

Praise for High Performance MySQL, 4th Edition

I love that this new edition shifts the book’s emphasis to a modern,
pragmatic mindset of team players delivering business value. It moves
past the previous editions’ myopic focus on gnarly internals and theory
to wring out diminishing returns, toward a more holistic perspective. The
‘how databases work’ material is still covered thoroughly, but now with a
fresh, humanistic take that is greatly needed.

—Baron Schwartz, Lead author of High Performance
MySQL, 2nd and 3rd editions

High Performance MySQL has been a staple of the MySQL world since
the first edition 17 years ago. MySQL moves ever onward, and Silvia and
Jeremy have done an excellent job bringing this essential work up to date
with modern MySQL.

—Jeremy Cole

Updated to meet modern practices, this latest edition is rich with solid
advice for MySQL administrators and developers.

—Shlomi Noach, Database Engineer, PlanetScale

High Performance MySQL has a new focus. It’s no longer about
squeezing every ounce of power from MySQL. We now have a large
ecosystem of tools and providers. Silvia and Jeremy beautifully cover
how MySQL fits into the new picture. This book is a must-have if you run
MySQL in any form.

—Sugu Sougoumarane, CTO of PlanetScale, cocreator of
Vitess

Silvia and Jeremy did a fantastic job keeping the original spirit of the
book strong while updating it to cover the rapidly changing MySQL
space.

—Peter Zaitsev, Founder and CEO of Percona and
coauthor of High Performance MySQL, 3rd edition

High Performance MySQL
FOURTH EDITION

Proven Strategies for Operating at Scale

Silvia Botros and Jeremy Tinley
Foreword by Jeremy Cole

High Performance MySQL
by Silvia Botros and Jeremy Tinley

Copyright © 2022 Silvia Botros and Jeremy Tinley. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Virginia Wilson and Andy Kwan

Production Editor: Elizabeth Faerm

Copyeditor: Shannon Turlington

Proofreader: Kim Cofer

Indexer: Judith McConville

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

November 2021: Fourth Edition

Revision History for the Fourth Edition

2021-11-17: First Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781492080510 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. High
Performance MySQL, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author(s) and do not
represent the publisher’s views. While the publisher and the author(s) have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author(s) disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-08051-0

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492080510

Foreword
A fresh copy of High Performance MySQL has been the first book to get
plopped down on the desk of every newly-hired DBA, systems engineer, or
database-minded developer since it came out nearly two decades ago.

When Jeremy Zawodny and Derek Balling set out to write a book about
running MySQL at scale, to bring clarity and structure to years of mystery,
it was destined to become an instant classic in the MySQL world. Through
the years and several updates, some of the content of the original and the
subsequent updates has held up, and some not so much.

MySQL itself has advanced, the MySQL community has changed a lot, and
the ways in which we use MySQL have changed. Now in the 4th edition,
Silvia and Jeremy undertake a thankless and gargantuan task to update this
classic for the modern era—and they are just the pair for the task.

In my time (now more than 20 years!) in the MySQL community, the one
consistent thing has been, well, inconsistency. Everyone uses MySQL (and
databases in general) in slightly different ways, and they each have different
expectations of it. Everyone makes some good decisions, some well-
intentioned but questionable decisions, and, always, their share of bad ones.
Sometimes, progress is easy, but sometimes it takes sage advice and a new
way of thinking about the problem learned straight from an expert.

Silvia and Jeremy are just such experts. Everything from MySQL
architecture, optimization, replication, backups, and more, stood to benefit
from them sharing their extensive experience in the trenches with MySQL.
In this new 4th edition, many subjects got new treatment, a lot of outdated
material was removed, errors were corrected, and a new and fresh style was
brought to the material.

Like the original (now vintage, and quaintly small) 1st edition, the 4th
edition promises to help carry the newest generation of developers, DBAs,
and their bosses into the new world of MySQL; sometimes with excitement,
but perhaps sometimes kicking and screaming.

Thanks, Silvia and Jeremy, for your hard work to nurture the next
generation of MySQL geeks who will be keeping the world’s data safe and
the world’s top websites and other data-driven systems performing at their
peak.

Congratulations on getting this done through COVID and everything else.
The rest of us will make sure to get all the new DBAs a copy.

Jeremy Cole
near Reno, Nevada
October 2021

Preface

The official documentation maintained by Oracle gives you the knowledge
necessary to install, configure, and interact with MySQL. This book serves
as a companion to that documentation, helping you understand how best to
leverage MySQL as a powerful data platform for your use case.

This edition also expands on the growing role of compliance and security as
parts of operating a database footprint. New realities such as privacy laws
and data sovereignty have changed how companies build their products, and
that naturally introduces new complexities in how the technical architecture
evolves.

Who This Book Is For
This book is first and foremost for engineers looking to grow their expertise
in running MySQL. This edition assumes its audience is familiar with the
basic principles of why you want to use a relational database management
system (RDBMS). We also assume some experience with general system
administration, networking, and operating systems.

We will offer you proven strategies for running MySQL at scale with a
modern architecture and more up-to-date tooling and practices.

Ultimately, we hope that the knowledge you gain from this book of
MySQL’s internals and scaling strategies will help you in scaling the data
storage layer at your organization. And we hope that your newfound insight
will help you to learn and practice a methodical approach to designing,
maintaining, and troubleshooting an architecture that is built on MySQL.

What Is Different in This Edition
High Performance MySQL has been a part of the database engineering
community for years, with past editions released in 2004, 2008, and 2012.
In these previous editions, the goal was always to teach developers and
administrators how to optimize MySQL for every drop of performance by
focusing on deep internal design, explaining what various tuning settings
mean, and arming the user with the knowledge to be effective in changing
these settings. This edition maintains the same goal but with a different
focus.

Since the third edition, the MySQL ecosystem has seen a lot of changes.
Three new major versions have been released. The tooling landscape
expanded significantly beyond Perl and Bash scripts and into full-fledged
tooling solutions. Entirely new open source projects have been built that
change how organizations manage scaling MySQL.

Even the traditional database administrator (DBA) role has evolved. There’s
an old joke in the industry that says that DBA stands for “Don’t Bother

Asking.” DBAs had a reputation for being speed bumps in the software
development life cycle (SDLC), not explicitly because of any
curmudgeonly attitude, but simply because databases weren’t evolving as
fast as the rest of the SDLC around them.

With books like Database Reliability Engineering: Designing and
Operating Resilient Database Systems by Laine Campbell and Charity
Majors (O’Reilly), it has become the new reality that technical
organizations look to database engineers more as enablers of business
growth and less as the sole operators of all databases. Where once a DBA’s
primary day-to-day involved schema design and query optimization, they
now are responsible for teaching those skills to developers and managing
systems that allow developers to deploy their own schema changes quickly
and safely.

With these changes, the focus should no longer be on optimizing MySQL to
get a few percentage points faster. We think that High Performance MySQL
is now about giving people the information they need to make educated
decisions about how to best use MySQL. This begins by understanding how
MySQL is designed, which gives way to understanding what MySQL is and
is not good at. Modern releases of MySQL offer reasonably sane defaults,
and there’s very little tuning you need to do unless you’re experiencing a
very specific scaling problem. Modern teams are now dealing with schema
changes, compliance issues, and sharding. We want High Performance
MySQL to be a comprehensive guide to how modern companies run
MySQL at scale.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

1

https://oreil.ly/IJkxU

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This icon signifies a tip or suggestion.

NOTE
This icon signifies a general note.

WARNING
This icon indicates a warning or caution.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/hiperfmysql_2e.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

http://oreilly.com/
http://oreilly.com/
https://oreil.ly/hiperfmysql_2e
mailto:bookquestions@oreilly.com

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments for the Fourth Edition

From Silvia
First and foremost, I’d like to thank my family. My parents, who sacrificed
stable jobs and lives in Egypt to bring me and my brother to the United
States. My husband, Armea, for supporting me through this and all the past
years of my career as I took on one challenge after the next, culminating in
this accomplishment.

I started off in tech as an immigrant who left her college years in the Middle
East to achieve her dream of moving to the United States. After earning my
degree in a state university in California, I took a job in New York City, and
I remember the second edition of this book being the very first tech book I
bought with my own money that was not a college book. I owe the authors
of the previous editions teaching me a lot of fundamental lessons that
prepared me to manage databases during my career.

I am grateful for the support of so many people I have worked with in my
career. Their encouragement has gotten me to write this edition of this book
that taught me so much earlier in my career. I’d like to thank Tim Jenkins,
the former CTO of SendGrid, for hiring me for the job of a lifetime even
though I told him in my interview that he was using MySQL replication the
wrong way, and for trusting me with what turned out to be a rocket ship.

I’d like to thank all the amazing women in tech who have been my support
network and cheerleaders. Special thanks to Camille Fournier and Dr.

http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Nicole Forsgren for writing the two books that have influenced the past few
years of my career and changed my view on my day-to-day work.

Thank you to my team at Twilio. To Sean Kilgore for making me a much
better engineer who cares about a lot more than just the databases. To John
Martin for being the most optimistic human I ever worked with. Thanks to
Laine Campbell and her PalominoDB team (later acquired by Pythian) who
helped support me and taught me so much during the toughest years, and to
Baron Schwartz for encouraging me to write about my experiences.

Finally, thanks to Virginia Wilson for being an excellent editor, for helping
turn my stream of ideas into sentences that make sense and for helping me
through this process with so much support and grace.

From Jeremy
When Silvia approached me to help with this book, it was in the middle of
an extraordinarily stressful period of most people’s lives—the global
pandemic, which started in 2020. I was unsure that I wanted to add any
more stress to my life. My wife, Selena, told me that I would regret it if I
didn’t accept, and I know better than to argue with her. She has always
supported me and encouraged me to be the best human being I can be. I will
forever love her for all that she does for me.

To my family, coworkers, and community friends: I would have never
gotten to this point without you. You all taught me how to be who I am
today. My career is the sum of my experiences with you all. You taught me
how to accept criticism, how to lead by example, how to fail and recover,
and most importantly, that the sum is better than the individual.

Lastly, I want to thank Silvia, who trusted me to bring a shared
understanding but different perspective to this book. I hope I met your
expectations.

A Thank You to Tech Reviewers

The authors also want to recognize the tech reviewers who helped get this
book to where it is today: Aisha Imran, Andrew Regner, Baron Schwartz,
Daniel Nichter, Hayley Anderson, Ivan Mora Perez, Jam Leoni, Jaryd
Remillard, Jennifer Davis, Jeremy Cole, Keith Wells, Kris Hamoud, Nick
Vyzas, Shubheksha Jalan, Tom Krouper, and Will Gunty. Thank you all for
your time and effort.

1 Famously, people often used MySQL as a queue and then learned the hard way why it was
bad. The most cited reasons were the overhead of polling for new queue actions, the
management of locking records for processing, and the unwieldy size of queue tables as data
grows over time.

Chapter 1. MySQL Architecture

MySQL’s architectural characteristics make it useful for a wide range of
purposes. Although it is not perfect, it is flexible enough to work well in both
small and large environments. These range from a personal website up to large-
scale enterprise applications. To get the most from MySQL, you need to
understand its design so that you can work with it, not against it.

This chapter provides a high-level overview of the MySQL server architecture,
the major differences between the storage engines, and why those differences
are important. We’ve tried to explain MySQL by simplifying the details and
showing examples. This discussion will be useful for those new to database
servers as well as readers who are experts with other database servers.

MySQL’s Logical Architecture
A good mental picture of how MySQL’s components work together will help
you understand the server. Figure 1-1 shows a logical view of MySQL’s
architecture.

The topmost layer, clients, contains the services that aren’t unique to MySQL.
They’re services most network-based client/server tools or servers need:
connection handling, authentication, security, and so forth.

The second layer is where things get interesting. Much of MySQL’s brains are
here, including the code for query parsing, analysis, optimization, and all the
built-in functions (e.g., dates, times, math, and encryption). Any functionality
provided across storage engines lives at this level: stored procedures, triggers,
and views, for example.

The third layer contains the storage engines. They are responsible for storing
and retrieving all data stored “in” MySQL. Like the various filesystems
available for GNU/Linux, each storage engine has its own benefits and
drawbacks. The server communicates with them through the storage engine
API. This API hides differences between storage engines and makes them

largely transparent at the query layer. It also contains a couple of dozen low-
level functions that perform operations such as “begin a transaction” or “fetch
the row that has this primary key.” The storage engines don’t parse SQL or
communicate with one another; they simply respond to requests from the
server.

Figure 1-1. A logical view of the MySQL server architecture

1

Connection Management and Security
By default, each client connection gets its own thread within the server process.
The connection’s queries execute within that single thread, which in turn
resides on one core or CPU. The server maintains a cache of ready-to-use
threads, so they don’t need to be created and destroyed for each new
connection.

When clients (applications) connect to the MySQL server, the server needs to
authenticate them. Authentication is based on username, originating host, and
password. X.509 certificates can also be used across a Transport Layer Security
(TLS) connection. Once a client has connected, the server verifies whether the
client has privileges for each query it issues (e.g., whether the client is allowed
to issue a SELECT statement that accesses the Country table in the world
database).

Optimization and Execution
MySQL parses queries to create an internal structure (the parse tree) and then
applies a variety of optimizations. These can include rewriting the query,
determining the order in which it will read tables, choosing which indexes to
use, and so on. You can pass hints to the optimizer through special keywords in
the query, affecting its decision-making process. You can also ask the server to
explain various aspects of optimization. This lets you know what decisions the
server is making and gives you a reference point for reworking queries,
schemas, and settings to make everything run as efficiently as possible. There
is more detail on this in Chapter 8.

The optimizer does not really care what storage engine a particular table uses,
but the storage engine does affect how the server optimizes the query. The
optimizer asks the storage engine about some of its capabilities and the cost of
certain operations as well as for statistics on the table data. For instance, some
storage engines support index types that can be helpful to certain queries. You
can read more about schema optimization and indexing in Chapters 6 and 7.

In older versions, MySQL made use of an internal query cache to see if it could
serve the results from there. However, as concurrency increased, the query
cache became a notorious bottleneck. As of MySQL 5.7.20, the query cache

2

was officially deprecated as a MySQL feature, and in the 8.0 release, the query
cache is fully removed. Even though the query cache is no longer a core part of
the MySQL server, caching frequently served result sets is a good practice.
While outside the scope of this book, a popular design pattern is to cache data
in memcached or Redis.

Concurrency Control
Any time more than one query needs to change data at the same time, the
problem of concurrency control arises. For our purposes in this chapter,
MySQL has to do this at two levels: the server level and the storage-engine
level. We will give you a simplified overview of how MySQL deals with
concurrent readers and writers, so you have the context you need for the rest of
this chapter.

To illustrate how MySQL handles concurrent work on the same set of data, we
will use a traditional spreadsheet file as an example. A spreadsheet consists of
rows and columns, much like a database table. Assume the file is on your
laptop and only you have access to it. There are no potential conflicts; only you
can make changes to the file. Now, imagine you need to collaborate with a
coworker on that spreadsheet. It is now on a shared server that both of you have
access to. What happens when both of you need to make changes to this file at
the same time? What if we have an entire team of people actively trying to edit,
add, and remove cells from this spreadsheet? We can say that they should take
turns making changes, but that is not efficient. We need an approach for
allowing concurrent access to a high-volume spreadsheet.

Read/Write Locks
Reading from the spreadsheet isn’t as troublesome. There’s nothing wrong with
multiple clients reading the same file simultaneously; because they aren’t
making changes, nothing is likely to go wrong. What happens if someone tries
to delete cell number A25 while others are reading the spreadsheet? It depends,
but a reader could come away with a corrupted or inconsistent view of the data.
So, to be safe, even reading from a spreadsheet requires special care.

If you think of the spreadsheet as a database table, it’s easy to see that the
problem is the same in this context. In many ways, a spreadsheet is really just a
simple database table. Modifying rows in a database table is very similar to
removing or changing the content of cells in a spreadsheet file.

The solution to this classic problem of concurrency control is rather simple.
Systems that deal with concurrent read/write access typically implement a
locking system that consists of two lock types. These locks are usually known
as shared locks and exclusive locks, or read locks and write locks.

Without worrying about the actual locking mechanism, we can describe the
concept as follows. Read locks on a resource are shared, or mutually
nonblocking: many clients can read from a resource at the same time and not
interfere with one another. Write locks, on the other hand, are exclusive—that
is, they block both read locks and other write locks—because the only safe
policy is to have a single client writing to the resource at a given time and to
prevent all reads when a client is writing.

In the database world, locking happens all the time: MySQL has to prevent one
client from reading a piece of data while another is changing it. If a database
server is performing in an acceptable manner, this management of locks is fast
enough to not be noticeable to the clients. We will discuss in Chapter 8 how to
tune your queries to avoid performance issues caused by locking.

Lock Granularity
One way to improve the concurrency of a shared resource is to be more
selective about what you lock. Rather than locking the entire resource, lock
only the part that contains the data you need to change. Better yet, lock only the
exact piece of data you plan to change. Minimizing the amount of data that you
lock at any one time lets changes to a given resource occur simultaneously, as
long as they don’t conflict with each other.

Unfortunately, locks are not free—they consume resources. Every lock
operation—getting a lock, checking to see whether a lock is free, releasing a
lock, and so on—has overhead. If the system spends too much time managing
locks instead of storing and retrieving data, performance can suffer.

A locking strategy is a compromise between lock overhead and data safety, and
that compromise affects performance. Most commercial database servers don’t
give you much choice: you get what is known as row-level locking in your
tables, with a variety of often complex ways to give good performance with
many locks. Locks are how databases implement consistency guarantees. An
expert operator of a database would have to go as far as reading the source
code to determine the most appropriate set of tuning configurations to optimize
this trade-off of speed versus data safety.

MySQL, on the other hand, does offer choices. Its storage engines can
implement their own locking policies and lock granularities. Lock management
is a very important decision in storage-engine design; fixing the granularity at a
certain level can improve performance for certain uses yet make that engine
less suited for other purposes. Because MySQL offers multiple storage engines,
it doesn’t require a single general-purpose solution. Let’s have a look at the two
most important lock strategies.

Table locks
The most basic locking strategy available in MySQL, and the one with the
lowest overhead, is table locks. A table lock is analogous to the spreadsheet
locks described earlier: it locks the entire table. When a client wishes to write
to a table (insert, delete, update, etc.), it acquires a write lock. This keeps all
other read and write operations at bay. When nobody is writing, readers can
obtain read locks, which don’t conflict with other read locks.

Table locks have variations for improved performance in specific situations.
For example, READ LOCAL table locks allow some types of concurrent write
operations. Write and read lock queues are separate with the write queue being
wholly of higher priority than the read queue.

Row locks
The locking style that offers the greatest concurrency (and carries the greatest
overhead) is the use of row locks. Going back to the spreadsheet analogy, row
locks would be the same as locking just the row in the spreadsheet. This
strategy allows multiple people to edit different rows concurrently without
blocking one another. This enables the server to take more concurrent writes,

3

but the cost is more overhead in having to keep track of who has each row lock,
how long they have been open, and what kind of row locks they are as well as
cleaning up locks when they are no longer needed.

Row locks are implemented in the storage engine, not the server. The server is
mostly unaware of locks implemented in the storage engines, and as you’ll see
later in this chapter and throughout the book, the storage engines all implement
locking in their own ways.

Transactions
You can’t examine the more advanced features of a database system for very
long before transactions enter the mix. A transaction is a group of SQL
statements that are treated atomically, as a single unit of work. If the database
engine can apply the entire group of statements to a database, it does so, but if
any of them can’t be done because of a crash or other reason, none of them is
applied. It’s all or nothing.

Little of this section is specific to MySQL. If you’re already familiar with
ACID transactions, feel free to skip ahead to “Transactions in MySQL”.

A banking application is the classic example of why transactions are
necessary. Imagine a bank’s database with two tables: checking and savings.
To move $200 from Jane’s checking account to her savings account, you need
to perform at least three steps:

1. Make sure her checking account balance is greater than $200.

2. Subtract $200 from her checking account balance.

3. Add $200 to her savings account balance.

The entire operation should be wrapped in a transaction so that if any one of
the steps fails, any completed steps can be rolled back.

You start a transaction with the START TRANSACTION statement and then
either make its changes permanent with COMMIT or discard the changes with
ROLLBACK. So the SQL for our sample transaction might look like this:

4

5

1 START TRANSACTION;
2 SELECT balance FROM checking WHERE customer_id = 10233276;
3 UPDATE checking SET balance = balance - 200.00 WHERE customer_id
= 10233276;
4 UPDATE savings SET balance = balance + 200.00 WHERE customer_id =
10233276;
5 COMMIT;

Transactions alone aren’t the whole story. What happens if the database server
crashes while performing line 4? Who knows? The customer probably just lost
$200. What if another process comes along between lines 3 and 4 and removes
the entire checking account balance? The bank has given the customer a $200
credit without even knowing it.

And there are a lot more failure possibilities in this sequence of operations. You
could see connection drops, timeouts, or even a crash of the database server
running them midway through the operations. This is typically why highly
complex and slow two-phase-commit systems exist: to mitigate against all sorts
of failure scenarios.

Transactions aren’t enough unless the system passes the ACID test. ACID
stands for atomicity, consistency, isolation, and durability. These are tightly
related criteria that a data-safe transaction processing system must meet:

Atomicity

A transaction must function as a single indivisible unit of work so that the
entire transaction is either applied or never committed. When transactions
are atomic, there is no such thing as a partially completed transaction: it’s
all or nothing.

Consistency

The database should always move from one consistent state to the next. In
our example, consistency ensures that a crash between lines 3 and 4 doesn’t
result in $200 disappearing from the checking account. If the transaction is

never committed, none of the transaction’s changes are ever reflected in the
database.

Isolation

The results of a transaction are usually invisible to other transactions until
the transaction is complete. This ensures that if a bank account summary
runs after line 3 but before line 4 in our example, it will still see the $200 in
the checking account. When we discuss isolation levels later in this chapter,
you’ll understand why we said “usually invisible.”

Durability

Once committed, a transaction’s changes are permanent. This means the
changes must be recorded such that data won’t be lost in a system crash.
Durability is a slightly fuzzy concept, however, because there are actually
many levels. Some durability strategies provide a stronger safety guarantee
than others, and nothing is ever 100% durable (if the database itself were
truly durable, then how could backups increase durability?).

ACID transactions and the guarantees provided through them in the InnoDB
engine specifically are one of the strongest and most mature features in
MySQL. While they come with certain throughput trade-offs, when applied
appropriately they can save you from implementing a lot of complex logic in
the application layer.

Isolation Levels
Isolation is more complex than it looks. The ANSI SQL standard defines four
isolation levels. If you are new to the world of databases, we highly
recommend you get familiar with the general standard of ANSI SQL before
coming back to reading about the specific MySQL implementation. The goal of
this standard is to define the rules for which changes are and aren’t visible

6

inside and outside a transaction. Lower isolation levels typically allow higher
concurrency and have lower overhead.

NOTE
Each storage engine implements isolation levels slightly differently, and they don’t
necessarily match what you might expect if you’re used to another database product (thus,
we won’t go into exhaustive detail in this section). You should read the manuals for
whichever storage engines you decide to use.

Let’s take a quick look at the four isolation levels:

READ UNCOMMITTED

In the READ UNCOMMITTED isolation level, transactions can view the

results of uncommitted transactions. At this level, many problems can
occur unless you really, really know what you are doing and have a good
reason for doing it. This level is rarely used in practice because its
performance isn’t much better than the other levels, which have many
advantages. Reading uncommitted data is also known as a dirty read.

READ COMMITTED

The default isolation level for most database systems (but not MySQL!) is
READ COMMITTED. It satisfies the simple definition of isolation used

earlier: a transaction will continue to see changes made by transactions that
were committed after it began, and its changes won’t be visible to others
until it has committed. This level still allows what’s known as a
nonrepeatable read. This means you can run the same statement twice and
see different data.

REPEATABLE READ

REPEATABLE READ solves the problems that READ UNCOMMITTED
allows. It guarantees that any rows a transaction reads will “look the same”

in subsequent reads within the same transaction, but in theory it still allows
another tricky problem: phantom reads. Simply put, a phantom read can
happen when you select some range of rows, another transaction inserts a
new row into the range, and then you select the same range again; you will
then see the new “phantom” row. InnoDB and XtraDB solve the phantom
read problem with multiversion concurrency control, which we explain
later in this chapter.

REPEATABLE READ is MySQL’s default transaction isolation level.

SERIALIZABLE

The highest level of isolation, SERIALIZABLE, solves the phantom read

problem by forcing transactions to be ordered so that they can’t possibly
conflict. In a nutshell, SERIALIZABLE places a lock on every row it

reads. At this level, a lot of timeouts and lock contention can occur. We’ve
rarely seen people use this isolation level, but your application’s needs
might force you to accept the decreased concurrency in favor of the data
safety that results.

Table 1-1 summarizes the various isolation levels and the drawbacks associated
with each one.

T
a
b
l
e
1
-
1
.
A
N
S
I
S
Q
L

i
s
o
l
a
t
i
o
n
l
e
v
e
l
s

Isolation level
Dirty reads
possible

Nonrepeatable
reads possible

Phantom reads
possible Locking readsIsolation level

Dirty reads
possible

Nonrepeatable
reads possible

Phantom reads
possible Locking reads

READ UNCOMMIT
TED

Yes Yes Yes No

READ COMMITTE
D

No Yes Yes No

REPEATABLE RE
AD

No No Yes No

SERIALIZABLE No No No Yes

Deadlocks
A deadlock is when two or more transactions are mutually holding and
requesting locks on the same resources, creating a cycle of dependencies.
Deadlocks occur when transactions try to lock resources in a different order.
They can happen whenever multiple transactions lock the same resources. For
example, consider these two transactions running against a StockPrice
table, which has a primary key of (stock_id, date):

Transaction 1

START TRANSACTION;
UPDATE StockPrice SET close = 45.50 WHERE stock_id = 4 and date =
‘2020-05-01’;
UPDATE StockPrice SET close = 19.80 WHERE stock_id = 3 and date =
‘2020-05-02’;
COMMIT;

Transaction 2

START TRANSACTION;
UPDATE StockPrice SET high = 20.12 WHERE stock_id = 3 and date =
‘2020-05-02’;
UPDATE StockPrice SET high = 47.20 WHERE stock_id = 4 and date =
‘2020-05-01’;
COMMIT;

Each transaction will execute its first query and update a row of data, locking
that row in the primary key index and any additional unique index it is part of
in the process. Each transaction will then attempt to update its second row, only
to find that it is already locked. The two transactions will wait forever for each
other to complete unless something intervenes to break the deadlock. We cover
further in Chapter 7 how indexing can make or break the performance of your
queries as your schema evolves.

To combat this problem, database systems implement various forms of
deadlock detection and timeouts. The more sophisticated systems, such as the
InnoDB storage engine, will notice circular dependencies and return an error
instantly. This can be a good thing—otherwise, deadlocks would manifest
themselves as very slow queries. Others will give up after the query exceeds a
lock wait timeout, which is not always good. The way InnoDB currently
handles deadlocks is to roll back the transaction that has the fewest exclusive
row locks (an approximate metric for which will be the easiest to roll back).

Lock behavior and order are storage engine specific, so some storage engines
might deadlock on a certain sequence of statements even though others won’t.
Deadlocks have a dual nature: some are unavoidable because of true data
conflicts, and some are caused by how a storage engine works.

Once they occur, deadlocks cannot be broken without rolling back one of the
transactions, either partially or wholly. They are a fact of life in transactional
systems, and your applications should be designed to handle them. Many
applications can simply retry their transactions from the beginning, and unless
they encounter another deadlock, they should be successful.

Transaction Logging
Transaction logging helps make transactions more efficient. Instead of updating
the tables on disk each time a change occurs, the storage engine can change its
in-memory copy of the data. This is very fast. The storage engine can then
write a record of the change to the transaction log, which is on disk and
therefore durable. This is also a relatively fast operation, because appending
log events involves sequential I/O in one small area of the disk instead of
random I/O in many places. Then, at some later time, a process can update the

7

table on disk. Thus, most storage engines that use this technique (known as
write-ahead logging) end up writing the changes to disk twice.

If there’s a crash after the update is written to the transaction log but before the
changes are made to the data itself, the storage engine can still recover the
changes upon restart. The recovery method varies between storage engines.

Transactions in MySQL
Storage engines are the software that drives how data will be stored and
retrieved from disk. While MySQL has traditionally offered a number of
storage engines that support transactions, InnoDB is now the gold standard and
the recommended engine to use. Transaction primitives described here will be
based on transactions in the InnoDB engine.

Understanding AUTOCOMMIT
By default, a single INSERT, UPDATE, or DELETE statement is implicitly
wrapped in a transaction and committed immediately. This is known as
AUTOCOMMIT mode. By disabling this mode, you can execute a series of
statements within a transaction and, at conclusion, COMMIT or ROLLBACK.

You can enable or disable the AUTOCOMMIT variable for the current
connection by using a SET command. The values 1 and ON are equivalent, as
are 0 and OFF. When you run with AUTOCOMMIT=0, you are always in a
transaction until you issue a COMMIT or ROLLBACK. MySQL then starts a new
transaction immediately. Additionally, with AUTOCOMMIT enabled, you can
begin a multistatement transaction by using the keyword BEGIN or START
TRANSACTION. Changing the value of AUTOCOMMIT has no effect on
nontransactional tables, which have no notion of committing or rolling back
changes.

Certain commands, when issued during an open transaction, cause MySQL to
commit the transaction before they execute. These are typically DDL
commands that make significant changes, such as ALTER TABLE, but LOCK
TABLES and some other statements also have this effect. Check your version’s
documentation for the full list of commands that automatically commit a
transaction.

MySQLlets you set the isolation level using the SET TRANSACTION
ISOLATION LEVEL command, which takes effect when the next transaction
starts. You can set the isolation level for the whole server in the configuration
file or just for your session:

SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;

It is preferable to set the isolation you use most at the server level and only
change it in explicit cases. MySQL recognizes all four ANSI standard isolation
levels, and InnoDB supports all of them.

Mixing storage engines in transactions
MySQL doesn’t manage transactions at the server level. Instead, the underlying
storage engines implement transactions themselves. This means you can’t
reliably mix different engines in a single transaction.

If you mix transactional and nontransactional tables (for instance, InnoDB and
MyISAM tables) in a transaction, the transaction will work properly if all goes
well. However, if a rollback is required, the changes to the nontransactional
table can’t be undone. This leaves the database in an inconsistent state from
which it might be difficult to recover and renders the entire point of
transactions moot. This is why it is really important to pick the right storage
engine for each table and to avoid mixing storage engines in your application
logic at all costs.

MySQL will usually not warn you or raise errors if you do transactional
operations on a nontransactional table. Sometimes rolling back a transaction
will generate the warning, “Some nontransactional changed tables couldn’t be
rolled back,” but most of the time, you’ll have no indication you’re working
with nontransactional tables.

WARNING
It is best practice to not mix storage engines in your application. Failed transactions can lead
to inconsistent results as some parts can roll back and others cannot.

Implicit and explicit locking
InnoDB uses a two-phase locking protocol. It can acquire locks at any time
during a transaction, but it does not release them until a COMMIT or
ROLLBACK. It releases all the locks at the same time. The locking mechanisms
described earlier are all implicit. InnoDB handles locks automatically,
according to your isolation level.

However, InnoDB also supports explicit locking, which the SQL standard does
not mention at all:

SELECT ... FOR SHARE
SELECT ... FOR UPDATE

MySQL also supports the LOCK TABLES and UNLOCK TABLES commands,
which are implemented in the server, not in the storage engines. If you need
transactions, use a transactional storage engine. LOCK TABLES is unnecessary
because InnoDB supports row-level locking.

TIP
The interaction between LOCK TABLES and transactions is complex, and there are
unexpected behaviors in some server versions. Therefore, we recommend that you never use
LOCK TABLES unless you are in a transaction and AUTOCOMMIT is disabled, no matter
what storage engine you are using.

Multiversion Concurrency Control
Most of MySQL’s transactional storage engines don’t use a simple row-locking
mechanism. Instead, they use row-level locking in conjunction with a technique
for increasing concurrency known as multiversion concurrency control
(MVCC). MVCC is not unique to MySQL: Oracle, PostgreSQL, and some
other database systems use it too, although there are significant differences
because there is no standard for how MVCC should work.

You can think of MVCC as a twist on row-level locking; it avoids the need for
locking at all in many cases and can have much lower overhead. Depending on

8, 9

how it is implemented, it can allow nonlocking reads while locking only the
necessary rows during write operations.

MVCC works by using snapshots of the data as it existed at some point in time.
This means transactions can see a consistent view of the data, no matter how
long they run. It also means different transactions can see different data in the
same tables at the same time! If you’ve never experienced this before, it might
be confusing, but it will become easier to understand with familiarity.

Each storage engine implements MVCC differently. Some of the variations
include optimistic and pessimistic concurrency control. We illustrate one way
MVCC works by explaining InnoDB’s behavior in the form of a sequence
diagram in Figure 1-2.

InnoDB implements MVCC by assigning a transaction ID for each transaction
that starts. That ID is assigned the first time the transaction reads any data.
When a record is modified within that transaction, an undo record that explains
how to revert that change is written to the undo log, and the rollback pointer of
the transaction is pointed at that undo log record. This is how the transaction
can find the way to roll back if needed.

Figure 1-2. A sequence diagram of handling multiple versions of a row across different transactions

When a different session reads a cluster key index record, InnoDB compares
the record’s transaction ID versus the read view of that session. If the record in
its current state should not be visible (the transaction that altered it has not yet
committed), the undo log record is followed and applied until the session

10

reaches a transaction ID that is eligible to be visible. This process can loop all
the way to an undo record that deletes this row entirely, signaling to the read
view that this row does not exist.

Records in a transaction are deleted by setting a “deleted” bit in the “info flags”
of the record. This is also tracked in the undo log as a “remove delete mark.”

It is also worth noting that all undo log writes are also redo logged because the
undo log writes are part of the server crash recovery process and are
transactional. The size of these redo and undo logs also plays a large part in
how transactions at high concurrency perform. We cover their configuration in
more detail in Chapter 5.

The result of all this extra record keeping is that most read queries never
acquire locks. They simply read data as fast as they can, making sure to select
only rows that meet the criteria. The drawbacks are that the storage engine has
to store more data with each row, do more work when examining rows, and
handle some additional housekeeping operations.

MVCC works only with the REPEATABLE READ and READ COMMITTED
isolation levels. READ UNCOMMITTED isn’t MVCC compatible because
queries don’t read the row version that’s appropriate for their transaction
version; they read the newest version, no matter what. SERIALIZABLE isn’t
MVCC compatible because reads lock every row they return.

Replication
MySQL is designed for accepting writes on one node at any given time. This
has advantages in managing consistency but leads to trade-offs when you need
the data written in multiple servers or multiple locations. MySQL offers a
native way to distribute writes that one node takes to additional nodes. This is
referred to as replication. In MySQL, the source node has a thread per replica
that is logged in as a replication client that wakes up when a write occurs,
sending new data. In Figure 1-3, we show a simple example of this setup,
which is usually called a topology tree of multiple MySQL servers in a source
and replica setup.

11

12

Figure 1-3. A simplified view of a MySQL server replication topology

For any data you run in production, you should use replication and have at least
three more replicas, ideally distributed in different locations (in cloud-hosted
environments, known as regions) for disaster-recovery planning.

Over the years, replication in MySQL gained more sophistication. Global
transaction identifiers, multisource replication, parallel replication on replicas,
and semisync replication are some of the major updates. We cover replication
in great detail in Chapter 9.

Datafiles Structure
In version 8.0, MySQL redesigned table metadata into a data dictionary that is
included with a table’s .ibd file. This makes information on the table structure
support transactions and atomic data definition changes. Instead of relying only
on information_schema for retrieving table definition and metadata
during operations, we are introduced to the dictionary object cache, which is a
least recently used (LRU)-based in-memory cache of partition definitions, table
definitions, stored program definitions, charset, and collation information. This
major change in how the server accesses metadata about tables reduces I/O and
is efficient, especially if a subset of tables is what sees the most activity and

therefore is in the cache most often. The .ibd and .frm files are replaced with
serialized dictionary information (.sdi) per table.

The InnoDB Engine
InnoDB is the default transactional storage engine for MySQL and the most
important and broadly useful engine overall. It was designed for processing
many short-lived transactions that usually complete rather than being rolled
back. Its performance and automatic crash recovery make it popular for
nontransactional storage needs too. If you want to study storage engines, it is
well worth your time to study InnoDB in depth to learn as much as you can
about it, rather than studying all storage engines equally.

NOTE
It is best practice to use the InnoDB storage engine as the default engine for any application.
MySQL made that easy by making InnoDB the default engine a few major versions ago.

InnoDB is the default MySQL general-purpose storage engine. By default,
InnoDB stores its data in a series of datafiles that are collectively known as a
tablespace. A tablespace is essentially a black box that InnoDB manages all by
itself.

InnoDB uses MVCC to achieve high concurrency, and it implements all four
SQL standard isolation levels. It defaults to the REPEATABLE READ isolation
level, and it has a next-key locking strategy that prevents phantom reads in this
isolation level: rather than locking only the rows you’ve touched in a query,
InnoDB locks gaps in the index structure as well, preventing phantoms from
being inserted.

InnoDB tables are built on a clustered index, which we will cover in detail in
Chapter 8 when we discuss schema design. InnoDB’s index structures are very
different from those of most other MySQL storage engines. As a result, it
provides very fast primary key lookups. However, secondary indexes (indexes
that aren’t the primary key) contain the primary key columns, so if your

primary key is large, other indexes will also be large. You should strive for a
small primary key if you’ll have many indexes on a table.

InnoDB has a variety of internal optimizations. These include predictive read-
ahead for prefetching data from disk, an adaptive hash index that automatically
builds hash indexes in memory for very fast lookups, and an insert buffer to
speed inserts. We cover these in Chapter 4 of this book.

InnoDB’s behavior is very intricate, and we highly recommend reading the
“InnoDB Locking and Transaction Model” section of the MySQL manual if
you’re using InnoDB. Because of its MVCC architecture, there are many
subtleties you should be aware of before building an application with InnoDB.
Working with a storage engine that maintains consistent views of the data for
all users, even when some users are changing data, can be complex.

As a transactional storage engine, InnoDB supports truly “hot” online backups
through a variety of mechanisms, including Oracle’s proprietary MySQL
Enterprise Backup and the open source Percona XtraBackup. We’ll dive into
backup and restore in detail in Chapter 10.

Beginning with MySQL 5.6, InnoDB introduced online DDL, which at first
had limited use cases that expanded in the 5.7 and 8.0 releases. In-place schema
changes allow for specific table changes without a full table lock and without
using external tools, which greatly improve the operationality of MySQL
InnoDB tables. We will be covering options for online schema changes, both
native and external tools, in Chapter 6.

JSON Document Support
First introduced to InnoDB as part of the 5.7 release, the JSON type arrived
with automatic validation of JSON documents as well as optimized storage that
allows for quick read access, a significant improvement to the trade-offs of old-
style binary large object (BLOB) storage engineers used to resort to for JSON
documents. Along with the new data type support, InnoDB also introduced
SQL functions to support rich operations on JSON documents. A further
improvement in MySQL 8.0.7 adds the ability to define multivalued indexes on
JSON arrays. This feature can be a powerful way to even further speed up read-
access queries to JSON types by matching the common access patterns to

https://oreil.ly/AfuTi
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/ch10.html#backup_and_recovery

functions that can map the JSON document values. We go over the use and
performance implications of the JSON data type in “JSON Data” in Chapter 6.

Data Dictionary Changes
Another major change in MySQL 8.0 is removing file-based table metadata
storage and moving to a data dictionary using InnoDB table storage. This
change brings all of InnoDB’s crash-recovery transactional benefits to
operations like changes to tables. This change, while much improving the
management of data definitions in MySQL, does also require major changes in
operating a MySQL server. Most notably, back-up processes that used to rely
on the table metadata files now have to query the new data dictionary to extract
table definitions.

Atomic DDL
Finally, MySQL 8.0 introduced atomic data definition changes. This means that
data definition statements now can either wholly finish successfully or be
wholly rolled back. This becomes possible through creating a DDL-specific
undo and redo log that InnoDB relies on to track the change—another place
where InnoDB’s proven design has been expanded to the operations of MySQL
server.

Summary
MySQL has a layered architecture, with server-wide services and query
execution on top and storage engines underneath. Although there are many
different plug-in APIs, the storage engine API is the most important. If you
understand that MySQL executes queries by handing rows back and forth
across the storage engine API, you’ve grasped the fundamentals of the server’s
architecture.

In the past few major releases, MySQL has settled on InnoDB as its primary
development focus and has even moved its internal bookkeeping around table
metadata, authentication, and authorization after years in MyISAM. This
increased investment from Oracle in the InnoDB engine has led to major

improvements such as atomic DDLs, more robust online DDLs, better
resilience to crashes, and better operability for security-minded deployments.

InnoDB is the default storage engine and the one that should cover nearly every
use case. As such, the following chapters focus heavily on the InnoDB storage
engine when talking about features, performance, and limitations, and only
rarely will we touch on any other storage engine from here on out.

1 One exception is InnoDB, which does parse foreign key definitions because the MySQL server
doesn’t yet implement them itself.

2 MySQL 5.5 and newer versions support an API that can accept thread-pooling plug-ins, though
not commonly used. The common practice for thread pooling is done at access layers, which we
discuss in Chapter 5.

3 We definitely recommend you read the documentation on exclusive versus shared locks, intention
locking, and record locks.

4 There are metadata locks, which are used when dealing with table name changes or changing
schemas, and in 8.0 we are introduced to “application level locking functions.” In the course of run-
of-the-mill data changes, internal locking is left to the InnoDB engine.

5 Although this is a common academic exercise, most banks actually rely on daily reconciliation and
not on strict transactional operations during the day.

6 For more information, read a summary of ANSI SQL by Adrian Coyler and an explanation of
consistency models by Kyle Kingsbury.

7 As you will see later in this chapter, some storage engines lock entire tables, and others implement
more complex row-based locking. All that logic lives for the most part in the storage engine layer.

8 These locking hints are frequently abused and should usually be avoided.

9 SELECT…FOR SHARE is a MySQL 8.0 feature that replaces SELECT…LOCK IN SHARE
MODE of previous versions.

10 We recommend reading this blog post by Jeremy Cole to get a deeper understanding of records
structure in InnoDB.

11 For a lot more detail on how InnoDB handles multiple versions of its records, see this blog post by
Jeremy Cole.

12 There is no formal standard that defines MVCC, so different engines and databases implement it
very differently, and no one can say any of them is wrong.

https://oreil.ly/EPfwc
https://oreil.ly/joikF
http://jepsen.io/consistency
https://oreil.ly/jbljq
https://oreil.ly/exaaL

Chapter 2. Monitoring in a
Reliability Engineering World

Monitoring systems is an extensive topic that has been heavily shaped in the
past few years by the seminal work in Site Reliability Engineering: How
Google Runs Production Systems (O’Reilly) and its followup, The Site
Reliability Workbook: Practical Ways to Implement SRE (O’Reilly). Since
these two books came out, site reliability engineering (SRE) has become a
popular trend in open job listings. Some companies have gone as far as retitling
existing staff as some flavor of “reliability engineering.”

Site reliability engineering has changed how teams think about operational
work. This is because it consists of a set of principles that allow us to more
easily answer questions like:

Are we providing an acceptable customer experience?

Should we focus on reliability and resilience work?

How do we balance new features against toil?

This chapter expects the reader to have an understanding of what these
principles are. If you have not read either of the aforementioned books, we
recommend these chapters from The Site Reliability Workbook as a crash
course:

Chapter 1 offers a deeper understanding of the philosophy behind
moving toward service-level performance management in production.

Chapter 2 covers how to implement service level objectives (SLOs).

Chapter 5 covers alerting on SLOs.

Some may argue that SRE implementation isn’t strictly a part of high
performance MySQL, but we disagree. In her book, Accelerate, Dr. Nicole
Forsgren says, “Our measure should focus on outcomes, not outputs.” A key

1

https://oreil.ly/ozRZV
https://oreil.ly/LexH6

aspect of effective MySQL management is good monitoring of the health of
your databases. Traditional monitoring is a relatively well-paved path. As SRE
is a new space, it’s less understood how to implement SRE principles against
MySQL. As SRE principles continue to gain acceptance, the traditional role of
a DBA will evolve, and that includes how DBAs think about monitoring their
systems.

The Impact of Reliability Engineering on DBA
Teams
For many years, monitoring database performance relied on deep dives into
single-server performance. That still has a lot of value but tends to be more
about reactive measurements, like profiling a server that is performing poorly.
This was the standard operating procedure in the days of the gatekeeping DBA
teams when no one else was allowed to know how the database operated.

Enter Google’s introduction of reliability engineering. The role of a DBA
became more complex and turned into more of a site reliability engineer (SRE)
or database reliability engineer (DBRE). Teams had to optimize for their time.
Service levels help you define when customers are unhappy and allow you to
better balance your time between addressing things like performance issues and
scaling challenges against working on internal tooling. Let’s discuss the
different ways you need to monitor MySQL to ensure a successful customer
experience.

Defining Service Level Goals
Before going into how to measure whether customers are happy with the
performance of your database clusters, we must first know what our goals are
and align on a common language to describe these goals. Here are some
questions that can serve as conversation starters in your organization to define
these goals:

What are the metrics appropriate for measuring success?

What values for these metrics are acceptable to the customers and our
business needs?

At what point are we considered in a degraded state?

When are we in an altogether failed state and need to remediate as
soon as possible?

There are scenarios with obvious answers to these questions (e.g., the source
database is down, we are not taking any writes, and therefore, business is
halted). Some are less obvious, such as a periodic task is sometimes hogging all
the database disk I/O and suddenly everything else is slower. Having a shared
understanding across the organization of what we are measuring and why can
help guide prioritization conversations. Reaching that shared understanding
through ongoing conversations across the organization helps guide whether you
can spend engineering effort on new features or if there needs to be more
investment in performance improvement or stability.

In SRE practices, these discussions about customer satisfaction will align the
team on what is healthy for the business in terms of service level indicators
(SLIs), SLOs, and service level agreements (SLAs). Let’s start by defining
what these terms mean:

Service level indicator (SLI)

In very simple terms, an SLI answers the question, “How do I measure
whether my customers are happy?” The answer represents a healthy system
from the users’ perspective. SLIs can be business-level indicators, such as
“response time for a customer-facing API,” or a more fundamental “service
is up.” You may find you need different indicators or metrics depending on
the data’s context and how it relates to the product.

Service level objective (SLO)

An SLO answers the question, “What is the minimum I can allow my SLI
to be to ensure that my customers are happy?” SLO is the objective range
we want to be in for a given SLI to be considered a healthy service. If you

think uptime is the SLI, then the number of nines you want to be up for a
given time span is the SLO. SLOs have to be defined as a value over a
given time frame to ensure that everyone is aligned on what the SLO
means. An SLI plus an SLO forms the basic equation for knowing if your
customers are happy.

Service level agreement (SLA)

SLAs provide the answer to the question, “What SLO am I willing to agree
to that has consequences?” An SLA is an SLO that has been included in an
agreement with one or more customers of the business (paying customers,
not internal stakeholders), with financial or other penalties if that SLA is
not met. It is important to note that SLAs are optional.

We will not cover SLAs much in this chapter as they tend to require more
of a business discussion than an engineering one. This sort of decision
hinges mostly on what sales the business expects to get if they promise an
SLA in contracts and if that is worth the risk to revenue if the SLA were to
be broken. Hopefully, such a decision is informed by what we do cover
here around choosing both SLIs and matching SLOs.

Defining these SLIs, SLOs, and SLAs guide not only the business’s health but
also planning within engineering teams. If a team is not hitting its agreed-upon
SLOs, it should not proceed with new feature work. The same is true for
database-engineering teams. If one of the potential SLOs we discuss in this
chapter is not being met, that should spur the conversation of why not. When
you come armed with the data to explain why customer experience is
suboptimal, you can have more meaningful conversations about team priorities.

What Does It Take to Make Customers Happy?
After choosing a set of metrics as your SLIs, it may be tempting to set the goals
to 100%. You must fight that urge, though. Remember that the goal of picking
indicators and objectives is to evaluate at any time, with an objective metric,
whether your team can innovate with new features or if stability is at risk of
dropping below acceptable levels for customers and therefore needs more

attention and resources. The goal is to define what is the absolute minimum you
need to do to make customers happy. If a customer is happy with your pages
loading in two seconds, there’s no need to set a target for pages to load in 750
milliseconds. This can create an unreasonable burden for engineering teams.

Taking an example of uptime as an indicator and objective values for it, we can
declare that “we will not have any downtime,” but what does that mean when
implementing and tracking if we are meeting goals? Reaching three nines of
availability is no small feat. Three nines over a whole year amount to just over
eight hours, translating to only 10 minutes in a given week. The more nines
you promise, the harder this gets, and the more expensive engineering hours the
team will have to spend to deliver on such a promise. Table 2-1 is a helpful
chart from Amazon Web Services showing the challenge in raw numbers.

T
a
b
l
e

2
-
1
.
A
v
a
i
l
a
b
i
l
i
t
y

t
i
m
e

b
y

n
i
n

e
s

Availability
Downtime per
year

Downtime per
month

Downtime per
week

Downtime per
day

99.999% 5 mins, 15.36 secs 26.28 secs 6.06 secs 0.14 secs

99.995% 26 mins, 16.8 secs 2 mins, 11.4 secs 30.3 secs 4.32 secs

99.990% 52 mins, 33.6 secs 4 mins, 22.8 secs 1 mins, 0.66 secs 8.64 secs

99.950% 4 hrs, 22 mins, 48
secs

31 mins, 54 secs 5 mins, 3 secs 43 secs

99.900% 8 hrs, 45 mins, 36
secs

43 mins, 53 secs 10 mins, 6 secs 1 min, 26 secs

99.500% 43 hrs, 48 mins, 36
secs

3 hrs, 39 mins 50 hrs, 32 mins, 17
secs

7 mins, 12 secs

99.250% 65 hrs, 42 mins 5 hrs, 34 mins, 30
secs

1 hr, 15 mins, 48
secs

10 mins, 48 secs

99.000% 3 days, 15 hrs, 54
mins

7 hrs, 18 mins 1 hr, 41 mins, 5
secs

14 mins, 24 secs

Because engineering time is a finite resource, you must be careful not to strive
for perfection when choosing SLOs. Not all the features in your product require
all these nines to keep customers satisfied, so you will find that as your
product’s feature set grows, you will have varying SLIs and SLOs depending
on the specific feature impact or the revenue being driven by it. That is to be
expected and is a sign of a thoughtful process. You have a critical task here:
detecting when a data set becomes a bottleneck for very different query profiles
by different stakeholders, jeopardizing performance. This also means finding a
way to separate those different stakeholder needs so that you can provide them
reasonable SLIs and SLOs.

These indicators and objectives are also an effective way to have a uniform
language between product and engineering that guides making decisions
between “spend engineering time on new features” versus “spend time on

resilience and fixing issues.” It is also a way to decide, from the list of things
we would like to accomplish, which is the most important based on customer
experience. You can use SLIs and SLOs to guide work-prioritization
conversations that are otherwise hard to align on.

What to Measure
Let’s imagine a company whose product is an online store. The company is
seeing a lot more traffic due to increased online shopping, and there is demand
on the infrastructure group to ensure that the database layer can handle the
increased demand. Throughout this section we will talk about what to measure
as if we are that fictional infrastructure team.

Defining SLIs and SLOs
Defining a good SLI and a matching SLO is centered around explaining
succinctly how to provide a delightful user experience for your customers. We
will not spend a ton of time explaining in the abstract how to create meaningful
SLIs and SLOs. In the context of MySQL, it needs to be a representation that
defines three major themes: availability, latency, and lack of critical errors.

For our online store example, this means pages that load quickly, faster than a
few hundred milliseconds at least 99.5% of the time, measured across a month.
It also means a reliable checkout process where intermittent failures are
allowed only 1% of the time in a given calendar month. Note how these
indicators and objectives are defined. We don’t define 100% as a requirement
because we operate in a world where failure is inevitable. We do use a time
span so that the team can accurately balance its work between new features and
resilience.

“I expect 99.5% of my database requests to be served in less than two
milliseconds with no errors” is both a sufficient SLI with a clear SLO and not
simple. You can’t confirm all of this in one metric. It’s a single-sentence
representation of how you expect the database layer to behave in order to
provide an acceptable customer experience.

2

So what is a good example in our online store for metrics that can build this
customer experience picture? Start with synthetic tests such as page loads in
production that sample load rate. This is useful as a consistent signal that
“things are OK.” But it’s just the beginning. Let’s discuss different facets of
signals to track to build a picture. As we move through these examples, we will
tie it with our online store to help you visualize how these different metrics
create a picture of a good customer experience. First, let’s talk about tracking
query response time.

Monitoring Solutions
Query analysis and monitoring query latency in the context of SLIs and SLOs
need to focus on customer experience. This means relying on tooling that can
alert you as soon as possible when query response times are growing longer
than an agreed-upon threshold. Let’s discuss a few paths you can take to
achieve that level of monitoring.

Commercial options
This is one of the examples where paying a vendor whose competitive
advantage is this specific task of profiling MySQL performance can pay your
organization back in dividends. Tools like SolarWinds Database Performance
Management can go a long way toward making profiling query performance
both automated and accessible to a large cohort of your engineering
organization.

Open source options
A well-established open source option is Percona Monitoring and
Management, known as PMM. It operates as a client/server pair. You install a
client on your database instances, which collects and sends metrics to the
server portion. The server side also has a set of dashboards that allow you to
view graphs relating to performance. One of the major benefits of PMM is that
the organization of the dashboards is guided by long-time experience in the
Percona community around monitoring MySQL performance. This makes it an
excellent resource to get engineers new to MySQL familiar with how to
monitor MySQL performance.

https://oreil.ly/v5wSR
https://oreil.ly/e4l9A

Another route you can take is shipping your database slow logs and MySQL
Performance Schema outputs to a centralized location where you can use well-
known tools like pt-query-digest, part of the Percona Toolkit package, to
analyze the logs and gain more insight into what your database instances are
spending their time on. While effective, this process can be slow and possibly
affect customers if not properly used. You ideally want to discover issues
before customers notice them. By reactively checking logs after that happens,
you run the risk of eroding customer trust because of how long it takes to
discover performance regressions and the process of digging into all sorts of
postfact artifacts to determine what happened.

Lastly, using Performance Schema to profile MySQL performance can be very
helpful as you will see in more detail in Chapter 3. You can use it to find
bottlenecks to make your instances do more with the same specification, save
in infrastructure costs, or answer the question, “Why is this taking this long?”
This is not a tool to determine solely if you are meeting your service reliability
promises, as it is far deep in the internals of MySQL. For service level
performance evaluation, we need a new way of thinking about performance.

A NOTE ON “TESTING IN PRODUCTION”
We often hear the drumbeat of “test in production,” and it makes a lot of
folks cringe. The reality is that testing in production can have a lot of value.
Production is where you discover how that change interacts with the rest of
the system, at scale, with real customer traffic. It allows you to see the
impact on the adjacent systems.

By using the basic “are customers happy” question, you can see:

When the feedback loop from production is quick and tied
strongly to a change, it becomes much faster to roll back the
change and reinspect the specific change that was being deployed.

This method fosters stronger collaboration between feature teams
and the database engineers. When all parties involved are aligned
on the specific metrics to watch and what values they should be,
the task of measuring performance becomes a team effort.

In the case of a regression, the effort spent outside production to
look into “what happened” is far more specific than trying to re-
create a benchmark suite that emulates a larger footprint of code
paths. Engineering time spent to debug becomes far better
targeted.

Now let’s dive into additional metrics that help you further understand the
experience of the customers of your online store. You should think about the
metrics you can get from MySQL in the frame of outcomes, not outputs. We
will also cover examples of things you cannot measure through MySQL
metrics alone.

Monitoring Availability
An online store that is intermittently offline risks eroding shopper confidence.
This is why availability as a standalone metric, and as part of your view of the
customer experience, is so important.

Availability is being able to respond to customer requests without an error. To
frame this in standard HTTP terms, it may be a response that is a clear-cut
success, like a 200 response code, or a successful acceptance of a request with
a promise to finish the related work asynchronously, like a 202 accepted.
Availability used to be a simple metric in the days of monolithic single-host
systems. Nowadays, most architectures are a lot more complicated. The
concept of availability has also evolved into a more nuanced reflection of how
distributed systems fail. When attempting to turn availability into an SLI and
SLO for your database architecture, consider discussing further details (along
with examples from our online store), such as the following:

When dealing with inevitable catastrophic failures, what features are
nonnegotiable and what features are “nice to have” (e.g., can
customers continue with existing shopping carts and check those out
but maybe not add new items during this failure)?

What types of failures do we define as “catastrophic” (e.g., failure of
listing search might not be catastrophic, but failure of checkout
operations would be)?

What does “degraded functionality” look like (e.g., can we load
generic recommendations instead of customized ones based on past
purchase history when needed)?

What is the shortest possible mean time to recovery (MTTR) we can
promise for our core features given a set of probable failure scenarios
(e.g., if the database powering a shopping cart checkout system is
failing writes, how fast can we safely pivot to a new source node)?

When choosing a set of metrics to represent availability, you want to set
expectations with your customer support team that “100% uptime” is not
reasonable and that the focus here is to provide the best customer experience
possible in a world understanding and accepting that component failures are
inevitable.

The preferred method to verify availability is from a client or remote endpoint.
This can be done passively if you have access to a client’s logs for database
access. Explicitly, this means that if your application is PHP and you run under

Apache, you need access to the Apache logs to determine if PHP is emitting
any errors for connecting to your database. You can also verify availability
actively. If your environment is segregated and you cannot get access to client
logs, consider setting up remote code that performs an action on your database
to ensure it is available. This could be something simple, like a SELECT 1
query, which verifies that MySQL is receiving and parsing your query but does
not access the storage layer. Or this could be more complex, like reading actual
data from a table or executing a write and subsequent read to verify the write
was successful. This kind of synthetic transaction from elsewhere in the
network can give you perspective into whether your application is available.

Remote validation of availability is useful for tracking an availability objective.
It does not help you gain insight before a problem arises. One MySQL metric
that can be used as a leading indicator for availability issues is the MySQL
status counter Threads_running. It tracks how many queries are currently
in flight on a given database host. When threads running are growing at a fast
rate and not showing any signs of decline, that indicates queries are not
finishing fast enough and are therefore stacking and consuming resources.
Allowing this metric to grow usually results in a database host causing either a
full CPU lockup or intense memory load that can lead to the entire MySQL
process being shut down by the operating system. This is obviously a major
outage if it happens on a source node and something you should strive to have
leading indicators for. A starting point to monitor this is to inspect how many
CPU cores you have and, if Threads_running is exceeding that, that can
be a sign that your server is hitting that precarious state. In conjunction with
that, you can monitor how close you get to max_connections as another
data point to check for an overload of work in progress.

The section “Safety Settings” in Chapter 5 gives insight into how you can set
the brakes on runaway MySQL threads.

Monitoring Query Latency
MySQL has introduced a number of long-needed enhancements to track how
long queries take to run, and you should definitely use your monitoring stack to
track these trends as your application code changes. However, this is still not a
full picture of the customer experience, especially given how modern software

https://oreil.ly/h9cDB

architecture is designed. In addition to internally tracked latency, you also need
a view on how latency is perceived by your applications and what happens
when that perceived latency increases. This means that besides tracking query
latency from the database server directly, you would also be well served by
tooling the clients to report on time to query completion, so you can get as
close to the customer experience as possible. Digesting all of these sample
metrics from clients (especially when your infrastructure footprint grows) can
be done with paid tools like Datadog or SolarWinds Database Performance
Monitor, or even by using open source tools like PMM. This is an area where
close collaboration with your organization’s application developers is
paramount. You need to be aware of how the application team measures this
from the application perspective and add more insight to the outliers using
tracing tools like Honeycomb or Lightstep.

Monitoring for Errors
Do you need to track and alert on every error that ever happens? It depends.

The sheer existence of errors for a MySQL client in a running service is not an
indication of something being definitely broken. In a world of distributed
systems, there are many scenarios where clients can encounter errors that are
intermittent and, in many cases, resolved with a simple retry of the failed query.
The rate of errors happening, though, across the fleet of services handling
database queries in your infrastructure can be a crucial indicator of brewing
trouble. Here are some examples of client-side errors that might normally be
just noise but are a sign of trouble if their rate accelerates:

Lock wait timeout

Your clients reporting a sharp increase of this error can be a sign of an
escalating row-lock contention on your source node that transactions keep
retrying and still failing. It can be a precursor for write downtime.

Aborted connections

Clients reporting a sudden surge of aborted connections can be an indicator
of issues in any access layer you have between the clients and the database

instances. Not tracking that down can lead to a lot of client-side retries,
which consumes resources.

One thing MySQL server tracks that can help you is the set of server variables
named Connection_errors_xxx where xxx is different kinds of connection
errors. A sudden increase of any of these counters can be a strong indicator
telling you that something new and unusual is currently broken.

Are there errors where a single instance means there is trouble and needs to be
handled? Yes.

For example, getting errors that the MySQL instance is running in read-only
mode is a sign of issues even if these errors do not happen very often. This can
mean that you just had a replica promoted to source, but it is still running in
read-only mode (you run replicas in read-only mode, don’t you?), which is
downtime of writes for your cluster. Or it can mean there is some issue in your
access layer sending write traffic to a replica. In either of those cases, it is not a
sign of an intermittent issue solved with a retry.

Another server-side error that is a flag for a major problem is either “too many
connections” or an OS-level “cannot create new thread.” These are signs that
your application layer has created and left open more connections than your
database server is configured to allow, either in the server
max_connections variable or the number of threads the MySQL process is
allowed to open. These errors translate immediately as 5xx errors to your
application and, depending on your application design, can also be impactful to
your customers.

As you can see, measuring performance and choosing which errors to frame
your SLIs around is as much a communication and social problem as it is a
technical one, so you should be prepared for that.

Proactive Monitoring
As we’ve said, SLO monitoring is focused on whether or not your customers
are happy. This helps keep you focused on improving their experience when

https://oreil.ly/F4VUw

they are not happy and on other tasks, like toil reduction, when they are. This
misses out on a key area: proactive monitoring.

If we return to our online store example and how we envision monitoring our
customers’ experience, we can elaborate further. Imagine you aren’t
experiencing any major failures of any components, but you note that there is a
rising tide of customer support tickets reporting “slowness” or occasional
errors that seem to disappear on their own. How do you track down behavior
like this? This can be a very difficult task if you do not already have a good
idea what the baseline performance of a number of signals is. The dashboards
and scripts that you use to trigger on-call alerts can be referred to as steady
state monitoring. These let you know something unexpected is happening with
a given system whether or not there was a change. They are an important tool
for giving you leading indicators before your customers experience failure.

The balance you need to strike with monitoring is that it always needs to be
actionable while also being a true leading indicator. Alerting on disk space for a
database at 100% full is too late as the service is already down, but alerting on
80% might be too slow or not as actionable if the growth rate is not that fast.

Let’s talk about useful signals you can monitor that are not directly tied to
actual customer impact.

Disk growth
Tracking disk growth is the sort of metric that you might not think about until it
becomes a problem. When it does become a problem, solving the issue can be
time consuming and affect your business. It is definitely better to understand
how you track it, have a plan to mitigate it, and know what alerting thresholds
are appropriate.

There are a number of strategies you can use to monitor disk growth. Let’s
break them down from most ideal to bare minimum.

If your monitoring tooling can allow it, tracking the rate of growth of disk
space usage can be remarkably useful. There are always scenarios where
available disk space can burn down relatively quickly, putting your availability
at risk. Operations like long-running transactions with large undo logs or alter
tables are examples of why you might approach full disk too fast. There are

many incident stories out there where excessive logging or a change in insert
pattern for a given data set went undetected until “the database” ran out of disk
space. Only then did all sorts of alerts fire.

If tracking the rate of growth is not feasible (not all monitoring tools provide
this ability), you can set multiple thresholds with lower warnings that only fire
during business hours and a higher, more critical value as an alert to off-hours
on call. This allows the team to have a heads-up warning during business hours
before things get dire enough to wake someone up.

If you can neither monitor the rate of growth nor define multiple thresholds for
the same metric, then you have to at least determine a single-value threshold
for disk space used at which you page your on-call engineers. This threshold
needs to be low enough to allow some action and free disk space as the team
assesses the reasons it fired and consider longer-term mitigation. Consider
evaluating the maximum throughput your disk can write (MB/s) and using that
to help calculate how long at max traffic throughput it would take to fill the
disk. You need that much lead time to avoid an event.

We discuss in Chapter 4 operating system and hardware configurations that
relate to how MySQL uses disk space and what trade-offs to consider in those
decisions in relation to disk space growth. It should be expected that at some
point, hopefully, your business will have grown so that you cannot store all of
your data in one cluster of servers. Even if you run in a cloud environment that
can expand volumes for you, you still need to do planning around this, so you
always want to have a threshold for free disk space that allows you the time to
plan and do the needed expansion without a panic.

The takeaway here is to make sure you have some monitor for disk space
growth, even if you think it is early days and too soon to need one. This is one
of the growth axes that catches almost everyone unprepared.

Connection growth
As your business grows, a common layer that grows linearly is your application
layer. You will need more instances to support login, shopping carts, processing
requests, or whatever the context of the product may be. All of these added
instances start opening more and more connections to your database hosts. You
may mitigate that growth for some time by adding replicas, using replication as

a scale-out measure, or even using middleware layers like ProxySQL to
decouple the growth of your frontend from connection load directly on the
database.

While your traffic is growing, the database server can support a finite pool of
connections, which is configured as the server setting max_connections.
Once the total number of connections to the server reaches that maximum, your
database will not allow any new ones, which is a common contributing cause to
incidents where you can no longer open new connections to the database,
leading to increased errors for your users.

Monitoring connection growth is about making sure your resources are not
exhausted to the point of risking your database availability. This risk can come
in two different ways:

The application layer is opening lots of connections it’s not using and
creating the risk of maxing out connections for no good reason. A
clear sign of this is seeing connections count
(threads_connected) as high but threads_running is still
low.

The application layer is actively using lots of connections and risking
overloading the database. You can distinguish this state by seeing that
both threads_connected and threads_running are at high
values (hundreds? thousands?) and increasing.

A useful thing to consider when setting up monitoring for connection count is
relying on percentages and not absolute numbers. A percentage of
threads_connected/max_connections shows you how close the
growth of your application node count is taking you to the maximum
connection pool the database can allow. This helps you monitor for the first
state of connection growth trouble.

Separately, you should be tracking and alerting on how busy a database host is,
which, as we explained earlier, is seen in the value of threads_running.
Typically, if this value is growing north of one hundred threads, you start to see
elevated CPU usage and increased memory use, which is a general sign of high
load on the database host. This is an immediate concern for your database

availability, as it can escalate to the MySQL process getting killed by the
operating system. A common quick solution is to use the kill process command
or a tool that automates using it, such as pt-kill, tactically to relieve load, then
look into why the database got into this state using query analysis, which we
described earlier.

WARNING
Connection storms are situations in production systems where the application layer perceives
increases in query latency and responds with opening more connections to the database layer.
This can result in adding significant load on the database as it handles the large influx of new
connections, which takes away resources from fulfilling query requests. Connection storms
can cause a sudden decrease in available connections in max_connections and increase
the risk of your database availability.

Replication lag
MySQL has a native replication feature that sends data from one server, the
source, to one or more additional servers, referred to as replicas. The delay
between data being written on the source and being available on the replicas is
referred to as replication lag. If your application reads data from the replicas,
lag can make it seem as if your data has inconsistencies as you send reads to
replicas not yet caught up on all the changes. In a social media example, a user
may comment on something someone else has posted. This data is written to
the source and then replicated out to the replicas. When the user attempts to
view their reply, if the application sends the request to a server that is lagged,
the replica may not have the data yet. This can create confusion for the user,
thinking their comment was not saved. We cover strategies to fight replication
lag in more detail in Chapter 9.

Lag is one of those metrics that can be an acute SLI that can trigger incidents.
It is also a longer-term trend indicating the need for more architectural change.
In the longer-term context, even if you never hit replication lag that is affecting
the customer experience, it is still a sign that, at least intermittently, the volume
of writes from source nodes is surpassing what replicas can write at current
configuration. It can be a canary in the coal mine for your write capacity. If
listened to, it can prevent future full-blown incidents.

WARNING
Be wary of alerting someone to replication lag. Immediate actionable remediation may not
always be possible. Likewise, if you don’t read from replicas, consider how aggressively
your monitoring system alerts someone to this condition. Alerts that someone receives,
especially off hours, should always be actionable.

Replication lag is one of those metrics that can affect both immediate and
tactical decisions, but also keeping an eye on its trends long term can help save
you the hassle of larger business impact and keep you ahead of the growth
curve.

I/O utilization
One of the never-ending endeavors of a database engineer is “do as much of the
work as possible in memory because it is faster.” While that is certainly
accurate, we also know that we cannot possibly accomplish that 100% of the
time because that would mean our data entirely fits in memory, in which case
“scale” is not yet a thing we need to expend energy on.

As your database infrastructure scales and your data does not fit in memory
anymore, you come to realize that the next best thing is to not read so much
data from disk that queries are stuck waiting their turn for those precious I/O
cycles. This remains true even in this era of almost everything running on
solid-state drives. As the size of your data grows and your queries need to scan
more of it to fulfill requests, you will find that I/O wait can become a
bottleneck for your traffic growth.

Monitoring your disk I/O activity helps you get ahead of performance
degradation before it becomes customer facing. There are a few things you can
monitor to achieve this goal. Tools like iostat can help you monitor for I/O
wait. You want to monitor and alert if your database server has a lot of threads
sitting in IOwait, an indication that they are in queue waiting on some disk
resources to be available. You find this by tracking IOutil as a running graph
for a meaningful period of time, such as a day or two, or even a week. IOutil
is reported as a percentage of the overall system’s disk access capacity. Having
that be close to 100% for sustained periods on a host that is not running
backups can be an indication of full table scans and inefficient queries. You

also want to monitor the overall utilization of your disk I/O capacity as a
percentage since that can forewarn you of disk access becoming a future
bottleneck for your database performance.

Auto-increment space
One of the less well-known landmines in using MySQL is that auto-increment
primary keys are by default created as signed integers and can run out of key
space. This happens when you have done enough inserts that the auto-
increment key has reached the maximum possible value for its data type. When
planning what metrics you should monitor on a long-term basis, monitoring
remaining integer space for any tables that use auto increments as the primary
key is a simple action that will almost certainly save you some major incident
pain in the future because you can predict the need for a larger key space in
advance.

How do you monitor this key space? You have a few options. If you already
use PMM and its Prometheus exporter, this comes baked in and all you need to
do is turn on the flag -collect.auto_increment.columns. If your
team does not use Prometheus, you can use the following query, which can be
modified either as a metrics producer or an alert to tell you when any of your
tables are approaching the maximum key space possible. This query relies on
information_schema, which has all the metadata about the tables in your
database instance:

SELECT
 t.TABLE_SCHEMA AS `schema`,
 t.TABLE_NAME AS `table`,
 t.AUTO_INCREMENT AS `auto_increment`,
 c.DATA_TYPE AS `pk_type`,
 (
 t.AUTO_INCREMENT /
 (CASE DATA_TYPE
 WHEN 'tinyint'
 THEN IF(COLUMN_TYPE LIKE '%unsigned',
 255,
 127
)
 WHEN 'smallint'
 THEN IF(COLUMN_TYPE LIKE '%unsigned',
 65535,

https://oreil.ly/xfypm

 32767
)
 WHEN 'mediumint'
 THEN IF(COLUMN_TYPE LIKE '%unsigned',
 16777215,
 8388607
)
 WHEN 'int'
 THEN IF(COLUMN_TYPE LIKE '%unsigned',
 4294967295,
 2147483647
)
 WHEN 'bigint'
 THEN IF(COLUMN_TYPE LIKE '%unsigned',
 18446744073709551615,
 9223372036854775807
)
 END / 100)
) AS `max_value`
 FROM information_schema.TABLES t
 INNER JOIN information_schema.COLUMNS c
 ON t.TABLE_SCHEMA = c.TABLE_SCHEMA
 AND t.TABLE_NAME = c.TABLE_NAME
 WHERE
 t.AUTO_INCREMENT IS NOT NULL
 AND c.COLUMN_KEY = 'PRI'
 AND c.DATA_TYPE LIKE '%int'
;

There is a lot of nuance and context that you have to think about when picking
a primary key in general and for managing auto increments specifically, and we
will cover that in Chapter 6.

Backup creation/restore time
Long-term planning is not only about growth while the business is running as
usual but also recovery in an acceptable time frame. We will discuss how to
think about disaster recovery in more depth in Chapter 10, and how it is part of
your compliance control duties in Chapter 13, but we bring it up here to note
that a good disaster recovery plan only works when you revisit it and adjust its
goals.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/ch10.html#backup_and_recovery

FUNCTIONAL SHARDING AND HORIZONTAL SHARDING
In this chapter and other sections throughout this book, you will see us
mention sharding or partitioning as different ways to split your data on
separate instances in order to scale. We want to define what we mean by
these and how they differ to avoid confusion as you read the rest of this
book.

Functional sharding means splitting specific tables that serve a specific
business function into a dedicated cluster in order to manage separately this
data set’s uptime, performance, or even access controls.

Horizontal sharding is when you have a data set that has grown past the
size you can reliably serve out of a single cluster, so you split it into
multiple clusters and serve the data from several nodes, relying on some
look-up mechanism to locate the subset you need.

If your databases are reaching a size where restoring from a backup will take
longer than what is acceptable for restoring critical functionality of the
business, then even if everything else is running fine, you need to examine
adjusting that MTTR target, changing the definition of “critical functionality,”
or finding a way to make the backup-restore time shorter. Here are some things
to think about when planning for disaster recovery:

Be very specific what functionality falls into this recovery target, and
if needed, look into whether the data that powers that functionality
subset needs to be in a separate cluster to actually make that
expectation realistic.

If functionally partitioning that data into multiple and smaller
instances is not feasible, the entire data set is now under that target for
recovering via backups. The data set that takes the longest to restore
from backups will be what drives this recovery process completion
time.

Make sure to have automated methods for testing (we will cover some
examples in Chapter 10). Monitor how long it takes to restore a
backup from a file to a running database that has also caught up on

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/ch10.html#backup_and_recovery

replicating all changes since the backup was created, and store that
metric somewhere with enough retention to see long-term (at least a
year) trends. This is one of those indicators that can slip by and
become surprisingly long if monitoring it is not automated.

You will see that in many of the example long-term metrics we describe
shortly, we almost always point out the need for either functional sharding or
horizontal sharding of your data. The goal here is to point explicitly to the fact
that if you consider sharding when you have incidents where capacity issues
are a major contributing cause, then you likely have considered it too late. The
work of breaking down your data into manageable pieces doesn’t start when
your data is too large for one cluster but well before that, when you are still
determining what your goals for providing a successful customer experience
are.

Understanding how long it takes you to recover your data can help set
expectations for what to do in a real disaster. It can also make you aware of
when it might take longer than the business wants it to. This is a precursor to
needing to shard.

Measuring Long-Term Performance
Choosing SLIs and SLOs for day-to-day operations is only the beginning. You
need to make sure you are not mistaking the forest for the trees and focusing on
specific host metrics instead of inspecting the overall system performance and
the customer-experience outcomes. In this section, we cover strategies you can
use to think about overall long-term health of the system.

Learning Your Business Cadence
It is important to be aware of the traffic cadence of your business, as that will
always be the time when all your SLOs are both the most tested and receiving
the most scrutiny from your most important customers. The business cadence
can mean peak traffic times are orders of magnitude larger than “average,” and
that has plenty of consequences if your database infrastructure is not prepared.
In the context of the database infrastructure, this can translate to orders of
magnitude more requests per second to fulfill, a lot more connection load from

your application servers, or larger revenue impact if you were to have an
intermittent failure of write operations. Here are some examples of business
cadence that should help you understand what business cycle your company
operates within:

Ecommerce site

Late November through the end of the year is the busiest time for many
countries, and online stores can see orders of magnitude more sales. This
means a lot more shopping carts, a lot more concurrent sales, and a lot more
revenue impact for the same failures any other time of the year.

Human resources software

In the United States, November is typically when a lot of employees are
making benefits elections during a time known as “open enrollment,”
which will create a lot more traffic.

Online fresh-flowers vendor

Valentine’s Day will be the busiest time of the year, with a lot more folks
ordering deliveries of bouquets.

As you can see, these business cycles can vary widely depending on the
customer needs that the business is filling. It is crucial for you to be aware of
the cycle for your business and the implications that has on the business’s
revenue, its reputation, and therefore how much preparation you should make
to meet the demand without affecting the stability of the systems you are tasked
to run.

When it comes to measuring the performance of the database infrastructure
underpinning the business, it is important not to measure performance in a
bubble separate from the other important metrics that your engineering
organization is tracking. Database performance should be part of the larger
conversation about tech-stack performance and not handled as a special case.
Start by using the same tools as the rest of your engineering organization as

much as possible. You want the metrics and dashboard you rely on to
determine how the database layer is performing to be equally as accessible as
the application-layer metrics or even in the same dashboards. This mindset,
regardless of what tech or vendor you use, will go a long way toward creating
an environment where everyone is invested in the performance of the full stack
and reducing the proverbial wall engineers can feel between the features they
write and the databases that support them.

Tracking Your Metrics Effectively
There are a number of things to be concerned with when it comes to long-term
planning for a business, which includes but is not limited to:

Planning for future capacity

Foreseeing when major improvements are needed and when
incremental changes are enough

Planning for the increased costs of running your infrastructure

You need to be able to not just measure the health of the data-store
infrastructure at a certain point in time but also trend performance
improvement or degradation on a long-term basis. This means not just
identifying SLIs and SLOs but also finding which SLIs and SLOs remain
valuable, high-signal metrics for long-term trends as well. You will likely find
that not all metrics that can be used in short-term on-call decision making are
also appropriate for long-term business planning.

Before we dive into which metrics are important for long-term planning, let’s
talk about some tools that empower that long-term trend monitoring.

Using Monitoring Tools to Inspect the Performance
Measuring performance is important in both the immediate “are we currently in
an incident” sense and the long-term tracking and trending sense. The tool that
holds the metrics you care about is as important a decision as what the metrics
themselves are. What is the use of choosing a good SLI if you then cannot
properly see its trend over time in a manner that is relatable to the rest of the
organization metrics?

The field of monitoring tools is rapidly growing, and there are lots of strong
opinions on how it should be done. The goal here is increased transparency and
a focus on tracking outcomes rather than outputs. In the field of making an
infrastructure stack successful, tracking success is a team sport.

Instead of talking about specific tools here, we will instead list some important
features and aspects to think about when considering if a tool is good for this
kind of long-term trending.

Say no to averages
Whether you are self-managing your metrics solution as an engineering
organization or using a software as a service (SaaS), be careful how your
metrics solution normalizes data for long-term storage. A lot of solutions
aggregate long-term data into averages by default (Graphite is one of the first
to do that), and that is a big problem. If you need to look at the trend of a
metric over a period longer than a few weeks, the average will smooth down
peaks, which means if you are looking to see if your disk I/O utilization can
double for the next year, a graph of average data points will very likely give
you a false sense of security. Always look at peaks when trending months’
data, so you can keep the fidelity of occasional spikes in your view.

Percentiles are your friend
Percentiles rely on ordering the data points in a given time span and removing
the highest value ones depending on the target percentile (i.e., if you are
looking for 95th, remove the top 5%). This is an excellent way to make the data
you are looking at get visually more similar to how we look at SLIs and SLOs.
If you can make the graph showing your query response time show the 95th
percentile, you can far more easily match that to the SLO you want to achieve
for application-request completion and make the database metrics make sense
to folks like your customer support team and your engineers, not just your
database-engineering team.

Long retention period and performance
This may seem obvious, but the performance of a monitoring tool when trying
to display long time spans is important. If you are evaluating solutions for
business-metric trending, you need to make sure to test out how the user

experience changes when asking for longer and longer time spans of data. A
metrics solution is only as good as it can be at making that data available, not
just the speed of ingestion or how long it keeps it.

Now that we have described what a long-term monitoring tool should look like,
let’s discuss how all we’ve covered so far in choosing SLIs and SLOs can
guide your data architecture.

Using SLOs to Guide Your Overall Architecture
Keeping a consistent and good customer experience while your business is also
growing is no small feat. As the size of the business grows, keeping even the
same SLOs, much less setting more ambitious ones, becomes harder and
harder. Take something like availability, for example: everyone wants as many
nines as possible of uptime for both reads and writes for all their data. But the
more stringent the SLOs you want to achieve, the more expensive the work
becomes, as your peak database transactions per second or its size also grows
by orders of magnitude.

Using the SLIs and SLOs we already discussed, you can find the points in
growth where it makes sense to start splitting your data into either functional
shards or data partitions. We will discuss scaling MySQL using sharding in
Chapter 11 in more detail, but the important point to make here is that the same
SLIs and SLOs that tell you how the system is performing now can also guide
you to knowing when it is time to invest in scaling MySQL so that the
individual clusters remain manageable within the boundaries of the SLOs that
preserve your customers’ experience.

Having a metrics solution that can handle both short- and long-term metrics
and can trend changes for you in a useful manner is a very important part of
tracking tactical performance metrics along with the longer-term, business-
impacting trends of how your database infrastructure is doing.

Summary
It is important during your journey of applying reliability engineering concepts
to monitoring your database infrastructure that you constantly improve and

revisit your indicators and objectives. They are not meant to be set in stone
after the first time you define some SLIs and SLOs. As the business grows, you
will gain a deeper understanding of the customers’ experience, and that should
drive improvements to your SLIs and SLOs.

Be conscious as you choose metrics and assign goals to them that you are
always focused on representing customer experience. Also, do not focus all
your effort on metrics that show you when an incident is happening, but spend
some time on monitoring things that can help you prevent incidents. This is all
about proactive activity to protect the customer experience.

We recommend setting goals up front on three key areas: latency, availability,
and errors. These three areas can provide a great signal as to whether your
customers are happy. Beyond that, make sure you’re also doing proactive
monitoring in the areas of connection growth, disk space, and disk I/O and
latency.

We hope this chapter helps frame for you how to apply reliability engineering
to monitoring MySQL successfully as your company scales.

1 Nicole Forsgren, Accelerate: The Science of Lean Software and DevOps (IT Revolution Press,
2018). https://oreil.ly/Bfvda

2 We highly recommend Implementing Service Level Objectives by Alex Hidalgo (O’Reilly).

https://oreil.ly/wzEPu

Chapter 3. Performance
Schema
Contributed by Sveta Smirnova

Tuning the performance of databases under high load is an iterative cycle.
Every time you make a change to tune the performance of the database, you
need to understand if the change had any effect. Are your queries running
faster than before? Are locks slowing down the application, or are they
entirely gone? Did memory usage change? Did the time spent waiting on
disk change? Once you understand how to answer these questions, you’ll be
able to evaluate and respond to day-to-day situations faster and with more
confidence.

Performance Schema is a database that stores the data required to answer
these questions. This chapter will help you understand how Performance
Schema works, what its limitations are, and how to best go about using it—
along with its companion sys schema—to uncover common information
about what is going on inside MySQL.

Introduction to Performance Schema
Performance Schema provides low-level metrics on operations running
inside MySQL server. To explain how Performance Schema works, there
are two concepts I need to introduce early.

The first is an instrument. An instrument refers to any portion of the
MySQL code that we want to capture information about. For example, if we
want to collect information about metadata locks, we would need to enable
the wait/lock/meta data/sql/mdl instrument.

The second concept is a consumer, which is simply a table that stores the
information about what code was instrumented. If we instrument queries,

the consumer will record information like the total number of executions,
how many times no index was used, the time spent, and so forth. The
consumer is what most people closely associate with Performance Schema.

The general function of Performance Schema is shown in Figure 3-1.

Figure 3-1. The flow of queries running on a database, showing how performance_schema
collects and aggregates the data and then presents it to the DBA

When application users connect to MySQL and execute an instrumented
instruction, performance_schema encapsulates each examined call
into two macros, then records the results in the corresponding consumer
table. The takeaway here is that enabling instruments calls additional code,
which in turn means instruments consume CPU.

Instrument Elements
In performance_schema, the setup_instruments table contains a
list of all supported instruments. All instruments’ names consist of parts
separated by a slash. I’ll use the following examples to help you understand
how these are named:

statement/sql/select

wait/synch/mutex/innodb/autoinc_mutex

The leftmost part of the instrument name indicates the type of the
instrument. Thus, statement indicates that the instrument is a statement,
wait indicates it is a wait, and so on.

The rest of the elements in the name field, from left to right, indicate the
subsystem from general to specific. In the preceding example, select is a
part of the sql subsystem, which is of type statement. Or
autoinc_mutex belongs to innodb, which is part of the more generic
instrument class mutex, which, in turn, is part of the more generic
instrument sync of instrument type wait.

Most of the instrument names are self-descriptive. As in the examples,
statement/sql/select is a SELECT query, and
wait/synch/mutex/innodb/autoinc_mutex is a mutex that
InnoDB sets on the auto-increment column. There is also a
DOCUMENTATION column in the setup_instruments table that may
contain more details:

mysql> SELECT * FROM performance_schema.setup_instruments
 -> WHERE DOCUMENTATION IS NOT NULL LIMIT 5, 5\G
*************************** 1. row ***************************
 NAME: statement/sql/error
 ENABLED: YES
 TIMED: YES
 PROPERTIES:
 VOLATILITY: 0
 DOCUMENTATION: Invalid SQL queries (syntax error).
*************************** 2. row ***************************
 NAME: statement/abstract/Query
 ENABLED: YES
 TIMED: YES
 PROPERTIES: mutable
 VOLATILITY: 0
 DOCUMENTATION: SQL query just received from the network. At this
point, the
 real statement type is unknown, the type will be refined after
SQL parsing.
*************************** 3. row ***************************
 NAME: statement/abstract/new_packet
 ENABLED: YES
 TIMED: YES

 PROPERTIES: mutable
 VOLATILITY: 0
 DOCUMENTATION: New packet just received from the network. At
this point,
the real command type is unknown, the type will be refined after
reading
the packet header.
*************************** 4. row ***************************
 NAME: statement/abstract/relay_log
 ENABLED: YES
 TIMED: YES
 PROPERTIES: mutable
 VOLATILITY: 0
 DOCUMENTATION: New event just read from the relay log. At this
point, the
real statement type is unknown, the type will be refined after
parsing the event.
*************************** 5. row ***************************
 NAME: memory/performance_schema/mutex_instances
 ENABLED: YES
 TIMED: NULL
 PROPERTIES: global_statistics
 VOLATILITY: 1
 DOCUMENTATION: Memory used for table
performance_schema.mutex_instances
5 rows in set (0,00 sec)

Unfortunately, the DOCUMENTATION column may be NULL for many
instruments, so you need to use the instrument name, your intuition, and
knowledge of the MySQL source code to understand what the particular
instrument examines.

Consumer Organization
As I mentioned before, a consumer is the destination where an instrument
sends its information. Performance Schema stores instrument results in
many tables; in fact, MySQL Community 8.0.25 contains 110 tables in
performance_schema. To understand what they are intended for, it is
easier to put them into groups.

Current and historical data

Events are put into tables whose names end as follows:

*_current

Events that are occurring on the server at present

*_history

Last 10 completed events per thread

*_history_long

Last 10,000 completed events per thread, globally

The sizes of the *_history and *_history_long tables are
configurable.

Current and historical data are available for the following:

events_waits

Low-level server waits, such as acquiring mutexes

events_statements

SQL statements

events_stages

Profile information, such as creating temporary tables or sending data

events_transactions

Transactions

Summary tables and digests
A summary table holds aggregated information about whatever the table
suggests. For example, the
memory_summary_by_thread_by_event_name table holds

aggregated memory usage per MySQL thread for user connections or any
background thread.

Digests are a way to aggregate queries by removing the variations in them.
Take the following query examples:

SELECT user,birthdate FROM users WHERE user_id=19;
SELECT user,birthdate FROM users WHERE user_id=13;
SELECT user,birthdate FROM users WHERE user_id=27;

The digest for this query would be:

SELECT user,birthdate FROM users WHERE user_id=?

This allows Performance Schema to keep track of metrics like latency for
the digest without needing to retain each variation of the query separately.

Instances
Instances refer to object instances, available for the MySQL installation.
For example, the file_instances table contains filenames and the
number of threads that access these files.

Setup
Setup tables are used for runtime setup of performance_schema.

Other tables
There are other tables whose names do not follow a strict pattern. For
example, the metadata_locks table holds data about metadata locks. I
will introduce a few of them later in the chapter when discussing issues that
performance_schema can help solve.

Resource Consumption

The data collected by Performance Schema is kept in memory. You can
limit the amount of memory it uses by setting the maximum size of the
consumers. Some tables in performance_schema support autoscaling.
This means that they allocate a minimal amount of memory at startup and
adjust their size as needed. However, this memory is never freed once
allocated, even if you disabled specific instrumentation and truncated the
table.

As I mentioned earlier, every instrumented call adds two more macro calls
to store data in perform ance_ schema. This means that the more you
instrument, the higher the CPU usage will be. The actual impact on CPU
utilization depends on the specific instrument. For example, a statement-
related instrument could be called only once during the query while a wait
instrument could be called much more often. To scan an InnoDB table with
one million rows, for instance, the engine will need to set and release one
million row locks. If you instrument locks, CPU usage may increase
significantly. However, the same query will require a single call to figure
out if it is a statement/sql/select. Therefore, you would not notice
any increase in CPU load if you enable statement instrumentation. The
same is true for memory or metadata lock instrumentation.

Limitations
Before discussing how to set up and use performance_schema, it is
important to understand its limitations:

It must be supported by a MySQL component.

For example, let’s say you are using memory instrumentation to
calculate which MySQL component or thread uses most of the memory.
You discover that the component that uses the most memory is a storage
engine, which does not support memory instrumentation. In this case,
you would not be able to find where the memory has gone.

It collects data only after the specific instrument and consumer are enabled.

For example, if you started a server with all instrumentation disabled
then decided to instrument memory usage, you would not be able to
know the exact amount allocated by a global buffer such as an InnoDB
buffer pool because it was already allocated before you enabled memory
instrumentation.

It is difficult to free memory.

You can limit the size of consumers at startup or leave them autosized.
In the latter case, they do not allocate memory at the startup but only
when enabled data is collected. However, even if you disable specific
instruments or consumers later, memory would not be freed unless you
restart the server.

In the rest of the chapter, I will assume you are aware of these limitations,
so I will not specifically focus on them.

sys Schema
Since version 5.7, standard MySQL distribution includes a companion
schema for performance_schema data called sys schema. This
schema consists only of views and stored routines over
performance_schema. While it is designed to make your experience
with performance_schema smoother, it does not store any data by
itself.

NOTE
The sys schema is very convenient, but you need to remember that it only accesses
data stored in the performance_schema tables. If you need data not available in the
sys schema, check if it exists in the underlying table in performance_schema.

Understanding Threads
MySQL server is multithreaded software. Each of its components uses
threads. It could be a background thread created, for example, by a main
thread or a storage engine, or a foreground thread created for a user
connection. Each of the threads has at least two unique identifiers: an
operating system thread ID that is visible, for example, in the output of the
Linux `ps -eLf` command, and an internal MySQL thread ID. This
internal MySQL thread ID is called THREAD_ID in most of the
performance_schema tables. Additionally, each foreground thread has
an assigned PROCESSLIST_ID: connection identifier, visible in the SHOW
PROCESSLIST command output or in the “Your MySQL
connection id is” string when you connect with the MySQL
command-line client.

WARNING
THREAD_ID is not equal to PROCESSLIST_ID!

The threads table in performance_schema contains all the threads
existing in the server:

mysql> SELECT NAME, THREAD_ID, PROCESSLIST_ID, THREAD_OS_ID
 -> FROM performance_schema.threads;
+------------------------+-----------+----------------+----------
----+
| NAME | THREAD_ID | PROCESSLIST_ID |
THREAD_OS_ID |
+------------------------+-----------+----------------+----------
----+
| thread/sql/main | 1 | NULL |
797580 |
| thread/innodb/io_ib... | 3 | NULL |
797583 |
| thread/innodb/io_lo... | 4 | NULL |
797584 |
...

| thread/sql/slave_io | 42 | 5 |
797618 |
| thread/sql/slave_sql | 43 | 6 |
797619 |
| thread/sql/event_sc... | 44 | 7 |
797620 |
| thread/sql/signal_h... | 45 | NULL |
797621 |
| thread/mysqlx/accep... | 46 | NULL |
797623 |
| thread/sql/one_conn... | 27823 | 27784 |
797695 |
| thread/sql/compress... | 48 | 9 |
797624 |
+------------------------+-----------+----------------+----------
----+
44 rows in set (0.00 sec)

Besides thread number information, the threads table contains the same
data as the SHOW PROCESSLIST output and a few additional columns,
such as RESOURCE_GROUP or PARENT_THREAD_ID.

WARNING
Performance Schema uses THREAD_ID everywhere while PROCESSLIST_ID is
available only in the threads table. If you need to get PROCESSLIST_ID—for
example, to kill a connection holding the lock—you need to query the threads table
to obtain its value.

The threads table could be joined to the many other tables to provide
additional information about the running query (e.g., query data, locks,
mutexes, or table instances open).

In the rest of the chapter, I expect you to be familiar with this table and the
meaning of THREAD_ID.

Configuration

A few portions of Performance Schema can only be changed at server
startup: enabling or disabling of Performance Schema itself and variables
relating to memory usage and limits for data collected. The Performance
Schema instruments and consumers can be enabled or disabled
dynamically.

TIP
You can start Performance Schema with all consumers and instruments disabled and
enable only those that are needed to resolve specific issues right before you expect the
issue to happen. This way, you will not spend any resources on Performance Schema
where you do not need to or run the risk of starving your system because of
overinstrumentation.

Enabling and Disabling Performance Schema
To enable or disable Performance Schema, set the variable
performance_schema to ON or OFF correspondingly. This is a read-
only variable that can be changed only in the configuration file or via a
command-line parameter when MySQL server starts.

Enabling and Disabling Instruments
Instruments can be either enabled or disabled. To see the state of an
instrument, you can query the setup_instruments table:

mysql> SELECT * FROM performance_schema.setup_instruments
 -> WHERE NAME='statement/sql/select'\G
*************************** 1. row ***************************
 NAME: statement/sql/select
 ENABLED: NO
 TIMED: YES
 PROPERTIES:
 VOLATILITY: 0
 DOCUMENTATION: NULL
1 row in set (0.01 sec)

As we see, ENABLED is NO; this tells us that we are not currently
instrumenting SELECT queries.

There are three options for enabling or disabling performance_schema
instruments:

Use the setup_instruments table.

Call the ps_setup_enable_instrument stored procedure in
the sys schema.

Use the startup parameter performance-schema-
instrument.

UPDATE statement
The first method is to use an UPDATE statement to change the column
value:

mysql> UPDATE performance_schema.setup_instruments
 -> SET ENABLED='YES' WHERE NAME='statement/sql/select';
Query OK, 1 rows affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Since this is standard SQL, you can also use wildcards to enable all SQL
statement instruments:

mysql> UPDATE performance_schema.setup_instruments
 -> SET ENABLED='YES' WHERE NAME LIKE statement/sql/%';
Query OK, 167 rows affected (0.00 sec)
Rows matched: 167 Changed: 167 Warnings: 0

This method does not persist between restarts.

sys stored procedure
The sys schema provides two stored procedures—
ps_setup_enable_instrument and

ps_setup_disable_instrument—that enable and disable
instruments, passed as their parameters. Both routines support wildcards. If
you want to enable or disable all supported instruments, use wildcard '%':

mysql> CALL
sys.ps_setup_enable_instrument('statement/sql/select');
+----------------------+
| summary |
+----------------------+
| Enabled 1 instrument |
+----------------------+
1 row in set (0.01 sec)

This method is effectively the exact same as the previous one, including
that it does not persist between restarts.

Startup options
As mentioned before, both methods allow you to change the
performance_schema configuration online but do not store that change
between server restarts. If you want to save options for particular
instruments between restarts, use the configuration parameter
performance-schema-instrument.

This variable supports the performance-schema-instrument=
'instrument_ name= value' syntax, where instrument_name is
the name of the instrument and value is either ON, TRUE, or 1 for enabled
instruments; OFF, FALSE, or 0 for disabled; and COUNTED for those that
are counted instead of TIMED. You can specify this option several times to
enable or disable different instruments. The option also supports wildcards:

performance-schema-instrument='statement/sql/select=ON'

WARNING
If multiple options are specified, the longer instrument string has precedence over the
shorter regardless of the order.

Enabling and Disabling Consumers
Like instruments, consumers can be enabled or disabled by:

Updating the setup_consumers table in Performance Schema

Using the stored procedures ps_setup_enable_consumer
and ps_setup_ dis able_consumer in sys schema

Setting the performance-schema-consumer configuration
parameter

There are 15 possible consumers. Some of them have rather self-
explanatory names, but there are a few consumers whose names need more
explanation, listed in Table 3-1.

T
a
b
l
e
3
-
1
.
C
o
n
s
u
m
e
r
s
a
n
d
t
h
e
i
r
p
u
r
p
o
s

e
s

Consumer Description

events_stages_[curr
ent|history|history
_long]

Profiling details, such as "Creating tmp table“, "statist
ics", or "buffer pool load"

events_statements_
[current|history|hi
story_long]

Statements statistics

events_transactions
_[current|history|h
istory_long]

Transactions

events_waits_[curre
nt|history|history_
long]

Waits

global_instrumentat
ion

Enables or disables global instrumentation. If disabled, no individual
parameters are checked and no global or per-thread data is
maintained. No individual event is collected.

thread_instrumentat
ion

Per-thread instrumentation. Only checked if global instrumentation
is enabled. If disabled, no per-thread or individual event data is
collected.

statements_digest Statement digests

The examples given for instruments are repeatable for consumers, using the
methods noted.

Tuning Monitoring for Specific Objects
Performance Schema allows you to enable and disable monitoring for
specific object types, schemas, and names. This is done in the
setup_objects table.

The OBJECT_TYPE column may have one of five values: EVENT,
FUNCTION, PROCEDURE, TABLE, and TRIGGER. Additionally, you can
specify OBJECT_SCHEMA and OBJECT_NAME. Wildcards are supported.

For example, to disable performance_schema for triggers in the test
database, use the following statement:

mysql> INSERT INTO performance_schema.setup_objects
 -> (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME, ENABLED)
 -> VALUES ('TRIGGER', 'test', '%', 'NO');

If you want to make an exception for a trigger called my_trigger, add it
with the statement:

mysql> INSERT INTO performance_schema.setup_objects
 -> (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME, ENABLED)
 -> VALUES ('TRIGGER', 'test', 'my_trigger', 'YES');

When performance_schema decides if a specific object needs to be
instrumented, it first searches for the more specific rule, then falls back to
the less specific. For example, if a user runs a query on a table that fires
test.my_trigger, it will examine the statements fired by the trigger.
But if a user runs a query on a table that fires a trigger called
test.some_other_trigger, the trigger will not be examined.

There is no configuration file option for the objects. If you need to persist
changes in this table during restarts, you will need to write these INSERT
statements in a SQL file and use the init_file option to load the SQL
file on startup.

Tuning Threads Monitoring
The setup_threads table contains a list of background threads that
could be monitored. The ENABLED column specifies if the instrumentation
for the specific thread is enabled. The HISTORY column specifies if the

instrumented events for the specific thread should also be stored in the
_history and _history_long tables.

For example, to disable history logging for the event scheduler
(thread/sql/event_scheduler), run:

mysql> UPDATE performance_schema.setup_threads SET HISTORY='NO'
 -> WHERE NAME='thread/sql/event_scheduler';

The setup_threads table does not store settings for the user threads.
For this purpose, the setup_actors table exists, which contains the
columns described in Table 3-2.

T
a
b
l
e
3
-
2
.
C
o
l
u
m
n
s
c
o
n
t
a
i
n
e
d

i
n

t
a
b
l

e
s

e

t

u

p

_

a

c

t

o

r

s

Column name Description

HOST Host, such as localhost, %, my.domain.com, or 199.27.145.65

USER Username, such as sveta or %

ROLE Not used

ENABLED If the thread is enabled

HISTORY If storing data in the _history and _history_long tables is enabled

To specify rules for specific accounts, use a command like this:

mysql> INSERT INTO performance_schema.setup_actors
 -> (HOST, USER, ENABLED, HISTORY)
 -> VALUES ('localhost', 'sveta', 'YES', 'NO'),
 -> ('example.com', 'sveta', 'YES', 'YES'),
 -> ('localhost', '%', 'NO', 'NO');

This statement enables instrumentation for sveta@localhost and
sveta@example.com, disables history for sveta@localhost, and
disables both instrumentation and history for all other users connected from
the localhost.

Like the object monitoring, there is no configuration file option for the
threads and actors. If you need to persist changes in this table during
restarts, you will need to write these INSERT statements in a SQL file and
use the init_file option to load the SQL file on startup.

Adjusting Memory Size for Performance Schema
Performance Schema stores data in tables that use the
PERFORMANCE_SCHEMA engine. This engine stores data in memory.
Some of the performance_schema tables are auto-sized by default;
others have a fixed number of rows. You can adjust these options by
changing startup variables. The names of the variables follow the pattern
perform
ance_schema_object_[size|instances|classes|length|
handles], where the object is either a consumer, a setup table, or an
instrumented instance of the specific event. For example, the configuration
variable perform ance_ schema_ events_ stages_history_size
defines the number of stages per thread that the perform ance_
schema_events_stages_history table will store. The variable
perform ance_ schema_max_memory_classes defines the
maximum number of memory instruments that could be used.

Defaults
Default values for different parts of MySQL change from version to
version; therefore, it is better to consult the user reference manual prior to
relying on values described here. However, for Performance Schema, they
affect overall performance of the server, so I want to cover the important
ones.

Since version 5.7, Performance Schema is enabled by default with most of
the instruments disabled. Only global, thread, statements, and transaction
instrumentation is enabled. Since version 8.0, metadata lock and memory
instrumentation are additionally enabled by default.

The mysql, information_schema, and performance_schema
databases are not instrumented. All other objects, threads, and actors are
instrumented.

Most of the instances, handles, and setup tables are autosized. For the
_history tables, the last 10 events per thread are stored. For the
_history_long tables, the latest 10,000 events per thread are stored.
The maximum stored SQL text length is 1,024 bytes. The maximum SQL
digest length is also 1,024 bytes. Everything that is larger is right-trimmed.

Using Performance Schema
Now that I’ve covered how Performance Schema is configured, I want to
provide examples to help you solve common troubleshooting cases.

Examining SQL Statements
As I mentioned in “Instrument Elements”, Performance Schema supports a
rich set of instruments to examine performance of SQL statements. You will
find tools for the standard prepared statements and stored routines. With
performance_schema you can easily find which query causes
performance issues and for what reason.

To enable statements instrumentation, you need to enable instruments of
type statement, as described in Table 3-3.

T
a
b
l
e
3
-
3
.
S

t

a

t

e

m

e

n

t
i
n
s
t
r
u
m
e
n
t
s
a
n
d
t

h
e
i
r
d
e
s
c
r
i
p
t
i
o
n
s

Instrument class Description

statement/sql SQL statements, such as SELECT or CREATE TABLE

statement/sp Stored procedures control

statement/sch
eduler

Event scheduler

statement/com Commands, such as quit, KILL, DROP DATABASE, or Binlog Dump.
Some are not available for users and are called by the mysqld process itself.

statement/abs
tract

Class of four commands: clone, Query, new_packet, and relay_log

Regular SQL statements
Performance Schema stores statement metrics in the
events_statements_current,

events_statements_history, and
events_statements_history_long tables. All three tables have
the same structure.

Using performance_schema directly

Here’s an example of an event_statement_ hist ory entry:

 THREAD_ID: 3200
 EVENT_ID: 22
 END_EVENT_ID: 23
 EVENT_NAME: statement/sql/select
 SOURCE: init_net_server_extension.cc:94
 TIMER_START: 878753511280779000
 TIMER_END: 878753544491277000
 TIMER_WAIT: 33210498000
 LOCK_TIME: 657000000
 SQL_TEXT: SELECT film.film_id, film.description FROM sakila.film
INNER JOIN
(SELECT film_id FROM sakila.film ORDER BY title LIMIT 50, 5)
AS lim USING(film_id)
 DIGEST:
2fdac27c4a9434806da3b216b9fa71aca738f70f1e8888a581c4fb00a349224f
 DIGEST_TEXT: SELECT `film` . `film_id` , `film` . `description`
FROM `sakila` .
`film` INNER JOIN (SELECT `film_id` FROM `sakila` . `film` ORDER
BY
`title` LIMIT?, ...) AS `lim` USING (`film_id`)
 CURRENT_SCHEMA: sakila
 OBJECT_TYPE: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 OBJECT_INSTANCE_BEGIN: NULL
 MYSQL_ERRNO: 0
 RETURNED_SQLSTATE: NULL
 MESSAGE_TEXT: NULL
 ERRORS: 0
 WARNINGS: 0
 ROWS_AFFECTED: 0
 ROWS_SENT: 5
 ROWS_EXAMINED: 10
 CREATED_TMP_DISK_TABLES: 0
 CREATED_TMP_TABLES: 1
 SELECT_FULL_JOIN: 0
 SELECT_FULL_RANGE_JOIN: 0

 SELECT_RANGE: 0
 SELECT_RANGE_CHECK: 0
 SELECT_SCAN: 2
 SORT_MERGE_PASSES: 0
 SORT_RANGE: 0
 SORT_ROWS: 0
 SORT_SCAN: 0
 NO_INDEX_USED: 1
 NO_GOOD_INDEX_USED: 0
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 NESTING_EVENT_LEVEL: 0
 STATEMENT_ID: 25

These columns are explained in the official documentation, so I won’t cover
each and every one of them. Table 3-4 lists the columns that could be used
as indicators for identifying queries that require optimization. Not all such
columns are equal. For example, CREATED_TMP_DISK_TABLES in most
cases is a sign of a badly optimized query, while four sort-related columns
may just indicate that query results require sorting. Column importance
indicates how severe the indicator is.

https://oreil.ly/FROLv

T
a
b
l
e
3
-
4
.
C
o
l
u
m
n
s
i
n

e

v

e

n

t

_

s

t

a

t

e

m

e

n

t

_

h

i

s

t

o

r

y
t
h
a
t
c
a
n

b
e
u
s
e
d

a
s
i
n
d
i
c
a
t
o
r

s
f
o
r
o
p
t
i
m
i
z
a
t
i
o
n

Column Description Importance

CREATED_TMP_D
ISK_TABLES

The query created this number of disk-based temporary
tables. You have two options to resolve this issue:
optimize the query or increase maximum size for in-
memory temporary tables.

High

CREATED_TMP_T
ABLES

The query created this number of memory-based
temporary tables. Use of in-memory temporary tables is
not bad per se. However, if the underlying table grows,
they may be converted into disk-based tables. It is good
to be prepared for such situations in advance.

Medium

SELECT_FULL_J
OIN

The JOIN performed a full table scan because there is
no good index to resolve the query otherwise. You need
to reconsider your indexes unless the table is very small.

High

SELECT_FULL_R
ANGE_JOIN

If the JOIN used a range search of the referenced table. Medium

SELECT_RANGE If the JOIN used a range search to resolve rows in the
first table. This is usually not a big issue.

Low

SELECT_RANGE_
CHECK

If the JOIN is without indexes, which checks for keys
after each row. This is a very bad symptom, and you
need to reconsider your table indexes if this value is
greater than zero.

High

SELECT_SCAN If the JOIN did a full scan of the first table. This is an
issue if the table is large.

Medium

SORT_MERGE_PA
SSES

The number of merge passes that the sort has to perform.
If the value is greater than zero and the query
performance is slow, you may need to increase sort_b
uffer_size.

Low

SORT_RANGE If the sort was done using ranges. Low

SORT_ROWS The number of sorted rows. Compare with the value of
the returned rows. If the number of sorted rows is higher,
you may need to optimize your query.

Medium (see
Description)

SORT_SCAN If the sort was done by scanning a table. This is a very
bad sign unless you purposely select all rows from the
table without using an index.

High

NO_INDEX_USED No index was used to resolve the query. High, unless tables
are small

NO_GOOD_INDEX
_USED

Index used to resolve the query is not the best. You need
to reconsider your indexes if this value is greater than
zero.

High

To find out which statements require optimization, you can choose any of
said columns and compare it with zero. For example, to find all the queries
that do not use a good index, run the following:

SELECT THREAD_ID, SQL_TEXT, ROWS_SENT, ROWS_EXAMINED,
CREATED_TMP_TABLES,
NO_INDEX_USED, NO_GOOD_INDEX_USED
FROM performance_schema.events_statements_history_long
WHERE NO_INDEX_USED > 0 OR NO_GOOD_INDEX_USED > 0;

To find all the queries that created temporary tables, run:

SELECT THREAD_ID, SQL_TEXT, ROWS_SENT, ROWS_EXAMINED,

CREATED_TMP_TABLES,
CREATED_TMP_DISK_TABLES
FROM performance_schema.events_statements_history_long
WHERE CREATED_TMP_TABLES > 0 OR CREATED_TMP_DISK_TABLES > 0;

You can use values in these columns to show potential problems
individually. For example, to find all queries that returned errors, use the
condition WHERE ERRORS > 0; to find all queries executed for more
than five seconds, use the condition WHERE TIMER_WAIT >
5000000000; and so on.

Alternatively, you can create a query that will find all the statements with
problems using long conditions, as follows:

WHERE ROWS_EXAMINED > ROWS_SENT
OR ROWS_EXAMINED > ROWS_AFFECTED
OR ERRORS > 0
OR CREATED_TMP_DISK_TABLES > 0
OR CREATED_TMP_TABLES > 0
OR SELECT_FULL_JOIN > 0
OR SELECT_FULL_RANGE_JOIN > 0
OR SELECT_RANGE > 0
OR SELECT_RANGE_CHECK > 0
OR SELECT_SCAN > 0
OR SORT_MERGE_PASSES > 0
OR SORT_RANGE > 0
OR SORT_ROWS > 0
OR SORT_SCAN > 0
OR NO_INDEX_USED > 0
OR NO_GOOD_INDEX_USED > 0

Using sys schema

The sys schema provides views that could be used to find problematic
statements. For example,
statements_with_errors_or_warnings lists all statements with
errors and warnings, and statements_with_full_table_scans
lists all statements that required a full table scan. The sys schema uses
digest text instead of query text, so you will get the digest query text instead

of either SQL or digest text like you do when accessing the raw
performance_schema tables:

mysql> SELECT query, total_latency, no_index_used_count,
rows_sent,
 -> rows_examined
 -> FROM sys.statements_with_full_table_scans
 -> WHERE db='employees' AND
 -> query NOT LIKE '%performance_schema%'\G
********************** 1. row **********************
 query: SELECT COUNT ('emp_no') FROM ... 'emp_no')
 WHERE 'title' = ?
 total_latency: 805.37 ms
 no_index_used_count: 1
 rows_sent: 1
 rows_examined: 397774
 …

Other views that could be used to find statements that require optimizations
are described in Table 3-5.

T
a
b
l
e

3
-
5
.
V
i
e
w
s
t
h
a
t
c
a
n

b
e

u
s
e
d

t
o

f
i
n
d

s
t
a
t
e
m
e
n
t
s
r
e
q
u
i
r
i
n
g

o
p
t
i
m
i
z
a
t
i

o
n

View Description

statement_anal
ysis

A normalized statement view with aggregated statistics, ordered by the total
execution time per the normalized statement. Similar to the events_sta
tements_summary_by_digest table but less detailed.

statements_wit
h_errors_or_wa
rnings

All normalized statements that raised errors or warnings.

statements_wit
h_full_table_s
cans.

All normalized statements that have done a full table scan.

statements_wit
h_runtimes_in_
95th_percentile

All normalized statements whose average execution time is in the top 95th
percentile.

statements_wit
h_sorting

All normalized statements that have done sorts. The view includes all kinds
of sorts.

statements_wit
h_temp_tables

All normalized statements that used temporary tables.

Prepared statements
The prepared_statements_instances table contains all prepared
statements existing in the server. It has the same statistics as in the
events_statements_[current|history|history_long]
tables and, additionally, information about the thread that owns the prepared
statement and how many times the statement was executed. Unlike in the
events_statements_[current|history|history_long]
tables, statistics data is summed, and the table contains the total amount of
all statement executions.

WARNING
The COUNT_EXECUTE column contains the number of times the statement was
executed, so you can get average statistics per statement by dividing the total value by
the number in this column. Note, however, that any average statistics could be
inaccurate. For example, if you executed a statement 10 times and the value in the
column SUM_SELECT_FULL_JOIN is 10, the average would be one full join per
statement. If you then add an index and execute the statement one more time,
SUM_SELECT_FULL_JOIN will remain 10, so the average will be 10/11 = 0.9. This
does not show that the issue is now resolved.

To enable prepared statements instrumentation, you need to enable the
instruments described in Table 3-6.

T
a
b
l
e

3
-
6
.
I
n
s
t
r
u
m
e
n
t
s

t
o

e
n
a
b
l
e

f

o
r

p
r
e
p
a
r
e
d

s
t
a
t
e
m
e
n
t
s

i
n
s
t
r
u
m
e
n
t
a
t
i

o
n

Instrument class Description

statement/sql/prepare
_sql

PREPARE statement in the text protocol (when run via MySQL
CLI)

statement/sql/execute
_sql

EXECUTE statement in the text protocol (when run via MySQL
CLI)

statement/com/Prepare PREPARE statement in the binary protocol (if accessed via
MySQL C API)

statement/com/Execute EXECUTE statement in the binary protocol (if accessed via
MySQL C API)

Once enabled, you can prepare a statement and execute it a few times:

mysql> PREPARE stmt FROM
 -> 'SELECT COUNT(*) FROM employees WHERE hire_date > ?';
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql1> SET @hd='1995-01-01';
Query OK, 0 rows affected (0.00 sec)

mysql1> EXECUTE stmt USING @hd;
+----------+
| count(*) |
+----------+
| 34004 |
+----------+
1 row in set (1.44 sec)

-- Execute a few more times with different values

Then you can check the diagnostics:

mysql2> SELECT statement_name, sql_text, owner_thread_id,
 -> count_reprepare, count_execute, sum_timer_execute
 -> FROM prepared_statements_instances\G
*************************** 1. row ***************************
 statement_name: stmt
 sql_text: select count(*) from employees where hire_date > ?
 owner_thread_id: 22
 count_reprepare: 0
 count_execute: 3
 sum_timer_execute: 4156561368000
1 row in set (0.00 sec)

Note that you will see the statements in the
prepared_statements_instances table only when they exist in
the server. Once they are dropped, you cannot access their statistics
anymore:

mysql1> DROP PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

mysql2> SELECT * FROM prepared_statements_instances\G
Empty set (0.00 sec)

Stored routines
With performance_schema you can retrieve information about how
your stored routines were executed: for example, which of the branches of
the IF … ELSE flow control statement has been chosen or if an error
handler was called.

To enable stored routines instrumentation, you need to enable instruments
that follow the pattern 'statement/sp/%'. The instrument
statement/sp/stmt is responsible for the statements, called inside the
routine, while other instruments are responsible for tracking events, such as
entering or leaving the procedure, loop, or any other control instruction.

To demonstrate how stored routines instrumentation works, use the stored
procedure:

CREATE DEFINER='root'@'localhost' PROCEDURE 'sp_test'(val int)
BEGIN
 DECLARE CONTINUE HANDLER FOR 1364, 1048, 1366
 BEGIN
 INSERT IGNORE INTO t1 VALUES('Some string');
 GET STACKED DIAGNOSTICS CONDITION 1 @stacked_state =
RETURNED_SQLSTATE;
 GET STACKED DIAGNOSTICS CONDITION 1 @stacked_msg =
MESSAGE_TEXT;
 END;
 INSERT INTO t1 VALUES(val);
END

Then call it with different values:

mysql> CALL sp_test(1);
Query OK, 1 row affected (0.07 sec)

mysql> SELECT THREAD_ID, EVENT_NAME, SQL_TEXT
 -> FROM EVENTS_STATEMENTS_HISTORY
 -> WHERE EVENT_NAME LIKE 'statement/sp%';
+-----------+-------------------------+--------------------------
--+
| THREAD_ID | EVENT_NAME | SQL_TEXT
|
+-----------+-------------------------+--------------------------
--+
| 24 | statement/sp/hpush_jump | NULL
|
| 24 | statement/sp/stmt | INSERT INTO t1
VALUES(val) |
| 24 | statement/sp/hpop | NULL
|
+-----------+-------------------------+--------------------------
--+
3 rows in set (0.00 sec)

In this case, the error handler was not called, and the procedure inserted the
argument value (1) into the table:

mysql> CALL sp_test(NULL);
Query OK, 1 row affected (0.07 sec)

mysql> SELECT THREAD_ID, EVENT_NAME, SQL_TEXT
 -> FROM EVENTS_STATEMENTS_HISTORY
 -> WHERE EVENT_NAME LIKE 'statement/sp%';
+-----------+-------------------------+--------------------------
----+
| THREAD_ID | EVENT_NAME | SQL_TEXT
|
+-----------+-------------------------+--------------------------
----+
| 24 | statement/sp/hpush_jump | NULL
|
| 24 | statement/sp/stmt | INSERT INTO t1
VALUES(val) |
| 24 | statement/sp/stmt | INSERT IGNORE INTO t1
 VALUES(‘Some
str... |
| 24 | statement/sp/stmt | GET STACKED DIAGNOSTICS
 CONDITION 1
@s... |
| 24 | statement/sp/stmt | GET STACKED DIAGNOSTICS
 CONDITION 1
@s... |
| 24 | statement/sp/hreturn | NULL
|
| 24 | statement/sp/hpop | NULL
|
+-----------+-------------------------+--------------------------
----+
7 rows in set (0.00 sec)

In the second call, however, the content of the
events_statements_history table is different: it contains calls
from the error handler and the SQL statement that replaced the erroneous
one.

While the return value of the procedure itself did not change, we clearly see
that it has been executed differently. Understanding such differences in the
routine execution flow can help to understand why the same routine can
finish almost immediately if called once and can take much longer when
called another time.

Statements profiling

The events_stages_[current|history|history_long] table
contains profiling information, such as how much time MySQL spent while
creating a temporary table, updating, or waiting for a lock. To enable
profiling, you need to enable said consumers and also instruments that
follow the pattern 'stage/%'. Once enabled, you can find answers to
such questions as “Which stage of the query execution took a critically long
time?” The following example searches for stages that took more than one
second:

mysql> SELECT eshl.event_name, sql_text,
 -> eshl.timer_wait/10000000000 w_s
 -> FROM performance_schema.events_stages_history_long eshl
 -> JOIN performance_schema.events_statements_history_long
esthl
 -> ON (eshl.nesting_event_id = esthl.event_id)
 -> WHERE eshl.timer_wait > 1*10000000000\G
*************************** 1. row ***************************
 event_name: stage/sql/Sending data
 sql_text: SELECT COUNT(emp_no) FROM employees JOIN salaries
 USING(emp_no) WHERE hire_date=from_date
 w_s: 81.7
1 row in set (0.00 sec)

Another technique for using
events_stages_[current|history|history_long] tables is
to pay attention to those statements that spent more than a certain threshold
in stages known to cause performance issues. Table 3-7 lists these stages.

T
a
b
l
e

3
-
7
.
S
t
a
g
e
s

t
h
a
t
a
r
e

i
n
d
i
c
a
t
o

r
s

o
f
p
e
r
f
o
r
m
a
n
c
e

i
s
s
u
e
s

Stage class(es) Description

stage/sql/%tm
p%

Everything related to the temporary tables.

stage/sql/%lo
ck%

Everything related to locks.

stage/%/Waiti
ng for%

Everything waiting for a resource.

stage/sql/Sen This stage should be compared to the number of ROWS_SENT in the

ding data statements statistics. If ROWS_SENT is small, a statement spending a lot of
time in this stage could mean that it has to create a temporary file or table to
resolve intermediary results. This is often followed by filtering the rows
before sending data to the client. This is usually a symptom of a badly
optimized query.

stage/sql/fre
eing items

stage/sql/cle
aning up

stage/sql/clo
sing tables

stage/sql/end

These are stages that clean resources. Unfortunately, they are not detailed
enough, and each of them includes more than a single task. If you see that
your queries spend a long time in these stages, you most likely hit resource
contention due to high concurrency. You need to check your CPU, I/O, and
memory usage as well as whether your hardware and MySQL options can
handle concurrency that your application creates.

It is very important to note that profiling is available only for the general
server stages. Storage engines do not support profiling with
performance_schema. As a result, stages such as
stage/sql/update mean that the job is inside the storage engine and
may include not only the update itself, but also waits for the engine-specific
locks or other contention issues.

Examining Read Versus Write Performance
Statement instrumentation in Performance Schema could be very useful to
understand if your workload is read or write bound. You may start by
counting types of statements:

mysql> SELECT EVENT_NAME, COUNT(EVENT_NAME)
 -> FROM events_statements_history_long
 -> GROUP BY EVENT_NAME;
+----------------------+-------------------+
| EVENT_NAME | COUNT(EVENT_NAME) |
+----------------------+-------------------+
statement/sql/insert	504
statement/sql/delete	502
statement/sql/select	6987
statement/sql/update	1007
statement/sql/commit	500
statement/sql/begin	500
+----------------------+-------------------+
6 rows in set (0.03 sec)

In this example, the number of SELECT queries is larger than the number
of any other queries. This shows that most of the queries in this setup are
read queries.

If you want to know the latency of your statements, aggregate by the
LOCK_TIME column:

mysql> SELECT EVENT_NAME, COUNT(EVENT_NAME),
 -> SUM(LOCK_TIME/1000000) AS latency_ms
 -> FROM events_statements_history
 -> GROUP BY EVENT_NAME ORDER BY latency_ms DESC;
+----------------------------------+-------------------+---------
---+
| EVENT_NAME | COUNT(EVENT_NAME) |
latency_ms |
+----------------------------------+-------------------+---------
---+
| statement/sql/select | 194 |
7362.0000 |
| statement/sql/update | 33 |
1276.0000 |
| statement/sql/insert | 16 |
599.0000 |
| statement/sql/delete | 16 |
470.0000 |
| statement/sql/show_status | 2 |
176.0000 |
| statement/sql/begin | 4 |

0.0000 |
| statement/sql/commit | 2 |
0.0000 |
| statement/com/Ping | 2 |
0.0000 |
| statement/sql/show_engine_status | 1 |
0.0000 |
+----------------------------------+-------------------+---------
---+
9 rows in set (0.01 sec)

You may also want to know the amount of bytes and rows read and written.
For this purpose, use the global status variables Handler_*:

mysql> WITH rows_read AS (SELECT SUM(VARIABLE_VALUE) AS rows_read
 -> FROM global_status
 -> WHERE VARIABLE_NAME IN ('Handler_read_first',
'Handler_read_key',
 -> 'Handler_read_next', 'Handler_read_last',
'Handler_read_prev',
 -> 'Handler_read_rnd', 'Handler_read_rnd_next')),
 -> rows_written AS (SELECT SUM(VARIABLE_VALUE) AS
rows_written
 -> FROM global_status
 -> WHERE VARIABLE_NAME IN ('Handler_write'))
 -> SELECT * FROM rows_read, rows_written\G
*************************** 1. row ***************************
rows_read: 169358114082
rows_written: 33038251685
1 row in set (0.00 sec)

Examining Metadata Locks
Metadata locks are used to protect database object definitions from
modification. Shared metadata locks are set for any SQL statement:
SELECT, UPDATE, and so on. They do not affect other statements that
require shared metadata locks. However, they prevent those statements that
change the database object definition, such as ALTER TABLE or CREATE
INDEX, from starting until the lock is freed. While most of the issues
caused by metadata lock conflicts affect tables, the locks themselves are set

for any database object, such as SCHEMA, EVENT, TABLESPACE, and so
on.

Metadata locks are held until the transaction finishes. This makes
troubleshooting them harder if you use multiple statement transactions.
Which statement is waiting for the lock is usually clear: DDL statements
implicitly commit transactions, so they are the only statement in the new
transaction, and you will find them in the process list in the "Waiting
for a metadata lock" status. However, the statement that holds the
lock may vanish from the process list if it is part of the multiple statement
transaction that is still open.

The metadata_locks table in performance_schema holds
information about locks that are currently set by different threads, and it
also holds information about lock requests that are waiting for the lock.
This way, you can easily identify which thread does not allow your DDL
request to start and decide if you want to kill this statement or wait until it
finishes executing.

To enable metadata lock instrumentation, you need to enable the
wait/lock/metadata/sql/mdl instrument.

The following example shows that a thread, visible in the process list with
ID 5, holds the lock that the thread with processlist_id=4 is waiting
for:

mysql> SELECT processlist_id, object_type,
 -> lock_type, lock_status, source
 -> FROM metadata_locks JOIN threads ON
(owner_thread_id=thread_id)
 -> WHERE object_schema='employees' AND object_name='titles'\G
*************************** 1. row ***************************
 processlist_id: 4
 object_type: TABLE
 lock_type: EXCLUSIVE
 lock_status: PENDING -- waits
 source: mdl.cc:3263
*************************** 2. row ***************************
 processlist_id: 5

 object_type: TABLE
 lock_type: SHARED_READ
 lock_status: GRANTED -- holds
 source: sql_parse.cc:5707

Examining Memory Usage
To turn on memory instrumentation in performance_schema, enable
instruments of the class memory. Once enabled, you can find details on
exactly how memory is used by the internal MySQL structures.

Using performance_schema directly
Performance Schema stores memory usage statistics in the digest tables,
whose names start with the memory_summary_ prefix. Memory use
aggregation is described in Table 3-8.

T
a
b
l
e

3
-
8
.
A
g
g
r
e
g
a
t
i
o
n

p
a
r
a
m
e
t
e
r
s

f
o
r

m
e
m
o
r
y

u
s
e

Aggregation parameter Description

global Globally per event name

thread Per thread: includes both background and user threads

account User account

host Host

user Username

For example, to find InnoDB structures that use most of the memory, issue
the following query:

mysql> SELECT EVENT_NAME,
 -> CURRENT_NUMBER_OF_BYTES_USED/1024/1024 AS CURRENT_MB,
 -> HIGH_NUMBER_OF_BYTES_USED/1024/1024 AS HIGH_MB
 -> FROM
performance_schema.memory_summary_global_by_event_name

 -> WHERE EVENT_NAME LIKE 'memory/innodb/%'
 -> ORDER BY CURRENT_NUMBER_OF_BYTES_USED DESC LIMIT 10;
+----------------------------+--------------+--------------+
| EVENT_NAME | CURRENT_MB | HIGH_MB |
+----------------------------+--------------+--------------+
memory/innodb/buf_buf_pool	130.68750000	130.68750000
memory/innodb/ut0link_buf	24.00006104	24.00006104
memory/innodb/buf0dblwr	17.07897949	24.96951294
memory/innodb/ut0new	16.07891273	16.07891273
memory/innodb/sync0arr	6.25006866	6.25006866
memory/innodb/lock0lock	4.85086060	4.85086060
memory/innodb/ut0pool	4.00003052	4.00003052
memory/innodb/hash0hash	3.69776917	3.69776917
memory/innodb/os0file	2.60422516	3.61988068
memory/innodb/memory	1.23812866	1.42373657
+----------------------------+--------------+--------------+
10 rows in set (0,00 sec)

Using sys schema
The sys schema has views that allow you to get memory statistics in a
better way. They also support aggregation by host, user, thread, or
global. The view memory_global_total contains a single value,
displaying the total amount of the instrumented memory:

mysql> SELECT * FROM sys.memory_global_total;
+-----------------+
| total_allocated |
+-----------------+
| 441.84 MiB |
+-----------------+
1 row in set (0,09 sec)

Aggregation views convert bytes into kilobytes, megabytes, and gigabytes
as needed. The view memory_by_thread_by_current_bytes has a
user column that may take one of the following values:

NAME@HOST

Regular user account, such as sveta@oreilly.com.

System users, such as sql/main or innodb/*

Data for such “usernames” is taken from the threads table and is

handy when you need to understand what the particular thread is doing.

Rows in the view memory_by_thread_by_current_bytes are
sorted by the currently allocated memory in descending order, so you will
easily find which thread takes most of the memory:

mysql> SELECT thread_id tid, user,
 -> current_allocated ca, total_allocated
 -> FROM sys.memory_by_thread_by_current_bytes LIMIT 9;
+-----+----------------------------+------------+----------------
-+
| tid | user | ca | total_allocated
|
+-----+----------------------------+------------+----------------
-+
| 52 | sveta@localhost | 1.36 MiB | 10.18 MiB
|
| 1 | sql/main | 1.02 MiB | 4.95 MiB
|
| 33 | innodb/clone_gtid_thread | 525.36 KiB | 24.04 MiB
|
| 44 | sql/event_scheduler | 145.72 KiB | 4.23 MiB
|
| 43 | sql/slave_sql | 48.74 KiB | 142.46 KiB
|
| 42 | sql/slave_io | 20.03 KiB | 232.23 KiB
|
| 48 | sql/compress_gtid_table | 13.91 KiB | 17.06 KiB
|
| 25 | innodb/fts_optimize_thread | 1.92 KiB | 2.00 KiB
|
| 34 | innodb/srv_purge_thread | 1.56 KiB | 1.64 KiB
|
+-----+----------------------------+------------+----------------
-+
9 rows in set (0,03 sec)

The preceding example is taken on a laptop; therefore, numbers are not
descriptive of a production server. It is still clear that a local connection
uses most of the memory, followed by the main server process.

The memory instrumentation is handy when you need to find a user thread
that takes the most memory. In the following example, a user connection
allocated 36 GB of RAM, which is quite huge even in modern high-
memory systems:

mysql> SELECT * FROM sys.memory_by_thread_by_current_bytes
 -> ORDER BY current_allocated desc\G
*************************** 1. row ***************************
 thread_id: 152
 user: lj@127.0.0.1
 current_count_used: 325
 current_allocated: 36.00 GiB
 current_avg_alloc: 113.43 MiB
 current_max_alloc: 36.00 GiB
 total_allocated: 37.95 GiB
...

Examining Variables
Performance Schema brings variable instrumentation to a new level. It
provides instrumentation for:

Server variables

Global

Session, for all currently opened sessions

Source, from which all current variable values originate

Status variables

Global

Session, for all currently open sessions

Aggregations by

Host

User

Account

Thread

User variables

WARNING
Prior to version 5.7, server and status variables were instrumented in
information_schema. This instrumentation was limited: it allowed tracking of
only global and current session values. Information about variables and status in other
sessions, as well as information about the user variables, was not accessible. However,
for backward-compatibility reasons, MySQL 5.7 uses information_schema to
track variables. To enable performance_schema support for variables, you need to
set the configuration variable show_compatibility_56 to 0. This requirement, as
well as variable tables in information_schema, no longer exists in version 8.0.

Global variable values are stored in the table global_variables.
Session variables for the current session are stored in the table
session_variables. Both tables have only two columns with self-
explanatory names: VARIABLE_NAME and VARIABLE_VALUE.

The variables_by_thread table has an additional column,
THREAD_ID, indicating the thread to which the variable belongs. This
allows you to find threads that set session variable values to be different
than specified by the default configuration.

In the following example, the thread with THREAD_ID=84 sets the
variable tx_isolation to SERIALIZABLE, which may lead to
situations when transactions acquire more locks than if the default level is
used:

mysql> SELECT * FROM variables_by_thread
 -> WHERE VARIABLE_NAME='tx_isolation';
+-----------+---------------+-----------------+
| THREAD_ID | VARIABLE_NAME | VARIABLE_VALUE |
+-----------+---------------+-----------------+
| 71 | tx_isolation | REPEATABLE-READ |

| 83 | tx_isolation | REPEATABLE-READ |
| 84 | tx_isolation | SERIALIZABLE |
+-----------+---------------+-----------------+
3 rows in set, 3 warnings (0.00 sec)

The following example finds all threads with session variable values that
are different from the current active session:

mysql> SELECT vt2.THREAD_ID AS TID, vt2.VARIABLE_NAME,
 -> vt1.VARIABLE_VALUE AS MY_VALUE,
 -> vt2.VARIABLE_VALUE AS OTHER_VALUE
 -> FROM performance_schema.variables_by_thread vt1
 -> JOIN performance_schema.threads t USING(THREAD_ID)
 -> JOIN performance_schema.variables_by_thread vt2
 -> USING(VARIABLE_NAME)
 -> WHERE vt1.VARIABLE_VALUE != vt2.VARIABLE_VALUE
 -> AND t.PROCESSLIST_ID=@@pseudo_thread_id;
+-----+--------------------+-------------------+-----------------
---+
| TID | VARIABLE_NAME | MY_VALUE | OTHER_VALUE
|
+-----+--------------------+-------------------+-----------------
---+
| 42 | max_allowed_packet | 67108864 | 1073741824
|
| 42 | pseudo_thread_id | 22715 | 5
|
| 42 | timestamp | 1626650242.678049 |
1626567255.695062 |
| 43 | gtid_next | AUTOMATIC |
NOT_YET_DETERMINED |
| 43 | pseudo_thread_id | 22715 | 6
|
| 43 | timestamp | 1626650242.678049 |
1626567255.707031 |
+-----+--------------------+-------------------+-----------------
---+
6 rows in set (0,01 sec)

Global and current session status values are stored in the tables
global_status and session_status, respectively. They also have
only two columns: VARIABLE_NAME and VARIABLE_VALUE.

Status variables can be aggregated by user account, host, user, and thread.
In my opinion, the most interesting aggregation is by thread because it
allows you to identify quickly which connection is creating most of the
resource pressure on the server. For example, the following snippet clearly
shows that the connection with THREAD_ID=83 is doing most of the
writes:

mysql> SELECT * FROM status_by_thread
 -> WHERE VARIABLE_NAME='Handler_write';
+-----------+---------------+----------------+
| THREAD_ID | VARIABLE_NAME | VARIABLE_VALUE |
+-----------+---------------+----------------+
| 71 | Handler_write | 94 |
| 83 | Handler_write | 4777777777 | -- Most writes
| 84 | Handler_write | 101 |
+-----------+---------------+----------------+
3 rows in set (0.00 sec)

User-defined variables are created as SET @my_var = 'foo' and are
tracked in the table user_variables_by_thread:

mysql> SELECT * FROM user_variables_by_thread;
+-----------+---------------+----------------+
| THREAD_ID | VARIABLE_NAME | VARIABLE_VALUE |
+-----------+---------------+----------------+
| 71 | baz | boo |
| 84 | foo | bar |
+-----------+---------------+----------------+
2 rows in set (0.00 sec)

This instrumentation is useful when you need to find sources of memory
consumption because each variable takes bytes to hold its values. You may
also use this information to solve tricky issues with persistence connections,
using user-defined variables. And, last but not least, this table is the only
way to find out which variables you defined in your own session.

The table variables_info does not contain any variable values.
Rather, it has information about where server variables originated and other

documentation, such as the variable default minimum and maximum values.
The SET_TIME column contains the timestamp of the latest variable
change. The SET_HOST and SET_USER columns identify the user account
that set the variable. For example, to find all the variables that were
changed dynamically since the server started, run:

mysql> SELECT * FROM performance_schema.variables_info
 -> WHERE VARIABLE_SOURCE = 'DYNAMIC'\G
*************************** 1. row ***************************
 VARIABLE_NAME: foreign_key_checks
 VARIABLE_SOURCE: DYNAMIC
 VARIABLE_PATH:
 MIN_VALUE: 0
 MAX_VALUE: 0
 SET_TIME: 2021-07-18 03:14:15.560745
 SET_USER: NULL
 SET_HOST: NULL
*************************** 2. row ***************************
 VARIABLE_NAME: sort_buffer_size
 VARIABLE_SOURCE: DYNAMIC
 VARIABLE_PATH:
 MIN_VALUE: 32768
 MAX_VALUE: 18446744073709551615
 SET_TIME: 2021-07-19 02:37:11.948190
 SET_USER: sveta
 SET_HOST: localhost
2 rows in set (0,00 sec)

Possible VARIABLE_SOURCE values include:

COMMAND_LINE

Variable set on the command line

COMPILED

Compiled-in default value

PERSISTED

Set from a server-specific mysqld-auto.cnf option file

There are also many options for variables, set in different option files. I will
not discuss them all: they are either self-descriptive or could be easily
checked in the User Reference Manual. The number of details is also
increasing from version to version.

Examining Most Frequent Errors
In addition to the specific error information, performance_schema
provides digest tables, aggregating errors by user, host, account, thread, and
globally by the error number. All aggregation tables have a structure similar
to that used in the events_errors_summary_global_by_error
table:

mysql> USE performance_schema;
mysql> SHOW CREATE TABLE events_errors_summary_global_by_error\G
*************************** 1. row ***************************
 Table: events_errors_summary_global_by_error
Create Table: CREATE TABLE
`events_errors_summary_global_by_error` (
 `ERROR_NUMBER` int DEFAULT NULL,
 `ERROR_NAME` varchar(64) DEFAULT NULL,
 `SQL_STATE` varchar(5) DEFAULT NULL,
 `SUM_ERROR_RAISED` bigint unsigned NOT NULL,
 `SUM_ERROR_HANDLED` bigint unsigned NOT NULL,
 `FIRST_SEEN` timestamp NULL DEFAULT '0000-00-00 00:00:00',
 `LAST_SEEN` timestamp NULL DEFAULT '0000-00-00 00:00:00',
 UNIQUE KEY `ERROR_NUMBER` (`ERROR_NUMBER`)
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci
1 row in set (0,00 sec)

The columns ERROR_NUMBER, ERROR_NAME, and SQL_STATE identify
the error. SUM_ERROR_RAISED is the number of times the error was
raised. SUM_ERROR_HANDLED is the number of times the error was
handled. FIRST_SEEN and LAST_SEEN are timestamps when the error
was first and last seen.

Specific aggregate tables have additional columns. Thus, the table
events_ errors_ summary_ by_thread_by_error has a column

named THREAD_ID, which identifies the thread that raised the error, the
table events_errors_ summary_ by_host_by_error has a column
named HOST, and so on.

For example, to find all accounts that ran statements that caused errors more
than 10 times, run:

mysql> SELECT * FROM
 ->
performance_schema.events_errors_summary_by_account_by_error
 -> WHERE SUM_ERROR_RAISED > 10 AND USER IS NOT NULL
 -> ORDER BY SUM_ERROR_RAISED DESC\G
*************************** 1. row ***************************
 USER: sveta
 HOST: localhost
 ERROR_NUMBER: 3554
 ERROR_NAME: ER_NO_SYSTEM_TABLE_ACCESS
 SQL_STATE: HY000
 SUM_ERROR_RAISED: 60
 SUM_ERROR_HANDLED: 0
 FIRST_SEEN: 2021-07-18 03:14:59
 LAST_SEEN: 2021-07-19 02:50:13
1 row in set (0,01 sec)

Error digest tables can be useful for finding out which user accounts, hosts,
users, or threads send the most erroneous queries and perform an action.
They could also help with errors like ER_DEPRECATED_UTF8_ALIAS,
which may show that some of the frequently used queries were written for
previous MySQL versions and need to be updated.

Examining Performance Schema Itself
You can examine Performance Schema itself using the same instruments
and consumers as you do for your own schemas. Just note that by default, if
performance_schema is set as the default database, queries to it are
not tracked. If you need to examine queries to performance_schema,
you need to update the setup_actors table first.

Once the setup_actors table is updated, all instruments can be used.
For example, to find the 10 consumers in performance_schema that
allocated most of the memory, run:

mysql> SELECT SUBSTRING_INDEX(EVENT_NAME, '/', -1) AS EVENT,
 -> CURRENT_NUMBER_OF_BYTES_USED/1024/1024 AS CURRENT_MB,
 -> HIGH_NUMBER_OF_BYTES_USED/1024/1024 AS HIGH_MB
 -> FROM
performance_schema.memory_summary_global_by_event_name
 -> WHERE EVENT_NAME LIKE 'memory/performance_schema/%'
 -> ORDER BY CURRENT_NUMBER_OF_BYTES_USED DESC LIMIT 10;
+--+-------------+---------
----+
| EVENT | CURRENT_MB | HIGH_MB
|
+--+-------------+---------
----+
| events_statements_summary_by_digest | 39.67285156 |
39.67285156 |
| events_statements_history_long | 13.88549805 |
13.88549805 |
| events_errors_summary_by_thread_by_... | 11.81640625 |
11.81640625 |
| events_statements_summary_by_thread... | 9.79296875 |
9.79296875 |
| events_statements_history_long.dige... | 9.76562500 |
9.76562500 |
| events_statements_summary_by_digest... | 9.76562500 |
9.76562500 |
| events_statements_history_long.sql_... | 9.76562500 |
9.76562500 |
| memory_summary_by_thread_by_event_name | 7.91015625 |
7.91015625 |
| events_errors_summary_by_host_by_error | 5.90820313 |
5.90820313 |
| events_errors_summary_by_account_by... | 5.90820313 |
5.90820313 |
+--+-------------+---------
----+
10 rows in set (0,00 sec)

Or use sys schema:

mysql> SELECT SUBSTRING_INDEX(event_name, '/', -1), current_alloc
 -> FROM sys.memory_global_by_current_bytes
 -> WHERE event_name LIKE 'memory/performance_schema/%' LIMIT
10;
+---+------------
---+
| SUBSTRING_INDEX(event_name, '/', -1) |
current_alloc |
+---+------------
---+
| events_statements_summary_by_digest | 39.67 MiB
|
| events_statements_history_long | 13.89 MiB
|
| events_errors_summary_by_thread_by_error | 11.82 MiB
|
| events_statements_summary_by_thread_by_event_name | 9.79 MiB
|
| events_statements_history_long.digest_text | 9.77 MiB
|
| events_statements_summary_by_digest.digest_text | 9.77 MiB
|
| events_statements_history_long.sql_text | 9.77 MiB
|
| memory_summary_by_thread_by_event_name | 7.91 MiB
|
| events_errors_summary_by_host_by_error | 5.91 MiB
|
| events_errors_summary_by_account_by_error | 5.91 MiB
|
+---+------------
---+
10 rows in set (0,00 sec)

performance_schema also supports the SHOW ENGINE
PERFORMANCE_SCHEMA STATUS statement:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
*************************** 1. row ***************************
 Type: performance_schema
 Name: events_waits_current.size
 Status: 176
*************************** 2. row ***************************
 Type: performance_schema

 Name: events_waits_current.count
 Status: 1536
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
 Status: 176
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
 Status: 2560
…
*************************** 244. row ***************************
 Type: performance_schema
 Name: (pfs_buffer_scalable_container).count
 Status: 17
*************************** 245. row ***************************
 Type: performance_schema
 Name: (pfs_buffer_scalable_container).memory
 Status: 1904
*************************** 246. row ***************************
 Type: performance_schema
 Name: (max_global_server_errors).count
 Status: 4890
*************************** 247. row ***************************
 Type: performance_schema
 Name: (max_session_server_errors).count
 Status: 1512
*************************** 248. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
 Status: 218456400
248 rows in set (0,00 sec)

In its output, you will find such details as how many specific events are
stored in the consumers or the maximum values of the specific metrics. The
last row contains the number of bytes that Performance Schema currently
takes.

Summary
Performance Schema is a feature that has often been criticized. Earlier
versions of MySQL had less than optimal implementations, leading to high
resource consumption. It was common advice to simply turn it off.

It was also considered difficult to understand. Enabling an instrument is just
enabling an additional bit of code in the server that records data and submits
it to the consumers. The consumers are just tables that live in memory, and
you need to use standard SQL to ask the table the right questions to find
what you are looking for. Understanding how Performance Schema
manages its own memory will help you realize that MySQL is not leaking
memory; it’s just keeping consumer data in memory, and it only releases
that memory on restart.

My advice here is simple: you should keep Performance Schema enabled,
dynamically enabling the instruments and consumers that will help you
address whatever concerns you might have—query performance, locking,
disk I/O, errors, and more. You should also leverage the sys schema as a
shortcut to addressing the most common questions. Doing this will give you
an accessible way to measure performance directly from within MySQL.

Chapter 4. Operating System and
Hardware Optimization

Your MySQL server can perform only as well as its weakest link, and the operating system and
hardware on which it runs are often limiting factors. The disk size, the available memory and
CPU resources, the network, and the components that link them all limit the system’s ultimate
capacity. Thus, you need to choose your hardware carefully and configure the hardware and
operating system appropriately. For example, if your workload is I/O bound, one approach is to
design your application to minimize MySQL’s I/O workload. However, it’s often smarter to
upgrade the I/O subsystem, install more memory, or reconfigure existing disks. If you’re
running in a cloud-hosted environment, the information in this chapter can still be very useful,
especially for understanding filesystem limitations and Linux I/O schedulers.

What Limits MySQL’s Performance?
Many different hardware components can affect MySQL’s performance, but the most frequent
bottleneck we see is CPU exhaustion. CPU saturation can happen when MySQL tries to
execute too many queries in parallel or when a smaller number of queries runs for too long on
the CPU.

I/O saturation can still happen but much less frequently than CPU exhaustion. This is largely
because of the transition to using solid-state drives (SSDs). Historically, the performance
penalty of no longer working in memory and going to the hard disk drive (HDD) was extreme.
SSDs are generally 10 to 20 times faster than SSH. Nowadays, if queries need to hit disk,
you’re still going to see decent performance from them.

Memory exhaustion can still happen but usually only when you try to allocate too much
memory to MySQL. We talk about optimal configuration settings to prevent this in
“Configuring Memory Usage” in Chapter 5.

How to Select CPUs for MySQL
You should consider whether your workload is CPU bound when upgrading current hardware
or purchasing new hardware. You can identify a CPU-bound workload by checking the CPU
utilization, but instead of looking only at how heavily your CPUs are loaded overall, look at the
balance of CPU usage and I/O for your most important queries, and notice whether the CPUs
are loaded evenly.

Broadly speaking, you have two goals for your server:

Low latency (fast response time)

To achieve this, you need fast CPUs because each query will use only a single CPU.

High throughput

If you can run many queries at the same time, you might benefit from multiple CPUs to
service the queries.

If your workload doesn’t utilize all of your CPUs, MySQL can still use the extra CPUs for
background tasks such as purging InnoDB buffers, network operations, and so on. However,
these jobs are usually minor compared to executing queries.

Balancing Memory and Disk Resources
The main reason to have a lot of memory isn’t so you can hold a lot of data in memory: it’s
ultimately so you can avoid disk I/O, which is orders of magnitude slower than accessing data
in memory. The trick is to balance the memory and disk size, speed, cost, and other qualities so
you get good performance for your workload.

Caching, Reads, and Writes
If you have enough memory, you can insulate the disk from read requests completely. If all
your data fits in memory, every read will be a cache hit once the server’s caches are warmed
up. There will still be logical reads from memory but no physical reads from disk. Writes are a
different matter, though. A write can be performed in memory just as a read can, but sooner or
later it has to be written to the disk so it’s permanent. In other words, a cache can delay writes,
but caching cannot eliminate writes as it can for reads.

In fact, in addition to allowing writes to be delayed, caching can permit them to be grouped
together in two important ways:

Many writes, one flush

A single piece of data can be changed many times in memory without all of the new values
being written to disk. When the data is eventually flushed to disk, all the modifications that
happened since the last physical write are permanent. For example, many statements could
update an in-memory counter. If the counter is incremented one hundred times and then
written to disk, one hundred modifications have been grouped into one write.

I/O merging

Many different pieces of data can be modified in memory, and the modifications can be
collected together, so the physical writes can be performed as a single disk operation.

This is why many transactional systems use a write-ahead logging strategy. Write-ahead
logging lets them make changes to the pages in memory without flushing the changes to disk,
which usually involves random I/O and is very slow. Instead, they write a record of the changes
to a sequential logfile, which is much faster. A background thread can flush the modified pages
to disk later; when it does, it can optimize the writes.

Writes benefit greatly from buffering because it converts random I/O into more sequential I/O.
Asynchronous (buffered) writes are typically handled by the operating system and are batched
so they can be flushed to disk more optimally. Synchronous (unbuffered) writes have to be
written to disk before they finish. That’s why they benefit from buffering in a Redundant Array
of Inexpensive Disks (RAID) controller’s battery-backed write-back cache (we discuss RAID a
bit later).

What’s Your Working Set?
Every application has a “working set” of data—that is, the data that it really needs to do its
work. A lot of databases also have plenty of data that is not in the working set. You can imagine
the database as a desk with filing drawers. The working set consists of the papers you need to
have on the desktop to get your work done. The desktop represents main memory in this
analogy, while the filing drawers are the hard disks. Just as you don’t need to have every piece
of paper on the desktop to get your work done, you don’t need the whole database to fit in
memory for optimal performance—just the working set.

When dealing with HDDs, it was good practice to try to find an effective memory-to-disk ratio.
This was largely due to the slower latency and low input/output operations per second (IOPS)
of HDDs. With SSDs, the memory-to-disk ratio becomes far less important.

Solid-State Storage
Solid-state (flash) storage is the standard for most database systems, especially online
transaction processing (OLTP). Only on very large data warehouses or legacy systems would
you typically find HDDs. This shift came as the price of SSDs dropped significantly around
2015.

Solid-state storage devices use nonvolatile flash memory chips composed of cells instead of
magnetic platters. They’re also called nonvolatile random access memory (NVRAM). They
have no moving parts, which makes them behave very differently than hard drives.

Here’s a quick summary of flash performance. High-quality flash devices have:

Much better random read and write performance compared to hard drives

Flash devices are usually slightly better at reads than writes.

Better sequential read and write performance than hard drives

However, it’s not as dramatic an improvement as that of random I/O because hard drives
are much slower at random I/O than they are at sequential I/O.

Much better support for concurrency than hard drives

Flash devices can support many more concurrent operations, and in fact, they don’t really
achieve their top throughput until you have lots of concurrency.

The most important things are improvements in random I/O and concurrency. Flash memory
gives you very good random I/O performance at high concurrency.

An Overview of Flash Memory
Hard drives with spinning platters and oscillating heads had inherent limitations and
characteristics that are consequences of the physics involved. The same is true of solid-state
storage, which is built on top of flash memory. Don’t get the idea that solid-state storage is
simple. It’s actually more complex than a hard drive in some ways. The limitations of flash
memory are pretty severe and hard to overcome, so the typical solid-state device has an
intricate architecture with lots of abstractions, caching, and proprietary “magic.”

The most important characteristic of flash memory is that it can be read many times rapidly and
in small units, but writes are much more challenging. A cell can’t be rewritten without a special
erase operation and can only be erased in large blocks—for example, 512 KB. The erase cycle
is slow and eventually wears out the block. The number of erase cycles a block can tolerate
depends on the underlying technology it uses—more about this later.

The limitations on writes are the reason for the complexity of solid-state storage. This is why
some devices provide stable, consistent performance and others don’t. The magic is all in the
proprietary firmware, drivers, and other bits and pieces that make a solid-state device run. To
make write operations perform well and avoid wearing out the blocks of flash memory
prematurely, the device must be able to relocate pages and perform garbage collection and so-
called wear leveling. The term write amplification is used to describe the additional writes
caused by moving data from place to place, writing data and metadata multiple times due to
partial block writes.

Garbage Collection
Garbage collection is important to understand. To keep some blocks fresh and ready for new
writes, the device reclaims blocks. This requires some free space on the device. Either the
device will have some reserved space internally that you can’t see or you will need to reserve
space yourself by not filling it up all the way; this varies from device to device. Either way, as
the device fills up, the garbage collector has to work harder to keep some blocks clean, so the
write amplification factor increases.

As a result, many devices get slower as they fill up. How much slower is different for every
vendor and model and depends on the device’s architecture. Some devices are designed for
high performance even when they are pretty full, but in general, a 100 GB file will perform
differently on a 160 GB SSD than on a 320 GB SSD. The slowdown is caused by having to
wait for erases to complete when there are no free blocks. A write to a free block takes a couple
of hundred microseconds, but an erase is much slower—typically a few milliseconds.

RAID Performance Optimization
Storage engines often keep their data and/or indexes in single large files, which means RAID is
usually the most feasible option for storing a lot of data. RAID can help with redundancy,
storage size, caching, and speed. But as with the other optimizations we’ve been looking at,
there are many variations on RAID configurations, and it’s important to choose one that’s
appropriate for your needs.

We won’t cover every RAID level here, or go into the specifics of exactly how the different
RAID levels store data. Instead, we focus on how RAID configurations satisfy a database
server’s needs. These are the most important RAID levels:

RAID 0

RAID 0 is the cheapest and highest-performance RAID configuration, at least when you
measure cost and performance simplistically (if you include data recovery, for example, it
starts to look more expensive). Because it offers no redundancy, we do not think RAID 0 is
ever appropriate on a production database, but if you were truly looking to save costs, it can
be a choice in development environments where a full server failure does not turn into an
incident.

Again, note that RAID 0 does not provide any redundancy, even though “redundant” is the
R in the RAID acronym. In fact, the probability of a RAID 0 array failing is actually higher
than the probability of any single disk failing, not lower!

RAID 1

RAID 1 offers good read performance for many scenarios, and it duplicates your data
across disks, so there’s good redundancy. RAID 1 is a little bit faster than RAID 0 for reads.
It’s good for servers that handle logging and similar workloads because sequential writes
rarely need many underlying disks to perform well (as opposed to random writes, which
can benefit from parallelization). It is also a typical choice for low-end servers that need
redundancy but have only two hard drives.

RAID 0 and RAID 1 are very simple, and they can often be implemented well in software.
Most operating systems will let you create software RAID 0 and RAID 1 volumes easily.

RAID 5

RAID 5 used to be quite scary for database systems, largely due to the performance
implications. With SSDs becoming commonplace, it’s now a viable option. It spreads the
data across many disks with distributed parity blocks so that if any one disk fails, the data
can be rebuilt from the parity blocks. If two disks fail, the entire volume will fail
unrecoverably. In terms of cost per unit of storage, it’s the most economical redundant
configuration because you lose only one disk’s worth of storage space across the entire
array.

The biggest “gotcha” with RAID 5 is how the array performs if a disk fails. This is because
the data has to be reconstructed by reading all the other disks. This affected performance
severely on HDD, which is why it was generally discouraged. It was even worse if you had
lots of disks. If you try to keep the server online during the rebuild, don’t expect either the
rebuild or the array’s performance to be good. Other performance costs included limited
scalability because of the parity blocks—RAID 5 doesn’t scale well past 10 disks or so—
and caching issues. Good RAID 5 performance depends heavily on the RAID controller’s
cache, which can conflict with the database server’s needs. As we mentioned earlier, SSDs
offer substantially improved performance in terms of IOPS and throughput, and the issues
of poorly performing random read/write performance are also gone.

One of the mitigating factors for RAID 5 is that it’s so popular. As a result, RAID
controllers are often highly optimized for RAID 5, and despite the theoretical limits, smart
controllers that use caches well can sometimes perform nearly as well as RAID 10
controllers for some workloads. This might actually reflect that the RAID 10 controllers are
less highly optimized, but regardless of the reason, this is what we’ve seen.

RAID 6

The largest issue with RAID 5 was that the loss of two disks was catastrophic. The more
disks you have in your array, the higher the probability of disk failure. RAID 6 helps to
curb the failure possibility by adding a second parity disk. This allows you to sustain two
disk failures and still rebuild the array. The downside is that calculating the additional
parity will make writes slower than RAID 5.

RAID 10

RAID 10 is a very good choice for data storage. It consists of mirrored pairs that are
striped, so it scales both reads and writes well. It is fast and easy to rebuild, in comparison
to RAID 5. It can also be implemented in software fairly well.

The performance loss when one hard drive goes out can still be significant because that
stripe can become a bottleneck. Performance can degrade by up to 50%, depending on the
workload. One thing to watch out for is RAID controllers that use a “concatenated mirror”
implementation for RAID 10. This is suboptimal because of the absence of striping: your
most frequently accessed data might be placed on only one pair of disks instead of being
spread across many, so you’ll get poor performance.

RAID 50

RAID 50 consists of RAID 5 arrays that are striped, and it can be a good compromise
between the economy of RAID 5 and the performance of RAID 10 if you have many disks.
This is mainly useful for very large data sets, such as data warehouses or extremely large
OLTP systems.

Table 4-1 summarizes the various RAID configurations.

T
a
b
l
e

4
-
1
.
C
o
m
p
a
r
i
s
o
n

o
f
R
A
I
D

l
e
v
e
l
s

Level Synopsis Redundancy Disks required Faster reads Faster writes

RAID 0 Cheap, fast,

dangerous
No N Yes Yes

RAID 1 Fast reads, simple, Yes 2 (usually) Yes No

safe

RAID 5 Cheap, fast with
SSDs

Yes N + 1 Yes Depends

RAID 6 Like RAID 5 but
more resilient

Yes N + 2 Yes Depends

RAID 10 Expensive, fast,
safe

Yes 2N Yes Yes

RAID 50 For very large data
stores

Yes 2(N + 1) Yes Yes

RAID Failure, Recovery, and Monitoring
RAID configurations (with the exception of RAID 0) offer redundancy. This is important, but
it’s easy to underestimate the likelihood of concurrent disk failures. You shouldn’t think of
RAID as a strong guarantee of data safety.

RAID doesn’t eliminate—or even reduce—the need for backups. When there is a problem, the
recovery time will depend on your controller, the RAID level, the array size, the disk speed,
and whether you need to keep the server online while you rebuild the array.

There is a chance of disks failing at exactly the same time. For example, a power spike or
overheating can easily kill two or more disks. What’s more common, however, is two disk
failures happening close together. Many such issues can go unnoticed. A common cause is
corruption on the physical media holding data that is seldom accessed. This might go
undetected for months, until either you try to read the data or another drive fails and the RAID
controller tries to use the corrupted data to rebuild the array. The larger the hard drive is, the
more likely this is.

That’s why it’s important to monitor your RAID arrays. Most controllers offer some software to
report on the array’s status, and you need to keep track of this because you might otherwise be
totally ignorant of a drive failure. You might miss your opportunity to recover the data and
discover the problem only when a second drive fails, and then it’s too late. You should
configure a monitoring system to alert you when a drive or volume changes to a degraded or
failed status.

You can mitigate the risk of latent corruption by actively checking your arrays for consistency
at regular intervals. Background Patrol Read, a feature of some controllers that checks for
damaged media and fixes it while all the drives are online, can also help avert such problems.
As with recovery, extremely large arrays can be slow to check, so make sure you plan
accordingly when you create large arrays.

You can also add a hot spare drive, which is unused and configured as a standby for the
controller to automatically use for recovery. This is a good idea if you depend on every server.
It’s expensive with servers that have only a few hard drives because the cost of having an idle
disk is proportionately higher, but if you have many disks, it’s almost foolish not to have a hot
spare. Remember that the probability of a drive failure increases rapidly with more disks.

In addition to monitoring your drives for failures, you should monitor the RAID controller’s
battery backup unit and write cache policy. If the battery fails, by default most controllers will
disable write caching by changing the cache policy to write-through instead of write-back. This
can cause a severe drop in performance. Many controllers will also periodically cycle the
battery through a learning process, during which time the cache is also disabled. Your RAID
controller’s management utility should let you view and configure when the learning cycle is
scheduled so that it doesn’t catch you off guard. Newer RAID controllers avoid this by using a
flash-backed cache that uses NVRAM to store uncommitted writes instead of a battery-backed
cache. This avoids the entire pain of the learning cycle.

You might also want to benchmark your system with the cache policy set to write-through so
you’ll know what to expect. The preferred approach is to schedule your battery learning cycles
at low traffic periods, typically at night or during the weekend. If performance suffers badly
enough with write-through at any time, you could also failover to another server before your
learning cycle begins. As a very last resort, you could reconfigure your servers by changing the
innodb_flush_log_at_trx_commit and sync_binlog variables to lower durability
settings. This will reduce the disk utilization during write-through and may offer acceptable
performance; however, this should really be done as a last resort. Reducing durability has a big
impact on how much data you may lose during a database crash and your ability to recover it.

RAID Configuration and Caching
You can usually configure the RAID controller itself by entering its setup utility during the
machine’s boot sequence or by running it from the command prompt. Although most
controllers offer a lot of options, the two we focus on are the chunk size for striped arrays and
the on-controller cache (also known as the RAID cache; we use the terms interchangeably).

The RAID stripe chunk size
The optimal stripe chunk size is workload and hardware specific. In theory, it’s good to have a
large chunk size for random I/O because that means more reads can be satisfied from a single
drive.

To see why this is so, consider the size of a typical random I/O operation for your workload. If
the chunk size is at least that large and the data doesn’t span the border between chunks, only a
single drive needs to participate in the read. But if the chunk size is smaller than the amount of
data to be read, there’s no way to avoid involving more than one drive in the read.

So much for theory. In practice, many RAID controllers don’t work well with large chunks. For
example, the controller might use the chunk size as the cache unit in its cache, which could be
wasteful. The controller might also match the chunk size, cache size, and read-unit size (the
amount of data it reads in a single operation). If the read unit is too large, its cache might be
less effective, and it might end up reading a lot more data than it really needs, even for tiny
requests.

It’s also hard to know whether any given piece of data will span multiple drives. Even if the
chunk size is 16 KB, which matches InnoDB’s page size, you can’t be certain all of the reads
will be aligned on 16 KB boundaries. The filesystem might fragment the file, and it will
typically align the fragments on the filesystem block size, which is often 4 KB. Some
filesystems might be smarter, but you shouldn’t count on it.

The RAID cache
The RAID cache is a (relatively) small amount of memory that is physically installed on a
hardware RAID controller. It can be used to buffer data as it travels between the disks and the
host system. Here are some of the reasons a RAID card might use the cache:

Caching reads

After the controller reads some data from the disks and sends it to the host system, it can
store the data; this will enable it to satisfy future requests for the same data without having
to go to disk again.

This is usually a very poor use of the RAID cache. Why? Because the operating system and
the database server have their own much larger caches. If there’s a cache hit in one of these
caches, the data in the RAID cache won’t be used. Conversely, if there’s a miss in one of
the higher-level caches, the chance that there’ll be a hit in the RAID cache is vanishingly
small. Because the RAID cache is so much smaller, it will almost certainly have been
flushed and filled with other data, too. Either way you look at it, it’s a waste of memory to
cache reads in the RAID cache.

Caching read-ahead data

If the RAID controller notices sequential requests for data, it might decide to do a read-
ahead read—that is, to prefetch data it predicts will be needed soon. It has to have
somewhere to put the data until it’s requested, though. It can use the RAID cache for this.
The performance impact of this can vary widely, and you should check to ensure it’s
actually helping. Read-ahead operations might not help if the database server is doing its
own smart read-ahead (as InnoDB does), and it might interfere with the all-important
buffering of synchronous writes.

Caching writes

The RAID controller can buffer writes in its cache and schedule them for a later time. The
advantage to doing this is twofold: first, it can return “success” to the host system much
more quickly than it would be able to if it had to actually perform the writes on the physical
disks, and second, it can accumulate writes and do them more efficiently.

Internal operations

Some RAID operations are very complex—especially RAID 5 writes, which have to
calculate parity bits that can be used to rebuild data in the event of a failure. The controller
needs to use some memory for this type of internal operation. This is one reason why RAID
5 can perform poorly on some controllers: it needs to read a lot of data into the cache for
good performance. Some controllers can’t balance caching writes with caching for the
RAID 5 parity operations.

In general, the RAID controller’s memory is a scarce resource that you should try to use wisely.
Using it for reads is usually a waste, but using it for writes is an important way to speed up
your I/O performance. Many controllers let you choose how to allocate the memory. For
example, you can choose how much of it to use for caching writes and how much for reads. For
RAID 0, RAID 1, and RAID 10, you should probably allocate 100% of the controller’s
memory for caching writes. For RAID 5, you should reserve some of the controller’s memory
for its internal operations. This is generally good advice, but it doesn’t always apply—different
RAID cards require different configurations.

When you’re using the RAID cache for write caching, many controllers let you configure how
long it’s acceptable to delay the writes (one second, five seconds, and so on). A longer delay
means more writes can be grouped together and flushed to the disks optimally. The downside is
that your writes will be more “bursty.” That’s not a bad thing, unless your application happens
to make a bunch of write requests just as the controller’s cache fills up, when it’s about to be
flushed to disk. If there’s not enough room for your application’s write requests, it’ll have to
wait. Keeping the delay shorter means you’ll have more write operations and they’ll be less
efficient, but it smooths out the spikiness and helps keep more of the cache free to handle bursts
from the application. (We’re simplifying here—controllers often have complex, vendor-specific
balancing algorithms, so we’re just trying to cover the basic principles.)

The write cache is very helpful for synchronous writes, such as issuing fsync() calls on the
transaction logs and creating binary logs with sync_binlog enabled, but you shouldn’t
enable it unless your controller has a battery backup unit (BBU) or other nonvolatile storage.
Caching writes without a BBU is likely to corrupt your database, and even your transactional
filesystem, in the event of power loss. If you have a BBU, however, enabling the write cache
can increase performance by a factor of 20 or more for workloads that do a lot of log flushes,
such as flushing the transaction log when a transaction commits.

A final consideration is that many hard drives have write caches of their own, which can “fake”
fsync() operations by lying to the controller that the data has been written to physical media.
Hard drives that are attached directly (as opposed to being attached to a RAID controller) can
sometimes let their caches be managed by the operating system, but this doesn’t always work
either. These caches are typically flushed for an fsync() and bypassed for synchronous I/O,
but again, the hard drive can lie. You should either ensure that these caches are flushed on
fsync() or disable them because they are not battery-backed. Hard drives that aren’t

managed properly by the operating system or RAID firmware have caused many instances of
data loss.

For this and other reasons, it’s always a good idea to do genuine crash testing (literally pulling
the power plug out of the wall) when you install new hardware. This is often the only way to
find subtle misconfigurations or sneaky hard drive behaviors. A handy script for this can be
found online.

To test whether you can really rely on your RAID controller’s BBU, make sure you leave the
power cord unplugged for a realistic amount of time. Some units don’t last as long without
power as they’re supposed to. Here again, one bad link can render your whole chain of storage
components useless.

Network Configuration
Just as latency and throughput are limiting factors for a hard drive, latency and bandwidth are
limiting factors for a network connection. The biggest problem for most applications is latency;
a typical application does a lot of small network transfers, and the slight delay for each transfer
adds up.

A network that’s not operating correctly is a major performance bottleneck, too. Packet loss is a
common problem. Even 1% loss is enough to cause significant performance degradation
because various layers in the protocol stack will try to fix the problems with strategies such as
waiting a while and then resending packets, which adds extra time. Another common problem
is broken or slow DNS resolution.

DNS is enough of an Achilles’ heel that enabling skip_name_resolve is a good idea for
production servers. Broken or slow DNS resolution is a problem for lots of applications, but it’s
particularly severe for MySQL. When MySQL receives a connection request, it does both a
forward and a reverse DNS lookup. There are lots of reasons this could go wrong. When it
does, it will cause connections to be denied, slow down the process of connecting to the server,
and generally wreak havoc, up to and including denial-of-service attacks. If you enable the
skip_name_resolve option, MySQL won’t do any DNS lookups at all. However, this also
means that your user accounts must have only IP addresses, “localhost,” or IP address
wildcards in the host column. Any user account that has a hostname in the host column will
not be able to log in.

It’s usually more important, though, to adjust your settings to deal efficiently with a lot of
connections and small queries. One of the more common tweaks is to change your local port
range. Linux systems have a range of local ports that can be used. When the connection is made
back to a caller, it uses a local port. If you have many simultaneous connections, you can run
out of local ports.

Here’s a system that is configured to default values:

1

https://oreil.ly/2Lume

$ cat /proc/sys/net/ipv4/ip_local_port_range
32768 61000

Sometimes you might need to change these values to a larger range. For example:

$ echo 1024 65535 > /proc/sys/net/ipv4/ip_local_port_range

The TCP protocol allows a system to queue up incoming connections, like a bucket. If the
bucket fills up, clients won’t be able to connect. You can allow more connections to queue up
as follows:

$ echo 4096 > /proc/sys/net/ipv4/tcp_max_syn_backlog

For database servers that are used only locally, you can shorten the timeout that comes after
closing a socket in the event that the peer is broken and doesn’t close its side of the connection.
The default is one minute on most systems, which is rather long:

$ echo <value> > /proc/sys/net/ipv4/tcp_fin_timeout

Most of the time, these settings can be left at their defaults. You’ll typically need to change
them only when something unusual is happening, such as extremely poor network performance
or very large numbers of connections. An Internet search for “TCP variables” will turn up lots
of good reading about these and many more variables.

Choosing a Filesystem
Your filesystem choices are pretty dependent on your operating system. In many systems, such
as Windows, you really have only one or two choices, and only one (NTFS) is really viable.
GNU/Linux, on the other hand, supports many filesystems.

Many people want to know which filesystems will give the best performance for MySQL on
GNU/Linux or, even more specifically, which of the choices is best for InnoDB. The
benchmarks actually show that most of them are very close in most respects, but looking to the
filesystem for performance is really a distraction. The filesystem’s performance is very
workload specific, and no filesystem is a magic bullet. Most of the time, a given filesystem
won’t perform significantly better or worse than any other filesystem. The exception is if you
run into some filesystem limit, such as how it deals with concurrency, working with many files,
fragmentation, and so on.

Overall, you’re best off using a journaling filesystem, such as ext4, XFS, or ZFS. If you don’t,
a filesystem check after a crash can take a long time.

If you use ext3 or its successor, ext4, you have three options for how the data is journaled,
which you can place in the /etc/fstab mount options:

data=writeback

This option means only metadata writes are journaled. Writes to the metadata are not
synchronized with the data writes. This is the fastest configuration, and it’s usually safe to
use with InnoDB because it has its own transaction log. The exception is that a crash at just
the right time could cause corruption in a .frm file on a pre-8.0 version of MySQL.

Here’s an example of how this configuration could cause problems. Say a program decides
to extend a file to make it larger. The metadata (the file’s size) will be logged and written
before the data is actually written to the (now larger) file. The result is that the file’s tail—
the newly extended area—contains garbage.

data=ordered

This option also journals only the metadata, but it provides some consistency by writing the
data before the metadata so it stays consistent. It’s only slightly slower than the
writeback option, and it’s much safer when there’s a crash. In this configuration, if we

suppose again that a program wants to extend a file, the file’s metadata won’t reflect the
file’s new size until the data that resides in the newly extended area has been written.

data=journal

This option provides atomic journaled behavior, writing the data to the journal before it’s
written to the final location. It is usually unnecessary and has much higher overhead than
the other two options. However, in some cases it can improve performance because the
journaling lets the filesystem delay the writes to the data’s final location.

Regardless of the filesystem, there are some specific options that it’s best to disable because
they don’t provide any benefit and can add quite a bit of overhead. The most famous is
recording access time, which requires a write even when you’re reading a file or directory. To
disable this option, add the noatime,nodiratime mount options to your /etc/fstab; this
can sometimes boost performance by as much as 5%–10%, depending on the workload and the
filesystem (although it might not make much difference in other cases). Here’s a sample
/etc/fstab line for the ext3 options we mentioned:

/dev/sda2 /usr/lib/mysql ext3 noatime,nodiratime,data=writeback 0 1

You can also tune the filesystem’s read-ahead behavior because it might be redundant. For
example, InnoDB does its own read-ahead prediction. Disabling or limiting read-ahead is

especially beneficial on Solaris’s UFS. Using innodb_ flush_ method= O_DIRECT
automatically disables read-ahead.

Some filesystems don’t support features you might need. For example, support for direct I/O
might be important if you’re using the O_DIRECT flush method for InnoDB. Also, some
filesystems handle a large number of underlying drives better than others; XFS is often much
better at this than ext3, for instance. Finally, if you plan to use Logical Volume Manager (LVM)
snapshots for initializing replicas or taking backups, you should verify that your chosen
filesystem and LVM version work well together.

Table 4-2 summarizes the characteristics of some common filesystems.

T
a
b
l
e
4
-
2
.
C
o
m
m
o
n
f
i
l
e
s
y
s
t
e
m

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

Filesystem Operating system Journaling Large directories

ext3 GNU/Linux Optional Optional/partial

ext4 GNU/Linux Yes Yes

Journaled File System (JFS) GNU/Linux Yes No

NTFS Windows Yes Yes

ReiserFS GNU/Linux Yes Yes

UFS (Solaris) Solaris Yes Tunable

UFS (FreeBSD) FreeBSD No Optional/partial

UFS2 FreeBSD No Optional/partial

XFS GNU/Linux Yes Yes

ZFS GNU/Linux, Solaris, FreeBSD Yes Yes

We usually recommend using the XFS filesystem. The ext3 filesystem just has too many
serious limitations, such as its single mutex per inode, and bad behavior, such as flushing all
dirty blocks in the whole filesystem on fsync() instead of just one file’s dirty blocks. The
ext4 filesystem is an acceptable choice, although there have been performance bottlenecks in
specific kernel versions that you should investigate before committing to it.

When considering any filesystem for a database, it’s good to consider how long it has been
available, how mature it is, and how proven it has been in production environments. The
filesystem bits are the very lowest level of data integrity you have in a database.

Choosing a Disk Queue Scheduler
On GNU/Linux, the queue scheduler determines the order in which requests to a block device
are actually sent to the underlying device. The default is Completely Fair Queuing, or cfq. It’s
okay for casual use on laptops and desktops, where it helps prevent I/O starvation, but it’s
terrible for servers. It causes very poor response times under the types of workload that MySQL
generates because it stalls some requests in the queue needlessly.

You can see which schedulers are available and which one is active with the following
command:

$ cat /sys/block/sda/queue/scheduler
noop deadline [cfq]

You should replace sda with the device name of the disk you’re interested in. In our example,
the square brackets indicate which scheduler is in use for this device. The other two choices are

suitable for server-class hardware, and in most cases they work about equally well. The noop
scheduler is appropriate for devices that do their own scheduling behind the scenes, such as
hardware RAID controllers and storage area networks (SANs), and deadline is fine for both
RAID controllers and disks that are directly attached. Our benchmarks show very little
difference between these two. The main thing is to use anything but cfq, which can cause
severe performance problems.

Memory and Swapping
MySQL performs best with a large amount of memory allocated to it. As we learned in
Chapter 1, InnoDB uses memory as a cache to avoid disk access. This means that the
performance of the memory system can have a direct impact on how fast queries are served.
Even today, one of the best ways to ensure faster memory access has been to replace the built-
in memory allocator (glibc) with an external one such as tcmalloc or jemalloc.
Numerous benchmarks have shown that both of these offer improved performance and
reduced memory fragmentation when compared with glibc.

Swapping occurs when the operating system writes some virtual memory to disk because it
doesn’t have enough physical memory to hold it. Swapping is transparent to processes running
on the operating system. Only the operating system knows whether a particular virtual memory
address is in physical memory or on disk.

When using SSDs, the performance penalty isn’t nearly as sharp as it used to be with HDDs.
You should still actively avoid swapping—even if just to avoid unnecessary writes that may
shorten the overall life span of the disk. You may also consider taking the approach of using no
swap, which forgoes the potential altogether but does put you in a situation where running out
of memory may lead to process termination.

On GNU/Linux, you can monitor swapping with vmstat (we show some examples in the next
section). You need to look at the swap I/O activity, reported in the si and so columns, rather
than the swap usage, which is reported in the swpd column. The swpd column can show
processes that have been loaded but aren’t being used, which are not really problematic. We
like the si and so column values to be 0, and they should definitely be less than 10 blocks per
second.

In extreme cases, too much memory allocation can cause the operating system to run out of
swap space. If this happens, the resulting lack of virtual memory can crash MySQL. But even if
it doesn’t run out of swap space, very active swapping can cause the entire operating system to
become unresponsive, to the point that you can’t even log in and kill the MySQL process.
Sometimes the Linux kernel can even hang completely when it runs out of swap space. We
recommend you run your databases without using swap space at all. Disk is still an order of
magnitude slower than RAM, and this avoids all of the headaches mentioned here.

Another thing that frequently happens under extreme virtual memory pressure is that the out-
of-memory (OOM) killer process will kick in and kill something. This is frequently MySQL,
but it can also be another process such as SSH, which can leave you with a system that’s not

2

accessible from the network. You can prevent this by setting the SSH process’s oom_adj or
oom_score_adj value. When working with dedicated database servers, we highly
recommend that you identify any key processes like MySQL and SSH and proactively adjust
the OOM killer score to prevent those from being selected first for termination.

You can solve most swapping problems by configuring your MySQL buffers correctly, but
sometimes the operating system’s virtual memory system decides to swap MySQL anyway,
sometimes related to how nonuniform memory access (NUMA) works in Linux. This usually
happens when the operating system sees a lot of I/O from MySQL, so it tries to increase the file
cache to hold more data. If there’s not enough memory, something must be swapped out, and
that something might be MySQL itself. Some older Linux kernel versions also have
counterproductive priorities that swap things when they shouldn’t, but this has been alleviated a
bit in more recent kernels.

Operating systems usually allow some control over virtual memory and I/O. We mention a few
ways to control them on GNU/Linux. The most basic is to change the value of
/proc/sys/vm/swappiness to a low value, such as 0 or 1. This tells the kernel not to swap unless
the need for virtual memory is extreme. For example, here’s how to check the current value:

$ cat /proc/sys/vm/swappiness
60

The value shown, 60, is the default swappiness setting (the range is from 0 to 100). This is a
very bad default for servers. It’s only appropriate for laptops. Servers should be set to 0:

$ echo 0 > /proc/sys/vm/swappiness

Another option is to change how the storage engines read and write data. For example, using
innodb_flush_method=O_DIRECT relieves I/O pressure. Direct I/O is not cached, so the
operating system doesn’t see it as a reason to increase the size of the file cache. This parameter
works only for InnoDB.

Another option is to use MySQL’s memlock configuration option, which locks MySQL in
memory. This will avoid swapping, but it can be dangerous: if there’s not enough lockable
memory left, MySQL can crash when it tries to allocate more memory. Problems can also be
caused if too much memory is locked and there’s not enough left for the operating system.

Many of the tricks are specific to a kernel version, so be careful, especially when you upgrade.
In some workloads, it’s hard to make the operating system behave sensibly, and your only
recourse might be to lower the buffer sizes to suboptimal values.

Operating System Status
Your operating system provides tools to help you find out what the operating system and
hardware are doing. In this section, we’ll show you examples of how to use two widely

3

available tools, iostat and vmstat. If your system doesn’t provide either of these tools, chances
are it will provide something similar. Thus, our goal isn’t to make you an expert at using iostat
or vmstat but simply to show you what to look for when you’re trying to diagnose problems
with tools such as these.

In addition to these tools, your operating system might provide others, such as mpstat or sar. If
you’re interested in other parts of your system, such as the network, you might want to use
tools such as ifconfig (which shows how many network errors have occurred, among other
things) or netstat instead.

By default, vmstat and iostat produce just one report showing the average values of various
counters since the server was started, which is not very useful. However, you can give both
tools an interval argument. This makes them generate incremental reports showing what the
server is doing right now, which is much more relevant. (The first line shows the statistics since
the system was started; you can just ignore this line.)

How to read vmstat output
Let’s look at an example of vmstat first. To make it print out a new report every five seconds,
reporting sizes in megabytes, use the following command:

$ vmstat -SM 5
procs -------memory------- -swap- -----io---- ---system---- ------cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
11 0 0 2410 4 57223 0 0 9902 35594 122585 150834 10 3 85 1 0
10 2 0 2361 4 57273 0 0 23998 35391 124187 149530 11 3 84 2 0

You can stop vmstat with Ctrl-C. The output you see depends on your operating system, so you
might need to read the manual page to figure it out.

As stated earlier, even though we asked for incremental output, the first line of values shows
the averages since the server was booted. The second line shows what’s happening right now,
and subsequent lines will show what’s happening at five-second intervals. The columns are
grouped by one of the following headers:

procs

The r column shows how many processes are waiting for CPU time. The b column shows

how many are in uninterruptible sleep, which generally means they’re waiting for I/O (disk,
network, user input, and so on).

memory

The swpd column shows how many blocks are swapped out to disk (paged). The remaining

three columns show how many blocks are free (unused), how many are being used for

buffers (buff), and how many are being used for the operating system’s cache.

swap

These columns show swap activity: how many blocks per second the operating system is
swapping in (from disk) and out (to disk). They are much more important to monitor than
the swpd column. We like to see si and so at 0 most of the time, and we definitely don’t

like to see more than 10 blocks per second. Bursts are also bad.

io

These columns show how many blocks per second are read in from (bi) and written out to

(bo) block devices. This usually reflects disk I/O.

system

These columns show the number of interrupts per second (in) and the number of context

switches per second (cs).

cpu

These columns show the percentages of total CPU time spent running user (nonkernel)
code, running system (kernel) code, idle, and waiting for I/O. A possible fifth column (st)

shows the percent “stolen” from a virtual machine if you’re using virtualization. This refers
to the time during which something was runnable on the virtual machine, but the hypervisor
chose to run something else instead. If the virtual machine doesn’t want to run anything and
the hypervisor runs something else, that doesn’t count as stolen time.

The vmstat output is system dependent, so you should read your system’s vmstat(8)
manpage if yours looks different from the sample we’ve shown.

How to read iostat output
Now let’s move on to iostat. By default, it shows some of the same CPU usage information as
vmstat. We’re usually interested in just the I/O statistics, though, so we use the following
command to show only extended device statistics:

$ iostat -dxk 5
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s
sda 0.00 0.00 1060.40 3915.00 8483.20 42395.20

avgrq-sz avgqu-sz await r_await w_await svctm %util
 20.45 3.68 0.74 0.57 0.78 0.20 98.22

As with vmstat, the first report shows averages since the server was booted (we generally omit
it to save space), and the subsequent reports show incremental averages. There’s one line per
device.

There are various options that show or hide columns. The official documentation is a bit
confusing, and we had to dig into the source code to figure out what was really being shown.
Here’s what each column is showing:

rrqm/s and wrqm/s

The number of merged read and write requests queued per second. Merged means the
operating system took multiple logical requests from the queue and grouped them into a
single request to the actual device.

r/s and w/s

The number of read and write requests sent to the device per second.

rkB/s and wkB/s

The number of kilobytes read and written per second.

avgrq-sz

The request size in sectors.

avgqu-sz

The number of requests waiting in the device’s queue.

await

The number of milliseconds spent in the disk queue.

r_await and w_await

The average time in milliseconds for read requests issued to the device to be served, for
both reads and writes, respectively. This includes the time spent by the requests in queue
and the time spent servicing them.

svctm

The number of milliseconds spent servicing requests, excluding queue time.

%util

The percentage of time during which at least one request was active. This is very
confusingly named. It is not the device’s utilization, if you’re familiar with the standard

4

definition of utilization in queuing theory. A device with more than one hard drive (such as
a RAID controller) should be able to support a higher concurrency than 1, but %util will

never exceed 100% unless there’s a rounding error in the math used to compute it. As a
result, it is not a good indication of device saturation, contrary to what the documentation
says, except in the special case where you’re looking at a single physical hard drive.

You can use the output to deduce some facts about a machine’s I/O subsystem. One important
metric is the number of requests served concurrently. Because the reads and writes are per
second and the service time’s unit is thousandths of a second, you can use Little’s law to derive
the following formula for the number of concurrent requests the device is serving:

concurrency = (r/s + w/s) * (svctm/1000)

Plugging the preceding sample numbers into the concurrency formula gives a concurrency of
about 0.995. This means that on average, the device was serving less than one request at a time
during the sampling interval.

Other Helpful Tools
We’ve shown vmstat and iostat because they’re widely available, and vmstat is usually installed
by default on many Unix-like operating systems. However, each of these tools has its
limitations, such as confusing units of measurement, sampling at intervals that don’t correspond
to when the operating system updates the statistics, and the inability to see all of the metrics at
once. If these tools don’t meet your needs, you might be interested in dstat or collectl.

We also like to use mpstat to watch CPU statistics; it provides a much better idea of how the
CPUs are behaving individually, instead of grouping them all together. Sometimes this is very
important when you’re diagnosing a problem. You might find blktrace to be helpful when
you’re examining disk I/O usage, too.

Percona wrote its own replacement for iostat called pt-diskstats. It’s part of Percona Toolkit. It
addresses some of the complaints about iostat, such as the way it presents reads and writes in
aggregate and the lack of visibility into concurrency. It is also interactive and keystroke driven,
so you can zoom in and out, change the aggregation, filter out devices, and show and hide
columns. It is a great way to slice and dice a sample of disk statistics, which you can gather
with a simple shell script even if you don’t have the tool installed. You can capture samples of
disk activity and email or save them for later analysis.

Lastly, perf, the Linux profiler, is an invaluable tool for inspecting what is going on at the
operating system level. You can use perf to inspect general information about the operating
system, such as why the kernel is using CPU so much. You can also inspect specific process
IDs, allowing you to see how MySQL is interacting with the operating system. Inspecting

http://dag.wieers.com/home-made/dstat
https://oreil.ly/DSvmM

system performance is a very deep dive, so we recommend Systems Performance, Second
Edition by Brendan Gregg (Pearson) as excellent follow-up reading.

Summary
Choosing and configuring hardware for MySQL, and configuring MySQL for the hardware, is
not a mystical art. In general, you need the same skills and knowledge that you need for most
other purposes. However, there are some MySQL-specific things you should know.

What we commonly suggest for most people is to find a good balance between performance
and cost. First, we like to use commodity servers, for many reasons. For example, if you’re
having trouble with a server and you need to take it out of service while you try to diagnose it,
or if you simply want to try swapping it with another server as a form of diagnosis, this is a lot
easier to do with a $5,000 server than one that costs $50,000 or more. MySQL is also typically
a better fit—both in terms of the software itself and in terms of the typical workloads it runs—
for commodity hardware.

The four fundamental resources MySQL needs are CPU, memory, disk, and network resources.
The network doesn’t tend to show up as a serious bottleneck very often, but CPUs, memory,
and disks certainly do. The balance of speed and quantity really depends on the workload, and
you should strive for a balance of fast and many as your budget allows. The more concurrency
you expect, the more you should lean on more CPUs to accommodate your workload.

The relationship between CPUs, memory, and disks is intricate, with problems in one area often
showing up elsewhere. Before you throw resources at a problem, ask yourself whether you
should be throwing resources at a different problem instead. If you’re I/O bound, do you need
more I/O capacity, or just more memory? The answer hinges on the working set size, which is
the set of data that’s needed most frequently over a given duration.

Solid-state devices are great for improving server performance overall and should generally be
the standard for databases now, especially OLTP workloads. The only reason to continue using
HDDs is in extremely budget-constrained systems or ones where you need a staggeringly high
amount of disk space—on the order of petabytes in a data-warehousing situation.

In terms of the operating system, there are just a few Big Things that you need to get right,
mostly related to storage, networking, and virtual memory management. If you use
GNU/Linux, as most MySQL users do, we suggest using the XFS filesystem and setting the
swappiness and disk queue scheduler to values that are appropriate for a server. There are some
network parameters that you might need to change, and you might wish to tweak a number of
other things (such as disabling SELinux), but those changes are a matter of preference.

1 Popular haiku: It’s not DNS. There’s no way it’s DNS. It was DNS.

2 See the blog posts “Impact of Memory Allocators on MySQL Performance” and “MySQL (or Percona) Memory Usage
Tests” for comparisons.

3 See this blog post for more.

https://oreil.ly/AAJHX
https://oreil.ly/slp7v
https://oreil.ly/VGW65

4 Software RAID, like MD/RAID, may not show utilization for the RAID array itself.

Chapter 10. Backup and
Recovery

If you don’t plan for backups up front, you might later find that you’ve
ruled out some of the best options. For example, you might set up a server
and then wish for LVM so that you can take filesystem snapshots—but it’s
too late. You also might not notice some important performance impacts of
configuring your systems for backups. And if you don’t plan for and
practice recovery, it won’t go smoothly when you need to do it.

We won’t cover all parts of a well-designed backup and recovery solution in
this chapter—just the parts that are relevant to MySQL. Here are some
points we decided not to include here but that you should still absolutely be
including in your overall backup and recovery strategy:

Security (access to the backup, privileges to restore data, and
whether the files need to be encrypted)

Where to store the backups, including how far away from the
source they should be (on a different disk, a different server, or
offsite) and how to move the data from the source to the
destination

Retention policies, auditing, legal requirements, and related
subjects

Storage solutions and media, compression, and incremental
backups

Storage formats

Monitoring and reporting on your backups

Backup capabilities built into storage layers or particular devices,
such as prefabricated file servers

Before we begin, let’s clarify some key terms. First, you’ll often hear about
so-called hot, warm, and cold backups. People generally use these terms to
denote a backup’s impact: “hot” backups aren’t supposed to require any
server downtime, for example. The problem is that these terms don’t mean
the same things to everyone. Some tools even use the word hot in their
names but definitely don’t perform what we consider to be hot backups. We
try to avoid these terms and instead tell you how much a specific technique
or tool interrupts your server.

Two other confusing words are restore and recover. We use them in specific
ways in this chapter. Restoring means retrieving data from a backup and
either loading it into MySQL or placing the files where MySQL expects
them to be. Recovery generally means the entire process of rescuing a
system, or part of a system, after something has gone wrong. This includes
restoring data from backups as well as all the steps necessary to make a
server fully functional again, such as restarting MySQL, changing the
configuration, warming up the server’s caches, and so on.

To many people, recovery just means fixing corrupted tables after a crash.
This is not the same as recovering an entire server. A storage engine’s crash
recovery reconciles its data and logfiles. It makes sure the datafiles contain
only the modifications made by committed transactions, and it replays
transactions from the logfiles that have not yet been applied to the datafiles.
This might be part of the overall recovery process, or even part of making
backups. However, it’s not the same as the recovery you might need to do
after an accidental DROP TABLE, for example. Depending on the issue you
are recovering from, the actions you take for recovery may be vastly
different.

Lastly, there are two main types of backups: raw and logical. Raw backups
—sometimes called physical backups—refer to a copy of files from a
filesystem. Logical backups refer to the SQL statements needed to
reconstruct the data.

Why Backups?

1

Here are a few reasons that backups are important:

Disaster recovery

Disaster recovery is what you do when hardware fails, a nasty bug
corrupts your data, or your server and its data become unavailable or
unusable for some other reason. You need to be ready for everything
from someone accidentally connecting to the wrong server doing an
ALTER TABLE, to the building burning down, to a malicious attacker

or a MySQL bug. Although the odds of any particular disaster striking
are fairly low, taken together they add up.

People changing their minds

You’d be surprised how often people intentionally delete data and then
want it back.

Auditing

Sometimes you need to know what your data or schema looked like at
some point in the past. You might be involved in a lawsuit, for example,
or you might discover a bug in your application and need to see what
the code used to do (sometimes just having your code in version control
isn’t enough).

Testing

One of the easiest ways to test on realistic data is to refresh a test server
periodically with the latest production data. If you’re making backups,
it’s easy: just restore the backup to the test server.

Check your assumptions. For example, do you assume your shared hosting
provider is backing up the MySQL server provided with your account? You

might be surprised. Many hosting providers don’t back up MySQL servers
at all, and others just do a file copy while the server is running, which
probably creates a corrupt backup that’s useless.

Defining Recovery Requirements
If all goes well, you’ll never need to think about recovery. But when you
do, the best backup system in the world won’t help if you never tested
recovering it. You’ll need a great recovery system.

Unfortunately, it’s easier to make your backup systems work smoothly than
it is to build good recovery processes and tools. Here’s why:

Backups come first. You can’t recover unless you’ve first backed
up, so your attention naturally focuses on backups when building a
system.

Backups are automated with scripts and jobs. It’s easy to spend
time fine-tuning the backup process, often without thinking of it.
Five-minute tweaks to your backup process might not seem
important, but are you applying the same attention to recovery, day
in and day out?

Backups are routine, but recovery is usually a crisis situation.

Security gets in the way. If you’re doing offsite backups, you’re
probably encrypting the backup data or taking other measures to
protect it. You know how damaging it would be for your data to be
compromised, but how damaging is it when nobody can unlock
your encrypted volume to recover your data or when you need to
extract a single file from a monolithic encrypted file?

One person can plan, design, and implement backups. That person
might not be available when disaster strikes. You need to train
several people and plan for coverage, so you’re not asking an
unqualified person to recover your data.

There are two Big Important Requirements that are helpful to consider
when you’re planning your backup and recovery strategy. These are the
recovery point objective (RPO) and the recovery time objective (RTO). If
you notice, these sound very similar to the SLOs we discussed in Chapter 2.
They define how much data you’re comfortable losing and how long you’re
comfortable waiting to get it back. Try to answer the following types of
questions when defining your RPO and RTO:

How much data can you lose without serious consequences? Do
you need point-in-time recovery, or is it acceptable to lose
whatever work has happened since your last regular backup? Are
there legal requirements?

How fast does recovery have to be? What kind of downtime is
acceptable? What impacts (e.g., partial unavailability) can your
application and users accept, and how will you build in the
capability to continue functioning when those scenarios happen?

What do you need to recover? Common requirements are to
recover a whole server, a single database, a single table, or just
specific transactions or statements.

It’s a good idea to document the answers to these questions, and indeed
your entire backup policy, as well as the backup procedures.

BACKUP MYTH #1: “MY REPLICA IS MY BACKUP”
This is a mistake we see quite often. A replica is not a backup. Neither
is a RAID array. To understand why, consider this: will they help you
get back all your data if you accidentally execute DROP DATABASE on
your production database? RAID and replication don’t pass even this
simple test. Not only are they not backups, they’re not a substitute for
backups. Nothing but backups fill the need for backups.

Designing a MySQL Backup Solution
Backing up MySQL is harder than it looks. At its most basic, a backup is
just a copy of the data, but your application’s needs, MySQL’s storage
engine architecture, and your system configuration can make it difficult to
make a copy of your data.

Before we go into great detail on all of the available options, we want to
recommend:

Raw backups are practically a must-have for large databases:
logical backups are simply too slow and resource intensive, and
recovery from a logical backup takes way too long. Snapshot-
based backups, Percona XtraBackup, and MySQL Enterprise
Backup are the best options. For small databases, logical backups
can work nicely.

Keep several backup generations.

Extract logical backups (probably from the raw backups)
periodically.

Keep binary logs for point-in-time recovery. Set
expire_logs_days long enough to recover from at least two
generations of raw backups so that you can create a replica and
start it from the running source without applying any binary logs to
it. Back up your binary logs independently of the expiry setting,
and keep them in the backup long enough to recover from at least
the most recent logical backup.

Monitor your backups and backup processes independently from
the backup tools themselves. You need external verification that
they’re OK.

Test your backups and recovery process by going through the
entire recovery process. Measure the resources needed for recovery
(CPU, disk space, wall-clock time, network bandwidth, etc.).

Think hard about security. What happens if someone compromises
your server—can they then get access to the backup server too, or
vice versa?

Knowing your RPO and RTO will guide your backup strategy. Do you need
point-in-time recovery capability, or is it enough to recover to last night’s
backup and lose whatever work has been done since then? If you need
point-in-time recovery, you can probably make a regular backup and ensure
that the binary log is enabled, so you can restore that backup and recover to
the desired point by replaying the binary log.

Generally, the more you can afford to lose, the easier it is to do backups. If
you have very strict requirements, it’s harder to ensure you can recover
everything. There are also different flavors of point-in-time recovery. A
“soft” point-in-time recovery requirement means you’d like to be able to re-
create your data so that it’s “close enough” to where it was when the
problem happened. A “hard” requirement means you can never tolerate the
loss of a committed transaction, even if something terrible happens (such as
the server catching fire). This requires special techniques, such as keeping
your binary log on a separate SAN volume or using Distributed Replicated
Block Device (DRBD) disk replication.

Online or Offline Backups?
If you can get away with it, shutting down MySQL to make a backup is the
easiest, safest, and overall best way to get a consistent copy of the data with
minimal risk of corruption or inconsistency. If you shut down MySQL, you
can copy the data without any complications from things like dirty buffers
in the InnoDB buffer pool or other caches. You don’t need to worry about
your data being modified while you’re trying to back it up, and because the
server isn’t under load from the application, you can make the backup more
quickly.

However, taking a server offline is more expensive than it might seem. As a
result, you’ll almost certainly need to design your backups so that they
don’t require the production server to be taken offline. Depending on your

consistency requirements, though, making a backup while the server is
online can still mean interrupting service significantly.

Here are some performance-related factors to consider when you’re
planning backups:

Backup time

How long does it take to make the backup and copy the backup to the
destination?

Backup load

How much does copying the backup to the destination affect the
server’s performance?

Recovery time

How long does it take to copy your backup image from its storage
location to the MySQL server, replay binary logs, and so on?

The biggest trade-off is backup time versus backup load. You can often
improve one at the other’s expense; for example, you can prioritize the
backup at the expense of causing more performance degradation on the
server.

You can also design your backups to take advantage of load patterns. For
instance, if your server is only 50% loaded for eight hours during the night,
you can try to design your backups to load the server less than 50% and still
complete within eight hours. You can accomplish this in many ways: for
example, you can use ionice and nice to prioritize the copy or compression
operations, use different compression levels, or compress the data on the
backup server instead of the MySQL server. You can also use lzo or pigz for
faster compression. You can use O_DIRECT or fadvise() to bypass the
operating system’s cache for the copy operations, so they don’t pollute the
server’s caches. Tools such as Percona XtraBackup and MySQL Enterprise

Backup also have throttling options, and you can use pv with the --rate-
limit option to limit the throughput of scripts you write yourself.

Logical or Raw Backups?
As mentioned earlier, there are two major ways to back up MySQL’s data:
with a logical backup (also called a dump) and by copying the raw files. A
logical backup contains the data in a form that MySQL can interpret either
as SQL or as delimited text. The raw files are the files as they exist on
disk.

Each type of backup has advantages and disadvantages.

Logical backups
Logical backups have the following advantages:

They’re normal files you can manipulate and inspect with editors
and command-line tools such as grep and sed. This can be very
helpful when restoring data or when you just want to inspect the
data without restoring.

They’re simple to restore. You can just pipe them into mysql or use
mysqlimport.

You can back up and restore across the network—that is, on a
different machine from the MySQL host.

They can work for cloud-based MySQL systems, where you have
no access to the underlying filesystem.

They can be very flexible because mysqldump—the tool most
people prefer to use to make them—can accept lots of options,
such as a WHERE clause to restrict which rows are backed up.

They’re independent of the storage engine. Because you create
them by extracting data from the MySQL server, they abstract
away differences in the underlying data storage.

2

3

They can help avoid data corruption. If your disk drives are failing
and you copy the raw files, you’ll get an error and/or make a
partial or corrupt backup, and unless you check the backup, you
won’t notice it and it’ll be unusable later. If the data MySQL has in
memory is not corrupt, you can sometimes get a trustworthy
logical backup when you can’t get a good raw file copy.

Logical backups have their shortcomings, though:

The server has to do the work of generating them, so they use more
CPU cycles.

Logical backups can be bigger than the underlying files in some
cases. The ASCII representation of the data isn’t always as
efficient as the way the storage engine stores the data. For
example, an integer requires 4 bytes to store, but when written in
ASCII, it can require up to 12 characters. You can often compress
the files effectively and get a smaller backup, but this uses more
CPU resources, resulting in a longer recovery time. (Logical
backups are typically smaller than raw backups if there are a lot of
indexes.)

Dumping and restoring your data isn’t always guaranteed to result
in the same data. Floating-point representation problems, bugs, and
so on can cause trouble, though this is rare.

Restoring from a logical backup requires MySQL to load and
interpret the statements, convert them to the storage format, and
rebuild indexes, all of which is very slow.

The biggest disadvantages are really the cost of dumping the data from
MySQL and the cost of loading data back in via SQL statements. If you use
logical backups, it is essential to test the time required for restoring the data.

Raw backups
Raw backups have the following benefits:

4

Raw file backups simply require you to copy the desired files
somewhere else for backup. The raw files don’t require any extra
work to generate.

Raw backups are very portable across platforms, operating
systems, and MySQL versions. (Logical dumps are, too. We’re
simply pointing this out to alleviate any concerns you might have.)

It can be faster to restore raw backups because the MySQL server
doesn’t have to execute any SQL or build indexes. If you have
InnoDB tables that don’t fit entirely in the server’s memory, it can
be much faster to restore raw files—an order of magnitude or
more. In fact, one of the scariest things about logical backups is
their unpredictable restore time.

Here are some disadvantages of raw backups:

InnoDB’s raw files are often far larger than the corresponding
logical backups. The InnoDB tablespace typically has lots of
unused space. Quite a bit of space is also used for purposes other
than storing table data (the insert buffer, the rollback segment,
etc.).

Raw backups are not always portable across platforms, operating
systems, and MySQL versions. Filename case sensitivity and
floating-point formats are places where you might encounter
trouble. You might not be able to move files to a system whose
floating-point format is different (however, the vast majority of
processors use the IEEE floating-point format).

Raw backups are generally easier and much more efficient. You should not
rely on raw backups for long-term retention or legal requirements, though;
you must make logical backups at least periodically.

Don’t consider a backup (especially a raw backup) to be good until you’ve
tested it. For InnoDB, that means starting a MySQL instance and letting

5

InnoDB recovery run, then running CHECK TABLES. You can skip this or
just run innochecksum on the files, but we don’t recommend it.

We suggest a blend of the two approaches: make raw copies, then start a
MySQL server instance with the resulting data and run mysqlcheck. Then,
at least periodically, dump the data with mysqldump to get a logical backup.
This gives you the advantages of both approaches without unduly
burdening the production server during the dump. It’s especially convenient
if you have the ability to take filesystem snapshots: you can take a snapshot,
copy the snapshot to another server and release it, then test the raw files and
perform a logical backup.

What to Back Up
Your recovery requirements will dictate what you need to back up. The
simplest strategy is to just back up your data and table definitions, but this
is a bare-minimum approach. You generally need a lot more to recover a
server for use in production. Here are some things you might consider
including with your MySQL backups:

Nonobvious data

Don’t forget data that’s easy to overlook: your binary logs and InnoDB
transaction logs, for example. Ideally, you should back up the entire
data directory for MySQL together.

Code

A modern MySQL server can store a lot of code, such as triggers and
stored procedures. If you back up the mysql database, you’ll back up

much of this code, but then it will be hard to restore a single database in
its entirety because some of the “data” in that database, such as stored
procedures, will actually be stored in the mysql database.

Server configuration

If you have to recover from a real disaster—say you’re building a server
from scratch in a new data center after an earthquake—you’ll appreciate
having the server’s configuration files included in the backup.

Selected operating system files

As with the server configuration, it’s important to back up any external
configuration that is essential to a production server. On a Unix server,
this might include your cron jobs, user and group configurations,
administrative scripts, and sudo rules.

These recommendations quickly translate into “back up everything” in
many scenarios. If you have a lot of data, however, this can get expensive,
and you might have to be smarter about how you do your backups. In
particular, you might want to back up different data into different backups.
For example, you can back up data, binary logs, and operating system and
system configuration files separately.

Incremental and Differential Backups
A common strategy for dealing with too much data is to do regular
incremental or differential backups. The difference might be a little
confusing, so let’s clarify the terms: a differential backup is a backup of
everything that has changed since the last full backup, whereas an
incremental backup contains everything that has changed since the last
backup of any type.

For example, suppose that you do a full backup every Sunday. On Monday,
you do a differential backup of everything that has changed since Sunday.
On Tuesday, you have two choices: you can back up everything that’s
changed since Sunday (differential), or you can back up only the data that
has changed since Monday’s backup (incremental).

Both differential and incremental backups are partial backups: they
generally don’t contain a full data set, because some data almost certainly
hasn’t changed. Partial backups are often desirable for their savings in
overhead on the server, backup time, and backup space. Some partial
backups don’t really reduce the overhead on the server, though. Percona
XtraBackup and MySQL Enterprise Backup, for example, still scan every
block of data on the server, so they don’t save a lot of overhead, although
they do save a bit of wall-clock time, lots of CPU time for compression,
and, of course, disk space.

You can get pretty fancy with advanced backup techniques, but the more
complex your solution is, the more risky it’s likely to be. Beware of hidden
dangers, such as multiple generations of backups that are tightly coupled to
one another, because if one generation contains corruption, it can invalidate
all of the others, too.

Here are some advanced backup ideas:

Use the incremental backup features of Percona XtraBackup or
MySQL Enterprise Backup.

Back up your binary logs. You can also use FLUSH LOGS to
begin a new binary log after each backup, then back up only new
binary logs.

If you have “lookup” tables that contain data such as lists of month
names in various languages or abbreviations for states or regions, it
can be a good idea to place them into a separate database, so you
don’t have to back them up all the time. An even better option
would be to move these to code instead of a database.

Don’t back up rows that haven’t changed. If a table is INSERT-
only, such as a table that logs hits to a web page, you can add a
TIMESTAMP column and back up only rows that have been
inserted since the last backup. This works best in conjunction with
mysqldump.

6

Don’t back up some data at all. Sometimes this makes a lot of
sense—for example, if you have a data warehouse that’s built from
other data and is technically redundant, you can merely back up the
data you used to build the warehouse instead of the data warehouse
itself. This can be a good idea even if it’s very slow to “recover” by
rebuilding the warehouse from the original files. Avoiding the
backups can add up over time to much greater savings than the
potentially faster recovery time you’ll gain by having a full
backup. You can also opt not to back up some temporary data, such
as tables that hold website session data.

Back up everything, but send it to a destination that has data
deduplication features, such as a ZFS filer.

The drawbacks of incremental backups include increased recovery
complexity, increased risk, and a longer recovery time. If you can do full
backups, we suggest that you do so for simplicity’s sake.

Regardless, you definitely need to do full backups occasionally; we suggest
at least weekly. You can’t expect to recover from a month’s worth of
incremental backups. Even a week is a lot of work and risk.

Replication
The biggest advantage to backing up from a replica is that it doesn’t
interrupt the source or place extra load on it. This is a good reason to set up
a replica server, even if you don’t need it for load balancing or high
availability. If money is a concern, you can always use the backup replica
for other purposes, such as reporting—as long as you don’t write to it and
thus change the data you’re trying to back up. The replica doesn’t have to
be dedicated to backups; it just has to be able to catch up to the source in
time to make your next backup in the event that its other roles make it fall
behind in replication at times.

When you make a backup from a replica, it’s very wise to use GTIDs, as
mentioned in Chapter 9. This avoids having to save all the information

about the replication processes, such as the replica’s position relative to the
source. This is useful for cloning new replicas, reapplying binary logs to the
source to get point-in-time recovery, promoting the replica to a source, and
more. Also be sure that no temporary tables are open if you stop your
replica because they might keep you from restarting replication.

As we mentioned in “Delayed Replication” in Chapter 9, intentionally
delaying replication on one of your replicas can be very useful for
recovering from some disaster scenarios. Suppose you delay replication by
an hour. If an unwanted statement runs on the source, you have an hour to
notice it and stop the replica before it repeats the event from its relay log.
You can then promote the replica to source and replay some relatively small
number of log events, skipping the bad statements. This can be much faster
than the point-in-time recovery technique we discuss later.

NOTE
The replica might not have the same data as the source. Many people assume replicas
are exact copies of their source, but in our experience, data mismatches on replicas are
common, and MySQL has no way to detect this problem. The only way to detect it is
with a tool like Percona Toolkit’s pt-table-checksum. The best way to prevent this is to
use the super_read_only flag to ensure that only replication can write to replicas.

Having a replicated copy of your data might help protect you from problems like disk
meltdowns on the source, but there’s no guarantee. Replication is not a backup.

Managing and Backing Up Binary Logs
Your server’s binary logs are one of the most important things you can back
up. They are necessary for point-in-time recovery, and because they’re
usually smaller than your data, they’re easier to back up frequently. If you
have a backup of your data at some point and all the binary logs since then,
you can replay the binary logs and “roll forward” changes made since the
last full backup.

MySQL uses the binary log for replication, too. That means that your
backup and recovery policy often interacts with your replication

configuration. It’s a good idea to back up binary logs frequently. If you
can’t afford to lose more than 30 minutes’ worth of data, back them up at
least every 30 minutes.

You’ll need to decide on a log-expiration policy to keep MySQL from
filling your disk with binary logs. How large your logs grow depends on
your workload and the logging format (row-based logging results in larger
log entries). We suggest you keep logs as long as they’re useful, if possible.
Keeping them is helpful for setting up replicas, analyzing your server’s
workload, auditing, and point-in-time recovery from your last full backup.
Consider all of these needs when you decide how long you want to keep
your logs.

A common setup is to use the binlog_expire_logs_seconds
variable to tell MySQL to purge logs after a while. You should not remove
these files by hand.

The binlog_expire_logs_seconds setting takes effect upon server
startup or when MySQL rotates the binary log, so if your binary log never
fills up and rotates, the server will not purge older entries. It decides which
files to purge by looking at their modification times, not their contents.

Backup and Recovery Tools
A variety of good and not-so-good backup tools are available. For raw
backups, we recommend Percona XtraBackup. It’s open source, widely
used, and well documented. For logical backups, we prefer mydumper.
Although mysqldump ships with MySQL, its single-threaded nature can
make for some very long backup and restore times out of the box.
mydumper has parallelism built in, which can make it much faster to get a
logical backup.

MySQL Enterprise Backup
This tool is part of a MySQL Enterprise subscription from Oracle. Using it
does not require stopping MySQL, setting locks, or interrupting normal

database activity (although it will cause some extra load on your server). It
supports features like compressed backups, incremental backups, and
streaming backups to another server. It is the “official” backup tool for
MySQL.

Percona XtraBackup
Percona XtraBackup is quite similar to MySQL Enterprise Backup in many
ways, but it’s open source and free. It supports features like streaming,
incremental, compressed, and multithreaded (parallel) backup operations. It
also has a variety of special features to reduce the impact of backups on
heavily loaded systems.

Percona XtraBackup works by “tailing” the InnoDB logfiles in a
background thread, then copying the InnoDB datafiles. This is a slightly
involved process, with special checks to ensure that data is copied
consistently. When all the datafiles are copied, the log-copying thread
finishes, too. The result is a copy of all the data but at different points in
time. The logs can now be applied to the datafiles, using InnoDB’s crash
recovery routines, to bring all of the datafiles into a consistent state. This is
referred to as the prepare process. Once prepared, the backup is fully
consistent and contains all committed transactions as of the ending point of
the file-copy process. All of this happens completely externally to MySQL,
so it doesn’t need to connect to or access MySQL in any way.

mydumper
Several current and former MySQL engineers created mydumper as a
replacement for mysqldump, based on their years of experience. It is a
multithreaded (parallel) backup and restore tool set for MySQL with a lot of
nice features. Many people will probably find the speed of multithreaded
backups and restores to be this tool’s most attractive feature.

mysqldump

https://oreil.ly/i3AXj

Most people use the programs that ship with MySQL, so despite its
shortcomings, the most common choice for creating logical backups of data
and schemas is mysqldump. Refer to the official manual for details on how
to use this tool.

Backing Up Data
As with most things, there are better and worse ways to actually make a
backup—and the obvious ways are sometimes not so good. The trick is to
maximize your network, disk, and CPU capacity to make backups as fast as
possible. This is a balancing act, and you’ll have to experiment to find the
“sweet spot.”

Logical SQL Backups
Logical SQL dumps are what most people are familiar with because they’re
what mysqldump creates by default. For example, dumping a small table
with the default options will produce the following (abridged) output:

$ mysqldump test t1
-- [Version and host comments]
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
-- [More version-specific comments to save options for restore]
--
-- Table structure for table `t1`
--

DROP TABLE IF EXISTS `t1`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!50503 SET character_set_client = utf8mb4 */;
CREATE TABLE `t1` (
 `a` int NOT NULL,
 PRIMARY KEY (`a`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci;
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `t1`
--

LOCK TABLES `t1` WRITE;
/*!40000 ALTER TABLE `t1` DISABLE KEYS */;
INSERT INTO `t1` VALUES (1);
/*!40000 ALTER TABLE `t1` ENABLE KEYS */;
UNLOCK TABLES;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;
/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
-- [More option restoration]

The dump file contains both the table structure and the data, all written out
as valid SQL commands. The file begins with comments that set various
MySQL options. These are present either to make the restore work more
efficiently or for compatibility and correctness. Next, you can see the
table’s structure and then its data. Finally, the script resets the options it
changed at the beginning of the dump.

The dump’s output is executable for a restore operation. This is convenient,
but mysqldump’s default options aren’t great for making a huge backup.

mysqldump is not the only tool that can make SQL logical backups. You can
also create them with mydumper or phpMyAdmin, for example. What we’d
really like to point out here is not so much problems with any particular tool
but rather the shortcomings of doing monolithic SQL logical backups in the
first place. Here are the main problem areas:

Schema and data stored together

Although this is convenient if you want to restore from a single file, it
makes things difficult if you need to restore only one table or want to
restore only the data. You can alleviate this concern by dumping twice
—once for data, once for schema—but you’ll still have the next
problem.

Huge SQL statements

It’s a lot of work for the server to parse and execute all of the SQL
statements. This is a very slow way to load data.

A single huge file

Most text editors can’t edit large files or files with very long lines.
Although you can sometimes use command-line stream editors, such as
sed or grep, to pull out the data you need, it’s preferable to keep the files
small.

Logical backups are expensive

There are more efficient ways to get data out of MySQL than fetching it
from the storage engine and sending it over the client/server protocol as
a result set.

As you can see, logical backups can be difficult to make work for your
environment. If you need to use logical backups, we strongly recommend
that you look at mydumper to avoid the single-threaded nature and spend
time measuring the impact on your database as you perform the backup.

Filesystem Snapshots
Filesystem snapshots are a great way to make online backups. Snapshot-
capable filesystems can create a consistent image of their contents at an
instant in time, which you can then use to make a backup. Snapshot-capable
filesystems and appliances include FreeBSD’s filesystem, the ZFS
filesystem, GNU/Linux’s LVM, and many SAN systems and file-storage
solutions, such as NetApp storage appliances. Some of the remotely
attached disk options available in cloud providers offer disk snapshotting as
well.

Don’t confuse a snapshot with a backup. Taking a snapshot is simply a way
of reducing the time for which locks must be held; after releasing the locks,
you must copy the files to the backup. In fact, you can optionally take
snapshots on InnoDB without even acquiring locks. We’ll show you two

ways to use LVM to make backups of an all-InnoDB system, with your
choice of minimal or zero locking.

BACKUP MYTH #2: “MY SNAPSHOT IS MY BACKUP”
A snapshot, whether it’s an LVM, ZFS, or SAN snapshot, isn’t a real
backup because it doesn’t contain a full copy of your data. Because
snapshots are copy-on-write, they contain only the differences between
the live copy of the data and the data at the point in time when the
snapshot happened. If an unmodified block becomes corrupt in the live
copy of the data, there’s no good copy of that block that you can use for
recovery, and every snapshot sees the same corrupted block that the live
volume does. Use snapshots to “freeze” your data while you take a
backup, but don’t rely on the snapshot itself as a backup.

A snapshot can be a great way to make a backup for specific uses. One
example is as a fallback in case of a problem during an upgrade. You can
take a snapshot, upgrade, and, if there’s a problem, just roll back to the
snapshot. You can do the same thing for any operation that’s uncertain and
risky, such as altering a huge table (which will take an unknown amount of
time).

How LVM snapshots work
LVM uses copy-on-write technology to create a snapshot—that is, a logical
copy of an entire volume at an instant in time. It’s a little like MVCC in a
database, except it keeps only one old version of the data.

Notice we didn’t say a physical copy. A logical copy appears to contain all
the same data as the volume you snapshotted, but initially it contains no
data. Instead of copying the data to the snapshot, LVM simply notes the
time at which you created the snapshot, then it reads the data from the
original volume when you request it from the snapshot. So the initial copy
is basically an instantaneous operation, no matter how large a volume
you’re snapshotting.

When something changes the data in the original volume, LVM copies the
affected blocks to an area reserved for the snapshot before it writes any
changes to them. LVM doesn’t keep multiple “old versions” of the data, so
additional writes to blocks that are changed in the original volume don’t
require any further work for the snapshot. In other words, only the first
write to each block causes a copy-on-write to the reserved area.

Now, when you request these blocks in the snapshot, LVM reads the data
from the copied blocks instead of from the original volume. This lets you
continue to see the same data in the snapshot without blocking anything on
the original volume. Figure 10-1 depicts this arrangement.

The snapshot creates a new logical device in the /dev directory, and you can
mount this device just as you would mount any other.

You can theoretically snapshot an enormous volume and consume very little
physical space with this technique. However, you need to set aside enough
space to hold all the blocks you expect to be updated in the original volume
while you hold the snapshot open. If you don’t reserve enough copy-on-
write space, the snapshot will run out of space, and the device will become
unavailable. The effect is like unplugging an external drive: any backup job
that’s reading from the device will fail with an I/O error.

Figure 10-1. How copy-on-write technology reduces the size needed for a volume snapshot

Prerequisites and configuration
It’s almost trivial to create a snapshot, but you need to ensure that your
system is configured in such a way that you can get a consistent copy of all
the files you want to back up at a single instant in time. First, make sure
your system meets these conditions:

All InnoDB files (InnoDB tablespace files and InnoDB transaction
logs) must be on a single logical volume (partition). You need
absolute point-in-time consistency, and LVM can’t take consistent
snapshots of more than one volume at a time. (This is an LVM
limitation; some other systems do not have this problem.)

If you need to back up the table definitions too, the MySQL data
directory must be in the same logical volume. If you use another
method to back up table definitions, such as a schema-only backup

into your version control system, you might not need to worry
about this.

You must have enough free space in the volume group to create the
snapshot. How much you need will depend on your workload.
When you set up your system, leave some unallocated space so
that you’ll have room for snapshots later.

LVM has the concept of a volume group, which contains one or more
logical volumes. You can see the volume groups on your system as follows:

$ vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 1 4 0 wz--n- 534.18G 249.18G

This output shows a volume group that has four logical volumes distributed
across one physical volume, with about 250 GB free. The vgdisplay
command gives more detail if you need it. Now let’s take a look at the
logical volumes on the system:

$ lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 home vg -wi-ao 40.00G
 mysql vg -wi-ao 225.00G
 tmp vg -wi-ao 10.00G
 var vg -wi-ao 10.00G

The output shows that the mysql volume has 225 GB of space. The device
name is /dev/vg/mysql. This is just a name, even though it looks like a
filesystem path. To add to the confusion, there’s a symbolic link from the
file of the same name to the real device node at /dev/mapper/vg-mysql,
which you can see with the ls and mount commands:

$ ls -l /dev/vg/mysql
lrwxrwxrwx 1 root root 20 Sep 19 13:08 /dev/vg/mysql ->
/dev/mapper/vg-mysql

mount | grep mysql
/dev/mapper/vg-mysql on /var/lib/mysql

Armed with this information, you’re ready to create a filesystem snapshot.

Creating, mounting, and removing an LVM snapshot
You can create the snapshot with a single command. You just need to decide
where to put it and how much space to allocate for copy-on-write. Don’t
hesitate to use more space than you think you’ll need. LVM doesn’t use the
space you specify right away; it just reserves it for future use, so there’s no
harm in reserving lots of space, unless you need to leave space for other
snapshots at the same time.

Let’s create a snapshot just for practice. We’ll give it 16 GB of space for
copy-on-write, and we’ll call it backup_mysql:

$ lvcreate --size 16G --snapshot --name backup_mysql
/dev/vg/mysql
 Logical volume "backup_mysql" created

TIP
We deliberately called the volume backup_mysql instead of mysql_backup so
that tab completion would be unambiguous. This helps avoid the possibility of tab
completion causing you to delete the mysql volume group accidentally.

Now let’s see the newly created volume’s status:

$ lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 backup_mysql vg swi-a- 16.00G mysql 0.01
 home vg -wi-ao 40.00G
 mysql vg owi-ao 225.00G
 tmp vg -wi-ao 10.00G
 var vg -wi-ao 10.00G

Notice that the snapshot’s attributes are different from the original device’s
and that the display shows a little extra information: its origin and how
much of the allocated 16 GB is currently being used for copy-on-write. It’s
a good idea to monitor this as you make your backup, so you can see if the
device is getting full and is about to fail. You can monitor your device’s
status interactively or with a monitoring system, such as Nagios:

$ watch 'lvs | grep backup'

As you saw from the output of mount earlier, the mysql volume contains
a filesystem. That means the snapshot volume does too, and you can mount
and use it just like any other filesystem:

$ mkdir /tmp/backup
$ mount /dev/mapper/vg-backup_mysql /tmp/backup
$ ls -l /tmp/backup
total 188880
-rw-r-----. 1 mysql mysql 56 Jul 30 22:16 auto.cnf
-rw-r-----. 1 mysql mysql 475 Jul 30 22:31 binlog.000001
-rw-r-----. 1 mysql mysql 156 Jul 30 22:31 binlog.000002
-rw-r-----. 1 mysql mysql 32 Jul 30 22:31 binlog.index
-rw-------. 1 mysql mysql 1676 Jul 30 22:16 ca-key.pem
-rw-r--r--. 1 mysql mysql 1120 Jul 30 22:16 ca.pem
-rw-r--r--. 1 mysql mysql 1120 Jul 30 22:16 client-cert.pem
-rw-------. 1 mysql mysql 1676 Jul 30 22:16 client-key.pem
... omitted ...

This is just for practice, so we’ll unmount and remove the snapshot now
with the lvremove command:

$ umount /tmp/backup
$ rmdir /tmp/backup
$ lvremove --force /dev/vg/backup_mysql
 Logical volume "backup_mysql" successfully removed

Lock-free InnoDB backups with LVM snapshots

When you run MySQL 8+ with only InnoDB tables, using GTIDs and full
ACID-compliant mode, making a backup is incredibly easy. While MySQL
is running, simply take a snapshot, mount the snapshot, and then copy the
files to your backup location. There’s no need to lock any files, capture any
output, or do anything special. Restoring the files from one of these
backups will perform InnoDB crash recovery, and the GTID settings will
already know which transactions have been processed.

Planning for LVM backups
The most important thing to plan for is allocating enough space for the
snapshot. We take the following approach:

Remember that LVM needs to copy each modified block to the
snapshot only once. When MySQL writes a block in the original
volume, it copies the block to the snapshot, then makes a note of
the copied block in its exception table. Future writes to this block
will not cause any further copies to the snapshot.

If you use only InnoDB, consider how InnoDB writes data.
Because it writes all data twice, at least half of InnoDB’s write I/O
goes to the doublewrite buffer, logfiles, and other relatively small
areas on disk. These reuse the same disk blocks over and over, so
they’ll have an initial impact on the snapshot, but after that, they’ll
stop causing writes to the snapshot.

Next, estimate how much of your I/O will be writing to blocks that
haven’t yet been copied to the snapshot, as opposed to modifying
the same data again and again. Be generous with your estimate.

Use vmstat or iostat to gather statistics on how many blocks your
server writes per second.

Measure (or estimate) how long it will take to copy your backup to
another location: in other words, how long you need to keep the
LVM snapshot open.

Let’s suppose you’ve estimated that half of your writes will cause writes to
the snapshot’s copy-on-write space, and your server writes 10 MB per
second. If it takes an hour (3,600 seconds) to copy the snapshot to another
server, you will need 1/2 × 10 MB × 3,600 or 18 GB of space for the
snapshot. Err on the side of caution and add some extra space as well.

Sometimes it’s easy to calculate how much data will change while you keep
the snapshot open.

Other uses and alternatives
You can use snapshots for more than just backups. For example, as
mentioned previously, they can be a useful way to take a “checkpoint” just
before a potentially dangerous action. Some systems let you promote the
snapshot to the original filesystem. This makes it easy to roll back to the
point at which you took the snapshot.

Filesystem snapshots aren’t the only way to get an instantaneous copy of
your data, either. Another option is a RAID split: if you have a three-disk
software RAID mirror, for example, you can remove one disk from the
mirror and mount it separately. There’s no copy-on-write penalty, and it’s
easy to promote this kind of “snapshot” to be the source’s copy if necessary.
After adding the disk back to the RAID set, however, it will have to be
resynced. There’s no free lunch, sadly.

Percona XtraBackup
XtraBackup is one of the most popular solutions for backing up MySQL,
and for good reason. It is very configurable, including ways to back up
compressed, encrypted files.

How XtraBackup works
InnoDB is a crash-safe storage engine. If MySQL experiences a crash, it
uses a crash recovery mode, which is based on redo logs, to bring your data
back online correctly. Percona XtraBackup is based on this design. When
you take a backup with Percona XtraBackup, it records the log sequence

number (LSN) and uses that to perform crash recovery on your backed-up
files. It also incorporates locking at specific points to ensure that data about
replication is consistent with the data. For a more detailed explanation, refer
to the XtraBackup documentation.

Here’s a sample XtraBackup process:

$ xtrabackup --backup --target-dir=/backups/

xtrabackup version 8.0.25-17 based on MySQL server 8.0.25 Linux
(x86_64)
(revision id: d27028b)
Using server version 8.0.25-15
210821 17:01:40 Executing LOCK TABLES FOR BACKUP…

Up to here, we can see that XtraBackup has determined the running version
of MySQL. This helps it determine what capabilities it has and how it
should back up files. In our case, the LOCK TABLES FOR BACKUP
command is available and is how XtraBackup will get a lock on tables:

210821 17:01:41 [01] Copying ./ibdata1 to /backups/ibdata1
210821 17:01:41 [01] ...done
210821 17:01:41 [01] Copying ./sys/sys_config.ibd to
/backups/sys/sys_config.ibd
210821 17:01:41 [01] ...done
210821 17:01:41 [01] Copying ./test/t1.ibd to
/backups/test/t1.ibd
210821 17:01:41 [01] ...done
210821 17:01:41 [01] Copying ./foo/t1.ibd to /backups/foo/t1.ibd
210821 17:01:41 [01] ...done
210821 17:01:41 [01] Copying ./sakila/actor.ibd to
/backups/sakila/actor.ibd
210821 17:01:41 [01] ...done

XtraBackup is now copying the files from the source to destination:

210821 17:01:42 Finished backing up non-InnoDB tables and files
210821 17:01:42 Executing FLUSH NO_WRITE_TO_BINLOG BINARY LOGS
210821 17:01:42 Selecting LSN and binary log position from

https://oreil.ly/8JWIB

p_s.log_status
210821 17:01:42 [00] Copying /var/lib/mysql/binlog.40 to
/backups/binlog.04
up to position 156
210821 17:01:42 [00] ...done
210821 17:01:42 [00] Writing /backups/binlog.index
210821 17:01:42 [00] ...done
210821 17:01:42 [00] Writing /backups/xtrabackup_binlog_info
210821 17:01:42 [00] ...done

Once finished copying files, it collects replication information:

210821 17:01:42 Executing FLUSH NO_WRITE_TO_BINLOG ENGINE LOGS...
xtrabackup: The latest check point (for incremental): '35005805'
xtrabackup: Stopping log copying thread at LSN 35005815.
210821 17:01:42 >> log scanned up to (35005825)
Starting to parse redo log at lsn = 35005460
210821 17:01:43 Executing UNLOCK TABLES
210821 17:01:43 All tables unlocked

Now XtraBackup has determined the latest checkpoint for InnoDB. This
will help it apply the writes that happened during the backup. It releases the
previous LOCK TABLES FOR BACKUP command with UNLOCK
TABLES:

210821 17:01:43 [00] Copying ib_buffer_pool to
/backups/ib_buffer_pool
210821 17:01:43 [00] ...done
210821 17:01:43 Backup created in directory '/backups/'
MySQL binlog position: filename 'binlog.000004', position '156'
210821 17:01:43 [00] Writing /backups/backup-my.cnf
210821 17:01:43 [00] ...done
210821 17:01:43 [00] Writing /backups/xtrabackup_info
210821 17:01:43 [00] ...done
xtrabackup: Transaction log of lsn (35005795) to (35005835) was
copied.
210821 17:01:44 completed OK!

The last steps are to record the LSN, copy over a buffer pool dump, and
write out the final files. One is a copy of the my.cnf file, and the

xtrabackup_info file contains metadata about the backup, like the MySQL
UUID, versions of the server, and XtraBackup.

Example usage
We’ve highlighted some basic recipes for how to use XtraBackup in
common ways, but a few notes before that:

Your MySQL installation should be secured with a password.
Make sure you use the --user and --password options to
specify an account with enough permissions to make backups.

XtraBackup is also very verbose in its output. We’ve trimmed the
output to highlight the most important parts of each use case.

As always, review the official manual for Percona XtraBackup
before running any commands here, as syntax and options may
change. Even though we’re not aware of any data loss associated
with this tool, you should test on a nonproduction backup before
trying with your critical data.

Basic backup to directory

The first method we want to show is how you can use XtraBackup to make
a full backup of your data into another directory. This allows you to choose
what you do with the data afterward, which could be another disk, a
directory on the same disk, or a mounted file share on a larger backup
server. Keep in mind, doing this kind of full backup will require the
appropriate space available to copy the files.

Here is the most basic usage for XtraBackup, specifying the mode (backup)
and where to back up the files (target-dir):

$ xtrabackup --backup --target-dir=/backups/

Once you execute, the output will look similar to that under “How
XtraBackup works”. If successful, the /backups directory will contain a

complete copy of your data.

Streaming backup

Copying all files into a new directory may not be the most ideal use case.
Sometimes it’s easier to keep multiple backups in a directory. This is where
the streaming-backup option can be useful. Streaming allows you to write
the backup out as a single file:

$ xtrabackup --backup --stream=xbstream >
/backups/backup.xbstream

In this usage, we’ve still specified the backup mode and removed the
target-dir option, since output will be to STDOUT. We then redirected
it to a file.

Note that you could also use a Bash shell command with date to include the
timestamp in the output filename, like this:

$ xtrabackup --backup --stream=xbstream > /backups/backup-$(date
+%F).xbstream

This will run through the entire backup process as before, with <STDOUT>
being used as the destination. The contents will be written to the xbstream
file in /backups.

Backup with compression

As we noted previously, you’ll need to have enough space to make an entire
copy of your datafiles or enough space for the single xbstream file. One
common option to ease the space requirement is to use the compression
feature of XtraBackup:

$ xtrabackup --backup --compress --stream=xbstream >
/backups/backup-
compressed.xbstream

You will notice that instead of showing “Streaming” for each table, it now
reports “Compressing and streaming.” In our testing, we had loaded the
Sakila Sample Database and observed a 94 MB uncompressed xbstream file
turn into a 6.5 MB compressed one.

Backup with encryption

The last example we want to cover is using encryption as part of your
backup strategy. Using encryption will use more CPU, and your backup
process will take longer; however, this could be an acceptable trade-off
given that a backup is an easy target to get a lot of data with one file. We’re
again using the backup mode and streaming, but we’re using encrypt
with a cipher and encrypt-key-file to point to where the key is:

$ xtrabackup --backup --encrypt=AES256 --encrypt-key-
file=/safe/key/location/encrypt.key --stream=xbstream >
/backups/backup-
encrypted.xbstream

Our output changed again, indicating “Encrypting and streaming” for each
file.

Note that you can also use --encrypt-key and specify it on the
command line. We discourage doing this because the key will be exposed in
the process list or as part of the /proc filesystem on Linux.

Other important flags

One of the aspects you’ll want to pay attention to is how long it takes your
backup to complete. To help with this, take a look at the --parallel and
-compress-threads options. Using these will increase the CPU usage
but should reduce the overall time it takes to back up. Encryption also has a
similar parallelization option.

If you have a large number of databases and tables, look at --rsync to
optimize the file-copy process.

Recovering from a Backup
How you recover your data depends on how you backed it up. You might
need to take some or all of the following steps:

1. Stop the MySQL server.

2. Take notes on the server’s configuration and file permissions.

3. Move the data from the backup into the MySQL data directory.

4. Make configuration changes.

5. Change file permissions.

6. Restart the server with limited access, and wait for it to start fully.

7. Reload logical backup files.

8. Examine and replay binary logs.

9. Verify what you’ve restored.

10. Restart the server with full access.

We demonstrate how to do each of these steps as needed in the following
sections. We also add notes specific to certain backup methods or tools in
sections about those methods or tools later in this chapter.

NOTE
If there’s a chance you’ll need the current versions of your files, don’t replace them with
the files from the backup. For example, if your backup includes the binary logs and you
need to replay binary logs for point-in-time recovery, don’t overwrite the current binary
logs with older copies from the backup. Rename them or move them elsewhere if
necessary.

During recovery, it’s often important to make MySQL inaccessible to
everything except the recovery process. We like to start MySQL with the -
-skip-networking and --

socket=/tmp/mysql_recover.sock options to ensure that it is
unavailable to existing applications until we’ve checked it and brought it
back online. This is especially important for logical backups, which are
loaded in pieces.

Restoring Logical Backups
If you’re restoring logical backups instead of raw files, you need to use the
MySQL server itself to load the data back into the tables, as opposed to
using the operating system to simply copy files into place.

Before you load that dump file, however, take a moment to consider how
large it is, how long it’ll take to load, and anything you might want to do
before you start, such as notifying your users or disabling part of your
application. Disabling binary logging might be a good idea, unless you need
to replicate the restoration to a replica: a huge dump file is hard enough for
the server to load, and writing it to the binary log adds even more (possibly
unnecessary) overhead. Loading huge files also has consequences for some
storage engines. For example, it’s not a good idea to load 100 GB of data
into InnoDB in a single transaction because of the huge rollback segment
that will result. You should load in manageable chunks and commit the
transaction after each chunk.

There are two kinds of restoration you might do, which correspond to the
two kinds of logical backups you can make.

If you have a SQL dump, the file will contain executable SQL. All you
need to do is run it. Assuming you backed up the Sakila Sample Database
and schema into a single file, the following is a typical command you might
use to restore it:

$ mysql < sakila-backup.sql

You can also load the file from within the mysql command-line client with
the SOURCE command. Although this is mostly a different way of doing the
same thing, it makes some things easier. For example, if you’re an

administrative user in MySQL, you can turn off binary logging of the
statements you’ll execute from within your client connection and then load
the file without needing to restart the MySQL server:

SET SQL_LOG_BIN = 0;
SOURCE sakila-backup.sql;
SET SQL_LOG_BIN = 1;

If you use SOURCE, be aware that an error won’t abort a batch of
statements, as it will by default when you redirect the file into mysql.

If you compressed the backup, don’t separately decompress and load it.
Instead, decompress and load it in a single operation. This is much faster:

$ gunzip -c sakila-backup.sql.gz | mysql

What if you want to restore only a single table (for example, the actor
table)? If your data has no line breaks, it’s not hard to restore the data if the
schema is already in place:

$ grep 'INSERT INTO `actor`' sakila-backup.sql | mysql sakila

Or, if the file is compressed:

$ gunzip -c sakila-backup.sql.gz | grep 'INSERT INTO `actor`'|
mysql sakila

If you need to create the table as well as restore the data and you have the
entire database in a single file, you’ll have to edit the file. This is why some
people like to dump each table into its own file. Most editors can’t deal with
huge files, especially if they’re compressed. Besides, you don’t want to
actually edit the file itself; you just want to extract the relevant lines, so
you’ll probably have to do some command-line work. It’s easy to use grep
to pull out only the INSERT statements for a given table, as we did in the

previous commands, but it’s harder to get the CREATE TABLE statement.
Here’s a sed script that extracts the paragraph you need:

$ sed -e '/./{H;$!d;}' -e 'x;/CREATE TABLE `actor`/!d;q' sakila-
backup.sql

That’s pretty cryptic, we admit. If you have to do this kind of work to
restore data, your backups are poorly designed. With a little planning, it’s
possible to prevent a situation in which you’re panicked and trying to figure
out how sed works. Just back up each table into its own file, or, better yet,
back up the data and schema separately.

Restoring Raw Files from Snapshot
Restoring raw files tends to be pretty straightforward, which is another way
of saying there aren’t many options. This can be a good or a bad thing
depending on your recovery requirements. The usual procedure is simply to
copy the files into place.

If you’re restoring a traditional InnoDB setup, where all tables are stored in
a single tablespace, you’ll have to shut down MySQL, copy or move the
files into place, and then restart. You also need to ensure that InnoDB’s
transaction logfiles match its tablespace files. If the files don’t match—for
example, if you replace the tablespace files but not the transaction logfiles
—InnoDB will refuse to start. This is one reason it’s crucial to back up the
transaction log along with the datafiles.

If you’re using the InnoDB file-per-table feature
(innodb_file_per_table), InnoDB stores the data and indexes for
each table in an .ibd file. You can back up and restore individual tables by
copying these files, and you can do it while the server is running, but it’s
not very simple. The individual files are not independent from InnoDB as a
whole. Each .ibd file has internal information that tells InnoDB how the file
is related to the main (shared) tablespace. When you restore such a file, you
have to tell InnoDB to “import” the file.

There are many restrictions on this process, which you can read about in the
MySQL manual section on using per-table tablespaces. The biggest is that
you can only restore a table to the server from which you backed it up. It’s
not impossible to back up and restore tables in this configuration, but it’s
trickier than you might think.

All this complexity means that restoring raw files can be very tedious, and
it’s easy to get it wrong. A good rule of thumb is that the harder and more
complex your recovery procedure becomes, the more you need to protect
yourself with logical backups as well. It’s always a good idea to have a
logical backup, in case something goes wrong and you can’t convince
MySQL to use your raw backups.

Restoring with Percona XtraBackup
In the section “How XtraBackup works”, we mentioned that it uses
InnoDB’s crash-recovery process to take safe backups. This means that for
us to use files that were backed up with XtraBackup, we need to go through
additional steps.

If you used a streaming backup, you’ll need to unpack the xbstream file
first. For xbstream, you can use the xbstream command to extract:

$ xbstream -x < backup.xbstream

This will extract all files to your current location, or you can use the -C
option to change to a specific directory beforehand. If you used
compression or encryption, you can use similar options to reverse the
process. For a compressed file, use --decompress, and for encryption,
use --decrypt while specifying the --encrypt-key-file location:

$ xbstream -x --decompress < backup-compressed.xbstream

$ xbstream -x --decrypt --encrypt-key-
file=/safe/key/location/encrypt.key
 < backup-encrypted.xbstream

Once complete, the next step is to prepare the files. Preparing is the process
that actually performs the crash-recovery actions and ensures that you’re
recovering all data:

$ xtrabackup --prepare --target-dir=/restore

TIP
If you’re not using streaming mode, you can perform the prepare phase after you make
the backup. This will result in backing up a prepared backup and reduce the amount of
work you need to do when it comes time to restore.

Once completed and successful, you’re now ready to use these files to start
MySQL:

$ xtrabackup --move-back --target-dir=/restore

TIP
You can use the --copy-back or --move-back flags with xtrabackup to copy
or move the files into place correctly.

XtraBackup will automatically detect your data-dir variable from your
MySQL installation and move the files to the correct location.

Starting MySQL After Restoring Raw Files
There are a few things you’ll need to do before you start the MySQL server
you’re recovering.

The first and most important thing, and one of the easiest to forget, is to
check your server’s configuration and make sure the restored files have the
correct owner and permissions before you try to start the MySQL server.

These attributes must be exactly right, or MySQL might not start. The
attributes vary from system to system, so check your notes to see exactly
what you’ll need to set. You typically want the mysql user and group to own
the files and directories, which you want to be readable and writable by that
user and group but no others.

We also suggest watching the MySQL error log while the server starts. On a
Unix-style system, you can watch the file like this:

$ tail -f /var/log/mysql/mysql.err

The exact location of the error log will vary. Once you’re monitoring the
file, you can start the MySQL server and watch for errors. If all goes well,
you’ll have a nicely recovered server once MySQL starts.

Watching the error log is even more important in newer MySQL versions.
Even if the server seems to start without trouble, you should run SHOW
TABLE STATUS in each database, then check the error log again.

Summary
Everyone knows that they need backups, but not everyone realizes that they
need recoverable backups. There are many ways to design backups that
contradict your recovery requirements. To help avoid this problem, we
suggest that you define and document your RPO and RTO, and use those
requirements when choosing a backup system.

It’s also important to test recovery on a routine basis and ensure that it
works. It’s easy to set up mysqldump and let it run every night without
realizing that your data has grown over time to the point where it might take
days or weeks to import again. The worst time to find out how long your
recovery will take is when you actually need it. A backup that completes in
hours can literally take weeks to restore, depending on your hardware,
schema, indexes, and data.

Don’t fall into the trap of thinking that a replica is a backup. It’s a less
intrusive source for taking a backup, but it’s not a backup. The same is true
of your RAID volume, SAN, and filesystem snapshots. Make sure that your
backups can pass the DROP TABLE test (or the “I got hacked” test), as well
as the test of losing your data center. And if you take backups from a
replica, be sure that your replicas are consistent by rebuilding them from
your source and enforcing super_read_only from that point forward.

Hands down, our preferred way to take backups is to use Percona
XtraBackup for raw backups and mydumper for logical backups. Both
techniques let you take nonintrusive binary (raw) backups of your data,
which you can then verify by starting a mysqld instance and checking the
tables. Sometimes you can even kill two birds with one stone: test recovery
every single day by restoring the backup to your development or staging
server. You can also dump the data from that instance to create a logical
backup. We also like to back up binary logs and to keep enough generations
of backups and binary logs that we can perform recovery or set up a new
replica even if the most recent backup is unusable.

1 Raw backups may also be unintuitively referred to as physical backups with the idea you’re
moving the physical files to your backup destination. We say “unintuitive” because the file
itself isn’t physical at all!

2 Logical backups produced by mysqldump are not always text files. SQL dumps can contain
many different character sets and can even include binary data that’s not valid character data at
all. Lines can be too long for many editors, too. Still, many such files will contain data a text
editor can open and read, especially if you run mysqldump with the --hex-blob option.

3 Keep in mind that while the data that is dumped is engine independent, the storage engine
features may not be compatible. For example, you couldn’t dump an InnoDB database with
foreign key relationships defined and expect the foreign keys to work in an engine that doesn’t
implement them.

4 In our experience, logical backups are generally smaller than raw backups, but they aren’t
always.

5 It’s worth mentioning that raw backups can be more prone to errors; it’s hard to beat the
simplicity of mysqldump.

6 A “true” incremental backup feature for Percona XtraBackup is in progress. It will be able to
back up the blocks that have changed without needing to scan every block.

Chapter 5. Optimizing Server
Settings

In this chapter, we’ll explain a process by which you can create a suitable
configuration file for your MySQL server. It is a roundabout trip, with
many points of interest and side trips to scenic overlooks. These side trips
are necessary. Determining the shortest path to a suitable configuration
doesn’t start with studying configuration options and asking which ones you
should set or how you should change them. Nor does it begin with
examining server behavior and asking whether any configuration options
can improve it. It’s best to start with an understanding of MySQL’s internals
and behavior. You can then use that knowledge as a guide for how to
configure MySQL. Finally, you can compare the desired configuration to
the current configuration and correct any significant and worthwhile
differences.

People often ask, “What’s the optimal configuration file for my server with
32 GB of RAM and 12 CPU cores?” Unfortunately, it’s not that simple. You
should configure the server for the workload, data, and application
requirements, not just the hardware. MySQL has scores of settings that you
can change—but you shouldn’t. It’s usually better to configure the basic
settings correctly (and there are only a few that matter in most cases) and
spend more time on schema optimization, indexes, and query design. After
you’ve set MySQL’s basic configuration options correctly, the potential
gains from further changes are usually small.

On the other hand, the potential downside of fiddling with the configuration
can be great. The MySQL defaults are there with good reason. Changing
them without understanding the impact can lead to crashes, constant stalls,
or slow performance. As such, you should never blindly trust what someone
reports as an optimal configuration from popular help sites like the MySQL

forums or Stack Overflow. Always review any changes by reading the
associated manual entry and test carefully.

So what should you do? You should make sure the basics such as the
InnoDB buffer pool and logfile size are appropriate. Then you should set a
few safety options if you want to prevent undesired behavior (but note that
these usually won’t improve performance—they’ll only avoid problems).
Then leave the rest of the settings alone. If you experience a problem, begin
by diagnosing it carefully. If your problem is caused by a part of the server
whose behavior can be corrected with a configuration option, then you
might need to change it.

Sometimes you might also need to set specific configuration options that
can have a significant performance impact in special cases. However, these
should not be part of a basic server configuration file. You should set them
only when you find the specific performance problems they address. That’s
why we don’t suggest that you approach configuration options by looking
for bad things to improve. If something needs to be improved, it should
show up in query response times. It’s best to start your search with queries
and their response times, not with configuration options. This could save
you a lot of time and prevent many problems.

Another good way to save time and trouble is to use the defaults unless you
know you shouldn’t. There is safety in numbers, and a lot of people are
running with default settings. That makes them the most thoroughly tested
settings. Unexpected bugs can arise when you change things needlessly.

How MySQL’s Configuration Works
We’ll begin by explaining MySQL’s configuration mechanisms before
covering what you should configure in MySQL. MySQL is generally pretty
forgiving about its configuration, but following these suggestions may save
you a lot of work and time.

The first thing to know is where MySQL gets configuration information:
from command-line arguments and settings in its configuration file. On

1

Unix-like systems, the configuration file is typically located at /etc/my.cnf
or /etc/mysql/my.cnf. If you use your operating system’s startup scripts, this
is typically the only place you’ll specify configuration settings. If you start
MySQL manually, which you might do when you’re running a test
installation, you can also specify settings on the command line. The server
actually reads the contents of the configuration file, removes any comment
lines and newlines, and then processes it together with the command-line
options.

A NOTE ON TERMINOLOGY
Because many of MySQL’s command-line options correspond to server
variables, we sometimes use the terms option and variable
interchangeably. Most variables have the same names as their
corresponding command-line options, but there are a few exceptions.
For example, --memlock sets the locked_in_memory variable.

WARNING
Any settings you decide to use permanently should go into the global configuration file
instead of being specified at the command line. Otherwise, you risk accidentally starting
the server without them. It’s also a good idea to keep all of your configuration files in a
single place so that you can inspect them easily.

Be sure you know where your server’s configuration file is located! We’ve
seen people try unsuccessfully to configure a server with a file it doesn’t
read, such as /etc/my.cnf on Debian servers, which look in /etc/mysql/my.cnf
for their configuration. Sometimes there are files in several places, perhaps
because a previous system administrator was confused as well. If you don’t
know which files your server reads, you can ask it:

$ which mysqld
/usr/sbin/mysqld
$ /usr/sbin/mysqld --verbose --help | grep -A 1 'Default options'

Default options are read from the following files in the given
order:
/etc/mysql/my.cnf ~/.my.cnf /usr/etc/my.cnf

The configuration file is in the standard INI format and is divided into
sections, each of which begins with a line that contains the section name in
square brackets. A MySQL program will generally read the section that has
the same name as that program, and many client programs also read the
client section, which gives you a place to put common settings. The
server usually reads the mysqld section. Be sure you place your settings in
the correct section in the file, or they will have no effect.

Syntax, Scope, and Dynamism
Configuration settings are written in all lowercase, with words separated by
underscores or dashes. The following are equivalent, and you might see
both forms in command lines and configuration files:

/usr/sbin/mysqld --auto-increment-offset=5
/usr/sbin/mysqld --auto_increment_offset=5

We suggest that you pick a style and use it consistently. This makes it easier
to search for settings in your files.

Configuration settings can have several scopes. Some settings are server-
wide (global scope), others are different for each connection (session
scope), and others are per-object. Many session-scoped variables have
global equivalents, which you can think of as defaults. If you change the
session-scoped variable, it affects only the connection from which you
changed it, and the changes are lost when the connection closes. Here are
some examples of the variety of behaviors of which you should be aware:

The max_connections variable is globally scoped.

The sort_buffer_size variable has a global default, but you
can set it per session as well.

The join_buffer_size variable has a global default and can
be set per session, but a single query that joins several tables can
allocate one join buffer per join, so there might be several join
buffers per query.

In addition to setting variables in the configuration files, you can change
many (but not all) of them while the server is running. MySQL refers to
these as dynamic configuration variables. The following statements show
different ways to change the session and global values of
sort_buffer_size dynamically:

SET sort_buffer_size = <value>;
SET GLOBAL sort_buffer_size = <value>;
SET @@sort_buffer_size := <value>;
SET @@session.sort_buffer_size := <value>;
SET @@global.sort_buffer_size := <value>;

If you set variables dynamically, be aware that those settings will be lost
when MySQL shuts down. If you want to keep the settings, you’ll have to
update your configuration file as well.

TIP
If you set a variable’s global value while the server is running, the values for the current
session and any other existing sessions are not affected. Keep this in mind if your clients
rely on persistent database connections. This is because the session values are initialized
from the global value when the connections are created. You should inspect the output
of SHOW GLOBAL VARIABLES after each change to make sure it’s had the desired
effect.

There is also a special value you can assign to variables with the SET
command: the keyword DEFAULT. Assigning this value to a session-scoped
variable sets that variable to the corresponding globally scoped variable’s
value. This is useful for resetting session-scoped variables back to the
values they had when you opened the connection. We advise you not to use
it for global variables because it probably won’t do what you want—that is,

it doesn’t set the values back to what they were when you started the server
or even the value specified in the configuration file; it sets the variable to
the compiled-in default.

Persisted System Variables
If all of this variable scoping and configuration business wasn’t complicated
enough, you also had to be aware that if MySQL was restarted, it would
revert back to what you had in your configuration file—even if you had
used SET GLOBAL to change a global variable. This meant that you had to
manage a configuration file and the runtime configuration of MySQL as
well as ensure they stayed in sync with each other. If you wanted to increase
max_connections for your servers, you had to issue a SET GLOBAL
max_connections command on each running instance and then follow
up with editing the configuration file to reflect your new configuration.

MySQL 8.0 introduced a new feature called persisted system variables,
which helps to make this a little less complicated. The new syntax SET
PERSIST now allows you to set the value once for runtime and MySQL
will write this setting out to disk, enabling it to be used at the next restart.

Side Effects of Setting Variables
Setting variables dynamically can have unexpected side effects, such as
flushing dirty blocks from buffers. Be careful which settings you change
online because this can cause the server to do a lot of work.

Sometimes you can infer a variable’s behavior from its name. For example,
max_heap_table_size does what it sounds like: it specifies the
maximum size to which implicit in-memory temporary tables are allowed to
grow. However, the naming conventions aren’t completely consistent, so
you can’t always guess what a variable will do by looking at its name.

Let’s take a look at some commonly used variables and the effects of
changing them dynamically:

table_open_cache

https://oreil.ly/ZDwXZ

Setting this variable has no immediate effect: the effect is delayed until
the next time a thread opens a table. When this happens, MySQL checks
the variable’s value. If the value is larger than the number of tables in
the cache, the thread can insert the newly opened table into the cache. If
the value is smaller than the number of tables in the cache, MySQL
deletes unused tables from the cache.

thread_cache_size

Setting this variable has no immediate effect: the effect is delayed until
the next time a connection is closed. At that time, MySQL checks
whether there is space in the cache to store the thread. If so, it caches
the thread for future reuse by another connection. If not, it kills the
thread instead of caching it. In this case, the number of threads in the
cache, and hence the amount of memory the thread cache uses, does not
immediately decrease; it decreases only when a new connection
removes a thread from the cache to use it. (MySQL adds threads to the
cache only when connections close and removes them from the cache
only when new connections are created.)

read_buffer_size

MySQL doesn’t allocate any memory for this buffer until a query needs
it, but then it immediately allocates the entire chunk of memory
specified here.

read_rnd_buffer_size

MySQL doesn’t allocate any memory for this buffer until a query needs
it, and then it allocates only as much memory as needed. (The name

max_ read_ rnd_buffer_size would describe this variable more

accurately.)

The official MySQL documentation explains what these variables do in
detail, and this isn’t an exhaustive list. Our goal here is simply to show you
what behavior to expect when you change a few common variables.

You should not raise the value of a per-connection setting globally unless
you know it’s the right thing to do. Some buffers are allocated all at once,
even if they’re not needed, so a large global setting can be a huge waste.
Instead, you can raise the value when a query needs it.

Planning Your Variable Changes
Be careful when setting variables. More is not always better, and if you set
the values too high, you can easily cause problems: you might run out of
memory or cause your server to swap.

Referring back to Chapter 2, monitor your SLOs to ensure that your
changes don’t affect the customer experience. Benchmarks aren’t enough
because they’re not real. If you don’t measure your server’s actual
performance, you might hurt performance without knowing it. We’ve seen
many cases where someone changed a server’s configuration and thought it
improved performance, when in fact the server’s performance worsened
overall because of a different workload at a different time of day or day of
the week.

Ideally, you’re using a version control system to track changes to your
configuration files. This strategy can be very effective at correlating a
performance change or SLO breach to a specific configuration change. Just
be aware that changing the configuration file doesn’t actually do anything
by default—you have to change the runtime setting too.

Before you start changing your configuration, you should optimize your
queries and your schema, addressing at least the obvious things such as
adding indexes. If you get deep into tweaking the configuration and then

change your queries or schema, you might need to reevaluate the
configuration. Keep in mind that unless your hardware, workload, and data
are completely static, chances are you’ll need to revisit your configuration
later. And in fact, most people’s servers don’t even have a steady workload
throughout the day—meaning that the “perfect” configuration for the
middle of the morning is not right for midafternoon! Obviously, chasing the
mythical “perfect” configuration is completely impractical. Thus, you don’t
need to squeeze every last ounce of performance out of your server; in fact,
the return for such an investment of time will probably be very small. We
suggest that you focus on optimizing for your peak workload and then stop
at “good enough,” unless you have reason to believe you’re forgoing a
significant performance improvement.

What Not to Do
Before we get started with server configuration, we want to encourage you
to avoid a few common practices that we’ve found to be risky or practically
not worth the effort. Warning: rants ahead!

You might be expected (or believe that you’re expected) to set up a
benchmark suite and “tune” your server by changing its configuration
iteratively in search of optimal settings. This usually is not something we
advise most people to do. It requires so much work and research, and the
potential payoff is so small in most cases, that it can be a huge waste of
time. You are probably better off spending that time on other things such as
checking your backups, monitoring changes in query plans, and so on.

You should not “tune by ratio.” The classic “tuning ratio” is the rule of
thumb that your InnoDB buffer pool hit ratio should be higher than some
percentage, and you should increase the cache size if the hit rate is too low.
This is very wrong advice. Regardless of what anyone tells you, the cache
hit ratio has nothing to do with whether the cache is too large or too small.
To begin with, the hit ratio depends on the workload—some workloads
simply aren’t cacheable no matter how big the cache is—and secondly,
cache hits are meaningless, for reasons we’ll explain later. It sometimes

happens that when the cache is too small, the hit rate is low, and increasing
the cache size increases the hit rate. However, this is an accidental
correlation and does not indicate anything about performance or proper
sizing of the cache.

The problem with correlations that sometimes appear to be true is that
people begin to believe they will always be true. Oracle DBAs abandoned
ratio-based tuning years ago, and we wish MySQL DBAs would follow
their lead. We wish even more fervently that people wouldn’t write “tuning
scripts” that codify these dangerous practices and teach them to thousands
of people. This leads to our next suggestion of what not to do: don’t use
tuning scripts! There are several very popular ones that you can find on the
internet. It’s probably best to ignore them.

We also suggest that you avoid the word tuning, which we’ve used liberally
in the past few paragraphs. We favor configuration or optimization instead
(as long as that’s what you’re actually doing). The word tuning conjures up
images of an undisciplined novice who tweaks the server and sees what
happens. We suggested in the previous section that this practice is best left
to those who are researching server internals. “Tuning” your server can be a
stunning waste of time.

On a related topic, searching the internet for configuration advice is not
always a great idea. You can find a lot of bad advice in blogs, forums, and
so on. Although many experts contribute what they know online, it is not
always easy to tell who is qualified. We can’t give unbiased
recommendations about where to find real experts, of course. But we can
say that the credible, reputable MySQL service providers are a safer bet in
general than what a simple internet search turns up because people who
have happy customers are probably doing something right. Even their
advice, however, can be dangerous to apply without testing and
understanding because it might have been directed at a situation that
differed from yours in a way you don’t understand.

Finally, don’t believe the popular memory consumption formula—yes, the
very one that MySQL itself prints out when it crashes. (We won’t repeat it

2

here.) This formula is from an ancient time. It is not a reliable or even
useful way to understand how much memory MySQL can use in the worst
case. You might see some variations on this formula on the internet, too.
These are similarly flawed, even though they add in more factors that the
original formula doesn’t have. The truth is that you can’t put an upper
bound on MySQL’s memory consumption. It is not a tightly regulated
database server that controls memory allocation.

Creating a MySQL Configuration File
As we mentioned at the beginning of this chapter, we don’t have a one-size-
fits-all “best configuration file” for, say, a 4 CPU server with 16 GB of
memory and 12 hard drives. You really do need to develop your own
configurations because even a good starting point will vary widely
depending on how you’re using the server.

Minimal Configuration
We’ve created a minimal sample configuration file for this book, which you
can use as a good starting point for your own servers. You must choose
values for a few of the settings; we’ll explain those later in this chapter. Our
base file, built around MySQL 8.0, looks like this:

[mysqld]
GENERAL
datadir = /var/lib/mysql
socket =
/var/lib/mysql/mysql.sock
pid_file =
/var/lib/mysql/mysql.pid
user = mysql
port = 3306
INNODB
innodb_buffer_pool_size = <value>
innodb_log_file_size = <value>
innodb_file_per_table = 1
innodb_flush_method = O_DIRECT
LOGGING
log_error = /var/lib/mysql/mysql-

3

error.log
log_slow_queries = /var/lib/mysql/mysql-
slow.log
OTHER
tmp_table_size = 32M
max_heap_table_size = 32M
max_connections = <value>
thread_cache_size = <value>
table_open_cache = <value>
open_files_limit = 65535
[client]
socket =
/var/lib/mysql/mysql.sock
port = 3306

This might seem too minimal in comparison to what you’re used to seeing,
but it’s actually more than many people need. There are a few other types of
configuration options that you are likely to use as well, such as binary
logging; we’ll cover those later in this and other chapters.

The first thing we configured is the location of the data. We chose
/var/lib/mysql for this, because it’s a popular location on many Unix
variants. There is nothing wrong with choosing another location; you
decide. We’ve put the .pid file in the same location, but many operating
systems will want to place it in /var/run instead. That’s fine, too. We simply
needed to have something configured for these settings. By the way, don’t
let the socket and .pid file be located according to the server’s compiled-in
defaults; there are some bugs in various MySQL versions that can cause
problems with this. It’s best to set these locations explicitly. (We’re not
advising you to choose different locations; we’re just advising you to make
sure the my.cnf file mentions those locations explicitly, so they won’t
change and break things if you upgrade the server.)

We also specified that mysqld should run as the mysql user account on the
operating system. You’ll need to make sure this account exists and that it
owns the data directory and all files within. The port is set to the default of
3306, but sometimes you’ll want to change that.

In MySQL 8.0, a new configuration option,
innodb_dedicated_server, was introduced. This option examines

the available memory on the server and configures four additional variables
(innodb_buffer_pool_size, innodb_log_file_size,
innodb_ log_ files_ in_group, and innodb_flush_method)
appropriately for a dedicated database server, which simplifies calculating
and changing these values. This can be especially useful in a cloud
environment, where you might run a virtual machine (VM) with 128 GB of
RAM and then reboot it to scale up to 256 GB RAM. MySQL here would
be self-configuring, and you don’t need to manage changing the values in
the configuration file. This is often the best way to manage these four
settings.

Most of the other settings in our sample file are pretty self-explanatory, and
many of them are a matter of judgment. We’ll explore several of them
throughout the rest of this chapter. We’ll also discuss some safety settings
later in this chapter, which can be very helpful for making your server more
robust and helping to prevent bad data and other problems. We don’t show
those settings here.

One setting to explain here is the open_files_limit option. We’ve set
this as large as possible on a typical Linux system. Open file handles are
very cheap on modern operating systems. If this setting isn’t large enough,
you’ll see error 24, “too many open files.”

Skipping all the way to the end, the last section in the configuration file is
for client programs like mysql and mysqladmin and simply lets them know
how to connect to the server. You should set the values for client programs
to match those you chose for the server.

Inspecting MySQL Server Status Variables
Sometimes you can use the output from SHOW GLOBAL STATUS as input
to your configuration to help customize the settings better for your
workload. For the best results, look both at absolute values and at how the
values change over time, preferably with several snapshots at peak and off-
peak times. You can use the following command to see incremental changes
to status variables every 60 seconds:

$ mysqladmin extended-status -ri60

We will frequently refer to changes in status variables over time as we
explain various configuration settings. We will usually expect you to be
examining the output of a command such as the one we just showed. Other
helpful tools that can provide a compact display of status counter changes
are Percona Toolkit’s pt-mext or pt-mysql-summary.

Now that we’ve shown you the preliminaries, we’ll take you on a guided
tour of some server internals, interleaved with advice on configuration. This
will give you the background you’ll need to choose appropriate values for
configuration options when we return to the sample configuration file later.

Configuring Memory Usage
Using innodb_dedicated_server will typically use 50%–75% of
your RAM. This leaves you with at least 25% for per-connection memory
allocations, operating system overhead, and other memory settings. We go
over each of these in the following sections, and then we take a more
detailed look at the various MySQL caches’ requirements.

Per-Connection Memory Needs
MySQL needs a small amount of memory just to hold a connection
(typically with an associated dedicated thread) open. It also requires a base
amount of memory to execute any given query. You’ll need to set aside
enough memory for MySQL to execute queries during peak load times.
Otherwise, your queries will be starved for memory, and they will run
poorly or fail.

It’s useful to know how much memory MySQL will consume during peak
usage, but some usage patterns can unexpectedly consume a lot of memory,
which makes this hard to predict. Prepared statements are one example
because you can have many of them open at once. Another example is the
InnoDB data dictionary (more about this later).

You don’t need to assume a worst-case scenario when trying to predict peak
memory consumption. For example, if you configure MySQL to allow a
maximum of one hundred connections, it theoretically might be possible to
simultaneously run large queries on all one hundred connections, but in
reality this probably won’t happen. Queries that use many large temporary
tables or complex stored procedures are the most likely causes of high per-
connection memory consumption.

Reserving Memory for the Operating System
Just as with queries, you need to reserve enough memory for the operating
system to do its work. This involves running any local monitoring software,
configuration management tooling, scheduled jobs, and so forth. The best
indication that the operating system has enough memory is that it’s not
actively swapping (paging) virtual memory to disk.

The InnoDB Buffer Pool
The InnoDB buffer pool needs more memory than anything else, as it’s
generally the most important variable for performance. The InnoDB buffer
pool doesn’t just cache indexes: it also holds row data, the adaptive hash
index, the change buffer, locks, and other internal structures. InnoDB also
uses the buffer pool to help it delay writes, so it can merge many writes
together and perform them sequentially. In short, InnoDB relies heavily on
the buffer pool, and you should be sure to allocate enough memory to it.
You can use variables from SHOW commands or tools such as innotop to
monitor your InnoDB buffer pool’s memory usage.

If you don’t have much data and you know that your data won’t grow
quickly, you don’t need to overallocate memory to the buffer pool. It’s not
really beneficial to make it much larger than the size of the tables and
indexes that it will hold. There’s nothing wrong with planning ahead for a
rapidly growing database, of course, but sometimes we see huge buffer
pools with a tiny amount of data. This isn’t necessary.

Large buffer pools come with some challenges, such as long shutdown and
warm-up times. If there are a lot of dirty (modified) pages in the buffer
pool, InnoDB can take a long time to shut down because it writes the dirty
pages to the datafiles upon shutdown. You can force it to shut down quickly,
but then it just has to do more recovery when it restarts, so you can’t
actually speed up the shutdown and restart cycle time. If you know in
advance when you need to shut down, you can change the
innodb_max_dirty_pages_pct variable at runtime to a lower value,
wait for the flush thread to clean up the buffer pool, and then shut down
once the number of dirty pages becomes small. You can monitor the number
of dirty pages by watching the innodb_buffer_pool_pages_dirty
server status variable or using innotop to monitor SHOW INNODB
STATUS. You can also use the variable innodb_fast_shutdown to
tweak how shutdown occurs.

Lowering the value of the innodb_max_dirty_pages_pct variable
doesn’t actually guarantee that InnoDB will keep fewer dirty pages in the
buffer pool. Instead, it controls the threshold at which InnoDB stops being
“lazy.” InnoDB’s default behavior is to flush dirty pages with a background
thread, merging writes together and performing them sequentially for
efficiency. This behavior is called “lazy” because it lets InnoDB delay
flushing dirty pages in the buffer pool unless it needs to use the space for
some other data. When the percentage of dirty pages exceeds the threshold,
InnoDB will flush pages as quickly as it can to try to keep the dirty page
count lower. These page cleaner operations have been greatly optimized
from previous behavior, including being able to configure multiple threads
to perform flushing.

When MySQL starts back up again, the buffer pool cache is empty, also
referred to as a cold cache. All of the benefits of having rows and pages in
memory are now gone. Thankfully, by default the configuration options
innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup work together to warm
the server at startup. The load at startup takes time, but it can speed up the

https://oreil.ly/S8ong

performance of a server much faster than waiting for it to naturally
populate.

The Thread Cache
The thread cache holds threads that aren’t currently associated with a
connection but are ready to serve new connections. When there’s a thread in
the cache and a new connection is created, MySQL removes the thread
from the cache and gives it to the new connection. When the connection is
closed, MySQL places the thread back into the cache, if there’s room. If
there isn’t room, MySQL destroys the thread. As long as MySQL has a free
thread in the cache, it can respond rapidly to connection requests because it
doesn’t have to create a new thread for each connection.

The thread_cache_size variable specifies the number of threads
MySQL can keep in the cache. You probably won’t need to change this
from the default value of -1 or auto-sized unless your server gets many
connection requests. To check whether the thread cache is large enough,
watch the Threads_created status variable. We generally try to keep
the thread cache large enough that we see fewer than 10 new threads
created each second, but it’s often pretty easy to get this number lower than
one per second.

A good approach is to watch the Threads_connected variable and try
to set thread_cache_size large enough to handle the typical
fluctuation in your workload. For example, if Threads_connected
usually stays between 100 and 120, you can set the cache size to 20. If it
stays between 500 and 700, a thread cache of 200 should be large enough.
Think of it this way: at 700 connections, there are probably no threads in
the cache; at 500 connections, there are 200 cached threads ready to be used
if the load increases to 700 again.

Making the thread cache very large is probably not necessary for most uses,
but keeping it small doesn’t save much memory, so there’s little benefit in
doing so. Each thread that’s in the thread cache or sleeping typically uses
around 256 KB of memory. This is not very much compared to the amount

of memory a thread can use when a connection is actively processing a
query. In general, you should keep your thread cache large enough that
Threads_created doesn’t increase very often. If this is a very large
number, however (e.g., many thousands of threads), you might want to set it
lower because some operating systems don’t handle very large numbers of
threads well, even when most of them are sleeping.

Configuring MySQL’s I/O Behavior
A few configuration options affect how MySQL synchronizes data to disk
and performs recovery. These can affect performance dramatically because
they involve I/O operations. They also represent a trade-off between
performance and data safety. In general, it’s expensive to ensure that your
data is written to disk immediately and consistently. If you’re willing to risk
the danger that a disk write won’t really make it to permanent storage, you
can increase concurrency and/or reduce I/O waits, but you’ll have to decide
for yourself how much risk you can tolerate.

InnoDB permits you to control not only how it recovers but also how it
opens and flushes its data, which greatly affects recovery and overall
performance. InnoDB’s recovery process is automatic and always runs
when InnoDB starts, although you can influence what actions it takes.
Leaving aside recovery and assuming nothing ever crashes or goes wrong,
there’s still a lot to configure for InnoDB. It has a complex chain of buffers
and files designed to increase performance and guarantee ACID properties,
and each piece of the chain is configurable. Figure 5-1 illustrates these files
and buffers.

A few of the most important things to change for normal usage are the
InnoDB logfile size, how InnoDB flushes its log buffer, and how InnoDB
performs I/O.

Figure 5-1. InnoDB’s buffers and files

The InnoDB Transaction Log
InnoDB uses its log to reduce the cost of committing transactions. Instead
of flushing the buffer pool to disk when each transaction commits, it logs
the transactions. The changes transactions make to data and indexes often
map to random locations in the tablespace, so flushing these changes to disk
would require random I/O. InnoDB assumes it’s using conventional disks,
where random I/O is much more expensive than sequential I/O because of
the time it takes to seek to the correct location on disk and wait for the
desired part of the disk to rotate under the head.

InnoDB uses its log to convert this random disk I/O into sequential I/O.
Once the log is safely on disk, the transactions are permanent, even though
the changes haven’t been written to the datafiles yet. If something bad
happens (such as a power failure), InnoDB can replay the log and recover
the committed transactions.

Of course, InnoDB does ultimately have to write the changes to the
datafiles because the log has a fixed size. It writes to the log in a circular
fashion: when it reaches the end of the log, it wraps around to the
beginning. It can’t overwrite a log record if the changes contained there
haven’t been applied to the datafiles because this would erase the only
permanent record of the committed transaction.

InnoDB uses a background thread to flush the changes to the datafiles
intelligently. This thread can group writes together and make the data writes
sequential for improved efficiency. In effect, the transaction log converts
random datafile I/O into mostly sequential logfile and datafile I/O. Moving
flushes into the background makes queries complete more quickly and
helps cushion the I/O system from spikes in the query load.

The overall logfile size is controlled by innodb_log_file_size and
innodb_ log_ files_in_group, and it’s very important for write
performance. If you took our earlier advice and used
innodb_dedicated_server, these are managed for you based on
how much memory your system has.

Log Buffer
When InnoDB changes any data, it writes a record of the change into its log
buffer, which it keeps in memory. InnoDB flushes the buffer to the logfiles
on disk when the buffer gets full, when a transaction commits, or once per
second, whichever comes first. Increasing the buffer size, which is 1 MB by
default, can help reduce I/O if you have large transactions. The variable that
controls the buffer size is called innodb_log_buffer_size.

You usually don’t need to make the buffer very large. The recommended
range is 1–8 MB, and this usually will be enough unless you write a lot of

huge BLOB records. The log entries are very compact compared to
InnoDB’s normal data. They are not page based, so they don’t waste space
storing whole pages at a time. InnoDB also makes log entries as short as
possible. They are sometimes even stored as a few integers, indicating the
type of operation logged and any parameters needed by that operation!

How InnoDB flushes the log buffer
When InnoDB flushes the log buffer to the logfiles on disk, it locks the
buffer with a mutex, flushes it up to the desired point, and then moves any
remaining entries to the front of the buffer. It is possible that more than one
transaction will be ready to flush its log entries when the mutex is released.
InnoDB uses a group commit feature that can commit all of them to the log
in a single I/O operation.

The log buffer must be flushed to durable storage to ensure that committed
transactions are fully durable. If you care more about performance than
durability, you can change innodb_flush_log_at_trx_commit to
control where and how often the log buffer is flushed.

Possible settings are as follows:

0

Write the log buffer to the logfile and flush the logfile every second but
do nothing at transaction commit.

1

Write the log buffer to the logfile and flush it to durable storage every
time a transaction commits. This is the default (and safest) setting; it
guarantees that you won’t lose any committed transactions unless the
disk or operating system “fakes” the flush operation.

2

Write the log buffer to the logfile at every commit but don’t flush it.
InnoDB schedules a flush once every second. The most important
difference from the 0 setting is that 2 won’t lose any transactions if the

MySQL process crashes. If the entire server crashes or loses power,
however, you can still lose transactions.

It’s important to know the difference between writing the log buffer to the
logfile and flushing the log to durable storage. In most operating systems,
writing the buffer to the log simply moves the data from InnoDB’s memory
buffer to the operating system’s cache, which is also in memory. It doesn’t
actually write the data to durable storage. Thus, settings 0 and 2 usually
result in at most one second of lost data if there’s a crash or a power outage
because the data might exist only in the operating system’s cache. We say
“usually” because InnoDB tries to flush the logfile to disk about once per
second no matter what, but it is possible to lose more than a second of
transactions in some cases, such as when a flush gets stalled.

Sometimes the hard disk controller or operating system fakes a flush by
putting the data into yet another cache, such as the hard disk’s own cache.
This is faster but very dangerous because the data might still be lost if the
drive loses power. This is even worse than setting
innodb_flush_log_at_trx_commit to something other than 1
because it can cause data corruption, not just lost transactions.

Setting innodb_flush_log_at_trx_commit to anything other than
1 can cause you to lose transactions. However, you might find the other
settings useful if you don’t care about durability (the D in ACID). Maybe
you just want some of InnoDB’s other features, such as clustered indexes,
resistance to data corruption, and row-level locking.

The best configuration for high-performance transactional needs is to leave
innodb_flush_log_at_trx_commit set to 1 and place the logfiles
on a RAID volume with a battery-backed write cache and SSDs. This is
both safe and very fast. In fact, we dare say that any production database

server that’s expected to handle a serious workload needs to have this kind
of hardware.

How InnoDB opens and flushes logfiles and datafiles
The innodb_flush_method option lets you configure how InnoDB
actually interacts with the filesystem. Despite its name, it also affects how
InnoDB reads data, not just how it writes it.

WARNING
Changing how InnoDB performs I/O operations can affect performance greatly, so be
sure you understand what you’re doing before you change anything!

This is a slightly confusing option because it affects both the logfiles and
the datafiles, and it sometimes does different things to each kind of file. It
would be nice to have one configuration option for the logs and another for
the datafiles, but they’re combined.

If you use a Unix-like operating system and your RAID controller has a
battery-backed write cache, we recommend that you use O_DIRECT. If not,
either the default or O_DIRECT will probably be the best choice,
depending on your application. If you opted to use
innodb_dedicated_server, as we mentioned earlier, this option is
set automatically for you.

The InnoDB Tablespace
InnoDB keeps its data in a tablespace, which is essentially a virtual
filesystem spanning one or many files on disk. InnoDB uses the tablespace
for many purposes, not just for storing tables and indexes. It keeps its undo
log (information necessary to re-create old row versions), change buffer,
doublewrite buffer, and other internal structures in the tablespace.

Configuring the tablespace

You specify the tablespace files with the innodb_data_file_path
configuration option. The files are all contained in the directory given by
innodb_data_home_dir. Here’s an example:

innodb_data_home_dir = /var/lib/mysql/
innodb_data_file_path = ibdata1:1G;ibdata2:1G;ibdata3:1G

That creates a 3 GB tablespace in three files. Sometimes people wonder
whether they can use multiple files to spread load across drives, like this:

innodb_data_file_path = /disk1/ibdata1:1G;/disk2/ibdata2:1G;...

While that does indeed place the files in different directories, which
represent different drives in this example, InnoDB concatenates the files
end-to-end. Thus, you usually don’t gain much this way. InnoDB will fill
the first file, then the second when the first is full, and so on; the load isn’t
really spread in the fashion you need for higher performance. A RAID
controller is a smarter way to spread load.

To allow the tablespace to grow if it runs out of space, you can make the
last file auto-extend as follows:

...ibdata3:1G:autoextend

The default behavior is to create a single 10 MB auto-extending file. If you
make the file auto-extend, it’s a good idea to place an upper limit on the
tablespace’s size to keep it from growing very large because once it grows,
it doesn’t shrink. For example, the following limits the auto-extending file
to 2 GB:

...ibdata3:1G:autoextend:max:2G

Managing a single tablespace can be a hassle, especially if it auto-extends
and you want to reclaim the space (for this reason, we recommend disabling
the auto-extend feature or at least setting a reasonable cap on the space).
The only way to reclaim space is to dump your data, shut down MySQL,
delete all the files, change the configuration, restart, let InnoDB create new
empty files, and restore your data. InnoDB is completely unforgiving about
its tablespace: you cannot simply remove files or change their sizes. It will
refuse to start if you corrupt its tablespace. It is likewise very strict about its
logfiles. If you’re used to casually moving files around as you could do
with MyISAM, take heed!

The innodb_file_per_table option lets you configure InnoDB to
use one file per table. It stores the data in the database directory as
tablename.ibd files. This makes it easier to reclaim space when you drop a
table. However, placing the data in multiple files can actually result in more
wasted space overall because it trades internal fragmentation in the single
InnoDB tablespace for wasted space in the .ibd files.

Even if you enable the innodb_file_per_table option, you’ll still
need the main tablespace for the undo logs and other system data. It will be
smaller if you’re not storing all the data in it.

Some people like to use innodb_file_per_table just because of the
extra manageability and visibility it gives you. For example, it’s much faster
to find a table’s size by examining a single file than it is to use SHOW
TABLE STATUS, which has to perform more complex work to determine
how many pages are allocated to a table.

WARNING
There has always been a dark side to innodb_file_per_table: slow DROP
TABLE performance. This can be severe enough to cause a noticeable server-wide stall
for two reasons.

Dropping the table unlinks (deletes) the file at the filesystem level, which can be very
slow on some filesystems (ext3, we’re looking at you). You can shorten the duration of
this with tricks on the filesystem: link the .ibd file to a zero-sized file, then delete the
file manually instead of waiting for MySQL to do it.

When you enable this option, each table gets its own tablespace inside InnoDB. It turns
out that removing the tablespace actually requires InnoDB to lock and scan the buffer
pool while it looks for pages belonging to this tablespace, which is very slow on a server
with a large buffer pool. This is improved if you break the buffer pool into many parts
using innodb_buffer_pool_instances.

Several fixes have been applied to various versions of MySQL along the way. As of
8.0.23, this should no longer be an issue.

What’s the final recommendation? We suggest that you use
innodb_file_per_table and cap the size of your shared tablespace
to make your life easier. If you run into any circumstances that make this
painful, as noted previously, consider one of the fixes we suggested.

Old row versions and the tablespace
InnoDB’s tablespace can grow very large in a write-heavy environment. If
transactions stay open for a long time (even if they’re not doing any work)
and they’re using the default REPEATABLE READ transaction isolation
level, InnoDB won’t be able to remove old row versions because the
uncommitted transactions will still need to be able to see them. InnoDB
stores the old versions in the tablespace, so it continues to grow as more
data is updated. The purge process is multithreaded but may need to be
tuned for workloads if you experience problems with purge lag (innodb_
purge_threads and innodb_purge_batch_size).

The output of SHOW INNODB STATUS can help you pinpoint the
problem. Look at the history list length in the TRANSACTIONS section; it
shows the size of the undo log:

TRANSACTIONS

Trx id counter 1081043769321
Purge done for trx's n:o < 1081041974531 undo n:o < 0 state:
running but idle
History list length 697068

If you have a large undo log and your tablespace is growing because of it,
you can force MySQL to slow down enough for InnoDB’s purge thread to
keep up. This might not sound attractive, but there’s no alternative.
Otherwise, InnoDB will keep writing data and filling up your disk until the
disk runs out of space or the tablespace reaches the limits you’ve defined.

To throttle the writes, set the innodb_max_purge_lag variable to a
value other than 0. This value indicates the maximum number of
transactions that can be waiting to be purged before InnoDB starts to delay
further queries that update data. You’ll have to know your workload to
decide on a good value. As an example, if your average transaction affects 1
KB of rows and you can tolerate 100 MB of unpurged rows in your
tablespace, you could set the value to 100000.

Bear in mind that unpurged row versions affect all queries because they
effectively make your tables and indexes larger. If the purge thread simply
can’t keep up, performance can decrease. Setting the
innodb_max_purge_lag variable will slow down performance too, but
it’s the lesser of the two evils.

Other I/O Configuration Options
The sync_binlog option controls how MySQL flushes the binary log to
disk. Its default value is 1, which means MySQL will perform flushing and
keep binary logs durable and safe. This is the recommended setting, and we
caution you against setting this to any other value.

If you don’t keep sync_binlog set at 1, it’s likely that a crash will cause
your binary log to be out of sync with your transactional data. This can

easily break replication and make recovery impossible, especially if your
databases are using global transaction IDs (more on this in Chapter 9). The
safety provided by leaving this at 1 far outweighs the I/O performance
penalty that is incurred.

We covered RAID in more depth in Chapter 4, but it’s worth repeating here
that good-quality RAID controllers, with battery-backed write caches set to
use the write-back policy, can handle thousands of writes per second and
still give you durable storage. The data gets written to a fast cache with a
battery, so it will survive even if the system loses power. When the power
comes back, the RAID controller will write the data from the cache to the
disk before making the disk available for use. Thus, a good RAID controller
with a large enough battery-backed write cache can improve performance
dramatically and is a very good investment. Of course, solid-state storage is
also the recommended solution at this point, which dramatically improves
I/O performance as well.

Configuring MySQL Concurrency
When you’re running MySQL in a high-concurrency workload, you might
run into bottlenecks you wouldn’t otherwise experience. This section
explains how to detect these problems when they happen and how to get the
best performance possible under these workloads.

If you have problems with InnoDB concurrency and you are not running at
least MySQL 5.7, the solution is usually to upgrade the server. Older
versions still held a lot of high concurrency scalability challenges.
Everything queued on global mutexes such as the buffer pool mutex, and
the server practically ground to a halt. If you upgrade to one of the newer
versions of MySQL, you don’t need to limit concurrency in most cases.

If you find yourself hitting this bottleneck, your best option is to shard your
data. If sharding is not a viable path forward, you may need to limit
concurrency. InnoDB has its own “thread scheduler” that controls how
threads enter its kernel to access data and what they can do once they’re
inside the kernel. The most basic way to limit concurrency is with the

innodb_thread_concurrency variable, which limits how many
threads can be in the kernel at once. A value of 0 means there is no limit on
the number of threads. If you are having InnoDB concurrency problems in
older MySQL versions, this variable is the most important one to configure.

MySQL’s online documentation provides the best guide for configuration
here. You will have to experiment to find the best value for your system, but
our recommendation is to start with setting
innodb_thread_concurrency to the same number of CPU cores you
have available and then begin tuning up or down as needed.

If more than the allowed number of threads are already in the kernel, a
thread can’t enter the kernel. InnoDB uses a two-phase process to try to let
threads enter as efficiently as possible. The two-phase policy reduces the
overhead of context switches caused by the operating system scheduler. The
thread first sleeps for innodb_thread_sleep_delay microseconds
and then tries again. If it still can’t enter, it goes into a queue of waiting
threads and yields to the operating system.

The default sleep time in the first phase is 10,000 microseconds. Changing
this value can help in high-concurrency environments, when the CPU is
underused with a lot of threads in the “sleeping before entering queue”
status. The default value can also be much too large if you have a lot of
small queries because it adds to query latency.

Once a thread is inside the kernel, it has a certain number of “tickets” that
let it back into the kernel for “free,” without any concurrency checks. This
limits how much work it can do before it has to get back in line with other
waiting threads. The innodb_concurrency_tickets option controls
the number of tickets. It rarely needs to be changed unless you have a lot of
extremely long-running queries. Tickets are granted per query, not per
transaction. Once a query finishes, its unused tickets are discarded.

In addition to the bottlenecks in the buffer pool and other structures, there’s
another concurrency bottleneck at the commit stage, which is largely I/O
bound because of flush operations. The
innodb_commit_concurrency variable governs how many threads

https://oreil.ly/ThOBP

can commit at the same time. Configuring this option might help if there’s a
lot of thread thrashing even when innodb_thread_concurrency is
set to a low value.

Safety Settings
After your basic configuration settings are in place, you may wish to enable
a number of settings that make the server safer and more reliable. Some of
them influence performance because safety and reliability are often more
costly to guarantee. Some are just sensible, however: they prevent silly
mistakes such as inserting nonsensical data into the server. And some don’t
make a difference in day-to-day operations but prevent bad things from
happening in edge cases.

Let’s look at a collection of useful options for general server behavior first:

max_connect_errors

If something goes wrong with your networking for a moment, there is
an application or configuration error, or there is another problem that
prevents connections from completing successfully for a brief period of
time, clients can get blocked and will be unable to connect again until
you flush the host cache. The default setting for this option (100) is so

small that this problem can happen too easily. You might want to
increase it, and in fact, if you know that the server is adequately secured
against brute-force attacks, you can just make it very large to effectively
disable blocking of hosts due to connection errors. If
skip_name_resolve is enabled, however, the

max_connect_errors option will have no effect because its

behavior depends on the host cache, which is disabled by
skip_name_resolve.

max_connections

This setting acts like an emergency brake to keep your server from
being overwhelmed by a surge of connections from the application. If
the application misbehaves or the server encounters a problem such as a
stall, a lot of new connections can be opened. But opening a connection
does no good if it can’t execute queries, so being denied with a “too
many connections” error is a way to fail fast and fail cheaply.

Set max_connections high enough to accommodate the usual load
that you think you’ll experience as well as a safety margin to permit
logging in and administering the server. For example, if you think you’ll
have 300 or so connections in normal operations, you might set this to
500 or so. If you don’t know how many connections you’ll get, 500 is
not an unreasonable starting point anyway. The default is 151, but that’s
not enough for a lot of applications.

Beware also of surprises that might make you hit the limit of
connections. For example, if you restart an application server, it might
not close its connections cleanly, and MySQL might not realize they’ve
been closed. When the application server comes back up and tries to
open connections to the database, it might be refused due to the dead
connections that haven’t timed out yet. This can also come into play if
you do not use persistent connections and your application does not
disconnect gracefully. The server will keep a connection around until it
reaches a TCP timeout or, in the worst case, until the number of seconds
configured with wait_timeout.

Watch the max_used_connections status variable over time. It is a
high-water mark that shows you if the server has had a spike in
connections at some point. If it reaches max_connections, chances
are a client has been denied at least once.

skip_name_resolve

This setting disables another networking- and authentication-related
trap: DNS lookups. DNS is one of the weak points in MySQL’s
connection process. When you connect to the server, by default it tries
to determine the hostname from which you’re connecting and uses that
as part of the authentication credentials (that is, your credentials are
your username, hostname, and password—not just your username and
password). But to verify your hostname, the server needs to perform a
forward-confirmed reverse DNS lookup (or “double reverse DNS
lookup”), which involves both a reverse and a forward DNS lookup
before accepting the connection. This is all fine until DNS starts to have
problems, which is pretty much a certainty at some point in time. When
that happens, everything piles up, and eventually the connection times
out. To prevent this, we strongly recommend that you set this option,
which disables DNS lookups during authentication. However, if you do
this, you will need to convert all of your hostname-based grants to use
IP addresses, wildcards, or the special hostname “localhost” because
hostname-based accounts will be disabled.

sql_mode

This setting can accept a variety of options that modify server behavior.
We don’t recommend changing these just for the fun of it; it’s better to
let MySQL be MySQL in most ways and not try to make it behave like
other database servers. (Many client and GUI tools expect MySQL to
have its own flavor of SQL, for example, so if you change it to speak
more ANSI-compliant SQL some things might break.) However, several
of the settings are very useful, and some might be worth considering in
your specific cases. In the past, MySQL was generally very loose about
sql_mode, but it is much more strict in later versions.

However, be aware that it might not be a good idea to change these
settings for existing applications because doing so might make the
server incompatible with the application’s expectations. It’s pretty
common for people to unwittingly write queries that refer to columns
not in the GROUP BY clause or use aggregate functions, for example,
so if you want to enable the ONLY_FULL_GROUP_BY option, it’s a
good idea to do it in a development or staging server first and only
deploy it in production once you’re sure everything is working.

Also, be sure to check for changes to the default sql_mode as you
plan upgrades to your databases. Changes to this variable may be
incompatible with your existing application, and you need to
preemptively test this beforehand. We talk more about upgrading in
Appendix A.

sysdate_is_now

This is another setting that might be backward incompatible with
applications’ expectations. But if you don’t explicitly desire the
SYSDATE() function to have nondeterministic behavior, which can

break replication and make point-in-time recovery from backups
unreliable, you might want to enable this option and make its behavior
deterministic.

read_only and super_read_only

The read_only option prevents unprivileged users from making
changes on replicas, which should be receiving changes only via
replication, not from the application. We strongly recommend setting
replicas to read-only mode.

There is a more restrictive read-only option, super_read_only,
which prevents even users with the SUPER privilege from being able to
write data. With this enabled, the only thing that can write changes to
your database is replication. We also strongly recommend enabling

super_read_only. It will prevent you from accidentally using an
administrator account to write data to a read-only replica, putting it out
of sync.

Advanced InnoDB Settings
Some of these InnoDB options are quite important for server performance,
and there are also a couple of safety options:

innodb_autoinc_lock_mode

This option controls how InnoDB generates auto-incrementing primary
key values, which can be a bottleneck in some cases, such as high-
concurrency inserts. If you have many transactions waiting on the auto-
increment lock (you can see this in SHOW ENGINE INNODB

STATUS), you should investigate this setting. We won’t repeat the

manual’s explanation of the options and their behaviors.

innodb_buffer_pool_instances

This setting divides the buffer pool into multiple segments in MySQL
5.5 and newer and is probably one of the most important ways to
improve MySQL’s scalability on multicore machines with a highly
concurrent workload. Multiple buffer pools partition the workload so
that some of the global mutexes are not such hot contention points.

innodb_io_capacity

InnoDB used to be hardcoded to assume that it ran on a single hard disk
capable of one hundred I/O operations per second. This was a bad
default. Now you can inform InnoDB how much I/O capacity is
available to it. InnoDB sometimes needs this set quite high (tens of

thousands on extremely fast storage such as PCIe flash devices) to flush
dirty pages in a steady fashion, for reasons that are quite complex to
explain.

innodb_read_io_threads and innodb_write_io_threads

These options control how many background threads are available for
I/O operations. The default in recent versions of MySQL is to have four
read threads and four write threads, which is enough for a lot of servers,
especially with the native asynchronous I/O available since MySQL 5.5.
If you have many hard drives and a high-concurrency workload and you
see that the threads are having a hard time keeping up, you can increase
the number of threads, or you can simply set them to the number of
physical spindles you have for I/O (even if they’re behind a RAID
controller).

innodb_strict_mode

This setting makes InnoDB throw errors instead of warnings for some
conditions, especially invalid or possibly dangerous CREATE TABLE

options. If you enable this option, be certain to check all of your
CREATE TABLE options because it might not let you create some

tables that used to be fine. Sometimes it’s a bit pessimistic and overly
restrictive. You wouldn’t want to find this out while trying to restore a
backup.

innodb_old_blocks_time

InnoDB has a two-part buffer pool LRU list, which is designed to
prevent ad hoc queries from evicting pages that are used many times

4

over the long term. One-off queries such as those issued by mysqldump
will typically bring a page into the buffer pool LRU list, read the rows
from it, and move on to the next page. In theory, the two-part LRU list
will prevent this page from displacing pages that will be needed for a
long time by placing it into the “young” sublist and only moving it to
the “old” sublist after it has been accessed multiple times. But InnoDB
is not configured to prevent this by default because the page has
multiple rows, and thus the multiple accesses to read rows from the
page will cause it to be moved to the “old” sublist immediately, placing
pressure on pages that need a long lifetime. This variable specifies the
number of milliseconds that must elapse before a page can move from
the “young” part of the LRU list to the “old” part. It’s set to 0 by

default, and setting it to a small value such as 1000 (one second) has

proven very effective in our benchmarks.

Summary
After you’ve worked through this chapter, you should have a server
configuration that is much better than the defaults. Your server should be
fast and stable, and you should not need to tweak the configuration unless
you run into an unusual circumstance.

To review, we suggest that you begin with our sample configuration file, set
the basic options for your server and workload, and add safety options as
desired. That’s really all you need to do.

If you’re running a dedicated database server, then the best option you can
set is innodb_dedicated_server, which handles 90% of your
performance configuration. If you are unable to use this option, then the
most important options are these two:

innodb_buffer_pool_size

innodb_log_file_size

Congratulations—you just solved the vast majority of real-world
configuration problems we’ve seen!

We’ve also made a lot of suggestions about what not to do. The most
important of these are not to “tune” your server and not to use ratios,
formulas, or “tuning scripts” as a basis for setting the configuration
variables.

1 For example, MySQL can run incredibly fast if you turn off durability settings, but it will also
leave your data vulnerable to loss during a crash.

2 If you are not convinced that “tuning by ratio” is bad, please read Optimizing Oracle
Performance by Cary Millsap and Jeff Holt (O’Reilly). They even devote an appendix to the
topic, with a tool that can artificially generate any cache hit ratio you wish, no matter how
badly your system is performing! Of course, it’s all for the purpose of illustrating how useless
the ratio is.

3 Please note that versions of MySQL remove, deprecate, and change some options; check the
docs for details.

4 For follow-up reading, see the Percona blog posts “Give Love to Your SSDs—Reduce
innodb_io_capacity_max”, “InnoDB Flushing in Action for Percona Server for MySQL”, and
“Tuning MySQL/InnoDB Flushing for a Write-Intensive Workload”.

https://oreil.ly/DWM2I
https://oreil.ly/aSGC6
https://oreil.ly/CdzsQ
https://oreil.ly/mnA8m

Chapter 6. Schema Design and
Management

Good logical and physical design is the cornerstone of high performance,
and you must design your schema for the specific queries you will run. This
often involves trade-offs. For example, a denormalized schema can speed
up some types of queries but slow down others. Adding counter and
summary tables is a great way to optimize queries, but they can be
expensive to maintain. MySQL’s particular features and implementation
details influence this quite a bit.

Likewise, your schema will evolve over time—as a result of what you learn
about how you store and access data as well as how your business
requirements change over time. This means that you should plan for schema
changes as a frequent event. Later in this chapter, we help guide you
through how to keep this activity from becoming an operational bottleneck
for your organization.

This chapter—and the following one, which focuses on indexing—cover
the MySQL-specific bits of schema design. We assume that you know how
to design databases, so this is not an introductory chapter, or even an
advanced chapter, on database design. As a chapter on MySQL database
design, it’s about what is different when designing databases with MySQL
rather than other RDBMSs. If you need to study the basics of database
design, we suggest Clare Churcher’s book Beginning Database Design
(Apress).

This chapter is preparation for the two that follow. In these three chapters,
we will explore the interaction of logical design, physical design, and query
execution. This requires a big-picture approach as well as attention to
details. You need to understand the whole system to understand how each
piece will affect others. You might find it useful to review this chapter after

reading Chapter 7 on indexing and Chapter 8 on query optimization. Many
of the topics discussed can’t be considered in isolation.

Choosing Optimal Data Types
MySQL supports a large variety of data types, and choosing the correct type
to store your data is crucial to getting good performance. The following
simple guidelines can help you make better choices, no matter what type of
data you are storing:

Smaller is usually better

In general, try to use the smallest data type that can correctly store and
represent your data. Smaller data types are usually faster because they
use less space on the disk, in memory, and in the CPU cache. They also
generally require fewer CPU cycles to process.

Make sure you don’t underestimate the range of values you need to
store, though, because increasing the data type range in multiple places
in your schema can be a painful and time-consuming operation. If
you’re in doubt as to which is the best data type to use, choose the
smallest one that you don’t think you’ll exceed. (If the system is not
very busy or doesn’t store much data, or if you’re at an early phase in
the design process, you can easily change it later.)

Simple is good

Fewer CPU cycles are typically required to process operations on
simpler data types. For example, integers are cheaper to compare than
characters because character sets and collations (sorting rules) make
character comparisons complicated. Here are two examples: you should
store dates and times in MySQL’s built-in types instead of as strings,
and you should use integers for IP addresses. We discuss these topics
further later.

Avoid NULL if possible

A lot of tables include nullable columns even when the application does
not need to store NULL (the absence of a value), merely because it’s the

default. It’s usually best to specify columns as NOT NULL unless you

intend to store NULL in them. It’s harder for MySQL to optimize

queries that refer to nullable columns because they make indexes, index
statistics, and value comparisons more complicated. A nullable column
uses more storage space and requires special processing inside MySQL.
The performance improvement from changing NULL columns to NOT

NULL is usually small, so don’t make it a priority to find and change

them on an existing schema unless you know they are causing
problems.

The first step in deciding what data type to use for a given column is to
determine what general class of types is appropriate: numeric, string,
temporal, and so on. This is usually pretty straightforward, but we mention
some special cases where the choice is unintuitive.

The next step is to choose the specific type. Many of MySQL’s data types
can store the same kind of data but vary in the range of values they can
store, the precision they permit, or the physical space (on disk and in
memory) they require. Some data types also have special behaviors or
properties.

For example, a DATETIME and a TIMESTAMP column can store the same
kind of data: date and time, to a precision of one second. However,
TIMESTAMP uses only half as much storage space, is time zone aware, and
has special auto-updating capabilities. On the other hand, it has a much
smaller range of allowable values, and sometimes its special capabilities
can be a handicap.

We discuss base data types here. MySQL supports many aliases for
compatibility, such as INTEGER (maps to INT), BOOL (maps to
TINYINT), and NUMERIC (maps to DECIMAL). These are only aliases.
They can be confusing, but they don’t affect performance. If you create a
table with an aliased data type and then examine SHOW CREATE TABLE,
you’ll see that MySQL reports the base type, not the alias you used.

Whole Numbers
There are two kinds of numbers: whole numbers and real numbers
(numbers with a fractional part). If you’re storing whole numbers, use one
of the integer types: TINYINT, SMALLINT, MEDIUMINT, INT, or
BIGINT. These require 8, 16, 24, 32, and 64 bits of storage space,
respectively. They can store values from −2 to 2 − 1, where
N is the number of bits of storage space they use.

Integer types can optionally have the UNSIGNED attribute, which disallows
negative values and approximately doubles the upper limit of positive
values you can store. For example, a TINYINT UNSIGNED can store
values ranging from 0 to 255 instead of from −128 to 127.

Signed and unsigned types use the same amount of storage space and have
the same performance, so use whatever’s best for your data range.

Your choice determines how MySQL stores the data, in memory and on
disk. However, integer computations generally use 64-bit BIGINT integers.
(The exceptions are some aggregate functions, which use DECIMAL or
DOUBLE to perform computations.)

MySQL lets you specify a “width” for integer types, such as INT(11).
This is meaningless for most applications: it does not restrict the legal range
of values but simply specifies the number of characters MySQL’s
interactive tools (such as the command-line client) will reserve for display
purposes. For storage and computational purposes, INT(1) is identical to
INT(20).

(N – 1) (N – 1)

Real Numbers
Real numbers are numbers that have a fractional part. However, they aren’t
just for fractional numbers; you can also use DECIMAL to store integers
that are so large they don’t fit in BIGINT. MySQL supports both exact and
inexact types.

The FLOAT and DOUBLE types support approximate calculations with
standard floating-point math. If you need to know exactly how floating-
point results are calculated, you will need to research your platform’s
floating-point implementation.

You can specify a floating-point column’s desired precision in a couple of
ways, which can cause MySQL to silently choose a different data type or to
round values when you store them. These precision specifiers are
nonstandard, so we suggest that you specify the type you want but not the
precision.

Floating-point types typically use less space than DECIMAL to store the
same range of values. A FLOAT column uses 4 bytes of storage. DOUBLE
consumes 8 bytes and has greater precision and a larger range of values
than FLOAT. As with integers, you’re choosing only the storage type;
MySQL uses DOUBLE for its internal calculations on floating-point types.

Because of the additional space requirements and computational cost, you
should use DECIMAL only when you need exact results for fractional
numbers—for example, when storing financial data. But in some high-
volume cases, it actually makes sense to use a BIGINT instead and store
the data as some multiple of the smallest fraction of currency you need to
handle. Suppose you are required to store financial data to the ten-
thousandth of a cent. You can multiply all dollar amounts by a million and
store the result in a BIGINT, avoiding both the imprecision of floating-
point storage and the cost of the precise DECIMAL math.

String Types

MySQL supports quite a few string data types, with many variations on
each. Each string column can have its own character set and set of sorting
rules for that character set, or collation.

VARCHAR and CHAR types
The two major string types are VARCHAR and CHAR, which store character
values. Unfortunately, it’s hard to explain exactly how these values are
stored on disk and in memory because the implementations depend on the
storage engine. We assume you are using InnoDB; if not, you should read
the documentation for your storage engine.

Let’s take a look at how VARCHAR and CHAR values are typically stored on
disk. Be aware that a storage engine may store a CHAR or VARCHAR value
differently in memory from how it stores that value on disk, and the server
may translate the value into yet another storage format when it retrieves it
from the storage engine. Here’s a general comparison of the two types:

VARCHAR

VARCHAR stores variable-length character strings and is the most
common string data type. It can require less storage space than fixed-
length types because it uses only as much space as it needs (i.e., less
space is used to store shorter values).

VARCHAR uses 1 or 2 extra bytes to record the value’s length: 1 byte if
the column’s maximum length is 255 bytes or less, and 2 bytes if it’s
more. Assuming the latin1 character set, a VARCHAR(10) will use
up to 11 bytes of storage space. A VARCHAR(1000) can use up to
1,002 bytes, because it needs 2 bytes to store length information.

VARCHAR helps performance because it saves space. However, because
the rows are variable length, they can grow when you update them,
which can cause extra work. If a row grows and no longer fits in its
original location, the behavior is storage engine dependent. For
example, InnoDB may need to split the page to fit the row into it. Other
storage engines may never update data in place at all.

It’s usually worth using VARCHAR when the maximum column length is
much larger than the average length; when updates to the field are rare,
so fragmentation is not a problem; and when you’re using a complex
character set such as UTF-8, where each character uses a variable
number of bytes of storage.

It’s trickier with InnoDB, which can store long VARCHAR values as
BLOBs. We will discuss this later.

CHAR

CHAR is fixed-length: MySQL always allocates enough space for the
specified number of characters. When storing a CHAR value, MySQL
removes any trailing spaces. Values are padded with spaces as needed
for comparisons.

CHAR is useful if you want to store very short strings or if all the values
are nearly the same length. For example, CHAR is a good choice for
MD5 values for user passwords, which are always the same length.
CHAR is also better than VARCHAR for data that’s changed frequently
because a fixed-length row is not prone to fragmentation. For very short
columns, CHAR is also more efficient than VARCHAR; a CHAR(1)
designed to hold only Y and N values will use only 1 byte in a single-
byte character set, but a VARCHAR(1) would use 2 bytes because of
the length byte.

This behavior can be a little confusing, so we’ll illustrate with an example.
First, we create a table with a single CHAR(10) column and store some
values in it:

mysql> CREATE TABLE char_test(char_col CHAR(10));
mysql> INSERT INTO char_test(char_col) VALUES
 -> ('string1'), (' string2'), ('string3 ');

When we retrieve the values, the trailing spaces have been stripped away:

1

mysql> SELECT CONCAT("'", char_col, "'") FROM char_test;
+----------------------------+
| CONCAT("'", char_col, "'") |
+----------------------------+
| 'string1' |
| ' string2' |
| 'string3' |
+----------------------------+

If we store the same values in a VARCHAR(10) column, we get the
following result upon retrieval, where the trailing space on string3 has
not been removed:

mysql> SELECT CONCAT("'", varchar_col, "'") FROM varchar_test;
+-------------------------------+
| CONCAT("'", varchar_col, "'") |
+-------------------------------+
| 'string1' |
| ' string2' |
| 'string3 ' |
+-------------------------------+

The sibling types for CHAR and VARCHAR are BINARY and VARBINARY,
which store binary strings. Binary strings are very similar to conventional
strings, but they store bytes instead of characters. Padding is also different:
MySQL pads BINARY values with \0 (the zero byte) instead of spaces and
doesn’t strip the pad value on retrieval.

These types are useful when you need to store binary data and want
MySQL to compare the values as bytes instead of characters. The
advantage of byte-wise comparisons is more than just a matter of case
insensitivity. MySQL literally compares BINARY strings one byte at a time,
according to the numeric value of each byte. As a result, binary
comparisons can be much simpler than character comparisons, so they are
faster.

2

GENEROSITY CAN BE UNWISE
Storing the value 'hello' requires the same amount of space in a
VARCHAR(5) and a VARCHAR(200) column. Is there any advantage
to using the shorter column?

As it turns out, there is a big advantage. The larger column can use
much more memory, because MySQL often allocates fixed-size chunks
of memory to hold values internally. This is especially bad for sorting
or operations that use in-memory temporary tables. The same thing
happens with filesorts that use on-disk temporary tables.

The best strategy is to allocate only as much space as you really need.

BLOB and TEXT types
BLOB and TEXT are string data types designed to store large amounts of
data as either binary or character strings, respectively.

In fact, they are each families of data types: the character types are
TINYTEXT, SMALLTEXT, TEXT, MEDIUMTEXT, and LONGTEXT, and the
binary types are TINYBLOB, SMALLBLOB, BLOB, MEDIUMBLOB, and
LONGBLOB. BLOB is a synonym for SMALLBLOB, and TEXT is a synonym
for SMALLTEXT.

Unlike all other data types, MySQL handles each BLOB and TEXT value as
an object with its own identity. Storage engines often store them specially;
InnoDB may use a separate “external” storage area for them when they’re
large. Each value requires from 1 to 4 bytes of storage space in the row and
enough space in external storage to actually hold the value.

The only difference between the BLOB and TEXT families is that BLOB
types store binary data with no collation or character set, but TEXT types
have a character set and collation.

MySQL sorts BLOB and TEXT columns differently from other types:
instead of sorting the full length of the string, it sorts only the first

max_sort_length bytes of such columns. If you need to sort by only
the first few characters, you can decrease the max_sort_length server
variable.

MySQL can’t index the full length of these data types and can’t use the
indexes for sorting.

IMAGES IN A DATABASE?
In the past, it was not uncommon for some applications to accept
uploaded images and store them as BLOB data in a MySQL database.
This method was convenient for keeping the data for an application
together; however, as the size of the data grew, operations like schema
changes got slower and slower due to the size of that BLOB data.

If you can avoid it, don’t store data like images in a database. Instead,
write them to a separate object data store and use the table to track the
location or filename for the image.

Using ENUM instead of a string type
Sometimes you can use an ENUM column instead of conventional string
types. An ENUM column can store a predefined set of distinct string values.
MySQL stores them very compactly, packed into 1 or 2 bytes depending on
the number of values in the list. It stores each value internally as an integer
representing its position in the field definition list. Here’s an example:

mysql> CREATE TABLE enum_test(
 -> e ENUM('fish', 'apple', 'dog') NOT NULL
 ->);
mysql> INSERT INTO enum_test(e) VALUES('fish'), ('dog'),
('apple');

The three rows actually store integers, not strings. You can see the dual
nature of the values by retrieving them in a numeric context:

mysql> SELECT e + 0 FROM enum_test;
+-------+
| e + 0 |
+-------+
| 1 |
| 3 |
| 2 |
+-------+

This duality can be terribly confusing if you specify numbers for your
ENUM constants, as in ENUM('1', '2', '3'). We suggest you don’t
do this.

Another surprise is that an ENUM field sorts by the internal integer values,
not by the strings themselves:

mysql> SELECT e FROM enum_test ORDER BY e;
+-------+
| e |
+-------+
| fish |
| apple |
| dog |
+-------+

You can work around this by specifying ENUM members in the order in
which you want them to sort. You can also use FIELD() to specify a sort
order explicitly in your queries, but this prevents MySQL from using the
index for sorting:

mysql> SELECT e FROM enum_test ORDER BY FIELD(e, 'apple', 'dog',
'fish');
+-------+
| e |
+-------+
| apple |
| dog |
| fish |
+-------+

If we’d defined the values in alphabetical order, we wouldn’t have needed
to do that.

Because MySQL stores each value as an integer and has to do a lookup to
convert it to its string representation, ENUM columns have some overhead.
This is usually offset by their smaller size, but not always. In particular, it
can be slower to join a CHAR or VARCHAR column to an ENUM column
than to another CHAR or VARCHAR column.

To illustrate, we benchmarked how quickly MySQL performs such a join on
a table in one of our applications. The table has a fairly wide primary key:

CREATE TABLE webservicecalls (
 day date NOT NULL,
 account smallint NOT NULL,
 service varchar(10) NOT NULL,
 method varchar(50) NOT NULL,
 calls int NOT NULL,
 items int NOT NULL,
 time float NOT NULL,
 cost decimal(9,5) NOT NULL,
 updated datetime,
 PRIMARY KEY (day, account, service, method)
) ENGINE=InnoDB;

The table contains about 110,000 rows and is only about 10 MB, so it fits
entirely in memory. The service column contains 5 distinct values with
an average length of 4 characters, and the method column contains 71
values with an average length of 20 characters.

We made a copy of this table and converted the service and method
columns to ENUM, as follows:

CREATE TABLE webservicecalls_enum (
 ... omitted ...
 service ENUM(...values omitted...) NOT NULL,
 method ENUM(...values omitted...) NOT NULL,
 ... omitted ...
) ENGINE=InnoDB;

We then measured the performance of joining the tables by the primary key
columns. Here is the query we used:

mysql> SELECT SQL_NO_CACHE COUNT(*)
 -> FROM webservicecalls
 -> JOIN webservicecalls USING(day, account, service, method);

We varied this query to join the VARCHAR and ENUM columns in different
combinations. Table 6-1 shows the results.3

T
a
b
l
e
6
-
1
.
S
p
e
e
d
o
f
j
o
i
n
i
n
g
V

A

R

C

H

A

R
a
n
d

E

N

U

M
c
o
l
u
m
n
s

Test Queries per second

VARCHAR joined to VARCHAR 2.6

VARCHAR joined to ENUM 1.7

ENUM joined to VARCHAR 1.8

ENUM joined to ENUM 3.5

The join is faster after converting the columns to ENUM, but joining the
ENUM columns to VARCHAR columns is slower. In this case, it looks like a
good idea to convert these columns, as long as they don’t have to be joined
to VARCHAR columns. It’s a common design practice to use “lookup tables”
with integer primary keys to avoid using character-based values in joins.

However, there’s another benefit to converting the columns: according to
the Data_length column from SHOW TABLE STATUS, converting
these two columns to ENUM made the table about one-third smaller. In some
cases, this might be beneficial even if the ENUM columns have to be joined
to VARCHAR columns. Also, the primary key itself is only about half the
size after the conversion. Because this is an InnoDB table, if there are any

other indexes on this table, reducing the primary key size will make them
much smaller, too.

WARNING
While ENUM types are very efficient in how they store values, changes to the valid
values that can be in an ENUM always require a schema change. If you do not yet have a
robust system that automates schema changes as we describe later in this chapter, this
operational need can be a major inconvenience if your ENUM changes often. We also
refer to an antipattern of “too many ENUMs” in schema design later.

Date and Time Types
MySQL has many types for various kinds of date and time values, such as
YEAR and DATE. The finest granularity of time MySQL can store is
microsecond. Most of the temporal types have no alternatives, so there is no
question of which one is the best choice. The only question is what to do
when you need to store both the date and the time. MySQL offers two very
similar data types for this purpose: DATETIME and TIMESTAMP. For
many applications, either will work, but in some cases, one works better
than the other. Let’s take a look:

DATETIME

This type can hold a large range of values, from the year 1000 to the
year 9999, with a precision of one microsecond. It stores the date and
time packed into an integer in YYYYMMDDHHMMSS format,
independent of time zone. This uses 8 bytes of storage space.

By default, MySQL displays DATETIME values in a sortable,
unambiguous format, such as 2008-01-16 22:37:08. This is the ANSI
standard way to represent dates and times.

TIMESTAMP

As its name implies, the TIMESTAMP type stores the number of
seconds elapsed since midnight, January 1, 1970, Greenwich Mean

Time (GMT)—the same as a Unix timestamp. TIMESTAMP uses only 4
bytes of storage, so it has a much smaller range than DATETIME: from
the year 1970 to January 19, 2038. MySQL provides the
FROM_UNIXTIME() and UNIX_TIMESTAMP() functions to convert
a Unix timestamp to a date and vice versa.

The value a TIMESTAMP displays also depends on the time zone. The
MySQL server, operating system, and client connections all have time
zone settings.

Thus, a TIMESTAMP that stores the value 0 actually displays it as
1969-12-31 19:00:00 in Eastern Standard Time (EST), which has a five-
hour offset from GMT. It’s worth emphasizing this difference: if you
store or access data from multiple time zones, the behavior of
TIMESTAMP and DATETIME will be very different. The former
preserves values relative to the time zone in use, while the latter
preserves the textual representation of the date and time.

TIMESTAMP also has special properties that DATETIME doesn’t have.
By default, MySQL will set the first TIMESTAMP column to the current
time when you insert a row without specifying a value for the column.
MySQL also updates the first TIMESTAMP column’s value by default
when you update the row unless you assign a value explicitly in the
UPDATE statement. You can configure the insertion and update
behaviors for any TIMESTAMP column. Finally, TIMESTAMP columns
are NOT NULL by default, which is different from every other data
type.

4

STORING DATE AND TIME AS AN INTEGER?
Both DATETIME and TIMESTAMP force you to deal with time zones
on the server and the client, and while a TIMESTAMP is more space
efficient than a DATETIME (4 bytes versus 8 bytes, ignoring fractional
second support), it also suffers from the year 2038 problem.

Ultimately, storing date and time comes down to a few things:

How far forward or backward do you need to support date and
time?

How much does storage space matter for this data?

Do you need fractional second support?

Do you want to shift date, time, and time zone handling to
MySQL or deal with it in code?

It is becoming increasingly popular to avoid the complexities of
MySQL’s handling by storing your date and time as the Unix epoch, or
number of seconds since January 1, 1970, in Coordinated Universal
Time (UTC). With a signed 32-bit INT, you get until the year 2038.
With an unsigned 32-bit INT, you get until the year 2106. With 64-bit,
you can go beyond that.

Much like popular discussions around operating systems, editors, and
tabs versus spaces, how you store this particular set of data can be more
of an opinion than best practice. Consider if this is a viable route for
your use case.

Bit-Packed Data Types
MySQL has a few storage types that use individual bits within a value to
store data compactly. All of these types are technically string types,
regardless of the underlying storage format and manipulations:

BIT

You can use a BIT column to store one or many true/false values in a
single column. BIT(1) defines a field that contains a single bit,
BIT(2) stores 2 bits, and so on; the maximum length of a BIT column
is 64 bits. InnoDB stores each column as the smallest integer type large
enough to contain the bits, so you don’t save any storage space.

MySQL treats BIT as a string type, not a numeric type. When you
retrieve a BIT(1) value, the result is a string, but the contents are the
binary value 0 or 1, not the ASCII value “0” or “1”. However, if you
retrieve the value in a numeric context, the result is the number to which
the bit string converts. Keep this in mind if you need to compare the
result to another value. For example, if you store the value
b'00111001' (which is the binary equivalent of 57) into a BIT(8)
column and retrieve it, you will get the string containing the character
code 57. This happens to be the ASCII character code for “9”. But in a
numeric context, you’ll get the value 57:

mysql> CREATE TABLE bittest(a bit(8));

mysql> INSERT INTO bittest VALUES(b'00111001');

mysql> SELECT a, a + 0 FROM bittest;

+------+-------+

| a | a + 0 |

+------+-------+

| 9 | 57 |

+------+-------+

This can be very confusing, so we recommend that you use BIT with
caution. For most applications, we think it is a better idea to avoid this
type.

If you want to store a true/false value in a single bit of storage space,
another option is to create a nullable CHAR(0) column. This column is
capable of storing either the absence of a value (NULL) or a zero-length
value (the empty string). This works in practice, but it can be obtuse to
others using data in the database and make it difficult to write queries.
Unless you’re hyper-focused on saving space, we still recommend using
TINYINT.

SET

If you need to store many true/false values, consider combining many
columns into one with MySQL’s native SET data type, which MySQL

represents internally as a packed set of bits. It uses storage efficiently,
and MySQL has functions such as FIND_IN_SET() and FIELD()

that make it easy to use in queries.

Bitwise operations on integer columns

An alternative to SET is to use an integer as a packed set of bits. For
example, you can pack 8 bits in a TINYINT and manipulate them with
bitwise operators. You can make this easier by defining named constants
for each bit in your application code.

The major advantage of this approach over SET is that you can change
the “enumeration” the field represents without an ALTER TABLE. The
drawback is that your queries are harder to write and understand (what
does it mean when bit 5 is set?). Some people are comfortable with
bitwise manipulations and some aren’t, so whether you’ll want to try
this technique is largely a matter of taste.

An example application for packed bits is an access control list (ACL) that
stores permissions. Each bit or SET element represents a value such as
CAN_READ, CAN_WRITE, or CAN_DELETE. If you use a SET column,
you’ll let MySQL store the bit-to-value mapping in the column definition; if

you use an integer column, you’ll store the mapping in your application
code. Here’s what the queries would look like with a SET column:

mysql> CREATE TABLE acl (
 -> perms SET('CAN_READ', 'CAN_WRITE', 'CAN_DELETE') NOT NULL
 ->);
mysql> INSERT INTO acl(perms) VALUES ('CAN_READ,CAN_DELETE');
mysql> SELECT perms FROM acl WHERE FIND_IN_SET('CAN_READ',
perms);
+---------------------+
| perms |
+---------------------+
| CAN_READ,CAN_DELETE |
+---------------------+

If you used an integer, you could write that example as follows:

mysql> SET @CAN_READ := 1 << 0,
 -> @CAN_WRITE := 1 << 1,
 -> @CAN_DELETE := 1 << 2;
mysql> CREATE TABLE acl (
 -> perms TINYINT UNSIGNED NOT NULL DEFAULT 0
 ->);
mysql> INSERT INTO acl(perms) VALUES(@CAN_READ + @CAN_DELETE);
mysql> SELECT perms FROM acl WHERE perms & @CAN_READ;
+-------+
| perms |
+-------+
| 5 |
+-------+

We’ve used variables to define the values, but you can use constants in your
code instead.

JSON Data
It is becoming increasingly common to use JSON as a format for
interchanging data between systems. MySQL has a native JSON data type
that makes it easy to operate on parts of the JSON structure directly within
the table. Purists may suggest that storing raw JSON in a database is an

antipattern because ideally, schemas are a representation of the fields in
JSON. Newcomers may look at the JSON data type and see a short path by
avoiding creating and managing independent fields. Which method is better
is largely subjective, but we’ll be objective by presenting a sample use case
and comparing both query speed and data size.

Our sample data was a list of 202 near-Earth asteroids and comets
discovered, courtesy of NASA. Tests were performed under MySQL 8.0.22
on a four-core, 16 GB RAM virtual machine. An example of the data:

 [
 {
 "designation":"419880 (2011 AH37)",
 "discovery_date":"2011-01-07T00:00:00.000",
 "h_mag":"19.7",
 "moid_au":"0.035",
 "q_au_1":"0.84",
 "q_au_2":"4.26",
 "period_yr":"4.06",
 "i_deg":"9.65",
 "pha":"Y",
 "orbit_class":"Apollo"
 }
]

This data represents a designation, date it was discovered, and data
collected about the entity, including numeric and text fields.

First, we took the data set in JSON and converted it to be one row per entry.
This resulted in a schema that looks relatively simple:

mysql> DESC asteroids_json;
+-----------+------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------+------+-----+---------+-------+
| json_data | json | YES | | NULL | |
+-----------+------+------+-----+---------+-------+

https://oreil.ly/2oZX9

Second, we took this JSON and converted the fields to columns using a
suitable data type for the data. This resulted in the following schema:

mysql> DESC asteroids_sql;
+----------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------+-------------+------+-----+---------+-------+
designation	varchar(30)	YES		NULL	
discovery_date	date	YES		NULL	
h_mag	float	YES		NULL	
moid_au	float	YES		NULL	
q_au_1	float	YES		NULL	
q_au_2	float	YES		NULL	
period_yr	float	YES		NULL	
i_deg	float	YES		NULL	
pha	char(3)	YES		NULL	
orbit_class	varchar(30)	YES		NULL	
+----------------+-------------+------+-----+---------+-------+

The first comparison is on data size:

mysql> SHOW TABLE STATUS\G
*************************** 1. row ***************************
 Name: asteroids_json
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 202
 Avg_row_length: 405
 Data_length: 81920
 Max_data_length: 0
 Index_length: 0

*************************** 2. row ***************************
 Name: asteroids_sql
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 202
 Avg_row_length: 243
 Data_length: 49152
 Max_data_length: 0
 Index_length: 0

Our SQL version uses three 16 KB pages, and our JSON version uses five
16 KB pages. This doesn’t come as much of a surprise. A JSON data type
will use more space to store the additional characters for defining JSON
(braces, brackets, colons, etc.) as well as the whitespace. In this small
example, the size of data storage can be improved by converting JSON to
specific data types.

There may be valid use cases where the data size is not that important. How
does query latency measure up between the two?

To select all of a single column in SQL, our syntax is straightforward:

SELECT designation FROM asteroids_sql;

On our first run of this query, uncached by InnoDB’s buffer pool, we got a
result of 1.14 milliseconds (ms). The second execution, with it in memory,
we got 0.44 ms.

For JSON, we are able to access a field inside of the JSON structure:

SELECT json_data->'$.designation' FROM asteroids_json

Similarly, our first execution, uncached, executed in 1.13 ms. Subsequent
executions were at around 0.80 ms. At this execution speed, we expect that
there will be a reasonable variation—we’re talking about a difference of
hundreds of microseconds in a VM environment. In our opinion, both
queries executed reasonably quickly, although it’s worth noting that the
JSON query is still about twice as long.

What about accessing specific rows, though? For the single-row lookup, we
take advantage of using indexes:

ALTER TABLE asteroids_sql ADD INDEX (designation);

When we do a single-row lookup, our SQL version runs in 0.33 ms, and our
JSON version runs in 0.58 ms, giving an edge to the SQL version. This is
easily explained: our index is allowing InnoDB to return 1 row instead of
202 rows.

Comparing an indexed query to a full table scan is unfair, though. To level
the playing field, we need to use the generated columns feature to extract
the designation and then create an index against that virtual generated
column:

ALTER TABLE asteroids_json ADD COLUMN designation VARCHAR(30)
GENERATED ALWAYS AS
(json_data->"$.designation"), ADD INDEX (designation);

This gives us a schema on our JSON table that looks like this:

mysql> DESC asteroids_json;
+-------------+-------------+------+-----+---------+-------------
------+
| Field | Type | Null | Key | Default | Extra
|
+-------------+-------------+------+-----+---------+-------------
------+
| json_data | json | YES | | NULL |
|
| designation | varchar(30) | YES | MUL | NULL | VIRTUAL
GENERATED |
+-------------+-------------+------+-----+---------+-------------
------+

Our schema now generates a virtual column for the designation from the
json_data column and indexes it. Now, we rerun our single-row lookup
to use the indexed column instead of the JSON column path operator (->).
Since the field data is quoted in the JSON, we need to search for it quoted
in our SQL as well:

SELECT * FROM asteroids_json WHERE designation='"(2010 GW62)"';

This query executed in 0.4 ms, fairly close to our SQL version of 0.33 ms.

From our preceding simple test case, the amount of used tablespace seems
to be the primary driver for why you would use SQL columns rather than
storing a raw JSON document. Speed is still better with SQL columns.
Overall, the decision to use native SQL versus JSON comes down to
whether the ease of storing JSON in the database outweighs the
performance. If you’re accessing this data millions or billions of times per
day, the speed difference is going to add up.

Choosing Identifiers
In general, an identifier is the way you refer to a row and often what makes
it unique. For example, if you have a table about users, you might want to
assign each user a numerical ID or a unique username. This field may be
some or all of your PRIMARY KEY.

Choosing a good data type for an identifier column is very important.
You’re more likely to compare these columns to other values (for example,
in joins) and to use them for lookups than other columns. You’re also likely
to use them in other tables as foreign keys, so when you choose a data type
for an identifier column, you’re probably choosing the type in related tables
as well. (As we demonstrated earlier in this chapter, it’s a good idea to use
the same data types in related tables because you’re likely to use them for
joins.)

When choosing a type for an identifier column, you need to consider not
only the storage type but also how MySQL performs computations and
comparisons on that type. For example, MySQL stores ENUM and SET
types internally as integers but converts them to strings when doing
comparisons in a string context.

Once you choose a type, make sure you use the same type in all related
tables. The types should match exactly, including properties such as
UNSIGNED. Mixing different data types can cause performance problems,
and even if it doesn’t, implicit type conversions during comparisons can

5

create hard-to-find errors. These may even crop up much later, after you’ve
forgotten that you’re comparing different data types.

Choose the smallest size that can hold your required range of values, and
leave room for future growth if necessary. For example, if you have a
state_id column that stores US state names, you don’t need thousands
or millions of values, so don’t use an INT. A TINYINT should be
sufficient and is 3 bytes smaller. If you use this value as a foreign key in
other tables, 3 bytes can make a big difference. Here we give a few tips.

Integer types
Integers are usually the best choice for identifiers because they’re fast and
they work with AUTO_INCREMENT. AUTO_INCREMENT is a column
attribute that generates a new integer type for each new row. For example, a
billing system may need to generate a new invoice for each customer. Using
AUTO_INCREMENT means that the first invoice generated would be 1, the
second 2, and so on. Be aware that you should make sure you have the right
integer size for the growth of the data you expect. There has been more than
one story of system downtime associated with unexpectedly running out of
integers.

ENUM and SET
The ENUM and SET types are generally a poor choice for identifiers,
although they can be okay for static “definition tables” that contain status or
“type” values. ENUM and SET columns are appropriate for holding
information like an order’s status or a product’s type.

As an example, if you use an ENUM field to define a product’s type, you
might want a lookup table primary keyed on an identical ENUM field. (You
could add columns to the lookup table for descriptive text, to generate a
glossary, or to provide meaningful labels in a pull-down menu on a
website.) In this case, you’ll want to use the ENUM as an identifier, but for
most purposes, you should avoid doing so.

String types

Avoid string types for identifiers if possible, because they take up a lot of
space and are generally slower than integer types.

You should also be very careful with completely “random” strings, such as
those produced by MD5(), SHA1(), or UUID(). Each new value you
generate with them will be distributed in arbitrary ways over a large space,
which can slow INSERT and some types of SELECT queries:

They slow INSERT queries because the inserted value has to go in
a random location in indexes. This causes page splits, random disk
accesses, and clustered index fragmentation for clustered storage
engines.

They slow SELECT queries because logically adjacent rows will
be widely dispersed on disk and in memory.

Random values cause caches to perform poorly for all types of
queries because they defeat locality of reference, which is how
caching works. If the entire data set is equally “hot,” there is no
advantage to having any particular part of the data cached in
memory, and if the working set does not fit in memory, the cache
will have a lot of flushes and misses.

If you do store universally unique identifier (UUID) values, you should
remove the dashes or, even better, convert the UUID values to 16-byte
numbers with UNHEX() and store them in a BINARY(16) column. You
can retrieve the values in hexadecimal format with the HEX() function.

6

BEWARE OF AUTOGENERATED SCHEMAS
We’ve covered the most important data type considerations (some with
serious and others with more minor performance implications), but we
haven’t yet told you about the evils of autogenerated schemas.

Badly written schema migration programs and programs that
autogenerate schemas can cause severe performance problems. Some
programs use large VARCHAR fields for everything or use different data
types for columns that will be compared in joins. Be sure to double-
check a schema if it was created for you automatically.

Object-relational mapping (ORM) systems (and the “frameworks” that
use them) are frequently another performance nightmare. Some of these
systems let you store any type of data in any type of backend data store,
which usually means they aren’t designed to use the strengths of any of
the data stores. Sometimes they store each property of each object in a
separate row, even using timestamp-based versioning, so there are
multiple versions of each property!

This design may appeal to developers because it lets them work in an
object-oriented fashion without needing to think about how the data is
stored. However, applications that “hide complexity from developers”
usually don’t scale well. We suggest you think carefully before trading
performance for developer productivity, and always test on a
realistically large data set, so you don’t discover performance problems
too late.

Special Types of Data
Some kinds of data don’t correspond directly to the available built-in types.
A good example is an IPv4 address. People often use VARCHAR(15)
columns to store IP addresses. However, they are really unsigned 32-bit
integers, not strings. The dotted-quad notation is just a way of writing it out
so that humans can read it more easily. You should store IP addresses as

unsigned integers. MySQL provides the INET_ATON() and
INET_NTOA() functions to convert between the two representations. The
space used shrinks from ~16 bytes for a VARCHAR(15) down to 4 bytes
for an unsigned 32-bit integer. If you’re concerned about readability in the
database and don’t want to keep using functions to view row data,
remember that MySQL has views and you can use them to see your data
easier.

Schema Design Gotchas in MySQL
Although there are universally bad and good design principles, there are
also issues that arise from how MySQL is implemented, and that means you
can make MySQL-specific mistakes, too. This section discusses problems
that we’ve observed in schema designs with MySQL. It might help you
avoid those mistakes and choose alternatives that work better with
MySQL’s specific implementation.

Too Many Columns
MySQL’s storage engine API works by copying rows between the server
and the storage engine in a row buffer format; the server then decodes the
buffer into columns. It can be costly to turn the row buffer into the row data
structure with the decoded columns. InnoDB’s row format always requires
conversion. The cost of this conversion depends on the number of columns.
We discovered that this can become expensive when we investigated an
issue with high CPU consumption for a customer with extremely wide
tables (hundreds of columns), even though only a few columns were
actually used. If you’re planning for hundreds of columns, be aware that the
server’s performance characteristics will be a bit different.

Too Many Joins
The so-called entity-attribute-value (EAV) design pattern is a classic case of
a universally bad design pattern that especially doesn’t work well in

MySQL. MySQL has a limitation of 61 tables per join, and EAV databases
require many self-joins. We’ve seen more than a few EAV databases
eventually exceed this limit. Even at many fewer joins than 61, however,
the cost of planning and optimizing the query can become problematic for
MySQL. As a rough rule of thumb, it’s better to have a dozen or fewer
tables per query if you need queries to execute very fast with high
concurrency.

The All-Powerful ENUM
Beware of overusing ENUM. Here’s an example we saw:

CREATE TABLE ... (
 country enum(','0','1','2',...,'31')

The schema was sprinkled liberally with this pattern. This would probably
be a questionable design decision in any database with an enumerated value
type because it really should be an integer that is foreign-keyed to a
“dictionary” or “lookup” table anyway.

The ENUM in Disguise
An ENUM permits the column to hold one value from a set of defined
values. A SET permits the column to hold one or more values from a set of
defined values. Sometimes these can be easy to confuse. Here’s an example:

CREATE TABLE ...(
 is_default set('Y','N') NOT NULL default 'N'

That almost surely ought to be an ENUM instead of a SET, assuming that it
can’t be both true and false at the same time.

NULL Not Invented Here

We wrote earlier about the benefits of avoiding NULL, and indeed, we
suggest considering alternatives when possible. Even when you do need to
store a “no value” fact in a table, you might not need to use NULL. Perhaps
you can use zero, a special value, or an empty string instead.

However, you can take this to extremes. Don’t be too afraid of using NULL
when you need to represent an unknown value. In some cases, it’s better to
use NULL than a magical constant. Selecting one value from the domain of
a constrained type, such as using −1 to represent an unknown integer, can
complicate your code a lot, introduce bugs, and just generally make a total
mess out of things. Handling NULL isn’t always easy, but it’s often better
than the alternative.

Here’s one example we’ve seen pretty frequently:

CREATE TABLE ... (
 dt DATETIME NOT NULL DEFAULT '0000-00-00 00:00:00'

That bogus all-zeros value can cause lots of problems. (You can configure
MySQL’s SQL_MODE to disallow nonsense dates, which is an especially
good practice for a new application that hasn’t yet created a database full of
bad data.)

On a related topic, MySQL does index NULLs, unlike Oracle, which
doesn’t include nonvalues in indexes.

Now that we have covered a lot of practical advice around data types, how
to choose them, and what not to do, let’s move on to the other piece of
good, iterative schema design: schema management.

Schema Management
Running schema changes is one of the most common tasks a database
engineer has to undertake. When you get to the stage of running dozens or
hundreds of database instances with varying business contexts and evolving
features, you want to be careful that applying these schema changes is not a

bottleneck for the entire organization but is still being done safely and
without disrupting operations. This section will cover how to think about
schema change management as part of a “data store platform,” what core
values should guide this strategy, what tools you can introduce to enable
this strategy, and how it all fits together in your larger software-delivery life
cycle.

Schema Management as Part of the Data Store Platform
If you speak with any engineering leader of a fast-growing organization,
you will find that engineer velocity and the time from feature design to
running in production are top of their list of things to optimize. In that
context, your task as you plan managing schemas at scale is to not allow
schema management to become a manual process that bottlenecks progress
for the entire engineering organization on one or a few people.

Set up your partner teams for success
As the number of teams that rely on MySQL instances in the organization
grows, you want to always be the enabler of these teams’ success, not the
gate they need to pass through to get their work done. This applies to
schema changes, too, which means you want to create a path to deploying
schema changes that does not hinge on “only the database team does it.”

Integrate schema management with continuous integration
After we cover a number of tools that enable schema management at scale,
we will talk about how to integrate them with CI pipelines. But right now
we would like to emphasize that if you start with the premise that schema
changes are going to be managed by feature teams and not just the database
team, then you need to get as close in workflow as you can to how these
teams already deploy code changes. Science has shown that teams that treat
schema management the same way they treat code deploys experience a
more positive feature-delivery process and see improvement in the teams’
velocity. We’ll discuss the tools that enable that iteration with software-
delivery practices in mind.

Source control for schema changes
We all use source control for the code we deploy, right? Then why not also
for what the database schema is supposed to look like? One of the very first
steps to schema management at scale is making sure you have source
control underpinning and tracking the changes being done. It is not only A
Good Thing To Do™, but in many cases, it’s required by your friendly

https://oreil.ly/hozRf

compliance team, as you will see in Chapter 13. Let’s cover some tools that
enable iterating over database schemas.

NOTE
For maximum value for your organization, use the same CI tool engineering uses for
code deploys.

Paid options

The landscape for database schema management as an enterprise tool has
grown dramatically in the past few years, especially in increased support for
MySQL installations. If you are looking for an off-the-shelf solution to help
your organization manage schema changes, here are some things you
should consider:

Cost

Cost models vary, so you should be careful if the solution you choose
will charge per target (schema to manage) as that can add up quickly.

Online schema management

As of this writing, paid solutions such as Flyway do not have a clear
path to running schema changes for you in a nonblocking manner,
although its competitor Liquibase has a well-supported plug-in for
Percona’s online schema change. You need to be aware of the trade-offs
each vendor is deciding on your behalf and what these trade-offs mean
to your availability, especially if you plan to use these vendors to
manage schema changes for databases that are large in size (multiple
terabytes on disk).

Out-of-the-box integrations

https://flywaydb.org/
https://www.liquibase.org/

Most of these tools come with assumptions about what languages your
in-house software is written in and therefore what hooks to provide for
integration with your existing software-delivery process. If your shop is
highly polyglot or in the process of changing major software languages,
this could exclude some of these vendors. We will cover in the next
section what to do if you need to “do it yourself” when implementing
schema source control management.

Using open source

If procuring a paid tool is out of reach or if you have valid reasons why
none of the current solutions is a good fit for your organization, you can
achieve the same outcomes using existing open source tooling and your
organization’s CI pipeline.

A prominent open source solution for managing schema changes in version
control across multiple environments is Skeema. Skeema itself does not run
the schema changes for you in production—we will cover how to do that
shortly—but it is a great tool for tracking changes in a source control
repository per database cluster and across multiple environments. Its CLI
implementation provides a lot of flexibility when integrating with your CI
solution of choice. How you integrate Skeema directly with your CI
solution will require some consideration of the capabilities that CI solution
has. This blog post by the team at Twilio Sendgrid explains how they
integrated Skeema with Buildkite to achieve autonomy for feature teams
looking to manage changes to their databases.

Note that however this solution integrates with your CI, it also needs access
to run schema changes to all your environments, including production. This
means also collaborating with your security team to make sure you are
creating the correct access controls to reap the benefits of automating
schema deployments using continuous integration.

https://www.skeema.io/
https://oreil.ly/8YhBS

NOTE
If you are already on the path of scaling your database infrastructure using Vitess, you
should be aware that Vitess also manages schema changes for you. Make sure to check
that specific section of the documentation.

The field for managing schema changes across environments with both an
automation and compliance mindset has grown dramatically in the past few
years. Here are some final takeaways for you as you make your choice:

Stay as close as possible to the existing software-deploy tooling
and workflow. You want this to be familiar to your larger
engineering organization.

Use a tool that can integrate basic linting checks against schema
changes to ensure some baseline requirements are met. Your
solution should automatically fail a pull request if the new table
does not use the right charset or there are foreign keys if you
decided you do not want to allow them.

If you are in an organization that is polyglot and growing rapidly,
make sure you are not accidentally introducing artificial
bottlenecks such as one repository for all the databases and all the
schema changes. Remember that the goal here is engineering team
velocity.

Running schema changes in production
Now that we have covered options to track and manage deploying schema
changes for your organization, let’s discuss how to run these changes in
production without affecting the uptime of your databases or the services
that rely on them.

Native DDL statements

MySQL introduced nonblocking schema changes in version 5.6, but in that
major version, the feature came with a number of caveats that made actually

using them limited to very specific schema-change types.

By the time version 8.0 became GA, support for native DDL in MySQL
expanded greatly, although it is still not universal. Changes to your primary
key, changes to charsets, turning on per-table encryption, and adding or
removing foreign keys are all examples of schema changes you still cannot
do natively with an INPLACE alter. We highly recommend you get
familiar through the documentation with what changes are allowed using
either INPLACE or INSTANT algorithms as the preferred, native way to
make schema changes in MySQL without downtime.

However, even if the change you need is technically supported by native
DDL in 8.0 and beyond, if the table being changed is very large in size, you
can run into rollbacks if the logfile of table changes InnoDB is internally
keeping gets too large, undoing hours or days of work. Another reason you
may need to use an external tool is if you have a strong desire to control the
speed at which the table change happens using a throttling mechanism. This
is something you can manage with the external tools we are about to
discuss.

Using external tools to run your schema change

If you are not yet able to run the latest and greatest MySQL version with all
the flexibility of the schema changes in place, you can still combine CI
tooling with available open source tooling to run your schema changes in
production automatically without affecting your service. Two prominent
options for achieving this are Percona’s pt-online-schema-change
and GitHub’s gh-ost. The documentation for both has all the information
you need to learn how to install and use the tools, so we will focus here on
how to choose which of them to use, what the major trade-offs are that you
should consider, and how to improve the safety of using either tool as part
of an automated schema-deploy pipeline in production.

7

WARNING
One thing to note: any external tool running your schema changes for you will need to
make entire copies of the table you are changing. The tool merely makes the process
less impactful and does not require disruptive write locks, but only native DDL in
MySQL can alter table schemas without a full table copy.

The major draw for pt-online-schema-change has been its stability
and how long it’s been in use in the MySQL community. It primarily
leverages triggers to enable changing schemas for tables of all sizes with
very little impact to the database availability when switching to the new
table version. But its core design also comes with trade-offs. Keep these
things in mind when learning to use pt-online-schema-change to
power your schema-deploy pipeline:

Triggers have limitations

Before MySQL 8.0, you could not have more than one trigger with the
same action on the same table. What does that mean? If you have a table
named sales, and you already need to maintain an insert time trigger

on it, MySQL before 8.0 does not allow another insert trigger on that
table. If you try to run a pt-online-schema-change schema

change against it, the tool will produce an error when it attempts to add
the triggers it needs to function. Although we generally highly
discourage using table triggers as part of your business logic, there will
still be cases where legacy choices create a constraint and this becomes
part of your trade-off calculation when choosing a schema-change
mechanism.

Triggers have performance implications

There are some excellent benchmarks by Percona showing the
performance impact of even having triggers defined on a table. This
performance penalty may be invisible to most installations, but if you
happen to be running your database instances at a very high transaction-
per-second throughput rate, you may need to watch the impact of the
triggers introduced by pt-online-schema-change more closely

and tune it to abort more conservatively.

Running concurrent migrations

Because of its use of triggers and the limitations of triggers in pre-8.0
MySQL, you will find that you cannot run multiple schema changes on
the same table using pt-online-schema-change. This can be a

minor inconvenience initially, but if you integrate the tool into a full
schema-migration pipeline that’s automated, it can become a bottleneck
for your teams.

Constraints around foreign keys

Although the tool does have some level of support for schema changes
with foreign keys in place, you will need to read the documentation
carefully and determine which trade-off is the least impactful for your
data and your transaction throughput.

gh-ost was created by the data engineering team at GitHub specifically as
a solution for managing the schema-change process without service impact
but also without using triggers at all. Instead of using triggers to track
changes during the table-copy phase, it connects as a replica to one of your
cluster replicas and consumes row-based replication logs as a changelog.

https://oreil.ly/aGdKk

One thing you need to consider carefully about using gh-ost for schema
changes is whether or not your existing database uses foreign keys. While
pt-online-schema-change makes a solid attempt to support schema
changes for tables that are the parent or child in a foreign-key relationship,
it is a complex choice and full of trade-offs. (Do we sacrifice uptime for
consistency? Or risk some window of possible inconsistency?) On the other
hand, gh-ost mostly makes that choice for you and bails entirely if
foreign keys exist in the table you are looking to alter. As the primary
contributor on gh-ost, Shlomi Noach, explains in a long but very useful
blog post, the use of foreign keys and online schema change tools that are
ultimately still external to the database engine create an environment where
trade-offs are difficult to reason about, and he proposes not using foreign
keys at all if you also require online schema changes.

If you and your team are new to this task and are paving the way for CI of
schema changes in your organization, we believe gh-ost is the better
solution as long as you are also disciplined around not introducing foreign
keys. Given its use of binary logs instead of triggers to track changes, we
consider it the safer option where you don’t have to worry about triggers’
performance hit, it is far more agnostic to which version of MySQL you run
(it can even work with statement-based replication with some caveats), and
it has already been proven on large-scale deployments.

When is pt-online-schema-change the preferred option? If you are
running a number of older databases where foreign keys already exist and
removing them is a difficult proposal, you will find that pt-online-
schema-change attempts a more expansive support for foreign keys, but
you will have to carry the cognitive load of choosing the safest option for
your data integrity and your uptime. Also, gh-ost leverages binary logs to
do its work, so if those are inaccessible to the tool for some reason, pt-
online-schema-change remains a viable option.

Ideally, someday we can all do online schema changes natively in MySQL,
but that day is not here yet. Until then, the open source ecosystem has come
a long way toward making schema changes a more easily automated

https://oreil.ly/6A10o

process. Let’s talk about how to put all of these tools together for a fully
fleshed CI/CD pipeline for schema changes.

A CI/CD pipeline for schema changes
Now that we have covered a number of tools, from tools that help manage
schema definition versioning to tools for making the changes for you in
production with minimal downtime, you can see that we have the pieces for
a full continuous integration and deployment of schema changes that can
remove a huge bottleneck for engineer productivity in your organization.
Let’s put it all together:

Organizing your schema source control

First things first, you must start by separating each of your database
clusters’ schema definitions in a repository by itself. If the goal here is
to provide flexibility for different teams to run their changes at different
speeds, then it does not make sense to combine all the schema
definitions of all your databases in one repository. This separation also
allows each team to define different linting checks in the repository.
Some teams may require a very specific character set and collation, and
others are probably OK with the default. Flexibility for your partner
teams here is key.

Make sure to document the workflow of how an engineer in a feature
team can go from a schema change on their laptop to one that is run on
all environments and runs tests before going to production. A pull-
request model here can be very useful for helping each team to define
what tests to run when a schema change is requested, in an automated
manner, before promoting and running the change in more
environments or production.

A baseline configuration for safety

Define a baseline configuration for your online schema change tool of
choice. You are the team providing the tooling for partner teams that
rely on you to give flexible, scalable, but also safe solutions. As you

consider how you will implement the online schema change tool, it may
be time to get opinionated about schema-design considerations that need
to be part of testing schema change pull requests overall. For example,
if you decide you prefer the safety of gh-ost and its trigger-free

design, this will mean that you have to become a database platform free
of foreign keys. Without going into the trade-offs of such a choice, if
you do end up deciding “death to foreign keys,” then you should make
sure that is encoded in how you test your schema changes in precommit
hooks or in your Skeema repository, so you can avoid accidentally
introducing undesirable schema changes too far into the environment
hierarchy. Similarly, you should decide on a basic configuration for your
online schema change tool that provides a basic safety net for how a
change runs in production. Examples of what you may want to
introduce in such a configuration include maximum MySQL threads
running or maximum allowed system load. Repository templates can be
a powerful tool to make the right thing the easy thing when any feature
team is creating a new database and wants a repository to track and
manage schema changes.

Pipeline flexibility per team

When you organize your schema definitions in a repository per
database, you allow for maximum flexibility for each team that owns
that database to decide how automated or person-managed its pipeline
should be. One team could be still in the iteration phase for a new
product, and they are OK with a schema pull request automatically
promoting as long as the defined tests pass. Another team might own a

more mission-critical database and require a more cautious approach,
preferring an operator to approve the pull request before the CI system
can promote it to the next environment.

As you design how your organization achieves scalable schema-change
deployments, keep your eye on the end goal: velocity that is coupled with
safety for your growing engineering organization without the database
engineering team being a bottleneck to how the company moves from ideas
to features in production.

Summary
Good schema design is pretty universal, but of course MySQL has special
implementation details to consider. In a nutshell, it’s a good idea to keep
things as small and simple as you can. MySQL likes simplicity, and so will
the people who have to work with your database. Keep these guidelines in
mind:

Try to avoid extremes in your design, such as a schema that will
force enormously complex queries or tables with oodles and oodles
of columns. (An oodle is somewhere between a scad and a
gazillion.)

Use small, simple, appropriate data types, and avoid NULL unless
it’s actually the right way to model your data’s reality.

Try to use the same data types to store similar or related values,
especially if they’ll be used in a join condition.

Watch out for variable-length strings, which might cause
pessimistic full-length memory allocation for temporary tables and
sorting.

Try to use integers for identifiers if you can.

Avoid the legacy MySQL-isms, such as specifying precisions for
floating-point numbers or display widths for integers.

Be careful with ENUM and SET. They’re handy, but they can be
abused, and they’re tricky sometimes. BIT is best avoided.

Database design is a science. If you’re strongly concerned with database
design, consider using dedicated source material.

Also remember that your schema will evolve with both your business needs
and what you learn from your users, and that means that having a robust
software life cycle managing schema changes is a crucial part of making
this evolution safe and scalable with your organization.

1 Remember that the length is specified in characters, not bytes. A multibyte character set can
require more than 1 byte to store each character.

2 Be careful with the BINARY type if the value must remain unchanged after retrieval. MySQL
will pad it to the required length with \0s.

3 Times are for relative comparison, as the speed of CPUs, memory, and other hardware
changes over time.

4 The rules for TIMESTAMP behavior are complex and have changed in various MySQL
versions, so you should verify that you are getting the behavior you want. It’s usually a good
idea to examine the output of SHOW CREATE TABLE after making changes to TIMESTAMP
columns.

5 If you’re using the InnoDB storage engine, you may not be able to create foreign keys unless
the data types match exactly. The resulting error message, “ERROR 1005 (HY000): Can’t
create table,” can be confusing depending on the context, and questions about it come up often
on MySQL mailing lists. (Oddly, you can create foreign keys between VARCHAR columns of
different lengths.)

6 On the other hand, for some very large tables with many writers, such pseudorandom values
can actually help eliminate “hot spots.”

7 See the MySQL documentation for more on this.

8 For another in-depth read, consider Database Design for Mere Mortals by Michael J.
Hernandez (Pearson).

8

https://oreil.ly/nFMKg

Chapter 7. Indexing for High
Performance

Indexes (also called keys in MySQL) are data structures that storage engines
use to find rows quickly. They also have several other beneficial properties
that we’ll explore in this chapter.

Indexes are critical for good performance and become more important as
your data grows larger. Small, lightly loaded databases often perform well
even without proper indexes, but as the data set grows, performance can
drop very quickly. Unfortunately, indexes are often forgotten or
misunderstood, so poor indexing is a leading cause of real-world
performance problems. That’s why we put this material early in the book—
even earlier than our discussion of query optimization.

Index optimization is perhaps the most powerful way to improve query
performance. Indexes can improve performance by many orders of
magnitude, and optimal indexes can sometimes boost performance about
two orders of magnitude more than indexes that are merely “good.”
Creating truly optimal indexes will often require you to rewrite queries, so
this chapter and the next one are closely related.

This chapter relies on using example databases, like the Sakila Sample
Database, available from MySQL’s website. Sakila is an example database
that models a rental store, with a collection of actors, films, customers, and
more.

Indexing Basics
The easiest way to understand how an index works in MySQL is to think
about the index of a book. To find out where a particular topic is discussed

1

https://oreil.ly/cIabb

in a book, you look in the index, and it tells you the page number(s) where
that term appears.

In MySQL, a storage engine uses indexes in a similar way. It searches the
index’s data structure for a value. When it finds a match, it can find the row
that contains the match. Suppose you run the following query:

SELECT first_name FROM sakila.actor WHERE actor_id = 5;

There’s an index on the actor_id column, so MySQL will use the index
to find rows whose actor_id is 5. In other words, it performs a lookup
on the values in the index and returns any rows containing the specified
value.

An index contains values from one or more columns in a table. If you index
more than one column, the column order is very important because MySQL
can only search efficiently on the leftmost prefix of the index. Creating an
index on two columns is not the same as creating two separate single-
column indexes, as you’ll see.

IF I USE AN ORM, DO I NEED TO CARE?
The short version: yes, you still need to learn about indexing, even if
you rely on an ORM tool.

ORMs produce logically and syntactically correct queries (most of the
time), but they rarely produce index-friendly queries unless you use
them for only the most basic types of queries, such as primary key
lookups. You can’t expect your ORM, no matter how sophisticated, to
handle the subtleties and complexities of indexing. Read the rest of this
chapter if you disagree! It’s sometimes a hard job for an expert human
to puzzle through all of the possibilities, let alone an ORM.

Types of Indexes

There are many types of indexes, each designed to perform well for
different purposes. Indexes are implemented in the storage engine layer, not
the server layer. Thus, they are not standardized: indexing works slightly
differently in each engine, and not all engines support all types of indexes.
Even when multiple engines support the same index type, they might
implement it differently under the hood. Given that this book assumes you
are using InnoDB as the engine for all your tables, we will address
specifically index implementations in InnoDB.

That said, let’s look at the two most commonly used index types MySQL
currently supports, their benefits, and their drawbacks.

B-tree indexes
When people talk about an index without mentioning a type, they’re
probably referring to a B-tree index, which typically uses a B-tree data
structure to store its data. Most of MySQL’s storage engines support this
index type.

We use the term B-tree for these indexes because that’s what MySQL uses
in CREATE TABLE and other statements. However, storage engines might
use different storage structures internally. For example, the NDB Cluster
storage engine uses a T-tree data structure for these indexes, even though
they’re labeled BTREE, and InnoDB uses B+ trees. The variations in the
structures and algorithms are out of scope for this book, though.

The general idea of a B-tree is that all the values are stored in order, and
each leaf page is the same distance from the root. Figure 7-1 shows an
abstract representation of a B-tree index, which corresponds roughly to how
InnoDB’s indexes work.

2

Figure 7-1. An index built on a B-tree (technically, a B+ tree) structure

A B-tree index speeds up data access because the storage engine doesn’t
have to scan the whole table to find the desired data. Instead, it starts at the
root node (not shown in this figure). The slots in the root node hold pointers
to child nodes, and the storage engine follows these pointers. It finds the
right pointer by looking at the values in the node pages, which define the
upper and lower bounds of the values in the child nodes. Eventually, the
storage engine either determines that the desired value doesn’t exist or
successfully reaches a leaf page.

Leaf pages are special because they have pointers to the indexed data
instead of pointers to other pages. (Different storage engines have different
types of “pointers” to the data.) Our illustration shows only one node page
and its leaf pages, but there might be many levels of node pages between
the root and the leaves. The tree’s depth depends on how big the table is.

Because B-trees store the indexed columns in order, they’re useful for
searching for ranges of data. For instance, descending the tree for an index
on a text field passes through values in alphabetical order, so looking for
“everyone whose name begins with I through K” is efficient.

Suppose you have the following table:

CREATE TABLE People (
 last_name varchar(50) not null,
 first_name varchar(50) not null,
 dob date not null,
 key(last_name, first_name, dob)
);

The index will contain the values from the last_name, first_name,
and dob columns for every row in the table. Figure 7-2 illustrates how the
index arranges the data it stores.

Notice that the index sorts the values according to the order of the columns
given in the index in the CREATE TABLE statement. Look at the last two
entries: there are two people with the same name but different birth dates,
and they’re sorted by birth date.

Figure 7-2. Sample entries from a B-tree (technically, a B+ tree) index

Adaptive hash index

The InnoDB storage engine has a special feature called adaptive hash
indexes. When InnoDB notices that some index values are being accessed
very frequently, it builds a hash index for them in memory on top of B-tree
indexes. This gives its B-tree indexes some properties of hash indexes, such
as very fast hashed lookups. This process is completely automatic, and you
can’t control or configure it, although you can disable the adaptive hash
index altogether.

Types of queries that can use a B-tree index

B-tree indexes work well for lookups by the full key value, a key range, or a
key prefix. They are useful only if the lookup uses a leftmost prefix of the
index. The index we showed in the previous section will be useful for the
following kinds of queries:

Match the full value

3

A match on the full key value specifies values for all columns in the
index. For example, this index can help you find a person named Cuba
Allen who was born on 1960-01-01.

Match a leftmost prefix

This index can help you find all people with the last name Allen. This
uses only the first column in the index.

Match a column prefix

You can match on the first part of a column’s value. This index can help
you find all people whose last names begin with J. This uses only the
first column in the index.

Match a range of values

This index can help you find people whose last names are between
Allen and Barrymore. This also uses only the first column.

Match one part exactly and match a range on another part

This index can help you find everyone whose last name is Allen and
whose first name starts with the letter K (Kim, Karl, etc.). This is an
exact match on last_name and a range query on first_name.

Index-only queries

B-tree indexes can normally support index-only queries, which are
queries that access only the index, not the row storage. We discuss this
optimization in “Covering Indexes”.

Because the tree’s nodes are sorted, they can be used for both lookups
(finding values) and ORDER BY queries (finding values in sorted order). In

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/#covering_indexes

general, if a B-tree can help you find a row in a particular way, it can help
you sort rows by the same criteria. So our index will be helpful for ORDER
BY clauses that match all the types of lookups we just listed.

Here are some limitations of B-tree indexes:

They are not useful if the lookup does not start from the leftmost
side of the indexed columns. For example, this index won’t help
you find all people named Bill or all people born on a certain date,
because those columns are not leftmost in the index. Likewise, you
can’t use the index to find people whose last name ends with a
particular letter.

You can’t skip columns in the index—that is, you won’t be able to
find all people whose last name is Smith and who were born on a
particular date. If you don’t specify a value for the first_name
column, MySQL can use only the first column of the index.

The storage engine can’t optimize accesses with any columns to
the right of the first range condition. For example, if your query is
WHERE last_name="Smith" AND first_name LIKE
'J%' AND dob='1976-12-23', the index access will use
only the first two columns in the index because the LIKE is a
range condition (the server can use the rest of the columns for
other purposes, though). For a column that has a limited number of
values, you can often work around this by specifying equality
conditions instead of range conditions.

Now you know why we said the column order is extremely important: these
limitations are all related to column ordering. For optimal performance, you
may need to create indexes with the same columns in different orders to
satisfy your queries.

Some of these limitations are not inherent to B-tree indexes but are a result
of how the MySQL query optimizer and storage engines use indexes. Some
of them might be removed in the future.

Full-text indexes
FULLTEXT is a special type of index that finds keywords in the text instead
of comparing values directly to the values in the index. Full-text searching
is completely different from other types of matching. It has many subtleties,
such as stop words, stemming, plurals, and Boolean searching. It is much
more analogous to what a search engine does than to simple WHERE
parameter matching.

Having a full-text index on a column does not eliminate the value of a B-
tree index on the same column. Full-text indexes are for MATCH AGAINST
operations, not ordinary WHERE clause operations.

Benefits of Indexes
Indexes enable the server to navigate quickly to a desired position in the
table, but that’s not all they’re good for. As you’ve probably gathered by
now, indexes have several additional benefits, based on the properties of the
data structures used to create them.

B-tree indexes, which are the most common type you’ll use, function by
storing the data in sorted order, and MySQL can exploit that for queries
with clauses such as ORDER BY and GROUP BY. Because the data is
presorted, a B-tree index also stores related values close together. Finally,
the index actually stores a copy of the values, so some queries can be
satisfied from the index alone. Three main benefits proceed from these
properties:

Indexes reduce the amount of data the server has to examine.

Indexes help the server avoid sorting and temporary tables.

Indexes turn random I/O into sequential I/O.

This subject really deserves an entire book. For those who would like to dig
in deeply, we recommend Relational Database Index Design and the
Optimizers by Tapio Lahdenmaki and Mike Leach (Wiley). It explains
topics such as how to calculate the costs and benefits of indexes, how to

estimate query speed, and how to determine whether indexes will be more
expensive to maintain than the benefits they provide.

Lahdenmaki and Leach’s book also introduces a three-star system for
grading how suitable an index is for a query. The index earns one star if it
places relevant rows adjacent to each other, a second star if its rows are
sorted in the order the query needs, and a final star if it contains all the
columns needed for the query. We’ll return to these principles throughout
this chapter.

Indexing Strategies for High Performance
Creating the correct indexes and using them properly is essential to good
query performance. We’ve introduced the different types of indexes and
explored their strengths and weaknesses. Now let’s see how to really tap
into the power of indexes.

There are many ways to choose and use indexes effectively because there
are many special-case optimizations and specialized behaviors.
Determining what to use when and evaluating the performance implications
of your choices are skills you’ll learn over time. The next sections will help
you understand how to use indexes effectively.

Prefix Indexes and Index Selectivity
You can often save space and get good performance by indexing the first
few characters instead of the whole value. This makes your indexes use less
space, but it also makes them less selective. Index selectivity is the ratio of
the number of distinct indexed values (the cardinality) to the total number
of rows in the table (#T), and it ranges from 1/#T to 1. A highly selective
index is good because it lets MySQL filter out more rows when it looks for
matches. A unique index has a selectivity of 1, which is as good as it gets.

A prefix of the column is often selective enough to give good performance.
If you’re indexing BLOB or TEXT columns, or very long VARCHAR

4

columns, you must define prefix indexes because MySQL disallows
indexing their full length.

The trick is to choose a prefix that’s long enough to give good selectivity
but short enough to save space. The prefix should be long enough to make
the index nearly as useful as it would be if you’d indexed the whole
column. In other words, you’d like the prefix’s cardinality to be close to the
full column’s cardinality.

To determine a good prefix length, find the most frequent values and
compare with a list of the most frequent prefixes. There’s no good table to
demonstrate this in Sakila Sample Database, so we derive one from the
city table so we have enough data to work with:

CREATE TABLE sakila.city_demo(city VARCHAR(50) NOT NULL);
INSERT INTO sakila.city_demo(city) SELECT city FROM sakila.city;
-- Repeat the next statement five times:
INSERT INTO sakila.city_demo(city) SELECT city FROM
sakila.city_demo;
-- Now randomize the distribution (inefficiently but
conveniently):
UPDATE sakila.city_demo
 SET city = (SELECT city FROM sakila.city ORDER BY RAND() LIMIT
1);

Now we have an example data set. The results are not realistically
distributed, and we used RAND(), so your results will vary, but that doesn’t
matter for this exercise. First, we find the most frequently occurring cities:

mysql> SELECT COUNT(*) AS c, city
 -> FROM sakila.city_demo
 -> GROUP BY city ORDER BY c DESC LIMIT 10;
+-----+----------------+
| c | city |
+-----+----------------+
65	London
49	Hiroshima
48	Teboksary
48	Pak Kret
48	Yaound

47	Tel Aviv-Jaffa
47	Shimoga
45	Cabuyao
45	Callao
45	Bislig
+-----+----------------+

Notice that there are roughly 45 to 65 occurrences of each value. Now we
find the most frequently occurring city name prefixes, beginning with three-
letter prefixes:

mysql> SELECT COUNT(*) AS c, LEFT(city, 3) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY cc DESC LIMIT
10;
+-----+------+
| c | pref |
+-----+------+
483	San
195	Cha
177	Tan
167	Sou
163	al-
163	Sal
146	Shi
136	Hal
130	Val
129	Bat
+-----+------+

There are many more occurrences of each prefix, so there are many fewer
unique prefixes than unique full-length city names. The idea is to increase
the prefix length until the prefix becomes nearly as selective as the full
length of the column. A little experimentation shows that 7 is a good value:

mysql> SELECT COUNT(*) AS c, LEFT(city, 7) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY c DESC LIMIT
10;
+-----+---------+
| c | pref |
+-----+---------+
| 70 | Santiag |

68	San Fel
65	London
61	Valle d
49	Hiroshi
48	Teboksa
48	Pak Kre
48	Yaound
47	Tel Avi
47	Shimoga
+-----+---------+

Another way to calculate a good prefix length is by computing the full
column’s selectivity and trying to make the prefix’s selectivity close to that
value. Here’s how to find the full column’s selectivity:

mysql> SELECT COUNT(DISTINCT city)/COUNT(*) FROM
sakila.city_demo;
+-------------------------------+
| COUNT(DISTINCT city)/COUNT(*) |
+-------------------------------+
| 0.0312 |
+-------------------------------+

The prefix will be about as good, on average (there’s a caveat here, though),
if we target a selectivity near .031. It’s possible to evaluate many different
lengths in one query, which is useful on very large tables. Here’s how to
find the selectivity of several prefix lengths in one query:

mysql> SELECT COUNT(DISTINCT LEFT(city, 3))/COUNT(*) AS sel3,
 -> COUNT(DISTINCT LEFT(city, 4))/COUNT(*) AS sel4,
 -> COUNT(DISTINCT LEFT(city, 5))/COUNT(*) AS sel5,
 -> COUNT(DISTINCT LEFT(city, 6))/COUNT(*) AS sel6,
 -> COUNT(DISTINCT LEFT(city, 7))/COUNT(*) AS sel7
 -> FROM sakila.city_demo;
+--------+--------+--------+--------+--------+
| sel3 | sel4 | sel5 | sel6 | sel7 |
+--------+--------+--------+--------+--------+
| 0.0239 | 0.0293 | 0.0305 | 0.0309 | 0.0310 |
+--------+--------+--------+--------+--------+

This query shows that increasing the prefix length results in successively
smaller improvements as it approaches seven characters.

It’s not a good idea to look only at average selectivity. The caveat is that the
worst-case selectivity matters, too. The average selectivity may make you
think a four- or five-character prefix is good enough, but if your data is very
uneven, that could be a trap. If you look at the number of occurrences of the
most common city name prefixes using a value of 4, you’ll see the
unevenness clearly:

mysql> SELECT COUNT(*) AS c, LEFT(city, 4) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY c DESC LIMIT
5;
+-----+------+
| c | pref |
+-----+------+
205	San
200	Sant
135	Sout
104	Chan
91	Toul
+-----+------+

With four characters, the most frequent prefixes occur quite a bit more often
than the most frequent full-length values. That is, the selectivity on those
values is lower than the average selectivity. If you have a more realistic data
set than this randomly generated sample, you’re likely to see this effect
even more. For example, building a four-character prefix index on real-
world city names will give terrible selectivity on cities that begin with
“San” and “New,” of which there are many.

Now that we’ve found a good value for our sample data, here’s how to
create a prefix index on the column:

ALTER TABLE sakila.city_demo ADD KEY (city(7));

Prefix indexes can be a great way to make indexes smaller and faster, but
they have downsides too: MySQL cannot use prefix indexes for ORDER
BY or GROUP BY queries, nor can it use them as covering indexes.

A common case we’ve found to benefit from prefix indexes is when long
hexadecimal identifiers are used. We discussed more efficient techniques of
storing such identifiers in the previous chapter, but what if you’re using a
packaged solution that you can’t modify? We see this frequently with
vBulletin and other applications that use MySQL to store website sessions,
keyed on long hex strings. Adding an index on the first eight characters or
so often boosts performance significantly, in a way that’s completely
transparent to the application.

Multicolumn Indexes
Multicolumn indexes are often very poorly understood. Common mistakes
are to index many or all of the columns separately or to index columns in
the wrong order.

We’ll discuss column order in the next section. The first mistake, indexing
many columns separately, has a distinctive signature in SHOW CREATE
TABLE:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT,
 KEY(c1),
 KEY(c2),
 KEY(c3)
);

This strategy of indexing often results when people give vague but
authoritative-sounding advice such as “create indexes on columns that
appear in the WHERE clause.” This advice is very wrong. It will result in
one-star indexes at best. These indexes can be many orders of magnitude
slower than truly optimal indexes. Sometimes when you can’t design a

three-star index, it’s much better to ignore the WHERE clause and pay
attention to optimal row order or create a covering index instead.

Individual indexes on lots of columns won’t help MySQL improve
performance for most queries. MySQL can cope a little with such poorly
indexed tables when it employs a strategy known as index merge, which
permits a query to make limited use of multiple indexes from a single table
to locate desired rows. It can use both indexes, scanning them
simultaneously and merging the results. There are three variations on the
algorithm: union for OR conditions, intersection for AND conditions, and
unions of intersections for combinations of the two. The following query
uses a union of two index scans, as you can see by examining the Extra
column:

mysql> EXPLAIN SELECT film_id, actor_id FROM sakila.film_actor
 -> WHERE actor_id = 1 OR film_id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 partitions: NULL
 type: index_merge
 possible_keys: PRIMARY,idx_fk_film_id
 key: PRIMARY,idx_fk_film_id
 key_len: 2,2
 ref: NULL
 rows: 29
 filtered: 100.00
 Extra: Using union(PRIMARY,idx_fk_film_id); Using where

MySQL can use this technique on complex queries, so you might see nested
operations in the Extra column for some queries.

The index merge strategy sometimes works very well, but more commonly
it’s actually an indication of a poorly indexed table:

When the server intersects indexes (usually for AND conditions), it
usually means that you need a single index with all the relevant
columns, not multiple indexes that have to be combined.

When the server unions indexes (usually for OR conditions),
sometimes the algorithm’s buffering, sorting, and merging
operations use lots of CPU and memory resources. This is
especially true if not all of the indexes are very selective, so the
scans return lots of rows to the merge operation.

Recall that the optimizer doesn’t account for this cost—it
optimizes just the number of random page reads. This can make it
“underprice” the query, which might in fact run more slowly than a
plain table scan. The intensive memory and CPU usage also tends
to affect concurrent queries, but you won’t see this effect when you
run the query in isolation. Sometimes rewriting such queries with a
UNION clause is more optimal.

When you see an index merge in EXPLAIN, you should examine the query
and table structure to see if this is really the best you can get. You can
disable index merges with the optimizer_switch option or variable.
You can also use IGNORE INDEX.

Choosing a Good Column Order
One of the most common causes of confusion we’ve seen is the order of
columns in an index. The correct order depends on the queries that will use
the index, and you must think about how to choose the index order such that
rows are sorted and grouped in a way that will benefit the query.

The order of columns in a multicolumn B-tree index means that the index is
sorted first by the leftmost column, then by the next column, and so on.
Therefore, the index can be scanned in either forward or reverse order to
satisfy queries with ORDER BY, GROUP BY, and DISTINCT clauses that
match the column order exactly.

As a result, the column order is vitally important in multicolumn indexes.
The column order either enables or prevents the index from earning “stars”
in Lahdenmaki and Leach’s three-star system (see “Benefits of Indexes”

earlier in this chapter for more on the three-star system). We will show
many examples of how this works throughout the rest of this chapter.

There is an old rule of thumb for choosing column order: place the most
selective columns first in the index. How useful is this suggestion? It can be
helpful in some cases, but it’s usually much less important than avoiding
random I/O and sorting, all things considered. (Specific cases vary, so
there’s no one-size-fits-all rule. That alone should tell you that this rule of
thumb is probably less important than you think.)

Placing the most selective columns first can be a good idea when there is no
sorting or grouping to consider, and thus the purpose of the index is only to
optimize WHERE lookups. In such cases, it might indeed work well to
design the index so that it filters out rows as quickly as possible, so it’s
more selective for queries that specify only a prefix of the index in the
WHERE clause. However, this depends not only on the selectivity (overall
cardinality) of the columns but also on the actual values you use to look up
rows—the distribution of values. This is the same type of consideration we
explored for choosing a good prefix length. You might actually need to
choose the column order such that it’s as selective as possible for the
queries that you’ll run most.

Let’s use the following query as an example:

SELECT * FROM payment WHERE staff_id = 2 AND customer_id = 584;

Should you create an index on (staff_id, customer_id), or should
you reverse the column order? We can run some quick queries to help
examine the distribution of values in the table and determine which column
has a higher selectivity. Let’s transform the query to count the cardinality of
each predicate in the WHERE clause:

mysql> SELECT SUM(staff_id = 2), SUM(customer_id = 584) FROM
payment\G
*************************** 1. row ***************************

 SUM(staff_id = 2): 7992
SUM(customer_id = 584): 30

According to the rule of thumb, we should place customer_id first in
the index because the predicate matches fewer rows in the table. We can
then run the query again to see how selective staff_id is within the
range of rows selected by this specific customer ID:

mysql> SELECT SUM(staff_id = 2) FROM payment WHERE customer_id =
584\G
*************************** 1. row ***************************
SUM(staff_id = 2): 17

Be careful with this technique because the results depend on the specific
constants supplied for the chosen query. If you optimize your indexes for
this query and other queries don’t fare as well, the server’s performance
might suffer overall, or some queries might run unpredictably.

If you’re using the “worst” sample query from a report from a tool such as
pt-query-digest, this technique can be an effective way to see what might be
the most helpful indexes for your queries and your data. But if you don’t
have specific samples to run, it might be better to use the old rule of thumb,
which is to look at the cardinality across the board, not just for one query:

mysql> SELECT COUNT(DISTINCT staff_id)/COUNT(*) AS
staff_id_selectivity,
 -> COUNT(DISTINCT customer_id)/COUNT(*) AS
customer_id_selectivity,
 -> COUNT(*)
 -> FROM payment\G
*************************** 1. row ***************************
 staff_id_selectivity: 0.0001
 customer_id_selectivity: 0.0373
 COUNT(*): 16049

customer_id has higher selectivity, so again the answer is to put that
column first in the index:

ALTER TABLE payment ADD KEY(customer_id, staff_id);

As with prefix indexes, problems often arise from special values that have
higher than normal cardinality. For example, we have seen applications treat
users who aren’t logged in as “guest” users who get a special user ID in
session tables and other places where user activity is recorded. Queries
involving that user ID are likely to behave very differently from other
queries because there are usually a lot of sessions that aren’t logged in.
Sometimes system accounts cause similar problems. One application had a
magical administrative account, which wasn’t a real user, who was
“friends” with every user of the entire website so that it could send status
notices and other messages. That user’s huge list of friends was causing
severe performance problems for the site.

This is actually fairly typical. Any outlier, even if it’s not an artifact of a
poor decision in how the application is managed, can cause problems. Users
who really do have lots of friends, photos, status messages, and the like can
be just as troublesome as fake users.

Here’s a real example we saw once on a product forum where users
exchanged stories and experiences about the product. Queries of this
particular form were running very slowly:

SELECT COUNT(DISTINCT threadId) AS COUNT_VALUE
FROM Message
WHERE (groupId = 10137) AND (userId = 1288826) AND (anonymous =
0)
ORDER BY priority DESC, modifiedDate DESC

This query appeared not to have a very good index, so the customer asked
us to see if it could be improved. The EXPLAIN follows:

 id: 1
 select_type: SIMPLE
 table: Message
 type: ref

 key: ix_groupId_userId
 key_len: 18
 ref: const,const
 rows: 1251162
 Extra: Using where

The index that MySQL chose for this query is on (groupId, userId),
which would seem like a pretty decent choice if we had no information
about the column cardinality. However, a different picture emerged when
we looked at how many rows matched that user ID and group ID:

mysql> SELECT COUNT(*), SUM(groupId = 10137),
 -> SUM(userId = 1288826), SUM(anonymous = 0)
 -> FROM Message\G
*************************** 1. row ***************************
 count(*): 4142217
 sum(groupId = 10137): 4092654
 sum(userId = 1288826): 1288496
 sum(anonymous = 0): 4141934

It turned out that this group owned almost every row in the table, and the
user had 1.3 million rows—in this case, there simply isn’t an index that can
help! This was because the data was migrated from another application, and
all of the messages were assigned to the administrative user and group as
part of the import process. The solution to this problem was to change the
application code to recognize this special-case user ID and group ID and
not issue this query for that user.

The moral of this little story is that rules of thumb and heuristics can be
useful, but you have to be careful not to assume that average-case
performance is representative of special-case performance. Special cases
can wreck performance for the whole application.

In the end, although the rule of thumb about selectivity and cardinality is
interesting to explore, other factors—such as sorting, grouping, and the
presence of range conditions in the query’s WHERE clause—can make a
much bigger difference to query performance.

Clustered Indexes
Clustered indexes aren’t a separate type of index. Rather, they’re an
approach to data storage. The exact details vary among implementations,
but InnoDB’s clustered indexes actually store a B-tree index and the rows
together in the same structure.

When a table has a clustered index, its rows are actually stored in the
index’s leaf pages. The term clustered refers to the fact that rows with
adjacent key values are stored close to one another. You can have only one
clustered index per table because you can’t store the rows in two places at
once. (However, covering indexes allow you to emulate multiple clustered
indexes; more on this later.)

Because storage engines are responsible for implementing indexes, not all
storage engines support clustered indexes. We focus on InnoDB in this
section, but the principles we discuss are likely to be at least partially true
for any storage engine that supports clustered indexes now or in the future.

Figure 7-3 shows how records are laid out in a clustered index. Notice that
the leaf pages contain full rows, but the node pages contain only the
indexed columns. In this case, the indexed column contains integer values.

5

6

Figure 7-3. Clustered index data layout

Some database servers let you choose which index to cluster, but none of
MySQL’s built-in storage engines does at the time of this writing. InnoDB
clusters the data by the primary key. That means that the “indexed column”
in Figure 7-3 is the primary key column.

If you don’t define a primary key, InnoDB will try to use a unique
nonnullable index instead. If there’s no such index, InnoDB will define a
hidden primary key for you and then cluster on that. The downside of
hidden primary keys is that the incremented value for these is shared across
all tables that use a hidden primary key, resulting in higher mutex
contention for the shared key.

Clustering data has some very important advantages:

You can keep related data close together. For example, when
implementing a mailbox, you can cluster by user_id, so you can
retrieve all of a single user’s messages by fetching only a few
pages from disk. If you didn’t use clustering, each message might
require its own disk I/O.

Data access is fast. A clustered index holds both the index and the
data together in one B-tree, so retrieving rows from a clustered
index is normally faster than a comparable lookup in a
nonclustered index.

Queries that use covering indexes can use the primary key values
contained at the leaf node.

These benefits can boost performance tremendously if you design your
tables and queries to take advantage of them. However, clustered indexes
also have some disadvantages:

Clustering gives the largest improvement for I/O-bound workloads.
If the data fits in memory, the order in which it’s accessed doesn’t
really matter, so clustering doesn’t give much benefit.

Insert speeds depend heavily on insertion order. Inserting rows in
primary key order is the fastest way to load data into an InnoDB
table. It might be a good idea to reorganize the table with
OPTIMIZE TABLE after loading a lot of data if you didn’t load
the rows in primary key order.

Updating the clustered index columns is expensive because it
forces InnoDB to move each updated row to a new location.

Tables built on clustered indexes are subject to page splits when
new rows are inserted or when a row’s primary key is updated such
that the row must be moved. A page split happens when a row’s
key value dictates that the row must be placed into a page that is
full of data. The storage engine must split the page into two to
accommodate the row. Page splits can cause a table to use more
space on disk.

Clustered tables can be slower for full table scans, especially if
rows are less densely packed or stored nonsequentially because of
page splits.

Secondary (nonclustered) indexes can be larger than you might
expect because their leaf nodes contain the primary key columns of
the referenced rows.

Secondary index accesses require two index lookups instead of
one.

The last point can be a bit confusing. Why would a secondary index require
two index lookups? The answer lies in the nature of the “row pointers” the
secondary index stores. Remember, a leaf node doesn’t store a pointer to the
referenced row’s physical location; rather, it stores the row’s primary key
values.

That means that to find a row from a secondary index, the storage engine
first finds the leaf node in the secondary index and then uses the primary
key values stored there to navigate the primary key and find the row. That’s
double work: two B-tree navigations instead of one. In InnoDB, the
adaptive hash index (mentioned earlier in “B-tree indexes”) can help reduce
this penalty.

InnoDB’s data layout
To better understand clustered indexes, let’s see how InnoDB lays out the
following table:

CREATE TABLE layout_test (
 col1 int NOT NULL,
 col2 int NOT NULL,
 PRIMARY KEY(col1),
 KEY(col2)
);

Suppose the table is populated with primary key values 1 to 10,000,
inserted in random order and then optimized with OPTIMIZE TABLE. In
other words, the data is arranged optimally on disk, but the rows might be
in a random order. The values for col2 are randomly assigned between 1
and 100, so there are lots of duplicates.

7

InnoDB stores the table as shown in Figure 7-4.

Figure 7-4. InnoDB primary key layout for the layout_test table

Each leaf node in the clustered index contains the primary key value, the
transaction ID and rollback pointer InnoDB uses for transactional and
MVCC purposes, and the rest of the columns (in this case, col2). If the
primary key is on a column prefix, InnoDB includes the full column value
with the rest of the columns.

InnoDB’s secondary index leaf nodes contain the primary key values, which
serve as the “pointers” to the rows. This strategy reduces the work needed
to maintain secondary indexes when rows move or when there’s a data page
split. Using the row’s primary key values as the pointer makes the index
larger, but it means InnoDB can move a row without updating pointers to it.

Figure 7-5 illustrates the col2 index for the example table. Each leaf node
contains the indexed columns (in this case just col2), followed by the
primary key values (col1).

Figure 7-5. InnoDB secondary index layout for the layout_test table

These diagrams have illustrated the B-tree leaf nodes, but we intentionally
omitted details about the nonleaf nodes. InnoDB’s nonleaf B-tree nodes
each contain the indexed column(s), plus a pointer to the next-deeper node
(which might be either another nonleaf node or a leaf node). This applies to
all B-tree indexes, clustered and secondary.

Inserting rows in primary key order with InnoDB
If you’re using InnoDB and don’t need any particular clustering, it can be a
good idea to define a surrogate key, which is a primary key whose value is
not derived from your application’s data. The easiest way to do this is
usually with an AUTO_INCREMENT column. This will ensure that rows are
inserted in sequential order and will offer better performance for joins using
primary keys.

It is best to avoid random (nonsequential and distributed over a large set of
values) clustered keys, especially for I/O-bound workloads. For example,
using UUID values is a poor choice from a performance standpoint: it
makes clustered index insertion random, which is a worst-case scenario,
and does not give you any helpful data clustering.

To demonstrate, we benchmarked two cases. The first is inserting into a
userinfo table with an integer ID, defined as follows:

CREATE TABLE userinfo (
 id int unsigned NOT NULL AUTO_INCREMENT,
 name varchar(64) NOT NULL DEFAULT '',

 email varchar(64) NOT NULL DEFAULT '',
 password varchar(64) NOT NULL DEFAULT '',
 dob date DEFAULT NULL,
 address varchar(255) NOT NULL DEFAULT '',
 city varchar(64) NOT NULL DEFAULT '',
 state_id tinyint unsigned NOT NULL DEFAULT '0',
 zip varchar(8) NOT NULL DEFAULT '',
 country_id smallint unsigned NOT NULL DEFAULT '0',
 gender ('M','F')NOT NULL DEFAULT 'M',
 account_type varchar(32) NOT NULL DEFAULT '',
 verified tinyint NOT NULL DEFAULT '0',
 allow_mail tinyint unsigned NOT NULL DEFAULT '0',
 parrent_account int unsigned NOT NULL DEFAULT '0',
 closest_airport varchar(3) NOT NULL DEFAULT '',
 PRIMARY KEY (id),
 UNIQUE KEY email (email),
 KEY country_id (country_id),
 KEY state_id (state_id),
 KEY state_id_2 (state_id,city,address)
) ENGINE=InnoDB

Notice the auto-incrementing integer primary key.

The second case is a table named userinfo_uuid. It is identical to the
userinfo table, except that its primary key is a UUID instead of an
integer:

CREATE TABLE userinfo_uuid (
 uuid varchar(36) NOT NULL,
 ...

We benchmarked both table designs. First, we inserted a million records
into both tables on a server with enough memory to hold the indexes. Next,
we inserted three million rows into the same tables, which made the indexes
bigger than the server’s memory. Table 7-1 compares the benchmark
results.

8

T
a
b
l
e

7
-
1
.
B
e
n
c
h
m
a
r
k

r
e
s
u
l
t
s

f
o
r

i

n
s
e
r
t
i
n
g

r
o
w
s

i
n
t
o

I
n
n
o
D
B

t
a
b
l
e
s

Table Rows Time (sec) Index size (MB)

userinfo 1,000,000 137 342

userinfo_uuid 1,000,000 180 544

userinfo 3,000,000 1233 1036

userinfo_uuid 3,000,000 4525 1707

Notice that not only does it take longer to insert the rows with the UUID
primary key, but the resulting indexes are quite a bit bigger. Some of that is
due to the larger primary key, but some of it is undoubtedly due to page
splits and resultant fragmentation as well.

To see why this is so, let’s see what happened in the index when we inserted
data into the first table. Figure 7-6 shows inserts filling a page and then
continuing on a second page.

Figure 7-6. Inserting sequential index values into a clustered index

As Figure 7-6 illustrates, InnoDB stores each record immediately after the
one before because the primary key values are sequential. When the page
reaches its maximum fill factor (InnoDB’s initial fill factor is only 15/16
full, to leave room for modifications later), the next record goes into a new
page. Once the data has been loaded in this sequential fashion, the primary
key pages are packed nearly full with in-order records, which is highly
desirable. (The secondary index pages are not likely to differ, however.)

Contrast that with what happened when we inserted the data into the second
table with the UUID clustered index, as shown in Figure 7-7.

Figure 7-7. Inserting nonsequential values into a clustered index

Because each new row doesn’t necessarily have a larger primary key value
than the previous one, InnoDB cannot always place the new row at the end
of the index. It has to find the appropriate place for the row—on average,
somewhere near the middle of the existing data—and make room for it.

This causes a lot of extra work and results in a suboptimal data layout.
Here’s a summary of the drawbacks:

The destination page might have been flushed to disk and removed
from the caches or might not have ever been placed into the
caches, in which case InnoDB will have to find it and read it from
the disk before it can insert the new row. This causes a lot of
random I/O.

When insertions are done out of order, InnoDB has to split pages
frequently to make room for new rows. This requires moving
around a lot of data and modifying at least three pages instead of
one.

Pages become sparsely and irregularly filled because of splitting,
so the final data is fragmented.

After loading such random values into a clustered index, you should
probably do an OPTIMIZE TABLE to rebuild the table and fill the pages
optimally.

The moral of the story is that you should strive to insert data in primary key
order when using InnoDB, and you should try to use a clustering key that
will give a monotonically increasing value for each new row.

WHEN PRIMARY KEY ORDER IS WORSE
For high-concurrency workloads, inserting in primary key order can
actually create points of contention in InnoDB. The upper end of the
primary key is one hot spot. Because all inserts take place there,
concurrent inserts might fight over next-key locks. Another hot spot is
the AUTO_INCREMENT locking mechanism; if you experience
problems with that, you might be able to redesign your table or
application, or configure innodb_autoinc_lock_mode. If your
server version doesn’t support innodb_autoinc_lock_mode, you
can upgrade to a newer version of InnoDB that will perform better for
this specific workload.

Covering Indexes
A common suggestion is to create indexes for the query’s WHERE clause,
but that’s only part of the story. Indexes need to be designed for the whole
query, not just the WHERE clause. Indexes are indeed a way to find rows
efficiently, but MySQL can also use an index to retrieve a column’s data, so
it doesn’t have to read the row at all. After all, the index’s leaf nodes
contain the values they index; why read the row when reading the index can
give you the data you want? An index that contains (or “covers”) all the
data needed to satisfy a query is called a covering index. It is important to
note that only B-tree indexes can be used to cover indexes.

Covering indexes can be a very powerful tool and can dramatically improve
performance. Consider the benefits of reading only the index instead of the
data:

Index entries are usually much smaller than the full row size, so
MySQL can access significantly less data if it reads only the index.
This is very important for cached workloads, where much of the
response time comes from copying the data. It is also helpful for

I/O-bound workloads because the indexes are smaller than the data
and fit in memory better.

Indexes are sorted by their index values (at least within the page),
so I/O-bound range accesses will need to do less I/O compared to
fetching each row from a random disk location. You can even
OPTIMIZE the table to get fully sorted indexes, which will let
simple range queries use completely sequential index accesses.

Covering indexes are especially helpful for InnoDB tables because
of InnoDB’s clustered indexes. InnoDB’s secondary indexes hold
the row’s primary key values at their leaf nodes. Thus, a secondary
index that covers a query avoids another index lookup in the
primary key.

In all of these scenarios, it is typically much less expensive to satisfy a
query from an index instead of looking up the rows.

When you issue a query that is covered by an index (an index-covered
query), you’ll see “Using index” in the Extra column in EXPLAIN. For
example, the sakila.inventory table has a multicolumn index on
(store_id, film_id). MySQL can use this index for a query that
accesses only those two columns, such as the following:

mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: inventory
 partitions: NULL
 type: index
 possible_keys: NULL
 key: idx_store_id_film_id
 key_len: 3
 ref: NULL
 rows: 4581
 filtered: 100.00
 Extra: Using index

9

In most storage engines, an index can cover only queries that access
columns that are part of the index. However, InnoDB can actually take this
optimization a little bit further. Recall that InnoDB’s secondary indexes
hold primary key values at their leaf nodes. This means InnoDB’s
secondary indexes effectively have “extra columns” that InnoDB can use to
cover queries.

For example, the sakila.actor table uses InnoDB and has an index on
last_name, so the index can cover queries that retrieve the primary key
column actor_id, even though that column isn’t technically part of the
index:

mysql> EXPLAIN SELECT actor_id, last_name
 -> FROM sakila.actor WHERE last_name = 'HOPPER'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 partitions: NULL
 type: ref
 possible_keys: idx_actor_last_name
 key: idx_actor_last_name
 key_len: 182
 ref: const
 rows: 2
 filtered: 100.00
 Extra: Using index

Using Index Scans for Sorts
MySQL has two ways to produce ordered results: it can use a sort
operation, or it can scan an index in order. You can tell when MySQL plans
to scan an index by looking for “index” in the type column in EXPLAIN.
(Don’t confuse this with “Using index” in the Extra column.)

Scanning the index itself is fast because it simply requires moving from one
index entry to the next. However, if MySQL isn’t using the index to cover
the query, it will have to look up each row it finds in the index. This is

basically random I/O, so reading data in index order is usually slower than a
sequential table scan, especially for I/O-bound workloads.

MySQL can use the same index for both sorting and finding rows. If
possible, it’s a good idea to design your indexes so that they’re useful for
both tasks at once.

Ordering the results by the index works only when the index’s order is
exactly the same as the ORDER BY clause and all columns are sorted in the
same direction (ascending or descending). If the query joins multiple
tables, it works only when all columns in the ORDER BY clause refer to the
first table. The ORDER BY clause also has the same limitation as lookup
queries: it needs to form a leftmost prefix of the index. In all other cases,
MySQL uses a sort.

One case where the ORDER BY clause doesn’t have to specify a leftmost
prefix of the index is if there are constants for the leading columns. If the
WHERE clause or a JOIN clause specifies constants for these columns, they
can “fill the gaps” in the index.

For example, the rental table in the standard Sakila Sample Database has
an index on (rental_date, inventory_id, customer_id):

CREATE TABLE rental (
 ...
 PRIMARY KEY (rental_id),
 UNIQUE KEY rental_date (rental_date,inventory_id,customer_id),
 KEY idx_fk_inventory_id (inventory_id),
 KEY idx_fk_customer_id (customer_id),
 KEY idx_fk_staff_id (staff_id),
 ...
);

MySQL uses the rental_date index to order the following query, as
you can see from the lack of a filesort in EXPLAIN:

mysql> EXPLAIN SELECT rental_id, staff_id FROM sakila.rental
 -> WHERE rental_date = '2005-05-25'

10

11

 -> ORDER BY inventory_id, customer_id\G
*************************** 1. row ***************************
 type: ref
 possible_keys: rental_date
 key: rental_date
 rows: 1
 Extra: Using where

This works, even though the ORDER BY clause isn’t itself a leftmost prefix
of the index, because we specified an equality condition for the first column
in the index.

Here are some more queries that can use the index for sorting. This one
works because the query provides a constant for the first column of the
index and specifies an ORDER BY on the second column. Taken together,
those two form a leftmost prefix on the index:

... WHERE rental_date = '2005-05-25' ORDER BY inventory_id DESC;

The following query also works because the two columns in the ORDER
BY are a leftmost prefix of the index:

... WHERE rental_date > '2005-05-25' ORDER BY rental_date,
inventory_id;

Here are some queries that cannot use the index for sorting.

This query uses two different sort directions, but the index’s columns are all
sorted ascending:

... WHERE rental_date = '2005-05-25' ORDER BY inventory_id DESC,
customer_id ASC;

Here, the ORDER BY refers to a column that isn’t in the index:

... WHERE rental_date = '2005-05-25' ORDER BY inventory_id,

12

staff_id;

Here, the WHERE and the ORDER BY don’t form a leftmost prefix of the
index:

... WHERE rental_date = '2005-05-25' ORDER BY customer_id;

This query has a range condition on the first column, so MySQL doesn’t
use the rest of the index:

... WHERE rental_date > '2005-05-25' ORDER BY inventory_id,
customer_id;

Here, there’s a multiple equality on the inventory_id column. For the
purposes of sorting, this is basically the same as a range:

... WHERE rental_date = '2005-05-25' AND inventory_id IN(1,2)
ORDER BY
customer_id;

Here’s an example where MySQL could theoretically use an index to order
a join but doesn’t because the optimizer places the film_actor table
second in the join:

mysql> EXPLAIN SELECT actor_id, title FROM sakila.film_actor
 -> INNER JOIN sakila.film USING(film_id) ORDER BY actor_id\G
+------------+--+
| table | Extra |
+------------+--+
| film | Using index; Using temporary; Using filesort |
| film_actor | Using index |
+------------+--+

One of the most important uses for ordering by an index is a query that has
both an ORDER BY and a LIMIT clause.

Redundant and Duplicate Indexes
Unfortunately, MySQL allows you to create duplicate indexes on the same
column. Doing so will only return a warning, and it will not prevent you
from doing this. MySQL has to maintain each duplicate index separately,
and the query optimizer will consider each of them when it optimizes
queries. This can affect performance and also wastes space on disk.

Duplicate indexes are indexes of the same type created on the same set of
columns in the same order. You should try to avoid creating them, and you
should remove them if you find them.

Sometimes you can create duplicate indexes without knowing it. For
example, look at the following code:

CREATE TABLE test (
 ID INT NOT NULL PRIMARY KEY,
 A INT NOT NULL,
 B INT NOT NULL,
 UNIQUE(ID),
 INDEX(ID)
) ENGINE=InnoDB;

An inexperienced user might think this identifies the column’s role as a
primary key, adds a UNIQUE constraint, and adds an index for queries to
use. In fact, MySQL implements UNIQUE constraints and PRIMARY KEY
constraints with indexes, so this actually creates three indexes on the same
column! There is typically no reason to do this, unless you want to have
different types of indexes on the same column to satisfy different kinds of
queries.

Redundant indexes are a bit different from duplicated indexes. If there is an
index on (A, B), another index on (A) would be redundant because it is
a prefix of the first index. That is, the index on (A, B) can also be used as
an index on (A) alone. (This type of redundancy applies only to B-tree
indexes.) However, an index on (B, A) would not be redundant, and
neither would an index on (B), because B is not a leftmost prefix of (A,

13

B). Furthermore, indexes of different types (such as a full-text index) are
not redundant to B-tree indexes, no matter what columns they cover.

Redundant indexes usually appear when people add indexes to a table. For
example, someone might add an index on (A, B) instead of extending an
existing index on (A) to cover (A, B). Another way this could happen is
by changing the index to cover (A, ID). The ID column is the primary
key, so it’s already included.

In most cases, you don’t want redundant indexes, and to avoid them you
should extend existing indexes rather than add new ones. Still, there are
times when you’ll need redundant indexes for performance reasons.
Extending an existing index might make it much larger and reduce
performance for some queries.

For example, if you have an index on an integer column and you extend it
with a long VARCHAR column, it might become significantly slower. This is
especially true if your queries use the index as a covering index.

Consider the userinfo table that follows:

CREATE TABLE userinfo (
 id int unsigned NOT NULL AUTO_INCREMENT,
 name varchar(64) NOT NULL DEFAULT '',
 email varchar(64) NOT NULL DEFAULT '',
 password varchar(64) NOT NULL DEFAULT '',
 dob date DEFAULT NULL,
 address varchar(255) NOT NULL DEFAULT '',
 city varchar(64) NOT NULL DEFAULT '',
 state_id tinyint unsigned NOT NULL DEFAULT '0',
 zip varchar(8) NOT NULL DEFAULT '',
 country_id smallint unsigned NOT NULL DEFAULT '0',
 account_type varchar(32) NOT NULL DEFAULT '',
 verified tinyint NOT NULL DEFAULT '0',
 allow_mail tinyint unsigned NOT NULL DEFAULT '0',
 parrent_account int unsigned NOT NULL DEFAULT '0',
 closest_airport varchar(3) NOT NULL DEFAULT '',
 PRIMARY KEY (id),
 UNIQUE KEY email (email),
 KEY country_id (country_id),

 KEY state_id (state_id)
) ENGINE=InnoDB

This table contains one million rows, and for each state_id there are
about 20,000 records. There is an index on state_id, which is useful for
the following query. We refer to this query as Q1:

SELECT count(*) FROM userinfo WHERE state_id=5;

A simple benchmark shows an execution rate of almost 115 queries per
second (QPS) for this query. We also have a related query that retrieves
several columns instead of just counting rows. This is Q2:

SELECT state_id, city, address FROM userinfo WHERE state_id=5;

For this query, the result is less than 10 QPS. The simple solution to
improve its performance is to extend the index to (state_id, city,
address), so the index will cover the query:

ALTER TABLE userinfo DROP KEY state_id,
ADD KEY state_id_2 (state_id, city, address);

After extending the index, Q2 runs faster, but Q1 runs more slowly. If we
really care about making both queries fast, we should leave both indexes,
even though the single-column index is redundant. Table 7-2 shows detailed
results for both queries and indexing strategies.

14

T
a
b
l
e
7
-
2
.
B
e
n
c
h
m
a
r
k
r
e
s
u
l
t
s
i
n
Q
P
S
f
o
r

S

E

L

E

C

T
q
u
e
r
i
e
s
w
i
t
h
v
a
r
i
o
u
s
i
n
d
e
x
s
t
r
a
t
e

g
i
e
s

 state_id only
state_id_2 on
ly

Both state_id and state
_id_2

Query 1 108.55 100.33 107.97

Query 2 12.12 28.04 28.06

The drawback of having two indexes is the maintenance cost. Table 7-3
shows how long it takes to insert a million rows into the table.

T
a
b
l
e
7
-
3
.
S
p
e
e
d
o
f
i
n
s
e
r
t
i
n
g
a
m
i
l
l
i
o
n

r
o
w
s
w
i
t
h
v
a
r
i
o
u
s
i
n
d
e
x
s
t
r
a
t
e
g
i
e
s

 state_id only Both state_id and state_id_2

InnoDB, enough memory for both indexes 80 seconds 136 seconds

As you can see, inserting new rows into the table with more indexes is
slower. This is true in general: adding new indexes might have a
performance impact for INSERT, UPDATE, and DELETE operations,
especially if a new index causes you to hit memory limits.

The solution for redundant and duplicate indexes is simply to drop them,
but first you need to identify them. You can write various complicated
queries against the INFORMATION_SCHEMA tables, but there are easier
techniques. You can use the pt-duplicate-key-checker tool included with
Percona Toolkit, which analyzes table structures and suggests indexes that
are duplicate or redundant.

Be careful when determining which indexes are candidates for dropping or
extending. Recall that in InnoDB, an index on column (A) in our example
table is really equivalent to an index on (A, ID) because the primary key
is appended to secondary index leaf nodes. If you have a query such as
WHERE A = 5 ORDER BY ID, the index will be very helpful. But if
you extend the index to (A, B), then it really becomes (A, B, ID),
and the query will begin to use a filesort for the ORDER BY portion of the
query. It’s good to validate your planned changes carefully with a tool such
as pt-upgrade from Percona Toolkit.

For both cases, consider using MySQL 8.0’s invisible index feature prior to
removing an index. With this feature, you can issue an ALTER TABLE
statement to change an index to be flagged as invisible, meaning the
optimizer will ignore it when planning queries. If you discover that the
index you were about to remove was important, you can easily make it
visible again without having to re-create the index.

Unused Indexes
In addition to duplicate and redundant indexes, you might have some
indexes that the server simply doesn’t use. These are simply deadweight,

and you should consider dropping them.

The best way to identify unused indexes is with performance_schema
and sys, which we covered in detail in Chapter 3. The sys schema creates
a view of the table_io_waits_summary_by_index_usage table
that can easily tell us which indexes are unused:

mysql> SELECT * FROM sys.schema_unused_indexes;
+---------------+---------------+-----------------------------+
| object_schema | object_name | index_name |
+---------------+---------------+-----------------------------+
sakila	actor	idx_actor_last_name
sakila	address	idx_fk_city_id
sakila	address	idx_location
sakila	payment	fk_payment_rental
.. trimmed for brevity ..

Index and Table Maintenance
Once you’ve created tables with proper data types and added indexes, your
work isn’t over: you still need to maintain your tables and indexes to make
sure they perform well. The three main goals of table maintenance are
finding and fixing corruption, maintaining accurate index statistics, and
reducing fragmentation.

Finding and Repairing Table Corruption
The worst thing that can happen to a table is corruption. All storage engines
can experience index corruption due to hardware problems or internal bugs
in MySQL or the operating system, although it is very rare to experience
them in InnoDB.

Corrupted indexes can cause queries to return incorrect results, raise
duplicate-key errors when there is no duplicated value, or even cause
lockups and crashes. If you experience odd behavior—such as an error that
you think shouldn’t be happening—run CHECK TABLE to see if the table
is corrupt. (Note that some storage engines don’t support this command,

15

and others support multiple options to specify how thoroughly they check
the table.) CHECK TABLE usually catches most table and index errors.

You can fix corrupt tables with the REPAIR TABLE command, but again,
not all storage engines support this. In these cases you can do a “no-op”
ALTER, such as altering a table to use the same storage engine it currently
uses. Here’s an example for an InnoDB table:

ALTER TABLE <table> ENGINE=INNODB;

Alternatively, you can dump the data and reload it. However, if the
corruption is in the system area or in the table’s “row data” area instead of
the index, you might be unable to use any of these options. In this case, you
might need to restore the table from your backups or attempt to recover data
from the corrupted files.

If you experience corruption with the InnoDB storage engine, something is
seriously wrong and you need to investigate it right away. InnoDB simply
shouldn’t become corrupt. Its design makes it very resilient to corruption.
Corruption is evidence of either a hardware problem such as bad memory or
disks (likely), an administrator error such as manipulating the database files
externally to MySQL (likely), or an InnoDB bug (unlikely). The usual
causes are mistakes such as trying to make backups with rsync. There is no
query you can execute—none—that you are supposed to avoid because it’ll
corrupt InnoDB’s data. There is no hidden gun pointed at your foot. If
you’re corrupting InnoDB’s data by issuing queries against it, there’s a bug
in InnoDB, and it’s never your fault.

If you experience data corruption, the most important thing to do is try to
determine why it’s occurring; don’t simply repair the data, or the corruption
could return. You can repair the data by putting InnoDB into forced
recovery mode with the innodb_force_recovery parameter; see the
MySQL manual for details.

Updating Index Statistics

When the storage engine provides the optimizer with inexact information
about the number of rows a query might examine, or when the query plan is
too complex to know exactly how many rows will be matched at various
stages, the optimizer uses the index statistics to estimate the number of
rows. MySQL’s optimizer is cost based, and the main cost metric is how
much data the query will access. If the statistics were never generated or if
they are out of date, the optimizer can make bad decisions. The solution is
to run ANALYZE TABLE, which regenerates the statistics.

You can examine the cardinality of your indexes with the SHOW INDEX
FROM command. For example:

mysql> SHOW INDEX FROM sakila.actor\G
*************************** 1. row ***************************
 Table: actor
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: actor_id
 Collation: A
 Cardinality: 200
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
*************************** 2. row ***************************
 Table: actor
 Non_unique: 1
 Key_name: idx_actor_last_name
 Seq_in_index: 1
 Column_name: last_name
 Collation: A
 Cardinality: 200
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:

This command gives quite a lot of index information, which the MySQL
manual explains in detail. We do want to call your attention to the
Cardinality column, though. This shows how many distinct values the
storage engine estimates are in the index. You can also get this data from
the INFORMATION_SCHEMA.STATISTICS table. For example, you can
write queries against the INFORMATION_SCHEMA tables to find indexes
with very low selectivity. Beware, however, that on servers with a lot of
data, these metadata tables can cause a lot of load on the server.

InnoDB’s statistics are worth exploring more. The statistics are generated
by sampling a few random pages in the index and assuming that the rest of
the index looks similar. The number of pages sampled is controlled with the
innodb_stats_sample_pages variable. Setting this to a value larger
than the default of 8 can in theory help generate more representative index
statistics, especially on very large tables, but your mileage may vary.

InnoDB calculates statistics for indexes when tables are first opened, when
you run ANALYZE TABLE, and when the table’s size changes
significantly.

InnoDB also calculates statistics for queries against some
INFORMATION_SCHEMA tables, SHOW TABLE STATUS and SHOW
INDEX queries, and when the MySQL command-line client has
autocompletion enabled. This can actually become a pretty serious problem
on large servers with lots of data or when I/O is slow. Client programs or
monitoring tools that cause sampling to occur can create a lot of locking
and heavy load on the server as well as frustrate users with slow startup
times. And you can’t observe the index statistics without changing them
because SHOW INDEX will update the statistics. You can disable the
innodb_stats_on_metadata option to avoid all of these problems.

Reducing Index and Data Fragmentation
B-tree indexes can become fragmented, which might reduce performance.
Fragmented indexes can be poorly filled and/or nonsequential on disk.

By design, B-tree indexes require random disk accesses to “dive” to the leaf
pages, so random access is the rule, not the exception. However, the leaf
pages can still perform better if they are physically sequential and tightly
packed. If they are not, we say they are fragmented, and range scans or full
index scans can be many times slower. This is especially true for index-
covered queries.

The table’s data storage can also become fragmented. However, data
storage fragmentation is more complex than index fragmentation. There are
three types of data fragmentation:

Row fragmentation

This type of fragmentation occurs when the row is stored in multiple
pieces in multiple locations. Row fragmentation reduces performance
even if the query needs only a single row from the index.

Intra-row fragmentation

This kind of fragmentation occurs when logically sequential pages or
rows are not stored sequentially on disk. It affects operations such as
full table scans and clustered index range scans, which normally benefit
from a sequential data layout on disk.

Free space fragmentation

This type of fragmentation occurs when there is a lot of empty space in
data pages. It causes the server to read a lot of data it doesn’t need,
which is wasteful.

To defragment data, you can either run OPTIMIZE TABLE or dump and
reload the data. These approaches work for most storage engines. For
storage engines that don’t support OPTIMIZE TABLE, you can rebuild the

table with a no-op ALTER TABLE. Just alter the table to have the same
engine it currently uses:

ALTER TABLE <table> ENGINE=<engine>;

Summary
As you can see, indexing is a complex topic! The way MySQL and the
storage engines access data combined with the properties of indexes make
indexes a very powerful and flexible tool for influencing data access, both
on disk and in memory.

Most of the time you’ll use B-tree indexes with MySQL. The other types of
indexes are rather more suitable for special purposes, and it will generally
be obvious when you ought to use them and how they can improve query
response times. We’ll say no more about them in this chapter, but it’s worth
wrapping up with a review of the properties and uses of B-tree indexes.

Here are three principles to keep in mind as you choose indexes and write
queries to take advantage of them:

Single-row access is slow, especially on spindle-based storage.
(SSDs are faster at random I/O, but this point remains true.) If the
server reads a block of data from storage and then accesses only
one row in it, it wastes a lot of work. It’s much better to read in a
block that contains lots of rows you need.

Accessing ranges of rows in order is fast, for two reasons. First,
sequential I/O doesn’t require disk seeks, so it is faster than
random I/O, especially on spindle-based storage. Second, if the
server can read the data in the order you need it, it doesn’t need to
perform any follow-up work to sort it, and GROUP BY queries
don’t need to sort and group rows together to compute aggregates
over them.

Index-only access is fast. If an index contains all the columns that
the query needs, the storage engine doesn’t need to find the other
columns by looking up rows in the table. This avoids lots of single-
row access, which as we know from the first point is slow.

In sum, try to choose indexes and write queries so that you can avoid
single-row lookups, use the inherent ordering of the data to avoid sorting
operations, and exploit index-only access. This corresponds to the three-star
ranking system set out in Lahdenmaki and Leach’s book, mentioned at the
beginning of this chapter.

It would be great to be able to create perfect indexes for every query against
your tables. Unfortunately, sometimes this would require an impractically
large number of indexes, and at other times there simply is no way to create
a three-star index for a given query (for example, if the query is ordered by
two columns, one ascending and the other descending). In these cases, you
have to settle for the best you can do or pursue alternative strategies, such
as denormalization or summary tables.

It’s very important to be able to reason through how indexes work and to
choose them based on that understanding, not on rules of thumb or
heuristics such as “place the most selective columns first in multicolumn
indexes” or “you should index all of the columns that appear in the WHERE
clause.”

How do you know whether your schema is indexed well enough? As
always, we suggest that you frame the question in terms of response time.
Find queries that are either taking too long or contributing too much load to
the server. Examine the schema, SQL, and index structures for the queries
that need attention. Determine whether the query has to examine too many
rows, perform postretrieval sorting or use temporary tables, access data
with random I/O, or look up full rows from the table to retrieve columns not
included in the index.

If you find a query that doesn’t benefit from all of the possible advantages
of indexes, see if a better index can be created to improve performance. If
not, perhaps a rewrite can transform the query so that it can use an index

that either already exists or could be created. That’s what the next chapter is
about.

1 SSDs have different performance characteristics, which we covered in Chapter 4. The
indexing principles remain true, but the penalties we’re trying to avoid aren’t as large with
SSDs as they are with conventional drives.

2 Many storage engines actually use a B+ tree index, in which each leaf node contains a link to
the next for fast range traversals through nodes. Refer to computer science literature for a
detailed explanation of B-tree indexes.

3 This is MySQL specific, and even version specific. Some other databases can use nonleading
index parts, although it’s usually more efficient to use a complete prefix. MySQL might offer
this option in the future; we show workarounds later in the chapter.

4 MySQL’s optimizer is a very mysterious and powerful device, and its mystery is only
exceeded by its power. Due to the way it calculates optimal query planning, you should rely on
using EXPLAIN in your own queries and workload to determine the most optimal strategies.

5 Oracle users will be familiar with the term index-organized table, which means the same
thing.

6 This isn’t always true, as you’ll see in a moment.

7 Nonclustered index designs aren’t always able to provide single-operation row lookups, by
the way. When a row changes, it might not fit in its original location anymore, so you might
end up with fragmented rows or “forwarding addresses” in the table, both of which would
result in more work to find the row.

8 It’s worth pointing out that this is a real table, with secondary indexes and lots of columns. If
we removed these and benchmarked only the primary key performance, the difference would
be even larger.

9 It’s easy to confuse “Using index” in the Extra column with “index” in the type column.
However, they are completely different. The type column has nothing to do with covering
indexes; it shows the query’s access type, or how the query will find rows. The MySQL
manual calls this the join type.

10 If you need to sort in different directions, a trick that sometimes helps is to store a reversed or
negated value.

11 MySQL calls it a “filesort,” but it doesn’t always use a file on a filesystem. It only goes to
disk if it cannot sort the data in memory.

12 We should note that while this can use the index for sorting, in our tests the optimizer in
8.0.25 did not use the index until we used a FORCE INDEX FOR ORDER BY condition—
another reminder that the optimizer may not do what you expect, and you should always check
with EXPLAIN.

13 An index is not necessarily a duplicate if it’s a different type of index; there are often good
reasons to have KEY(col) and FULLTEXT KEY(col).

14 We’ve used an in-memory example here. When the table is bigger and the workload becomes
I/O bound, the difference between the numbers will be much larger. It’s not uncommon for
COUNT() queries to become one hundred or more times faster with a covering index.

15 Some indexes function as unique constraints, so even if an index doesn’t get used for queries,
it might be used to prevent duplicate values.

Chapter 8. Query Performance
Optimization

In the previous chapters we explained schema optimization and indexing,
which are necessary for high performance. But they aren’t enough—you
also need to design your queries well. If your queries are bad, even the best-
designed schema and indexes will not perform well.

Query optimization, index optimization, and schema optimization go hand
in hand. As you gain experience writing queries in MySQL, you will learn
how to design tables and indexes to support efficient queries. Similarly,
what you learn about optimal schema design will influence the kinds of
queries you write. This process takes time, so we encourage you to refer
back to these three chapters as you learn more.

This chapter begins with general query design considerations: the things
you should consider first when a query isn’t performing well. We then dig
much deeper into query optimization and server internals. We show you
how to find out how MySQL executes a particular query, and you’ll learn
how to change the query execution plan. Finally, we’ll look at some places
MySQL doesn’t optimize queries well and explore query optimization
patterns that help MySQL execute queries more efficiently.

Our goal is to help you understand deeply how MySQL really executes
queries, so you can reason about what is efficient or inefficient, exploit
MySQL’s strengths, and avoid its weaknesses.

Why Are Queries Slow?
Before trying to write fast queries, remember that it’s all about response
time. Queries are tasks, but they are composed of subtasks, and those
subtasks consume time. To optimize a query, you must optimize its subtasks

by eliminating them, making them happen fewer times, or making them
happen more quickly.

In general, you can think of a query’s lifetime by mentally following the
query through its sequence diagram from the client to the server, where it is
parsed, planned, and executed, and then back again to the client. Execution
is one of the most important stages in a query’s lifetime. It involves lots of
calls to the storage engine to retrieve rows, as well as postretrieval
operations such as grouping and sorting.

While accomplishing all these tasks, the query spends time on the network,
in the CPU, and in operations like statistics, planning, locking (mutex
waits), and most especially, calls to the storage engine to retrieve rows.
These calls consume time in memory operations, CPU operations, and
especially I/O operations if the data isn’t in memory. Depending on the
storage engine, a lot of context switching and/or system calls might also be
involved.

In every case, excessive time may be consumed because the operations are
performed needlessly, performed too many times, or are too slow. The goal
of optimization is to avoid that by eliminating or reducing operations or
making them faster.

Again, this isn’t a complete or accurate picture of a query’s life. Our goal
here is to show the importance of understanding a query’s life cycle and
thinking in terms of where the time is consumed. With that in mind, let’s
see how to optimize queries.

Slow Query Basics: Optimize Data Access
The most basic reason a query doesn’t perform well is because it’s working
with too much data. Some queries just have to sift through a lot of data,
which can’t be helped. That’s unusual, though; most bad queries can be
changed to access less data. We’ve found it useful to analyze a poorly
performing query in two steps:

1. Find out whether your application is retrieving more data than you
need. That usually means it’s accessing too many rows, but it
might also be accessing too many columns.

2. Find out whether the MySQL server is analyzing more rows than it
needs.

Are You Asking the Database for Data You Don’t Need?
Some queries ask for more data than they need and then throw some of it
away. This demands extra work of the MySQL server, adds network
overhead, and consumes memory and CPU resources on the application
server.

Here are a few typical mistakes:

Fetching more rows than needed

One common mistake is assuming that MySQL provides results on
demand, rather than calculating and returning the full result set. We
often see this in applications designed by people familiar with other
database systems. These developers are used to techniques such as
issuing a SELECT statement that returns many rows, then fetching the

first N rows and closing the result set (e.g., fetching the 100 most recent

articles for a news site when they only need to show 10 of them on the
front page). They think MySQL will provide them with these 10 rows
and stop executing the query, but what MySQL really does is generate
the complete result set. The client library then fetches all the data and
discards most of it. The best solution is to add a LIMIT clause to the

query.

Fetching all columns from a multitable join

1

If you want to retrieve all actors who appear in the film Academy
Dinosaur, don’t write the query this way:

SELECT * FROM sakila.actor

INNER JOIN sakila.film_actor USING(actor_id)

INNER JOIN sakila.film USING(film_id)

WHERE sakila.film.title = 'Academy Dinosaur';

That returns all columns from all three tables. Instead, write the query
as follows:

SELECT sakila.actor.* FROM sakila.actor...;

Fetching all columns

You should always be suspicious when you see SELECT *. Do you
really need all the columns? Probably not. Retrieving all columns can
prevent optimizations such as covering indexes, as well as add I/O,
memory, and CPU overhead for the server. Some DBAs discourage
SELECT * universally because of this fact and to reduce the risk of
problems when someone alters the table’s column list.

Of course, asking for more data than you really need is not always bad.
In many cases we’ve investigated, people tell us the wasteful approach
simplifies development because it lets the developer use the same bit of
code in more than one place. That’s a reasonable consideration as long
as you know what it costs in terms of performance. It might also be
useful to retrieve more data than you actually need if you use some type
of caching in your application or if you have another benefit in mind.
Fetching and caching full objects might be preferable to running many
separate queries that retrieve only parts of the object.

Fetching the same data repeatedly

If you’re not careful, it’s quite easy to write application code that
retrieves the same data repeatedly from the database server, executing
the same query to fetch it. For example, if you want to find out a user’s
profile image URL to display next to a list of comments, you might
request this repeatedly for each comment. Or you could cache it the first
time you fetch it and reuse it thereafter. The latter approach is much
more efficient.

Is MySQL Examining Too Much Data?
Once you’re sure your queries retrieve only the data you need, you can look
for queries that examine too much data while generating results. In MySQL,
the simplest query cost metrics are:

Response time

Number of rows examined

Number of rows returned

None of these metrics is a perfect way to measure query cost, but they
reflect roughly how much data MySQL must access internally to execute a
query and translate approximately into how fast the query runs. All three
metrics are logged in the slow query log, so looking at the slow query log is
one of the best ways to find queries that examine too much data.

Response time
Beware of taking query response time at face value. Hey, isn’t that the
opposite of what we’ve been telling you? Not really. It’s still true that
response time is what matters, but it’s a bit complicated.

Response time is the sum of two things: service time and queue time.
Service time is how long it takes the server to actually process the query.

Queue time is the portion of response time during which the server isn’t
really executing the query—it’s waiting for something, such as waiting for
an I/O operation to complete, waiting for a row lock, and so forth. The
problem is, you can’t break the response time down into these components
unless you can measure them individually, which is usually hard to do. In
general, the most common and important waits you’ll encounter are I/O and
lock waits, but you shouldn’t count on it being just those two because it
varies a lot. I/O and lock waits are important because they are the most
detrimental to performance.

As a result, response time is not consistent under varying load conditions.
Other factors—such as storage engine locks (like row locks), high
concurrency, and hardware—can have a considerable impact on response
times, too. Response time can also be both a symptom and a cause of
problems, and it’s not always obvious which is the case.

When you look at a query’s response time, you should ask yourself whether
the response time is reasonable for the query. We don’t have space for a
detailed explanation in this book, but you can actually calculate a quick
upper-bound estimate (QUBE) of query response time using the techniques
explained in Tapio Lahdenmaki and Mike Leach’s book Relational
Database Index Design and the Optimizers (Wiley). In a nutshell: examine
the query execution plan and the indexes involved, determine how many
sequential and random I/O operations might be required, and multiply these
by the time it takes your hardware to perform them. Add it all up and you
have a yardstick to judge whether a query is slower than it could or should
be.

Rows examined and rows returned
It’s useful to think about the number of rows examined when analyzing
queries because you can see how efficiently the queries are finding the data
you need. However, this is not a perfect metric for finding “bad” queries.
Not all row accesses are equal. Shorter rows are faster to access, and
fetching rows from memory is much faster than reading them from disk.

Ideally, the number of rows examined would be the same as the number
returned, but in practice this is rarely possible. For example, when
constructing rows with joins, the server must access multiple rows to
generate each row in the result set. The ratio of rows examined to rows
returned is usually small—say, between 1:1 and 10:1—but sometimes it can
be orders of magnitude larger.

Rows examined and access types
When you’re thinking about the cost of a query, consider the cost of finding
a single row in a table. MySQL can use several access methods to find and
return a row. Some require examining many rows, but others might be able
to generate the result without examining any.

The access method(s) appear in the type column in EXPLAIN’s output.
The access types range from a full table scan to index scans, range scans,
unique index lookups, and constants. Each of these is faster than the one
before it because it requires reading less data. You don’t need to memorize
the access types, but you should understand the general concepts of
scanning a table, scanning an index, range accesses, and single-value
accesses.

If you aren’t getting a good access type, the best way to solve the problem
is usually by adding an appropriate index. We discussed indexing in the
previous chapter; now you can see why indexes are so important to query
optimization. Indexes let MySQL find rows with a more efficient access
type that examines less data.

For example, let’s look at a simple query on the Sakila Sample Database:

SELECT * FROM sakila.film_actor WHERE film_id = 1;

This query will return 10 rows, and EXPLAIN shows that MySQL uses the
ref access type on the idx_fk_film_id index to execute the query:

mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id =

1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 partitions: NULL
 type: ref
 possible_keys: idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: const
 rows: 10
 filtered: 100.00
 Extra: NULL

EXPLAIN shows that MySQL estimated it needed to access only 10 rows.
In other words, the query optimizer knew the chosen access type could
satisfy the query efficiently. What would happen if there were no suitable
index for the query? MySQL would have to use a less optimal access type,
as we can see if we drop the index and run the query again:

mysql> ALTER TABLE sakila.film_actor DROP FOREIGN KEY
fk_film_actor_film;
mysql> ALTER TABLE sakila.film_actor DROP KEY idx_fk_film_id;
mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id =
1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 partitions: NULL
 type: ALL
 possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 5462
 filtered: 10.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

Predictably, the access type has changed to a full table scan (ALL), and
MySQL now estimates it’ll have to examine 5,462 rows to satisfy the query.

The “Using where” in the Extra column shows that the MySQL server is
using the WHERE clause to discard rows after the storage engine reads them.

In general, MySQL can apply a WHERE clause in three ways, from best to
worst:

Apply the conditions to the index lookup operation to eliminate
nonmatching rows. This happens at the storage engine layer.

Use a covering index (“Using index” in the Extra column) to
avoid row accesses, and filter out nonmatching rows after
retrieving each result from the index. This happens at the server
layer, but it doesn’t require reading rows from the table.

Retrieve rows from the table, then filter nonmatching rows (“Using
where” in the Extra column). This happens at the server layer
and requires the server to read rows from the table before it can
filter them.

This example illustrates how important it is to have good indexes. Good
indexes help your queries get a good access type and examine only the rows
they need. However, adding an index doesn’t always mean that MySQL
will access and return the same number of rows. For example, here’s a
query that uses the COUNT() aggregate function:

mysql> SELECT actor_id, COUNT(*)
 -> FROM sakila.film_actor GROUP BY actor_id;
+----------+----------+
| actor_id | COUNT(*) |
+----------+----------+
1	19
2	25
3	22
.. omitted..	
200	20
+----------+----------+
200 rows in set (0.01 sec)

2

This query returns only 200 rows, as shown, but how many rows does it
need to read? We can check this with EXPLAIN, as we talked about in the
previous chapter:

mysql> EXPLAIN SELECT actor_id, COUNT(*)
 -> FROM sakila.film_actor GROUP BY actor_id\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 partitions: NULL
 type: index
 possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 5462
 filtered: 100.00
 Extra: Using index

Ouch! Reading thousands of rows only to need 200 means that we’re doing
much more work than necessary. An index can’t reduce the number of rows
examined for a query like this one because there’s no WHERE clause to
eliminate rows.

Unfortunately, MySQL does not tell you how many of the rows it accessed
were used to build the result set; it tells you only the total number of rows it
accessed. Many of these rows could be eliminated by a WHERE clause and
end up not contributing to the result set. In the previous example, after
removing the index on sakila.film_actor, the query accessed every
row in the table and the WHERE clause discarded all but 10 of them. Only
the remaining 10 rows were used to build the result set. Understanding how
many rows the server accesses and how many it really uses requires
reasoning about the query.

If you find that a huge number of rows were examined to produce relatively
few rows in the result, you can try some more sophisticated fixes:

Use covering indexes, which store data so that the storage engine
doesn’t have to retrieve the complete rows. (We discussed these in
Chapter 7.)

Change the schema. An example is using summary tables
(discussed in Chapter 6).

Rewrite a complicated query so the MySQL optimizer is able to
execute it optimally. (We discuss this later in this chapter.)

Ways to Restructure Queries
As you optimize problematic queries, your goal should be to find
alternative ways to get the result you want—but that doesn’t necessarily
mean getting the same result set back from MySQL. You can sometimes
transform queries into equivalent forms that return the same results and get
better performance. However, you should also think about rewriting the
query to retrieve different results if that provides an efficiency benefit. You
might be able to ultimately do the same work by changing the application
code as well as the query. In this section, we explain techniques that can
help you restructure a wide range of queries and show you when to use each
technique.

Complex Queries Versus Many Queries
One important query-design question is whether it’s preferable to break up a
complex query into several simpler queries. The traditional approach to
database design emphasizes doing as much work as possible with as few
queries as possible. This approach was historically better because of the
cost of network communication and the overhead of the query parsing and
optimization stages.

However, this advice doesn’t apply as much to MySQL because it was
designed to handle connecting and disconnecting very efficiently and to
respond to small, simple queries very quickly. Modern networks are also
significantly faster than they used to be, reducing network latency.

Depending on the server version, MySQL can run well over one hundred
thousand simple queries per second on commodity server hardware and
more than two thousand QPS from a single correspondent on a gigabit
network, so running multiple queries isn’t necessarily such a bad thing.

Connection response is still slow compared to the number of rows MySQL
can traverse per second internally, though, which is counted in millions per
second for in-memory data. All else being equal, it’s still a good idea to use
as few queries as possible, but sometimes you can make a query more
efficient by decomposing it and executing a few simple queries instead of
one complex one. Don’t be afraid to do this; weigh the costs and go with the
strategy that causes less work. We show some examples of this technique a
little later in the chapter.

That said, using too many queries is a common mistake in application
design. For example, some applications perform 10 single-row queries to
retrieve data from a table when they could use a single 10-row query. We’ve
even seen applications that retrieve each column individually, querying each
row many times!

Chopping Up a Query
Another way to slice up a query is to divide and conquer, keeping it
essentially the same but running it in smaller “chunks” that affect fewer
rows each time.

Purging old data is a great example. Periodic purge jobs might need to
remove quite a bit of data, and doing this in one massive query could lock a
lot of rows for a long time, fill up transaction logs, hog resources, and block
small queries that shouldn’t be interrupted. Chopping up the DELETE
statement and using medium-size queries can improve performance
considerably and reduce replication lag when a query is replicated. For
example, instead of running this monolithic query:

DELETE FROM messages
WHERE created < DATE_SUB(NOW(),INTERVAL 3 MONTH);

You could do something like the following pseudocode:

rows_affected = 0
do {
 rows_affected = do_query(
 "DELETE FROM messages WHERE created < DATE_SUB(NOW(),INTERVAL 3
MONTH)
 LIMIT 10000")
} while rows_affected > 0

Deleting 10,000 rows at a time is typically a large enough task to make each
query efficient and a short enough task to minimize the impact on the
server (transactional storage engines might benefit from smaller
transactions). It might also be a good idea to add some sleep time between
the DELETE statements to spread the load over time and reduce the amount
of time locks are held.

Join Decomposition
Many high-performance applications use join decomposition. You can
decompose a join by running multiple single-table queries instead of a
multitable join and then performing the join in the application. For example,
instead of this single query:

SELECT * FROM tag
JOIN tag_post ON tag_post.tag_id=tag.id
JOIN post ON tag_post.post_id=post.id
WHERE tag.tag='mysql';

You might run these queries:

SELECT * FROM tag WHERE tag='mysql';
SELECT * FROM tag_post WHERE tag_id=1234;
SELECT * FROM post WHERE post.id in (123,456,567,9098,8904);

3

Why on earth would you do this? It looks wasteful at first glance because
you’ve increased the number of queries without getting anything in return.
However, such restructuring can actually give significant performance
advantages:

Caching can be more efficient. Many applications cache “objects”
that map directly to tables. In this example, if the object with the
tag mysql is already cached, the application can skip the first
query. If you find posts with an ID of 123, 567, or 9098 in the
cache, you can remove them from the IN() list.

Executing the queries individually can sometimes reduce lock
contention.

Doing joins in the application makes it easier to scale the database
by placing tables on different servers.

The queries themselves can be more efficient. In this example,
using an IN() list instead of a join lets MySQL sort row IDs and
retrieve rows more optimally than might be possible with a join.

You can reduce redundant row accesses. Doing a join in the
application means you retrieve each row only once, whereas a join
in the query is essentially a denormalization that might repeatedly
access the same data. For the same reason, such restructuring
might also reduce the total network traffic and memory usage.

As a result, doing joins in the application can be more efficient when you
cache and reuse a lot of data from earlier queries, you distribute data across
multiple servers, you replace joins with IN() lists on large tables, or a join
refers to the same table multiple times.

Query Execution Basics
If you need to get high performance from your MySQL server, one of the
best ways to invest your time is in learning how MySQL optimizes and

executes queries. Once you understand this, much of query optimization is a
matter of reasoning from principles, and query optimization becomes a very
logical process.

Let’s revisit what we discussed earlier: the process MySQL follows to
execute queries. Figure 8-1 shows what happens when you send MySQL a
query:

1. The client sends the SQL statement to the server.

2. The server parses, preprocesses, and optimizes it into a query
execution plan.

3. The query execution engine executes the plan by calling the
storage engine API.

4. The server sends the result to the client.

Figure 8-1. Execution path of a query

Each of these steps has some extra complexity, which we discuss in the
following sections. We also explain which states the query will be in during
each step. The query optimization process is particularly complex and
important to understand. There are also exceptions or special cases, such as
the difference in execution path when you use prepared statements; we
discuss that in the next chapter.

The MySQL Client/Server Protocol

Although you don’t need to understand the inner details of MySQL’s
client/server protocol, you do need to know how it works at a high level.
The protocol is half-duplex, meaning that at any given time the MySQL
server can be either sending or receiving messages but not both. It also
means there is no way to cut a message short.

This protocol makes MySQL communication simple and fast, but it limits it
in some ways too. For one thing, it means there’s no flow control; once one
side sends a message, the other side must fetch the entire message before
responding. It’s like a game of tossing a ball back and forth: only one side
has the ball at any instant, and you can’t toss the ball (send a message)
unless you have it.

The client sends a query to the server as a single packet of data. This is why
the max_allowed_packet configuration variable is important if you
have large queries. Once the client sends the query, it doesn’t have the ball
anymore; it can only wait for results.

In contrast, the response from the server usually consists of many packets of
data. When the server responds, the client has to receive the entire result
set. It cannot simply fetch a few rows and then ask the server not to bother
sending the rest. If the client needs only the first few rows that are returned,
it either has to wait for all of the server’s packets to arrive and then discard
the ones it doesn’t need or disconnect ungracefully. Neither is a good idea,
which is why appropriate LIMIT clauses are so important.

Here’s another way to think about this: when a client fetches rows from the
server, it thinks it’s pulling them. But the truth is, the MySQL server is
pushing the rows as it generates them. The client is only receiving the
pushed rows; there is no way for it to tell the server to stop sending rows.
The client is “drinking from the fire hose,” so to speak. (Yes, that’s a
technical term.)

Most libraries that connect to MySQL let you either fetch the whole result
set and buffer it in memory or fetch each row as you need it. The default
behavior is generally to fetch the whole result and buffer it in memory. This
is important because until all the rows have been fetched, the MySQL

4

server will not release the locks and other resources required by the query.
The query will be in the “Sending data” state. When the client library
fetches the results all at once, it reduces the amount of work the server
needs to do: the server can finish and clean up the query as quickly as
possible.

Most client libraries let you treat the result set as though you’re fetching it
from the server, although in fact you’re just fetching it from the buffer in
the library’s memory. This works fine most of the time, but it’s not a good
idea for huge result sets that might take a long time to fetch and use a lot of
memory. You can use less memory and start working on the result sooner if
you instruct the library not to buffer the result. The downside is that the
locks and other resources on the server will remain open while your
application is interacting with the library.

Let’s look at an example using PHP. Here’s how you usually query MySQL
from PHP:

<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_query('SELECT * FROM HUGE_TABLE', $link);
while ($row = mysql_fetch_array($result)) {
 // Do something with result
}
?>

The code seems to indicate that you fetch rows only when you need them,
in the while loop. However, the code actually fetches the entire result into
a buffer with the mysql_query() function call. The while loop simply
iterates through the buffer. In contrast, the following code doesn’t buffer the
results because it uses mysql_unbuffered_query() instead of
mysql_query():

<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_unbuffered_query('SELECT * FROM HUGE_TABLE',
$link);

5

while ($row = mysql_fetch_array($result)) {
 // Do something with result
}
?>

Programming languages have different ways to override buffering. For
example, the Perl DBD::mysql driver requires you to specify the C client
library’s mysql_ use_result attribute (the default is
mysql_buffer_result). Here’s an example:

#!/usr/bin/perl
use DBI;
my $dbh = DBI->connect('DBI:mysql:;host=localhost', 'user',
'p4ssword');
my $sth = $dbh->prepare('SELECT * FROM HUGE_TABLE', {
mysql_use_result => 1 });
$sth->execute();
while (my $row = $sth->fetchrow_array()) {
 # Do something with result
}

Notice that the call to prepare() specified to “use” the result instead of
“buffering” it. You can also specify this when connecting, which will make
every statement unbuffered:

my $dbh = DBI->connect('DBI:mysql:;mysql_use_result=1', 'user',
'p4ssword');

Query States
Each MySQL connection, or thread, has a state that shows what it is doing
at any given time. There are several ways to view these states, but the
easiest is to use the SHOW FULL PROCESSLIST command (the states
appear in the Command column). As a query progresses through its life
cycle, its state changes many times, and there are dozens of states. The
MySQL manual is the authoritative source of information for all the states,
but we list a few here and explain what they mean:

Sleep

The thread is waiting for a new query from the client.

Query

The thread is either executing the query or sending the result back to the
client.

Locked

The thread is waiting for a table lock to be granted at the server level.
Locks that are implemented by the storage engine, such as InnoDB’s
row locks, do not cause the thread to enter the Locked state.

Analyzing and statistics

The thread is checking storage engine statistics and optimizing the
query.

Copying to tmp table [on disk]

The thread is processing the query and copying results to a temporary
table, probably for a GROUP BY, for a filesort, or to satisfy a UNION. If

the state ends with “on disk,” MySQL is converting an in-memory table
to an on-disk table.

Sorting result

The thread is sorting a result set.

It’s helpful to at least know the basic states, so you can get a sense of “who
has the ball” for the query. On very busy servers, you might see a normally
brief state, such as statistics, begin to take a significant amount of
time. This usually indicates that something is wrong.

The Query Optimization Process
The next step in the query life cycle turns a SQL query into an execution
plan for the query execution engine. This has several substeps: parsing,
preprocessing, and optimization. Errors (for example, syntax errors) can be
raised at any point in the process. We’re not trying to document the MySQL
internals here, so we’re going to take some liberties, such as describing
steps separately even though they’re often combined wholly or partially for
efficiency. Our goal is simply to help you understand how MySQL executes
queries so that you can write better ones.

The parser and the preprocessor
To begin, MySQL’s parser breaks the query into tokens and builds a “parse
tree” from them. The parser uses MySQL’s SQL grammar to interpret and
validate the query. For instance, it ensures that the tokens in the query are
valid and in the proper order, and it checks for mistakes such as quoted
strings that aren’t terminated.

The preprocessor then checks the resulting parse tree for additional
semantics that the parser can’t resolve. For example, it checks that tables
and columns exist, and it resolves names and aliases to ensure that column
references aren’t ambiguous.

Next, the preprocessor checks privileges. This is normally very fast unless
your server has large numbers of privileges.

The query optimizer
The parse tree is now valid and ready for the optimizer to turn it into a
query execution plan. A query can often be executed many different ways
and produce the same result. The optimizer’s job is to find the best option.

MySQL uses a cost-based optimizer, which means it tries to predict the cost
of various execution plans and choose the least expensive. The unit of cost
was originally a single random 4 KB data page read, but it has become
more sophisticated and now includes factors such as the estimated cost of
executing a WHERE clause comparison. You can see how expensive the

optimizer estimated a query to be by running the query, then inspecting the
Last_query_cost session variable:

mysql> SELECT SQL_NO_CACHE COUNT(*) FROM sakila.film_actor;
+----------+
| count(*) |
+----------+
| 5462 |
+----------+

mysql> SHOW STATUS LIKE 'Last_query_cost';
+-----------------+-------------+
| Variable_name | Value |
+-----------------+-------------+
| Last_query_cost | 1040.599000 |
+-----------------+-------------+

This result means that the optimizer estimated it would need to do about
1,040 random data page reads to execute the query. It bases the estimate on
statistics: the number of pages per table or index, the cardinality (number of
distinct values) of the indexes, the length of the rows and keys, and the key
distribution. The optimizer does not include the effects of any type of
caching in its estimates; it assumes every read will result in a disk I/O
operation.

The optimizer might not always choose the best plan, for many reasons:

The statistics could be inaccurate. The server relies on storage
engines to provide statistics, and they can range from exactly
correct to wildly inaccurate. For example, the InnoDB storage
engine doesn’t maintain accurate statistics about the number of
rows in a table because of its MVCC architecture.

The cost metric is not exactly equivalent to the true cost of running
the query, so even when the statistics are accurate, the query might
be more or less expensive than MySQL’s approximation. A plan
that reads more pages might actually be cheaper in some cases,
such as when the reads are sequential so the disk I/O is faster or

when the pages are already cached in memory. MySQL also
doesn’t understand which pages are in memory and which pages
are on disk, so it doesn’t really know how much I/O the query will
cause.

MySQL’s idea of “optimal” might not match yours. You probably
want the fastest execution time, but MySQL doesn’t really try to
make queries fast; it tries to minimize their cost, and as we’ve
seen, determining cost is not an exact science.

MySQL doesn’t consider other queries that are running
concurrently, which can affect how quickly the query runs.

MySQL doesn’t always do cost-based optimization. Sometimes it
just follows the rules, such as “if there’s a full-text MATCH()
clause, use a FULLTEXT index if one exists.” It will do this even
when it would be faster to use a different index and a non-
FULLTEXT query with a WHERE clause.

The optimizer doesn’t take into account the cost of operations not
under its control, such as executing stored functions or user-
defined functions.

As we’ll see later, the optimizer can’t always estimate every
possible execution plan, so it might miss an optimal plan.

MySQL’s query optimizer is a highly complex piece of software, and it uses
many optimizations to transform the query into an execution plan. There are
two basic types of optimizations, which we call static and dynamic. Static
optimizations can be performed simply by inspecting the parse tree. For
example, the optimizer can transform the WHERE clause into an equivalent
form by applying algebraic rules. Static optimizations are independent of
values, such as the value of a constant in a WHERE clause. They can be
performed once and will always be valid, even when the query is
reexecuted with different values. You can think of these as “compile-time
optimizations.”

In contrast, dynamic optimizations are based on context and can depend on
many factors, such as which value is in a WHERE clause or how many rows
are in an index. They must be reevaluated each time the query is executed.
You can think of these as “runtime optimizations.”

The difference is important when executing prepared statements or stored
procedures. MySQL can do static optimizations once, but it must reevaluate
dynamic optimizations every time it executes a query. MySQL sometimes
even reoptimizes the query as it executes it.

Here are some types of optimizations MySQL knows how to do:

Reordering joins

Tables don’t always have to be joined in the order you specify in the
query. Determining the best join order is an important optimization; we
explain it in depth later in this chapter.

Converting OUTER JOINs to INNER JOIN

An OUTER JOIN doesn’t necessarily have to be executed as an OUTER

JOIN. Some factors, such as the WHERE clause and table schema, can

actually cause an OUTER JOIN to be equivalent to an INNER JOIN.

MySQL can recognize this and rewrite the join, which makes it eligible
for reordering.

Applying algebraic equivalence rules

MySQL applies algebraic transformations to simplify and canonicalize
expressions. It can also fold and reduce constants, eliminating
impossible constraints and constant conditions. For example, the term
(5=5 AND a>5) will reduce to just a>5. Similarly, (a<b AND

b=c) AND a=5 becomes b>5 AND b=c AND a=5. These rules

6

are very useful for writing conditional queries, which we discuss later in
this chapter.

COUNT(), MIN(), and MAX() optimizations

Indexes and column nullability can often help MySQL optimize away
these expressions. For example, to find the minimum value of a column
that’s leftmost in a B-tree index, MySQL can just request the first row
in the index. It can even do this in the query optimization stage and treat
the value as a constant for the rest of the query. Similarly, to find the
maximum value in a B-tree index, the server reads the last row. If the
server uses this optimization, you’ll see “Select tables optimized away”
in the EXPLAIN plan. This literally means the optimizer has removed

the table from the query plan and replaced it with a constant.

Evaluating and reducing constant expressions

When MySQL detects that an expression can be reduced to a constant, it
will do so during optimization. For example, a user-defined variable can
be converted to a constant if it’s not changed in the query. Arithmetic
expressions are another example.

Perhaps surprisingly, even something you might consider to be a query
can be reduced to a constant during the optimization phase. One
example is a MIN() on an index. This can even be extended to a
constant lookup on a primary key or unique index. If a WHERE clause
applies a constant condition to such an index, the optimizer knows
MySQL can look up the value at the beginning of the query. It will then
treat the value as a constant in the rest of the query. Here’s an example:

mysql> EXPLAIN SELECT film.film_id, film_actor.actor_id

 -> FROM sakila.film

 -> INNER JOIN sakila.film_actor USING(film_id)

 -> WHERE film.film_id = 1\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: film

 partitions: NULL

 type: const

 possible_keys: PRIMARY

 key: PRIMARY

 key_len: 2

 ref: const

 rows: 1

 filtered: 100.00

 Extra: Using index

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: film_actor

 partitions: NULL

 type: index

 possible_keys: NULL

 key: PRIMARY

 key_len: 4

 ref: NULL

 rows: 5462

 filtered: 10.00

 Extra: Using where; Using index

MySQL executes this query in two steps, which correspond to the two
rows in the output. The first step is to find the desired row in the film
table. MySQL’s optimizer knows there is only one row because there’s a
primary key on the film_id column and it has already consulted the
index during the query optimization stage to see how many rows it will
find. Because the query optimizer has a known quantity (the value in the
WHERE clause) to use in the lookup, this table’s ref type is const.

In the second step, MySQL treats the film_id column from the row
found in the first step as a known quantity. It can do this because the
optimizer knows that by the time the query reaches the second step, it
will know all the values from the first step. Notice that the
film_actor table’s ref type is const, just as the film table’s
was.

Another way you’ll see constant conditions applied is by propagating a
value’s constantness from one place to another if there is a WHERE,
USING, or ON clause that restricts the values to being equal. In this
example, the optimizer knows that the USING clause forces film_id
to have the same value everywhere in the query; it must be equal to the
constant value given in the WHERE clause.

Covering indexes

MySQL can sometimes use an index to avoid reading row data when
the index contains all the columns the query needs. We discussed
covering indexes at length in the previous chapter.

Subquery optimization

MySQL can convert some types of subqueries into more efficient
alternative forms, reducing them to index lookups instead of separate
queries.

Early termination

MySQL can stop processing a query (or a step in a query) as soon as it
fulfills the query or step. The obvious case is a LIMIT clause, but there
are several other kinds of early termination. For instance, if MySQL
detects an impossible condition, it can abort the entire query. You can
see this in the following example:

mysql> EXPLAIN SELECT film.film_id FROM sakila.film WHERE

film_id = −1;

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: NULL

 partitions: NULL

 type: NULL

 possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: NULL

 filtered: NULL

 Extra: Impossible WHERE

This query stopped during the optimization step, but MySQL can also
terminate execution early in some other cases. The server can use this
optimization when the query execution engine recognizes the need to
retrieve distinct values or to stop when a value doesn’t exist. For
example, the following query finds all movies without any actors:

SELECT film.film_id

FROM sakila.film

LEFT OUTER JOIN sakila.film_actor USING(film_id)

WHERE film_actor.film_id IS NULL;

This query works by eliminating any films that have actors. Each film
might have many actors, but as soon as it finds one actor, it stops
processing the current film and moves to the next one because it knows
the WHERE clause prohibits outputting that film. A similar
“Distinct/not-exists” optimization can apply to certain kinds of
DISTINCT, NOT EXISTS(), and LEFT JOIN queries.

Equality propagation

MySQL recognizes when a query holds two columns as equal—for
example, in a JOIN condition—and propagates WHERE clauses across
equivalent columns. For instance, in the following query:

SELECT film.film_id

FROM sakila.film

INNER JOIN sakila.film_actor USING(film_id)

WHERE film.film_id > 500;

7

MySQL knows that the WHERE clause applies not only to the film
table but to the film_actor table as well because the USING clause
forces the two columns to match.

If you’re used to another database server that can’t do this, you might
have been advised to “help the optimizer” by manually specifying the
WHERE clause for both tables, like this:

... WHERE film.film_id > 500 AND film_actor.film_id > 500

This is unnecessary in MySQL. It just makes your queries harder to
maintain.

IN() list comparisons

In many database servers, IN() is just a synonym for multiple OR

clauses because the two are logically equivalent. Not so in MySQL,
which sorts the values in the IN() list and uses a fast binary search to

see whether a value is in the list. This is O(log n) in the size of the list,
whereas an equivalent series of OR clauses is O(n) in the size of the list

(i.e., much slower for large lists).

The preceding list is woefully incomplete because MySQL performs more
optimizations than we could fit into this entire chapter, but it should give
you an idea of the optimizer’s complexity and intelligence. If there’s one
thing you should take away from this discussion, it’s don’t preemptively try
to outsmart the optimizer. You might end up just defeating it or making
your queries more complicated and harder to maintain for zero benefit. In
general, you should let the optimizer do its work.

Of course, as smart as the optimizer is, there are times when it doesn’t give
the best result. Sometimes you might know something about the data that

the optimizer doesn’t, such as a fact that’s guaranteed to be true because of
application logic. Also, sometimes the optimizer doesn’t have the necessary
functionality, such as hash indexes; at other times, as mentioned earlier, its
cost estimates might prefer a query plan that turns out to be more expensive
than an alternative.

If you know the optimizer isn’t giving a good result and you know why, you
can help it. Some of the options are to add a hint to the query, rewrite the
query, redesign your schema, or add indexes.

Table and index statistics
Recall the various layers in the MySQL server architecture, which we
illustrated in Figure 1-1. The server layer, which contains the query
optimizer, doesn’t store statistics on data and indexes. That’s a job for the
storage engines because each storage engine might keep different kinds of
statistics (or keep them in a different way).

Because the server doesn’t store statistics, the MySQL query optimizer has
to ask the engines for statistics on the tables in a query. The engines provide
the optimizer with statistics such as the number of pages per table or index,
the cardinality of tables and indexes, the length of rows and keys, and key
distribution information. The optimizer can use this information to help it
decide on the best execution plan. We see how these statistics influence the
optimizer’s choices in later sections.

MySQL’s join execution strategy
MySQL uses the term join more broadly than you might be used to. In sum,
it considers every query a join—not just every query that matches rows
from two tables, but every query, period (including subqueries and even a
SELECT against a single table). Consequently, it’s very important to
understand how MySQL executes joins.

Consider the example of a UNION query. MySQL executes a UNION as a
series of single queries whose results are spooled into a temporary table,

8

then read out again. Each of the individual queries is a join, in MySQL
terminology, and so is the act of reading from the resulting temporary table.

MySQL’s join execution strategy used to be simple: it treated every join as
a nested-loop join. This means MySQL runs a loop to find a row from a
table, then runs a nested loop to find a matching row in the next table. It
continues until it has found a matching row in each table in the join. It then
builds and returns a row from the columns named in the SELECT list. It
tries to build the next row by looking for more matching rows in the last
table. If it doesn’t find any, it backtracks one table and looks for more rows
there. It keeps backtracking until it finds another row in some table, at
which point it looks for a matching row in the next table, and so on.

As of version 8.0.20, block nested-loop joins are no longer used; instead, a
hash join has replaced it. This makes the join process perform as fast as, or
faster, than before, especially if one of the sets of data can live in memory.

The execution plan
MySQL doesn’t generate bytecode to execute a query, as many other
database products do. Instead, the query execution plan is actually a tree
of instructions that the query execution engine follows to produce the query
results. The final plan contains enough information to reconstruct the
original query. If you execute EXPLAIN EXTENDED on a query, followed
by SHOW WARNINGS, you’ll see the reconstructed query.

Any multitable query can conceptually be represented as a tree. For
example, it might be possible to execute a four-table join as shown in
Figure 8-2.

9

10

11

https://oreil.ly/WdIQm

Figure 8-2. One way to join multiple tables

This is what computer scientists call a balanced tree. This is not how
MySQL executes the query, though. As we described in the previous
section, MySQL always begins with one table and finds matching rows in
the next table. Thus, MySQL’s query execution plans always take the form
of a left-deep tree, as in Figure 8-3.

Figure 8-3. How MySQL joins multiple tables

The join optimizer
The most important part of the MySQL query optimizer is the join
optimizer, which decides the best order of execution for multitable queries.
It is often possible to join the tables in several different orders and get the
same results. The join optimizer estimates the cost for various plans and
tries to choose the least expensive one that gives the same result.

Here’s a query whose tables can be joined in different orders without
changing the results:

SELECT film.film_id, film.title, film.release_year,
actor.actor_id,
actor.first_name, actor.last_name
FROM sakila.film
INNER JOIN sakila.film_actor USING(film_id)
INNER JOIN sakila.actor USING(actor_id);

You can probably think of a few different query plans. For example,
MySQL could begin with the film table, use the index on film_id in
the film_actor table to find actor_id values, and then look up rows
in the actor table’s primary key. Oracle users might phrase this as “the
film table is the driver table into the film_actor table, which is the
driver for the actor table.” This should be efficient, right? Now let’s use
EXPLAIN to see how MySQL wants to execute the query:

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 partitions: NULL
 type: ALL
 possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 200
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 partitions: NULL
 type: ref
 possible_keys: PRIMARY,idx_fk_film_id
 key: PRIMARY
 key_len: 2
 ref: sakila.actor.actor_id
 rows: 27
 filtered: 100.00
 Extra: Using index
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 partitions: NULL
 type: eq_ref
 possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2

 ref: sakila.film_actor.film_id
 rows: 1
 filtered: 100.00
 Extra: NULL

This is quite a different plan from the one suggested in the previous
paragraph. MySQL wants to start with the actor table (we know this
because it’s listed first in the EXPLAIN output) and go in the reverse order.
Is this really more efficient? Let’s find out. The STRAIGHT_JOIN
keyword forces the join to proceed in the order specified in the query.
Here’s the EXPLAIN output for the revised query:

mysql> EXPLAIN SELECT STRAIGHT_JOIN film.film_id...\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 partitions: NULL
 type: ALL
 possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1000
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 partitions: NULL
 type: ref
 possible_keys: PRIMARY,idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: sakila.film.film_id
 rows: 5
 filtered: 100.00
 Extra: Using index
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor

 partitions: NULL
 type: eq_ref
 possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.film_actor.actor_id
 rows: 1
 filtered: 100.00
 Extra: NULL

This shows why MySQL wants to reverse the join order: doing so will
enable it to examine fewer rows in the first table. In both cases, it will be
able to perform fast indexed lookups in the second and third tables. The
difference is how many of these indexed lookups it will have to do. Placing
film first will require about one thousand probes (see the rows field) into
film_actor and actor, one for each row in the first table. If the server
scans the actor table first, it will have to do only two hundred index
lookups into later tables. In other words, the reversed join order will require
less backtracking and rereading.

This is a simple example of how MySQL’s join optimizer can reorder
queries to make them less expensive to execute. Reordering joins is usually
a very effective optimization. There are times when it won’t result in an
optimal plan, though, and for those times you can use STRAIGHT_JOIN
and write the query in the order you think is best—but such times are rare.
In most cases, the join optimizer will outperform a human.

The join optimizer tries to produce a query execution plan tree with the
lowest achievable cost. When possible, it examines all potential
combinations of subtrees, beginning with all one-table plans.

Unfortunately, a join over n tables will have n-factorial combinations of
join orders to examine. This is called the search space of all possible query
plans, and it grows very quickly: a 10-table join can be executed up to
3,628,800 different ways! When the search space grows too large, it can
take far too long to optimize the query, so the server stops doing a full
analysis. Instead, it resorts to shortcuts such as “greedy” searches when the
number of tables exceeds the limit specified by the

12

optimizer_search_depth variable (which you can change if
necessary).

MySQL has many heuristics, accumulated through years of research and
experimentation, that it uses to speed up the optimization stage. This can be
beneficial, but it can also mean that MySQL might (on rare occasions) miss
an optimal plan and choose a less optimal one because it’s trying not to
examine every possible query plan.

Sometimes queries can’t be reordered, and the join optimizer can use this
fact to reduce the search space by eliminating choices. A LEFT JOIN is a
good example, as are correlated subqueries (more about subqueries later).
This is because the results for one table depend on data retrieved from
another table. These dependencies help the join optimizer reduce the search
space by eliminating choices.

Sort optimizations
Sorting results can be a costly operation, so you can often improve
performance by avoiding sorts or by performing them on fewer rows.

When MySQL can’t use an index to produce a sorted result, it must sort the
rows itself. It can do this in memory or on disk, but it always calls this
process a filesort, even if it doesn’t actually use a file.

If the values to be sorted will fit into the sort buffer, MySQL can perform
the sort entirely in memory with a quicksort. If MySQL can’t do the sort in
memory, it performs it on disk by sorting the values in chunks. It uses a
quicksort to sort each chunk and then merges the sorted chunks into the
results.

There are two filesort algorithms:

Two passes (old)

Reads row pointers and ORDER BY columns, sorts them, and then
scans the sorted list and rereads the rows for output.

The two-pass algorithm can be quite expensive because it reads the
rows from the table twice and the second read causes a lot of random

I/O.

Single pass (new)

Reads all the columns needed for the query, sorts them by the ORDER
BY columns, and then scans the sorted list and outputs the specified
columns.

It can be much more efficient, especially on large I/O-bound data sets,
because it avoids reading the rows from the table twice and trades
random I/O for more sequential I/O. However, it has the potential to use
a lot more space because it holds all the desired columns from each row,
not just the columns needed to sort the rows. This means fewer tuples
will fit into the sort buffer, and the filesort will have to perform more
sort merge passes.

MySQL might use much more temporary storage space for a filesort than
you’d expect because it allocates a fixed-size record for each tuple it will
sort. These records are large enough to hold the largest possible tuple,
including the full length of each VARCHAR column. Also, if you’re using
utf8mb4, MySQL allocates 4 bytes for each character. As a result, we’ve
seen cases where poorly optimized schemas caused the temporary space
used for sorting to be many times larger than the entire table’s size on disk.

When sorting a join, MySQL might perform the filesort at two stages
during the query execution. If the ORDER BY clause refers only to columns
from the first table in the join order, MySQL can filesort this table and then
proceed with the join. If this happens, EXPLAIN shows “Using filesort” in
the Extra column. In all other circumstances—such as a sort against a
table that’s not first in the join order or when the ORDER BY clause
contains columns from more than one table—MySQL must store the
query’s results into a temporary table and then filesort the temporary table
after the join finishes. In this case, EXPLAIN shows “Using temporary;
Using filesort” in the Extra column. If there’s a LIMIT, it is applied after
the filesort, so the temporary table and the filesort can be very large.

The Query Execution Engine
The parsing and optimizing stage outputs a query execution plan, which
MySQL’s query execution engine uses to process the query. The plan is a
data structure; it is not executable bytecode, which is how many other
databases execute queries.

In contrast to the optimization stage, the execution stage is usually not all
that complex: MySQL simply follows the instructions given in the query
execution plan. Many of the operations in the plan invoke methods
implemented by the storage engine interface, also known as the handler
API. Each table in the query is represented by an instance of a handler. If a
table appears three times in the query, for example, the server creates three
handler instances. Although we glossed over this before, MySQL actually
creates the handler instances early in the optimization stage. The optimizer
uses them to get information about the tables, such as their column names
and index statistics.

The storage engine interface has lots of functionality, but it needs only a
dozen or so “building-block” operations to execute most queries. For
example, there’s an operation to read the first row in an index and one to
read the next row in an index. This is enough for a query that does an index
scan. This simplistic execution method makes MySQL’s storage engine
architecture possible, but it also imposes some of the optimizer limitations
we’ve discussed.

NOTE
Not everything is a handler operation. For example, the server manages table locks. The
handler might implement its own lower-level locking, as InnoDB does with row-level
locks, but this does not replace the server’s own locking implementation. As explained
in Chapter 1, anything that all storage engines share is implemented in the server, such
as date and time functions, views, and triggers.

To execute the query, the server just repeats the instructions until there are
no more rows to examine.

Returning Results to the Client
The final step in executing a query is to reply to the client. Even queries
that don’t return a result set still reply to the client connection with
information about the query, such as how many rows it affected.

The server generates and sends results incrementally. As soon as MySQL
processes the last table and generates one row successfully, it can and
should send that row to the client. This has two benefits: it lets the server
avoid holding the row in memory, and it means the client starts getting the
results as soon as possible. Each row in the result set is sent in a separate
packet in the MySQL client/server protocol, although protocol packets can
be buffered and sent together at the TCP protocol layer.

Limitations of the MySQL Query Optimizer
MySQL’s approach to query execution isn’t ideal for optimizing every kind
of query. Fortunately, there are only a limited number of cases where the
MySQL query optimizer does a poor job, and it’s usually possible to rewrite
such queries more efficiently.

UNION Limitations
MySQL sometimes can’t “push down” conditions from the outside of a
UNION to the inside, where they could be used to limit results or enable
additional optimizations.

If you think any of the individual queries inside a UNION would benefit
from a LIMIT or if you know they’ll be subject to an ORDER BY clause
once combined with other queries, you need to put those clauses inside each
part of the UNION. For example, if you UNION together two tables and
LIMIT the result to the first 20 rows, MySQL will store both tables into a
temporary table and then retrieve just 20 rows from it:

(SELECT first_name, last_name

13

 FROM sakila.actor
 ORDER BY last_name)
UNION ALL
(SELECT first_name, last_name
 FROM sakila.customer
 ORDER BY last_name)
LIMIT 20;

This query will store 200 rows from the actor table and 599 from the
customer table into a temporary table and then fetch the first 20 rows
from that temporary table. You can avoid this by adding LIMIT 20
redundantly to each query inside the UNION:

(SELECT first_name, last_name
 FROM sakila.actor
 ORDER BY last_name
 LIMIT 20)
UNION ALL
(SELECT first_name, last_name
 FROM sakila.customer
 ORDER BY last_name
 LIMIT 20)
LIMIT 20;

Now the temporary table will contain only 40 rows. In addition to the
performance improvement, you’ll probably need to correct the query: the
order in which the rows are retrieved from the temporary table is undefined,
so there should be an overall ORDER BY just before the final LIMIT.

Equality Propagation
Equality propagation can have unexpected costs sometimes. For example,
consider a huge IN() list on a column the optimizer knows will be equal to
some columns on other tables, due to a WHERE, ON, or USING clause that
sets the columns equal to one another.

The optimizer will “share” the list by copying it to the corresponding
columns in all related tables. This is normally helpful because it gives the
query optimizer and execution engine more options for where to actually

execute the IN() check. But when the list is very large, it can result in
slower optimization and execution. There’s no built-in workaround for this
problem at the time of this writing—you’ll have to change the source code
if it’s a problem for you. (It’s not a problem for most people.)

Parallel Execution
MySQL can’t execute a single query in parallel on many CPUs. This is a
feature offered by some other database servers, but not MySQL. We
mention it so that you won’t spend a lot of time trying to figure out how to
get parallel query execution on MySQL!

SELECT and UPDATE on the Same Table
MySQL doesn’t let you SELECT from a table while simultaneously running
an UPDATE on it. This isn’t really an optimizer limitation, but knowing
how MySQL executes queries can help you work around it. Here’s an
example of a query that’s disallowed, even though it is standard SQL. The
query updates each row with the number of similar rows in the table:

mysql> UPDATE tbl AS outer_tbl
 -> SET c = (
 -> SELECT count(*) FROM tbl AS inner_tbl
 -> WHERE inner_tbl.type = outer_tbl.type
 ->);
ERROR 1093 (HY000): You can't specify target table 'outer_tbl'
for update in FROM clause

To work around this limitation, you can use a derived table because MySQL
materializes it as a temporary table. This effectively executes two queries:
one SELECT inside the subquery and one multitable UPDATE with the
joined results of the table and the subquery. The subquery opens and closes
the table before the outer UPDATE opens the table, so the query will now
succeed:

mysql> UPDATE tbl
 -> INNER JOIN(
 -> SELECT type, count(*) AS c
 -> FROM tbl
 -> GROUP BY type
 ->) AS der USING(type)
 -> SET tbl.c = der.c;

Optimizing Specific Types of Queries
In this section, we give advice on how to optimize certain kinds of queries.
We’ve covered most of these topics in detail elsewhere in the book, but we
wanted to make a list of common optimization problems that you can refer
to easily.

Most of the advice in this section is version dependent, and it might not
hold for future versions of MySQL. There’s no reason why the server won’t
be able to do some or all of these optimizations itself someday.

Optimizing COUNT() Queries
The COUNT() aggregate function, and how to optimize queries that use it,
is probably one of the top 10 most-misunderstood topics in MySQL. You
can do a web search and find more misinformation on this topic than we
care to think about.

Before we get into optimization, it’s important that you understand what
COUNT() really does.

What COUNT() does
COUNT() is a special function that works in two very different ways: it
counts values and rows. A value is a non-NULL expression (NULL is the
absence of a value). If you specify a column name or other expression
inside the parentheses, COUNT() counts how many times that expression
has a value. This is confusing for many people, in part because values and
NULL are confusing. If you need to learn how this works in SQL, we

suggest a good book on SQL fundamentals. (The internet is not necessarily
a good source of accurate information on this topic.)

The other form of COUNT() simply counts the number of rows in the
result. This is what MySQL does when it knows the expression inside the
parentheses can never be NULL. The most obvious example is COUNT(*),
which is a special form of COUNT() that does not expand the * wildcard
into the full list of columns in the table, as you might expect; instead, it
ignores columns altogether and counts rows.

One of the most common mistakes we see is specifying column names
inside the parentheses when you want to count rows. When you want to
know the number of rows in the result, you should always use COUNT(*).
This communicates your intention clearly and avoids poor performance.

Simple optimizations
A commonly asked question is how to retrieve counts for several different
values in the same column with just one query, to reduce the number of
queries required. For example, say you want to create a single query that
counts how many items have each of several colors. You can’t use an OR
(e.g., SELECT COUNT(color = 'blue' OR color = 'red')
FROM items;) because that won’t separate the different counts for the
different colors. And you can’t put the colors in the WHERE clause (e.g.,
SELECT COUNT(*) FROM items WHERE color = 'blue'
AND color = 'red';) because the colors are mutually exclusive. Here
is a query that solves this problem:

SELECT SUM(IF(color = 'blue', 1, 0)) AS blue,SUM(IF(color =
'red', 1, 0))
AS red FROM items;

And here is another that’s equivalent, but instead of using SUM(), it uses
COUNT() and ensures that the expressions won’t have values when the
criteria are false:

14

SELECT COUNT(color = 'blue' OR NULL) AS blue, COUNT(color = 'red'
OR NULL)
AS red FROM items;

Using an approximation
Sometimes you don’t need an accurate count, so you can just use an
approximation. The optimizer’s estimated rows in EXPLAIN often serve
well for this. Just execute an EXPLAIN query instead of the real query.

At other times, an exact count is much less efficient than an approximation.
One customer asked for help counting the number of active users on his
website. The user count was cached and displayed for 30 minutes, after
which it was regenerated and cached again. This was inaccurate by nature,
so an approximation was acceptable. The query included several WHERE
conditions to ensure that it didn’t count inactive users or the “default” user,
which was a special user ID in the application. Removing these conditions
changed the count only slightly but made the query much more efficient. A
further optimization was to eliminate an unnecessary DISTINCT to remove
a filesort. The rewritten query was much faster and returned almost exactly
the same results.

More complex optimizations
In general, COUNT() queries are hard to optimize because they usually
need to count a lot of rows (i.e., access a lot of data). Your only other option
for optimizing within MySQL itself is to use a covering index. If that
doesn’t help enough, you need to make changes to your application
architecture. Consider an external caching system such as memcached.
You’ll probably find yourself faced with the familiar dilemma, “fast,
accurate, and simple: pick any two.”

Optimizing JOIN Queries
This topic is actually spread throughout most of the book, but we’ll mention
a few highlights:

Make sure there are indexes on the columns in the ON or USING
clauses. Consider the join order when adding indexes. If you’re
joining tables A and B on column c and the query optimizer
decides to join the tables in the order B, A, you don’t need to index
the column on table B. Unused indexes are extra overhead. In
general, you need to add indexes only on the second table in the
join order, unless they’re needed for some other reason.

Try to ensure that any GROUP BY or ORDER BY expression refers
only to columns from a single table, so MySQL can try to use an
index for that operation.

Be careful when upgrading MySQL because the join syntax,
operator precedence, and other behaviors have changed at various
times. What used to be a normal join can sometimes become a
cross product, a different kind of join that returns different results,
or even invalid syntax.

Optimizing GROUP BY with ROLLUP
A variation on grouped queries is to ask MySQL to do super aggregation
within the results. You can do this with a WITH ROLLUP clause, but it
might not be as well optimized as you need. Check the execution method
with EXPLAIN, paying attention to whether the grouping is done via
filesort or temporary table; try removing the WITH ROLLUP and see if you
get the same group method. You might be able to force the grouping
method with the hints we mentioned earlier in this section.

Sometimes it’s more efficient to do super aggregation in your application,
even if it means fetching many more rows from the server. You can also
nest a subquery in the FROM clause or use a temporary table to hold
intermediate results and then query the temporary table with a UNION.

The best approach might be to move the WITH ROLLUP functionality into
your application code.

Optimizing LIMIT and OFFSET
Queries with LIMITs and OFFSETs are common in systems that do
pagination, nearly always in conjunction with an ORDER BY clause. It’s
helpful to have an index that supports the ordering; otherwise, the server
has to do a lot of filesorts.

A frequent problem is having a high value for the offset. If your query looks
like LIMIT 10000, 20, it is generating 10,020 rows and throwing away
the first 10,000 of them, which is very expensive. Assuming all pages are
accessed with equal frequency, such queries scan half the table on average.
To optimize them, you can either limit how many pages are permitted in a
pagination view or try to make the high offsets more efficient.

One simple technique to improve efficiency is to do the offset on a covering
index, rather than the full rows. You can then join the result to the full row
and retrieve the additional columns you need. This can be much more
efficient. Consider the following query:

SELECT film_id, description FROM sakila.film ORDER BY title LIMIT
50, 5;

If the table is very large, this query is better written as follows:

SELECT film.film_id, film.description
FROM sakila.film
INNER JOIN (
SELECT film_id FROM sakila.film
ORDER BY title LIMIT 50, 5
) AS lim USING(film_id);

This “deferred join” works because it lets the server examine as little data
as possible in an index without accessing rows and then, once the desired
rows are found, join them against the full table to retrieve the other columns
from the row. A similar technique applies to joins with LIMIT clauses.

Sometimes you can also convert the limit to a positional query, which the
server can execute as an index range scan. For example, if you precalculate
and index a position column, you can rewrite the query as follows:

SELECT film_id, description FROM sakila.film
WHERE position BETWEEN 50 AND 54 ORDER BY position;

Ranked data poses a similar problem but usually mixes GROUP BY into the
fray. You’ll almost certainly need to precompute and store ranks.

The problem with LIMIT and OFFSET is really the OFFSET, which
represents rows the server is generating and throwing away. If you use a
sort of cursor to remember the position of the last row you fetched, you can
generate the next set of rows by starting from that position instead of using
an OFFSET. For example, if you want to paginate through rental records
starting from the newest rentals and working backward, you can rely on the
fact that their primary keys are always increasing. You can fetch the first set
of results like this:

SELECT * FROM sakila.rental
ORDER BY rental_id DESC LIMIT 20;

This query returns rentals 16049 through 16030. The next query can
continue from that point:

SELECT * FROM sakila.rental
WHERE rental_id < 16030
ORDER BY rental_id DESC LIMIT 20;

The nice thing about this technique is that it’s very efficient no matter how
far you paginate into the table.

Other alternatives include using precomputed summaries or joining against
redundant tables that contain only the primary key and the columns you
need for the ORDER BY.

Optimizing SQL_CALC_FOUND_ROWS
Another common technique for paginated displays is to add the SQL_
CALC_ FOUND_ROWS hint to a query with a LIMIT, so you’ll know how
many rows would have been returned without the LIMIT. It might seem
that there’s some kind of “magic” happening here, whereby the server
predicts how many rows it would have found. But unfortunately, the server
doesn’t really do that; it can’t count rows it doesn’t actually find. This
option just tells the server to generate and throw away the rest of the result
set instead of stopping when it reaches the desired number of rows. That’s
very expensive.

A better design is to convert the pager to a “next” link. Assuming there are
20 results per page, the query should then use a LIMIT of 21 rows and
display only 20. If the 21st row exists in the results, there’s a next page, and
you can render the “next” link.

Another possibility is to fetch and cache many more rows than you need—
say, 1,000—and then retrieve them from the cache for successive pages.
This strategy lets your application know how large the full result set is. If
it’s fewer than 1,000 rows, the application knows how many page links to
render; if it’s more, the application can just display “more than 1,000 results
found.” Both strategies are much more efficient than repeatedly generating
an entire result and discarding most of it.

Sometimes you can also just estimate the full size of the result set by
running an EXPLAIN query and looking at the rows column in the result
(hey, even Google doesn’t show exact result counts!). If you can’t use these
tactics, using a separate COUNT(*) query to find the number of rows can
be much faster than SQL_CALC_FOUND_ROWS, if it can use a covering
index.

Optimizing UNION
MySQL always executes UNION queries by creating a temporary table and
filling it with the UNION results. MySQL can’t apply as many

optimizations to UNION queries as you might be used to. You might have to
help the optimizer by manually “pushing down” WHERE, LIMIT, ORDER
BY, and other conditions (i.e., copying them, as appropriate, from the outer
query into each SELECT in the UNION).

It’s important to always use UNION ALL, unless you need the server to
eliminate duplicate rows. If you omit the ALL keyword, MySQL adds the
distinct option to the temporary table, which uses the full row to determine
uniqueness. This is quite expensive. Be aware that the ALL keyword
doesn’t eliminate the temporary table, though. MySQL always places
results into a temporary table and then reads them out again, even when it’s
not really necessary (for example, when the results could be returned
directly to the client).

Summary
Query optimization is the final piece in the interlocking puzzle of schema,
index, and query design to create high-performance applications. To write
good queries, you need to understand schemas and indexing, and vice versa.

Ultimately, it is still about response time and understanding how queries
execute so that you can reason about where the time is consumed. With the
addition of a few things such as the parsing and optimization process, this is
just the next step in understanding how MySQL accesses tables and
indexes, which we discussed in the previous chapter. The extra dimension
that emerges when you start studying the interplay between queries and
indexes is how MySQL accesses one table or index based on the data that it
finds in another one.

Optimization always requires a three-pronged approach: stop doing things,
do them fewer times, and do them more quickly.

1 Network overhead is worst if the application is on a different host from the server, but
transferring data between MySQL and the application isn’t free even if they’re on the same
server.

2 See “Optimizing COUNT() Queries” later in this chapter for more on this topic.

3 Percona Toolkit’s pt-archiver tool makes these types of jobs easy and safe.

4 If the query is too large, the server will refuse to receive any more data and throw an error.

5 You can work around this with SQL_BUFFER_RESULT, which we’ll see a bit later.

6 For example, the range check query plan reevaluates indexes for each row in a JOIN. You
can see this query plan by looking for “range checked for each record” in the Extra column
in EXPLAIN. This query plan also increments the Select_full_range_join server
variable.

7 We agree, a movie without actors is strange, but the Sakila Sample Database lists no actors for
Slacker Liaisons, which it describes as “A Fast-Paced Tale of a Shark and a Student Who Must
Meet a Crocodile in Ancient China.”

8 See both “Index Hints” and “Optimizer Hints” in the MySQL manual for version-specific
details on what hints are available and how to use them.

9 As we show later, MySQL’s query execution isn’t quite this simple; there are many
optimizations that complicate it.

10 You can see this by using EXPLAIN FORMAT=TREE … before your statement.

11 The server generates the output from the execution plan. It thus has the same semantics as the
original query but not necessarily the same text.

12 Strictly speaking, MySQL doesn’t try to reduce the number of rows it reads. Instead, it tries to
optimize for fewer page reads. But a row count can often give you a rough idea of the query
cost.

13 You can influence this behavior if needed—for example, with the SQL_BUFFER_RESULT
hint. See “Optimizer Hints” in the official MySQL manual for more information.

14 You can also write the SUM() expressions as SUM(color = 'blue'), SUM(color
='red').

Chapter 9. Replication

MySQL’s built-in replication is the foundation for building large, high-
performance applications on top of MySQL, using the so-called “scale-out”
architecture. Replication lets you configure one or more servers as replicas
of another server, keeping their data synchronized with the source copy.
This is not just useful for high-performance applications—it is also the
cornerstone of many strategies for high availability, scalability, disaster
recovery, backups, analysis, data warehousing, and numerous other tasks.

In this chapter, our focus is less on what each feature is and more on when
to use it. The official MySQL documentation is exceptionally detailed at
explaining what features like semisynchronous replication, multisource
replication, and so on are, and you should refer to this documentation when
setting up these features.

A NOTE ON TERMINOLOGY
Long-time users of MySQL will be familiar with the terminology
master and slave as it relates to replication. These terms have since
been replaced with source and replica. This book attempts to maintain
the new wording to align with this change. Some older versions of
MySQL still contain those replaced terms, so refer to the MySQL
manual as needed.

Replication Overview
The basic problem replication solves is keeping data synchronized among
database instances within the same topology. It does this by writing events
that modify data or data structure to a log on a source server. Replica
servers can then read the events from the log on the source and replay them.
This creates an asynchronous process, one where the replica’s copy of data

https://dev.mysql.com/doc

is not guaranteed to be up-to-date at any given instant. Replica lag—the
delay between real time and what is represented on the replica—has no
upper bound. Large queries can make the replica fall seconds, minutes, or
even hours behind the source.

MySQL’s replication is mostly backward compatible—that is, a newer
server can usually be a replica of an older server without trouble. However,
older versions of the server are often unable to act as replicas of newer
versions: they might not understand new features or SQL syntax the newer
server uses, and there might be differences in the file formats replication
uses. For example, you can’t replicate from a MySQL 5.6 source to a
MySQL 5.5 replica. It’s a good idea to test your replication setup before
upgrading from one major or minor version to another, such as from 5.6 to
5.7 or 5.7 to 8.0. Upgrades within a minor version, such as from 5.7.34 to
5.7.35, are expected to be compatible; read the release notes to find out
exactly what changed from version to version.

Replication is relatively good for scaling reads, which you can direct to a
replica, but it’s not a good way to scale writes unless you design it right.
Attaching many replicas to a source simply causes the writes to be done
many times, once on each replica. The entire system is limited to the
number of writes the weakest part can perform.

Here are some of the more common uses for replication:

Data distribution

MySQL’s replication is usually not very bandwidth intensive, although,
as you’ll see later, the row-based replication can use much more
bandwidth than the more traditional statement-based replication. You
can also stop and start replication at will. Thus, it’s useful for
maintaining a copy of your data in a geographically distant location,
such as a different data center or cloud region. The distant replica can
even work with a connection that’s intermittent (intentionally or

otherwise). However, if you want your replicas to have very low
replication lag, you’ll need a stable, low-latency link.

Scaling read traffic

MySQL replication can help you distribute read queries across several
servers, which works very well for read-intensive applications. You can
do basic load balancing with a few simple code changes. On a small
scale, you can use simplistic approaches such as hardcoded hostnames
or round-robin DNS (which points a single hostname to multiple IP
addresses). You can also take more sophisticated approaches. Standard
load-balancing solutions, such as network load-balancing products, can
work well for distributing reads among MySQL servers.

Backups

Replication is a valuable technique for helping with backups. However,
a replica is neither a backup nor a substitute for backups.

Analytics and reporting

Using a dedicated replica for reporting/analytics (online analytical
processing, or OLAP) queries is a good strategy for isolating that load
away from what your business needs to serve external customer
requests. Replication is a way to power that isolation.

High availability and failover

Replication can help avoid making MySQL a single point of failure in
your application. A good failover system involving replication can help
reduce downtime significantly.

Testing MySQL upgrades

It’s common practice to set up a replica with an upgraded MySQL
version and use it to ensure that your queries work as expected before
upgrading every instance.

How Replication Works
Before we get into the details of setting up replication, let’s quickly look at
how MySQL actually replicates data. In this explanation, we’re covering
the simplest replication topology, a single source and a single replica.

At a high level, replication is a simple three-part process:

1. The source records changes to its data in its binary log as “binary
log events.”

2. The replica copies the source’s binary log events to its own local
relay log.

3. The replica replays the events in the relay log, applying the
changes to its own data.

Figure 9-1 illustrates the most basic form of replication in more detail.

This replication architecture decouples the processes of fetching and
replaying events on the replica, which allows them to be asynchronous—
that is, the I/O thread can work independently of the SQL thread.

Figure 9-1. How MySQL replication works

Replication Under the Hood
Now that we’ve refreshed you on the replication basics, let’s dive deeper
into it. Let’s take a look at how replication really works, see what strengths
and weaknesses it has as a result, and examine some more advanced options
for replication configuration.

Choosing Replication Format
MySQL offers three different binary log formats for replication: statement-
based, row-based, and mixed. These are controlled with the
binlog_format configuration parameter, which controls how the data is
written to the binary log.

Statement-based replication works by recording the query that changed the
data on the source. When the replica reads the event from the relay log and
executes it, it is reexecuting the actual SQL query that the source executed.
The main draw for this format is that it is simple and compact. A query that
updates large amounts of data can be a few dozen bytes in the binary log.
The largest downside to statement-based is that it generally has problems
with nondeterministic queries. Consider a statement that deletes one
hundred rows of a one-thousand-row table with no ORDER BY clause. If
the rows are ordered differently between source and replica, you may delete
a different one hundred rows on each, leading to inconsistencies.

Row-based replication writes events to the binary log that indicate how the
row has changed. This sounds very simplistic, but it’s a big change from
statement-based because it’s deterministic. With row-based, you can look at
the binary log and see exactly what rows changed and what the values
became. With statement-based, the SQL is interpreted at execution time,
and whatever rows the server found at execution time are what get changed.
The drawback to row-based is that writing the events for row data changes
for every row affected can increase the size of the binary log dramatically.

The mixed method attempts to combine the best of both worlds, using
statement-based format as the default and only switching to row-based
when it needs to. We say “attempts” because while it tries really hard, it has
a lot of conditions to meet for when to write each, and this leads to
unpredictable events in the binary log. We take the opinion that binary log
data should be one or the other, not a mix of both.

Our recommendation is to stick with row-based replication unless you have
an express need to use statement-based temporarily. Row-based provides
the safest method of replicating your data.

Global Transaction Identifiers
Until MySQL 5.6, a replica had to keep track of what binary logfile and log
position it was reading from when connecting to a source. For example, a
replica connected to an upstream source and read data from

1

binlog.000002 at position 2749. As the replica read in events from
that binary log, it advanced the position each time. Then, disaster struck!
The source has crashed and you had to rebuild the data from a backup. The
question became: how could you reattach your replica if the binary logs
started over again? This was a fairly complicated process of reading events
and determining where to attach to. If you made a mistake and went too
early, you might duplicate events, and if too late, you skipped events. Either
way, it was very easy to attach a replica incorrectly.

To solve this, MySQL added an alternate method for tracking replication
positions: global transaction identifiers (GTIDs). With GTIDs, every
transaction that a source server commits is assigned a unique identifier. This
identifier is a combination of the server_uuid and an incrementing
transaction number. When the transaction is written to the binary log, the
GTID is also written with it. From our refresher earlier in the chapter, you’ll
remember that a replica copies the binary log event into its local relay log
and uses the SQL thread to apply changes to the local copy. When the SQL
thread commits a transaction, it records the GTID as being completed as
well.

To better illustrate this, let’s use an example. Suppose our source server has
just been set up and has no data in it—not even a database created. On this
source server, our server_uuid was also generated to be b9acac5a-
7bbe-11eb-a043-42010af8001a. We’ve done the same to our
replica, and used the appropriate commands to instruct our replica to use the
source server for replication.

On our source server, we would need to create a new database:

CREATE DATABASE misc;

This event will be written to the binary log so that our replica can also
create the database. In the binary log, we would see a single event identified
by the GTID:

b9acac5a-7bbe-11eb-a043-42010af8001a:1

2

As the replica server applies this event, it remembers that it has completed
transaction b9acac5a-7bbe-11eb-a043-42010af8001a:1.

In our contrived example, let’s say that we stop MySQL on our replica at
this point. It has committed a single transaction. If our source continues to
take writes, our transaction list will continue to grow: 2, 3, 4, 5, and so on.
When we start our replica back up, it knows that it has already seen
transaction 1, and can begin with processing transaction 2.

GTIDs solve one of the more painful parts of running MySQL replication:
dealing with logfiles and positions. We strongly recommend that you
always enable GTIDs for your databases following the guide in the official
MySQL documentation.

Making Replication Crash Safe
Although GTIDs solved the logfile and position problem, a number of other
problems also plagued administrators of MySQL. Later in this chapter,
we’ll touch on the common failure modes; however, before that, there are a
few configuration settings that can greatly improve your experience using
replication.

To minimize the chances for replication to break, we recommend setting the
following:

innodb_flush_log_at_trx_commit = 1

Although not strictly a replication setting, this ensures that logs are
written and synchronized to disk at each transaction. This is the full
ACID-compliant setting and will go the furthest toward protecting your
data—even with replication. This is because binary log events are
committed first and then the transaction will be committed and flushed
to disk. Setting this to 1 will increase disk write operations while

ensuring your data is durable.

3

sync_binlog = 1

This variable controls how often MySQL synchronizes the binary log
data to disk. Setting this value to 1 means before every transaction. This

protects against losing transactions in the event of a server crash. Just
like the previous setting, this will increase disk writes.

relay_log_info_repository = TABLE

MySQL replication used to rely on files on disk to track replication
position. This meant that transactions completed by replication had to
synchronize to disk as a second step. If a crash happened between a
transaction commit and the synchronization, the file on disk would have
the incorrect file and position in it. That information has moved into
InnoDB tables within MySQL itself, allowing replication to update both
the transaction and the relay log information within the same
transaction. This creates an atomic action and aids in crash recovery.

relay_log_recovery = ON

Simply put, relay_log_recovery throws away all local relay logs

when a crash is detected and fetches the missing data from the source.
This ensures that any corruption or incomplete relay logs on disk that
may have happened in a crash are recoverable. This setting also
eliminates the need for using sync_relay_log as, in the event of a

crash, the relay logs are deleted. There’s no need to spend extra
operations synchronizing them to disk.

Delayed Replication

In some scenarios, it can be advantageous to have a delayed replica in your
topology. This strategy can be used to keep data online and running but
keep it consistently behind real time by many hours or days. This is
configured with the CHANGE REPLICATION SOURCE TO statement
and the SOURCE_DELAY option.

Imagine you’re working with a large amount of data and there was an
accidental change: a table was dropped. it might take you several hours to
restore that from backup. With a time-delayed replica, you can find the
GTID of the DROP TABLE statement and catch replication up to the point
just prior to that table being dropped. This often can lead to much faster
remediation times.

Nothing comes without trade-offs, though. While delayed replication can be
tremendously useful in mitigating certain data-loss scenarios, it also brings
complexity to many other operational aspects. If you decide you need to use
delayed replication, you should also consider how to properly exclude this
delayed replica from being a source node candidate (if your write failover is
automated, this is even more important), how you monitor replication, and
how that handles this special replica. These are just a few of the added
complexities you should address when introducing delayed replicas.

Multithreaded Replication
One of the historical challenges with replication was that, while you could
take parallel writes on your source, your replicas were single threaded.
Modern MySQL versions offer multithreaded replication (see Figure 9-2)
where you can run multiple SQL applier threads to apply changes from the
relay log locally.

Figure 9-2. Multithreaded replication setup

There are two modes for multithreaded replication: DATABASE and
LOGICAL_CLOCK. The DATABASE option uses multiple threads to update
different databases; no two threads will update the same database at the
same time. This method works well if you spread your data across multiple
databases in MySQL and update them consistently and concurrently. The
other option, LOGICAL_CLOCK, allows parallel updates against the same
database as long as they are part of the same binary log group commit.

WHAT IS A BINARY LOG GROUP COMMIT?
To best explain this, we’re going to use an excellent analogy by Morgan
Tocker: the example of a single ferry trying to ship passengers from
point A to point B.

In MySQL 5.0, the ferry will pick up the next passenger in line from
point A and transfer them to point B. The trip between A and B takes
about a 10-minute return trip, so it’s possible that several new
passengers will arrive while the ferry is in transit. That doesn’t matter;
when the ferry arrives back at point A, it will only pick up the very next
passenger in line.

In MySQL 5.6, the ferry will pick up all passengers from the line at
point A and then transfer them to point B. Each time it returns to point
A to pick up new passengers, it will collect everyone who is waiting
and transfer them across to point B.

This is measurably better performance in real-life situations where
many passengers tend to arrive while waiting for the ferry to arrive back
at point A, and the trip between A and B tends to take some time. It is
not so measurable in naive benchmarks that run in a single thread.

MySQL 5.7 and later behave similarly to 5.6 in that it will pick up all
waiting passengers from point A and transfer them to point B, but with
one notable enhancement!

When the ferry arrives back at point A to pick up waiting passengers, it
can be configured to wait just a little bit longer with the knowledge that
new passengers will likely arrive. For example: if you know the trip
between point A and point B is 10 minutes in duration, why not wait an
extra 30 seconds at point A before departing? This may save you on
round trips and improve the overall number of passengers that can be
transported.

The configuration variables for artificial delay are
binlog_group_commit_sync_delay (delay in microseconds)

https://oreil.ly/WiSps

and binlog_group_commit_sync_no_delay_count (number
of transactions to wait for before deciding to abort waiting).

In this example passengers are obviously transactions, and the ferry is
an expensive fsync() operation. It’s important to note that there is
just one ferry in operation (a single set of ordered binary logs), so being
able to tune this provides a nice level of advanced configuration.

In most cases, you can simply turn this feature on and see immediate
benefit by setting replica_parallel_workers to a nonzero value. If
you are operating on a single database, you will also need to change
replica_parallel_type to LOGICAL_CLOCK. Since multithreaded
replication uses a coordinator thread, there will be some overhead for that
thread managing the states of all other threads. In addition, ensure that your
replicas run with replica_preserve_commit_order so that
committing out of order won’t cause issues. See the “Gaps” section of the
official documentation for a detailed explanation of why this is important.

There are two ways you can determine the optimal
replica_parallel_workers value. The imprecise method would be
to stop replication and then measure how long it takes to catch up using
differing amounts of threads until you find the optimal setting. This is
flawed because it assumes a consistent number of data manipulation
language (DML) statements are being sent over replication and that they all
perform relatively the same. In practice, this is hardly true.

The more precise method would be to look at how busy each of the applier
threads are for your workload to determine how much parallelism you are
getting. To do this, we need to enable performance schema consumers and
instruments, allow it to collect some information, and then review the
results.

To start, we need to enable the following:

UPDATE performance_schema.setup_consumers SET ENABLED = 'YES'
WHERE NAME LIKE 'events_transactions%';

4

https://oreil.ly/Tjb28

UPDATE performance_schema.setup_instruments SET ENABLED = 'YES',
TIMED = 'YES'
WHERE NAME = 'transaction';

Allow replication to process events for a time period. Ideally, you would
look at this during your heaviest write workloads or any time you see
replication lag increasing:

mysql> USE performance_schema;
events_transactions_summary_by_thread_by_event_name.thread_id AS
THREAD_ID,
events_transactions_summary_by_thread_by_event_name.count_star AS
COUNT_STAR
FROM events_transactions_summary_by_thread_by_event_name
WHERE
events_transactions_summary_by_thread_by_event_name.thread_id IN
(SELECT
replication_applier_status_by_worker.thread_id
FROM replication_applier_status_by_worker);
+-----------+------------+
| THREAD_ID | COUNT_STAR |
+-----------+------------+
1692957	23413
1692958	7150
1692959	1568
1692960	291
1692961	46
1692962	9
+-----------+------------+
6 rows in set (0.00 sec)

This query will help you identify how many transactions are processed by
each thread. As we can see from the results on this sample workload, our
optimal usage is somewhere between three and four threads, and anything
over that is used very little.

Semisynchronous Replication
When you enable semisynchronous replication, every transaction that your
source commits must be acknowledged as received by at least one replica.5

The acknowledgment confirms that the replica received it and successfully
wrote it to its own relay log (but not necessarily applied it to the local data).

Since each transaction must wait on the response from other nodes, this
feature adds additional latency to every transaction that your server does.
This means you need to consider the trade-off involved.

One very important thing to note here is that if no replicas acknowledge the
transaction during the time frame, MySQL reverts to its standard
asynchronous replication. It will not fail the transaction. This really helps
illustrate that semisynchronous replication is not a tool to prevent data loss
but rather a building block for a larger set of tooling that allows you to have
more resilient failover.

Given the fallback to asynchronous, we struggled to find a good use case
for why you would enable this. The logical use case would be to confirm
that, in the event of a network partition, an isolated source isn’t still writing
data while partitioned from its replicas. Unfortunately, that source will just
revert back to asynchronous and keep accepting writes. For that reason,
we’d recommend not relying on this for any data integrity.

Replication Filters
Replication-filtering options let you replicate just part of a server’s data,
which is much less of a good thing than you might think. There are two
kinds of replication filters: those that filter events out of the binary log on
the source and those that filter events coming from the relay log on the
replica. Figure 9-3 illustrates the two types.

The options that control binary log filtering are binlog_do_db and
binlog_ignore_db. You should not enable these, as we’ll explain in a
moment, unless you think you’ll enjoy explaining to your boss why the data
is gone permanently and can’t be recovered.

On the replica, the replicate_* options filter events as the replication
SQL thread reads them from the relay log. You can replicate or ignore one

or more databases, rewrite one database to another database, and replicate
or ignore tables based on LIKE pattern-matching syntax.

Figure 9-3. Replication-filtering options

The most important thing to understand about these options is that the
*_do_db and *_ignore_db options, both on the source and on the
replica, do not work as you might expect. You might think they filter on the
object’s database name, but they actually filter on the current default
database—that is, if you execute the following statements on the source:

USE test;
DELETE FROM sakila.film;

The *_do_db and *_ignore_db parameters will filter the DELETE
statement on test, not on sakila. This is not usually what you want,
and it can cause the wrong statements to be replicated or ignored. The
*_do_db and *_ignore_db parameters have uses, but they’re limited
and rare, and you should be very careful with them. If you use these
parameters, it’s very easy for replication to get out of sync or fail.

The binlog_do_db and binlog_ignore_db options don’t just have
the potential to break replication; they also make it impossible to do point-
in-time recovery from a backup. For most situations, you should never use
them.

In general, replication filters are a problem waiting to happen. For example,
suppose you want to prevent privilege changes from propagating to
replicas, a fairly common goal. (The desire to do this should probably tip
you off that you’re doing something wrong; there are probably other ways
to accomplish your real goal.) Replication filters on the system tables will
certainly prevent GRANT statements from replicating, but they will prevent
events and routines from replicating, too. Such unforeseen consequences
are a reason to be careful with filters. It may be a better idea to prevent
specific statements from being replicated, usually with SET
SQL_LOG_BIN=0, although that practice has its own hazards. In general,
you should use replication filters very carefully and only if you really need
them because they make it so easy to break replication and cause problems
that will manifest when least convenient, such as during disaster recovery.

That being said, there can be specific situations where replication filters are
beneficial. Perhaps you created multiple databases users_1, users_2,
users_3, and users_4, and now performance on your server is too
impacted. By restoring a backup and attaching replication, you can prepare
to move the queries for users_3 and users_4 to another server. This
works perfectly fine, except that you still have users_1 and users_2 on
your new database. At some point, you’ll have to drop the data that may be
affecting performance. Consider this alternative. You restore your backup
and then drop users_1 and users_2. Then you configure a replication
rule to ignore users_1 and users_2 and complete replication setup.
Now you’re only processing events for users_3 and users_4 on your
new server. Once you’re caught up on replication, you’re good to take
production traffic.

The filtering options are well documented in the MySQL manual, so we
won’t repeat the details here.

Replication Failover
At the beginning of the chapter, we mentioned that replication is the
cornerstone of high availability, among other things. Having a copy of your
data continuously updated in another location makes it much easier to
recover from catastrophe than going to backup. More than that, there will
be times you simply need to do some maintenance that involves restarting
MySQL.

In this section, we want to talk about the right ways to promote a replica to
become the source node. It’s easy to get wrong, and getting it wrong can
lead to data issues and extended downtime. We want to clarify that
“promoting a replica” and “failing over” are synonymous. They both mean
the act of demoting a source from taking writes and promoting a replica to
the source role.

A much more detailed explanation of how to handle this is in the official
MySQL documentation, under the “Switching Sources During Failover”
section, but given how important this is to get right, we wanted to touch on
it at least at some level.

Planned Promotions
The most common reason for a promotion is some kind of maintenance
event, including security patching, kernel updates, and even just restarting
MySQL, as there are a few configuration options that require a restart. This
type of promotion is referred to as a controlled or planned promotion.

To perform this promotion successfully, you want to accomplish the
following steps:

1. Determine which replica you are going to promote. This is often
the replica you are sure has all the data. That is your target.

2. Check the lag to make sure that you are within a few seconds.

3. Stop taking writes on your source by setting
super_read_only.6

4. Wait until replication is in sync with your target. Compare GTIDs
to be sure.

5. Unset read_only on target.

6. Switch application traffic to the target.

7. Repoint all replicas to the new source, including the demoted one.
This is trivial with GTIDs and AUTO_POSITION=1.

Unplanned Promotions
On a long enough timeline, every system fails, either as a result of software
or hardware. When this happens on a source server where writes are
happening, it can have a big impact on the user experience. Most
applications will simply return an error, leaving the user to retry themselves.
This is a case where an unplanned promotion is needed.

Since you do not have a live source to check, this is an abbreviated planned
promotion, where you choose which replica based on data that was already
replicated:

1. Determine which replica you are going to promote. This is often
the replica you are sure has all the data. This is your target.

2. Unset read_only on target.

3. Switch application traffic to the target.

4. Repoint all replicas to the new source, including the demoted one
when it returns to service. This is trivial with GTIDs.

You should also ensure that when your former source comes back online, it
defaults to super_read_only enabled. This will help prevent any
accidental writes.

Trade-Offs of Promotion

We are compelled to point out that sometimes your first reaction to
downtime is to failover. Because it is more difficult to know how much data
may be missing from the target, it can sometimes be a better strategy to not
failover.

An unplanned promotion is not a very practiced event—that is, you don’t
do it very often. When you are called upon to do it, you may need to look
up documentation to make sure you don’t miss a step. You also have to
inspect other replicas to verify which is the likely candidate. All of this
takes time. In some cases, it may simply be faster for you to wait for your
server or MySQL process to come back online. The advantage of this is that
if you followed the steps for ACID compliance in Chapter 5, you didn’t lose
any data, and your replicas will pick up where things left off.

Replication Topologies
You can set up MySQL replication for almost any configuration of sources
and replicas. Many complex topologies are possible, but even the simple
ones can be very flexible. A single topology can have many different uses.
The variety of ways you can use replication could easily fill its own book.

All of this flexibility means you can easily design a topology that is
unmaintainable. We highly recommend you keep your replication topology
as simple as possible while still meeting your needs. With that said, we
recommend two possible strategies that should cover nearly every use case.
You may have valid reasons for deviating from these, but make sure you
ask yourself if you’re still solving the right problems when you go more
complex.

Active/Passive
In an active/passive topology, you direct all reads and writes to a single
source server. Additionally, you maintain a small number of passive
replicas that do not actively serve any application traffic. The primary
reason for choosing this model is when you don’t want to worry about

replication lag. Since all reads go to the source, you prevent any read-after-
write problems that an application may not tolerate.

Figure 9-4 shows this arrangement with multiple replicas.

Figure 9-4. A source with multiple replicas

Configuration
In this topology, we expect that the source and replicas are identical
configurations in terms of CPU, memory, and so forth. Over a long enough
period, you will need to fail over from the current running source to one of
the replicas, either for maintenance, software upgrade or patching, or even a
hardware failure. By having the same hardware and software configuration
on replicas, you ensure that you can sustain the traffic capacity and
throughput as before you failed over.

Redundancy
In a physical hardware environment, you really want n+2 redundancy for at
least three total servers. In the event of a hardware failure, you still have
one additional server for failover. You can also use one of the replicas as a
backup server if you are uncomfortable or unable to take backups on your
source.

In a cloud environment, you can get away with n+1 redundancy for two
total servers if your data is small enough or you can copy the data easily.
Otherwise, n+2 is needed. If you go the n+1 route, the dynamic
provisioning nature of cloud providers can make this easier to manage. For
maintenance events like patching, it’s easier to provision a third replica on
demand, perform any necessary actions on it (like upgrading the kernel or
applying a security update), and then replace the other replica. Then you
fail over and repeat the process on the former source. The goal is to keep a
replica ready to be the target of a failover at all times.

In either case, you can place one of these replicas in a geographically
distant location, although you will have to pay attention to replication lag
and ensure that it is usable. Replicas should be recoverable and any data
loss within guidelines that you establish. We talk about this in “Defining
Recovery Requirements” in Chapter 10.

Caveats
By choosing this model, you are explicitly binding your read scaling to the
capacity of a single server. If you hit a read scaling limit, you will have to
evolve beyond this topology—likely into the active/read pool configuration
—or you will have to leverage sharding to reduce reads on the source.

Active/Read Pool
In an active/read pool configuration, you direct all writes to the source.
Reads can be sent to either the source server or the read pool, depending
upon application needs. A read pool allows you to scale reads horizontally

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/ch10.html#defining_recovery_requirements
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/ch10.html#backup_and_recovery

for read-intensive applications. At some point, the horizontal scaling will
fall off due to the demand of replication on the source.

Figure 9-5 shows this arrangement with a single source and a replica pool.

Figure 9-5. A source with a read pool

Configuration
Ideally, you want an identical configuration between the source and at least
one, preferably two, of the replicas in the read pool. Again, you will at
some point need to fail over to one of those replicas, and it should have
enough capacity to keep up with your traffic.

If you see this pool growing over time, you may optimize for cost and use a
different configuration for some of the members. If that’s the case, try to
look at traffic weighting as a way to balance traffic across them. If you have

32 cores for the failover targets and 8 cores for other replicas, try to send
four times more traffic to the 32-core node to ensure you get utilization.

Redundancy
The number of servers you have in this pool should meet the requirements
previously given, meaning at least one server can act as a failover target.
Beyond that, you need enough nodes to accommodate your read traffic, plus
a small buffer for node failures. With reads, your most likely indicator of
utilization will be CPU, and as such, target somewhere between 50%–60%
utilization per node in the pool. As CPU increases, it spends more time
context switching between work and latency increases. Try to find the right
balance between latency and utilization that meets your application
expectations.

Caveats
When you use a read pool, your application must have some tolerance for
stale reads. You will never be able to guarantee that a write you complete on
the source has already been replicated to a replica. You may also need a
way to depool nodes that fall too far behind on replication.

The size of the read pool also has an impact on how much administration
you have to do and when you should look at automation. A 16-node pool
will mean that you have to do kernel updates or security patching 16 times.
Automating this task to gracefully depool a node, perform patching, reboot,
and repool will reduce the amount of work you do by hand in the future.

Discouraged Topologies
By using either of the two recommendations we’ve given in this chapter,
you keep your topology simple and easy to understand. There are a number
of other suggestions from earlier editions of this book, or perhaps you
anecdotally heard about how another company’s topology is set up. We call
out some of these here as discouraged because they come with more risk
and complexity than we like to see.

Dual source in active-active mode
Dual source replication (also known as bidirectional replication) involves
two servers, each configured as both a source and a replica of the other—in
other words, a pair of cosources. Figure 9-6 shows the setup.

Figure 9-6. Dual source in active-active mode

At first glance, this doesn’t look any different than active/passive with two
servers, except that replication is already configured in the opposite
direction. The real danger is when you explicitly send write traffic to both
sides, hence the active/active part.

Active/active is very difficult to do correctly. Some strategies involve
choosing which side to send to based on even/odd hashing. This ensures
that reads-after-write are consistent for the same row, but queries that
include rows that are canonical on the other side may not be consistent.
Said more plainly, reading rows with ID 1, 3, and 5 from one side will
always be consistent. What about a query that reads ID 1–6? Where do you
send that query? What if an update exists on the other side that is not
reflected on this one due to replication lag?

You also need to carefully balance capacity. In a cosource scenario, each
server is the other server’s replica and the most likely target of the failover.
You have to plan your capacity in a way that ensures that when you shift
traffic from one side to the other, you do not run out of CPU. You’re also
failing over and introducing an entirely different working set of data. The
InnoDB buffer pool now churns, removing entries to make room for the
new hot set of data.

Take our advice and stay away from this one. It may feel like you’re getting
“use” out of a passive server by having it handle traffic instead of sitting
idle. You’ll end up introducing data inconsistencies into the application and
always be on edge that you don’t have enough capacity to failover. Once
you lose your failover strategy, you’ve lost resilience.

Dual source in active-passive mode
There’s a variation on dual source in active-active mode that avoids the
pitfalls we just discussed. The main difference is that one of the servers is a
read-only “passive” server, as shown in Figure 9-7.

Figure 9-7. Dual source in active-passive mode

There’s really nothing wrong with this setup on the surface. The only way it
differs from our recommendation for active/passive is that replication has
been preconfigured back to the other server. This only works in a two-
server configuration. If you run more than two servers, you’ll need to
decide which node is the best target for a failover. Preconfiguring
replication only ties you directly to one and doesn’t give you flexibility in
an outage situation.

We maintain that setting up replication is an easy, automatable step as part
of the replication-failover process we talked about before. This is an
unnecessary configuration that only invites confusion.

Dual sources with replicas
Mashing up things even more, we can add one or more replicas to each
cosource, as shown in Figure 9-8.

Figure 9-8. Dual source topology with replicas

This maintains most of the problems with dual source in active-active, the
most important being how you route traffic. It resolves the concerns about
capacity planning and buffer pool churn in a failover. You have additional
steps in a failover to point one of the sources to a newly promoted replica
on top of it.

We’re definitely against this as well, largely for the data access concerns.
Cosources only lead to trouble.

Ring replication
Ring replication has three or more sources where each server is a replica of
the server before it in the ring and a source of the server after it, as shown in
Figure 9-9. This topology is also called circular replication.

Figure 9-9. A replication ring topology

If any server in this topology goes offline, your topology is broken and
updates stop flowing around the ring. There are attached replica variations
of this, where each source in Figure 9-9 has a dedicated replica to swap in.
That still means the ring is broken until you promote a replica into the
former position.

This topology is the opposite of simple and has no advantages.

Multisource replication
While keeping your replication topology simple is important, there may be
situations where you need to use more advanced features to handle one-off
functions. Suppose you built a brand-new video upload and viewing site,
which is now becoming popular. One of your early design decisions was to
separate data about videos and data about users into two separate database
clusters. As you’ve grown, you find yourself wanting to merge them back
together in queries. You can accomplish this with multisource replication to
bring back both data sets together in a replica, as shown in Figure 9-10.

Figure 9-10. Multisource replication

This functionality is built off a concept called replication channels. In the
preceding example, you would need a third cluster for MySQL. This new
third cluster would have two replication channels created: one for the video
data and one for the user data. Once you’ve loaded and replicated data, you
could take a very brief downtime where you freeze writes to the two
sources and push your code to switch reading and writing to the new
combined database. Voila, you’ve now merged two databases into one.

Before we move on, there’s one important limitation to know about: you
cannot configure a replica to use multisource replication multiple times
against the same source.

This topology is very much intended for special-use circumstances. We cite
it as discouraged only in the case where you build a permanent topology
around this concept. Using it temporarily to merge data is still an acceptable
use case with the end goal to go back to one of our two recommendations.

Replication Administration and Maintenance
With a small amount of data and a consistent write workload, it’s unlikely
that you’ll be called upon to look at replication lag or worse, replication
breaking, very often. Most databases tend to grow in size over time, and
with that growth will come maintenance.

Monitoring Replication
Replication increases the complexity of MySQL monitoring. Although
replication actually happens on both the source and the replica, most of the
work is done on the replica, and that is where the most common problems
occur. Are all the replicas working? Has any replica had errors? How far
behind is the slowest replica? Out of the box, MySQL provides most of the
information you need to answer these questions, but automating the
monitoring process and making replication robust is left up to you.

When setting up replication monitoring, there are a few items that we
consider most important to observe:

Replication requires disk space on both source and replica

As seen earlier in Figure 9-1, replication uses both binary logs on the
source and relay logs on the replicas. If there is no free disk space on
the source, transactions will be unable to complete and will begin
timing out. If the same condition happens on a replica, MySQL behaves
a little more gracefully by pausing replication and waiting for free disk
space. You’ll want to monitor both for available disk space to ensure
continued operation.

Replication should be monitored for state and for errors

Although replication has been a long-standing feature and is very
robust, external factors like network issues, data inconsistencies, and

data corruption can cause it to break. Because of this, it’s ideal to
monitor for whether replication threads are running and if not, look into
what the latest error is to determine what your next step should be. We
cover more about how to troubleshoot specific problems in “Replication
Problems and Solutions”.

Delayed replication should be delayed as expected

Since we mentioned delayed replication earlier, it’s advisable to set up
monitoring to ensure that delayed replicas are in fact delayed by the
correct amount of time. Too long of a delay might make it much more
time consuming to use. If the delay is too little—or even worse, not
delayed at all—the delayed copy may be of no use to you if you need it.

Measuring Replication Lag
One of the most common things you’ll need to monitor is how far behind
the source a replica is running. Although the
Seconds_behind_source column in SHOW REPLICA STATUS
theoretically shows the replica’s lag, in fact it’s not always accurate, for a
variety of reasons:

The replica calculates Seconds_behind_source by
comparing the server’s current timestamp to the timestamp
recorded in the binary log event, so the replica can’t even report its
lag unless it is processing a query.

The replica will usually report NULL if the replication threads
aren’t running.

Some errors (for example, mismatched max_allowed_packet
settings between the source and replica or an unstable network) can
break replication and/or stop the replication threads, but

Seconds_behind_source will report 0 rather than indicating
an error.

The replica sometimes can’t calculate the lag even if the replication
processes are running. If this happens, the replica might report
either 0 or NULL.

A very long transaction can cause the reported lag to fluctuate. For
example, if you have a transaction that updates data, stays open for
an hour, and then commits, the update will go into the binary log
an hour after it actually happened. When the replica processes the
statement, it will temporarily report that it is an hour behind the
source, and then it will jump back to zero seconds behind.

The solution to these problems is to ignore Seconds_behind_source
and monitor replica lag with something you can observe and measure
directly. The best solution is a heartbeat record, which is a timestamp that
you update once per second on the source. To calculate the lag, you can
simply subtract the heartbeat from the current timestamp on the replica.
This method is immune to all the problems we just mentioned, and it has
the added benefit of creating a handy timestamp that shows at what point in
time the replica’s data is current. The pt-heartbeat script, included in
Percona Toolkit, is the most popular implementation of a replication
heartbeat.

A heartbeat has other benefits, too. The replication heartbeat records in the
binary log are useful for many purposes, such as disaster recovery in
otherwise hard-to-solve scenarios.

None of the lag metrics we just mentioned gives a sense of how long it will
take for a replica to actually catch up to the source. This depends on many
factors, such as how powerful the replica is and how many write queries the
source continues to process. See the subsection “Excessive Replication
Lag” in the “Replication Problems and Solutions” section for more on that
topic.

Determining Whether Replicas Are Consistent with the
Source
In a perfect world, a replica would always be an exact copy of its source,
minus any replication delay. But in the real world, discrepancies can be
introduced into replicas. Some possible causes are:

Accidental writes to the replica

Using dual source replication with both sides taking writes

Nondeterministic queries and statement-based replication

MySQL crashes while you run in a less-than-durable mode (see
Chapter 5 for durability configurations)

Bugs in MySQL

We suggest the following rules:

Always run your replicas with super_read_only enabled

Using read_only prevents users without the SUPER privilege from

being able to write, but this won’t prevent your DBAs from running a
DELETE or ALTER without realizing they’re on the replica. The

super_read_only setting only allows replication to write and is the

safest way to run replicas.

Use row-based replication or deterministic statements

Despite having situations where it will use a much larger amount of disk
space, row-based replication is the most consistent way to replicate
data. This is because it includes the exact row data changing for every
entry.

Consider the following with statement-based replication:

DELETE FROM users WHERE last_login_date <= NOW() LIMIT 10;

What happens when there are one thousand users in this table that
match the WHERE clause? MySQL will use the natural order in the table
to only delete the first 10 rows. The natural order of the table may be
different on replicas, so a different set of 10 rows may be affected.
Statements run in the future that modify or delete the rows based on
last_login_date may or may not exist. This can cause an
inconsistency with the data.

The best way to write this would be to use an ORDER BY to make the
row order deterministic:

DELETE FROM users WHERE last_login_date <= NOW() ORDER BY

user_id

LIMIT 10;

With this statement, as long as the data is consistent between source and
replica, the same 10 rows will be deleted.

Do not try to write to multiple servers in a replication topology at the same
time

This includes using cosources with writes on both sides or ring
replication. The most practical replication topology is to use one source,
taking all your writes, and one or more replicas, optionally taking reads.

Last, we highly recommend that if you encounter any replication errors, you
use the strategies in the official MySQL documentation for rebuilding the
replica.

https://oreil.ly/DlYzR

Replication Problems and Solutions
The simple implementation of MySQL replication makes it easy to set up
yet also means there are many ways to stop, confuse, and otherwise disrupt
it. Earlier in this chapter, we talked about crash-safe replication and rules to
help keep your source and replicas in sync. This section discusses common
problems, how they manifest themselves, and how you can solve or even
prevent them.

Binary Logs Corrupted on the Source
If the binary log is corrupted on the source, you’ll have no choice but to
rebuild your replicas. Skipping over the corrupted entry will skip some
transactions, which would no longer be processed by your replicas.

Nonunique Server IDs
This is one of the more elusive problems you might encounter with
replication. If you accidentally configure two replicas with the same server
ID, they might seem to work just fine if you’re not watching closely. But if
you watch their error logs or watch the source with a tool like innotop,
you’ll notice something very odd.

On the source, you’ll see only one of the two replicas connected at any
time. (Usually, all replicas are connected and replicating all the time.) On
the replica, you’ll see frequent disconnect and reconnect error messages in
the error log but no mention of a misconfigured server ID.

Depending on the MySQL version, the replicas might replicate correctly but
slowly, or they might not actually replicate correctly—any given replica
might miss binary log events or even repeat them, causing duplicate key
errors (or silent data corruption). You can also cause problems on the source
because of the increased load from the replicas fighting among themselves.
And if replicas are fighting one another badly enough, the error logs can
become enormous in a very short time.

The only solution to this problem is to be careful when setting up your
replicas. You might find it helpful to create a canonical list of replica-to-
server ID mappings so that you don’t lose track of which ID belongs to each
replica. If your replicas live entirely within one network subnet, you can
choose unique IDs by using the last octet of each machine’s IP address.

Undefined Server IDs
If you don’t define the server ID, MySQL will appear to set up replication
with CHANGE REPLICATION SOURCE TO but will not let you start the
replica:

mysql> START REPLICA;
ERROR 1200 (HY000): The server is not configured as replica; fix
in config file
or with CHANGE REPLICATION SOURCE TO

This error is especially confusing if you’ve just used CHANGE
REPLICATION SOURCE TO and verified your settings with SHOW
REPLICA STATUS. You might get a value from SELECT
@@server_id, but it’s just a default. You have to set the value explicitly.

Missing Temporary Tables
Temporary tables are handy for some uses, but unfortunately, they’re
incompatible with statement-based replication. If a replica crashes or if you
shut it down, any temporary tables the replica thread was using disappear.
When you restart the replica, any further statements that refer to the missing
temporary tables will fail.

The best approach here is to use row-based replication. The second-best
approach is to name your temporary tables consistently (prefix with
temporary_, for example) and use replication rules to skip replicating
them entirely.

Not Replicating All Updates
If you misuse SET SQL_LOG_BIN=0 or don’t understand the replication
filtering rules, your replica might not execute some updates that have taken
place on the source. Sometimes you want this for archiving purposes, but
it’s usually accidental and has bad consequences.

For example, suppose you have a replicate_do_db rule to replicate
only the sakila database to one of your replicas. If you execute the
following commands on the source, the replica’s data will become different
from the data on the source:

mysql> USE test;
mysql> UPDATE sakila.actor ...

Other types of statements can even cause replication to fail with an error
because of nonreplicated dependencies.

Excessive Replication Lag
Replication lag is a frequent problem. No matter what, it’s a good idea to
design your applications to tolerate some lag on the replicas. Here are some
common approaches to reducing replication lag:

Multithreaded replication

Ensure you’re using multithreaded replication and you’ve looked at
tuning the various options as per the manual for how to get the most
efficiency from it.

Use sharding

While it seems like a cop-out answer, using sharding techniques to
spread writes across multiple sources is a very effective strategy. The

long-standing rule of thumb for MySQL has been: scale reads with
replicas, scale writes with sharding.

Temporarily lower durability

Purists will disagree, but there may be times when you’ve exhausted all
tuning and tweaking and sharding is not a viable option because of
either effort or design issues. If your replication lag is largely due to
write operation limitations, you can temporarily set sync_binlog=0

and innodb_flush_log_at_trx_commit=0 to boost replication

speed.

If you go this last route, you should be very, very careful. You should only
do this on your replica, and if your replica is also where you take backups,
changing these settings may make it impossible for you to recover from a
backup. Also, if your replica crashes during this reduced durability, you
will likely have to rebuild from your source. Lastly, if you do this manually,
it’s terribly easy to forget to set the durability back. Ensure you have good
monitoring or have scripted some way to set durability again.

One possible strategy would be to watch the
Seconds_behind_source value from the SHOW REPLICA STATUS
command, and when it exceeds a certain value, trigger an action that does
the following:

1. Ensure that the server is a nonwritable replica, likely by verifying
that super_read_only is enabled.

2. Change the settings for sync_binlog and
innodb_flush_log_at_trx_commit to reduce write
operations.

3. Periodically check SHOW REPLICA STATUS for the value of
Seconds_ behind_ source.

7

4. When below an acceptable threshold, revert the settings back to
their durable nature.

Oversized Packets from the Source
Another hard-to-trace problem in replication can occur when the source’s
max_allowed_packet size doesn’t match the replica’s. In this case, the
source can log a packet the replica considers oversized, and when the
replica retrieves that binary log event, it might suffer from a variety of
problems. These include an endless loop of errors and retries or corruption
in the relay log.

No Disk Space
Replication can indeed fill up your disks with binary logs, relay logs, or
temporary files, especially if you do a lot of LOAD DATA INFILE queries
on the source and have log_replica_updates enabled on the replica.
The more a replica falls behind, the more disk space it is likely to use for
relay logs that have been retrieved from the source but not yet executed.
You can prevent these errors by monitoring disk usage and setting the
relay_log_space configuration variable.

Replication Limitations
MySQL replication can fail or get out of sync, with or without errors, just
because of its inherent limitations. A fairly large list of SQL functions and
programming practices simply won’t replicate reliably (we’ve mentioned
many of them in this chapter). It’s hard to ensure that none of these finds a
way into your production code, especially if your application or team is
large.

Another issue is bugs in the server. We don’t want to sound negative, but
many major versions of the MySQL server have historically had bugs in
replication, especially in the first releases of the major version. New
features, such as stored procedures, have usually caused more problems.

For most users, this is not a reason to avoid new features. It’s just a reason
to test carefully, especially when you upgrade your application or MySQL.
Monitoring is also important; you need to know when something causes a
problem.

MySQL replication is complicated, and the more complicated your
application is, the more careful you need to be. However, if you learn how
to work with it, it works quite well.

Summary
MySQL replication is the Swiss Army knife of MySQL’s built-in
capabilities, and it increases MySQL’s range of functionality and usefulness
dramatically. It is probably one of the key reasons why MySQL became so
popular so quickly, in fact.

Although replication has many limitations and caveats, it turns out that
most of them are relatively unimportant or easy for most users to avoid.
Many of the drawbacks are simply special-case behaviors of advanced
features that most people won’t use but are very helpful for the minority of
users who need them.

When it comes to replication, your motto should be to keep it simple. Don’t
do anything fancy, such as using replication rings or replication filters,
unless you really need to. Use replication simply to mirror an entire copy of
your data, including all privileges. Keeping your replicas identical to the
source in every way will help you avoid many problems.

1 As expected, we refer you to the manual to make sure you see the latest in how MIXED mode
works with different types of SQL statements.

2 Note that server_uuid is different from the similarly named server_id. The
server_id parameter is a user-defined value that you designate for your server whereas
server_uuid is generated the first time MySQL starts if it does not detect the file auto.cnf.

3 This assumes you used the SOURCE_AUTO_POSITION = 1 option when issuing the
CHANGE REPLICATION SOURCE TO command, which you should typically always do.

4 Performance Schema consumers and instruments cause MySQL to collect additional data
about its internals, which can use additional CPU. As a reminder, you should always test how
changes like this will affect production workloads in a safe environment beforehand.

5 The number of replicas required is a configurable option
(rpl_semi_sync_source_wait_for_replica_count). With wider topologies,
you may consider requiring two or even three acknowledgments before completing the original
transaction.

6 Setting super_read_only implicitly enables read_only. Conversely, disabling
read_only implicitly disables super_read_only. There’s no reason for you to enable or
disable both variables at the same time during this process.

7 This is typically true in cases where you may use LVM snapshots or a cloud-based disk
snapshot approach to backups.

Chapter 11. Scaling MySQL

Running MySQL in a personal project, or even in a young company, is very
different from running it in a business with an established market and
“hockey stick growth.” In a high-velocity business setting, traffic can grow
orders of magnitude year over year, the environment becomes more
complex, and the accompanying data needs accelerate rapidly. Scaling up
MySQL is very different from other types of servers largely because of the
stateful nature of the data. Compare this to a web server, where the widely
accepted model of adding more behind a load balancer is typically all you
need to do.

In this chapter, we explain what scaling means and walk you through the
different axes where you may need to scale. We explore why read scaling is
essential and show you how to accomplish it safely, with strategies like
queuing for making scaling writes more predictable. Finally, we cover
sharding data sets to scale writes using tools like ProxySQL and Vitess. By
the end of this chapter, you should be able to identify what seasonal pattern
your system has, how to scale reads, and how to scale writes.

What Is Scaling?
Scaling is the system’s ability to support growing traffic. The criteria for
whether a system scales well or scales poorly can be measured by cost and
simplicity. If it is excessively expensive or complicated to increase your
system’s ability to scale, you likely will expend significantly more effort
remediating this as you hit limitations.

Capacity is a related concept. The system’s capacity is the amount of work
it can perform in a given amount of time. However, capacity must be
qualified. The system’s maximum throughput is not the same as its capacity.
Most benchmarks measure a system’s maximum throughput, but you can’t
push real systems that hard. If you do, performance will degrade, and

1

response times will become unacceptably large and variable. We define the
system’s actual capacity as the throughput it can achieve while still
delivering acceptable performance.

Capacity and scalability are independent of performance. You can compare
it to cars on a highway:

The system is the highway and all the lanes and cars in it.

Performance is how fast the cars are.

Capacity is the number of lanes times the maximum safe speed.

Scalability is the degree to which you can add more cars and more
lanes without slowing traffic.

In this analogy, scalability depends on factors like how well the
interchanges are designed, how many cars have accidents or break down,
and whether the cars drive at different speeds or change lanes a lot—but
generally, scalability does not depend on how powerful the cars’ engines
are. This is not to say that performance doesn’t matter, because it does.
We’re just pointing out that systems can be scalable even if they aren’t high
performance.

From the 50,000-foot view, scalability is the ability to add capacity by
adding resources.

Even if your MySQL architecture is scalable, your application might not be.
If it’s hard to increase capacity for any reason, your application isn’t
scalable overall. We previously defined capacity in terms of throughput, but
it’s worth looking at capacity from the same 50,000-foot view. From this
vantage point, capacity simply means the ability to handle load, and it’s
useful to think of load from several different angles:

Quantity of data

The sheer volume of data your application can accumulate is one of the
most common scaling challenges. This is particularly an issue for many

of today’s web applications, which never delete any data. Social
networking sites, for example, typically never delete old messages or
comments.

Number of users

Even if each user has only a small amount of data, if you have a lot of
users, it adds up—and the data size can grow disproportionately faster
than the number of users. Many users generally means more
transactions too, and the number of transactions might not be
proportional to the number of users. Finally, many users (and more data)
can mean increasingly complex queries, especially if queries depend on
the number of relationships among users. (The number of relationships
is bounded by (N × (N – 1)) / 2, where N is the number of users.)

User activity

Not all user activity is equal, and user activity is not constant. If your
users suddenly become more active—because of a new feature they
like, for example—your load can increase significantly. User activity
isn’t just a matter of the number of page views, either. The same number
of page views can cause more work if the part of the site that requires a
lot of work to generate becomes more popular. Some users are much
more active than others, too: they might have many more friends,
messages, or photos than the average user.

Size of related data sets

If there are relationships among users, the application might need to run
queries and computations on entire groups of related users. This is more

complex than just working with individual users and their data. Social
networking sites often face challenges due to popular groups or users
who have many friends.

Scaling challenges can come in many forms. In the next section, we talk
about how to determine where your bottleneck is and what you can do
about it.

Read- Versus Write-Bound Workloads
One of the first things you should examine when thinking about scaling
your database architecture is whether you are scaling a read-bound
workload or a write-bound workload. A read-bound workload is one where
the amount of read traffic (SELECT) is overwhelming the capacity of your
server. A write-bound workload overwhelms the capacity of your server to
serve DML (INSERT, UPDATE, DELETE). Understanding which you are
hitting involves understanding your workload.

Understanding Your Workload
A database workload is many things. First, it’s your capacity, or as we
mentioned before, the measure of work over time. For databases, this
usually boils down to queries per second. One definition of workload could
be how many QPS the system can perform. Don’t be disillusioned by this,
however. One thousand QPS at 20% CPU doesn’t always mean you can add
four thousand more QPS. Not every query is created equal.

Queries come in all forms: reads, writes, primary key lookups, subqueries,
joins, bulk inserts, and so forth. Each has a cost associated with it. This cost
is measured in CPU time, or latency. When a query waits longer on a disk
to return information, that time is added to the cost. It is important to
understand the capacity of your resources. How many CPUs do you have,
what are the read and write IOPS and throughput limitations of your disk,

2

and what network throughput do you have? Each of these will have their
own influence on latency, which directly relates to your workload.

A workload is the blend of all types of queries and their latencies. It would
be more fair to say that, if we process one thousand QPS at 20% CPU, we
can add four thousand more QPS as long as their latencies are the same. If
we introduce four thousand more queries and we hit a disk IOPS bottleneck,
the latency of all reads goes up.

If the only metrics you have access to are basic system ones, like CPU,
memory, and disk, it can be nearly impossible to understand which of these
you are hitting. You will want to determine what your read versus write
performance is. We provided an example of this in “Examining Read Versus
Write Performance” in Chapter 3. Using that example, you can determine
the latency of reads versus writes. If you trend these numbers over time,
you can see if your read or write latencies are increasing and, consequently,
where you might be bound.

Read-Bound Workloads
Assume that, when you began designing your product, you took the shortcut
of using one source host for all database traffic. Adding more application
nodes may scale the clients serving requests but will ultimately be capped
by the ability of your one-source database host to respond to these read
requests. The primary indicator of this is CPU utilization. High CPU means
the server is spending all of its time processing queries. The higher CPU
utilization gets, the more latency you will see in queries. This isn’t the only
indicator, however. You can also see heavy disk read IOPS or throughput,
indicating that you are going to disk very often or for large numbers of rows
read from disk.

You can initially improve this by adding indexes, optimizing queries, and
caching data you can cache. Once you run out of improvements, you will be
left with a read-bound workload and this is where scaling read traffic using
replicas comes in. We will discuss later in this chapter how to scale your

3

reads using read replica pools, how to run health checks for these pools, and
what pitfalls to avoid when you start using that architecture.

Write-Bound Workloads
You may also be encountering a write-bound load. Here are some examples
of a write-bound database load:

Perhaps signups are growing exponentially.

It is peak ecommerce season, and sales are growing, along with the
number of orders to track.

It is election season, and you have a lot of campaign
communication going out.

All of these are business use cases that lead to exponentially more database
writes that you now have to scale. Again, a single-source database, even if
you can scale it vertically for some time, can only go so far. When the
bottleneck is the write volume, you have to start thinking about ways to
split your data so that you can accept writes in parallel on separate subsets.
We will talk about how to shard for write scaling later in this chapter as
well.

It’s logical at this point to ask, “What if I’m seeing both types of growth?”
It is important to inspect your schema closely and identify whether there is
a subset of tables growing faster in reads versus another subset growing in
write needs. Trying to scale a database cluster for both at the same time is
asking for a lot of pain and incidents. We recommend separating tables in
different functional clusters to scale reads and writes independently; this is
a prerequisite for scaling read traffic with read pools far more effectively.

Now that you have determined whether you have a read- or write-bound
load, we discuss how you can help guide this functional splitting of data in
an effective manner.

Functional Sharding
Splitting your data based on its “function” in the business is a context-
heavy task that requires a deep understanding of what the data is. This goes
hand in hand with popular software architecture paradigms like service-
oriented architecture (SOA) and microservices. Not all functional
approaches are created equal, and in a hyperbolic example, if you were to
put each table in its own “functional” database, you could definitely make
everything worse through too much fragmentation.

How do you approach splitting your large monolith/mixed concerns
database into a sensible set of smaller clusters that help the business scale?
Here are some guidelines to keep in mind:

Do not split based on the structure of the engineering team. That
will always change at some point.

Do split tables based on business function. Tables that power
account signups can be separate from tables that host existing
customer settings, and tables that power a new feature should start
off in their own database.

Do not shy away from tackling spots where separate business
concerns have been intermingled in the data and you need to
advocate for not just data separation but also application
refactoring and introducing API access across those boundaries. A
common example we have seen is mixing customer identity with
customer billing.

It is normal that at first there will be tables that clearly have their own
business function and access pattern and therefore are an easy target for
splitting off to a separate cluster, but that separation will get more nuanced
as you get further along.

Now that we have split data in a thoughtful manner based on business
function, let’s talk about how to scale for read-bound loads using replica
read pools.

Scaling Reads with Read Pools
Replicas in a cluster can serve more than one purpose. First and foremost,
they are candidates for failing over writes, either in a planned or unplanned
manner, when the current source needs to be taken out of service for any
reason. But since these replicas are also constantly running updates to
match the data in the source, you can use them to serve read requests as
well.

In Figure 11-1, we start by getting a visual of what this new setup with read
replica pools looks like.

Figure 11-1. Application nodes using a virtual IP to access read replicas

For the sake of simplicity, we will pretend application nodes still fulfill
write requests by directly connecting to the source database. We will later
cover how connecting to the source node can scale better. Note, though, that
the same application nodes connect to a virtual IP, which acts as a middle
layer between them and the read replicas. This is a replica read pool, and
this is how you spread the growing read load to more than one host. You
may also note that not all replicas are in the pool. That is a common way to
prevent different read workloads from affecting one another. If you have
reporting processes or your backup process tends to consume all of the disk
I/O resources and cause replication lag, you can leave out one or more
replica nodes to fulfill those tasks and exclude it from the read pool that
serves customer-facing traffic. Alternatively, you can augment your load
balancer health check with a replication check that automatically removes
the backup node that is behind from the pool and reintroduces it when it is
caught up. The flexibility of turning your read replicas into interchangeable
resources grows significantly when there is a single point the application
talks to for reads and you can manage these resources seamlessly without
impact on your customers.

Now that there is more than one database host serving read requests, there
are a few things to consider for smooth production sailing:

How do you route traffic to all these read replicas?

How do you evenly distribute the load?

How do you run health checks and remove unhealthy or lagged
replicas to avoid serving stale data?

How do you avoid accidentally removing all of the nodes, causing
more damage to the application traffic?

How do you manually remove a server proactively for
maintenance?

How do you add newly provisioned servers to your load balancer?

What automated checks are in place to avoid adding a newly
provisioned node to the load balancer before it is ready?

Is your definition of “ready for a new node” specific enough?

A very common way to manage these read pools is to use a load balancer to
run a virtual IP that acts as an intermediary for all traffic meant to go to the
read replicas. Technologies for doing this include HAProxy, a hardware
load balancer if you self-host, or a network load balancer if you are running
in a public cloud environment. In the case of using HAProxy, all application
hosts will connect to that one “frontend,” and HAProxy takes care of
directing those requests to one of the read replicas defined in the backend.
Here is a sample HAProxy config file that defines a virtual IP frontend and
maps that to multiple read replicas as a backend pool:

global
 log 127.0.0.1 local0 notice
 user haproxy
 group haproxy

defaults
 log global
 retries 2
 timeout connect 3000
 timeout server 5000
 timeout client 5000

listen mysql-readpool
 bind 127.0.0.1:3306
 mode tcp
 option mysql-check user haproxy_check
 balance leastconn
 server mysql-1 10.0.0.1:3306 check
 server mysql-2 10.0.0.2:3306 check

Typically, you use configuration management to auto populate such a file.
There are a few things to note in this configuration. Balancing between your
pool nodes with leastconn is the recommended way in MySQL. Random
balancing such as roundrobin in times of elevated load will not help you use
the hosts that are not overloaded. Make sure you have the proper database

user created on your MySQL instances to run this health check, or else all
your nodes will be marked unhealthy.

Tooling that facilitates sharding, such as Vitess and ProxySQL, can also act
like a load balancer. We’ll cover these tools toward the end of the chapter.

Managing Configuration for Read Pools
Now that you have a “gate” between the application nodes and your
replicas, you need a way to easily manage the nodes included, or not
included, in this read pool using your load balancer of choice. You do not
want this to be a manually managed configuration. You are already on a
trajectory of scaling to lots of database instances, and managing
configuration files manually will lead to mistakes, slower response times,
and host failures, and it simply does not scale.

Service discovery is a good option to use here for automatically discovering
what hosts can be in this list. This may mean deploying a service-discovery
solution as part of your tech stack or relying on a managed service-
discovery option at your cloud provider, if that is available. The important
thing to be careful with here is to be very specific on the criteria that make a
read replica qualify for this read pool. Ideally, you exclude the source node
and potentially one or more replicas dedicated for reporting. But maybe you
need something even more complex where the replicas are further
segmented to serve different application read loads? We recommend at
minimum three nodes per pool of replicas serving a specific purpose in
addition to your backup/reporting server and the source node.

Whether you run your own service discovery or use something offered by
your cloud provider, you should be aware of the guarantees of that service.
Here are some things to consider, whether you will be running service
discovery or working with a team on it:

How soon can it detect the failure of a host?

How fast does that data propagate?

4

When there is a database instance failure, how will the
configuration refresh on your load balancer?

Does the change of database members happen as a background
process, or will it require severing existing connections?

What happens if service discovery itself is down? Does that impair
any new database connections or only impair making changes to
load-balancer membership? Can you make changes manually at
that point?

With flexibility comes complexity, and you must balance the two for
optimal outcomes in production when failures happen. Your job here is to
always tether your decisions to what SLIs and SLOs are being pursued and
not to achieve a mythical 100% uptime goal.

Now that you know how to populate the configurations and update them as
hosts come and go, it’s time to talk about how to run health checks for the
members of a replica read pool.

Health Checks for Read Pools
At this point, you will need to consider what the acceptable criteria that
deem a read replica healthy and ready to accept read traffic from the
application are. These criteria can be as simple as “the database process is
up and running, the port responds” but can become more complex, such as
“the database is up, and replication lag needs to be no more than 30
seconds, and read queries need to be running at a latency no higher than 100
ms.”

TIP
Check the state of the variables read_only and super_read_only to make sure
that all the members in the read pool of your load balancer are actually replicas.

Deciding how far to take these health checks should be a conversation with
your application developer teams so that everyone understands and aligns
on what behavior they expect when reading from the database. Here are
some questions to ask the team that can help guide this decision process:

How much data staleness is acceptable? If the data returned is a
few minutes old, what does that affect?

What is the maximum acceptable query latency for the application?

What, if any, retry logic exists for read queries, and if it exists, is it
exponential backoff?

Do we already have an SLO for the application? Does that SLO
extend to query latency or only address uptime?

How does the system behave in the absence of this data? Is that
degradation acceptable? If so, for how long?

In many cases, you will be fine using only a port check to confirm the
MySQL process is live and can accept connections. This means that as long
as the database is running, it will be part of that pool and serving requests.

However, sometimes you may need something more sophisticated because
the data set involved is critical enough that you do not want to serve it when
replication lags more than a few seconds or if replication is not running at
all. For these scenarios, you can still use a read pool but augment the health
check with an HTTP check. The way this works is that your load balancer
of choice will run a command (usually a script) and, based on the response
code, will determine if the node is healthy or not. In HAProxy, for example,
the backend would have lines of code like this:

option httpchk GET /check-lag

This line means that for every host in the read pool, the load balancer will
call the path /check-lag using a GET call and inspect the response code.
That path runs a script that holds the logic as to how much lag is acceptable.

The script compares existing lag status with that threshold and, depending
on that, the load balancer either considers the replica healthy or not.

WARNING
Even though health checks are a powerful tool, be careful using those with complex
logic (such as the lag check described previously), and make sure you have a plan for
what to do if all replicas in the pool fail the health checks. You can have a static
“fallback” pool that brings all the nodes back in for certain global failures (e.g., the
entire cluster is lagged) to avoid accidentally breaking all read requests. For more detail
on how one company has implemented this, see this post on the GitHub blog.

Choosing a Load-Balancing Algorithm
There are many different algorithms to determine which server should
receive the next connection. Each vendor uses different terminology, but
this list should provide an idea of what’s available:

Random

The load balancer directs each request to a server selected at random
from the pool of available servers.

Round-robin

The load balancer sends requests to servers in a repeating sequence: A,
B, C, A, B, C, and so on.

Fewest connections

The next connection goes to the server with the fewest active
connections.

Fastest response

The server that has been handling requests the fastest receives the next
connection. This can work well when the pool contains a mix of fast

https://oreil.ly/zyjA4

and slow machines. However, it’s very tricky with SQL when the query
complexity varies widely. Even the same query can perform very
differently under different circumstances, such as when it’s served from
the query cache or when the server’s caches already contain the needed
data.

Hashed

The load balancer hashes the connection’s source IP address, which
maps it to one of the servers in the pool. Each time a connection request
comes from the same IP address, the load balancer sends it to the same
server. The bindings change only when the number of machines in the
pool does.

Weighted

The load balancer can combine and add weight to several of the other
algorithms. For example, you might have single- and dual-CPU
machines. The dual-CPU machines are roughly twice as powerful, so
you can tell the load balancer to send them an average of twice as many
requests.

The best algorithm for MySQL depends on your workload. The least-
connections algorithm, for example, might flood new servers when you add
them to the pool of available servers before their caches are warmed up.

You’ll need to experiment to find the best performance for your workload.
Be sure to consider what happens under extraordinary circumstances as
well as in the day-to-day norm. It is in those extraordinary circumstances—
for example, during times of high query load, when you’re doing schema
changes, or when an unusual number of servers go offline—that you can
least afford something going terribly wrong.

We’ve described only instant-provisioning algorithms here, which don’t
queue connection requests. Sometimes algorithms that use queuing can be
more efficient. For example, an algorithm might maintain a given
concurrency on the database server, such as allowing no more than N active
transactions at the same time. If there are too many active transactions, the
algorithm can put a new request in a queue and serve it from the first server
that becomes “available” according to the criteria. Some connection pools
support queuing algorithms.

Now that we have covered how to scale your read load and how to health-
check it, it’s time to discuss scaling writes. Before looking for how to scale
the writes directly, you can look at places where queuing can make the write
traffic growth more manageable. Let’s discuss how queuing can help scale
your write performance.

Queuing
Scaling your application layer becomes a lot more complex when scaling
write transactions with a data store that favors consistency over availability
by design. More application nodes writing to the one source node will lead
to a database system more susceptible to lock timeouts, deadlocks, and
failed writes to have to retry. All this will ultimately lead to customer-facing
errors or unacceptable latencies.

Before looking into sharding the data, which we discuss next, you should
examine the write hotspots in your data and consider whether all the writes
are truly required to persist to the database actively. Can some of them be
placed into a queue and written to the database within an acceptable time
frame?

Let’s say you have a database that stores large data sets of customer
historical data. Customers occasionally send API requests to retrieve this
data, but you also need to support an API to delete this data. You can
plausibly serve read API calls from a growing number of replicas, but what
about deletes? The HTTP RFC allows for a response code, “202 Accepted.”
You can return that, place the request in a queue (e.g., Apache Kafka or

Amazon Simple Queue Service), and process these requests at the pace that
doesn’t lead to overloading the database directly with delete calls.

This is obviously not the same as a 200 response code that implies the
request has been instantaneously fulfilled. This is a common spot where
negotiation with your product team is crucial for making the guarantees of
the API plausible and achievable. The difference between the 200 and 202
response codes is all the engineering work of sharding this data to support a
lot more parallel writes.

One important design choice to make if you do apply queuing to a write
load is to determine up front the desired time frame within which these calls
are expected to be fulfilled after being placed in queue. Monitoring the
growth of the time a request spends in a queue is going to be your metric
for when this strategy has run its course and you really need to start
splitting this data set to support more parallel write load. You can do that
using sharding, which we discuss next.

Scaling Writes with Sharding
If you cannot manage write traffic growth with optimized queries and
queuing writes, then sharding is your next option.

Sharding means splitting your data into different, smaller database clusters
so that you can execute more writes on more source hosts at the same time.
There are two different kinds of sharding or partitioning you can do:
functional partitioning and data sharding.

Functional partitioning, or division of duties, means dedicating different
nodes to different tasks. An example of this might be putting user records
on one cluster and their billing on a different cluster. This approach allows
each cluster to scale independently. A surge in user registrations might put a
strain on the user cluster. With separate systems, your billing cluster is less
loaded, allowing you to bill customers. Conversely, if your billing cycle is
the first of the month, you can run that knowing you won’t be affecting user
registration.

Data sharding is the most common and successful approach for scaling
today’s very large MySQL applications. You shard the data by splitting it
into smaller pieces, or shards, and storing them on different nodes.

Most applications shard only the data that needs sharding—typically, the
parts of the data set that will grow very large. Suppose you’re building a
blogging service. If you expect 10 million users, you might not need to
shard the user registration information because you might be able to fit all
of the users (or the active subset of them) entirely in memory. If you expect
500 million users, on the other hand, you should probably shard this data.
The user-generated content, such as posts and comments, will almost
certainly require sharding in either case because these records are much
larger and there are many more of them.

Large applications might have several logical data sets that you can shard
differently. You can store them on different sets of servers, but you don’t
have to. You can also shard the same data multiple ways, depending on how
you access it.

Be wary when planning to “only shard what needs sharding.” That concept
needs to include not just the data that is growing rapidly but also the data
that logically belongs with it and will regularly be queried at the same time.
If you are sharding based on a user_id field but there is a set of other
smaller tables that join on that same user_id in a majority of queries, it
makes sense to shard all these tables together so that you can keep a
majority of your application queries against one shard at a time and avoid
cross database joins.

Choosing a Partitioning Scheme
The most important challenge with sharding is finding and retrieving data.
How you find data depends on how you shard it. There are many ways to
do this, and some are better than others.

The goal is to make your most important and frequent queries touch as few
shards as possible (remember, one of the scalability principles is to avoid
crosstalk between nodes). The most critical part of that process is choosing

a partitioning key (or keys) for your data. The partitioning key determines
which rows should go onto each shard. If you know an object’s partitioning
key, you can answer two questions:

Where should I store this data?

Where can I find the data I need to fetch?

We’ll show you a variety of ways to choose and use a partitioning key later.
For now, let’s look at an example. Suppose we do as MySQL’s NDB Cluster
does and use a hash of each table’s primary key to partition the data across
all the shards. This is a very simple approach, but it doesn’t scale well
because it frequently requires you to check all the shards for the data you
want. For example, if you want user 3’s blog posts, where can you find
them? They are probably scattered evenly across all the shards because
they’re partitioned by the primary key, not by the user. Using a primary key
hash makes it simple to know where to store the data, but it might make it
harder to fetch it, depending on which data you need and whether you know
the primary key.

You always want your queries localized to one shard. When sharding your
data horizontally, you want to always avoid having to query across shards to
accomplish a task. Joining data across shards will add complexity to your
application layer and eats away at the benefit of sharding the data in the
first place. The worst case with sharded data sets is when you have no idea
where the desired data is stored so that you need to scan every shard to find
it.

A good partitioning key is usually the primary key of a very important
entity in the database. These keys determine the unit of sharding. For
example, if you partition your data by a user ID or a client ID, the unit of
sharding is the user or client.

A good way to start is to diagram your data model with an entity-
relationship diagram or an equivalent tool that shows all the entities and
their relationships. Try to lay out the diagram so that the related entities are
close together. You can often inspect such a diagram visually and find

candidates for partitioning keys that you’d otherwise miss. Don’t just look
at the diagram, though; consider your application’s queries as well. Even if
two entities are related in some way, if you seldom or never join on the
relationship, you can break the relationship to implement the sharding.

Some data models are easier to shard than others, depending on the degree
of connectivity in the entity-relationship graph. Figure 11-2 depicts an
easily sharded data model on the left and one that’s difficult to shard on the
right.

Figure 11-2. Two data models, one easy to shard and the other difficult

The data model on the left is easy to shard because it has many connected
subgraphs consisting mostly of nodes with just one connection and you can
“cut” the connections between the subgraphs relatively easily. The model
on the right is hard to shard because there are no such subgraphs. Most data
models, luckily, look more like the lefthand diagram than the righthand one.

When choosing a partitioning key, try to pick something that lets you avoid
cross-shard queries as much as possible but also makes shards small enough
that you won’t have problems with disproportionately large chunks of data.
You want the shards to end up uniformly small, if possible, and if not, at
least small enough that they’re easy to balance by grouping different
numbers of shards together. For example, if your application is US only and

5

you want to divide your data set into 20 shards, you probably shouldn’t
shard by state because California has such a huge population. But you could
shard by county or telephone area code, because even though those won’t
be uniformly populated, there are enough of them that you can still choose
20 sets that will be roughly equally populated in total, and you can choose
them with an affinity that helps avoid cross-shard queries.

Multiple Partitioning Keys
Complicated data models make data sharding more difficult. Many
applications have more than one partitioning key, especially if there are two
or more important “dimensions” in the data. In other words, the application
might need to see an efficient, coherent view of the data from different
angles. This means you might need to store at least some data twice within
the system.

For example, you might need to shard your blogging application’s data by
both the user ID and the post ID because these are two common ways the
application looks at the data. Think of it this way: you frequently want to
see all posts for a user and all comments for a post. Sharding by user
doesn’t help you find comments for a post, and sharding by post doesn’t
help you find posts for a user. If you need both types of queries to touch
only a single shard, you’ll have to shard both ways.

Just because you need multiple partitioning keys doesn’t mean you’ll need
to design two completely redundant data stores. Let’s look at another
example: a social networking book-club website where the site’s users can
comment on books. The website can display all comments for a book as
well as all books a user has read and commented on.

You might build one sharded data store for the user data and another for the
book data. Comments have both a user ID and a post ID, so they cross the
boundaries between shards. Instead of completely duplicating comments,
you can store the comments with the user data. Then you can store just a
comment’s headline and ID with the book data. This might be enough to
render most views of a book’s comments without accessing both data

stores, and if you need to display the complete comment text, you can
retrieve it from the user data store.

Querying Across Shards
Most sharded applications have at least some queries that need to aggregate
or join data from multiple shards. For example, if the book-club site shows
the most popular or active users, it must by definition access every shard.
Making such queries work well is the most difficult part of implementing
data sharding because what the application sees as a single query needs to
be split up and executed in parallel as many queries, one per shard. A good
database abstraction layer can help ease the pain, but even then such queries
are so much slower and more expensive than in-shard queries that
aggressive caching is usually necessary as well.

You will know that the sharding scheme you chose was a good one if the
cross-shard queries become outliers instead of norms. You should strive to
make your queries as simple as possible and contained within one shard.
For those cases where some cross-shard aggregation is needed, we
recommend you make that part of the application logic.

Cross-shard queries can also benefit from summary tables. You can build
them by traversing all the shards and storing the results redundantly on each
shard when they’re complete. If duplicating the data on each shard is too
wasteful, you can consolidate the summary tables onto another data store so
that they’re stored only once.

Nonsharded data often lives in the global node, with heavy caching to
shield it from the load.

Some applications use essentially random sharding where consistent data
distribution is important or when there is no good partitioning key. A
distributed search application is a good example. In this case, cross-shard
queries and aggregation are the norm, not the exception.

Querying across shards isn’t the only thing that’s harder with sharding.
Maintaining data consistency is also difficult. Foreign keys won’t work

across shards, so the normal solution is to check referential integrity as
needed in the application or use foreign keys within a shard because
internal consistency within a shard might be the most important thing. It’s
possible to use XA transactions, but this is uncommon in practice because
of the overhead.

You can also design clean-up processes that run intermittently. For example,
if a user’s book-club account expires, you don’t have to remove it
immediately. You can write a periodic job to remove the user’s comments
from the per-book shard, and you can build a checker script that runs
periodically and makes sure the data is consistent across the shards.

Now that we have explained the different ways you can split your data
across multiple clusters and how to choose a partitioning key, let’s cover
two of the most popular open source tools that can help facilitate both
sharding and partitioning.

Vitess
Vitess is a database-clustering system for MySQL. It originated within
YouTube, then became PlanetScale, a separate product and company
cofounded by Jiten Vaidya and Sugu Sougoumarane.

Vitess enables a number of features:

Horizontal sharding support, including sharding the data

Topology management

Source node failover management

Schema change management

Connection pooling

Query rewriting

Let’s explore Vitess’s architecture and its components.

Vitess architecture overview

https://oreil.ly/Z5gSe

Figure 11-3 is a diagram from Vitess’s website showing the different parts
of its architecture.

Figure 11-3. Vitess architecture diagram (adapted from vitess.io)

Here are some terms you need to know:

Vitess pod

The general encapsulation of a set of databases and the Vitess-related
pieces that support sharding, topology management, management of
schema changes, and application access to those databases.

VTGate

The service that controls access to the database instances for
applications and operators trying to manage topology, add nodes, or
shard some of the data. It is akin to the load balancer in the architecture
described previously.

VTTablet

The agent running on each database instance managed by Vitess. It can
receive database management commands from operators and execute
them on the operators’ behalf.

Topology (metadata store)

Holds the inventory of database instances managed by Vitess in a given
pod as well as accompanying information.

vtctl

The command-line tool to make operational changes to a Vitess pod.

vtctld

A graphical interface for the same management operations.

Vitess’s architecture starts with a consistent topology store that holds
definitions for all the clusters, MySQL instances, and vtgate instances. This
consistent metadata store plays a crucial role in managing topology
changes. When an operator wants to make a change to the topology of a
cluster managed by Vitess, it really sends commands through a service
called vtctl to that data store, which then sends the component operations of
that command to vtgate.

Vitess offers database operators that can deploy the vtgate layer and the
metadata store in Kubernetes. Having its control plane in a platform like
Kubernetes increases its resilience to single points of failure.

One of Vitess’s greatest strengths is its philosophy about how to scale
MySQL, which includes the following:

A preference for using smaller instances

Split your data functionally, horizontally, or both. But smaller instances
make for a smaller blast radius when failures happen.

https://oreil.ly/5QKCD

Replication and automated write failover to increase resilience

Vitess does not promise “100% online writes” through multiwriter node
tricks. Instead, it automates write failover and, during that failover,
manages both the topology change and application access to the
database nodes to make the write downtime as short as possible.

Durability using semisync replication

Vitess strongly recommends semisync replication (as opposed to the
default asynchronous) to ensure that writes are always persisted by
more than one node in the database layer before acknowledging them to
the application. This is a crucial trade-off in latency for the sake of
guaranteed durability that pays its dividends when Vitess needs to
failover the writer host in an unplanned manner.

These architectural principles can help sustain exponential growth in your
business traffic with a lot more resilience in the database layer of your
infrastructure. And you should heed many of these best practices regardless
of whether you specifically use Vitess or another solution as part of your
architecture.

Migrating your stack to Vitess
Vitess is an opinionated platform for running the database layer and is not a
drop-in solution. Therefore, you need to plan thoughtfully how
implementing such a transition would happen before you adopt it as the
access layer for your database.

Specifically, be sure to consider the following migration steps as you
evaluate Vitess as a possible solution:

1. Test and document the latency you’re introducing to the overall system.

Introducing a complex stack like Vitess to an application stack will
definitely add some amount of latency, especially when you consider
the enforcement of semisync replication. Make sure this trade-off is
well documented and explicitly communicated so that your downstream
dependencies are making informed decisions when building SLOs that
rely on this database architecture.

2. Use the canary deployment model.

During the transition in production, you can configure vttablet as
“externally managed.” This allows for both vttablet and direct
connections to the database server as you slowly ramp up the
connection change through your application node fleet.

3. Start sharding.

Once all the application layer access is through vtgate/vttablet and not
directly to MySQL, you can start using the full feature set of Vitess to
split tables off in new clusters, shard data horizontally for more write
throughput, or simply add replicas for more read load capacity.

Vitess is a powerful database access and management product that has come
a long way from its early days at Google. It has proven its ability to enable
dramatic growth and a resilient database infrastructure. However, this
power and flexibility come at a cost of added complexity. Vitess is not as
simple as a load balancer passing through traffic, and you should weigh the
needs of the business with the cost of introducing and maintaining a
database management tool as complex as Vitess.

ProxySQL

6

https://oreil.ly/ldtnN

ProxySQL is written specifically for the MySQL protocol and released with
a General Public License (GPL). René Cannaò, a DBA who has consulted
for many companies and a long-time MySQL contributor, is the primary
author. It is now a full-fledged company that offers paid support and
development contracts of the ProxySQL product.

Let’s dig into some details about its architecture, configuration patterns, use
cases, and features.

ProxySQL architecture overview
You can use ProxySQL as a layer in between any application code and
MySQL instances. ProxySQL provides a session-aware, MySQL-protocol-
based interface for applications to interact with the databases. Instead of
applications opening connections directly to the database instances,
ProxySQL opens them on the applications’ behalf.

This design makes the proxy seem invisible to the application nodes. Its
session awareness allows for moving these connections between MySQL
instances without downtime. This is especially useful when you are dealing
with applications that you are no longer investing in because you can now
utilize features in ProxySQL without needing to make any changes to code
that you may not feel confident changing.

ProxySQL also provides powerful connection pooling. Connections opened
by applications to ProxySQL are separate from the connections ProxySQL
opens to database instances it is configured to connect to. This separation
allows for protecting the database instances from sudden traffic spikes in
the application layer.

When you have the ability to manage client-side connections separately
from how many connections actually are made to the database, you
introduce flexibility you did not have before. You can now scale out the
application node pool without having to worry that it will increase
connection load to the database beyond what you want to support. This
allows for diverse scenarios of application and business needs, as we will
explain in the common patterns when using ProxySQL.

Configuring ProxySQL
ProxySQL uses a configuration file for startup but maintains its runtime
configuration both in memory and in an embedded SQLite file that you can
access directly and query using an admin interface.

ProxySQL’s admin interface allows you to issue commands to change the
running configuration, then dump that new configuration out to disk for
persistence using MySQL commands. This allows you to make zero-
downtime changes to a running ProxySQL instance. You can also use this
admin interface to make automated changes issued by your configuration
management or automated failover scripts. You can see in Figure 11-4 how
your architecture would generally leverage both ProxySQL and service
discovery to provide a robust access layer for services.

WARNING
It’s important to note that while we show ProxySQL as one object in this diagram, we
strongly recommend in production environments leveraging its clustering mechanism
and deploying multiple instances in a given stack. Never run a single point of failure
(SPoF).

Figure 11-4. The interaction between application nodes, ProxySQL, and service discovery (adapted
from a diagram by Bill Sickles)

ProxySQL has independent and hierarchical health checking for databases it
connects to. Based on the results of these health checks, ProxySQL adds or
removes hosts or adjusts traffic weights. You can specify replication-lag
thresholds, time to connect successfully, and connection retries on failure,
among many other configuration options, to control how much fault
tolerance is acceptable within the context of your service and application
needs. These configuration options allow ProxySQL to react accurately to
unresponsive hosts by either temporarily removing backend databases and
then repeating the health check later, or fully removing the struggling
backend member until an operator is involved.

Using ProxySQL for sharding
ProxySQL is very useful for a number of sharding topologies. While it does
not bring automation to the actual splitting of the data the way Vitess does,
it can be a great lightweight middle layer that is sharding aware and can
route your application connections accordingly. Let’s cover the different
ways you can use it to be a routing layer to your shards.

Sharding by user

If your data is split functionally or by business function in different
database clusters and different application fleets accessing these clusters,
you should also be using entirely different database credentials for each of
these applications. ProxySQL can leverage this user parameter to route
traffic to entirely separate backend database pools for either writes or reads.

You can configure such routing in ProxySQL by running these commands
against its admin interface, then saving the change to its disk configuration
file:

INSERT INTO mysql_users
(username, password, active, default_hostgroup, comment)
VALUES
('accounts', 'shard0_pass', 1, 0, 'Routed to the accounts
shard'),
('transactions', 'shard1_pass', 1, 1, 'Routed to the transactions
shard'),
('logging', 'shard2_pass', 1, 2, 'Routed to the logging shard');

LOAD MYSQL USERS RULES TO RUNTIME;
SAVE MYSQL USERS RULES TO DISK;

TIP
Always make sure you are keeping ProxySQL’s runtime configuration and on-disk
configuration in sync to avoid nasty surprises when a ProxySQL process restarts.

This adds the convenience of also logging all operations done by these
users for compliance without causing any load on the database. You will see
in Chapter 13 that we also recommend separate database users for
compliance reasons, and therefore this design aligns with some compliance
goals as well.

Sharding by schema

Another way you can use ProxySQL to support sharded data sets is using
schema names as the rule to manage the traffic routing. Here is an example
of how you would define that in ProxySQL’s configuration:

INSERT INTO mysql_query_rules (rule_id, active, schemaname,
destination_hostgroup, apply)
VALUES
(1, 1, 'shard_0', 0, 1),
(2, 1, 'shard_1', 1, 1),
(3, 1, 'shard_2', 2, 1);

LOAD MYSQL QUERY RULES TO RUNTIME;
SAVE MYSQL QUERY RULES TO DISK;

Note that this configuration can be used for either horizontal sharding or
functional sharding as long as you name your schemas properly.

A final important recommendation we have when using ProxySQL in this
manner is to make sure to use its native clustering feature, which ensures
that a critical configuration table like mysql_rules is synced to all the
ProxySQL nodes in the cluster, providing redundancy in your middleware
layer.

Other benefits of using ProxySQL
Let’s discuss some common patterns where using ProxySQL can help
alleviate common issues in fast-growing environments.

In many applications, “open more connections to the database” is a pattern
we commonly see when query latency starts to climb. However, in practice
this can lead to outages and tends to leave a lot of connections idle,
consuming resources but not doing any work. When you open more
connections by the application layer directly to the database, the amount of
resources the database server spends on connection management also
increases. This snowballs into thousands of connections overwhelming
already overloaded database instances. All of this activity leads to
prolonged downtimes, cascading failures in multiple microservices, and
extended customer-facing impact.

7

ProxySQL’s connection-management architecture helps shield the database
layer from unexpected application peaks by opening to the database only
the number of connections that can do work. ProxySQL can reuse those
connections for different client-side requests. This behavior maximizes the
work that a single connection to the database servers can do, which in turn
reduces the number of resources managing connections and allows for more
efficient use of the database server’s memory resources.

Other notable features in ProxySQL
ProxySQL has a number of other features that stand out in a general-use
application proxy:

Query routing based on port, user, or simply a regex match

TLS support on both the frontend application connections and
backend connections to databases

Support for various MySQL flavors, such as AWS Aurora, Galera
Cluster, and Clickhouse

Connection mirroring

Result set caching

Query rewrites

Audit log

You can read about the extensive feature set of ProxySQL (which goes well
beyond sharding support) by visiting its documentation.

ProxySQL is a powerful tool you can use for scaling out your application
with proper performance protections for the database layer and with added
features that support all sorts of business needs (like compliance, security
rules, etc.). If your company is finding itself on a high-growth trajectory
with a robust mix of new and less-new services sharing database resources,
it can be a powerful tool for safely continuing that growth. ProxySQL
provides an easy-to-deploy abstraction that can be more sophisticated than

https://oreil.ly/PTZFW

HAProxy but with less up-front investment in infrastructure and
complexity. However, it also does not offer some of the more advanced
features found in Vitess, such as automated sharding of data sets,
management of schema changes, and VReplication, which is a powerful
tool for enabling extract, transform, load (ETL) pipelines and changing data
streams.

Summary
Scaling MySQL is a journey. You should come out of this chapter more
prepared to assess your scaling needs and understand how to scale reads,
how to scale writes, and how to make your traffic growth more predictable
by adding queuing to your architecture. You should also now understand
sharding to scale writes and all the complex decisions that come with it.

Before you dive into scalability bottlenecks, make sure you’ve optimized
your queries, checked your indexes, and have a solid configuration for
MySQL. This may buy you the necessary time to plan a better long-term
strategy. Once optimized, focus on determining whether you are read- or
write-bound, and then consider what strategies work best to solve any
immediate issues. When planning your solution, make sure you consider
how to set yourself up for long-term scalability.

For read-bound workloads, our recommendation is to move to read pools
unless replication lag is an impossible problem to overcome. If lag is an
issue or if your problem is write-bound, you need to consider sharding as
your next step.

1 In the physical sciences, work per unit of time is called power, but in computing, “power” is
such an overloaded term that it’s ambiguous and we avoid it. However, a precise definition of
capacity is the system’s maximum power output.

2 We’re choosing to ignore the complexities of multiple CPUs and context switching for
simplicity’s sake in this explanation.

3 This is still not entirely accurate because as CPU approaches 100%, latency increases, and
you will not be able to add four thousand more queries.

https://oreil.ly/k2J7R

4 The most commonly used and our recommendation is Consul by Hashicorp.

5 Thanks to the HiveDB project and Britt Crawford for contributing these elegant diagrams.

6 This deployment strategy is explained in detail by Morgan Tocker in a talk at Kubecon 2019.

7 For more information, see the Wikipedia entry on the thundering herd problem.

https://www.consul.io/
https://www.youtube.com/watch?v=OCS45iy5v1M
https://oreil.ly/YOtAt

Chapter 12. MySQL in the Cloud

In all likelihood, you won’t have much control over whether you move to a
cloud provider or even which one your organization ultimately adopts.
What you can control is how you build your database environment. There
are two directions you can take: managed MySQL or building on VMs.
Managed MySQL tends to be more hands-off, but it’s usually more
expensive and gives you less control. Building on a VM means you get a lot
more flexibility in how you build and how to observe your platform, but it
requires more time and operational overhead.

In this chapter, we’ll outline the major options for managed MySQL and
how they can be useful to you. We’ll also explain how to get started
building a VM option, including selecting the right specs and disk types,
and we will cover the operational complexities (like host reboots) you have
to prepare for when running MySQL on VMs in a cloud.

WARNING
We will not cover bugs in cloud-provider offerings. These offerings are ever-evolving
products, so we recommend you keep up-to-date with dynamic sources like newsletters
or bug boards rather than a point-in-time reference such as this book.

Managed MySQL
Offerings for managed MySQL among cloud providers bring a lot of
convenience to teams looking to reduce the cognitive load of operating
MySQL as their product grows and their feature set expands. Every public
cloud has its own interpretation of what a managed SQL database should
look like and how it should work. Amazon Web Services (AWS) offers a
few flavors of Aurora MySQL (we discuss these in detail shortly), Google

Cloud Platform (GCP) has Cloud SQL, and so on, with almost all public
cloud providers offering something similar.

The key appeal of managed solutions is that they provide an accessible
database setup without needing to get deep into MySQL specifics. With a
few clicks or a terraform apply, you can have a database online with
a replica and scheduled backups, and you’re all ready to go. This can be a
very attractive option for companies or teams that want to get started
quickly.

On the other hand, with managed MySQL you lack a lot of visibility and
control. You do not have access to the operating system or the filesystem,
and you are restricted in how much you can do within the process itself.
You can’t inspect anything else about the system other than what the cloud
provider gives you. In most cases, if you experience an issue, you’re
relegated to opening a support ticket and waiting for a response. You can’t
set up any advanced topologies, and your backup and restore methods are
limited to what the cloud provider offers.

It is worth noting that many of these cloud offerings give you a MySQL-
compatible data store. This is a data store that has a SQL interface but with
internal workings that may be entirely different from the Oracle MySQL
that this book focuses on. We will cover general trade-offs and how each
managed solution is different to help you choose the option that fits your
team and business needs best.

Amazon Aurora for MySQL
Aurora MySQL is a MySQL-compatible hosted database. Aurora’s most
appealing selling point is that it separates compute from storage, which
allows them to scale separately and more flexibly. Aurora manages a
number of operational tasks that you would normally take care of, such as
performing snapshot backups, managing fast schema changes, audit
logging, and managing replication within a single region.

A NOTE ON COMPATIBILITY
When Amazon says “MySQL compatible,” you have to confirm which
major version of MySQL is intended in that phrase. None of the hosted
solutions in Aurora is MySQL 8.0 compatible, for example, and some
of the older ones are only compatible with MySQL 5.6. If you are
considering moving from self-managed MySQL to Amazon Aurora
MySQL, be sure to note this in application testing before moving
production data.

There are also different offerings of Aurora MySQL. We’ll briefly cover the
differences between these offerings.

The standard Aurora offering is long-running compute instances where you
choose an instance class (just like when running your own MySQL), and
you get attached storage that internally replicates to six copies.

WARNING
As of this writing, Aurora fast DDL is considered by AWS a “lab mode” feature. If you
are reading this and that is still the case, we recommend you refer to Chapter 6 to learn
more about online schema-change options with tools external to your database.

It is important to note that replication within an Aurora cluster is entirely
proprietary to Amazon and is not the replication we know and use in Oracle
MySQL. Since all Aurora instances in a cluster share the same storage layer
to access data, replication within a cluster is done using block storage.
Aurora, however, does support writing binary logs in the format we are
familiar with in a community server for teams who wish to replicate data
from an Aurora cluster to another cluster or for any other purpose of binary
logs, such as change data captures.

1

2

TIP
If you are looking to put any mission-critical databases on Aurora, we strongly
recommend you also consider using Amazon’s RDS Proxy to manage how your
application will communicate with Aurora. In situations where you know there is
potential for new connection storms from the application side, RDS Proxy can come in
very handy in not letting that new connection volume affect the database.

Since Aurora MySQL’s appearance on the scene in 2015, AWS has
expanded the options of Aurora MySQL that you can leverage to meet a
larger swath of use cases and business needs:

Aurora Serverless

The serverless offering of Aurora MySQL removes the long-running
compute and leverages Amazon’s serverless platform to serve the
compute layer of your database. This gives you a lot of cost flexibility if
your workload does not need to run constantly.

Aurora Global Database

This is Aurora’s solution for those who need their data available in
multiple geographic regions but don’t want to use binary log replication
to manually manage getting data changes from a primary cluster to
clusters in other regions. Note that this comes with trade-offs, and you
should always refer back to Amazon’s documentation to make sure you
are accepting the right ones.

Aurora Multi-Master

Multi-Master is a special flavor of Aurora clusters that can accept writes
on more than one compute node at the same time. It is intended as a
highly available solution where write availability in a single region is

the highest priority. Note that Aurora Multi-Master comes with its own
set of limitations. For starters, as of this writing it runs a MySQL 5.6
server core, which precludes you from using a number of features.
There is a maximum number of nodes allowed in a cluster, and you
cannot mix Multi-Master and Global Database in the same deployment.
We consider Aurora Multi-Master a very opinionated solution for the
availability and consistency choices you have at every data store and
application interaction, and we recommend you think carefully about
your stated constraints and trade-offs before choosing it.

AWS continues to make updates and improvements to its managed
relational database offerings, so we will avoid going into the deep details of
feature differences between the Aurora flavors. Figure 12-1, however, does
provide a flowchart to help you see generically which type of Aurora might
be best suited for your needs and at what trade-offs.

Figure 12-1 gives you a basic decision tree to help you decide among
Aurora options. The important takeaway is that, although Aurora has a
number of options, there are always trade-offs. For example, you cannot
achieve both multiwriter high availability and cross-regional subsecond
replication. But you can use the offerings to present these trade-offs and
drive difficult product discussions about which is the most important: write
availability or regional replication.

Aurora is not the only managed MySQL offering by a cloud provider. GCP
has its own offering.

Figure 12-1. A flowchart to help you choose which flavor of Aurora is suitable for your needs

GCP Cloud SQL
Cloud SQL is GCP’s managed MySQL offering. A core difference between
this offering and AWS’s is that it runs the community server but with
certain features disabled specifically to allow for the multitenancy and
managed aspect of the product. Here are some of the things you cannot use
with Cloud SQL even though it runs the community server:

SUPER privilege is disabled.

Loading plug-ins are disabled.

Some clients are also disabled, such as mysqldump and
mysqlimport.

Similar to AWS’s offering, you cannot get SSH access to the instances.

On the other hand, there are a number of operational tasks that Cloud SQL
manages for you:

Native high-availability support. Failovers are automated using a
configuration option.

Native encryption of the data at rest.

Flexibly managed upgrades using multiple methods. Note that
ultimately these maintenance windows involve some downtime
(similarly to AWS Aurora), and it is your responsibility to balance
that with application SLOs.

As we mentioned at the beginning of this chapter, you are probably not
going to have a choice of which cloud provider to build these databases in,
so you are more likely going to need to know what the managed option
from the cloud provider chosen for you offers and how to work with it—or
to make the case for moving to using VMs directly instead of managed
MySQL.

Now that we have covered managed relational database options and the
intricacies of those choices, let’s talk about the slightly more complex path:
running MySQL on cloud-hosted VMs.

MySQL on Virtual Machines
The features of managed MySQL can be very attractive for those who want
to get up and going quickly, so why would someone choose to run their
own? Running MySQL on a VM is just like running it on bare metal. You
get complete and total control over all operational aspects. You can run your
primary MySQL in a single region but set up replicas in other regions for

3

4

disaster-recovery purposes—or run a time-delayed replica. You can also
tailor your backup method to be the most optimal for your workload. If
performance degrades or you experience issues, you have full control over
the operating system and filesystem, allowing you to do any introspection
you want.

Machine Types in Cloud
As discussed in Chapter 4, the number of CPU cores and available RAM
for MySQL have a direct impact on the performance of MySQL. The
downside of choosing specific hardware specs for a data center is that they
cannot be changed very easily. If you have a 56-core, 512 GB RAM
machine racked, you certainly can reduce the installed RAM—but you
already paid for it, so unless you can reuse the RAM elsewhere, you may
have overspent on hardware.

Optimizing the machine specs for your workload is much easier when you
use a cloud provider. The major cloud providers allow you to choose a
machine spec that sets ranges of virtual CPUs (vCPUs), the amount of
RAM available, and networking and disk limitations. With this comes the
ability to resize the VMs as your workload changes. This could mean that if
you experience peak traffic over a specific time of year—like a holiday
season—you can temporarily increase your machine specs to account for
that. Once traffic patterns dip back down, you can resize them smaller
again. This flexibility is why many people move to the cloud.

Choosing the Right Machine Type
If you’re already on a cloud provider, choosing a machine is fairly trivial. If
you’re running into a vCPU, memory, or network bottleneck, you can find
the appropriate machine type to overcome it and resize. If you’re making a
move from a data center, though, it can be tricky to determine the right
configuration up front.

CPU

In Chapter 4, we talked about how to select the right CPUs for your
workload. When you transition to the cloud, most of that guidance still
holds true. Remember that with cloud providers, you’re getting virtual
CPUs, not physical CPUs. This means that the CPU is not exclusively
yours. It may be shared with other tenants on the same physical host. In all
likelihood, you’ll see more variation on latency and utilization than you
would on your own exclusive server.

If you’re migrating from physical machines to a cloud provider, it can also
be tricky to estimate your CPU usage. We have had success using the
following formula for vCPU count: (Core Count × 95% Total CPU Usage)
× 2.

For example, suppose you have a 40-core server in a data center. Over the
last 30 days, the peak CPU usage was 30%. How many cores do you need
to run this in a cloud provider at 50% utilization? Using the preceding
formula, we would estimate 24 cores. If your chosen cloud provider does
not offer a 24-core machine type, consider rounding up to the nearest type
or determining whether your provider offers custom machine types.

WARNING
As CPU usage or core count increases, so does context switching: the act of switching
tasks on the CPU. Because of this, you do not want to run at 100% CPU capacity
because you will waste a lot of time switching between threads. This will manifest itself
as latency for your queries. We recommend a target of 50% typical utilization, with
peaks up to 65%–70%. If you sustain 70% CPU or greater, you will likely see latency
increase, and you should consider adding more CPUs.

Also pay attention to the CPU chip family, if that’s an option. If you’re
running a high-traffic web application, you may want to ensure that you
have a much later generation of chip available. Likewise, if you are looking
at backend data processing where older, slightly slower CPU chip families
could be fine, that could possibly be a cost savings.

Memory

5

As discussed in Chapters 1 and 4, RAM can greatly influence MySQL
performance.

Choose whatever machine spec best fits your needs for your working set of
data, while erring on the side of too much RAM instead of not enough.

Network performance
While CPU and memory sizing are the most important parts of choosing a
machine type, make sure you also review the available network
performance limitations to ensure that you don’t starve your applications.
For example, if you have a batch process that will read large amounts of
data, you may find that you exhaust your bandwidth on a smaller machine
type.

TIP
It’s worth noting that network egress between cloud zones and regions usually has a cost
associated with it. This can come as a surprise when setting up replicas, but we still
think it’s important to place replicas in separate zones for redundancy purposes.

Choosing the Right Disk Type
Although machine types are generally dynamic, the selection you make for
data storage will likely be your most complicated decision. Once you’ve
chosen a disk type and started to use it for data, moving to another disk type
becomes difficult. Typically, you’d need to mount a second disk and copy
the data over. It’s not impossible to correct, but it certainly is more involved
than just a quick reboot to add more CPUs.

Picking the correct disk type is also highly context sensitive to what
workload you expect to run. Highly read-intensive workloads will benefit
from more memory over disk performance because memory access is
orders of magnitude faster. If your working set is larger than your InnoDB
buffer pool, you will always end up going to disk to read some data. Write-

intensive workloads will always go to disk, and that’s where most people
will start to see their first disk bottlenecks.

Attachment types
The first decision to make is whether you go with locally attached disks or
network-attached disks. Locally attached disks have the benefit of offering
incredibly high performance and consistent throughput but are also
vulnerable to data loss. This is because they are treated as disks for
ephemeral data only. If the hardware running your VM with locally attached
data crashes, you could lose all your data on the local disk. Likewise, in
some circumstances, even shutting down the instance can mean that when
you start it up again, you’re on a different host machine and empty disks.
Locally attached disks typically do not have any replication or RAID
behind them. A host-level disk failure could cause you to lose your data. If
you go this route, we recommend strongly considering using software
RAID to at least minimize the chances of data loss. See our discussion on
RAID in Chapter 4 for more information.

By contrast, network-attached disks go the other way, offering redundancy
and reliability over performance. That’s not to say that the performance on a
network-attached disk is bad—it’s just not as performant as local. Your
network-attached disk may experience stalls where a locally attached disk
may not. You can also typically achieve much higher throughput and IOPS
numbers locally.

Cloud providers provide convenient backup or snapshot tooling when using
network-attached disks. These work fine for MySQL use, assuming you
have ACID-compliant settings configured and your backup solution is
properly designed. You can take a disk snapshot at any point and recover it
through normal crash recovery with no issues.

You can also use disk snapshotting to make replicas extremely fast, even on
disk sizes in the many terabytes. By doing this, you minimize the amount of
replication lag that needs to catch up before the replica can be usable.

6

Note that if you use a locally attached disk instead of a network-attached
one, you’ll need to solve how to back up your data yourself with LVM or a
third-party tool like XtraBackup. See Chapter 10 for a more thorough
discussion of backups.

The last note on attachment types is that cloud providers do not offer
something like a write cache (battery or flash backed) as one might see
from a RAID card on hardware.

SSD versus HDD
By and large, you’ll want to use SSDs for everything—especially your
MySQL data volume. If you find yourself particularly tight on budget, you
can explore HDDs as a cheaper option for the boot disk. In our
experimentation, we found that an SSD booted two to three times faster
than an HDD. If the boot time matters, particularly in an outage or reboot
scenario, stick with SSD all the way.

IOPS and throughput
Another complicated factor is determining your IOPS and throughput
requirements. You should have a good understanding, both historical and
forward looking, for what each of these requirements looks like before
choosing what kind of disk you need.

If you are migrating from an existing workload, ideally you already have
historical disk-use metrics for these that will allow you to best choose your
disk. If not, you can use pt-diskstats, from the Percona Toolkit package, to
collect metrics for a day to measure peaks.

For new databases, invest some time to see how intensive the application
will be. Even something as basic as understanding your read-to-write ratio
can help. If all else fails, find a good middle ground between performance
and cost, and set an expectation that you may need to adjust later.

Additional Tips

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/ch10.html#backup_and_recovery
https://oreil.ly/GRdGx

If you choose to run your own MySQL on VM, you will be responsible for
a lot more than a managed service. You’ll need to do things like disk sizing,
backups, and so forth on your own. Here are a few tips to consider if you go
this route.

Dealing with host reboots
Your VM is really just running on someone else’s hardware. As much as we
don’t like it, hardware can and does fail, and when that happens, your VM
will immediately terminate. If configured, your VM will then begin booting
back up on another host. If this happens while you are serving production
traffic, especially on a source node taking writes, it can be a disruption to
your users.

There are no magic solutions that will let you avoid this—you just have to
deal with it. You tend to have two options if this happens: initiate a failover
process to a replica (covered in “Replication Failover” in Chapter 9), or
wait for the source to come back online. Dealing with an unplanned
promotion can be very tricky. Our advice is to just allow the server to come
back online and replication to reattach itself naturally.

You can make this process easier to cope with by following these
suggestions:

Use an SSD boot disk to allow rebooting as fast as possible. Often
systems are back online in less than five minutes.

Suppress any host down on-call notifications you have for up to
five minutes to allow the system to reboot fully and become
healthy.

If a source server was rebooted, you may be able to code an option
to turn off the read_only flag dynamically, allowing writes to
continue without human intervention. This works well when
coupled with the crond @reboot option, which will run a script at
system startup. The only caveat is that you need to be able to query
a system to determine if the system should be taking writes.

Maximize communication by automatically sending emails or chat
messages to teams or channels that may need to be aware of the
disruption. “The host FQDN has gone down unexpectedly and
should be back online in five minutes” may be enough to stop
people from messaging you or even paging you.

Separate operating system and MySQL data
Regardless of whether you choose locally attached or network-attached, we
recommend keeping your operating system and MySQL data separate for
these reasons:

Disk snapshots will be limited to just MySQL data and won’t
contain any operating system information.

In the case of a network-attached disk, you can disconnect and
reconnect a disk to another machine easily.

Also for network-attached disks, you can upgrade or replace your
operating system without having to recopy data onto the
filesystem.

Also consider where you put specific files, like the MySQL process ID file,
any logfiles, and the socket file. We recommend these stay with the
operating system, although the logs could possibly stay on the data disk.

Backing up binary logs
Send your binary logs to a bucket. Set life-cycle controls on the bucket to
purge old files automatically after a certain time period elapses. Likewise,
prevent deletion of files before a certain time period or disallow deletion
altogether.

Don’t forget to think about security here. Leaving this bucket open for the
world to read can be a nightmare waiting to happen. Controlling who can
read or delete this data is essential to maintaining a secure backup strategy.
Consider allowing all database machines to write but none of them to read

or delete. Control reads and deletes separately from a restricted account,
machine, or both.

Auto-extend your disks
With network-attached disks, you pay for the amount of space provisioned,
not used. This can mean that it is wasteful to leave a large amount of
provisioned but unused space on your MySQL data disks. One way you can
optimize this would be to target a much higher percentage of disk space
usage, like 90%, but how do you mitigate the risk of running out of disk
space?

Cloud providers typically have an API call available to extend your disk
size. With a little bit of code, you can determine if your servers are going
over the 90% disk-full mark and call that API to extend the disks. This can
also reduce the likelihood of getting paged for a server that is close to
running out of disk space. Overall, this process can make a sizable
difference in how much you spend on provisioned disk space.

We’ll share a few warnings about this, however:

Think about how frequently you should run the code that looks for
used disk space percentage. You need to figure out, based on the
disk’s throughput, how long a process would take to fill the
remaining disk completely. Your code should run more frequently
than that.

If your process runs away and keeps extending the disk without
limits, you could wake up to a 64 TB volume. This might be a
costly surprise when it comes time to pay the provider’s bill.

This disk extension API call can cause the disk to stall briefly. Be
sure you test this under load to ensure it doesn’t adversely affect
your users.

Summary

If you work in one of the thousands of companies that run in public clouds,
you have many options when it comes to how to run your databases. As a
database engineer, you will be asked which managed solution to use,
whether to use managed relational database solutions at all, and what the
trade-offs are for each choice. The most important thing to keep in mind
when giving your input in these discussions is that there is no free lunch.
Every one of your options comes with a set of trade-offs. The most useful
thing you can do is to frame these trade-offs in the context of how your
business operates and what maturity stage it is in to help guide your
organization toward the best fit. We hope this chapter has helped you come
to these conversations with an ability to compare the trade-offs at hand with
the needs of your company.

1 If you really want to know the details of that architecture, we highly recommend the
SIGMOD paper the Aurora team published in 2017.

2 Change data capture is a design pattern in data architecture that is used to determine when
data has changed and transfer that change across domains and systems. For more reading on
this, we highly recommend Chapter 11 of Designing Data-Intensive Applications by Martin
Kleppman (O’Reilly).

3 Cloud SQL does offer its own solution for audit logging to support compliance needs.

4 For more information, see “Minimizing the Impact of Maintenance” in the Cloud SQL
documentation.

5 Be mindful that custom machine types may cost more than predetermined machine types.
When working at large numbers of instances, it’s always important to consider cost when
choosing your sizing.

6 As a reminder, these are innodb_flush_log_at_trx_commit=1 and
sync_binlog=1.

https://oreil.ly/hhFhU
https://oreil.ly/SuleO
https://oreil.ly/RM7MW
https://oreil.ly/3kNIh

Chapter 13. Compliance with
MySQL

The role of database engineering teams is of interest to many internal
business stakeholders. As we have covered already, you have to plan not
just for performance and uptime but also for infrastructure cost, disaster
recovery, and all sorts of compliance needs.

Your job is not limited to managing this data while the business is running.
You also need to help the business protect the data and certify for regulatory
certifications that are either legally required or critical for business. You
have to understand the business goals for fulfilling these needs and include
these requirements in all data architecture design, including how you
automate operational tasks, manage access, and convert administrative tasks
into code that automates such tasks.

This chapter covers the different types of compliance certifications a
business may pursue and various database-specific concerns they have. We
help explain how to design for different compliance needs and discuss how
access logging can be a crucial part of filling compliance requirements.
Finally, we cover data sovereignty as an emerging concern for data
architecture practices in all types of businesses.

WARNING
This chapter does not seek to give you legal advice. We are looking to help you manage
compliance needs when you are running a large number of databases and how to design
for compliance early on. When looking for advice on how to properly fulfill specific
controls, you should always consult with your company’s legal team.

What Is Compliance?

Governance, risk management, and compliance (GRC) are the tenets,
processes, and laws that guide how a business assesses and prioritizes risk
to its assets and how it adheres to laws that govern the processing and
transfer of personal or health data it might be using to power its product.
Early-stage startups commonly do not have many compliance needs as they
find their product market fit. As the business grows, however, you will
begin running into a number of regulations. Some regulations need to apply
to all of a business’s data, whereas some can be scoped to specific parts.

A regularly used term in the context of compliance is controls. Controls are
processes and rules that a company internally defines and practices to
reduce the chances of an unwanted risk outcome.

Let’s introduce some of the compliance regulations you should know about.
Later, we cover architectural changes that can help make fulfilling these
various requirements more manageable.

Service Organization Controls Type 2
Service Organization Controls Type 2 (SOC 2) is a set of compliance
controls that service organizations can use to report on their practices
relevant to security, availability, processing integrity, confidentiality, and
privacy. Database engineers in organizations looking to be SOC 2 certified
will need to have well-established practices around database change
management, backup and restore procedures, and managing access to
database instances.

Sarbanes–Oxley Act
The Sarbanes–Oxley Act (SOX) of 2002 is a law that all companies that
become publicly traded have to comply with. It is intended to protect
investors by improving the accuracy and reliability of corporate disclosures
made pursuant to the securities laws and for other purposes. For an
engineering organization, SOX duties require proving that databases
containing revenue-impacting data are only accessed by those who have a

https://oreil.ly/PwWBg
https://oreil.ly/qHAN0

need to and that any changes to this data are logged and the changes are for
documented reasons.

If you are a publicly traded company, SOX control 404 is a legally required
control that you have to be familiar with and fulfill. It aims to guarantee
with evidence that the financials reported by a company are backed by data
access and change management practices that accurately attribute the
services rendered to the revenue collected and provide an audit trail for any
changes to such data.

Payment Card Industry Data Security Standard
The Payment Card Industry Data Security Standard (PCI DSS) is a standard
required of all financial institutions handling credit card data. Its intent is to
protect credit card holders’ data from being leaked and used in fraudulent
transactions.

An important aspect of PCI-DSS control when it comes to your work as a
database engineer is managing access to cardholder data. It means you will
need to consider that control in your architecture to make sure that card data
is managed separately. We will discuss how you can achieve that later in
this chapter when we cover separation of roles.

Health Insurance Portability and Accountability Act
The Health Insurance Portability and Accountability Act (HIPAA) of 1996
is a US regulation designed to protect the privacy of health-related data of
individuals when collected and processed by health providers, health plans,
or their business associates. This law applies to data defined as electronic
personal health information (ePHI). Organizations offering products that
require HIPAA compliance will need their database engineers to implement
controls such as access controls for ePHI, encryption of all ePHI, and
activity logging whenever ePHI is accessed.

Federal Risk and Authorization Management Program

https://oreil.ly/V6GBh
https://oreil.ly/fKeQd

For companies operating in the US and looking to generate business with
US government entities, the Federal Risk and Authorization Management
Program (FedRAMP) is a certification offered by the federal government to
qualify businesses for being cloud providers for federal entities. It is a
collection of standards required to be eligible to take on federal entities as
customers. These standards include configuration management, access
controls, security assessments, and audits of access and changes to data.

General Data Protection Regulation
General Data Protection Regulation (GDPR) is a European Union
regulation introduced in 2016 to govern how personally identifiable
information on EU persons is stored and managed by entities that act as
data processors, regardless of where they are headquartered. It introduced
the first steps of managing data privacy, such as requiring consent before
collecting private data, setting limits on access to that private data across a
processor’s organization, and providing a legal avenue for individuals to
request that their data be purged from the systems of any data processor that
may have collected it through their online activity. This is known as the
individual’s “right to be forgotten.”

Schrems II
In 2020, a case between the EU and Facebook’s Ireland entity was ruled on
by the EU justice court. The ruling, commonly known as Schrems II
signaled widespread impact on all US companies that operate and collect
data on EU persons.

Privacy Shield was the legal standing US companies had been operating
under in the EU for years. The Schrems ruling declared it insufficient to
protect the privacy of EU persons when their data is collected by US
company entities in the EU. At the core of that cancellation is the ruling by
the EU justice court that Privacy Shield is not sufficient to guarantee that
EU persons will not be surveilled by the US government through US legal
means (namely using a mechanism provided by the Foreign Intelligence

https://oreil.ly/ZVQqq
https://oreil.ly/4wqAm
https://oreil.ly/I9lPC
https://oreil.ly/hthsk

Surveillance Act of 1978, or FISA), and that therefore, personally
identifiable data on EU persons collected by US entities must remain in the
EU and not cross into US assets or be accessible by US persons.

The ruling makes it more complex to reason about data architecture in
comparison to the initial version of GDPR. Due to how recent this ruling
was made, enforcement remains an unknown quantity. This situation leaves
each business to determine how much of the data it collects and processes is
in scope and in what way. It’s safe to assume that Schrems II will be
coming for the applications and data infrastructure you run if you have any
current or future customers in Europe.

Building for Compliance Controls
As you can see, the world of regulatory compliance of businesses and, by
consequence, the data the business uses to operate is vast, and controls can
be numerous depending on the goal of each law or the certification your
business needs. The good news is that there is plenty of room for the same
work to cover more than one control, allowing for efficiency and more
consistent practices when managing the infrastructure. You do, however,
need to understand which of these controls are required for the business and
for what purpose. Once your company grows to a size where it needs to
start implementing any subset of these regulatory compliance controls, you
will become the person who gets to present evidence of compliance to
different kinds of auditors. Understanding what each control is aimed at will
go a long way toward presenting the right kind of evidence to make the
audits easier.

https://oreil.ly/hthsk

TIP
Building for compliance is an ongoing process that cannot be easily “added on” when
needed. A lot of the architectural advice presented in this chapter (separation of roles,
tracking changes, and so forth) is the sort of thing you should be thinking about and
advocating for once your company is past the “still finding market fit” stage. These are
practices that will set your business up for success by the time compliance becomes a
real need and not just a “nice to have.”

Secrets Management
Before we discuss how to manage secrets, let’s first align on what things in
your infrastructure might fall under that definition:

Password strings for applications to interact with databases

Password strings for support staff/operators to manage the database
instances

API tokens that can access/modify data

SSH private keys

Certificate keys

A core ability you need in your organization to facilitate a lot of security
controls is a way to manage secrets securely and separately from managing
your configuration. You need a way of delivering and rotating sensitive data
like database access credentials, whether it is for use by applications or
teams, for the purposes of reporting.

If you run your applications and databases in a cloud environment, we
highly recommend you find out the preferred secrets management solution
for that cloud provider before looking to build your own. You will need
something that provides at minimum a level of encryption that is acceptable
by National Institute of Standards and Technology (NIST) standards
because that is required for a number of regulations, including HIPAA and
FedRAMP.

1

If your cloud provider does not have an acceptable solution for secret
management, you may have to host your own. This might be a new
endeavor for your organization and will require a more broad effort than is
in scope for this book.

Whether you use a managed solution or end up needing to run your own, be
aware of the complexity this secret management solution brings to your
architecture. The goal of this solution is to manage secrets, not to be a
single point of failure for your product. Clearly written trade-offs
explaining what happens when the secret management solution is available
will come in handy. An explicit conversation in advance with both your
legal team and security organization about what secrets are cached and in
what ways will help avoid misaligned expectations later.

Often, decisions made by a company in its early development days that
were based on convenience need to be wound back well before planning for
compliance controls. You should be prepared to explain to your leadership
why this work is important in the context of improving your security
posture and reducing risk.

Do not share users
Do not share database credentials across services. This is the type of
decision that pays off in orders of magnitude if you have a database
accidentally leak and you now have to assess the blast radius of how many
parts of the application stack and processes have to get a new database
credential pair. As a database engineer, it is common to join a startup where
folks have taken the seemingly convenient shortcut of “all the code uses the
same pair to access the database.” Believe us: this is a very expensive
shortcut, and your future self will thank you if you limit the access of each
database user to just the service it needs.

Now that we’ve covered this basic but crucial fundamental practice, let’s
talk about things to consider when choosing a solution to store database
credentials or secrets in general.

Do not check production database credentials in code
repositories
This may seem obvious, but it is something that keeps happening as we see
in plenty of postsecurity incident reports from companies both large and
small. It is important to keep a humble mindset about this and don’t assume
that this mistake is unlikely in your organization. A trust-but-verify
approach will go a long way toward preventing future pain. Scanning code
repositories for potential secret strings before a pull request is merged is a
common practice (and something that hosted repo services like GitHub can
do for you). If that is not something your organization is already thinking
about, you may need to become an advocate for this need. Remember that
compliance and security are needed for the organization as a whole, and
although not everything can or should be done by the database team, you
are a stakeholder in how the engineering organization at large talks about
these priorities.

These practices are fundamental to starting off your compliance and
security posture on the right foot. They will make a number of the
operations we are about to cover when using secret management all the
more straightforward and will further reduce risk to the business if there is
ever a need to make an urgent change.

Let’s talk about the trade-offs in choosing a secret management solution.

Choosing a secret management solution
Choosing a secret management solution is going to rely on what
environment you run in and what can most easily integrate with not just the
databases but also the application stack. There will always be trade-offs
between convenience and meeting all your needs. So you need to be clear
with all stakeholders (some of whom are not in engineering) on what the
limitations are and what the trade-offs for availability or resilience are.
Some of these trade-offs that you should consider as you check what your
cloud (or private) infrastructure can offer include the following:

Space limitations

A number of cloud-provided secret management solutions make
assumptions about how long a secret is, which can lead to surprises if
you want to store something longer than a database user and password
pair. If your compliance controls require also treating longer text strings
as secrets (such as SSH keys or private certificates for SSL), you should
check into the maximum size you can store on a given key. One of the
land mines some organizations stumble on later is that as the secret
footprint grows, a new and different secret management solution is
needed to accommodate longer secrets. Now they have to deal with
either migrating (which can affect uptime) or managing tooling and
integrations with two separate secret solutions, which comes with its
own complexity.

Secret rotation

If you run in a public cloud and can use their hosted secret management
solution, there is good news for you: all three major cloud offerings as
of this writing offer some method of automating the rotation of secrets
along with versioning to make the transition to new secrets seamless for
your services. However, if your secret management solution of choice
does not support rotating secrets, then you need to plan for how you will
do that both as a planned change (for example, you may have a control
that requires that database credentials rotate on a cadence) or as an
unplanned emergency change (for instance, someone accidentally
checked a database password in a public repository). How do you do
this without affecting your running applications? That depends to a
large extent on how you deliver configuration changes to running

applications and what your deployment pipeline operates. This is the
general idea of how to orchestrate it. This change is a deployment. Even
if your applications access database credentials as a configuration line,
you still need to propagate this configuration change to all of your fleet
and typically also orchestrate a restart without affecting availability of
the service as a whole.

Regional availability

Consider that your secret management solution is not just for storing
secrets but also for delivering them. If you are to avoid a known bad
practice like storing secrets in code, you need your application to be
able to retrieve the secrets it needs to handle requests at runtime. This
means you now have to think about how these secrets will be retrieved,
what happens if your application cannot access the secret management
service, and what failure modes this new dependency introduces. If you
are responsible for applications that need to run in many geographical
regions, the regional capabilities of your secret management solution
become another thing to consider. Does the solution by your cloud
provider automatically replicate secrets to other regions? Or do you
have to build that capability?

Separation of Roles and Data
An important goal of these regulatory laws is the separation of data based
on the risk it presents for either the business or its customers in case of a
leak. This is the concept of least privilege, both for human access and
application code access. This separation allows for more appropriate
controls and tracking of changes depending on what the data is and what
risk is associated with it.

Sharding for compliance reasons
One axis that may force a specific separation of data sets into dedicated
clusters is having different compliance requirements with very different
controls. Let’s say you are a marketing communications provider that is
creating a new, separate product with an emphasis on health-care tech. The
data that is currently in use was not health related and was not subject to a
number of legal requirements. Once the business makes this entry into
health technology, you now have a subset of customers and their data where
your company carries the legal burden of being a processor of personal
health information (PHI). In that scenario, it makes sense to develop the
new product from the get-go in dedicated data storage so that you can more
appropriately apply HIPAA compliance controls without adding undue
burden on the existing data set and its dependent applications.

Separate database users
As your product grows more complex and the tech stack that supports it
follows suit, you will start having more than one application with data
access. It is very important to start well-controlled data access controls
early in your organization by not sharing the same database access
credentials across multiple code bases. Security incidents and accidental
leaks of credentials are events that happen to all sorts of companies
regardless of size, and when they do, you will be well served to have the
leaked secrets impact a known and isolated blast radius of your business
operations as you scramble to rotate that secret.

Tracking Changes
A number of compliance regulations come with controls around tracking
changes: changes to subsets of your data that affect financial reporting,
changes to your systems that generate invoices, and how these changes are
reviewed, tested, and tracked. One of the obvious first spots where this kind
of compliance control becomes pertinent is the database. As you work for a
business with expanding compliance responsibilities, processes like “how a
schema change gets reviewed, applied, and tracked in production” need

more rigor and planning than simply “an engineer logs on the source node
in production and makes a change.” This is far less of a burden if you
prepare by planning alongside your internal audit team or compliance team
for how to handle audits.

The goal here is to avoid annual audits from becoming a major disruptive
event where the team is scrambling to collect evidence for the audit team.
Instead, if you make some changes to how these normal business operations
work, you can have “baked in” evidence that is far simpler to collect and
use for audits. You will see in this section a recurring theme around
producing structured logs from everything. This is intentional. It goes a
long way toward making all sorts of changes trackable in the same manner,
and that consistency helps the business achieve its audit needs with far less
disruption. You can see how this all comes together in Figure 13-1.

Figure 13-1. Examples of different operational tasks all sending structured logs to one place, making
audits easier

Let’s look at different types of changes to database systems and how to
automate compliance tracking for them.

Data access logging
Many compliance controls ask that you maintain logs of changes or access
to specific data sets. This can be for the purposes of tracking changes to
financial data or for regulations such as PCI or HIPAA where the data is
sensitive enough that all access needs to be tracked.

You can address this need directly at the database level by leveraging either
Percona’s audit log plug-in if you run Percona’s fork or the equivalent
MySQL Enterprise Audit plug-in if you run MySQL Community Server.
The benefit here is that you now can track changes at the last hop before
data changes, especially if you are in an environment where changes to the
database can happen via multiple paths.

Undesirable options for tracking changes

You may ask, “Why not use triggers to track any changes to the tables I care
about?” This is definitely an approach we have seen in the past, but it is not
recommended. Here are some reasons we discourage using triggers for this:

Triggers are known to present a write performance hit, which will
affect you at the worst possible time.

Triggers amount to storing business logic in the database, which is
not recommended.

Storing code in the database will likely circumvent any process for
testing, staging, and deploying that code. It is easy for triggers to
become an unexpected surprise for your team during incidents.

Triggers can only support tracking write actions. It is a solution
that cannot expand to track read access if the need arises.

Let’s see how you would use the Percona audit log plug-in and how to tune
it.

https://oreil.ly/0SJa0
https://oreil.ly/2tanA

Installing and tuning Percona audit logs

Percona’s audit log plug-in ships as part of Percona’s MySQL fork but is
not installed or enabled by default. You can install it by running the
following command on your instances as part of the bootstrap process of
any new instance:

INSTALL PLUGIN audit_log SONAME 'audit_log.so';
SHOW PLUGINS;

The second command lists the running plug-ins and should confirm that the
audit log plug-in is, in fact, now running as part of the server process.
Besides turning it on, you also need to determine how you will ingest its
output. This is where the real planning happens.

The audit log plug-in by Percona allows you to define what statement verbs
you need to track. This allows for flexibility to meet various controls
without committing to a lot of noise in your audit logs that are irrelevant to
what you care about. Make sure you review its documentation to properly
configure that variable as needed.

One of the flexible advantages of the plug-in is that you can have it
installed but not actually monitoring queries. This can be useful if you are
still working on how to ingest its output and need to turn it off and on
without uptime impact. But with that flexibility comes complexity. Besides
managing the configuration variables that come with the audit log plug-in,
you also need to monitor that it is running at all times. If this is a critical
function for the business, it means it is worth monitoring. Since the plug-in
can be disabled on the fly without a server restart, you need more than just
checking the on disk my.cnf file to confirm that it is doing what it needs to
be doing. Your best bet is to use shell queries to parse out the current state
of the plug-in and confirm that it is, in fact, monitoring queries. Here are
two sample single liners to check for each of these:

Single liner to check that the audit log plugin is active
$ mysql -e "show plugins" | grep -w audit_log | grep -iw active

2

Single liner to check that the plugin policy is actually
monitoring queries
$ mysqladmin variables | grep -w audit_log_policy | grep -iw
queries

These examples assume that you are only looking to monitor queries. You
will need to edit the check if you also expect to use the plug-in to track
logins.

Ingesting and using audit plug-in logs

As you can see, there is a lot of flexibility with the audit log plug-in, but it
also only produces audit events for you. It is on you to determine the best
way to ingest these logs, have them in a place where they can be easily
searched and analyzed, and reasonably discover anomalies in them without
it being a major burden. The plug-in can simply dump the output to local
files, but that can increase the risk of causing outages by filling up your
database host disks with these logs.

A more complex option is to use the plug-in’s ability to send its output to
rsyslog, a common Unix log management utility, and from there use
rsyslog to forward all these events to your organization’s structured
logging platform of choice. This option is appealing as it brings this data
into the same place where your organization already does structured log
storage, which lowers the barrier for stakeholders outside the database team
to be able to see, search, and analyze these events. Keep in mind, though,
that using rsyslog for log forwarding in this manner will require you to
become familiar with how it works. Make sure you decide and document in
an intentional manner how rsyslog for this data stream is configured. It
is quite possible there are a number of default configurations in rsyslog
that are not helpful to your desired outcome, and it is on you to do the due
diligence to find these and change them accordingly.

3

WARNING
Make sure to document how the audit log plug-in output is stored, even if temporarily,
on database hosts. If the shipping method for these files slows down, the impact of
buffering the events in the plug-in can affect the performance of the database server
itself. This failure state is hard to debug because its only symptom is queries executing
slower. Plan chaos testing for the entire pipeline of these logs with resilience in mind.

The Percona audit log plug-in is a powerful tool that can help you fulfill a
number of compliance controls. In our experience, it is a far more
performant solution than using triggers, and it integrates well with
configuration management and structured logging software, making for a
solution that is effective across a number of stakeholder teams.

Version control for schema changes
Chapter 6 covered different strategies and tools that facilitate running
schema changes at scale. Let’s talk about the compliance concerns these
strategies enable.

Using version control to both track and run your schema changes comes
with built-in tracking of who requested a change, who reviewed and
approved it, and how it ran in production. This is also a good reason to use
a separate repository per database cluster. As the database footprint in your
company grows, you will find that not all databases are created equal. Some
will need more rigor for compliance (for example, databases that hold
financial data), and some power product experiments that are not as critical.
When it comes time for an audit, having the change record for each data set
and cluster available will be a huge convenience.

This separation of data and cluster schema management based on
compliance needs also makes it easier to control who can submit or approve
schema changes in your version control management of choice. It is
common when running a business audit to need to justify who can make
changes to the databases. Having a smaller circle of human operators that
can make changes to this data keeps with least-privilege security principles.

Database user management
Changes to databases are not limited to schema changes. You also need to
manage database users and their granular privileges in a manner that is
trackable and repeatable. Let’s find out how you can meet some common
compliance controls that address database access controls.

Use configuration management

A simple way to make database user tracking compliant is to leverage the
same process you use to make database configuration changes compliant.
You manage it all in a configuration management repository and use source
control, a pull request process, and peer review to provide the evidence that
all changes to the database users are done in a manner that can be audited
and tracked.

Plan for credential rotation

Whether for unplanned security incidents or because you have a control that
requires rotating credentials on a schedule, you need to have a plan for how
to rotate database users without affecting your application uptime. This
likely means changing both the username and password string used by
applications. If you are not yet running the latest and greatest major version
with dual password support, here are the steps you should employ to rotate
database credentials in an application in production without affecting the
service uptime:

1. Introduce a new username/password pair in the database first.

2. Test that the new credentials have the same access privileges the
old ones have. Ideally, you do this automatically as part of
deploying the new credentials by comparing SHOW GRANTS and
confirming the privileges are identical.

3. Create an application deployment that replaces the credentials in
your application configuration.

4. Restart all instances of this service to make sure the new pair is in
use.

5. Drop the old username and password pair.

This process should work the same whether the change is routine or urgent
because of a credential leak or a security risk. Since the latter is not an
event you can control or entirely prevent from happening, you will be best
served to have this process automated, or at least well documented in a
runbook and done routinely, so it is not a scary fire-drill situation for your
team when it happens unexpectedly.

TIP
Rotating database user passwords in MySQL used to be a complex orchestrating
endeavor to accomplish without affecting availability. MySQL 8.0.14 introduced dual
password support, which, in conjunction with password expiration policy support,
makes doing the right thing far easier operationally.

Retire database users not in use

Any database user not in use that remains active on your instances is a
security liability you do not need. It is important to audit the database users
active on your instances regularly, compared to what is configured on your
applications, and drop any users not actively in use by any applications.

When fulfilling compliance needs for your company, you will come to see
that a lot of those compliance controls require the organization to track any
and all changes to certain assets. These controls are typical in reports like
SOC 2, which we described earlier in this chapter, where the primary
concern is providing evidence of data integrity and security.

There are a few ways to find out if a defined database user is in use or not.
We covered Performance Schema extensively in Chapter 3 as a way to
inspect server performance. There is a users table in Performance Schema
that stores historical information about users that have connected to the
server. This historical tracking goes as far back as the life of the server
process or the maximum size allowed for this table, whichever happens
first. Since the table tracks users that have connected, not ones that have

not, you will need to loop over known users and see if any do not appear in
this table as the signal that they might not be in use anymore.

Here is a query to enable that instrument in Performance Schema:

mysql> UPDATE performance_schema.setup_instruments
 -> SET ENABLED=‘YES’ WHERE NAME='memory/sql/user_conn';
Query OK, 1 rows affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Once you have that enabled, the table to find this information is perform
ance_ schema.users.

If you use an audit-logging solution for compliance controls, such as
Percona’s plug-in that we mentioned previously, you can use these logs to
determine whether a user has connected to the instances within a given
number of weeks.

Regardless of which way you determine this, it is recommended to set a
policy where “after six months of inactivity, a database user that has not
connected will be removed.” This is a practice that will help prevent having
access that is not needed and is now a liability.

The databases you help manage are going to be in scope for controls that
require this level of diligence. As your company matures and starts
considering becoming more compliant, you will need to have a story for
how you will show evidence that changes to the databases in production are
reviewed and tracked before they are applied. The other thing that
compliance controls will focus on is proving your ability to restore data and
service when a catastrophic event happens. For that, we need to go over to
backups and restores and see how they fit in.

Backup and Restore Procedures
Chapter 10 covers the different kinds of backups. Backups are obviously
important. They can be tremendously helpful in incidents but also are a key
part of many compliance controls. In most SOC 2 implementations, you

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6sm139ab/b7djzovl_pdf_out/OEBPS/Images/ch10.html#backup_and_recovery

will have controls for both creating and testing the backups (but you should
also test your backups anyway). As the number of database clusters you
manage grows, you will quickly find that you cannot continue doing
processes like backup and backup tests manually, or even report on success
and failure by manually reading logfiles.

You need to cover some requirements when assessing how you will manage
backups for compliance reasons:

You need to automate the process of backups.

You need the backup process to alert you if it fails.

You need to automate tests of the backups.

Failed tests of backups should also be events you can track
somewhere.

Next we discuss how to schedule backups and backup tests.

Running automated backups and backup tests
To fulfill these requirements, you need a mechanism that does not just run
scheduled jobs (such as crond in Linux systems) but that can run on a
schedule and also has the ability to send events to your monitoring system
and your ticketing system to both alert on failure and track the failure for
audits later. One way you can do this is by running backups and backup
tests as a monitoring check, but backups can take a while to run, especially
if you have some database instances sized in the terabytes. Running
backups as a monitoring item can work as long as the monitoring system
you are about to use for running your backup tasks can handle checks that
can run for periods that are much longer than the typical few seconds. So
make sure that your team running the monitoring system is aware of this
use case.

If your monitoring system cannot handle this kind of use case, then make
sure you have some method to leave behind “bread crumbs” to track that a
backup has happened and finished successfully and that a backup test has

4

happened and also finished successfully. One such bread crumb can be a
file with a timestamp in it that your backup process edits at the end of every
backup or backup test run as proof that the task happened and was
completed. Once that bread crumb is in place, you can use the monitoring
system to do the much faster check that the bread crumb exists.

In all these strategies, what you want to have, and what your SOC 2 control
requires, is a track record of backups finishing successfully as well as of
any failed backups, showing that they were turned into properly tracked
work items.

Centralized logs for backups and backup tests
You may also be asked to show logs proving the successful completion of
backups and backup test processes. You would be well served to prepare for
such an audit item by using a centralized logging solution you can ship logs
to for continuity. Remember that the solutions we build for these business
needs should assume servers are easily and repeatedly replaceable, not
bespoke. So local logfiles on a random instance are not ideal if you ever
retire that machine and replace it before the next audit. You want any
business-related assets, such as logs of the backup process, to be in a
centralized location that anyone with the right access policies can access.

Disaster-recovery planning through backups
Also as part of SOC 2 is the requirement to have proper disaster-recovery
planning. This means proof that you test any backups that your system
produces, you have tracking of when these tests fail and that the failure was
corrected, and, ideally, that you have an idea of how long disaster recovery
of data takes. This last part requires tracking metrics for how long a test of a
backup takes. Chapter 2 mentioned database instance size as a metric for
determining whether it is getting too large for backup recovery within an
intended objective time. The way to make this a self-improving cycle is to
make your backup and scripts that test the backups also send metrics of how
long each takes. This way, you have per-database cluster metrics of how
long backups take and how long restoring and testing those backups take.

You now have a way to track whether any given set of data is getting too
large for what the business expects in terms of MTTR. If you are, then you
have the data to either prioritize the work to split the data set down to an
acceptable size or revisit the business SLA for recovery.

An important final note about backups: your security stakeholders will need
access to both the live databases and the backups to be controlled. Make
sure that your backup setup in your favorite cloud provider does not default
to permissive access controls for backup buckets. Many security breaches
happen not through breaching the live infrastructure, but through backups
leaking from a storage bucket somewhere.

Summary
Compliance is a wide-ranging world of policy and controls as well as
interpretations of each. It affects not just how you run databases in your
business but also the legal, finance, and IT departments, and even how you
deploy changes to your software. This chapter focused on how each
common type of compliance regulation affects your duties as a database
engineer specifically. We then covered different practices and architectural
decisions that can be affected by these regulations, which you also need to
consider.

Broadly, the best way to get ahead of control-related nightmares is to plan
early. Separate your application users, plan a credential rotation strategy,
and ensure that your passwords are always stored encrypted—never as plain
text. Ensure that before you need to start logging access to the database, you
have a logging pipeline you can trust. Lastly, you want schema changes to
be controlled and logged.

The goal of this chapter has not been to overwhelm you with thinking about
all these controls across your entire infrastructure at once, but to make the
task of providing evidence for the parts that are in scope for each regulation
easier and as automated or simple to put together as possible. Ultimately,
these controls are meant to protect the business and your customers’
privacy. Having a strong grasp on what each control aims to achieve will

make this important task more manageable for you and your team as your
company grows and enters wider markets.

1 For more information on these standards, start a conversation with your friendly information
security team or grab the NIST Cybersecurity Framework pocket guide from O’Reilly.

2 See the plug-in documentation for more on this.

3 As a start, here is an entire page on “reliable log forwarding”.

4 In the blog post “Using Sensu for DBA tasks”, you can see some examples of making tasks
like backups a part of your database monitoring solution.

https://oreil.ly/s7XOJ
https://oreil.ly/gwqc2
https://oreil.ly/76e9K
https://oreil.ly/Meunp

Appendix A. Upgrading MySQL

Upgrading is a trade-off between stability and features. You should
consider this when choosing to upgrade. One of the best parts about using
MySQL is its wide installation base. This means you get the benefit of so
many other people testing and using MySQL. If you upgrade to too new of
a version, you may unknowingly introduce a bug or regression into your
environment. If you stay too far behind, you may be experiencing
nonobvious bugs or won’t be able to take advantage of a feature that has
been optimized for performance.

Why Upgrade?
Deciding to go forward with a version upgrade can be a risky process. It
usually involves backing up all your data, testing the changes, and then
running the upgrade process. Before we go into the details, it’s important to
understand why you might want to upgrade.

There are a number of reasons to upgrade:

Security vulnerabilities

It has become less likely over the years, but it is still possible that
people discover security vulnerabilities in MySQL. You or your security
team may assess these and determine that you should perform an
upgrade.

Known bugs

When encountering an unknown or unexplainable behavior in
production, we recommend finding what version of MySQL you’re
running and then read the release notes for the subsequent versions to

1

the latest. It is entirely possible you’ll discover the situation you’re
experiencing is actually a software bug in MySQL. If your issue is
covered, you may find the need to upgrade MySQL.

Newer features

MySQL doesn’t always adhere to a strict major/minor/point release
strategy with respect to how features are added. Many people may
expect that a point release (e.g., 8.0.21 to 8.0.22) would only contain
bug fixes, and a minor version change (8.0 to 8.1) would include minor
features. Oracle often releases new features in minor point releases that
may have an impact on your workload. This strategy is a double-edged
sword and why you should read all of the release notes before
upgrading.

MySQL end-of-life support

Oracle sets end-of-life (EOL) time frames for MySQL. In general, it is
advisable to stay within a supported version so that, at a minimum,
security fixes are still supported.

Now that we have covered the various factors that are part of your decision
to upgrade and to which specific version, let’s discuss the process for
planning and safely completing an upgrade.

Upgrade Life Cycle
Once you’ve made the decision that upgrading is the right step for you,
you’ll typically take the following steps:

1. Read the release notes for the version, including any minor
changes.

2. Read the upgrade notes in the official documentation.

3. Perform testing of the new version.

4. Finally, upgrade your servers.

The release notes will often have important information like new features,
changes, or deprecated features, and usually a list of bugs that have been
fixed. The upgrade notes give you a detailed overview of how to perform
the upgrade, and they call your attention to any important information that
you need to know before continuing.

In addition, you should also have a plan for what to do if you introduce
issues, like a query begins performing poorly, or worse, you begin
experiencing a crashing bug. For all major and minor version changes (e.g.,
8.0 down to 5.7 or 5.7 down to 5.6), the only way to downgrade is to restore
a backup from before you upgraded. This makes upgrading especially risky,
so be sure you have a plan.

WARNING
It’s important to note that since MySQL 8.0, you cannot downgrade point release
versions either. For example, once you are running 8.0.25, you cannot downgrade to
8.0.24 without exporting all of your data and reimporting.

Testing Upgrades
Once you’ve read the release and upgrade notes, you should have a good
understanding of any concerns or areas of focus for testing. The next step
would be to test how this new version will behave with your workload.
You’ll also want to verify you’ve reviewed your configuration files. Newer
versions of MySQL often rename variables or deprecate them entirely.

Testing is a tricky step to accomplish, and each of the methods has caveats.
Given the risk we cited before about downgrading, you should employ as
many of these methods as are feasible prior to upgrading.

Development Environment Testing
Hopefully, you have a development environment for your data. This is a
great place to begin your testing, either on a shared development database
or on a standalone one for you. The main goal of using this is to surface any
obvious issues with syntax. Most development environments do not contain
the same size production data, so it can be difficult to run accurate testing.
For example, you may run your commonly used queries and see that they’re
fine because they access only 10 rows in a table. When you go to
production, with 10 million rows in the same table, you may see a
regression.

Production Mirror
Another option would be to create a copy of your production data and send
a copy of your SQL traffic to it. This method was showcased in a blog post
on Etsy’s Code As Craft blog. In short, you have a second copy of your
production database, cease using replication, and upgrade MySQL on the
copy. Once complete, send traffic to both your live production system and
the copy using a combination of tcpdump and pt-query-digest. Your
application is still using only the production system for live traffic while the
copy with the upgraded version can give you performance metrics and
surface errors in syntax.

Replica
If your topology has read replicas and you have the ability to depool the
replica, you could consider upgrading one of the replicas first. This would
allow you to see how your read traffic performs with an actual production
workload. If you observe errors or regressions, you can depool the replica

https://oreil.ly/yByfy

and make adjustments. The downside of this method is that you cannot test
performance or write traffic.

Tooling
Percona Toolkit offers the tool pt-upgrade, which takes an input of queries,
runs them against two different targets, and produces a report telling you
about any differences in row counts, row data, or errors. Since it can take
many different types of input (slow query log, general query log, binary
logs), it can be a good option to get additional test coverage.

The best way to use this would be to first collect the queries you are most
interested in, with either the slow query log or the binary log. Then set up
two identical systems, upgrade only one of them to your new version, and
run pt-upgrade against both to see the differences.

Upgrading at Scale
Upgrading MySQL is very straightforward and is covered thoroughly in the
official MySQL documentation. In brief, if you’re doing an in-place
upgrade, you’ll stop MySQL, replace the binaries, start MySQL, and then
run the mysql_upgrade script.

This can be repetitive if you’re doing this on a fleet of hundreds of MySQL
servers. Our suggestion would be to automate this as much as possible. One
way you can do this is with Ansible.

Here’s a suggested skeleton process for performing safe upgrades that you
can use as a guide to build an Ansible playbook, if you choose to:

1. Verify target.

The very first thing you want to do is prevent any accidental upgrades
of production systems. If you have a system that you can query to
determine whether a database is actively taking traffic, this is the place
to check it. If you followed our advice from Chapter 5, you should be

using the read_only flag to prevent unexpected writes to your

replicas. This can serve as a good alternative if you don’t have a system
that you can check. If a server is writable, chances are you don’t want to
upgrade it since it may be taking production writes. You can also use
this step to verify that you haven’t already upgraded the server. This
allows you to run the playbook against it later and it will take no action.

2. Set downtime.

Hopefully, your systems are being monitored. The next step involves
setting some form of downtime or alert suppression so that you don’t
get paged for the step where MySQL is restarted on the new version.

3. Other preconditions.

If you have any other dependent services, like a configuration
management tool or other monitoring tools that will generate errors
while MySQL is offline, now is a good time to shut them down.

4. Remove old packages.

Our preferred method is to completely remove any installed packages
for MySQL at this point. This helps avoid any conflicting packages for
major versions (5.7 to 8.0).

5. Install new packages.

Next, you’ll want to install the new packages onto your system.

6. Start mysqld.

Start the mysqld service.

7. Run mysql_upgrade.

If older than MySQL 8.0, run the mysql_upgrade process. As a

special note, if you run MySQL with super_read_only like we

recommend, you’ll want to set it to OFF for the mysql_upgrade

step.

8. Restart mysqld.

We prefer to give a clean restart to mysqld at this point. This will

ensure that it starts up correctly with the upgraded files and that your
configuration files are also working.

9. Verify you can connect.

Simply connect and run a SELECT 1 to ensure that MySQL is up and

working.

10. Restore any disabled services.

If you turned off any configuration management or monitoring tools,
enable them again.

11. Clear downtime.

Take your server out of downtime so you can observe if there are any
that failed the upgrade process.

With this process, you’re able to point your runbook at any server and only
upgrade the nonupgraded nodes that are not taking traffic.

Summary
There are many reasons for upgrading MySQL, the most compelling being
fixes to a bug you are actively experiencing or being able to leverage a new

2

feature. For example, MySQL 8.0 introduced a feature for InnoDB where
columns can be added instantly—no need to rebuild the entire table. This
type of feature enhancement can be a huge time saver for companies that
perform a high volume of ALTER TABLE .. ADD COLUMN statements.
The effort you put into working through a safe upgrade process will
eventually pay itself back in time saved performing those column add
statements as well as an improved developer experience.

Major version upgrades can be daunting, however. You should absolutely
put a lot of effort into testing your upgrades for any adverse effects.
Typically, you want to check for any query latency deviations or new errors
as a result of an upgrade. Once you gain confidence, roll things out slowly
and have a rollback process.

Lastly, if you have a large fleet of servers to manage, consider investing
heavily in automating the process as best as possible. Automation can make
the upgrade process easily repeatable and more time efficient than logging
in to each server directly, and it runs a slightly lower chance of typos and
accidental downtime from being on the wrong server.

1 Stewart Smith, a long-time MySQL community member, famously coined the dot-20 rule:
“[The rule] is that a piece of software is never really mature until a dot-20 release.” While this
isn’t a hard-and-fast rule, it does highlight the trade-off between new releases and stability.

2 MySQL 8.0 moved the mysql_upgrade process into the startup of the server itself. There
is no need to run this as an additional step.

Appendix B. MySQL on
Kubernetes

If you have been working in tech at all in the past five years, you very likely
have heard of Kubernetes, work with teams that run Kubernetes, or have
watched a lot of conference talks or read a lot of blog posts that explain
Kubernetes. If your organization runs its own Kubernetes clusters, you will
at some point get asked whether running MySQL on them too is a good
idea. And on the surface it seems like a reasonable path to take. Managing
many Kubernetes clusters is a complex task that typically needs dedicated
human resources, and it is reasonable for your organization to want to
leverage that expertise for more than only stateless workloads. But there are
good reasons to explore running MySQL on Kubernetes and not so good
reasons to do so. Let’s demystify some of the FUD (fear, uncertainty, doubt)
around running MySQL on Kubernetes here.

Provisioning Resources with Kubernetes
Before Kubernetes reached peak tech popularity, a lot of companies either
built entirely bespoke tech stacks for provisioning and managing VMs and
bare metal servers or glued together open source projects that did smaller
parts of the life cycle of a resource. Then came Kubernetes as a more
complete ecosystem for managing both compute and storage resources, and
the prospect of using it as the provisioning stack to rule them all has
become more and more appealing. Yet stateful loads such as MySQL
remained behind and left out of that added value because the common
wisdom had been “you can’t run databases on containers.”

Carefully Scope Your Goal

The important thing to keep in mind is “What specific value do we want to
get back here?” Kubernetes is powerful for stateless loads because it brings
elasticity and efficiency of compute resources. However, it is reasonable to
scope down the win when looking at a unified provisioning stack to “we
only want to use Kubernetes to provision and configure the systems for
database resources.” This means you need to be clear up front that the
database workloads that will be provisioned with Kubernetes will be
managed separately from stateless workloads, will require different operator
skill sets, and will handle container failure differently.

Choose Your Control Plane
There are various MySQL operators in the wild now, but the choice of
which is the best will be mostly a consequence of what you decide as the
scope of your Kubernetes management of MySQL. Will you need an
operator that does it all: provisioning, failover, and managing connecting to
the databases? Or will you simply use Kubernetes as a provisioning stack
and use other means to manage databases after they are in service? Decide
early on what you expect from your control plane, as that will drive a lot of
the finer operability details.

The Finer Details
Once you have decided to start provisioning MySQL resources using
Kubernetes, you need to get agreement across your organization on what
size data is appropriate for this solution. Remember that this is now a new
operating model for running a relational database, and on this less-paved
road, everything gets more complex as it gets bigger. Here are some
important items to consider as you collaborate with your Kubernetes
engineering team (hopefully, you have a dedicated team for this) on how to
support stateful workloads:

What maximum data set size for a single database instance will be
supported?

Will you be mounting volumes to containers and managing
container recovery separately from the data mounts? Or will the
data be part of the container?

What maximum query throughput is going to be supported? How
will you manage resources?

How will you ensure Kubernetes nodes running database
workloads are dedicated to that and not shared with stateless, more
elastic, workloads?

What control plane will you use for running the database
instances? Is it Kubernetes native?

How will backups work? What’s the restore process?

How will you control and safely roll out configuration changes and
MySQL upgrades?

How will you upgrade your Kubernetes clusters themselves
without causing disruption?

Being on the same page with your partner Kubernetes engineering team on
how this solution will work will go a long way toward having well-
established SLOs for feature teams looking to use this solution and in
properly communicating what it solves and what the teams still have to
solve on their own.

Our advice with running MySQL on Kubernetes is to invest in learning a
control plane that is already vetted and proven in the Kubernetes ecosystem,
like Vitess. But also crawl before you try to run. MySQL should not be the
first guinea pig for running workloads on Kubernetes in your organization.
Always prove viability and learn the sharp edges as a team with stateless
workloads first before attempting to run more complex use cases like
MySQL. As you determine the best initial use cases for adoption, start with
small data sets (databases that are only a few gigabytes on disk) and with
less mission-critical data sets to get your team, the Kubernetes team, and

the feature teams familiar with the new operational model of running
stateful workloads on Kubernetes with less risk to the business.

Running stateful workloads on Kubernetes has been maturing for the past
few years and continues to do so with critical contributions from companies
that have invested significant engineering hours into making it a more
plausible reality, but it is still in its infancy compared to running on VMs
directly, and you will find that a slow and careful approach to adoption is
what pays off in the long run. Especially consider what the failure modes
look like with MySQL on Kubernetes and ask yourself: if everything goes
wrong, how will I put this back together again? Will I lose data? Make sure
you have an answer.

Summary
Kubernetes is one of the fastest growing infrastructure platforms in tech
right now and for good reason. The engineer velocity it enables and the rich
ecosystem that is supported by the cloud native foundation make it an
appealing investment for companies. But you should consider decisions like
running MySQL on Kubernetes through the lens of risk and reward to your
team and your company. Make sure you have a shared understanding of
where stateful services like data stores are in your organization’s
Kubernetes journey. It is understandable to want to leverage existing
investment in Kubernetes for all workloads, but that needs to be well
balanced against your data store layer’s stability needs.

1 For an excellent “from the trenches” conference talk about running database workloads on
Kubernetes, we recommend “The Container Operator’s Manual” keynote, by Alice Goldfuss.

1

https://oreil.ly/TVD6c

About the Authors
Silvia Botros is a Software Architect at Twilio. During her time at
SendGrid, she helped build the database platform that supports sending
billions of emails, support other products, and drive datastore designs from
inception to production.

Jeremy Tinley is a Senior Staff Systems Engineer at Etsy, with over 20
years of MySQL experience. Throughout his career, he has managed tens of
thousands of MySQL instances with an eye toward availability, reliability,
and operational efficiency.

Colophon
The animal on the cover of High Performance MySQL is a sparrow hawk
(Accipiter nisus), a small woodland member of the falcon family found in
Eurasia and North Africa. Sparrow hawks have a long tail and short wings;
males are bluish-gray with a light brown breast, and females are more
brown-gray and have an almost fully white breast. Males are normally
somewhat smaller (11 inches) than females (15 inches).

Sparrow hawks live in coniferous woods and feed on small mammals,
insects, and birds. They nest in trees and sometimes on cliff ledges. At the
beginning of the summer, the female lays four to six white eggs, blotched
red and brown, in a nest made in the boughs of the tallest tree available. The
male feeds the female and their young.

Like all hawks, the sparrow hawk is capable of bursts of high speed in
flight. Whether soaring or gliding, the sparrow hawk has a characteristic
flap-flap-glide action; its large tail enables the hawk to twist and turn
effortlessly in and out of cover.

Many of the animals on O’Reilly’s covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on an antique line
engraving from Lydekker’s The Royal Natural History. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Foreword
	Preface
	Who This Book Is For
	What Is Different in This Edition
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments for the Fourth Edition
	From Silvia
	From Jeremy
	A Thank You to Tech Reviewers

	1. MySQL Architecture
	MySQL’s Logical Architecture
	Connection Management and Security
	Optimization and Execution

	Concurrency Control
	Read/Write Locks
	Lock Granularity

	Transactions
	Isolation Levels
	Deadlocks
	Transaction Logging
	Transactions in MySQL

	Multiversion Concurrency Control
	Replication
	Datafiles Structure
	The InnoDB Engine
	JSON Document Support
	Data Dictionary Changes
	Atomic DDL

	Summary

	2. Monitoring in a Reliability Engineering World
	The Impact of Reliability Engineering on DBA Teams
	Defining Service Level Goals
	What Does It Take to Make Customers Happy?

	What to Measure
	Defining SLIs and SLOs
	Monitoring Solutions
	Monitoring Availability
	Monitoring Query Latency
	Monitoring for Errors
	Proactive Monitoring

	Measuring Long-Term Performance
	Learning Your Business Cadence
	Tracking Your Metrics Effectively
	Using Monitoring Tools to Inspect the Performance
	Using SLOs to Guide Your Overall Architecture

	Summary

	3. Performance Schema
	Introduction to Performance Schema
	Instrument Elements
	Consumer Organization
	Resource Consumption
	Limitations
	sys Schema
	Understanding Threads

	Configuration
	Enabling and Disabling Performance Schema
	Enabling and Disabling Instruments
	Enabling and Disabling Consumers
	Tuning Monitoring for Specific Objects
	Tuning Threads Monitoring
	Adjusting Memory Size for Performance Schema
	Defaults

	Using Performance Schema
	Examining SQL Statements
	Examining Read Versus Write Performance
	Examining Metadata Locks
	Examining Memory Usage
	Examining Variables
	Examining Most Frequent Errors
	Examining Performance Schema Itself

	Summary

	4. Operating System and Hardware Optimization
	What Limits MySQL’s Performance?
	How to Select CPUs for MySQL
	Balancing Memory and Disk Resources
	Caching, Reads, and Writes
	What’s Your Working Set?

	Solid-State Storage
	An Overview of Flash Memory
	Garbage Collection

	RAID Performance Optimization
	RAID Failure, Recovery, and Monitoring
	RAID Configuration and Caching

	Network Configuration
	Choosing a Filesystem
	Choosing a Disk Queue Scheduler
	Memory and Swapping
	Operating System Status
	Other Helpful Tools

	Summary

	5. Optimizing Server Settings
	How MySQL’s Configuration Works
	Syntax, Scope, and Dynamism
	Persisted System Variables
	Side Effects of Setting Variables
	Planning Your Variable Changes

	What Not to Do
	Creating a MySQL Configuration File
	Minimal Configuration
	Inspecting MySQL Server Status Variables

	Configuring Memory Usage
	Per-Connection Memory Needs
	Reserving Memory for the Operating System
	The InnoDB Buffer Pool
	The Thread Cache

	Configuring MySQL’s I/O Behavior
	The InnoDB Transaction Log
	Log Buffer
	The InnoDB Tablespace
	Other I/O Configuration Options

	Configuring MySQL Concurrency
	Safety Settings
	Advanced InnoDB Settings
	Summary

	6. Schema Design and Management
	Choosing Optimal Data Types
	Whole Numbers
	Real Numbers
	String Types
	Date and Time Types
	Bit-Packed Data Types
	JSON Data
	Choosing Identifiers
	Special Types of Data

	Schema Design Gotchas in MySQL
	Too Many Columns
	Too Many Joins
	The All-Powerful ENUM
	The ENUM in Disguise
	NULL Not Invented Here

	Schema Management
	Schema Management as Part of the Data Store Platform

	Summary

	7. Indexing for High Performance
	Indexing Basics
	Types of Indexes
	Benefits of Indexes

	Indexing Strategies for High Performance
	Prefix Indexes and Index Selectivity
	Multicolumn Indexes
	Choosing a Good Column Order
	Clustered Indexes
	Covering Indexes
	Using Index Scans for Sorts
	Redundant and Duplicate Indexes
	Unused Indexes

	Index and Table Maintenance
	Finding and Repairing Table Corruption
	Updating Index Statistics
	Reducing Index and Data Fragmentation

	Summary

	8. Query Performance Optimization
	Why Are Queries Slow?
	Slow Query Basics: Optimize Data Access
	Are You Asking the Database for Data You Don’t Need?
	Is MySQL Examining Too Much Data?

	Ways to Restructure Queries
	Complex Queries Versus Many Queries
	Chopping Up a Query
	Join Decomposition

	Query Execution Basics
	The MySQL Client/Server Protocol
	Query States
	The Query Optimization Process
	The Query Execution Engine
	Returning Results to the Client

	Limitations of the MySQL Query Optimizer
	UNION Limitations
	Equality Propagation
	Parallel Execution
	SELECT and UPDATE on the Same Table

	Optimizing Specific Types of Queries
	Optimizing COUNT() Queries
	Optimizing JOIN Queries
	Optimizing GROUP BY with ROLLUP
	Optimizing LIMIT and OFFSET
	Optimizing SQL_CALC_FOUND_ROWS
	Optimizing UNION

	Summary

	9. Replication
	Replication Overview
	How Replication Works

	Replication Under the Hood
	Choosing Replication Format
	Global Transaction Identifiers
	Making Replication Crash Safe
	Delayed Replication
	Multithreaded Replication
	Semisynchronous Replication
	Replication Filters

	Replication Failover
	Planned Promotions
	Unplanned Promotions
	Trade-Offs of Promotion

	Replication Topologies
	Active/Passive
	Active/Read Pool
	Discouraged Topologies

	Replication Administration and Maintenance
	Monitoring Replication
	Measuring Replication Lag
	Determining Whether Replicas Are Consistent with the Source

	Replication Problems and Solutions
	Binary Logs Corrupted on the Source
	Nonunique Server IDs
	Undefined Server IDs
	Missing Temporary Tables
	Not Replicating All Updates
	Excessive Replication Lag
	Oversized Packets from the Source
	No Disk Space
	Replication Limitations

	Summary

	10. Backup and Recovery
	Why Backups?
	Defining Recovery Requirements
	Designing a MySQL Backup Solution
	Online or Offline Backups?
	Logical or Raw Backups?
	What to Back Up
	Incremental and Differential Backups
	Replication

	Managing and Backing Up Binary Logs
	Backup and Recovery Tools
	MySQL Enterprise Backup
	Percona XtraBackup
	mydumper
	mysqldump

	Backing Up Data
	Logical SQL Backups
	Filesystem Snapshots
	Percona XtraBackup

	Recovering from a Backup
	Restoring Logical Backups
	Restoring Raw Files from Snapshot
	Restoring with Percona XtraBackup
	Starting MySQL After Restoring Raw Files

	Summary

	11. Scaling MySQL
	What Is Scaling?
	Read- Versus Write-Bound Workloads
	Understanding Your Workload
	Read-Bound Workloads
	Write-Bound Workloads

	Functional Sharding
	Scaling Reads with Read Pools
	Managing Configuration for Read Pools
	Health Checks for Read Pools
	Choosing a Load-Balancing Algorithm

	Queuing
	Scaling Writes with Sharding
	Choosing a Partitioning Scheme
	Multiple Partitioning Keys
	Querying Across Shards
	Vitess
	ProxySQL

	Summary

	12. MySQL in the Cloud
	Managed MySQL
	Amazon Aurora for MySQL
	GCP Cloud SQL

	MySQL on Virtual Machines
	Machine Types in Cloud
	Choosing the Right Machine Type
	Choosing the Right Disk Type
	Additional Tips

	Summary

	13. Compliance with MySQL
	What Is Compliance?
	Service Organization Controls Type 2
	Sarbanes–Oxley Act
	Payment Card Industry Data Security Standard
	Health Insurance Portability and Accountability Act
	Federal Risk and Authorization Management Program
	General Data Protection Regulation
	Schrems II

	Building for Compliance Controls
	Secrets Management
	Separation of Roles and Data
	Tracking Changes
	Backup and Restore Procedures

	Summary

	A. Upgrading MySQL
	Why Upgrade?
	Upgrade Life Cycle
	Testing Upgrades
	Development Environment Testing
	Production Mirror
	Replica
	Tooling

	Upgrading at Scale
	Summary

	B. MySQL on Kubernetes
	Provisioning Resources with Kubernetes
	Carefully Scope Your Goal
	Choose Your Control Plane
	The Finer Details

	Summary

	Index
	About the Authors

