Leveling Up
with SQL

Advanced Techniques for Transforming
Data into Insights

Mark Simon

Leveling Up with SQL

Advanced Techniques
for Transforming Data into Insights

Mark Simon

Apress’

Leveling Up with SQL: Advanced Techniques for Transforming Data into Insights

Mark Simon
Ivanhoe VIC, VIC, Australia

ISBN-13 (pbk): 978-1-4842-9684-4 ISBN-13 (electronic): 978-1-4842-9685-1
https://doi.org/10.1007/978-1-4842-9685-1

Copyright © 2023 by Mark Simon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or

omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Editorial Assistant: Mark Powers

Cover designed by eStudioCalamar
Cover image by Jigar Panchal on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/apress). For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

Paper in this product is recyclable

To Brian. You're part of what I am today.

Table of Contents

About the AULROFK ...ccceeeciirie s asa s a s e nnnssannnna s nnnsannssnsnnnnsrnss Xiii
About the TechniCal ReVIEWETciuueeenrissmmmsssssnssssssssssssnsssssnssssssssnssssssnnsssssnsnnssssnnnes XV
Acknowledgments...........ccccuiisnnniisnssnnnnnnssssnsnissssssnnssissssanssssnssnnsssnnsansssssnsnassssnnnans Xvii

LT T T 1 Xix

o Y BTN IO i i 1
AooutHESamRlE DIEEse s R ALY |
VR RTINS R e S R R T N B S A N AR N A

Database Management SOTtWATEcccoeeeiiiereririncssesisss e sssss s sssasasssasesssasans 3
Dalabase Glien) < s B R
e o e R S oo S e S S SN AP
WD You Probesty iy e AT BB oo s e i s e N SRR ANtk 1
Some Philosophical CONCEPLSccceeueirererererinessisissssssssasssesessessssssssssssssssssssssassssssssssssssssss O
B R L oo e N S LN B o e et)
DALA TYPLS ...t sss s a s e e s s s s s snna s sesanns s annenssasanssasarannnnnans |]
SOL ClAUSES. ...cvvererererereseeesesesesssessssssssss s sessssssassssssssssssmsassassssasasasssssssssssssssssssssssasasess | &
Gl NN e T s RS)
LT TR PRIRTN———— ¥
AQQIEUALES ...veeeeerereeeear e ssese e e s s s s s s ssasesesesasss s s anesssssasesaresanssasassesesesssasasensrensencs 1O
Whrking with Tables o covmnmmmummimmme G aa e el
N U AT DR s s O s SRR ER e srs 2]
SeE OPEIALIONScoueuerecererrrenarcsnssese s serererereses s sne s are e sesssasasasanesssenssanarssessnssasnasesssssssnse &1
COMING UP.eriiirirerecncnanessnssasessesesssssssasssssssssssasssesesesasssasassesssssenerssssssssasasasesssssssesesssssssssssasasasess B0

TABLE OF CONTENTS

Chapter 2: Working with Table DeSign.......ccccuusssnsmssssssnsssssassasssssssssssssssssassssssnssnsnas

Understanding Normalized TabIESccooerirmrccireineeiecrcse e e sne s ssanenes
Columns Should Be INAePendent............correecraremnsesssereseresssesssssssssssssssesesssesassssssenssssssssesenes
PR Ehve, ToTER Tk s eecssomonsainuons sunvan oo i o s S O A R ST T
Andiniya: Foreagn ey 10 N8 To0NN oo o o s e S
Update the CuSTOMErs TabIE..........ccoeeurirerecccenesesseee e snsns e see e snene e anssenenes
Rameve tia il Address CaluMnSesssmmnmnsmsaesnnoinss i s s
K TR MY AV T ks s mm s v s S SN K A B A S S R
Adding the COUNIYccoeeeuiicecririricesctses s sssss s se s s s e s e e s sas s anens e ss s sanesesanasnnanas
Addhonal Cammenls s esmnumme e R R
Impinmg Dalabaza MBI weasmrm s T R
Foang isstes with o Nallahile’ GOl s wsaesmmen e s m s
Other AdJUSTMENESociueeecceiee et se e nen e snnn st s
.49

Adding Indexes........covrerrreeanenanenans

Adding an Index to the Books and Authors Tables..........cceceeiirerererneeccsnesssesssesseresesnsneas
BTN AT IR o s mmcm v s e SN K A B A S S SES EER
I MMM o st o e A R A S A
T 1T
Milhple VEI088 i s e S T e S v
AR ITVEY TR oot 0 A R S Y S S S A e TN
VIBWS ¢t A SRS A A AR RA A A A e e
I EREE s S A T
TS A | SR LYoo s G S N e
S N T o R Y A 3 S S S T L RS S E

G LR conccmrncomsonsmmsomimses oo e s Y e A 3 S S T L S S S S E

Chapter 3: Table Relationships and Joins.........ccccmummnnmmmsnissssnmssssssssssssssssssssssanns

R Overuiody of BalatiofBiE e o s s s i s e aasa
T N TR v s G Y A AN
COUNTInG DNo=ToIVARY JOUNE . ovmmnrssmsrimsovsommssnen s s s s e o
The NOT IN QUIFK ...coceeeeececseseecesssssasssasssessssssss s sasasssssssasssesesess e e e sa s se e s e snsssssssssnsas

Croaling a Books aiid AUTNOTS Ve . s e m i o s

25
27
28
29
30
32
35
36
38
38
40
45

50
52
o4
54
25
25
25
56
56
57
58

60
61
64
69
70

TABLE OF CONTENTS

One-to-0ne RelationShiPs.........ccoeeeceremneeesinererers s sssesesesesnsssssssssssssssesarerasssssasasassnces |2
N ta-Mayha el i s R R R
Multiple Values... P G e L P S S Ve P v T e
Many—to—Many Relatlonshlps P RUS———
Joining Many-to-Many TabIESccccceirerererersreensessesesssseseresesesnsssssssssesesssesaresesssssasasessness O
sifimanzing Motipe Valliecrueeenmmmnmermmsesamannesersnnss T O
Combining the Joins... R A AN A B A S SN s snsis
Many-to-Many Relatlonshlps Happen All the TIME......cccoeerrrreeeccessesssrsrererereresseassnssssssssesaress 0
Another Many-to-Many EXamPIEccoevrrecrnnnensessseseressresssssssssssssssssssssesssssssssssssssssssesarers 0
Inserting into Related TabIes.........ccceeeeeeeisecerrsrescseses s sns s s sesaresasasnsssssssses 9O
Aadinga Bookaht SRR s R G R A
PAEINTEY 2 NN RN . crccmicomn v s s A S S AR KA RS S SRR AR e s s D
TP | | .4
Types of Relatlonshlps reeeeseserer e nasan s s s e e e aresananasananenenssarararerssenseasananasesssesare | UD
RN TR IR e R R AR | DS
[—— SRS PR———— ||
Inser’(lng into Related Tables ... cerereeererareenesananeseaesesaerarannnasasananesesssasassrersenensarananssesare | O
SUMMAIY....cvieirererrenecssssesssesseasesesesss s ssssssssssssssassressnssassssesssssasasasssssensensasasasssssessresassnssseassane | OB
Coming Ui s 119

Chapter 4: Working with Calculated Data............ccccinirnnnmmmnnssssssnsssssssssssssssssssssnnns 105
Calculation BaSICS.......coeueuerierererersrscssassnssesssssaeseresssssassssnsssssssseserssssssssasssasesssssssssesssssssssssasasess 100
LS AIRREE s s s R S E s s 100
Daahing Wity MULLS .oz TN
Using Calculations in Other ClauSes..........ccovrererieseescsessnrerersresssssssssssesssssssesesssesssssssssesess 1 18
More Details 0n CalCUIAtIONSc.cococeererererecceesese s ssene s ssseesesesssassssnsnensssnssssssrenses | 22
AR s R S T |
NimiBnE Calklalifiig - oo e N
SrNG CAlCUIATIONScveeeeiirireeecccieie e e e sesssss s sens s sssnsasssanssnsassanens | O
als Dnalabions sisssssmmsa e R e 199
The CASE EXpression s s s amsmaamme 191
Narios Uses el CASE o e s e

vii

TABLE OF CONTENTS

Coalesce Is like a Special Case 0f CASE.........ccoouurerererensesesssnssssssssssasssesasssssssssssssssssenes
eS| S T SRR 5T v s e s o s O S L B ST
T T s s G B R Y S S S S S T B G
AITBSES ...cocveecrcecncrsssssssssss s s s a s s s s s bR SR AR A AR A A A LA RE A A e AR
B Yoo B A O S N S L SR ST
Galeu]ating Wit NUBIIIOTE oo omsmmsomcsssvmimmn s e o R NSRS
Calculating With SIHNGScovoeeeererereresrsscssessssssseseseresssssssssssssssessesasssesssasasssesssssssessrenes
Gl Coll At T D oo i i ver s s S O R AR A PSR
The GASE BB e onomns s nosss s s o S as e o B e O

LTI LD cosrennisssmmsennsusmssnmmsenssnm st s oS RSN S E R e AR TE
Chapter 5: Aggregating Dataccccinninninnnnsnsnnnnssssnsssssansnn

e B E e N e e TP TR s s B R U A G
Understanding AQQregates.o aaeerimrerererersesssssasssssssssssssssssssssssssssssssssssasasssssssssssasasassssses
Aggregating Some of the VAIUES..........cccciereeecieinrire s e s s s ssaesesanasasas
Distinet Valies s e s e S e R e
AT YRR TS TN oot o R R Y S S SR A ST S
Groupiric by Cal el Malies ..o e e S TS
Grouping with CASE STatementscceececerensirirersreressessssnsss s sssssseresesssssssssssesssssssssenes
Rewsiting the Dalsieiy Slallifsssmmumamnnsmsiii s R
Ordesing DAY S e rrmmomn s e S S R Y SRS
T TN st e 0 R R Y S DB
Summarizing the Summary with Grouping Sets.........ccccovrrcrirrssesresesssnerese s nsnsnesenas
Preparing Data for SUMMANZINGcccveeeccceieeciere s sanesenes
Combining Summaries with the UNION Clause............cooeeenmsinienssssesensresesssssssssssssssesesenes
Usingy GROUPING SETS; EUBE and ROLLIP ..o conmmammmamasmamsmmamesnsa
Hhstogearis; Mean, Mode, aid Methin .o
Calculating the ME@N..........cccoeeiirerererirrescssese s sessessesess s s snsss s s s sasssesasasasansenssssssesenes
Ganeraiing a Freguancy Tablesemmnamnnusmmii i R i
Galculatmig e O s R SRS

154
155
158
159
159
159
159
160
160
160
161

163
166
166
170
170
17
173
177
179
181
183
185
186
189
195
201
203
203
205

TABLE OF CONTENTS

Calculating the Median.........cccccoeeerererererereesrsssssssesssssrereresessssssssssssssssassresssssssasssssssessss 201
ihe:Stahdard IEBRahoh e e D
oo S L P T A S e e ezt O
Basic Aggregate FUNCHIONS.........cccouririecrsisinessssesssesessssssssss s sssssssssesssssssssssssssssssssssssens 209
ThERRgragatng FritiESemssernnmrersmnmmwerrmnmrsarmmsanmrrEsnnn Sl
AGorotaks Pl e s 2 1
Misting SEEE TR SR e 2
L 115 SO UPRNEAOTN,) -
GO U sonmcommumansnmnm st e s s s s sy & N

Chapter 6: Using Views and Friends.........ccocmmmmmssmanmsssssnmssssssssasssssssssssssssssssssssnnns 213
NS T AN e R A S G S
Creating @ VIBW......cccccceeririrenercsnssssessssssasssessssssssssssssssssssssssssssssssssssnsssssssssssssssnssssasassssssssss & 10
Using ORDER BY in MSSQL........ooiueeeeeccerereessaseemscasesesessssssnsssssssesesssssssssssssessesssssessscasers 2 19
TS ToRWarking W M s R TR S
Tahle-¥alued FUNCHONE «ummmanrmsomemmomsmamasmasmmsmsmmsmssmssasonmos L]
What Can You Do With @ VIEW? ... sssssssssssssesssssesssesesesesens 220
Caching Data and Temporary Tables..........ccccuieerererermcrsessessssesereseressessssssssssssssasssasesesasasnans 221
Coimnitied CHlIMME e s o
ST A i S B A B ST D
O TS s st S L AR e W A A et s L D
Table Valued FUNCHIONS ...t ss s 233
Temporan THES e s 0
oG s R B e s &

Chapter 7: Working with Subqueries and Common Table Expressionscccouue 235
Correlated and Non-correlated SUDQUETIEScvrrureeemerensnererereresesesssne s ssesesssesesssssasasess 239
Subqueries in the SELECT ClAUSEccceeermererersrernsrssssssesssssssasesesssessssssssssssssesarsrassssssssesess 243

Subqueries in the WHERE CIAUSE..........cceeemererersressssssssssesssssnsasssesssnsssssssssssssssesarssassssssssasess 240
sSubgienaswnth SimpleAgGregates cesrmmssamnanamsrmasssrrRRs T D

TABLE OF CONTENTS

Big SPENUEIS ...t snese e sesss s snsnsss s nsasaresssesnsas s nsesssssasasarssssasssassanessssseses 00
LastOrders; Please v armmn s s s s R R e 2 49
Duplieatad ClstimBrS oo s e e s saarsasmesrss S |
Subqueries in the FROM ClAUSE.........ccccciieririrnicrscsissessssesssesasssss s sssssasssssssssssassssssssssses 202
Nested SUDQUETIEScoeueueeeeeereeriereseresesscss s ssseeresssesssns s ssssssssssssasarssssasssassassssssseses 200
Using WHERE EXISTS (SUDQUETY)...ccveueuerreerererensssssrssnsesssssssessresssssssssssssssssssssesssssessessasassssssseses 200
WHERE EXISTS with Non-correlated Subqueriesccccoonnncncnscncsssnsinssssnsesenscnss 209
WHERE EXISTS with Correlated SUDQUBTIS ... 209
WHERE EXISTS vs. the IN() EXPression..........ccccovreeeesessesssssserereresessssssssssssssessresssssssssasases 200
LATERAL JOINS (a.k.a. CROSS APPLY) and Friends..........ccceerureeeuemeecacersreresssessecsceresesessscasences 201
PR T LTI s sonccmiom s e A S S S S T e
Multiple COlUMNE, oo e R R A
Working with Common Table EXPreSSioNnscccccuuerereremcssssssssssssssssssssssessssssssssesssssssassssssnes 201
Usirify & CTEfG Prepars Calellatiiig cusssmmammammammmmcaweasamasmasair o o0
T TS s s e B S S Y B S N T
Correlated and Non-correlated SUDQUETIES........ccccuierereririsccsesnsiesssssseseresnssessnssesssssnes 202
The WHERE EXISTS EXPIESSIONcucucveeenernreerersressessssssssesssssasssasssssssssssssssssssssessrssasssssasasases 209
LATERALJOINS (Zl¢a: CROSSAPPLY] wuvvavnmmasnusmsmssamessaanaumssams o8
Camimon Table EXProssiong ..o S0 5

COMING UP.ciiiereeiciieieiesseessesesssnssss s ssssasssesesss s ssssssssssssasesssesssssasssssssssssssassssssssasasssessnsssses 200

T g T T U VSO —— 275
W VIR EUNERONE o e s S e S R e e O
Simple Aggregate WindOWS...........cocoeeererermccassmssessssssseseressssssssssssssssssssesssssssasssassnsnsssnsssses 20 1
Aggregate FUNCHONScccoveeeriierercrereees s sssee e sasss s sssene s sssssasesesanssasasssssesssssssssssrenes 209
Aggregate Window Functions and ORDER BYccorirmcerscnsenesseereresesesssssssssessssnsssssserenes 204
Thie P Blailifisssanoanmmmmaniss snmmnss i s e e e
Lt a-Dally SAE MBI s oo s e e R R A R B

A SIHAING WINAOW......coeeeererieeriresesscssessesesssssesesesesssssssssssesssssssesssssasssssasasesssssssssssasssssssssasases 200
Window Function Subtotalscoininssssssssssssssssnsssssssssssssssssssacs 290
FARTITION BY Mittitle: Collmms: oo s st oo

Ranking FUNCHIONSccoeueieecrertseescsssssessssssess e sasss s senens s ssa e asssesssas s s s sssssasasassnesssasasane
I 1 P O8I S T S PSS Ers
Rankitig with PARTITION BY ovommmmmnemnammsemmemaessmemmsamemmnses
PagiNg RESUIES........oueeeeccieeeeseseererssessssss s sase e sesnsss s sne s s esare e e snsasasannsssssnsaserensns

WOrking With NEIE........cceeueeeeerererecccscsss s sse e sesne s saes e e sns s s s s s e sssasasenesssasasans
A Worlarotnd for e carmmmnmmsrsn s s e s e v e iy (e S i ens

Nvorkingy watht Pravectis i Ne PO s s i s i

B oo o P P e O e B G
WiINAOW ClAUSES ...eeevveereeerrieeeesessseesssasssssssssssasssasssssssasssssssssssssssesssssssasssssssesssesssssssssnsessnssans

COMING UP.eviiiireriencciese s sssssasssesasss s ssase s sassasssesasss s an s s s s sa e s s senssas s s s s sssasasanssensnssasans

Chapter 9: More on Common Table Expressions

=g LU ——
Setting Hard-Coded CONSTANTSccccrererererercrsnsneeseessrere s sssss e sssesesesesasssssssnsssssns
DTG DORBETER s o o o e A SR e
RS0 A Y o0 B N 0 G i 3 O A A A RS s
Finding the Most Racant Salas par CUSIOMBY ..ot
Finding Customers with Duplicate Namesccorrrrcnrinenesseersreresesssssssssssesssssseserens
CTE Parameter NAMEScoeueeemeccrsscsssssscssesssssssesese e resasesasssasssssessssssssssssssssssssssssssssssnnnes
Using Multiple Common Table EXPreSSionscccvveceseasesssssssesessrsresssnsssssssssssssssesasssssssssasaes

Summarizing Duplicate Names with Multiple CTESccoorieriinennesncssesesess s

Recursive CTEs ...
Generating a Sequence S
Joining a Sequence CTE to Get Mlssmg Values...

Daily Comparison Including Missing Days
TRV O SINY . YT BTTITETN ccmensnnsc s osmsn s oo SN K SRV BT OGRRS
Working With TaDE LIS i smsesmsrsicsss e s s e
Using a Table Literal for TESHNG.......veceeeereeesessrsrarerereresesssssssssssssssessesesssssasssassssssssssseserenens
Lighig a Table. L itewil Bor SOmUMI e s s o s s s
Using a Table Litersl As:a LOOKUD cscasmssummamimsmmmea s ismsnmseses
SPHEING @ SHINQ...ovririece e sa s s e et nenrs s n s nns s sns

TABLE OF CONTENTS

296
297
300
302
305
307
309
311
311
312

313
314
316
317
317
319
320
321
322
i LD
e 328

. 331
333
336
342
344
348
351
353

TABLE OF CONTENTS

SUMMAIY..c..teteeeuecenenssesseersressssessanssesssesssesarssesasssassasssssssssssensressnssasasasesssssasaarsrssessensasasassssseses QOB
SIMpIE RIS s R A GG e I
Parametor NaBE ot e s SO
MURIPIE CTES...ecuiriererereresscnssnesesesssessresssssesssssasssssssssssassresssesssasasasssessssssssersssssasssassasessssseses SOQ
B AT BT ooy o i o i s O i S O A s G e S B

LEIING L sssermnmmeasemmmaarnmmmss R G e DD

Chapter 10: More Techniques: Triggers, Pivot Tables, and Variablesccseeann 367
Understanding Triggers.... R R R R R TR S a0l
Same Thgger BaaiSv oo s s smesaae g o
Preparing the Data to Be Archived...........cococeeieeiesiicccsriniscsssssscessssssssssessssssssssssssssnses 30
Creating the Trlgger 372
Fragamd ConFar TR caaemmmammnannmserrmammssssseeesasaae B0
PG Do e s s e o G S R W G RS et B |
Pivoting the Data ... BSOSO PP STUUTOPTRROE: | 7.4
Manually Pwotmg Data... O U PP SPSTUUPRRRPTRRPRORR: 1 I |
Using the Pivot Feature (NISSQL Oracle) 389
Workingunth SOLVanablig o ummmemmmmmmmummsammumnmnmasrmasisesnnsmasaie Sk
LR Lo o [T PP . |
Updated Code t0 Add @ Saleccceererererereccnnnnssenssseerersresssssssssssessssssssserssssasssasassssssssseses 390
RN s R e T e P
T TNt o e A L S S T e s b
PIvOE TADIES.....c.cucuccceccicesi it nsssnsssssnssssssssssasscasss G00
SALVariables....... ..o nsasnnnsssssssssasasasass G00
1 | TR 1)

Appendix A: Cultural Notes.........ccccuniscnmnmmssnsssmnsssssssnmsssssssssssssssasssssssssnsssssssasssssans 407

About the Author

Mark Simon has been involved in training and education
since the beginning of his career. He started as a teacher

of mathematics, but quickly pivoted into IT consultancy
and training because computers are much easier to work
with than high school students. He has worked with and
trained in several programming and coding languages and
currently focuses mainly on web development and database
languages. When not involved in work, you will generally
find him listening to or playing music, reading, or just

wandering about.

xiii

About the Technical Reviewer

Aaditya Pokkunuri is an experienced senior cloud database
engineer with a demonstrated history of working in the
information technology and services industry with 13 years
of experience.
He is skilled in performance tuning, MS SQL Database
w Server Administration, SSIS, SSRS, PowerBI, and SQL
} development.
He possesses in-depth knowledge of replication,
—= clustering, SQL Server high availability options, and ITIL
processes.

His expertise lies in Windows administration tasks, Active Directory, and Microsoft
Azure technologies.

He also has extensive knowledge of MySQL, MariaDB, and MySQL Aurora database
engines.

He has expertise in AWS Cloud and is an AWS Solution Architect Associate and AWS
Database Specialty.

Aaditya is a strong information technology professional with a Bachelor of Technology
in Computer Science and Engineering from Sastra University, Tamil Nadu.

Acknowledgments

The sample data includes information about books and authors from Goodreads
(www.goodreads.com/), particularly from their lists of classical literature over the past
centuries. Additional author information was obtained, of course, from Wikipedia
(www.wikipedia.org/).

The author makes no guarantees about whether the information was correct or even
copied correctly. Certainly, the list of books should not in any way be interpreted as an

endorsement or even an indication of personal taste. After all, it’s just sample data.

xXvii

Introduction

In the early 1970s, a new design for managing databases was being developed based on
the original work of E. E Codd. The underlying model was known as the relational model
and described a way of collecting data and accessing and manipulating data using
mathematical principles.

Over the decade, the SQL language was developed, and, though it doesn’t follow the
relational model completely, it attempts to make the database accessible using a simple
language.

The SQL language has been improved, enhanced, and further developed over the
years, and in the late 1980s, the language was developed into a standard of both ANSI
(the American National Standards Institute) and ISO (the International Organization for
Standardization, and, that's right, it doesn’t spell ISO).

The takeaways from this very brief history are

¢« SQL has been around for some time.
¢« SQLis based on some solid mathematical principles.
« There is an official standard, even if nobody quite sticks to it.

¢« SQLis a developing language, and there are new features and new
techniques being added all the time.

The second half of the third point is worth stressing. Nobody quite sticks to the SQL
standards. There are many reasons for this, some good, some bad. But you'll probably
find that the various dialects of SQL are about 80-90% compatible, and the rest we'll fill
you in on as we go.

In this book, you'll learn about using SQL to a level which goes beyond the basics.
Some things you'll learn about are newer features in SQL; some are older features that
you may not have known about. We'll look at a few non-standard features, and we'll also
look at using features that you already know about, but in more powerful ways.

This book is not for the raw beginner—we assume you have some knowledge and
experience in SQL. If you are a raw beginner, then you will get more from my previous

INTRODUCTION

book, Getting Started with SQL and Databases;! you can then return to this book full of
confidence and enthusiasm with a good solid grounding in SQL.

If you have the knowledge and experience, the first chapter will give you a quick
overview of the sort of knowledge you should have.

The Sample Database

To work through the exercises, you'll need the following:
« A database server and a suitable database client.

« Permissions to do anything you like on the database. If you've installed
the software locally, you probably have all the permissions you need,
but if you're doing this on somebody else’s system, you need to check.

o The script which produces the sample database.

The first chapter will go into the details of getting your DBMS software and sample
database ready. It will also give you an overview of the story behind the sample database.

Notes

While you're writing SQL to work with the data, there’s a piece of software at the other
end responding to the SQL. That software is referred to generically as a database server,
and, more specifically, as a DataBase Management System, or DBMS to its friends. We'll
be using that term throughout the book.

The DBMSs we’ll be covering are PostgreSQL, MariaDB, MySQL, Microsoft SQL
Server, SQLite, and Oracle. We'll assume that you're working with reasonably current
versions of the DBMSs.

Chapter 1 will go into more details on setting up your DBMS, as well as downloading
and installing the sample database.

Source Code

All source code used in this book can be downloaded from github.com/apress/
leveling-up-sql.

'https://link.springer.com/book/978148429494.

XX

CHAPTER 1

Getting Ready

If you're reading this book, you'll already know some SQL, either through previous study
or through bitter experience, or, more likely, a little of both. In the process, there may be
a few bits that you've missed, or forgotten, or couldn’t see the point.

We'll assume that you're comfortable enough with SQL to get the basic things
done, which mostly involves fetching data from one or more tables. You may even have
manipulated some of that data or even the tables themselves.

We won’t assume that you consider yourself an expert in all of this. Have a look in
the section “What You Probably Know Already” to check the sort of experience we think
you already have. If there are some areas you're not completely sure about, don’t panic.
Each chapter will include some of the background concepts which should take you to
the next level.

If all of this is a bit new to you, perhaps we can recommend an introductory book. It’s
called Getting Started with SQL and Databases by Mark Simon, and you can learn more
aboutitathttps://link.springer.com/book/10.1007/978-1-4842-9493-2.

About the Sample Database

For the sample database, we're going to suppose that we're running an online bookshop:
BookWorks. In this scenario

« Customers visit the website.
e Atsome point, customers will have registered with their details.

¢« They then add one or more copies of one or more books to a

shopping cart.
« Hopefully, they then check out and pay.

¢« BookWorks will then procure the books and ship them to customers

at some point.

© Mark Simon 2023
M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_1

CHAPTER 1

GETTING READY

To manage all of this, the database tables look something like Figure 1-1.

One to One (One to Maybe) Sales & Sale ltems
vip sales
id INT Q0 id INT 0O id INT 0 Q)
status INT email VARCHAR(E6) o O custoserid INT NYF]
discount DECIMAL(3,2) familynane VASCHAR(40) 00 total DECIMAL(6,2)
review DATE givennase VARCHAR(42) D ordered DATETIME
gender CHAR(1) shipped 0ATE
street VARCHAR(E2)
town VARCHAR(40) | saleitems
state VARCHAR(3) d INT AP
postcode CHAR(4) saleid INT INEF]
dob DATE bookid INT INKF]
phone CHAR({18) quantity INT INRD!
spam BOOLEAN (0] price DECIMAL(G,2)
height DECIMAL(S,2) CHECK (quantity»0)
registered DATE N
townid INT
CHECK(email LIKE * @8 ')
CHECK (dob<current_timestasp - ‘28 years')
[llan\r o Many
One 1o Many / Many to One
bookgenres books
| bookid INT() ()) R INT ALE
genreid INT (D D 3 authorid INT F
—_— title vARCHAR(255) (D
genres published INT
| & ™1 DOK price NUMERIC(4,2)
| senre vARCHAR(ED)
self Join authors
id INT APl
employees givennane VARCHAR(40)
id INT AXP] othernames VARCHAR(40)
supervisorid INT Q familynase VARCHAR(40)
givenname VARCHAR(24) (D) horn DATE
familyname VARCHAR(24) () died DATE
email varcHAR (6a{T) () gender CHAR(L)
phone CHAR(18) m home VARCHAR(128)
tfn CHAR(S) U] country VARCHAR(24)
o= etc INTEGER Index ix_authors_name (familynase,givenname)

Figure 1-1. The BookWorks Schema

In real life, there’s more to the story. For example, we haven’t included payment or
shipping methods, and we haven’t included login credentials. There’s no stock either,
although we'll presume that the books are ordered on demand.

But there’s enough in this database for us to work with as we develop and improve
our SQL skills.

CHAPTER1 GETTING READY

Setting Up

You can sit in a comfortable chair with a glass of your favorite refreshment and a box of

nice chocolates and read this book from cover to cover. However, you'll get more from

this book if you join in on the samples.

Database Management Software

First, you'll need access to Database Management Software (DBMS). The five and a half
DBMSs we work with in the book are

PostgreSQL
MariaDB/MySQL
Microsoft SQL Server
SQLite

Oracle

PostgreSQL, MariaDB/MySQL, and SQLite are all free. Microsoft SQL Server and
Oracle are paid products, but have free versions.
MariaDB is a spin-off of MySQL, which is why they're treated together. They are

almost identical in features, but you'll find a few places where they’'re not identical.

If you're using MariaDB/MySQL, we’re going to assume that you're running it in
ANSI mode. It’s easily done if you start the session with

SET SESSION sql mode = 'ANSI';

You'll probably see this message a few times throughout the book. The Appendix
will tell you why.

CHAPTER1 GETTING READY

It's possible—even likely—that you already have the DBMS installed. Just make
sure that

« It’s a fairly recent version.

Some of the features you'll learn about aren’t available in some
older versions of some DBMSs. In particular, watch out for
MySQL: you'll need version 8 which was released in 2018 for some
of the more sophisticated features.

« You have enough privileges to create a database and to create and
modify tables. Most of the book won’t require that, but Chapter 2
definitely will.

At the very least, you'll need to be able to install the sample
database.

If you can’t make changes to the database, you can still work with most of the book,
and you'll just have to nod your head politely as you're reading Chapter 2, in which we
make a few changes to the database. You might also have some difficulty in creating
views, which we cover in Chapter 6 and in other chapters.

Database Client

You'll also need a database client. All the major DBMS vendors have their own free
client, and there are plenty of free and paid third-party alternatives.

The Sample Database

And, of course, you'll need to install the sample database.

The sample database and additional code files for this book are available on GitHub
via the book’s product page, located at www.apress.com/ISBN.

You can also directly download a script by visiting

www.sample-db.net/

and clicking a few buttons.

You'll need to do the following:

1.

CHAPTER1 GETTING READY

For your DBMS, create your sample database. If you can’t think
of a better name, bookworks is a fine name. For most DBMSs,
you can run

CREATE DATABASE bookworks;

You'll then need to connect to the database.

Using the preceding link, select the options for your DBMS.

For this sample, you should select the “Book Works” sample
(Step 2), as well as the additional Towns and Countries tables
(Step 4).

Download the file. It will come as a ZIP file, so you'll have to

unzip it.

Using your database, connect to your new database, open the
downloaded script file, and run the script.

What You Probably Know Already

... or, A Crash Course in SQL
If you get a sense of déja vu reading what follows, it's a summary of what you would
have learned from my prior Apress book, Getfing Started with SQL and Databases. You

can skip to the next chapter if you're confident with these ideas, but it might be worth

going over, to keep them fresh.

In this section, we'll go over the following ideas:

Some Philosophical Concepts
Writing SQL

Basic SQL

Data Types

SQL Clauses

Calculating Columns

Joins

CHAPTER1 GETTING READY

« Aggregates

« Working with Tables
e Manipulating Data

« SetOperations

This is a summary of what you will have encountered in the prior book. Some of
these topics will be pushed further in the following chapters.

Some Philosophical Concepts

Some people get the wrong idea of what computers do and, in particular, what'’s going on
in a database. Here, we’ll look at clearing this up, as well as clarifying the terminology—
what the words mean.

A database is a collection of data. Well, obviously, but when we’re talking about
SQL, we're talking about data which is organized and accessed in a particular way. To
begin with, the design of a database follows what is called the relational model, which
is basically a set of principles about how the data is organized. This model is all about
purity and clarity. Each item of data has exactly one place where it belongs and is stored
in its purest form. Related items of data are collected together.

Relational database purists won't be hesitant to point out that SQL databases
don’t follow these principles to the letter or, in some cases, even to the paragraph.
Nevertheless, the relational model is the basis of how SQL databases are put together.

Data vs. Information vs. Values

Databases store data. That's what the name implies, but it's important to understand
that that's not the same as information, even if we yield to the temptation to call it that.

Data is neutral. It has no meaning. Your height might be, say, 175 (cm), but the
database neither knows nor cares whether that’s good or bad. It's just a number, and if
it's not correct, it doesn’t care about that either.

What the database does care about, however, is whether the data entered follows
any rules predefined in the design of the database. That might include the type of data
entered or the range of possible values.

CHAPTER1 GETTING READY

Information, however, is something that humans do. We assign it a meaning, and we
make judgments. Here, we decide whether the height is what we’'d expect or meaningful
in some other way.

Why would that be important? Take, for example, your date of birth. Is it possible that
it might change?

The short answer is no, you can'’t (as far as we know) go back and change your
date of birth. However, the actual data itself can change, such as when it was entered
incorrectly, or there’s been a change to the calendar (which doesn’t, admittedly,
happen often).

This affects how a database should be designed: you have to allow for errors, and you
have to see what reasonableness checks you might need to add to the definitions. You
can’t, for example, lock in the date of birth, just because it’s not supposed to change.

The other concept is the value. Think of the data as a question and the value as the
answer. What is your given name (data)? The answer is its value.

That’s important, because much of the design of a database is about the data, not the
actual values.

For example, a well-constructed database should only store your given name data
exactly once. However, the actual value (“Fred,” “Wilma,” etc.) might well appear with
somebody else’s data. Values can be repeated, and, if they are, we just regard that as a
coincidence. The real giveaway is that you might change the value of one person’s given
name without being obliged to do the same elsewhere.

To put it simply:

e Datais a placeholder. It should never be duplicated elsewhere.
¢ Avalue is the content of the data. It may be NULL which means that

you don’t have the value, and it may be duplicated because, well,
these things happen.

« Information is the meaning you personally put on the database, and
the database neither knows nor cares about that. We won’t be dealing
with information much here.

We may use the term “information” loosely to refer to data, but it’s really not the
same thing.

CHAPTER1 GETTING READY

Database Tables

SQL databases store data in one or more tables. In turn, a table presents the data in rows
and columns. You get the picture in Figure 1-2.

Table

<+—— Columns ——»

Rows

Y

Figure 1-2. A Database Table

A row is an instance of the data, such as a book in the books table or a customer in
the customers table. Columns are used for details, such as the given name of a customer
or the title of a book. Figure 1-3 gives the idea.

Customers

<«+— Customer Details ————»

Individual
Customers

A\

Figure 1-3. A Customers Table

CHAPTER1 GETTING READY

Here are some of the important properties of a well-designed table:

Data is atomic: In each row, each column stores one piece of
data only.

Row order is not significant: You can sort them if you like, but the row

order has no real significance.
Rows are unique: You don’t have two rows describing the same thing.

Rows are independent: Data in one row shouldn’t affect any

other row.

Columns are independent of each other: Changing what's in one
column shouldn’t affect what's in another column.

Columns are of a single type: You can’t mix types in a single column.
Column names are unique. Obviously.

Column order is not significant: That's a bit confusing, since
obviously column order may be the only clue as to which is which.
However, it doesn’t matter which order you choose.

One important consequence of this is that columns should never be used to hold

multiple values, either singly or in combination. This means

A single column should not contain multiple values.

Multiple columns cannot have the same role.

There are a few additional rules, but they are more fine-tuning of the basic principles.

SQL uses the term “table” in two overlapping ways:

Data is stored in the database in a table. The data is accessed as rows
and columns; that is, the data is in a table format.

There is such a thing as a temporary table. That's the same as a
real table earlier, except that it will self-destruct when you finish
with the session.

Data may also be held fleetingly in a table format without actually

being stored.

You'll get this table data as a result of a join, a common table
expression, a view, or even from another SELECT.

CHAPTER1 GETTING READY

When we need to refer to the generated table data, we'll use the term virtual table to
make the point clear.

Writing SQL
SQL is a simple language which has a few rules and a few recommendations for
readability:

« SQLis relaxed about using extra spacing. You should use as much
spacing as required to make your SQL more readable.

« Each SQL statement ends with a semicolon (;).

« The SQL language is case insensitive, as are the column names. Table
names may be case sensitive, depending on the operating system.

Microsoft SQL is relaxed about the use of semicolons, and many MSSQL
developers have got in the bad habit of forgetting about them. However, Microsoft
strongly encourages you to use them, and some SQL may not work properly if
you get too sloppy. See https://docs.microsoft.com/en-us/sql/t-sql/
language-elements/transact-sql-syntax-conventions-transact-
sql#transact-sql-syntax-conventions-transact-sql.

If you remember to include semicolons, you'll stay out of trouble.

Remember, some parts of the language are flexible, but there is still a strict syntax to
be followed.

Basic SQL

The basic statement used to fetch data from a table is the SELECT table. In its simplest
form, it looks like this:

SELECT ...
FROM ...;

10

CHAPTER1 GETTING READY

s The SELECT statement will select one or more columns of data from
a table.

¢ You can select columns in any order.
o The SELECT * expression is used to select all columns.
¢ Columns may be calculated.

Calculated columns should be named with an alias; noncalculated columns can also
be aliased.
A comment is additional text for the human reader which is ignored by SQL:

e SQL has a standard single-line comment: -- etc

s« Most DBMSs also support the non-standard block comment:
/* o.0 ¥/

« Comments can be used to explain something or to act as section
headers. They can also be used to disable some code as you might
when troubleshooting or testing.

Data Types

Broadly, there are three main data types:
e« Numbers
e Strings
¢ Dates and times

Number literals are represented bare: they do not have any form of quotes.
Numbers are compared in number line order and can be filtered using the basic

comparison operators.
String literals are written in single quotes. Some DBMSs also allow double quotes,
but double quotes are more correctly used for column names rather than values.

« Insome DBMSs and databases, upper and lower case may not match.

¢ Trailing spaces should be ignored, but aren’t always.

11

CHAPTER1 GETTING READY

Date literals are also in single quotes.

¢ The preferred date format is ISO8601 (yyyy-mm-dd), though Oracle
doesn’t like it so much.

« Most DBMSs allow alternative formats, but avoid the ??/?2?/yyyy
format, since it doesn’t mean the same thing everywhere.

Dates are compared in historical order.

SQL Clauses

For the most part, we use up to six clauses in a typical SELECT statement. SQL clauses are
written in a specific order. However, they are processed in a slightly different order, as in

Figure 1-4.

Written Processed
SELECT FROM
FROM WHERE
WHERE GROUP BY
GROUP BY HAVING
HAVING SELECT
ORDER BY ORDER BY

Figure 1-4. SQL Clause Order

The important thing to remember is that the SELECT clause is the last to be evaluated
before the ORDER BY clause. That means that only the ORDER BY clause can use values
and aliases produced in the SELECT clause.’

As we'll see later in the book, there are additional clauses which are extensions to the
one we have here.

SQLite is the exception here. You can indeed use aliases in the other clauses.

12

CHAPTER1 GETTING READY

Filtering Data with the WHERE Clause

A table can be filtered using the WHERE clause.

When you have a large number of rows, you can filter them using the WHERE clause.
The WHERE clause is followed by one or more assertions which evaluate either to true or
false, determining whether a particular row is to be included in the result set.

The syntax for the WHERE clause is

SELECT columns
FROM table
WHERE conditions;

The conditions are one or more assertions, expressions which evaluate to true or not
true. If an assertion is not true, it's not necessarily false either. Typically, if the expression
involves NULL, the result will be unknown, which is also not true.

¢ NULL represents a missing value, so testing it is tricky.
o NULLs will always fail a comparison, such as the equality operator (=).

Testing for NULL requires the special expression IS NULL or IS NOT NULL.

Multiple Assertions

You can combine multiple assertions with the logical AND and OR operators. If you
combine them, AND takes precedence over OR.

The IN operator will match from a list. It is the equivalent of multiple OR expressions.
It can also be used with a subquery which generates a single column of values.

Wildcard Matches

Strings can be compared more loosely using wildcard patterns and the LIKE operator.
e Wildcards include special pattern characters.

« Some DBMSs allow you to use LIKE with non-string data, implicitly

converting them to strings for comparison.

« Some DBMSs supplement the standard wildcard characters with
additional patterns.

« Some DBMSs support regular expressions, which are more

sophisticated than regular wildcard pattern matching.
13

CHAPTER1 GETTING READY

Sorting with the ORDER BY Clause

SQL tables are unordered collections of rows.
« Row order is insignificant and may be unexpected.
« You can sort the results using an ORDER BY clause.

Sorting a table is done using the ORDER BY clause:

SELECT columns
FROM table

-- WHERE ...
ORDER BY ...;

The ORDER BY clause is both the last to be written and the last to be evaluated.

« Sorting does not change the actual table, just the order of the results
for the present query.

« You can sort using original columns or calculated values.

+ You can sort using multiple columns, which will effectively group the
rows; column order is arbitrary, but will affect how the grouping is
effected.

« By default, each sorting column is sorted in increasing (ascending)
order. Each sorting column can be qualified by the DESC clause which
will sort in decreasing (descending) order. You can also add ASC
which changes nothing as it's the default anyway.

« Different DBMSs will have their own approach as to where to place
sorted NULLs, but they will all be grouped either at the beginning or
the end.

« Data types will affect the sort order.

« Some DBMSs will sort upper and lower case values separately.

Limiting Results

A SELECT statement can also include a limit on the number of rows. This feature has been
available unofficially for a long time, but is now an official feature.

14

CHAPTER1 GETTING READY

The official form is something like

SELECT ...
FROM ...
ORDER BY ... OFFSET ... ROWS FETCH FIRST ... ROWS ONLY;

This is supported in PostgreSQL, MSSQL, and Oracle.
Many DBMSs still offer their proprietary unofficial limiting clauses. The most
common unofficial version is something like

SELECT ...
FROM ...
ORDER BY ... LIMIT ... OFFSET ...;

This is supported in PostgreSQL (which also supports OFFSET ... FETCH), MariaDB/
MySQL, and SQLite.
MSSQL also has a simple TOP clause added to the SELECT clause.

Sorting Strings

Sorting alphabetically is, by and large, meaningless. However, there are techniques to
sort strings in a more meaningful order.

Calculating Columns

In SQL, there are three main data types: numbers, strings, and dates. Each data type has
its own methods and functions to calculate values:

e For numbers, you can do simple arithmetic and calculate with more
complex functions. There are also functions which approximate
numbers.

« For dates, you can calculate an age between dates or offset a date.
You can also extract various parts of the date.

« For strings, you can concatenate them, change parts of the string, or
extract parts of the string.

« For numbers and dates, you can generate a formatted string which

gives you a possibly more friendly version.

15

CHAPTER1 GETTING READY

Calculating with NULLs

Whenever a calculation involves a NULL, it has a catastrophic effect on the result, and the
result will normally be NULL.

In some cases, you may be able to substitute a value using coalesce() which will
replace NULL with a reasonable alternative. Of course, you will need to work out what you

mean by “reasonable.”

Aliases

Every column should have a distinct name. When you calculate a value, you supply this
name as an alias using AS. You can also do this with noncalculated columns to provide a
more suitable name.

Aliases and other names should be distinct. They should also follow standard
column naming rules, such as not being the same as an SQL keyword and not having
special characters.

If, for any reason, a name or an alias needs to break the naming rules, you can always
wrap the name in double quotes ("double quotes")or whatever the DBMS supplies as
an alternative.

Some DBMSs have an alternative to double quotes, but you should prefer double

quotes if possible.

Subqueries

A subquery is an additional SELECT statement used as part of the main query.

A column can also include a value derived from a subquery. This is especially useful
if you want to include data from a separate related table. If the subquery involves a value
from the main table, it is said to be correlated. Such subqueries can be costly, but are

nonetheless a useful technique.

The CASE Expression

You can generate categories using CASE ... END, which tests a value against possible
matches and results in one out of a number of alternative values.

16

CHAPTER1 GETTING READY

Casting a Value

You may be able to change the data type of a value, using cast():
¢ You can change within a main type to a type with more or less detail.

« You can sometimes change between major types if the value
sufficiently resembles the other type.

Sometimes, casting is performed automatically, but sometimes you need to do it
yourself.

One case where you might need to cast from a string is when you need a date literal.
Since both string and date literals use single quotes, SQL might misinterpret the date for
a string.

Views

You can save a SELECT statement into the database by creating a view. A view allows you
to save a complex statement as a virtual table, which you can use later in a simpler form.
Views are a good way of building a collection of useful statements.

Joins

Very often, you will create a query which involves data from multiple tables. Joins
effectively widen tables by attaching corresponding rows from the other tables.
The basic syntax for a join is

SELECT columns
FROM table JOIN table;

There is an older syntax using the WHERE clause, but it’s not as useful for most joins.

Although tables are joined pairwise, you can join any number of tables to get results
from any related tables.

When joining tables, it is best to distinguish the columns. This is especially important
if the tables have column names in common:

¢ You should fully qualify all column names.

e Itis helpful to use table aliases to simplify the names. These aliases
can then be used to qualify the columns.

17

CHAPTER1 GETTING READY

The ON Clause

The ON clause is used to describe which rows from one table are joined to which rows
from the other, by declaring which columns from each should match.

The most obvious join is from the child table’s foreign key to the parent table’s
primary key. More complex joins are possible.

You can also create ad hoc joins which match columns which are not in a fixed
relationship.

Join Types
The default join type is the INNER JOIN. The INNER is presumed when no join type is
specified:

« An INNER JOIN results only in child rows for which there is a parent.
Rows with a NULL foreign key are omitted.

o« AnOUTER JOINis an INNER JOIN combined with unmatched rows.
There are three types of OUTER JOIN:

e A LEFT or RIGHT join includes unmatched rows from one of the
joined tables.

e AFULL join includes unmatched rows from both tables.

e« A NATURAL join matches two columns with identical names and
doesn’t require an ON clause. It is particularly useful in joining
one-to-one tables. Not all DBMSs support this.

There is also a CROSS JOIN, which combines every row in one table with every row
in the other. It's not generally useful, but can be handy when you cross join with a single
row of variables.

Aggregates

Instead of just fetching simple data from the database tables, you can generate various
summaries using aggregate queries. Aggregate queries use one or more aggregate
functions and imply some groupings of the data.

18

CHAPTER1 GETTING READY

Aggregate queries effectively transform the data into a secondary summary table.
With grand total aggregates, you can only select summaries. You cannot also select non-
aggregate values.

The main aggregate functions include

« count(), which counts the number of rows or values in a column
« min() and max() which fetch the first or last of the values in sort order
For numbers, you also have

o sum(), avg(), and stdev() (or stddev()) which perform the sum,
average, and standard deviation on a column of numbers

When it comes to working with numbers, not all numbers are used in the same way,
so not all numbers should be summarized.
For strings, you also have

» string agg(), group concat(), or listagg(), depending on the
DBMS, which concatenates strings in a column

In all cases, aggregate functions only work with values: they all skip over NULL.
You can control which values in a column are included:

e You can use DISTINCT to count only one instance of each value.
¢« Youcanuse CASE ... ENDto work as a filter for certain values.

Without a GROUP BY clause, or using GROUP BY (), the aggregates are grand totals:
you will get one row of summaries.

You can also use GROUP BY to generate summaries in multiple groups. Each group is
distinct. When you do, you get summaries for each group, as well as additional columns
with the group values themselves.

Aggregates are not limited to single tables:

e You can join multiple tables and aggregate the result.
« You can join an aggregate to one or more other tables.

In many cases, it makes sense to work with your aggregates in more than one step.
For that, it's convenient to put your first step into a common table expression, which is a
virtual table which can be used with the next step.

When grouping your data, sometimes you want to filter some of the groups. This is
done with a HAVING clause, which you add after the GROUP BY clause.

19

CHAPTER1 GETTING READY

Working with Tables

Tables are created using the CREATE TABLE statement. This statement includes
e Column names
« Data types
« Other table and column properties

A table design can be changed afterward, such as adding triggers or indexes. More
serious changes, such as adding or dropping columns, can be effected using ALTER
TABLE statements.

Data Types

There are three main types of data:
e« Numbers
« Strings
« Dates

There are many variations of the preceding types which make data storage and
processing more efficient and help to validate the data values.

There are also additional types such as boolean or binary data, which you won’t see
so much in a typical database.

Constraints

Constraints define what values are considered valid. Standard constraints include

« NOT NULL
« UNIQUE
« DEFAULT

« Foreign keys (REFERENCES)

You can construct your own additional constraints with the generic CHECK constraint.
Here, you add a condition similar to a WHERE clause which defines your own particular
validation rule.

20

CHAPTER1 GETTING READY

Foreign Keys

A foreign key is a reference to another table and is also regarded as a constraint, in that it
limits values to those which match the other table.

The foreign key is defined in the child table.

A foreign key also affects any attempt to delete a row from the parent table. By
default, the parent row cannot be deleted if there are matching child rows. However, this
can be changed to either (a) setting the foreign key to NULL or (b) cascading the delete to
all of the children.

Indexes

Since tables are not stored in any particular order, they can be time consuming to search.
An optional index can be added for any column you routinely search, which makes

searching much quicker.

Manipulating Data

Data manipulation statements are used to add or change data. In addition to the SELECT
statement, there are

« INSERT: Add new rows to the table
« UPDATE: Change the data in one or more rows in the table
« DELETE: Delete one or more rows of the table

Like SELECT, the UPDATE and DELETE statements can be qualified with a WHERE
clause to determine which rows will be affected.
Unlike SELECT, these have the potential to make a mess of a database, especially

since SQL doesn’t have an undo.

Set Operations

In SQL, tables are mathematical sets of rows. This means that they contain no duplicates
and are unordered. It also means that you can combine tables and virtual tables with set

operations.

21

CHAPTER1 GETTING READY

There are three main set operations:

« UNION combines two or more tables and results in all of the rows, with
any duplicates filtered out. If you want to keep the duplicates, you use
the UNION ALL clause.

o INTERSECT returns only the rows which appear in all of the
participating tables.

e EXCEPT (a.k.a. MINUS in Oracle) returns the rows in the first table
which are not also present in the second.

When applying a set operation, there are some rules regarding the columns in each
SELECT statement:

« The columns must match in number and type.
e Only the names and aliases from first SELECT are used.

s Only the values are matched, which means that if your various
SELECTs change the column order or select different columns, they
will be matched if they are compatible.

A SELECT can include any of the standard clauses, such as WHERE and GROUP BY, but
not the ORDER BY clause. You can, however, sort the final results with an ORDER BY at
the end.

Set operations can also be used for special techniques, such as creating sample data,
comparing result sets, and combining aggregates.

Coming Up

As we said, we won't presume that you're an expert in all of this. As we introduce the
following chapters, we’ll also recap some of the basic principles to help you steady
your feet.

In the chapters that follow, we’ll have a good look at working with the
following ideas:

« How to improve the reliability and efficiency of the database tables
(Chapter 2)

« How the tables are related to each other and how to work with
multiple tables (Chapter 3)
22

CHAPTER1 GETTING READY

« How to manipulate the values to get more value out of the values
(Chapter 4)

* How to summarize and analyze data (Chapter 5)
« How we can save queries and interim results (Chapter 6)
« How to mix data from multiple tables and aggregates (Chapter 7)

« How to work more complex queries by building on top of other
queries (Chapters 6, 7, and 9)

« How to add running aggregates and ranking data to our datasets
(Chapter 8)

In Chapter 2, we'll make a few changes to the database tables and even add a few
more tables to improve its overall design. It won't be perfect, but it will show how a
database can be further developed.

23

CHAPTER 2

Working with Table Design

SQL databases are, or at least should be, built on some pretty strong principles. Although
these principles are sometimes relaxed in real life, the database will be more reliable and
more efficient if they're followed as far as possible.

In this chapter, we're going to look at parts of the existing database and how it can be
improved using some of those principles. We'll look at

¢ The basic understanding of normal tables—tables which have been
constructed or reconstructed along the core principles

« Modifying tables to follow the principles more closely

« Improving the reliability and integrity of the database by adding
additional checks and constraints

« Improving the performance of the database by adding indexes to
help find data more efficiently

Of course, we won't be able to make the table perfect: that would take a long time
and a lot of experience with the database. You mightn’t even be in a position to do this
with your database. However, we'll be able to get a better understanding of what makes a
database work better.

Understanding Normalized Tables

One of the first things to consider is how individual tables are designed and constructed.
The goal is to be sure that each piece of data has a distinct and identifiable place and that
the data is in its simplest form.

Mathematicians have a term for anything in its purest form: they say it is normal. As
with so many mathematical terms, it probably doesn’t mean what it looks like: it doesn’t
mean that it's common, but that it’s definitive.

25
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_2

CHAPTER2 WORKING WITH TABLE DESIGN

Developing a database table often starts with a rough idea of the sort of data to be
stored and then goes through a process of normalization: examining the features of the
table and making changes to fit in better with the requirements of a normal table.

There are various rules and levels of normalization. In general, a normalized
database meets the following requirements:

e Datais atomic.

This means that data is broken down into its smallest
practical parts.

« Rows are unordered.

Of course, you will always see the rows in some sort of order, but
the row order is insignificant.

« Rows are unique.

There shouldn’t be any genuine duplicates. Coincidences are, of
course, another matter.

« Rows are independent.

Whatever appears in one row should have no effect on what
appears in another row within the table.

+ Columns are independent of each other.

More technically, columns are dependent only on the
primary key.

 Columns are of a single type.

You can’t mix data types in a single column. Strictly, you shouldn’t
be able to mix domains, which are sets of acceptable values, but
SQL has a hard time checking that.

« Column names are unique.
« Columns are unordered.

Again, columns will appear in some sort of order—by default, in
the order in which the table is designed. However, the column
order is insignificant.

26

CHAPTER2 WORKING WITH TABLE DESIGN

One of the design problems that normalization addresses deals with multiple values.
If data is to be atomic, and columns are to be independent, how do you manage multiple
values? For example, how do you handle sales with multiple sale items or books with
multiple genres?

The solution is to put these values into a separate table, one value per row, and let
the table refer back to the first table. We will be looking at the relationships between
tables, especially in handling multiple values, in the next chapter. The basic idea will be
that an additional table will hold multiple values in multiple rows; it will then include a
foreign key, a reference to a primary key in the first table.

In this chapter, we'll look at some of these principles and see how our database
compares against them. When we do find shortcomings, we’'ll make some changes
to the tables themselves and even add a few more tables to make the database more
conformant to these ideas. We’ll also look at ways of ensuring that the data is more
reliable and, to some extent, more efficient.

We'll begin by addressing problems with interdependent columns, which will mean
changing some tables. It will also mean adding additional tables. To make these changes
less inconvenient, we'll look at creating views to take in the additional tables.

We'll also look at how to work toward a more reliable database by adding additional
constraints—data rules—to check what goes into the table in the first place.

Finally, we'll look at adding indexes to improve the performance of the database.

When it comes to the question of multiple values, we’ll see more on that in the next
chapter, which deals with how tables are related with each other.

No database is perfect, and it won't be our aim to make this one perfect: we'll leave a
lot of work undone. It’s also quite likely not your job anyway. However, at least we'll get a
better understanding of what makes a good database work.

Columns Should Be Independent

One of the fundamental principles of table design is that columns should be independent
of each other. That is, changing one column shouldn’t necessarily affect another.
However, if you look at customer addresses:

SELECT
id, givenname, familyname,
street, town, state, postcode
FROM customers;

27

CHAPTER2 WORKING WITH TABLE DESIGN

you will see that there is indeed a relationship between some of the address columns.

Id street town state postcode
85 z 1313 Webfoot Walk Kingston ACT 2604

355 345 Stonecave Road Kingston ACT 2604
147 Apartment 5A, 129 West 81st Street Kingston ACT 2604

112 890 Fifth Avenue Kingston ACT 2604

489 . Apartment 42, 2630 Hegal Place Gordon ACT 2906
592 0001 Cemetery Lane Rosebery NSW 1445

~ 303 rows ~

For example, if you change your address from one town to another, you will probably
also need to change the postcode and possibly the state. On top of that, people living in the
same town probably also have the same postcode; certainly, they will be in the same state.

This creates a maintenance problem:

« Changing address requires changes in three columns for a
single change.

e Itis possible to make a mistake and change only some of the data;
this creates an inconsistency, making the data useless.

The correct solution would be to move this data to another table.

Adding the Towns Table

There is an SQL file called towns.sql. This will create and populate a towns table.
The table has the following structure:

CREATE TABLE towns (
id INT PRIMARY KEY, -- auto numbered
name VARCHAR(...),
state VARCHAR(...),
postcode CHAR(4),
UNIQUE(name,state,postcode)

b
28

CHAPTER2 WORKING WITH TABLE DESIGN

The table also includes an autonumbering id column, which is the primary key. A
primary key is a column which uniquely identifies a row. In this case, it's an arbitrary
number. The actual details will depend on the DBMS you're using.

Although there will be duplicated names, states, and postcodes, the combination
will be unique.

The preceding UNIQUE clause also creates an index, which will make searching the
table faster. You will learn more about indexes later.

You can run this script now to create and populate the towns table.

Depending on your DBMS, you may need to make sure that you are installing this
table into the correct database.

Adding a Foreign Key to the Town

The next step will be to add a column in the customers table to reference the town in the
towns table. This is done with an ALTER statement:

ALTER TABLE customers
ADD townid INT
CONSTRAINT fk customers town REFERENCES towns(id);

Note that the townid column must match the data type of the id column in the towns
table, which, in this case, is an integer.

You'll notice that it doesn’t actually use the term FOREIGN KEY. It’s the keyword
REFERENCES that makes it a foreign key: in this case, it references an id in the towns table.

You'll also notice the naming of the foreign key using CONSTRAINT fk_customers
town. Every constraint actually has a name, but you don’t have to name it yourself if
you're prepared to allow the DBMS to make one up. If so, you can use a shorter form:

ALTER TABLE customers
ADD townid INT REFERENCES towns(id);

If you already had the column, you could have added the foreign key constraint
retroactively with

ALTER TABLE customers
ADD CONSTRAINT fk_customers town FOREIGN KEY(townid)
REFERENCES towns(id);
29

CHAPTER2 WORKING WITH TABLE DESIGN

By default, when you create a new column, it will be filled with NULLs. You could have
added a default value instead, but that would be pointless in this case, since everybody
lives somewhere else; in some cases, we don’t have the customer’s address at all.

Update the Customers Table

Now that you have a foreign key column, you will need to fill it with references to the
corresponding towns.
If you want to see what these foreign keys should be, you can use a subquery:

SELECT
id, givenname, familyname,
town, state, postcode, -- existing data
(SELECT id FROM towns AS t WHERE -- new data

t.name=customers.town
AND t.postcode=customers.postcode
AND t.state=customers.state
) AS reference
FROM customers;

Some of these results will, of course, be NULL, as some of the customers have no
recorded address.

id givenname familyname town state postcode reference
85 Corey Ander Kingston ACT 2604 35

355 Joe Kerr Kingston ACT 2604 35

147 Aiden Abet Kingston ACT 2604 35

112 Jerry Cann Kingston ACT 2604 35

489 Justin Case Gordon ACT 2906 135

592 Paddy Wagon Rosebery NSW 1445 386

~ 303 rows ~

A subquery is a query within a query. In this case, it’s a simple way of looking up
something from another table.

30

CHAPTER2 WORKING WITH TABLE DESIGN

This subquery is a correlated subquery: it is run for every row in the main query,
using values from the main query to compare to the subquery. That's normally an
expensive type of query, but we won't use it very much. It will also be useful for the
next step.

You will learn more about subqueries later.

Note that we have aliased the towns table in the subquery; that's to make the code
easier to read and write. You could also have aliased the customers table, but that won't
work for all DBMSs in the next step.

We don't just want to look at the reference: we want to copy the reference into the
customers table. You do that with an UPDATE statement:

UPDATE customers
SET townid=(
SELECT id FROM towns AS t
WHERE t.name=customers.town
AND t.postcode=customers.postcode
AND t.state=customers.state

);

The UPDATE statement is used to change values in an existing table. You can
set the value to a constant value, a calculated value, or, as in this case, a value from
another table.

Here, the same subquery is used to fetch the id that will be copied into the
townid column.

Some DBMSs allow you to alias the customers table, which would make the UPDATE
statement a little simpler.

A correlated subquery can be expensive, and it's normally preferable to use a join
if you can. We could have used a join for the SELECT statement, but not all DBMSs
cooperate so well with UPDATE statements. Here, the subquery is intuitive and
works well, and, since you're only running this once, not too expensive.

31

CHAPTER2 WORKING WITH TABLE DESIGN

Remove the Old Address Columns

Shortly, we will remove the old address columns, but that’s going to create an inconvenience
later, since the town data is now in a separate table. That means we can’t get the customer’s
details including the full address without joining the tables. To manage this inconvenience,
itwill be useful to create a view to combine the customer data with the town data.

Create a customerdetails View

Aview is a saved query which we can use as a virtual table. In this view, we will simply
add all of the columns from the customers table except for the town data. For the town
data, we will need to join to the towns table.

First, we try things out with a simple SELECT statement:

SELECT
c.id, c.email, c.familyname, c.givenname,
c.street,
-- original values
c.town, c.state, c.postcode,
c.townid,
-- from towns table
t.name AS town, t.state, t.postcode,
c.dob, c.phone, c.spam, c.height
FROM customers AS ¢ LEFT JOIN towns AS t ON c.townid=t.id;

If you're doing this in Oracle, remember that you can’t use AS for the table aliases:

SELECT

FROM customers ¢ LEFT JOIN towns t ON c.townid=t.id;

Note that
« Weuse the LEFT JOIN to include customers without an address.
« We alias the customers and towns tables for convenience.

s« The towns table has a name column, instead of the town column.
However, in the context of the query, it makes sense to alias it to town.

« We've also included the c.townid column, which, though it’s
redundant, might make it easier to maintain.
32

CHAPTER2 WORKING WITH TABLE DESIGN

Once you have checked that the SELECT statement does the job, you can create a
view. Of course, you should leave out the old town data, since the whole point is to use
the data from the joined data:

CREATE VIEW customerdetails AS
SELECT
c.id, c.email, c.familyname, c.givenname,
c.street,
-- leave out the c.town, c.state, c.postcode
c.townid, t.name AS town, t.state, t.postcode,
c.dob, c.phone, c.spam, c.height
FROM customers AS ¢ LEFT JOIN towns AS t ON c.townid=t.id;

In Microsoft SQL, you need to wrap the CREATE VIEW statement between a pair of GO
keywords:

-- MSSQL:
GO
CREATE VIEW customerdetails AS
SELECT
c.id, c.email, c.familyname, c.givenname,
c.street,
c.townid, t.name as town, t.state, t.postcode,
c.dob, c.phone, c.spam, c.height
FROM customers AS c¢ LEFT JOIN towns AS t ON c.townid=t.id;
Go

You will learn more about views later.

Drop the Address Columns
To drop the old address columns, you should be able to run the following:

-- PostgreSQOL, MySQOL / MariaDB
ALTER TABLE customers
DROP COLUMN town, DROP COLUMN state, DROP COLUMN postcode;

-- Oracle: not DROP COLUMN
ALTER TABLE customers DROP (town, state, postcode);

33

CHAPTER2 WORKING WITH TABLE DESIGN

-- SQLite: You need to drop one column at a time
ALTER TABLE customers DROP COLUMN town;
ALTER TABLE customers DROP COLUMN state;
ALTER TABLE customers DROP COLUMN postcode;

-- MSSQL: Doesn’t work (yet)
ALTER TABLE customers
DROP COLUMN town, state, postcode;

Here, we use DROP COLUMN which removes one or more columns and, of course, all of
their data, so you would want to be sure that you don’t need it anymore. As you've seen
earlier, there are some variations in the syntax between DBMSs.

In Microsoft SQL, you will get an error that you can’t drop the postcode column
because there is an existing constraint. A constraint is an additional rule for a
valid value.

In this case, there is a constraint called ck_customers_postcode which requires that
postcodes comprise four digits only. You won't need that constraint now, especially
since you're going to remove the column.

To remove the constraint, run

-- MSSOL
ALTER TABLE customers
DROP CONSTRAINT ck_customers postcode;

Once you have successfully removed the constraint, you can now remove the
columns:

ALTER TABLE customers DROP COLUMN town, state, postcode;

You will now have removed the extraneous address columns.

Remember, if you drop the wrong column, it is very tricky or impossible to get
it back.

34

CHAPTER 2 WORKING WITH TABLE DESIGN

Changing the Town

Of course, the whole point of the exercise is you should now be able to move to another
town with a single change. We'll try this with customer 42.
First, find the address of customer 42, and, in particular, note the townid:

SELECT * FROM customerdetails WHERE id=42;

You'll get something like this:
id townid town State postcode
42 846 Kings Park NSW 2148

Note that we're reading from the customerdetails view, because the town data is no
longer in the customers table, though the townid is.

Now, change the customer’s townid to anything you like (as long as it’s no more than
the highest id in the towns table):

UPDATE customers SET townid=12345 WHERE id=42;
If you now check the same customers:

SELECT * FROM customerdetails WHERE id=42;

you'll get something like this:
id . townid town State postcode
42 12345 Swan Marsh VIC 3249

If you like, you can set it back to its original value.
Here, we've set the townid in the customers table, which is where it belongs.
Some DBMSs allow you to take a slightly indirect approach to changing this value

and change it via the view:

-- Not PostgreSQL or SQLite:
UPDATE customerdetails SET townid = ... WHERE id=42;

As you see, this doesn’t include PostgreSQL or SQLite.

35

CHAPTER2 WORKING WITH TABLE DESIGN

Of course, you can't really update a view because it’s really just a SELECT statement
and doesn’t contain any data. Instead, the DBMS tries to work out which table the
particular column belongs to and passes the change on to the table. There are times
when it can’t work that out, such as when you try to update a calculated column. In that
case, the update will fail, and you'll have to update the table directly.

Adding the Country

For completeness, you may want to add a reference to a country. You might simply have
another column with the country name, but many countries have variations in their
names, and you don’t want three different versions of the country in the same table.

It's better to have a separate table of countries and include a foreign key to this table.
You can add this reference to the customers table, but it might make more sense to add
this to the towns table, since it is the town which is located in a country.

You'll note that the countries table has much more than we need for the purpose.
You probably don’t need things like the country’s population or area. However, at some
point in the future, you might want the country’s currency, time zone, or phone prefix, so
it doesn’t hurt to have it now. It's not a very big table, and you can just ignore what you
don’t want, but you can always drop the columns you really don’t need.

1. Thereis an SQL file for another table called countries.sql. It has
a number of details, but the two most important details are

CREATE TABLE countries (
id CHAR(2) PRIMARY KEY,
name VARCHAR(...),
-- etc

);

Note that the primary key is a two-character string. Every country
has a predefined two-character code, generally based on the
country’s name, either in English or in the country’s language. It
makes sense to use this as its primary key, rather than making one
up. This is an example of a natural key: a primary key based on
actual data rather than an arbitrary code.

Run the script to install the table.

36

CHAPTER2 WORKING WITH TABLE DESIGN

Add a countryid column to the towns table, similar to the way you
added townid to the customers table. Remember, the data type
must match the preceding primary key:

-- PostgreSOL, Oracle, MSSQL, SQLite
ALTER TABLE towns
ADD countryid CHAR(2)
CONSTRAINT fk_town country REFERENCES countries(id);

-- MySQOL / MariaDB
ALTER TABLE towns
ADD countryid CHAR(2) REFERENCES countries(id);

Update the towns table to set the value of countryidto "au' for
Australia or whichever country you choose. This is much simpler
than setting it from a subquery:

UPDATE towns SET countryid='au';

You will have to modify your view. First, drop the old version:

-- Not Oracle:

DROP VIEW IF EXISTS customerdetails;
-- Oracle:

DROP VIEW customerdetails;

Next, you will have to recreate it with the country name:

-- Not Oracle
CREATE VIEW customerdetails AS
SELECT

c.townid, t.name AS town, t.state, t.postcode,
n.name AS country

FROM
customers AS c
LEFT JOIN towns AS t ON c.townid=t.id

37

CHAPTER2 WORKING WITH TABLE DESIGN

LEFT JOIN countries AS n ON t.countryid=n.id;
-- Oracle
CREATE VIEW customerdetails AS
SELECT

c.townid, t.name AS town, t.state, t.postcode,
n.name AS country

FROM
customers c
LEFT JOIN towns t ON c.townid=t.id
LEFT JOIN countries n ON t.countryid=n.id;

Note

e This includes an additional JOIN to the countries table; to
accommodate the longer clause, we have split the JOIN over
multiple lines.

e The alias for the countries table has been set to n (for Nation);
this is simply because we can’t use c as it is already in use.

Additional Comments

You may have noticed that we didn’t do anything about the street address column.
Strictly speaking, this is also subject to the same issues as the rest of the address, so it
would have been better if we did something similar.

However, street addresses are much more complicated, and we don’t have so many
customers, so we have left them as they are. This leaves us with an imperfect but much
improved design.

Improving Database Integrity

So far, we have focused on bringing a table closer to a true normal form by reducing the
dependency between columns and repetition of data. This meant adding other tables
and foreign keys.

38

CHAPTER2 WORKING WITH TABLE DESIGN

Here, we will explore additional improvements to the integrity of the database.
Database integrity refers to the quality of the data: Does the data make any sense?

You need to remember that the DBMS really has no idea of what's going on, and
it really doesn’t care whether you're telling the truth. However, the DBMS is deeply
concerned with whether the data is valid. That is, whether the data conforms to
various rules.

In theory, data belongs to a domain—a set of valid values. You should then be able to
define a domain for one or more columns. In practice, this feature isn’t widely supported
in most DBMSs.

On the other hand, you can readily impose constraints on a column. A constraint is
a data rule.

You'll already know some standard constraint types:

« A data type, such as INTEGER or VARCHAR(16), limits the type and
range of the data which is acceptable.

« ANOT NULL constraint means the value cannot be NULL; that is, it's
required.

¢« A UNIQUE constraint will disallow a value if another row has the same
value already in that column (or combination of columns).

e A REFERENCES constraint defines a foreign key; a foreign key must
match an existing value in another key.

In all cases, of course, there’s no guarantee that the value is true—just valid.

If you want to get more specific in your definition of what is valid, there is also the
CHECK constraint. The CHECK is a miscellaneous constraint which allows you to set up
your own rules using an expression similar to a WHERE clause. Sometimes, these are
called business rules.

In this section, we'll look at some weaknesses of the database and try to fill in some
of the design gaps by adding some constraints.

Much of the following will involve making changes to existing columns. If you're
using SQLite, then, sadly, you can’t do that. SQLite has very limited ALTER TABLE
functionality, and you can’t make changes to existing columns. If you really need to
make such changes, you would have to go through a more complicated process of
dropping a column and creating a new one.

39

CHAPTER2 WORKING WITH TABLE DESIGN

Fixing Issues with a Nullable Column

The saleitems table includes a column called quantity—this is the number of copies
you're buying of the book:

SELECT * FROM saleitems ORDER BY saleid,id;

You'll see something like this:
Id saleid bookid quantity price
1 1 1403 1 11.5
2 1 1861 1 13.5
3 1 643 [NULL] 18
4 2 187 1 10
5 2 1530 1 12.5
6 2 1412 2 16
~ 13964 rows ~

However, through an oversight, the column allows NULL, which, if you look far
enough, you'll find in a number of rows. That doesn’t make sense: you can’t have a sale
item if you don’t know how many copies it’s for.

It's reasonable to guess that a missing quantity suggests a quantity of 1. You can
implement this guess using coalesce():

SELECT
id, saleid, bookid,
coalesce(quantity,1) AS quantity, price
FROM saleitems
ORDER BY saleid, id;

40

CHAPTER2 WORKING WITH TABLE DESIGN

Now we’ll get the same results, except that the NULLs have been replaced with 1:

id saleid bookid quantity Price
1 1 1403 1 1.5
2 1 1861 1 13.5
3 1 643 1 18

4 2 187 1 10

5 2 1530 1 12.5
6 2 1412 2 16

~ 13964 rows ~

As always with the coalesce () function, you need to check your assumptions. Is 1
really a reasonable guess? In this case, it's unlikely to mean zero copies or any other
number, but it all really depends on the situation. For the exercise, we'll just play along...

We certainly don’t want to keep doing this every time, so we're going to fix the old
values and prevent the NULLs in the future.

What follows won't work with SQLite. However, there is a section after this which is
what you might do to make the same changes in SQLite.

Replacing NULL Quantities

First, we'll disallow NULLs. Shortly, we will add a NOT NULL constraint to the quantity
column. However, we can’t do that until we clear out the existing NULLs, because

the DBMS will never allow the constraints to be violated, even if the constraints are
added later.

Assuming this is OK, we can replace the NULLs with 1:

UPDATE saleitems
SET quantity=1
WHERE quantity IS NULL;

41

CHAPTER2 WORKING WITH TABLE DESIGN

From here, we won't need to use coalesce() on existing data, but we need to
prevent NULLs in the future.

Setting the NOT NULL Constraint for Quantity

The next thing is to set a NOT NULL constraint on the column:

-- PostgreSQOL

ALTER TABLE saleitems ALTER COLUMN quantity SET NOT NULL;
-- MySQL/MariaDB

ALTER TABLE saleitems MODIFY quantity INT NOT NULL;
-- MSSQOL

ALTER TABLE saleitems ALTER COLUMN quantity INT NOT NULL;
-- Oracle

ALTER TABLE saleitems MODIFY quantity NOT NULL;
-- Not Possible in SQLite

Earlier, the ALTER TABLE statement was used to add or remove a column. You can
also use it to make changes to an existing column. Here, we use it to add a NOT NULL
constraint.

As you've seen earlier, each DBMS has its own subtle variation on the ALTER TABLE
statement.

Setting a DEFAULT for Quantity

In principle, whatever caused the NULLs to appear may happen again, only now it will
generate an error. Better still, we should supply a default of 1 in case the quantity is
missing in a future transaction:

-- PostgreSQL

ALTER TABLE saleitems

ALTER COLUMN quantity SET DEFAULT 1;
-- MySQL/MariaDB

ALTER TABLE saleitems

MODIFY quantity INT DEFAULT 1;
-- MSSOL

ALTER TABLE saleitems

ADD DEFAULT 1 FOR quantity;

42

CHAPTER2 WORKING WITH TABLE DESIGN

-- Oracle
ALTER TABLE saleitems
MODIFY quantity DEFAULT 1;
-- Not Possible in SQLite

The DEFAULT value is the value used if you don’t supply a value of your own. The
column doesn’t have to be NOT NULL, and NOT NULL columns don't have to have a
DEFAULT. However, in this case, it’s a reasonable combination.

Again, note that each DBMS has its own subtle variation on the syntax.

Adding a Positive CHECK Constraint for Quantity

While we're fine-tuning the behavior of the quantity column, you can protect against
another possible error. In principle, integers can include negative values, which would
make no sense at all for quantity. Even zero wouldn’t be appropriate in this case.

You can protect against an out-of-range value using a CHECK constraint:

CHECK (quantity»>0)
You could also impose an upper limit by using the BETWEEN expression:
CHECK (quantity BETWEEN 1 AND 5)

Remember that BETWEEN is inclusive.
However, you have to be careful in imposing arbitrary limits, such as a maximum of 5,

because, say, 6 is not out of the question. We'll leave that decision to some future time.
To add the CHECK constraint, again, you use ALTER TABLE:

-- PostgreSQL

ALTER TABLE saleitems

ADD CHECK (quantity>0);
-- MySQL/MariaDB

ALTER TABLE saleitems

MODIFY quantity INT CHECK(quantity>0);
-- MSSQL

ALTER TABLE saleitems

ADD CHECK(quantity>0);
-- Oracle

ALTER TABLE saleitems

43

CHAPTER2 WORKING WITH TABLE DESIGN

MODIFY quantity CHECK(quantity>0);
-- Not Possible in SQLite

We’ve now made the quantity column more reliable.

Combining the Changes
In some DBMSs, it is possible to combine the changes in a single ALTER TABLE statement:

-- PostgreSQOL
ALTER TABLE saleitems
ALTER COLUMN quantity SET NOT NULL,
ALTER COLUMN quantity SET DEFAULT 1,
ADD CHECK (quantity>0);
-- MySQL/MariaDB
ALTER TABLE saleitems MODIFY quantity INT
NOT NULL
DEFAULT 1
CHECK(quantity»>0);
-- Oracle
ALTER TABLE saleitems MODIFY quantity
DEFAULT 1
NOT NULL
CHECK(quantity»>0);
-- Not Possible in MSSQOL
-- Not Possible in SQLite

Since you don't actually make this sort of change terribly often, you lose nothing if
you keep the steps separate.

Making the Changes in SQLite

As you see, SQLite has very limited ability to make changes. Generally, SQLite can only
make the following changes to a table:

s Addacolumn
« Rename a column

« Drop acolumn

CHAPTER2 WORKING WITH TABLE DESIGN

However, that’s enough to make the changes we want, as long as we're happy with a

different column order.

To make all of the preceding changes

1.

Rename the original quantity column:

ALTER TABLE saleitems

RENAME quantity TO oldquantity;

Add a new quantity column with the required properties:
ALTER TABLE saleitems

ADD quantity INT NOT NULL DEFAULT 1 CHECK(quantity»0);
Copy the data from the old column to the new one:

UPDATE saleitems

SET quantity=oldquantity;

Drop the old column:

ALTER TABLE saleitems
DROP oldquantity;

The new column will be at the end, which is not where the original was, but that’s not

really a problem.

Other Adjustments

As often in the development process, it’s not hard to get something working, but the

main effort goes into making it working just right. Here are some suggestions to improve

both the integrity and the performance of the database.
We'll talk about indexes in the next section: they help in making the data easier to

search or sort.

45

CHAPTER2 WORKING WITH TABLE DESIGN

table column suggestion
Customers
height CHECK (height>0) — or height BETWEEN 60 and 260
dob CHECK (dob<current_timestamp)
registered CHECK (registered<current_timestamp)
Authors
names INDEX
dates CHECK (born<died)
gender CHECK (gender IN(‘m’,'f"))
CHECK (givenname IS NOT NULL OR familyname IS NOT NULL)
Books
authorid INDEX
title INDEX
published CHECK (published < year(current_timestamp))
price CHECK (price>=0)
Sales
total CHECK (total>=0)
ordered CHECK (ordered<current_timestamp)
customerid INDEX
CHECK (shipped>=ordered)
Saleitems
saleid INDEX
bookid INDEX
quantity NOT NULL CHECK(quantity>0) DEFAULT 1
price CHECK(price>=0)

46

CHAPTER2 WORKING WITH TABLE DESIGN

You'll notice that some of the CHECK constraints aren’t associated with a single
column. Some constraints are more concerned with how one column relates to
another column.

We certainly won't address all of these suggestions here. After all, thisisn'ta
real working database, and it's quite possibly not your job anyway. We'll just look at
two more.

Ensuring the Prices Are Not Negative

If it were possible to define a data type as nonnegative, we should use that type for many
columns. For example, MySQL/MariaDB has a data type called UNSIGNED INT: being
unsigned it will always be zero or positive, which is handy for some counters, as well as
for quantities.

The alternative, of course, is to use a CHECK constraint to restrict the values. We'll
build that into the price of books.

One thing you might consider is a suitable minimum or maximum price, for which
you might use a BETWEEN condition. However, that might change over time, so it’s not
always practical.

What we'll do here is just make sure that the price is never less than zero. We will
allow zero in case we have something we’'re prepared to give away, but the price should
never be less than zero.

Adding that constraint is simple, but again the syntax varies between DBMSs:

-- PostgreSOL
ALTER TABLE books ADD CHECK (price>=0);

-- MySQL/MariaDB
ALTER TABLE books MODIFY price INT CHECK(price>=0);

-- MSSOL
ALTER TABLE books ADD CHECK(price»=0);

-- Oracle
ALTER TABLE books MODIFY price CHECK(price>=0);

Again, to do this with SQLite, you can follow the steps for the quantity in saleitems
earlier.

47

CHAPTER2 WORKING WITH TABLE DESIGN

Ensuring That an Author Is Born Before Dying

Whenever you have multiple columns with similar data, you run the risk of having them
the wrong way round.

One notorious example is the name: you sort the name as familyname, then
givenname, so it makes sense to store it that way, but you often view it the other way. It’s
not hard to imagine how the name might be entered the wrong way.

The authors table has two dates: the born date and the died date. In this case,
they're stored chronologically, but it would still be good to make sure.

Here, we'll add a table constraint—a constraint which is applied to the table rather
than to an individual column. Column constraints can also be added this way, but some
constraints don’t apply to single columns.

If we had the chance to recreate the table from scratch, we'd do something like this:

CREATE TABLE authors (

id int PRIMARY KEY, -- auto-numbered as per DBMS
-- givenname, othernames, familyname,

born DATE,

died DATE,

-- gender, home,
-- Table Constraint:
CONSTRAINT ck_author dates CHECK(born<died)

);

Here, the constraint appears as an additional property, typically, though not
necessarily, at the end.

Given that the table already exists and that it already has data, that opportunity has
passed us by. However, we can add the table constraint retroactively.

First, of course, you need to check for any data which might violate the constraint:

SELECT * FROM authors WHERE born<died;

There shouldn’t be any. If there are, then you're on your own. You'll have to do your
own research on what the correct dates should be, or, if you're desperate, you can set
them to NULL.

The next step would be to add the table constraint:

ALTER TABLE authors ADD CHECK (born<died);

48

CHAPTER2 WORKING WITH TABLE DESIGN

Unlike adding a column constraint, the various DBMSs all use the same syntax—
except, of course, for SQLite. There is no simple method for adding a table constraint
in SQLite. Complex methods include dropping and recreating the whole table similar
to dropping and recreating a column or tampering with the internals of the database,
which is definitely not for the fainthearted.

Adding Indexes

SQL doesn’t define what order a table should be in. That leaves it up to the DBMS to
store the table in any way it deems most efficient.

The problem is that when searching for a particular row, it could be anywhere, and
the only way to find it is to look through the whole table and hope that it doesn’t take
too long.

If, on the other hand, the table were in order, it would be much easier to find what
you're looking for. However, even if it’s in order, it’s just as likely to be in the order of the
wrong thing.

For example, even if the customers table is in, say, id order, it doesn’t help when
searching by familyname. If it’s in familyname order, it doesn’t help when searching
by phone.

The solution is to leave the table alone and then supplement the table with one or
more indexes. An index is an additional listing which is in search order, together with a
pointer to the matching row in the table.

For example, the customers table has an index for the familyname. When the time
comes to search on the familyname, the DBMS automatically looks up the index instead,
finds what it wants, and goes back to the real table to fetch the rest of the data.

There are two costs to having an index:

¢ Each index takes up a little more space in the database.

e Every time you add or change a row in the table, each index will also
need to be updated.

For this reason, you will only find an index on a column if it has been specifically
requested in the table design. And you would only include an index if you considered the
improvement in search ability to be worth the cost in storage and management.

49

CHAPTER2 WORKING WITH TABLE DESIGN

There are two additional indexes which are automatically included:

+ Any UNIQUE column is always indexed; the best way to prevent
duplicated values is to keep an ordered list of existing values.

« The primary key is always indexed; by definition, it is a unique
identifier, which you would presumably search often.

Another type of column which might be worth considering is a foreign key. That's
because it will, of course, be heavily involved in searching and sorting.

There is some discussion in learned circles as to the merits of indexing foreign
keys. Overall, it appears to be a good idea, and you would probably do well
consider adding an index to each of them.

Any other column would be a matter of judgment. At least it's not hard to change
your mind about adding or removing an index at some point in the future.

Some DBMSs do include the ability to store the table in order of one column or
the other. This is called a clustered index or an index organized table. In some
DBMSs, such as Microsoft SQL, the clustering is permanent (the DBMS ensures
that the table is maintained in that order); in some others, it is temporary (the
DBMS sorts the table once, but you’ll have to do it again in the future).

Here, we’re ignoring clustering. In any case, you still can’t keep the table in
multiple orders, so you’ll need indexes anyway.

Adding an Index to the Books and Authors Tables

One column which you might search routinely is the title column in the books table. To
add an index, use CREATE INDEX:

CREATE INDEX ix_books title
ON books(title);

50

CHAPTER2 WORKING WITH TABLE DESIGN

The ON clause identifies the table and the columns you want listed.
It is possible to index multiple columns in a single statement, but that doesn’t create
multiple separate indexes. Instead, you create an index on the combined value. For

example:

CREATE INDEX ix_authors_name
ON authors(familyname, givenname, othernames);

This will create a single index of the authors’ familyname, givenname, and
othernames.

Even though the index is built around all three parts of the author’s name, it will still
be used if you just search for, say, the familyname. However, using a partial index that
way presumes that you're at least using the first components of the index, which is why
the columns are in that order.

Note that in both statements earlier, the index has been given a name. There are
no rules for what that name should be, but developers have their own patterns. For
example, the preceding pattern is something like

ix_table columns

This isn’t a rigid rule, but it makes things easier to work with.
Why does the index need a name anyway? Most of the time, you don’t really care.
However, there are two reasons:

« Everything stored in the database, including maintenance objects,
must have a unique name for internal management.

« Ifyou ever need to drop an index, you need to use its name to
identify it.
Even if you succeed in creating an anonymous index, the DBMS will automatically
assign its own name, which isn’t always a very pretty name.

Another index you might consider is on the foreign key authorid in the books table.
You can add it with

CREATE INDEX ix_books authors
ON books(authorid);

Of course, you might also include an index on customer details or other details.

51

CHAPTER2 WORKING WITH TABLE DESIGN

Creating a Unique Index

There are some columns where you might not expect duplicated values. For example, in
your customer table, you wouldn't expect two customers to have the same email address,
especially if they're expected to log in using the email address. Similarly, you mightn't
expect different customers to have the same phone numbers.

Other columns, such as the family name or date of birth, should happily allow for
duplicates: duplicated values are simply a coincidence.

The customers table has already protected against duplicated email addresses
by including the UNIQUE property on that column. We will do the same with the
phone number.

Before you do, however, you will need to make sure that there aren’t any existing
duplicates. SQL will refuse to do anything which violates the constraints of the database,
so if you have duplicated phone numbers, you won't be able to add a UNIQUE constraint
until those duplicates are resolved.

To find duplicates, you use an aggregate group query. For example, you might want
to look for customers with duplicate names:

SELECT familyname, givenname, count(*) AS number
FROM customers
GROUP BY familyname, givenname;

By grouping the names, you can count how many times they appear. Of course, since
you're only interested in those that appear more than once, you can filter the results with
a HAVING clause:

SELECT familyname, givenname, count(*) AS number
FROM customers

GROUP BY familyname, givenname

HAVING count(*)>1;

52

CHAPTER 2 WORKING WITH TABLE DESIGN

You should see a short list of candidates:

familyname Givenname number
Free Judy 2
Mate Annie 2
Christmas Mary 2
Tuckey Ken 2
Ander Corey 2
Dunnit Ida 2
Bearer Paul 2
Bell Terry 2

In the preceding query, the rows are grouped by familyname and givenname and
summarized. The HAVING clause filters for those groups where there are more than one
instance. The SELECT clause then outputs those names and the number of instances.

You don't need the count (*) in the SELECT clause, of course, but it helps to make the
result clearer.

Of course, it's no problem if you find duplicate family names: many people have the
same name as someone else. However, it can be if you find duplicate phone numbers:

SELECT phone, count(*) AS number
FROM customers

GROUP BY phone

HAVING count(*)>1;

phone number

[NULL] 17

In this case, there are no duplicates. What appear to be duplicates are NULLs, because
there are multiple NULLs in the table. They don’t count.

If you do find duplicates, then you have your work cut out for you in trying to work
out whether these duplicates are legitimate. You might even conclude that duplicate

phone numbers are OK, so you wouldn't go ahead with the next step.
53

CHAPTER2 WORKING WITH TABLE DESIGN

Assuming that duplicates are not OK, to protect against duplicates, you add a
UNIQUE INDEX:

-- Not MSSOL
CREATE UNIQUE INDEX uq_customers phone
ON customers(phone);

Microsoft SQL has a quirk which regards multiple NULLs as duplicates,' so you will
need this workaround:

-- MSSQOL
CREATE UNIQUE INDEX uq_customers phone
ON customers(phone)
WHERE phone IS NOT NULL;

Note that this time the index name begins with uq as a reminder that this is a unique
index. Again, there are no rules for how to name the index, but this one follows a
common and understandable pattern.

Whether or not you really want to disallow duplicate phone numbers is another
question. Two customers from the same household or organization may well share
the same phone number, so disallowing them would be problematic. This is an
exercise in how to disallow duplicates, but not necessarily on whether to disallow
duplicates. That's something best left to the needs of the individual database.

Review

A well-designed SQL database needs to follow a few rules to ensure that the data can be
relied upon. There is no guarantee that the data is frue, but the data will at least be valid.

Normal Form

A table which follows certain design principles is said to be in a normal form. This
doesn’t mean that it's commonplace, but rather that it is in a definitive form.

!'This is odd, since constraints normally ignore NULLs, and NULL doesn’t match NULL anyway.

54

CHAPTER 2

Normalized tables include the following properties:

Data is atomic.

Rows are unordered.

Rows are unique.

Rows are independent of each other.
Columns are independent of each other.
Columns are of a single type.

Column names are unique.

Columns are unordered.

Multiple Values

WORKING WITH TABLE DESIGN

One issue in developing tables is how to handle multiple values and recurring values. In

general, the solution is to have additional tables and to link them using foreign keys.

Altering Tables

When restructuring or hardening a database, you need to make changes to existing

tables and columns. The ALTER TABLE statement can be used to

Add extra columns, including foreign keys
Drop columns
Add or drop constraints

Add or drop indexes

Constraints include adding NOT NULL, defaults, and additional CHECK constraints.

Views

Aview is a saved SELECT statement. One reason to create a view is for the convenience

of having data from one or more tables in one place.

55

CHAPTER2 WORKING WITH TABLE DESIGN

Sometimes, when you create a view with combined data, you end up with a result
which no longer follows all the rules of normalization. In the trade, this would be
referred to as denormalization.

Denormalized data is generally a bad way to maintain data, but very often a
convenient way to extract data. In this sense, it is the best of both worlds: the original
data is still intact in the original tables.

Some DBMSs include the ability to update data in view. In fact, the update doesn’t
affect the view at all, but is rather passed on to the underlying tables.

Indexes

An index is a supplement to a table which stores the selected data in order, together with
areference to the data in the original table. Using the index, the DBMS can search for
data more quickly.

Indexes are automatically created for primary keys and unique columns. You can
add an index on any other column.

Indexes have some costs, so they shouldn’t be added for no reason. Costs include
storage and maintenance.

Unique indexes can be added to ensure that values in a particular column, or
combination of columns, are unique.

The Final Product

After you've made the changes to the table structures, your database will resemble the
design in Figure 2-1.

56

CHAPTER2 WORKING WITH TABLE DESIGN

One to One (One to Maybe) Sales & Sale ltems
vip customers sales
id INT Q0 Hoodd INT AP id INT 00K
status INT email VARCHAR(60) (N customerid INT IMEF]
discount DECIMAL(3,2) familyname VARCHAR(40) o0 total DECIMAL(6,2)
review DATE givenname VARCHAR(40) o ordered DATETIME
gender CHAR(1) shipped DATE
[New Tabies 1 strect VARCHAR(64)
dob DATE et
owns phone CHAR(10) id INT 0o
id T 0D 0oOK t— spam BOOLEAN ® saleid INT (NLF|
name VARCHAR (40) 'N] height DECIMAL(S,2) bookid INT INEF]
state VARCHAR(Y) (N] registorad DATE (M) quantity INT 00
posteode CHAR(4) (N ! townid INT [F) price DECIMAL(6,2)
countryid CHAR(2) D0 CHECK (email LIKE * _ngs_ ") CHECK (quantity>0)
CHECK (dob<current _timestamp - '20 years')
countries |
id CHAR(2) oM
name VARCHAR(48) (M)
local_name VARCHAR(48)

capital VARCHAR(24)

alphad CHAR(D) Many to Mamy

tld CHAR(2) Qne to Many / Many to One

numeric CHAR(D) book books

phone VAREHAR(S) bookid INT() () W dd INT O op

continent VARCHAR(L1G) genradd INT () (D () authorid INT Q@

population INT title vaRCHAR(255) (D

area INT genres published INT

coastline INT id Nt DON price NUMERIC (4,2)

currency CHAR(3) genre VARCHAR(GO)

[Self Join [authors
- id INT D ON

givenname VARCHAR(40)

id INT AR P othernames VARCHAR(40)

suparvisorid INT LF) familyname VARCHAR(40)

givenname VARCHAR(24) (1) born DATE

familyname VARCHAR(24) () died DATE

email VARCHAR (60]T) (1) gender CHAR(1)

phene CHAR(10) (U] home VARCHMAR(128)

tfn CHAR(D) (U} country VARCHAR(24)

== etc INTEGER Index 4x_authors_name (familynase,givennase)

Figure 2-1. The Improved Database Design

Summary

In this chapter, we focused on the properties of individual tables and looked for ways to
make the database more reliable and more efficient.
We looked at

¢ The principles of normalized SQL tables
e« How multiple values are handled in normalized tables

« Altering tables to improve their reliability and to better fit the
principles of normal tables

57

CHAPTER 2 WORKING WITH TABLE DESIGN
« Creating views to improve access to multiple tables

+ Adding an index to improve efficiency

The process of improving the database was, of course, incomplete, but it gives us a
better understanding of what makes a database more reliable and more efficient.

Coming Up

In this chapter, we've been focused on properties of individual tables, which help to
improve the integrity and efficiency of the tables.
In the next chapter, we’'ll look more at how multiple tables interact.

58

CHAPTER 3

Table Relationships
and Joins

A database is not just one table. Well, it can be of course, but any sophisticated database,
such as one which you would use to manage an online bookshop, will comprise a
number of tables, each handling a different collection of data.

While you can get some useful information from examining individual tables, you
will get so much more from combining tables.

In this chapter, we will look at working with multiple tables, how they are related to
each other, and how to combine them when the time comes.

Specifically, we’ll look at

« What we mean by table relationships and their main types
« How one-to-many relationships are used to manage multiple values

« How one-to-one relationships are used to extend one table
with another

« How many-to-many relationships are used to manage more complex
multiple values

« How to work with inserting and updating data in multiple tables

We'll look at why the database is structured this way with multiple tables and how we
can use joins to combine them into virtual tables.

59
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_3

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

An Overview of Relationships

A well-structured database adheres to a number of important design principles. Two of
these are as follows:

« Each table has one type of data only and doesn’t include data which
rightly belongs in another table.

For example, the customers table doesn’t include book details,
and the books table doesn’t include customer details. This would
also apply to the books and authors tables.

That isn’t to say that the books table isn’t aware of the author at all.
We'll look at that in a moment.

« Datais never repeated. The same item of data is not to be found in a
different table, nor will it be repeated in the same table.

For example, if you were to include the author’s name and other
details in the books table, you would find yourself repeating the
same details for other books by the same author.

These two principles are related: if you mix author details with the books, violating
the first principle, you will end up repeating the details for multiple books, violating the
second principle.

The correct way to manage books and authors is to put author details in a separate
table and for the books table to include a reference to one of the authors. In this way, we
say that there is a relationship between the two tables.

The same would apply to the books and customers tables. Since the goal is for
customers to buy books, there should be a relationship between these tables as well.
However, this relationship is a little more complex, as we shall see later.

There are three main types of relationships:

« A one-to-many relationship is between the primary key of one table
and a foreign key of another.

For example, there is a one-to-many relationship between
authors and books: one author can have many books, and many
books can have the same author.

60

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

¢ A one-to-one relationship is between the primary key of one table
and the primary key of another. Generally, this is rare, and you are
more likely to see a variation of this.

For example, there is a vip table of additional features for customers.
For each customer, there can only be one vip entry, and there is a
(modified) one-to-one relationship between the two tables.

« A many-to-many relationship is not a direct relationship, but one
that involves a joining table between the two main tables.

For example, there is a genres table which contains possible genre
labels for books. Since one book could have many genres, and

one genre could apply to many books, there is a many-to-many
relationship between the two tables.

You will see that this is implemented with an additional table.

These relationships might be described as planned relationships. They're usually
enforced with foreign key constraints, usually involve a primary key, and define a tight
structure for the database.

There can also be unplanned relationships. For example, you might consider a
relationship between birthdays of customers and authors. That sort of relationship
would probably be a coincidence, but might be worth exploring in some situations—
maybe Scorpios feel an affinity with other Scorpios.

We'll refer to unplanned relationships as ad hoc relationships and look at a few later.

If you have multiple tables in a planned or unplanned relationship, you can examine
the combination using a JOIN.

One-to-Many Relationship

This is the most common type of relationship between two tables. The relationship is
between the primary key of one table and a foreign key in another. However, it’s actually
implemented as a reference from a foreign key to the primary key.

The relationship is used to indicate a number of possible scenarios. For example:

¢ One Author has written many Books.
e One Customer has many Sales.

e One Sale contains many Items.

61

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Note that the use of the word many can imply any number from 0 to co.

In the preceding cases, one table is referred to as the one table, while the other is
referred to as the many table, which is not very informative. Sometimes, it is helpful to
think of the one table as the parent table, while the many table is the child table.

A one-to-many relationship is implemented as a reference from the child table to the
parent table, for example, for books and authors:

CREATE TABLE authors (-- Parent Table (One)
id INT PRIMARY KEY
-- other columns

)5
CREATE TABLE books (-- Child Table (Many)
id INT PRIMARY KEY,
bookid INT REFERENCES parent(id)
-- other columns
);
Visually, it looks like Figure 3-1.
Books Authors
id PK '/—D Gid PK
authorid FK fullname
title -- etc
-- etc

Figure 3-1. One-to-Many Join

Note that while the child table has a reference to the parent table, the parent table
does not have a reference to the child table.

You can combine parent and child tables using a JOIN:

-- Not Oracle
SELECT
b.id, b.title, -- etc
a.givenname, a.familyname -- etc

62

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS
FROM books AS b JOIN authors AS a ON b.authorid=a.id;

-- Oracle: No AS in table aliases
SELECT
b.id, b.title, -- etc
a.givenname, a.familyname -- etc
FROM books b JOIN authors a ON b.authorid=a.id;

This will give you the books with their matching authors:

id title givenname familyname
2078 The Duel Heinrich von Kleist
503 Uncle Silas J. Le Fanu
2007 North and South Elizabeth Gaskell

702 Jane Eyre Charlotte Bronté

1530 Robin Hood, The Prince of ... Alexandre Dumas
1759 La Curée Emile Zola

~ 1172 rows ~

Note that Oracle has a quirk which disallows using AS for table aliases. If you're using
Oracle, you'll need to remember that in the following examples which may include AS.

Remember, if there are anonymous books (books with a NULL for authorid), you will
need an outer join:

-- Not Oracle
SELECT
b.id, b.title, -- etc
a.givenname, a.familyname -- etc
FROM books AS b LEFT JOIN authors AS a ON b.authorid=a.id;

-- Oracle: Remember no AS in table aliases
SELECT
b.id, b.title, -- etc
a.givenname, a.familyname -- etc
FROM books b LEFT JOIN authors a ON b.authorid=a.id;

63

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

This will give you all of the books with or without their authors:

id Title givenname familyname
1868 The Tenant of Wildfell Hall Anne Bronté

661 The Narrative of Arthur Gordon Pym ... Edgar Poe

91 My Bondage and My Freedom Frederick Douglass
848 The Charterhouse of Parma [NULL] Stendhal
440 The Princess and the Goblin George MacDonald
881 Against Nature Joris-Karl Huysmans

~ 1201 rows ~

The one-to-many relationship is the most common relationship between tables.

Remember that SQLite doesn’t support RIGHT JOINSs. If you want an outer
join, you need to put the unmatched row table on the left and make sure to use
LEFT JOIN.

Counting One-to-Many Joins

When you're not quite sure how the database is set up, and you're not quite sure whether
you've properly joined the right columns to the matching columns, it might be helpful to
estimate the number of results you should get from a join.

To get an idea of where we're headed, suppose we have simplified tables of books
and authors as in Figure 3-2.

64

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

PK Books FK PK Authors
1 | Roughing It 4 1 | Jane Austen
2 | Alce's Adventures in Wonderland 3 2 | Mary Wollstonecraft Shelley
3 | Frankensten 2 3 | Lewis Carroll
4 | The Time Machine 4 | Mark Twain
§ | Sense & Sensbdty 1 § | Jules Veme
6 | The Hunting of the Snark 3
7 | The Innocents Abroad 4
8 | Pride and Prejudice 1

Figure 3-2. Books and Authors

In the previous example, we opted for a LEFT JOIN. When you join a child table to a
parent table, you generally have four options:

¢ Only the matching rows

e Include all of the unmatched children

¢ Include all of the unmatched parents

e Include all of the unmatched children and parents

The first option is, of course, an INNER JOIN, or, more simply, JOIN.
The result would look like Figure 3-3.

65

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

PK Books FK PK Authors
1 Roughing It 4 4 Mark Twaln
2 Alce's Adventures in Wonderland 3 3 Lewis Carroll
3 | Frankenstein 2 2 | Mary Wollstonecraft Shellay
5 Sense & Sensbaty 1 1 Jane Austen
6 The Hunting of the Snark 3 3 Lewis Carroll
7 The Innocents Abroad a4 a Mark Twain
8 Pride and Prejudce 1 1 Jane Austen

Figure 3-3. An Inner Join

You'll notice that the join doesn’t include unmatched books or authors.

The second and third options are LEFT OUTER JOIN or RIGHT OUTER JOIN,
depending on whether the unmatched rows are on the left or the right; again, we
can simply write LEFT JOIN or RIGHT JOIN. In this case, a LEFT JOIN would include
unmatched books, as in Figure 3-4.

PK Books FK PK Authors
1 Roughing It 4 4 Mark Twain
2 Alice's Adventures in Wonderland 3 3 Lewis Carrcll
3 Frankenstain 2 2 Mary Wollstonecraft Shellay

4 The Time Machine

5 Sense & Sensbdty 1 1 Jane Austen
6 | The Hunting of the Snark 3 3 | Lewis Carrot
7 The Innocents Abroad a4 4 Mark Twain

8 Pride and Prejudce 1 1 Jane Austen

Figure 3-4. An Outer Join

66

CHAPTER3 TABLE RELATIONSHIPS AND JOINS

Most DBMSs (not including SQLite or MySQL/MariaDB) have a fourth option: include
all of the unmatched parents and children. That's called a FULL OUTER JOIN or FULL JOIN
to its friends. This would include unmatched rows from both sides as in Figure 3-5.

PK Books FK PK Authors
1 Roughing It 4 4 Mark Twain
2 Alce's Adventures in Wonderland 3 3 Lewis Carroll
3 Frankenstein 2 2 Mary Wollstonecraft Shelley

4 The Time Machine

5 Sense & Sensbaty 1 1 Jane Austen
6 The Hunting of the Snark 3 3 Lewis Carroll
7 The Innocents Abroad 4 4 Mark Twain

8 Pride and Prejudice 1 1 Jane Austen

5 Jules Verne

Figure 3-5. A Full Join

In this case, we went for the LEFT JOIN because the child table was on the left, and
we wanted all of them with or without matches.

Despite the apparent symmetry, all joins are not equal. When you join a child to a
parent table, the number of results will generally reflect the child table. That's because
many of the children would share the same parent.

To get a fair estimate of how many results you might expect, therefore, you should
start by counting the rows.

To get the number of results in an INNER JOIN, you'll need to count the number of
children which match a parent—that is, where the foreign key is NOT NULL:

-- Child Inner Join
SELECT count(*) FROM books WHERE authorid IS NOT NULL;

67

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

That should get you the number of rows for the INNER JOIN previously:

Count
1172

To count the number of unmatched child rows, you just need to count the ones
where the foreign key is NULL:

-- Unmatched Children
SELECT count(*) FROM books WHERE authorid IS NULL;

That will give you the number of rows missing in the INNER JOIN:

Count
29

If you add this to the number for the INNER JOIN, you'll get the total number of
books, which is the number of rows in the child OUTER JOIN earlier.
To get the number of unmatched parent rows is trickier. You'll need to count the

number of rows in the parent table whose primary key is not one of the foreign keys in
the child table:

-- Unmatched Parents
SELECT count(*) FROM authors
WHERE id NOT IN(SELECT authorid FROM books WHERE authorid IS NOT NULL);

This will give you the number of unmatched parents:

Count
45

The subquery selects for the authors whose id does make an appearance in the
books table. The NOT IN expression selects for the others. The reason that the subquery
includes the WHERE authorid IS NOT NULL clause is due to a quirk in the behavior of NOT
IN with NULLs. This is explained later.

68

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Now, you have all the numbers you need to estimate the number of rows in your join.
You can use the following combinations:

JOIN Calculation

INNER JOIN INNER JOIN

Child OUTER JOIN INNER JOIN + Unmatched Children= Children

Parent OUTER JOIN INNER JOIN + Unmatched Parents

Full OUTER JOIN INNER JOIN + Unmatched Children + Unmatched Parents

That's the number of rows you can expect from a child outer join: LEFT JOIN or
RIGHT JOIN, depending on where you put the child table.

Of course, that’s not necessarily the end of it. If you have an inner join, and there are
some NULL foreign keys, then you'll end up with fewer than the estimate. If you opt for a
parent outer join, then there’ll be more rows if you have parents without matching children.

However, this is a good starting point.

The NOT IN Quirk

You'd think that if IN(. ..) finds the rows which match something, then NOT IN(...)
would find the others. That's mostly true, except when the list contains a NULL.
For example, to find the customers in two of the states, you can use

SELECT * FROM customerdetails
WHERE state IN ('VIC','QLD");

To find customers in the other states, you can use NOT IN:

SELECT * FROM customerdetails
WHERE state NOT IN ('VIC','QLD');

That's as expected. However, if you include NULL in your list, things get messy. You
need to remember how IN(...) is interpreted. For example:

SELECT * FROM customerdetails
WHERE state IN ('VIC','QLD',NULL);

69

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

is equivalent to

SELECT * FROM customerdetails
WHERE state='VIC' OR state='OLD' OR state=NULL;

That last term state=NULL will always fail, since NULL always fails a comparison, but
that’s OK if it matches one of the others.
However, the NOT IN version:

SELECT * FROM customerdetails
WHERE state NOT IN ('VIC','QLD',NULL);

is equivalent to

SELECT * FROM customerdetails
WHERE state<>'VIC' AND state<>'OLD' AND state<>NULL;

When you negate a logical expression, you not only negate the individual terms, but
you also negate the operators between them.

Once again, the term state<>NULL always fails, but, since this is now ANDed with the
rest, it fails the whole expression.

The moral of this story is that you can’t use NOT IN if the list contains NULLs.

Creating a Books and Authors View

As a general rule, if you've done something a little complicated, you don’t want to do
it again. Joining the books and authors table isn’t so complicated, but it’s still worth
considering a simpler approach.

A SELECT statement can be saved permanently in the database as a View. A View is
just a saved query. Although you can use it like a table, it doesn’t actually save data, so
it'’s cheap.

There is also something called a materialized view which does save the results, but
it's not meant to be a permanent store of new data. A materialized view can be useful
when your view is fairly complex and you have a lot of processing to do with the results;
it doesn’t have to recalculate the results every time.

70

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS
To create a view, you use CREATE VIEW:

-- Drop old version (Not Oracle)
DROP VIEW IF EXISTS bookdetails;
-- Drop old version (Oracle)
DROP VIEW bookdetails;
-- (Re) create view
CREATE VIEW bookdetails AS
SELECT
b.id, b.title, b.published, b.price,
a.givenname, a.othernames, a.familyname,
a.born, a.died, a.gender, a.home
FROM
books AS b
LEFT JOIN authors AS a ON b.authorid=a.id
;
You can drop an existing view using DROP VIEW. For most DBMSs, you can use DROP
VIEW IF EXISTS if you're not sure that it exists (yet). Not with Oracle, however.
Microsoft SQL has an additional quirk: CREATE VIEW must be the only statement in

its batch, so you need to put the statement between the GO keyword, which marks the
end of one batch and the beginning of another:

DROP VIEW IF EXISTS bookdetails;

-- MSSQL Only:
GO
CREATE VIEW bookdetails AS
SELECT
b.id, b.title, b.published, b.price,
b.authorid, a.givenname, a.othernames, a.familyname,
a.born, a.died, a.gender, a.home
FROM
books AS b
LEFT JOIN authors AS a ON b.authorid=a.id
>
GO

71

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

We've included the authorid in case you want to use it to get more author details.
Once you have saved a view, you can pretend it’s another table:

SELECT * FROM bookdetails;

You'll get the same results as before with a little less effort.

One-to-One Relationships

A one-to-one relationship associates a single row of one table with a single row of
another. It is normally between two primary keys.

If every row in one table is associated with a row in another table, then you can
consider the second table as an extension of the first table. If that’s the case, why not just
put all of the columns in the same table? Reasons include the following:

 You want to add more details, but you don’t want to change the
original table.

+ You want to add more details, but you can’t change the original table
(possibly because of permissions).

« The additional table contains details that may be optional: not all
rows in the original table require the additional columns.

« You want to keep some of the details in a separate table so that you
can add another layer of security to the additional details.

One-to-Maybe Relationships

Technically, a frue one-to-one relationship requires a reference from both tables to each
other. Among other things, it is hard to implement as it might require adding both rows
at the same time.

Since a row from table A must reference a row from table B, you would need to
have the table B row in place before you add to table A. However, if a row from
table B must also reference a row from table A, then you need to add to table A
first. That’s clearly a contradiction.

72

CHAPTER3 TABLE RELATIONSHIPS AND JOINS

One way to do this would be to defer the foreign key constraint until after you've
added to both tables in either order. Unfortunately, most DBMSs don’t let you do
this, so you're stuck with this impossible situation.

A more common variation of this relationship is the one-to-maybe relationship.!
This allows the second table to contain data which does not necessarily apply to every
row of the first table.

For example, the vip table contains extra details for some of the customers. In SQL, it
looks something like this:

CREATE TABLE customers (-- main table
id INT PRIMARY KEY
-- main data

)

CREATE TABLE vip (-- secondary table

id INT PRIMARY KEY REFERENCES customers(id)
additional columns

)
Visually, it looks like Figure 3-6.
Customers VIP
id PK |« id PK
name FK
-- etc
-- etc

Figure 3-6. One-to-Maybe Join

Here, the secondary table contains additional data for some of the rows in the
main table.

! One to maybe: My term. Others call it a one-to-zero-or-one, which is less snappy.

73

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Note that this relationship is implemented by making the id in the secondary table
both a primary key and a foreign key.
For example, the vip table includes additional features for some customers:

SELECT * FROM customers ORDER BY id;
SELECT * FROM vip ORDER BY id;

You can see all of the customers, some of whom also have VIP data:

Id givenname familyname

1 Pierce Dears

2 Arthur Moore

5 Ray King

6 Gene Poole

9 Donna Worry

10 Ned Duwell

~ 303 rows ~

Id status discount review

5 3 0.05 2023-12-01
10 2 0.1 2023-08-23
21 1 0.15 2024-03-14
26 1 0.15 2024-02-24
40 1 0.15 2023-11-11
41 3 0.05 2024-03-09
~ 81 rows ~

You'll notice that there aren’t as many rows in the vip table as in the customers table.
There might have been, if every customer were a VIP, but not in this case.
You can see how they relate using a join:

SELECT c.*, v.*
FROM customers AS ¢ LEFT JOIN vip AS v ON c.id=v.id;

74

CHAPTER3 TABLE RELATIONSHIPS AND JOINS

This effectively gives you a widened customers table:

id givenname familyname ... id status discount review

42 May Knott 42 3 0.05 2024-01-03
459 Rick Shaw

597 lke Andy

186 Pat Downe

352 Basil Isk - 352 1 0.15 2023-08-06
576 Pearl Divers

~ 303 rows ~

This gives all of the customers, with either their VIP data or NULLs in the extra
columns.

Note

e \We need the LEFT JOIN to include non-VIP customers. If you
wanted VIP customers only, a simple (inner) JOIN would be better.

e We could have used SELECT *, but using c.*, v.* allows you to
decide which tables you are most interested in.

As a special case, you can also select VIP customers only, without additional VIP
columns, using

SELECT c.*
FROM customers AS c JOIN vip AS v ON c.id=v.id;

Here, the inner join selects only VIP customers, and the c. * selects only the
customer columns.

Why you would want to do this is, of course, up to you.

75

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Multiple Values

One major question in database design is how to handle multiple values. The principles
of properly normalized tables preclude multiple values in a row:

+ Asingle column cannot contain multiple values.

For example, you shouldn’t have multiple phone numbers in a
single column, such as 0270101234,0355505678. This would be
impossible to sort or search properly and be a real nightmare to
maintain.

+ You shouldn’t have multiple columns with the same role.

For example, you shouldn’t have multiple columns for phone
numbers such as phone1, phone2, phone3, etc. It would make
searching problematic as you can’t be sure which column to
search. You would also have the problem of too many or not
enough columns.

Note that you can do this if there is a clear distinction in the fype of
phone number. For example, you could legitimately have separate
columns for fax (does anybody remember these?), mobile, and
landline numbers.

For example, suppose we wish to record multiple genres for a book. Here are two
attempted solutions which are noft correct:

o A column with multiple (delimited) values

The idea is that the genre column would have multiple genres or
genre ids, delimited possibly by a comma. The problem is that the
data is not atomic, and this becomes very difficult to sort, search,
and update. You will also need extra work to use the data.

e Multiple columns for genres

You cannot have multiple columns with the same name, so these
columns might be called genrel, genre2, etc. Here, the problems
are (a) you will either have too many or not enough columns,

(b) there is no “correct” column for a particular value, and (c)
searching and sorting are impractical.

76

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

The problem of recording genres is more complicated, because not only can one
book have multiple genres, one genre can apply to multiple books. This is an example of
a many-to-many relationship.

This cannot be achieved directly between the two tables; rather, it involves an
additional table between them.

If you have the courage to look at the script which created and populated the
sample database, you'll find a table called booksgenres (not to be confused
with the bookgenres table, which is, of course, completely different) which does
indeed have the genres combined in a single column. This is, of course, cheating.

The booksgenres table is used as a simple method of carrying what will be
thousands of rows in two other tables, and there is a rather frightening part
of the script later on which pulls this data apart to populate these tables. The
booksgenres table will then be dropped to hide the evidence.

This is one case where you might break the rules for the purpose of transferring or
backing up the data only. However, the data should never stay in this format.

Many-to-Many Relationships

To represent a many-to-many relationship between tables, you will need another table
which links the two others.

Such a table is called an associative table or a bridging table.

It looks like Figure 3-7.

77

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Books BookGenres Genres

id PK 4~ - bookid FK id PK
title genreid FK genre

-- etc -- etc

Figure 3-7. A Many-to-Many Relationship

Here are two table extracts to illustrate this:

-- Book Table
CREATE TABLE books (
id int PRIMARY KEY,
title varchar,
-- etc
)5
-- Genre Table
CREATE TABLE genres (
id int PRIMARY KEY,
name varchar,
description varchar
-- etc

);

The genres table includes a surrogate primary key. It also contains the actual genre
name and a description so that the use of the particular genre is clear.

You can see what'’s in the two tables with simple SELECT statements:

SELECT * FROM books;
SELECT * FROM genres;

78

CHAPTER3 TABLE RELATIONSHIPS AND JOINS

You'll see two apparently unrelated sets of data:

id authorid title published price
2078 765 The Duel 1811 12.5
503 128 Uncle Silas 1864 17
2007 99 North and South 1854 17.5
702 547 Jane Eyre 1847 17.5
1530 28 Robin Hood, The Prince of Thieves 1862 12.5
1759 17 La Curée 1872 16
~ 1201 rows ~

id Genre

1 Biology

2 Ancient History

3 Academia

4 Science

5 College

6 Comics

~ 166 rows ~

Neither table refers to the other. Instead, you need an additional table.
The associative table will then link books with genres:

-- Associative Table
CREATE TABLE book genres (
bookid int REFERENCES books(id),
genreid int REFERENCES genres(id)

)
You can see what's in this table with the following:

SELECT * FROM bookgenres;

79

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

You'll get a very simple, very boring result:

bookid Genreid
456 8
789 8
123 52
456 38
789 38
123 80
456 94
356 1
789 113
123 9
1914 1
936 1
1198 1
918 1
456 35
789 68
456 146
789 80
456 101
456 145
1618 2
844 3

~ 8011 rows ~

This table is a simple table which has one job only: record which books are related to
which tables.

80

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Each column must be a foreign key to the other table; otherwise, the whole point
of the association is lost. This association allows a book to be associated with multiple
genres and a genre to be associated with multiple books.

In the preceding table, for example, book 123 has multiple genres. Book 456 also
has two genres. Some of those genres appear for both books and, for all we know, other
books later on. That is, one book can have many genres, and one genre can associate
with many books.

There is one more requirement. The combination should be unique. There is no
point in associating a book with the same genre more than once. Since there is no
other data in the table, it would be appropriate to make the combination a compound

primary key:

-- Associative Table
CREATE TABLE book genres (
bookid int REFERENCES books(id),
genreid int REFERENCES genres(id),
PRIMARY KEY (bookid,genreid)

)
We might have designed the table this way:

CREATE TABLE bookgenres (
id INT PRIMARY KEY,
bookid INT REFERENCES books(id),
genreid INT REFERENCES genres(id),
UNIQUE (bookid,genreid)

);

which has a UNIQUE constraint on the book/genre combination, as well as a separate
primary key. However, by definition, the primary key is already unique, so we can use the
more compact design as before.

Note that this is one of the few cases where the primary key is not a single column
but a combination of columns. For that reason, the PRIMARY KEY is added separately to

the individual columns.

81

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Joining Many-to-Many Tables

To see how books and genres are related, you will need to join these two tables via the
associative table.

Normally, you would consider counting the rows in the child table to estimate the
number of joined results. In this case, it is the associative table which is the child of both
the other tables.

To count the number of rows:

SELECT count(*) FROM bookgenres;

We already know the result by now:

Count
8011

To join the tables, you only need an INNER JOIN:

SELECT *

FROM
bookgenres AS bg
JOIN books AS b ON bg.bookid=b.id
JOIN genres AS g ON bg.genreid=g.id

This gives a very long list, because the bookgenres table is very long:

bookid genreid id title id Genre
1732 8 1732 In His Steps 8 Fiction
414 8 414 Poesies i 8 Fiction
241 106 241 Researches in Teutoni... 106 Fantasy
247 153 247 The King in Yellow 153 Gothic
1914 38 1914 Voyage of the Beagle 38 Classics
936 38 936 The Origin of Species . 38 Classics

~ 8011 rows ~

82

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Here, we started the join from the middle, since we're focusing on the associative

table. You could just as readily have started on one end:

SELECT *

FROM
books AS b
JOIN bookgenres AS bg ON b.id=bg.bookid
JOIN genres AS g ON bg.genreid=g.id

You'll get the same data, but, since the tables are in a different order, the columns

will also be in a different order.

In reality, you end up with too many columns, two of which are duplicated by the

join. You can simplify the result as

SELECT b.id, b.title, g.genre

FROM
bookgenres AS bg
JOIN books AS b ON bg.bookid=b.id
JOIN genres AS g ON bg.genreid=g.id

You get a simpler result:

id title

Genre

1732 In His Steps

414 Poesies

241 Researches in Teutonic Mythology
247 The King in Yellow

1914 Voyage of the Beagle

936 The Origin of Species

~ 8011 rows ~

Fiction
Fiction
Fantasy
Gothic
Classics

Classics

The book’s id is important because it is quite possible for different books to have the

same ftitle.

83

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Since you've now listed the specific columns, the column order won’t depend on the
order of the tables in the join.

By its very nature, the associative table cannot include NULLs for either the bookid or
the genreid. As such, there is no need for an outer join.

Summarizing Multiple Values

The resulting table earlier has a very large number of rows, and individual books appear
multiple times, associated with different genres. You can combine multiple values using
a GROUP BY query.

This could get tricky, because you're trying to summarize not a simple table, but a
generated virtual table in the form of a join. You can do this in the form of a Common
Table Expression:

WITH cte AS (
SELECT b.id, b.title, g.genre
FROM bookgenres AS bg
JOIN books AS b ON bg.bookid=b.id
JOIN genres AS g ON bg.genreid=g.id

--etc

A Common Table Expression (CTE) saves the results of a SELECT statement into a
virtual table, so you can use those results in the next stage. You'll see more on CTEs in
Chapters 7 and 9.

You can now summarize the CTE using two functions, count() and string agg():

WITH cte AS (
SELECT b.id, b.title, g.genre
FROM
bookgenres AS bg
JOIN books AS b ON bg.bookid=b.id
JOIN genres AS g ON bg.genreid=g.id
)
SELECT
id, title,

84

count(*) AS ncategories, --
-- PostgreSQOL, MSSOL

string agg(genre,', ') AS genres

-- MySOL / MariaDB

-- group_concat(genre separator

-- SQLite
-- group_concat(genre,
-- Oracle
-- listagg(genre separator
FROM cte
GROUP BY id, title
ORDER BY id;

You now get a more compact list:

CHAPTER3 TABLE RELATIONSHIPS AND JOINS

not really needed

, ') AS genres
, ') AS genres

, ') AS genres

id title ncategories Genres

4 Groundwork of th ... 6 Classics, German Literature, Non ...
5 The Toilers of t ... 7 European Literature, French Lite ...
6 The American Sen ... 12 Classic Literature, European Lit ...
7 Songs of Innocen ... 5 18th Century, Poetry, Classics, ...

9 Behind a Mask, O ... 8 Literature, American, Historical ...
11 Lady Susan ... 4 Romance, Historical Fiction, Cla ...
~ 1200 rows ~

The string agg(column,separator) function concatenates the values in the

column using the separator in between. You'll no doubt be surprised to learn that the
DBMSs have variations on this function. As you see, in some DBMSs it is called GROUP_

CONCAT or listagg.

Note that we have grouped by both the book’s id and title columns. Since the

id is a primary key, and therefore unique, there is normally no point in attempting to

subgroup as before. However, this is a simple way of including the title for the SELECT

clause, since the SELECT clause can only contain grouping columns and summaries.

85

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Combining the Joins

Once we know how to handle books and authors, and books and genres, we can join
them all together:

-- Not SQLite

SELECT
b.id, b.title, b.published, b.price,
g.genre,
a.givenname, a.othernames, a.familyname,

a.born, a.died, a.gender, a.home

FROM
authors AS a
RIGHT JOIN books AS b ON a.id=b.authorid
LEFT JOIN bookgenres AS bg ON b.id=bg.bookid
JOIN genres AS g ON bg.genreid=g.id

b

This will give a fairly comprehensive dataset:

id truncate .. genre givenname othernames familyname ...
1732 InHis Steps Fiction Charles M. Sheldon

414 Poesies Fiction Stephane Mallarmé

241 ResearchesinTe.. .. Fantasy Viktor Rydberg

247 The King in Yell Gothic Robert W. Chambers
1914 Voyage of theBe... .. Classics Charles Darwin

936 The Origin of Sp Classics Charles Darwin

~ 8011 rows ~

In the preceding example, we have included most of the columns from the four
tables, omitting the foreign keys and most of the other primary keys.

The tables are joined in a line from the authors table to the genres table. Since we
want all of the books, regardless of whether they have associated authors or genres, we
use two outer joins. As it turns out, we see examples of each of the three main join types.

SQLite doesn’t support the RIGHT JOIN, so this won't work.
86

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

You can write the joins starting from the books table if you like:

SELECT
b.id, b.title, b.published, b.price,
g.genre,
a.givenname, a.othernames, a.familyname,
a.born, a.died, a.gender, a.home

FROM
books AS b
LEFT JOIN bookgenres AS bg ON b.id=bg.bookid
JOIN genres AS g ON bg.genreid=g.id
LEFT JOIN authors AS a ON b.authorid=a.id

Visually, this appears to put the emphasis on the books table, but it will give exactly
the same results as before.

This time, SQLite will be happy.

However, there is an alternative, which takes advantage of the view previously
created.

First, you can replace the references to the individual books and authors tables with
the bookdetails view:

SELECT
bd.id, bd.title, bd.published, bd.price,
g.genre,
bd.givenname, bd.othernames, bd.familyname,
bd.born, bd.died, bd.gender, bd.home

FROM
bookdetails AS bd
LEFT JOIN bookgenres AS bg ON bd.id=bg.bookid
JOIN genres AS g ON bg.genreid=g.id;

This is a simpler query, building on one you've already prepared. Note:
o Thebookdetails view is aliased to bd.

o All of the columns come from the bookdetails view except for the
genre, which comes from the genres table.

87

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

If you want to combine the genre names, you can do that in a CTE and join the
results with the view:

WITH cte AS (
SELECT bg.bookid, string agg(g.genre,', ') AS genres
FROM bookgenres AS bg JOIN genres AS g ON bg.genreid=g.id
GROUP BY bg.bookid

)
SELECT *

FROM bookdetails AS b JOIN cte ON b.id=cte.bookid;

You now get the complete genre details as well:

id title genres givenname familyname ...
4 Groundwork of ... Classics, German ... Immanuel Kant

5 The Toilers ... European Literature ... Victor Hugo

6 The American ... Classic Literature ... Anthony Trollope

7 Songs of ... 18th Century, Poetry ... William Blake

9 Behind a Mask ... Literature, American ... AM. Barnard

11 Lady Susan ... Romance, Historical ... Jane Austen

~ 1200 rows ~

You might want to filter the genres. You can do that inside the CTE:

WITH cte AS (
SELECT bg.bookid, string agg(g.genre,', ') AS genres
FROM bookgenres AS bg JOIN genres AS g ON bg.genreid=g.id
WHERE g.genre IN('Fantasy','Science Fiction')
GROUP BY bg.bookid

)
SELECT *

FROM bookdetails AS b JOIN cte ON b.id=cte.bookid;

88

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

You'll then get a filtered list:

id truncate genres givenname familyname
589 The Story of ... Fantasy ... Stanley Waterloo

96 Bee: The Pri ... Fantasy ... Anatole France

880 The Journey ... Fantasy, Science F... Ludvig Holberg

591 The Story of ... Fantasy ... E. Nesbit

1938 Histoire Com ... Science Fiction ... Cyrano de Bergerac
128 The Year 3000... ... Science Fiction ... Paolo Mantegazza
~ 163 rows ~

Note that the concatenated genres column has been aliased to genres. That's the
same name as the genres table, so you might get confused. The good news is that SQL
doesn’t, so you can get away with it. On the other hand, if you're worried about that
you can always use double quotes: AS "genres". Of course, you can also choose a
better alias.

A word of warning, however. When you start using views inside queries, you will have
to consider some possible side effects:

« Since the view is not part of the original database, you may lead to
some confusion with other users, since views look like tables, but
aren’t with the rest of the tables.

« Ifyou have too many views in a query, the DBMS optimizer may not
be able to work out the most efficient plan for running the query.
This can be because some views produce more than you need for the
next query, and the optimizer may not be able to work out what you
really want.

« Ifthere are any changes to the view, they will, of course, affect the
outcome of the query.

¢ These side effects will be more pronounced if you start to create
views using other views. It is often safer to create the new view from
scratch.

89

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

This doesn’t mean that you shouldn’t use views in your queries—that’s the whole
point of creating a view. It does mean, however, that you should be careful when piling
them up.

Many-to-Many Relationships Happen All the Time

Any time you have one table linked to two others, you have a many-to-many
relationship.

For example, the database includes customers, sales, saleitems, and books. All
of these tables are joined with foreign key/primary key relationships. That means there
is a many-to-many relationship between customers and books: one customer can buy
many books, while one book can be bought by multiple customers (not the same one, of
course, but a copy of the book).

This means that the sales and saleitems tables, in particular the saleitems table,
are taking on the role of associative tables.

There are two main differences between the sales and saleitems tables in this
example and the bookgenres table in the previous example:

« The association doesn’t need to be unique. It’s quite feasible for a
customer to buy the same book on another occasion. In fact, it would
do the business good if it happened more often.

« The association isn’t the whole story. You also want to record other
sales details such as the date, the amount paid, and so on.

In this case, the sales tables are not purely associative, since they contain new data of
their own, but they are still doing an associative job.

Another Many-to-Many Example

The current database presumes that each book has a single author only. In principle, you
could have a book written by multiple authors. That doesn’t happen very often in fiction,
but is more common in nonfiction.

To do this, you would need to modify your design as follows:

« Remove the authorid column from the books table.

« Create an authorship table which associates books with authors.

90

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

There are a few extra tables, not part of the main database, which we can use to make
the concept clear:

o multibooks: A small table of books without an author id
« multiauthors: A table of authors for the preceding books
« authorship: An associative table which associates books and authors

The table structure looks like this:

CREATE TABLE books (

id INT PRIMARY KEY,

title varchar(60)

-- additional book details NOT including author
);
CREATE TABLE authors (

id INT PRIMARY KEY,

givenname varchar(24),

familyname varchar(24)

-- additional author details NOT including book
);
CREATE TABLE authorship (

bookid INT REFERENCES books(id),

authorid INT REFERENCES authors(id),

PRIMARY KEY(bookid,authorid)

);
An example of a book with multiple authors would be

INSERT INTO books(title)
VALUES('Good Omens');
INSERT INTO authors(givenname,familyname)
VALUES
('Terry', 'Pratchett'),
("Neil', 'Gaiman');

91

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

INSERT INTO authorship(bookid,authorid)

VALUES
(1,1), -- Good Omens, Terry Pratchett
(1,2); -- Good Omens, Neil Gaiman

You won't need to run the preceding example, as the data is already in the
sample tables.
You can fetch the associated data using something like the following:

SELECT *

FROM
multibooks AS b
JOIN authorship AS ba ON b.id=ba.bookid
JOIN multiauthors AS a ON ba.authorid=a.id;

You'll get something like this:

id title authorid bookid id givenname familyname
18 The Gilded Age 9 18 9 Charles Warner

9 The Syndic 7 9 7 Cyril Kornbluth

21 Seller 7 21 7 Cyril Kornbluth

8 Wolfbane 7 8 7 Cyril Kornbluth
12 Takeoff 7 12 7 Cyril Kornbluth

8 Wolfbane 6 8 6 Frederik Pohl

~ 31 rows ~

You can also combine the authors for each book using a CTE and an aggregate query:

WITH cte AS (
SELECT
ba.bookid,
string agg(a.givenname||"' '[||a.familyname,' & ")
AS authors
FROM authorship AS ba JOIN multiauthors AS a
ON ba.authorid=a.id

GROUP BY ba.bookid
92

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

)
SELECT b.id, b.title, cte.authors

FROM multibooks AS b JOIN cte ON b.id=cte.bookid
ORDER BY b.id;

You now have a list of books with all of their authors:

id title Authors

1 Man Plus Frederik Pohl

2 Proxima Stephen Baxter

3 The Long Mars Stephen Baxter & Terry Pratchett
4 The Shining Stephen King

5 The Talisman Peter Straub & Stephen King

6 The Long Earth Stephen Baxter & Terry Pratchett
~ 23 rows ~

The main sample database doesn’t include multiple authors simply because it
doesn’t happen often enough with classic literature to make it worth complicating the
sample further.

However, the point is that whenever you have multiple values, you will need
additional tables rather than additional columns or compound columns. Multiple values
should appear in rows, not columns.

Inserting into Related Tables

Asyou see, one-to-many tables are very common in an SQL database. This creates
additional challenges when you need to add to multiple tables in a single transaction.
These challenges include the following:

« You may need to add to the parent (one) table before you add to the
child (many) table.

This is because the child table will refer to the parent table.

e« When adding to the parent table, you need to remember the new primary key.

93

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

This becomes a challenge when the primary key is generated by
the database itself, so you will need to fetch the new value.

« During the process, one of the steps may fail.

This may lead to a partially completed operation, adding some
invalid data as a residue.

Here, we'll see how that works in practice.

Adding a Book and an Author

The books collection is very light on works in the 20th century and contains nothing by
Agatha Christie. Here, we will add one of her books.
This will involve two tables: the books and the authors table as you see in Figure 3-8.

books authors
id INT AXP ~—H id INT AXP]
authorid INT F givenname VARCHAR(40)
title VARCHAR(255) O othernames VARCHAR(40)
published INT familyname VARCHAR(40)
price NUMERIC(4,2) born DATE
died DATE
gender CHAR(1)
home VARCHAR(128)
Index ix_authors_name (familyname,givenname)

Figure 3-8. Books and Authors

To add a new book to the database
1. Check whether the author already exists in the authors table.
2. Ifnot, add the author to the authors table.
3. Ifyou have just added a new author, fetch its primary key.
4. Else fetch the primary key of the existing author.

5. Using this primary key, add the new book to the books table.

94

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

First, we'll check to see whether the author has already been added to the
authors table:

SELECT * FROM authors WHERE familyname='Christie';

It appears not, so we'll need to add her.

Adding an Author

In principle, you would add the new author with the following statement:

-- Don't run this yet:
INSERT INTO authors(givenname, othernames, familyname,
born, died, gender,home)
VALUES('Agatha', 'Mary Clarissa', 'Christie’,
'1890-09-15", '1976-01-12","'f",
'Tourquay, Devon, England');
-- For Oracle, you need to precede the dates with the
-- date keyword: date'1890-09-15', date'1976-01-12'

As the comment says, don’t run this statement yet. Because the author’s id is
autogenerated, we’'ll need to get the new id after inserting the row. You can do a search
for it after adding the row, but it may be possible to have the DBMS tell you what the
new id is.

Different DBMSs have different methods of getting this id.

For PostgreSQL, you can simply use a RETURNING clause at the end of the INSERT

statement:

-- PostgreSOL
INSERT INTO authors(givenname, othernames, familyname,
born, died, gender,home)
VALUES('Agatha', 'Mary Clarissa','Christie’,
'1890-09-15", '1976-01-12","'f",
'Tourquay, Devon, England')
RETURNING id; -- Take note of this!

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

For MySQL/MariaDB, Microsoft SQL, and SQLite, you run a separate function after
the event. Note that you should run both statements together by highlighting both before
you run:

-- MSSQL: Select both statements and run:
INSERT INTO authors(givenname, othernames, familyname,
born, died, gender,home)
VALUES('Agatha', 'Mary Clarissa','Christie’,
'1890-09-15", '1976-01-12","'f",
'Tourquay, Devon, England');
SELECT scope_identity(); -- Take note of this!

-- MySQL / MariaDB: Select both statements and run:
INSERT INTO authors(givenname, othernames, familyname,
born, died, gender,home)
VALUES('Agatha', 'Mary Clarissa', 'Christie’,
'1890-09-15", '1976-01-12","'f"',
'Tourquay, Devon, England');
SELECT last insert id(); -- Take note of this!

-- SQLite: Select both statements and run:
INSERT INTO authors(givenname, othernames, familyname,
born, died, gender,home)
VALUES('Agatha', 'Mary Clarissa','Christie’,
'1890-09-15"', '1976-01-12","'f",
'Tourquay, Devon, England');
SELECT last insert rowid(); -- Take note of this!

The additional SELECT statements earlier all fetch the newly generated id.

Oracle, on the other hand, makes it pretty tricky. It does support a RETURNING clause,
but only into variables. You can get the newly generated id, but that involves some extra
trickery in hunting for sequences. The simplest method really is to select the row you've
just inserted using data you've just entered:

-- Oracle
INSERT INTO authors(givenname, othernames, familyname,
born, died, gender,home)
VALUES('Agatha', 'Mary Clarissa','Christie’,

96

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

date '1890-09-15',date '1976-01-12','f',
'Tourquay, Devon, England');

SELECT id FROM authors

WHERE givenname='Agatha' AND othernames='Mary Clarissa’
AND familyname='Christie’;

Of course, you don't necessarily need to filter all of the new values: just enough to be
sure you've got the right one.

Adding a Book

After that, the rest is easy.
Whether or not you have just added the new author, you can simply search for the
authors table to get the author id:

SELECT * FROM authors WHERE familyname='Christie';

Taking note of the id in particular, you can insert the book with the following
statement:

-- Use the author's id:
INSERT INTO books(authorid,title,published,price)
VALUES (... , 'The Mysterious Affair at Styles’,
1920, 16.00);

Of course, you will need to supply the correct id in the preceding statement, either
from the INSERT statements in the previous section or from the SELECT statement earlier.
Note that we’ve picked an arbitrary value of 16.00 for the price. It didn't need the

decimal part, of course, but it makes the purpose clearer.

97

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Adding a New Sale

Adding a book is simple enough, but tedious. Adding a new sale, however, adds another
level of complexity. Remember that a sale comprises a row in the sales table and one or
more rows in the saleitems table, as you see in Figure 3-9.

sales saleitems
id INT AXP]L ‘ id INT AXP)
customerid INT N, - saleid INT NXF;
total DECIMAL(6,2) bookid INT N
ordered DATETIME quantity INT NED)
shipped DATE price DECIMAL(6,2)
CHECK(quantity>0)

Figure 3-9. Sales and Sale Items

The process would be
1. Create a newrow in the sales table.
2. Fetch the primary key of the new sale.

3. Add one or more rows in the saleitems table, using the previous
primary key to refer to the new sale. This will include the bookid
and quantity, but the price will need to be fetched separately.

4. For each sale item, fetch the price of each item from the books
table, using the bookid.

5. Update the new sale with the total value of the new sale items.

Here, we will work with adding a new sale.
For our sample data, we'll use the following values:

Data Value

Customer ID 42
Book IDs 123, 456, 789
Quantities 3, 2, 1

We'll also use current_timestamp for the date.
98

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Adding a New Sale in the Sales Table

Adding the main sale is the easy part, but, again, we’'ll need the new id. To add a sale,
We can use

PostgreSOL

INSERT INTO sales(customerid, ordered)
VALUES (42,current timestamp)
RETURNING id;

MSSOL
INSERT INTO sales(customerid, ordered)
VALUES (42,current timestamp);

SELECT scope_identity();

MySOL / MariaDB

INSERT INTO sales(customerid, ordered)
VALUES (42,current timestamp);

SELECT last insert id();

SOLite
INSERT INTO sales(customerid, ordered)
VALUES (42,current timestamp);

SELECT last insert rowid();

Oracle

INSERT INTO sales(customerid, ordered, total)
VALUES (42,current timestamp,0);

SELECT id FROM sales WHERE id=42 AND total=0;

For Oracle, we've taken a slightly different approach in including a dummy total

of 0. When the sale is fully added, the value shouldn’t be zero, so we're using it as a
temporary placeholder to help identify the new sale.

Remember that we’ll need to remember the new sale id.

99

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Adding the Sale Items and Getting the Prices

Armed with the new sale id, the rest is simple. To add the sale items, we can use

-- Not Oracle
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES
(..., 123, 3),
(e.. , 456, 1),
(..., 789, 2);

-- Oracle
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES (... , 123, 3);
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES (... , 456, 1);
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES (... , 789, 2);

Remember to use your new sale id in the preceding statements.

Also, remember that Oracle doesn't like multiple values in a single INSERT statement,
which is why there are multiple statements. You can use that for the other DBMSs if you
prefer, but it’s not necessary.

The prices come from another table. You can fetch those prices into the new sale
items using a subquery:

UPDATE saleitems

SET price=(SELECT price FROM books WHERE
books.id=saleitems.bookid)

WHERE saleid = ... ;

The correlated subquery fetches the price from the saleitems table for the matching
book (WHERE books.id=saleitems.bookid).

The WHERE clause in the main query ensures that only the new sale items get the
prices. This is important because you don’t want to copy the prices into the old sale
items: there might have been a price change since the older sales were completed, and
you shouldn’t let that change affect old transactions.

100

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Completing the Sale

Finally, you should find the total for the sale items and put that into the new sale.
To get the total for the sale items, you can use an aggregate query:

SELECT sum(quantity*price)
FROM saleitems
WHERE saleid = ... ;

The result would be correct, but it would also be incomplete. What's missing is the
tax and any VIP discount applicable.

Let's assume a tax of 10%—it varies from country to country, of course, so you might
want to make an adjustment. That means you'll end up paying (1 + 10%) times the total:

SELECT sum(quantity*price) * (1 + 0.10)
FROM saleitems
WHERE saleid = ... ;

In real life, of course, you would simply write 1.1, but the preceding expression
is a reminder of where the value came from and how you might adapt it for different
tax rates.

The VIP discount depends on the customer. You can read that from the VIP table:

SELECT 1 - discount FROM vip WHERE id = 42 ;

The reason you subtract it from 1 is that it's a discount: it comes off the full price.
You can use that in a subquery with the calculated total:

SELECT

sum(quantity*price)

* (1 +0.1)

* (SELECT 1 - discount FROM vip WHERE id = 42)
FROM saleitems
WHERE saleid = ... ;

101

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

except not necessarily. Some customers aren’t VIPs, so the subquery might return
a NULL. That would destroy the whole calculation. Since a missing VIP value means no
discount, we should coalesce the subquery to 1:

SELECT
sum(quantity*price)
* (1 +0.1)
* coalesce((SELECT 1 - discount FROM vip
WHERE id = 42),1)
FROM saleitems
WHERE saleid = ... ;

Finally, we can put this value into the sales table:

UPDATE sales
SET total = (
SELECT
sum(quantity*price)
* (1 +0.1)
* coalesce((SELECT 1 - discount FROM vip
WHERE id = 42),1)
FROM saleitems
WHERE saleid = ...

)
WHERE id = ... ;

There’s a lot going on here. First, the UPDATE query sets a value to a subquery, which,
in turn, uses a subquery to fetch a value. You'll also find that the query uses the sale id
twice, once to filter the sale items and once to select the sale.

Review

A main feature of SQL databases is that there are multiple tables and that these tables are
related to each other.

Relationships are generally established through primary keys and foreign keys which
reference the primary keys in related tables. The foreign key is normally in the form of a

102

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

constraint, which guarantees that the foreign key references a valid primary key value in

the other table, if not necessarily the correct one.

There may also be ad hoc relationships which are not planned or enforced.

Types of Relationships

There are three main relationship types:

One-to-many relationships are between a foreign key in one table,
often called a child table, and a primary key in another, the parent.
Generally, one parent can have many children.

This is the most common type of relationship.

One-to-one relationships are between primary keys in both tables.
The primary key in one table doubles up as a foreign key in the other.

A true one-to-one relationship requires both primary keys to

be foreign keys to the other table. In practice, this is difficult to
implement, and the foreign key is normally on one table only. This
may informally be called a one-to-maybe relationship.

Many-to-many relationships allow a row in one table to relate

to many rows in the other, as well as the other way around. Since
columns can only have single values, this relationship is created
through another table, often called an associative table, with a pair

of one-to-one relationships.

In any reasonably sized database, the fact that there are many
tables in one-to-many relationships results in many-to-many
relationships.

It’s a basic principle in a database that a column shouldn’t have multiple values and

that you shouldn’t have multiple columns doing the same job. The way to handle multiple

values is with additional tables, either in one-to-many or many-to-many relationships.

Joining Tables

When there is an established relationship between tables, you can combine their

contents using joins.

103

CHAPTER 3 TABLE RELATIONSHIPS AND JOINS

Sometimes, you may want to count the number of expected results to check whether
your join type matches what you want.

When you do join tables, you often end up with several rows with the same repeated
data coming from the parent table. You may be able to simplify this by grouping on
parent data and aggregating on the child data. Because you can only select what you
summarise, you may need to join the results again to get more details.

Views

Selecting what you want from multiple related tables can be inconvenient. You can save
your complex joined query in a view for future use and use it as you might a simple table
afterward.

Inserting into Related Tables

Often, inserting into a table is not so simple. In some cases, if it’s a child table, you may
need to also insert into the parent table so that the child can reference it.

In other cases, such as when the parent table is used as a container for child data,
you may need to insert into multiple tables in a number of steps.

This process can be complicated if the primary key is autogenerated.

Summary

In this chapter, we looked at how multiple tables are related through foreign keys
matching with primary keys. We also looked at different types of relationships and why
tables were designed this way.

Using this, we were able to combine tables using one or more joins to match rows
from one table to another. We looked at different types of joins and when you might
choose between them.

Coming Up
Most of the data we've worked with have been simple values, though in a few cases we
calculated values such as tax and discounts.

In the next chapter, we're going to take a small detour and concentrate on
performing calculations in SQL.

104

CHAPTER 4

Working with Calculated
Data

No doubt, you will have seen calculations before now. SQL allows you to include
calculated data in your queries.

In this chapter, we'll look at some important ideas about the different types of data
and how they can be calculated.

Don'’t get too carried away with calculations in your SQL. The database is more
concerned with maintaining and accessing raw data. However, it's useful to be able to
take your raw data and make it more useful to the task at hand.

DBMSs vary widely in their ability to perform calculations. This is especially the
case with functions, which vary not only in scope but even in what the DBMSs
call them.

In particular, SQLite has a very limited ability to perform calculations, particularly
with functions.

In this chapter, we’ll be working with various types of data, including strings. If
you're using MariaDB/MySQL, we thoroughly recommend that you set your session
to ANSI mode, so that string behavior works as for standard SQL.

You can begin your session with SET SESSION sql mode = "ANSI';

© Mark Simon 2023
M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_4

CHAPTER 4 WORKING WITH CALCULATED DATA

Calculation Basics

We'll look at more details later, but here is an overview of how calculations work in SQL.
You can calculate values based on individual columns or multiple columns. For

example:

SELECT
height/2.54, -- single column
givenname||" '||familyname -- multiple columns
-- givenname+' '+familyname -- MSSQL

FROM customers;

This gives you
?column? ?column?
66.339 May Knott
67.283 Rick Shaw
60.236 lke Andy
69.291 Pat Downe
61.575 Basil Isk
69.409 Pearl Divers
~ 303 rows ~

You can also “hard-code” values or get them from subqueries:

SELECT
"active', -- hard-coded
(SELECT name FROM towns WHERE id=townid) -- sub query

FROM customers;

106

CHAPTER 4

You get
?column? ?column?
active Kings Park
active Richmond
active Hillcrest
active Guildford
active Wallaroo
active Broadwater
~ 303 rows ~

There are also some built-in functions:

SELECT
upper (familyname)
FROM customers;

This gets you

In all cases, you'll notice that a calculated value doesn’t have a proper name.

-- upper case function

?column?

KNOTT
SHAW
ANDY
DOWNE
ISK

DIVERS
~ 303 rows ~

WORKING WITH CALCULATED DATA

107

CHAPTER4 WORKING WITH CALCULATED DATA

Using Aliases

Calculated columns cause a minor inconvenience for SQL. Generally, each column should
have a distinct name, but SQL has no clear idea what to call the newly generated column.

Some SQL clients will leave the calculated column unnamed, while some will
generate a dummy name. When experimenting with simple SELECT statements, this is
OK, but when taking the statement seriously, such as when you plan to use the results
later, you will need to give each column a better name.

An alias is a new name for a column, whether it’s a calculated column or an original.
You create an alias using the AS keyword. For example:

SELECT
id AS customer,
height/2.54 AS height,
givenname||" '||familyname AS fullname,
-- givenname+' '+familyname AS fullname -- MSSQL
"active' AS status,
(SELECT name FROM towns WHERE id=townid) AS town,
length(email) AS length
-- len(email) AS length -- MSSQL
FROM customers;

This looks better:

customer Height fullname status town length
42 66.339 May Knott active Kings Park 23
459 67.283 Rick Shaw active Richmond 24
597 60.236 lke Andy active Hillcrest 23
186 69.291 Pat Downe active Guildford 24
352 61.575 Basil Isk active Wallaroo 24
576 69.409 Pearl Divers active Broadwater 27

~ 303 rows ~

108

CHAPTER 4 WORKING WITH CALCULATED DATA

Note

e The id column has been aliased even though it hasn’t been
calculated.

e The height calculation has been aliased to height; this is fine,
since it still means the same thing, but in different units.

Apart from the fact that each calculated column must have a distinct name, other
reasons to include aliases are as follows:

« Sometimes, you simply need to rename columns either for better
meaning or to suit later use.

« Sometimes, you need to format or convert a column to something
more suitable, but still retain its original name.

At this point, we're not worried about whether the preceding aliases are the best
possible names for their columns; we're just looking at how they work.

Alias Names

By and large, the rules for alias names are the same as those for the names of columns.
That means

« Aliases and original column names must be unique.

e Aliases should not contain spaces, can’t start with a number, and
can't contain other special characters.

e Aliases should not be SQL keywords.

If you really need to work around the preceding second and third rules, you can
enclose the alias in double quotes. For example:

SELECT
ordered AS "order",
shipped AS "shipped date"
FROM sales;

109

CHAPTER4 WORKING WITH CALCULATED DATA

Here, the name order is an SQL keyword, while shipped date contains a space.

Order shipped date
2022-05-15 21:12:07.988741 2022-05-23
2022-05-16 03:03:16.065969 2022-05-24
2022-05-16 10:09:13.674823 2022-05-22
2022-05-16 15:02:43.285565 [NULL]
2022-05-16 16:48:14.674202 2022-05-28

~ 5549 rows ~

You should resist the urge to do this. Aliases, as with column names, are for technical
rather than aesthetic use. A SELECT statement is not actually a report.
Some DBMSs offer alternatives to double quotes for special names:

» Microsoft SQL offers square brackets as an alternative: [shipped
date]. There is no reason to prefer this to double quotes.

« MySQL/MariaDB uses “backticks” as an alternative: 'shipped date’.
In ANSI mode, this is unnecessary, but in traditional mode, it’s all

you've got.

Whatever names you choose, remember that they are meant to be purely functional.

Don'’t get carried away trying to use upper and lower case, or spaces, or anything else
that might look better. That's up to the software handling the output of your queries. In

SQL, you just need a suitable name to refer to the data.

AS Is Optional

You will discover soon enough that AS is optional:

SELECT
id customer,
height/2.54 height,
givenname||"' '||familyname fullname,
-- givenname+' '+familyname fullname
'active' status,

110

MSSOL

CHAPTER 4 WORKING WITH CALCULATED DATA

(SELECT name FROM towns WHERE id=townid) town,
length(email) length
-- len(email) length -- MSSQL

FROM customers;

Some developers justify leaving out the AS as it saves time or makes them look more
professional. However, you will also make this kind of mistake soon enough:

SELECT
id,
email
givenname, familyname,
height,
dob
FROM customers;

This gives you a confusing result:

id givenname familyname height dob

42 may.knott61@example.net Knott 168.5 [NULL]

459 rick.shaw459@example.net Shaw 170.9 1945-07-03
597 ike.andy597@example.com Andy 153 1998-08-09
186 pat.downe186@example.net Downe 176 1990-04-12
352 basil.isk352@example.net Isk 156.4 1960-01-13
576 pearl.divers576@example.com Divers 176.3

~ 303 rows ~

At first glance, this looks OK, as it is not a technical error. However, on closer
inspection, you'll see that the email has been aliased to familyname, since there is no
comma between them. Aliasing one column to another is legitimate, though it's not
often that you would really want to.

You can’t stop SQL from allowing this, but you can make mistakes like this slightly
easier to spot if you develop a pattern which always includes AS for aliases.

111

CHAPTER4 WORKING WITH CALCULATED DATA

Aliases Are Not Available in the Rest of the Query

Recall that the processing order for basic SQL clauses is

1. FROM

2. WHERE

3. GROUP BY
4. HAVING
5. SELECT
6. ORDER BY

This is different to the way you write SQL in that you wrife the SELECT clause first.
This creates a major point of confusion in a statement like this:

SELECT id, title, price, price*o.1 AS tax
FROM books
WHERE tax«<1.5;

This will result in an error, since although the price*0.1 AS tax expression is
written in the first clause, it isn’t actually processed until after the WHERE clause. As a
result, tax is not yet available for the WHERE clause.

It becomes more confusing if you alias a calculation to an original column name:

SELECT

id, title,

price*1.1 AS price -- adjust to include tax
FROM books
WHERE price<1s;

112

CHAPTER 4 WORKING WITH CALCULATED DATA

This will work. Here, the price has been increased to include tax and aliased to the
original name, which is legitimate.

id Truncate price
2078 The Duel 13.75
1530 Robin Hood, The Prince of Thieves 13.75
982 Struwwelpeter: Fearful Stories and Vile Pictures ... 12.65
573 The Nose 1
15673 Rachel Ray 1
532 Elective Affinities 12.65
~ 521 rows ~

However, the WHERE clause will filter on the original price column, not the adjusted
version.

Again, there’s not much you can do about this directly, as you don’t have the option
to write the SELECT clause further down, and you can’t create aliases in any other clause.

Later, we will see how using Common Table Expressions can help preprocess
calculated columns.

It’s probably not a good idea to alias a calculation to an original column name if
you're planning to use it later.

SQL has a clear idea of what it’s going to do with the aliased name, but the human
reader may well get confused.

Dealing with NULLs

Sooner or later, you will encounter the dreaded NULL in your calculations. Actually, there’s
nothing wrong with NULL per se, but it will totally make a mess of your calculations.

Any calculation involving a NULL will end up as NULL. You can say that NULL is
very destructive for calculations. That is, unless you run the data through one or two
expressions which are capable of handling NULLs.

The exception to this is with Oracle strings. Oracle treats NULL strings as empty
strings. On one hand, this can be convenient; on the other, there are times when you
really need NULL to behave as NULL.

113

CHAPTER4 WORKING WITH CALCULATED DATA

If you are calculating with a single column which includes NULL, it makes sense that
the result is also a NULL. For example:

SELECT

id, givenname, familyname,

height/2.54 AS height -- sometimes NULL
FROM customers;

Sometimes, you get a NULL result:

id Givenname familyname height
101 Artie Chokes 63.858
489 Justin Case [NULL]
59 Leigh Don 66.693
593 Luke Warm [NULL]
170 Dan Dee 65.039
541 Neil Downe 64.606
~ 303 rows ~

Since all we're doing is converting a single value, it is perfectly acceptable to leave
NULLs as they are—if you don’t know what the height is in centimeters, then you still
don’t know what it is in inches. However, we’ll see shortly how you might sometimes
replace the NULL with something you feel is better.

On the other hand, this behavior becomes more of a nuisance if you're calculating
on multiple columns, most of which are not NULL:

SELECT
id, givenname, othernames, familyname,
givenname||"' '||othernames||" '||familyname AS fullname

-- MSSQL:
-- givenname+' '+othernames+' '+familyname AS fullname
FROM authors;

114

CHAPTER 4 WORKING WITH CALCULATED DATA

With the exception of Oracle, you'll get a lot of NULLs:

id givenname Othernames familyname fullname

464 Ambrose [NULL] Bierce [NULL]

858 Alexander [NULL] Ostrovsky [NULL]

525 Francis [NULL] Beaumont [NULL]

479 C.E. Van Koetsveld C.E. van Koetsveld
703 Friedrich [NULL] Engels [NULL]

~ 488 rows ~

In the preceding example, most authors don’t have a value for othernames, so it is
NULL. Some don’t even have a givenname value. There’s nothing wrong for the most part
with the givenname or the familyname, but the NULL for othernames destroys the whole
calculation.

With Oracle, however, you won't get NULLs. However, you will see extra spaces where
the missing names are.

Technically, the result is correct. If you don’t know some of the names, then you
don’t know the full name. However, that's unhelpful.

Coalesce

SQL has a function called coalesce() which can replace NULL with a preferred

alternative. The word “coalesce” actually means to combine, but how it came to be the

name of this operation is one of those mysteries lost in the depths of ancient history.
The function is used this way:

coalesce(expression,planB)

If the preceding expression happens to be NULL, then planB will be used.
You can have a number of alternative values:

coalesce(expression,planB,planC, ... , planZ)

If planB also happens to be NULL, coalesce() will try the next alternative and so on
until either there is a real value, or the alternatives have been exhausted.

115

CHAPTER4 WORKING WITH CALCULATED DATA

You can see coalesce in action with missing phone numbers:

SELECT
id, givenname, familyname,
phone

FROM employees;

In the employees table, some are missing phone numbers.

id Givenname familyname phone

7 Ebenezer Splodge 0491577644
4 Gladys Raggs 0491573087
28 Cornelius Eversoe [NULL]

32 Clarisse Cringinghut 0491571804
33 Will Power 0491576398
26 Fred Kite 0491572983
~ 34 rows ~

It would be reasonable to replace these missing phone numbers with the company’s
main phone number:

SELECT
id, givenname, familyname,
coalesce(phone, '1300975711"') -- coalesce to main number

FROM employees;

Here, the missing number has been coalesced:

id Givenname familyname coalesce

7 Ebenezer Splodge 0491577644
4 Gladys Raggs 0491573087
28 Cornelius Eversoe 1300975711
32 Clarisse Cringinghut 0491571804

116

CHAPTER 4 WORKING WITH CALCULATED DATA

id Givenname familyname coalesce

33 Wil Power 0491576398
26 Fred Kite 0491572983
~ 34 rows ~

The thing about coalesce() is that you can’t always get away with it. You need to be
sure that your substitute makes sense and that your guess is a good one. There are many
times when it wouldn’t make sense, such as a missing price for a book or an author’s
date of birth; NULL is often the best thing you can do.

In Chapter 2, you guessed at a missing quantity using coalesce() and then fixed it so
that the quantity can’t be NULL in the future. Sometimes, that’s the best solution.

Fixing the Author Names

With the coalesce() function, you can replace the missing author names with an
alternative. There are two things to consider here:

« You can’'t make up a missing name, so the alternative will have to be
an empty string.

« You'll also want to leave out the spaces after the missing names.

For the second point, we won’t coalesce just the name, but the combination of
the name and the space, which should also be NULL—except for Oracle, which doesn't
behave the same way. We'll take a different approach for Oracle.

To coalesce the names and spaces to an empty string, we can use

-- PostgreSQL, MariaDB/MySQL, SQLite

SELECT
id, givenname, othernames, familyname,
coalesce(givenname||' ',"'")

| |coalesce(othernames||" ","'")
| |[familyname AS fullname
FROM authors;

-~ MSSOL
SELECT

117

CHAPTER4 WORKING WITH CALCULATED DATA

id, givenname, othernames, familyname,
coalesce(givenname+' ',"")
+coalesce(othernames+' ',"")
+familyname AS fullname
FROM authors;

This gives us
id givenname Othernames familyname fullname
464 Ambrose [NULL] Bierce Ambrose Bierce
858 Alexander [NULL] Ostrovsky Alexander Ostrovsky
525 Francis [NULL] Beaumont Francis Beaumont
479 C.E. Van Koetsveld C.E. van Koetsveld
703 Friedrich [NULL] Engels Friedrich Engels
~ 488 rows ~

Since Oracle will happily concatenate a NULL string, we can’t use coalesce().
Instead, we'll use the 1trim() function. This function removes leading spaces from a
string. Since we're adding a space to the end of the string, it will only be a leading space if
the name is empty. This gives us

-- Oracle
SELECT
id, givenname, othernames, familyname,
ltrim(givenname||" ')||1ltrim(othernames||' ")

| |[familyname AS fullname
FROM authors;

This should give us the same result as before.

Using Calculations in Other Clauses

In this chapter, we're using the calculations mostly in the SELECT clause. Of course,
any clause which contains a value can use a calculated value. We'll have a look at a few
examples here.

118

CHAPTER 4 WORKING WITH CALCULATED DATA

One obvious use for calculations is in the WHERE clause. For example, you can find
books with shorter titles:

SELECT *

FROM books

WHERE length(title)<24; -- MSSQL: len(title)

giving

id authorid Title published price
2078 765 The Duel 1811 12.50
503 128 Uncle Silas 1864 17.00
2007 99 North and South 1854 17.50
702 547 Jane Eyre 1847 17.50
1759 17 La Curée 1872 16.00
205 436 Shadow: A Parable [NULL] 17.50
~ 762 rows ~

You may need this if your database is case sensitive and you need to match a string in
an unknown case:

SELECT *
FROM books
WHERE lower(title) LIKE '%journey%';

giving

id authorid Title published price
880 77 The Journey of Niels Klim to the Wor ... 1741 12.50
946 704 Following the Equator: A Journey Aro ... 1897 19.50
1314 606 Mozart's Journey to Prague 1856 17.00
1092 295 A Journey to the Western Islands of ... 1775 14.50
502 [NULL] Journey to the Center of the Earth 1864 15.50
1454 914 A Sentimental Journey 1768 13.50

119

CHAPTER4 WORKING WITH CALCULATED DATA

You can also calculate an aggregate value in a subquery:

SELECT *
FROM customers
WHERE height<(SELECT avg(height) FROM customers);

giving

id familyname Givenname e height
42 Knott May . 168.5
597 Andy lke . 153.0
352 Isk Basil . 156.4
526 Coming Seymour e 163.5
26 Twishes Bess ie 164.6
91 North June e 164.5
~ 128 rows ~

You can also use calculations in the ORDER BY clause, such as when you want to sort
by the length of a title:

SELECT *

FROM books

ORDER BY length(title); -- MSSQL: length(title)

which gives

id authorid title published price
385 97 She 1887 11.00
488 478 Mumu 1852 18.00
728 534 Emma 1815 10.00
1625 496 Lenz 1835 18.50
317 99 Ruth 1853 16.50
2140 17 Nana 1880 12.50
~ 1200 rows ~

120

CHAPTER 4 WORKING WITH CALCULATED DATA

However, you're likely to want to select what you're sorting by, so it would make
more sense to calculate the value in the SELECT clause and sort by the result:

SELECT id, authorid, title, length(title) AS len, published, price
FROM books
ORDER BY len; -- MSSQL: length(title)

which is more informative:

id authorid Title len published price
385 97 She 3 1887 11.00
488 478 Mumu 4 1852 18.00
728 534 Emma 4 1815 10.00
1625 496 Lenz 4 1835 18.50
317 99 Ruth 4 1853 16.50
2140 17 Nana 4 1880 12.50
~ 1200 rows ~

Here’s an interesting use for coalesce in the ORDER BY clause. Some DBMSs support
NULLS FIRST or NULLS LAST to decide where to put the NULLs in the sort order. If your
DBMS doesn’t support it, you can coalesce the column to an extreme value. For example:

SELECT *

FROM customers

ORDER BY coalesce(height,0); -- NULLS FIRST
SELECT *

FROM customers

ORDER BY coalesce(height,1000); -- NULLS LAST

By coalescing all of the NULLs to an extreme value, SQL will sort them to one end or
the other accordingly.

As for the FROM clause, you'll need a calculation which generates a virtual table.
That'’s usually going to be a view, a join, or even a subquery. A Common Table
Expression, in this context, is like a subquery. We'll do more of that sort of thing later.

121

CHAPTER4 WORKING WITH CALCULATED DATA

More Details on Calculations

SQL databases typically understand the three main types of data: numbers, strings, and
dates. There are variations on these types, such as whether numbers include decimals,
or the length of a string, or whether the date includes a time. There are also some other
types, such as boolean values (limited to true or false) or binary data (sometimes
called Binary Large Objects, or BLOBs for short), with varying degrees of support in
different DBMSs.

Here, we'll look at some of the details of calculating with the main data types.

As arule, a value comes in three forms:

+ Astored value may come from a variable or a column.
= Avalue may be calculated or come from a built-in function.
« Aliteral value may be entered directly in code.

SQL, like most coding languages, needs some help with certain literal values to
distinguish them from other code. Numeric literals are entered as they are (bare)
because they obviously can’t be anything else.

String or date literals, on the other hand, are wrapped in single quotes (" ... ')to
mark them as such. That’s so that SQL can distinguish between strings and other words,
such as SQL keywords or table and column names.

The actual value of a string or date literal doesn’t include the quotes. However, the
quotes are required when writing them into the code.

For much of what follows, we'll be using literals for examples.

Casting

The cast() function is used to interpret a value as a different data type. Recall that SQL
has three main data types: numbers, strings, and dates. You can use cast to do one of
two things:

« You can try to cast from one main type to another.

Casting to a string should be easy enough, but casting to another
type requires that SQL know how to interpret the value. Different
DBMSs react differently to failure.

122

CHAPTER 4 WORKING WITH CALCULATED DATA

¢ You can cast within a main type. For example, you can cast between
integer and decimal numbers or between dates and datetimes.

If you cast a decimal to an integer, a datetime to a date, or a string
to a shorter string, you'll naturally lose precision. If you cast in
the opposite direction, the extra precision will be filled with the
equivalent of “nothing””

If you do cast to a narrower type, it will probably work, but don’t
push your luck too hard. For example, casting the number 123.45
to a decimal(4,2) will fail because you haven'’t allowed enough
digits; you'll get an overflow error.

For what follows, remember that SQLite doesn’t have a date type, so that’s one cast
you won't have to worry about. Later, we'll have a quick look at the equivalent in SQLite.
Here are some examples of casting within types:

-- shorter dates & numbers
SELECT
-- not SQLite:
cast(ordered as date) AS ordered date,
cast(total AS integer) AS whole dollars
FROM sales;
-- shorter strings
SELECT cast(title AS varchar(16)) AS short title
FROM books;

-- broader dates & numbers
SELECT
-- SQLite: no date type
-- PostgreSOL, Oracle
cast(dob as timestamp) as long dob,
-- MariaDB / MySQL, MSSQL
cast(dob as datetime) as long dob,

cast(height as decimal(5,2)) as long height
FROM customers;

123

CHAPTER 4 WORKING WITH CALCULATED DATA

If you cast a string to a longer type, one of two things will happen. If you castitto a
CHAR (fixed length) type, the extra length will be padded with spaces. If you castitto a
VARCHAR type, the string will be unchanged. However, the string will be permitted to grow
to a longer string.

Casting between types is a different matter. Most DBMSs will automatically cast to a
string if necessary. For example:

-- Not MSSQL
SELECT id || ': " || email
FROM customers;

You'll get something like this:

?column?

42: may.knott61@example.net
459: rick.shaw459@example.net
597: ike.andy597@example.com
186: pat.downe186@example.net
352: basil.isk352@example.net

576: pearl.diversb76@example.com

~ 303 rows ~

As you see, MSSQL won'’t do this automatically, possibly due to a confusion with
their concatenation operator (+). There you'll have to force the issue:

-- MSSOL
SELECT cast(id as varchar(5)) + ': ' + email
FROM customers;

124

CHAPTER 4 WORKING WITH CALCULATED DATA

You can do the same with dates, too. We'll do that with the customers’ dates of birth,
but we’ll run into the complication of the fact that some dates of birth are missing. Using
coalesce should do the job:

-- PostgreSQL, MariaDB/MySOL, SQlite

SELECT
id || s " || email
|| coalesce(' Born: " || dob,'")
FROM customers;
-- MSSOL
SELECT

cast(id as varchar(5)) + + email
+ coalesce(' Born: ' + cast(dob as char(10)),'")
FROM customers;
-- Not Oracle

For SQLite, it wasn’t much effort as we've stored the dates as a string anyway.

Here, we've coalesced the entire concatenated value ' Born: ' || dob. That’s
because we want to replace the whole expression with the empty string if the dob is
missing. Concatenating with a NULL should result in a NULL.

For Oracle, you run again into the quirk of treating NULL strings as empty strings, so
they won't coalesce. We can work around it using CASE:

-- Oracle
SELECT
id || s " || email
| | CASE
WHEN dob IS NOT NULL THEN ' Borxn: " || dob
END

FROM customers;

Basically, you can think of coalesce as a simplified CASE expression. With Oracle,
you need to spell it out more.

One reason you might want to change data types is to mix them with other values,
such as concatenating the preceding strings. We'll also see casting being used when
we want to combine data from multiple tables or virtual tables, such as with joins
and unions.

125

CHAPTER4 WORKING WITH CALCULATED DATA

Another reason to change data types is for sorting. All string data will normally sort
alphabetically, but you may need to cast them as non-strings for sorting. For example:

-- Integers
SELECT * FROM sorting
ORDER BY numberstring;
SELECT * FROM sorting
ORDER BY cast(numberstring as int); -- not MySQL
-- ORDER BY cast(numberstring as signed); -- MySOL

-- Dates (not SQLite)
SELECT * FROM sorting
ORDER BY datestring;
SELECT * FROM sorting
ORDER BY cast(datestring as date);

In the sorting table, there are some values stored as strings which represent
numbers or dates. The only way to sort them properly is to cast them first.

Note that MySQL won't let you cast to an integer directly. You have to use SIGNED
(which means the same thing) or UNSICGNED. MariaDB is OK with integers.

Not all casts from strings are successful, since the string may not resemble the
correct type. For example:

-- This works:
SELECT cast('23" as int) -- MySQL: as signed
-- FROM dual -- Oracle

H
-- This doesn’t:

SELECT cast('hello' as int) -- MySQL: as signed
-- FROM dual -- Oracle

>
What happens next depends on the DBMS:
« MariaDB/MySQL will both give a 0 which is forgiving.
« MSSQL will give an error.

However, you can use an alternative called try _cast which will
simply give a NULL. If you wish, you can then coalesce the result.

126

CHAPTER 4 WORKING WITH CALCULATED DATA

s Oracle will also give an error.

However, there is an optional default in this form:

cast('hello' as int DEFAULT 0 ON CONVERSION ERROR).

It’s verbose but it allows an alternative to 0, or whatever you like.
¢ PostgreSQL just gives an error.

It’s possible to write a function to get around that.

Numeric Calculations

A number is normally used to count something—it’s the answer to the question “how
many.” For example, how many centimeters in the customer’s height, or how many
dollars were paid for this item?

Numbers aren't always used that way. Sometimes, they're used as tokens or as codes.
The calculations you might perform on a number would depend on how the number is
being used.

Basic Arithmetic

You can always perform the basic operations on numbers:

SELECT
3*5 AS multiplication,
4+7 AS addition,
8-11 AS subtraction,
20/3 AS division,
20%3 AS remainder, -- Oracle: mod(20,3),
24/3*%5 AS associativity,
1+2*3 AS precedence,
2*%(3+4) + 5%(8-5) AS distributive
-- FROM dual -- Oracle

This sample illustrates the main operations:

mul... add... sub... div... rem... ass... pre... dis...

15 1 -3 6 2 40 7 29

127

CHAPTER4 WORKING WITH CALCULATED DATA

Note that you'll need to add FROM dual if you're testing this in Oracle.
Also note

« Different DBMSs have different attitudes to dividing integers. In some
cases, 20/3 would give you a result of 6, discarding the fraction. On
other cases, you'd get something like 6.66. . .7 as a decimal.

« The % operator calculates the remainder after integer division. Oracle
uses the mod() function.

« When mixing operations, SQL follows the rules you would have
learned in school regarding precedence (which operators come first)
and associativity (calculating from left to right). SQL also allows you
to use parentheses to calculate expressions first.

If you know someone who's forgotten the basic rules of arithmetic, you can tell them
1. Do what’s inside parentheses first.

2. Do multiplication | division before addition | subtraction
(precedence).

3. Do operations of the same precedence from left to right
(associativity).

Of course, these expressions work just the same whether the value is a literal or some

stored or calculated value.

Mathematical Functions

There are some mathematical functions as well. For the most part, the mathematical

functions won't get a lot of use unless you're doing something fairly specialized.

SELECT
pi() AS pi, -- Not Oracle
sin(radians(45)) AS sin45, -- Not Oracle
sqrt(2) AS root2, - V2
log10(3) AS log3,
1n(10) AS 1nio, -- Natural Logarithm
power(4,3) AS four cubed -- 43

-- FROM dual -- Oracle

128

CHAPTER 4 WORKING WITH CALCULATED DATA

-- Oracle's Trigometric functions are less convenient
SELECT
acos(-1) AS pi,
sin(45*acos(-1)/180) AS sin45
FROM dual;

The results look something like this:

pi sind5 root2 log3 In10 four_cubed

3.142 0.707 1.414 0.477 2.303 64

So, now you can use SQL to find the length of a ladder leaning against a wall or the
distance between two ships lost at sea.

Approximation Functions

There are also functions which give an approximate value of a decimal number. Here is a
sample with variations between DBMSs:

SELECT

ceiling(200/7.0) AS ceiling,
-- SQLite: round(200/7.0 + 0.5),
-- Oracle: ceil(200/7.0),

floor(200/7.0) AS floor,
-- SQLite: round(200/7.0 - 0.5),

round(200/7.0,0) AS rounded integer,
-- or round(200/7), -- not MSSQL
round(200/7.0,2) AS rounded decimal

-- FROM DUAL -- Oracle

As you see, the functions all tend to lose precision:

ceiling floor rounded_integer rounded_decimal

29 28 29 28.57

129

CHAPTER4 WORKING WITH CALCULATED DATA

If you use the cast() function to another narrow number type, you'll also lose
precision. However, what happens next depends on the DBMS:

SELECT
cast(234.567 AS int) AS castint,
-- cast(234.567 AS unsigned), -- MySQL
cast(234.567 AS decimal(5,2)) AS castdec
-- FROM dual -- Oracle
DBMS Castint castdec
PostgreSQL 235 234.57
MariaDB/MySQL 235 234.57
Oracle 235 234.57
MSSQL 234 234.57
SQLite 234 234.567

« With PostgreSQL, Oracle, and MariaDB/MySQL, casting to an integer
or a shorter decimal will round off the number.

« With MSSQL, casting to a shorter decimal will round off the number,
but casting to an integer will truncate it. If you want the integer
truncated, you can use something like decimal(3,0).

« With SQLite, casting to an integer will truncate, while casting to a
decimal is ignored and retains the original value.

Formatting Numbers

Formatting functions change the appearance of a number. Unlike approximation and
other functions, the result of a formatting function is not a number but is a string; that'’s
the only way you can change the way a number appears.

For numbers, most of what you want to do is change the number of decimal places,
display the thousands separator, and possibly currency symbols.

Again, the different DBMSs have wildly different functions. As an example, here are
some ways of formatting a number as currency with thousands separators:

130

CHAPTER 4 WORKING WITH CALCULATED DATA

PostgreSQL, Oracle
SELECT
to_char(total, 'FM999G999G999D00"') AS local number,
to_char(total, 'FML999G999G999D00") AS local currency
FROM sales;
SELECT to char(total, 'FM$999,999,999.00') FROM sales;

MariaDB/MySOL
SELECT
format(total,2) AS local number,
format(total,2, 'de DE') AS specific_number
FROM sales;

MSSOL
SELECT
format(total,'n") AS local number,
format(total,'c') AS local currency
FROM sales;

SOLite
SELECT printf('$%,d.%02d",total,round(total*100)%100)
FROM sales;

You'll get variations of the following:

local_number local_currency
28.00 $28.00

34.00 $34.00

58.50 $58.50

50.00 $50.00

17.50 $17.50

13.00 $13.00

~ 5549 rows ~

131

CHAPTER 4 WORKING WITH CALCULATED DATA

Note

Both PostgreSQL and Oracle have a flexible to_char () function
which can also be used to format dates.

MariaDB/MySQL uses the format () function which adds
thousands separators and decimal places; you can also tell it to
adjust for different locales.

MSSQL has its own format () function with its more intuitive
formatting codes; it also adjusts for locales and can be used to
format a date.

SQLite only has a generic format (), a.k.a. printf(), function,
which will be more familiar to programmers; SQLite presumes
that you will format data in the host application such as PHP or
wherever SQLite has been embedded.

Note that if you do run a number through a formatting function, if is no longer a number!
If all you do is look at it, then that doesn’t matter. However, if you have plans to do any further
calculations, or to sort the results, then a formatted number is likely to backfire on you.
When all is said and done, formatting is probably something you won't do much
in SQL. The main purpose of SQL is to gef the data and prepare it for the next step.

Formatting comes last and is often done in other software.

String Calculations

A string is a string of characters, hence the name. In SQL, this is referred to as

character data.
Traditionally, SQL has two main data types for strings:

132

Character: CHAR(1length) is a fixed-length string. If you enter fewer
characters than the length, then the string will be right-padded with
spaces. This probably explains why standard SQL ignores trailing

spaces for string comparison.

Character varying: VARCHAR (1ength) is a limited length string. If you
enter a shorter string, it will notf be padded.

CHAPTER 4 WORKING WITH CALCULATED DATA

In principle, CHAR () is more efficient for processing since it's always the same length,
and the DBMS doesn’t need to worry about working out the size and making things
fixed. VARCHAR () is supposed to be more efficient for storage.

In reality, modern DBMSs are much cleverer than their ancestors, and the difference
between the two types is not very important anymore. For example, PostgreSQL
recommends always using VARCHAR since it actually handles that type more efficiently.

Most DBMSs offer a third type, TEXT, which is, in principle, unlimited in length.
Again, modern DBMSs allow longer standard strings than they used to, so again this is
not so important. Microsoft has deprecated TEXT in favor of VARCHAR (MAX) which does
the same job.

A string literal is written between single quotes:

SELECT 'hello'; -- Oracle: FROM dual;

When working with strings, you normally simply want to save them and fetch them.
However, you can process the strings themselves. This is usually one of the following

operations:
« Concatenation means joining strings together.

Concatenation is the only direct operation on strings. All other

operations make use of functions.

¢ Some functions will make changes to a string. They don’t actually
change the string, but return a changed version of the string.

¢« Some functions can be used to extract parts of a string.

« Some functions are more concerned with individual characters of

the string.

Case Sensitivity

SQL will store the upper/lower case characters as expected, but you may have a hard
time searching for them. That's because some databases ignore case, while others don't.
How a database handles case is a question of collation. Collation refers to how it
interprets variations of letters. In English, the only variation to worry about is upper or
lower case, but other languages may have more variations, such as accented letters in

French or German.

133

CHAPTER 4 WORKING WITH CALCULATED DATA

Collation will have an impact on how strings are sorted and how they compare.

In English, you're mainly worried about whether upper case strings match lower case
strings and possibly whether upper and lower case strings are sorted together or sorted
separately. In some other languages, the same questions might apply to whether
accented and nonaccented characters match and how they, too, are sorted.

You can set a collation when you create the database or a table, but if you don’t worry
about it, the DBMS will have a default collation for new databases.

In PostgreSQL, Oracle, and SQLite, the default collation is case sensitive, so upper
and lower case won't match. With MySQL/MariaDB and MSSQL, the default collation is
case insensitive, so they will match.

If you're not sure whether your particular database is case sensitive or not, you can
try this simple test:

SELECT * FROM customers WHERE 'a'='A';

If the database is case sensitive, you won't get any rows, since a won’t match A; if it’s
not, you will get the whole table.

ASCIl and Unicode

Traditionally, strings are encoded using ASCII—the American Standard Code for
Information Interchange. Each character has a number from 32 to 126, stored in a
single byte. For example, A is encoded as 65, while a is encoded as 97. Special characters
include the space (32), the exclamation mark (33), and even the numerals 0-9 (48-57).

Since there are only 95 values between 32 and 126, ASCII has a limited range of
characters. Once you've taken up the alphabet in upper and lower case as well as the
10 digits, you've already used up 62 characters, which doesn’t leave much room for
punctuation or other special characters. (Why they include obscure characters such as
~and ~ remains a mystery.)

Basic ASCII certainly doesn’t have the scope to include more punctuation
characters, European accented characters, or the Greek or Cyrillic alphabets. And don’t
even think about Japanese or Chinese.

One technique for handling other languages is to switch to different variations of
ASCII. A more enduring solution is to use Unicode.

Unicode is the modern standard for handling multiple languages in a single
encoding system. It does this by using multiple bytes. How exactly this is achieved can be
tricky and will vary in different implementations, but the idea is the same.

134

CHAPTER 4 WORKING WITH CALCULATED DATA

Unicode is designed to include ASCII codes, so there is some compatibility between
the two. However, some Unicode implementations do take up more space than ASCII,
even when they're encoding the same characters. Today, space is cheap, and database
software is pretty clever at using space efficiently, so that shouldn’t be too much of a
problem.

All modern DBMSs support Unicode. Some do it by default, while some expect you
to ask for it. In some cases, you can use Unicode for the whole database, for particular
tables, or for individual columns.

The sample database uses Unicode for most of the data, but may use ASCII in some
cases where the character set is deliberately limited, such as for phone numbers which
are stored as strings.

Some DBMSs support NCHAR and NVARCHAR data types in addition to CHAR and
VARCHAR. If the database tables are set to use Unicode, then CHAR and VARCHAR
will do the job. Otherwise, you might use NCHAR and NVARCHAR to specify Unicode
on particular columns.

Concatenation

Concatenation means joining strings together. This is the simplest string operation and
the only one which can be done without a function.
The concatenation operator is usually | |. Microsoft SQL Server uses + instead. For

example:
SELECT
id,
givenname||' '||familyname AS fullname
-- givenname+' '+familyname AS fullname -- MSSOL

FROM customers;

135

CHAPTER4 WORKING WITH CALCULATED DATA

That will give you something like

Id fullname
42 May Knott
459 Rick Shaw
597 lke Andy
186 Pat Downe
352 Basil Isk
576 Pearl Divers
~ 303 rows ~

Note that MySQL in traditional mode doesn’t support the concatenation operator in
any form. In ANSI mode, it supports the standard | | operator.

Many DBMSs also support a non-standard function concat(string,string,...).
For example:

-- Not SOLite
SELECT
id,
concat(givenname,' ',familyname) AS fullname
FROM customers;

This is not supported in SQLite. However, it is supported in MySQL, so that's how
you concatenate strings in traditional mode.

For most DBMSs, there is a subtle but important difference between the concat()
function and the concatenation operator. With the concatenation operator, if there is a
NULL in the mix, the result will (naturally) also be NULL. However, the concat () function
will automatically coalesce a NULL result to an empty string (' '). This may or may not be
convenient, as sometimes the NULL is something you should know about.

Oracle, however, takes a different approach. They regard a NULL string as the same as
an empty string ' ', so concatenating a NULL either way is the same as concatenating an
empty string. On one hand, this is convenient if you don’t want to have to coalesce; on
the other hand, there are times when you need NULL to be NULL, so this can be awkward.

136

CHAPTER 4 WORKING WITH CALCULATED DATA

String Functions

Other operations with strings require functions. Here are some examples.

For the following examples, we’ve included SELECT * for context—except that in
Oracle you need to write SELECT table.* if you're mixing it with other data, so
we’ve done that with all of the examples which include Oracle.

The length of a string is the number of characters in the string. To find the length,
you can use

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle
SELECT customers.*, length(familyname) AS len
FROM customers;

-- MSSOL
SELECT *, len(familyname) AS len FROM customers;

To find where part of a string is, you can use the following:

-- MySQL/MariaDB, SQLite, Oracle: INSTR('values',value)
SELECT books.*, instr(title,' ') AS space FROM books;

-- PostgreSQL: POSITION(value IN 'values')
SELECT *, position(' ' in title) AS space FROM books;

-- MSSQL: CHARINDEX(value, 'values')
SELECT *, charindex(' ',title) AS space FROM books;

You can use replace to replace substrings in a string:

-- replace(original,search,replace)
SELECT books.*, replace(title,' ',"'-") AS hyphens
FROM books;

To change between upper and lower case, there is

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle, MSSOL
SELECT
books.*,

upper(title) AS upper,

137

CHAPTER4 WORKING WITH CALCULATED DATA

lower(title) AS lower
FROM books;

-- PostgreSQL, Oracle
SELECT books.*, initcap(title) AS lower FROM books;

To remove extra spaces at the beginning or the end of a string, you can use trim() to
remove from both ends, or 1trim() or rtrim() to remove from the beginning or end of
the string:

WITH vars AS (
SELECT ' abcdefghijklmnop " AS string
-- FROM dual -- Oracle

)

SELECT
string,
ltrim(string) AS ltrim,
rtrim(string) AS rtrim,
trim(string) AS trim AS trim,
ltrim(rtrim(string)) AS same

FROM vars;

All modern DBMSs support trim(), but MSSQL didn't until version 2017.
PostgreSQL also calls it btrim(). You may not notice when the spaces on the right are
trimmed.

You can get substring with substring() or substr(), depending on your DBMS:

WITH vars AS (
SELECT "abcdefghijklmnop' AS string
FROM dual -- Oracle

)

SELECT

-- PostgreSQOL, MariaDB/MySQL, Oracle, SQLite
substr(string,3,5) AS substr,

-- PostgreSOL, MariaDB/MySQL, MSSQL, SQLite
substring('abcdefghijklmnop',3,5) AS substring

FROM vars;

138

CHAPTER 4 WORKING WITH CALCULATED DATA

Some DBMSs include specialized functions to get the first or last part of a string. In
some cases, you can use a negative start to get the last part of a string:

WITH vars AS (
SELECT 'abcdefghijklmnop' AS string

FROM dual -- Oracle
)
SELECT
-- Left
-- PostgreSQOL, MariaDB/MySQL, MSSOQL:
left('abcdefghijklmnop',4) AS lstring
-- All DBMSs including SQLITE and Oracle:
-- substr(string,1,n) AS lstring,
-- Right
-- PostgreSQL, MariaDB/MySQL, MSSOL:
right("abcdefghijklmnop',4) AS rstring
-- MariaDB/MySQL, Oracle, SQLite
-- substr('abcdefghijklmnop',-4) AS rstring
FROM vars;

Just note that if you spend a lot of time extracting substrings from your data, it’s
possible that you're trying to store too much in a single value.

On the other hand, you can often use substrings to reformat raw data into something
more friendly.

Date Operations

From an SQL point of view, dates are problematic. That's because, despite their
overwhelming presence in daily life, measuring dates is a mess.

One problem is that we measure dates using a number of incompatible cycles all
at the same time: the day, week, month, and year. To make things worse, we all live in
different time zones, so we can’t even agree on what time it is.

Most DBMSs have a number of related data types to manage dates, specifically the
date which is for dates with times and datetime which includes the time. Generally, you
can expect variations on these types, as well as the ability to include time zones.

139

CHAPTER4 WORKING WITH CALCULATED DATA

The exception is SQLite, which expects you to use numbers or strings and run the
values through a few functions to do the date arithmetic.
There are a number of things you would expect to do with dates and times:

1.

2.
3.

Enter and store a date/time
Get the current date/time
Group and sort by date/time
Extract parts of the date/time

Add to a date/time

Calculate the difference between two dates/times

Format a date/time

SQLite has a completely different approach to working with dates. That's partly

because it doesn’t actually support dates. As a result, SQLite will be missing from
much of the following discussion. The Appendix has some information on handling
dates in SQLite.

Entering and Storing a Date/Time

Since most DBMSs have their own way of storing a date/time, the actual details of date

storage are not important. What is important is that you can enter the data.

In a table, a date or datetime column is usually defined as follows:

140

DBMS Date Date with time
PostgreSQL DATE TIMESTAMP
MariaDB/MySQL DATE DATETIME
MSSQL DATE DATETIME2
Oracle DATE DATETIME
SQLite TEXT TEXT

CHAPTER 4 WORKING WITH CALCULATED DATA

The normal way to enter a date or datetime literal is to use one of the following:
¢ date: '2013-02-15'
« datetime: '2013-02-15 09:20:00'

You can also omit the seconds or include decimal parts of a second.

The format is a variation of the ISO8601 format. In pure ISO8601 format, the time
would be written after a T instead of a space.

Note that with Oracle, datetime literals generally use a different format. To use the
preceding formats, prefix the literal with date or datetime, respectively:

e« date:date '2013-02-15'
¢ datetime: datetime '2013-02-15 09:20:00'

In PostgreSQL, MSSQL, and MySQL/MariaDB, you can often enter another
readable date format such as '15 Feb 2013'. However, you should never use the format
'2/3/2013" which has different meanings internationally.

In practical terms, just stick to the standard format:

SELECT *
FROM customers
WHERE dob<'1980-01-01"; -- Oracle dob<date '1980-01-01"';

which gives you older customers:

id givenname familyname - dob

459 Rick Shaw s 1945-07-03
352 Basil Isk . 1960-01-13
92 Nan Keen Jes 1943-05-18
267 Boris Todeath . 1969-10-06
91 June North . 1967-03-22
543 Nat Ering . 1946-04-30
~ 133 rows ~

Note that in simple expressions like dob<'1980-01-01", SQL doesn’t get confused
about whether the expression is a date or a string: the context makes it clear.

141

CHAPTER4 WORKING WITH CALCULATED DATA

Getting the Current Date/Time
One thing you will want to do is compare a date/time to now. In most DBMSs, you can use

SELECT

current_timestamp AS now,

current_date AS today -- Not MSSQL
-- FROM dual -- Oracles

.
]

Note

e MSSQL also has getdate() as a synonym for current
timestamp. Despite the name, it gives not just the date.

e MariaDB/MySQL also has now() as a synonym for current
timestamp.

e Oracle also has systemtimestamp and systemdate for date/
time on the database server rather than on the client.

As noted earlier, MSSQL doesn't have a version of current_date. In any case, you
may have an existing datetime which you want to simplify to a date. The simplest way is
to cast the datetime:

-- Not Oracle
SELECT
current_timestamp AS now,
cast(current timestamp as date) AS today
-- FROM dual -- Oracle
>
This won't quite work with Oracle; it will let you do the cast all right, but it doesn’t
change anything. Instead, you should use the trunc() function:

-- Oracle
SELECT
current_timestamp AS now,

142

CHAPTER 4 WORKING WITH CALCULATED DATA

trunc(current timestamp) AS today
FROM dual -- Oracle

b

This will still have a time component, but it’s set to 00: 00.

Grouping and Sorting by Date/Time
You can sort by date/time as with any other data type. The result will be in historical order:

SELECT *
FROM sales
ORDER BY ordered;

Of course, you can also use DESC.

You can also group by date, but you probably wouldn’t want to group by datetime,
unless you have a huge number of transactions per second. For a datetime, you might use
a Common Table Expression to cast it to a date and then group the results. For example:

WITH cte AS (

SELECT
cast(ordered as date) AS ordered, total -- Not Oracle
-- trunc(ordered) AS ordered, total -- Oracle
FROM sales
)
SELECT ordered, sum(total)
FROM cte

GROUP BY ordered
ORDER BY ordered;

This gives you the following summary:

ordered sum

2022-05-04 43.00

2022-05-05 150.50
2022-05-06 110.50
2022-05-07 142.00

143

CHAPTER 4 WORKING WITH CALCULATED DATA

ordered sum

2022-05-08 214.50
2022-05-09 16.50

~ 389 rows ~

Remember, in Oracle you need to use the trunc() function.

Extracting Parts of a Date/Time

Technically, a datetime represents a point in time. Practically, we tend to think in terms
of components such as days and years. The situation is complicated by the fact that (a)
the components are not in step with each other and (b) some of them vary in size.

Date Extracting in PostgreSQL, MariaDB/MySQL, and Oracle

The standard method of extracting part of a date is to use the extract() function. This
function takes the form

extract(part from datetime)
You can see the extract () function in action:

WITH chelyabinsk AS (

SELECT
timestamp '2013-02-15 09:20:00" AS datetime
FROM dual
)
SELECT
datetime,

EXTRACT(year FROM datetime) AS year,
EXTRACT(month FROM datetime) AS month,
EXTRACT(day FROM datetime) AS day,
-- not Oracle or MariaDB/MySQL:

EXTRACT (dow FROM datetime) AS weekday,
EXTRACT (hour FROM datetime) AS hour,

144

CHAPTER 4 WORKING WITH CALCULATED DATA

EXTRACT (minute FROM datetime) AS minute,
EXTRACT(second FROM datetime) AS second
FROM chelyabinsk;

You get the following components:

datetime year month day weekday hour minute second

2013-02-1509:20:00 2013 2 15 5 9 20 0

Note that Oracle and MariaDB/MySQL don’t have a direct way of extracting the day
of the week, which can be a problem if, say, you want to use it for grouping. However, as
you will see later, you can use a formatting function to get the day of the week, as well as
the preceding values.

PostgreSQL also includes a function called date_part('part’,datetime) asan

alternative to the preceding function.

Date Extracting in Microsoft SQL

Microsoft SQL has two main functions to extract part of a date:

o datepart(part,datetime) extracts the part of a date/time as

a number.

o datename(part,datetime) extracts the part of a date/time as a
string. For most parts, such as the year, it’s simply a string version of
the datepart number. However, for the weekday and the month, it’s
actually the human-friendly name.

You can see these two functions in action:

WITH chelyabinsk AS (
SELECT cast('2013-02-15 09:20" as datetime) AS datetime

)

SELECT
datepart(year, datetime) AS year, -- aka year()
datename(year, datetime) AS yearstring,
datepart(month, datetime) AS month, -- aka month()

datename(month, datetime) AS monthname,
datepart(day, datetime) AS day, -

aka day()
145

CHAPTER4 WORKING WITH CALCULATED DATA

datepart(weekday, datetime) AS weekday, -- Sunday=1
datename(weekday, datetime) AS weekdayname,
datepart(hour, datetime) AS hour,

datepart(minute, datetime) AS minute,
datepart(second, datetime) AS second

FROM chelyabinsk;

Note

e datename(date,year) just gives a string version of 2013.

e There are three short functions—day(), month(), and year()—
which are synonyms of datepart().

Formatting a Date

As with numbers, formatting a date generates a string.

For both PostgreSQL and Oracle, you can use the to_char function. Here are two

useful formats:

146

PostgreSOL
WITH vars AS (SELECT timestamp '1969-07-20 20:17:40"' AS moonshot)
SELECT
moonshot,
to_char(moonshot, 'FMDay, DDth FMMonth YYYY') AS fulldate,
to_char(moonshot, 'Dy DD Mon YYYY') AS shortdate
FROM vars;

Oracle
WITH vars AS (
SELECT timestamp '1969-07-20 20:17:40"' AS moonshot FROM dual
)
SELECT
moonshot,
to_char(moonshot, 'FMDay, ddth Month YYYY') AS fulldate,
to_char(moonshot, 'Dy DD Mon YYYY') AS shortdate
FROM vars;

CHAPTER 4 WORKING WITH CALCULATED DATA

You'll get something like this:
moonshot full short
1969-07-20 20:17:40 Sunday, 20th July 1969 Sun 20 Jul 1969

You'll notice that there is a slight difference in the format codes between PostgreSQL
and Oracle.
For MariaDB/MySQL, there is the date_format() function:

WITH vars AS (SELECT timestamp '1969-07-20 20:17:40"' AS moonshot)
SELECT
moonshot,
date _format(moonshot, '%W, %D %M %Y') AS fulldate,
date_format(moonshot, '%a %d %b %Y') AS shortdate
FROM vars;

For Microsoft SQL, the format () function can also be used for dates:

WITH vars AS (SELECT cast('1969-07-20 20:17:40"' AS datetime) AS moonshot)
SELECT

format(moonshot, 'dddd, d MMMM yyy') AS fulldate,

format(moonshot, 'ddd d MMM yyy') AS shortdate
FROM vars;

SQLite has very limited formatting functionality, and you certainly can’t get month
or weekday names without some additional trickery. It’s usually better to leave the date
alone and let the host application do what is needed.

You can learn more about the format codes at

» PostgreSQL: www.postgresql.org/docs/current/functions-
formatting.html#FUNCTIONS-FORMATTING-DATETIME-TABLE

e Oracle: https://docs.oracle.com/en/database/oracle/oracle-
database/21/sqlrf/Format-Models.html

» MariaDB: https://mariadb.com/kb/en/date_format/

« MySQL: https://dev.mysql.com/doc/refman/8.0/en/date-and-
time-functions.html

147

CHAPTER4 WORKING WITH CALCULATED DATA

« Microsoft SQL: https://learn.microsoft.com/en-us/dotnet/
standard/base-types/custom-date-and-time-format-strings

Date Arithmetic

Generally, the two things you want to do with dates are
« Modify a date by adding or subtracting an interval
« Find the difference between two dates

To modify a date, you can add or subtract an interval. Some DBMSs define a type of
data called interval for the purpose. For example, to add four months to now, you can use

-- PostgreSQL
SELECT
date '2015-10-31' + interval '4 months' AS afterthen,
current_timestamp + interval '4 months' AS afternow,
current_timestamp + interval '4' month -- also OK H

-- Oracle
SELECT
add months('31 Oct 2015',4) AS afterthen,
current_timestamp + interval '4' month AS afternow,
add_months(current timestamp,4) -- also OK
FROM dual;

-- MariaDB/MySOL
SELECT
date add('2015-10-31',interval 4 month) AS afterthen,
date add(current timestamp,interval 4 month)
AS afternow,
current_timestamp + interval '4' month -- also OK
b

This gives you something like this:

afterthen Afternow

2016-02-29 00:00:00 2023-10-01 16:01:13.691447+11

148

CHAPTER 4 WORKING WITH CALCULATED DATA

You'll notice that PostgreSQL and Oracle use the addition operator, while MariaDB/
MySQL uses a special function. Oracle also has a special function to add months.
For Microsoft SQL, you use dateadd, specifying the units and number of units:

-- MSSOL
SELECT
dateadd(month,4, '2015-10-31") AS afterthen,
dateadd(month,4,current timestamp) AS afternow
>
SQLite uses the strftime() function to convert from a string, together with
modifiers to adjust the date:

-~ SQLite
SELECT
strftime('%Y-%m-%d','2015-10-31",'+4 month")
AS afterthen,
strftime('%Y-%m-%d"', "now’,'+4 month') AS afternow

>
The other thing you’'ll want to do is calculate the difference between two dates. Here

again, every DBMS does it differently. For example, to find the age of your customers,
you can use

-- PostgreSOL
SELECT
dob,
age(dob) AS interval,
date part('year',age(dob)) AS years,
extract(year from age(dob)) AS samething
FROM customers;

-- MariaDB/MySOL
SELECT
dob,
timestampdiff(year,dob,current timestamp) AS age
FROM customers;

149

CHAPTER4 WORKING WITH CALCULATED DATA

-- MSSQL, but not quite!
SELECT
dob,
datediff(year,dob,current timestamp) AS age
FROM customers;

-- Oracle
SELECT
dob,
trunc(months_between(current timestamp,dob)/12)
AS age
FROM customers;
-~ SQLite
SELECT
dob,
cast(
strftime('%Y.%m%d", "now')
- strftime('%Y.%m%d"', dob)
as int) AS age
FROM customers;

For PostgreSQL, you'll get the following results. The other DBMSs won't have the
age column:

dob interval Years samething
[NULL] [NULL] 0 0
1945-07-03 77 years 10 mons 29 days 17 77
1998-08-09 24 years 9 mons 23 days 24 24
1990-04-12 33 years 1 mon 19 days 33 33
1960-01-13 63 years 4 mons 19 days 63 63

[NULL] [NULL] 0 0

~ 303 rows ~

150

CHAPTER 4 WORKING WITH CALCULATED DATA

Of the preceding calculations, MSSQL has a simple function which is foo simple. All
it does is calculate the difference between the years, which is way out if the date of birth
is at the end of the year but the asking date is at the beginning of the year. To get a more
correct result takes a lot more work.

The CASE Expression

There are times when a simple expression won't do, and you need SQL to make some
choices. The CASE ... END expression can be used to choose from alternative values.
For example, you can create categories from other values:

SELECT
id,title,
CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive'
-- ELSE NULL
END AS price
FROM books;

You get a simple price listing:

id Title price
2094 The Manuscript Found in expensive
Saragossa
336 The Story of My Life reasonable
1868 The Tenant of Wildfell Hall [NULL]
375 Dead Souls reasonable
1180 Fables cheap
990 The History of Pendennis: cheap
His Fortun ...
~ 1200 rows ~

151

CHAPTER4 WORKING WITH CALCULATED DATA

Note that if all conditions fail, then the result will be NULL, which is commented out
earlier. If you want an alternative to NULL, use the ELSE expression:

SELECT
id,title,
CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive'
ELSE "'
END AS price
FROM books;

Also, note that the CASE expression is short-circuited: once it finds a match, it stops
evaluating.

Various Uses of CASE

There is a simplified variation of CASE for when you are testing a simple discrete value.
For example:

SELECT
c.id,
givenname||"' '||familyname AS name,
-- givenname+' '+familyname AS name, -- MSSOL
CASE status
WHEN 1 THEN 'Gold'
WHEN 2 THEN 'Silver'
WHEN 3 THEN 'Bronze'
CASE AS status
FROM customers AS ¢ LEFT JOIN VIP ON c.id=vip.id;
-- Oracle:
-- FROM customers c LEFT JOIN VIP ON c.id=vip.id;

152

CHAPTER 4 WORKING WITH CALCULATED DATA

This gives you

id Name status
69 Rudi Mentary [NULL]
182 June Hills Bronze
43 Annie Day [NULL]
263 Mark Time Bronze
266 Vic Tory Silver
68 Phyllis Stein [NULL]
442 Herb Garden Gold
33 Eileen Dover [NULL]
~ 303 rows ~

This form isn’t much shorter, but it makes the intention clear.
You can also use the IN expression:

SELECT
id, givenname, familyname,
CASE
WHEN state IN('QLD','NSW','VIC','TAS"') THEN 'East’
WHEN state IN ('NT','SA') THEN 'Central’
ELSE 'Elsewhere'
END AS region
FROM customerdetails;

which gives you

id Givenname familyname region
137 Albert Ross East
359 Gail Warning Central
40 Cliff Face East
151 Rick 0'Shea East

153

CHAPTER 4 WORKING WITH CALCULATED DATA

id Givenname familyname region

96 Rob Blind Elsewhere
465 Mary Christmas Elsewhere
~ 303 rows ~

Coalesce Is like a Special Case of CASE

There's some similarity between using coalesce() and CASE. You can think of CASE as an
alternative to coalesce:

SELECT

id, givenname, familyname,

coalesce(phone,'-") AS coalesced,

CASE

WHEN phone IS NOT NULL THEN phone
ELSE '-'

END AS

cased

FROM customers;

The two expressions will give the same results:

id givenname familyname coalesced cased

42 May Knott 0255509371 0255509371
459 Rick Shaw 0370101040 0370101040
597 lke Andy - -

186 Pat Downe 0870105900 0870105900
352 Basil Isk 0255502503 0255502503
576 Pearl Divers 0370107821 0370107821
~ 303 rows ~

154

CHAPTER 4 WORKING WITH CALCULATED DATA

It’s not necessarily a convenient alternative, of course, but it helps to appreciate the
overlapping use of the two. It's particularly useful with Oracle, where you can happily
concatenate a NULL without ending up with a NULL, so it’s hard to coalesce otherwise.

Nested CASE Expression

CASE can also be nested with additional CASEs. This is useful when there are possibilities
within possibilities.

For example, the sales table has the date and time when the order was placed and
the date when (or if) the order was shipped.

We can use CASE to generate a status for these dates. For example, using the shipped
date and ordered date, you can set up the following criteria:

« Shipped: Compare shipped to ordered
e l4days= Shipped Late
« Else Shipped
o Not Shipped: Compare Today to ordered
« < 7days= Current
e < l4days= Due
« ElseOverdue

Before we get going, however, note that some sales have no ordered value:
SELECT * FROM sales;

That might be, for example, if the customer never checked out the order. We
probably should get rid of them, but, for now, we'll just filter them out:

SELECT * FROM sales WHERE ordered IS NOT NULL;

The first thing you'll have to do is to calculate the difference between dates. This
varies between DBMSs:

-- PostgreSQL, MariaDB / MySQL, Oracle
SELECT
id, customerid, total,
cast(ordered as date) AS ordered, shipped,

155

CHAPTER4 WORKING WITH CALCULATED DATA

current date - cast(ordered as date) AS ordered age,
shipped - cast(ordered as date) AS shipped age

FROM sales

WHERE ordered IS NOT NULL;

-~ MSSOL
SELECT

id, customerid, total,

cast(ordered as date) AS ordered, shipped,
datediff(day,ordered,current timestamp) AS ordered age,

datediff(day,ordered,shipped) AS shipped age

FROM sales

WHERE ordered IS NOT NULL;

-- SQLite
SELECT

*
’

julianday('now")-julianday(ordered) AS ordered age,
julianday(shipped)-julianday(ordered) AS shipped age

FROM sales

WHERE ordered IS NOT NULL;

You'll get the following:
id customerid total ordered shipped ordered_age shipped_age
39 28 28.00 2022-05-15 2022-05-23 382 8
40 27 3400 2022-05-16 2022-05-24 381 8
42 1 58.50 2022-05-16 2022-05-22 381 6
43 26 50.00 2022-05-16 [NULL] 381 [NULL]
45 26 17.50 2022-05-16 2022-05-28 381 12
668 105 15.00 2022-07-27 [NULL] 309 [NULL]
~ 5295 rows ~

156

CHAPTER 4 WORKING WITH CALCULATED DATA

Note that with SQLite, the simplest way to get an age is to convert dates to a Julian
date, which is the number of days since Noon, 24 November 4714 BC. Long story.

You know by now that you can’t use the calculated values in other parts of the
SELECT clause, so that's awkward if you need them. You can, however, do the query in
two steps.

If you put the preceding query in a Common Table Expression, you can then use the
results in the main query.

First, you need to distinguish between those which have been shipped and those
which haven't:

WITH salesdata AS (
-- one of the above queries WITHOUT the semicolon

)

SELECT
salesdata.*,
CASE

WHEN shipped IS NOT NULL THEN
-- One of two statuses
ELSE
-- One of three statuses
END AS status
FROM salesdata;

The statuses in each case are additional CASE expressions:

WITH salesdata AS (
-- one of the above queries WITHOUT the semicolon

)
SELECT
salesdata.*,
CASE
WHEN shipped IS NOT NULL THEN
CASE

WHEN shipped age>14 THEN 'Shipped Late'
ELSE 'Shipped'
END
ELSE

157

CHAPTER4 WORKING WITH CALCULATED DATA

CASE
WHEN ordered age<7 THEN 'Current'
WHEN ordered age<14 THEN ‘Due’
ELSE 'Overdue'
END
END AS status
FROM salesdata;

This will give you something like
id cid total ordered shipped ordered_age shipped_age status
39 28 28.00 2022-05-15 2022-05-23 382 8 Shipped
40 27 34.00 2022-05-16 2022-05-24 381 8 Shipped
42 1 58.50 2022-05-16 2022-05-22 381 6 Shipped
43 26 50.00 2022-05-16 [NULL] 381 [NULL] Overdue
45 26 17.50 2022-05-16 2022-05-28 381 12 Shipped
668 105 15.00 2022-07-27 [NULL] 309 [NULL] Overdue
~ 5295 rows ~
Summary

Data in an SQL table should be stored in its purest, simplest form. However, this data can
be recalculated to increase its usefulness.

Calculations can take a number of forms:
« Based on single columns
« Based on multiple columns
 Hard-coded literal values
« Results of a subquery
e Calculated from a function

Calculations can also be used in the WHERE and ORDER BY clause.

158

CHAPTER 4 WORKING WITH CALCULATED DATA

Aliases

All calculated values should be renamed with an alias. The word AS is optional, but is
recommended to reduce confusion.
You can also alias noncalculated columns if the new name makes more sense.
Aliases are given in the SELECT clause, which is evaluated last before ORDER BY. For

most DBMSs, this means that you can’t use the alias in any other clause but the
ORDER BY.

NULLs

A table may, of course, include NULLs in various places. As a rule, a NULL will wipe out any
calculation, leaving NULL in its wake.

You can bypass NULLs with the coalesce() function which replaces NULL with an
alternative value. You might also use a CASE ... END expression.

Casting Types

SQL works with three main data types:
e Numbers
e Dates and times
¢ Strings

You may need to change the data type. This is done with the cast() function.
When you cast within a major type, the effect is to change the precision or size of

the type.

When you cast between major types, it is usually for compatibility. While casting to
a string is usually possible and often automatic, casting from a string may not always
succeed. Different DBMSs have different reactions to an unsuccessful cast.

Calculating with Numbers

You can perform basic arithmetic on all number types. Different DBMSs have various
attitudes to working with integers.

159

CHAPTER4 WORKING WITH CALCULATED DATA

SQL will include various functions to work with numbers, including
« Mathematical functions
« Approximation functions

There are also formatting functions which generate a formatted result as a string.

Calculating with Strings

Strings may be stored in various ways. Typically, a string uses ASCII or Unicode. String
operations may or may not be case sensitive, depending on the collation of the database.
The basic simple operation with strings is concatenation. There is usually a simple
operator to do this.
Other string operations involve string functions.

Calculating with Dates

Note that SQLite doesn’t have a date data type. It does include some functions to convert
strings or numbers to dates.
With dates, the following operations are common:

« Entering and storing a date and time
« Getting the current date and time

« Extracting part of the date or time

« Formaftting a date

« Some simple arithmetic, such as the difference between dates and
times, and modifying a date and time

The CASE Expression

The CASE expression allows you to choose from a number of alternative values. The case
expression can be used to simplify values, as well as to group them.
There is a simple form of the CASE expression which can be used for discrete values.
CASE expressions can also be nested for more complex expressions.

160

CHAPTER 4 WORKING WITH CALCULATED DATA

Coming Up

Now that we've worked with table data, we can now start looking at analyzing it.

The next chapter will look at summarizing data with aggregate functions and
grouping. We'll cover how data is aggregated in SQL, the basic aggregate functions, and
summarizing into one or more groups.

We'll also look at combining aggregates at various levels, as well as some basic

statistics on numerical data.

161

CHAPTER 5

Aggregating Data

Databases store data. That's obvious, but the data itself is pretty inert—you save it, you
retrieve it, and you sometimes change it. That's OK for some things, but sometimes you
want the data to work a little harder.

You can put the data to work when you start to summarize it. You can then see
trends, see where it's going, or just get an overview of the data.

Aggregate functions are used to calculate summaries of data. They have three

contexts:
« Summarize the whole table.
e« Summarize in groups, using GROUP BY.

¢ Include summaries row by row. This is done with window functions,
using the OVER clause.

You'll learn about window functions in Chapter 8. In this chapter, we look at how to
calculate summaries, either wholly or in groups, using SQL’s built-in aggregate functions.

The Basic Aggregate Functions

You've no doubt already had some experience with aggregate functions. The aggregate

functions are basically statistical in nature and include
« count

Count the number of values in a column, regardless of what the
actual value is. As a special case, count (*) counts the number of
rows in a table.

e sumand avg

163
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_5

CHAPTER5 AGGREGATING DATA

Add or average the values in a column. Of course, you can only do
this if the column is numeric.

« max andmin

Find the maximum or minimum value in a column. In case the
interpretation is unclear, they find the first and last values you'd
get if you used ORDER BY, except, of course, for the NULLS, which
are always ignored.

« stddev, stddev_samp, stddev_pop (PostgreSQL, MySQL/MariaDB,
Oracle) or stdev, stdevp (MSSQL)

Find the standard deviation of the column values. This is either
the population or sample standard deviation. Again, this only
works with numeric columns.

The actual name (and spelling) tends to vary slightly between
DBMS. PostgreSQL treats stddev as a synonym for stddev_samp.
MySQL/MariaDB treats it as a synonym for stddev_pop. Oracle
treats it as a variation of stddev_samp.

There are various other aggregate functions, depending on the DBMS, but the
preceding ones are fairly typical.
For example:

-- Book Data
SELECT
-- Count Rows:
count(*) AS nbooks,
-- Count Values in a column:
count(price) AS prices,
-- Cheapest & Most Expensive
min(price) AS cheapest, max(price) AS priciest
FROM books;

164

CHAPTER5 AGGREGATING DATA

You get results like these:
nbooks prices cheapest priciest
1201 1096 10 20

Or for numerical statistics:

-- Customer Data
SELECT
-- Count Rows:
count(*) AS ncustomers,
-- Count Values in a column:
count(phone) AS phones,
-- Height Statistics
stddev_samp(height) AS sd -- MSSQL: stdev(height)
FROM customers;

You get results like these:
ncustomers phones sd
303 286 6.992

All of these functions are applicable to numbers, but only the following may be used
for other data, such as strings and dates:

« count
¢ maxandmin

For example:

SELECT
-- Count Values in a column:
count(dob) AS dobs,
-- Earliest & Latest
min(dob) AS earliest, max(dob) AS latest
FROM customers;

165

CHAPTER5 AGGREGATING DATA

gives you

Dobs earliest latest

239 1943-05-18 2003-01-27

We’ve been a little bit relaxed in the preceding descriptions. In particular

NULL

A table may be a virtual table, such as a view, a join, or a common
table expression.

Any table with a WHERE clause will be filtered before the aggregates are
applied.

By value, we definitely don’t include NULL. That's particularly
apparent when you find that count() ignores NULLs and that avg() is
divided by the non-NULL values.

These functions apply to either the whole table or groups of rows.

Aggregate functions do not include NULLs. The only time this is not obvious is when

using the sum function. However, it is significant to note that

count(column) will only count the non-NULL values in the column, so
you may get fewer than the total number of rows.

avg(column) will also ignore the NULL values, so the average is
divided only by the number of values, not necessarily the number
of rows.

To put it another way, there is a world of difference between NULL on one hand and 0

or '" on the other.

We’ll take advantage of this fact when we look at aggregate filters later.

Understanding Aggregates

Using aggregates sometimes runs into a few problems and seems to have a few quirky

rules. It all makes more sense if you understand how aggregates really work.

166

CHAPTER5 AGGREGATING DATA

When you aggregate data, the original data is effectively transformed into a new
virtual table, with summaries for one or more groups.
For example, the query

SELECT
count(*) AS rows,
count(phone) AS phones
FROM customers;

can be regarded as

SELECT
count(*) AS rows,
count(phone) AS phones
FROM customers
GROUP BY () -- PostgreSQL, MSSQL, Oracle only

2

Note that the clause GROUP BY () doesn’t work for all DBMSs, such as MariaDB/
MySQL or SQLite. That doesn’t matter, since the grouping is happening anyway.

The thing is, with or without the GROUP BY () clause, SQL will generate the virtual
summary table as soon as it finds an aggregate function in the query.

In the preceding example, the data is summarized into a single virtual summary
table of one row. In turn, this virtual table has grand totals for every column as in
Figure 5-1.

GrROWP BY) —[[[[[[T T 1]

Figure 5-1. Picturing GROUP BY ()

167

CHAPTER5 AGGREGATING DATA

This is why you can’t include individual row data with an aggregate query. For
example, this won't work:

SELECT
id, -- oops
count(*) AS rows,
count(phone) AS phones

FROM customers;

You'll get an error message basically telling you that you can’t use the id in
the query.

Note that in MariaDB/MySQL in traditional mode, you can indeed run this statement
successfully. However, the DBMS will pick the first id it can find, and that really
has no meaningful value. It’s mainly useful if you can be sure that all of the
non-aggregate values are the same.

When you include a more meaningful GROUP BY clause, the result is similar,
except that

« There is now one summary row for each group.
e There is also an additional column for each grouping column.

It looks something like Figure 5-2.

arpe [— GROUP BY something ==[e«

apple Banana

apple cherry

vanana

banana

banana

cherry

cherry

Figure 5-2. GROUP BY Something

168

CHAPTER 5 AGGREGATING DATA
For example:
SELECT
town, state, -- grouping columns
count(phone) AS phones, -- summaries for each group:
min(dob) AS oldest
FROM customerdetails
GROUP BY town, state;
You'll get something like this:
town State phones oldest
[NULL] [NULL] 24 1946-04-30
The Gap QLD 5 1998-04-22
Lilydale TAS 3 1945-08-31
Guildford WA 3 1985-10-06
Kingston ViC 2 1947-09-29
Reedy Creek NSW 6 1960-12-30
~ 92 rows ~

(You may get a group of NULLs either at the beginning or the end, because we haven't
filtered out the NULL addresses.)

In the overall scheme of things, the (virtual) GROUP BY clause appears after the FROM
and possibly WHERE clauses and is evaluated at that point:

SELECT ...
FROM ...
WHERE ...
GROUP BY ...
-- SELECT
ORDER BY ...

As usual, SELECT is evaluated last before ORDER BY, even though it is written first, as
in Figure 5-3.

169

CHAPTER5 AGGREGATING DATA

Written Processed
SELECT FROM
FROM WHERE
WHERE GROUP BY
GROUP BY HAVING
HAVING SELECT
ORDER BY ORDER BY

Figure 5-3. Clause Order

SQL neither knows nor cares about the actual meaning of the data, so there are no
checks over whether you should apply these aggregate functions to particular columns.

Aggregating Some of the Values

In some cases, you may wish to aggregate only some of the values in a column. Here,
we'll look at aggregating distinct values and then at filtering which values to aggregate.

Distinct Values

Most aggregate functions can be applied to distinct values, but it is probably statistically
invalid. However, it can be meaningful if you count distinct values, such as in the
following example:

SELECT
count(state) AS addresses,
count (DISTINCT state) AS states
FROM customerdetails;

This will count how many distinct states are in the customer details. That's not to say
that you can’t count the state column anyway, as it indicates the number of rows which
have any address information at all:

Addresses states

278 8

170

CHAPTER5 AGGREGATING DATA

Be careful, though. It’s possible that the column doesn’t give the whole picture. For
example, if you try

SELECT count(DISTINCT town) FROM customerdetails;

you'd get a result, but it might be open to misinterpretation. What you're getting is
distinct fown names, but many of these town names appear in more than one state. You
shouldn't interpret this as meaning distinct fowns.

As for the other aggregate functions, generally, it is meaningless to apply any other
statistical calculation to only one of each sample.

Aggregate Filter

Normally, aggregate functions apply to the whole table or to the whole group. For
example, count (*) will count all the rows in the table or group.

A relatively new feature allows you to apply an aggregate function to some of the
rows. This can be applied multiple times in the query.

For example, the following will count all the customers in the customers table:
SELECT count(*) FROM customers;

Suppose you want to separate the customers into the younger and older customers.
You might instinctively try something like this:

-- Don't bother trying this:
SELECT
count(dob<'1980-01-01") AS older,
count(dob>="1980-01-01") AS younger
FROM customers;

If the preceding query doesn’t produce an error, it is likely to be misinterpreted.
SQL does provide a working way of filtering what you want to filter. You can enter the
following:

-- PostgreSQL:
SELECT
count(*) FILTER (WHERE dob<'1980-01-01') AS older,
count(*) FILTER (WHERE dob>="'1980-01-01") AS younger
FROM customers;

171

CHAPTER5 AGGREGATING DATA

You get something like this:
Older younger
133 106

Unfortunately, this is not well supported (currently, it is only supported in
PostgreSQL). However, the following alternative will do the same:

SELECT
count(CASE WHEN dob<'1980-01-01" THEN 1 END) AS old,
count(CASE WHEN dob>='1980-01-01" THEN 1 END) AS young
FROM customers;

This uses the CASE expression to separate the dob values. They will either be 1 or
NULL, and the count() function counts only the 1s.
You can also use this technique with other aggregate functions. For example:

-- New Standard
SELECT
sum(total),
sum(total) FILTER (WHERE ordered <'...') AS older,
sum(total) FILTER (WHERE ordered>='...') AS newer
FROM sales;

-- Alternative
SELECT
sum(total),
sum(CASE WHEN ordered<'...' THEN total END) AS older,
SELECT
sum(total),
sum(CASE WHEN ordered<'...' THEN total END) AS older,
sum(CASE WHEN ordered>="..."' THEN total END) AS newer
FROM sales;

Here, the value is either total or NULL, and sum() politely ignores the NULLs.

172

CHAPTER 5 AGGREGATING DATA

Sum older newer

342836.22 162045 164873.22

If you're interested in filtering for different categories, however, you might get more
of what you want with grouping.

Grouping by Calculated Values

The preceding technique separates different groups horizontally—that is, each value is
in the same row. You can also separate these derived groups vertically. This is achieved
by using the GROUP BY clause.

You will be familiar with using GROUP BY with simple column values:

SELECT state, count(*)
FROM customerdetails
GROUP BY state;

You can also group by a derived value. For example, you can group your customers
by their month of birth:

-- PostgreSQL, Oracle
SELECT EXTRACT(month FROM dob) as monthnumber,
count(*) AS howmany
FROM customerdetails
GROUP BY EXTRACT(month FROM dob)
ORDER BY monthnumber;

-- MSSQL
SELECT month(dob) AS monthnumber, count(*) AS howmany
FROM customerdetails
GROUP BY month(dob)
ORDER BY monthnumber;

-- MySQL / MariaDB
SELECT month(dob) AS monthnumber, count(*) AS howmany
FROM customerdetails

173

CHAPTER5 AGGREGATING DATA

GROUP BY month(dob)
ORDER BY monthnumber;

-~ SQLite
SELECT strftime('%m',dob) as monthnumber,
count(*) AS howmany
FROM customerdetails
GROUP BY strftime('%m',dob)
ORDER BY monthnumber;

In this example, the month number is called monthnumber, which is also used to sort
the results.

Monthnumber howmany

19
14
17
23
24
15
27
18
18
24
17
12 23
INULL] 64

0O o ~N O O Bs W N

[R —
- D

Note that the calculation appears twice, once in the SELECT clause and once in the
GROUP BY clause. This is because the SELECT is evaluated after GROUP BY, so, alas, its alias
is not yet available to GROUP BY.

This is not a real problem, as the SQL optimizer will happily reuse the calculation, so
it'’s not really doing it twice.

174

CHAPTER 5 AGGREGATING DATA

Unfortunately, the month number isn’t very friendly, so we could use the month name.
However, inconveniently, the month name is in the wrong sort order, so we will need both:

-- Not SQLite

-- PostgreSQL, Oracle
SELECT EXTRACT(month FROM dob) as monthnumber,
to_char(dob, '"Month') AS monthname,
count(*) AS howmany
FROM customerdetails
GROUP BY EXTRACT(month FROM dob), to char(dob, 'Month")
ORDER BY monthnumber;

-~ MSSOL
SELECT month(dob) AS monthnumber,
datename(month,dob) AS monthname, count(*) AS howmany
FROM customerdetails
GROUP BY month(dob), datename(month,dob)
ORDER BY monthnumber;

-- MySQL / MariaDB
SELECT month(dob) AS monthnumber,
monthname(dob) AS monthname, count(*) AS howmany
FROM customerdetails
GROUP BY month(dob), monthname(dob)
ORDER BY monthnumber;

This looks better:

Monthnumber monthname howmany

1 January 19

2 February 14

3 March 17

4 April 23

5 May 24
(continued)

175

CHAPTER5 AGGREGATING DATA

Monthnumber monthname howmany

6 June 15
7 July 27
8 August 18
9 September 18
10 October 24
1 November 17
12 December 23
[NULL] [NULL] 64

Asyou see, you can’t quite do this in SQLite since it doesn’t have a function to get the
month name.

Technically, grouping by both is redundant, since there is only one month name per
month. However, we need both so that we can display one, but order by the other.

Although repeating the calculations is not a problem, it does make the query less readable
and harder to maintain. We can take advantage of using a Common Table Expression:

WITH cte AS (

)
SELECT monthname, count(*)

FROM cte
GROUP BY monthnumber, monthname
ORDER BY monthnumber;

You can use GROUP BY with any calculated field, but note that

« Since simple calculations don’t always result in something worth
grouping, there is a limit on what you can do with them.

« Asnoted before, the calculation needs to be in both the SELECT clause
and the GROUP BY clause, making the process tedious.

The second point earlier can be alleviated with the use of Common Table
Expressions. The first point can be addressed by the use of CASE statements.

176

CHAPTER5 AGGREGATING DATA

Grouping with CASE Statements

The basic GROUP BY presupposes that you already have values which can be grouped.
Sometimes, such values can be derived, such as the month or day name.

More arbitrary groupings can be created using the CASE statement.

For example, suppose we want to count the younger and older customers. We can do
this by using a CASE statement which distinguishes between them:

CASE
WHEN dob<'1980-01-01" THEN 'older’
WHEN dob IS NOT NULL then 'younger'
-- ELSE NULL

END

Remember that some dobs may be NULL, so you need to filter them to get the younger
ones. Remember, too, that the default ELSE is NULL, so we don't need to include it.

To count them, we could include this in the GROUP BY clause as follows:

SELECT count(*)
FROM customers
GROUP BY CASE
WHEN dob<'1980-01-01' THEN 'older'
WHEN dob IS NOT NULL then 'younger'
END;

This gives you something:

Count
64
133
106

but it’s useless without some sort of labels. We can do this by repeating the calculation in
the SELECT clause:

SELECT
CASE
WHEN dob<'1980-01-01" THEN 'older'
177

CHAPTER5 AGGREGATING DATA

WHEN dob IS NOT NULL then 'younger'

END AS agegroup,

count(*)
FROM customers
GROUP BY CASE

WHEN dob<'1980-01-01" THEN 'older’

WHEN dob IS NOT NULL then 'younger'
END;

This now works:

Agegroup count

[NULL] 64
Older 133
Younger 106

but from the point of view of coding, it's worse than the calculated columns in the
previous section, so this would definitely benefit from the use of a Common Table
Expression:

WITH cte AS (

SELECT

*
)

CASE
WHEN dob<'1980-01-01" THEN 'older'
WHEN dob IS NOT NULL then 'younger'
END AS agegroup FROM customers

)
SELECT agegroup,count(*)

FROM cte
GROUP BY agegroup;

This will now give you a more manageable result.

178

CHAPTER5 AGGREGATING DATA

Revisiting the Delivery Status

Remember in a previous chapter we had created a delivery statistics using a nested CASE

statement:

WITH salesdata AS (
-- PostgreSQL, MariaDB / MySQL, Oracle
SELECT
ordered, shipped, total,
current date - cast(ordered as date) AS ordered age,
shipped - cast(ordered as date) AS shipped age
FROM sales
-- MSSOL
SELECT
ordered, shipped, total,
datediff(day,ordered,current timestamp)
AS ordered age,
datediff(day,ordered,shipped) AS shipped age
FROM sales
-~ SQLite
SELECT
ordered, shipped, total,
julianday('now')-julianday(ordered) AS ordered age,
julianday(shipped)-julianday(ordered) AS shipped age
FROM sales

)
SELECT
ordered, shipped, total,
CASE
WHEN shipped IS NOT NULL THEN
CASE

WHEN shipped age>14 THEN 'Shipped Late'
ELSE 'Shipped’
END
ELSE
CASE

179

CHAPTER5 AGGREGATING DATA

WHEN ordered age<7 THEN 'Current'
WHEN ordered age<14 THEN 'Due’
ELSE 'Overdue'
END
END AS status
FROM salesdata;

(Delete the unused SELECT statements, of course.) You get

Ordered shipped total status
2022-05-15 21:12:07.988741 2022-05-23 28 Shipped
2022-05-16 03:03:16.065969 2022-05-24 34 Shipped
2022-05-16 10:09:13.674823 2022-05-22 58.5 Shipped
2022-05-16 15:02:43.285565 [NULL] 50 Overdue
2022-05-16 16:48:14.674202 2022-05-28 17.5 Shipped
[NULL] [NULL] 13 Overdue
~ 5549 rows ~

If you want to summarize this into status groups, you can again put the whole
statement into a CTE and then summarize the CTE. You already have one CTE to
precalculate the age, so we'll need another to hold the preceding results:

WITH
salesdata AS (
-- as above
))
statuses AS (
SELECT
ordered, shipped, total,
CASE
WHEN shipped IS NOT NULL THEN
CASE
WHEN shipped age>14

180

CHAPTER 5 AGGREGATING DATA

THEN 'Shipped Late'
ELSE 'Shipped'
END
ELSE
CASE
WHEN ordered age<7 THEN 'Current'
WHEN ordered age<14 THEN 'Due’
ELSE 'Overdue’
END
END AS status
FROM salesdata
)
SELECT status, count(*) AS number
FROM statuses
GROUP BY status;

This will give you the summarized data:

Status Number
Due 94
Current 78

Shipped 3808
Overdue 1273
Shipped Late 296

The next thing is to get the results in the right order.

Ordering by Arbitrary Strings

Of course, the real problem when it comes to sorting the results is that SQL has limited
imagination and will only sort strings alphabetically. That only works well if the status
values were also in alphabetical order, which they’re not.

There are a few approaches you could take:

¢ You can include a number at the beginning of each string and then
use ORDER BY. That's cheating and won't look right.

181

CHAPTER5 AGGREGATING DATA

« You can have another table with the status values and a position
number and then join this table to the main query. That’s
complicated, but may be useful in some cases.

* You can duplicate the CASE expression with numbers instead of the
strings and ORDER BY that column instead. Unfortunately, there’s no way
o get two columns out of a single CASE expression. That’s really messy.

 You ORDER BY the position of the string in a longer string.

We’ll take the last approach earlier, since it's easy to implement and doesn’t
otherwise affect the results.

Most DBMSs include a function to find a substring in a larger string. It has various
names and forms:

-- Postgresql
POSITION(substring IN string)

-- MariaDB / MySQL & SQLite
INSTR(substring,string)

-- Oracle
INSTR(string,substring)

-- MSSQL
CHARINDEX(substring,string)

In this case, we can find the position of the status string inside a longer string with
the status values in order:

'Shipped,Shipped Late,Current,Due,Overdue’

The commas aren’t necessary, but they make the string more readable. What's more
important is that the status strings are in your preferred order, and the position function
will return a lower value for strings it finds earlier. The rest is up to the ORDER BY clause.

We can order the preceding query using the positioning function like this:

WITH
salesdata AS (
-- as above

)5
statuses AS (

-- as above

182

CHAPTER5 AGGREGATING DATA

)
SELECT status, count(*) AS number

FROM cte
GROUP BY status
-- Postgresql
ORDER BY POSITION(status IN
'Shipped,Shipped Late,Current,Due,Overdue')
-- MariaDB / MySQL & SQLite
ORDER BY INSTR(status,
'Shipped,Shipped Late,Current,Due,Overdue")
-- Oracle
ORDER BY INSTR(status,
'Shipped,Shipped Late,Current,Due,Overdue')
-- MSSQL
ORDER BY CHARINDEX(status,
'Shipped,Shipped Late,Current,Due,Overdue")

You'll now get the results in order:

Status number

Shipped 3808
Shipped Late 296
Current 78
Due 94
Overdue 1273

You can use this technique for any nonalphabetical string order, such as days of the
week or colors in the rainbow.

Group Concatenation

There is an additional function which can be used to aggregate string data. This function
will concatenate strings with an optional delimiter.

183

CHAPTER5 AGGREGATING DATA

This function has a few different names:

DBMS Function

PostgreSQL string agg(column, delimiter)

SQL Server 2017+ string agg(column, delimiter)

SQLite group _concat(column, delimiter)

MySQL and MariaDB group_concat(column /* ORDER BY column */SEPARATOR delimiter)

Oracle listagg(column, delimiter)

For example, you can get a list of all the books for each author this way:

SELECT
a.id, a.givenname, a.familyname,
-- PostgreSQL, MSSQOL
string agg(b.title, '; ') AS works
-- SQLite
-- group concat(b.title, '; ") AS works
-- Oracle
-- listagg(b.title, "; ") AS works
-- MariaDB / MySQL
-- group concat(b.title SEPARATOR '; ') AS works
FROM authors AS a LEFT JOIN books AS b ON a.id=b.authorid
GROUP BY a.id, a.givenname, a.familyname;

You'll get something like this:

id givenname familyname works

146 Washington Irving Rip Van Wink ...; Tales of the ...; The ...

963 Richard Marsh The Beetle ...

390 Jean Racine Andromaque ...; Britannicus ...; Bérénice ...

(continued)

184

CHAPTER5 AGGREGATING DATA

id givenname familyname works

766 Evelyn Everett-Green True to the ...

296 Henri Bergson Matter and M ...; Laughter ...; Time and Fre ...
464 Ambrose Bierce An Occurrenc ...; The Monk and ...; Tales ...

~ 488 rows ~

The works column has all of the book titles concatenated with a ; between them.
Note that the GROUP BY clause uses the author id but includes the redundant author
names to allow them to be selected.

Be careful, though. It’s easy to get carried away with this function, and you'll see that
the list of books can be very long, and the concatenated string can be very, very long.

Summarizing the Summary with Grouping Sets

Classically, using GROUP BY will give you totals for each combination of the groups. For
example:

SELECT state, town, count(*)
FROM customerdetails
GROUP Y state, town;

will give you subtotals for each state/town combination.
Sometimes, you would like to include summaries of these subtotals, such as grand
totals for each state and grand total overall.

Normally, you think of the word total as adding values and subtotal as a total of
a subgroup. This would imply using the sum() function. In this discussion, we’'ll
use the terminology more loosely and use the word for any aggregates, such as
count (). Here, a subtotal would imply counting a subgroup.

In the preceding example, there are four possible totals that you could get:

« The count() of each state/town combination; this is what you
normally get.

185

CHAPTER5 AGGREGATING DATA

« The count() of each state group.

« The count() of each town group. In this example, it’s not so useful,
since some town names are duplicated across states, so you'd be
combining values which shouldn’t be. However, in other examples,
this would be useful.

« The count() of the whole log—the grand total.

Apart from the last one, the others would all be considered subtotals at some level.

When we work with the example shortly, we’ll aggregate by three columns, and
there’ll be eight combinations, so eight totals and subtotals we can calculate.

Modern SQL allows you to generate a result set which is a combination of totals and
subtotals of table data and aggregate data. Depending on the DBMS, this might include a
modification of the GROUP BY clause:

e GROUPING SETS allow you to specify which additional summaries
to include. So, for example, you can decide which of the four
possibilities earlier you want to include.

This is supported by PostgreSQL, Microsoft SQL, and Oracle.

« ROLLUP is a simplified version of GROUPING SETS which produces some of
the possible subtotals, treating the columns as a hierarchy. In the preceding
example, you would get the state/town, state, and grand totals.

This is supported by PostgreSQL, Microsoft SQL, Oracle, and
MariaDB/MySQL.

« CUBE is also a specialized version of GROUPING SETS which produces all of the
possible subtotals. In the preceding example, it’s all four of the possible totals.

Here, we'll have a look at generating such a summary. However, rather than work
with customers’ addresses, we’ll have a look at sales data.

Preparing Data for Summarizing

It’s often the case that your original data isn’t quite ready for summarizing. For example,
the sales table includes the time of each order, but it’s very hard to group that. For our
sample, we'll work on summarizing the following:

« The month of the order

186

CHAPTER5 AGGREGATING DATA

s The customer id
s« The state the customer lives in

Note that all three columns are independent of each other, unlike the state and town
in the original example. That means totaling any combination is meaningful.
To prepare the data, we can use the following query:

SELECT
-- PostgreSQL, Oracle
to_char(s.ordered, 'YYYY-MM') AS ordered,
-- MariaDB / MySOL
-- date format(s.ordered, '%Y-%m') AS ordered,
-- MSSOL
-- format(s.ordered, 'yyyy-MM') AS ordered,
-~ SOLite
-- strftime('%Y-%m',s.ordered) AS ordered,
s.total, c.id, c.state
FROM sales AS s JOIN customerdetails AS c
ON s.customerid=c.id
WHERE s.ordered IS NOT NULL;

You'll see something like this:

ordered total id state
2022-05 28 28 NSW
2022-05 34 27 NSW
2022-05 58.5 1 WA
2022-05 50 26 VIC
2022-05 17.5 26 VIC
2022-07 15 105 VIC
~ 5295 rows ~

No version of SQL has a straightforward way of extracting a year-month combination,
so we use a formatting function. It returns a string, but that’s fine for what we want to do
with it.

187

CHAPTER5 AGGREGATING DATA

When working with this, you could use this in a CTE, but it's not quite convenient, so

we'll save it as a view instead:

DROP VIEW IF EXISTS salesdata; -- Not Oracle
CREATE VIEW salesdata AS
SELECT

-- PostgreSQL, Oracle
to _char(s.ordered,'YYYY-MM') AS ordered,
-- MariaDB / MySQL
-- date_format(s.ordered, '%Y-%m') AS ordered,
-~ MSSOL
-- format(s.ordered, 'yyyy-MM') AS ordered,
-~ SOLite
-- strftime('%Y-%m',s.ordered) AS ordered,
s.total, c.id, c.state
FROM sales AS s JOIN customerdetails AS c
ON s.customerid=c.id
WHERE s.ordered IS NOT NULL;

If you're using Microsoft SQL, remember to surround your CREATE VIEW statement

between a pair of GOs:

-- MSSQL DROP VIEW IF EXISTS salesdata;
GO
CREATE VIEW salesdata AS
SELECT
format(s.ordered, 'yyyy-MM') AS ordered,
s.total, c.id, c.state
FROM sales AS s JOIN customerdetails AS c
ON s.customerid=c.id
WHERE s.ordered IS NOT NULL;
GO

To begin with, we’ll generate the summaries separately and combine them with a
UNION clause.

188

CHAPTER5 AGGREGATING DATA

Combining Summaries with the UNION Clause

Most DBMSs have a simpler way of doing this, but you'll get a feeling for how all of this
works doing it the (not very) long way.

To begin with, you can get summaries by state, customer ids, and dates using the
following query:

-- All Group summaries
SELECT state, id, ordered, count(*) AS nsales, sum(total) AS total
FROM salesdata
GROUP BY state,id,ordered
ORDER BY state,id,ordered;

You'll get summaries for each state/customer id/ordered date combination.

state id ordered nsales total
ACT 85 2022-06 2 117

ACT 85 2022-07 2 104.5
ACT 85 2022-08 5 269.5
ACT 85 2022-09 3 253.5
ACT 85 2022-10 5 476

ACT 85 2022-11 3 179.5
~ 1802 rows ~

The next step is to generate summaries for the state and customer ids:

-- state, ordered summaries
SELECT
state, id, NULL, count(*) AS nsales,
sum(total) AS total
FROM salesdata
GROUP BY state, id
ORDER BY state, id;

-- state summaries

SELECT
189

CHAPTER5 AGGREGATING DATA

state, NULL, NULL, count(*) AS nsales,
sum(total) AS total

FROM salesdata

GROUP BY state

ORDER BY state;

You'll get something like the following:

state id ?column? nsales total
ACT 85 [NULL] 37 2418.5
ACT 112 [NULL] 20 1272.5
ACT 147 [NULL] 32 2202
ACT 355 [NULL] 13 689.5
ACT 489 [NULL] 3 199
NSW 10 [NULL] 48 2931.5
~ 266 rows

and

state ? ? nsales total

ACT [NULL] [NULL] 105 6781.5
NSW [NULL] [NULL] 1668 102010.22
NT [NULL] [NULL] 103 6151

QLD [NULL] [NULL] 869 53331.5
SA [NULL] [NULL] 499 30977.5
TAS [NULL] [NULL] 456 28193
ViC [NULL] [NULL] 1273 79199.5
WA [NULL] [NULL] 322 20274

Don’t worry about the missing column names, as we'll get them from the UNION.
The reason to include all those NULLs is to line up the columns when you combine

them in a UNION.
190

CHAPTER5 AGGREGATING DATA
Finally, get the grand total:

-- grand total
SELECT
NULL, NULL, NULL, count(*) AS nsales,
sum(total) AS total
FROM salesdata
-~ GROUP BY ()

.
2

This gives you a single row of grand totals:

? ? ? nsales total

INULL] [NULL] INULL] 5295 326918.22

Note that this includes the commented out GROUP BY () clause, just as a reminder
that this is a grand total; of course, you don’t need it.

The UNION clause can be used to combine the results of multiple SELECT
statements. The only requirement is that they match in the number and types of
columns.

-- All Group summaries
SELECT
state, id, ordered, count(*) AS nsales,
sum(total) AS total
FROM salesdata
GROUP BY state,id,ordered
-- state, ordered summaries
UNION
SELECT state, id, NULL, count(*), sum(total)
FROM salesdata
GROUP BY state,id
-- state summaries
UNION
SELECT state, NULL, NULL, count(*), sum(total)
FROM salesdata

GROUP BY state
191

CHAPTER 5 AGGREGATING DATA

-- grand total
UNION
SELECT NULL, NULL, NULL, count(*), sum(total)
FROM salesdata
-- Sort
ORDER BY state,id,ordered;

You now have the results combined:

state id ordered nsales total
ACT 85 2022-06 2 117
ACT 85 2022-07 2 104.5
ACT 85 2022-08 5 269.5
ACT 85 2022-09 3 253.5
ACT 85 2022-10 5 476
ACT 85 2022-11 3 179.5
ACT 85 2022-12 2 84
ACT 85 2023-01 4 248.5
ACT 85 2023-03 3 209
ACT 85 2023-04 6 384
ACT 85 2023-05 2 93
ACT 85 [NULL] 37 2418.5
ACT 112 2022-07 2 72
ACT 112 2022-08 2 78
ACT 112 2022-09 1 49
ACT 112 2022-10 1 70.5
~ 2077 rows

Note that only the first query has aliases for the number of sales and the total; in a
UNION, the column names for the first query apply to the whole result. You can alias the
rest if it makes you feel better, but it won’t make any difference.

192

CHAPTER5 AGGREGATING DATA

When combining different levels of summaries, the higher-level summaries will have
NULL instead of actual values. This is correct, but inconvenient:

¢« When sorted, NULL may appear at the beginning or the end of the list.
The SQL standard is ambivalent on this, and different DBMSs have
different opinions, while some give you a choice.

s Inany case, NULL in the result set is unclear and unhelpful.

To resolve the sorting problem, we can add a contrived value to force a sorting order:

-- All Group summaries
SELECT
state, id, ordered, count(*) AS nsales,
sum(total) AS total,
0 AS state level, 0 AS id level, 0 AS ordered level
FROM salesdata
GROUP BY state,id,ordered
-- state, ordered summaries
UNION
SELECT
state, id, NULL, count(*), sum(total),
0, 0, 1
FROM salesdata
GROUP BY state,id
-- state summaries
UNION
SELECT
state, NULL, NULL, count(*), sum(total),
0, 1, 1
FROM salesdata
GROUP BY state
-- grand total
UNION
SELECT
NULL, NULL, NULL, count(*), sum(total),
1, 1, 1

193

CHAPTER5 AGGREGATING DATA

FROM salesdata
-- Sort
ORDER BY state level, state, id level, id,
ordered level, ordered;

To get the results in the right order, we have introduced two values, state_level and
town_level, so that we can push the totals below the other values.

state id ordered nsales total state level id _level ordered level
ACT 85 2022-06 2 117 0 0 0
ACT 85 2022-07 2 104.5 0 0 0
ACT 85 2022-08 5 269.5 0 0 0
ACT 85 2022-09 3 253.5 0 0 0
ACT 85 2022-10 5 476 0 0 0
ACT 85 2022-11 3 179.5 0 0 0
ACT 85 2022-12 2 84 0 0 0
ACT 85 2023-01 4 248.5 0 0 0
ACT 85 2023-03 3 209 0 0 0
ACT 85 2023-04 6 384 0 0 0
ACT 85 2023-05 2 93 0 0 0
ACT 85 [NULL] 37 2418.5 0 0 1
ACT 112 2022-07 2 72 0 0 0
ACT 112 2022-08 2 78 0 0 0
ACT 112 2022-09 1 49 0 0 0
ACT 112 2022-10 1 70.5 0 0 0

~ 2077 rows ~

To eliminate the sorting columns from the result set, you can turn this into a
Common Table Expression:

194

CHAPTER5 AGGREGATING DATA

WITH cte AS (
-- UNION query above
)
SELECT state, id, ordered, nsales, total
FROM cte
ORDER BY state level,state,id level,id,ordered level,ordered;

This isn’t so much work to get the results, but there may be a simpler method.

Using GROUPING SETS, CUBE, and ROLLUP

Grouping sets offer a simpler alternative to the UNION above. Their syntax is not
immediately obvious, but it follows a similar pattern to the GROUP BY clauses.

Grouping sets are not fully supported by all DBMSs. Most support a simpler version,
but SQLite doesn’t support them at all. If you have SQLite, the best you can do is what we
did earlier with the UNION.

For the most part, what you probably want is the ROLLUP described later.

GROUPING SETS and CUBE (PostgreSQL, MSSQL, and Oracle)

The most general-purpose technique uses the GROUPING SET clause. In this clause, you
specify which combinations of columns you want to include in the summary.
The syntax is

SELECT columns
FROM table
GROUP BY GROUPING SETS ((set),(set));

Recall that the previous example had SELECT statements, grouped by state, customer
id, ordered date, and a grand total. This can be generated as follows:

SELECT state,town,count(*)
FROM customers
GROUP BY GROUPING SETS ((state,id,ordered),(state,id),(state),());

Here, the set () indicates the grand summary.

CHAPTER5 AGGREGATING DATA

Many other combinations are available (such as (state,ordered)). If you really
wanted them all, you can use CUBE:

SELECT state, id, ordered, count(*), sum(total)
FROM salesdata
GROUP BY CUBE (state,id,ordered)

The CUBE variation works best when you don’t have too many grouping columns and
when they're all unrelated to each other. Remember three columns would give you eight
possible combinations. You can calculate the number of possibilities as 2", where n is the
number of columns. In this case, it's 2* = 8. If you had even four columns, you would have
16 possible totals and subtotals, which might start to get overwhelming.

USING ROLLUP (PostgreSQL, MSSQL, Oracle,
and MariaDB/MySQL)

A simpler, more readable (but slightly less flexible) alternative is to use ROLLUP. This
takes two forms:

-- ROLLUP(...) - PostgreSQL, MSSQL, Oracle
SELECT state, id, ordered, count(*), sum(total)
FROM salesdata
GROUP BY ROLLUP (state, id, ordered);

-- ... WITH ROLLUP - MariaDB / MySQL, MSSOL
SELECT state, id, ordered, count(*), sum(total)
FROM salesdata
GROUP BY state, id, ordered WITH ROLLUP;

Both forms will give you the same result. Note that MSSQL gives you the choice to
use either form.

ROLLUP makes an important assumption that the columns form some sort of
hierarchy. In the case of the customer state and the customer id, that's obvious. Whether
you consider the ordered date as the end of the hierarchy is up to you.

196

CHAPTER5 AGGREGATING DATA

You can see the hierarchy in the results and in the fact that this matches the GROUPING
SETS example earlier. You will get results for

1. (state, id, ordered) combinations
2. (state, id) combinations

3. (state) values

4. () - grand totals

Clearly, using ROLLUP is a much simpler way to get these results, and you probably
won't miss the flexibility of GROUPING SETS very much.

Sorting the Results

In some DBMSs, you may see the results sorted automatically in the same order as the
UNION version earlier. In some, you will need to sort it yourself.

This again has the two problems mentioned with the UNION version earlier. To
address the second problem, that of sort order, we can use the grouping(column)
function which indicates the level of a column being summarized. The value is 1 to
indicate that this is a summary and 0 to indicate that it’s not. This will have the same
effect as the preceding contrived level columns:

-- ROLLUP(...): PostgreSQL, MSSQL, Oracle
SELECT state, id, ordered, count(*), sum(total)
FROM salesdata
GROUP BY ROLLUP (state,id,ordered)

ORDER BY grouping(state), state, grouping(id), id,
grouping(ordered), ordered;

-- ... WITH ROLLUP: MySQL, MSSQL
-- (MariaDB doesn't support grouping())
SELECT state, id, ordered, count(*), sum(total)
FROM salesdata
GROUP BY state,id,ordered WITH ROLLUP
ORDER BY grouping(state), state, grouping(id), id,
grouping(ordered), ordered;"

You'll get a better sorted table.

197

CHAPTER5 AGGREGATING DATA

Note that while MySQL does support grouping(), MariaDB doesn’t support the
grouping() function!

In PostgreSQL and MySQL, you can use grouping() with multiple columns. This will
give you a combined level which is a binary combination of the 1s and 0s. In MSSQL and
Oracle, you would use the grouping_id() function for that.

To solve the first problem, that of meaningless NULL markers, we have to be more
creative with the SELECT clause. In this case, we can use coalesce to pick up the NULL and

supply an alternative value:

-- PostgreSQL, MSSQL;

SELECT
coalesce(state, 'National Total') AS state,
coalesce(cast(id as varchar),state||' Total') AS id,
coalesce(ordered, 'Total for '||cast(id as varchar))

AS ordered,

count(*), sum(total)

FROM salesdata

GROUP BY ROLLUP (state,id,ordered)

ORDER BY grouping(state), state,
grouping(id), id, grouping(ordered), ordered;

-~ MySOL, MSSQL (MariaDB doesn't support grouping())

SELECT
coalesce(state, 'National Total') AS state,
coalesce(cast(id as varchar),state||' Total') AS id,
coalesce(ordered, 'Total for '||cast(id as varchar))

AS ordered,

count(*), sum(total)

FROM salesdata

GROUP BY state,id,ordered WITH ROLLUP

ORDER BY grouping(state), state,
grouping(id), id, grouping(ordered), ordered;

-- NOT Oracle

This will give you something meaningful for the summary rows.

198

CHAPTER5 AGGREGATING DATA

Renaming Values in Oracle

You'll notice that this won't work for Oracle. Here, Oracle proves to be unhelpful since
(a) NULL strings are equivalent to an empty string (' ') so they won't coalesce, (b) the
selected columns are no longer considered to match the GROUP BY clause, and (c) you'll
also have problems sorting with the grouping() function when you've made the other
changes.

The most straightforward way of getting this to work is to use a CASE expression for

the columns:

SELECT
coalesce(state, 'National Total') AS state,
grouping(state) AS statelevel,
CASE
WHEN state IS NULL THEN NULL
WHEN id IS NULL THEN 'Total for '||state
ELSE cast(id AS varchar(3))
END AS id,
grouping(id) AS idlevel,
CASE
WHEN id IS NULL THEN NULL
WHEN ordered IS NULL THEN
'Total for '||cast(id as varchar(3))
ELSE ordered
END AS ordered,
grouping(ordered) AS orderedlevel,
count(*) AS count, sum(total) AS sum
FROM salesdata
GROUP BY ROLLUP (state,id,ordered)
ORDER BY statelevel, state, idlevel, id, orderedlevel, ordered

b

199

CHAPTER5 AGGREGATING DATA

It will look something like this:

state statelevel id idlevel ordered orderedlevel count sum
ACT 0 12 0 2022-07 0 2 72
ACT 0 12 0 2022-08 0 2 78
ACT 0 12 0 2022-09 0 1 49
ACT 0 12 0 2022-10 0 1 70.5
ACT 0 12 0 2022-11 0 1 94
ACT 0 12 0 2022-12 0 4 224
ACT 0 12 0 2023-01 0 1 48.5
ACT 0 12 0 2023-02 0 5 320
ACT 0 12 0 2023-03 0 2 191.5
ACT 0 12 0 2023-05 0 1 125
ACT 0 12 0 Total for 112 1 20 1272.5
ACT 0 147 0 2022-08 0 8 392
ACT 0 147 0 2022-09 0 2 199.5
ACT 0 147 0 2022-10 0 2 162
ACT 0 147 0 2022-11 0 3 228.5
ACT 0 147 0 2022-12 0 3 251
~ 2077 rows ~

Here, the grouping() function is used in the SELECT clause and then used for sorting.
The id and ordered columns are calculated with a CASE ... END expression to get
around the problem of the NULL strings.

Of course, now you have those three extra columns used for sorting. To hide them,
you can use a CTE:

WITH cte AS (
-- SELECT statement as above
-- don't bother with the ORDER BY clause

200

CHAPTER5 AGGREGATING DATA

SELECT state, id, ordered, count, sum
FROM cte
ORDER BY statelevel, state, idlevel, id, orderedlevel, ordered

>
Incidentally, the previous statement included an ORDER BY clause. You can include

itin the CTE (you can’t in MSSQL), but it's unnecessary as we're sorting it anyway in the
main query, so you should leave it out.

Histograms, Mean, Mode, and Median

You may have learned some simple statistics at school. Here’s a reminder of some of the
basic concepts:

« Afrequency table is a table of values and how often they appear.

¢« A mean, or more technically an arithmetic mean, is what we
casually call the average: it's the total divided by the number
of values.

e« The mode is the value which appears the most often.
o The median is the middle of the values (if they're all placed in order).

You can use the frequency table to generate a histogram, which is what spreadsheet
programs call a bar chart. For example, you can generate a frequency table and
histogram of the number of customers per height (in centimetres). It looks like
Figure 5-4.

201

CHAPTER5 AGGREGATING DATA

153 154 !M 157 158 150 160 181 162 163 184 165 166 167 188 W9 170 171 172 172 174 7S 176 177 178 179 180 181 182 183 184 185 186 187 188 10

Figure 5-4. A Histogram

If your values are based on a number of different factors, there is a tendency for
them to be distributed along the well-known “bell curve.” Most values occur around the
middle, and the further you are from the middle, the fewer times the value occurs. This is
more technically referred to as the normal distribution.

Your height is dependent on a number of factors, some of which include genetics,
diet, and other lifestyle factors. As a result, customer heights tend to follow the normal
distribution as you see very roughly in the figure above. Of course, the tendency
becomes stronger if we have a larger collection of data: if you have only a few hundred
samples, then the data won't be such a tight fit.

202

CHAPTER 5 AGGREGATING DATA

For the purpose of this discussion, we’ll focus on customer heights, as they tend to be
easy to analyze this way.

Although the sample data was randomized, it was generated to follow the normal
distribution as well as might be expected in the small sample.

For adults in Australia, the mean height is about 168.7 cm. Actually, there are

two mean heights, one for female and one for male adults, but between them the
average is 168.7 cm. The standard deviation is 7 cm. You can get more information
at https://en.wikipedia.org/wiki/Average human_height by
country.

Calculating the Mean

In statistics and mathematics, the word “average” is a little vague, as there are many
measurements which can describe an average. The one we're interested in here is called
arithmetic mean. You already have the mean as a built-in aggregate function avg():

SELECT avg(height) AS mean FROM customers;

You'll get something like this:

mean

170.844

If you want, you can calculate the mean using sum(height)/count(height), but
there’s no point other than to show they’re the same.
This figure is fairly reasonable. The mean height for adults is about 168.7 cm.

Generating a Frequency Table

A frequency table lists how many times a value appears in the table. If that sounds
suspiciously like something you've done before, you're right. That's just using a GROUP BY
with count (*).

First, however, we need to make the data more groupable. If the data is too fine, you
won't get many duplicates—the irony is that there can be too much detail to summarize.

203

CHAPTER5 AGGREGATING DATA

Here, the heights are measured to 0.1 of a centimeter. We'll prepare it by rounding it

off to whole centimeters:

SELECT floor(height+0.5) AS height
FROM customers
WHERE height IS NOT NULL;

We've also filtered out the missing heights to give you

Height

169
171
153
176
156
176

~ 267 rows ~

We could possibly have used a round() function to do the rounding off, but some
DBMSs prefer to round to the nearest even number, so the preceding method will do more
reliably.

Putting the data into a CTE, we can then use a simple GROUP BY query:

WITH heights AS (
SELECT floor(height+0.5) AS height
FROM customers
WHERE height IS NOT NULL
)
SELECT height, count(*) AS frequency
FROM heights
GROUP BY height
ORDER BY height;

204

CHAPTER5 AGGREGATING DATA

This will get you

Height frequency
153 1

154 3

156 1

157 3

158 1

159 2

~ 36 rows ~

Note that there may be some missing values. That’s natural, especially in a relatively
small sample such as we have. However, with these gaps it’s not quite ready for a
histogram. Later, when we have a closer look at recursive common table expressions,
we'll see how to fill in the gaps.

Calculating the Mode

The mode is the value which occurs most often. Actually, there may be more than one
mode which tie for first.

To get the mode(s), you first need to get the frequencies and then find the maximum
frequency. In principle, you're looking for max (count (*)), but you can’t nest aggregate
functions like that. That means taking an extra step, which, in turn, means more CTEs.

Starting with the previous frequency table, we can put the results in another CTE:

WITH
heights AS (
SELECT floor(height+0.5) AS height
FROM customers
WHERE height IS NOT NULL
) -- don't forget to add a comma here
frequency table AS (
SELECT height, count(*) AS frequency

CHAPTER5 AGGREGATING DATA

FROM heights
GROUP BY height

You'll also need the maximum frequency, which has to be calculated as a
separate step:

WITH
heights AS (

)5
frequency table AS (

)» -- don't forget to add a comma here
limits AS (
SELECT max(frequency) AS max FROM frequency table

Finally, you can cross join the frequency table to the 1imits CTE to find the mode(s):

WITH
heights AS (

)s
frequency table AS (

)5
limits AS (

)
SELECT height, frequency

FROM frequency table,limits
WHERE frequency table.frequency=1imits.max
ORDER BY height;

206

CHAPTER5 AGGREGATING DATA

You'll get something like this:

Height frequency

172 22

In a perfect set of normal data, the mode should match the mean exactly. In real life,
it should be close.

Calculating the Median

The median is the middle value. What that means is that half of the values should be
below the median and half should be above.

To find the median involves putting all of the values in order and finding the
midpoint. You can do this if you like, but that involves some skills we haven’t developed
yet, in particular getting the row number. We'll look at that later in the chapter on
window functions.

Fortunately, modern SQL includes a function called percentile cont.
Unfortunately, not all DBMSs use it the same way, and SQLite doesn't support it at all.

The percentile cont() function finds the value by its percentile. A percentile is a
grouping of 100 groups. The 50th percentile would be in the middle.

To find the median in PostgreSQL:

-- PostgreSQL: aggregate function only
SELECT percentile cont(0.5)
WITHIN GROUP (ORDER BY height)
FROM customers
WHERE height IS NOT NULL;

This should give something like

percentile_cont
171.2

As noted in the comment, in PostgreSQL percentile cont() is an aggregate
function only, which is exactly what we want anyway.

207

CHAPTER5 AGGREGATING DATA

What's the alternative to an aggregate function? It's one of those window functions
which we’ll be looking at later. A window function is like an aggregate function, except
that it's calculated for every row, not just as a summary.

With the window function version, we can use

-- MySQL / MariaDB, MSSQL, Oracle: window function only
SELECT percentile cont(0.5)
WITHIN GROUP (ORDER BY height) OVER()
FROM customers
WHERE height IS NOT NULL;

The problem is that you'll get the same value for multiple rows. To finish the job, you
can use DISTINCT:

-- MySQL / MariaDB, MSSQL, Oracle: window function only
SELECT DISTINCT percentile cont(0.5)
WITHIN GROUP (ORDER BY height) OVER()
FROM customers
WHERE height IS NOT NULL;

This will now give you the median.

The Standard Deviation

The standard deviation is a measure of how varied the data is. For the normal
distribution, about 68% of the results should fall within one standard deviation of
the mean.

Alower than expected standard deviation would indicate that the results are fairly
close together, while a higher than standard deviation would indicate that the results are
more random than expected. In either case, you would suspect that the data is biased—
either by how the data was selected or suggesting that some of it was made up.

For example, if the heights were normally distributed, you'd find that one standard
deviation amounts to 7 cm and that 68% of the customers should be within 7 cm on
either side of the mean.

To calculate the standard deviation, SQL has a simple aggregate function, which you
have already seen earlier.

208

CHAPTER5 AGGREGATING DATA

You might wonder why there are two. If you know that you have all the values, you
could use stddev_pop(height) (or stdevp(height) for MSSQL). However, we don’t, so
we can regard what we do have as a sample. For that, we use stddev_samp(height) (or
stdev(height) for MSSQL):

SELECT

stddev_pop(height) AS sd

-- stdevp(height) AS sd -- MSSOL
FROM customers;

You should get something close to 7:

Sd
6.979

Remember that the standard deviation only has meaning when you believe that the
underlying data follows a normal distribution.

Summary

In this chapter, we had a look at aggregating sets of data.

Basic Aggregate Functions

The basic aggregate functions are

« count(), which counts the number of values in a column or rows in
a table.

« sumand avg, which add or average numbers in a column.

« max and min, which find the lowest and highest values of any type of
column. In effect, they find the first and last values when sorted by
that column.

« stddev, stddev_samp, stddev_pop (PostgreSQL, MySQL/MariaDB,
Oracle) stdev, stdevp (MSSQL). This calculates a population or
standard deviation of a column of numbers; we assume that the data
is normally distributed.

209

CHAPTER5 AGGREGATING DATA

The sum, avg, and standard deviation functions can only be applied to numeric data.

NULLs

Aggregate functions all skip NULLs. This is particularly important when counting values,
but also when calculating averages.
The fact that NULLs are skipped can also be used when calculating selective

aggregates.

The Aggregating Process

The data you aggregate is not necessarily in a saved table. You can also aggregate virtual
tables generated by joins, common table expressions, and views.

When aggregating data, the data may first be filtered by a WHERE clause. The aggregate
data is based on what's left after filtering.

Performing aggregates effectively transforms the original data into a virtual table of
one or more summary rows. This no longer includes the original raw data. You can only
select what is in the virtual summary table. As a result, you can’t mix aggregates with raw
data in a single SELECT clause.

If you need both original and summary data, you may need to join the original table
with a CTE which has the summary.

Aggregate Filters

It’s possible to filter what data is used for a single aggregate function.

There is a standard FILTER (WHERE ...) clause which allows you to filter a column.
However, it's not (yet) widely supported.

The common way to filter data is to use the CASE ... END expression on what you're
aggregating. Set a value of, say, 1 for the values you want, allow the rest to default to NULL,
and let the aggregate functions ignore them for the rest.

You can also aggregate on DISTINCT values. This makes the most sense when you are
counting.

210

CHAPTER5 AGGREGATING DATA

GROUP BY

The GROUP BY clause can be used to generate a virtual table of group summaries.

In some DBMSs, you can use GROUP BY () to generate a grand summary. This is the
default without the GROUP BY () clause and is automatically done whenever SQL sees an
aggregate function. It's never truly needed.

You can group by basic values, but also by calculated values.

Grouping by calculated values can get complicated, since the SELECT and ORDER BY
clauses can only use what'’s in the GROUP BY. Because of the clause order, you may find
yourself repeating the same calculations in various clauses.

Since the SELECT clause is only evaluated near the end, and selecting and ordering
can only be done on what's in the GROUP BY clause, you may find the following
techniques helpful:

¢ Using redundant groups to select one thing and sort by another

e Putting aggregate queries in a CTE and joining that with other tables
to get the rest of the results

When grouping by a column, your results may not be in the correct order. Since the
group names are all strings, sorting on the group name will only put them in alphabetical
order, which isn’t always suitable. However, you can also sort them by their position in
another string, which can be in any order you like.

Mixing Subtotals

By and large, aggregate queries produce simple aggregates on one level. Sometimes, you
need to combine them with various levels of subtotals.

You can generate subtotals in separate queries and combine them with UNION. You
might need some extra work to get the results sorted in your preferred order.

Most DBMSs include subtotaling operations to create the combined result
automatically. They may include GROUPING SETS, ROLLUP, or CUBE. Most include the
ROLLUP which is the most common variation. There are additional grouping functions to
assist with sorting and labeling.

211

CHAPTER5 AGGREGATING DATA

Statistics

In general, aggregate functions are basically statistical in nature. Although SQL is not
as powerful as dedicated statistical software, you can use aggregates and grouping to
generate some of the basic statistics.

Coming Up

In some cases, we have used a query in a Common Table Expression to prepare data.
However, in one case we created a view instead, so that we could reuse the query.

In the next chapter, we'll have a closer look at creating and using views to improve
our workflow.

212

CHAPTER 6

Using Views and Friends

This isn’t the first time you’ve looked at views in this book, and it won’t be the
last time.

This chapter consolidates what you may have already picked up about views and
related concepts and gives a few ideas about working with them in general.

You can spend the rest of your life writing SQL statements, and the job would get
done. However, you might get to the point where writing the same thing over and over
again loses its charm, and so you'll want to find ways of reusing previous queries.

First, let’s have a look at what we mean by tables and what happens when you use
the SELECT statement.

SQL databases store data in tables. Actually, they don't—each table is really stored in
some other structure such as a binary tree, which is more efficient. However, by the time
you see it, it will be presented as a table, and that’s what it’s called in the database.

A table is made up of rows and columns. For our purpose, the table doesn’t have to
be a permanent table, and there are operations which generate table structures without
necessarily being permanently stored. We'll refer to them as virtual tables.

Here is a list of operations which generate (virtual) tables, in increasing order of
longevity:

« Theresult of a SELECT statement is a virtual table.

* Ajoinis the combination of two or more (virtual) tables to produce
an expanded virtual table.

« A Common Table Expression generates a virtual table which
you can use later in the query. A table subquery amounts to the
same thing.

213
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_6

CHAPTER6 USING VIEWS AND FRIENDS

« Aviewis asaved SELECT query, which will regenerate the virtual table
on call.

A materialized view is a view which stores its results so it doesn't
always have to regenerate everything.

Some DBMSs support Table-Valued Functions which are
functions which generate virtual tables.

« Atemporary table is like a real table. It may or may not be stored on
the disk. It will self-destruct when the session is finished.

The thing about tables and virtual tables is that they can all be used in the
FROM clause.

You will already know about using joins. You have also used Common Table
Expressions, but we'll discuss them in more depth in the following chapters.

In this chapter, we'll look at the rest and how we can improve our workflow
with them.

Working with Views

You have already created one or two views so far, so much of this is familiar territory.

Aviewis a SELECT statement saved in the database. When the view is saved, the
DBMS often also saves the execution plan, so less time is wasted planning the same thing
next time.

Views can be used whenever you might have read from a table. You can think of a
view as a virtual table—something which behaves as a table.

To read from a view, you treat it as a table:

SELECT columns FROM view;

Note the syntax is exactly the same as for tables. From the perspective of a SELECT
statement, there is no distinction between selecting from a view and from a table.

One important consequence of this is that you cannot have views with the same
names as tables—views and tables share the name space.

214

CHAPTER 6 USING VIEWS AND FRIENDS

This doesn’t mean that there are no differences. The DBMS stores views as separate

types of objects and manages them differently. However, once created, you can treat a

view like a table.

Views can be an important part of your workflow. For example:

Saving a complex query to be used simply
Exposing complex queries to external applications
Creating an interface between existing data and an application

As a substitute for some queries

Creating a view requires permissions which you may not already have as a
database user.

Do whatever is required to get these permissions—badger, bribe, blackmail
as needed.

Views have several benefits:

You can hide complex processing with a view which just gives a
virtual table of the results.

You can restrict access to data in tables by creating a view with only
certain rows and columns.

You can hide details in aggregate queries.

There are some limitations as well. The main limitation is that a view is inflexible.

You can't, for example, vary the values that a view might use to calculate results. You'll

see a possible solution to that when we discuss Table Valued Functions later.

Other limitations vary between DBMSs. Some DBMSs support temporary views.
MSSQL doesn’t allow an ORDER BY in a view without additional trickery. Some DBMSs
support views on temporary tables, while others don’t.

For the most part, however, views will simplify your workflow and allow you to move

on to more complex tasks.

215

CHAPTER6 USING VIEWS AND FRIENDS

Creating a View

A view starts off as a simple SELECT statement. For example, we can start developing a
pricelist view which will comprise some information about books, their authors, and
the price, including tax:

/* Notes

MSSOL: Use + for concatenation
Oracle: No AS for tables:
FROM books b JOIN authors a ON ...

=== /
SELECT
b.id, b.title, b.published,
coalesce(a.givenname||" ',"")

|| coalesce(othernames||" ","'")
|| a.familyname AS author,
b.price, b.price*0.1 AS tax, b.price*1.1 AS inc
FROM books AS b LEFT JOIN authors AS a ON b.authorid=a.id
WHERE b.price IS NOT NULL;

This should give you something like this:

id title pub author price tax inc
2078 The Duel 1811 Heinrich von Kleis ... 1250 125 1375
503 Uncle Silas 1864 J. Sheridan Le Fan ... 17.00 170 18.70
2007 North and South 1854 Elizabeth Gaskell 1750 175 19.25
702 Jane Eyre 1847 Charlotte Bronté 1750 1.75 19.25
1530 Robin Hood, The Pr ... 1862 Alexandre Dumas 1250 1.25 1375
1759 La Curée 1872 Emile Zola 16.00 1.60 17.60
~ 1096 rows ~

As it’s a price list, we've filtered out the NULL prices.

216

CHAPTER 6 USING VIEWS AND FRIENDS

There are, however, certain conditions:

e All columns in a view must have a name, including calculated
columns.

You can’t have anonymous columns as you might in a simple
SELECT statement.

¢ Column names must be unique.

This is especially important with joined tables, where column
names may be duplicated.

In other words, the virtual table must conform to the rules of a real table.
To create a view, prepend the SELECT statement with a CREATE VIEW ... AS clause:

/* Notes

MSSQL: Use + for concatenation
MSSQL: Surround the CREATE VIEW with GO
Oracle: No AS for tables:

FROM books b JOIN authors a ON ...

=== ¥/
-- G0
CREATE VIEW aupricelist AS
SELECT
b.id, b.title, b.published,
coalesce(a.givenname||' ',"")

|| coalesce(othernames||" ","")
|| a.familyname AS author,
b.price, b.price*0.1 AS tax, b.price*1.1 AS inc
FROM books AS b JOIN authors AS a ON b.authorid=a.id;
-- @0

That will now be saved into your database.

217

CHAPTER6 USING VIEWS AND FRIENDS

We've called the price list aupricelist because the tax is set to 10%, which is the rate
in Australia. Feel free to use any tax rate and name that you like.

In Microsoft SQL Server only, you need to separate the CREATE
view statement from the rest of the script. You do this by putting
GO0 before and after, which marks off what they call a batch. The GO
must be on a line by itself.

You can now read the appropriate results like a table:

SELECT * FROM aupricelist;

This will give you the same results as before.
You can filter the view as with a table:

SELECT *
FROM aupricelist
WHERE published BETWEEN 1700 AND 1799;

This gives you

id title pub author price tax inc
1608 The Autobiography ... 1791 Benjamin Franklin 18.50 1.85 20.35
2303 The Metaphysics of ... 1797 Immanuel Kant 1200 120 13.20
1305 An Essay on Critic ... 1711 Alexander Pope 11.00 110 1210
1963 ATreatise of Huma ... 1740 David Hume 1850 1.85 20.35
1196 Equiano’s Travels: ... 1789 Olaudah Equiano 1250 125 13.75
1255 Discourse on the O ... 1755 Jean-Jacques Rouss ... 19.00 1.90 20.90
~ 166 rows ~

You can also sort the results:

SELECT * FROM aupricelist ORDER BY title;

218

CHAPTER 6 USING VIEWS AND FRIENDS

This gives you

id title pub author price tax inc
541 120 Days of Sodom 1904 Marquis de Sade 1250 125 1375
729 A Cartomante e Out ... 1884 Machado de Assis 16.00 160 17.60
2092 AChaste Maidin C ... 1613 Thomas Middleton 15.00 1.50 16.50
1437 AChild’s Garden o ... 1885 Robert Louis Steve ... 11.00 110 1210
454 A Christmas Carol 1843 Charles Dickens 13.50 1.35 14.85
1094 A Confession 1882 Leo Tolstoy 1750 1.75 19.25
~ 1096 rows ~

With the exception of MSSQL, you could have included the ORDER BY clause in the
view itself. Although it’s convenient, it’s probably not a good idea: you forcing the DBMS
to sort the result whether you need it or not, and you may end up sorting it again in a
different order afterward.

Using ORDER BY in MSSQL

As noted earlier, SQL Server precludes ORDER BY in a view without additional trickery.
If you really want to have a presorted view, you can do the following:

CREATE VIEW something AS
SELECT columns

FROM table

ORDER BY columns OFFSET 0 ROWS;

Among other things, this will allow you to create an ordered view without the need to
include extra columns just for sorting.

However, you need to be aware that an ordered view does place an extra burden on
the database, so it should only be used when needed.

Tips for Working with View

Views are generally a good thing, but there are a few things to help you use them more
reliably.

219

CHAPTER6 USING VIEWS AND FRIENDS

Some of the fine points will vary between DBMSs, and the DBMS will do its best to
work as efficiently as possible. Nevertheless, it's a good idea to keep these ideas in mind.

Don’t Cascade Views Too Much

You can build a view using other views. That can help simplify your workflow, but you
need to be careful:

« Changing the underlying view may make a mess of the view. Some
DBMSs won't even allow you to change a view if another view
depends on it.

« SQL tries to optimize your queries, but if your views are too deeply
nested, it may not be able to optimize well.

« One of the views may have more than you need for the new view, so
you're wasting processing time generating what you don't need.

That doesn’t mean you shouldn’t build on existing views, just that you should do it
judiciously.

Don’t Use SELECT *

There'’s a good chance that SELECT * doesn’t give you quite what you want anyway, but,
even if it does, you should probably list all of the columns specifically. Some DBMSs will
even convert SELECT * to a column list.

Reasons why SELECT * may not be a good idea include

* You may want your own column order rather than the default one.

« The underlying table may undergo a change in structure, so your
view may not end up being what you originally expected.

Avoid Using ORDER BY

Most DBMSs allow you to include an ORDER BY clause, and, even in MSSQL, you can
force it to. However, it may not be a good idea.

There’s a good chance that you will want to sort the view in various ways. Even
if there’s one sort order you prefer, you don’t want the DBMS to sort the result
unnecessarily before you sort them again.

220

CHAPTER 6 USING VIEWS AND FRIENDS

What you should do, however, is make sure that your view includes whatever
columns you'll be sorting on later.

Table-Valued Functions

Views are a powerful tool, but there’s one shortcoming: you can’t change any of the
values used in a view. For example, the aupricelist view has a hard-coded tax rate of
10%. A more flexible type of view would allow you to input your own tax rate. Such a view
would then be called a parameterized view.

Parameterized views are not generally supported in SQL. Some DBMSs support
functions which generate a virtual table, known as a Table-Valued Function, or TVF if
you're in a hurry. This will give more or less the same result.

Of our popular DBMSs, only PostgreSQL and Microsoft SQL Server support a
straightforward method of creating a TVE. We'll explore these two in the following
discussion.

Most DBMSs allow you to create custom functions. The notable exception is SQLite,
which does, however, allow you to create functions externally and hook them in.

A function which generates a single value at a time is called a scalar function. Built-
in functions such as lower () and length() are scalar functions.

When creating a function, there is, in a sense, a contract. The function definition
includes what input data is expected and what sort of data will be returned. If the input
data doesn't fit, then don’t expect a result.

A TVF works the same way: you define what input is expected, and you promise to
return a table of results. Here, we'll create a more generic price list which allows you to
tell it what the tax rate is, rather than hard-coding it.

To use the TVF, you use it like any virtual table:

SELECT *
FROM pricelist(15);

221

CHAPTER6 USING VIEWS AND FRIENDS

Here, the TVF is called pricelist() and the input parameter is 15, meaning 15%.

The code should handle converting that to 0.15:

id Title pub author price tax inc
2078 The Duel 1811 Heinrich von Kleis .. 1250 1.88 14.38
503 Uncle Silas 1864 J. Sheridan Le Fan ... 17.00 255 19.55
2007 North and South 1854 Elizabeth Gaskell 1750 263 20.13
702 Jane Eyre 1847 Charlotte Bronté 1750 263 20.13
1530 Robin Hood, The Pr ... 1862 Alexandre Dumas 1250 1.88 14.38
1759 LaCurée 1872 Emile Zola 16.00 240 18.40
~ 1070 rows ~

We’ll do that for PostgreSQL and MSSQL next.

TVFs in PostgreSQL

The outline of a TVF in PostgreSQL looks like this:

CREATE FUNCTION pricelist(...)
RETURNS TABLE (...)
LANGUAGE plpgsql AS
$$
BEGIN
RETURN QUERY
SELECT ...
END

$%;

In this outline

e The function name pricelist includes the input parameter names

and types.

s« The function will return a TABLE structure with column names

and types.

222

CHAPTER 6 USING VIEWS AND FRIENDS

« The coding language is plpgsql which is PostgreSQLs standard
coding language.

¢ The actual code is contained in one big string. Because there might
be other strings in the code, the $$ at either end acts as an alternative
delimiter.

¢ The code is then placed between BEGIN and END; in this case, it will
return the results of a SELECT query.

Filling in the details, we can write

DROP FUNCTION IF EXISTS pricelist(taxrate decimal(4,2));
CREATE FUNCTION pricelist(taxrate decimal(4,2))
RETURNS TABLE (
id int, title varchar, published int, author text,
price decimal(5,2), tax decimal(4,2), inc decimal(s,2)

)
LANGUAGE plpgsql AS $$
BEGIN
RETURN QUERY
SELECT
b.id, b.title, b.published,
coalesce(a.givenname||' ','") || coalesce(othernames||' ',"'")
|| a.familyname AS author,
b.price, b.price*taxrate/100 AS tax,
b.price*(1+taxrate/100) AS inc
FROM books as b LEFT JOIN authors a ON b.authorid=a.id
WHERE b.price IS NOT NULL;
END; $$;

The output table is the most tedious part. In it, we have to list all of the column
names and types we're expecting to generate.

As for the calculation, we've taken a user-friendly approach and allowed the tax rate
to resemble the percentage we might have used in real life. We can’t use %, especially as
that has another meaning, but other than that, we can use the value. However, we then
need to divide by 100 to get its real value.

223

CHAPTER6 USING VIEWS AND FRIENDS

TVFs in Microsoft SQL

Creating a TVF in Microsoft SQL is much simpler than in PostgreSQL. The outline of a
TVF in Microsoft SQL looks like this:

GO
CREATE FUNCTION pricelist(...) RETURNS TABLE AS
RETURN SELECT ...

GO

There are two types of TVF in MSSQL. There is a more complex type, but the simpler
type earlier is very similar to creating a view.
In this outline

« The function name pricelist includes the input parameter names
and types.

o The function will return a TABLE structure.

« Inthe simple TVF, there is only a single SELECT statement, which is
immediately returned as the result.

« The actual code is almost the same as for the view, except that it will

include the value from the input parameter.

Filling in the details, we can write

DROP FUNCTION IF EXISTS pricelist;

GO
CREATE FUNCTION pricelist(@taxrate decimal(4,2))
RETURNS TABLE AS
RETURN SELECT
b.id, b.title, b.published,
coalesce(a.givenname+' ',"")
+ coalesce(othernames+' ','")
+ a.familyname AS author,
b.price, b.price*@taxrate/100 AS tax,
b.price*(1+@taxrate/100) AS inc
FROM books as b JOIN authors a ON b.authorid=a.id
WHERE b.price IS NOT NULL;
GO

224

CHAPTER6 USING VIEWS AND FRIENDS

The input parameter is called @taxrate. Actually, it's really called taxrate, but
MSSQL uses the @ character to prefix all variables.

As with the PostgreSQL version, we've taken a user-friendly approach and allowed
the tax rate to resemble the percentage we might have used in real life. We can’t use %,
especially as that has another meaning, but other than that, we can use the value.
However, we then need to divide by 100 to get its real value.

What Can You Do with a View?

Given that a view is a virtual table, what sorts of things can be done with a view?

Convenience

The most immediate use of a view is as a convenient way of packaging a useful SELECT
query. For example:

SELECT * FROM customerdetails;
SELECT * FROM aupricelist;

Both of the preceding views include joins, and one includes a number of
calculations. It's much more convenient to use the saved view when you need it.

As an Interface

A second use of views is to present a consistent interface for existing data.

For example, when we refactored the customers table by referencing another table
and dropping a few columns, we ran the risk of invalidating any other queries which
depended on the old structure. By creating the customerdetails view, you have a new
virtual table which can be read the same way as the old table.

It can also be handy if you're in the process of renaming or rearranging tables and
columns. Suppose, for example, you're in the process of developing a new version of the
customers table, with some of the following columns:

customerid firstname lastname height_in_inches au_phone

225

CHAPTER6 USING VIEWS AND FRIENDS

You can prepare for it with something like the following:

/* Notes

MSSOQL: Use + for concatenation
Oracle, SQLite: Use substr(phone,2) instead of right()

H Tttt sttt */
-- CREATE VIEW newcustomers AS
SELECT
id AS customerid,
givenname AS firstname, familyname AS lastname,
cast(height/2.54 as decimal(3,1))
AS height_in_inches,
'+61' || right(phone,9) AS au_phone
-- etc
FROM customers;
This will give you something like
customerid firstname lastname height_in_inches au_phone
42 May Knott 66.3 +61255509371
459 Rick Shaw 67.3 +61370101040
597 lke Andy 60.2 [NULL]
186 Pat Downe 69.3 +61870105900
352 Basil Isk 61.6 +61255502503
576 Pearl Divers 69.4 +61370107821

~ 303 rows ~

(The CREATE VIEW clause is commented out, because we're not really going to go
ahead with this.)

This approach will also be useful if you're preparing data for an external application.

226

CHAPTER 6 USING VIEWS AND FRIENDS

Working with External Applications

Although we’ve spent our time with a front-end client, that is not necessarily the destiny
of the data. Often, we will use the data in an external application such as reporting
software.

It makes the most sense to preprocess the data as much as possible before using
it with an external application. In particular, joining tables or running subqueries is
something which should be at the database end, not later.

Note that there are some things the database cannot do so readily. For example,
there may be data formatting requirements or certain functions which are not available
in the database server. For that, you will need to extract the raw data and process it in the
external application.

Examples of working with external applications include
¢ Mail Merge with a word processor
« Working with Pivot Tables in a spreadsheet
« Working with reporting software

Such software typically has very limited ability in manipulating data, so it makes
sense to do as much preprocessing as possible. When seen from the external software,
your views will be perceived as single tables (though often they’ll still indicate that they
are actually views).

Caching Data and Temporary Tables

Some DBMSs offer a materialized view. This is a type of view which caches the data. The
result is that repeated reading from the view doesn’t (necessarily) require reprocessing.

When you're using a view, you may be putting an extra burden on the DBMS. If the
view has some complex processing and joining to do, then every time you look at the
view, you find yourself redoing the extra work.

Some DBMSs cheat a little by keeping a copy of the results for next time, as long as
next time isn’t too much later and nothing’s changed in the associated tables. This copy
is called a cache, and it’s up to the DBMS whether to do this or not.

Some DBMSs support a materialized view, which formalizes the process. A
materialized view has storage allocated to maintaining a copy of the results with the
database. This is cheaper on processing, because the DBMS doesn’t need to process the

227

CHAPTER6 USING VIEWS AND FRIENDS

same data so often, but more expensive on storage. As usual, you may find that extra
storage is cheaper than processing power.

Materialized views aren’t widely supported and are sometimes limited in usefulness.
However, you go a long way with temporary tables.

In principle, all SQL tables are temporary, in that it's always possible to drop a
table—in SQL, as in life, nothing’s truly permanent. However, a temporary table is one
destined to be short-lived and will self-destruct when you close the session.

You can create a temporary table as you might a real table, but using the
TEMPORARY prefix:

-- PostgreSQL, MariaDB/MySQL, SOLite
CREATE TEMPORARY TABLE somebooks (
id INT PRIMARY KEY,
title VARCHAR(255),
author VARCHAR(255),
price DECIMAL(4,2)

);

-- Oracle
CREATE GLOBAL TEMPORARY TABLE somebooks (
id INT PRIMARY KEY,
title VARCHAR(255),
author VARCHAR(255),
price DECIMAL(4,2)

);

-- MSSQL
CREATE #somebooks (
id INT PRIMARY KEY,
title VARCHAR(255),
author VARCHAR(255),
price DECIMAL(4,2)

);

228

CHAPTER 6 USING VIEWS AND FRIENDS

Note

e QOracle distinguishes between GLOBAL and PRIVATE temporary
tables and requires one of the two keywords. Private temporary
tables also need to have special names.

* PostgreSQL allows you to use the GLOBAL and LOCAL keywords for
the same purpose, but then ignores them; they recommend leaving
them out.

e MSSQL uses hashes for global and private temporary tables: one
hash (#) for private and two hashes (##) for global.

By “global,” we mean that other uses of the database can access the temporary table.
Private ones are, well, private to the session.

If you're in a desperate hurry, PostgreSQL and SQLite allow you to save time by writing
TEMP instead of TEMPORARY. It probably took you more time to read this paragraph.

The temporary table in this example has a simple integer primary key. If you intend
adding more data as you go, you might also use an autoincremented primary key.

Once you have created your temporary table, you can copy data into it using the
SELECT statement. For example:

INSERT INTO somebooks(id,title,author,price)
SELECT id,title,author,price

FROM aupricelist

WHERE price IS NOT NULL;

The INSERT ... SELECT ... statement copies data into an existing table, temporary
or permanent.

You can create a new table and populate it in one statement with the following
statement:

-- PostgreSQL, MariaDB/MySQL, Oracle
CREATE TABLE otherbooks AS
SELECT id,title,author,price
FROM aupricelist
WHERE price IS NULL

229

CHAPTER6 USING VIEWS AND FRIENDS

-- PostgreSQL, SQLite
SELECT id,title,author,price
INTO TEMPORARY otherbooks
FROM aupricelist
WHERE price IS NULL;

-- MSSQL
SELECT id,title,author,price
INTO #otherbooks
FROM aupricelist
WHERE price IS NULL;

Asyou see, this statement takes one of two forms; PostgreSQL supports both.

Note that either form requires that you have permissions to create either a temporary
or permanent table.

Remember, however, that the data is a copy, so it will go stale unless you update it.

Why would you want a temporary table? There’s nothing in our sample database
which could be regarded as in any way heavy-duty. However, in the real world, you might
be working with a query which involves a huge number of rows, complex joins, filters
and calculations, and sorting. This could end up taking a great deal of time and effort,
especially if you're constantly regenerating the data.

The reasons you would use a temporary table rather than a view include

« It's more efficient to save previously generated results than it is to
regenerate them. This is called caching the results.

« Sometimes, you want the data to be out of date, such as when you
need to work with a snapshot of the data from earlier in the day.

If you need to work with the snapshot at some point in the future,
a temporary table may be too fleeting. Everything we've done will
also apply to specially created permanent tables.

A database should never keep multiple copies of data. However, there are times
when you need a temporary table for further processing, experimenting, or in transit to

migrating data.

230

CHAPTER 6 USING VIEWS AND FRIENDS

Computed Columns

Modern SQL allows you to add a column to a table which in principle shouldn’t be in
a table. A computed column, or calculated column, is an additional column which is
based on some calculated value. When you think about it, that’s the sort of thing you
would do in a view.

Think of the computed column as embedding a mini-view in the table. It's
particularly handy if you commonly use one calculation but don’t want the overhead of a
view. It can also be handy if you have the option to cache the results.

A computed column is a read-only virtual column. You can’t write anything into
the column, and, if it saves any data at all, it's a cached value to save the effort of
recalculating it later. For example, you might store the full name of the customer as a
convenience.

You can create a computed column when you create the table, or you can add it to
the table after the event.

For example, suppose we want to add a shortened form of the ordered datetime
column, with just the date. This will be handy for summarizing by day.

You can add the new column as follows:

-- PostgreSOL >= 12
ALTER TABLE sales
ADD COLUMN ordered date date
GENERATED ALWAYS AS (cast(ordered as date)) STORED;

-~ MSSQL
ALTER TABLE sales
ADD ordered date AS (cast(ordered as date)) PERSISTED;

-- MariaDB / MySQOL
ALTER TABLE sales
ADD ordered date date
GENERATED ALWAYS AS (cast(ordered as date)) STORED;

-- SQLite»=3.31.0
ALTER TABLE sales
ADD ordered date date
GENERATED ALWAYS AS (cast(ordered as date)) VIRTUAL;

231

CHAPTER6 USING VIEWS AND FRIENDS

-- Oracle (STORED)
ALTER TABLE sales
ADD ordered date date
GENERATED ALWAYS AS (trunc(ordered));

As you see, most DBMSs use the standard GENERATE ALWAYS syntax. MSSQL,
however, uses its own simpler syntax which doesn'’t specify the data type but infers it
from the calculation.

You'll also notice different types of computed column:

« VIRTUAL columns are not stored and are recalculated. This is the
default in MSSQL.

s STORED columns save a copy of the result and will only recalculate if
the underlying value has changed.

MSSQL calls this PERSISTED. In Oracle, it's the default. SQLite does
support this as well, but only if you create the table that way; if you
add the column later, it can only be VIRTUAL.

You can now fetch the data complete with virtual column:

SELECT * FROM sales;

This gives you
id Ordered shipped ordered_date
39 2022-05-15 21:12:07.988741 2022-05-23 2022-05-15
40 2022-05-16 03:03:16.065969 2022-05-24 2022-05-16
42 2022-05-16 10:09:13.674823 2022-05-22 2022-05-16
43 2022-05-16 15:02:43.285565 [NULL] 2022-05-16
45 2022-05-16 16:48:14.674202 2022-05-28 2022-05-16
518 - [NULL] [NULL] [NULL]
~ 5549 rows ~

If you have the option, the better option is STORED or equivalent. It takes a little more
space, but saves on processing later.

232

CHAPTER 6 USING VIEWS AND FRIENDS

Summary

Much of your work will involve not only real tables but generated virtual tables. Virtual
tables include

¢ Ajoin
« A Common Table Expression or a table subquery
« Aview or, in some cases, a Table Valued Function

s« Atemporary table.

Views

Aview is a saved SELECT statement. It can be made as complex as you like and then
fetched as a virtual table.
The benefits of views include

e They can be a convenient way of working with data.

« They can act as an interface to your data, particularly where the
original or modified form doesn’t match your requirements.

« They offer a simple table view of complex data when accessed from
external applications.

Table Valued Functions

A Table Valued Function is a function which results in a virtual table. Support for TVFs is
sketchy. Where it is supported, it allows you to feed parameters into the query, making it
more flexible than a simple view.

233

CHAPTER6 USING VIEWS AND FRIENDS

Temporary Tables

There are times when it is better to store results rather than regenerate them every time.
You can save them into a caching table.
The benefits include

« It's more efficient not to have to recalculate what will be the same
results.

* You might want to work with a dated snapshot of your data.

If your cache is intended to be particularly short-lived, you might use a temporary
table. A temporary table is one which will self-destruct at the end of the session.

Whether the caching table is temporary or permanent, you can copy data into it
using a SELECT statement. You can also create a new table and copy into it in a single
statement.

Computed Columns

In modern DBMSs, you can create virtual columns in a table which give the results of a
calculation.

A VIRTUAL computed column will regenerate the value every time you fetch from
the table. A STORED computed column, a.k.a. PERSISTED in MSSQL, will cache the results
until other data has changed.

A computed column can be used for convenience. If it's a STORED column, it also has
the benefit of saving on processing.

Coming Up

A SELECT statement doesn’t have to be the end of the story. In some cases, it can be one
step in a more complex story.

A subquery allows you to embed a SELECT statement inside a query. This can be
used to fetch values from other tables or to use one table to filter another. It’s particularly
handy if you want to incorporate aggregate data in another query.

The next chapter will look at subqueries in more detail.

234

CHAPTER 7

Working with Subqueries
and Common Table
Expressions

Running a SELECT statement, assuming that there’s no error, gives you a result. That
result is a virtual table, and it will have rows and columns.
For our purposes, we are interested in three possible virtual tables:

e« Onerow and one column: You get just one value, though technically
it’s still in a table. We'll call this a single value.

¢« One column and multiple rows: When the time comes, we’ll call
this a list.

e Multiple rows and multiple columns: In this context, a single row
with multiple columns counts as the same sort of thing. This is more
like the sort of thing we think about when talking about virtual tables.

Of course, that result may be empty, but that’s treated as NULLs.
You'll get these types of results from the following examples.
For example, one row and one column:

SELECT id FROM books WHERE title='Frankenstein';

which is a single value:

© Mark Simon 2023
M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_7

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

One column and multiple rows:

SELECT email FROM customerdetails WHERE state='VIC';

which gives a list:

Email
xavier.money17@example.net
anne.onymous262@example.net
bess.twishes26@example.net
judy.free93@example.net
peter.off415@example.com
moe.grass360@example.com

~ 64 rows ~

Multiple rows and multiple columns:

SELECT givenname, familyname, email
FROM customerdetails WHERE state='VIC';

which gives a virtual table:

236

givenname

Familyname email

Xavier
Anne
Bess
Judy
Peter
Moe

~ 64 rows ~

Money xavier.money17@example.net

Onymous anne.onymous262@example.net

Twishes bess.twishes26@example.net
Free judy.free93@example.net

Off peter.off415@example.com
Grass moe.grass360@example.com

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

That last category, the virtual table, could also be the result of a very broad query
such as SELECT * FROM customerdetails. It all works the same way.

Any of these results, depending on the context, can be used in a subsequent query
where a single value, a list, or a (virtual) table might have been expected. For example,
using a single value:

SELECT *
FROM saleitems
WHERE bookid=(SELECT id FROM books WHERE title='Frankenstein');

Here, the single value query is wrapped inside parentheses and used the way you
would if you already knew the value of the bookid you're matching:

id Saleid bookid quantity price
7234 2873 392 3 18.50
14875 5907 392 2 18.50
11183 4448 392 2 18.50
1312 517 392 2 18.50
9956 3948 392 2 18.50
12636 5012 392 2 18.50
~ 14 rows ~

Or you could be expecting some sort of list:

SELECT *
FROM books
WHERE authorid IN (
SELECT id FROM authors WHERE born BETWEEN '1700-01-01' AND '1799-12-31'

)s

237

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

The IN operator expects a list of values, which we get from the one column in the

nested SELECT statement:

id authorid Title published price

2078 765 The Duel 1811 12.50
2243 715 Vrijmoedige Verhalen; ee ... 1831 [NULL]
532 628 Elective Affinities 1809 11.50
1608 420 The Autobiography of Ben ... 1791 18.50

2303 633 The Metaphysics of Moral ... 1797 12.00

1963 529 A Treatise of Human Natu ... 1740 18.50

~ 256 rows ~

The nested SELECT statement is called a subquery. A subquery is a SELECT statement
which is used as part of another query. Conceptually, you use the SELECT query to fetch
one or more results, which in turn will be used in another query.

Subqueries can be used in the SELECT, WHERE, FROM, and even ORDER BY clauses.
When they are used, the result must be compatible with the context. For example:

« Asubqueryin a SELECT clause must always return a single value, as
would be expected from any other calculation. This can be called a

scalar (single-value) subquery.

Some modern DBMSs are now adding support for returning values

for more than one column, but it's not widely supported for now.

« A subqueryin the WHERE clause must return a single value when used with a

comparison operator, or a single column when used with an IN() expression.

A subqueryin the FROM clause must return a table of results.

This type of subquery is sometimes called an inline view.

Some uses of subqueries include

238

« Looking up related data from another table (SELECT)

« Looking up a value or set of values to act as a filter (WHERE)

* Generating a derived virtual table (FROM)

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

The whole thing with subqueries is that with a subquery you can combine multiple
parts to make a more complex query:

¢ Using a subquery, you'll be able to get data from other tables.

« You can use subqueries to preprocess data to be used in the
main query.

¢ Subqueries will allow you to combine aggregate and non-aggregate
queries, which you can’t normally do in single queries.

Subqueries do have a cost, however, as you will be running two or more queries for
the price of one—sometimes, even hundreds of queries for the price of one. We'll have a
look at that later when we compare subqueries to alternative techniques.

You will no doubt have seen some subqueries before now, certainly in some of the
earlier chapters in this book. In this chapter, we’ll have a closer look at how subqueries
work and what we can do with them.

Correlated and Non-correlated Subqueries

Subqueries can be correlated or non-correlated. A correlated subquery includes a
reference to the main query. A non-correlated subquery is evaluated independently
from the main query.

Here’s an example of a non-correlated subquery:

-- Books by Female Authors
SELECT *
FROM books
WHERE authorid IN(
SELECT id FROM authors WHERE gender='f'

);

You'll get a result like this:
id authorid Title published price
2007 99 North and South 1854 17.50
702 547 Jane Eyre 1847 17.50

(continued)

239

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

id authorid Title published price

95 701 Silas Marner 1861 18.50

983 211 East Lynne 1861 16.00

678 547 Tales of Angria 1839 14.50

1255 608 Discourse onthe 1755 19.00
Origin ...

~ 165 rows ~

Here’s another which uses an aggregate in the subquery:

-- 0Oldest Customers
SELECT *
FROM customers
WHERE dob=(SELECT min(dob) FROM customers);

This gives you
id givenname familyname o dob
92 Nan Keen e 1943-05-18
392 Daisy Chain . 1943-05-18

(You'll note that there’s more than one oldest customer, because they happen to be
born on the same day. It happens.)

In both cases, the subquery is evaluated once, and the results are used in the main
query. The result may be a list, as in the female authors, or a single value as in the oldest
customer.

A non-correlated subquery is independent of the main query. If you highlight the
subquery alone and run it, you'll get a result.

Here’s an example of a correlated subquery:

-- Book Authors (yes, there’s another way to do this)
SELECT
id, title, (
SELECT coalesce(givenname||" ',"")

240

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

|| coalesce(othernames||" ","")
|| familyname
FROM authors
WHERE authors.id=books.authorid
) AS author
FROM books;

-- MSSOL
SELECT
id, title, (
SELECT coalesce(givenname+' ',"’
+ coalesce(othernames+' ',"'")
+ familyname
FROM authors
WHERE authors.id=books.authorid
) AS author
FROM books;

-- Oracle
SELECT
id, title, (
SELECT ltrim(givenname||"' ")
| |[1trim(othernames||")
| | familyname
FROM authors
WHERE authors.id=books.authorid
) AS author
FROM books;

This gives you the following:

id title author

2078 The Duel Heinrich von Kleist
503 Uncle Silas J. Sheridan Le Fanu
2007 North and South Elizabeth Gaskell

(continued)

241

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

id title author

702 Jane Eyre Charlotte Bronté
1530 Robin Hood, The Prince of Thieves Alexandre Dumas
1759 La Curée Emile Zola

~ 1201 rows ~

In this case, the subquery is evaluated once for every row. Look at the subquery in
the first example earlier, spread out to be more readable:

(
SELECT
coalesce(givenname||" ',"")
|| coalesce(othernames||" ',"'")
|| familyname
FROM authors
WHERE authors.id=books.authorid
)

The SELECT clause is expecting a single value for the author column, and so the
subquery should deliver a single value, which it does. You can’t use multiple columns in
this context, so you need to concatenate the names to give the single value.

Just as importantly, you can’t have multiple rows either. Here, the WHERE clause filters
the result to a single row, where the id matches the authorid in the main query: WHERE
authors.id=books.authorid.

For every row in the books table, the subquery runs again to match the next
authorid.

If there’s no match, the subquery comes back with a NULL.

You can recognize a correlated subquery by the fact that the query references
something from the main query. As a result, you can’t highlight the subquery and run it
alone, because it needs that reference to be complete.

Incidentally, note the WHERE clause in the subquery. In a sense, it's overqualified,
and we could have used this: WHERE id=authorid. This is in spite of the fact that an id
column appears in both the subquery and the main query.

242

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

When the subquery is evaluated, column names will be defined from the inside
out. For the id column, there’s one in the inner authors table, so SQL doesn’t bother to
notice that there’s also one in the outer books table. For the authorid column, there isn’t
one in the authors table, so it falls through the one in the books table.

That’s how it works in SQL, but it's probably better to qualify the columns as we did
in this example to minimize confusion for us humans.

As arule, a correlated subquery is an expensive operation because it's reevaluated
so often. That doesn’t mean you shouldn’t use one, just that you should consider the
alternatives, if there are any. You don't generally get to choose which type of subquery
you will need, but it will help in deciding whether there’s a better alternative.

Subqueries in the SELECT Clause

As we saw, a subquery in a SELECT clause is expected to return a single value for each
row. This can be tedious if, say, you want more than one value from the same external
table with a correlated subquery:

SELECT
id, title, (
SELECT coalesce(givenname||" ',"")
|| coalesce(othernames||" ","")
|| familyname

FROM authors

WHERE authors.id=books.authorid
) AS author,
(SELECT born FROM authors

WHERE authors.id=books.authorid) AS born,
(SELECT born FROM authors

WHERE authors.id=books.authorid) AS died

FROM books;

Apart from being tedious, it’s also expensive, and, of course, there’s a better way to do
it, using a join:

SELECT
id, title,
coalesce(givenname||' ',"")

243

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

|| coalesce(othernames||" ',"")

|| familyname AS author,

born, died
FROM books AS b LEFT JOIN authors AS a ON b.authorid=a.id;
-- Oracle

-- FROM books b LEFT JOIN authors a ON b.authorid=a.id;

In fact, you'll probably find that a correlated subquery is often best replaced by a
join. There’s also some cost in the join, but after that, the rest of the data is free.

On the other hand, if the subquery is non-correlated, then it’s not so expensive. For
example, here’s the difference between customers’ heights and the average height:

SELECT

id, givenname, familyname,

height,

height- (SELECT avg(height) FROM customers) AS diff
FROM customers;

You should see something like this:

id givenname familyname height Diff
42 May Knott 168.5 -2.34
459 Rick Shaw 170.9 0.06
597 lke Andy 153.0 -17.84
186 Pat Downe 176.0 5.16
352 Basil Isk 156.4 -14.44
576 Pearl Divers 176.3 5.46
~ 303 rows ~

Even though the average is involved in a calculation in every row, it’s only calculated
once in the non-correlated subquery.

By the way, there’s an alternative way to do the preceding query involving window
functions, which we’ll look at in Chapter 8. However, in this case, there’s not much
difference in the result.

244

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

You'll have noticed that, in this case, the subquery references the same table as
the main query. That doesn’'t make it a correlated subquery, as it doesn’t reference the
actual rows in the main query. You can verify that if you highlight the subquery and run
it by itself—it will work.

The subquery in this example was an aggregate query. You can also use an aggregate
in a correlated query. Here's a way of generating a running total:

-- Oracle: FROM sales ss
SELECT
id, ordered, total,
(SELECT sum(total) FROM sales AS ss
WHERE ss.ordered<=sales.ordered) AS running total
FROM sales
ORDER BY id;

You'll get something like this:

id ordered total running_total

1 2022-05-04 21:53:55.165107 43.00 43.00
2 2022-05-05 12:39:41.438631 54.50 97.50
3 2022-05-05 17:48:08.433387 96.00 193.50
4 2022-05-07 08:29:35.61573 17.50 321.50
5 2022-05-07 13:10:25.441528 63.00 384.50
6 2022-05-06 17:23:38.261261 18.00 211.50

~ 5549 rows

We've had to alias the table in the subquery to something like ss (subsales?) to
distinguish it from the same table in the main query. That'’s so that the expression
ss.ordered<=sales.ordered can reference the correct tables.

Here, the subquery calculates the sum of the totals up to and including the current
sale, ordered by the ordered column.

You possibly noticed that the query took a little while to run. As we noted, a
correlated subquery is costly, and one which involves aggregates is especially costly.
Fortunately, there’s also a window function for that, as we'll see in the next chapter.

245

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

Subqueries in the WHERE Clause

A subquery can also be used to filter your data.

Again, you may find an alternative to subqueries, such as JOINs, but one compelling
use case is when the subquery is an aggregate query.

Here are some cases where the subquery makes the point clearly and simply.

Subqueries with Simple Aggregates

One place where a subquery is useful is when you need to mix aggregate and non-aggregate
queries. For example, if you want to find the oldest customer, you'll need to do it in two steps:

1. Use an aggregate query to find the earliest date of birth.
2. Use the aggregate result as a filter.

Here, you see the aggregate query used as a subquery:

SELECT *
FROM customers
WHERE dob=(SELECT min(dob) FROM customers);

You can also do the same to find customers shorter than the average:

SELECT *
FROM customers
WHERE height<(SELECT avg(height) FROM customers);

In both cases, the aggregate query was on the same table as the main query. You
might have thought that you could use an expression like WHERE dob=min(dob) or WHERE
height<avg(height), but it wouldn't work; aggregates are calculated after the WHERE clause.

Big Spenders

Suppose you want to identify your “big spenders”—the customers who have spent the
highest amounts. For that, you will need data from the customers and sales tables.
Here, we'll use subqueries as part of a multistep process.
To begin with, you'll want to identify what you regard as large purchases:

SELECT * FROM sales WHERE total>160;

246

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

You'll get something like this:

id customerid total s ordered_date
80 32 168.00 o 2022-05-22
216 13 160.50 . 2022-06-11
483 59 176.50 o 2022-07-11
726 68 173.00 " 2022-08-02
823 86 165.50 . 2022-08-09
891 140 162.50 o 2022-08-16

~ 35 rows ~

In here, we're only interested in the customerid, which we'll use to select from the
customers table:

SELECT *
FROM customers
WHERE id IN(SELECT customerid FROM sales WHERE total>160);

This gives you

id familyname givenname
42 Knott May

58 Ting Jess

91 North June

140 " Byrd Dicky

40 Face Cliff

14 e Rice Jasmin

~ 32 rows ~

Note that the IN operator requires a list of values. In a subquery, this is a single
column of values.

Note also that you may have few results than in the previous query; that would be if
some of the customer ids appear more than once.

247

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

SQL also has an ANY operator which will do the same job:

SELECT *
FROM customers
WHERE id=ANY(SELECT customerid FROM sales WHERE total>=160);

You could also have used a JOIN:

SELECT DISTINCT customers.*
FROM customers JOIN sales ON customers.id=sales.customerid
WHERE sales.total>=160;

To recreate what we had in the previous query, we've qualified the star
(customers.*) and used DISTINCT to remove duplicates of customers who may have
appeared in the list more than once.

The advantage of using a join is that you can also get sales data for the asking, so this
gives a slightly richer result:

SELECT *
FROM customers JOIN sales ON customers.id=sales.customerid
WHERE sales.total>=160;

Here, we've removed the DISTINCT and the customers., so you'll get a lot of data:

id familyname givenname ... total ordered_date
32 s Cue Barbie 168.00 i 2022-05-22
13 . Fine Marty - 160.50 o 2022-06-11
59 . Don Leigh - 176.50 o 2022-07-11
68 Stein Phyllis 173.00 . 2022-08-02
86 o Fied Molly 165.50 . 2022-08-09
140 s Byrd Dicky v 162.50 i 2022-08-16
~ 35 rows ~

To find customers with large total sales will require an aggregate subquery:

SELECT *

FROM customers
WHERE id IN(
248

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

SELECT customerid FROM sales
GROUP BY customerid HAVING sum(total)>=2000

);
This will give you
id . familyname givenname
42 Knott May
58 Ting Jess
26 . Twishes Bess
91 North June
69 . Mentary Rudi
140 i Byrd Dicky
~ 57 rows ~

Last Orders, Please

Here again, we'll use an aggregate subquery, this time to fetch the last order of each customer.
First, we'll need to fetch the last date and time for each customer:

SELECT max(ordered) FROM sales GROUP BY customerid

This will give us a list of one datetime for each customer:

Max

2023-05-15 00:46:00.864446
2023-05-25 00:42:26.783461
2023-05-16 05:27:53.810977
2023-05-06 01:40:02.346894
2023-05-19 07:41:25.104524
2023-05-07 19:01:06.756387

~ 269 rows ~

249

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

We’ll use this list to fetch the matching orders:

SELECT * FROM sales
WHERE ordered IN(SELECT max(ordered) FROM sales GROUP BY customerid);

This will give us a list of sales:

id customerid total . ordered_date
6168 42 121.22 i 2023-05-28
4209 287 50.50 . 2023-03-03
4542 26 11.00 o 2023-03-18
4793 368 56.00 o 2023-03-28
4939 282 39.00 o 2023-04-03
4953 395 75.50 i 2023-04-03
~ 266 rows ~

If you count the rows, you may find that the main query returned fewer rows than the
subquery. That would happen if there were some NULL ordered datetimes. At some point,
we should learn to ignore these, either by filtering them out or removing them altogether.

The question is, why weren't those sales included in the full query? And the answer
is that it’s all about the IN() operator.

Remember in Chapter 3, we discussed the NOT IN quirk. The discussion also applies
to a plain IN. The NULL datetimes in the subquery would result in the equivalent of
testing WHERE ordered=NULL, which, as we all know, always fails.

Now that we have sales for each customer, it's a simple matter to join that to the
customers table to get more details:

SELECT *
FROM sales JOIN customers ON sales.customerid=customers.id
WHERE ordered IN(SELECT max(ordered) FROM sales GROUP BY customerid);

250

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

You'll get something like
id cid total w. od id email
6168 42 12122 ... 2023-05-28 42 may.knott61@example.net
4209 287 5050 ... 2023-03-03 287 judy.free287@example.com
4542 26 11.00 ... 2023-03-18 26 bess.twishes26@example.net
4793 368 56.00 ... 2023-03-28 368 sharon.sharalike368@example.net
4939 282 39.00 ... 2023-04-03 282 howard.youknow282@example.com
4953 395 7550 ... 2023-04-03 395 holly.day395@example.net
~ 266 rows ~

You can now extract any customer or sales data you might want to work with.

Duplicated Customers

We've seen in Chapter 2 how to find duplicates. Suppose, for example, you want to find
duplicate customer names:

SELECT
givenname||' '||familyname AS fullname,
-- MSSQL: givenname+' '+familyname AS fullname,
count(*) as occurrences

FROM customers

GROUP BY familyname, givenname

HAVING count(*)»>1;

You get
fullname Occurrences
Judy Free 2
Annie Mate 2

Mary Christmas 2

(continued)

251

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

fullname Occurrences

Ken Tuckey 2
Corey Ander 2
Ida Dunnit 2
Paul Bearer 2

2

Terry Bell

Remember, having the same name doesn’t necessarily mean they're duplicates. It’s
probably just a coincidence.

We've concatenated the name because of what we’re going to do in the next step.

The problem with aggregate queries is that you can only select what you're grouping,
so we can't see the rest of the customer details. Any attempt to include them would
destroy the aggregate.

We can, however, use the duplicate query as a subquery to filter the customers table:

SELECT *
FROM customers
WHERE givenname||"' '[|familyname IN (
SELECT givenname||' '||familyname FROM customers

GROUP BY familyname, givenname
HAVING count(*)>1

);

This will give us the rest of the customer details. The reason we had to concatenate
the customers’ names is that you can only have a single column in the IN() expression.

Subqueries in the FROM Clause

A subquery can also generate a virtual table, which is useful when you need to prepare
data before actually querying it.

252

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

For example, suppose you want to look at your books in price groups. You can create
a simple query like this:

SELECT
id, title,
CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive’
END AS price_group
FROM books;

You'll get something like this:

id title price_group

2078 The Duel Cheap

503 Uncle Silas Reasonable

2007 North and South Expensive

702 Jane Eyre Expensive

1530 Robin Hood, The Cheap
Prince of Thieves

1759 La Curée Reasonable

~ 1201 rows ~

Now, suppose you want to summarize the table. The problem is that you can’t
do this:

-- This doesn’t work:
SELECT
-- 1id, title,
CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive'
END AS price group,

253

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

count(*) as num_books
FROM books
GROUP BY price_group;

We’'ve commented out the columns we're not grouping, but it still won’t work
because of that pesky clause order thing: the alias price_group is created in the SELECT
clause which comes after the GROUP BY clause, so it’s not available for grouping. Of
course, you can then reproduce the calculation in the GROUP BY clause:

-- This works, but ...
SELECT
-- id, title,
CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive'
END AS price group,
count(*) as num_books
FROM books
GROUP BY CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive'
END;

but you really don’t want to go there.
One solution is to put the original SELECT statement in a subquery:

SELECT price group, count(*) AS num_books

FROM (
SELECT
id, title,
CASE

WHEN price<13 THEN 'cheap’

WHEN price<=17 THEN 'reasonable’

WHEN price>17 THEN 'expensive'
END AS price group

254

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

FROM books
) AS sq -- Oracle: (...) sq
GROUP BY price group;

This gives a meaningful result:

price_group num_books
expensive 320
[NULL] 105
reasonable 467
cheap 309

Remember that the default fall through for the CASE expression is NULL. Those books
which are unpriced will end up in the NULL price group. Depending on the DBMS, you'll
see this somewhere in the result set as a separate group.

Remember that a SELECT statement generates a virtual table. As such, it can be used
in a FROM clause in the form of a subquery.

Note that there’s a special requirement for a FROM subquery: it must have an alias,
even if you've no plans to use it. We have no special plans here, so it’s just called sq
(“SubQuery”) for no particular reason. If you want to, say, join the subquery with
another table or virtual table, then the alias will be useful.

Nested Subqueries

A subquery is a SELECT statement with its own FROM clause. In turn, that FROM clause
might be from another subquery. If you have a subquery within a subquery, it's a nested
subquery.

For example, let’s look at duplicate customer names again. You can find candidates
with the following aggregate query:

SELECT familyname, givenname
FROM customers
GROUP BY familyname, givenname HAVING count(*)>1;

255

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

They're just the names. Suppose you want more details. For that, you can join the
customers table with the preceding query:

SELECT
c.id, c.givenname, c.familyname, c.email
FROM customers AS ¢ JOIN (
SELECT familyname, givenname
FROM customers
GROUP BY familyname, givenname HAVING count(*)>1
) AS n ON c.givenname=n.givenname AND c.familyname=n.familyname;

We've seen something like this before. You'll now get the candidate customers:

id givenname familyname Email

429 Corey Ander corey.ander429@example.net
287 Judy Free judy.free287@example.com
90 Ida Dunnit ida.dunnit90@example.net
488 Ken Tuckey ken.tuckey488@example.net
174 Paul Bearer paul.bearer174@example.com
505 Annie Mate annie.mate505@example.com
~ 16 rows ~

We've aliased the customers table to ¢ for convenience (don’t forget no AS in Oracle),
and the subquery needs a name anyway, so we've called it n. In the SELECT clause, we've
just fetched the id, the names, and the email address.

Now, let’s combine this in another aggregate query, which will give us one row per
name, and combine the other details:

SELECT
givenname, familyname,
-- PostgreSQOL, MSSQL:
string agg(email,', ') AS email,
string agg(cast(id AS varchar(3)),', ') AS ids
-- MariaDB/MySOL:
group _concat(email SEPARATOR ', ') AS email,

256

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

group concat(cast(id AS varchar(3)) SEPARATOR ', ')
AS ids
-- SQLite:
group concat(email,’, ') AS email,
group concat(cast(id AS varchar(3)),', ") AS ids
-- Oracle:
listagg(email,", ") AS email,
listagg(cast(id AS varchar(3)),', ') AS ids
FROM (-- previous SELECT as subquery
SELECT c.id, c.givenname, c.familyname, c.email
FROM customers AS c JOIN (
SELECT familyname, givenname
FROM customers
GROUP BY familyname, givenname HAVING count(*)>1
) AS n ON c.givenname=n.givenname AND
c.familyname=n.familyname

) AS sq
GROUP BY familyname, givenname;

Now you'll get something like

givenname familyname Email ids
Corey Ander corey.ander4d29@e ..., corey.ander85@ex ... 429, 85
Paul Bearer paul.bearer174@e ..., paul.bearer482@e ... 174, 482
Terry Bell terry.bell402@ex ..., terry.bell295@ex ... 402, 295
Mary Christmas mary.christmas46 ..., mary.christmas59 ... 465, 594
Ida Dunnit ida.dunnitb04@ex ..., ida.dunnit90@exa ... 504, 90
Judy Free judy.free93@exam ..., judy.free287@exa ... 93, 287
~ 8 rows ~

Note that we've included variations on the string agg() functions as described in
Chapter 5. Also, we've had to cast the id as a string so that it can be aggregated as one.

If you think this last example is getting a little hard to read, well, that’s one of the
problems with nested subqueries. Thankfully, there’s an alternative in Common Table

Expressions, which we’ll look at soon.
257

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

Using WHERE EXISTS (Subquery)

You have already seen subqueries in the WHERE clause to filter your query. So far, the
subquery has returned either a single value or a single column for use in an IN()

expression.
You can also filter a set of data using WHERE EXISTS (...).Itlooks a little like this:

SELECT ...
FROM ...
WHERE EXISTS(subquery);

The subquery will either return a result or not. If it does, then the WHERE EXISTS is
satisfied, and the row is passed; if it doesn’t, then the WHERE EXISTS isn’t satisfied, and
the row will be filtered.

For example, you can test the idea with the following statement:

-- PostgreSQL, MSSQL, SOLite
SELECT * FROM authors
WHERE EXISTS (SELECT 1 WHERE 1=1);
-- MariaDB/MySQL, Oracle
SELECT * FROM authors
WHERE EXISTS (SELECT 1 FROM dual WHERE 1=1);

Since 1=1 is always true, you'll get all of the rows from the authors table.

Although you would normally only use FROM dual with Oracle, MariaDB and MySQL
also support this. In this case, MariaDB and MySQL don'’t like the WHERE clause without a
FROM, so we've thrown it in to keep them happy.

Similarly, you can return nothing:

-- PostgreSQL, MSSQL, SOLite
SELECT * FROM authors
WHERE EXISTS (SELECT 1 WHERE 1=0);
-- MariaDB/MySQL, Oracle
SELECT * FROM authors
WHERE EXISTS (SELECT 1 FROM dual WHERE 1=0);

The subquery is in a special position in that it doesn’t matter what columns are
actually being selected: what matters is that there is or isn’t a row. That's why we've
included a dummy SELECT 1.

258

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

You can also choose SELECT NULL or even SELECT 1/0. The former would give the
(false) impression that we're looking for nothing, and the latter would have resulted
in an error if run by itself. It's tempting to take it more seriously by selecting a more
meaningful value, but there’s no need.

WHERE EXISTS with Non-correlated Subqueries

Clearly, the previous examples will give you all or nothing, and that’s the sort of thing
you can expect from a non-correlated subquery, such as

SELECT * FROM authors
WHERE EXISTS (SELECT 1/0 FROM books WHERE price<i15);

The subquery selects some rows, which is enough to satisfy the WHERE clause, so
you'll get all the authors. If you had tried WHERE price<0, then you'd get none of the
authors.

WHERE EXISTS with Correlated Subqueries

Using WHERE EXISTS is more interesting if you use a correlated subquery. Here, the test
will be evaluated for every row, so some rows will pass and some won't.

For example, if you want to find all the authors whose books are in the books table,
you can use

SELECT * FROM authors
WHERE EXISTS (
SELECT 1 FROM books WHERE books.authorid=authors.id

)5
You'll get something like
id givenname familyname Home
464 Ambrose i Bierce ‘i Meigs County, Ohio
858 Alexander . Ostrovsky . Moscow
525 Francis . Beaumont s Grace-Dieu, Leicestershire
488 Bashou Matsuo Matsuo Kinsaku

(continued)

259

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

id givenname e familyname . Home

703 Friedrich . Engels . Barmen

722 Stanley . Waterloo . St. Clair, Mich.
~ 443 rows ~

Here, the subquery looks for a row where books . authorid matches authors.id, and
if there is such a row (as there is with most authors), the author row will be returned.

WHERE EXISTS vs. the IN() Expression

In the previous example, you can also get the same result with the IN() expression:

SELECT * FROM authors
WHERE id IN(SELECT authorid FROM books);

This variation is, of course, simpler. However, it’s quite likely that, on the inside, SQL
does exactly the same thing, so how you write it is really a matter of taste.

On the other hand, if you're looking for authors without books (in our catalogue),
then it’s a different matter.

This won’t work:

SELECT * FROM authors
WHERE id NOT IN(SELECT authorid FROM books);

Well, technically, it will work, but not the way we would have wanted. Recall again
from Chapter 3 the “NOT IN quirk.” Since there are some NULLs in the authorid column,
the NOT IN operator eventually evaluates something like ... AND id=NULL ANDThe
id=NULL always fails, and the ... AND ... combines that failure with the rest and causes
the whole expression to fail.

Using WHERE NOT EXISTS will, however, work:

SELECT * FROM authors
WHERE NOT EXISTS (
SELECT 1 FROM books WHERE books.authorid=authors.id

);

260

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

That's because WHERE EXISTS evaluates rows, not values:

id givenname - familyname Home

479 C.E. . Koetsveld e Rotterdam

874 Henry . Savery e Somerset, England

429 Oline - Keese o [NULL]

35 James e Lowell . Cambridge, Massachusetts
148 Demetrius i Boulger v [NULL]

922 Robert Ingersoll . Dresden, New York

~ 45 rows ~

You won't see WHERE EXISTS much in the wild, since you can generally do the same
thing with either a join or the IN operator. However, there are times where it has an
advantage or is more intuitive. That's especially because WHERE EXISTS can be more
expressive and particular when NOT IN doesn’t work.

LATERAL JOINS (a.k.a. CROSS APPLY) and Friends

This feature is not available in SQLite. Neither is it available in MariaDB, though it /s
available in MySQL.

Still, if you're working with one of these DBMSs, you might want to see what it’s all
about. In any case, there’s an alternative for most things, especially with Common
Table Expressions, in the next section.

SQLite does, however, have an interesting quirk with the WHERE clause, which
you'll see if you hang around.

If you try the following query:

SELECT
id, title,
price, price*0.1 AS tax, price+tax AS inc
FROM books;
261

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

It won't work. That'’s because each column is independent of the rest. You can’t
use an alias as part of another calculation in the SELECT clause. We got around this by
calculating the inc column separately: price*1.1 AS inc.

It gets worse if you try something like this:

SELECT

id, title,

price, price*0.1 AS tax
FROM books
WHERE tax>1.5;

Here, the problem is that the SELECT clause is evaluated after the WHERE clause, so
the aliased calculation for tax isn’t available yet in the WHERE clause. Again, we could
recalculate the value in the WHERE clause: WHERE price*1.1>1.5.

Except with SQLite. You can indeed use aliases in the WHERE clause and also in the
GROUP BY clause.

Finally, if, for example, you want to get multiple columns from a subquery in the
SELECT clause, this won't work either:

SELECT
id, title,
(SELECT givenname, othernames, familynames
FROM authors WHERE authors.id=books.authorid)
FROM books
WHERE tax>1.5;

A subquery in the SELECT clause can only return one value, which is all right if you
concatenate the names and then return the result. Otherwise, you're stuck with three
subqueries, which is both costly and tedious.

SQL can solve this by applying a subquery to each row. This is called a LATERAL JOIN
in some DBMSs, or an APPLY in some others.

262

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

Adding Columns

In the first two examples earlier, you can use an expression like this:

-- PostgreSQL, MySOL (not MariaDB)
SELECT
id, title,
price, tax, inc
FROM
books
JOIN LATERAL(SELECT price*0.1 AS tax) AS sq ON true
JOIN LATERAL(SELECT price+tax AS inc) AS sq2 ON true
WHERE tax>1.5
3
-- MSSQL
SELECT
id, title,
price, tax, inc
FROM books
CROSS APPLY (SELECT price*0.1 AS tax) AS sq
CROSS APPLY (SELECT price+tax AS inc) AS sq2
WHERE tax>1.5
;
-- Oracle (No AS in subquery name)
SELECT
id, title,
price, tax, inc
FROM books
CROSS APPLY (SELECT price*0.1 AS tax FROM dual) sq
CROSS APPLY (SELECT price+tax AS inc FROM dual) sq2
WHERE tax>1.5

b

263

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

You'll get something like this:

id Title price tax inc
503 Uncle Silas 17.00 1.700 18.700
2007 North and South 17.50 1.750 19.250
702 Jane Eyre 17.50 1.750 19.250
1759 La Curée 16.00 1.600 17.600
205 Shadow: A Parable 17.50 1.750 19.250
1702 Philaster 17.50 1.750 19.250
~ 525 rows ~
Note

e The subquery must be given an alias, even though it’s not used.

e PostgreSQL, MySQL, and MSSQL allow you to put the column
aliases in the subquery aliases instead: (SELECT price*0.1)
AS sq(tax). Not Oracle.

¢ The example for PostgreSQL and MySQL uses the dummy condition
ON true. MySQL will allow you to leave this out, but PostgreSQL
requires it.

Note in particular that the second subquery will happily calculate the expression
price+tax AS inc. This is because the subqueries are evaluated one after the other, so
the expressions can accumulate.

The LATERAL or CROSS APPLY subquery is applied to every row of the main query.
In principle, that could be pretty expensive, but, as it turns out, it’s not so bad. It’s
particularly useful if you need to include a series of intermediate steps in a more
complex calculation—it’s easy to understand and easy to maintain.

SQL also has a type of join called CROSS JOIN. In a cross join, each row of one

table is joined with each row of the other table. This result is also known as a

Cartesian product. That’s a lot of combinations, and it’s usually not what you want.
264

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

A CROSS APPLY is not the same thing, though it is a type of join. It's closer to an
OUTER JOIN.

You'll see a use for a cross join later when we cross join with a single row
virtual table.

Multiple Columns

As we noted, SQL won'’t let you fetch multiple columns from a single subquery in the SELECT
clause, because everything in the SELECT clause is supposed to be scalar—a single value.

However, you can fetch multiple columns if the context is table-like, such as in the

FROM clause. For example:

PostgreSOL, MySQL (Not MariaDB)
SELECT
id, title,
givenname, othernames, familyname
FROM
books
LEFT JOIN LATERAL(
SELECT givenname, othernames, familyname
FROM authors
WHERE authors.id=books.authorid
) AS a ON true;
MSSQL
SELECT
id, title,
givenname, othernames, familyname,
home
FROM books
OUTER APPLY (
SELECT givenname, othernames, familyname
FROM authors
WHERE authors.id=books.authorid
) AS a;
Oracle: Same as MSSQOL without AS

265

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

You'll get something like
id Truncate givenname othernames familyname
2078 The Duel Heinrich [NULL] von Kleist
503 Uncle Silas J. Sheridan Le Fanu
2007 North and South Elizabeth [NULL] Gaskell
702 Jane Eyre Charlotte [NULL] Bronté
1530 Robin Hood, The ... Alexandre [NULL] Dumas
1759 La Curée Emile [NULL] Zola

~ 1201 rows ~

In this case, you can just as readily use a normal outer join to get the same results:

SELECT
books.id, title,
givenname, othernames, familyname,
home
FROM books LEFT JOIN authors ON authors.id=books.authorid;

The latter form is definitely simpler (we've left off the table aliases for simplicity and
qualified the books . id column out of necessity).

On the other hand, if the subquery is an aggregate query, the lateral join is
convenient, since you're going to need a subquery anyway: remember you can’t mix
aggregate and non-aggregate data in a single SELECT statement.

For example, suppose you want a list of customers with the total sales for each
customer. You'll need an aggregate query to get the totals, joined to the customers table.
You could do this:

-- PostgreSQL, MySOL (not MariaDB)
SELECT
id, givenname, familyname, total
FROM
customers
LEFT JOIN LATERAL(
SELECT sum(total) AS total FROM sales

WHERE sales.customerid=customers.id
266

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

) AS totals ON true;

-- MSSQL, Oracle (no AS)
SELECT
id, givenname, familyname, total
FROM
customers
OUTER APPLY(
SELECT sum(total) AS total FROM sales
WHERE sales.customerid=customers.id
) AS totals;

This will give you something like this:

Id givenname familyname total

42 May Knott 3437.72
459 Rick Shaw 461.00
597 lke Andy [NULL]
186 Pat Downe 1536.50
352 Basil Isk 573.00
576 Pearl Divers [NULL]
~ 303 rows ~

Although there may be alternatives, as you'll need when working with SQLite or
MariaDB, the lateral join can sometimes make this sort of query a little more intuitive.

Working with Common Table Expressions

We’ve seen that you can use subqueries in the FROM clause and that you can even
nest them. However, there’s an alternative method which makes working with these
subqueries more natural.
Common Table Expressions, or CTEs to their friends, are subqueries which generate
table results. As a result, you can almost always replace a FROM subquery with a CTE.
We've already used CTEs in previous chapters, so if you get a sense of déja vu, it's OK.

267

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

Common Table Expressions (CTEs) are a relatively new feature in SQL, but have
been around for some time, and are available in almost all modern DBMSs. The
notable laggards are MariaDB which added support in version 10.2 (released in
2016) and MySQL which added support in version 8.0 (released in 2018). If you're
stuck with an older version of MariaDB or MySQL, maybe you can learn to enjoy
nested subqueries.

A CTE s a virtual table defined before it is used. It is similar to a subquery in that
it comprises a SELECT statement, but the syntax is different, and it offers a number of
advantages.

In their simplest form, CTEs are an alternative form of subquery. Even so, there is an

immediate benefit:

« CTEs are more readable and easier to maintain, because they are
defined at the beginning rather than in the middle of a query.

Complex subqueries may have one subquery referring to another. This involves
nesting subqueries.

e CTEs can reference previous CTEs without the need for nesting.

Both these benefits relate to readability and maintainability. The third benefit is one
which is not available for ordinary subqueries.

« CTEs can refer to themselves; thus, they can be recursive.

Syntax

A Common Table Expression is defined as part of the query, before the main part:

WITH cte AS (subquery)
SELECT columns FROM cte;

The CTE is given a name, though not necessarily cte of course. Thereafter, it is used
as a normal table in the main query. You can define multiple CTEs as follows:

WITH
cte AS (subquery),
another AS (subquery)
SELECT columns FROM ...;

268

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

Using a CTE to Prepare Calculations

Remember the subquery with the price groups?

SELECT price group, count(*) AS num_books
FROM (
SELECT
id, title,
CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive'
END AS price group
FROM books
) AS sq -- Oracle: (...) sq
GROUP BY price_group;

That is easily rewritten as a CTE:

-- Prepare Data
WITH sq AS (
SELECT
id, title,
CASE
WHEN price<13 THEN 'cheap’
WHEN price<=17 THEN 'reasonable’
WHEN price>17 THEN 'expensive’
END AS price group
FROM books
)
-- Use Prepared Data
SELECT price group, count(*) AS num_books
FROM sq
GROUP BY price group;

It doesn’t look much different, but the important part is that you now have your
query in two parts: the first part defines the subquery, and the second uses it. It's a much

better way of organizing your code.

269

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

The subquery has been transferred to a CTE at the beginning of the query. From
there on, the main SELECT statement references the CTE as if it were just another table.

The advantage is that the query is written according to the plan: first prepare the
data, and then use the data.

MSSQL currently doesn’t require a semicolon at the end of a statement, but you
should be in the habit of using it anyway.

However, the WITH clause has an alternative meaning at the end of a previous
SELECT statement, so it will be misinterpreted if you don’t end the previous
SELECT statement with the semicolon.

Just use the semicolon at the end of every statement, and all will be fine. Don 't fall
for this nonsense:

SWITH (...)

Here’s another example, which we’ll use further in the next few chapters. If you look
at the sales table:

SELECT * FROM sales;

you'll see the following:

id customerid total ine ordered_date
39 28 28.00 . 2022-05-15
40 27 34.00 i 2022-05-16
42 1 58.50 . 2022-05-16
43 26 50.00 - 2022-05-16
45 26 17.50 . 2022-05-16
518 50 13.00 . [NULL]

~ 5549 rows ~

270

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

If you want to summarize the table, such as to get monthly totals, the data is too

fine-detailed. Instead, you can prepare the data by formatting the ordered as a year-

month value:

WITH salesdata AS (

SELECT

-- PostgreSOL, Oracle
to_char(ordered, 'YYYY-MM') AS month,

MariaDB/MySQL

-- date format(ordered, '%Y-%m') AS month,
MSSOL

-- format(ordered, 'yyyy-MM') AS month,
SQLite

-- strftime('%Y-%m"',ordered) AS month,

total
FROM sales

)

SELECT month, sum(total) AS daily total
FROM salesdata
GROUP BY month
ORDER BY month;

You'll now get the following summary:

Month daily_total

2022-05 6966.50
2022-06 12733.00
2022-07 17314.00
2022-08 19093.00
2022-09 20295.50
2022-10 27797.50

~ 14 rows ~

271

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

In real life, much of what you want to summarize isn't in the right form, but you can
prepare it in a CTE to get it ready.
We’ll have another look at CTEs in Chapter 9, where we’ll see more techniques we

can apply.

Summary

In this chapter, we've had a look at using variations on subqueries in a query. We've
already seen some subqueries in previous chapters, but here we had a closer look at how
they work.

Subqueries can be used in any clause. The results of the subquery must match the
context of the clause:

« Subqueries in the SELECT clause or in simple WHERE expressions need
to return a single value.

« Subqueries used in an IN() expression need to return a
single column.

= Subqueries used in the FROM clause need to return a virtual table.

You can also use subqueries in the ORDER BY clause, though you'd probably want to
use the expression in the SELECT clause instead.

You can also use subqueries with the WHERE EXISTS expression or in LATERAL joins.

Subqueries in the FROM clause can be nested, though you would probably want to use
a Common Table Expression instead.

Correlated and Non-correlated Subqueries

Subqueries can be correlated or non-correlated:

« Anon-correlated subquery is independent of the main query and is
evaluated once. The results are then used for the main query.

« A correlated subquery is one which references data in the main
query. It is evaluated for every row.

A correlated subquery can be expensive, since it's evaluated multiple times, so there
may be more suitable alternatives.

272

CHAPTER 7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

The WHERE EXISTS Expression

The WHERE EXISTS tests whether the subquery returns any rows; if it does, the row in the
main query is retained; otherwise, it is filtered out.

Using a non-correlated subquery in WHERE EXISTS will generally return all or none of
the rows in the main query. Using a correlated subquery will filter selective rows.

You can generally use an IN() expression as an alternative, but there are times when
WHERE EXISTS allows a more complex subquery. It also bypasses the NOT IN quirk.

LATERAL JOINS (a.k.a. CROSS APPLY)

A LATERAL 3JOIN, which, in some DBMSs, is a CROSS APPLY, allows you to add columns to
each row in the main query:

« Youcanuse a LATERAL JOIN to add calculated columns, and
you can chain them, so you can have multiple calculations and
intermediate values.

¢« Youcan also use a LATERAL JOIN to add multiple columns from a
subquery.

Common Table Expressions

A subquery can be used in a FROM clause, but it can be complex, especially if there’s a
need for multiple subqueries, which will have to be nested.

A Common Table Expression allows you to define a virtual table before the main
query, allowing the main query to work like an ordinary query.

You can also chain multiple CTEs together, which is easier to work with than nesting
subqueries.

Coming Up

In Chapter 5, we had a look at aggregating data. Generally, aggregate values can’t be
mixed with non-aggregate values without throwing a few subqueries into the mix.

273

CHAPTER7 WORKING WITH SUBQUERIES AND COMMON TABLE EXPRESSIONS

Window functions are a group of functions which do the job of applying subqueries
to each row. There are two main groups of window functions:

« The aggregate functions can be used to apply an aggregate to each
row of a non-aggregate query. They can also be used to accumulate
or aggregate in groups.

« The sequencing functions can be used to generate a value based on
the position of the row in the dataset. They can be used to indicate
the row position or some grouping. They can also be used to fetch
values from other rows.

With window functions, you'll be able to generate datasets which combine plain data
with more analytical data.

274

CHAPTER 8

Window Functions

So far, you have seen two main groups of calculations:

« Most calculations have been based on table columns: For each row, a
value is calculated from one or more columns.

e Aggregate queries are used to summarize rows: For the whole table,
some or all rows are summarized.

Window functions are a group of functions which add row data as columns. We'll be
working with three groups of window functions:

e Aggregate functions: You would normally get aggregates as a separate
summary of the table data, but aggregate window functions allow you
to include aggregates with each row.

Among other things, you'll see how this can be used to generate
running totals.

« Ranking functions: This will generate a value based on the position of
the current row within the dataset.

Using sequencing functions, you can get the row number, the
relative ranking, and even groups such as deciles.

¢ Value functions: You can get data from rows which precede or
follow the current row. You can also get the first and last values in
each group.

This will, for example, get you the difference in values between
this and some other row.
In this chapter, we'll look at all of these.

© Mark Simon 2023
M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_8

CHAPTER 8 WINDOW FUNCTIONS

Window functions are relatively new to SQL, but most modern DBMSs now support
them. Again, the laggards are MariaDB, which introduced them in version 10.2, and
MySQL which introduced them in version 8.

Before we get started, some of the samples will be working with the sales table. That
table includes some NULLs for the ordered date/time. Presumably, those sales never
checked out.

We’ve been pretty forgiving so far and filtered them out from time to time, but the
time has come to deal with them. We can delete all of the NULL sales as follows:

DELETE FROM sales WHERE ordered IS NULL;

You'll notice that there’s a foreign key from the saleitems table to the sales table,
which would normally disallow deleting the sales if there are any items attacked.
However, if you check the script which generates the sample database, you'll notice the
ON DELETE CASCADE clause, which will automatically delete the orphaned sale items.

Writing Window Functions

A window function generates a value over a set of rows. The set of rows is called
a window.
The general syntax for window functions is

fn() OVER (PARTITION BY columns |
ORDER BY columns | frame clause)

The important part is the OVER() clause which generates the window to be
summarized.
There are three main window clauses:

« PARTITION BY: This calculates the function for the group defined. It is
equivalent to GROUP BY.

The default partition is the whole table.

276

CHAPTER 8 WINDOW FUNCTIONS

e« ORDER BY: This calculates the function cumulatively, in the order
defined. In other words, it generates running totals.

This order does not need to be the same as the table’s ORDER
BY clause.

¢ There is also an optional framing clause. This creates a sliding
window within the partition.

The framing clause requires an ORDER BY window clause. By
default, the frame is the rows from the beginning to the current
row, but that needs to be qualified when we get to that.

In the following samples, there is normally an ORDER BY clause at the end of the
SELECT statement, which is the same as what’s in the OVER () clause. This isn’t necessary,
but it makes the results easier to follow.

Simple Aggregate Windows

As you know, you can’t mix aggregate functions in non-aggregate queries. For example,
here is an aggregate query which won't work:

SELECT
id, givenname, familyname,
count (*)

FROM customerdetails;

However, this will work:

SELECT
id, givenname, familyname,
count(*) OVER ()

FROM customerdetails;

277

CHAPTER 8 WINDOW FUNCTIONS

This gives you something like

id givenname familyname count
42 May Knott 303
459 Rick Shaw 303
597 lke Andy 303
186 Pat Downe 303
352 Basil Isk 303
576 Pearl Divers 303

~ 303 rows ~

The OVER() clause changes the aggregate function into a window function. This
aggregate function will now be generated for each column. You'll see later that the OVER()
clause defines any grouping, known as partitions, the order, and the number of rows to be
considered in the aggregate.

For such a simple case, you can get the same result with a subquery:

SELECT
id, givenname, familyname,
(SELECT count(*) FROM customers)
FROM customerdetails;

The window function becomes more interesting when you apply one of the window
clauses. For example:

SELECT
id, givenname, familyname,
count(*) OVER (ORDER BY id)
FROM customerdetails;

This will give the running count up to and including the current row, in order of id.
The actual table results may or may not be in row order, especially if you include other
expressions, so it’s better to add that to the end:

278

CHAPTER 8 WINDOW FUNCTIONS

SELECT

id, givenname, familyname,

count(*) OVER (ORDER BY id) AS running count
FROM customerdetails
ORDER BY id;

Now you'll get something like

id Givenname familyname running_count
1 Pierce Dears 1

2 Arthur Moore 2

5 Ray King 3

6 Gene Poole 4

9 Donna Worry 5

10 Ned Duwell 6

~ 303 rows ~

The running_count column looks very much like a simple row number. We'll see
later that it's not necessarily the same if the ORDER BY column isn’t unique.

Aggregate Functions

Normally, you can’t use aggregate functions in a normal query unless you squeeze them
into a subquery. However, they can be repurposed as window functions.

Previously, you saw that you can use the expression count(*) OVER () to give the
total number on every row. You can also do something similar with the sum() or avg()
functions.

For example, suppose you want to compare sales totals with the overall average:

SELECT
id, ordered, total,

total-avg(total) OVER () AS difference
FROM sales;

279

CHAPTER 8 WINDOW FUNCTIONS

You'll get something like
id Ordered total difference
39 2022-05-15 21:12:07.988741 28 -33.783
40 2022-05-16 03:03:16.065969 34 -27.783
42 2022-05-16 10:09:13.674823 58.5 -3.283
43 2022-05-16 15:02:43.285565 50 -11.783
45 2022-05-16 16:48:14.674202 17.5 -44.283
518 [NULL] 13 -48.783
~ 5549 rows ~

In a more complicated example, suppose you want to compare how sales each day
compare to the rest of the week.

First, you could extract only the day of the week and total from the sales table. You
can use either the day name or the day number for this, but let’s use the day number:

-- PostgreSOL: Sunday=0
SELECT
EXTRACT (dow FROM ordered) AS weekday number,
total
FROM sales;
-- MSSQL: Sunday=1
SELECT
datepart(weekday,ordered) AS weekday number,
total
FROM sales;
-- Oracle: Sunday=1
SELECT
to_char(ordered,'D"')+0 AS weekday number,
total
FROM sales;
-- MariaDB/MySQL: Sunday=1
SELECT
dayofweek (ordered) AS weekday number,

total
280

CHAPTER 8 WINDOW FUNCTIONS

FROM sales;
-- SQLite: Sunday=0
SELECT
strftime('%w",ordered) AS weekday number
total
FROM sales;

You'll see they all have a different way to do it, and they can’t even agree on the day
number. Fortunately, they all agree on the first day of the week:

weekday_number Total
0 28

1 34

1 58.5
1 50

1 17.5
0 13
~ 5549 rows ~

Next, put that into a CTE, so you can aggregate them:

WITH
data AS (
SELECT
... AS weekday,
total
FROM sales
)

-- to be done
5
Next, you could summarize the data in another CTE:

WITH
data AS (
SELECT
281

CHAPTER 8 WINDOW FUNCTIONS

... AS weekday number,
total
FROM sales
))
summary AS (
SELECT weekday number, sum(total) AS total
FROM data
GROUP BY weekday number
)

-- etc

Finally, you can compare the daily totals to the grand totals using a window aggregate:

WITH
data AS (...),
summary AS (...)
SELECT
weekday number, total,
total/sum(total) OVER()
FROM weekday number
ORDER BY weekday number;

This will give you a day-by-day summary:

weekday_number total ?column?
0 48182.22 0.147
1 49304 0.151
2 45156.5 0.138
3 45959.5 0.141
4 47528 0.145
5 42372.5 0.13
6 48415.5 0.148

282

CHAPTER 8 WINDOW FUNCTIONS

Note that the expression total/sum(total) OVER() is confusing as the OVER() clause
seems a little uninvolved. You might prefer to write it as total/(sum(total) OVER ())
to make it clearer that it is, in fact, a single expression. We’ll leave that to your preference,
but it isn't normally written that way.

You can finish off by giving the calculation an alias, displaying it as a percentage, and
sorting by weekday:

WITH

data AS (...),

summary AS (...)
SELECT

weekday, total,

100*total/sum(total) OVER() AS proportion
FROM summary

.
b

If you want to display the percentage symbol, that's up to the DBMS. You can try one
of the following:

-- PostgreSOL
to_char(100*total/sum(total) OVER(),'99.9%")
-- MariaDB/MySQL
format(100*total/sum(total) OVER(),2) || '%'
-- MSSOL
format(100*total/sum(total) OVER(),'0.0%")
-- SQLite: aka printf(...)
select format('%.1f%%"',100*total/sum(total) OVER())
-- Oracle
to_char(100*total/sum(total) OVER(),'99.9") || "%’

This looks more convincing:

weekday_number total proportion

0 48182.22 14.7%

1 49304 15.1%

2 45156.5 13.8%
(continued)

283

CHAPTER 8 WINDOW FUNCTIONS

weekday_number total proportion
3 45959.5 141%
4 47528 14.5%
5 42372.5 13.0%
6 48415.5 14.8%

We've used OVER() to calculate the grand total for the table. However, we can also
use a sliding window, as we'll see in the next section.

Aggregate Window Functions and ORDER BY

Recall our introductory sample where we included an ORDER BY clause in the
OVER() clause:

SELECT

id, givenname, familyname,

count(*) OVER (ORDER BY id) AS running count
FROM customerdetails
ORDER BY id;

In this example, the id, being the primary key, is unique. That will give us a false idea
of how this works, so let’s look at using the height, which is not unique. We’ll also filter
out the NULL heights to make it more obvious:

SELECT
id, givenname, familyname,
height,
count(*) OVER (ORDER BY height) AS running count
FROM customerdetails
WHERE height IS NOT NULL
ORDER BY height;

284

CHAPTER 8 WINDOW FUNCTIONS

You'll see some repeated heights and how they affect the window function:

id givenname familyname Height running_count
597 lke Andy 153 2

283 Ethel Glycol 153 2

451 Fred Knott 153.8 3

194 Rod Fishing 154.3 4

534 Minnie Bus 156.4 6

352 Basil Isk 156.4 6

~ 267 rows ~

When using ORDER BY in the OVER clause, it means count the number of rows up fo
the current value. That may or may not be what you wanted.

The Framing Clause

In this example, there’s an implied framing clause, which defaults to this behavior. If you
like, you can make it more specific:

count(*) OVER (ORDER BY height
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

That's quite a mouthful, but that’s the way the SQL language is developing: Why say
something in two words if you can say it in twenty'?

Here, the word RANGE refers to the value of height. For example, in the fifth row
earlier, the value is the same as the next row, so count (*) includes both.

The obvious alternative is

SELECT
id, givenname, familyname,
height,
count(*) OVER (ORDER BY height

"You'll see this sort of thing in all of the newer features in SQL. You might say that SQL is the

new COBOL.

COBOL was (and still is) an early programming language which was supposed to appeal to less
mathematical business programmers. It is noted for its verbosity.

285

CHAPTER 8 WINDOW FUNCTIONS

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS running count
FROM customerdetails
WHERE height IS NOT NULL
ORDER BY height;

The subtle change is from RANGE BETWEEN to ROWS BETWEEN. It now counts the
number of rows up to the current row.

id givenname familyname Height running_count
597 lke Andy 153 1

283 Ethel Glycol 153 2

451 Fred Knott 1563.8 3

194 Rod Fishing 154.3 4

534 Minnie Bus 156.4 5

352 Basil Isk 156.4 6

~ 267 rows ~

It's a little bit unfair: two customers on the same height are arbitrarily positioned one
before the other. We’ll see more of this unfairness later.
The framing clause can take the following form:

[ROW|RANGE] BETWEEN start AND end

As we saw, the difference between ROWS and RANGE is that RANGE includes all the rows
which match the current value, while ROWS doesn't.

The start and end expressions, a.k.a. the frame borders, can take one of the

following forms:
Expression Meaning
UNBOUND PRECEDING Beginning
n PRECEDING Number of rows before the current row

CURRENT ROW

n FOLLOWING Number of rows afterthe current row
UNBOUND FOLLOWING End

286

CHAPTER 8 WINDOW FUNCTIONS

There's also a short form:
ROWS |RANGE start

which means between the start and the current row.

Creating a Daily Sales View

Before we proceed, some of our further examples will require some prepared sales
data. Although we could do this in a common table expression, it would make sense to
prepare a view instead and save ourselves a bit of bother later.

We're going to want daily sales, together with the month of sale. The view would look
like this:

CREATE VIEW daily sales AS
SELECT
ordered date,

-- PostgreSOL, Oracle

to_char(ordered date,'YYYY-MM') AS ordered month,
-- MariaDB/MySOL

-- date format(ordered date,'%Y-%m")

AS ordered month,

-— MSSOL

-- format(ordered date,'yyyy-MM') AS ordered month,
-- SQLite

-- strftime('%Y-%m',ordered date) AS ordered month,

sum(total) AS daily total
FROM sales
WHERE ordered IS NOT NULL
GROUP BY ordered date;

(Don'’t forget to wrap the statement between GOs for MSSQL..)
We can put that to the test:

SELECT * FROM daily sales ORDER BY ordered date;

287

CHAPTER 8 WINDOW FUNCTIONS

You should see something like this:

ordered_date ordered_month daily_total
2022-05-04 2022-05 43
2022-05-05 2022-05 150.5
2022-05-06 2022-05 110.5
2022-05-07 2022-05 142
2022-05-08 2022-05 214.5
2022-05-09 2022-05 16.5
~ 389 rows ~

A Sliding Window

Here’s an example of using a sliding window with the framing clause. Suppose we want
to generate the daily totals for each day and the week up to the day. We can use

SELECT
ordered date, daily total,
sum(daily total) OVER(ORDER BY ordered date
ROWS 6 PRECEDING) AS week total,
sum(daily total) OVER(ORDER BY ordered date
ROWS UNBOUNDED PRECEDING) AS running total
FROM daily sales
ORDER BY ordered date;

For both framing clauses, we've used the shorter form, since we want to go up to the
current row. We could have left off the framing clause altogether for the running total,
but we needed to change from the default RANGE BETWEEN just in case two daily totals
were the same.

288

You'll get something like the following:

CHAPTER 8 WINDOW FUNCTIONS

ordered_date daily_total week_total running_total
2022-05-04 43 43 43
2022-05-05 150.5 193.5 193.5
2022-05-06 110.5 304 304
2022-05-07 142 446 446
2022-05-08 2145 660.5 660.5
2022-05-09 16.5 677 677
2022-05-10 160 837 837
2022-05-11 115 909 952
2022-05-12 205 963.5 1157
2022-05-13 164.5 1017.5 1321.5
2022-05-14 46.5 922 1368
2022-05-15 457.5 1165 1825.5
~ 389 rows ~

Note that for the first seven days, the week and running totals are the same, because

there are no totals from before then. However, from there on, the running total keeps

accumulating while the week total is clamped to the current seven days.

If you look hard enough, you may also see some gaps in the dates. That means that

there were no sales on those days and can also mean trouble for interpreting what you

mean, since one row is not necessarily one day. We’ll address that problem in Chapter 9.

Remember, you're not limited to the count() and sum() functions. For example, you

can create sliding averages as well:

SELECT

ordered date, daily total,
sum(daily total) OVER(ORDER BY ordered date

ROWS 6 PRECEDING) AS week total,
avg(daily total) OVER(ORDER BY ordered dat
ROWS 6 PRECEDING) AS week average,

sum(daily total) OVER(ORDER BY ordered date

289

CHAPTER 8 WINDOW FUNCTIONS

ROWS UNBOUNDED PRECEDING) AS running_ total
FROM daily sales
ORDER BY ordered date;

The week average is the average over the seven days including the current day:

ordered_date daily_total week_total week_average running_total
2022-05-04 43 43 43 43
2022-05-05 150.5 193.5 96.75 193.5
2022-05-06 110.5 304 101.333 304
2022-05-07 142 446 111.5 446
2022-05-08 2145 660.5 132.1 660.5
2022-05-09 16.5 677 112.833 677
2022-05-10 160 837 119.571 837
2022-05-11 115 909 129.857 952
2022-05-12 205 963.5 137.643 1157
2022-05-13 164.5 1017.5 145.357 1321.5
2022-05-14 46.5 922 131.714 1368
2022-05-15 457.5 1165 166.429 1825.5
~ 389 rows ~

You can also select sliding minimums and maximums or averages so far. You'll have
to decide which of them is useful for your own purposes.

Window Function Subtotals

Earlier, we created grand totals with an expression like sum(total) OVER().The OVER()
expression is a shorthand for summing over the entire table.

It’s also possible to sum (or count, or whatever you like) over groups. You might have
thought it would be something like sum(total) OVER (GROUP BY ...), butthat's too
obvious. Instead, we use the expression (PARTITION BY ...) which means grouping.

290

CHAPTER 8 WINDOW FUNCTIONS

The default partition is the whole table. You can partition by anything that can
be grouped. For example, suppose you want to get monthly totals with the previous
examples, you can use

SELECT
ordered date, daily total,
sum(daily total) OVER(ORDER BY ordered date
ROWS 6 PRECEDING) AS week total,
sum(daily total) OVER(ORDER BY ordered date
ROWS UNBOUNDED PRECEDING) AS running total,
sum(daily total) OVER(PARTITION BY ordered month)
AS monthly total
FROM daily sales
ORDER BY ordered date;

You'll now see something like

ordered_date daily_total week_total running_total monthly_total

2022-05-04 43 43 43 6966.5
2022-05-05 150.5 193.5 193.5 6966.5
2022-05-06 110.5 304 304 6966.5
2022-05-07 142 446 446 6966.5
2022-05-08 2145 660.5 660.5 6966.5
2022-05-09 16.5 677 677 6966.5
2022-05-10 160 837 837 6966.5
2022-05-11 115 909 952 6966.5
2022-05-12 205 963.5 1157 6966.5
2022-05-13 164.5 1017.5 1321.5 6966.5
2022-05-14 46.5 922 1368 6966.5
2022-05-15 457.5 1165 1825.5 6966.5
~ 389 rows ~

For every month, you’ll get a new total, of course.
Now, here’s the tricky part. You can also combine PARTITION BY with ORDER BY:
291

CHAPTER 8 WINDOW FUNCTIONS

sum(daily total) OVER(

PARTITION BY ordered month

ORDER BY ordered date ROWS UNBOUNDED PRECEDING
) AS month running total

Here’s a sample of various possibilities:

SELECT
ordered date, daily total,
sum(daily total) OVER(ORDER BY ordered date
ROWS UNBOUNDED PRECEDING) AS running total,
sum(daily total) OVER(PARTITION BY ordered month)
AS month_total,
sum(daily total) OVER(ORDER BY ordered month)
AS running month_total,
sum(daily total) OVER(PARTITION BY ordered month
ORDER BY ordered date ROWS UNBOUNDED PRECEDING)
AS month_running_total
FROM daily sales
ORDER BY ordered date;

You'll see something like this (the column names have been abbreviated to fit in

the page):

ordered_date daily_total Rt mt rmt mrt
2022-05-04 43 43 6966.5 6966.5 43
2022-05-05 150.5 193.5 6966.5 6966.5 193.5
2022-05-06 110.5 304 6966.5 6966.5 304
2022-05-07 142 446 6966.5 6966.5 446
2022-05-08 214.5 660.5 6966.5 6966.5 660.5
2022-05-09 16.5 677 6966.5 6966.5 677
2022-05-10 160 837 6966.5 6966.5 837
2022-05-11 115 952 6966.5 6966.5 952
2022-05-12 205 1157 6966.5 6966.5 1157

(continued)

292

CHAPTER 8 WINDOW FUNCTIONS

ordered_date daily_total Rt mt rmt mrt
2022-05-13 164.5 1321.5 6966.5 6966.5 1321.5
2022-05-14 46.5 1368 6966.5 6966.5 1368
2022-05-15 457.5 1825.5 6966.5 6966.5 1825.5
~ 389 rows ~

The names may be somewhat confusing, so here’s a table of what’s going on:

Clause Name What'’s Happening

ORDER BY date ... running_total Total so far from the beginning to
the current row

PARTITION BY month month_total Total for the current group

ORDER BY month running_month total Running total for each month

PARTITION BY monthORDER BY month running total Running total within each month
date ...

(Again, the column names have been abbreviated to make it all fit.)

Notice how we're using the group column ordered month both to partition and for
arunning total. Because its default frame is RANGE ..., it will produce the total for all of
the values so far, which effectively is a total for the whole month. This is the sort of thing
you can expect if you order by a non-unique row.

The hardest part of it all is thinking of good names for the results.

As summaries, these are all good candidates for saving as a view.

Note, however, that in SQL Server only, you cannot include an ORDER BY clause
in a view without additional trickery. As a result, you should at least make sure
that your SELECT statement includes the columns you want to order by, and then
include the ORDER BY clause when using the view.

Alternatively, you can finish the ORDER BY clause with OFFSET 0 ROWS as a
workaround.

293

CHAPTER 8 WINDOW FUNCTIONS

PARTITION BY Multiple Columns

Given that PARTITION BY generates subtotals, PARTITION BY multiple columns will
generate subsubtotals, if that’s a real word.

Suppose, for example, that you want to generate a report of sales by state, town, and
customer. That data is available, but it's in multiple tables, and you'll need to prepare
it first.

First, you'll need to join the customerdetails view (which has the state and town)
with the sales. When the time comes, we'll put that in a CTE called customer_sales:

-- customer_sales
SELECT c.id AS customerid, c.state, c.town, total
FROM customerdetails AS c JOIN sales AS s
ON c.id=s.customerid

We'll then want to summarize the data by grouping by state, town, and customer id.
Again, that will go into another CTE:

-- totals
SELECT state, town, customerid, sum(total) AS total
FROM customer_ sales
GROUP BY state, town, customerid

We can put this together and check the results:

WITH
customer sales AS (
SELECT c.id AS customerid, c.state, c.town, total
FROM customerdetails AS ¢ JOIN sales AS s
ON c.id=s.customerid

))

totals AS (
SELECT state, town, customerid, sum(total) AS total
FROM customer sales
GROUP BY state, town, customerid

)

294

CHAPTER 8 WINDOW FUNCTIONS

SELECT state, town, customerid, total AS customer total
FROM totals
ORDER BY state, customerid;

You'll get a result like this:

state Town customerid customer_total
ACT Kingston 85 2469

ACT Kingston 112 1387

ACT Kingston 147 2439.5

ACT Kingston 355 689.5

ACT Gordon 489 199

NSW Reedy Creek 10 3089

~ 269 rows ~

Now for the window functions. First, to get the group total by state, we can use
sum(total) OVER(PARTITION BY state) AS state total

To get the group total per town, remember that the town name can appear in more
than one state. To use PARTITION BY town would be a mistake, as the town names would
be conflated. Instead, we use

sum(total) OVER(PARTITION BY state, town) AS town total

Incorporating these two expressions and adding an ORDER BY clause to see it
all, we get

WITH

customer sales AS (
SELECT c.id AS customerid, c.state, c.town, total
FROM customerdetails AS c JOIN sales AS s

ON c.id=s.customerid

))

totals AS (
SELECT state, town, customerid, sum(total) AS total

CHAPTER 8 WINDOW FUNCTIONS

SELECT
state, town, customerid, total AS customer total,
sum(total) OVER(PARTITION BY state) AS state total,
sum(total) OVER(PARTITION BY state, town) AS town total

FROM totals
ORDER BY state, customerid;

FROM customer_sales
GROUP BY state, town, customerid

The results look like this:
state Town customerid customer_total state total town_total
ACT Kingston 85 2469 7184 6985
ACT Kingston 112 1387 7184 6985
ACT Kingston 147 2439.5 7184 6985
ACT Kingston 355 689.5 7184 6985
ACT Gordon 489 199 7184 199
NSW Reedy Creek 10 3089 106389.22 12655
~ 269 rows ~

There’s an implied hierarchy between a state and a town: a town is part of a state

(and, for the time being, a customer is in a town). As a result, the PARTITION BY clause

must follow the hierarchy: state, town. You can also use columns which are unrelated,

such as the state and year of birth, in which case the columns can go either way.

Ranking Functions

The window functions used so far are basically aggregate functions given a new context.

The other group of functions are specific to window functions. Generally, they relate to

the position of the current row. Broadly, we can call them ranking functions.

296

CHAPTER 8 WINDOW FUNCTIONS

There is one aggregate window function, which we've already seen, which also acts
as a ranking function:

SELECT

id, givenname, familyname,

height,

count(*) OVER (ORDER BY height

ROWS UNBOUNDED PRECEDING) AS running count

FROM customers
WHERE height IS NOT NULL
ORDER BY height;

As long as you use the framing clause ROWS UNBOUNDED PRECEDING (shortened from
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW), the count(*) will count the
number of rows up to the current row, which is basically the row number in the result set.

There’s a simpler alternative to that:

SELECT
id, givenname, familyname,
height,
row_number() OVER (ORDER BY height) AS running count
FROM customers
WHERE height IS NOT NULL
ORDER BY height;

The row_number () function basically generates just that: a number for each row in
the result set.

Basic Ranking Functions

There are four main ranking functions:

o row_number(): Calculate the current row number in the current

partition in the specified order.

If two values in the ORDER BY clause are the same, they will still get a
different row number; there is no guarantee which one comes first.

« rank(): Give the rank within the result set.

297

CHAPTER 8 WINDOW FUNCTIONS

If two values in the ORDER BY clause are the same, they will get the
same rank. The next different value will not get the next rank; it
will catch up with the row number above.

« count(*): Ifyou leave the framing clause out and let it default to
RANGE, it will behave like rank () with one difference. We'll look at the
difference later.

« dense_rank(): This will also give a rank, similar to rank() earlier.
However, the next different value will get the next rank, so this will
gradually fall behind the row number.

If the partition isn't specified (there is no PARTITION BY clause), then the preceding
functions apply to the whole table. Otherwise, they will give the position within
the group.

The difference between rank() and dense_rank() is that for equal values, rank()
will pick up from the next row_number (), while dense_rank() won’t.

If the ORDER BY value is not unique

e row_number() is arbitrary.

« rank() gives the rank at the beginning of the group.
« count(*) gives the rank at the end of the group.

« dense_rank() gives the rank of the group.

If the ORDER BY value is unique, these all give the same results.
We can test this with customer heights, where we know some heights are repeated:

SELECT
id, givenname, familyname,
height,
row_number() OVER (ORDER BY height) AS row_number,
count(*) OVER (ORDER BY height) AS count,
rank() OVER (ORDER BY height) AS rank,
dense_rank() OVER (ORDER BY height) AS dense rank
FROM customers
WHERE height IS NOT NULL
ORDER BY height;

298

CHAPTER 8 WINDOW FUNCTIONS

You'll get something like this:

id v height row_number count rank dense_rank
597 153 1 2 1 1

283 153 2 2 1 1

451 153.8 3 3 3 2

194 154.3 4 4 4 3

534 156.4 5 6 5 4

352 156.4 6 6 5 4

~ 267 rows ~

Your actual results may, of course, be different. However, in the preceding example,
We can see

o The row number() is distinct, regardless of the actual value.

« The rank() is the same for equal values. The next value matches the
row_number().

« The count(*) is also the same for equal values. The next value also
matches the row_number ().

o Therank() is the same as the first row_number () for equal values; the
count(*) is the same as the last row_number () for equal values.

o Thedense rank() is also the same for equal values. The next value
gets the next rank. By the time you get to the end of the result set, it
will be very different to the row number.

With most DBMSs, the ranking functions all require an ORDER BY window clause.
That makes sense, since ranking is meaningless without order.

The exceptions include PostgreSQL and SQLite, which will allow an empty
window clause:

-- PostgreSOL, SQLite
SELECT
id, givenname, familyname,
height,

299

CHAPTER 8 WINDOW FUNCTIONS

row_number() OVER () AS row number,
count(*) OVER () AS count,
rank() OVER () AS rank,
dense_rank() OVER () AS dense rank
FROM customers
WHERE height IS NOT NULL
ORDER BY height;

However, the results are meaningless. The count (*), rank(), and dense_rank()
expressions all give one value for the whole result set, and the row_numbex () gives row
numbers in an arbitrary order.

Ranking with PARTITION BY

By default, ranking functions such as row_number () rank over the entire result set. You
can also rank over groups using PARTITION BY:

SELECT

id, ordered date, total,

row_number() OVER (PARTITION BY ordered date) AS row number
FROM sales
ORDER BY ordered;

The results will be something like this:

id ordered_date total row_number
1 2022-05-04 43 1

2 2022-05-05 54.5 1

3 2022-05-05 96 2

6 2022-05-06 18 2

7 2022-05-06 92.5 1

4 2022-05-07 17.5 1

~ 5295 rows ~

The row numbers may not be in the expected order, since the order wasn't specified.
To finish the job, we should also include that:

300

CHAPTER 8 WINDOW FUNCTIONS

SELECT
id, ordered date, total,
row_number() OVER (
PARTITION BY ordered date ORDER BY ordered
) AS row number
FROM sales
ORDER BY ordered;

The row number is now in the order we would have expected:

id ordered_date total row_number
1 2022-05-04 43 1

2 2022-05-05 54.5 1

3 2022-05-05 96 2

6 2022-05-06 18 1

7 2022-05-06 92.5 2

4 2022-05-07 17.5 1

~ 5295 rows ~

You can use the group row number in a creative way. For example, you might want to
show the date for only the first sale for the day. You can show the date selectively using a
CASE ... END expression:

CASE
WHEN row number() OVER
(PARTITION BY ordered date ORDER BY ordered)=1
THEN CAST(ordered date AS varchar(16))
ELSE "'
END AS ordered date,

Rearrange and rename a few columns, and you'll get

SELECT
id,
CASE
WHEN row number() OVER

301

CHAPTER 8 WINDOW FUNCTIONS

(PARTITION BY ordered date ORDER BY ordered)=1
THEN CAST(ordered date AS varchar(16))
ELSE "'
END AS ordered date,
row_number() OVER (PARTITION BY ordered date) AS item,
total
FROM sales
ORDER BY ordered;

which gives you a simpler looking result:

id ordered_date item Total
1 2022-05-04 1 43
2 2022-05-05 1 54.5
3 2 96
6 2022-05-06 1 18
7 2 92.5
4 2022-05-07 1 17.5
5 2 63
9 3 61.5
10 2022-05-08 1 67.5
1 2 18.5
8 3 54
13 4 74.5
~ 5295 rows ~

Of course, you can still include your running totals.

Paging Results

One reason why you might want the overall row number is that you might want to break
up your results into pages. For example, suppose you want your results in pages of, say,
twenty, and you now want to display page 3 of that.

302

CHAPTER 8 WINDOW FUNCTIONS

We can start with our pricelist view and include the row_number () window function:

SELECT

id, title, published, author,

price, tax, inc,

row_number() OVER(ORDER BY id) AS row number
FROM aupricelist;

We haven'tyet included an ORDER BY clause, because there’s more to come. Some
DBMSs may decide to produce the results in id order, but that’s not guaranteed,
of course.

We can now put this in a CTE and filter on the row number:

WITH cte AS (
SELECT
id, title, published, author,
price, tax, inc,
row_number() OVER(ORDER BY id) AS row number
FROM aupricelist
)
SELECT *
FROM cte
WHERE row number BETWEEN 40 AND 59
ORDER BY id;

You'll get something like

id title - price tax inc row_number
98 Camilla . 12 1.2 13.2 40

102 The Mystery of a Hansom ... 14.5 1.45 15.95 41

103 Persian Letters 15.5 1.55 17.05 42

104 Sinners in the Hands of 19.5 1.95 21.45 43

106 Trafalgar s 16 1.6 17.6 44

109 The Scarlet Letterand S 19.5 1.95 21.45 45

~ 20 rows ~

303

CHAPTER 8 WINDOW FUNCTIONS

Oracle has a built-in value called rownum. Sadly, you still need to use it from a CTE
or a subquery.

Of course, you don’t have to order by the id. You can use the title, or the price, as long
as you include it in both the window function and in the ORDER BY clause. And, of course,
you can also use DESC.

There is an alternative way to do this. Officially, you can use the OFFSET ...
FETCH ... clause:

-- PostgreSQL, MSSQL, Oracle
SELECT
id, title, published, author,
price, tax, inc,
row_number() OVER(ORDER BY id) AS row_number
ORDER BY id OFFSET 40 ROWS FETCH FIRST 20 ROWS ONLY;

This skips over the first 40 rows and fetches the next 20 rows after that.
Unofficially, some DBMSs support LIMIT ... OFFSET:

-- PostgreSQL (again), MariaDB/MySQL, SQLite
SELECT
id, title, published, author,
price, tax, inc,
row_number() OVER(ORDER BY id) AS row_number
ORDER BY id LIMIT 20 OFFSET 40;

This is a simpler syntax, but, unfortunately, not the official syntax.

MSSQL also supports the simple SELECT TOP syntax, but it’s not so flexible.

Of course, these two alternatives are much simpler than using the window function
technique, but there is an advantage with using the window function.

Suppose you're sorting by something non-unique, such as the price. The problem
with the normal paging techniques, including the row_number () earlier, is that the page
stops strictly at the number of rows (or less if there are no more).

304

CHAPTER 8 WINDOW FUNCTIONS

If you decide to keep the prices together, you can instead use something like

WITH cte AS (
SELECT
id, title, published, author,
price, tax, inc,
rank() OVER(ORDER BY price) AS rank
FROM aupricelist
)
SELECT *
FROM cte
WHERE rank BETWEEN 40 AND 59
ORDER BY price;

As long as the groupings aren’t too big, it should give you nearly the same results, but
with all the books of one price together.

Working with ntile

If you want to split your ordered result set into, say, ten groups, we refer to the groups as
deciles, from the Latin word for ten. If you want five groups, then they're called pentiles,
and one hundred groups would be percentiles. If you know enough Latin, you can go on
to have seven groups or thirteen groups.

Mathematicians have a generic name for any number, called n, which is rather
catchy once you get used to it. If you separate your ordered data into groups, you create
ntiles, and the window function is ntile(n), where n is the number of groups.

For example, to create deciles by height in your customers table, you can use

SELECT
id, givenname, familyname, height,
ntile(10) OVER (order by height) AS decile
FROM customers
WHERE height IS NOT NULL;

CHAPTER 8 WINDOW FUNCTIONS

You'll get something like this:

id givenname familyname height decile
597 lke Andy 153 1

283 Ethel Glycol 153 1

451 Fred Knott 153.8 1

194 Rod Fishing 154.3 1

534 Minnie Bus 156.4 1

352 Basil Isk 156.4 1

~ 267 rows ~

Notice that we've filtered out the NULL heights. If we hadn’t, then the first or last
decile or so will be filled with NULL heights, depending on your DBMS. This creates a
group that doesn’t really belong, but are included anyway.

That's just one trap with ntile(). There are two traps, one of which might be a deal
breaker.

First, note that the preceding result has 267 rows, which doesn’t evenly divide by 10.
That’s OK, but SQL has to work this one out, and you'll find that the first seven groups
will have 27 rows, and the rest 26. Of course, your own results may be different, but the
idea is the same: the remainder rows will fill in from the front.

The second trap might take some hunting and may not be apparent in your own
sample database. If you look hard enough, you may find something like this:

id givenname familyname height decile
388 Ron Delay 166.9 3
546 Pat Ella 167.1 3
106 Jay Walker 167.1 3
17 Lyn Seed 167.1 4
403 Wil Knott 167.3 4
314 Jack Potts 167.4 4

306

CHAPTER 8 WINDOW FUNCTIONS

In this sample, you'll see that three customers have the same height (167.1), but one
of them didn't fit in the earlier decile, so was pushed into the next. That's more of the
unfairness mentioned earlier, as is due to the fact that ntiles are calculated purely on
the row number and the value.

If you were, for example, awarding prizes or discounts to customers in certain
deciles, it would be unfair to miss out just because the sort order is unpredictable.

This might be a deal breaker, if you rely on the ntile. There is, however, a
workaround.

A Workaround for ntile

As we noted, the ntile is based on the row number. If, however, the ntile were based on
the rank(), count(), or even dense_rank(), then rows with the same value would end
up in the same decile.

In this case, we’ll generate twenty groups, called vigintiles. To do that, we'll have to
calculate our own groupings. We begin with calculating the size of each group:

SELECT count(*)/20.0 AS bin
FROM customers WHERE height IS NOT NULL

We'll call this value bin, which is a common statistical name for groups.
We can put that into a CTE and run the following:

-- PostgreSQL, MariaDB/MySQL, MSSQL, Oracle
WITH data AS (
SELECT count(*)/20.0 AS bin
FROM customers WHERE height IS NOT NULL
)
SELECT
id, givenname, familyname, height,
row_number() OVER(ORDER BY height) AS row number,
ntile(20) OVER(ORDER BY height) AS vigintile,
floor((row number() OVER(ORDER BY height)-1)/bin)+1
AS row vitintile,
floor((rank() OVER(ORDER BY height)-1)/bin)+1
AS rank vigintile,
floor((count(*) OVER(ORDER BY height)-1)/bin)+1

307

CHAPTER 8 WINDOW FUNCTIONS

AS count_vigintile,
bin
FROM customers, data
WHERE height IS NOT NULL
ORDER BY height;

SQLite doesn’t have a floor() function, but you can use cast(... AS int) instead:

cast((row number() OVER(ORDER BY height)-1)/bin AS int)+1
AS row vigintile,

cast((rank() OVER(ORDER BY height)-1)/bin AS int)+1
AS rank vigintile,

cast((count(*) OVER(ORDER BY height)-1)/bin AS int)+1
AS count_vigintile,

You'll get the following results:

id . height m vig row_vig rank_vig count_vig bin
597 . 153 1 1 1 1 1 13.35
283 . 153 2 1 1 1 1 13.35
451 e 153.8 3 1 1 1 1 13.35
194 . 154.3 4 1 1 1 1 13.35
534 . 156.4 5 1 1 1 1 13.35
352 . 156.4 6 1 1 1 1 13.35
~ 267 rows ~

Note that the vigintile and row_vigintile values should be the same; the
row_vigintile is there to show how the vigintile was calculated from the row number.

More importantly, you'll see that the rank_vigintile and count_vigintile
columns are calculated from the rank() and count(*) values, and they always put the
rows with the same height in the same group. It's up to you to decide which is preferable.

308

CHAPTER 8 WINDOW FUNCTIONS

Working with Previous and Next Rows

While working with an ordered result set, we can also get data from previous and next
rows. These results are called the lag and lead, respectively.
The general syntax for the function is

lead(column,number) OVER (...)
lag(column,number) OVER (...)

Here, as well as the OVER clause, we need to supply two values. The column value
refers to which data in the other row you want. The number value refers to how many
rows back or forward to get it from. If you want, you can leave it out, in which case it will
default to 1.

For example, suppose you want to look at sales for each day, as well as for the
previous and next days. You can write

SELECT
ordered date, daily total,
lag(daily total) OVER (ORDER BY ordered date)
AS previous,
lead(daily total) OVER (ORDER BY ordered date)
AS next
FROM daily sales
ORDER BY ordered date;

You'll see:

ordered_date daily_total previous next
2022-05-04 43 [NULL] 150.5
2022-05-05 150.5 43 110.5
2022-05-06 110.5 150.5 142
2022-05-07 142 110.5 2145
2022-05-08 214.5 142 16.5
2022-05-09 16.5 214.5 160
~ 388 rows ~

309

CHAPTER 8 WINDOW FUNCTIONS

You'll notice that the previous for the first row is NULL; so is the next for the last row.
You might think that’s a bit pointless if you can just move your eyes to look up
or down a row. However, you can also incorporate the lag or lead in a calculation.
For example, suppose you want to compare sales for each day to a week before. You
could use

SELECT
ordered date, daily total,
lag(daily total,7) OVER (ORDER BY ordered date)
AS last week,
daily total
- lag(daily total,7) OVER (ORDER BY ordered date)
AS difference
FROM daily sales
ORDER BY ordered date;

This results in

ordered_date daily_total last_week difference
2022-05-04 43 [NULL] [NULL]
2022-05-05 150.5 [NULL] [NULL]
2022-05-06 110.5 [NULL] [NULL]
2022-05-07 142 [NULL] [NULL]
2022-05-08 2145 [NULL] [NULL]
2022-05-09 16.5 [NULL] [NULL]
2022-05-10 160 [NULL] [NULL]
2022-05-11 115 43 72
2022-05-12 205 150.5 54.5
2022-05-13 164.5 110.5 54
2022-05-14 46.5 142 -95.5
2022-05-15 457.5 2145 243

~ 388 rows ~

310

CHAPTER 8 WINDOW FUNCTIONS

Here, the expression lag(total,7) gets the value for seven rows before. As you'd
expect, the first seven rows have NULL for the value.
There are two important conditions if you want to use lag or lead meaningfully:

¢ There must be only one row for each instance you want to test. For
example, you can’t have two rows with the same date.

¢ There must be no gaps. For example, there can’t be a missing date.

That’s because we're interpreting each row as one day. If you're just working with a
sequence or sales regardless of the date, it won’t matter.

If you look carefully (and patiently) through the data, you will find that there are
a few missing dates. That means that the previous row isn't always “yesterday,” and
the seven rows previous isn't always “last week.” We'll see how to plug these gaps in
Chapter 9.

Summary

Window functions are functions which give a row-by-row value based on a “window” or
a group of rows.
Window functions include

e Aggregate functions

These include all of the major nonwindow aggregate functions,
such as count () and sum().

s Ranking functions and grouping

These include row_number (), rank(), and dense_rank() to
generate a position, as well as ntile() to generate ordered groups.

« Functions which fetch data from other rows

These include lag() and lead().

Window Clauses
A window function features an OVER () clause:

n() OVER (...)

311

CHAPTER 8 WINDOW FUNCTIONS

The OVER() clause includes the following:
» ORDER BY to define the row order of the data.
« PARTITION BY to define subgroups of the data.

e A framing clause which determines whether the data is defined by
row number or by value. It also determines the start and end rows of
the window.

Coming Up

In Chapter 7, we've already discussed how Common Table Expressions work. In fact,
we've used them pretty extensively throughout the book.

In the next chapter, we’'ll have another look at CTEs and examine some of their more
sophisticated features. In particular, we'll have a look at the dreaded recursive CTE.

312

CHAPTER 9

More on Common Table
Expressions

You have already made use of CTEs to prepare data for use in aggregates and other
operations.
Here, we will take a further look at some of the more powerful features of CTEs.

CTEs As Variables

In Chapter 4, we tested some calculations with a test value:

WITH vars AS (
SELECT ' abcdefghijklmnop ' AS string

-- FROM dual -- Oracle
)
SELECT

string,

-- sample string functions
FROM vars;

Later in this chapter, we’ll see a more sophisticated version of this technique when
we look at table literals. For now, let’s look at how we can use this.

Some DBMSs as well as all programming languages have a concept of variables.
Avariable is a temporary named value. Where the DBMS supports it, you declare a
variable name and assign a value which you use in a subsequent step. For example, in
MSSQL, you can write this:

-- MSSOL
DECLARE @taxrate decimal(4,2);

313
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_9

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

SET @taxrate = 12.5;
SELECT

id, title,

price, price/@taxrate/100 AS tax
FROM books;

To run this, you would need to highlight all of the statements and run in one go.

This chapter won'’t focus on these variables, but you'll see more on using variables
in Chapter 10. Instead, we’ll have a look at using a common table expression to do a
similar job.

Strictly speaking, what we're going to use is not variables but constants, which
means that we will set their value once only. However, we can get away with using the
looser term “variable,” as it's more generic.

There are two main benefits to defining variables:

« You can specify an arbitrary value once, but use it multiple times.
« You move arbitrary values to a preparation section.

In the preceding CTE example, where we’re not working with real data, we simply
selected from the CTE itself. In more realist examples, we will cross join the CTE with
other tables.

Setting Hard-Coded Constants

One simple use for CTE variables is to set an arbitrary value to be used in the main
query. For example, suppose we want to generate a simple price list with an arbitrary
tax rate,

We can begin with a CTE to contain the tax rate:

WITH vars AS (
SELECT 0.1 AS taxrate
-- FROM dual -- Oracle

314

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

We can now combine the CTE with the books table, using a simple cross join:

WITH vars AS (
SELECT 0.1 AS taxrate

-- FROM dual -- Oracle
)
SELECT * FROM books, vars;

This looks like the following:
id authorid Truncate published price taxrate
2078 765 The Duel 1811 12.5 0.1
503 128 Uncle Silas 1864 17 0.1
2007 99 North and South 1854 17.5 0.1
702 547 Jane Eyre 1847 17.5 0.1
1530 28 Robin Hood, The ... 1862 12.5 0.1
1759 17 La Curée 1872 16 0.1

~ 1201 rows ~

A cross join combines every row from one table to every row from another. Since
the vars CTE only has one row, the cross join simply has the effect of adding another
column to the books table.

SQL has a more modern syntax for a cross join: books CROSS JOIN vars. Here, we'll
use the older syntax because it’s simpler and more readable.

We can now calculate the price list with tax:

WITH vars AS (SELECT 0.1 AS taxrate)
SELECT

id, title,

price, price*taxrate AS tax, price*(1+taxrate) AS total
FROM books, vars;

315

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

This gives us
Id Title price tax total
2078 The Duel 12.5 1.25 13.75
503 Uncle Silas 17 1.7 18.7
2007 North and South 17.5 1.75 19.25
702 Jane Eyre 17.5 1.75 19.25
1530 Robin Hood, The Prince of Thieves 12.5 1.25 13.75
1759 La Curée 16 1.6 17.6

~ 1201 rows ~

Of course, we could just as readily have used 0.1 instead of the taxrate and
dispensed with the CTE and the cross join. However, the CTE has the benefit of allowing
us to set the tax rate once at the beginning, where it’s easy to maintain and can be used
multiple times later.

Deriving Constants

The values don't need to be literal values. You can also derive the values from another
query. For example, to get the oldest and youngest customers, first set the minimum and
maximum dates in variables:

-- vars (TE
SELECT min(dob) AS oldest, max(dob) AS youngest
FROM customers

You can then cross join that with the customers table to get the matching customers:

WITH vars AS (
SELECT min(dob) AS oldest, max(dob) AS youngest
FROM customers

)

SELECT *

FROM customers, vars

WHERE dob IN(oldest, youngest);

316

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

You should see something like this:

id givenname familyname dob

92 Nan Keen - 1943-05-18
228 Cam Payne " 2003-01-27
577 Sybil Service i 2003-01-27
392 Daisy Chain i 1943-05-18

To get the shorter customers, you can set the average height in a variable:

WITH vars AS (SELECT avg(height) AS average FROM customers)
SELECT *

FROM customers, vars

WHERE height<average;

This is the sort of thing you can’t do otherwise, because the average is an aggregate.

Using Aggregates in the CTE

As we've seen many times, you can’t mix aggregates with non-aggregate queries. The
solution is always to calculate any aggregates you need separately and then incorporate
the results in the next query.

Finding the Most Recent Sales per Customer

Suppose, for example, you want to get details about the most recent sale for each
customer. To get the most recent sale, you first need a simple aggregate query:

SELECT customerid, max(ordered) AS last order
FROM sales
GROUP BY customerid;

317

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

You'll get something like this:

Customerid last_order

550 2023-04-18 09:18:51.933845
272 2023-04-28 09:15:17.85286
70 2023-04-19 14:00:44.880376
190 2023-04-09 10:12:53.416293
539 2023-04-22 16:14:16.173923
314 2023-04-11 03:33:57.825786
~ 269 rows ~

Here, we have two important pieces of data: the customer id and the date and
time of the most recent order. Using this in a subquery, we can join the results with the
customers and sales tables to get more details:

WITH cte(customerid, last order) AS (
SELECT customerid, max(ordered) AS last order
FROM sales
GROUP BY customerid
)
SELECT
customers.id AS customerid,
customers.givenname, customers.familyname,
sales.id AS saleid,
sales.ordered date, sales.total
FROM
sales
JOIN cte ON sales.customerid=cte.customerid
AND sales.ordered=cte.last order
JOIN customers ON customers.id=cte.customerid

318

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

We'll get something like this:

customer Givenname familyname sale ordered_date total
287 Judy Free 4209 2023-02-04 50.5
26 Bess Twishes 4542 2023-02-19 1
368 Sharon Sharalike 4793 2023-03-01 56
282 Howard Youknow 4939 2023-03-07 39
395 Holly Day 4953 2023-03-07 75.5
474 Alf Abet 5092 2023-03-13 94
~ 266 rows ~

Note that the CTE was used to join the two tables and act as a filter. We don’t actually
need its results in the output.

Finding Customers with Duplicate Names

In Chapter 2, we saw how to find duplicates using an aggregate query. We did this to find
duplicate names, of which there were some, and duplicate phone numbers, of which
there were none.

If we were more serious about duplicate customer names, we would want more
details about the customers. First, let’s find the duplicated names:

-- cte
SELECT familyname, givenname FROM customers
GROUP BY familyname, givenname HAVING count(*)>1

Here, customers are grouped by both names, and the groups are filtered for more
than one instance.
Putting that in a CTE, we can join that to the customers table:

WITH names AS (
SELECT familyname, givenname FROM customers
GROUP BY familyname, givenname HAVING count(*)>1

)
SELECT

c.id, c.givenname, c.familyname,
319

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

c.email, c.phone
-- etc
FROM customers AS c
JOIN names ON c.givenname=names.givenname
AND c.familyname=names.familyname
ORDER BY c.familyname, c.givenname;

You'll get something like this:

id givenname familyname email phone

429 Corey Ander corey.ander429@example.net 0355503360
85 Corey Ander corey.ander85@example.net 0255501923
174 Paul Bearer paul.bearer174@example.com 0370109921
482 Paul Bearer paul.bearer482@example.com 0755502522
402 Terry Bell terry.bell402@example.com 0755504982
295 Terry Bell terry.bell295@example.com 0355509630
~ 16 rows ~

We've joined the CTE and the customers table using two columns and included their
email addresses and phone numbers (if any) so that we can chase them up.

CTE Parameter Names

By default, column names come from the CTE, and you are expected to make sure that
all calculations have an alias, as before. If the columns in the CTE don’t have an alias,
such as when you've calculated something, then (a) you can’t refer to the data, and (b)
some DBMSs won't let you go ahead.

You can also specify column names with the CTE name as parameters. For example,
when we found the first and last dates of birth, we could have put the aliases in the cte
expression:

WITH vars(oldest, youngest) AS (-- parameter names
SELECT min(dob), max(dob) -- no aliases
FROM customers

320

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

SELECT *
FROM customers, vars
WHERE dob IN(oldest, youngest);

For the most part, it's a matter of taste whether you do it this way or add the aliases
inside the CTE. If you do include the names, they will override any aliases in the CTE.
One reason you might prefer CTE parameter names is if you think it's more readable,
as you have all the names in one place. Later, we'll be writing more complex CTEs
which involve multiple CTEs and unions, and it will definitely be easier to follow with
parameter names, so you'll be seeing more of that style from here on.

Using Multiple Common Table Expressions

We've seen that, in its simplest form, a CTE can be written as a subquery:

SELECT columns
FROM (

SELECT columns FROM table
) AS sq;

A CTE can make this more manageable by putting this subquery at the beginning:

WITH cte AS (
SELECT columns FROM table
)
SELECT columns
FROM cte;

That'’s already an improvement, but where the improvement becomes more obvious
is when the subquery also has a subquery:

SELECT columns
FROM (
SELECT columns FROM (
SELECT columns FROM table
) AS sq1
) AS sq2;

321

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

That's called nesting subqueries, and it can become a nightmare if things get too
complex.
Thankfully, CTEs work much more simply:

WITH
sql AS (SELECT columns FROM table),
sq2 AS (SELECT columns FROM sql1)
SELECT columns FROM sq2;

You can have multiple CTEs chained this way, as long as you remember to separate
them with a comma. As you see in this example, each subquery can refer to a previous
one in the chain.

We’ll build this up a little more later, and we'll see that additional CTEs don't
necessarily have to refer to the previous ones.

Summarizing Duplicate Names with Multiple CTEs

When we produced our list of duplicated names, we had one row for each instance of
the name. In Chapter 7, we produced a more consolidated list, but without the benefit
of CTEs.

Here, we'll reproduce the consolidated list, but using CTEs to make it much more
workable.

We’'ll start off with the previous query for duplicated names:

WITH names AS (
SELECT familyname, givenname FROM customers
GROUP BY familyname, givenname HAVING count(*)>1
)
SELECT
c.id, c.givenname, c.familyname,
c.email, c.phone
FROM customers AS c
JOIN names ON c.givenname=names.givenname
AND c.familyname=names.familyname
ORDER BY c.familyname, c.givenname;

322

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS
This time, we'll put the results into a second CTE:

WITH
names AS (
SELECT familyname, givenname FROM customers
GROUP BY familyname, givenname HAVING count(*)>1
))
duplicates(givenname, familyname, info) AS (
SELECT
c.givenname, c.familyname,
cast(c.id AS varchar(s)) || ": " || c.email
-- MSSQL: Use +
FROM customers AS c -- Oracle: No AS
JOIN names ON c.givenname=names.givenname
AND c.familyname=names.familyname
)
SELECT * from duplicates
ORDER by familyname, givienname;

Note
e The layout has changed to make multiple CTEs easier to follow.

e The duplicates CTE has the parameter names for simplicity.
There’s no need to do that with the names CTE, as there are
no calculated values; however, you may want to do that for
consistency.

e |[nstead of listing the id separately, we've cast it to a string and
concatenated it to the email address. This is to get ready for what
follows.

e For simplicity, we've ignored the phone number, since it may be
missing.

323

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

You can see what you get so far:

givenname familyname info

Corey Ander 429: corey.ander429@example.net
Corey Ander 85: corey.ander85@example.net
Paul Bearer 174: paul.bearer174@example.com
Paul Bearer 482: paul.bearer482@example.com
Terry Bell 402: terry.bell402@example.com
Terry Bell 295: terry.bell295@example.com

~ 16 rows ~

The next step is to consolidate them by combining the info column values:

WITH

names AS (),

duplicates(givenname, familyname, info) AS ()
SELECT

givenname, familyname, count(*),
-- PostgreSQL, MSSQL

string agg(info,', ') AS info

-- MySQL/MariaDB

-- group concat(info SEPARATOR ', ") AS info
-- SQLite

-- group concat(info,", ') AS info
-- Oracle

-- listagg(info,', ") AS info
FROM duplicates
GROUP BY familyname, givenname
ORDER by familyname, givenname;

324

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

The consolidated list looks like this:

givenname familyname count info

Corey Ander 2 429: corey.ander ..., 85: corey.ander8 ...
Paul Bearer 2 174: paul.bearer ..., 482: paul.bearer ...
Terry Bell 2 402: terry.bell4 ..., 295: terry.bell2 ...
Mary Christmas 2 465: mary.christ ..., 594: mary.christ ...
Ida Dunnit 2 504: ida.dunnit5 ..., 90: ida.dunnit90 ...
Judy Free 2 93: judy.free93@ ..., 287: judy.free28 ...
Annie Mate 2 505: annie.mateb ..., 357: annie.mate3 ...
Ken Tuckey 2 98: ken.tuckey98 ..., 488: ken.tuckey4 ...

We'll see more examples of multiple CTEs in the following sections.

Recursive CTEs

Asyou've seen, a feature of using CTEs is that one CTE can refer to a previous
CTE. Another feature is that a CTE can refer to itself.

Anything which refers to itself is said to be recursive. If you're a programmer,
recursive functions are functions which call themselves and are very risky if not handled
properly. Similarly, a recursive CTE can be very risky if you're not careful.

A recursive CTE takes one of two forms, depending on your DBMS:

-- PostgreSQL, MariaDB/MySQL, SQLite
WITH RECURSIVE cte AS (
-- Anchor
SELECT ...
UNION
-- Recursive Member
SELECT ... FROM cte WHERE ..
)
-- MSSQL, Oracle
WITH cte AS (
-- Anchor
SELECT ...
325

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

UNION ALL
-- Recursive Member
SELECT ... FROM cte WHERE ...

)

Asyou see, PostgreSQL, MariaDB/MySQL, and SQLite use the RECURSIVE keyword.
MSSQL and Oracle don’t, but require a UNION ALL instead of a simple UNION.
In both cases, you'll see that the recursive CTE has two parts:

+ The anchor defines the starting point or the first member.

In simple cases, there will be one value, but in other queries there
may be more than one.

s The recursive member defines data based on what is inherited from
the previous iteration of the CTE. That is, it defines the next member.

Again, if there’s more than one anchor member, then there will be

multiple recursive members.

Note that the recursive CTE must define when it’s going to end or, more correctly,
when it can continue. Typically, that's with a WHERE clause, as you've seen earlier, but can
use any other method, such as a join.

A simple example of a recursive CTE is one which generates a simple sequence. For

example:

-- PostgreSQOL, MariaDB/MySQL, SQLite
WITH RECURSIVE cte(n) AS (
-- Anchor
SELECT 1
UNION
-- Recursive Member
SELECT n+1 FROM cte WHERE n<10
)
SELECT * FROM cte;
-- MSSQL, Oracle
WITH cte(n) AS (
-- Anchor
SELECT 1 -- Oracle: FROM dual

326

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

UNION ALL
-- Recursive Member
SELECT n+1 FROM cte WHERE n<10

)
SELECT * FROM cte;

The CTE includes a parameter for convenience (cte(n)). Otherwise, you can put the
alias in the SELECT statement.

The single anchor value, in this case, is the number 1. The recursive (next) value is
n+1, so long as n<10. After that, it stops, and you end up with

1

W N

9
10

—a sequence of numbers from one to ten.

Recursive CTEs are the closest thing you'll get in standard SQL to iterations or
looping.!

Two common uses of recursive CTEs are

« Generate a sequence
¢ Traverse a hierarchy

We'll also use a recursive CTE to split a string into smaller parts, just to show you a
little creativity can be added to your queries.

'Some SQLs, but not all, include additional structures such as DO ... WHILE in an SQL script.
They're not really a standard part of the SQL language, but can be used in situations where you're
desperate to do something iteratively.

327

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

Generating a Sequence

We've already seen how to generate a sequence of numbers:

WITH cte AS (
-- Anchor
SELECT 0 AS n
UNION ALL
-- Recursive
SELECT n+1 FROM cte WHERE n<100

)
SELECT * FROM cte;

The thing to remember is that the recursive member has a WHERE clause to limit the
sequence. Without that, the recursive query would try to run forever, and as you know,
nothing lasts forever.

MSSQL has a built-in safety limit of 100 recursions, which we’ll have to
circumvent later:

-- MSSQL
WITH cte (

)
SELECT ... FROM cte OPTION(MAXRECURSION ...);

The others don’t, but for PostgreSQL, MariaDB, and MySQL, you can readily set a
time limit:

-- PostgreSQL
SET statement timeout TO '5s';
-- MariaDB
SET MAX_STATEMENT TIME=1; -- seconds
-- MysoL
SET MAX_EXECUTION TIME=1000; -- milliseconds

If you're sure about your recursion terminating properly, you don’t need to worry
about this. In MSSQL, you will, however, need to increase or disable the recursion limit
for some queries.

However, it won't hurt to include a simple number sequence in what follows just to

be safe.
328

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

One case where a sequence can be useful is to get a sequence of dates. This will
simply define a start date and add one day in the recursive member.
The CTE starts simply enough:

-- PostgreSOL, MariaDB / MySOL
WITH RECURSIVE dates(d, n) AS (
SELECT date'2023-01-01', 1
)
SELECT * FROM dates;
-- MSSQOL
WITH dates(d, n) AS (
SELECT cast('2023-01-01"' as date), 1
)
SELECT * FROM dates;
-- Oracle
WITH dates(d, n) AS (
SELECT date '2023-01-01', 1 FROM dual
)
SELECT * FROM dates;
-- SOLite
WITH RECURSIVE dates(d, n) AS (
SELECT '2023-01-01', 1

)
SELECT * FROM dates;

Note that the first value, d, has been cast to a date, with the exception of SQLite,
which doesn’t have a date type. The n set to 1 is added as a sequence number, but is
really unnecessary. It's added here to illustrate how you can use it to stop overrunning
your CTE.

The recursive part is also easy enough, but adding one day varies between DBMSs:

-- PostgreSOL
WITH RECURSIVE dates(d, n) AS (
SELECT date'2023-01-01', 1
UNION
SELECT d+1, n+1 FROM dates
WHERE d<'2023-05-01" AND n<10000

329

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

)
SELECT * FROM dates;

-- MariaDB / MySOL
WITH RECURSIVE dates(d, n) AS (
SELECT date'2023-01-01', 1
UNION
SELECT date add(d, interval 1 day), n+1 FROM dates
WHERE d<'2023-05-01" AND n<10000
)
SELECT * FROM dates;
-- MSSOL
WITH dates(d, n) AS (
SELECT cast('2023-01-01' as date), 1
UNION ALL
SELECT dateadd(day,1,d), n+1 FROM dates
WHERE d<'2023-05-01" AND n<10000
)
SELECT * FROM dates;
-~ SQLite
WITH RECURSIVE dates(d, n) AS (
SELECT '2023-01-01', 1
UNION
SELECT strftime('%Y-%m-%d',d,'+1 day'), n+1 FROM dates
WHERE d<'2023-05-01" AND n<10000
)
SELECT * FROM dates;
-- Oracle
WITH dates(d, n) AS (
SELECT date '2023-01-01', 1 FROM dual
UNION ALL
SELECT d+1, n+1 FROM dates
WHERE d<date'2023-05-01" AND n<10000

)
SELECT * FROM dates;

330

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

You'll see a series of dates (and numbers):

2023-01-01 1
2023-01-02
2023-01-03
2023-01-04
2023-01-05
2023-01-06

(=2 T &) B A

~ 121 rows ~

You'll notice that for MSSQL, we've added OPTION (MAXRECURSION 0), which
basically disables the recursion limit.

Note also the AND n<10000 in the WHERE clause. That number is pretty big, and it
amounts to over 27 years, but it’s not infinite. If you make an error in when to stop the
CTE, that expression should limit the recursions.

You might wonder why you would want a sequence of dates between 2023-01-01
and 2023-05-01, the answer would be “why not?’; which isn’t very convincing. However,
we're going to use this technique to overcome a problem mentioned in Chapter 8: some

of the dates will be missing from our summary.

Joining a Sequence CTE to Get Missing Values

You can JOIN a recursive CTE which generates a sequence with another table or CTE
which has gaps in the sequence to fill in the missing values.

For example, to get the number of customers born per year, it is possible that some
years will be missing, but you would like to include the missing year anyway.

First, get a sequence of years:

-- PostgreSQL, MariaDB/MySQOL, SQLite
WITH RECURSIVE
allyears(year) AS (
SELECT 1940
UNION

331

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

SELECT year+1 FROM allyears WHERE year<2010
)

-- MSSQOL, Oracle
WITH
allyears(year) AS (
SELECT 1940
UNION ALL
SELECT year+1 FROM allyears WHERE year<2010

)

Next, get the customer (id) and the year of birth of the customers:

-- PostgreSOL, MariaDB/MySQL, Oracle
yobs(yob) AS (
SELECT id, EXTRACT(year FROM dob)
FROM customers WHERE dob IS NOT NULL
)
-- MSSOQL
yobs(yob) AS (
SELECT id, year(dob)
FROM customers WHERE dob IS NOT NULL
)
-- SQLite
yobs(yob) AS (
SELECT id, strftime('%Y',dob)
FROM customers WHERE dob IS NOT NULL

)
Finally, JOIN them and get the aggregate:

WITH RECURSIVE -- MSSOL, Oracle: no RECURSIVE
allyears(year) AS (),
yobs AS ()
SELECT allyears.year, count(*) AS nums
FROM allyears LEFT JOIN yobs ON allyears.year=yobs.yob
GROUP BY allyears.year
ORDER BY allyears.year;

332

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

You'll need the LEFT JOIN to include all of the sequence of years even if it doesn’t

match a customer year; after all, that’s why it’s there.

We'll do the same sort of thing for sales data.

year nums
1940 1
1941 1
1942 1
1943 1
1944 1
1945 1
~ 71 rows ~

Daily Comparison Including Missing Days

The same can be applied to missing dates. In Chapter 8, we generated a summary of
sales per day. We then created a view with daily sales, such as were available. We can

then select from the view:

SELECT *
FROM daily sales
ORDER BY ordered date;

You get something like this:

ordered_date

ordered_month daily_total

2022-04-08
2022-04-09
2022-04-10
2022-04-11
2022-04-12
2022-04-13

~ 385 rows ~

2022-04
2022-04
2022-04
2022-04
2022-04
2022-04

97.5
96
191
201.5
91
160

333

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

However, if you look hard enough, you'll find some dates missing. We're about to fill
them in.
For this, we’'ll need the following:

« Thedaily sales view
+ A CTE with the first and last dates of the daily sales
« Asequence of dates

You already know how to generate a sequence of dates. This time, instead of starting
and stopping on arbitrary dates, we’ll start and stop on the first and last dates of the
daily sales view. We can put those values in a CTE for reference:

WITH
vars(first date, last date) AS (
SELECT min(ordered date), max(ordered date)
FROM daily sales

)

We can now use these values to generate our sequence of dates:

-- PostgreSQL
WITH RECURSIVE
vars(first date, last date) AS (),
dates(d) AS (
SELECT first date FROM vars
UNION
SELECT d+1 FROM vars, dates WHERE d<last date
)
-- MariaDB / MySQL
WITH RECURSIVE
vars(first date, last date) AS (),
dates(d) AS (
SELECT first date FROM vars
UNION
SELECT date add(d, interval 1 day)
FROM vars, dates WHERE d<last date

334

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

-~ MSSOL
WITH
vars(first date, last date) AS (),
dates(d) AS (
SELECT first date FROM vars
UNION ALL
SELECT dateadd(day,1,d)
FROM vars, dates WHERE d<last date

)

-~ SOLite
WITH RECURSIVE
vars(first date, last date) AS (),
dates(d) AS (
SELECT first date FROM vars
UNION
SELECT strftime('%Y-%m-%d',d, '+1 day')
FROM vars, dates WHERE d<last date
)
-- Oracle
WITH
vars(first date, last date) AS (),
dates(d) AS (
SELECT first date FROM vars
UNION ALL
SELECT d+1 FROM vars, dates WHERE d<last date

)

For those DBMSs which use the keyword RECURSIVE, you use it once at the
beginning, even if some of the CTEs aren’t recursive.

Notice that we've cross-joined the vars and dates, which is the usual technique of
applying variables to another table. We could have written CROSS JOIN, but it’s not worth
the effort.

335

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

We can now complete our query using a LEFT JOIN to get all of the sequence of dates:

WITH RECURSIVE -- MSSOL, Oracle: no RECURSIVE
vars(first date, last date) AS (
-- etc
))
dates(d) AS (
-- etc
)

SELECT d AS ordered date, daily sales.daily total
FROM dates LEFT JOIN daily sales ON dates.d=daily sales.ordered date
ORDER BY dates.d;

We’ll now see the following:

ordered_date daily_total
2022-04-08 97.5
2022-04-09 96
2022-04-10 191
2022-04-11 201.5
2022-04-12 91
2022-04-13 160

~ 387 rows ~

Notice that we've selected dates.d AS ordered date in favor of the ordered date
from the daily sales view. That's because the latter has some missing dates, which is
why we went to this trouble in the first place.

Of course, generating a simple sequence isn’t the only use for a recursive CTE.

Traversing a Hierarchy

Another use case for a recursive CTE is to traverse a hierarchy. The hierarchy we're going
to look at is in the employees table:

SELECT * FROM employees;

336

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

Of course, in a real employees table, there would be more details; we've only
included enough here to make the point.

In particular, you'll see that in the employees table, there is a supervisorid column
which is a foreign key to the same table:

employees.supervisorid » employees.id

A more naive approach would be either to include the supervisor’s name, which
is wrong for the same reasons we don’t include the author’s name with the books
table, or to reference another table of supervisors, which is wrong for a different, more
subtle reason.

With books and authors, the point is that an author is not the same as a book. In a
well-designed database, each table has only one type of member. That’s not the case
with employees and supervisors. Put simply, the supervisor is another employee.

We're going to traverse the employees table to get a list of employees and their
SUpervisors.

Getting a Single-Level Hierarchy

Without a recursive CTE, you can get employees’ supervisors with a simple OUTER JOIN
to the same table. This is often referred to as a self-join:

SELECT
e.id AS eid,
e.givenname, e.familyname,
s.id AS sid,

s.givenname||' '||s.familyname AS supervisor

-- s.givenname+' '+s.familyname AS supervisor -- MSSQL
FROM employees AS e LEFT JOIN employees AS s

ON e.supervisorid=s.id -- Oracle: No AS

ORDER BY e.id;

337

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

You'll get something like this:

eid givenname familyname sid supervisor

1 Marmaduke Mayhem 10 Beryl Bubbles

2 Osric Pureheart 12 Mildred Thisenthat

3 Rubin Croucher [NULL] [NULL]

4 Gladys Raggs 29 Fred Nurke

5 Cynthia Hyphen-Smythe 12 Mildred Thisenthat

6 Sebastian Trefether 5 Cynthia Hyphen-Smythe
~ 34 rows ~

The trick is, when joining a table to itself, you need to give the table two different
aliases to qualify the join.

Multilevel Hierarchy Using Recursive CTE

What we really want is not just the immediate supervisor but a hierarchical list of all
supervisors for each employee. This will, of course, require a recursive CTE.

The anchor member will be the employees who have no supervisors, presumably
those at the top of the hierarchy:

WITH RECURSIVE -- MSSQL, Oracle: No RECURSIVE
cte(id, givenname, familyname, supervisorid,
supervisors, n) AS (
-- anchor
SELECT
id, givenname, familyname, supervisorid, '', 1
FROM employees WHERE supervisorid IS NULL
)

The columns include some of the raw details, as well as a string of supervisors.
Obviously, for the anchor member, the supervisor id will be NULL, and the string is
empty. You'll also notice a sequence number, starting at 1. That's for a trick we'll resort to
later on.

338

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

There will be more than one row for the anchor. That's all right and will still work the
same way. There'll just be more than one sequence going.

The recursive member will be the employees with supervisors (i.e., the rest) with a
growing list of their supervisors:

-- Not MSSQL or MariaDB/MySQL Yet!
WITH RECURSIVE -- MSSQL, Oracle: No RECURSIVE
cte(id, givenname, familyname, supervisorid,
supervisors, n) AS (

-- anchor

UNION ALL

-- recursive: others (supervisorid NOT NULL)

SELECT
e.id, e.givenname, e.familyname, e.supervisorid,
cte.givenname||"' '||cte.familyname||"' < '[|

cte.supervisors, n+1
FROM cte JOIN employees AS e ON cte.id=e.supervisorid
-- Oracle: no AS
)
SELECT * FROM cte
ORDER BY id;

The join is similar to the self-join earlier. The current employee is referred to in the
e table alias, and this aliased table is joined to the CTE, which will be the supervisor.
The raw data will be from the aliased table, while the supervisor’s details will be
concatenated as the new supervisors parameter.

Normally, you'd want to limit the recursion with a WHERE clause. For this one, the join
will do the job, as it will stop when there are no more to be joined.

339

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

The magic is in the expression for the supervisors string. In the recursive member,
the CTE represents inherited values.

id givenname familyname sid supervisors n
1 Marmaduke Mayhem 10 Beryl Bubbles < Mildred Thisenth ... < 3
2 Osric Pureheart 12 Mildred Thisenth ... < 2
3 Rubin Croucher [NULL] [NULL] 1
4 Gladys Raggs 29 Fred Nurke < Murgatroyd Murdo ... 4
< Rubin Croucher <
5 Cynthia Hyphen-Smythe 12 Mildred Thisenth ... < 2
6 Sebastian Trefether 5 Cynthia Hyphen-S ... < Mildred Thisenth ... < 3
~ 34 rows ~

This will work in most DBMSs, but not yet in MSSQL or in MariaDB/
MySQL. However, it will nearly work.

In the case of MariaDB/MySQL, the ' ' in the anchor causes it to jump to the
conclusion that the string will be zero characters long, so the supervisors column will
be empty.

You will need to cast your empty string in the anchor to a longer one:

SELECT
..., cast('" AS char(255)), 1
FROM employees WHERE supervisorid IS NULL

A long-standing complaint of MySQL is that you don’t cast to a varchar, but to a
char, which unlike a normal char isn’t a fixed length, so it’s really a varchar anyway.
Nobody knows why. In MariaDB, they allow varchar. The length of 255 should
be enough.

It gets worse with MSSQL. Naturally, the columns in the anchor and recursive
member should match in data type, but in MSSQL, this match needs to be very exact.
The fact that they are both strings is not enough. The strings will need to be of the same
type and size. Concatenating the strings produces a longer string, and MSSQL will
decide that the longer strings aren’t data compatible with the other strings.

340

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS
In this case, you'll need to cast both expressions to the same:

SELECT

..., cast('" AS nvarchar(255)), ...
FROM employees WHERE supervisorid IS NULL
UNION ALL
SELECT

ey

cast(cte.givenname+' '+cte.familyname
1

+' < "+cte.supervisors as nvarchar(255)), ...
FROM cte JOIN employees AS e ON cte.id=e.supervisorid

With those changes, the query should work.

Cleaning the Tail End of the List

You'll notice that, with the exception of the empty supervisors strings, there’s a trailing <.
That's because that character is always added in the recursive member.

If you look at the n column, you'll see that it represents a level number. The character
should only be added when there’s already another supervisor—that is to say, when
we're now adding a second or subsequent supervisor. That means when n has reached
two or higher.

We can change that part of the expression by using a CASE ... END expression:

-- Others
cte.givenname||" '||cte.familyname
|| CASE WHEN n>1 THEN ' < ' ELSE '' END
|| cte.supervisors
-~ MSSQL

cte.givenname+' '+cte.familyname
+ CASE WHEN n>1 THEN ' < ' ELSE "' END
+ cte.supervisors

341

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

This will now produce a cleaner result:

id givenname familyname Sid supervisors n
1 Marmaduke Mayhem 10 Beryl Bubbles < Mildred Thisenth ... 3
2 Osric Pureheart 12 Mildred Thisenth ... 2
3 Rubin Croucher [NULL] [NULL] 1
4 Gladys Raggs 29 Fred Nurke < Murgatroyd Murdo ... 4
< Rubin Croucher
5 Cynthia Hyphen-Smythe 12 Mildred Thisenth ... 2
6 Sebastian Trefether 5 Cynthia Hyphen-S ... < Mildred Thisenth ... 3
~ 34 rows ~

Of course, we don’t need the n column at the end anymore.

Working with Table Literals

At some point, you might want to work with a set of values which haven’t been saved
anywhere—something in a virtual table which stays around long enough for you to
process the data and then discreetly vanishes when you've finished.

In principle, SQL does that all the time when you insert literal values into a table. For
example, a statement like

INSERT INTO table(columns)
VALUES (+..)y (ver)y (oun);

inserts from a virtual table, generated by the VALUES clause. That also means that, in
principle, you should be able to use VALUES ... as a virtual table without actually
inserting anything. Unfortunately, it’s not quite so straightforward.

A table literal is an expression which results in a collection of rows and columns—a
virtual table. If things go according to plan, it could look like this:

VALUES ('a','apple'), ('b','banana'), ('c', 'cherry")

Not all DBMSs see it that way. Some DBMSs do allow just such an expression, but
others have something a little more complicated.

342

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

A little later, we’ll want to work with a virtual table to experiment with, so the first
step will be to put this into a CTE. Using the standard notation, you can use

-- PostgreSQL, MariaDB (not MySOL), SOLite
WITH cte(id,value) AS (
VALUES ('a','apple'), ('b','banana'), ('c', 'cherry")
)
SELECT * FROM cte;

You'll see the following:

id value
a apple
b banana
c cherry

Note that we've included the column names in the CTE name.
For the other DBMSs, there are various alternatives:

-~ MSSQL
WITH cte(id,value) AS (
SELECT * FROM
(VALUES ('a','apple'), ('b','banana'),
('c','cherry')) AS sq(a,b)
)
SELECT * FROM cte;
-- MySOL (not MariaDB)
WITH cte(id,value) AS (
VALUES ROW('a","'apple'), ROW('b"','banana'),
ROW('c", 'cherry")
)
SELECT * FROM cte;
-- Oracle
WITH cte(id,value) AS (
SELECT 'a','apple’ FROM dual

343

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

UNION ALL SELECT 'b','banana' FROM dual
UNION ALL SELECT 'c','cherry' FROM dual

)
SELECT * FROM cte;

As you see, the prize for the most awkward version goes to Oracle, which doesn’t yet
support a proper table literal. Apparently, that’s coming soon.

MSSQL does support a table literal, but, for some unknown reason, it has to be inside
a subquery, complete with a dummy subquery name and dummy column names.

MySQL also supports a table literal, but requires each row inside a ROW() constructor,
because MySQL has a non-standard values () function which conflicts with using it simply
as a table literal. This is one of the cases where MariaDB and MySQL are not the same.

Using a Table Literal for Testing

One reason you might want throwaway values is if you're testing something, and you
haven’t the energy to put the test value in a real or temporary value.

For example, suppose you want to test calculating the difference between dates, so
for finding an age. You could do something like this:

WITH dates(dob,today) AS (
-- list of dob and today values
)
SELECT
-- today - dob AS age
FROM dates;

The actual code is commented out, because the DBMSs all have their own ways.
It gets further complicated because of the date literals.
We're going to try this with the following series of dates:

dob today

1940-07-07 2023-01-01
1943-02-25 2023-01-01
1942-06-18 2023-01-01
1940-10-09 2023-01-01

(continued)
344

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

dob today

1940-07-07 2022-12-31
1943-02-25 2022-12-31
1942-06-18 2022-12-31
1940-10-09 2022-12-31
1940-07-07 2023-07-07
1943-02-25 2023-02-25
1942-06-18 2023-06-18
1940-10-09 2023-10-09

(If you recognize the dates of birth, don’t let on.)

First, you'll need to set up your dates CTE. This is complicated by the fact that in SQL
a date literal is in single quotes. However, without context, SQL will regard single quote
literals as strings, which won't work with date calculations. The exception is SQLite,
which only works with date strings anyway.

The dates CTE would look like this:

-- PostgreSQL, MariaDB (not MySOL)
WITH dates(dob, today) AS (

VALUES
(date'1940-07-07',date'2023-01-01"),
('1943-02-25",'2023-01-01"),
('1942-06-18",'2023-01-01")

-- etc
)
-- MySOL (not MariaDB)
WITH dates(dob, today) AS (

VALUES
row(date'1940-07-07",date'2023-01-01"),
row('1943-02-25","'2023-01-01"),
row('1942-06-18",'2023-01-01")

-- etc

-~ MSSOL
345

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

WITH dates(dob, today) AS (
SELECT * FROM (VALUES
(cast('1940-07-07' as date),
cast('2023-01-01" as date)),
('1943-02-25",'2023-01-01"),
("'1942-06-18",'2023-01-01")
-- etc
) AS sq(a,b)
)
-- SQLite
WITH dates(dob, today) AS (
VALUES
('1940-07-07', '2023-01-01"),
('1943-02-25",'2023-01-01"),
("'1942-06-18","'2023-01-01")
-- etc

)

-- Oracle
WITH dates(dob, today) AS (
SELECT date'1940-07-07',date'2023-01-01" FROM dual
UNION ALL SELECT date'1943-02-25',date’'2023-01-01'

FROM dual
UNION ALL SELECT date'1942-06-18',date'2023-01-01'
FROM dual
-- etc
)
Note

e For PostgreSQL, MariaDB/MySQL, and Oracle, you can use the
simple expression date'..." tointerpret a literal as a date.

e For PostgreSQL, MariaDB/MySQL, and MSSQL, it's sufficient to
cast the literals for the first row only; SQL gets the hint from there.
Oracle, on the other hand, needs all of the rows to be cast.

346

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

You now have a virtual table with a collection of test dates. You can now try out your
age calculation:

-- PostgreSOL
WITH dates(dob, today) AS (
-- etc
)
SELECT
dob, today,
extract(year from age(today,dob)) AS age
FROM dates;
-- MariaDB/MySOL
WITH dates(dob, today) AS (
-- etc
)
SELECT
dob, today,
timestampdiff(year,dob,current timestamp) AS age
FROM dates;

-~ MSSOL
WITH dates(dob, today) AS (
-- etc
)
SELECT
dob, today,
datediff(year,dob,today) AS age
FROM dates;
-~ SQLite
WITH dates(dob, today) AS (
-- etc
)
SELECT
dob, today,
cast(
strftime('%Y.%m%d"', today) - strftime('%Y.%m%d', dob)

347

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

as int) AS age
FROM dates;

-- Oracle
WITH dates(dob, today) AS (
-- etc
)
SELECT

dob, today,
trunc(months_between(today,dob)/12) AS age
FROM dates;

We've already noted in Chapter 4 how MSSQL gets the age wrong, and this is one
way you can test this.

Using a Table Literal for Sorting

In Chapter 5, we noted the problem of sorting string values. Put simply, alphabetical
order is rarely the best way to list items which are supposed to be sequential.

For example, if you have the day names of the week, the month names of the year,
the colors of the rainbow, or even the names of the numbers (“One,” “Two,” “Three,’
etc.), sorting the strings in alphabetical order will just make things confusing.

In Chapter 5, we cheated by relying on a string position. Another, more resilient
solution is to have a (virtual) table of values with their correct position.

In Chapter 8, we generated a summary of sales per weekday:

WITH
data AS (...)
summary AS (...)
SELECT
weekday number, total,
100*total/sum(total) OVER()
FROM weekday number
ORDER BY weekday number;

The problem is that we’ve had to get the weekday number in order to sort this
correctly. It would have been nicer to use the weekday name instead. We can then use an
additional virtual table to sort the names.

348

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS
First, let’s redo the data CTE with the day name:

PostgreSQL, Oracle

WITH data AS (
SELECT to_char(ordered, 'FMDay') AS weekday, total
FROM sales

)

MSSOL

WITH data AS (
SELECT datename(weekday,ordered) AS weekday, total
FROM sales

)

MariaDB/MySQOL

WITH data AS (
SELECT date_format(ordered, '%W'), total
FROM sales

)

You'll notice that SQLite isn’t included in the list. That's because it doesn’t have a

method of getting the weekday name. If you need it, you'll want the reverse technique in

the next section.

The summary CTE will now group by the weekday name:

WITH

data AS (
SELECT
... AS weekday,
total
FROM sales
))
summary AS (
SELECT weekday, sum(total) AS total
FROM data
GROUP BY weekday

etc

349

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

We’ll now need a table literal with the days of the week as well as a sequence number.

sequence weekday

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

~N O U & W N =

Sunday

-- PostgreSQL, MariaDB (not MySQL), SOLite
weekdays (sequence,weekday) AS (
VALUES (1, 'Monday'), (2, 'Tuesday") -- etc
)
-- MySOL (not MariaDB)
weekdays (sequence,weekday) AS (
VALUES row(1, 'Monday'), row(2,'Tuesday") -- etc
)
-- MSSQL
weekdays (sequence,weekday) AS (
SELECT * FROM (
VALUES (1, 'Monday'), (2, 'Tuesday") -- etc
) AS sq(a,b)
)
-- Oracle
weekdays (sequence,weekday) AS (
SELECT 1, 'Monday' FROM dual
UNION ALL SELECT 2,'Tuesday' FROM dual -- etc

350

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

Finally, to do the sorting, you can join the summary CTE with the weekdays CTE and

sort by the sequence number:

WITH
data AS (),
summary AS (),

weekdays(dob, today) AS ()

SELECT

summary.weekday, summary.total,
100*total/sum(summary.total) OVER()

FROM summary JOIN weekdays

ON summary.weekday=weekdays.weekday

ORDER BY weekdays.sequence;

You should see something like this:

weekday total proportion
Monday 49304 15.081
Tuesday 45156.5 13.813
Wednesday 45959.5 14.058
Thursday 47528 14.538
Friday 423725 12.961
Saturday 48415.5 14.81
Sunday 48182.22 14.738

One advantage of this technique is that you can change the sequence numbering in

the table literal, for example, to start on Wednesday if that suits you better.

By the way, if you're going to sort by weekday, or anything like it, very often, you
might be better off saving the data in a permanent lookup table.

Using a Table Literal As a Lookup

We've already noted that SQLite has no function to get the day name of the week—only
the day number. In any case, you may have other situations where the data you have isn't
as friendly or as comprehensible as you would like.

351

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

One solution is to use a table literal to act as a lookup table.

For example, the vip table has a status level of 1, 2, or 3. You're supposed to realize
that it means Gold, Silver, and Bronze. Here, we'll use a table literal to do just that.

First, we'll develop a CTE with the status names:

-- PostgreSQL, MariaDB (not MySQL), SOLite
WITH statuses(status,name) AS (
VALUES (1, 'Gold"),(2,'Silver'), (3, 'Bronze")
)
-- MySOL (not MariaDB)
WITH statuses(status,name) AS (
VALUES row(1,'Gold"),row(2,"'Silver'),row(3, 'Bronze')
)
-- MSSQL
WITH statuses(status,name) AS (
SELECT * FROM (
VALUES (1,'Gold'),(2,'Silver'),(3, 'Bronze")
) AS sq(a,b)
)

-- Oracle
WITH statuses(status,name) AS (
SELECT 1,'Gold" FROM DUAL
UNION ALL SELECT 2,'Silver' FROM DUAL
UNION ALL SELECT 3,'Bronze' FROM DUAL

)

We can now join the CTE to customers and vip tables:

WITH statuses(status,name) AS (
-- etc

)
SELECT *

FROM
customers
LEFT JOIN vip ON customers.id=vip.id
LEFT JOIN statuses ON vip.status=statuses.status

352

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

Again, the benefit is that you can change the status names on the fly.

You can also do the same sort of thing with author and customer genders. Another
thing you can do with this technique is to translate from one set of names to another set
of names.

You may be wondering why we don’t include the full name of the gender or the vip
status in the table itself. Remember that you should only record a piece of data
once, and it should be the simplest version possible. Storing a value as a single
character, as with the gender, or an integer, as with the vip status, reduces the
possibility of data error or variation, and you can spell it out later when you want.

Splitting a String

If you have the courage to look in the script which generated the database, you'll find two
recursive CTEs near the end:

-- Populate Cenres
INSERT INTO genres(genre)
WITH split(bookid,genre,rest,genres) AS (

)
SELECT DISTINCT genre

FROM split
WHERE split.genre IS NOT NULL;
-- Populate Book Genres
INSERT INTO bookgenres(bookid,genreid)
WITH split(bookid,genre,rest,genres) AS (

)
SELECT split.bookid,genres.id

FROM split JOIN genres ON split.genre=genres.genre
WHERE split.genre IS NOT NULL;

353

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

The reason is purely pragmatic. There are thousands of book-genre combinations,
and, instead of dumping the bookgenres table directly, it was more convenient to code
the combined genres into a table and use the recursive CTEs to pull that apart. To leave
the genres combined would have been wrong for all the reasons discussed in Chapter 3.

Here, we'll have a look at how this process works, by splitting a few sample strings.

We'll first take a simple string and put it in a table literal. For now, it will be a simple
string with comma-separated values. Later, it will be more complex.

-- PostgreSQL, SQLite, MariaDB (not MySOQL)
WITH
cte(fruit) AS (
VALUES ('Apple,Banana,Cherry,Date,
Elderberry,Fig")
),
-- MySOL (Not MariaDB)
WITH
cte(fruit) AS (
VALUES row('Apple,Banana,Cherry,Date,
Elderberry,Fig")
),
-- MSSOL
WITH
cte(fruit) AS (
SELECT *
FROM (VALUES ('Apple,Banana,Cherry,Date,
Elderberry,Fig')) AS sq(a)
))
-- Oracle)
WITH
cte(fruit) AS (
SELECT 'Apple,Banana,Cherry,Date,
Elderberry,Fig' FROM dual

)

354

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

In order to make the code readable, the string has been split over two lines. Don’t
do this in your real code!

Some DBMSs don’t like string literals with a line break inside. For those that will
accept the line break; it will be part of the data, and we won’t want that.

Be sure to write the string on one line, even if it's very long.

For the recursive CTE, we'll build two values: the individual item and a string
containing the rest of the original string. The CTE can be called split:

WITH
cte(fruit) AS (),
split(fruit, rest) AS (

)

The anchor member will get the first item from the string, up to the comma, and the
rest, after the comma:

WITH
cte(fruit) AS (),

-- PostgreSQOL
split(fruit, rest) AS (
SELECT
substring(fruit,o,position(',"' in fruits)),
substring(fruit,position(',"' in fruits)+1)||",’
FROM cte

)
-- MariaDB, MySQL
split(fruit, rest) AS (
SELECT
substring(fruit,1,position(',"' in fruits)-1),
substring(fruit,position(',"' in fruits)+1)||","
FROM cte

355

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

-- MSSQL
split(fruit, rest) AS (
SELECT
cast(substring(fruit,o0,charindex(',",fruits)) as varchar(255)),
cast(substring(fruit,charindex(',",fruits)+1,255)+"," as varchar(255))
FROM cte
)
-~ SQLite
split(fruit, rest) AS (
SELECT
substring(fruit,o0,instr(fruits,',")),
substring(fruit,instr(fruits,"',")+1)||","
FROM cte
)
-- Oracle
split(fruit, rest) AS (
SELECT
substr(fruit,1,instr(fruits,’,")-1),
substr(fruit,instr(fruits,"',")+1)||","
FROM cte
)

Note that for MSSQL we've had to cast the calculation to varchar(255) because of a
peculiarity with string compatibility.

For the recursive member, we use the rest value. First, we get the string up to the
first comma, which becomes the fruit value. Then, we get the rest of the string from the
comma, which becomes the new value for rest:

WITH
cte(fruit) AS (),
-- PostgreSQL
split(fruit, rest) AS (
SELECT ...
UNION
SELECT
substring(rest,0,position('," in rest)),

356

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

substring(rest,position(',"' in rest)+1)
FROM cte WHERE rest<>''
)
MariaDB, MySOL
split(fruit, rest) AS (
SELECT ...
UNION
SELECT
substring(rest,1,position(',"' in rest)-1),
substring(rest,position(',"' in rest)+1)
FROM cte WHERE rest<>"’

)
MSSOL
split(fruit, rest) AS (
SELECT ...
UNION ALL
SELECT
substring(rest,0,charindex(',", rest)),
substring(rest,charindex(',"', rest)+1,255)
FROM cte WHERE rest<>''
)
SQLite
split(fruit, rest) AS (
SELECT ...
UNION
SELECT
substring(rest,0,instr(rest,',")),
substring(rest,instr(rest,"',"')+1)
FROM cte WHERE rest<>''
)
Oracle
split(fruit, rest) AS (
SELECT ...
UNION ALL

357

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

SELECT
substr(rest,1,instr(rest,"',")-1),
substr(rest,instr(rest,’,"')+1)

FROM cte WHERE rest<>''

)

Note that we don’t add a comma to the rest value this time: that was just to get
started.

We have also added WHERE rest<>'' to the FROM clause. This is because we need to
stop recursing when there’s no more of the string to search.

You can now try it out:

WITH
cte(fruit) AS (),
split(fruit,rest) AS ()
SELECT * FROM split;

You should now see the following:

fruit rest

Apple Banana,Cherry,Date,Elderberry,Fig,
Banana Cherry,Date,Elderberry,Fig,

Cherry Date,Elderberry,Fig,

Date Elderberry,Fig,

Elderberry Fig,

Fig [NULL]

Of course, we don’t need to see the rest value in the output: it's just there so you can
see its progress.

Splitting More Complex Data

So far, we've only split a simple string. We can do that with a more complex set of data.
Here, we'll have a CTE with three rows and two columns:

358

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

name list

colours Red,Orange, Yellow,Green,Blue,Indigo,Violet
elements Hydrogen,Helium,Lithium,Beryllium,Boron,Carbon
numbers One, Two, Three,Four,Five,Six,Seven,Eight,Nine

The good news is that the process is nearly the same.
To begin with, we’ll have a CTE with the table literal:

PostgreSQL, SQLite, MariaDB (not MySQL)

WITH
cte(name,items) AS (
VALUES
('colours', 'Red,Orange,...,Indigo,Violet"),
('elements', 'Hydrogen,Helium,...,Carbon"),
('numbers', 'One,Two, ...,Eight,Nine")
)J
MySOL (Not MariaDB)
WITH
cte(name,items) AS (
VALUES
row('colours', 'Red,Orange,...,Indigo,Violet"),
row('elements', "Hydrogen,Helium,...,Carbon"),
row('numbers', 'One,Two,...,Eight,Nine")
)J
MSSQL
WITH
cte(name,items) AS (
SELECT *
FROM (
VALUES
('colours', 'Red,Orange,...,Indigo,Violet"),
("elements', 'Hydrogen,Helium,...,Carbon"),
("numbers', 'One,Two, ...,Eight,Nine")
) AS sq(a,b)
))

359

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

-- Oracle)
WITH
cte(name,items) AS (
SELECT 'colours','Red,Orange,...,Indigo,Violet’

FROM dual

UNION ALL SELECT 'elements','Hydrogen,...,Carbon’
FROM dual

UNION ALL SELECT 'numbers','One,Two,...,Eight,Nine’
FROM dual

)s

(We've obviously abbreviated the lists to fit nicely on the page.)
For the anchor member, we start the same way as before, but we'll include the name
of the list. It won't be involved in the split, but is useful for the output.

WITH
cte(name, items) AS (),
-- PostgreSQOL
split(name, item, rest) AS (
SELECT
name,
substring(items,0,position('," in items)),
substring(items,position('," in items)+1)||",’
FROM cte
)

-- MariaDB, MySOL
split(name, list, rest) AS (
SELECT
name,
substring(items,1,position("," in items)-1),
substring(items,position('," in items)+1)||",’
FROM cte
)
-— MSSQL
split(name, list, rest) AS (
SELECT

360

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

name,
cast(substring(items,0,charindex(',", items)) as varchar(255)),
substring(items,charindex(',"', items)+1,255)+","

FROM cte
)
-~ SQLite
split(name, list, rest) AS (
SELECT
name,
substring(items,0,instr(items,",")),
substring(items,instr(items,",")+1)||","
FROM cte
)
-- Oracle
split(name, list, rest) AS (
SELECT
name,
substr(items,1,instr(items,"',"')-1),
substr(items,instr(items,',")+1)||","
FROM cte
)

As for the recursive member, again it’s the same idea, with the name value included:

WITH
cte(name, items) AS (),

-- PostgreSQOL
split(name, list, rest) AS (
SELECT ...
UNION
SELECT
name,

substring(rest,0,position(',"' in rest)),

substring(rest,position(',"' in rest)+1)
FROM cte WHERE rest<>"’

361

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

-- MariaDB, MySQOL
split(name, list, rest) AS (

SELECT ...

UNION

SELECT
name,
substring(rest,1,position(",
substring(rest,position(',"

FROM cte WHERE rest<>''

in rest)-1),
in rest)+1)

)
-- MSSQL
split(name, list, rest) AS (
SELECT ...
UNION ALL
SELECT
name,
cast(substring(rest,0,charindex(',", rest)) as varchar(255)),
substring(rest,charindex(',"', rest)+1,255)
FROM cte WHERE rest<>''
)
-- SQLite
split(name, list, rest) AS (
SELECT ...
UNION
SELECT
name,
substring(rest,0,instr(rest,"',")),
substring(rest,instr(rest,"',"')+1)
FROM cte WHERE rest<>''
)
-- Oracle
split(name, list, rest) AS (
SELECT ...
UNION ALL
SELECT
name,

362

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

substr(rest,1,instr(rest,',"')-1),
substr(rest,instr(rest,',"')+1)
FROM cte WHERE rest<>''

)

We can now put this to the test:

WITH
cte(name, items) AS ()
split(name, item, rest) AS ()
SELECT *
FROM split
ORDER BY name, item;

When it’s all going, you should see something like the following:

name item rest

colours Blue Indigo,Violet,

colours Green Blue,Indigo,Violet,

colours Indigo Violet,

colours Orange Yellow,Green,Blue,Indigo,Violet,
colours Red Orange, Yellow,Green,Blue,Indigo,Violet,
colours Violet [NULL]

colours Yellow Green,Blue,Indigo,Violet,

elements Beryllium Boron,Carbon,

elements Boron Carbon,

elements Carbon [NULL]

elements Helium Lithium,Beryllium,Boron,Carbon,
elements Hydrogen Helium, Lithium,Beryllium,Boron,Carbon,
elements Lithium Beryllium,Boron,Carbon,

numbers Eight Nine,

numbers Five Six,Seven,Eight,Nine,

(continued)

363

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

name item rest

numbers Four Five,Six,Seven,Eight,Nine,

numbers Nine [NULL]

numbers One Two, Three,Four,Five,Six,Seven,Eight,Nine,
numbers Seven Eight,Nine,

numbers Six Seven,Eight,Nine,

numbers Three Four,Five,Six,Seven,Eight,Nine,

numbers Two Three,Four,Five,Six,Seven,Eight,Nine,

As you see the recursive CTE was able to work with multiple rows of data.

Summary

In this chapter, we had a closer look at using Common Table Expressions. A common

table expression generates a virtual table that you can use later in the main query. In the

past, you would make do with a subquery in the FROM clause.

The reason why you would use a CTE or a FROM subquery is that you might need to

prepare data but you don’t want to go to the trouble of saving it either in a view or a temporary

table. CTEs are more ephemeral than temporary tables in that they are not saved at all.

CTEs have a number of advantages over FROM subqueries:

+ You define the CTE before using it, making the query more readable

and more manageable.

+ You can chain multiple dependent or independent CTEs simply. If

you wanted to do that with FROM subqueries, you would have to nest

them, which gets unwieldy very quickly.

« CTEs can be recursive, so you can use them to iterate through data.

Simple CTEs

The simplest use of a CTE is to prepare data for further processing. Some uses include

+ Defining a set of constant values, either as literals or as

calculated values

364

CHAPTER9 MORE ON COMMON TABLE EXPRESSIONS

s Preparing aggregate data, to be combined with non-
aggregate queries

Parameter Names

A CTE is expected to have a name or alias for each column. You can define the names
inside the CTE, or you can define them as part of the CTE definition.

Multiple CTEs

Some queries involve multiple steps. These steps can be implemented by chaining
multiple CTEs.

Recursive CTEs

A recursive CTE is one which references itself. It can be used for iterating through a set
of data.
Some uses of recursive CTEs include

« Generating a sequence of values
¢ Traversing a hierarchy through a self-join

« Splitting strings into smaller parts

Coming Up

So far, we've worked on a number of important major concepts. In the next chapter,
we'll have a look at a few additional techniques you can use to work smarter with your
database:

« Triggers allow you to automate a process whenever some of the data
changes.

« Pivot tables are basically a two-dimensional aggregate query.

« Variables allow you to hold interim values when there’s too much
going on.

365

CHAPTER 10

More Techniques:
Triggers, Pivot Tables,
and Variables

Throughout the book, we’ve looked at pushing our knowledge and application of SQL a
little further and explored a number of techniques, some new and some not so new.

When looking at some techniques, in particular, those involving aggregates and
common table expressions, we also got a sense of pushing SQL deeper, with multitiered
statements.

In this chapter, we'll go a little beyond simple SQL and explore a few techniques
which supplement SQL. They're not directly related to each other, but they all allow you
to do more in working with your data.

SQL triggers are small blocks of code which run automatically in some response to
some database event. We’ll look at how these work and how you would write one. In
particular, we'll look at a trigger to automatically archive data which has been deleted.

Pivot tables are aggregates in two dimensions. They allow you to build summaries in
both row and column data. We'll look at an example of preparing data to be summarized
and how we produce a pivot table.

Variables are pieces of temporary data which can be used to maintain values
between statements. They allow us to run a group of SQL statements, while they hold
interim values which are passed from one statement to another. In this chapter, we'll
look at using variables to hold temporary values while we add data to multiple tables.

367
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1_10

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

Understanding Triggers

Sometimes, a simple SQL query isn’t quite enough. Sometimes, what you really want is
for a query to start off one or more additional queries. Sometimes, what you want is a
trigger.

A trigger is a small block of code which will be run automatically when something
happens to the database. There are various types of triggers, including

« DML (Data Manipulation Language) triggers run when some change
is made to the data tables, as when the INSERT, UPDATE, or DELETE
statements are executed.

« DDL (Data Definition Language) triggers run when changes are
made to the structure of the database, such as when CREATE, ALTER, or
DROP statements are executed.

« Logon triggers run when a user has logged in.

One reason you might use DDL or Logon triggers is if you want to track activity by
storing this in a logging table.

Here, we're going to look more at a DML trigger.

Triggers can be used to fill in some shortcomings of standard DBMS behavior. Here

are some examples which might call for a trigger:

« You might have an activity table which wants a date column updated
every time you make a change. You can use a trigger to set the
column for every insert or update.

« Suppose you have a rental table, where you enter a start and a finish
date. You'd like the finish date to default to the start date if it isn't
entered. SQL defaults aren’t quite so clever, but you can set a trigger
to set the finish date when you insert a new row.

+ SQL has no auditing in the normal sense of the word. You can create
a trigger to add some data to a logging table every time a row is
added, updated, or deleted.

In this example, we're going to create a trigger to keep a copy of data which we're
going to delete from the sales table.

368

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

In some of the preceding chapters, we've had to contend with the fact that in the
sales table, some rows have NULLs for the ordered date/time. Presumably, those sales
never checked out.

We've been pretty forgiving so far and filtered them out from time to time, but the
time has come to deal with them. We can delete all of the NULL sales as follows:

-- Not Yet!
DELETE FROM sales WHERE ordered IS NULL;

Note that there’s a foreign key from the saleitems table to the sales table, which
would normally disallow deleting the sales if there are any items attacked. However, if
you check the script which generates the sample database, you'll notice the ON DELETE
CASCADE clause, which will automatically delete the orphaned sale items.

When should you delete data? The short answer is never. The longer answer is
more complicated. You would delete data that was entered in error, or you would
delete test data when you’ve finished testing.

In this case, we're going to delete the sales with a NULL for the ordered date;
we’ll assume that the sale was never checked out and that the customer won't
ever come back and finish it. However, we’ll keep a copy of it anyway, just in case.

Most DBMSs handle triggers in a very similar way, but there are variations. We'll go
over the basics first and then the details for individual DBMSs.

Some Trigger Basics

The basic syntax for creating a trigger is something like this:

CREATE TRIGGER something
ON some_table

BEFORE DELETE

BEGIN

END

369

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

None of the DBMSs do it exactly the same way, but it’s roughly right:
« The trigger, of course, has a name: CREATE TRIGGER something.
» The trigger is attached to a table: ON some_table.
« The trigger is attached to an event.

The event is typically one of BEFORE, AFTER, or INSTEAD OF, followed by one of the DML
statements. In this example, we want to do something with the old data before it's deleted.

For the sample trigger, we're going to copy the old data into a table called deleted
sales. This means that we're going to have to get to the data before it's vanished. The
appropriate event is

BEFORE DELETE

It's going to be a little complicated, because we want to copy not only the data from
the sales table but also from the saleitems table. We'll do that by concatenating those
items into one string. You really shouldn’t keep multiple items that way, but it's good
enough for an archive, and you can always pull it apart if you ever need to.

The archive table looks something like this:

CREATE TABLE deleted sales (
id INT PRIMARY KEY, -- Auto Incremented
saleid INT,
customerid INT,
items VARCHAR(255),
deleted date TIMESTAMP -- date/time

);
This table has already been created.

Preparing the Data to Be Archived

The trigger code will basically be an INSERT statement, inserting prepared values from
the sales and saleitems tables. We’ll prepare the values in a CTE:

-- PostgreSQL, MSSQOL
WITH cte AS (

370

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

INSERT INTO deleted sales(saleid, customerid, items,
deleted date)

SELECT saleid,customerid, items, current timestamp

FROM cte;

MariaDB/MySQL, SOLite, Oracle
INSERT INTO deleted sales(saleid, customerid, items, deleted date)
WITH cte AS (

)

SELECT saleid,customerid, items, current timestamp
FROM cte;

As you see, with some DBMSs you start with the CTE, as you would using a SELECT

statement, while in others you start with the INSERT clause.

As for the CTE itself, we'll derive that from the data to be deleted.
For most DBMSs, each row to be deleted is represented in a virtual row called old

(:0ld in Oracle). MSSQL instead has a virtual table called deleted.

If we were simply archiving from one table, we wouldn't need the CTE, and we could

simply copy the rows with

Not MSSQL: FOR EACH ROW

INSERT INTO deleted sales

VALUES(old.saleid, old.customerid, '...",
current_timestamp);

MSSQL: deleted is a virtual table

INSERT INTO deleted sales

SELECT saleid, customerid, '...', current timestamp

FROM deleted;

However, it’s not so simple when there’s another table involved. Here, the plan is to

read the book ids and quantities from the other table and combine them using string

agg, group_concat, or listagg according to DBMS.

371

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES
To generate the data, we’ll use a join and aggregate the results:

WITH cte(saleid,customerid,items) AS (
SELECT
s.id, s.customerid,
string agg(si.bookid||"':"||si.quantity,";")
FROM sales AS s JOIN saleitems AS si ON s.id=si.saleid
WHERE s.id=o0ld.id
GROUP BY s.id, s.customerid

The preceding sample is for PostgreSQL, but the others are nearly identical —just the
variations in the string agg() function, concatenation, and table aliases.
The items string will contain something like the following:

123:3;456:1;789:2

That is, one or more bookid:quantity items are joined with a semicolon.
If you do need to pull it apart, you can use the same techniques we used for splitting
strings in Chapter 9. We can now go about creating the trigger.

Creating the Trigger

Now that we've covered the basics of how the trigger’s going to work, we can write the
actual code. For the most part, it will be pretty close to what you have seen earlier, with
variations for each DBMS.

Once the trigger has been created, we can try it out with the following. The plan is to
delete those sales without an ordered date:

-- Before
SELECT * FROM sales order by id;
SELECT * FROM saleitems order by id;
SELECT * FROM deleted sales order by id;
-- Delete with Trigger
DELETE FROM sales WHERE ordered IS NULL;

372

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

-- After
SELECT * FROM sales order by id;
SELECT * FROM saleitems order by id;
SELECT * FROM deleted sales order by id;

We'll now go into the details for the individual DBMSs.

PostgreSQL Triggers

PostgreSQL has the least convenient form of trigger, in that you first need to prepare a
function to contain the trigger code. A function is a named block of code, which can be
called later at any time.

To prepare for the function and trigger, we can start with a few DROP statements:

DROP TRIGGER IF EXISTS archive sales trigger ON sales;
DROP FUNCTION IF EXISTS do_archive sales;

The function will basically contain the code described earlier:

CREATE FUNCTION do_archive sales() RETURNS TRIGGER
LANGUAGE plpgsql AS
$$BEGIN
WITH cte(saleid,customerid,items) AS (
SELECT
s.id, s.customerid,
string agg(si.bookid||":"||si.quantity,";")
FROM sales AS s JOIN saleitems AS si
ON s.id=si.saleid
WHERE s.id=o0ld.id
GROUP BY s.id, s.customerid
)
INSERT INTO deleted sales(saleid, customerid,items,
deleted date)
SELECT saleid, customerid, items, current timestamp
FROM cte;
RETURN old;
END$$;

373

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

As you see, the function has the code for the CTE and for copying the data into the
deleted sales table. Here are a few points about the function itself:

« Afunction has a name (do_archive sales) and returns a result of a
certain type, in this case a TRIGGER.

« PostgreSQL has a number of alternative coding languages you can
use to write a function, but the standard one is called plpgsql.

« Technically, a function definition is a string. However, using single
quotes would interfere with single quotes inside the function
definition. PostgreSQL allows an alternative string delimiter, in
this case the $$ code. This is the most mysterious part of writing
PostgreSQL functions.

Once you have the function in place, creating the trigger is simple:

CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW
EXECUTE FUNCTION do archive sales();

You can now try it out.

MySQL/MariaDB Triggers

With MariaDB/MySQL, the trigger can be written in a single block. First, we'll write the
code to drop the trigger:

DROP TRIGGER IF EXISTS archive sales trigger;
The basic form of the trigger code will be

CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW

BEGIN

END;

374

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

There’s going to be a possible complication here. The trigger code includes a
BEGIN ... END block which is to allow multiple statements on one block. At this point,
MariaDB/MySQL isn’t sure where the real end will be, so it’s normal to change the end of
the statement delimiter:

DELIMITER $%

CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW

BEGIN

END; $$
DELIMITER ;

Here, the delimiter is changed to $$. It doesn’t have to be that, but it's a combination
you're unlikely to use for anything else. The new delimiter is used to mark the end of the
code and switched back to the semicolon after that.

After that, the trigger code is much as described:

DELIMITER $%
CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW
BEGIN
INSERT INTO deleted sales(saleid,customerid,items,deleted date)
WITH cte(saleid,customerid,items) AS (
SELECT
s.id, s.customerid,
group concat(si.bookid||":"||si.quantity SEPARATOR ';')
FROM sales AS s JOIN saleitems AS si ON s.id=si.saleid
WHERE s.id=o0ld.id
GROUP BY s.id, s.customerid

375

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

SELECT saleid,customerid,items,current_timestamp
FROM cte;
END; $%

DELIMITER ;

You can now test your trigger.

MSSQL Triggers

MSSQL also has a simple, direct way of creating a trigger. However, there’s a complicating
factor, which we’ll need to work around.
Before that, however, we'll add the code to drop the trigger:

DROP TRIGGER IF EXISTS archive sales trigger;

With other DBMSs, you create a BEFORE DELETE trigger to capture the data before it's
gone. With MSSQL, you don’t have that option: there’s only AFTER DELETE and INSTEAD
OF DELETE. In both cases, there is a virtual table called deleted which has the rows to be
deleted.

The problem with AFTER DELETE is that, even though the deleted virtual table has
the deleted rows from the sales table, it’s too late to get the rows from the saleitems
table, as they have also been deleted, but there’s no virtual table for that.

For that, we’ll take a different approach. We’ll use an INSTEAD OF DELETE event,
which is to say that MSSQL will run the trigger instead of actually deleting the data. The
trick is to finish off the trigger by doing the delete at the end:

CREATE TRIGGER archive sales trigger
ON sales
INSTEAD OF DELETE AS

BEGIN

DELETE FROM sales WHERE id IN(SELECT id FROM deleted);
END;

The deleted virtual table still has the rows which haven’t actually been deleted, but
were going to be before the trigger stepped in. All we need from that is the id to identify
the sales which should be deleted at the end, together with the cascaded sale items.

376

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

The other complication is that MSSQL won't let you concatenate strings with

numbers, so you'll have to cast the numbers as strings:
cast(si.bookid AS varchar)+':'+cast(si.quantity AS varchar)

In MSSQL, varchar is short for varchar(30). It's much more than we need for the
integers, but it will reduce to the actual size of the integer, and is easy to read.

The completed trigger code is

CREATE TRIGGER archive sales trigger

ON sales
INSTEAD OF DELETE AS
BEGIN
WITH cte(saleid, customerid, items) AS (
SELECT

s.id, s.customerid,
string agg(cast(si.bookid AS varchar)+':'
+cast(si.quantity AS varchar),';")
FROM
sales AS s
JOIN saleitems AS si ON s.id=si.saleid
JOIN deleted ON s.id=deleted.id
GROUP BY s.id, s.customerid
)
INSERT INTO deleted sales(saleid, customerid, items,
deleted date)
SELECT saleid, customerid, items, current timestamp
FROM cte;
DELETE FROM sales
WHERE id IN(SELECT id FROM deleted);
END;

You can now delete your sales.

377

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

SQLite Triggers

Of all the DBMSs in this book, SQLite has by far the simplest and most direct version of
coding a trigger.
First, we can write the code to drop the trigger:

DROP TRIGGER IF EXISTS archive sales trigger;
The code to create the trigger is almost identical to the discussion earlier:

CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW
BEGIN
INSERT INTO deleted sales(saleid, customerid, items,
deleted date)
WITH cte(saleid, customerid, items) AS (
SELECT
s.id, s.customerid,
group _concat(si.bookid||':"||si.quantity,";")
FROM sales AS s JOIN saleitems AS si
ON s.id=si.saleid
WHERE s.id=o0ld.id
GROUP BY s.id, s.customerid
)
SELECT saleid, customerid, items,current timestamp
FROM cte;
END;

The FOR EACH ROW clause is optional, since in SQLite there’s no alternative currently.
However, it’s included to make the point clear that the trigger applies to each row about
to be deleted.

You can now test the trigger.

Oracle Triggers

Writing trigger code in Oracle is similar to the basic code outlined earlier, but there are a
few complicating factors which we’ll need to work around.

378

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

Before that, we can write the code to drop the trigger:
-- DROP TRIGGER archive sales trigger;

The code is commented out because Oracle doesn’t support IF EXISTS.

The first complication is that the trigger code consists of multiple statements, so it’s
hard to tell which statements belong to a single block.

Oracle has an alternative statement delimiter which is used when you're trying to

combine multiple statements:

/

CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW

BEGIN

END;
/

The forward slash (/) before and after the code defines the block. Everything
between the slashes, including the statements terminated with a semicolon, will be
treated as one block of code.

The second complication is that Oracle doesn’t like making changes to the table
doing the triggering. The solution is to tell Oracle that code is part of a separate

transaction:

CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
COMMIT,
END;
A transaction is a group of changes which can be reversed (“rolled back”) if

something goes wrong. To keep the changes, however, you then need to use the COMMIT
statement.

379

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES
The rest of the code is much as discussed earlier:

/
CREATE TRIGGER archive sales trigger
BEFORE DELETE ON sales
FOR EACH ROW
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
INSERT INTO deleted sales(saleid, customerid, items, deleted date)
WITH cte(saleid,customerid,items) AS (
SELECT
s.id, s.customerid,
listagg(si.bookid||"':"||si.quantity,";"
FROM sales s JOIN saleitems si ON s.id=si.saleid
WHERE s.id=:0ld.id
GROUP BY s.id, s.customerid
)
SELECT saleid, customerid, items, current timestamp
FROM cte;
COMMIT;
END;

You can now test the trigger.

Pros and Cons of Triggers

The main role of triggers is to add behaviors to the database which aren’t already there.
For example, the DBMS already supports defaults and column constraints, so, though
you could use triggers to do something similar, you should first check whether the built-
in feature will do the job.

One example where triggers have come to the rescue is with earlier versions of
Oracle. Other DBMSs have long implemented an autoincremented primary key, but
Oracle didn’t until more recent versions. In that case, you would use a trigger to maintain
and use a separate sequence to fill in the primary key for the next inserted row.

380

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

We've already mentioned cases when you might want to provide a default value for
a column which is more complex than the built-in default feature, or you might want
to update a column automatically. Here, the trigger might be able to provide this extra
functionality.

However, it's possible to get carried away with triggers. If there’s a DML trigger on
a table, then, every time you make any changes to the table data, there’s always a little
extra work, which might add an extra burden.

The other problem is that triggers might add a little more mystery to the database,
especially to other users of the database. Every time you do something, something else
happens. This can make troubleshooting a little trickier and make it a little harder to
check that the data is correct.

Pivoting Data

One of the important principles of good database design is that each column does
a different job. On top of that, each column is independent of the other columns.
That'’s one reason why we put so much effort separating out the town details from the
customers table in Chapter 2.

There are some situations, however, where this sort of design doesn’t suit analysis.
Take, for example, a typical ledger type of table:

date description food travel accommodation misc

This is a layout that’s very easy to understand and analyze. If you want to get the
totals for a particular category, just add down the column. If you want to get the totals
for a particular item, just add across. This sort of thing used to be done by hand until
spreadsheets were invented to let the computer do all the hard work.

381

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

You may see this sort of design in database tables you come across. However, it’s not
a good design for SQL tables:

« Putting a value in one column precludes putting it in another: the

columns are deeply dependent.
+ You will end up with very many empty spaces.

= Anew category means adding a new column to the table design. You
may end up with a huge number of columns.

» The data is harder to analyze, because now you need calculate across
columns: SQL aggregate functions are designed to aggregate across rows.

A better design would be

Date description category amount

As a general rule, the categories should be in rows, not columns.
Still, it would be nice to be able to get the data from the second form into the first
form. You can use it in presentations and possibly turn it into amazing charts.

Pivoting the Data

Generating the first type of result from the second is called pivoting the data. The idea is
that the categories pivot (swing) around, from vertical to horizontal.

If you read the data in a spreadsheet program, you can pivot the data simply.
However, you can also generate pivoted data directly within the database, though it’s not
quite so simple.

Generating the pivot table in the spreadsheet has the following advantages:

« [tis more interactive, and you can easily change what is being pivoted

and summarized.

» The spreadsheet will more automatically generate the categories; as
you will see, this is not so convenient from within the database.

+ You're only a step away from turning it into a chart.

382

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

On the other hand, using the database has the following advantages:
¢ The data is generated in a single environment.
« You can create a view to regenerate the pivot table at any time.
There are two main ways you can generate a pivot table in SQL:

¢ Manually: Using a GROUP BY clause, you can aggregate the data in
multiple columns.

¢« MSSQL and Oracle have a built-in pivot table feature to do this
for you. PostgreSQL also has one, but it's not built in and requires
installation.

Since the purpose of pivoting data is to create summaries, you often need to use a
grouped field or to group the values yourself. For example:

¢ You can use the existing state column which is a group of addresses.

« You can use date functions, such as month() to group dates
by month.

¢ You can use string functions to extract a common part of a string.

The pivot table will look something like this:

row groups column group column group column group

group 1
group 2
group 3

We're going to see how to pivot data from the sales and customers tables to get total
sales by state and VIP categories. The result will look something like this:

State gold silver bronze

383

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

In principle, you could transpose the table and have the VIP groups go down, with
the states going across. This version, however, will look neater.

Manually Pivoting Data

As we've already seen before, you often need to prepare the data before you aggregate
it. This particular summary will need data from four tables: customers, towns, vip, and
sales. Fortunately, the customerdetails view already combines the customers and
towns tables, so we can reduce the number to three.

All the preparation will be done in multiple CTEs:

WITH
statuses AS (

)5

customerinfo AS (

)5
salesdata AS (

)

« The vip table has a status number. The statuses CTE will be a table
literal which allocates a name to the number.

o The customerinfo CTE will join the tables together and select the
columns we want to summarize.

« The salesdata will be an aggregate query which will be a first step in
our pivot table summary.

With those CTEs, we'll run another aggregate query which will result in our
pivot table.

384

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

The status CTE is simple. We just need to match status numbers with names:

WITH

statuses(status, statusname) As (

)

PostgreSQOL, SQLite, MariaDB (Not MySQL):
VALUES (1,'Gold"), (2,'Silver'), (3,'Bronze')
MySQL:
VALUES row(1,'Gold'), row(2,'Silver'),
row(3, 'Bronze')
MSSOL:
SELECT * FROM (VALUES (1,'Gold'),(2,'Silver'),
(3, 'Bronze'))
Oracle:
SELECT 1, 'Gold"' FROM dual
UNION ALL SELECT 2,'Silver' FROM dual
UNION ALL SELECT 3,'Bronze' FROM dual

The customerinfo CTE will join this to the customerdetails view and the vip table

to get the id, state, and status name for the customers:

WITH

statuses(status, statusname) AS (

)

customerinfo(id, state, statusname) AS (

)

SELECT *

SELECT customerdetails.id, state, statuses.statusname
FROM

customerdetails

LEFT JOIN vip ON customerdetails.id=vip.id

LEFT JOIN statuses ON vip.status=statuses.status

FROM customerinfo;

385

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

If you test it now, you'll get something like this:

Id state statusname
407 NSW Bronze

299 QLD Gold

21 [NULL] Gold

597 TAS [NULL]

106 NSW Gold

26 VIC Gold

~ 303 rows ~

At this point, you can group it by state or status name to see how many of each you

have, but we're more interested in the total sales.

For that, we’'ll need to join the preceding with the sales table in another CTE:

WITH

statuses(status, statusname) AS (

)s

customerinfo(id, state, statusname) AS (

)s

salesdata(state, statusname, total) AS (

SELECT state, statusname, total
FROM customerinfo JOIN sales

ON customerinfo.id=sales.customerid

)
SELECT *

FROM salesdata;

386

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

Again, testing what we have so far, we get

State statusname total
NSW [NULL] 56
NSW Silver 43.5
VIC [NULL] 70
QLD [NULL] 28
VIC Gold 245
VIC [NULL] 133
~ 5294 rows ~

All of this is just to get the data ready. What we're going to do now is generate our
group rows.

Obviously, you'll need an aggregate query, grouping by state. Normally, it would
have looked something like this:

WITH
statuses(status, statusname) AS (

)

customerinfo(id, state, statusname) AS (

)
salesdata(state, statusname, total) AS (

)

SELECT state, sum(total)
FROM salesdata
GROUP BY state;

387

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

to give us this:

State sum
WA 20274
ACT 6781.5
TAS 28193
VIC 79199.5
NSW 101889
NT 6151
QLD 53331.5
SA 30977.5

However, to get that ledger table appearance, we'll use aggregate filters to generate
three separate totals:

WITH
statuses(status, statusname) AS (

)5

customerinfo(id, state, statusname) AS (

)5
salesdata(state, statusname, total) AS (

)
SELECT

state,
sum(CASE WHEN statusname='Gold' THEN total END) AS gold,
sum(CASE WHEN statusname='Silver' THEN total END)
AS silver,
sum(CASE WHEN statusname='Bronze' THEN total END)
AS bronze
FROM salesdata;

388

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

This finally gives you the following:

State gold silver bronze
WA 213 1655 [NULL]
ACT 1272.5 [NULL] [NULL]
TAS 4182.5 2203 2764.5
VIC 8190 5875 5752.5
NSW 11068.5 9319 10760.5
NT [NULL] [NULL] 339.5
QLD 5094 3522.5 10480
SA 644 1390.5 3362

You might be tempted to ask whether there’s an easier way to do it. The answer is not

really. The hard part was always going to be the preparation of the data for pivoting.
However, for a few DBMSs, the final step can be achieved with a built-in feature.

Using the Pivot Feature (MSSQL, Oracle)

MSSQL and Oracle both offer a non-standard pivot feature which simplifies generating

the pivot table. It takes the following form:

SELECT ...
FROM ...

PIVOT (aggregate FOR column IN(columnnames)) AS alias

¢ The aggregate is the aggregate function you want to apply. In this

case, it's sum(total).

e The column is the column whose values you want across the table. In

this case, it's statusname.

« The columnnames is a list of values which will be the columns across

the pivot table. In this case, it's Gold, Silver, Bronze.

« The alias is any alias you want to give. It's not used here, but it’s

required. The pivot table is, after all, a virtual table.

389

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

In our case, the pivot table will look like this:

WITH
statuses(status, statusname) AS (

)5

customerinfo(id, state, statusname) AS (

)5

salesdata(state, statusname, total) AS (

)
SELECT *

FROM salesdata

-- MSSQL:

PIVOT (sum(total) FOR statusname IN (Gold, Silver, Bronze))
AS whatever

-- Oracle:

PIVOT (sum(total) FOR statusname IN ('Gold' AS Gold, 'Silver’
AS Silver, 'Bronze' AS Bronze))

This is a little bit simpler than the filtered aggregates we used previously. However,
note that there are some quirks with this technique.
The syntax for MSSQL and Oracle is not identical:

« InMSSQL, the column names list is a plain list of names. Also, note
that the PIVOT clause requires an alias.

« In Oracle, the list of column names is a list of strings; however, they
are aliased to prevent the single quotes from appearing in the names.
The PIVOT clause itself does not require an alias.

You'll notice that the state doesn’t make an appearance in the PIVOT clause; only
the statusname and total. Any column not mentioned in the PINVOT clause will appear
as grouping rows. You can have more complex pivot tables if there’s more than one such
column, but you need to make sure that the (virtual) table you want to pivot doesn’t have
any stray unwanted columns.

390

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

You'll also notice that the IN expression isn’t a normal IN expression. To begin with,
it's not a list of values, but a list of column names.

On top of that, you can’t use a subquery to get the list of column names. You have
to know ahead of time what the column names are going to be, and you'll have to type
them in yourself.

Using the pivot feature is not quite as convenient as it might have been, but, if it’s
available, is still simpler than the filtered aggregates. However, you will still need to put
in some effort in preparing your data first.

Using the Unpivot Feature

Both MSSQL and Oracle can reverse the process using UNPIVOT. Noting that a pivot table
is denormalized, the UNPIVOT clause can give you a normalized result. The idea is that
summaries which are spread across the table in category columns will appear down the
table in rows.

The sample database doesn’t include a table in pivot table form, and rightly so.
However, we do have a ready-made pivot table in the preceding work. We can use that to
illustrate the unpivot feature.

First, we'll need to wrap the final SELECT statement into another CTE:

WITH
statuses(status, statusname) AS (

)

customerinfo(id, state, statusname) AS (

))
salesdata(state, statusname, total) AS (
), -- extra comma
pivottable AS (
SELECT *
FROM salesdata
PIVOT ...
)

391

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

SELECT *
FROM pivottable

If you run this, you'll get the same result as before; we’ve just put the result into the
pivottable CTE.
The next step is to add the UNPIVOT clause at the end of the SELECT statement:

WITH
statuses(status, statusname) AS (

)s

customerinfo(id, state, statusname) AS (

)5
salesdata(state, statusname, total) AS (

)s
pivottable AS (

)
SELECT *

FROM pivottable
-~ MSSOL:
UNPIVOT (
total FOR statuses IN (Gold,Silver,Bronze)
) AS w
-- Oracle:
UNPIVOT (
total FOR statuses IN (Gold,Silver,Bronze)

392

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

You should see something like

state total statuses
QLD 55632.5 Gold
QLD 3557.5 Silver
QLD 10937 Bronze
VIC 8352 Gold
VIC 6381.5 Silver
ViC 6023 Bronze
NSW 11526 Gold
NSW 9567 Silver
NSW 11941.5 Bronze
NT 349.5 Bronze
ACT 1387 Gold
TAS 4574 Gold
TAS 2459.5 Silver
TAS 2873.5 Bronze
SA 826.5 Gold
SA 1634.5 Silver
SA 3709.5 Bronze
WA 213 Gold
WA 1655 Silver

The UNPIVOT clause is even more mysterious than the PIVOT clause. The only column

that’s specifically mentioned is the statuses column, and, again, you need to list the

possible values. From there, the DBMS magically works out that there is a state column,

and whatever’s left will appear in another column, which we have called total.

393

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

Working with SQL Variables

SQL is not a programming language. With a programming language, you code how to do
ajob in a series of steps. SQL is a declarative language in which you code what you want
done, but leave it up to the DBMS to decide how to go about doing it.

Nevertheless, there are times when you need a job done in multiple steps, and
having the ability to write your code in steps would come in handy. We saw this in
Chapter 3, where adding a new sale involved multiple steps.

What was missing from the process in Chapter 3 was the ability to store interim
values. That's what we're going to look at in this section.

Many DBMSs supply information about the current database environment in the
form of special functions or system or global variables. Sometimes, these system
variables can be set to new values using a SET command. That’s not what we’re
looking at in this section. In this section, we’re looking at variables that you create
and set for your own use.

Avariable is a temporary piece of data. Generally, you declare it before you use it
and define its data type. You may set it then or, more typically, in a later step.

Typically, a variable is associated with a stored block of code called a function or a
procedure, depending on the DBMS and what you're attempting to do in the code. In
this section, we’ll be working without storing the code.

The various DBMSs have slightly different processes for working with variables:

« PostgreSQL historically limited variables to stored code blocks
(functions). However, in version 11 they introduced an anonymous
(DO) block, which lets you write the code without storing the block.
PostgreSQL variables must be declared with a data type.

« MariaDB/MySQL is most relaxed about variables, and you don’t
declare a variable before using it. Variable names are prefixed with
the @ sign.

« MSSQL variables must be declared with a data type. They are
prefixed with the @ sign.

« Oracle variables are declared with a data type.

394

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

SQLite is missing from this list, and that’s because it doesn’t support variables.
SQLite is typically embedded in a host application. The assumption is that you're
writing programming code for the host application. You can have all the additional
variables and functionality you like there.

Code Blocks

If you're using a client which makes it easy to run one statement at a time, you may find
it gets a little confused when working with blocks of multiple statements. It will be easier
to work with if you surround your block with delimiters.

For the various DBMSs, the delimiters look like this:

-- PostgreSOL
DO $$
END $%;

-- MariaDB/MySOL
DELIMITER $$

$$

DELIMITER ;
-~ MSSOL

GO

GO

-- Oracle

/

In the end, you will probably just highlight all of the lines of code and run them
together. That's what we recommend in trying the following code. Don't try running just
one line at a time.

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

In the following code, we’'ll do what we did in Chapter 3 in adding a new sale. Then,
we made a point of recording the new sale id, so that we could use it in subsequent
statements. This time, however, we’ll use variables to store interim values, so we can run
the code in a single batch.

The code will broadly follow these steps:

1. Setup the data to be used.

2. Insert the sale.

3. Getthe new sale id into a variable.

4. Insert the sale items, using the sale id.

5. Update the sale items with their prices, using the sale id.

6. Update the new sale with the total, using the sale id, of course.
While we're at it, we'll set a few other variables:

= Avariable to store the customer’s id

« Avariable to store the ordered date/time

It would be nice to have another variable with the sale items. However, most DBMSs
aren’t adept at defining multivalued variables without a lot of extra fuss in defining
custom data types to do the job. Here, we're trying to keep things simple.

What follows will be four similar versions of how to write the code block.

Updated Code to Add a Sale

The outline of the following code blocks will be basically the same:
+ Define the variables
« Runthe INSERT and UPDATE statements
» Test the results

We'll discuss the code for each of the main DBMSs.

396

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

Using Variables in PostgreSQL

Originally, PostgreSQL wouldn’t let you do any of this outside a stored code block. From
version 11 onward, you can use an anonymous block. If you're working with an older
version of PostgreSQL, then you're out of luck.

The anonymous block is defined between DO ... END:

DO $%

END $$;

The $% code is used to allow multiple statements to be treated as a single block. That
way, the semicolon doesn’t end up terminating the block prematurely.
Variables are declared inside a DECLARE section:

DO $$
DECLARE

cid INT := 42;
od TIMESTAMP := current timestamp;
sid INT;

END $$;

The variable names can be anything you like, but you run the risk of competing
with column names in the following code. Some developers prefix the names with an
underscore (such as _cid).

The sid variable is an integer which will be assigned later. The cid and od variables
are for the customer id and ordered date/time. They are assigned from the beginning
with the special operator :=.

The code proper is inside a BEGIN ... END block. It will be all of the code you used in
Chapter 3, but run together. The important part is that the variable sid is used to manage
the new sale id:

DO $$

DECLARE
cid INT := 42;
od TIMESTAMP := current timestamp;
sid INT;

BEGIN

397

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

INSERT INTO sales(customerid, ordered)
VALUES(cid, current timestamp)
RETURNING id INTO sid;

INSERT INTO saleitems(saleid, bookid, quantity)
VALUES

(sid,123,3),

(sid,456,1),

(sid,789,2);

UPDATE saleitems AS si

SET price=(SELECT price FROM books AS b
WHERE b.id=si.bookid)

WHERE saleid=sid;

UPDATE sales

SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=sid)

WHERE id=sid;

END $$;

The sid variable gets its value from the RETURNING clause in the first INSERT
statement. From there on, it’s used in the remaining statements.
You can test the results using

SELECT * FROM sales ORDER BY id DESC;
SELECT * FROM saleitems ORDER BY id DESC;

You should see the new sale and sale items at the top.

Using Variables in MariaDB/MySQL

MariaDB/MySQL has the simplest approach to using variables. Outside of a stored
function or procedure, you don’t declare the variables or their types: you just go ahead
and use them.

The other thing is that there’s no strong concept of an anonymous code block, so
defining one is really more of an organizational thing. We’ll do that, even though it really
makes no real difference:

398

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

DELIMITER $%
BEGIN

END; $$
DELIMITER ;

First, we'll assign a few variables:

DELIMITER $$

BEGIN
SET @cid = 42;
SET @od = current timestamp;
SET @sid = NULL;

END; $%

DELIMITER ;

Variables are prefixed with the @ character. This makes them a little more obvious
and avoids possible conflict with column names.

The statement SET @sid = NULL; is unnecessary. Since you don’t declare variables,
we've included the statement just to make it clear that we’ll be using the @sid variable a
little later.

The whole code looks like this:

DELIMITER $%
BEGIN
SET @cid = 42;
SET @od = current timestamp;
SET @sid = NULL; -- unnecessary; just to make clear

INSERT INTO sales(customerid, ordered)
VALUES(@cid, @od);

SET @sid = last insert id();

INSERT INTO saleitems(saleid,bookid,quantity)
VALUES

(@sid,123,3),

(@sid,456,1),

(@sid,789,2);

399

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

UPDATE saleitems

SET price=(SELECT price FROM books
WHERE books.id=saleitems.bookid)

WHERE saleid=@sid;

UPDATE sales
SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=@sid)
WHERE id=@sid;
END;
$$

DELIMITER ;
Note the statement:
SET @sid = last insert id();

When you add a new row with an autogenerated primary key, you need to get
the new value to use later. The last_insert id() function fetches the most recent
autogenerated value in the current session. You'll notice that it doesn’t specify which
table: that’s why you need to call it immediately after the INSERT statement.

As you see, the rest of the code is generally the same as in Chapter 3, with the @sid
variable used to manage the new sale id.

You can test the results using

SELECT * FROM sales ORDER BY id DESC;
SELECT * FROM saleitems ORDER BY id DESC;

You should see the new sale and sale items at the top.

Using Variables in MSSQL

MSSQL code can be written inside a block delimited with the GO keyword:

GO

GO

400

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

The GO keyword isn’t actually a part of Microsoft’s SQL language (or any other SQL,
for that matter). It's actually an instruction to the client software to treat what's inside as
a single batch and to run it as such. Some clients allow you to indent the keyword, and
some allow you to add semicolons and comments on the same line, but the safest thing
is not to indent it and not add anything else to the line.

Microsoft doesn’t have a block to declare variables, but it does have a statement. To
declare three variables, you can use three statements:

Go
DECLARE @cid INT = 42;
DECLARE @od datetime2 = current timestamp;
DECLARE @sid INT;

GO

or you can use a single statement with the variables separated by commas:

Go
DECLARE
@cid INT = 42,
@od datetime2 = current timestamp,
@sid INT;
Go

Variables are prefixed with the @ character, which makes them easy to spot and easy
to distinguish from column names.

The @sid variable is an integer which will be assigned later.

The rest of the code is similar to what we did in Chapter 3, but the new sale id will be
managed in the @sid variable:

Go
DECLARE @cid INT = 42;
DECLARE @od datetime2 = current timestamp;
DECLARE @sid INT;

INSERT INTO sales(customerid,ordered)
VALUES(@cid, @od);

SET @sid = scope_identity();

401

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

INSERT INTO saleitems(saleid,bookid,quantity)
VALUES

(@sid,123,3),

(@sid,456,1),

(@sid,789,2);

UPDATE saleitems

SET price=(SELECT price FROM books
WHERE books.id=saleitems.bookid)

WHERE saleid=@sid;

UPDATE sales
SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=@sid)
WHERE id=@sid;
GO

The @sid variable gets its value from the scope_identity() function. You'll notice
that it doesn’t specify which table: that’s why you need to call it immediately after the
INSERT statement. From there on, it’s used in the remaining statements.

You can test the results using

SELECT * FROM sales ORDER BY id DESC;
SELECT * FROM saleitems ORDER BY id DESC;

You should see the new sale and sale items at the top.

Using Variables in Oracle
Oracle code blocks can be delimited with forward slashes:

/

When the time comes, the whole block will be run as a single batch.

402

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

Variables are declared inside a DECLARE section:

/

DECLARE
cid INT := 42;
od TIMESTAMP := current timestamp;
sid INT;

/

The variable names can be anything you like, but you run the risk of competing
with column names in the following code. Some developers prefix the names with an
underscore (such as _cid).

The sid variable is an integer which will be assigned later. The cid and od variables
are for the customer id and ordered date/time. They are assigned from the beginning
with the special operator :=.

The code proper is inside a BEGIN ... END block. It will be all of the code you used in
Chapter 3, but run together. The important part is that the variable sid is used to manage
the new sale id:

/

DECLARE
cid INT := 42;
od TIMESTAMP := current timestamp;
sid INT;

BEGIN

INSERT INTO sales(customerid,ordered)
VALUES(cid, od)
RETURNING id INTO sid;

INSERT INTO saleitems(saleid,bookid,quantity)
VALUES (sid,123,3);
INSERT INTO saleitems(saleid,bookid,quantity)
VALUES (sid,456,1);
INSERT INTO saleitems(saleid,bookid,quantity)
VALUES (sid,789,2);

UPDATE saleitems
SET price=(SELECT price FROM books

403

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

WHERE b.id=saleitems.bookid)
WHERE saleid=sid;

UPDATE sales
SET total=(SELECT sum(price*quantity) FROM saleitems
WHERE saleid=sid)
WHERE id=sid;
END;
/

The sid variable gets its value from the RETURNING clause in the first INSERT
statement. From there on, it’s used in the remaining statements.
You can test the results using

SELECT * FROM sales ORDER BY id DESC;
SELECT * FROM saleitems ORDER BY id DESC;

You should see the new sale and sale items at the top.

Review

In this chapter, we've looked at a few additional techniques that can be used to get more
out of our database.

Triggers

Triggers are code scripts which run in response to something happening in the database.
Typically, these include INSERT, UPDATE, and DELETE events. Using a trigger, you can
intercept the event and make your own additional changes to the affected table or
another table. Some triggers can go further and work more closely with the DBMS or
operating system.

We explored the concept by creating a trigger which responds to deleting from the
sales table. In this case, we copied data from the sale and matching sale item into an
archive table.

404

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

Different DBMSs vary in detail, but generally they follow the same principles:
e Atrigger is defined for an event on a table.
« The trigger code has access to the data about to be affected.

e Using this data, the trigger code can go ahead and perform additional
SQL operations.

Pivot Tables

A pivot table is a virtual table which summarizes data in both rows and columns. It's a
sort of two-dimensional aggregate.

For the most part, raw table data isn’t ready to be summarized this way. You would
put some effort into preparing the data in the right form and making it available in one
or more CTEs.

You can create a pivot table manually using a combination of two techniques:

e An aggregate query generates the vertical groups and the data to be
summarized.

« A SELECT statement with aggregate filters generates a summary for
each horizontal category.

MSSQL and Oracle both have a non-standard PIVOT clause which will, to some
extent, automate the second process earlier. However, it still requires some input from
the SQL developer to finish the job.

SQL Variables

In this chapter, we used variables to streamline the code, first introduced in Chapter 3,
which adds a sale by inserting into multiple tables and updating them.

Most of the SQL we’ve worked with involved single statements. Some of those
statements were effectively multipart statements with the use of CTEs to generate
interim data.

In the case where you need more complex code to run in multiple statements,
you may need to store interim values. These values are held in variables, which are
temporary pieces of data.

CHAPTER 10 MORE TECHNIQUES: TRIGGERS, PIVOT TABLES, AND VARIABLES

In this chapter, we used variables for two purposes:
» To hold fixed values to be used in the code
« To store an interim value generated by some of the code

In most DBMSs, variables are declared and used within a block of code. In most
cases, the variables and their values will vaporize after the code block is run. MariaDB/
MySQL, however, will retain variables beyond the run.

SQLite doesn’t support variables. It is expected that the hosting application will
handle the temporary data that variables are supposed to manage.

Summary

Although you can go a long way with straightforward SQL statements and features, you
can often get more out of your DBMS with some additional features:

« Triggers are used to run some code in response to some database
event. They can be used to add some further processing to your
database automatically.

« Pivot tables are virtual tables which provide a compact view of your
summaries. You can generate a pivot table using a combination of
aggregate queries, but some DBMSs offer a pivot feature to simplify
the process.

« SQLvariables are used to store temporary values between other SQL
statements. They can be used to store interim values that can be used
in subsequent statements.

Using what you've learned here and in previous chapters, you can build more
complex queries to work with and analyze your database.

406

APPENDIX A

Cultural Notes

The sample database was based on the way we do things in Australia. This is pretty
similar to the rest of the world, of course, but there are some details that might need
clearing up.

Addresses and Phone Numbers

A standard address follows this pattern:

Street Number & Name
Town State Postcode

Australian addresses don’t make much use of cities, which have a pretty broad
definition in Australia.

Towns

Depending on how you define a town, there are about 15,000-20,000 towns in Australia.
In the sample database, town names have been deliberately selected as those
occurring at least three times in Australia, though not necessarily in the sample.

States

Australia has eight geographical states. Technically, two of them are territories, since
they don’t have the same political features.

407
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1

APPENDIXA CULTURAL NOTES

Each state has a two- or three-letter code.

Name Code
Northern Territory NT
New South Wales NSW
Australian Capital Territory ACT
Victoria viC
Queensland QLD
South Australia SA
Western Australia WA
Tasmania TAS
Postcodes

A postcode is a four-digit code typically, though not exclusively, associated with a town:
« Two adjacent towns may have the same postcode.
« Alarge town may have more than one postcode.
« Alarge organization may have its own postcode.

The postcode is closely associated with the state, though some towns close to the
border may have a postcode from the neighboring state.

Phone Numbers

In Australia, a normal phone number has ten digits. For nonmobile numbers, the first
two digits are an area code, starting with 0, which indicates one of four major regions.
Mobile phones have a region code of 04.

There are also special types of phone numbers. Numbers beginning with 1800
are toll free, while numbers starting with 1300 are used for large businesses that are

prepared to pay for them.

408

APPENDIXA CULTURAL NOTES

Shorter numbers starting with 13 are for very large organizations. Other shorter
numbers are for special purposes, such as emergency numbers.

Australia maintains a group of fake phone numbers, and all of the phone numbers
used in the database are, of course, fake. Don’t waste your time trying to phone one.

Email Addresses

There are a number of special domains reserved for testing or teaching. These include
example.comand example.net, which is why all of the email addresses use them.
This is true over the world.

Measurements and Prices and Currency

Australia uses the metric system, like most of the world. In particular, the sample
database measures heights in centimeters. For those using legacy measurements,
linch=2.54 cm.

For currency, Australia uses dollars and cents.

Prices on most things attract a Goods and Services Tax or GST to its friends. There
are some exceptions to this, but not for anything in the sample database.

GST is a standard 10%.

In Australia, the GST is always expected to be displayed and is included in the
asking price.

Dates

Short dates in Australia are in the day/month/year format, which can get particularly
confusing when mixed with American and Canadian dates. It is for this reason that we
recommend using the month name instead of the month number or, better still, the
ISO8601 format.

409

APPENDIX B

DBMS Differences

This book covers writing code for the following popular DBMSs:
¢ PostgreSQL
 MySQL/MariaDB
¢« MSSQL: Microsoft SQL Server
e SQLite
e Oracle

Although there is an SQL standard, there will be variations in how well these DBMSs
support them. For the most part, the SQL is 80-90% the same, with the most obvious
differences discussed as follows.

As arule, if there's a standard and non-standard way of doing the same thing, it's
always better to follow the standard. That way, you can easily work with the other
dialects. More importantly, you're future-proofing your code, as all vendors move toward
implementing standards.

Writing SQL

In general, all DBMSs write the actual SQL in the same way. There are a few differences

in syntax and in some of the data types.

411
© Mark Simon 2023

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1

APPENDIXB DBMS DIFFERENCES

Semicolons

MSSQL does not require the semicolon between statements. However, apart from being
best practice to use it, Microsoft has stated that it will be required in a future version,' so
you should always use one.

Data Types

All DBMSs have their own variations on data types, but they have a lot in common:
« SQLite doesn’t enforce data types, but has general type affinities.

« PostgreSQL, MySQL/MariaDB, and SQLite support boolean types,
while MSSQL and Oracle don't. MySQL/MariaDB tends to treat
boolean values as integers.

Dates

« Oracle doesn'tlike ISO8601 date literals (yyyy-mm-dd). However, it
is easy enough to get this to work. You can also use the to_date()
function or the to_timestamp() function to accept different date
formats.

« MariaDB/MySQL only accepts ISO8601 date literals. If you want to
feed it a different format, you can use the str to_date() function.

« SQLite doesn’t actually have a date data type, so it’s a bit more
complicated. Generally, it’s simplest to use a TEXT type to store
ISO8601 strings, with appropriate functions to process it.

Case Sensitivity

Generally, the SQL language is case insensitive. However

e MySQL/MariaDB as well as Oracle may have issues with table names,
depending on the underlying operating system.

'Microsoft’s comment on semicolons: https://docs.microsoft.com/en-us/sql/t-sql/
language-elements/transact-sql-syntax-conventions-transact-sqlittransact-sql-
syntax-conventions-transact-sgl. TLDR: Semicolons are recommended and will be required
in the future.

412

APPENDIXB ~ DBMS DIFFERENCES

« Strings may well be case sensitive depending on the DBMS defaults
and additional options when creating the database or table.
By default

« MSSQL and MySQL/MariaDB are case insensitive.

« PostgreSQL, SQLite, and Oracle are case sensitive.
There’s one more peculiarity in SQLite:
e Matching strings is case sensitive.

o Matching patterns (LIKE) is case insensitive.

Quote Marks

In standard SQL
« Single quotes are for 'values'.
« Double quotes are for "names".
However

« MySQL/MariaDB has two modes. In traditional mode, double quotes
are also used for values, and you need the unofficial backtick for
names. In ANSI mode, double quotes are for names.

« MSSQL also allows (and seems to prefer) square brackets for names.
Personally, I discourage this, so it's not an issue.

Sorting (ORDER BY)

« Different DBMSs have different opinions on whether NULLs go at the
beginning or the end.

¢ PostgreSQL, Oracle, and SQLite give you a choice.

413

APPENDIXB DBMS DIFFERENCES

Limiting Results

This is a feature omitted in the original SQL standards, so DBMSs have followed their

own paths. However

PostgreSQL, Oracle, and MSSQL all now use the OFFSET ... FETCH
... standard, with some minor variations.

« PostgreSQL, MySQL/MariaDB, and SQLite all support the non-
standard LIMIT ... OFFSET ... clause. (That’s right, PostgreSQL
has both.)

« MSSQL also has its own non-standard TOP clause.

« Oracle also supports a non-standard row number.

Filtering (WHERE)

DBMSs also vary in how values are matched for filtering.
Unlike most DBMSs, SQLite will allow you to use an alias from the SELECT clause in
the WHERE clause, which contradicts the standard clause order.

Case Sensitivity

This is discussed earlier.

String Comparisons

In standard SQL, trailing spaces are ignored for string comparisons, presumably to
accommodate CHAR padding. More technically, shorter strings are right-padded to longer
strings with spaces.

PostgreSQL, SQLite, and Oracle ignore this standard, so trailing spaces are
significant. MSSQL and MySQL/MariaDB follow the standard.

Dates

Oracle’s date handling is mentioned earlier. This will affect how you express a date
comparison.

414

APPENDIXB ~ DBMS DIFFERENCES

There is also the issue of how the ??/?2/22?? is interpreted. It may be the US d/m/y
format, but it may not. It is always better to avoid this format.

Wildcard Matching

All DBMSs support the basic wildcard matches with the LIKE operator.
¢ PostgreSQL doesn’t support wildcard matching with non-string data.
As for extensions to wildcards

s PostgreSQL, MySQL/MariaDB, and Oracle support regular
expressions, but each one handles them differently.

¢« MSSQL doesn’t support regular expressions, but does have a simple

set of extensions to basic wildcards.

e SQLite has recently added native support for regular expressions
(www.sqglite.org/releaselog/3 36_0.html).

Calculations

Basic calculations are the same, with the exceptions as follows. Functions, on the other
hand, are very different.
Of the DBMSs listed earlier, SQLite has the fewest built-in functions, assuming that

the work would be done mostly in the host application.

SELECT Without FROM

For testing purposes, all DBMSs except Oracle support SELECT without a FROM clause.
Oracle requires the dummy FROM dual clause. MariaDB/MySQL also allows you to
use FROM dual, though it’s rarely needed.
You can easily create your own DUAL table with the following code:

CREATE TABLE dual(
dummy CHAR(1)

)s
INSERT INTO dual VALUES('X');

Whether you would bother is another question.

415

APPENDIXB DBMS DIFFERENCES

Arithmetic

Arithmetic is mostly the same, but working with integers varies slightly:

« PostgreSQL, SQLite, and MSSQL will truncate integer division; Oracle
and MySQL/MariaDB will return a decimal.

« Oracle doesn’t support the remainder operator (%), but uses the
mod () function.

Formatting Functions
Generally, they're all different. However
» PostgreSQL and Oracle both have the to_char() function.

« Microsoft has the format() function.

« SQLite only has a format () function, a.k.a. printf(), and is the most
limited.

« MySQL/MariaDB has various specialized functions.

Date Functions

Again, all of the DBMSs have different sets of functions. However, for simple offsetting

« PostgreSQL and Oracle have the interval which makes adding to and
subtracting from a data simple.

« MySQL/MariaDB has something similar, but less flexible.
* MSSQL relies on the dateadd() function.

= SQLite doesn’t do dates, but it has some functions to process date-
like strings.

Concatenation

This is a basic operation for strings:

« MSSQL uses the non-standard + operator to concatenate. Others
use the || operator, with the partial exception of MySQL/MariaDB as
follows.

416

APPENDIXB ~ DBMS DIFFERENCES

« MySQL/MariaDB has two modes. In traditional mode, there
is no concatenation operator; in ANSI mode, the standard ||
operator works.

« All DBMSs support the non-standard concat() function, with the
exception of SQLite.

s Oracle treats the NULL string as an empty string. This is particularly
noticeable when concatenating with a NULL which doesn’t produce
a NULL result as expected.

String Functions
Suffice to say that although there are some SQL standards
e« Most DBMSs ignore them.

¢ Those that support them also have additional variations and
functions.

This means that these examples will all require special attention.

Generally, the DBMSs support the popular string functions, such as lower() and
upper () but sometimes in different ways. There is, however, a good deal of overlap
between DBMSs.

Joining Tables

Everything is mostly the same. However
e Oracle doesn’t permit the keyword AS for table aliases.
¢ SQLite doesn’t support the RIGHT join.

Nobody knows why.

Aggregate Functions

The basic aggregate functions are generally the same between DBMSs. Some of the more
esoteric functions are not so well supported by some.

417

APPENDIXB DBMS DIFFERENCES

PostgreSQL, Oracle, and MSSQL support an optional explicit GROUP BY () clause,
which doesn’t actually do anything important, but helps to illustrate a point. The
others don’t.

Manipulating Data

All DBMSs support the same basic operations. However

e Oracle doesn't support INSERT multiple values without a messy
workaround, though there is talk of supporting it soon. MSSQL
supports them, but only to a limit of 1000 rows, but there is also a less
messy workaround for this limit. The rest are OK.

Manipulating Tables

All DBMSs support the same basic operations, but each one has its own variation on
actual data type and autogenerated numbers.

Among other things, this means that the create table scripts are not cross-DBMS
compatible.

e« MSSQL has a quirk regarding unique indexes on nullable columns,
for which there is a workaround.

Autoincremented Primary Keys

Inserting your own value into an autoincremented primary key may require you to
make adjustments once you've finished. Typically, this will cause the DBMS to start
autoincrementing from the right value:

« For PostgreSQL, you reset the underlying sequence after inserting the
data. For example:

SELECT setval(pg get serial sequence('customers’,
'id"), max(id))
FROM customers;

418

APPENDIXB ~ DBMS DIFFERENCES

s For Oracle, alter the table you've just added data to. For example:

ALTER TABLE customers
MODIFY ID GENERATED BY DEFAULT AS IDENTITY
START WITH LIMIT VALUE;

¢ For MSSQL, switch between allowing your own values and
autoincremented values. For example:

SET IDENTITY_INSERT customers ON;
- INSERT statements ...
SET IDENTITY_INSERT customers OFF;

The other DBMSs seem to cope.

Other Quirks and Variations

Here is a miscellaneous collection of differences, some interesting and some fairly
important.

PostgreSQL Quirks and Variations

PostgreSQL allows you to cast the strings yesterday, today, and tomorrow as dates.

Microsoft Quirks and Variations

Microsoft has this thing about CREATE statements, such as CREATE VIEW, being the only
one in a batch. You define a batch with the GO keyword:

GO
CREATE something AS

Go

That doesn't include CREATE TABLE, which will happily mix in with the rest of the

statements.

419

APPENDIXB DBMS DIFFERENCES

Oracle Quirks and Variations

You can’t mix a plain star (*) with column names in a SELECT clause. You need to qualify
the star:

SELECT
id, customers.*
FROM customers;

Casting a timestamp, which is a combined date/time, to a date doesn’t cast it to just a
date: it still retains the time component.

Instead, you should use trunc(). This will still have a time component, but it's set to
midnight.

MariaDB/MySQL Quirks and Variations

If you want to mix the star (*) with column names in a SELECT clause, you need to put the
star first:

SELECT *, id -- NOT id, *
FROM customers;

For the OFFSET ... LIMIT ... clause, which fetches a limited number of rows, the
OFFSET value cannot be calculated.

Asyou know, in a GROUP BY query, you can only select aggregates or what's in the
GROUP BY clause. With MariaDB/MySQL, that won't work if the GROUP BY column is
calculated. You really should be using CTEs anyway.

Don'’t forget to set your session to ANSI mode to have MariaDB/MySQL behave like
the rest in the use of double quotes and concatenation:

SET session sql mode = 'ANSI';

420

APPENDIX C

Using SQL with Python

Python has become a popular programming language in both scientific and data
analysis spheres. In this appendix, we're going to look at how to connect your Python
program to an existing database and both read from and write to the database.

If you’re reading this, we’ll assume that you’re familiar with programming in
Python, though not necessarily an expert.

In particular, we’ll assume that, apart from the basics, you know about collections
such as tuples, lists, and dictionaries. Of course, you’ll be familiar with creating a
function. You'll also need to know about installing and importing modules.

Before any of this can happen, however, you will probably have to install the
appropriate module.
Once you've done that, we'll go through the following steps:

1. import the database module.

2. Make a connection to the database and store the connection

object and a corresponding cursor object.
3. Runyour SQL and process the results.
4. Close the connection.

A connection object represents a connection to the database, and you can use it to
manage your database session.

More importantly, a cursor object is what you'll use to send SQL to the database
and to send and receive the data involved. The connection object also has some data
manipulation methods, but what they really do is create a cursor and pass on the rest of

the work to a cursor.

421
© Mark Simon 2023
M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1

APPENDIXC USING SQL WITH PYTHON

Installing the Database Connector Module

For most DBMSs, installing the appropriate module is easy enough, once you work
out the name of the module. To install the module, you'll need to use the pip program;
sometimes, it’s called pip3 to reflect the current Python version.

The exception is with MSSQL, which might require a bit more work, especially if
you're doing this on Macintosh or Linux. We'll look at that after the others.

The other exception is for SQLite. The module, called sqlite3, is already packaged
with Python, so there’s one less thing you need to do.

For the others, in your shell or command line, enter one of the following:

MariaDB/MySQOL

pip3 install mysql-connector-python
PostgresSOL

pip3 install psycopg2-binary
Oracle

pip3 install oracledb

The module for the preceding MariaDB and MySQL is the same. However, there is a
dedicated MariaDB module if you need more specialized features.

Installing the MSSQL Module on Windows

For MSSQL, installing on Windows isn’t too hard:

MSSQL (Windows)
pip3 install pyodbc

The pyodbc module requires ODBC (Open Database Connectivity) drivers to do the
job. On Windows, this will already be installed, especially if you've also installed SQL
Server. However, you will need to get the name of the driver.

In Python, run the following:

import pyodbc
print(pyodbc.drivers())

422

APPENDIXC USING SQL WITH PYTHON

You'll see a collection of one or more drivers. The one you want will be
something like

ODBC Driver 18 for SOL Server

depending on the version.

Installing the MSSQL Module on Macintosh or Linux

On Macintosh or Linux, you'll need to install the ODBC (Open Database Connectivity)
drivers yourself. You can get the instructions at https://learn.microsoft.com/en-us/
sql/connect/python/pyodbc/step-1-configure-development-environment-for-
pyodbc-python-development?view=sql-server-ver1i6#macos.

Here are the extra steps for Macintosh. You'll first need to install Homebrew
(https://brew.sh/), which is a package manager which enables you to install all sorts of
terminal applications:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install.sh)"

The command is too long to fif on this page. You should enter the command on one
line, with no break or spaces in the URL.

Once you've got Homebrew installed, you can use it to install the correct driver
for MSSQL.:

brew tap microsoft/mssql-release \
https://github.com/Microsoft/homebrew-mssql-release

Again, the command is too long to fit. You can write it on two lines as long as the first
line ends with a backslash; otherwise, write it on one line without the backslash.

But wait, there’s more. You then need to install the next part, at the same time
accepting the license agreement:

HOMEBREW_ACCEPT_EULA=Y brew install msodbcsqli8 mssql-tools18
Next, it's recommended that you install another driver:

brew install unixodbc

423

APPENDIXC USING SQL WITH PYTHON

Now, you can install the module. You may have trouble installing it simply, especially
if you're using an M1 Macintosh, so it’s safer to run this:

pip3 install --no-binary :all: pyodbc

After this, you will need to get the name of the driver.
In Python, run the following:

import pyodbc
print(pyodbc.drivers())

You'll see a collection of one or more drivers. The one you want will be

something like
ODBC Driver 18 for SOL Server

depending on the version.

Creating a Connection

Overall, to make a connection and cursor to the database, your code will look something
like this:

import dbmodule
connection = dbmodule.connect(...)
cursor = connection.cursor()

connection.close()

where dbmodule is the relevant module for the DBMS. Specifically, for the various
DBMSs, the code will be as follows.

Connecting to SQLite

The relevant module for SQLite is called sqlite3. After importing the module, you need
to make the connection to the database.

SQLite databases are in simple files. You'll find there are no further credentials to
worry about, since that’s supposed to be handled in the host application. All you need to
do is to reference the file.

To connect to SQLite

424

APPENDIXC USING SQL WITH PYTHON

import sqlite3
connection = sqlite3.connect(file) # path name of the file
cursor = connection.cursor()

The file string is the full or relative path name of the SQLite file.

Connecting to MSSQL

The module or MSSQL is called pyodbc. In principle, it can be used for any database
which supports ODBC.

A connection in MSSQL can be a string with all of the connection details. This string
is called a DSN—a Data Source Name. However, for readability and maintainability, it’s
easier to add the details as separate function parameters. In general, it looks like this:

import pyodbc

connection = pyodbc.connect(
driver="0DBC Driver 18 for SOQL Server',
TrustServerCertificate="yes',
server="...",
database="bookshop',
uid="...",
pwd="..."

)

cursor = connection.cursor()

As for the parameters

e driver is the name of the current database driver you would have
obtained earlier. At the time of writing, the latest version is 0DBC
Driver 18 for SOL Server.

o TrustServerCertificate isto allow a connection to another server.
This more or less tells the Python application to trust the server.

e server is the name or IP address of your database server. The
standard port number is 1433. If you need to change the port number,
you can add it to the server address:

server="'...,1432

425

APPENDIXC USING SQL WITH PYTHON

« database is the name of the database.

¢ uidis the username, while pwd is the password.

Connecting to MariaDB/MySQL

The relevant module to connect to MariaDB/MySQL is called mysql.connector. To
connect to the database, you will need to indicate which server and database, as well as
your username and password:

import mysql.connector
connection = mysql.connector.connect(

user="...",

password="...",

host="...",

database="bookshop'
)

cursor = connection.cursor()

The host is typically the TP address of the database server. The standard port number
is 3306. If you need to change the port number, you can add it as another parameter:
port=3305.

Connecting to PostgreSQL

The module to connect to PostgreSQL is called psycopg2. To connect to the database,
you will need to indicate which server and database, as well as your username and
password:

import psycopg2
connection = psycopg2.connect(

database="...",

user="...",
password="...",
host="..."

)

cursor = connection.cursor()

426

APPENDIXC USING SQL WITH PYTHON

The host is typically the IP address of the database server. The standard port number
is 5432. If you need to change the port number, you can add it as another parameter:
port=5433.

Connecting to Oracle

The module to connect to Oracle is called oracledb. To connect to the database, you will
need to indicate which server and database, as well as your username and password:

import oracledb
connection = oracledb.connect(

user="...",
password="...",
host="...",

service name='...

)

cursor = connection.cursor()

The host is typically the IP address of the database server. The standard port number
is 1521. If you need to change the port number, you can add it as another parameter:
port=1522.

Fetching from the Database

Having made the connection, the next step is to send some SQL to the database and
process its results.
The SQL statement is set in a simple string:

sql = 'SELECT * FROM customers'
You then use the connection object to execute the statement:
connection.execute(sql)

Before we process the data, we'll want to get a list of column names. This information
is available in the cursor.description object. The cursor.description objectis a
tuple of tuples, one for each column. The data inside each of the tuples may include
information about the type of data, but that’s not available for all DBMS connections.

427

APPENDIXC USING SQL WITH PYTHON

The column names will be the first item of each tuple. We can gather the names
using a list comprehension:

columns = [i[0] for i in cursor.description]

This adds the first member of each tuple to the columns list.

The data from the SELECT statement will be available from the cursor object. The
object includes methods to fetch one or more rows, but can also be iterated to fetch
the rows.

You can iterate through the cursor as follows:

for row in cursor:
print(row)

Each row will be a tuple of values. You'll recall that a tuple is a simple immutable
collection of values, so, among other things, the values don’t have a name.

You can combine the column names with each tuple using Python'’s zip function,
which has nothing to do with zipping a file.

The zip function will take two collections and return a collection of tuples, each with
an element from the first collection and an element from the second collection:

zip(columns,row)

Here, the result will be a collection of tuples with the first member being a column
name and the second member being a corresponding value from the row. Technically,
it's not a collection, but an iterator which is close enough for the next step.

Our next step will be to turn that into a dictionary object, using the first member of
each tuple as keys for the second member of the tuple.

This will produce a set of dictionary objects:

data = []

for row in cursor:
data.append(dict(zip(colums,row)))

print(data)

You can, of course, decide what to do with the data yourself.
When you've finished, you should close the connection:

connection.close()

428

APPENDIXC USING SQL WITH PYTHON
The whole process looks like this:

import ...
connection = connect(...)

sql = "SELECT * FROM customers'’
connection.execute(sql)

columns = [i[0] for i in cursor.description]

data = []

for row in cursor:
data.append(dict(zip(colums,row)))

print(data)

connection.close()

Using Parameters in the Query

Once we've tested with a simple SQL query, we can try something a little more
interesting. Let’s look for one particular customer, say, customer 42. We can try changing
the sql string to the following:

sql = 'SELECT * FROM customers WHERE id=42'

That will work, but it’s too hard-coded to be useful. Instead, we’ll get the customer id
from the user:

customerid = input('Customer Number: ")
To put the customer id into the sql string, we could try something like this:

This is a bad idea:

customerid = input('Customer Number: ")

sql = f'SELECT * FROM customers WHERE id={customerid}'

#sql = "SELECT * FROM customers WHERE id={0}'
.format(customerid)

cursor.execute(sql)

429

APPENDIXC USING SQL WITH PYTHON

Modern Python supports the so-called f-string earlier. Alternatively, you could use
the more traditional format () string method.

The problem is that now you've opened up the query to user input. If, instead of
entering the number 42, the user had entered

42 OR 1=1
the resulting string would be
SELECT * FROM customers WHERE id=42 OR 1=1

and they would have got the lot.

It could get worse. We don’t have passwords here, but if we did, you can see how a
user might override the password check with some carefully crafted input.*

Squeezing additional SQL code into the original code is called SQL Injection, and
you run the risk of compromising and even losing your data. It works because the DBMS
doesn’t get the SQL string until after the extra code has been added, so it has no idea
what's genuine and what's not. When it comes to interpreting the string, it’s too late.

To safely handle including user input, you need to interpret the string before it gets
the data. This is normally referred to as a prepared statement. To do this in Python, you
need two steps:

+ Create the SQL string with placeholders instead of data.
= Execute the SQL string with the data afterward.

Different DBMSs have different placeholders. Here is how you can create your SQL
strings:

SQLite, MSSQL (use ?)

sql = 'SELECT * FROM customers WHERE id=?'
PostgreSQL, MariaDB/MySQL (use %s)

sql = 'SELECT * FROM customers WHERE id=%s'
Oracle (:named or :numbered)

sql = 'SELECT * FROM customers WHERE id=:0'

?Don'’t even think about storing passwords simply in a database table. This isn’t the place to
discuss how to manage user data safely, but storing plain passwords is very dangerous and
irresponsible.

430

APPENDIXC USING SQL WITH PYTHON

e« SQLite and MSSQL use ? for placeholders.
o PostgreSQL and MariaDB/MySQL use %d for placeholders.
« Oracle uses the colon followed by a name or a number.

Some DBMSs also allow variations on the preceding steps, such as using placeholder
names. However, these simple placeholders will do well enough.
You can then add your data in the form of a tuple:

(customerid,)

Remember that a tuple with a single value requires a comma at the end.
The code should now look like

$sql = "..." # SELECT with placeholders
customerid = input('Customer Number: ")
cursor.execute(sql, (customerid,))

You can see that the tuple with values is added as a second parameter to the
execute() method.

Adding a New Sale

Of course, you can also use Python to do something more complex. This time, we're
going to add a new sale, as we have already done before.
Remember the steps:

1. Add anew sale.

2. Getthe new sale id.

3. Add the books.

4. Get the book prices.

5. Put the total into the sale.

For simplicity, we can create separate SQL strings for the main steps:

insertsale = '...' # Add new sale
insertitems = '..." # Add sale items with books

431

APPENDIXC USING SQL WITH PYTHON

updateitems = '... # Update sale items with book prices
updatesale = '...' # Update sale with total

We’'ll get to those strings in a moment. Before we do, we need to look out for the new
sale id.

In SQL, there are two main methods of getting a newly generated id:
» Return it from the INSERT statement.
« Fetchitin a separate step.

The first method is better, but isn't supported by all DBMSs at this stage. We'll need
to take that into account with the first SQL string.

The other thing is that we’'ll include placeholders in these strings. That's not strictly
necessary at this point, since we're not including user input. However, it’s safer and
makes adding the values easier.

To make the code a little more reusable, we'll wrap it inside a function:

def addsale(customerid, items, date):

insertsale = '..." # Add new sale

insertitems = '...' # Add sale items with books
updateitems = '...' # Update sale items with book prices
updatesale = '...' # Update sale with total

return saleid

The customerid will be a simple integer. The items will be a list of dictionaries,
which we’'ll describe later. The date will be a date object.

We don’t really need to return the saleid, but it doesn’t hurt, and it might come in
handy later.

The SQL Strings

The actual strings all vary subtly between DBMSs, so we’ll treat them per DBMS. The
main considerations are how the new id is returned and how placeholders are
represented.

432

APPENDIXC USING SQL WITH PYTHON

Some of the strings are long; we've used multiline strings for readability. In Python,
multiline strings have triple quote characters:

multiline =
Multi

Line

String

The other thing is whether you use single or double quotes. Many developers use
double quotes both for single-line strings and multiline strings. In this appendix, we're
using single quotes. It doesn’t matter, as long as you're consistent.

SQL Strings for PostgreSQL

PostgreSQL can return the new id from a RETURNING clause in the INSERT statement.
Later, we'll fetch that value.
The strings look like this:

insertsale =
INSERT INTO sales(customerid, ordered) VALUES(%s,%s) RETURNING id;

insertitems =
INSERT INTO saleitems(saleid, bookid, quantity) VALUES(%s,%s,%s);

updateitems =
UPDATE saleitems SET price=(SELECT price FROM books WHERE
books.id=saleitems.bookid) WHERE saleid=%s;

updatesale =
UPDATE sales SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=%s) WHERE id=%s;

These are mostly the statements we used earlier in the book.

433

APPENDIXC USING SQL WITH PYTHON

SQL Strings for SQLite

SQLite doesn’t return the new idea from the INSERT statement, so we'll have to get that
later using a different technique. The strings look like this:

insertsale =
INSERT INTO sales(customerid, ordered) VALUES(?,?)
RETURNING id;

insertitems =
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES(?,?,2);

updateitems =
UPDATE saleitems SET price=(SELECT price FROM books
WHERE books.id=saleitems.bookid) WHERE saleid=?;

updatesale =
UPDATE sales SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=?) WHERE id=?;

These are mostly the statements we used earlier in the book.

SQL Strings for MSSQL

MSSQL can also return the id from the INSERT statement, but it uses a non-standard

OUTPUT clause. It's awkward to use in a simple INSERT statement, but works well when
used in Python code:

insertsale =
INSERT INTO sales(customerid, ordered)
OUTPUT inserted.id VALUES(?,?);

insertitems =
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES(?,?,2);

434

APPENDIX C

updateitems =
UPDATE saleitems SET price=(SELECT price FROM books
WHERE books.id=saleitems.bookid) WHERE saleid=?;

updatesale =
UPDATE sales SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=?) WHERE id=?;

USING SQL WITH PYTHON

Apart from the OUTPUT clause, these are basically the statements we used earlier.

SQL Strings for MariaDB/MySQL

MariaDB/MySQL doesn’t return the new id from the INSERT statement, so we’ll have to

get that later using a different technique. The strings look like this:

insertsale = '
INSERT INTO sales(customerid, ordered) VALUES(%s,%s);

insertitems =
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES (%s,%s,%s);

updateitems =
UPDATE saleitems SET price=(SELECT price FROM books
WHERE books.id=saleitems.bookid) WHERE saleid=%s;

updatesale =
UPDATE sales SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=%s) WHERE id=%s;

These are mostly the statements we used earlier in the book.

435

APPENDIXC USING SQL WITH PYTHON

SQL Strings for Oracle

Oracle can return the new id from the INSERT statement, though it uses an unusual
syntax: you'll need to include a placeholder for the returned value.

There is also a complication with the date/time. Oracle is very fussy about date/
time format and will probably reject the format used by Python. You'll need to include a
to_timestamp() function which will convert the input to something Oracle can handle.
It looks like this:

to_timestamp(... , 'YYYY-MM-DD HH24:MI:SS'")

Oracle can use named or numbered placeholders. We'll use numbered placeholders
because it's simple:

insertsale =
INSERT INTO sales(customerid, ordered)
VALUES(:1, to timestamp(:2,'YYYY-MM-DD HH24:MI:SS'))
RETURNING id INTO :3

insertitems =
INSERT INTO saleitems(saleid, bookid, quantity)
VALUES(:1,:2,:3)

updateitems =
UPDATE saleitems SET price=(SELECT price FROM books
WHERE books.id=saleitems.bookid) WHERE saleid=:1

updatesale =
UPDATE sales SET total=(SELECT sum(price*quantity)
FROM saleitems WHERE saleid=:1) WHERE id=:2

Watch out for this quirk: you cannot end the statements with a semicolon! If you do,
you'll get an error message: SOL command not properly ended, which is somewhat
counterintuitive.

Note that the insertsale string includes an expression with single quotes. That’s OK
if the string is delimited with triple characters. If you're writing it on one line, you might
need to use double quotes for the string.

436

APPENDIXC USING SQL WITH PYTHON

Adding the Sale

Once we have created the strings, the next step will be to execute the first SQL statement
to add the sale and then to fetch the resulting sale id.

Again, this varies by DBMS, but the technique is simple. The first step is to execute
the insertsale query, with a tuple of the customer id and the date, which come from the
addsale() function parameters:

Not Oracle
cursor.execute(insertsale, (customerid, date))

For Oracle, you need to define an additional variable to capture the new id:

Oracle
id = cursor.var(oracledb.NUMBER)
cursor.execute(insertsale, (customer, date, id))

To retrieve the new sale id, that depends on whether the id is returned from the
INSERT statement or not.
For those PostgreSQL and MSSQL, which return a value, you can fetch that

value using

PostgreSQL, MSSOL
saleid = cursor.fetchone()[0]

The fetchone() method returns the first (and subsequent row from the result set) as
a tuple. Here, we want the first and only item.

For SQLite and MariaDB/MySQL, which don't return a value, there is a special
lastrowid property:

SOLite, MariaDB/MySQL
saleid = cursor.lastrowid

For Oracle, the new sale id is sort of in the id variable, but you still need to extract it

completely:

Oracle
saleid = int(id.getvalue()[0])

437

APPENDIX C USING SQL WITH PYTHON
Here's the code so far:

def addsale(customerid, items, date):

insertsale = '..." # Add new sale

insertitems = '...' # Add sale items with books
updateitems = '...' # Update sale items with book prices
updatesale = '...' # Update sale with total

PostgreSQL, MSSQL
cursor.execute(insertsale, (customer, date))
saleid = cursor.fetchone()[0]

SOLite, MariaDB/MySOL
cursor.execute(insertsale, (customer, date))
saleid = cursor.lastrowid

Oracle
id = cursor.var(oracledb.NUMBER)
cursor.execute(insertsale, (customer, date, id))
saleid = int(id.getvalue()[0])

return saleid

Remember not to mess around with indentation. All of the code should be one level
in to be part of the addsale() function.

Adding the Sale Items

The sale items are a collection. Unlike SQL, Python thrives on variables, and, in
particular, Python loves collection variables.

For the multiple items, you can use a tuple or a list. Here, we'll use a tuple simply to
highlight the fact that we're not going to change the values. Tuples are immutable.

Each item will consist of two parts: the book id and the quantity. We could have used
tuples for that too, but then the parts would be anonymous. In a future, more complex
project, it would make it harder to maintain. Instead, we’ll use dictionary objects.

438

APPENDIXC USING SQL WITH PYTHON

The sale items would look like this:

(
{ 'bookid': 123, 'quantity': 3},
{ 'bookid': 456, 'quantity': 1},
{ 'bookid': 789, 'quantity': 2},
)

Within the function, the tuple will appear in the items variable. We can iterate
through the tuple using the for loop.

In each iteration, we’ll execute the insertitems statement, which inserts one item
at a time. The data will be a tuple with the sale id from the previous step, as well as the
bookid and quantity members of the dictionary object.

The code will look like this:

for item in items:
cursor.execute(insertitems, (saleid, item['bookid'],
item['quantity']))

Our function so far will resemble this:

def addsale(customerid, items, date):
SOL Strings

cursor.execute
saleid

for item in items:
cursor.execute(
insertitems,
(saleid, item['bookid'], item['quantity'])

)

return saleid

The rest is easy.

439

APPENDIXC USING SQL WITH PYTHON

Completing the Sale

We now need to run the two SQL statements to update the sale items and update
the sale:

cursor.execute(updateitems, (saleid,))
cursor.execute(updatesale, (saleid, saleid))
connection.commit()

The updateitems query needs only the sale id. Even though it’s only one value, it still
needs to be in a tuple, which is why there’s the extra comma at the end. The updatesale
query needs the sale id twice, once for the main query and once for its subquery.

At the end of the job, you need to commit the transaction, which means to save the
changes permanently in the database. Otherwise, the whole process is a waste of time.

The function now looks like this:

def addsale(customerid, items, date):
SOL Strings

cursor.execute
saleid

for item in items:
cursor.execute(
insertitems,
(saleid, item['bookid'], item['quantity'])
)

cursor.execute(updateitems, (saleid,))
cursor.execute(updatesale, (saleid, saleid))
connection.commit()

return saleid

Now you can try it out. You'll need
o The customerid (42)
« The sale items as a tuple of dictionary objects, as before

s The current date and time

440

APPENDIXC USING SQL WITH PYTHON

To get the current date and time, you'll need to import from the datetime module;
you can then use the .now() method:

from datetime import datetime
print(datetime.now())

The completed script will resemble this:

from datetime import datetime

import ... # import connection module
connection = connect(...) # connect to database
cursor = connection.cursor() # get cursor object

def addsale(customerid, items, date):

addsale (
42, # customer id
(# items

{ 'bookid': 123, 'quantity': 3},

{ 'bookid': 456, 'quantity': 1},

{ 'bookid': 789, 'quantity': 2},
)

datetime.now() # current date/time

You now have a reusable function to add sales.

441

Index

A

Aggregate filters, 171-173, 210
Aggregate functions, 19, 275
basic functions, 163, 209
contexis, 163
count(*) OVER (), 279
CTE, 281, 282
daily totals vs. grand totals, 282
day-by-day summary, 282
day number, 281
DBMS, 164, 417
descriptions, 166
each day sales, 280, 281
NULL, 166
numerical statistics, 165
OVER (), 284
percentage symbol, 283
sales totals, 279, 280
strings and
dates, 165
total/sum(total) OVER(), 282
weekday, percentage/sorting, 283
Aggregate queries, 18-19, 92, 101, 168,
246, 252, 266, 275, 405
Aggregate window functions
daily sales view, 287
framing clause, 285-287
ORDER BY clause, 284, 285
sliding window
daily totals, 288, 289
dates, 289
framing clauses, 288

© Mark Simon 2023

sliding averages, 289
week averages, 290

Aggregating data

aggregate filter, 171-173
calculated values
arbitrary strings, 181, 183
CASE statements, 177, 178
CTE, 176
customers, 173, 174
delivery statistics, 179-181
GROUP BY clause, 173, 176
month name, 175
monthnumber, 174
clause order, 169, 170
distinct values, 170
error message, 168
FROM/WHERE clauses, 169
GROUP BY () clause, 167, 168
group concatenation, 183, 185
grouping sets, 195
CUBE, 195
data, 186, 187, 189
GROUP BY clause, 185, 186

renaming values, Oracle, 199-201

ROLLUP, 196, 197
sorting results, 197-199
totals, 185

query, 167

subtotals, 211

UNION clause
CTE, 195
grand total, 191

M. Simon, Leveling Up with SQL, https://doi.org/10.1007/978-1-4842-9685-1

443

INDEX

Aggregating data (cont.)
levels, 194
query, 189
SELECT statements, 191, 192
sorting order, 193, 194
state/customer ids, 189, 190
summaries, 189, 193
virtual table, 167
Aggregating process, 210
Aliases, 11, 16, 32, 108-110, 159, 255, 320
ALTER TABLE statements, 20, 42, 44, 55
The American Standard Code for
Information Interchange (ASCII),
134, 135, 160
Arithmetic mean, 201, 203

Books and authors, 60, 62, 64, 70-72, 86, 94
BookWorks, 1,2, 5
Business rules, 39

C

Caching table, 234
Calculations, 106, 113, 119, 275
Calculations in SQL
CASE expression
CASE ... END expression, 151
ELSE expression, 152
with NULLs
coalesce(), 115-117
using aliases
AS keyword, 108
Calculations in SQL, 106
built-in functions, 107
CASE expression, 160
coalesce, 154-158

444

short-circuited, 152
uses of CASE, 152-153
casting, 122-127
coding languages, 122
data types, 122
date operations, 160
date arithmetic, 148-151
date extracting in Microsoft SQL, 145
date extracting in PostgreSQL,
MariaDB/MySQL and
Oracle, 144-145
date/time, entering and
storing, 140-141
formatting a date, 146-147
getting, date/time, 142
grouping and sorting, date/
time, 143-144
forms, 158
FROM clause, 121
individual/multiple columns, 106
with NULLs, 113-115
author names, 117-118
numeric (see Numeric calculations)
ORDER BY clause, 120, 121
SELECT clause, 118, 121
using aliases, 108
alias names, 109-110
AS is optional, 110-111
basic SQL clauses, 112-113
WHERE clause, 119
cast() function, 17, 122-127, 130, 159
Casting types, 159
CHAR(length), 132
CHECK constraint, 20, 39, 43-44, 47, 55
ck_customers_postcode, 34
coalesce() function, 16, 40-42, 115-118,
154, 159
Collation, 133, 134, 160

Columns, 28

changing the town, 36-37
countries table, 36-37
CREATE VIEW statement, 33
DROP COLUMN, 34

foreign key, 29

old address columns, 32
primary key, 29

SELECT statement, 32

street address column, 38
UPDATE statement, 31

Common Table Expressions (CTEs),

267, 268
aggregates
duplicate names, 319, 320
most recent sale, per
customer, 317-319
benefits, 268
calculations
monthly totals, 271, 272
price groups, 269
query, 270
sales table, 270, 271
WITH clause, 270
constants
deriving constants, 316, 317
hard-coded, 314
duplicated names
consolidated list, 324, 325
id, 323
info column values, 324
layout, 323
parameter names, 323
phone number, 323
query, 322
results, 323
FROM subquery, 364
hard-coded constants, 315, 316

multiple chain, 322
multiple CTEs, 365
nesting subqueries, 322

parameter names, 320, 321, 365
recursive (see Recursive CTESs)

subquery, 321, 322

syntax, 268, 269

uses, 364

variables, 313, 314

virtual table, 273, 364
Computed column/calculated

column, 231

creation, 231

data, 232

DBMSs, 232

mini-view, 231

ordered datetime column, 231

read-only virtual column, 231
types, 232
VIRTUAL, 234

Concatenation, 133, 135, 136, 160,

416, 417
Constants, 314
deriving constants, 316, 317
hard-coded, 314-316

INDEX

Correlated subquery, 31, 100, 239, 240,

243, 244, 259, 272
countries.sql, 36
CREATE TABLE statement, 20
CROSS JOIN, 18, 264, 335
Cultural notes

address
pattern, 407
postcodes, 408
states, 407, 408
towns, 407
currencies, 409
dates, 409

445

INDEX

Cultural notes (cont.)
email addresses, 409
measurements, 409
phone numbers, 408, 409
prices, 409

D

Data, 6, 7
Database, 6, 59, 93, 94, 103
Database design, 76
Database integrity, 39
CHECK constraint, 47
column constraints, 48
domain, 39
familyname, 48
nullable column, 40, 41
ALTER TABLE statement, 44
CHECK constraint, 43
changes in SQLite, 44
DEFAULT value, 43
NOT NULL constraint, 41, 42
standard constraint types, 39
suggestions, 45, 47
table constraint, 48
UNSIGNED INT, 47
Database Management Software (DBMS),
3,261,299
aggregate functions, 417
calculations
arithmetic, 416
concatenation, 416, 417
date functions, 416
formatting functions, 416
SELECT without FROM, 415
string functions, 417
database client, 4
data manipulation, 418

446

filtering (WHERE)
case sensitivity, 414
dates, 414
string comparisons, 414
wildcard matching, 415
joining tables, 417
MariaDB, 3
primary keys,
autoincrementing, 418
quirks and variations (see Quirks and
variations)
rule, 411
sample database, 4-5
sorting (ORDER BY), 413, 414
table literals, 342
table manipulation, 418
triggers, 370
writing code, 411
Database tables, 2, 8
basic principles, 9
changes to table structures, 56
columns, 8
customers table, 8
improved database design, 57
indexes (see Index)
table design and columns (see
Columns)
temporary table, 9
virtual table, 10
well-designed table, 9
Data Definition
Language (DDL), 368
Data Manipulation Language (DML),
368, 370, 381
Data rules, 27, 39
Data types
aggregate queries, 19-20
calculating columns, 15

calculating with NULLs, 16
aliases, 16
CASE expression, 16
subqueries, 16
views, 17
date literals, 12
joins, 17
join types, 18
ON clause, 18
syntax, 17
number literals, 11
string literals, 11
Date functions, 412, 416
Deciles, 305-308
Denormalized data, 56
Design principles, 54, 60
Domains, 26, 39

E

extract() function, 144

-

Foreign key, 21, 27, 29, 30, 36, 38, 39, 50,
55, 61, 68, 81, 276, 369

Formatting functions, 130, 132, 145, 160,
187,416

Frequency table, 201, 203, 205, 206

G

GROUP BY clause, 19, 211
grouping() function, 198-200

H

Histograms, 201, 202

INDEX

Index, 49, 56
anonymous index, 51
author’s name, 51
books table, 50
clustered index/index organized
table, 50
costs, 49
CREATE INDEX, 50
customers table, 49
HAVING clause, 53
primary key, 50
SELECT clause, 53
UNIQUE column, 50
Unique Index, 52, 54, 56
IN operator, 13, 238, 247, 250, 261
Information, 6, 7

J,K

Joining tables, 104, 417

L

LATERAL JOIN (CROSS APPLY)
adding columns
expression, 263, 264
principle, 264
multiple columns
aggregate query, 266
FROM clause, 265, 266
list of customers, 266, 267
results, 266
SELECT clause, 265
query, 262, 273
SELECT clause, 262
WHERE clause, 262
Itrim() function, 118, 138

447

INDEX

M Microsoft SQL, 145, 148, 224, 225, 229,
264, 270, 304
connection, 425
module, windows, 422-424
recursive CTEs, 328
SQL strings, 434, 435
table literals, 344
triggers, 376, 377
variables, 313, 314, 394, 400, 402
Mode, 205-207
Multiple tables
adding author, 95, 96
adding book, 97
authors table, 94, 95
books table, 94
child table, 104
joins, 104
new book, 94

Many-to-many relationship, 61, 103
associated data, 92
association, 81
associative/bridging table, 78, 79
book genres, 81
book, multiple authors, 90, 91
book table, 78
combination, 81
CTE/aggregate query, 92
data, 79
database, 90, 93
genres table, 78
list of books, 93
result, 80
sales and saleitems tables, 90
SELECT statements, 78
table designing, 81

tables, 91 newzzl.e. N
table structure, 91 adadition,
process, 98

UNIQUE constraint, 81
Many-to-many tables
associative table, 83

sale completion, 101, 102
sales items, 98, 100
sales table, 98, 99
parent table, 104
query, 104
Multiple values, 55
bookgenres table, 77

bookgenres table, 83
book’s id, 83

INNER JOIN, 82
number of rows, 82

results, 83 CTE, 84
MariaDB, 3, 126, 147 GRC;UP BY 84
MariaDB/MySQL ol

id and title columns, 85
joins, 86
authors/genres tables, 86
bookdetails view, 87
books table, 87
dataset, 86
filtered list, 89
filtering, 88

connection, 426
quirks and variations, 420
SQL strings, 435
triggers, 374, 375
variables, 394, 398, 400
Median, 207, 208
Microsoft quirks and
variations, 419

448

genre details, 88
genre names, 88
genres table, 89
query, 87
side effects, 89, 90
list, 85
multiple genres, book, 76
principles, 76
SELECT statement, 84
string_agg(column,separator)
function, 85
MySQL, 147

Natural key, 36
Normalization, 26, 27, 56
Normalized database, 26-28
Normalized tables
properties, 55
ntile()
cast(... AS int), 308
customers hights, 307
decile/row_decile, 308
deciles, 306
group size, 307, 308
NULL heights, 306
rank_decile/count _decile, 309
NULLs, 7, 13, 159, 210, 276
NULL strings, 113, 118, 125, 136
Numeric calculations, 127, 160
approximation
functions, 129-130
basic arithmetic, 127-128
formatting functions, 130-132
mathematical
functions, 128-129
string (see String calculations)

INDEX

ON DELETE CASCADE clause, 276, 369
One-to-many relationship, 60, 103

books and authors, 62-64
books and authors view, 70-72
child table/parent table, 62
JOIN, 62, 63
NOT IN(...), 69, 70
one-to-many joins

books and authors, 64, 65

combinations, 69

FULL JOIN, 67

INNER JOIN, 65-68

LEFT JOIN, 65, 67

NOT NULL, 67

NULL, 68

options, 65

OUTER JOIN, 66

rows, 69

subquery, 68

unmatched parents, 68
Oracle, 63
uses, 61

One-to-many tables, 93
One-to-maybe relationships

contradiction, 73
customers table, 75
customers, 74

join, 73, 74

LEFT JOIN, 75
secondary table, 73
SELECT *, 75

vip table, 73, 74
VIP columns, 75

One-to-one relationship, 61, 72, 103
Oracle, 147, 229, 304

connection, 427
quirks and variations, 420

449

INDEX

Oracle (cont.) Planned relationships, 61
SQL strings, 436 PostgreSQL, 147, 222, 223, 229, 264
triggers, 378-380 connection, 426
variables, 394, 402-404 quirks and variations, 419
ORDER BY clause, 12, 14, 22, 120, 121, 158, SQL strings, 433
201, 211, 219, 220, 238, 272, 284, 293 triggers, 373, 374

variables, 394, 397, 398
Previous and next rows

P comparing sales, 310
Pentiles, 305 daily sales, 309
percentile_cont() function, 207 lag and lead, 309, 311
Percentiles, 305 missing dates, 311
Pivoting data OVER clause, 309
aggregate query, 387 Python, 421
customerdetails view, 384 connection, 421
customerinfo CTE, 385 cursor, 424
database tables, 382 mysql.connector, 426
definition, 382 oracledb, 427
design, 382 psycopg2, 426
general rule, 382 pyodbc, 425
grouping, 386 sqlite3, 424
layout, 381 database connector module
ledger table, 381 exceptions, 422
multiple CTEs, 384 shell/command line, 422
pivot feature, 389, 390 fetching database, 427, 429
purpose, 383 module, 421
separate totals, 388 MSSQL module, windows, 422-424
spreadsheet program, 382 new sale
status CTE, 385 addition, 437, 438
testing, 386, 387 code, 432
total sales, 383 completion, 440, 441
UNPIVOT feature, 391-393 customerid, 432
Pivot tables, 365, 367, 383 methods, 432
advantages, 382 sale items, 438, 439
creation, 383, 405 SQL strings, 431, 432
definition, 405, 406 steps, 431
MSSQL/Oracle, 405 parameters, query, 429-431
raw table data, 405 SQL strings, 432

450

MariaDB/MySQL, 435
MSSQL, 434

Oracle, 436

PostgreSQL, 433

SQLite, 434

triple quote characters, 432

Q

Quirks and variations
MariaDB/MySQL, 420
Microsoft, 419
Oracle, 420
PostgreSQL, 419

R

Ranking functions, 275, 297
basic functions, 298
count(*), 298
customer heights, 298, 299
dense_rank(), 298
examples, 299
exceptions, 299
expressions, 300
framing clause, 297
ORDER BY value, 298

paging results
CTE, 303

OFFSET ... FETCH ... clause, 304

pricelist view, 303
prices, 305
PARTITION BY
CASE ... END expression, 301
columns, 302
expected order, 301
order date, 301, 302
row_number(), 300
rank(), 298

INDEX

row_number() function, 297
Recursive CTEs
(cte(n)), 327
daily comparison, missing days
daily_sales view, 333, 334
DBMSs, 335
finding dates, 334
LEFT JOIN, 336
sequence of dates, 334, 335
vars and dates, 335
forms, 325, 326
JOIN, missing values, 331-333
parts, 326
sequence, 327
adding day, 329, 330
creation, 326, 328
dates, 329, 331
MSSQL, 328, 331
series of number/dates, 331
WHERE clause, 328, 331
traversing hierarchy
cleaner result, 341, 342
employees table, 337
multilevel, 338-341
single-level, 337, 338
supervisorid column, 337
supervisor’s name, 337
uses, 327, 365
Relational model, 6
Relationships, 102
planned, 61
types, 60, 103
unplanned, 61

S

sales table, 98, 99, 102, 155, 186, 270, 276,
280, 318
Scalar function, 221

451

INDEX

SELECT statement, 12, 234, 235
Single value query, 237
SQL, 394
basic SQL, 10-11
data types, 11-12, 412
dates, 412, 413
feature, 102
query, 368
quotes, 413
semicolon, 412
writing, 10, 411
SQL clauses
clause order, 12
limiting results, 14-15
multiple assertions, 13
ORDER BY clause, 14
SELECT clause, 12
sort strings, 15
WHERE clause, 13
wildcard patterns, 13
SQLite, 64, 140, 261, 395, 406
connection, 424
SQL strings, 434
triggers, 378
Standard deviation, 208, 209
Statistics, 212
String calculations, 160
ASCII and Unicode, 134-135
case sensitivity, 134-135
CHAR(length), 132
concatenation, 135-136
data types for strings, 132
string functions, 137-139
VARCHAR(length), 132, 133
String functions, 417
Subqueries
column names, 243
complex query, 239

452

T

correlated, 239, 240, 242, 243, 245, 272

cost, 239

definition, 238

expression, 245

FROM clause, 272
NULL, 255
price groups, books, 253
SELECT statement, 254, 255
summarizing table, 253

GROUP BY clause, 254

IN() expression, 273

nested subqueries, 255-257

non-correlated, 239, 240, 242, 272

ORDER BY clause, 272

SELECT clause, 242
aggregate query, 245
correlated subquery, 243, 244
join, 243
non-correlated subquery, 244
window functions, 244

uses, 238, 272

WHERE clause, 242
aggregates, 246
big spenders, 246-249
duplicate customers, 251, 252
last order, 249-251

WHERE EXISTS (...), 258, 273
correlated subquery, 259, 260
FROM dual, 258
IN() expression, 260, 261
non-correlated subquery, 259
SELECT NULL/SELECT 1/0, 259
testing, 258

Table, 213
Table design, 20

constraints, 20
data manipulation statements, 21
foreign key, 21
indexes, 21
set operations, 22-23
types of data, 20
Table literals
data
anchor member, 360, 361
CTE, 359
recursive member, 361-364
DBMSs, 343
definition, 342
lookup table, 352, 353
MSSQL, 344
sorting
advantage, 351
data CTE, 349
names, 349
sales per weekday, 348
sequence number, 350, 351
strings, 348
summary CTE, 349
standard notation, 343
statement, 342
string
anchor member, 355, 356
recursive CTE, 353-355
recursive member, 356
rest, 355-358
splitting, 354
WHERE rest<>, 358
testing
age calculation, 344, 347, 348
dates CTE, 345, 346
series of dates, 345
virtual table, 342
Table Valued Function (TVF), 221

INDEX

DBMSs, 221

definition, 233
Microsoft SQL, 224, 225
PostgreSQL, 222, 223
pricelist(), 222

Temporary table

benefits, 234

creation, 228, 229

database, 230

INSERT ... SELECT ... statement, 229
query, 230

SELECT statement, 229

TEMP, 229

uses, 230

towns.sql., 28
Towns table, 28, 29, 31, 32, 35-37, 384
Triggers

activity table, 368
archive table, 370
creation, 404

data, archiving, 370, 372
data deletion, 369
DBMSs, 370, 405
definition, 367, 368, 404
deleted_sales, 370
foreign key, 369

logging table, 368
Logon triggers, 368
MariaDB/MySQL, 374, 375
MSSQL, 376, 377

NULL sales, 369

Oracle, 378-380
PostgreSQL, 373, 374
pros and cons, 380
rental table, 368

sales table, 369

sales deletion, 372
SQLite, 378

453

INDEX

Triggers (cont.)
syntax, 369
types, 368
uses, 368, 406

Triggers, 365

U

Unicode, 134, 135
UNIQUE clause, 29
Unplanned relationships, 61

\'

Value, 7

Value functions, 275

VARCHAR(length), 132, 133

Variables, 313, 314
code blocks, 395, 396
DBMSs, 394, 406
definition, 367, 394
function/procedure, 394
MariaDB/MySQL, 394, 398, 400
MSSQL, 394, 400, 402
Oracle, 395, 402-404
PostgreSQL, 394, 397, 398
purposes, 406
statements, 405
system variables, 394
uses, 406

Variables, 315

Views, 55, 214
aupricelist, 218, 219
benefits, 215
caching data, 227
cascade views, 220
conditions, 217
convenience, 225
CREATE VIEW ... AS clause, 217

454

DBMS, 215
external applications, 227
importance, 215
interface, 225, 226
limitations, 215
materialized views, 228
ORDER BY clause, 219-221
pricelist view, 216
SELECT *, 220
SELECT statement, 233
syntax, 214
TVF (see Table Valued Function (TVF))
uses, 214
Virtual tables, 213, 214, 233, 235
multiple rows and multiple columns, 236
one column and multiple rows, 236
one row and one colum, 235, 236
query, 237

W XY, Z
WHERE clause, 13, 17, 20, 100, 112, 113,
119, 210, 242, 258, 262, 328
Window clauses, 312
Window functions, 236, 244, 274-276, 311
aggregate windows, 277-279
ORDER BY clause, 277
OVER () clause, 276, 277
PARTITION BY clause, 276
subtotals
expressions, 290
monthly totals, 291
ordered_month, 293
PARTITION BY multiple
columns, 294-296
PARTITION BY/ORDER BY, 292, 293
syntax, 276
window, 276

