the source type.
The source type is nondeterministic, and the target type is SQL variant.
Datetime or smalldatetime is the source or target type, a character string
is the other source or target type, and a nondeterministic style is given.
The style parameter must be a constant for the system to be
deterministic. Except for styles 20 and 21, all styles with a value of less
than or equal to 100 are nondeterministic.

With the exception of styles 106, 107, 109, and 113, all styles larger than
100 are deterministic.

With the exception of CHECKSUM(*), CHECKSUM is deterministic.
Only when used in conjunction with the CONVERT function, ISDATE is
deterministic for however long style isn’t equivalent to 0, 100, 9, or 109
and the CONVERT style boundary is provided.

Only when a seed parameter is supplied, RAND is deterministic.

http://Performance.com
http://Performance.com

235

Bibliography

Adrienne Watt & Nelson Eng - SQL Structured query language - https://open-
textbc.ca/dbdesign01/chapter/sql-structured-query-language/. Accessed on
(2022 June 11).

Adrienne Watt & Nelson Eng - SQL Structured query language - https://open-
textbc.ca/dbdesign01/chapter/sql-structured-query-language/. Accessed on
(2022 June 16).

Ahmad Yaseen - Constraints in SQL Server: SQL NOT NULL, UNIQUE and
SQL primary key - https://www.sqlshack.com/commonly-used-sql-server-
constraints-not-null-unique-primary-key/. Accessed on (2022 June 17).

Ajay Sarangam - Important types of indexes in SQL server - https://u-next.com/
blogs/data-science/types-of-indexes-in-sql-server/. Accessed on (2022
June 14).

Andrew Pomponio - MySQL overview: Key features, benefits, and use cases -
https://www.openlogic.com/blog/mysql-overview. Accessed on (2022
June 16).

Chad Brooks - When to use SQL - https://www.businessnewsdaily.com/5804-
what-is-sql.html. Accessed on (2022 June 10).

Data Flow - https://learn.microsoft.com/en-us/sql/integration-services/data-flow/
data-flow?view=sql-server-ver16. Accessed on (2022 June 17).

How SQL works? - https://www.tutorialspoint.com/sql/sql-overview.htm.
Accessed on (2022 June 12).

Index in SQL - https://www.simplilearn.com/tutorials/sql-tutorial/index-in-sql.
Accessed on (2022 June 14).

Installing MySQL on Microsoft Windows - https://dev.mysql.com/doc/ref-
man/8.0/en/windows-installation.html. Accessed on (2022 June 16).

Introduction to SQL - https://www.w3schools.com/sql/sql_intro.asp. Accessed on
(2022 June 10).

Kashyap Vyas - Major Advantages of Using MySQL - https://www.datamation.com/
storage/8-major-advantages-of-using-mysql/. Accessed on (2022 June 15).

Kate Brush - RDBMS (relational database management system). -https://www.
techtarget.com/searchdatamanagement/definition/RDBMS-relational-
database-management-system. Accessed on (2022 June 10).

Katie Terrell Hanna| Sarah Lewis - SQL injection - https://www.techtarget.
com/searchsoftwarequality/definition/SQL-injection. Accessed on (2022
June 15).

https://opentextbc.ca
https://opentextbc.ca
https://opentextbc.ca
https://opentextbc.ca
https://www.sqlshack.com
https://www.sqlshack.com
https://u-next.com
https://u-next.com
https://www.openlogic.com
https://www.businessnewsdaily.com
https://www.businessnewsdaily.com
https://learn.microsoft.com
https://learn.microsoft.com
https://www.tutorialspoint.com
https://www.simplilearn.com
https://dev.mysql.com
https://dev.mysql.com
https://www.w3schools.com
https://www.datamation.com
https://www.datamation.com
https://www.techtarget.com
https://www.techtarget.com
https://www.techtarget.com
https://www.techtarget.com
https://www.techtarget.com

236    ◾    Bibliography

MySQL advantages and disadvantages - https://www.techstrikers.com/
MySQL/advantages-and-disadvantages-of-mysql.php. Accessed on (2022
June 16).

MySQL advantages and disadvantages - https://www.w3schools.blog/mysql-
advantages-disadvantages. Accessed on (2022 June 16).

MySQL Enterprise Edition - https://www.mysql.com/downloads. Accessed on
(2022 June 16).

MySQL Exercises - https://www.w3schools.com/MySQL/default.asp. Accessed on
(2022 June 15).

MySQL Features - https://en.wikipedia.org/wiki/MySQL. Accessed on (2022
June 15).

MySQL Functions - https://www.techonthenet.com/mysql/functions.php#:~:text=
In%20MySQL, %20a%20function%20is, and%20then%20return%20a%20
value. Accessed on (2022 June 15).

MySQL HeatWave - https://www.mysql.com/. Accessed on (2022 June 15).
MySQL - Installation - https://www.tutorialspoint.com/mysql/mysql-installation.

htm. Accessed on (2022 June 17).
MySQL RDBMS https://www.w3schools.com/mysql/mysql_rdbms.asp#:~:text=

RDBMS%20stands%20for%20Relational%20Database, the%20data%20in%
20the%20database. Accessed on (2022 June 13).

MySQL Tutorial - https://www.tutorialspoint.com/mysql/index.htm. Accessed on
(2022 June 15).

Naveen - What is a database management system? - https://intellipaat.com/blog/
tutorial/sql-tutorial/introduction-to-sql/. Accessed on (2022 June 11).

Peter Loshin - Structured query language (SQL). - https://www.techtarget.com/
searchdatamanagement/definition/SQL. Accessed on (2022 June 10).

PHP MySQL INSERT query - https://www.tutorialrepublic.com/php-tutorial/
php-mysql-insert-query.php. Accessed on (2022 June 18).

PHP MySQL use the WHERE clause https://www.w3schools.com/php/php_
mysql_select_where.asp. Accessed on (2022 June 18).

PL/SQL - Environment setup - https://www.tutorialspoint.com/plsql/plsql_envi-
ronment_setup.htm. Accessed on (2022 June 12).

Rajendra Gupta - An overview of SQL comments - https://www.sqlshack.com/an-
overview-of-sql-comments/. Accessed on (2022 June 17).

Richard Peterson - What is SQL? Learn SQL basics, SQL full form & how to use -
https://www.guru99.com/what-is-sql.html. Accessed on (2022 June 10).

Saurabh Hooda - What are the advantages of a database management system? -
https://www.goskills.com/Development/Resources/Advantages-of-
database-management-system. Accessed on (2022 June 11).

Richard Peterson - SQL commands: DML, DDL, DCL, TCL, DQL with query exam-
ple - https://www.guru99.com/sql-commands-dbms-query.html. Accessed
on (2022 June 12).

Shailendra Chauhan - Different types of SQL server functions https://
www.dotnettricks.com/learn/sqlserver/different-types-of-sql-server-
functions#:~:text=A%20function%20is%20a%20database,the%20data-
base%20table(s).. Accessed on (2022 June 16).

https://www.techstrikers.com
https://www.techstrikers.com
https://www.w3schools.blog
https://www.w3schools.blog
https://www.mysql.com
https://www.w3schools.com
https://en.wikipedia.org
https://www.techonthenet.com
https://www.mysql.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.w3schools.com
https://www.tutorialspoint.com
https://intellipaat.com
https://intellipaat.com
https://www.techtarget.com
https://www.techtarget.com
https://www.tutorialrepublic.com
https://www.tutorialrepublic.com
https://www.w3schools.com
https://www.w3schools.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.sqlshack.com
https://www.sqlshack.com
https://www.guru99.com
https://www.goskills.com
https://www.goskills.com
https://www.guru99.com
https://www.dotnettricks.com
https://www.dotnettricks.com
https://www.dotnettricks.com
https://www.techonthenet.com
https://www.techonthenet.com
https://www.w3schools.com
https://www.w3schools.com
https://www.dotnettricks.com

Bibliography    ◾    237

Siddharth Sachdeva - Query processing - https://www.analyticsvidhya.com/blog/
2021/10/a-detailed-guide-on-sql-query-optimization/. Accessed on (2022
June 13).

Siddharth Sachdeva - SQL query optimization - https://www.analyticsvidhya.com/
blog/ 2021/10/a-detailed-guide-on-sql-query-optimization/. Accessed on
(2022 June 13).

SQL Clauses and its types - Syntax and example - https://data-flair.training/blogs/
sql-clauses/. Accessed on (2022 June 13).

SQL constraints - https://www.w3schools.com/sql/sql_constraints.asp. Accessed
on (2022 June 13).

SQL Constraints - https://www.w3schools.com/sql/sql_constraints.asp#:~:text=
SQL%20constraints%20are%20used%20to%20specify%20rules%20for%20
the%20data, action, %20the%20action%20is%20aborted. Accessed on (2022
June 17).

SQL Create database statement - https://www.w3schools.com/sql/sql_create_
db.asp. Accessed on (2022 June 13).

SQL Data types for MySQL, SQL Server, and MS access -https://www.w3schools.
com/sql/sql_datatypes.asp. Accessed on (2022 June 14).

SQL - Expressions - https://www.tutorialspoint.com/sql/sql-expressions.htm.
Accessed on (2022 June 13).

SQL injection - https://portswigger.net/web-security/sql-injection. Accessed on
(2022 June 14).

SQL Injection attacks (SQLi). - https://www.rapid7.com/fundamentals/sql-injec-
tion-attacks/. Accessed on (2022 June 15).

SQL Injection based on batched SQL statements - https://www.w3schools.com/
sql/sql_injection.asp. Accessed on (2022 June 16).

SQL - Operators - https://www.javatpoint.com/sql-operators. Accessed on (2022
June 13).

SQL - Operators - https://www.w3schools.com/sql/sql_operators.asp. Accessed on
(2022 June 13).

SQL Server functions - https://www.javatpoint.com/sql-server-functions. Accessed
on (2022 June 17).

SQL Server functions - https://www.w3schools.com/sql/sql_ref_sqlserver.asp.
Accessed on (2022 June 17).

SQL Server hardening best practices - https://www.netwrix.com/sql_server_secu-
rity_best_practices.html. Accessed on (2022 June 15).

SQL - Syntax - https://www.tutorialspoint.com/sql/sql-syntax.htm. Accessed on
(2022 June 13).

SQL (Structured query language). injection - https://www.imperva.com/learn/
application-security/sql-injection-sqli/. Accessed on (2022 June 16).

Syntax - https://en.wikipedia.org/wiki/SQL#:~:text=SQL%20was%20initially%20
developed%20at, Codd%20in%20the%20early%201970s. Accessed on (2022
June 11).

Tehreem Naeem - Relational database management systems (RDBMS). - https://
www.astera.com/type/blog/relational-database-management-system/.
Accessed on (2022 June 11).

https://www.analyticsvidhya.com
https://www.analyticsvidhya.com
https://www.analyticsvidhya.com
https://www.analyticsvidhya.com
https://data-flair.training
https://data-flair.training
https://www.w3schools.com
https://www.w3schools.com
https://www.w3schools.com
https://www.w3schools.com
https://www.w3schools.com
https://www.w3schools.com
https://www.tutorialspoint.com
https://portswigger.net
https://www.rapid7.com
https://www.rapid7.com
https://www.w3schools.com
https://www.w3schools.com
https://www.javatpoint.com
https://www.w3schools.com
https://www.javatpoint.com
https://www.w3schools.com
https://www.netwrix.com
https://www.netwrix.com
https://www.tutorialspoint.com
https://www.imperva.com
https://www.imperva.com
https://en.wikipedia.org
https://www.astera.com
https://www.astera.com
https://www.w3schools.com
https://www.w3schools.com
https://en.wikipedia.org

238    ◾    Bibliography

Timeline of MySQL - https://www.tutorialspoint.com/discuss-the-history-of-
mysql. Accessed on (2022 June 15).

Types of SQL injections - https://www.imperva.com/learn/application-security/
sql-injection-sqli/#:~:text=Types%20of%20SQL%20Injections, data%20and
%20their%20damage%20potential. Accessed on (2022 June 14).

Type of SQL statements - https://way2tutorial.com/sql/type-of-sql-statements.
php. Accessed on (2022 June 12).

Types of SQL statements - https://docs.oracle.com/cd/B14117_01/server.101/
b10759/statements_1001.htm. Accessed on (2022 June 12).

Vijay Kanade - What is SQL? Definition, elements, examples - https://www.spice-
works.com/tech/artificial-intelligence/articles/what-is-sql/. Accessed on
(2022 June 11).

What is an SQL injection attack? - https://www.rapid7.com/fundamentals/sql-
injection-attacks/. Accessed on (2022 June 14).

What is Database? - https://www.javatpoint.com/mysql-tutorial. Accessed on
(2022 June 15).

What is MySQL? - https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html.
Accessed on (2022 June 16).

What Is MySQL? A beginner-friendly explanation - https://kinsta.com/knowl-
edgebase/what-is-mysql/. Accessed on (2022 June 16).

What is SQL injection (SQLi). and How to Prevent It - https://www.acunetix.com/
websitesecurity/sql-injection/. Accessed on (2022 June 16).

What is SQL Injection? - https://www.veracode.com/security/sql-injection.
Accessed on (2022 June 15).

What is the impact of a successful SQL injection attack? - https://portswigger.net/
web-security/sql-injection. Accessed on (2022 June 16).

https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.imperva.com
https://www.imperva.com
https://way2tutorial.com
https://way2tutorial.com
https://docs.oracle.com
https://docs.oracle.com
https://www.spiceworks.com
https://www.spiceworks.com
https://www.rapid7.com
https://www.rapid7.com
https://www.javatpoint.com
https://dev.mysql.com
https://kinsta.com
https://kinsta.com
https://www.acunetix.com
https://www.acunetix.com
https://www.veracode.com
https://portswigger.net
https://portswigger.net
https://www.imperva.com

239

Index

Note: Italic page numbers refer to figures.

AFTER triggers 53–54
aggregate functions 6, 198–199, 221–222
aliases 130–133
ALTERING INDEX 46
alternate key 2
ALTERNATE QUOTE operator 162
ALTER TABLE command 99
analytical functions 198
AND Operator 144–147
ANY Operator 118
arithmetic operators 66–67

addition 67–69
division 70
modulus 71
multiplication 69–70

arrays 218–219
authentication 8

Basic Availability, Soft State, and Eventual
(BASE) Consistency 61

BEFORE triggers 53–54
Between operator 166
binary string data types 15
blind (inferential) SQLi 179
book management database in SQL trigger

54–55
Boolean blind SQLi 179
Brewer’s theorem 60

CAP theorem 60
availability 60
consistency 60
tolerance for partitions 60

CARTESIAN JOIN 161
case-manipulative functions 211–213

CASE statement 87–92, 207, 209–210
character functions 211–216
characteristics, SQL 7–11

adaptability, computer systems 9
architecture of client/server 10
authentication and security 8
database access through programming

9–10
dynamic 10
endorsement and commitment from

IBM (DB2) 9
foundational relationships 7
high performance 7–8
independent vendors 8
Java Integration 10–11
scalability 8
structure similar 9
Transaction Control Language 10
viewpoints on data 10

character-manipulative functions 213–216
character strings data types 15
CHECK constraint 172–174
client–server relationship 10
column-based databases 57
comma-isolated values (CSV) 216
commands of SQL 16, 16–23

add to table 19–20
data control language 21–22
data definition language 16–17
data manipulation language 20–21
drop table 19–20
make database 17
make table 17–19
transition control language 22–23

comments in SQL statements 36–38

240    ◾    Index

COMMIT command 24–25
Common Table Expressions (CTE) 50–55

creation 50–51
defined 50
non-recursive 51–52
types 51–52

compatibility 218
CONCATENATION operator 162–163
conditional statements 208–211
confirming indexes 46
constraints 38–42
control language, transaction control

language 10
controlling transactions, commands for 24
conversion function 202, 202–205

explicit data types 203–205
explicit vs. implicit 202
implicit data types 202–203

CREATE
command 154
statement 159–160

CREATE DATABASE statement 159
CREATE DOMAIN command 81–82
CREATE TABLE

clause 97–98
statement 160

CREATE VIEW statement 32–34
CROSS JOIN 161
CSV see comma-isolated values (CSV)
CTE see Common Table Expressions (CTE)
cyberattacks, risk of 182

Damn Insecure Online Application 184
Damn vulnerable web application

(DVWA) 184–195, 186
determination of DBMS 185–188
goal of 185
login page 186
mechanism of action of prepared

statements 189–190
mitigating SQL injection attack 188
prepared statements 188–189
sanitization of the input 195

database 1, 2
access through programming 9–10
book management 54–55
column-based 57
document-oriented 58
graph-based 58

key-value pair storage 57
NoSQL (see NoSQL (non-relational

SQL) database)
Database Management System (DBMS)

1, 185–188
Data Control Language (DCL) 21–23,

81–85
Data Definition Language (DDL) 16–17,

81–85, 198
Data Manipulation Language (DML)

20–21, 198
commands 81–85
statements 78

data types 13, 12–16
binary string 15
character strings 15
date and time 14–15
exact numeric 13–14
numeric 14

date and time data
types of 14–15
functions 222–226

DECODE function 207
DELETE statement 34, 140–141
DESCRIBE statement 85–87
DESCRIBE TABLE command 85
division operator 164
document-oriented databases 58
document types 219–221

proprietary alternatives 221
proprietary extensions 220–221
using with recursive 219–220

DROP COLUMN command 100
DROP INDEX 46
Drop table 156–159
DVWA see Damn vulnerable web

application (DVWA)

ELSE
condition 210
statement 208

END IF condition 210
ETL tool 78
exact numeric data types 13–14
EXCEPT

clause 75
statement 114–116

except operators 73–74
EXISTS in SQL 119–121

Index    ◾    241

foreign key 2
Full Join/Full Outer Join 169–170
functions, SQL 197–201

aggregate functions 198–199
analytic functions 199
scalar functions 199
server mathematical functions

200–201

general functions 205–208, 206
graph-based databases 58
GROUP BY

clause 199
statement 121–123

HAVING clause 154

IF proclamation 210
IF-THEN-ELSE statement 207
in-band SQLi 178–179
INNER JOIN 168–169
IN operator 166
INSERT IGNORE statement 105–107
INSERT INTO statement 141–144
installations

MySQL 5
SQL 5, 5

INSTR capability 214
INTERSECT clause 75
intersect operators 73–74
IS NOT NULL operator 228, 229
IS NULL operators 228

Java Integration, SQL with 10–11
joins 166–171

full 169–170
inner 168–169
left 170–171
right 171
types 167, 167–171

JOIN clause 116–117, 161

key-value pair storage databases 57

LEFT JOIN/LEFT OUTER JOIN 170–171
LIKE operator 107–110
LIMIT clause 101–105
listing function 216

combining listing with filter and
over 218

LPAD 214–215

MarksView 31
mathematical functions, SQL server

200–201
MERGE statement 77, 78–81

performance 78
Microsoft SQL Server 183
minus operator 163
mixed-mode authentication 8
multiple tables creation 31
MySQL 183

insert ignore function 105–107
installation page 5

NATURAL JOIN clause 75
non-recursive common table expressions

51–52
NoSQL (non-relational SQL) database 56

advantages 61
column-based 57
disadvantages 62
distributed 59–60
document-oriented 58
features of 58–59
graph-based 58
history 57
key-value 57
query mechanism tools 60
schema-free 59
types 56–58
utilise 61

NOT NULL operators 228
NOT operator 110, 164–165
NULL back 208
NULLIF function 208
null values 226–229
numeric data types 14
numeric functions 229–231
NVL() 206
NVL2 function 206–207

object reference functions 198
OFFSET FETCH in SQL server 112–114
ON OVERFLOW statement 216–218
ORDER BY clause 105, 121, 124, 133–135
OR Operator 144–147

242    ◾    Index

out of band SQLi 179
OVER clause 116–118

using JOINS and 116–117

PHP 188
PostgreSQL 183
primary key 2

query mechanism tools, NoSQL 60
query processing in SQL 49, 49–50

Relational Database Management System
(RDBMS) 2, 3

Relational Software Inc. 4
RELEASE SAVEPOINT command 28
rename 46, 98–99
REPLACE VIEW statement 32–33
RIGHT JOIN/RIGHT OUTER JOIN 171
ROLLBACK command 25–26
RPAD 214

SAVEPOINT command 26–28
scalar functions 6, 199
security, authentication and 8
SELECT

command 166
parameter 102
statement 31, 121, 147, 151–156

SELECT TOP clause 135–137
SELF JOIN 161
SEQUEL see Structured English Query

Language (SEQUEL)
sequences 47–50
server mathematical functions 200–201
set transaction 28–29
single-row function 198
Slowly Changing Dimensions (SCD) 78
SOME operator 110–112
SQL EXCEPT statement 114–116
SQLi see SQL injection (SQLi)
SQL indexes 43–45

clustered index 45
non-clustered indexes 45

SQL injection (SQLi) 175–176
based on error messages 178
goals of 176–177
types 178–179

SQL injection attacks

anatomy of 190–191
detection and prevention of 179–182
mechanism 177–178
with prepared declarations 188
website SQL injection vulnerability 182

Sqlmap 182–184
download link for 184, 184
features of 182–183
usage 184

SQL MERGE clause 77, 77
SQL Operator ALL 118
statements, SQL 11; see also specific

statements
string functions 231–234

built-in function determinism 233–234
deterministic and nondeterministic 233

Structured English Query Language
(SEQUEL) 4

Structured Query Language (SQL)
advantages of 11–12
comments 36–38
components of 5
definition of 3–4
disadvantages of 12
framework of 5, 6
functions of 6–7
installations of 5
keys in 2–3
operations in 5
origins of 4
purpose of 4
role creation 42–43

super key 2

time-based blind SQLi 179
TO CHAR function 204
TO NUMBER function 205
transactional control, commands for 24
Transaction Control Language (TCL) 10

command 81–85
transactions 23–28

characteristics of transactional 23–24
commands for controlling

transactions 24
commands for transactional control 24
COMMIT command 24–25
RELEASE SAVEPOINT command 28
ROLLBACK command 25–26

Index    ◾    243

SAVEPOINT command 26–28
set transaction 28–29

Transition Control Language (TCL) 22–23
triggers 52–54
TRUNCATE TABLE command 156–159

UNION ALL clause 124–126
Union ALL Operator 127
union-based SQLi 178
UNION clause 123–130 UNIQUE

clause 149–151
constraint 92–96

unique key 2
UPDATE command 138–139
user-defined functions 198
USING clause 75–77
utilising JOINS 117

views
and applications 35–36
in SQL 29–35

VIEW statement 29–30
vulnerability

PHP/MySQL web application 184–185
website SQL injection 182

web application firewalls (WAFs) 179–180
website SQL injection vulnerability 182
WHERE clause 63, 67, 72, 121, 126, 127,

138, 147–149, 166
wildcard 72–73
windows authentication 8
WITH CHECK OPTION clause 34–35
WITH clause 63–66
WITH TIES clause 66

REQUEST A FREE TRIAL
support@taylorfrancis.com

Taylor & Francis eBooks
www.taylorfrancis.com

A single destination for eBooks from Taylor & Francis
with increased functionality and an improved user
experience to meet the needs of our customers.

90,000+ eBooks of award-winning academic content in
Humanities, Social Science, Science, Technology, Engineering,

and Medical written by a global network of editors and authors.

TAYLOR & FRANCIS EBOOKS OFFERS:

A streamlined
experience for

our library
customers

A single point
of discovery
for all of our

eBook content

Improved
search and
discovery of

content at both
book and

chapter level

mailto:support@taylorfrancis.com
http://www.taylorfrancis.com

	Cover
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	About the Editor
	Acknowledgements
	Zeba Academy – Mastering Computer Science
	Chapter 1 Basics about SQL
	In This Chapter
	Relational Database Management System (RDBMS)
	Keys in SQL
	What is Structured Query Language (SQL)?
	Origins of Structured Query Language (SQL)
	Purpose of Structured Query Language (SQL)
	Installations of SQL
	Operations in Structured Query Language (SQL)
	What are the Different Types of Functions?
	Aggregated Functions
	Scalar Functions

	Characteristics of Structured Query Language (SQL)
	Foundational Relationships
	High Performance
	Scalability
	Authentication and Security
	Independent Vendors
	Adaptability to a Variety of Computer Systems
	Endorsement and Commitment from IBM (DB2)
	Structure Similar to That of English
	Database Access through Programming
	Transaction Control Language
	Various Viewpoints on Data
	Dynamic
	Architecture of Client/Server

	SQL with Java Integration
	Some SQL Statements
	Advantages of Structured Query Language (SQL)
	Disadvantages of Structured Query Language (SQL)
	Data Types in Structured Query Language (SQL)
	Exact Numeric Data Types
	Types of Numeric Data
	Types of Date and Time Data
	Data Types for Character Strings
	Character String Data Types in Unicode
	Types of Binary String Data
	Other Data Types

	Commands of Structured Query Language (SQL)
	Data Definition Language (DDL)
	Make a Database
	Make a Table
	Add to Table
	Drop a Table
	Data Manipulation Language (DML)
	Data Control Language (DCL)
	Transition Control Language (TCL)

	Transactions in SQL
	Characteristics of Transactional
	Commands for Controlling Transactions
	Commands for Transactional Control

	Set Transaction

	Views in SQL
	Views Are Being Removed
	Views Are Being Updated
	Delete a Row from a View
	With Check Option

	Views and Their Applications
	SQL Comments
	Constraints in SQL
	SQL Creating Role
	Making a Role and Assigning It

	SQL Indexes
	Unique Indexes
	Clustered Index
	Non-Clustered Indexes
	When Should You Construct Indexes?
	When Indexes Should Be Avoided

	DROP Index
	Altering Index
	Confirming Indexes
	Renaming An Index
	Sequences in SQL
	Query Processing in SQL

	Common Table Expressions (CTE) in SQL
	Defining CTEs
	Creating a Common Table Expression (Recursive)
	Types of Common Table Expressions

	Triggers in SQL
	Before and After Triggers

	Book Management Database in SQL Trigger
	Introduction to NoSQL (Non-Relational SQL)
	A Brief History of NoSQL Databases
	Types of NoSQL Databases

	Key-Value
	Column-Based
	Document-Oriented
	Graph-Based
	Features of NoSQL
	Non-Relational Database Management System (NoSQL) Features
	Schema-Free
	API That Is Easy to Use
	Distributed
	NoSQL Query Mechanism Tools

	What is the Cap Theorem, and How Does It Work?
	Consistency
	Availability
	Tolerance for Partitions

	Consistency in the Long Run
	When Should You Utilise NoSQL?
	Advantages
	Disadvantages
	Summary
	Note

	Chapter 2 Clauses/Operators
	In This Chapter
	With Clause in SQL
	With Ties Clause in SQL
	Arithmetic Operators in SQL
	Addition Operator (+)
	Subtraction Operator (–)
	Operator for Multiplication (*)

	Division Operator (/)
	Modulus Operator(%)

	Wildcard in SQL: An Overview
	SQL Wildcards Syntax

	Except and Intersect Operators
	Except Clause
	Using Clause
	Knowing How to Use The SQL Merge Statement
	SQL Merge Command and Its Applications
	Improving The SQL Merge Statement’s Performance
	Merge Statement in SQL Explained
	DDL, DML, DCL and TCL Commands
	Create Domain in SQL
	Create a New Domain

	Describe Statement
	Case Statement in SQL
	Syntax of SQL Case Statements

	Unique Constraints in SQL
	Contrasting the Primary Key and Unique Constraints
	Unique Constraints for a Group of Columns
	Add Unique Constraints to Existing Columns
	The Alter Table Drop Constraint Statement

	Create Table Extension
	Rename in SQL
	Add, Drop, Modify
	Table Change – Add
	Change Table – Drop
	Modify the Table

	Limit Clause
	A Limit Clause: What Is It?
	What are the Definition, Syntax, and Parameter Values of a Select Limit Statement?
	Parameters or Arguments
	Using the Limit Keyword
	When Should the Limit Clause Be Used?
	The Limit Clause’s Benefits

	Insert Ignore Statement
	How Does MySQL’s Insert Ignore Function Work?
	Drawback

	Like Operator
	Some SQL Operator
	Offset Fetch in SQL Server
	Application of Offset and Fetch Offset
	Fetch and Offset
	Offset Only
	Fetch Only

	SQL Statement Except
	Prerequisites for the SQL Except Statement

	Using Joins and the Over Clause in SQL to Combine Aggregate and Non-Aggregate Values
	Utilising Joins
	Over Clause
	Operators for SQL Any and All
	ANY Operator in SQL
	SQL Operator ALL

	Exists in SQL
	Group by Statement in SQL
	Union Clause
	Union Versus Union All
	In SQL, An Example of the Union Operator
	Where Clause Is Combined with the Union Operator
	Union All Operator in SQL
	Example of Union All

	SQL in Aliases
	Order by Clause in SQL
	Select top Clause in SQL
	Top Clause Syntax in SQL Server
	SQL Select the Highest Percentage of Records to Return
	Multiple Select Top Statements

	SQL Update Command
	Delete Statement in SQL
	Insert Into SQL Statement
	And And or SQL Operators
	AND Operator
	Combining AND and OR

	Clause Where
	Unique Clause in SQL
	Select in SQL Statement
	Where Clause in Select Statement
	Group by Clause in SQL Select Statement
	Select Statement with Group by Clause Example
	Having Clause in SQL Select Statement
	Order by Clause in Select Statement

	Drop and Truncate Table in SQL
	Truncate Table in SQL
	Table Drop in SQL

	Create in SQL
	Make a Database
	Table Creation

	Joins in SQL
	Alternate Quote Operator
	Operator for Concatenation
	Operator Minus
	Division Operator
	The Not Operator in SQL
	Between and in Operator
	Between Operator
	The SQL Syntax

	In Operator

	Join (Inner, Left, Right and Full Joins)
	Different Types of Joins
	How to Determine Which SQL Join to Use

	Inner Joining
	Full Joining
	Join on the Left
	Right Joining

	SQL Constraint Check
	Summary

	Chapter 3 SQL Injections
	In this Chapter
	What is SQL Injection (SQLi)?
	Goals of SQLi
	Mechanism of SQL Injection Attack
	SQL Injection Types
	Detection and Prevention of SQL Injection Attacks
	Simple SQLi Example

	Sqlmap: Test a Website SQL Injection Vulnerability
	Sqlmap
	Features of Sqlmap
	How to Download

	Where Sqlmap May be Used
	Damn Vulnerable Web Application (DVWA)
	Determine the Database Management System (DBMS) in the Site
	Listing of Tables in a Database
	Getting Rid of a Table
	Mitigating the SQL Injection Attack with Prepared Declarations
	Prepared Statements
	Mechanism of Action of Prepared Statements
	Terminology

	What is the Benefit of Utilising a Prepared Statement in Java?
	What about Sanitization of the Input?

	Summary
	Notes

	Chapter 4 SQL Functions
	In this Chapter
	SQL Functions
	Aggregate Functions
	Analytic Functions
	Scalar SQL Functions
	SQL Server Mathematical Functions

	Conversion Function
	Explicit vs. Implicit
	Conversion of Implicit Data Types
	SQL Conversion of Explicit Data Types Conversion
	Using the TO CHAR Function with Dates
	Using the TO CHAR Function with Numbers
	The to Number and to Date Functions

	General Functions in SQL
	NVL()
	NVL2 Function
	Decode()
	Coalesce()
	Nullif()
	LVL()
	Conditional Statements in SQL
	Case Statement in SQL
	IF Proclamation in SQL

	Character Functions
	Case-Manipulative Functions
	Character-Manipulative Functions

	Listing Function

	The on Overflow Statement
	Distinct

	Combining Listing With Filter and Over
	Compatibility
	Arrays
	Document Types
	Using with Recursive
	Proprietary Extensions
	Proprietary Alternatives

	Aggregate Function in SQL
	Date Functions
	Null Values in SQL
	Why Are Null Functions Necessary?
	How Can Null Values Be Tested?
	Is Null Syntax
	Is Not Null Syntax

	Numeric Functions
	String Functions
	Deterministic and Nondeterministic
	Built-in Function Determinism

	Summary
	Note

	Bibliography
	Index,

