

High Availability MySQL
Cookbook

Over 50 simple but incredibly effective recipes focusing
on different methods of achieving high availability
for MySQL databases

Alex Davies

 BIRMINGHAM - MUMBAI

High Availability MySQL Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers or
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies
and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1220410

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-94-2

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Alex Davies

Reviewers
Marc Delisle

Kai 'Oswald' Seidler

Acquisition Editor
Sarah Cullington

Development Editor
Darshana D. Shinde

Technical Editors
Charumathi Sankaran

Vishal Wadkar

Copy Editor
Leonard D'Silva

Indexer
Rekha Nair

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Priya Mukherji

Project Coordinator
Prasad Rai

Proofreader
Lynda Sliwoski

Graphics
Geetanjali Sawant

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Alex Davies was involved early with the MySQL Cluster project and wrote what, at the time,
was the first simple guide for MySQL Cluster after working with MySQL for many years and
routinely facing the challenge of high availability. Alex has continued to use MySQL Cluster
and many other high-availability techniques with MySQL. Currently employed as a system and
virtualization architect for a large e-Gaming company, Alex has also had the fortune to work for
companies of all sizes ranging from Google to countless tiny startups.

In writing this book, I owe an enormous debt of gratitude to the developers
and members of the wide MySQL community. The quality of the freely-
available software and documentation is surpassed only by the friendliness
and helpfulness of so many members of the community and it's always a
pleasure to work with MySQL.

I am deeply grateful to my colleague Alessandro Orsaria who spent an
enormous amount of his valuable time offering suggestions and correcting
errors in the drafts of this book. The final version is much stronger as a
result and any remaining errors are entirely my own.

About the Reviewers

Marc Delisle is a member of the MySQL Developers Guild, which regroups community
developers because of his involvement with phpMyAdmin. He started contributing to this
popular MySQL web interface in December 1998, when he made the first multi-language
version. He has been actively involved with this software project since May 2001 as a
developer and project administrator.

Marc has worked at Cegep de Sherbrooke, Québec, Canada, as an application programmer
and network manager since 1980. He has also been teaching networking, security, and
PHP / MySQL application development. Marc lives in Sherbrooke with his wife and they
enjoy spending time with their four children.

Marc authored the first ever Packt Publishing book, Mastering phpMyAdmin for Effective
MySQL Management, and its revised editions. He also wrote Creating your MySQL Database:
Practical Design Tips and Techniques, again with Packt Publishing.

I would like to thank the fine team at Packt for the support in reviewing
this book.

Kai 'Oswald' Seidler was born in Hamburg in 1970. He graduated from Technical
University of Berlin with a Diplom Informatiker degree (Master of Science equivalent) in
Computer Science. In the 90s, he created and managed Germany's biggest IRCnet server,
irc.fu-berlin.de, and co-managed one of the world's largest anonymous FTP servers,
ftp.cs.tu-berlin.de. He professionally set up his first public web server in 1993. From
1993 until 1998, he was member of Projektgruppe Kulturraum Internet, a research project
on net culture and network organization. In 2002, he co-founded Apache Friends and created
the multi-platform Apache web server bundle XAMPP. Around 2005, XAMPP became the
most popular Apache stack worldwide. In 2006, his third book, Das XAMPP-Handbuch was
published by Addison Wesley.

Currently, he's working as Technology evangelist for web-tier products at Sun Microsystems.

Table of Contents
Preface	 1
Chapter 1: High Availability with MySQL Cluster	 7

Introduction	 7
Designing a MySQL Cluster	 8
Creating an initial cluster configuration file—config.ini	 17
Installing a management node	 20
Starting a management node	 23
Installing and starting storage nodes	 26
Installing and starting SQL nodes	 32
Creating a MySQL Cluster table	 35
Restarting a MySQL Cluster without downtime	 38
Recovering from a cluster shutdown	 42

Chapter 2: MySQL Cluster Backup and Recovery	 47
Introduction	 47
Importing SQL files to a MySQL server and converting them
to MySQL Cluster	 49
Taking an online backup of a MySQL Cluster	 54
Restoring from a MySQL Cluster online backup	 59
Restricting write access to a MySQL Cluster with single-user mode	 64
Taking an offline backup with MySQL Cluster	 69

Chapter 3: MySQL Cluster Management	 75
Introduction	 75
Configuring multiple management nodes	 76
Obtaining usage information	 80
Adding storage nodes online	 84
Replicating between MySQL Clusters	 91
Replication between clusters with a backup channel	 97

ii

Table of Contents

User-defined partitioning	 100
Disk-based tables	 104
Calculating DataMemory and IndexMemory	 109

Chapter 4: MySQL Cluster Troubleshooting	 115
Introduction	 115
Single storage node failure	 116
Multiple storage node failures	 120
Storage node partitioning and arbitration	 123
Debugging MySQL Clusters	 126
Seeking help	 130
NIC teaming with MySQL Cluster	 131

Chapter 5: High Availability with MySQL Replication	 139
Introduction	 139
Designing a replication setup	 140
Configuring a replication master	 146
Configuring a replication slave without syncing data	 150
Configuring a replication slave, migrating data with a simple SQL dump	 152
Using LVM to reduce downtime on a master when bringing a slave online	 153
Replication safety tricks	 156
Multi Master Replication Manager (MMM): initial installation	 158
Multi Master Replication Manager (MMM): installing the MySQL nodes	 162
Multi Master Replication Manager (MMM): installing monitoring node	 166
Managing and using Multi Master Replication Manager (MMM) 	 169

Chapter 6: High Availability with MySQL and Shared Storage	 175
Introduction	 175
Preparing a Linux server for shared storage	 176
Configuring two servers for shared storage MySQL	 181
Configuring MySQL on shared storage with Conga	 185
Fencing for high availability	 191
Configuring MySQL with GFS	 195

Chapter 7: High Availability with Block Level Replication	 201
Introduction	 201
Installing DRBD on two Linux servers	 203
Manually moving services within a DRBD cluster 	 208
Using heartbeat for automatic failover	 211

iii

Table of Contents

Chapter 8: Performance Tuning	 219
Introduction	 219
Tuning the Linux kernel IO	 220
Tuning MySQL Cluster storage nodes	 228
Tuning MySQL Cluster SQL nodes	 230
Tuning queries within a MySQL Cluster	 232
Tuning GFS on shared storage	 233
MySQL Replication tuning	 235

Appendix A: Base Installation 	 239
Appendix B: LVM and MySQL	 243
Appendix C: Highly Available Architectures	 251

Single-site architectures	 251
Multi-site architectures	 253
Summary of options	 254

Index	 255

Preface

High availability is a regular requirement for databases, and it can be challenging to get it
right. There are several different strategies for making MySQL, an open source Relational
Database Management System (RDBMS), highly available. This may be needed to protect
the database from hardware failures, software crashes, or user errors.

Running a MySQL database is fairly simple, but achieving high availability can be complicated.
Many of the techniques have out-of-date, conflicting, and sometimes poor documentation.
This book will provide you with the recipes showing you how to design, implement, and
manage a highly-available MySQL environment using MySQL Cluster, MySQL Replication,
block-level replication with DRBD, and shared storage with a clustered filesystem (that is,
the open source Global File System (GFS)).

This book covers all the major techniques available for achieving high availability for MySQL,
based on MySQL Cluster 7.0 and MySQL 5.0.77. All the recipes in this book are demonstrated
using CentOS 5.3, which is a free and effectively identical version of the open source but
commercial Red Hat Enterprise Linux operating system.

What this book covers
Chapter 1, High Availability with MySQL Cluster explains how to set up a simple MySQL
Cluster. This chapter covers practical steps that will show you how to design, install, configure,
and start a simple MySQL Cluster.

Chapter 2, MySQL Cluster Backup and Recovery covers the options available for backing up
a MySQL Cluster and the considerations to be made at the cluster-design stage. It covers
different recipes that will help you to take a backup successfully.

Preface

�

Chapter 3, MySQL Cluster Management, covers common management tasks for a MySQL
Cluster. This includes tasks such as adding multiple management nodes for redundancy and
monitoring the usage information of a cluster, in order to ensure that a cluster does not run
out of memory. It also covers the tasks that are useful for specific situations such as setting
up replication between clusters (useful for protection against entire site failures) and using
disk-based tables (useful when a cluster is required, but it's not cost-effective to store the
data in memory).

Chapter 4, MySQL Cluster Troubleshooting covers the troubleshooting aspects of MySQL
Cluster. It contains recipes for single-storage node failure, multiple-storage node failures,
storage node partitioning and arbitration, debugging MySQL Clusters, and network
redundancy with MySQL Cluster.

Chapter 5, High Availability with MySQL Replication covers replication of MySQL databases. It
contains recipes for designing a replication setup, configuring a replication master, configuring
a replication slave without synchronizing data, and migrating data with a simple SQL dump.

Chapter 6, High Availability with MySQL and Shared Storage highlights the techniques to
achieve high availability with shared storage. It covers recipes for preparing a Linux server for
shared storage, configuring MySQL on shared storage with Conga, fencing for high availability,
and configuring MySQL with GFS.

Chapter 7, High Availability with Block Level Replication covers Distributed Replicated Block
Device (DRBD), which is a leading open source software for block-level replication. It also
covers the recipes for installing DRBD on two Linux servers, manually moving services within
a DRBD Cluster, and using heartbeat for automatic failover.

Chapter 8, Performance Tuning covers tuning techniques applicable to RedHat and CentOS 5
servers that are used with any of the high availability techniques. It also covers the recipes for
tuning Linux kernel IO, CPU schedulers, and GFS on shared storage, queries within a MySQL
Cluster, and MySQL Replication tuning.

Appendix A, Base Installation includes the kickstart file for the base installation of
MySQL Cluster.

Appendix B, LVM and MySQL covers the process for using the Logical Volume Manager (LVM)
within the Linux kernel for consistent snapshot backups of MySQL.

Appendix C, Highly Available Architectures shows, at a high level, some different single-site
and multi-site architectures.

Preface

�

What you need for this book
The software applications required to run the recipes in this book are:

CentOS or Red Hat Enterprise Linux 5.3

MySQL 5.0.77

MySQL and MySQL Cluster 7.0.x

This book includes the process for installing both MySQL and MySQL Cluster onto CentOS.

Who this book is for
This book is targeted at system administrators or database administrators who have basic
familiarity with Linux, the shell, and MySQL. You may already have some basic MySQL
experience but are looking for practical guidance for configuring high availability, as well
as a reference covering all of the common options used for high availability.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The world sample database is provided as a SQL
file, which includes statements to build three tables and populate them with data.".

A block of code is set as follows:

[mysqld]
id=20
HostName=10.0.0.10

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

HWADDR=00:16:3E:xx:xx:xx
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
USERCTL=no
/etc/sysconfig/network-scripts/ifcfg-eth1:
DEVICE=eth1

Any command-line input or output is written as follows:
[root@node3 ~]# iptables –F

[root@node3 ~]# iptables –L

•

•

•

Preface

�

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The maximum number of
ordered indexes is low and if you reach it, it will return a slightly cryptic error, Can't create
table xxx (errno: 136).".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/9942_Code.zip
to directly download the example code.

The downloadable files contain instructions on how to use them.

Preface

�

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration,
and help us to improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata added to any list of existing errata. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or web site name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
High Availability with

MySQL Cluster

In this chapter, we will cover:

Designing a MySQL Cluster
Creating an initial cluster configuration file—config.ini
Installing a management node
Starting a management node
Installing and starting storage nodes
Installing and starting SQL nodes
Creating a MySQL Cluster table
Restarting a MySQL Cluster without downtime
Recovering from a cluster shutdown

Introduction
MySQL Cluster is the leading open source high availability database available today and
is being used in many environments to achieve low cost "carrier grade" high availability
and scalability. MySQL Cluster originates from a product called Network DataBase, which
was known as NDB. This name has also stuck in the current software, so there are many
references to NDB. For example, the name of the MySQL Cluster storage engine is NDB
(instead of MyISAM or InnoDB). In general, wherever you see NDBCLUSTER (sometimes
abbreviated as just NDB), you can think of it as "MySQL Cluster".

In this chapter, we will introduce MySQL Cluster as a technology and explain how to set up a
simple cluster. This chapter will cover practical steps that will show you how to design, install,
configure, and start a simple MySQL Cluster. We'll delve deeper into more advanced tasks in
the later chapters.



















High Availability with MySQL Cluster

�

Designing a MySQL Cluster
In this recipe, we will explain how to design a MySQL Cluster correctly. MySQL Cluster is an
extremely powerful technology and this recipe will outline and briefly discuss some of the
factors that you should consider while designing a MySQL Cluster.

We start with a high-level description of how a MySQL Cluster works in the How to do it...
section. The How it works... section explores the bits that make up a cluster in more detail and
the There's more... section discusses the way that a MySQL Cluster stores and retrieves data.

How to do it...
MySQL Clusters are built from three different types of node. These three types of node, when
connected together, allow a cluster to provide a cluster storage engine on MySQL servers
for clients to connect to. To build a cluster, you must select the hardware on which you can
run at least one type of each node. We now discuss these types of node and how they
connect together.

A node does not mean a single physical machine but a process that
forms a part of a cluster. It is quite possible to run multiple nodes (that
is, processes) on the same physical machine. For example, it is common
to run a management node on the same host as the SQL node.

The three kinds of nodes that make up a MySQL Cluster are:

1.	 Management node—these are the nodes that control information about the makeup
of the cluster, provide a central point to collect the information such as logs and also
to control other nodes. A management node must be started before any other node.

2.	 Data or storage node—this is the ndbd process that holds the data in the cluster and
does the low-level work of answering queries in conjunction with the other storage
nodes in the cluster.

3.	 API nodes—these are the nodes that connect to the cluster to extract the data—the
most common example of this type of node is a mysqld process that is compiled to
support MySQL Cluster which is commonly known as a SQL node. In this book, we
use the term API and SQL node interchangeably except when referring to an API node
that specifically is not a mysqld process.

To design a cluster with redundancy of operations (in other words, one that is highly available),
you require at least one management node, two storage nodes, and two SQL nodes. A
management node is only required when starting another node in your cluster—a cluster
that is running will happily run even without a management node. Note that when there is no
management node running in a cluster, there is no central point to control your cluster, view
logs, and critically if another node fails, it will not be able to restart.

Chapter 1

�

If you were building the simplest possible cluster, it would consist of:

Two similar servers, each running a storage and SQL node

One small server, running a management node

Three physical pieces of hardware are required to handle the case where a cluster is cut
clean down the middle (for example, in a two-node cluster, one node's network cable is
unplugged). This is called a split brain problem and is explored in more detail in the How it
works… section that follows. In short, with only two nodes, in the event of nodes being unable
to communicate (for example, when one node fails) both nodes must shut down to protect
data consistency—which makes for a rather pointless cluster.

When it comes to calculating how many storage nodes you actually require, the recipe
Calculating DataMemory and IndexMemory in Chapter 3, MySQL Cluster Management will
tell you the total amount of memory required for your cluster. From a function of this number,
the desired level of redundancy (see the following information box), the most cost-efficient
amount of RAM to fit per server, and the performance required it is possible to calculate the
optimum number of servers required for storage nodes and the RAM requirement for each.
For a simple test cluster of two nodes, you simply require enough spare RAM per storage
node to carry all of the data that you plan to store in the cluster, plus a little more space
(approximately 20 percent) to handle overheads and indexes.

The level of availability refers to the number of servers that you wish to store
each fragment of data on for redundancy. This is known as NoOfReplicas
and is difficult to change in the future—often it is set to 2 or 4. Your number of
data nodes must be a multiple of NoOfReplicas.

It is an extremely good practice to keep SQL nodes and storage nodes on different servers in
order to prevent a large query swapping and crashing the storage node located on the same
server, so in practice a cluster size of 3 is unusual.

The nodes in your cluster absolutely require uninterrupted and private network connections
between them. If this is not the case, there are the following three problems:

1.	 Firewalls can cause bizarre behavior as MySQL Cluster daemons use a wide range
of ports.

2.	 Data sent between nodes in a cluster is not encrypted. Therefore, anyone with access
to that network can access all data stored in the cluster.

3.	 No form of security exists in communication between nodes, so anyone with access
to the storage or management nodes can, for example, shutdown the cluster or inject
their own data.





High Availability with MySQL Cluster

10

To avoid this, connect your cluster nodes to a private, non-firewalled network and dedicated
switch, and protect the public interface with a good firewall.

MySQL Clusters must be built with nodes having very low latency connections—generally,
just a pair of Ethernet switches. It is not possible to build a cluster over a higher-latency link
(such as the Internet), although replication between MySQL Clusters is covered in Chapter 3.

How it works…
MySQL Cluster sits at the storage engine layer of a MySQL database server, with a storage
engine known as NDBCLUSTER. This means that for clients connecting to that MySQL server,
a MySQL Cluster table is exactly the same as a local InnoDB or MyISAM table. It is also quite
conventional to only have some tables configured to use MySQL Cluster, as the following
diagram demonstrates with a single MySQL server (mysqld process) running one database
(database1) with three table types—MyISAM tables, InnoDB tables, and MySQL Cluster
tables (NDBCLUSTER).

All of the cluster magic that allows physical servers holding parts of your database to fail
without causing downtime is handled below the level of the MySQL server on which an
incoming query is processed. The following diagram shows a MySQL Server (mysqld)
connecting to a four-storage node MySQL Cluster, a local MyISAM table, and an InnoDB
table stored on an external disk array. The client cannot tell the difference between these
three types of tables.

MYSQLD

MYSQL CLUSTER
TABLES

MYISAM
INNODB

SQL

CLIENT

4 NODE MYSQL CLUSTER

TABLES
TABLES

STORAGE

LOCAL
DISK

EXTERNAL
DISK

ARRAY

Chapter 1

11

MySQL Cluster has a shared nothing property, which means that unlike most clustering
solutions, there is genuinely no single point of failure. On the other hand, in many other
systems including some that we will cover later in this book, there is what can be considered
a very reliable single point of failure—often a redundant shared disk system which can still
fail as a result of a single event, such as a physical problem with the unit.

To achieve this no single point of failure architecture, MySQL Clusters store all of the data in
the cluster on more than one node, which obviously has a performance impact. To mitigate
this potential impact, most production clusters store both data and indexes in storage node
memory (RAM).

Storing data in memory sounds scary and it is possible to configure tables to be stored on the
disks of the storage nodes (covered in a later recipe). However, RAM-based storage provides
significantly greater performance. By ensuring that data is stored on at least two different
physical servers at a time it is unlikely that a failure (such as a disk drive or PSU) will occur
in all the nodes holding a fragment of data at the same time.

However, it is still of course possible that all the nodes could fail (for example, in a data
center-wide power failure). In order to ensure that this does not result in a loss of all data
in the cluster, running storage nodes are constantly check pointing the data stored in the
memory to a persistent storage on the disk.

In clusters consisting of more than two storage nodes, it is possible for all the servers holding
a single fragment of data to fail. In this case, the cluster shuts itself down to ensure data
consistency—this process is covered in more detail in the following There's more… section.

There's more…
In the background, a MySQL Cluster works by chopping up (also known as partitioning) your
data into chunks (known as partitions, or by the preferred MySQL Cluster term fragments)
and storing each fragment on as many different servers (data nodes) as you have selected.
In this section, this process is explained in more detail. This is important to understand for
anything other than the most superficial use of MySQL Cluster.

High Availability with MySQL Cluster

12

This process is shown in the following diagram, which shows a cluster design for two data
nodes and two copies of each fragment of data to be held within the cluster. The MySQL
Cluster has automatically worked out that it needs to partition our data into four partitions.
Given this, it will ensure that each node has two fragments of data and that any single node
does not have two identical chunks. It can be shown as follows:

DATA (=A TABLE)

ROW

ROW

PARTITION
1

PARTITION
2

2 STORAGE NODES
= 2 PARTITIONS

NOW, 2 REPLICAS-EACH PARTITION STORED TWICE

STORAGE NODE
1

SECONDARY

SECONDARY

FRAGMENT 1

FRAGMENT 3

PRIMARY

PRIMARY

PARTITION 1

PARTITION 2

FRAGMENT 2

FRAGMENT 4

FRAGMENT 1 FRAGMENT 2

FRAGMENT 3 FRAGMENT 4

STORAGE NODE
2

In clusters where there are more storage nodes than the number of copies of each piece of
data (which in many clusters is two, that is, each fragment is stored on two separate nodes),
the cluster must further split the storage nodes into nodegroups. Nodegroups are groups
of storage nodes that store the same fragments of data, and as long as one node in each
nodegroup remains available, the cluster will have an entire copy of the data.

While each node in a nodegroup has the same data, each fragment within the cluster has a
primary copy and one or more replicas (the number depending on NoOfReplicas again).
The primary copy ("fragment replica") for each fragment or partition will be moved around
automatically by the cluster to be spread out among the nodes for performance reasons. In
the case of two nodes per nodegroup, each node will have approximately 50 percent of the
primary fragments.

Chapter 1

13

In a MySQL Cluster, if we wish to change a piece of our data (one or more of the fragments),
we must modify each copy of fragment. In other words, make the same change on every
node that stores that fragment. MySQL Cluster will attempt to do this in parallel, that is, it
will send the request to change the fragment simultaneously to all nodes containing the
relevant fragment. However, until the change has been committed, the transaction remains
uncommitted in case a node fails.

MySQL Cluster declares the transaction committed to the client once all active data nodes
with the relevant fragment on them have received the request to update their fragments
and a single storage node has committed all of the changes.

This process is called a two-phase commit, and while it increases data integrity significantly,
it reduces performance. The speed of a cluster executing transactions is a function of the
following parameters (with the first and last extremely quick, due to all the data being stored
in memory rather than on disk):

Time taken to locate all nodes involved in a transaction

Network latency talking to all involved nodes

Bandwidth available for transferring data between nodes

Time taken for all nodes to retrieve and / or change relevant data

This process is almost certainly slower than just accessing data from a locally attached disk
(or from a kernel cache of a disk) and therefore, MySQL Cluster will almost always be slower
in terms of query execution time for low workloads. MySQL Cluster may be faster under very
high load (where its near linear scalability kicks in, as the load is spread over more nodes)
and is valuable at all demand levels for its high availability. When you are designing your
cluster, consider how much cost and performance you are willing to trade for scalability
and high availability.

When you are considering to deploy the MySQL Cluster, it is essential to have an idea of
both the problems that the MySQL Cluster will not solve and its specific requirements.

For a complete list of requirements and limitations, visit the online MySQL
Cluster reference guide (accessible from http://dev.mysql.com/doc/).









High Availability with MySQL Cluster

14

The remainder of this section covers and explains the limitations that most commonly cause
problems for a MySQL Cluster administrator.

Operating System requirements: MySQL Cluster runs on several operating systems,
and is specifically supported by the following:

Linux (Red Hat and SUSE)

Solaris

Mac OS X

Windows

When considering which of the supported operating systems to use, it is worth noting
that far and away the most tested is the Linux operating system.

Limitations using indexes: There are some common limitations related to indexes
inside MySQL Cluster tables as follows:

Full-text indexes do not work with MySQL Cluster. Consider using
Sphinx (http://www.sphinxsearch.com/) and / or a separate
table for your full-text searches, possibly using another high-availability
technique such as MySQL Replication in order to run your intensive
search queries against a replica without affecting performance on the
master (Chapter 5, High Availability with MySQL Replication).

Text or BLOB fields cannot have indexes (however, VARCHAR
fields can).

You may only have one AUTO_INCREMENT field per table. If your
table does not already have a primary key when it was created or
altered to MySQL Cluster, a hidden AUTO_INCREMENT primary key
field will be created (and used for partitioning). If this happens, you
will not be able to create another AUTO_INCREMENT field, even
though you cannot see the one that exists. Therefore, ensure that
you always define a primary key in your tables (which are often
the AUTO_INCREMENT fields). One of the key differences between
MySQL Cluster and InnoDB tables is that for clustered tables in
InnoDB, foreign key constraints are simply ignored (this is the same
behavior with the MyISAM storage engine).

Limitations using transactions: While MySQL Cluster is transactional, in general,
it does not support very large individual transactions particularly well.

The limit is difficult to quantify and depends on node performance, network
connections, and number of transactions. However, in general, applications that use
larger numbers of smaller transactions are more likely to experience fewer problems
with MySQL Cluster. Therefore, if you have the choice, design the application that is
to use MySQL Cluster for lots of small transactions wherever possible.





















Chapter 1

15

Common "Hard Limits" to reach: The following list of unchangeable limitations does
vary significantly from release to release, but the limitations of the current version
(that is, MySQL Cluster 7) are as follows:

The total number of objects (databases, tables, and indexes) cannot
exceed 20320

The total number of attributes (columns and indexes) per table
cannot exceed 128

The total size of a row cannot exceed 8 KB

The total number of storage nodes in a cluster cannot exceed 48

The total number of nodes (storage, management, and SQL) cannot
exceed 255

Networking requirements: MySQL Clusters require inter-cluster network traffic to
have extremely low latency (small round trip (ping) times) and almost no packet loss.

If this is not the case, performance will generally be extremely poor and it is possible
that nodes will continually be kicked out of the cluster for not replying to heartbeat
packets from other nodes quickly enough. To achieve these requirements, it is
desirable for all members of the cluster to be interconnected using the same
switch infrastructure, which should have a speed of at least one gigabit.

Any network design involving a layer-3 device (such as a router) should be avoided
wherever possible (although with modern wire speed, layer 3 forwarding for network
devices can be as fast as layer 2). It is not recommended to attempt to get a cluster
to work over a large network such as the Internet.

While technically not truly impossible, it is strongly recommended that you do not
attempt to change the timeout values to configure a cluster over a high-latency link,
as this won't really work properly!

If there is a need to replicate data across a WAN, consider replication between clusters
(covered in the Replication between MySQL Clusters recipe in Chapter 3). It is possible
to use high-speed cluster interconnects or Unix-like shared-memory segments, which
themselves provide for extremely low-latency and high-reliability links.

System RAM requirements and best practice: MySQL Cluster is extremely
memory-intensive. Although, actual data can be stored both on disk and in memory
(RAM), the performance of data in memory tables is, in most cases, better when
compared with disk-based tables in terms of order of magnitude.

Furthermore, even for disk-based tables, indexes (which can take up a significant
amount of space) must still be stored in memory. Therefore, the RAM usage on data
nodes is high, and the overall RAM requirement for a cluster is likely to be order of
magnitude more than that required by a standalone MySQL server using InnoDB
or MyISAM.

















High Availability with MySQL Cluster

16

There are two major points to consider at an early stage:

Firstly, 32-bit operating systems can have a problem allocating more
than 2 gigabytes of RAM to a single process. They will also certainly
have a problem addressing more than 4 GB RAM system-wide (even
with special modifications to the 32-bit kernel to hack around this
limit). Therefore, in most real-world clusters, a 64-bit operating
system is likely to make more sense.

Secondly, if a MySQL data node does not have enough physical
RAM, it will either run out of it completely, in which case the kernel's
out of memory (OOM) killer will almost certainly kill a data node
process, or the operating system will begin to swap. This will likely
result in a poor performance as the data node will not be able to
respond to the heartbeats in a reasonable time and therefore, will
be ejected from the cluster.

Processor architecture requirements: MySQL will run on both 32-bit and 64-bit
architectures for all supported operating systems. When we want to decide which one
of these to select, it is worth to remember the limitations of 32-bit architectures on
RAM and also considering that the MySQL Cluster storage node process is available
in two forms—a single- and multi-threaded binary.

The single-threaded version of the storage node process has been tested significantly.
However, the multi-threaded binary is simpler to use when trying to run multiple
versions of the single-threaded binary on a single machine.

Operating systems can be described as little-endian or big-endian (endianness can
be thought of as the byte ordering used by an operating system). There are two parts
to this constraint:

Firstly, all machines used in the cluster must have the same
architecture. For example, you cannot have an x86 management
node talking to data nodes running on PowerPC.

Secondly, it is important to remember that the MySQL client API
is not endian-sensitive. So your big-endian cluster can happily
communicate with the applications running on both big- and-little-
endian operating systems.











Chapter 1

17

Creating an initial cluster configuration
file—config.ini

In this recipe, we will discuss the initial configuration required to start a MySQL Cluster.
A MySQL Cluster has a global configuration file—config.ini, which resides on all
management nodes. This file defines the nodes (processes) that make up the cluster
and the parameters that the nodes will use.

Each management node, when it starts, reads the config.ini file to get information on the
structure of the cluster and when other nodes (storage and SQL / API) start, they contact the
already-running management node to obtain the details of the cluster architecture.

The creation of this global configuration file—config.ini, is the first step in building the
cluster and this recipe looks at the initial configuration for this file. Later recipes will cover
more advanced parameters which you can define (typically to tune a cluster for specific
goals, such as performance).

How to do it…
The first step in building a cluster is to create a global cluster configuration file. This file,
called config.ini, by convention, is stored on each management node and is used by the
management node process to show the cluster makeup and define variables for each node.
In our example, we will store this in the file /usr/local/mysql-cluster/config.ini,
but it can be stored anywhere else.

The file consists of multiple sections. Each section contains parameters that apply to a
particular node, for example, the node's IP address or the amount of memory to reserve for
data. Each type of node (management, SQL, and data node) has an optional default section
to save duplicating the same parameter in each node. Each individual node that will make up
the cluster has its own sections, which inherits the defaults defined for its type and specifies
the additional parameters, or overrides the defaults.

This global configuration file is not complex, but is best analyzed with an example, and in
this recipe, we will create a simple cluster configuration file for this node. The first line to
add in the config.ini file is a block for this new management node:

[ndb_mgmd]

Now, we specify an ID for the node. This is absolutely not required, but can be
useful—particularly if you have multiple management nodes.

Id=1

High Availability with MySQL Cluster

18

Now, we specify the IP address or hostname of the management node. It is recommended
to use IP addresses in order to avoid a dependency on the DNS:

HostName=10.0.0.5

It is possible to define a node without an IP address, in this case, a starting
node can either be told which nodeID it should take when it starts, or the
management node will allocate the node to the most suitable free slot.

Finally, we define a directory to store local files (for example, cluster log files):

DataDir=/var/lib/mysql-cluster

This is all that is required to define a single management node.

Now, we define the storage nodes in our simple cluster. To add storage nodes, it is
recommended that we use the default section to define a data directory (a place for the
node to store the files, which the node stores on the disk). It is also mandatory to define
the NoOfReplicas parameter, which was discussed in the There's more… section of the
previous recipe.

[<type>_default] works for all three types of nodes (mgmd, ndbd, and mysqld) and
defines a default value to save duplicating a parameter for every node in that section.
For example, the DataDir of the storage nodes can (and should) be defined in the
default section:

[ndbd_default]
DataDir=/var/lib/mysql-cluster
NoOfReplicas=2

Once we have defined the default section, then defining the node ID and IP / hostname
for the other storage nodes that make up our cluster is a simple matter as follows:

[ndbd]
id=3
HostName=10.0.0.1

[ndbd]
id=4
HostName=10.0.0.2

You can either use hostnames or IP addresses in config.ini file. I
recommend that you use IP addresses for absolute clarity, but if hostnames
are used, it is a good idea to ensure that they are hardcoded in /etc/hosts
on each node in order to ensure that a DNS problem does not cause major
issues with your cluster.

Chapter 1

19

Finally for SQL nodes, it is both possible and common to simply define a large number of
[mysqld] sections with no HostName parameter. This keeps the precise future structure of
the cluster flexible (this is not generally recommended for storage and management nodes).

It is a good practice to define the hostnames for essential nodes, and if desired also leave
some spare sections for future use (the recipe Taking an online backup of a MySQL Cluster
later in Chapter 2, MySQL Cluster Backup and Recovery will explain one of several most
common reasons why this will be useful). For example, to define two-cluster SQL nodes (with
their servers running mysqld) with IP addresses 10.0.0.2 and 10.0.0.3, with two more
slots available for any SQL or API nodes to connect to on a first come, first served basis, use
the following:

[mysqld]
HostName=10.0.0.2

[mysqld]
HostName=10.0.0.3

[mysqld]

[mysqld]

Now that we have prepared a simple config.ini file for a cluster, it is potentially possible
to move on to installing and starting the cluster's first management node. Recollect where
we saved the file (in /usr/local/mysql-cluster/config.ini) as you will need this
information when you start the management node for the first time.

There's more…
At this stage, we have not yet defined any advanced parameters. It is possible to use the
config.ini file that we have written so far to start a cluster and import a relatively small
testing data set (such as the world database provided by MySQL for testing, which we
will use later in this book). However, it is likely that you will need to set a couple of other
parameters in the ndbd_default section of the config.ini file before you get a
cluster in which you can actually import anything more than a tiny amount of data.

Firstly, there is a maximum limit of 32,000 concurrent operations in a MySQL Cluster, by
default. The variable MaxNoOfConcurrentOperations sets the number of records that
can be in update phase or locked simultaneously. While this sounds like a lot, it is likely that
any significant import of data will exceed this value, so this can be safely increased. The
limit is set deliberately low to protect small systems from large transactions. Each operation
consumes at least one record, which has an overhead of 1 KB of memory.

High Availability with MySQL Cluster

20

The MySQL documentation states the following:

Unfortunately, it is difficult to calculate an exact value for this parameter
so set it to a sensible value depending on the expected load on the
cluster and monitor for errors when running large transactions (often
when importing data):

MaxNoOfConcurrentOperations = 150000

A second extremely common limit to increase is the maximum number of attributes (fields,
indexes, and so on) in a cluster which defaults to 1000. This is also quite low, and in the
same way it can normally be increased:

MaxNoOfAttributes = 10000

The maximum number of ordered indexes is low and if you reach it, it will return a slightly
cryptic error, Can't create table xxx (errno: 136). Therefore, it is often worth increasing it
at the start, if you plan on having a total of more than 128 ordered indexes in your cluster:

MaxNoOfOrderedIndexes=512

Finally, it is almost certain that you will need to define some space for data and indexes on
your storage nodes. Note that you should not allocate more storage space than you have to
spare on the physical machines running the storage nodes, as a cluster swapping is likely
to happen and the cluster will crash!

DataMemory=2G
IndexMemory=500M

With these parameters set, you are ready to start a cluster and import a certain amount of
data in it.

Installing a management node
In this recipe, we will be using the RedHat Package Manager (RPM) files provided by MySQL
to install a management node on a CentOS 5.3 Linux server. We will be using a x86_64 or
64-bit operating system. However, there is no practical difference between 64-bit and the
32-bit binaries for installation.

At the end of this recipe, you will have a management node installed and ready to start. In the
next recipe, we will start the management node, as a running management node is required
to check that your storage and SQL nodes start correctly in later recipes.

Chapter 1

21

How to do it…
All files for MySQL Cluster for RedHat and CentOS 5 can be found in the Red Hat Enterprise
Linux 5 RPM section from the download page at http://dev.mysql.com. We will first
install the management node (the process with which every other cluster node talks to
on startup). To get this, download the Cluster storage engine management package
MySQL-Cluster-gpl-management-7.a.b-c.rhel5.x86_64.rpm.

You must use the URL (that is, the address of the mirror site here that you
have copied from the MySQL downloads page, which will replace a.mirror
in the following commands). All the other instances where the command
wget is used with the mirror site addresses as a.mirror should be
replaced with the URL.

In the following example, a temporary directory is created and the correct file is downloaded:

[root@node5 ~]# cd ~/

[root@node5 ~]# mkdir mysql

[root@node5 ~]# cd mysql

[root@node5 mysql]# wget http://dev.mysql.com/get/Downloads/MySQL-
Cluster-7.0/MySQL-Cluster-gpl-management-7.0.6-0.rhel5.x86_64.rpm/from/
http://a.mirror/

--16:26:09-- http://dev.mysql.com/get/Downloads/MySQL-Cluster-7.0/MySQL-
Cluster-gpl-management-7.0.6-0.rhel5.x86_64.rpm/from/http://a.mirror/

<snip>

16:26:10 (9.78 MB/s) - `MySQL-Cluster-gpl-management-7.0.6-0.rhel5.x86_
64.rpm' saved [1316142/1316142]

At the same time of installing the management node, it is also a good idea to install the
management client, which we will use to talk to the management node on the same server.
This client is contained within the Cluster storage engine basic tools package—MySQL-
Cluster-gpl-tools-7.a.b-c.rhel5.x86_64.rpm, and in the following example this
file is downloaded:

[root@node5 ~]# wget http://dev.mysql.com/get/Downloads/MySQL-Cluster-
7.0/MySQL-Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm/from/http://
a.mirror/

--18:45:57-- http://dev.mysql.com/get/Downloads/MySQL-Cluster-7.0/MySQL-
Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm/from/http://a.mirror/

<snip>

18:46:00 (10.2 MB/s) - `MySQL-Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm'
saved [9524521/9524521]

High Availability with MySQL Cluster

22

Now, install the two files that we have downloaded with the rpm -ivh command (the flag's
meaning –i for install, –v for verbose output, and –h which results in a hash progress bar):

[root@node5 mysql]# rpm -ivh MySQL-Cluster-gpl-management-7.0.6-0.rhel5.
x86_64.rpm MySQL-Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm

Preparing... ###
[100%]

 1:MySQL-Cluster-gpl-manage###
[100%]

 1:MySQL-Cluster-gpl-manage###
[100%]

As these two RPM packages are installed, the following binaries are now available on
the system:

Type Binary Description
Management ndb_mgmd The cluster management server
Tools ndb_mgm The cluster management client—note that it is not

ndb_mgmd, which is the server process
Tools ndb_size.pl Used for estimating the memory usage of existing

databases or tables
Tools ndb_desc A tool to provide detailed information about a MySQL

Cluster table

To actually start the cluster, a global configuration file must be created and used to start the
management server. As discussed in the previous recipe this file can be called anything and
stored anywhere, but by convention it is called config.ini and stored in /usr/local/
mysql-cluster. For this example, we will use an extremely simple cluster consisting of one
management node (10.0.0.5), two storage nodes (10.0.0.1 and 10.0.0.2) and two
SQL nodes (10.0.0.3 and 10.0.0.4), but follow the previous recipe (including the There's
more… section if you wish to import much data) to create a configuration file tailored to your
setup with the correct number of nodes and IP addresses.

Once the contents of the file are prepared, copy it to /usr/local/mysql-cluster/
config.ini. The complete config.ini file used in this example is as follows:

[ndb_mgmd]
Id=1
HostName=10.0.0.5
DataDir=/var/lib/mysql-cluster

[ndbd default]
DataDir=/var/lib/mysql-cluster
NoOfReplicas=2

[ndbd]

Chapter 1

23

id=3
HostName=10.0.0.1

[ndbd]
id=4
HostName=10.0.0.2

[mysqld]
id=11
HostName=10.2.0.3

[mysqld]
id=12
HostName=10.2.0.4

[mysqld]
id=13

[mysqld]
id=14

At this stage, we have installed the management client and server (management node)
and created the global configuration file.

Starting a management node
In this recipe, we will start the management node installed in the previous recipe, and then
use the management client to confirm that it has properly started.

How to do it…
The first step is to create the data directory for the management node that you defined in
config.ini file as follows:

[root@node5 mysql-cluster]# mkdir -p /usr/local/mysql-cluster

Now, change the directory to it and run the management node process (ndb_mgmd), telling
it which configuration file to use:

[root@node5 mysql-cluster]# cd /usr/local/mysql-cluster

[root@node5 mysql-cluster]# ndb_mgmd --config-file=config.ini

2009-06-28 22:14:01 [MgmSrvr] INFO -- NDB Cluster Management Server.
mysql-5.1.34 ndb-7.0.6

2009-06-28 22:14:01 [MgmSrvr] INFO -- Loaded config from '//mysql-
cluster/ndb_1_config.bin.1'

High Availability with MySQL Cluster

24

Finally, check the exit code of the previous command (with the command echo $?). An exit
code of 0 indicates success:

[root@node5 mysql-cluster]# echo $?

0

If you either got an error from running ndb_mgmd or the exit code was not 0, turn very briefly
to the There's more… section of this recipe for a couple of extremely common problems at
this stage.

Everything must run as root, including the ndbd process. This is a
common practice; remember that the servers running MySQL Cluster
should be extremely well protected from external networks as anyone
with any access to the system or network can interfere with the
unencrypted and unauthenticated communication between storage
nodes or connect to the management node. In this book, all MySQL
Cluster tasks are completed as root.

Assuming that all is okay, we can now run the MySQL Cluster management client, ndb_mgm.
This will be the default, connecting to a management client running on the local host on port
1186. Once in the client, use the SHOW command to show the overall status of the cluster:

[root@node5 mysql-cluster]# ndb_mgm

-- NDB Cluster -- Management Client –

And have a look at the structure of our cluster:

ndb_mgm> SHOW

Connected to Management Server at: localhost:1186

Cluster Configuration

[ndbd(NDB)] 2 node(s)

id=3 (not connected, accepting connect from 10.0.0.1)

id=4 (not connected, accepting connect from 10.0.0.2)

[ndb_mgmd(MGM)] 1 node(s)

id=1 @node5 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 (not connected, accepting connect from 10.2.0.2)

id=12 (not connected, accepting connect from 10.2.0.3)

id=13 (not connected, accepting connect from any host)

id=14 (not connected, accepting connect from any host)

Chapter 1

25

This shows us that we have two storage nodes (both disconnected) and four API or SQL
nodes (both disconnected). Now check the status of node ID 1 (the management node)
with the <nodeid> STATUS command as follows:

ndb_mgm> 1 status

Node 1: connected (Version 7.0.6)

Finally, exit out of the cluster management client using the exit command:

ndb_mgm> exit

Congratulations! Assuming that you have no errors here, you now have a cluster management
node working and ready to receive connections from the SQL and data nodes which are
shown as disconnected.

There's more…
In the event that your cluster fails to start, a couple of really common causes have been
included here:

If the data directory does not exist, you will see this error:

[root@node5 mysql-cluster]# ndb_mgmd

2009-06-28 22:13:48 [MgmSrvr] INFO -- NDB Cluster Management Server.
mysql-5.1.34 ndb-7.0.6

2009-06-28 22:13:48 [MgmSrvr] INFO -- Loaded config from '//mysql-
cluster/ndb_1_config.bin.1'

2009-06-28 22:13:48 [MgmSrvr] ERROR -- Directory '/var/lib/mysql-
cluster' specified with DataDir in configuration does not exist.

[root@node5 mysql-cluster]# echo $?

1

In this case, make sure that the directory exists:

[root@node5 mysql-cluster]# mkdir –p /var/lib/mysql-cluster

If there is a typo in the configuration file or if the cluster cannot find the config.ini file you
may see this error:

[root@node5 mysql-cluster]# ndb_mgmd --config-file=config.ini

2009-06-28 22:15:50 [MgmSrvr] INFO -- NDB Cluster Management Server.
mysql-5.1.34 ndb-7.0.6

2009-06-28 22:15:50 [MgmSrvr] INFO -- Trying to get configuration
from other mgmd(s) using 'nodeid=0,localhost:1186'...

At this point ndb_mgmd will hang. In this case, kill the ndb_mgmd process (Ctrl + C or with the
kill command) and double-check the syntax of your config.ini file.

High Availability with MySQL Cluster

26

Installing and starting storage nodes
Storage nodes within a MySQL Cluster store all the data either in memory or on disk; they
store indexes in memory and conduct a significant portion of the SQL query processing. The
single-threaded storage node process is called ndbd and either this or the multi-threaded
version (ndbdmt) must be installed and executed on each storage node.

Getting ready
From the download page at http://dev.mysql.com, all files for MySQL Cluster for
RedHat and CentOS 5 can be found in the Red Hat Enterprise Linux 5 RPM section. It is
recommended that the following two RPMs should be installed on each storage node:

Cluster storage engine basic tools (this contains the actual storage node process)—
MySQL-Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm

Cluster storage engine extra tools (this contains other binaries that are useful to
have on your storage nodes)—MySQL-Cluster-gpl-storage-7.0.6-0.rhel5.
x86_64.rpm

Once these packages are downloaded, we will show in an example how to install the nodes,
start the storage nodes, and check the status of the cluster.

How to do it…
Firstly, download the two files required on each storage node (that is, complete this on all
storage nodes simultaneously):

[root@node1 ~]# cd ~/

[root@node1 ~]# mkdir mysql-storagenode

[root@node1 ~]# cd mysql-storagenode/

[root@node1 mysql-storagenode]# wget http://dev.mysql.com/get/Downloads/
MySQL-Cluster-7.0/MySQL-Cluster-gpl-storage-7.0.6-0.rhel5.x86_64.rpm/
from/http://a.mirror/

--21:17:04-- http://dev.mysql.com/get/Downloads/MySQL-Cluster-7.0/MySQL-
Cluster-gpl-storage-7.0.6-0.rhel5.x86_64.rpm/from/http://a.mirror/

Resolving dev.mysql.com... 213.136.52.29

<snip>

21:18:06 (9.25 MB/s) - `MySQL-Cluster-gpl-storage-7.0.6-0.rhel5.x86_
64.rpm' saved [4004834/4004834]





Chapter 1

27

[root@node1 mysql-storagenode]# wget http://dev.mysql.com/get/Downloads/
MySQL-Cluster-7.0/MySQL-Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm/from/
http://a.mirror/

--21:19:12-- http://dev.mysql.com/get/Downloads/MySQL-Cluster-7.0/MySQL-
Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm/from/http://a.mirror/

<snip>

21:20:14 (9.67 MB/s) - `MySQL-Cluster-gpl-tools-7.0.6-0.rhel5.x86_64.rpm'
saved [9524521/9524521]

Once both the files are downloaded, install these two packages using the same command as
it was used in the previous recipe:

[root@node1 mysql-storagenode]# rpm -ivh MySQL-Cluster-gpl-tools-7.0.6-
0.rhel5.x86_64.rpm MySQL-Cluster-gpl-storage-7.0.6-0.rhel5.x86_64.rpm

Preparing... ###
[100%]

 1:MySQL-Cluster-gpl-stora### [
50%]

 2:MySQL-Cluster-gpl-tools###
[100%]

Now, using your favorite text editor, insert the following into /etc/my.cnf file,
replacing 10.0.0.5:1186 with the hostname or IP address of the already installed
management node:

[mysql_cluster]
ndb-connectstring=10.0.0.5:1186

Ensure that you have completed the above steps on all storage nodes before
continuing. This is because (unless you force it) a MySQL Cluster will not start
without all storage nodes, and it is best practice to start all storage nodes at
the same time, if possible.

Now, as we have installed the storage node client and configured /etc/my.cnf file to allow
a starting storage node process to find its management node, we can start our cluster.

To join storage nodes to our cluster, following requirements must be met:

All storage nodes must be ready to join the cluster (this can be overridden,
if really required)

A config.ini file must be prepared with the details of the storage nodes in
a cluster, and then a management node must be started based on this file





High Availability with MySQL Cluster

28

The storage nodes must be able to communicate with (that is, no firewall) the
management node, otherwise, the storage nodes will fail to connect

The storage nodes must be able to communicate freely with each other; problems
here can cause clusters failing to start or, in some case, this can cause truly
bizarre behavior

There must be enough memory on the storage nodes to start the process (using the
configuration in this example, that is, the defaults will result in a total RAM usage of
approximately 115 MB per storage node)

When you start ndbd, you will notice that the two processes have started.
One is an angel process, which monitors the other---the main ndbd
process. The angel process is generally configured to automatically
restart the main process if a problem is detected, which causes that
process to exit. This can cause confusion, if you attempt to send a KILL
signal to just the main process as the angel process can create a
replacement process.

To start our storage nodes, on each node create the data directory that was configured for
each storage node in the config.ini file on the management node, and run ndbd with
the –-initial flag:

[root@node1 ~]# mkdir -p /var/lib/mysql-cluster

[root@node1 ~]# ndbd --initial

2009-07-06 00:31:57 [ndbd] INFO -- Configuration fetched from
'10.0.0.5:1186', generation: 1

[root@node1 ~]#

If you fail to create the data directory (/var/lib/mysql-cluster in our example in
the previous recipe), you may well get a Cannot become daemon: /var/lib/mysql-
cluster/ndb_3.pid: open for write failed: No such file or directory error.
If you get this, run the mkdir command again on the relevant storage node

Once you have started ndbd on each node, you can run the management client, ndb_mgm,
from any machine as long as it can talk to port 1186 on the management node with which
it will work.

ndb_mgm, like all MySQL Cluster binaries, reads the [mysqld_cluster]
section in /etc/my.cnf to find the management node's IP address to
connect to. If you are running ndb_mgm on a node that does not have this
set in /etc/my.cnf, you should pass a cluster connect string to ndb_mgm
(see the final recipe in this chapter—Cluster Concepts).

The --initial flag to ndbd tells ndbd to initialize the DataDir on the local disk,
overwriting any existing data (or in this case, creating it for the first time).







Chapter 1

29

You should only use --initial the first time you start a cluster or if you are deliberately
discarding the local copy of data. If you do it at other times, you risk losing all the data held in
the cluster, if there is no online node in the same nodegroup that stays online, long enough,
to update the starting node.

Be aware that starting ndbd with --initial does not always delete all of
the logfiles in the DataDir; you should delete these manually if you need to
remove them.

The cluster will go through various stages as it starts. If you run the ALL STATUS command
in the management client while the nodes are starting, you will see that they start off as
unconnected, then go through the startup phases, and finally are marked as started.

Because often a node starting must apply a large number of database transactions either
from other nodes or from its local disk, this process can take some time in clusters with data.
Although, in the case of an initial start, this process should be relatively fast. The following
output shows the management client when all the storage nodes have started:

[root@node5 ~]# ndb_mgm

-- NDB Cluster -- Management Client --

ndb_mgm> SHOW

Cluster Configuration

[ndbd(NDB)] 2 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 (not connected, accepting connect from 10.2.0.2)

id=12 (not connected, accepting connect from 10.2.0.3)

id=13 (not connected, accepting connect from any host)

id=14 (not connected, accepting connect from any host)

ndb_mgm> ALL STATUS

Node 3: started (mysql-5.1.34 ndb-7.0.6)

Node 4: started (mysql-5.1.34 ndb-7.0.6)

High Availability with MySQL Cluster

30

At this point, this cluster has one management node and two storage nodes that are
connected. You are now able to start the SQL nodes.

In the case you have any problems, look at the following points:

Cluster error log—in the DataDir on the management node, with a filename similar
to DataDir/ndb_1_cluster.log (the number is the sequence number) MySQL
Cluster has an inbuilt rotation system—when a file gets to 1 MB, a new one with a
higher sequence number is created

Storage node error log—in the DataDir on the relevant storage node, with a filename
similar to DataDir/ndb_4_out.log (the number is the cluster node ID)

These two logfiles should give you a pretty good idea of what is causing a problem.

If one node remains in phase 1, when others are in phase 2, this likely indicates a network
problem—normally, a firewall between storage nodes causes this issue. In such cases, double
check that there are no software or hardware firewalls between the nodes.

There's more…
For convenience (particularly, when writing scripts to manage large clusters), you may want to
start the ndbd process on all storage nodes to the point that they get configuration data from
the management node and are able to be controlled by it but you may not want to completely
start them. This is achieved with the --nostart or -n flag:

On the storage nodes (and assuming that ndbd is not already running):
[root@node1 ~]# ndbd –n

2009-07-09 20:59:49 [ndbd] INFO -- Configuration fetched from
'10.0.0.5:1186', generation: 1

If required (for example, the first time you start a node), you could add the
–initial flag as you would for a normal start of the storage node process.

Then, on the management node you should see that the nodes are not started (this is
different from not connected) as shown here:
ndb_mgm> ALL STATUS

Node 3: not started (mysql-5.1.34 ndb-7.0.6)

Node 4: not started (mysql-5.1.34 ndb-7.0.6)

Node 5: not started (mysql-5.1.34 ndb-7.0.6)

Node 6: not started (mysql-5.1.34 ndb-7.0.6)





Chapter 1

31

It is then possible to start all the nodes at the same time from the management client with the
command <nodeid> START as follows:
NDB_MGM> 3 START

Database node 3 is being started.

ndb_mgm> NODE 3: START INITIATED (VERSION 7.0.6)

NODE 3: DATA USAGE DECREASED TO 0%(0 32K PAGES OF TOTAL 2560)

You can start all storage nodes in a not started state with the command ALL START:
NDB_MGM> ALL START

NDB Cluster is being started.

NDB Cluster is being started.

NDB Cluster is being started.

NDB Cluster is being started.

During the start up of storage nodes, you may find the following list of phases useful, if nodes
fail or hang during a certain start up phase:

MySQL Clusters with a large amount of data in them will be slow to start; it
is often useful to look at CPU usage and network traffic to reassure you and
check that the cluster is actually still doing something.

Setup and initialization (Phase -1): During this phase, each storage node is
initialized (obtaining a node ID from the management node, fetching configuration
data (effectively the contents of config.ini file), allocating ports for inter-cluster
communication, and allocating memory).
Phase 0: If the storage node is started with --initial, the cluster kernel is
initialized and in all cases certain parts of it are prepared for use.
Phase 1: The remainder of the cluster kernel is started and nodes start
communicating with each other (using heartbeats).
Phase 2: Nodes check the status of each other and elect a Master node.
Phase 3: Additional parts of the cluster kernel used for communication are initialized.
Phase 4: For an initial start or initial node restart, the redo logfiles are created.
The number of these files is equal to the NoOfFragmentLogFiles variable in
the config.ini file. In the case of a restart, nodes read schemas and apply local
checkpoints, until the last restorable global checkpoint has been reached.
Phase 5: Execute a local checkpoint, then a global checkpoint, and memory
usage check.
Phase 6: Establish node groups.
Phase 7: The arbitrator node is selected and begins to function. At this point, nodes
are shown as started in the management client, and SQL nodes may join the cluster.
Phase 8: In the case of a restart, indexes are rebuilt.
Phase 9: Internal node's startup variables are reset.























High Availability with MySQL Cluster

32

Installing and starting SQL nodes
SQL nodes are the most common form of API nodes, and are used to provide a standard
MySQL interface to the cluster. To do this, they use a standard version of the MySQL server
compiled to include support for the MySQL Cluster storage engine—NDBCLUSTER.

In earlier versions, this was included in most binaries, but to use more current and future
versions of MySQL, you must specifically select the MySQL Cluster server downloads. It is
highly recommended to install a mysql client on each SQL node for testing.

Terminology sometimes causes confusion. A MySQL server is a mysqld
process. A MySQL client is the mysql command that communicates with
a MySQL server. It is recommended to install both on each SQL node, but of
course, it is only required to have the server (which can be connected to by
the clients on the other machines).

How to do it…
Download and install the following two files. For the sake of brevity, the process of using wget
to download a file and rpm to install a package is not shown in this recipe, but it is identical
to the procedure in the previous two recipes:

Server (from the cluster section)—MySQL-Cluster-gpl-server-7.a.b-
c.rhel5.x86_64.rpm

Client (this is identical to the standard MySQL client and has the same filename)—
MySQL-client-community-5.a.b-c.rhel5.x86_64.rpm

After installing these RPMs, a very simple /etc/my.cnf file will exist. We need to add two
parameters to the [mysqld] section of this file to tell the mysqld server to enable support
for MySQL Cluster and where to find its management node:

[mysqld]
Enable MySQL Cluster
ndbcluster
Tell this node where to find its management node
ndb-connectstring=10.0.0.5

The requirement to add lines to the [mysqld] section in addition to any
[mysql_cluster] that may already be there is only read by the ndb_*
daemons (but has a similar purpose). If you have a SQL node on the same
server as a storage node you would have both.

Some modern versions of MySQL will also use a [mysql_cluster] section,
but it is feasible to stick to defining the parameters in a [mysqld] section.





Chapter 1

33

With these lines added, start the SQL node as follows:

[root@node1 ~]# service mysql start

Starting MySQL. [OK]

At this point, even if there is an error connecting to the cluster, it is unlikely that you will get
anything other than okay here. However, if you see the following error in the standard mysql
log (often /var/lib/mysqld.log or /var/lib/mysql/hostname.err), you should
go and check that you have installed the correct server (the cluster server and not the
standard server):

090708 23:48:14 [ERROR] /usr/sbin/mysqld: unknown option '--
ndbcluster'
090708 23:48:14 [ERROR] Aborting

Even if your SQL node (MySQL server) starts without an error, it is important to verify that it
has successfully joined the cluster. There are three tests to carry out:

On the management node, run the SHOW command and ensure that this node is
now connected:

ndb_mgm> SHOW

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)]	4 node(s)

id=11 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=12 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=13 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6)

id=14 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6)

High Availability with MySQL Cluster

34

Now that you have confirmed that the SQL node is connected to the management node, in the
mysql client on the SQL node confirm the status of the NDB engine:

[root@node1 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 4

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> SHOW ENGINE NDB STATUS;

+------------+-----------------------+-----------------------------------

--+

| Type | Name | Status
 |

+------------+-----------------------+-----------------------------------

--+

| ndbcluster | connection | cluster_node_id=11, connected_
host=10.0.0.5, connected_port=1186, number_of_data_nodes=4, number_of_
ready_data_nodes=4, connect_count=0 |

Also check the output of the SHOW ENGINES command:

mysql> SHOW ENGINES;

+------------+---------+---
---------------+--------------+------+------------+

| Engine | Support | Comment
| Transactions | XA | Savepoints |

+------------+---------+---
---------------+--------------+------+------------+

| ndbcluster | YES | Clustered, fault-tolerant tables
| YES | NO | NO |

If the node is not connected, the status from the first command, SHOW ENGINE NDB STATUS,
will typically be something like:

cluster_node_id=0, connected_host=(null), connected_port=0, number_of_
data_nodes=0, number_of_ready_data_nodes=0, connect_count=0

Chapter 1

35

Otherwise, the command will fail with ERROR 1286 (42000): Unknown table engine
'NDB'. If the second command does not have a YES in the supported column for
ndbcluster there is a problem.

If any of these commands fail, check the following:

/etc/my.cnf [mysqld] section

That you have installed the cluster-specific mysqld binary

If the commands work, follow the steps in the next recipe to create a test MySQL Cluster table
and ensure that your cluster is working correctly.

Creating a MySQL Cluster table
In this recipe, we will create a simple table in the cluster, and we will both insert and select
data on this new table on two nodes in the example cluster created earlier in this chapter.

How to do it…

A MySQL Cluster table is a table of type NDBCLUSTER accessible from your
storage nodes and can be created in the normal way—with the only difference
being an explicit TYPE in the CREATE TABLE statement.

In older versions of MySQL Cluster, it was necessary to create databases on
all nodes. This is no longer the case.

In this example, we will create a very simple table, cluster_test on node1 and insert
some data into it:

[root@node1 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> CREATE DATABASE cluster_test;

Query OK, 1 row affected (0.43 sec)





High Availability with MySQL Cluster

36

mysql> USE cluster_test;

Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (0.84 sec)

mysql> INSERT INTO ctest () VALUES (1);

Query OK, 1 row affected (0.04 sec)

mysql> SELECT * FROM ctest;

+------+

| i |

+------+

| 1 |

+------+

1 row in set (0.00 sec)

The next step is to select this row from the other SQL node in the cluster (node2), and then
insert another row from the second node:

[root@node2 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| cluster_test |

| mysql |

Chapter 1

37

| test |

+--------------------+

4 rows in set (0.03 sec)

mysql> use cluster_test;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> show tables;

+------------------------+

| Tables_in_cluster_test |

+------------------------+

| ctest |

+------------------------+

1 row in set (0.04 sec)

mysql> SELECT * from ctest;

+------+

| i |

+------+

| 1 |

+------+

1 row in set (0.00 sec)

mysql> INSERT INTO ctest () VALUES (2);

Query OK, 1 row affected (0.01 sec)

High Availability with MySQL Cluster

38

Finally, we return to the first node and check that the data inserted on node2 is visible.

mysql> SELECT * FROM ctest;

+------+

| i |

+------+

| 2 |

| 1 |

+------+

2 rows in set (0.00 sec)

mysql>

Congratulations! The cluster works, and you have created a table in it. You can repeat these
tests while powering off the storage nodes and watch the cluster continue to work. With a
single-cluster storage node powered off, everything will continue to work (except for the SQL
node that was previously running on the powered-off mode, of course!).

Restarting a MySQL Cluster without
downtime

One of the key aspects of a highly-available system is that routine maintenance can be carried
out without any service interruption to users. MySQL Cluster achieves this through its shared
nothing architecture, and in this recipe we will show how to restart the three types of nodes
online (without taking the cluster down as a whole).

Getting started
For this recipe, we will be using the following cluster setup:

Four storage nodes

One management node

Two SQL nodes







Chapter 1

39

The output of the SHOW command on the management client for this cluster is as follows:

ndb_mgm> SHOW

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1, Master)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=12 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=13 (not connected, accepting connect from any host)

id=14 (not connected, accepting connect from any host)

How to do it…
In this section, we will show how to restart each node using our example cluster.

Restarting a storage node

There are two ways to restart a storage node. For both the methods, the first step is to
check the output of SHOW command in the management client to ensure that there is
at least one other online (not starting or shutdown) node in the same nodegroup.

In our example cluster, we have storage node ID 3 and 4 in
nodegroup 0 and storage node ID 5 and 6 in nodegroup 1.



High Availability with MySQL Cluster

40

The two options for restarting a node are as follows: Firstly, from the management
client a node can be restarted with the <nodeid> RESTART command:

ndb_mgm> 3 status

Node 3: started (mysql-5.1.34 ndb-7.0.6)

ndb_mgm> 3 RESTART

Node 3: Node shutdown initiated

Node 3: Node shutdown completed, restarting, no start.

Node 3 is being restarted

ndb_mgm> 3 status

Node 3: starting (Last completed phase 4) (mysql-5.1.34 ndb-7.0.6)

Node 3: Started (version 7.0.6)

ndb_mgm> 3 status

Node 3: started (mysql-5.1.34 ndb-7.0.6)

Secondly, on the storage node itself the ndbd process can simply be killed
and restarted:

Remember that ndbd has two processes—an angel process
in addition to the main process. You must kill both these
processes at the same time.

[root@node4 ~]# ps aux | grep ndbd

root 4082 0.0 0.4 33480 2316 ? Ss Jul08 0:00
ndbd --initial

root 4134 0.1 17.4 426448 91416 ? Sl Jul08 0:02
ndbd --initial

root 4460 0.0 0.1 61152 720 pts/0 R+ 00:11 0:00
grep ndbd

[root@node4 ~]# kill 4082 4134

[root@node4 ~]# ps aux | grep ndbd | grep -v grep | wc -l

0

Once we have killed the ndbd process, and ensured that no processes are running
with the name ndbd, we can restart the ndbd process:

[root@node4 ~]# ndbd

2009-07-09 00:12:03 [ndbd] INFO -- Configuration fetched from
'10.0.0.5:1186', generation: 1

Chapter 1

41

If you were to leave a management client connected during this process, you can
see that the management node picks up on the dead node and then allow it to rejoin
the cluster:

ndb_mgm> Node 6: Node shutdown completed. Initiated by signal 15.

ndb_mgm> Node 6: Started (version 7.0.6)

ndb_mgm> 6 status

Node 6: started (mysql-5.1.34 ndb-7.0.6)

Remember that you can restart more than one node at a
time, but you must always have one node fully started in
each nodegroup or your cluster will shut down.

Restarting a management node

Restarting a management node is best done by simply killing the ndb_mgmd
process and restarting it.

When there is no management node in the cluster, there
is no central logging for the cluster, and the storage and
the API nodes cannot start or restart (so if they fail they will
stay dead). In addition, processes that are initiated from the
management client (such as hot backups) cannot be run.

Firstly, we will pass the process ID of the ndb_mgmd process to the kill command:

[root@node5 mysql-cluster]# kill $(pidof ndb_mgmd)

This will kill the management node, so now start it again:

[root@node5 mysql-cluster]# ndb_mgmd --config-file=config.ini

2009-07-09 00:30:00 [MgmSrvr] INFO -- NDB Cluster Management
Server. mysql-5.1.34 ndb-7.0.6

2009-07-09 00:30:00 [MgmSrvr] INFO -- Loaded config from '//
mysql-cluster/ndb_1_config.bin.1'

Finally, verify that the management node is working:

[root@node5 mysql-cluster]# ndb_mgm

-- NDB Cluster -- Management Client --

ndb_mgm> 1 status

Node 1: connected (Version 7.0.6)



High Availability with MySQL Cluster

42

Restarting a SQL node

Restarting a SQL node is trivial—just restart the mysqld process as normal, and carry
out the checks mentioned earlier to ensure that the node restarts correctly.

[root@node1 ~]# service mysql restart

Shutting down MySQL.. [OK]

Starting MySQL.. [OK]

Recovering from a cluster shutdown
This recipe will cover the procedure to follow in case of a cluster shutdown. We discuss the
split brain problem and also explain how to start a cluster without all storage nodes.

How to do it…
This section covers the procedure to follow—both for a partial failure (some nodes fail, but the
cluster remains operational) and a complete failure (all nodes fail!).

Partial cluster failure

In the event of a single node failing, you will notice the following:

If the node that fails is a management node—no immediate problem
occurs, but other nodes cannot restart and activities requiring a
management node (online backups, centralized logging) will not
take place

If the node that fails is a storage node—assuming one node remains
in each nodegroup, there will be no immediate action (but there is
the possibility of a small number of transactions being rolled back)

If the node that fails is a SQL node—any clients connected to that
SQL node clearly will either have to use another SQL node or will fail,
but no effect on the cluster

To recover from a partial shutdown, carry out the restart procedure in the previous
recipe—Restarting a MySQL Cluster without downtime; however, it may not be
necessary to kill the existing process.

If you do find a zombied (crashed) process remaining, you
should first kill that process and then restart the node.











Chapter 1

43

Complete cluster failure

The following errors can cause a total cluster shutdown:

Catastrophic software bug that causes multiple cluster nodes to fail

Every node in the cluster loosing power (an entire facility failing for
example), split brain condition (that will be discussed shortly)

Malicious or mistaken users gaining access to the management
node or any storage node

A split brain problem refers to the problem of cutting a cluster suffering some
communication problems between nodes. If we have four nodes and split them into
two groups of two nodes each (perhaps, through the failure in a switch), there is
absolutely no way for either of the pairs to tell if the other node is working or not. In
this case, the only safe thing to do is to shut down both the nodes, even though both
pairs could have all the data required to carry on working.

Imagine what would happen if your four-data nodes, two-storage nodes cluster
continued working as two separate clusters—and then you had to attempt to
reconcile two completely different databases!

MySQL Cluster gets around this with the concept of an arbitrator—put simply,
the cluster nodes elect a single node to act as the arbitrator while all nodes
can still communicate.

In the event of nodes loosing each other's contact, they (as a new group) ask the
following questions:

Do we (nodes I can now talk to) have enough nodes to remain viable
(one storage node per nodegroup)?

Can I see the previously agreed arbitrator?

Unless the answer is yes for each node, the cluster will shut down with an error
similar to the following appearing in the log:

Forced node shutdown completed. Caused by error 2305: 'Node
lost connection to other nodes and cannot form a unpartitioned
cluster, please investigate if there are error(s) on other
node(s)(Arbitration error). Temporary error, restart node'.













High Availability with MySQL Cluster

44

The arbitrator is typically the management node, but can be
a SQL node and you can specify ArbitrationRank=1 in
config.ini file to make a node of high priority to become
the cluster arbitrator.

Recovery of a full cluster shutdown is conceptually simple—we need to start all
storage nodes. It is likely that storage nodes would have killed themselves or had
been killed by whatever caused the outage. So the procedure is identical to the
rolling cluster restart without killing the existing processes. In other words, start the
management node (ndb_mgmd), start all storage nodes (ndbd), and start all SQL
nodes (start or restart mysqld).

How it works…
During a full-cluster start up, the storage nodes will start and will have to use their local copies
of data that they stored to disk (It is likely that there will be some data loss after a total cluster
shutdown). By default, a running MySQL Cluster will commit a Local Checkpoint (LCP)—a copy
of all the local data held on disk—every time 4 MB of changes are made to the cluster (since
the previous LCP).

A MySQL Cluster will also take a global checkpoint (all transactions that have occurred since
the last LCP) to disk every two seconds. A storage node when starting from a full shutdown
will apply all local transactions up to the last LCP, and then apply them up to two seconds of
transactions from the latest global checkpoint to get data that is as up-to-date as possible.
Because global checkpoints are made consistently across the cluster, this allows for
consistent recovery of all nodes.

There's more…
In the case of a total cluster shutdown, it may happen that a storage node is damaged and
cannot be repaired quickly. It is possible to start your cluster with only one storage node
per nodegroup. To do this, pass the --nowait-nodes=<NODES> where <NODES> is a
comma-separated list of nodes not to wait for. For example, in this example cluster:

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

We could potentially start with nodes [(3 or 4) and (5 or 6)]. In this example, we will start
without node3:

Chapter 1

45

This example assumes that your cluster is already shut down.

Run the following command on the nodes that you want to start:

[root@node4 ~]# ndbd --nowait-nodes=3

2009-07-09 23:32:02 [ndbd] INFO -- Configuration fetched from
'10.0.0.5:1186', generation: 1

The cluster should start without node3:

ndb_mgm> ALL STATUS

Node 3: not connected

Node 4: started (mysql-5.1.34 ndb-7.0.6)

Node 5: started (mysql-5.1.34 ndb-7.0.6)

Node 6: started (mysql-5.1.34 ndb-7.0.6)

Clearly, at this point, the cluster no longer has a single point of failure and as quickly as
possible node3 should be repaired and started.

2
MySQL Cluster

Backup and Recovery

In this chapter, we will cover:

Importing SQL files to a MySQL server and converting them to MySQL Cluster

Taking an online backup of a MySQL Cluster

Restoring the cluster from a MySQL Cluster online backup

Restricting write access to a MySQL Cluster with single-user mode

Taking an offline backup with MySQL Cluster

Introduction
When designing a MySQL Cluster, it is unlikely that backups will be at the forefront of your
mind. However, it is important that they are considered at an early stage. In this chapter,
we will discuss the options available for backing up a MySQL Cluster and the considerations
to be made at the cluster-design stage.

There are two main ways to back up a MySQL Cluster:

First is the mysqldump command that is commonly used with all other
storage engines

Second is a hot backup facility provided within the MySQL Cluster kernel

Both of these options take a backup of both schema (table information) and data, and allow
this backup to be restored elsewhere. A MySQL Cluster hot backup must be imported to
another MySQL Cluster. A mysqldump backup may be imported to any MySQL server of
a similar version.















MySQL Cluster Backup and Recovery

48

Backups require early consideration during the design of a MySQL Cluster for two reasons:

1.	 Firstly, because MySQL Cluster offers some fantastic backup features far superior
to those available with other storage engines (even with third-party tools).

2.	 Secondly, because you may need to make small changes to your intended cluster
design to ensure that backups are easy and quick to both take and restore from
in future.

Backups are particularly important with a MySQL Cluster because generally all the data
is stored in memory (across multiple nodes). In most applications and database solutions
memory is used only to store temporary data due to the lack of persistence in the event of
a server crashing or rebooting. Due to the "shared-nothing high availability" architecture of
a MySQL Cluster, a correctly designed and operated in-memory cluster can be extremely
reliable as explained in Chapter 1, High Availability with MySQL Cluster.

However, the "No single point of failure" architecture, even when properly designed and
implemented, does not however guarantee absolute availability. It is, of course, possible for all
nodes in a cluster's nodegroup to fail at the same time (due to, for example, power outages or
software bugs). In this case, storage nodes will use the local and global checkpoints that they
automatically store to the local disk in the BackupDir to start up again with minimal loss of
data. However, it is important not to rely solely on the working of this process and is essential,
for several reasons, that every MySQL Cluster has regular and secure backups (that is, not
stored on the storage nodes!). Some reasons include:

Human error: Databases are managed and used by humans who make mistakes.
This is one reason that a replica is not the same as a backup; a replica will
immediately update to take account of any change, even if that change is an
accidental DROP TABLE command.

Application error: Applications are written by humans and may contain bugs.
Furthermore, applications may be attacked by crackers. In either case, the result
can be that the application sends queries that are damaging to a database and a
backup must be used to restore the data in the cluster to how it was at a previous
point in time.

Disaster recovery: MySQL Cluster requires low-latency connections between nodes,
and this almost certainly means that all your nodes will be in the same data center,
possibly, in the same rack. Clearly, a natural disaster or even small fire could destroy
all the nodes and all local backups, so a full backup that has been stored elsewhere
is vital.

It must be remembered that disk-based databases are also not immune
to disaster and can suffer from all of these problems in addition to being
more vulnerable to a single node crash. In some ways, storing data in
memory will make administrators more aware of its vulnerability and
encourage good backup practice!







Chapter 2

49

When designing a cluster, it is important to consider the following options:

If backups are initially to be stored on the same machines on which the storage
node processes are running, local disk space should be enough to store backups
regardless of how the backups are taken. This ideally will be on a block device (disk)
separate from the DataDir to ensure that DataDir I/O performance is unchanged
during the backup.

To restore a MySQL online backup, the binary ndb_restore must connect to an
API node , once per backup file (of which there will be one per storage node in the
backed up cluster). It is recommended to add these [API] sections to config.ini
file (one per ndb_restore command that you would likely want to run) at the initial
deployment of a cluster to reduce backup recovery times.

Backups should be automatically stored away from the cluster, preferably on
read-only media in an offsite location.

Importing SQL files to a MySQL server and
converting them to MySQL Cluster

It will often be required to import data from an SQL file and then convert this freshly installed
data to have a storage engine of NDB (MySQL Cluster's storage engine). This may be required
for the following reasons:

Importing mysqldump backup files in the case of a recovery

Importing data from a non-clustered system into a cluster, for example, a mysqldump
from an old system into a new cluster

In this recipe, we will follow an example that uses the world sample dataset provided by
MySQL for testing use. We will import it to MySQL, convert it from the default table engine
(in our case, MyISAM) to MySQL Cluster (NDBCLUSTER storage engine), and then check
that it appears on all the SQL nodes in the cluster.

This example uses a simple cluster with two SQL nodes—node1 and node2 (the configuration
of the rest of the MySQL Cluster is irrelevant).











MySQL Cluster Backup and Recovery

50

How to do it…
The world sample database is provided as a SQL file which includes statements to build
three tables and populate them with data. The tables are defined with a table type of MyISAM.

In this recipe, we will use this SQL file to be imported, but it could just as well be the output
from mysqldump running on another non-clustered server. The steps to do this are as follows:

1.	 The first step is to download the SQL file from the MySQL website to the temporary
directory /tmp/ as follows:
[root@node1 ~]# cd /tmp/

[root@node1 tmp]# wget http://downloads.mysql.com/docs/world.sql.
gz

--03:37:55-- http://downloads.mysql.com/docs/world.sql.gz

Resolving downloads.mysql.com... 192.9.76.15

Connecting to downloads.mysql.com|192.9.76.15|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 91954 (90K) [application/x-gzip]

Saving to: `world.sql.gz'

100%[=======================================>] 91,954 136K/s
in 0.7s

03:37:57 (136 KB/s) - `world.sql.gz' saved [91954/91954]

2.	 Uncompress the file using following command:
[root@node1 tmp]# gunzip world.sql.gz

3.	 The next step is to create a database, world, to hold the new tables:

[root@node1 tmp]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 5

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server
(GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> CREATE DATABASE world;

Query OK, 1 row affected (0.20 sec)

mysql> exit;

Bye

Chapter 2

51

Now there are two options—either import the SQL file as it is that will create MyISAM tables,
and then alter the table to be of ENGINE=NDBCLUSTER type or run sed to search and replace
the string ENGINE=MyISAM with ENGINE=NDBCLUSTER and import the modified set of SQL
commands. The latter option is faster and simpler but requires the use of the sed utility.

The first option (which is slower and more manual), that is, importing with existing storage
engine (MyISAM, in this example) and running ALTER TABLE command, is completed with
the following steps:

1.	 Firstly, import the SQL file with the same storage engine as follows:
[root@node1 tmp]# mysql world < world.sql

2.	 Secondly, enter the MySQL client, select the correct database, and check the tables
that need to be converted:
[root@node1 tmp]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 8

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server
(GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> USE world;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> SHOW TABLES;

+-----------------+

| Tables_in_world |

+-----------------+

| City |

| Country |

| CountryLanguage |

+-----------------+

3 rows in set (0.00 sec)

MySQL Cluster Backup and Recovery

52

3.	 Now, we can see all the tables in the database that have been imported. For each
table, check that the table is currently not using an engine of NDBCLUSTER:
mysql> SHOW TABLE STATUS FROM world LIKE 'City'\G;

*************************** 1. row ***************************

 Name: City

 Engine: MyISAM

 Version: 10

 Row_format: Dynamic

 Rows: 2076

 Avg_row_length: 92

 Data_length: 196608

Max_data_length: 0

 Index_length: 0

 Data_free: 0

 Auto_increment: 4080

 Create_time: NULL

 Update_time: NULL

 Check_time: NULL

 Collation: latin1_swedish_ci

 Checksum: NULL

 Create_options:

 Comment:

1 row in set (0.00 sec)

4.	 The final step is to convert tables that are not already in NDBCLUSTER to this storage
engine. To do this, run an ALTER TABLE query (one per table) which may take some
time as follows:

mysql> ALTER table City ENGINE=NDB;

Query OK, 4079 rows affected (1.64 sec)

Records: 4079 Duplicates: 0 Warnings: 0

mysql> ALTER table Country ENGINE=NDB;

Query OK, 239 rows affected (1.41 sec)

Records: 239 Duplicates: 0 Warnings: 0

mysql> ALTER table CountryLanguage ENGINE=NDB;

Query OK, 984 rows affected (1.41 sec)

Records: 984 Duplicates: 0 Warnings: 0

Chapter 2

53

NDB is an alias for NDBCLUSTER, which as explained in Chapter 1,
means a storage engine for MySQL. All MySQL Cluster tables must be of
type NDBCLUSTER.

The second, faster, technique, that is "importing as NDB tables", requires the sed stream
editor to be installed on the system (this is included by default with Red Hat Enterprise Linux 5
and CentOS 5). This technique changes the ENGINE=, on-the-fly with the following command:

[root@node1 tmp]# cat world.sql | sed -e 's/ENGINE=MyISAM/
ENGINE=NDBCLUSTER/g' | mysql world;

If the world.sql file contained InnoDB tables (or a mix of engines), the
search regular expression should be changed to whatever is appropriate.

While this is an extremely convenient technique, if your database contains
strings that might possibly contain the text ENGINE=MyISAM, this regular
expression will change it, which may be bad. I've never experienced this as
a likely problem, but it is worth bearing this in mind.

There's more…
By now, the data should be imported into the cluster regardless of the technique that you
used. As a final check, execute a SELECT query on more than one SQL node to ensure that
the data has been imported successfully.

The following example checks the number of rows in a certain table. The steps are as follows:

1.	 Firstly, enter the mysql client on one SQL node as follows:
[root@node2 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 22

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server
(GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

MySQL Cluster Backup and Recovery

54

2.	 Select the world database and view the tables contained within it as follows:
mysql> USE world;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> SHOW TABLES;

+-----------------+

| Tables_in_world |

+-----------------+

| City |

| Country |

| CountryLanguage |

+-----------------+

3 rows in set (0.00 sec)

3.	 Select the number of rows in the table (you can also use the DESC tablename
command to find the field names):
mysql> SELECT COUNT(ID) from City;

+-----------+

| COUNT(ID) |

+-----------+

| 4079 |

+-----------+

1 row in set (0.00 sec)

4.	 Now, repeat this identical process on another node and ensure that the number
of rows are the same.

5.	 If there are problems, run SHOW ENGINES command to ensure that NDBCLUSTER is
enabled and refer to the troubleshooting steps in Section 1 of this recipe.

Taking an online backup of a MySQL Cluster
MySQL Cluster online backups allow administrators to take a consistent, "point in time",
backup of an entire cluster. This is an extremely useful feature and this recipe will explain
how these backups work and demonstrate how to take an online backup.

Chapter 2

55

An online backup can only be restored into another MySQL Cluster. If you
wish to take a "disaster recovery" backup, which can be restored into say a
single MySQL server relatively quickly, you must use mysqldump (look at the
previous recipe) or cluster replication (explained in Chapter 5, High Availability
with MySQL Replication).

Getting ready
MySQL Cluster online backups cover all the tables in the cluster (that is, all the NDB tables)
and are initiated with a single command issued to the management client. The management
client contacts all storage nodes, which then start their backup. The resulting backup is
stored in a specified directory on each storage node, and each node dumps to disk its
primary fragments of the overall cluster data which consist of the following files:

Metadata—the details of cluster databases and tables, stored in the file
BACKUP-backup_id.node_id.ctl

Table data—the data within each table at the time of the backup, stored within the
file BACKUP-backup_id-0.node_id.data

Transaction logs—a logfile containing records of committed transactions, stored
within the file BACKUP-backup_id.node_id.log

Each node only takes a backup of the fragments for which it is the primary
node. There is only one storage node, primary, for each fragment. To
recover from a cluster backup, you require all of the backup files from each
storage node (that is, if you have four storage nodes, each will produce a
backup folder, and you will require all four folders to restore the backup
successfully).

As is clear from the filenames, each backup has a backup_id which is generated by the
management client when a backup is started. This is useful for keeping track of which files
are associated with which backup (this is particularly useful when backups files from all
nodes end up in the same place, for example, on a single folder on a backup server or tape).

How to do it…
To initiate an online backup, you must have a connection to the management node from a
management client, and run the command START BACKUP.

You must have all data nodes and a management node started to take a
backup successfully.







MySQL Cluster Backup and Recovery

56

In this example, we will backup a fully-functioning four storage node cluster.

Firstly, check the status of the cluster (all storage nodes must be up) using the show
command as follows:

ndb_mgm>SHOW

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

[ndb_mgmd(MGM)] 2 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

id=2 @10.0.0.6 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=12 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=13 (not connected, accepting connect from any host)

id=14 (not connected, accepting connect from any host)

Now start the backup as follows:

ndb_mgm> START BACKUP

Waiting for completed, this may take several minutes

Node 4: Backup 1 started from node 1

Node 4: Backup 1 started from node 1 completed

 StartGCP: 630209 StopGCP: 630212

 #Records: 7369 #LogRecords: 0

 Data: 496720 bytes Log: 0 bytes

ndb_mgm> exit

The backup is now completed. Take a moment to look at the files that have now appeared on
the storage nodes. There is now a new folder BACKUP-1 in the BACKUP subdirectory within
the DataDir on each storage node. We can see from the output of the management client
(and also the cluster log) that the backup ID is 1 and it has completed successfully.

Chapter 2

57

These are the files that are on node1 (which had a nodeID of 3 according to the
management client output earlier).

[root@node1 ~]# cd /var/lib/mysql-cluster/BACKUP/

[root@node1 BACKUP]# ls -lh

total 4.0K

drwxr-x--- 2 root root 4.0K Jul 23 22:31 BACKUP-1

[root@node1 BACKUP]# cd BACKUP-1/

[root@node1 BACKUP-1]# ls -lh

total 156K

-rw-r--r-- 1 root root 126K Jul 23 22:31 BACKUP-1-0.3.Data

-rw-r--r-- 1 root root 18K Jul 23 22:31 BACKUP-1.3.ctl

-rw-r--r-- 1 root root 52 Jul 23 22:31 BACKUP-1.3.log

Node2 will have exactly the same files; the only difference is the nodeID (which is 4). The
same can be seen on the other two storage nodes as follows:

[root@node2 ~]# cd /var/lib/mysql-cluster/BACKUP/BACKUP-1/

[root@node2 BACKUP-1]# ls -lh

total 152K

-rw-r--r-- 1 root root 122K Jul 23 22:31 BACKUP-1-0.4.Data

-rw-r--r-- 1 root root 18K Jul 23 22:31 BACKUP-1.4.ctl

-rw-r--r-- 1 root root 52 Jul 23 22:31 BACKUP-1.4.log

The default location for backups is the BACKUP subfolder in DataDir;
however, the parameter BackupDataDir in config.ini file can be
specified to set this to something else and it is best practice to use a separate
block device for backups, if possible. For example, we could change the
[NDBD_DEFAULT] section to store backups on /mnt/disk2 as follows:

[ndbd default]
DataDir=/var/lib/mysql-cluster
BackupDataDir=/mnt/disk2
NoOfReplicas=2

MySQL Cluster Backup and Recovery

58

There's more…
There are three tricks for the initiation of online backups:

Preventing commands hanging
The START BACKUP command, by default, waits for the backup to complete before returning
control of the management client to the user. This can be annoying, and there are two other
options to achieve the backup:

START BACKUP NOWAIT: This returns control to the user immediately; the
management client will display the output when the backup is completed (and you
can always check the cluster management log.) This has the disadvantage that if
a backup is going to fail, it is likely to fail during this brief initial period where the
management client passes the backup instruction to all storage nodes.

START BACKUP WAIT STARTED: This returns control to the user as soon as the
backup is started (that is, each of the storage nodes has confirmed receipt of the
instruction to start a backup). A backup is unlikely to fail after this point unless
there is a fairly significant change to the cluster (such as a node failure).

Aborting backups in progress
It is possible to abort a backup that is in progress using the ABORT BACKUP <number>, which
will return control immediately and display the output, once all storage nodes confirm receipt
of the abort command.

All of these management client commands can be passed using the following syntax:

[root@node5 ~]# ndb_mgm -e COMMAND

For example, by adding these commands to the cron:

[root@node5 ~]# crontab -e

Add a line such as the following one:

@hourly /usr/bin/ndb_mgm -e "START BACKUP NOWAIT" 2>&1

This trick is particularly useful for simple scripting.

Defining an exact time for a consistent backup
By default, an online backup of a MySQL Cluster takes a consistent backup across all nodes
at the end of the process. This means that if you had two different clusters and ran an online
backup at the same time, the backup would not take place at exactly the same time. The
difference between the two backups would be a function of the backup duration, which
depends on various factors such as the performance of the node and the amount of data to
backup. This also means that if you required a backup of a cluster at an exact time, you can
only guess how long a backup will take and try to configure a backup at the right time.





Chapter 2

59

It is sometimes desirable to take a consistent backup at the exact time, for example, when you
have a business requirement to take a backup at midnight of all your database servers. This is
most often managed by having cron execute the commands for you automatically, and using
NTP to keep server time very accurate.

The command to execute in this case is the same, but an additional parameter is passed
to the START BACKUP command, that is, SNAPSHOTSTART as follows:

root@node5 ~]# ndb_mgm -e "START BACKUP SNAPSHOTSTART"

Restoring from a MySQL Cluster
online backup

There are several situations in which you may find yourself restoring a backup. In this recipe,
we will briefly discuss common causes for recovery and then show an example of using the
ndb_restore for a painless backup recovery. Later in the recipe, we will discuss techniques
to ensure that data is not changed during a restore. In broader terms, a backup recovery
is required when the running cluster is, for whatever reason, no longer running and the
automatically created checkpoints stored in the DataDir on each storage node are not
sufficient for recovery. Some examples that you may encounter are as follows:

A disk corruption has occurred which destroyed your DataDir on all storage nodes
in a nodegroup and simultaneously crashed the machines so the in-memory copy
of data was lost.

You are conducting a major cluster upgrade (which requires a backup, total
shutdown, start of the new cluster, and a restore). In this case, be aware that you
can generally only import a backup into a more recent version of MySQL Cluster
(review the documentation in this case).

Human error or one of the other causes mentioned earlier in this section require you
to restore the database back to an earlier period in time.

The principles of backup restoration are as follows:

The cluster is restarted to clear all the data (that is, ndb_mgmd is restarted and
ndbd --initial is executed on all storage nodes)

Each backup directory (one per existing storage node) is copied back to a server that
can connect as an API node (that is, it is on the cluster network and has a [MYSQLD]
section in config.ini file that it may bind to)

A binary ndb_restore command is run once per backup folder (that is, once per
node in the existing cluster)













MySQL Cluster Backup and Recovery

60

The first ndb_restore process runs with -m to restore the metadata on all nodes, all others
just run with the following options:

-b—backup ID, this is the one printed by the management node during
START BACKUP and is the first number in the BACKUP-x-y* files

-n—node ID of storage node that took backups, this is the final digit in the
BACKUP-x-y* files

-r—path to the backup files to be used for recovery

When running ndb_restore, you have two options:

1.	 Run ndb_restore processes in parallel. In this case, you must ensure that no other
SQL nodes (such as a mysqld process) can change data in the cluster. This can be
done by stopping the mysqld processes. Each ndb_restore will require its own
[MYSQLD] section in config.ini file.

2.	 Run ndb_restore processes one at a time. In this case, you can use single-user
mode (see the next recipe) to ensure that only the currently active ndb_restore
process is allowed to change the data in the cluster.

You can restore a backup into a cluster with a different number of nodes; you
must run ndb_restore once per existing number of storage nodes, pointing
it at each of the backup files created. If you fail to do this, you will not recover
all of your data but you will recover some of your data and you may be misled
into thinking that you have recovered all the data successfully.

How to do it…
In this recipe, we will use a simple example to demonstrate a restore using the backups
generated in the example in the previous recipe (this produced a backup with an ID of 1
from a cluster consisting of four storage nodes with IDs 3,4,5, and 6). We have an API node
allocated for each storage node, which is normally connected to by a mysqld process (that
is, a SQL node). The backups have been stored in /var/lib/mysql-cluster/BACKUPS/
BACKUP-1/ on each of the four nodes.

While it is not recommended to run production SQL nodes (that is, SQL nodes
that actually receive application traffic) on the same servers as storage
nodes due to the possibility of mysqld using a large amount of memory and
causing ndbd to be killed, I have always found it useful to configure storage
nodes to run mysqld for testing and debugging purposes and in this case, it
is extremely useful to have an API node already configured for each SQL node.







Chapter 2

61

In the following example, we are demonstrating a recovery from a backup. Firstly, ensure
that you have taken a backup (earlier recipe in this chapter) and shut down all nodes in your
cluster to have a realistic starting point (that is, every node is dead).

The first step in the recovery process is to stop all SQL nodes to prevent them from writing to
the cluster during the recovery process. Shut down all mysqld processes running on all SQL
nodes connected to the cluster.

Also to replicate a realistic recovery from a backup, on all storage nodes, copy the
BACKUP-X (where X is the backup ID, in our example, it is 1) folder from the BACKUP
subdirectory of DataDir to /tmp. In a real situation, you would likely have to obtain
the BACKUP-1 folder for each storage node from a backup server:

[root@node1 mysql-cluster]# cp -R /var/lib/mysql-cluster/BACKUP/BACKUP-1/
/tmp/

Start the cluster management node as follows:

[root@node5 ~]# ndb_mgmd

Verify that ndbd is not already running (if it is, kill it), and start ndbd on all storage nodes
with --initial:

[root@node1 ~]# ps aux | grep ndbd | grep -v grep | wc -l

0

[root@node1 ~]# ndbd --initial

2009-07-23 23:58:35 [ndbd] INFO -- Configuration fetched from
'10.0.0.5:1186', generation: 1

Wait for the cluster to start by checking the status on the management node as follows:

ndb_mgm> ALL STATUS

Node 3: starting (Last completed phase 0) (mysql-5.1.34 ndb-7.0.6)

Node 4: starting (Last completed phase 0) (mysql-5.1.34 ndb-7.0.6)

Node 5: starting (Last completed phase 0) (mysql-5.1.34 ndb-7.0.6)

Node 6: starting (Last completed phase 0) (mysql-5.1.34 ndb-7.0.6)

ndb_mgm> ALL STATUS

Node 3: started (mysql-5.1.34 ndb-7.0.6)

Node 4: started (mysql-5.1.34 ndb-7.0.6)

Node 5: started (mysql-5.1.34 ndb-7.0.6)

Node 6: started (mysql-5.1.34 ndb-7.0.6)

MySQL Cluster Backup and Recovery

62

At this point, you have a working cluster with no SQL nodes connected and no data in
the cluster.

In this example, we will restore the four nodes backups in parallel by using a SQL node on
each of the four storage nodes. As discussed in Chapter 1, it is not a good idea to expose SQL
nodes running on storage nodes to production (application) traffic due to the risk of swapping.
However, config.ini file should allow one to connect from each storage node because the
ndb_restore binary, which does the dirty work of restoring the backup, will connect as if it
was a SQL node.

Although we are going to restore all four storage nodes backups
in one go, it is important to run the first ndb_restore command
slightly before the others and we'll run this with –m to restore the
cluster-wide metadata. Once the metadata is restored (a very quick
process), the other ndb_restore commands can be started.

Now, we are ready to restore. Triple check that no SQL nodes are connected, and that there
is one API node slot available for each of the data node's IP addresses as follows:

ndb_mgm> SHOW

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

[ndb_mgmd(MGM)] 2 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

id=2 @10.0.0.6 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 (not connected, accepting connect from 10.0.0.1)

id=12 (not connected, accepting connect from 10.0.0.2)

id=13 (not connected, accepting connect from 10.0.0.3)

id=14 (not connected, accepting connect from 10.0.0.4)

Chapter 2

63

Now, start the restore of the first storage node (ID = 3)

[root@node1 BACKUP-1]# ndb_restore -m -b 1 -n 3 -r /tmp/BACKUP-1/

Backup Id = 1

Nodeid = 3

backup path = /tmp/BACKUP-1/

Opening file '/tmp/BACKUP-1/BACKUP-1.3.ctl'

Backup version in files: ndb-6.3.11 ndb version: mysql-5.1.34 ndb-7.0.6

Stop GCP of Backup: 0

Connected to ndb!!

Successfully restored table `cluster_test/def/ctest`

Successfully restored table event REPL$cluster_test/ctest

Successfully restored table `world/def/CountryLanguage`

Successfully created index `PRIMARY` on `CountryLanguage`

Successfully created index `PRIMARY` on `Country`

Opening file '/tmp/BACKUP-1/BACKUP-1-0.3.Data'

Processing data in table: cluster_test/def/ctest(7) fragment 0

…___

Processing data in table: mysql/def/ndb_schema(4) fragment 0

Processing data in table: world/def/Country(10) fragment 0

Opening file '/tmp/BACKUP-1/BACKUP-1.3.log'

Restored 1368 tuples and 0 log entries

NDBT_ProgramExit: 0 - OK

[root@node1 BACKUP-1]#

If there is no free API node for the ndb_restore process on each
node, it will fail with the following error:

Configuration error: Error : Could not allocate
node id at 10.0.0.5 port 1186: No free node id
found for mysqld(API).
Failed to initialize consumers
NDBT_ProgramExit: 1 – Failed

In this case, check that there is an available [mysqld] section in
config.ini file.

MySQL Cluster Backup and Recovery

64

As soon as the restore gets to the line (Opening file '/tmp/BACKUP-1/BACKUP-1-
0.3.Data'), you can (and should) start restoring the other three nodes. Use the same
command, without the –m on the other three nodes ensuring that the correct node ID is
passed to the –n flag:

[root@node2 ~]# ndb_restore -b 1 -n 4 -r /tmp/BACKUP-1/

Use the same command on nodes 3 and 4 as follows:

[root@node3 ~]# ndb_restore -b 1 -n 5 -r /tmp/BACKUP-1/

[root@node4 ~]# ndb_restore -b 1 -n 6 -r /tmp/BACKUP-1/

Once all the four nodes return NDBT_ProgramExit: 0 – OK, the backup is restored. Start
the mysqld processes on your SQL nodes and check that they join the cluster, and your
cluster is back.

If you attempt to restore the cluster with the wrong nodeID or wrong backupID, you will get
the following error:

[root@node1 mysql-cluster]# ndb_restore -m -n 1 -b 1 -r /tmp/BACKUP-1/

Nodeid = 1

Backup Id = 1

backup path = /tmp/BACKUP-1/

Opening file '/tmp/BACKUP-1/BACKUP-1.1.ctl'

readDataFileHeader: Error reading header

Failed to read /tmp/BACKUP-1/BACKUP-1.1.ctl

NDBT_ProgramExit: 1 - Failed

Restricting write access to a MySQL Cluster
with single-user mode

Most MySQL Clusters will have more than one SQL node (mysqld process) as well as the
option for other API nodes such as ndb_restore to connect to the cluster. Occasionally, it is
essential for only one API node to access the cluster. MySQL Cluster has a single-user mode
which, allows you to temporarily specify only a single API node that may execute the queries
against the cluster.

In this recipe, we will use an example cluster with two SQL nodes, nodeIDs 13 and 14,
execute a query against both the nodes, enter single-user mode, repeat the experiment, and
finish by verifying that once the single user mode is exited, the query works as it did at the
beginning of the exercise.

Chapter 2

65

Within a single SQL node, the standard MySQL LOCK TABLES queries will
work as expected, if no other nodes are changing the data in NDBCLUSTER
tables. The only way to be sure of this is to use a single-user mode.

How to do it…
A single-user mode is controlled with the following two management client commands:

ndb_mgm> ENTER SINGLE USER NODE X

ndb_mgm> EXIT SINGLE USER MODE

For this recipe, the sample cluster initial state is as follows (It is important to notice the
number of storage nodes, and the storage node IDs that are in each nodegroup, as we
will require this information when restoring using ndb_restore while in the single user
mode. For a reminder on how nodegroups work, see Chapter 1.):

ndb_mgm> SHOW

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

[ndb_mgmd(MGM)] 2 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

id=2 @10.0.0.6 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=12 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=13 (not connected, accepting connect from any host)

id=14 (not connected, accepting connect from any host)

MySQL Cluster Backup and Recovery

66

SQL node 1:

mysql> SELECT * from City WHERE 1 ORDER BY ID LIMIT 0,1;

+----+-------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+----+-------+-------------+----------+------------+

| 1 | Kabul | AFG | Kabol | 1780000 |

+----+-------+-------------+----------+------------+

1 row in set (0.04 sec)

SQL node 2:

mysql> SELECT * from City WHERE 1 ORDER BY ID LIMIT 0,1;

+----+-------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+----+-------+-------------+----------+------------+

| 1 | Kabul | AFG | Kabol | 1780000 |

+----+-------+-------------+----------+------------+

1 row in set (0.05 sec)

We now enter single-user mode, allowing only node 11 (the first SQL node, as shown by the
output from SHOW command):

Management client:

ndb_mgm> ENTER SINGLE USER NODE 11;

Single user mode entered

Access is granted for API node 11 only.

SQL node 1 still continues to work (as it has node ID of 11):

mysql> SELECT * from City WHERE 1 ORDER BY ID LIMIT 0,1;

+----+-------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+----+-------+-------------+----------+------------+

| 1 | Kabul | AFG | Kabol | 1780000 |

+----+-------+-------------+----------+------------+

1 row in set (0.04 sec)

SQL node 2, however, will not execute any query (including SELECT queries):

mysql> SELECT * from City WHERE 1 ORDER BY ID LIMIT 0,1;

ERROR 1296 (HY000): Got error 299 'Operation not allowed or aborted due
to single user mode' from NDBCLUSTER

Chapter 2

67

At this point, we can execute any queries on SQL node 1 and we also know that nothing else
is changing the cluster (tables that are not in the cluster are unaffected). However, note that
SQL node 1 can still run more than one query so we should ensure that we only do one thing
at a time, and use appropriate locks when we do not want other processes to affect our work.
During single-user mode, the management client shows storage (not SQL / API) nodes as
being in single-user mode:

ndb_mgm> SHOW

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, single user mode, Nodegroup: 0)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, single user mode, Nodegroup: 0,
Master)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, single user mode, Nodegroup: 1)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, single user mode, Nodegroup: 1)

Once we have finished the tasks that were required for this mode, we can exit from the
single-user mode.

On the management client, use the following command to exit single-user mode:

ndb_mgm> EXIT SINGLE USER MODE;

Exiting single user mode in progress.

Use ALL STATUS or SHOW to see when single user mode has been exited.

ndb_mgm> ALL STATUS

Node 3: started (mysql-5.1.34 ndb-7.0.6)

Node 4: started (mysql-5.1.34 ndb-7.0.6)

Node 5: started (mysql-5.1.34 ndb-7.0.6)

Node 6: started (mysql-5.1.34 ndb-7.0.6)

Verify that the SQL commands executed on SQL node 1 are again working as follows:

mysql> SELECT * from City WHERE 1 ORDER BY ID LIMIT 0,1;

+----+-------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+----+-------+-------------+----------+------------+

| 1 | Kabul | AFG | Kabol | 1780000 |

+----+-------+-------------+----------+------------+

1 row in set (0.04 sec)

MySQL Cluster Backup and Recovery

68

Finally, verify that the SQL commands executed on SQL node 2 are also working:

mysql> SELECT * from City WHERE 1 ORDER BY ID LIMIT 0,1;

+----+-------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+----+-------+-------------+----------+------------+

| 1 | Kabul | AFG | Kabol | 1780000 |

+----+-------+-------------+----------+------------+

1 row in set (0.05 sec)

There's more…
To be 100 percent sure that ndb_restore will be the only thing connecting to a cluster,
it is possible to pass --ndb-nodeid=x to ndb_restore to ensure that ndb_restore
picks up the node to which you have granted the single-user mode. This can be useful when
SQL nodes in a cluster also serve up non-clustered databases and therefore just because a
cluster is down, it is not acceptable to take down the SQL nodes to restore the cluster data.
Unfortunately, using ndb_restore with single-user mode (by definition) requires you to run
each ndb_restore one after the other, which will be significantly slower, particularly, in
larger clusters.

For example, if you are running ndb_restore, on a node 10.0.0.10 you can add a
dedicated ndb_restore API node to config.ini file:

[mysqld]
id=20
HostName=10.0.0.10

Restart the cluster to add this new node and enter single-user mode on node 20:

ndb_mgm> ENTER SINGLE USER NODE 20;

Single user mode entered

Access is granted for API node 20 only.

Run ndb_restore ensuring that it connects as node 20 (and therefore is not blocked out by
single-user mode):

[root@node1 mysql-cluster]# ndb_restore --ndb-nodeid=20 -m -b 1 -n 3 -r
/tmp/BACKUP-1/

Chapter 2

69

In the case of running ndb_restore, it is often easier to pre-allocate one
API node per storage node in the config.ini file. In addition, it's easy if
you are running a SQL node on storage nodes for testing to shut down the
mysqld processes prior to attempting a cluster restart, and finally, to run
ndb_restore in parallel once in every storage node.

Taking an offline backup with MySQL Cluster
The MySQL client RPM includes the binary mysqldump, which produces SQL statements from
a MySQL database. In this recipe, we will explore the usage of this tool with MySQL Clusters.

Taking a backup with mysqldump for MySQL Cluster (NDB) tables is identical to other table
engines and has all of the same disadvantages—most importantly that it requires significant
locking to take a consistent backup. However, it is simple, easy to verify, and trivial to restore
from and also provides a way to restore the backup from a MySQL Cluster into a standalone
server (for example, by using InnoDB) in the case that a cluster is not available for recovery.

How to do it…
To run mysqldump in the simplest way possible is to execute the following command:

mysqldump [options] db_name [tables]

It is often desirable to backup more than one or all databases. In that case, mysqldump
must run with the --all-databases option. It is also often desirable to compress backups
on-the-fly, and pipe the output to a file with a timestamp in its name, which we will do in the
first example. To get a point in time (consistent) backup of an entire MySQL Cluster with
mysqldump, you must ensure two things as follows:

Only the SQL node to which mysqldump is connected is able to change the data in
the cluster

On that SQL node, the only query running is the mysqldump. This can be achieved
with the --lock-all-tables option which will take a global read lock for the
duration of the backup

These two requirements effectively take your cluster down for the duration of the backup,
which may not be acceptable. If you require availability at all times then MySQL Cluster
Hot Backups are more appropriate. However, if you do need point in time backups using
mysqldump, the process is covered in detail in the following There's more… section.





MySQL Cluster Backup and Recovery

70

If you are using disk-based tables with MySQL Cluster, mysqldump can run with the
--all-tablespaces option to include tablespace creation commands which are
required for importing disk-based tables to an entirely new cluster.

Once created with mysqldump, a SQL file can be imported using the recipe Importing SQL
files to a MySQL Server and converting to MySQL Cluster, although if compressed with
gzip, it should be uncompressed first. Additionally, the steps in this recipe to ALTER the
imported tables or to replace MyISAM with NDB are unnecessary, as mysqldump will include
ENGINE=NDBCLUSTER in the SQL dump, which it produces for clustered tables.

To create a non-consistent backup of the world database, execute the mysqldump command
on a SQL node as follows (the following command also compresses the output and saves it
to a file in /tmp/):

[root@node1 ~]# mysqldump world | gzip -9 > /tmp/backup-world-$(date
'+%F_%T').sql.gz

Replace the database name with the --all-databases flag to backup all databases
on the node.

To import this backup in a new clustered database, world_new, first create the
new database:

[root@node1 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 13

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> CREATE DATABASE world_new;

Query OK, 1 row affected (0.22 sec)

To uncompress the backup, use the following command:

[root@node1 ~]# gunzip /tmp/backup-world-2009-07-28_00\:14\:56.sql.gz

Import the backup as follows:

[root@node1 ~]# mysql world_new < /tmp/backup-world-2009-07-28_
00\:14\:56.sql

Chapter 2

71

Now, check that it has imported correctly:

[root@node1 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 15

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> USE world_new

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> SHOW TABLES;

+---------------------+

| Tables_in_world_new |

+---------------------+

| City |

| Country |

| CountryLanguage |

+---------------------+

3 rows in set (0.00 sec)

We can see that there is still a full count of rows in the City table:

mysql> SELECT COUNT(id) FROM City WHERE 1;

+-----------+

| count(id) |

+-----------+

| 2084 |

+-----------+

1 row in set (0.00 sec)

MySQL Cluster Backup and Recovery

72

There's more…
There are a couple of tricks that can make mysqldump more useful, which are covered briefly
in the following section.

Importing a cluster SQL file to an unclustered MySQL Server
To import a mysqldump produced SQL file from a NDB cluster as another (non-clustered)
engine, we can use a simple sed substitution. This could be useful in a disaster recovery
situation where a cluster is physically destroyed and there are not enough machines available
for an immediate rebuild of the cluster, but it is desirable to have some access to the data.

This example creates a new database, world_innodb and imports the NDB backup created
earlier as an InnoDB table. This process is similar to the process described in the Importing
SQL files to a MySQL server and converting them to MySQL Cluster recipe earlier in this
section, so, for a line-by-line guide, refer to that recipe.

The first key difference is that you must create the new database:

mysql> CREATE DATABASE world_innodb;

Query OK, 1 row affected (0.15 sec)

mysql> exit

This time the regular expression changes NDBCLUSTER to InnoDB:

[root@node1 tmp]# cat /tmp/backup-world-2009-07-28_00\:14\:56.sql | sed
-e 's/ENGINE=ndbcluster/ENGINE=innodb/g' | mysql world_innodb;

Note that the same caveat discussed earlier on sed applies—if your data includes the string
NDBCLUSTER, it could be replaced.

Running mysqldump for a consistent backup
To take a consistent, point in time, backup with mysqldump, we must:

Enter the single-user mode to ensure that only one SQL node (mysqld process) can
make queries against the cluster

Lock the tables on that node to ensure that only our dump query is running during
the backup

To do this, we start by identifying the node on which we will run mysqldump command.

[root@node5 ~]# ndb_mgm

-- NDB Cluster -- Management Client --

ndb_mgm> SHOW

Connected to Management Server at: 10.0.0.5:1186





Chapter 2

73

Cluster Configuration

[ndbd(NDB)] 2 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=12 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=13 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6)

id=14 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6)

In this example, we will use the SQL node on node ID 12; it makes no difference which node
you choose, but it may be best to select a relatively high-performance SQL node (specifically,
one with good disks) for lower backup times.

If there is any confusion as to which SQL node is which, there is a command
that quickly identifies the connection details for a SQL node:
mysql> SHOW ENGINE NDBCLUSTER STATUS;

This shows, among its output, the node ID of the SQL node in the format
cluster_node_id=12.

When we enter single-user mode, it locks the cluster down to only allow this node to access;
see the previous recipe for more details:

ndb_mgm> ENTER SINGLE USER MODE 12

Single user mode entered

Access is granted for API node 12 only.

Now, we can run mysqldump on that node:

[root@node2 ~]# mysqldump --lock-all-tables --all-tablespaces world > /
tmp/backup.sql

MySQL Cluster Backup and Recovery

74

As soon as this completes, we exit single-user mode and the cluster returns quickly to normal:

ndb_mgm> EXIT SINGLE USER MODE;

Exiting single user mode in progress.

Use ALL STATUS or SHOW to see when single user mode has been exited.

ndb_mgm> SHOW

Cluster Configuration

[ndbd(NDB)] 2 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)]	4 node(s)

id=11 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=12 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=13 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6)

id=14 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6)

The backup should now be compressed with gzip:

[root@node2 ~]# gzip -9 /tmp/backup.sql

A checksum may be recorded for verification:

[root@node2 ~]# md5sum /tmp/backup.sql

d8e8fca2dc0f896fd7cb4cb0031ba249 /tmp/backup.sql

And sent to an offsite location, for example with scp:

[root@node2 ~]# scp /tmp/backup-sql user@remote.host:/mnt/backups/
/tmp/backup.sql

You may find it useful, before doing any of this, to move it to a more descriptive name,
for example:

[root@node2 ~]# mv /tmp/backup.sql /tmp/$(hostname -s)_backup_world_
$(date +"%F_%H").sql

Which produces the following more useful filename:

[root@node2 ~]# ls /tmp/ | grep sql

Node2_backup_world_2009-12-10_23.sql

These files can be more useful to archive.

3
MySQL Cluster

Management

In this chapter, we will cover:

Configuring multiple management nodes

Obtaining usage information

Adding storage nodes online

Replication between MySQL Clusters

Replication between MySQL Clusters with a backup channel

User-defined partitioning

Disk-based tables

Calculating DataMemory and IndexMemory

Introduction
This chapter contains recipes that cover common management tasks for a MySQL Cluster.
This includes tasks that are carried out on almost every production cluster such as adding
multiple management nodes for redundancy and monitoring the usage information of a
cluster to ensure that a cluster does not run out of memory. Additionally, it covers the tasks
that are useful for specific situations such as setting up replication between clusters (useful
for protection against entire site failures) and using disk-based tables (useful when a cluster
is required, but it's not cost-effective to store all the data in memory).

















MySQL Cluster Management

76

Configuring multiple management nodes
Every MySQL Cluster must have a management node to start and also to carry out critical
tasks such as allowing other nodes to restart, running online backups, and monitoring the
status of the cluster. The previous chapter demonstrated how to build a MySQL Cluster
with just one management node for simplicity. However, it is strongly recommended for a
production cluster to ensure that a management node is always available, and this requires
more than one management node. In this recipe, we will discuss the minor complications that
more than one management node will bring before showing the configuration of a new cluster
with two management nodes. Finally, the modification of an existing cluster to add a second
management node will be shown.

Getting ready
In a single management node cluster, everything is simple. Nodes connect to the management
node, get a node ID, and join the cluster. When the management node starts, it reads the
config.ini file, starts and prepares to give the cluster information contained within the
config.ini file out to the cluster nodes as and when they join.

This process can become slightly more complicated when there are multiple management
nodes, and it is important that each management node takes a different ID. Therefore, the
first additional complication is that it is an extremely good idea to specify node IDs and ensure
that the HostName parameter is set for each management node in the config.ini file.

It is technically possible to start two management nodes with different cluster configuration
files in a cluster with multiple management nodes. It is not difficult to see that this can cause
all sorts of bizarre behavior including a likely cluster shutdown in the case of the primary
management node failing. Ensure that every time the config.ini file is changed, the
change is correctly replicated to all management nodes. You should also ensure that all
management nodes are always using the same version of the config.ini file.

It is possible to hold the config.ini file on a shared location such as a NFS share,
although to avoid introducing complexity and a single point of failure, the best practice
would be to store the configuration file in a configuration management system such as
Puppet (http://www.puppetlabs.com/) or Cfengine (http://www.cfengine.org/).

How to do it...
The following process should be followed to configure a cluster for multiple management
nodes. In this recipe, we focus on the differences from the recipes in Chapter 1, High
Availability with MySQL Cluster. Initially, this recipe will cover the procedure to be followed in
order to configure a new cluster with two management nodes. Thereafter, the procedure for
adding a second management node to an already running single management node cluster
will be covered.

Chapter 3

77

The first step is to define two management nodes in the global configuration file config.ini
on both management nodes.

In this example, we are using IP addresses 10.0.0.5 and 10.0.0.6 for the two
management nodes that require the following two entries of [ndb_mgmd] in the
config.ini file:

[ndb_mgmd]
Id=1
HostName=10.0.0.5
DataDir=/var/lib/mysql-cluster

[ndb_mgmd]
Id=2
HostName=10.0.0.6
DataDir=/var/lib/mysql-cluster

Update the [mysql_cluster] section of each storage node's /etc/my.cnf to point the
node to the IP address of both management nodes:

[mysql_cluster]
ndb-connectstring=10.0.0.5,10.0.0.6

Update the [mysqld] section of each SQL node's /etc/my.cnf to point to both
management nodes:

[mysqld]
ndb-connectstring=10.0.0.5,10.0.0.6

Now, prepare to start both the management nodes. Install the management node on both
nodes, if it does not already exist (Refer to the recipe Installing a management node in
Chapter 1).

Before proceeding, ensure that you have copied the updated config.ini
file to both management nodes.

Start the first management node by changing to the correct directory and running the
management node binary (ndb_mgmd) with the following flags:

--initial: Deletes the local cache of the config.ini file and updates it
(you must do this every time the config.ini file is changed).

--ndb-nodeid=X: Tells the node to connect as this nodeid, as we specified in
the config.ini file. This is technically unnecessary if there is no ambiguity as to
which nodeid this particular node may connect to (in this case, both nodes have
a HostName defined). However, defining it reduces the possibility of confusion.





MySQL Cluster Management

78

--config-file=config.ini: This is used to specify the configuration file. In
theory, passing a value of the config.ini file in the local directory is unnecessary
because it is the default value. But in certain situations, it seems that passing this in
any case avoids issues, and again this reduces the possibility of confusion.

[root@node6 mysql-cluster]# cd /usr/local/mysql-cluster

[root@node6 mysql-cluster]# ndb_mgmd --config-file=config.ini --initial
--ndb-nodeid=2

2009-08-15 20:49:21 [MgmSrvr] INFO -- NDB Cluster Management Server.
mysql-5.1.34 ndb-7.0.6

2009-08-15 20:49:21 [MgmSrvr] INFO -- Reading cluster configuration
from 'config.ini'

Repeat this command on the other node using the correct node ID:

[root@node5 mysql-cluster]# cd /usr/local/mysql-cluster

[root@node5 mysql-cluster]# ndb_mgmd --config-file=config.ini --initial
--ndb-nodeid=1

Now, start each storage node in turn, as shown in the previous chapter. Use the storage
management client's show command to show that both management nodes are connected
and that all storage nodes have been reconnected:

ndb_mgm> show

Connected to Management Server at: 10.0.0.5:1186

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=3 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=5 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

id=6 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

[ndb_mgmd(MGM)] 2 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

id=2 @10.0.0.6 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=11 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=12 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=13 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6)

id=14 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6)



Chapter 3

79

Finally, restart all SQL nodes (mysqld processes). On RedHat-based systems, this can be
achieved using the service command:

[root@node1 ~]# service mysqld restart

Congratulations! Your cluster is now configured with multiple management nodes. Test that
failover works by killing a management node, in turn, the remaining management nodes
should continue to work.

There's more...
It is sometimes necessary to add a management node to an existing cluster if for example,
due to a lack of hardware or time, an initial cluster only has a single management node.

Adding a management node is simple. Firstly, install the management client on the new node
(refer to the recipe in Chapter 1). Secondly, modify the config.ini file, as shown earlier in
this recipe for adding the new management node, and copy this new config.ini file to both
management nodes. Finally, stop the existing management node and start the new one using
the following commands:

For the existing management node, type:

[root@node6 mysql-cluster]# killall ndb_mgmd [root@node6 mysql-cluster]#
ndb_mgmd --config-file=config.ini --initial --ndb-nodeid=2

2009-08-15 21:29:53 [MgmSrvr] INFO -- NDB Cluster Management Server.
mysql-5.1.34 ndb-7.0.6

2009-08-15 21:29:53 [MgmSrvr] INFO -- Reading cluster configuration
from 'config.ini'

Then type the following command for the new management node:

[root@node5 mysql-cluster]# ndb_mgmd --config-file=config.ini --initial
--ndb-nodeid=1

2009-08-15 21:29:53 [MgmSrvr] INFO -- NDB Cluster Management Server.
mysql-5.1.34 ndb-7.0.6

2009-08-15 21:29:53 [MgmSrvr] INFO -- Reading cluster configuration
from 'config.ini'

Now, restart each storage node one at a time. Ensure that you only stop one node per
nodegroup at a time and wait for it to fully restart before taking another node in the
nodegroup, when offline, in order to avoid any downtime.

MySQL Cluster Management

80

See also
Look at the section for the online addition of storage nodes (discussed later in this chapter)
for further details on restarting storage nodes one at a time. Also look at Chapter 1 for
detailed instructions on how to build a MySQL Cluster (with one management node).

Obtaining usage information
This recipe explains how to monitor the usage of a MySQL Cluster, looking at the memory,
CPU, IO, and network utilization on storage nodes.

Getting ready
MySQL Cluster is extremely memory-intensive. When a MySQL Cluster starts, the storage
nodes will start using the entire DataMemory and IndexMemory allocated to them. In
a production cluster with a large amount of RAM, it is likely that this will include a large
proportion of the physical memory on the server.

How to do it...
An essential part of managing a MySQL Cluster is looking into what is happening inside each
storage node. In this section, we will cover the vital commands used to monitor a cluster.

To monitor the memory (RAM) usage of the nodes within the cluster, execute the
<nodeid> REPORT MemoryUsage command within the management client as follows:

ndb_mgm> 3 REPORT MemoryUsage

Node 3: Data usage is 0%(21 32K pages of total 98304)

Node 3: Index usage is 0%(13 8K pages of total 131104)

This command can be executed for all storage nodes rather than just one by using ALL nodeid:

ndb_mgm> ALL REPORT MemoryUsage

Node 3: Data usage is 0%(21 32K pages of total 98304)

Node 3: Index usage is 0%(13 8K pages of total 131104)

Node 4: Data usage is 0%(21 32K pages of total 98304)

Node 4: Index usage is 0%(13 8K pages of total 131104)

Node 5: Data usage is 0%(21 32K pages of total 98304)

Node 5: Index usage is 0%(13 8K pages of total 131104)

Node 6: Data usage is 0%(21 32K pages of total 98304)

Node 6: Index usage is 0%(13 8K pages of total 131104)

Chapter 3

81

This information shows that these nodes are actually using 0% of their DataMemory
and IndexMemory.

Memory allocation is important and unfortunately a little more complicated
than a percentage used on each node. There is more detail about this in the
How it works... section of this recipe, but the vital points to remember are:

It is a good idea never to go over 80 percent of memory usage
(particularly not for DataMemory)

In the case of a cluster with a very high memory usage, it is possible
that a cluster will not restart correctly





MySQL Cluster storage nodes make extensive use of disk storage unless specifically
configured not to, regardless of whether a cluster is using disk-based tables. It is
important to ensure the following:

There is sufficient storage available

There is sufficient IO bandwidth for the storage node and the latency is not too high

To confirm the disk usage on Linux, use the command df –h as follows:

[root@node1 mysql-cluster]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/system-root

 7.6G 2.0G 5.3G 28% /

/dev/xvda1 99M 21M 74M 22% /boot

tmpfs 2.0G 0 2.0G 0% /dev/shm

/dev/mapper/system-ndb_data

 2.0G 83M 1.8G 5% /var/lib/mysql-cluster

/dev/mapper/system-ndb_backups

 2.0G 68M 1.9G 4% /var/lib/mysql-cluster/
BACKUPS

In this example, the cluster data directory and backup directory are on different logical
volumes. This provides the following benefits:

It is easy to see their usage (5% for data and 4% for backups)

Each volume is isolated from other partitions or logical volumes—it means that they
are protected from, let's say, a logfile growing in the logs directory









MySQL Cluster Management

82

To confirm the rate at which the kernel is writing to and reading from the disk, use the
vmstat command:

[root@node1 ~]# vmstat 1

procs -----------memory---------- ---swap-- -----io---- --system-- --

---cpu------

 r b swpd free buff cache si so bi bo in cs us

sy id wa st

 0 0 0 2978804 324784 353856 0 0 1 121 39 15 0

0 100 0 0

 3 0 0 2978804 324784 353856 0 0 0 0 497 620 0

0 99 0 1

 0 0 0 2978804 324784 353856 0 0 0 172 529 665 0

0 100 0 0

The bi and bo columns represent the blocks read from a disk and blocks written to a disk,
respectively. The first line can be ignored (it's the average since boot), and the number passed
to the command, in this case, the refresh rate in seconds. By using a tool such as bonnie
(refer to the See also section at the end of this recipe) to establish the potential of each block
device, you can then check to see the maximum proportion of each block device currently
being used.

At times of high stress, like during a hot backup, if the disk utilization is too high it is
potentially possible that the storage node will start spending a lot of time in the iowait
state—this will reduce performance and should be avoided. One way to avoid this is by using
a separate block device (that is, disk or raid controller) for the backups mount point.

How it works...
Data within the MySQL Cluster is stored in two parts. In broader terms, the fixed part of a row
(fields with a fixed width, such as INT, CHAR, and so on) is stored separately from variable
length fields (for example, VARCHAR).

As data is stored in 32 KB pages, it is possible for variable-length data to become quite
fragmented in cases where a cluster only has free space in existing pages that are available
because data has been deleted.

Fragmentation is clearly bad. To reduce it, run the SQL command optimize table
as follows:

mysql> optimize table City;

+------------+----------+----------+----------+

| Table | Op | Msg_type | Msg_text |

Chapter 3

83

+------------+----------+----------+----------+

| world.City | optimize | status | OK |

+------------+----------+----------+----------+

1 row in set (0.02 sec)

To know more about fragmentation, check out the GPL tool chkfrag at
http://www.severalnines.com/chkfrag/index.php.

There's more...
It is also essential to monitor network utilization because latency will dramatically increase
as utilization gets close to 100 percent of either an individual network card or a network
device like a switch. If network latency increases by a very small amount, then its effect on
performance will be significant. This book will not discuss the many techniques for monitoring
the overall network health. However, we will see a tool called iptraf that is very useful inside
clusters for working out which node is interacting with which node and what proportion of
network resources it is using.

A command such as iptraf –i eth0 will show the network utilization broken down by
connection, which can be extremely useful when trying to identify connections on a node
that are causing problems. The screenshot for the iptraf command is as follows:

The previous screenshot shows the connections on the second interface (dedicated to cluster
traffic) for the first node in a four-storage node cluster. The connection that each node makes
with the others (10.0.0.2, 10.0.0.3, and 10.0.0.4 are other storage nodes) is obvious as well
as the not entirely obvious ports selected for each connection. There is also a connection to
the management node. The Bytes column gives a clear indication of which connections are
most utilized.

MySQL Cluster Management

84

See also
Bonnie—disk reporting and benchmarking tool at:
http://www.garloff.de/kurt/linux/bonnie/

Adding storage nodes online
The ability to add a new node without any downtime is a relatively new feature of MySQL
Cluster which dramatically improves long-term uptime in cases where the regular addition of
nodes is required, for example, where data volume or query load is continually increasing.

Getting ready
In this recipe, we will show an example of how to add two nodes to an existing two-node
cluster (while maintaining NoOfReplicas=2 or two copies of each fragment of data).

The start point for this recipe is a cluster with two storage nodes and one management node
running successfully with some data imported (such as the world database as covered in
Chapter 1). Ensure that the world database has been imported as an NDB table.

How to do it...
Firstly, ensure that your cluster is fully running (that is, all management and storage nodes
are running). The command to do this is as follows:

[root@node5 mysql-cluster]# ndb_mgm

ndb_mgm> show

Cluster Configuration

[ndbd(NDB)] 2 node(s)

id=2 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=3 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)

id=1 @10.0.0.5 (mysql-5.1.34 ndb-7.0.6)

[mysqld(API)] 4 node(s)

id=4 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6)

id=5 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6)

id=6 (not connected, accepting connect from any host)

id=7 (not connected, accepting connect from any host)

Chapter 3

85

Edit the global cluster configuration file on the management node (/usr/local/mysql-
cluster/config.ini) with your favorite text editor to add the new nodes as follows:

[ndb_mgmd]
Id=1
HostName=10.0.0.5
DataDir=/var/lib/mysql-cluster

[ndbd default]
DataDir=/var/lib/mysql-cluster

MaxNoOfConcurrentOperations = 150000
MaxNoOfAttributes = 10000
MaxNoOfOrderedIndexes=512
DataMemory=3G
IndexMemory=1G
NoOfReplicas=2

[ndbd]
HostName=10.0.0.1

[ndbd]
HostName=10.0.0.2

[ndbd]

HostName=10.0.0.3

[ndbd]

HostName=10.0.0.4

[mysqld]
HostName=10.0.0.1
[mysqld]
HostName=10.0.0.2

Now, perform a rolling cluster management node restart by copying the new config.ini file
to all management nodes and executing the following commands on all management nodes
as follows:

[root@node5 mysql-cluster]# killall ndb_mgmd

[root@node5 mysql-cluster]# ndb_mgmd --initial --config-file=/usr/local/
mysql-cluster/config.ini

MySQL Cluster Management

86

At this point, you should see the storage node status as follows:

[root@node5 mysql-cluster]# ndb_mgm

-- NDB Cluster -- Management Client --

ndb_mgm> show

Connected to Management Server at: 10.0.0.5:1186

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=2 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=3 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=4 (not connected, accepting connect from 10.0.0.3)

id=5 (not connected, accepting connect from 10.0.0.4)

Now, restart the active current nodes—in this case, the nodes with id 2 and 3 (10.0.0.1 and
10.0.0.2). This can be done with the management client command <nodeid> RESTART or
by killing the ndbd process and restarting (there is no need for --initial):

ndb_mgm> 3 restart;

Node 3: Node shutdown initiated

Node 3: Node shutdown completed, restarting, no start.

Node 3 is being restarted

Node 3: Start initiated (version 7.0.6)

Node 3: Data usage decreased to 0%(0 32K pages of total 98304)

Node 3: Started (version 7.0.6)

ndb_mgm> 2 restart;

Node 2: Node shutdown initiated

Node 2: Node shutdown completed, restarting, no start.

Node 2 is being restarted

Node 2: Start initiated (version 7.0.6)

Node 2: Data usage decreased to 0%(0 32K pages of total 98304)

Node 2: Started (version 7.0.6)

At this point, the new nodes have still not joined the cluster. Now, run ndbd --initial on
both these nodes (10.0.0.3 and 10.0.0.4) as follows:

[root@node1 ~]# ndbd

2009-08-18 20:39:32 [ndbd] INFO -- Configuration fetched from
'10.0.0.5:1186', generation: 1

Chapter 3

87

If you check the status of the show command in the management client, shortly after starting
the new storage nodes, you will notice that the newly-started storage nodes move to a started
state very rapidly (when compared to other nodes in the cluster). However, they are shown as
belonging to "no nodegroup" as shown in the following output:

ndb_mgm> show

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=2 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=3 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, no nodegroup)

id=5 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, no nodegroup)

Now, we need to create a new nodegroup for these nodes. We have set NoOfReplicas=2
in the config.ini file, so each nodegroup must contain two nodes. We use the CREATE
NODEGROUP <nodeID>,<nodeID> command to add a nodegroup.

If we had NoOfReplicas=4, we would pass four comma-separated
nodeIDs to this command.

Issue the following command to the management client, as follows:

ndb_mgm> CREATE NODEGROUP 4,5

Nodegroup 1 created

Nodegroup 1 now exists. To see the information, use the show command as follows:

ndb_mgm> show

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=2 @10.0.0.1 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0)

id=3 @10.0.0.2 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 0, Master)

id=4 @10.0.0.3 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

id=5 @10.0.0.4 (mysql-5.1.34 ndb-7.0.6, Nodegroup: 1)

Congratulations! You have now added two new nodes to your cluster, which will be used by the
cluster for new fragments of data. Look at the There's more… section of this recipe to see how
you can get these nodes used right away and the How it works… section for a brief explanation
of what is going on behind the scenes.

MySQL Cluster Management

88

How it works...
After you have added the new nodes, it is possible to take a look at how a table is being stored
within the cluster. If you used the world sample database imported in Chapter 1, then you
will have a City table inside the world database. Running the ndb_desc binary as follows
on a storage or management node shows you where the data is stored.

The first parameter, after –d, is the database name and the second is the
table name. If a [mysql_cluster] section is not defined in /etc/
my.cnf, the management node IP address may be passed with -c.

[root@node1 ~]# ndb_desc -d world City -p

-- City --

Version: 1

Fragment type: 9

K Value: 6

Min load factor: 78

Max load factor: 80

Temporary table: no

Number of attributes: 5

Number of primary keys: 1

Length of frm data: 324

Row Checksum: 1

Row GCI: 1

SingleUserMode: 0

ForceVarPart: 1

FragmentCount: 2

TableStatus: Retrieved

-- Attributes --

ID Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR

Name Char(35;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY

CountryCode Char(3;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY

District Char(20;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY

Population Int NOT NULL AT=FIXED ST=MEMORY

Chapter 3

89

-- Indexes --

PRIMARY KEY(ID) - UniqueHashIndex

PRIMARY(ID) - OrderedIndex

-- Per partition info --

Partition Row count Commit count Frag fixed memory Frag varsized
memory	

0 2084 2084 196608 0

1 1995 1995 196608 0

NDBT_ProgramExit: 0 - OK

There are two partitions—one is active on one of the initial nodes, and the other is active on
the second of the initial nodes. The new node is not being used at all.

If you import exactly the same table with the new cluster into a new database (four nodes),
then you will notice that there are four partitions, and they are as follows:

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized
memory
0 1058 1058 98304 0

2 1026 1026 98304 0

1 1018 1018 98304 0

3 977 977 98304 0

Therefore, when we add a new nodegroup, it is important to reorganize the data in
the existing nodes to ensure that it is spread out across the whole cluster and this does
not happen automatically. New data, however, is automatically spread out across the
whole cluster.

The process to reorganize data in the cluster to use all storage nodes is outlined in the
next section.

MySQL Cluster Management

90

There's more...
To reorganize the data within a cluster to use all new storage nodes, run the ALTER TABLE
x REORGANIZE PARTITION query in a SQL node, substituting x for a table name. This
command must be run once per table in the cluster.

In NDB 7.0, the redistribution does not include unique indexes (only ordered
indexes are redistributed) or BLOB table data. This is a limitation that is
likely to be removed in later releases. If you have a large amount of these
two forms of data, then it is likely to that you will notice unequal loadings on
your new nodes even after this process. Newly inserted data will, however, be
distributed across all nodes correctly.

This query can be executed on any storage node and should not affect the execution of other
queries—although it will, of course, increase the load on the storage nodes involved:

[root@node1 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 5

Server version: 5.1.34-ndb-7.0.6-cluster-gpl MySQL Cluster Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> use world;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> ALTER ONLINE TABLE City REORGANIZE PARTITION;

Query OK, 0 rows affected (9.04 sec)

Records: 0 Duplicates: 0 Warnings: 0

After this, run an OPTIMIZE TABLE query to reduce fragmentation significantly, as follows:

mysql> OPTIMIZE TABLE City;

+------------+----------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+------------+----------+----------+----------+

| world.City | optimize | status | OK |

+------------+----------+----------+----------+

1 row in set (0.03 sec)

Chapter 3

91

Now, use the ndb_desc command as follows—it shows four partitions and our data spread
across all the new storage nodes:

 [root@node1 ~]# ndb_desc -d world City -p

-- Per partition info --

Partition Row count Commit count Frag fixed memory Frag varsized
memory

0 1058 4136 196608 0

3 977 977 98304 0

1 1018 3949 196608 0

2 1026 1026 98304 0

Replicating between MySQL Clusters
Replication is commonly used for single MySQL servers. In this recipe, we will explain how to
use this technique with MySQL Cluster—replicating from one MySQL Cluster to another and
replicating from a MySQL Cluster to a standalone server.

Getting ready
Replication is often used to provide a Disaster Recovery site, some distance away from a
primary location, which is asynchronous (in contrast with the synchronous nature of the
information flows within a MySQL Cluster). The asynchronous nature of replication means
that the main cluster does not experience any performance degradation at the expense of
a potential loss of a small amount of data in the event of the master cluster failing.

Replication involving a MySQL Cluster introduces the concept of replication channels. A
replication channel is made up of two replication nodes. One of these nodes is in the source
machine or cluster, and the other in the destination machine or cluster. It is good practice to
have more than one replication channel for redundancy but only one channel may be active
at a time.

MySQL Cluster Management

92

The following diagram illustrates the replication channel:

CLUSTER A CLUSTER B

MGM

STORAGE
NODE 1

REPLICATION CHANNEL 1

MASTER SLAVE

STORAGE
NODE 2

SQL
NODE 1

SQL
NODE 2

MGM

STORAGE
NODE 1

REPLICATION CHANNEL 2

STORAGE
NODE 2

SQL
NODE 1

SQL
NODE 2

Note that this diagram shows two replication channels. Currently, with
Cluster Replication, only one channel can be active at any one time. It is
good practice to have another channel set up almost ready to go, so that in
the event one of the nodes involved in the primary channel fails, it is very
quick to bring up a new channel.

In general, all replication nodes should be of the same, or very similar, MySQL version.

How to do it...
Firstly, prepare the two parts of the replication channel. In this example, we will replicate from
one cluster to another. The source end of the channel is referred to as the master and the
destination as the slave.

All mysqld processes (SQL nodes or standalone MySQL servers) involved as a replication
agent (either as master or slave) must be configured to have a unique server-ID. Additionally,
the master must also have some additional configuration in the [mysqld] section of
/etc/my.cnf. Start by adding this to the master SQL node's /etc/my.cnf file as follows:

Enable cluster replication
log-bin
binlog-format=ROW
server-id=3

Add the server-id parameter only to all MySQL servers that are acting as slave nodes, and
restart all SQL nodes that have had my.cnf modified:

[root@node4 ~]# service mysql restart

Shutting down MySQL... [OK]

Starting MySQL. [OK]

Chapter 3

93

On the master node, add an account for the slave node as follows:

[root@node1 ~]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.1.34-ndb-7.0.6-cluster-gpl-log MySQL Cluster Server
(GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> GRANT REPLICATION SLAVE ON *.* TO 'slave'@'10.0.0.3' IDENTIFIED BY
'password';

Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

On the master, run the command SHOW MASTER STATUS to establish the current logfile name
and position as follows:

mysql> SHOW MASTER STATUS;

+------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+------------------+----------+--------------+------------------+

| node1-bin.000001 | 318 | | |

+------------------+----------+--------------+------------------+

1 row in set (0.00 sec)

On the slave, issue a CHANGE MASTER TO command as follows to tell the slave where the
master is, what user and password to use to log in, what logfile it is currently at, and what
logfile position to start from:

mysql> CHANGE MASTER TO MASTER_HOST='10.0.0.1', MASTER_USER='slave',
MASTER_PASSWORD='password', MASTER_LOG_FILE='node1-bin.000001', MASTER_
LOG_POS=318

Query OK, 0 rows affected (0.00 sec)

mysql> start slave;

Query OK, 0 rows affected (0.00 sec)

MySQL Cluster Management

94

Now, check the status, as follows, to ensure that the node has connected correctly:

mysql> SHOW SLAVE STATUS\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 10.0.0.1

 Master_User: slave

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: node1-bin.000001

 Read_Master_Log_Pos: 318

 Relay_Log_File: node3-relay-bin.000002

 Relay_Log_Pos: 253

 Relay_Master_Log_File: node1-bin.000001

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 318

 Relay_Log_Space: 409

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

Chapter 3

95

 Master_SSL_Cipher:

 Master_SSL_Key:

 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Master_Bind:

1 row in set (0.00 sec)

ERROR:

No query specified

Replication is now working. To be sure, connect to the master node and run some SQL
queries. In this example, we will create a database as follows:

[master node] mysql> CREATE DATABASE test1;

Query OK, 1 row affected (0.26 sec)

Ensure that this database is created on the slave node:

[slave node] mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| test1 |

+--------------------+

8 rows in set (0.00 sec)

Now, from another node in the same cluster as the master, create another database
as follows:

[node in master cluster] mysql> CREATE DATABASE test2;

Query OK, 1 row affected (0.26 sec)

MySQL Cluster Management

96

And ensure that it appears on the slave node:

[slave_node] mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| test1 |

| test2 |

+--------------------+

8 rows in set (0.00 sec)

If your slave node is also a member of a (different) cluster, then check that this new database
has appeared on all nodes in that cluster too:

[node in slave cluster] mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| test1 |

| test2 |

+--------------------+

8 rows in set (0.00 sec)

You can see that the new database has been correctly replicated to the slave cluster. It is
good practice to test this replication channel with some real data, perhaps by importing the
world dataset into the new database on the master cluster.

How it works...
MySQL Cluster replication is implemented by a dedicated thread—the NDB binlog injector
thread that runs on each SQL node and produces a standard binary log (binlog), which a
slave can connect to normally. This binlog injector thread ensures that all changes within the
cluster that the SQL node is a member of are inserted into the binary log and not just the
queries that were executed on that specific SQL node. This thread additionally ensures that
these transactions are inserted in the correct serialization order. Therefore, the vast majority
of the process is identical to the standard MySQL Replication.

Chapter 3

97

If you only had a single SQL node in a cluster, then there would be no need
for this thread, and standard MySQL Replication would work perfectly.
Unfortunately, there is very little use in a MySQL Cluster with one SQL node.

There's more...
Cluster replication is an extremely powerful tool. In the following section, we will cover
a couple of the most useful and more advanced techniques of cluster replication.

Replication between clusters with
a backup channel

The previous recipe showed how to connect a MySQL Cluster to another MySQL server
or another MySQL Cluster using a single replication channel. Obviously, this means that
this replication channel has a single point of failure (if either of the two replication agents
{machines} fail, the channel goes down).

If you are designing your disaster recovery plan to rely on MySQL Cluster replication, then you
are likely to want more reliability than that. One simple thing that we can do is run multiple
replication channels between two clusters. With this setup, in the event of a replication
channel failing, a single command can be executed on one of the backup channel slaves
to continue the channel.

It is not currently possible to automate this process (at least, not without
scripting it yourself). The idea is that with a second channel ready and good
monitoring of the primary channel, you can quickly bring up the replication
channel in the case of failure, which means significantly less time spent with
the replication channel down.

How to do it…
Setting up this process is not vastly different, however, it is vital to ensure that both channels
are not running at any one time, or the data at the slave site will become a mess and the
replication will stop. To guarantee this, the first step is to add the following to the mysqld
section of /etc/my.cnf on all slave MySQL Servers (of which there are likely to be two):

skip-slave-start

Once added, restart mysqld. This my.cnf parameter prevents the MySQL Server from
automatically starting the slave process. You should start one of the channels (normally,
whichever channel you decide will be your master) normally, while following the steps in
the previous recipe.

MySQL Cluster Management

98

To configure the second slave, follow the instructions in the previous recipe, but stop just prior
to the CHANGE MASTER TO step on the second (backup) slave.

If you configure two replication channels simultaneously (that is, forget to stop
the existing replication channel when testing the backup), you will end up with
a broken setup. Do not proceed to run CHANGE MASTER TO on the backup
slave unless the primary channel is not operating.

As soon as the primary communication channel fails, you should execute the following
command on any one of the SQL nodes in your slave (destination) cluster and record
the result:

[slave] mysql> SELECT MAX(epoch) FROM mysql.ndb_apply_status;

+---------------+

| MAX(epoch) |

+---------------+

| 5952824672272 |

+---------------+

1 row in set (0.00 sec)

The previous highlighted number is the ID of the most recent global checkpoint, which is run
every couple of seconds on all storage nodes in the master cluster and as a result, all the
REDO logs are synced to disk. Checking this number on a SQL node in the slave cluster tells
you what the last global checkpoint that made it to the slave cluster was.

You can run a similar command SELECT MAX(epoch) FROM mysql.
ndb_binlog_index on any SQL node in the master (source) cluster to
find out what the most recent global checkpoint on the master cluster is.
Clearly, if your replication channel goes down, then these two numbers
will diverge quickly.

Use this number (5952824672272 in our example) to find the correct logfile and position
that you should connect to. You can do this by executing the following command on any SQL
node in the master (source) cluster that you plan to make the new master, ensuring that you
substitute the output of the previous command with the correct number as an epoch field
as follows:
 mysql> SELECT

 -> File,

 -> Position

 -> FROM mysql.ndb_binlog_index

 -> WHERE epoch > 5952824672272

 -> ORDER BY epoch ASC LIMIT 1;

Chapter 3

99

+--------------------+----------+

| File | Position |

+--------------------+----------+

| ./node2-bin.000003 | 200998 |

+--------------------+----------+

1 row in set (0.00 sec)

If this returns NULL, firstly, ensure that there is some activity in your cluster since the failure
(if you are using batched updates, then there should be 32 KB of updates or more) and
secondly, ensure that there is no active replication channel between the nodes (that is,
ensure the primary channel has really failed).

Using the filename and position mentioned previously, run the following command on the
backup slave:

It is critical that you run these commands on the correct node. The
previous command, from which you get the filename and position, must
be run on the new master (this is in the "source" cluster). The following
command, which tells the new slave which master to connect to and its
relevant position and filename, must be executed on the new slave (this is
the "destination" cluster).

While it is technically possible to connect the old slave to a new master or
vice versa, this configuration is not recommended by MySQL and should
not be used.

If all is okay, then the highlighted rows in the preceding output will show that the slave thread
is running and waiting for the master to send an event.

[NEW slave] mysql> CHANGE MASTER TO MASTER_HOST='10.0.0.2', MASTER_
USER='slave', MASTER_PASSWORD='password', MASTER_LOG_FILE='node2-
bin.000003', MASTER_LOG_POS=200998;

Query OK, 0 rows affected (0.01 sec)

mysql> START SLAVE;

Query OK, 0 rows affected (0.00 sec)

mysql> show slave status\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 10.0.0.2

 Master_User: slave

 Master_Port: 3306

MySQL Cluster Management

100

[snip]

 Relay_Master_Log_File: node2-bin.000003

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

[snip]

 Seconds_Behind_Master: 233

After a while, the Seconds_Behind_Master value should return to 0 (if the primary
replication channel has been down for some time or if the master cluster has a very
high write rate, then this may take some time).

There's more…
It is possible to increase the performance of MySQL Cluster replication by enabling batched
updates. This can be accomplished by starting slave mysqld processes with the slave-
allow-batching option (or add the slave-allow-batching option line to the [mysqld]
section in my.cnf). This has the effect of applying updates in 32 KB batches rather than as
soon as they are received, which generally results in lower CPU usage and higher throughput
(particularly when the mean update size is low).

See also
To know more about Replication Compatibility Between MySQL Versions visit:
http://dev.mysql.com/doc/refman/5.1/en/replication-compatibility.html

User-defined partitioning
MySQL Cluster vertically partitions data, based on the primary key, unless you configure it
otherwise. The main aim of user-defined partitioning is to increase performance by grouping
data likely to be involved in common queries onto a single node, thus reducing network traffic
between nodes while satisfying queries. In this recipe, we will show how to define our own
partitioning functions.

Chapter 3

101

If the NoOfReplicas in the global cluster configuration file (discussed
in Chapter 1) is equal to the number of storage nodes, then each storage
node contains a complete copy of the cluster data and there is no
partitioning involved. Partitioning is only involved when there are more
storage nodes than replicas.

Getting ready
Look at the City table in the world dataset; there are two integer fields (ID and
Population). MySQL Cluster will choose ID as the default partitioning scheme as follows:

mysql> desc City;

+-------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+----------+------+-----+---------+----------------+

| ID | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | NO | | | |

| CountryCode | char(3) | NO | | | |

| District | char(20) | NO | | | |

| Population | int(11) | NO | | 0 | |

+-------------+----------+------+-----+---------+----------------+

5 rows in set (0.00 sec)

Therefore, a query that searches for a specific ID will use only one partition. In the following
example, partition p3 is used:

mysql> explain partitions select * from City where ID=1;

+----+-------------+-------+------------+-------+---------------+--------
-+---------+-------+------+-------+

| id | select_type | table | partitions | type | possible_keys | key |
key_len | ref | rows | Extra |

+----+-------------+-------+------------+-------+---------------+--------
-+---------+-------+------+-------+

| 1 | SIMPLE | City | p3 | const | PRIMARY | PRIMARY
| 4 | const | 1 | |

+----+-------------+-------+------------+-------+---------------+--------
-+---------+-------+------+-------+

1 row in set (0.00 sec)

MySQL Cluster Management

102

However, searching for a Population involves searching all partitions as follows:

mysql> explain partitions select * from City where Population=42;

+----+-------------+-------+-------------+------+---------------+------+-
--------+------+------+-----------------------------------+

| id | select_type | table | partitions | type | possible_keys | key |
key_len | ref | rows | Extra |

+----+-------------+-------+-------------+------+---------------+------+-
--------+------+------+-----------------------------------+

| 1 | SIMPLE | City | p0,p1,p2,p3 | ALL | NULL | NULL |
NULL | NULL | 4079 | Using where with pushed condition |

+----+-------------+-------+-------------+------+---------------+------+-
--------+------+------+-----------------------------------+

1 row in set (0.01 sec)

The first thing to do when considering user-defined partitioning is to decide if you can improve
on the default partitioning scheme. In this case, if your application makes a lot of queries
against this table specifying the City ID, it is unlikely that you can improve performance with
user-defined partitioning. However, in case it makes a lot of queries by the Population and
ID fields, it is likely that you can improve performance by switching the partitioning function
from a hash of the primary key to a hash of the primary key and the Population field.

How to do it...
In this example, we are going to add the field Population to the partitioning function used
by MySQL Cluster.

We will add this field to the primary key rather than solely using this field. This
is because the City table has an auto-increment field on the ID field, and in
MySQL Cluster, an auto-increment field must be part of the primary key.

Firstly, modify the primary key in the table to add the field that we will use to partition the
table by:

mysql> ALTER TABLE City DROP PRIMARY KEY, ADD PRIMARY KEY(ID,
Population);

Query OK, 4079 rows affected (2.61 sec)

Records: 4079 Duplicates: 0 Warnings: 0

Chapter 3

103

Now, tell MySQL Cluster to use the Population field as a partitioning function as follows:

mysql> ALTER TABLE City partition by key (Population);

Query OK, 4079 rows affected (2.84 sec)

Records: 4079 Duplicates: 0 Warnings: 0

Now, verify that queries executed against this table only use one partition as follows:

mysql> explain partitions select * from City where Population=42;

+----+-------------+-------+------------+------+---------------+------+--
-------+------+------+-----------------------------------+

| id | select_type | table | partitions | type | possible_keys | key |
key_len | ref | rows | Extra |

+----+-------------+-------+------------+------+---------------+------+--
-------+------+------+-----------------------------------+

| 1 | SIMPLE | City | p3 | ALL | NULL | NULL |
NULL | NULL | 4079 | Using where with pushed condition |

+----+-------------+-------+------------+------+---------------+------+--
-------+------+------+-----------------------------------+

1 row in set (0.01 sec)

Now, notice that queries against the old partitioning function, ID, use all partitions as follows:

mysql> explain partitions select * from City where ID=1;

+----+-------------+-------+-------------+------+---------------+--------
-+---------+-------+------+-------+

| id | select_type | table | partitions | type | possible_keys | key
| key_len | ref | rows | Extra |

+----+-------------+-------+-------------+------+---------------+--------
-+---------+-------+------+-------+

| 1 | SIMPLE | City | p0,p1,p2,p3 | ref | PRIMARY | PRIMARY
| 4 | const | 10 | |

+----+-------------+-------+-------------+------+---------------+--------
-+---------+-------+------+-------+

1 row in set (0.00 sec)

Congratulations! You have now set up user-defined partitioning. Now, benchmark your
application to see if you have gained an increase in performance.

MySQL Cluster Management

104

There's more...
User-defined partitioning can be particularly useful where you have multiple tables and a join.
For example, if you had a table of Areas within Cities consisting of an ID field (primary
key, auto increment, and default partitioning field) and then a City ID, you would likely find
an enormous number of queries that select all of the locations within a certain city and also
select the relevant city row. It would therefore make sense to keep:

all of the rows with the same City value inside the Areas table together on
one node

each of these groups of City values inside the Areas table on the same node as
the relevant City row in the City table

This can be achieved by configuring both tables to use the City field as a partitioning
function, as described earlier in the Population field.

Disk-based tables
It is possible to configure the data nodes in a MySQL Cluster to store most of their data
on disk rather than in RAM. This can be useful where the amount of data to be stored is
impossible to store in RAM (for example, due to financial constraints). However, disk-based
tables clearly have significantly reduced performance as compared to memory tables.

Disk-based tables still store columns with indexes in RAM. Only
columns without indexes are stored on disk. This can result in a large
RAM requirement even for disk-based tables.

Getting ready
To configure disk-based tables, data nodes should have spare space on a high performance
block device.

To configure disk-based tables, we must configure each data node with a set of two files
as follows:

TABLESPACES—disk-based tables store their data in TABLESPACES, which are made
up of one or more data files

Logfile groups—disk-based tables store their ndb data in a logfile group made up of
one or more undo logfiles









Chapter 3

105

Disk-based tables do not support variable length fields—these fields are
stored as fixed-width fields (for example, VARCHAR(100) is stored as
CHAR(100). This means that a disk-based NDB table that uses lots of
variable-width fields will take up significantly more space than it would as
compared to either an NDB in-memory table or a non-clustered storage
engine format.

How to do it...
Firstly, check that you have sufficient storage on your storage nodes using a command such
as df as follows:

[root@node1 ~]# df -h | grep mysql-cluster

 2.0G 165M 1.8G 9% /var/lib/mysql-cluster

 2.0G 68M 1.9G 4% /var/lib/mysql-cluster/
BACKUPS

In this example, there is 1.8G space available in the Data Directory. For this example,
using a small amount of test data, this is sufficient.

Create a log file and undo file:

mysql> CREATE LOGFILE GROUP world_log ADD UNDOFILE 'world_undo.dat'
INITIAL_SIZE=200M ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (4.99 sec)

These files are created, by default, in the subfolder ndb_nodeid_fs
in DataDir on each storage node. However, it is possible to pass an
absolute path to force the undo file (previous one) and data file (next
step) to be created on another filesystem or use symbolic links. You
can also specify an UNDO log size. See the There's more… section for
an example.

Now, create a TABLESPACE using the CREATE TABLESPACE SQL command (you can execute
this on any SQL node in the cluster):

mysql> CREATE TABLESPACE world_ts ADD DATAFILE 'world_data.dat' USE
LOGFILE GROUP world_log INITIAL_SIZE=500M ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (8.80 sec)

MySQL Cluster Management

106

Now, you can create disk-based tables as follows:

mysql> CREATE TABLE `City` (

 -> `ID` int(11) NOT NULL auto_increment,

 -> `Name` char(35) NOT NULL default '',

 -> `CountryCode` char(3) NOT NULL default '',

 -> `District` char(20) NOT NULL default '',

 -> `Population` int(11) NOT NULL default '0',

 -> PRIMARY KEY (`ID`)

 ->)

 -> TABLESPACE world_ts STORAGE DISK

 -> ENGINE NDBCLUSTER;

Query OK, 0 rows affected (2.06 sec)

Note that in this example, the ID field will still be stored in memory (due to the primary key).

How it works...
Disk-based tables are stored in fixed-width fields with 4-byte aligned. You can view the
files (both the tablespace and logfile group): If you want to view the logfiles, then
the following query shows the active logfiles and their parameters:

mysql> SELECT LOGFILE_GROUP_NAME, LOGFILE_GROUP_NUMBER, EXTRA FROM
INFORMATION_SCHEMA.FILES;

+--------------------+----------------------+----------------------------
-------------+

| LOGFILE_GROUP_NAME | LOGFILE_GROUP_NUMBER | EXTRA
|

+--------------------+----------------------+----------------------------
-------------+

| world_log | 25 | CLUSTER_NODE=2;UNDO_BUFFER_
SIZE=8388608 |

| world_log | 25 | CLUSTER_NODE=3;UNDO_BUFFER_
SIZE=8388608 |

| world_log | 25 | UNDO_BUFFER_SIZE=8388608
 |

+--------------------+----------------------+----------------------------
-------------+

3 rows in set (0.00 sec)

Chapter 3

107

If you want to view the data files, then execute the following query that shows you each data
file, its size, and its free capacity:

mysql> SELECT

 -> FILE_NAME,

 -> (TOTAL_EXTENTS * EXTENT_SIZE)/(1024*1024) AS 'Total MB',

 -> (FREE_EXTENTS * EXTENT_SIZE)/(1024*1024) AS 'Free MB',

 -> EXTRA

 -> FROM

 -> INFORMATION_SCHEMA.FILES;

+----------------+----------+----------+---------------------------------
--------+

| FILE_NAME | Total MB | Free MB | EXTRA
|

+----------------+----------+----------+---------------------------------
--------+

| world_undo.dat | 200.0000 | NULL | CLUSTER_NODE=2;UNDO_BUFFER_
SIZE=8388608 |

| world_undo.dat | 200.0000 | NULL | CLUSTER_NODE=3;UNDO_BUFFER_
SIZE=8388608 |

| NULL | NULL | 199.8711 | UNDO_BUFFER_SIZE=8388608
 |

+----------------+----------+----------+---------------------------------
--------+

3 rows in set (0.00 sec)

This shows that 199.87 MB is unused in this data file, and the file exists on two storage
nodes. Note that all data on disk is stored in fixed-width columns, 4-byte aligned. This can
result in significantly larger data files than you may expect. You can estimate the disk storage
required using the methods in the Calculating DataMemory and IndexMemory recipe later in
this chapter.

There's more...
The CREATE LOGFILE GROUP command can have a custom UNDO buffer size passed to it. A
larger UNDO_BUFFER_SIZE will result in higher performance, but the parameter is limited by
the amount of system memory available (that is free).

To use this command, add the UNDO_BUFFER_SIZE parameter to the command:

mysql> CREATE LOGFILE GROUP world_log UNDO_BUFFER_SIZE 200M ADD UNDOFILE
'world_undo.dat' INITIAL_SIZE=200M ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (4.99 sec)

MySQL Cluster Management

108

An existing data file may be removed by executing an ALTER TABLESPACE DROP DATAFILE
command as follows:

mysql> ALTER TABLESPACE world_ts DROP DATAFILE 'world_data.dat'
ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (0.47 sec)

To delete a tablespace, use the DROP TABLESPACE statement:

mysql> DROP TABLESPACE world_ts ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (0.51 sec)

In the event that the tablespace is still used, you will get a slightly cryptic error. Before
dropping a tablespace, you must remove any data files associated with it.

mysql> DROP TABLESPACE world_ts ENGINE=NDBCLUSTER;

ERROR 1529 (HY000): Failed to drop TABLESPACE

mysql> SHOW WARNINGS;

+-------+------+---
--------+

| Level | Code | Message
|

+-------+------+---
--------+

| Error | 1296 | Got error 768 'Cant drop filegroup, filegroup is used'
from NDB |

| Error | 1529 | Failed to drop TABLESPACE
|

+-------+------+---
--------+

2 rows in set (0.00 sec)

The performance of a MySQL Cluster that uses disk data storage can be improved significantly
by placing the tablespace and logfile group on separate block devices. One way to
do this is to pass absolute paths to the commands that create these files, while another is
symbolic links in the data directory.

Using symbolic links create the following two symbolic links on each storage node, assuming
that you have disk2 and disk3 mounted in /mnt/, substituting <NODEID> for the correct
value as follows:

[root@node1 mysql-cluster]# ln -s /mnt/disk1 /var/lib/mysql-cluster/ndb_
<NODEID>_fs/logs

[root@node1 mysql-cluster]# ln -s /mnt/disk2 /var/lib/mysql-cluster/ndb_
<NODEID>_fs/data

Chapter 3

109

Now, create the logfile group and tablespace inside these directories as follows:

mysql> CREATE LOGFILE GROUP world_log ADD UNDOFILE 'logs/world_undo.dat'
INITIAL_SIZE=200M ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (4.99 sec)

mysql> CREATE TABLESPACE world_ts ADD DATAFILE 'data/world_data.dat' USE
LOGFILE GROUP world_log INITIAL_SIZE=500M ENGINE=NDBCLUSTER;

Query OK, 0 rows affected (8.80 sec)

You should note that performance is significantly improved as data files I/O operations
will be on a different block device to the logs. If given the choice of different specification
block devices, it is generally wiser to give the highest performance to the device hosting
the UNDO log.

Calculating DataMemory and IndexMemory
Before a migration to a MySQL Cluster, it is likely that you will want to be sure that the
resources available are sufficient to handle the proposed cluster. Generally, MySQL Clusters
are more memory intensive than anything else, and this recipe explains how you can estimate
your memory usage in advance.

The script that is used in this recipe, ndb_size.pl, is provided by MySQL
Cluster in a cluster binary. In the See also section, an alternative and more
accurate tool is mentioned. ndb_size.pl is excellent for estimates, but
it is worth remembering that it is only an estimate based on, sometimes
inaccurate, assumptions.

Getting ready
This recipe demonstrates how to estimate, from a table scheme or an existing non-clustered
table, the memory-usage of that table in the NDB (MySQL Cluster) storage engine. We will
use a script, ndb_size.pl, provided in the MySQL-Cluster-gpl-tools package that
is installed as part of the storage node installation in the recipe in Chapter 1.

To use this script, you will require the following:	

A working installation of Perl.

The Perl DBI module (this can be installed with yum install perl-DBI, if the EPEL
yum repository is installed, see Appendix A, Base Installation).

The Perl DBD::MySQL module. This does exist in the EPEL repository, but will not
install if you have installed the cluster specific mysql RPM. See There's more... for
instructions on how to install this on a clean install of RHEL5 with the storage node
RPMs installed, as described in Chapter 1.







MySQL Cluster Management

110

The perl-Class-MethodMaker package (yum install perl-Class-
MethodMaker).

The tables that you wish to examine that are imported into a MySQL server to which
you have access (this can be done using any storage engine).

A running MySQL server. The server instance does not require to provide support for
MySQL Cluster as we are running this script on MyISAM and InnoDB tables before
they have been converted.

How to do it...
In this example, we will run ndb_size.pl against the world database and go through the
global output and the output for the City table.

Firstly, run the script with a username and password as follows:

[root@node1 ~]# ndb_size.pl world --user=root --password=secret --
format=text

The script then confirms that it is running for the world database on the local host and
includes information for MySQL Cluster 4.1, 5, and 5.1.

MySQL Cluster differs enormously between versions in the amount of DataMemory and
IndexMemory used (in general, getting significantly more efficient with each release). In this
recipe, we will only look at the output for version 5.1. It is the closest to MySQL Cluster version
7, which is the current version.

ndb_size.pl report for database: 'world' (3 tables)

Connected to: DBI:mysql:host=localhost

Including information for versions: 4.1, 5.0, 5.1

There is now some output for some other tables (if you imported the whole world dataset),
which is skipped as it is identical to the output for the City table.

The first part of the output of the City table shows the DataMemory required for each
column (showing the number of bytes per row), ending with a summary of the memory
requirement for both fixed-and variable-width columns (there are no variable-width
columns in this table):

world.City

DataMemory for Columns (* means varsized DataMemory):
 Column Name Type Varsized Key
4.1 5.0 5.1
 ID int(11) PRI







Chapter 3

111

4 4 4
 District char(20)
 20 20 20
 Name char(35)
 36 36 36
 CountryCode char(3)
 4 4 4
 Population int(11)
 4 4 4

 -- -- --
Fixed Size Columns DM/Row
68 68 68

 Varsize Columns DM/Row
 0 0 0

So, this table has approximately 68 bytes DataMemory requirement per row. The next part of
the output shows how much DataMemory is required for indexes. In this case, there is none
because the only index is a primary key (which is stored in IndexMemory) as follows:

DataMemory for Indexes:
 Index Name Type 4.1 5.0
5.1
 PRIMARY BTREE N/A N/
A N/A
 -- -
- --
 Total Index DM/Row 0 0
0

The next part of the output shows the IndexMemory requirement per index as follows:

IndexMemory for Indexes:
 Index Name 4.1 5.0 5.1
 PRIMARY 29 16 16
 -- -- --
 Indexes IM/Row 29 16 16

Therefore, we can see that we require 16 bytes of IndexMemory per row.

The per-table output of ndb_size.pl concludes with a summary of total memory usage,
and we can see the overall IndexMemory and DataMemory requirement for this table
under MySQL Cluster 5.1:

Summary (for THIS table):
 4.1 5.0 5.1
 Fixed Overhead DM/Row 12 12 16
 NULL Bytes/Row 0 0 0

MySQL Cluster Management

112

 DataMemory/Row 80 80 84 (Includes
overhead, bitmap and indexes)

 Varsize Overhead DM/Row 0 0 8
 Varsize NULL Bytes/Row 0 0 0
 Avg Varside DM/Row 0 0 0

 No. Rows 4079 4079 4079

 Rows/32kb DM Page 408 408 388
Fixedsize DataMemory (KB) 320 320 352

Rows/32kb Varsize DM Page 0 0 0
 Varsize DataMemory (KB) 0 0 0

 Rows/8kb IM Page 282 512 512
 IndexMemory (KB) 120 64 64

The final part of the output aggregates all of the tables examined by the scripts and produces
configuration parameter recommendations:

Parameter Minimum Requirements

* indicates greater than default

 Parameter Default 4.1
5.0 5.1
 DataMemory (KB) 81920 480
480 512
 NoOfOrderedIndexes 128 3
3 3
 NoOfTables 128 3
3 3
 IndexMemory (KB) 18432 192
88 88
 NoOfUniqueHashIndexes 64 0
0 0
 NoOfAttributes 1000 24
24 24
 NoOfTriggers 768 15
15 15

Chapter 3

113

Remember that:
These parameters are only estimates

It is a very bad idea to run a cluster close to its limits on any
of these parameters

This output does not include any temporary tables that may
be created

However, at the same time, this output is useful to get a low
end estimate of usage









There's more...
In this section, we explain in greater detail how to install the DBD::mysql Perl module and
a couple of other options that can be passed to ndb_size.pl. The easiest way to install
DBD::mysql is from MCPAN with these commands:

1.	 Firstly, install a compiler as follows:
[root@node1 ~]# yum install gcc

2.	 Now, download the MySQL Cluster devel package as follows:
[root@node1 ~]# wget http://dev.mysql.com/get/Downloads/MySQL-
Cluster-7.0/MySQL-Cluster-gpl-devel-7.0.6-0.rhel5.x86_64.rpm/from/
http://mirrors.dedipower.com/www.mysql.com/

3.	 Install the RPM as follows:
[root@node1 ~]# rpm -ivh MySQL-Cluster-gpl-devel-7.0.6-0.rhel5.
x86_64.rpm

4.	 Create a database and add a user for the DBD::mysql module to use to test
as follows:
mysql> create database test;

Query OK, 1 row affected (0.21 sec)

mysql> grant all privileges on test.* to 'root'@'localhost'
identified by 's3kr1t';

Query OK, 0 rows affected (0.00 sec)

5.	 Now, install the DBD::mysql Perl module from CPAN as follows:

[root@node1 ~]# perl -MCPAN -e 'install DBD::mysql'

If this is the first time you have run this command, then you will have to first answer
some questions (defaults are fine) and select your location to choose a mirror.

MySQL Cluster Management

114

The following additional options can be passed to ndb_size.pl:

Option Explanation

--database=<db name> ALL may be specified to examine all databases

--hostname=<host>:<port> Designate a specific host and port (defaults to
localhost on port 3306)

--format={html,text} Create either text or HTML output

--excludetables= Comma-separated list of table names to skip

 --excludedbs= Comma-separated list of database names to skip

See also
sizer—http://www.severalnines.com/sizer/. sizer is more accurate than
ndb_size.pl because sizer calculates:

Correct record overheads

Cost for unique indexes

Averages storage costs for VAR* columns (user specified by either estimation
(loadfactor) or actual data)

Cost for BLOB / TEXT

sizer is marginally more complicated to use and involves a couple of steps, but can
sometimes be useful if accuracy is vital.









4
MySQL Cluster

Troubleshooting

In this chapter, we will cover:

Single storage node failure

Multiple storage node failures

Storage node partitioning and arbitration

Debugging MySQL Clusters

Seeking help

NIC teaming with MySQL Cluster

Introduction
In this chapter, we will discuss some of the troubleshooting aspects of MySQL Cluster. The first
recipe Single storage node failure explains how MySQL Clusters manage to survive the failure
of individual nodes without any significant interruption to the overall operation of the cluster
and without any risk of data becoming inconsistent across the cluster. The second recipe
Multiple storage node failures covers what happens in a MySQL Cluster if multiple storage
nodes are to fail, which can result in either no downtime or a total shutdown depending on
the event and the configuration. The third recipe Storage node partitioning and arbitration
explores what is going on inside the cluster to maintain high availability and consistency. The
fourth recipe provides some steps to carry out when something isn't working perfectly in your
cluster—both to help find the problem and to document the problem. Seeking help provides
advice on what to do when you are unable to fix a problem. The final recipe NIC teaming with
MySQL Cluster illustrates a practical example of a best-practice setup for MySQL Cluster,
providing redundancy at the network level (that is, removing a single switch as a single
point of failure).













MySQL Cluster Troubleshooting

116

Single storage node failure
MySQL Clusters can survive the failure of any single storage node as long as NoOfReplicas
is greater than 1 (and there is almost no point in a cluster if it is not). In this recipe, we will
demonstrate how a MySQL Cluster detects and handles the failure of a single storage node
(where all other nodes are working). In the next recipe, we will cover how a cluster copes with
multiple storage node failures.

Getting ready
MySQL Cluster has an algorithm for high availability with two, slightly competing, aims:

Prevent database inconsistencies in the event of a split-brain

Keep the database up and running (that is, to keep the database users happy)

In every MySQL Cluster, there are many copies of each fragment of data (using NoOfReplicas).
If we consider the common case where NoOfReplicas equals to 2, then each fragment of
data is stored on two nodes, and therefore, each nodegroup consists of two nodes with
identical data.

In the next section, we will demonstrate the failure of a single node with a practical exercise.
This lab consists of a cluster of four storage nodes and a management node. For testing,
we are running a SQL node on all four storage nodes. In our recipe (and the configuration
examples within), nodes 1 to 5 have private IP addresses of 10.0.0.x, where x is their
node number between 1 and 5.

How to do it…
To demonstrate the failure of a single node in a lab, we start with our simple four storage
node cluster fully running, as shown with the following output from ndb_mgm –e SHOW:

[root@node5 mysql-cluster]# ndb_mgm -e show

Connected to Management Server at: 10.0.0.5:1186

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=1 @10.0.0.1 (mysql-5.1.39 ndb-7.0.9, Nodegroup: 0, Master)

id=2 @10.0.0.2 (mysql-5.1.39 ndb-7.0.9, Nodegroup: 0)

id=3 @10.0.0.3 (mysql-5.1.39 ndb-7.0.9, Nodegroup: 1)

id=4 @10.0.0.4 (mysql-5.1.39 ndb-7.0.9, Nodegroup: 1)





Chapter 4

117

[ndb_mgmd(MGM)] 1 node(s)

id=10 @10.0.0.5 (mysql-5.1.39 ndb-7.0.9)

[mysqld(API)] 4 node(s)

id=11 @10.0.0.1 (mysql-5.1.39 ndb-7.0.9)

id=12 @10.0.0.2 (mysql-5.1.39 ndb-7.0.9)

id=13 @10.0.0.3 (mysql-5.1.39 ndb-7.0.9)

id=14 @10.0.0.4 (mysql-5.1.39 ndb-7.0.9)

To simulate a single node failing, while keeping access to the logs for that node, we will use
the iptables command to block all traffic over the private network. You could also unplug
network cables, disable the interface (ifdown eth1), or kill the power to the nodes—use
whichever method is the easiest. We use iptables because it is the easiest to reverse,
if you can still connect via SSH to the public interface, and thus most convenient for a
lab environment.

Open a SSH connection to the public IP address on the node that you are going to kill. Clear
any existing iptables rules, and check that there are no rules enabled:

[root@node3 ~]# iptables –F

[root@node3 ~]# iptables –L

Now, open a SSH or terminal session to another node in the same nodegroup, another node in
a different nodegroup, and the management node.

For the three storage nodes that you now have sessions open to, tail the ndb_x_out.log
file in the MySQL Cluster DataDir (likely /var/lib/mysql-cluster). Use the –f
flag to update the output in your terminal window. On the management node, tail the
ndb_x_cluster.log in the management node DataDir. For example, the following
is the correct command to run on the management node in our example:

[root@node5 mysql-cluster]# tail -f /var/lib/mysql-cluster/ndb_10_
cluster.log

Now, assuming that eth1 is the dedicated private network used for cluster traffic (and cluster
traffic only), block out all inbound and outbound traffic for the interface on the node that you
wish to simulate killing:

[root@node3 ~]# iptables -A INPUT -i eth1 -j DROP

[root@node3 ~]# iptables -A OUTPUT -o eth1 -j DROP

MySQL Cluster Troubleshooting

118

This will only work if you have followed the strong recommendation to have
a private network dedicated to cluster traffic, and are able to connect to the
nodes in some other way—for example, using SSH with a different interface. If
this is really impossible, use some sort of remote management card or virtual
machine console. If you only have a single interface in your test nodes, then
you can run an iptables command that blocks all traffic except for your
SSH traffic.

You will notice that the following occurs:

On the node that you have isolated from the network, logs such as these will appear in the
local log (for example /var/lib/mysql-cluster/ndb_3_out.log on node3):

2010-02-01 20:53:22 [ndbd] INFO -- findNeighbours from: 4419 old
(left: 1 right: 2) new (2 2)

2010-02-01 20:53:29 [ndbd] INFO -- Arbitrator decided to shutdown
this node
2010-02-01 20:53:29 [ndbd] INFO -- QMGR (Line: 5532) 0x0000000e
2010-02-01 20:53:29 [ndbd] INFO -- Error handler shutting down
system
2010-02-01 20:53:29 [ndbd] INFO -- Error handler shutdown
completed - exiting
2010-02-01 20:53:29 [ndbd] ALERT -- Node 3: Forced node shutdown
completed. Caused by error 2305: 'Node lost connection to other nodes
and cannot form a unpartitioned cluster, please investigate if there
are error(s) on other node(s)(Arbitration error). Temporary error,
restart node'.

This tells you that the node is unable to see its neighbors, and that after seven seconds the
arbitrator decided to shut down the node. In fact, what happened is that this node could
not contact the arbitrator (the management node) or any of its neighbors. In this case, the
decision of the arbitrator is simple—it will always decide to shut down the node.

When we look at the local log on other nodes in the same nodegroup (for example
/var/lib/mysql-cluster/ndb_4_out.log on node4), we see that the node detects
the failure and makes the buckets (holding fragments of data which it was holding as backups
in case node3 fails) active as follows:

2010-02-01 20:53:10 [ndbd] INFO -- findNeighbours from: 4419 old
(left: 1 right: 3) new (1 2)
start_resend(0, empty bucket (747/15 747/14) -> active

Chapter 4

119

By looking at the local log on another node in a different nodegroup (for example
/var/lib/mysql-cluster/ndb_2_out.log on node2), we see that the node
notices that the nodes have failed, but it takes no action on its own:

2010-02-01 20:53:02 [ndbd] INFO -- findNeighbours from: 4419 old
(left: 3 right: 1) new (4 1)

Finally, look at the most important log—the cluster log (for example /var/lib/mysql-
cluster/ndb_10_cluster.log on node5). This log shows that nodes 3 and 13 miss
heartbeats. Remember that there is a SQL node on each storage node; in our example, the
SQL node ID is 13 and the storage node ID is 3. Notice that each warning is printed three
times—this is because the management node is interested in the availability of node3 not
only from its own perspective, but also from the view of the other nodes that remain alive.
The log is shown as follows:

2010-02-01 20:53:02 [MgmtSrvr] WARNING -- Node 2: Node 3 missed
heartbeat 2
2010-02-01 20:53:03 [MgmtSrvr] WARNING -- Node 1: Node 3 missed
heartbeat 2
2010-02-01 20:53:03 [MgmtSrvr] WARNING -- Node 4: Node 3 missed
heartbeat 2

This output repeats for node3 and for heartbeats 3 and 4. After four missed heartbeats, the
following output appears:

2010-02-01 20:53:06 [MgmtSrvr] WARNING -- Node 2: Node 3 missed
heartbeat 4
2010-02-01 20:53:06 [MgmtSrvr] ALERT -- Node 2: Node 3 declared
dead due to missed heartbeat
2010-02-01 20:53:06 [MgmtSrvr] INFO -- Node 2: Communication to
Node 3 closed
2010-02-01 20:53:06 [MgmtSrvr] INFO -- Node 4: Communication to
Node 3 closed
2010-02-01 20:53:06 [MgmtSrvr] INFO -- Node 1: Communication to
Node 3 closed

At this point, you can see that each of the surviving nodes in turn declares the failed node
dead and ends communication.

As you can see, the failure of one node is simple—the other nodes realize that the node has
failed as it missed heartbeats and declare it dead and break off communication with it. The
other nodes in the same nodegroup promote the backup fragments that they have to activate,
thus ensuring that the cluster remains up. If the ndbd process is still running on the storage
node that has failed (because someone has blocked network traffic rather than because the
server has exploded), then it will shut itself down.

MySQL Cluster Troubleshooting

120

How it works…
To establish which nodes have failed, each storage and management node maintains a local
record of the status of every other node by making periodical heartbeat requests to all other
nodes in a cluster. The heartbeat interval is specified by the config.ini file's parameter
HeartbeatIntervalDbDb (for storage nodes heart beating other storage nodes), and
HeartbeatIntervalDbApi (for storage nodes heart beating SQL nodes). These parameters
should be identical on all nodes, and are set to a default value of 1500 milliseconds
(1.5 seconds). They set both how often a node sends a heartbeat to other nodes as well
as how often a node expects to receive a heartbeat from the other nodes in the cluster.

If a node conducts a successful operation with another node, for example
in the case of a storage node sends part of a query to another storage node
to satisfy a query and receives an answer, then this takes the place of the
next heartbeat.

The principle of arbitration in MySQL Cluster is simple. Each node sends heartbeats as often
as configured to and expects to receive a heartbeat packet from all nodes in the cluster. If any
node does not receive three consecutive heartbeat packets from any other node in the cluster,
it considers that node dead and kicks it out. It communicates this new status to other nodes,
reporting that this node is now dead (thus the management node not only knows the state of
each node from its own point of view, but also from the point of view of every other node).

There's more…
If the storage node does not actually fail, but is simply isolated from the other storage nodes
(perhaps due to a network failure), then it is obviously possible that a SQL node, which was
stuck in the same partition, would continue to modify the data on the storage node. This
would be extremely bad, as the cluster data would fork and be impossible to reconcile.

This process is covered in the recipe Storage node partitioning and arbitration. For the
purpose of this recipe, be aware that if this did happen, the storage node that was isolated
would shut itself down to prevent the data forking.

Multiple storage node failures
MySQL Clusters are designed to survive node failures, regardless of exactly how they occur.
In the case of multiple node failures, working out what can happen can be a little more
complicated. There are several options for multiple node failures as follows:

•	 One node can fail in multiple nodegroups, but one node remains per nodegroup
(cluster will remain working).

•	 All the nodes in a single nodegroup can fail (in such a case, the cluster will
be shut down).

Chapter 4

121

•	 One node per nodegroup can split into one group. Another node can split into another
group, which are then partitioned from each other. This occurs most often when
some nodes are connected to one network switch, the others are connected to
a different switch, and the connections between the switches fail. This can cause
a split-brain problem, requiring an arbitrator to shut down some nodes to ensure
only one group is left alive.

Getting ready
In this recipe, we will cover how MySQL Cluster handles the failure of nodes and how it
ensures that a split-brain never occurs. We are using the same lab environment as in
the previous recipe for examples.

How to do it…
In this section, we will cover what will happen in each of the three cases discussed in
this recipe.

1.	 Multiple node failure, but one node remains per nodegroup

In this case, the result is exactly the same as in the previous recipe—the remaining
nodes still have access to all cluster data and the cluster will remain up.

You can use the process in the previous recipe to demonstrate this, but instead of
running iptables only on a single node, run it on two nodes—taking care to run it
on two nodes in different nodegroups.

If NoOfReplicas is greater than 2, for example 3, then the cluster could survive
more failures (if NoOfReplicas is 3, there are three copies of each chunk of data,
and each nodegroup could lose two of them without any problem).

2.	 Total failure of a nodegroup

In this case, the result is that the cluster will shut down. The process that prevents
this will be as follows:

Surviving nodes notice that all nodes in a nodegroup are down and
notify arbitrator (management node by default)

Arbitrator realizes that there is no combination of nodes that can
contact at least one storage node in each nodegroup

Arbitrator sends a message to all surviving storage nodes to
shut down

Cluster is shut down









MySQL Cluster Troubleshooting

122

To demonstrate this practically, jump back to the example cluster shown in the
previous recipe. Run the two iptables commands to block traffic on the relevant
interface (in our example eth1) on both nodes with hostname node1 and node2
(that is both the nodes in a nodegroup), while ensuring that you have the tail –f
command running on the cluster log. You will notice output like the following on
the cluster log (the log on the management node):

2010-02-01 22:02:12 [MgmtSrvr] WARNING -- Node 3: Node 2 missed
heartbeat 3

2010-02-01 22:02:13 [MgmtSrvr] ALERT -- Node 10: Node 2
Disconnected

2010-02-01 22:02:16 [MgmtSrvr] WARNING -- Node 4: Node 1 missed
heartbeat 2

2010-02-01 22:02:19 [MgmtSrvr] ALERT -- Node 10: Node 1
Disconnected

As expected, firstly the other nodes notice that the two nodes are down and
disconnect them (remember that if you have an SQL node on the storage node, there
will be two errors per missed heartbeat—one for the storage node and one for the SQL
node). In the previous example, some output is truncated, but it is all the same—every
remaining node notices that the nodes have gone down.

The second part of the process is that after the dead nodes have missed three
heartbeats, the arbitrator will force the other two nodes (nodes 3 and 4) to shut
down as follows, in order to ensure that they do not carry on changing the data
that they have:

2010-02-01 22:02:19 [MgmtSrvr] ALERT -- Node 4: Forced node
shutdown completed. Caused by error 2305: 'Node lost connection
to other nodes and cannot form a unpartitioned cluster, please
investigate if there are error(s) on other node(s)(Arbitration
error). Temporary error, restart node'.

2010-02-01 22:02:20 [MgmtSrvr] ALERT -- Node 3: Forced node
shutdown completed. Caused by error 2305: 'Node lost connection
to other nodes and cannot form a unpartitioned cluster, please
investigate if there are error(s) on other node(s)(Arbitration
error). Temporary error, restart node'.

2010-02-01 22:02:20 [MgmtSrvr] ALERT -- Node 10: Node 4
Disconnected

2010-02-01 22:02:20 [MgmtSrvr] ALERT -- Node 10: Node 3
Disconnected

At this point, as you would expect, your cluster shuts down even though half of the
nodes and the management node did not fail.

3.	 Nodes are isolated in more than one viable cluster

In this case, the arbitration procedure that is demonstrated in the next recipe kicks in.

Chapter 4

123

Storage node partitioning and arbitration
In this recipe, we explore what happens when a MySQL Cluster has its storage nodes split
into two groups that cannot communicate, but each of which has a full set of cluster data.
We will look at this with a practical example, with the explanation of the process in the
There's more… section.

Getting ready
In our example lab, nodes 1 and 2 make up nodegroup 0 and nodes 3 and 4 make up
nodegroup 1 (look at the output in the recipe Single storage node failure from the SHOW
command inside ndb_mgm to see this). In earlier recipes, we have covered what happens if
we shut down any combination of nodes, but not what occurs if one node in each nodegroup
is isolated from the rest of the cluster.

How to do it…
In our example, we physically isolate node 1 and node 3 from nodes 2, 4, and 5. This means
that in effect we are isolating one storage node per nodegroup (with a SQL node running on
each) from the other storage nodes (each with a SQL node) and the management node. If we
looked at it superficially, these two could keep going separately—both halves have a full set of
cluster data and two SQL nodes. Fortunately, as we will see, this is not what happens.

Firstly, ensure that your cluster is running and tail the four storage node cluster logs and
the cluster log on the management node. Then partition your node. The easiest way to do
this is by connecting the two nodes you wish to isolate through a different switch and unplug
the cable that connects the second switch to the rest of your cluster (this is
what we are doing in this example).

Once you have unplugged this cable, you should immediately notice in the cluster log that
the management node detects that the two isolated nodes have missed heartbeats from
the unisolated nodes as follows:

2010-02-07 21:32:45 [MgmtSrvr] WARNING -- Node 2: Node 1 missed
heartbeat 1
2010-02-07 21:32:46 [MgmtSrvr] WARNING -- Node 2: Node 3 missed
heartbeat 1

The management node continues to record this information in the cluster log until both nodes
have missed four heartbeats. At this point, the two nodes are declared dead not only from the
point of view of the management node but also from the point of view of the surviving
two storage nodes—nodes 2 and 3, as shown in the following cluster log output:

2010-02-07 21:32:46 [MgmtSrvr] ALERT -- Node 2: Node 1 declared
dead due to missed heartbeat
2010-02-07 21:32:46 [MgmtSrvr] ALERT -- Node 2: Node 3 declared
dead due to missed heartbeat

MySQL Cluster Troubleshooting

124

Now, the cluster management node is smart enough to realize that we have a problem—what
if the other two nodes have gone away and set up a cluster all on their own? (We will come
to what they have done in a moment.). It declares that arbitration required—in other
words, we now have two viable different clusters that cannot talk to
each other, and it is essential that only one of them survives:

2010-02-07 21:32:46 [MgmtSrvr] ALERT -- Node 2: Network
partitioning - arbitration required

The result of the arbitration is simple, the management node instructs the currently alive half
to stay alive (node 10 is the management node):

2010-02-07 21:32:46 [MgmtSrvr] ALERT -- Node 2: Arbitration won -
positive reply from node 10

There is then some information as the surviving nodes take over as primary for the fragments
that are now missing.

Now, let's look at what happened on the two isolated machines. In their local log, we can
see that the first problem shown is with findNeighbours (that is we can no longer see the
other node in our nodegroup). After a short while, each node realizes that they can no longer
talk to their management node. As they cannot contact the arbitrator, they shut down with the
following slightly confusing message:

2010-02-07 21:33:04 [ndbd] INFO -- Arbitrator decided to shutdown
this node

What this actually means is that the node knows that the arbitrator would shut the node
down, as it cannot actually talk to the arbitrator (which is the management node, the other
side of the unplugged network cable).

Finally, the nodes shut themselves down:

2010-02-07 21:33:04 [ndbd] INFO -- Error handler shutting down
system
2010-02-07 21:33:04 [ndbd] INFO -- Error handler shutdown
completed - exiting

And then they attempt to report this to the management node (but sadly, they are not able
to connect to the management node):

2010-02-07 21:33:21 [ndbd] WARNING -- Unable to report shutdown
reason to 10.0.0.5:1186: Could not connect to socket : Unable to
connect with connect string: nodeid=0,10.0.0.5:1186

Chapter 4

125

Look at the cluster status from the other side of the partition (that is the side still working)
and you can see that the expected status exists as follows:

ndb_mgm> show

Cluster Configuration

[ndbd(NDB)] 4 node(s)

id=1 (not connected, accepting connect from 10.0.0.1)

id=2 @10.0.0.2 (mysql-5.1.39 ndb-7.0.9, Nodegroup: 0, Master)

id=3 (not connected, accepting connect from 10.0.0.3)

id=4 @10.0.0.4 (mysql-5.1.39 ndb-7.0.9, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)

id=10 @10.0.0.5 (mysql-5.1.39 ndb-7.0.9)

[mysqld(API)]	4 node(s)

id=11 (not connected, accepting connect from 10.0.0.1)

id=12 @10.0.0.2 (mysql-5.1.39 ndb-7.0.9)

id=13 (not connected, accepting connect from 10.0.0.3)

id=14 @10.0.0.4 (mysql-5.1.39 ndb-7.0.9)

How it works…
In the case of storage nodes becoming partitioned from each other, the MySQL Cluster
arbitration process kicks in. In effect, when a node becomes inaccessible from another node,
the cluster Arbitrator is consulted on what action to take. Arbitrators can be management or
SQL nodes, and each arbitrator has a priority, ArbitrationRank, that specifies in which
order these nodes become arbitrator. It has the following options:

0—the node will never be used as an arbitrator (the default for SQL nodes)

1—the node has high priority, that is, it will be preferred as an arbitrator over
low-priority nodes (the default for management nodes)

2—indicates a low-priority node that will be used as an arbitrator only if a node with
a higher priority is not available for that purpose.

As you can see, the default for a management node is to be the Arbitrator (and we have
assumed this in the examples so far).







MySQL Cluster Troubleshooting

126

In the event where it is not obvious what to do when nodes cannot contact each other (that is,
if a group of nodes that potentially could make a valid cluster can no longer communicate
with another group of nodes that could also potentially make a valid cluster), the overall
decision making looks like this:

1.	 If all the nodes in any single nodegroup are down, then shut the cluster down
(because the cluster no longer has access to all fragments of data).

2.	 If the storage nodes that are talking to the management node consist, as a group,
of one node per nodegroup and represent at least 50 percent of the storage nodes
plus one, then the arbitrator instructs the nodes to take over as primary for all of
their fragments.

3.	 If the storage nodes that are talking to the management node, however, consist of
exactly 50 percent of the storage nodes in the cluster, then it is possible that there is
a second group of storage nodes that consist of the other 50 percent of nodes. The
arbitrator then makes a decision.

4.	 If the arbitrator can only see one of these groups, it then instructs them to continue
as primary. The other group will automatically shut down, as they do not have more
than 50 percent of storage nodes and cannot see the arbitrator.

5.	 If the arbitrator can see two groups each with 50 percent of storage nodes, but within
each group unable to talk to the other storage nodes, it will select one of the groups
and instruct it to die, and instruct the other to become primary for all fragments. This
is unlikely unless you have an extremely bizarre network layout.

Debugging MySQL Clusters
In this recipe, we will cover some of the common things to check in the case of a problem with
a MySQL Cluster.

Getting ready
Prior to attempting to debug a problem, it is advisable to take some time to write down exactly
what is wrong. In particular,

What is supposed to happen (if anything)

What is happening

What has changed recently

With this information, it is likely that you will be able to find the solution with a methodical
approach rather than to look for the problem directly.







Chapter 4

127

How to do it...
Often, the problem is an error message. So the first step is to check the following places for
error logs:

stdout—when you start management or storage nodes (this is printed to
the console)

Node error logs—/var/lib/mysql-cluster/ndb_<nodeid>_out.log on
storage and management nodes

cluster logs—/var/lib/mysql-cluster/ndb_<nodeid>_cluster.log on
management nodes

SQL node logs—The location of these logs depends on the log_error variable,
which you can discover with the following command at the SQL node:

mysql> SHOW VARIABLES LIKE 'log_error';

+---------------+---------------------+

| Variable_name | Value |

+---------------+---------------------+

| log_error | /var/log/mysqld.log |

+---------------+---------------------+

1 row in set (0.00 sec)

Check all of these logs to spot anything unusual or any errors.

Even if there is one immediate and obvious problem, be sure to check all of
these sources, as an obvious root cause may become visible!

Often, you will get a NDB error number, which you can translate to an English description with
the POSIX error command, perror:

[root@node1 mysql-cluster]# perror --ndb 830

NDB error code 830: Out of add fragment operation records: Temporary
error: Temporary Resource error

This can be extremely useful for finding out what is going on, as error logs on nodes often
cannot be particularly clear.

There are a couple of extremely common things to check in the event of any problem. They
are covered in the next section.









MySQL Cluster Troubleshooting

128

There's more…
The following three problems—firewalls blocking traffic between nodes, hostnames used
in configuration files and slightly intermittent DNS resolution, and nodes running out of
RAM—account for the vast majority of problems reported with MySQL Clusters. In this
section, we will look at each of these in turn.

Firewalls
Check thoroughly that there is no firewall between nodes. It is extremely common for
firewalls to cause extremely bizarre problems between nodes. You can use the nmap package
(available in the yum repository of RedHat or CentOS) to check that the same ports are visible
locally as on a remote host. Note that different storage nodes will listen on different ports and
may listen on different ports after a restart as follows:

[root@node1 mysql-cluster]# nmap localhost

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2009-09-09 21:52
BST

Interesting ports on node1 (127.0.0.1):

Not shown: 1674 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

111/tcp open rpcbind

631/tcp open ipp

773/tcp open submit

3306/tcp open mysql

Nmap finished: 1 IP address (1 host up) scanned in 0.086 seconds

Now, from a different node, check that the same ports are open:

[root@node2 mysql-cluster]# nmap node1

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2009-09-09 21:52
BST

Interesting ports on node1 (127.0.0.1):

Not shown: 1674 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

111/tcp open rpcbind

631/tcp open ipp

Chapter 4

129

773/tcp open submit

3306/tcp open mysql

Nmap finished: 1 IP address (1 host up) scanned in 0.089 seconds

Host resolution
If you are not using IP addresses in the config.ini file (strongly recommended), ensure that
you have all of the hosts involved in the cluster in a /etc/hosts file to ensure that a simple
DNS outages does not take down the entire cluster. For example, your /etc/hosts may look
as follows:
[root@node1 mysql-cluster]# cat /etc/hosts

Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 node1.xxx.com node1 localhost.localdomain localhost

::1 localhost6.localdomain6 localhost6

10.0.0.1 node1.xxx.com node1

10.0.0.2 node2.xxx.com node2

10.0.0.3 node3.xxx.com node3

10.0.0.4 node4.xxx.com node4

10.0.0.5 node5.xxx.com node5

Memory
It is extremely common for IndexMemory and DataMemory to use more memory than the
system's free memory.

This is commonly caused by running another process on the same server as
a storage node, such as a standard MySQL server (which may use a large
amount of RAM while executing a specific query). It is recommended that
storage nodes only run the storage node processes.

In the case that this becomes a regular problem, it is possible to tune the Linux kernel out of
memory (OOM) killer (this is the piece of code which decides which process to kill in the case
of running out of physical memory) to kill another process and not the ndbd process. There
is a value, /proc/<pid>/oom-adj, which ranges from -16 to +15 (-17 means never kill this
process). The following bash snippet can be used to run after a storage node has started to
significantly reduce the change of the OOM killer, killing ndbd:

[root@node1 mysql-cluster]# for pid in $(pidof ndbd); do echo "-10" > /
proc/$pid/oom_adj; done;

[root@node1 mysql-cluster]#

However, it is still recommended not to come near to running out of physical memory on
a storage node!

MySQL Cluster Troubleshooting

130

Seeking help
In this recipe, we will cover what to do when help is required and where the tips in the
Debugging a MySQL Cluster recipe have not helped.

Getting ready
Before considering Seeking help, it is important to ensure that you have attempted
everything yourself.

If you are experiencing a critical problem with a production system, then it is
likely a good idea to engage professional support immediately (available from
MySQL and other firms).

Community support is excellent for MySQL Cluster and comes in several forms. To use any
support, however, it is important to know exactly what you are asking. In this recipe, we will
first cover confirming exactly what the problem is (and how to describe it), then discuss how to
look for help, and finally briefly cover the process of submitting a bug to MySQL (if this is what
you have found).

How to do it...
Firstly, ensure that you have carried out all the steps in the previous debugging recipe.

It is also a good idea to see if you can reproduce your issue, either on the same cluster or on
a different development cluster. If you can, then write down a clear test case that someone
else could use to recreate your problem for themselves. If you can do this, then the chances
of your problem or bug being resolved increase enormously.

Having established exactly what is wrong and attempted to reproduce it, search the MySQL
online manual at http://dev.mysql.com/doc/. Also search the bugs database at
http://bugs.mysql.com/ to see whether the bug has been reported and fixed. Finally,
search the MySQL mailing list archives at http://lists.mysql.com/. You can also use
http://www.mysql.com/search/ to search all the web pages (this search includes the
manual, mailing list, and forums).

During the searching process, keep a record of URLs that seem to be related
to your problem. Even if they do not help you immediately, including them
when you directly ask the community for help saves someone else a search
and may help others help you.

Chapter 4

131

It is an extremely good idea to ensure that you are running the latest version of MySQL in
your cluster if you are experiencing problems. People are naturally reluctant to help users
fix problems when running versions of MySQL more than a couple of minor releases behind
current, as this is, in effect, known buggy software and many bugs are fixed in each release. If
upgrading is impossible, then be sure to check the changelists of later versions to ensure that
whatever issue you have experienced has not been reported and fixed.

If nothing has helped you, then it is now time to ask the community directly for help. The
MySQL Cluster mailing list, which you can subscribe to at http://lists.mysql.com/
cluster, contains a large number of developers and active members of the community.

When posting a bug, ensure that you include the following details:

Your setup, number of nodes, architecture, kernel version, operating system, and
network connections. Everything—you really cannot give too much detail

Your config.ini file

What you did to cause the problem (if anything)

What was supposed to happen

What actually happened

If possible, a test case (for example, the SQL query that caused the problem)

What you have already attempted to fix the problem (include links to URLs that you
have looked at that appear relevant)

It is likely that someone will quickly give feedback and help you narrow down your issue.

There's more...
In the event that you are sure that you have found a problem with MySQL or MySQL Cluster,
you may well be asked to submit a bug report. Good bug reports follow the template given
for a mailing list posted previously.

Bugs are reported at http://bugs.mysql.com/.

NIC teaming with MySQL Cluster
In this recipe, we will briefly discuss the specific requirements that a MySQL Cluster will bring
to your network and show an example configuration with additional redundancy provided
by a network. While this is not directly a troubleshooting step, it is an extremely common
technique, and we cover the troubleshooting points during the recipe.















MySQL Cluster Troubleshooting

132

Getting ready
The strongly recommended best practice is to ensure that all nodes involved in your cluster
have dedicated NICs connected to different switches.

It is also strongly recommended to ensure that a switch does not become a single point of
failure and that the MySQL Cluster nodes are connected at least to two dedicated switches
for redundancy.

The public network may also require one or two switches, depending on how the application
connects to the cluster. However, it is critical for truly high availability that no single network
device can take out the link to the fully-redundant cluster.

The following diagram shows a design consisting of two storage nodes, two SQL nodes,
and two management nodes all connected to two dedicated cluster switches (using the
first two NICs bonded) and also connected to two public (that is not dedicated to internal
cluster traffic) switches. The diagram shows two application servers connected to each of
the public switches.

Note that this recipe requires a special configuration on the Linux servers to allow the use
of multiple network connections; this is called bonding and is covered shortly. Additionally,
this diagram demonstrates switches connected using multiple cables - without proprietary
technology and special configuration on the switches. It is likely that only one of these links
would ever be active and delays of up to 50 seconds may occur on failure before the backup
link activates. This time may be enough to cause your cluster to shut down, so ensure that
your network is set up properly for fast failover as this book does not cover such configuration.

There is really no need for the cluster storage and management nodes
to be connected to the public network except for management. It would
be, for example, perfectly possible to connect to the SQL nodes on their
public network. From there, connect to storage and management nodes
via the private network. There is certainly no need for bonded interfaces
on the public network for the storage and management nodes, but these
are shown here as a best practice, which allows any single switch to fail
without any effect on cluster availability.

Chapter 4

133

eth 0 STORAGE
NODE 1

192.168.0.0 / 24 10.0.0.0 / 24

eth 1

eth 0

eth 1

eth 0

eth 1

eth 0
eth 1

eth 0
eth 1

eth 0

eth 1

BOND1

BOND1

BOND1

BOND1

BOND1

BOND1

STORAGE
NODE 2

SQL
NODE 1

SQL
NODE 2

NODE 1

NODE 2
MGM

MGM

BOND0

BOND0

BOND0

BOND0

BOND0

BOND0

eth 2
eth 3

eth 2

eth 3

eth 2

eth 3

Eth2
eth 3

eth 2
eth 3

eth 2

eth 3

PR
IV
AT
E

PR
IV
AT
E

SW
ITC

H
1

SW
ITC

H
2

SW
ITC

H
1

SW
ITC

H
2

PU
BL
IC

PU
BL
IC

Application
Server 1 BOND0

Application
Server 2 BOND0

eth 0

eth 1

eth 0

eth 1

The two private switches must be connected together, ideally using a
high-bandwidth and redundant connection (such as a EtherChannel on
Cisco devices).

Fortunately, the Linux kernel includes an excellent support for bonding network links together,
and in this recipe, we will show how to configure, test, and troubleshoot bonded interfaces.

MySQL Cluster Troubleshooting

134

How to do it…
The first step is to configure each pair of bonded interfaces. We will show the configuration
for the first bond, bond0, which is made up of eth0 and eth1. In these files, remove settings
such as whether to use DHCP or an IP address and netmask, and configure the interfaces
as slaves with the following configuration files:

/etc/sysconfig/network-scripts/ifcfg-eth0:

DEVICE=eth0
Ensure that the MAC address is connected to the same switch
For each of the eth0's (e.g. private switch 2)
HWADDR=00:16:3E:xx:xx:xx
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0

SLAVE=yes

USERCTL=no

/etc/sysconfig/network-scripts/ifcfg-eth1:

DEVICE=eth1
Ensure that the MAC address is connected to the same switch
For each of the eth1's (e.g. private switch 1)
HWADDR=00:16:3E:xx:xx:xx
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
USERCTL=no

For the second pair, bond1, modify the ifcfg-eth2 and ifcfg-eth3 files in the same
directory, repeat changing MASTER=bond0 to MASTER=bond1.

The bonding configuration file /etc/sysconfig/network-scripts/ifcfg-bond0
(and ifcfg-bond1) defines the logical interface that sits above the raw interfaces, and
this file should contain the following for the public interface bond0:

DEVICE=bond0
Change fourth octet to correct IP for server
IPADDR=10.0.0.1
NETMASK=255.255.255.0
USERCTL=no
BOOTPROTO=none
ONBOOT=yes
BONDING_OPTS="mode=1 miimon=100"

Chapter 4

135

mode=1 means active / passive. Other modes are available but may require
you to configure the link port aggregation on the switches. Review the
networking/bonding.txt file in the kernel documentation for more
information (yum install kernel-doc and look at the /usr/share/
doc/kernel-doc* directory).

Now add the following for the private interface bond1:

DEVICE=bond1
Change fourth octet to correct IP for server
IPADDR=10.2.0.2
NETMASK=255.255.255.0
USERCTL=no
BOOTPROTO=none
ONBOOT=yes
BONDING_OPTS="mode=1 miimon=100"

In CentOS and RHEL 5, it is necessary to manually configure a second bonding interface
(there is only one allowed by default) by adding the following to /etc/modprobe.conf:

alias bond0 bonding
alias bond1 bonding

If everything goes well, you will now be able to bring up your new network interfaces with a
standard network restart. Do this from the console of the server, if possible, as follows:

[root@node1 ~]# service network restart

Shutting down interface bond0: [OK]

Shutting down interface eth0: [OK]

…

Bringing up interface bond0: [OK]

Bringing up interface eth0: [OK]

Check that you can ping across your new bonded interface as follows:

[root@node1 network-scripts]# ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.178 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.122 ms

If this works, reboot, and confirm that the bond remains. If it does not, then check the
upcoming There's more… section discussion.

MySQL Cluster Troubleshooting

136

The next step is to double-check that failover works. Set up a terminal window to continually
ping across one of the bonded interfaces, and prepare to unplug a cable. In a console window,
run tail –f on /var/log/messages.

You should notice that at the moment you unplug a cable, a very small number of pings drop
(with miimon set to 100, probably about two) and a message like the following appears in
the syslog:

Feb 2 00:53:35 node1 kernel: eth1: link down
Feb 2 00:53:37 node1 kernel: bonding: bond0: link status definitely
down for interface eth1, disabling it
Feb 2 00:53:37 node1 kernel: bonding: bond0: making interface eth2
the new active one.

When the cable is reconnected, the following message should appear:

Feb 2 00:55:28 node1 kernel: eth1: link up
Feb 2 00:55:28 node1 kernel: bonding: bond0: link status definitely
up for interface eth1.

At this point, you will notice that the kernel has not failed back to using the previously active
link—it will generally not do this to reduce the number of times that it fails over:

[root@node1 ~]# cat /proc/net/bonding/bond0 | grep Currently

Currently Active Slave: eth2

If this works, congratulations! You have eliminated your network switches and cards as a
single point of failure.

There's more…
If you notice that lots of duplicate packets appear when pinging across your bonded interface,
like in the following example, you may have configured the mode wrongly:

[root@node1 ~]# ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.146 ms

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.168 ms (DUP!)

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.110 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.139 ms (DUP!)

To verify the mode, as well as some other useful settings, read the live settings from the
virtual filesystem /proc provided by the kernel:

[root@node1 ~]# cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.4.0 (October 7, 2008)

Chapter 4

137

Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

This clearly shows that the mode is not mode 1 (which is active / backup), but is in fact round
robin. Round Robin is no use unless the switches that the servers are connected to are able
to and configured for such operation, the detail of which is outside the scope for this book. If
they are not, ensure that you are using active / backup. Check the BONDING_OPTS setting in
ifcfg-bondx, and restart the bonded interface.

In the correct mode, this file should show the following:

[root@node1 ~]# cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.4.0 (October 7, 2008)

Bonding Mode: fault-tolerance (active-backup)

Primary Slave: None

Currently Active Slave: eth1

MII Status: up

MII Polling Interval (ms): 100

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: eth1

MII Status: up

Link Failure Count: 0

Permanent HW addr: 00:0c:29:e7:a7:2e

Slave Interface: eth2

MII Status: up

Link Failure Count: 0

Permanent HW addr: 00:50:56:ae:70:04

The status of the individual network interfaces can be seen at the bottom
of the previous output page. This can be useful to confirm the status of
individual interfaces within the bond.

5
High Availability with

MySQL Replication

In this chapter, we will cover:

Designing a replication setup
Configuring a replication master
Configuring a replication slave without synchronizing data
Configuring a replication slave and migrating data with a simple SQL dump
Using LVM to reduce downtime on master when bringing a slave online
Replication safety tricks
Multi Master Replication Manager (MMM)

Initial installation
Installing the MySQL nodes
Installing the monitoring node

Managing and using Multi Master Replication Manager (MMM)

Introduction
MySQL Replication is a feature of the MySQL server that allows you to replicate data from one
MySQL database server (called the master) to one or more MySQL database servers (slaves).
Replication is asynchronous, that is, the process of replication is not immediate and there is
no guarantee that slaves have the same contents as the master (this is in contrast to MySQL
Cluster, which was covered earlier in this book).

MySQL Replication has been supported in MySQL for a very long time and is an extremely
flexible and powerful technology. Depending on the configuration, you can replicate all
databases, selected databases, or even selected tables within a database.























High Availability with MySQL Replication

140

Designing a replication setup
There are many ways to architect a MySQL Replication setup, with the number of options
increasing enormously with the number of machines. In this recipe, we will look at the most
common topologies and discuss the advantages and disadvantages of each, in order to show
you how to select the appropriate design for each individual setup.

Getting ready
MySQL replication is simple. A server involved in a replication setup has one of following
two roles:

•	 Master: Master MySQL servers write all transactions that change data to a binary log

•	 Slave: Slave MySQL servers connect to a master (on start) and download the
transactions from the master's binary log, thereby applying them to the local server

Slaves can themselves act as masters; the transactions that they apply from
their master can be added in turn to their log as if they were made directly
against the slave.

Binary logs are binary files that contain details of every transaction that the MySQL server
has executed. Running the server with the binary log enabled makes performance about 1
percent slower.

The MySQL master creates binary logs in the forms name.000001, name.000002, and so on.
Once a binary log reaches a defined size, it starts a new one. After a certain period of time,
MySQL removes old logs.

The exact steps for setting up both slaves and masters are covered in later recipes, but for the
rest of this recipe it is important to understand that slaves contact masters to retrieve newer
bits of the binary log, and to apply these changes to their local database.

How to do it...
There are several common architectures that MySQL replication can be used with. We
will briefly mention and discuss benefits and problems with the most common designs,
although we will explore in detail only designs that achieve high availability (as is the
focus of this book).

Master and slave
A single master with one or more slaves is the simplest possible setup. A master with one
slave connected from the local network, and one slave connected via a VPN over the Internet,
is shown in the following diagram:

Chapter 5

141

MASTER SLAVE

VPN

SLAVE

A setup such as this—with vastly different network connections from the different slaves
to the master—will result in the two slaves having slightly different data. It is likely that
the locally attached slave may be more up to date, because the latency involved in data
transfers over the Internet (and any possible restriction on bandwidth) may slow down the
replication process.

This Master-Slave setup has the following common uses and advantages:

A local slave for backups, ensuring that there is no massive increase in load during
a backup period.

A remote location—due to the asynchronous nature of MySQL replication, there is
no great problem if the link between the master and the slave goes down (the slave
will catch up when reconnected), and there is no significant performance hit at the
master because of the slave.

It is possible to run slightly different structures (such as different indexes) and focus
a small number of extremely expensive queries at a dedicated slave in order to avoid
slowing down the master.

This is an extremely simple setup to configure and manage.

A Master-Slave setup unfortunately has the following disadvantages:

No automatic redundancy. It is common in setups such as this to use lower
specification hardware for the slaves, which means that it may be impossible
to "promote" a slave to a master in the case of an master failure.

Write queries cannot be committed on the slave node. This means write transactions
will have to be sent over the VPN to the master (with associated latency, bandwidth,
and availability problems).

Replication is equivalent to a RAID 1 setup, which is not an enormously efficient
use of disk space (In the previous example diagram, each piece of data is written
three times.).

Each slave does put a slight load on the master as it downloads its binary log. The
number of slaves thus can't increase infinitely.

















High Availability with MySQL Replication

142

Multi-master (active / active)
Multi-master replication involves two MySQL servers, both configured as replication masters
and slaves. This means that a transaction executed on one is picked up by the other, and
vice versa, as shown in the following diagram:

MASTER MASTER

A SQL client connecting to the master on the left will execute a query, which will end up in that
master's binary log. The master on the right will pick this query up and execute it. The same
process, in reverse, occurs when a query is executed on the master on the right. While this
looks like a fantastic solution, there are problems with this design:

It is very easy for the data on the servers to become inconsistent due to the
non-deterministic nature of some queries and "race conditions" where conflicting
queries are executed at the same time on each node

Recent versions of MySQL include various tricks to
minimize the likelihood of these problems, but they are
still almost inevitable in most real-world setups.

It is extremely difficult to discover if this inconsistency exists, until it gets so bad
that the replication breaks (because a replicated query can't be executed on the
other node)

This design is only mentioned here for completeness; it is often strongly recommended not to
use it. Either use the next design, or if more than one "active" node is required, use one of the
other high-availability techniques covered in this book.

Active / passive master
Active / passive master replication involves two MySQL servers configured as per active /
active master replication, but with some form of "write barrier" around a "passive" node in
order to ensure that only one node is able to execute queries that change the data at any
one point of time. This design is demonstrated in the following diagram:

MASTER

WRITE BARRIER

MASTER





Chapter 5

143

In the preceding diagram, the master on the left is the active master and the master on the
right is passive. By running the example we discussed in active / active replication, if a SQL
query is executed on the master on the left, it is injected into the binary log. This query is then
picked up and executed by the master on the right. If a SQL query is executed on the node on
the right, the "write barrier" prevents the query from being executed.

This barrier could consist of one of the following with various degrees of enforcement:

A virtual IP address shared between the nodes (with one node having its ownership
at any point of time)

Permissions set on the "passive" node to prevent all connections except those for the
replication user

An application configured only to connect to the active node and no
untrustworthy user

In many ways, the simplest and easiest, by configuring all slave nodes as "read-only"
on startup with the following my.cnf entry on the slave:
[mysqld]

read_only

When set as read-only, the node will reject all UPDATE and DELETE queries, and thus can't
allow a standard database user (such as an application or mistaken user) to change data
although changes that are received by the master are executed as normal.

To promote a slave node to a master node, either remove the read_only parameter from
my.cnf or to set the parameter for the currently running MySQL Server only, execute the
following query:

mysql> FLUSH TABLES WITH READ LOCK;

mysql> SET GLOBAL read_only = ON;

The server will now respond to all queries normally. This trick is covered in more detail later in
this chapter in the Replication safety tricks recipe.

The effect is that there is one node that is asynchronously up to date with the other node
(this node may or may not be used for read-only queries). In the event of the failure of
the master, the passive node can be quickly "promoted" to the active master using the
following procedure:

1.	 Install a write barrier around the previously active node to prevent all new
MODIFY queries.

2.	 Wait for the passive node to catch up with any queries left in the master's binary log.

3.	 Remove the write barrier around the passive (which now becomes the active) node.









High Availability with MySQL Replication

144

Clearly, if the active node has failed, step 2 may not be possible (and,
depending on the type of write barrier, step 1 may be difficult). In
this case, the passive node is promoted to master node and some
transactions are lost. If this is not acceptable, you need a synchronous
high-availability technique—several of these techniques are covered in
this book (such as shared storage and MySQL Cluster).

How it works...
In this section, we will cover how MySQL replication works in slightly more detail. MySQL
supports two forms of replication: statement-based and row-based replication. There is
also a hybrid mode ("mixed") that is used by default.

Mixed-mode replication
Mixed-mode replication (the default) will use statement-based replication for almost
everything, but it will switch to row-based replication for certain events. Full documentation
on every event that will cause this can be found at http://dev.mysql.com/doc/
refman/5.1/en/binary-log-mixed.html, but the most common events that
cause row-based replication to be used are as follows:

When a query updates a MySQL Cluster table

When a query includes the UUID() function

When two or more tables with AUTO_INCREMENT columns are modified

When any INSERT DELAYED query is executed

There is no need to configure anything to get mixed-mode replication to work, because it is
enabled as soon as you turn on binary logging (by adding the log-bin parameter to the
[mysqld] section in my.cnf, which we shall cover in the later recipes in this chapter).

Statement-based replication
Statement-based replication quite literally keeps a record of every statement executed on
the master that the slaves then executed. With this form of replication, which has been
around from MySQL 3.1 version, binary logs can be converted to text for inspection with
the mysqlbinlog command.









Chapter 5

145

The following command runs the output of mysqlbinlog (which is verbose,
and includes many comments and details on the environment) using grep
command to look for a SQL query executed on the node:
[root@node1 mysql]# mysqlbinlog /var/lib/mysql/node1.000001
| grep -in "create database"
23:create database world

Unfortunately, statement-based replication has problems with queries that can cause
different results when executed at the same time on the same dataset, such as DELETE or
UPDATE with a LIMIT and no ORDER BY clause. Go to http://dev.mysql.com/doc/
refman/5.4/en/replication-sbr-rbr.html for a complete list of limitations.

To force MySQL to use statement-based replication, modify the binlog-format my.cnf
parameter and restart MySQL:

[mysqld]
binlog-format=mixed

Row-based replication
As a consequence of the limitations inherent to a statement-based replication system,
row-based replication was added in MySQL 5.1.5.

If you enable MySQL Cluster on a SQL node (you'll see how later in
this book), row-based replication will be used by default. MySQL
Cluster is not compatible with statement-based replication.

Row-based replication literally replicates the actual changes ("events") to data in a database.
Rather than a slave executing an entire single transaction, it simply executes the required
queries to achieve the same results (this can, in some cases, increase performance). For
example, if a DELETE query includes a delete subquery, the log would only contain details
of the events—that is, the rows actually deleted.

Even with row-based replication, some queries (such as OPTIMIZE TABLE, ALTER TABLE,
and ANALYZE TABLE) must be stored as queries and executed on the slaves as queries.

While it is not possible to inspect the actual queries within the binary log, it is possible to run
mysqlbinlog with the --base64-output=DECODE-ROWS and --verbose parameters in
order to see which rows are being updated.

There are some unresolved issues with row-based replication and concurrent large bulk
INSERT and SELECT queries. However, with other uses of a database, it is likely that
row-based replication is more deterministic and less likely to cause problems.

High Availability with MySQL Replication

146

Row-based replication is required for replication involving MySQL Clusters, as covered
in the Master and slave section. To configure row-based replication explicitly, modify the
binlog-format parameter in my.cnf and restart MySQL:

[mysqld]
binlog-format=row

To check which replication mode a MySQL server is running in, SELECT the value of the
binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| binlog_format | MIXED |

+---------------+-------+

1 row in set (0.00 sec)

Configuring a replication master
In this recipe, we will configure a master. Once configured, a replication master can have as
many slaves as required connecting to it and retrieving its binary log.

Getting ready
The process of setting up a master is as follows:

Configure a replication user account, with restricted permissions, for slaves to use
when they log in

Configure the master to start recording information into a binary log (using row-based,
statement-based or hybrid-based replication modes)

How to do it...
We will firstly cover the parameters that must be set in the [mysqld] section in
/etc/my.cnf on the master node.

1.	 Configuring a node ID

Every server involved in a replication agreement with any other server must have
a unique ID, set in my.cnf with the server-id parameter:

server-id = 1





Chapter 5

147

2.	 Configuring a binary log

The master must be told to store a binary log. The parameter log-bin will do this,
but it is a good idea to pass a name for this logfile.

If you fail to do so, it can cause confusion—particularly if
machine hostnames change.

For a machine with a hostname, the following will place logfiles in the form
<MySQL datadir> node1-bin.xxxxxx. For example, /var/lib/mysql/node1-
bin.000001:
log-bin=node1

It is possible to pass a full path to this logfile. This is extremely desirable if you have
a dedicated block device to store the binary logs, as on IO intensive systems this may
reduce the overhead of binary logging:
log-bin=/mnt/disk2/node1

In addition to the log files, a file prefix.index (for
example node1.index) is created in the same directory
that tells you which is the most recent binary log file.

You must restart the mysql server after changing this setting:

[root@node1 tmp]# service mysql restart

Shutting down MySQL. [OK]

Starting MySQL. [OK]

3.	 Configuring a replication user account

Each slave that connects to a master in a replication setup (for the purposes of
reading the binary log on the master) must have an account to log in. This account
must be granted the dedicated permission REPLICATION SLAVE. It is common
practice to also grant this account REPLICATION CLIENT, which allows monitoring
of the replication setup.

If possible, grant this permission only to a specific host—in this example,
node 1 (10.0.0.1):
mysql> GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO
'replication'@'10.0.0.1' IDENTIFIED BY 'password';

Query OK, 0 rows affected (0.00 sec)

To update the permissions table, flush the privileges:

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.01 sec)

High Availability with MySQL Replication

148

How it works...
The process of replication is a little more complicated than we earlier alluded to. In this
section, we will explain the details behind MySQL replication in slightly more detail.

When a transaction is sent to a MySQL server running with binary logging enabled, the
transaction is executed normally, and just prior to completing the transaction the server
records the change serially in the binary log. Once this is done, it tells the storage engine
that the transaction is ready to be committed.

Even if statements are concurrent during execution, they
are recorded serially in the binary log.

The slave runs two threads to handle its role as a slave.

Firstly, the slave runs a I/O thread that opens a standard client connection to the master
(using the replication user account) and starts a non-SQL BINARYLOG DUMP command, which
causes the master to start a "Binlog dump thread" and allows the slave to read log entries
from the master's binary log. The slave compares each entry with the latest entry that it
already has on the disk. If it fails to find new entries, it sleeps and waits for the master to send
a new entry signal. If there are new entries, it records these in the "relay log" on the slave.

A second thread, the "SQL slave thread", reads from the relay log and replays the queries,
which completes the process that started with a query being sent to the master and ends
with the query being committed to the slave server database.

When the slave thread executes a query, it does not, by default, record the query in its own
binary log—this can be changed with the my.cnf parameter log-slave-updates.

There's more...
The following is a checklist of things to consider when setting up a master:

Disk space
Binary logs take up disk space, and if you have them stored in the same partition as the
MySQL data because you are running out of space, it will prevent changes to your database.

There are a couple of ways to approach this problem, outlined here.

Only logging some databases
You may well have some databases that you do not wish to replicate. Unless you are using
binary logs for some other purpose (such as, for backups), you can stop the MySQL server
from logging these queries with the my.cnf parameter binlog-ignore-db.

Chapter 5

149

When using row-based replication, this works as expected (all queries made against this
database are ignored and not logged). When using statement-based replication, things are
a little more complicated—the effect of this parameter is to not log any statement where the
default database (that is, the one selected by USE) is db_name:

binlog-ignore-db = mysql

To specify more than one database you wish to ignore,
use this option multiple times. Do not use commas.

If you only want to replicate a specific database, you can use the inverse parameter
binlog-do-db.

Limiting individual binary log size
Binary logs can become unmanageable, and the default maximum size for a binary log is 1G.
This is tunable with the my.cnf parameter max_binlog_size:

max_binlog_size=200M

Rotating binary logs
It is good practice to automatically delete old binary logs. You can rotate binary logs older than
two days with the my.cnf parameter expire_log_days.

The default value for this parameter is 0, which means "no automatic removal".
expire_logs_days = 2

Removals occur when the MySQL server is started and when the logs
are flushed (note that the logs are flushed when the current logfile
reaches max_binlog_size, providing a further reason to set this
parameter to a relatively small value).

Performance
In addition to the recommendation of storing your binary log on a block device separate
from your MySQL data directory, there are some additional tricks you can use to increase
performance while logging:

Binary log caching
The my.cnf parameter named binlog_cache_size sets the size of the cache that is used
to hold SQL statements before they are inserted into the binary log during a transaction. Big,
multi-statement transactions can benefit from an increased value (the default is 32M):

 binlog_cache_size = 64M

This buffer is allocated per connection on the first UPDATE or INSERT query.

High Availability with MySQL Replication

150

Configuring a replication slave
without syncing data

In this recipe, we will see how to configure a replication slave and initiate the replication
process. This recipe assumes that a master server is already configured, with a replication
user account configured for the slave.

How to do it...
In this recipe, we show how to configure a slave server without showing how to sync data,
which is shown in the next recipe. This recipe would be perfect if you have two freshly installed
MySQL servers for example, or if you have a slave, which is a clone of a master that is not
being updated, using virtualization.

The first step is to verify that the two servers have different server ID parameters in my.cnf
by executing the following command in the mysql client on both servers:
mysql> SHOW VARIABLES LIKE "server_id";

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| server_id | 5 |

+---------------+-------+

1 row in set (0.00 sec)

If two servers in a replication agreement have the same server
ID, replication will fail.

If the two servers do have the same server ID, modify the server-id parameter in
my.cnf in order to ensure that both nodes have a server ID explicitly set, and that the
two IDs are different.

The second step is to verify the master status on the master. In the MySQL Client, execute
the following SQL query:
mysql> SHOW MASTER STATUS;

+--------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+--------------+----------+--------------+------------------+

| node1.000003 | 107 | | |

+--------------+----------+--------------+------------------+

1 row in set (0.00 sec)

Chapter 5

151

Take note of the filename (node1.000003) and position (107). On the master, we have already
configured a replication user account (replication) and the corresponding password.

The next step is to tell the slave where the master is, what user account to use in order to
log in, what logfile to start reading from, and what position to jump to. This is all encased in
a CHANGE MASTER TO query. Jump onto the slave, enter the MySQL Client, and execute the
following query:

mysql> CHANGE MASTER TO master_host = '10.0.0.1', master_
user='replication', master_password='password', master_log_
file='node1.000003', master_log_pos=107;

Query OK, 0 rows affected (0.01 sec)

Now start the slave threads on the new slave:

mysql> START SLAVE;

Query OK, 0 rows affected (0.00 sec)

And check that the slave has come up using:

mysql> SHOW SLAVE STATUS\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 10.0.0.1

 Master_User: replication

...

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

...

 Seconds_Behind_Master: 0

1 row in set (0.00 sec)

Congratulations! Your replication agreement is now working.

At this point, do something on the master (such as creating a table, inserting a row, and so
on) and ensure that it appears in the slave. If it does not, review the output of SHOW SLAVE
STATUS and ensure that the slave thread is running, and that there is no error displayed.

High Availability with MySQL Replication

152

Configuring a replication slave,
migrating data with a simple SQL dump

In this recipe, we will show how to configure a replication slave while coping with a master that
both has data on it and potentially has that data changing, while minimizing the time for which
the master must be "locked" from updates.

In the common case of adding a slave to a master that already has data in it, the simplest
technique is to use the mysqldump binary provided by MySQL to inject the data from master
to slave, and to reset the slave at the same time.

For this one-line command on the master to work, the following requirements must be met:

Any existing slave process must be stopped on the slave (STOP SLAVE)

A user account must exist that is able to create databases and tables, and insert
rows when connecting to the slave from the master

It must be acceptable to lock the tables on the master for the duration of the operation

This technique copies all data from the master to the slave, including all of
the mysql database—with the exclusion of the users table. It is likely that
all of the other tables are identical if the software versions are the same.

Ensure you have replicate-ignore-db = mysql in /etc/my.cnf on
the slave, if you don't wish to replicate the mysql database, or remove
the --ignore-table parameter using the next command (recommended).

How to do it...
The command to execute on the master, in full, is as follows:

[root@node1 mysql]# mysqldump --delete-master-logs --ignore-table=mysql.
user --master-data --lock-all-tables --all-databases -u root
--password='' --hex-blob | mysql -h 10.0.0.2 -u root --password=''

We can explain this command in chunks as follows:

mysqldump: Binary for producing SQL statements from a MySQL database. This
means, "take my database and produce a file that contains SQL statements, which
would build an identical database if executed".

--delete-master-logs: Deletes all logs on the master from the moment you start
the backup (these are not needed; the slave only requires logs after this point).

--master-data: Includes a CHANGE MASTER TO command within the dump.













Chapter 5

153

--lock-all-tables: Locks all tables on the master during the period of the
backup, in order to ensure that every transaction before the time of the backup
is logged, and every transaction after the backup is in the binary log. If you have
a lot of data, this may involve a very long lock on all tables. Look at the next recipe
for a solution.

--all-databases: Backs up all databases on the master.

--hex-blob: If you have BLOBs (binary objects) in your database, this option
ensures they are stored in a way that allows them to be imported correctly
(that is, stored as hexadecimal characters).

The pipe command (|): Takes output from the command on the left and passes
it to the command on the right.

mysql –h 10.0.0.2: Connects to the slave.

-u root –-password='x': Uses these details.

Once this command has finished execution, run START SLAVE as shown in the preceding
section to start your slave up.

How it works...
The CHANGE MASTER TO command is only one of several ways to point a slave at a master
(it is the most recommended way). Internally, this command creates a file master.info in
the MySQL data directory (/var/lib/mysql by default), which keeps the details. This file
is updated every time this CHANGE MASTER TO query is executed, and it is this file that the
server uses when it begins to see the latest logfile that the slave was reading from, and at
what position, when the server shuts down.

Using LVM to reduce downtime
on a master when bringing a slave online

It is possible to use the Logical Volume Manager (LVM) which comes with most Linux
distributions, including Redhat / CentOS, to take a read-only snapshot of the block device that
the MySQL Data directory is residing on, and use this to synchronize a slave with only a very
short period of table locks on the master.

In many cases of 24x7 use of a database, this is essential and it can be useful when you do
not want to wait for a scheduled outage interval every time a slave needs re-synchronizing.













High Availability with MySQL Replication

154

Getting ready
For the purpose of this recipe, we will require that you already have the MySQL data directory
residing on a volume group with enough free space to hold the data that will change during
the time the backup is running (perhaps, 10-20% for a very busy server).

In order to check if you have space in a volume group, use the vgs command:

[root@node2 mysql]# vgs

 VG #PV #LV #SN Attr VSize VFree

 system 1 2 0 wz--n- 14.62G 4.88G

In this case, the volume group system has free space of 4.88G. If you do not have any or
enough space, refer to Operating System documentation to find out how to modify volume
groups, or the manual pages for pvcreate and vgextend.

Once the MySQL data directory is on a filesystem residing on a logical volume and there is
sufficient space in the volume group, the following process must be carried out:

Lock the tables in the master

Take a snapshot (very quick)

Record the binary log name and position on the master

Unlock the tables

Synchronize the data directory on the master with the slave

Update the slave to point at the correct log name and position

Start the slave

Remove the snapshot on the master

We will now do this in an example with a master on node1 (10.0.0.1) and slave on node2
(10.0.0.2). The master has a logical volume mysql in volume group system. We assume
that SSH is possible between the nodes, and in this example we set it to use a key.

How to do it...
Firstly, open two sessions to the master (when a LOCK TABLES query is run in a MySQL
Client, it is ended if the client connection is closed). Secondly, prepare the lvcreate
command in a second window to minimize downtime. Then, in quick succession, run the
following four commands:

Lock all tables in window 1:

mysql> FLUSH TABLES WITH READ LOCK;

Query OK, 0 rows affected (0.01 sec)

















Chapter 5

155

In a busy server, this may take some time. Wait for the command
to complete before moving on.

Create a snapshot volume in window 2, passing a new name (mysql_snap), and pass the
size that will be devoted to keeping the data that changes during the course of the backup,
and the path to the logical volume that the MySQL data directory resides on:

 [root@node1 lib]# lvcreate --name=mysql_snap --snapshot --size=200M \
 /dev/system/mysql

 Rounding up size to full physical extent 224.00 MB

 Logical volume "mysql_snap" created

Return to window 1, and check the master log position:

mysql> SHOW MASTER STATUS;

+--------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+--------------+----------+--------------+------------------+

| node1.000012 | 997 | | |

+--------------+----------+--------------+------------------+

1 row in set (0.00 sec)

Only after the lvcreate command in window 2 gets completed, unlock the tables:

mysql> UNLOCK TABLES;

Query OK, 0 rows affected (0.00 sec)

The next step is to move the data on this snapshot to the slave. On the master, mount
the snapshot:

[root@node1 lib]# mkdir /mnt/mysql-snap

[root@node1 lib]# mount /dev/system/mysql_snap /mnt/mysql-snap/

On the slave, stop the running MySQL server and rsync the data over:

[root@node2 mysql]# rsync -e ssh -avz node1:/mnt/mysql-snap /var/lib/
mysql/

root@node1's password:

receiving file list ... done

mysql-snap/

mysql-snap/ib_logfile0

mysql-snap/ib_logfile1

High Availability with MySQL Replication

156

mysql-snap/ibdata1

...

mysql-snap/world/db.opt

sent 1794 bytes received 382879 bytes 85482.89 bytes/sec

total size is 22699298 speedup is 59.01

Ensure the permissions are set correctly on the new data, and start the MySQL slave server:

[root@node2 mysql]# chown -R mysql:mysql /var/lib/mysql

[root@node2 mysql]# service mysql start

Starting MySQL. [OK]

Now carry out the CHANGE MASTER TO command in the Setting up slave with master having
same data section of this recipe to tell the slave where the master is, by using the position
and logfile name recorded in the output from window 1 (that is, log name node1.000012 and
Position 997).

Replication safety tricks
MySQL replication in anything but an extremely simple setup with one master handling every
single "write". A guarantee of no writes being made to other nodes is highly prone to a couple
of failures. In this recipe, we look at the most common causes of replication failure that can
be prevented with some useful tricks.

This section shows how to solve auto increment problems in multi-master setups, and also
how to prevent the data on MySQL servers, which you wish should remain read-only, from
being changed (a common cause of a broken replication link). Auto-increment is the single
largest cause of problems.

It is not difficult to see that it is not possible to have more than one server handling
asynchronous writes when auto-increments are involved (if there are two servers, both will
give out the next free auto-increment value, and then they will die when the slave thread
attempts to insert a second row with the same value).

Getting ready
This recipe assumes that you already have replication working, using the recipes discussed
earlier in this chapter.

Chapter 5

157

How to do it...
In a master-master replication agreement, the servers may insert a row at almost the same
time and give out the same auto-increment value. This is often a primary key, thus causing the
replication agreement to break, because it is impossible to insert two different rows with the
same primary key. To fix this problem, there are two extremely useful my.cnf values:

1.	 auto_increment_increment that controls the difference between successive
AUTO_INCREMENT values.

2.	 auto_increment_offset that determines the first AUTO_INCREMENT value given
out for a new auto-increment column.

By selecting a unique auto_increment_offset value and an auto_increment_
increment value greater than the maximum number of nodes you ever want in order
to handle a write query, you can eliminate this problem. For example, in the case of a
three-node cluster, set:

Node1 to have auto_increment_increment of 3 and
auto_increment_offset of 1

Node2 to have auto_increment_increment of 3 and
auto_increment_offset of 2

Node3 to have auto_increment_increment of 3 and
auto_increment_offset of 3

Node1 will use value 1 initially, and then values 4, 7, and 10. Node2 will give out value 2, then
values 5, 8, and 11. Node3 will give out value 3, then 6, 9, and 12. In this way, the nodes are
able to successfully insert nodes asynchronously and without conflict.

These mysqld parameters' values can be set in the [mysqld] section of my.cnf, or within
the server without restart:

[node A] mysql> set auto_increment_increment = 10;

[node A] mysql> set auto_increment_offset = 1;

There's more...
A MySQL server can be started or set to read-only mode using a my.cnf parameter or a
SET command. This can be extremely useful to ensure that a helpful user does not come
along and accidentally inserts or updates a row on a slave, which can (and often does) break
replication when a query that comes from the master can't be executed successfully due
to the slightly different state on the slave. This can be damaging in terms of time to correct
(generally, the slave must be re-synchronized).







High Availability with MySQL Replication

158

When in read-only mode, all queries that modify data on the server are ignored unless they
meet one of the following two conditions:

1.	 They are executed by a user with SUPER privileges (including the default root user).

2.	 They are executed by the a replication slave thread.

To put the server in the read-only mode, simply add the following line to the [mysqld]
section in /etc/my.cnf:

read-only

This variable can also be modified at runtime within a mysql client:

mysql> show variables like "read_only";

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| read_only | OFF |

+---------------+-------+

1 row in set (0.00 sec)

mysql> SET GLOBAL read_only=1;

Query OK, 0 rows affected (0.00 sec)

mysql> show variables like "read_only";

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| read_only | ON |

+---------------+-------+

1 row in set (0.00 sec)

Multi Master Replication Manager (MMM):
initial installation

Multi Master Replication Manager for MySQL ("MMM") is a set of open source Perl scripts
designed to automate the process of creating and automatically managing the "Active / Passive
Master" high availability replication setup discussed earlier in this chapter in the MySQL
Replication design recipe, which uses two MySQL servers configured as masters with only
one of the masters accepting write queries at any point in time. This provides redundancy
without any significant performance cost.

Chapter 5

159

This setup is asynchronous, and a small number of transactions can be
lost in the event of the failure of the master. If this is not acceptable, any
asynchronous replication-based high availability technique is not suitable.

Over the next few recipes, we shall configure a two-node cluster with MMM.

It is possible to configure additional slaves and more complicated topologies.
As the focus of this book is high availability, and in order to keep this recipe
concise, we shall not mention these techniques (although, they all are
documented in the manual available at http://mysql-mmm.org/).

MMM consists of several separate Perl scripts, with two main ones:

1.	 mmmd_mon: Runs on one node, monitors all nodes, and takes decisions.

2.	 mmmd_agent: Runs on each node, monitors the node, and receives instructions
from mmm_mon.

In a group of MMM-managed machines, each node has a node IP, which is the normal server
IP address. In addition, each node has a "read" IP and a "write" IP. Read and write IPs are
moved around depending on the status of each node as detected and decided by mmmd_mon,
which migrates these IP address around to ensure that the write IP address is always on an
active and working master, and that all read IPs are connected to another master that is in
sync (which does not have out-of-date data).

mmmd_mon should not run on the same server as any of the databases to
ensure good availability. Thus, the best practice would be to keep a minimum
number of three nodes.

In the examples of this chapter, we will configure two MySQL servers, node 5 and node
6 (10.0.0.5 and 6) with a virtual writable IP of 10.0.0.10 and two read-only IPs of
10.0.0.11 and 10.0.0.12, using a monitoring node node 4 (10.0.0.4). We will
use RedHat / CentOS provided software where possible.

If you are using the same nodes to try out any of the other recipes discussed
in this book, be sure to remove MySQL Cluster RPMs and /etc/my.cnf
before attempting to follow this recipe.

High Availability with MySQL Replication

160

There are several phases to set up MMM. Firstly, the MySQL and monitoring nodes must
have MMM installed, and each node must be configured to join the cluster. Secondly, the
MySQL server nodes must have MySQL installed and must be configured in a master-master
replication agreement. Thirdly, a monitoring node (which will monitor the cluster and take
actions based on what it sees) must be configured. Finally, the MMM monitoring node must
be allowed to take control of the cluster.

In this chapter, each of the previous four steps is a recipe in this book. The first recipe covers
the initial installation of MMM on the nodes.

How to do it...
The MMM documentation provides a list of required Perl modules. With one exception, all
Perl modules currently required for both monitoring agents and server nodes can be found
in either the base CentOS / RHEL repositories, or the EPEL library (see the Appendices for
instructions on configuration of this repository), and will be installed with the following
yum command:

[root@node6 ~]# yum -y install perl-Algorithm-Diff perl-Class-Singleton
perl-DBD-MySQL perl-Log-Log4perl perl-Log-Dispatch perl-Proc-Daemon perl-
MailTools

Not all of the package names are obvious for each module; fortunately, the
actual perl module name is stored in the Other field in the RPM spec file,
which can be searched using this syntax:
[root@node5 mysql-mmm-2.0.9]# yum whatprovides "*File::
stat*"

Loaded plugins: fastestmirror

...

4:perl-5.8.8-18.el5.x86_64 : The Perl programming language

Matched from:

Other : perl(File::stat) = 1.00

Filename : /usr/share/man/man3/File::stat.3pm.gz

...

This shows that the Perl File::stat module is included in the base
perl package (this command will dump once per relevant file; in this case,
the first file that matches is in fact the manual page).

Chapter 5

161

The first step is to download the MMM source code onto all nodes:

[root@node4 ~]# mkdir mmm

[root@node4 ~]# cd mmm

[root@node4 mmm]# wget http://mysql-mmm.org/_media/:mmm2:mysql-mmm-
2.0.9.tar.gz

--13:44:45-- http://mysql-mmm.org/_media/:mmm2:mysql-mmm-2.0.9.tar.gz

...

13:44:45 (383 KB/s) - `mysql-mmm-2.0.9.tar.gz' saved [50104/50104]

Then we extract it using the tar command:

[root@node4 mmm]# tar zxvf mysql-mmm-2.0.9.tar.gz

mysql-mmm-2.0.9/

mysql-mmm-2.0.9/lib/

...

mysql-mmm-2.0.9/VERSION

mysql-mmm-2.0.9/LICENSE

[root@node4 mmm]# cd mysql-mmm-2.0.9

Now, we need to install the software, which is simply done with the make file provided:

[root@node4 mysql-mmm-2.0.9]# make install

mkdir -p /usr/lib/perl5/vendor_perl/5.8.8/MMM /usr/bin/mysql-mmm /usr/
sbin /var/log/mysql-mmm /etc /etc/mysql-mmm /usr/bin/mysql-mmm/agent/ /
usr/bin/mysql-mmm/monitor/

...

[-f /etc/mysql-mmm/mmm_tools.conf] || cp etc/mysql-mmm/mmm_tools.conf
/etc/mysql-mmm/

Ensure that the exit code is 0 and that there are no errors:

[root@node4 mysql-mmm-2.0.9]# echo $?

0

Any errors are likely caused as a result of dependencies—ensure that you
have a working yum configuration (refer to Appendices) and have run the
correct yum install command.

High Availability with MySQL Replication

162

Multi Master Replication Manager (MMM):
installing the MySQL nodes

In this recipe, we will install the MySQL nodes that will become part of the MMM cluster.
These will be configured in a multi-master replication setup, with all nodes initially set
to read-only.

How to do it...
First of all, install a MySQL server:

[root@node5 ~]# yum -y install mysql-server

Loaded plugins: fastestmirror

...

Installed: mysql-server.x86_64 0:5.0.77-3.el5

Complete!

Now configure the mysqld section /etc/my.cnf on both nodes with the following steps:

1.	 Prevent the server from modifying its data until told to do so by MMM. Note that
this does not apply to users with SUPER privilege (that is, probably you at the
command line!):
read-only

2.	 Prevent the server from modifying its mysql database as a result of a replicated
query it receives as a slave:
replicate-ignore-db = mysql

3.	 Prevent this server from logging changes to its mysql database:
binlog-ignore-db = mysql

4.	 Now, on the first node (in our example node5 with IP 10.0.0.5), add the following
to the [mysqld] section in /etc/my.cnf:
log-bin=node5-binary

relay-log=node5-relay

server-id=5

5.	 And on the second node (in our example node6 with IP 10.0.0.6), repeat with the
correct hostname:
log-bin=node6-binary

relay-log=node6-relay

server-id=6

Chapter 5

163

Ensure that these are correctly set. Identical node IDs or logfile names
will cause all sorts of problems later.

On both servers, start the MySQL server (the mysql_install_db script will be run
automatically for you to build the initial MySQL database):

[root@node5 mysql]# service mysqld start

...

Starting MySQL: [OK]

The next step is to enter the mysql client and add the users required for replication and the
MMM agent. Firstly, add a user for the other node (you could specify the exact IP of the peer
node if you want):

mysql> grant replication slave on *.* to 'mmm_replication'@'10.0.0.%'
identified by 'changeme';

Query OK, 0 rows affected (0.00 sec)

Secondly, add a user for the monitoring node to log in and check the status (specify the IP
address of the monitoring host):

mysql> grant super, replication client on *.* to 'mmm_agent'@'10.0.0.4'
identified by 'changeme';

Query OK, 0 rows affected (0.00 sec)

Finally, flush the privileges (or restart the MySQL server):

mysql> flush privileges;

Query OK, 0 rows affected (0.00 sec)

Repeat these three commands on the second node.

With the users set up on each node, now we need to set up the Multi Master Replication link.

At this point, we have started everything from scratch, including installing MySQL and running
it in read-only mode. Therefore, creating a replication agreement is trivial as there is no need
to sync the data. If you already have data on one node that you wish to sync to the other, or
both nodes are not in a consistent state, refer to the previous recipe for several techniques
to achieve this.

High Availability with MySQL Replication

164

First, ensure that the two nodes are indeed consistent. Run the command SHOW MASTER
STATUS in the MySQL Client:

[root@node5 mysql]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.0.77-log Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show master status;

+---------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+---------------------+----------+--------------+------------------+

| node5-binary.000003 | 98 | | mysql |

+---------------------+----------+--------------+------------------+

1 row in set (0.00 sec)

Ensure that the logfile name is correct (it should be a different name on each node) and
ensure that the position is identical.

If this is correct, execute a CHANGE MASTER TO command on both nodes:

In our example, on node5 (10.0.0.5), configure it to use node6 (10.0.0.6) as a master:

mysql> change master to master_host = '10.0.0.6', master_user='mmm_
replication', master_password='changeme', master_log_file='node6-
binary.000003', master_log_pos=98;

Query OK, 0 rows affected (0.00 sec)

Configure node6 (10.0.0.6) to use node5 (10.0.0.5) as a master:

mysql> change master to master_host = '10.0.0.6', master_user='mmm_
replication', master_password='changeme', master_log_file='node6-
binary.000003', master_log_pos=98;

Query OK, 0 rows affected (0.00 sec)

On both nodes, start the slave threads by running:

mysql> start slave;

Query OK, 0 rows affected (0.00 sec)

Chapter 5

165

And check that the slave has come up:

mysql> show slave status\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 10.0.0.6

 Master_User: mmm_replication

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: node6-binary.000003

 Read_Master_Log_Pos: 98

 Relay_Log_File: node5-relay.000002

 Relay_Log_Pos: 238

 Relay_Master_Log_File: node6-binary.000003

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

...

 Seconds_Behind_Master: 0

1 row in set (0.00 sec)

The next step is to configure MMM. Unfortunately, MMM requires one Perl package that is not
provided in the base or EPEL repositories with CentOS or RHEL, so we must download and
install it. The module is Net::ARP (which is used for the IP-takeover) and you can download it
from Perl's MCPAN, or use a third-party RPM. In this case, we use a third-party RPM, which
can be found from a trusted repository of your choice or Google (in this example, I used
http://dag.wieers.com/rpm/):

[root@node6 ~]# cd mmm

[root@node6 mmm]# wget ftp://ftp.univie.ac.at/systems/linux/dag/redhat/
el5/en/x86_64/RPMS.dries/perl-Net-ARP-1.0.2-1.el5.rf.x86_64.rpm

--18:53:31--

...

18:53:32 (196 KB/s) - `perl-Net-ARP-1.0.2-1.el5.rf.x86_64.rpm' saved
[16582]

[root@node6 mmm]# rpm -ivh perl-Net-ARP-1.0.2-1.el5.rf.x86_64.rpm

warning: perl-Net-ARP-1.0.2-1.el5.rf.x86_64.rpm: Header V3 DSA signature:
NOKEY, key ID 1aa78495

Preparing... ###
[100%]

 1:perl-Net-ARP ###
[100%]

High Availability with MySQL Replication

166

Now, configure /etc/mysql-mmm/mmm_agent.conf with the name of the local node
(do this on both nodes):

include mmm_common.conf

this node5

Start the MMM agent on the node:

[root@node6 mysql-mmm-2.0.9]# service mysql-mmm-agent start

Starting MMM Agent daemon... Ok

And configure it to start on boot:

[root@node6 mysql-mmm-2.0.9]# chkconfig mysql-mmm-agent on

Multi Master Replication Manager (MMM):
installing monitoring node

In this recipe, we will configure the monitoring node with details of each of the hosts, and
will tell it to start monitoring the cluster.

How to do it...
Edit /etc/mysql-mmm/mmm_common.conf to change the details for each host and its
username and password.

Within this file, define default interfaces, PID and binary paths, and username / password
combinations for the replication and MMM agents. For our example cluster, the file looks
like this:

<host default>
 cluster_interface eth0

 pid_path /var/run/mmmd_agent.pid
 bin_path /usr/bin/mysql-mmm/

 replication_user mmm_replication
 replication_password changeme

 agent_user mmm_agent
 agent_password changeme

 monitor_user mmm_agent
 monitor_password changeme
</host>

Chapter 5

167

We will define these user accounts and passwords here, because in this
example we will use the same replication and agent user account and
password for both nodes. While it may be tempting to use different details,
it is worth remembering that these are relatively "low privilege" accounts
and that anyone with access to either server has the same degree of
access to all your data!

In this example, we have additionally used one user for both MMM's
monitor and agents.

Secondly (in the same mmm_common.conf file), define the MySQL hosts involved in the
replication. For our example cluster, it looks like this:

<host node5>
 ip 10.0.0.5
 mode master
 peer node6
</host>

<host node6>
 ip 10.0.0.6
 mode master
 peer node5
</host>

Define a role for writers and readers; we will have two readers and one writer at any one point
(this allows either node to run read-only queries). For our example cluster, it looks like this:

<role writer>
 hosts node5,node6
 ips 10.0.0.10
 mode exclusive
</role>

<role reader>
 hosts node5,node6
 ips 10.0.0.11,10.0.0.12
 mode balanced
</role>

High Availability with MySQL Replication

168

If you would like to specify a role to stick to one host unless there is a real
need to move it, specify prefer nodex in the <role> section. Note
that if you do this, you will not be able to easily move this role around for
maintenance, but this can be useful in the case of widely different hardware.

Finally, tell MMM that you would like the active master to allow write queries:

active_master_role writer

Copy mmm_common.conf to the MySQL nodes:

[root@node4 mysql-mmm]# scp mmm_common.conf node5:/etc/mysql-mmm/

mmm_common.conf
 100% 624 0.6KB/s 00:00

[root@node4 mysql-mmm]# scp mmm_common.conf node6:/etc/mysql-mmm/

mmm_common.conf

100% 624 0.6KB/s 00:00

Now edit /etc/mysql-mmm/mmm_mon.conf on the monitoring node, which controls how
monitoring will run.

Include the common configuration (hosts, roles, and so on) defined earlier:

include mmm_common.conf

Run a monitor locally, pinging all IPs involved:

<monitor>
 ip 127.0.0.1
 pid_path /var/run/mmmd_mon.pid
 bin_path /usr/bin/mysql-mmm/
 status_path /var/lib/misc/mmmd_
mon.status
 ping_ips 10.0.0.5,10.0.0.6,10.0
.0.10,10.0.0.11,10.0.0.12
</monitor>

Finally, start the monitoring daemon:

[root@node4 ~]# service mysql-mmm-monitor start

Daemon bin: '/usr/sbin/mmmd_mon'

Daemon pid: '/var/run/mmmd_mon.pid'

Starting MMM Monitor daemon: Ok

Chapter 5

169

MMM is now configured, with the agent monitoring the two MySQL nodes. Refer to the next
recipe for instructions on using MMM.

Managing and using
Multi Master Replication Manager (MMM)

In this recipe, we will show how to take your configured MMM nodes into a working MMM
cluster with monitoring and high availability, and also discuss some management tasks
such as conducting planned maintenance.

This recipe assumes that the MMM agent is installed on all MySQL nodes, and that a MMM
monitoring host has been installed as shown in the preceding recipe.

This recipe will make extensive use of the command mmm_control, which is used to control
the hosts inside a MMM cluster.

How to do it…
Within mmm_control, a show command gives the current status of the cluster:

[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/ONLINE. Roles: reader(10.0.0.12)

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11),
 writer(10.0.0.10)

This shows that both node5 and node6 are up, each has a reader role (10.0.0.12
and 10.0.0.11), and node6 has the writer role (10.0.0.10). Therefore, if you need to
execute a write query or a read query that must have the latest data, use 10.0.0.10. If
you are executing a read-only query that can be executed on slightly old data, you can use
10.0.0.12 in order to keep the load off the active write master.

When your nodes first start, they will appear with a status of AWAITING_RECOVERY:

[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/AWAITING_RECOVERY. Roles:

 node6(10.0.0.6) master/AWAITING_RECOVERY. Roles:

This is because MMM needs to be sure that you want to bring them both online.

1.	 The first step is to configure the nodes to come online using the
mmm_control set_online command:
[root@node4 ~]# mmm_control set_online node5

OK: State of 'node5' changed to ONLINE. Now you can wait some time
and check its new roles!

[root@node4 ~]# mmm_control set_online node6

High Availability with MySQL Replication

170

OK: State of 'node6' changed to ONLINE. Now you can wait some time
and check its new roles!

[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/ONLINE. Roles: reader(10.0.0.12),
writer(10.0.0.10)

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11)

We can now see the MMM has brought both nodes online, giving the writer role
to node5.

2.	 The second step is to check that MMM has successfully configured the read-only
node (node6), which we'll do with show variables like 'read_only'; executed
against both the MySQL server with the reader and writer role:
[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/ONLINE. Roles: reader(10.0.0.12),
writer(10.0.0.10)

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11)

[root@node4 ~]# echo "show variables like 'read_only';" | mysql -h
10.0.0.10

Variable_name	Value

read_only	 OFF

[root@node4 ~]# echo "show variables like 'read_only';" | mysql -h
10.0.0.11

Variable_name	Value

read_only	 ON

This shows the same query executed against the writer role (10.0.0.10) and the
reader role (10.0.0.11). As expected, the reader is set to read-only, whereas the
writer is not.

If you execute this query against the reader role on the same host as a
writer, it will show read_only set to off, even though it is a reader role.
This is because this parameter is specified on a per-host basis, so if a reader
happens to have an active writer role, it will also accept write queries. The
important thing is that nodes without a writer are set to read-only, otherwise
the replication between the two nodes will break.

3.	 The next step is to activate the nodes. MMM runs in two modes:

i.	 In active mode, the MMM monitoring agent actively takes control of the MySQL
nodes, and commands sent to mmm_control are executed on the MySQL nodes.

ii.	 Passive node is entered in the event of a problem detected on startup (either
a problem in communicating with a MySQL node, or a discrepancy detected
between the stored status and the detected status on nodes).

Chapter 5

171

4.	 The fourth step is to check the current status of a node. Do this with the following
command on the MMM monitoring node:
[root@node4 ~]# mmm_control mode

ACTIVE

If a node is in the passive mode, a status report will show this:
[root@node4 ~]# mmm_control show

--- Monitor is in PASSIVE MODE ---

Cause: Discrepancies between stored status, agent status and
system status during startup.

The last step is to turn any inactive node to active. In order to do this, run the
following command for each inactive node on the MMM monitoring node:

[root@node4 ~]# mmm_control set_active

OK: Switched into active mode.

It is possible to deliberately put MMM into passive mode, make some
changes to IP addresses, and then set MMM active, which will have the effect
of immediately carrying out all the pending changes (if possible). For more
details, see the MMM documentation.

At this point, your MMM cluster is up and running. In the event of failure of a MySQL server,
the roles that were running on that server will be migrated off the server very quickly.

How it works...
When MMM moves a role from a node, it uses the functionality provided by the Net::ARP Perl
Module to update ARP tables, and rapidly move the IP address from node to node. The exact
process is as follows:

On the "current" active writer node:

MySQL server is made read_only to prevent further write transactions
(except those executed by a SUPER user)

Active connections are terminated

The writer role IP is removed

On the new writer:

The MMM process running on the slave is informed that it is about to become the
active writer

The slave will attempt to catch up with any remaining queries in the master's
binary log











High Availability with MySQL Replication

172

read_only is turned off

The writer IP is configured

There's more...
You will often want to move a role, often the writer role, from the currently active node to a
passive one in order to conduct maintenance on the active node. This is trivial to complete
with MMM.

Firstly, confirm the current status:

[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/ONLINE. Roles: reader(10.0.0.12)

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11),
 writer(10.0.0.10)

In this example, we will move the active writer role (on node6) to node5, using the
move_role command:

[root@node4 ~]# mmm_control move_role writer node5

OK: Role 'writer' has been moved from 'node6' to 'node5'. Now you can
wait some time and check new roles info!

We can now check the status to see that the role has moved:

[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/ONLINE. Roles: reader(10.0.0.12),

 writer(10.0.0.10)

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11)

Failure detection
If a node fails and MMM is running, MMM will migrate all roles off that node and onto
other nodes.

For example, if we have a status with node5 having an active reader and writer, and node6
just a reader:

[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/ONLINE. Roles: reader(10.0.0.12),
 writer(10.0.0.10)

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11)





Chapter 5

173

Here node5 fails, and rapidly show will show that all nodes have been migrated:

[root@node4 ~]# mmm_control show

Warning: agent on host node5 is not reachable

 node5(10.0.0.5) master/HARD_OFFLINE. Roles:

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11),
 reader(10.0.0.12), writer(10.0.0.10)

When node5 recovers, assuming MySQL is configured to start at boot, it will sit in
AWAITING_RECOVERY state:

[root@node4 ~]# mmm_control show

 node5(10.0.0.5) master/AWAITING_RECOVERY. Roles:

 node6(10.0.0.6) master/ONLINE. Roles: reader(10.0.0.11),
 reader(10.0.0.12), writer(10.0.0.10)

The process for activating this node was covered at the beginning of this section.

If MySQL does not start at boot, the node will appear in the HARD_OFFLINE
state. In this case, investigate the cause on the node before doing anything
in MMM.

6
High Availability
with MySQL and
Shared Storage

In this chapter, we will cover:

Preparing a Linux server for shared storage

Configuring two servers for shared storage MySQL

Configuring MySQL on shared storage with Conga

Fencing for high availability

Configuring MySQL with GFS

Introduction
In this chapter, we will look at high-availability techniques for MySQL that rely on shared
storage. The techniques covered elsewhere in this book have produced highly-available
systems while maintaining the independence of each machine involved. Each machine had its
own disk drive and the data in the database is synced at application level between the servers
using replication or MySQL clustering. With shared storage, the actual database data is not
stored on local disk drives, but on a storage array that can be accessed by multiple servers.

It is not possible to just connect a single hard drive to two different servers and use
a traditional filesystem, and any attempt to do this will result in almost immediate
data corruption.











High Availability with MySQL and Shared Storage

176

In this book GFS refers to the filesystem open sourced by RedHat
(http://www.redhat.com/gfs/), and has nothing to do with the
Google GFS (http://labs.google.com/papers/gfs.html),
which is not open source.

Preparing a Linux server for shared storage
Shared storage works by separating the servers that process data from the storage, using
various technologies that are beyond the scope of this book (the most common being Fibre
Channel and iSCSI). The idea is that two servers with the same storage space can easily act
as in active/passive mode (with one node active at any one time), and can quickly fail over
the active node.

The simplified structure of shared-storage cluster is as follows:

NODE
A

IP ADDRESS

ISCSI / FIBRE CHANNEL

SAN

NODE
B

NODE
C

CLIENT CLIENT

Note that between the SAN and nodes, there are generally multiple paths for
the storage traffic to take, for both fibre channel and iSCSI based solutions,
these often involve multiple controllers on the storage unit. This book does not
focus on this layer, but multipathing is an essential part of a production setup.

Chapter 6

177

Depending on the solution developed, the service may run on one server at a time (either
Node A, Node B, or Node C as shown in the previous diagram) or run on all three nodes
with a filesystem specifically designed to allow access from multiple nodes.

In the former case, the active node has a shared IP address listening for clients and mounts
the shared-storage volumes. The other two nodes do not mount the storage and do not listen
on the shared IP address and the service is stopped. In the event of a failure, the nodes
that have not failed detect that a node has failed, forcibly turn off the newly failed node to
ensure that it has really died and is no longer writing to the filesystem (a technique called
fencing, which we will explore later in this chapter). One of the remaining nodes picks up the
virtual IP, mounts the shared storage, recovers the filesystem journal if required, and starts
the service so that clients can continue to connect without reconfiguration. In the case of
planned maintenance, the service can easily be stopped on one node, the mounted storage
unmounted, and virtual IP removed from that node with another node then mounting the
storage, taking over the shared IP address, and starting the service.

In the latter case, all the active nodes mount the storage and use a filesystem that is designed
to cope with multiple nodes, such as RedHat's Global File System (GFS). This filesystem uses
a Distributed Lock Manager (DLM) to coordinate access to the shared storage, and includes
code to cope with node failures in a clean manner. This solution is often used with only one
node active at a time, with the advantage over the former solution of a faster failover time.
There is also no risk of accidental mounting of the storage on a non-active node, which would
cause corruption. There is a slight overhead in using a clustered filesystem such as GFS.

In either case, each service consists of a set of resources, such as an IP address and an
actual process (in our case, MySQL) with a working init script, and some shared storage.
This service is moved from one server to another by the Cluster Manager which is a user
space process, constantly keeping in touch with the other nodes.

Always use a transactional storage engine such as InnoDB for MySQL
instances running on shared storage, except for the mysql database which is
hardly ever changed. MyISAM has extremely poor recovery characteristics in
the event of an unclean shutdown, which is what all unplanned failures are in
a shared-storage cluster. In other words, they involve nodes failing hard rather
than cleanly unmounting the filesystems.

In this recipe, we will look at some of the design considerations for the storage, and then
cover the configuration required for a RHEL or CentOS server to connect to a pre-existing
iSCSI volume.

This is not a book about Linux storage management, but a brief example of
iSCSI is included here for completeness in order to allow this book alone to
help you configure a shared-storage cluster, even if it is just for testing.

High Availability with MySQL and Shared Storage

178

How to do it…
To design a shared-storage architecture, you must consider the performance and storage
requirements, and the detail of this is outside the scope of this book. However, to give you
a brief idea, you may wish to consider the following in more detail:

The type of drives—for I/O intensive loads, fibre channel drives may be required rather
than SAS or SATA and an increasing number of storage arrays will allow some Solid
State Disks (SSDs) to be used.

Many storage networks require detailed designs for storage networking (including
the configuration of correct zoning and Virtual SAN (VSAN) parameters) and storage
equipment (including the configuration of LUN masking). Verify at an early stage if
this is likely to be a part of your setup, and if so consider it from the start.

The RAID configuration—for example, RAID10 provides vastly better write performance
when compared with RAID5 and having lots of small disks provides higher I/O
operations per second (IOPS), when compared to a few larger ones.

The type of protocol—at the time of writing, Fibre Channel storage provides higher
throughput and lower latency when compared with iSCSI.

The layout of the storage—for example, you may wish to separate data from the logs,
or use different block devices with different performance such as SCSI, SATA disks,
or SSDs for different Logical Unit Numbers (LUNs).

In storage terminology, a Logical Unit Number (LUN) is the identifier
of a SCSI logical unit.

The cost of any solution—for example, generally Fibre Channel solutions are more
expensive than those based on iSCSI, and SCSI drives are more expensive than SATA.

The increased availability of 10 Gigabit Ethernet may make iSCSI
perform better than Fibre Channel (which generally operates at 4
or 8 Gigabit over optical cables—but Fibre Channel over Ethernet is
increasing in popularity); be sure to consider all the options!

If you are using a storage system that allows you to export iSCSI volumes, the next part
of this section covers getting your Linux nodes to connect to this volume (if you are using
software initiators).













Chapter 6

179

There are two ways to connect Linux clients to iSCSI volumes. The first
are software initiators that use the existing network cards on a server and
present the resulting LUNs to the kernel. The second are hardware initiators
that use hardware cards (provided by companies such as QLogic) to connect
to the iSCSI disk array. The card then presents the LUNs to the kernel as
SCSI devices. Hardware initiators reduce the CPU load on the host, but
the configuration generally depends on user space tools specific to the
manufacturer and the model, and are not covered in this book.

If you are using Fibre Channel Host Bust Adapters (HBAs), iSCSI HBAs ("hardware initiators")
or other storage involving hardware such as PCIe cards, it is possible that the cards will not be
recognized by the kernel or that the open source driver shipped with RedHat Enterprise Linux
and CentOS does not support all of the functionality that you require. In this case, you may
have to install a custom driver. It is best to purchase the hardware that is supported without
any such drivers, but if such drivers are required refer to your equipment documentation.

The end result must be the same; the same storage volume (LUN) must be presented on both
nodes in the same place, such that they recognize them (ideally as something conventional
such as /dev/sdb).

If you are planning on using iSCSI software initiators, first install the iSCSI initiator package:

If you are using RedHat Enterprise Linux, ensure that the machine has access
to a Clustering entitlement if you use the RedHat Network. CentOS users can
find these packages in the base repository.

[root@node2 ~]# yum -y install iscsi-initiator-utils

Check your initiator name (which is autogenerated) and use this to configure the iSCSI target
(the storage device exporting the iSCSI LUN) to allow access from this node as follows:

[root@node2 ~]# cat /etc/iscsi/initiatorname.iscsi

InitiatorName=iqn.1994-05.com.redhat:405646314b4

Once you have configured the storage (for which you must refer to the documentation
included with your storage), write down the iSCSI Qualified Name (IQN) of the disk array that
you are trying to connect to. It is likely that you will find this given to you when you create the
iSCSI volume in the storage management software.

Using the IQN (located earlier) and the IP address of the storage, send a special discovery
request to the storage. In the English language, this says "hi, I'm <local initiator name>,
what IQNs do you have available for me?"

High Availability with MySQL and Shared Storage

180

For the purpose of this book, which is as quick and practical as possible, we
have skipped configuring CHAP for authentication, which you should always do
in a production setting (CHAP can be configured in /etc/iscsi/iscsid.
conf). See the main page for iscsid.conf for more details.

Do this with the following command (10.0.0.10 is our storage IP):

[root@node1 ~]# iscsiadm -m discovery -t st -p 10.0.0.10

10.0.0.10:3260,1 iqn.1986-03.com.sun:02:bef2d7f0-af13-6afa-9e70-
9622c12ee9c0

The IQN gives you an idea that this is a SUN iSCSI appliance.

Hopefully, you should see the IQN you noted down in the output from the previous command.
You may see more, if your storage is set to export some LUNs to all initiators. If you see
nothing, there is something wrong—most likely, the storage requires CHAP authentication or
you have incorrectly configured the storage to allow the initiator IQN access.

Once you see the output representing the correct storage volume, restart the iscsi service
to connect to the volume as follows:

[root@node1 ~]# /etc/init.d/iscsi restart

Stopping iSCSI daemon:

iscsid dead but pid file exists [OK]

Turning off network shutdown. Starting iSCSI daemon: [OK]

 [OK]

Setting up iSCSI targets:

Logging in to [iface: default, target: iqn.1986-03.com.sun:02:bef2d7f0-
af13-6afa-9e70-9622c12ee9c0, portal: 10.0.0.10,3260]

 [OK]

Check that this new storage volume has been mounted in the kernel log as follows:

[root@node1 ~]# dmesg | tail -1

sd 1:0:0:0: Attached scsi disk sdb

Repeat this entire exercise for the other node, which should also mount the same volume as
/dev/sdb. Do not attempt to build a filesystem on this volume at this stage.

Good! You have successfully prepared your two-node cluster to see the same storage and
are ready to run a service from this shared storage.

Chapter 6

181

See also

This book covers some higher level performance tuning techniques in Chapter 8,
Performance Tuning, but will not delve into detailed kernel level performance tuning. For
this, I can recommend "Optimizing Linux Performance", 2005, Phillip G. Ezolt, Prentice Hall
for an in-depth guide of performance for all the main subsystems in the Linux kernel.

If you are using iSCSI, consider enabling jumbo frames, although consider setting a MTU
of 8000 bytes (rather than 9000 bytes), because the Linux kernel is significantly faster at
allocating two pages of memory (required for 8000 bytes) as compared to allocating
three pages (required for 9000 bytes). See the RedHat Knowledgebase article at:
http://kbase.redhat.com/faq/docs/DOC-3644

Configuring two servers for shared
storage MySQL

In this recipe, we will set up a MySQL service running on two servers, node1 and node2, for
sharing a iSCSI volume presented as /dev/sdb on both nodes for active/passive clustering.
At the end of the recipe, you will see that it will be possible to manually fail over MySQL from
one node to the other, but the process is extremely tedious. This recipe is designed as a
stepping stone to the next recipe in which the failover process will be automated.

In this recipe, we will:

Install the required packages for CentOS

Create a logical volume on the shared storage

Create a filesystem on this shared-storage logical volume

Install MySQL

How to do it…
To follow this recipe, ensure that you have a clean install of CentOS (or RedHat Enterprise
Linux with a Cluster Suite entitlement) and your LUNs on your storage array connect to and are
visible from both nodes, with both of them seeing this storage device. In this example, we will
be using an iSCSI volume, but the steps would be identical for any other shared storage.

Ensure that the preparatory steps discussed in the previous recipe have
been completed and that both of your nodes can see the shared LUN
(fdisk –l /dev/sdb (or /dev/folder name)) and show the
information for the shared-storage volume.









High Availability with MySQL and Shared Storage

182

Carry out the following steps on both the servers:

1.	 If the Cluster Filesystem package option was not selected in setup, run the following
command to install all relevant packages (you can run it to be sure that everything
has been correctly installed):
[root@node2 ~]# yum groupinstall clustering

2.	 An important early step is to ensure that all servers have time in sync, as some of
the cluster work will depend on time being in sync. Install, start, and start on boot
the ntp service:
[root@node2 ~]# yum install ntp

[root@node2 ~]# chkconfig ntpd on

[root@node2 ~]# service ntpd start

Starting ntpd: [OK]

You can specify a NTP server in /etc/ntp.conf and restart ntpd.

Add the IP addresses for each node involved in the cluster to /etc/hosts. In this
example, host1 and host2 have a private network connected to eth1 and use
IP addresses 10.0.0.1 and 10.0.0.2, so add these lines to /etc/hosts on
both nodes:

127.0.0.1 localhost.localdomain localhost

10.0.0.1 node1

10.0.0.2 node2

The entire Fully Qualified Domain Name (FQDN) of the
nodes should be added to this file alongside its IP address,
along with any aliases. In the previous example, the nodes
are not members of a domain. The entire FQDN of the
hosts should be added to /etc/hosts, plus any aliases.

Entries for each node in each cluster's /etc/hosts file are critical because the
cluster processes will execute a large number of name lookups. Many of these will
be required to be completed in a certain period of time or the cluster will assume
that another node is dead and cause a short period of downtime and some aborted
transactions as it fails over. In the event that DNS services are unavailable even
for a short period of time and the hosts involved in the cluster are not listed in
/etc/hosts, its effects on the cluster may be very significant.

Chapter 6

183

3.	 The next step is to create a partition or logical volume on the shared storage. We will
create a logical volume using LVM rather than a simple partition. Using LVM reduces
the problems of using partitions (in particular, LUNs from different storage arrays
can be presented in a different order after a reboot of a node and be assigned
a different device name (for example, /dev/sdd rather than /dev/sdb). These
problems can be avoided by assigning persistent device names using either udev
or LVM (a third alternative for ext3 and similar filesystems is assigning filesystem
labels using e2label, which can cause extremely bizarre problems and potential
loss of data).

Carry out the following procedure on only a single node to create a LVM physical volume on
the shared storage, build a volume group consisting of that physical volume, and add a logical
volume for the data.

Carrying this out on a single node might seem bizarre. The reason is that at
this stage, we have not actually installed the cluster daemons (this is part of
the next recipe). Specifically, the clvmd daemon is required to automatically
sync state across nodes in a cluster. Until this is installed, running, and the
nodes are in a cluster together, it is dangerous to make changes to the LVM
metadata on more than one node. So we stick to using a single node to create
our LVM devices, groups, and volumes, and also our filesystem.

Create a physical volume on the shared disk, /dev/sdb:

[root@node1 ~]# pvcreate /dev/sdb

 Physical volume "/dev/sdb" successfully created

Now create a volume group (in our example called clustervg) with the new physical
volume in it:

[root@node1 ~]# vgcreate clustervg /dev/sdb

 Volume group "gfsvg" successfully created

Now create a logical volume, 300 MB in size, called mysql_data_ext3 in the volume
group gfsvg:

[root@node1 ~]# lvcreate --name=mysql_data_ext3 --size=300M clustervg

Logical volume "mysql_data" created

High Availability with MySQL and Shared Storage

184

If you have available disk space, it is recommended to leave some storage
unallocated in each volume group. This is because snapshots require space,
and this space must come from unallocated space in the volume group.
When a snapshot is created, it has a size and this size is the amount of data
that can be changed (each time a piece of data on the volume that has been
snapshotted is modified, this change is recorded but obviously does not
overwrite the existing data thus increasing the disk space usage. This design
is called copy on write.

Now that you have a logical volume, you can create a standard ext3 filesystem on the new
logical volume as follows:

[root@node1 ~]# mkfs.ext3 /dev/clustervg/mysql_data_ext3

We are using a standard filesystem at this point, as this will be mounted
on either one node or another node (not both). It is possible to configure a
filesystem to exist on both nodes at the same time, using the open source
GFS filesystem, but this is not needed for clusters with only one node
active. Products such as Oracle RAC (which are active-active) can use GFS
extensively, and the final recipe in this chapter demonstrates how to use GFS
with MySQL (although still only one node can have MySQL running at a time).

Finally, we need MySQL installed to actually make use of the cluster. We need to get this
to install the mysql database onto the shared storage, so mount this first. Carry out the
following steps on the same single node that you created the LVM logical volume and
filesystem on:

[root@node1 ~]# mkdir –p /var/lib/mysql

[root@node1 ~]# mount /dev/clustervg/mysql_data_ext3 /var/lib/mysql

[root@node1 ~]# yum install mysql-server

Now, start the service (which will run the mysql_install_db script automatically to create
the mysql database):

[root@node1 ~]# service mysql start

Once completed, stop the service and unmount the filesystem as follows:

[root@node1 ~]# service mysql stop

[root@node1 ~]# umount /var/lib/mysql

Once you have created the filesystem, there is no reason for you to ever mount it manually
again—you should only use cluster tools to bring the service up on a node in order to ensure
that there is no risk of data loss. If this concerns you, be sure to use GFS rather than EXT3,
as covered in a later recipe.

Chapter 6

185

Finally, install MySQL on the second node as follows:

[root@node2 ~]# yum install mysql-server

Do not start MySQL.

There's more…
You could, if you wanted, manually fail over the service from node1 to node2. The process
would be as follows:

On node 1, stop MySQL, unmount the filesystem on node 1 then switch to node 2.

On node 2, you could manually scan for LVM physical volumes, volume groups, and
logical volumes. You would then have to manually enable the shared LVM volume,
mount the filesystem on node 2, start MySQL on node 2, and use it.

If this seems unrealistic and totally useless that is fine, because in the next recipe we will
show you how to build on this recipe and install open source software called Conga to
automate all of this, and do it automatically in the case of server failure.

Configuring MySQL on shared storage
with Conga

In this recipe, we will enhance the previous recipe to install open source cluster management
software called Conga. Conga consists of two parts—a server called luci and a client called
ricci. Once everything is configured, you will have a highly-available MySQL service which
will automatically fail over from node to node.

This recipe will not configure fencing as briefly discussed earlier in this chapter; this will be
covered in the next recipe. As a result of this limitation, this cluster will not handle all node
crashes; for almost all real-world uses, you will use this as a stepping stone towards the
next recipe, which adds fencing to the configuration created in this recipe.

How to do it…
In this recipe, we will configure Conga cluster management agent luci on a different server,
and the client ricci on all the nodes (luci can be installed on any server, including one
of the nodes).

The first step is to install and configure luci on a server. In this example, we will use one of
the nodes involved in the cluster, node1. Run luci_admin init as root. Once installed,
start the luci service as instructed.





High Availability with MySQL and Shared Storage

186

If you are using a node on which you have not already installed the clustering
package group, you should install luci first:
[root@node6 cluster]# yum install luci

This process is shown in the following screenshot:

Ensure that luci is configured to start on boot as follows:

[root@node6 cluster]# chkconfig luci on

Ensure that MySQL is not started automatically on boot (as we wish the cluster manager
to start it):

[root@node1 cluster]# chkconfig --del mysql

Chapter 6

187

Point your browser at the URL, and log in with the username admin and password that you
have just created. Select Cluster and Create new cluster, and enter the details specific
to your setup. Ensure that you check Enable shared storage and do not select reboot node,
if (as in our example) luci is running on one of the nodes.

After a short wait, you should be redirected to the general tab of the new mysqlcluster
cluster, which by then should be started.

At time of writing, CentOS had a bug that required a newer version of OpenAIS
to be installed for this process to work; if you see an error starting cman on a
fresh install of CentOS, see CentOS bug #3842 for a description and solution.

With luci installed, the next step is to configure some resources in our cluster—an IP
address, a service, and a filesystem.

Click on resources in the left-hand bar, Add a resource and select IP Address. Enter the
shared IP address that will be owned by whichever node is active at that time (this is
the IP, that clients will connect to). In our example we use 10.0.0.100.

Click on resources | Add a resource | Filesystem and enter the following details:

Name—mysql_data_ext3

File system type—ext3

Mount point—/var/lib/mysql

Device—/dev/clustervg/mysql_data_ext3

Click on resources | Add a resource | MySQL and enter the following details:

Name—mysql

Config file—/etc/my.cnf

Listen address—10.0.0.100

Shutdown Wait (seconds)—Give a value of at least 15 seconds (otherwise, migrations
will almost certainly fail).

Now, we need to add a service which brings together all of the resources under one name.
Click on Services from the left hand bar, followed by clicking on Add new service, and fill
in these details:

Service name—mysql

Automatically start—yes

Recovery policy—relocate























High Availability with MySQL and Shared Storage

188

Recovery policies basically mean, what should I do if the service fails?
If you think that it is likely that a service failure may occur normally, select
restart which simply means run the init script with the restart
parameter. If you think that a service failure is likely to indicate a problem
with the server, set it to relocate which means fail the service off the
current node onto a new node.

You may set the other parameters as you wish, or leave the defaults.

Click on Add a resource to this service, and from the second box Use an existing global
resource. Click on Submit, once all three resources (IP address, filesystem, and init script)
are added.

You should find yourself back at the service main page for the new mysql service. Wait a
minute, and click on Services in the left bar again, to see if this service has started—it should.

From the web interface, you can migrate the mysql service from node1 to node2 and back
again. Each time you migrate the service, the following process is carried out automatically
by the cluster services:

Stop service on source node

Wait Shutdown wait seconds to allow clean exit

Ensure that service has exited cleanly (if not, leave in disabled state)

Unmount volume on source node

Remove virtual IP address

Mount volume on destination node

Add virtual IP to destination node, run some Ethernet hacks to update ARP tables

Start service on destination node

Check that service has started correctly

You can see from this that at no point is the shared storage mounted on more than one node,
and this prevents corruption.

Congratulations! At this point, you have a working shared-storage cluster.

Remember that we do not have any sort of fencing configured, so this
setup is not highly available—if you kill the active node, the service may
not start on the second node just to ensure that data is not corrupted.



















Chapter 6

189

How it works…
While these two processes form a critical part of Conga, it is important to understand that
the cluster management system that we used is not involved in the actual cluster processes
of failing nodes over and monitoring nodes, but is merely for the configuration of the cluster
daemons on each node (which was rather complicated).

The Conga software suite, including luci and ricci, communicates using SSL as shown in
the following diagram:

USER
PC HTTPS

LUCI

SS
L

NODE

RICCI

NODE

RICCI

NODE

RICCI

(X
M

L-R
PC

) SSLSS
L

While luci is convenient to have, its failure has no effect on the cluster other than removing
the ability for you to use a web interface to manage your cluster (the command-line tools,
some of which we will explore in this chapter, will however still work). Similarly, a failure of
ricci on a node simply prevents that node from being managed by luci—it will have no
effect on the node's actual role in a cluster, once the node is fully configured.

There's more…
For creating your cluster, it is often hard to beat the luci / ricci combination—the other
tools available are not as simple, or in some ways, not as powerful. However, for managing
the cluster, it is sometimes easier to stay at the command line of any node. In this section,
we briefly outline some of these useful commands.

Obtaining the cluster status
Using the clustat command, you can quickly see which nodes in the cluster are up (according
to the local node), and which services are running where. It can be shown as follows:

[root@node1 lib]# clustat

Cluster Status for mysqlcluster @ Sun Oct 18 19:14:48 2009

Member Status: Quorate

High Availability with MySQL and Shared Storage

190

 Member Name ID Status

 ------ ---- ---- ------

 node1.xxx.com 1 Online, Local, rgmanager

 node2.xxx.com 2 Online, rgmanager

 Service Name Owner (Last) State

 ------- ---- ----- ------ -----

 service:mysql node1.xxx.com started

[root@node1 lib]#

This shows that service mysql is running on node1, and the two nodes in the cluster
(node1 and node2) are online.

Migration of MySQL from node to node
It is possible to use the clusvcadm command to move a service from one node to another.
As we are not using a clustered filesystem, this involves stopping the service completely on
one node and starting it on the second only after the filesystem has been unmounted from
the first node.

For example, have a look at the output of clustat command:

[root@node1 lib]# clustat

Cluster Status for mysqlcluster @ Sun Oct 18 19:35:02 2009

 Service Name Owner (Last) State

 ------- ---- ----- ------ -----

 service:mysql node1.xxx.com started

From the previous output, we can see that the service mysql is currently running on node1.
We can move this service to node2 by passing –e service_name –m preferred_
destination_hostname to clusvcadm, as shown in the following example:

[root@node1 lib]# clusvcadm -e mysql -m node2.xxx.com

Member node2.xxx.com trying to enable service:mysql...Success

service:mysql is now running on node2.xxx.com

Chapter 6

191

Now, you can confirm the status with clustat as follows:

[root@node1 lib]# clustat

Cluster Status for mysqlcluster @ Sun Oct 18 19:37:33 2009

 Service Name Owner (Last) State

 ------- ---- ----- ------ -----

 service:mysql node2.xxx.com started

Fencing for high availability
Fencing, sometimes known as Shoot The Other Node In The Head (STONITH) sounds
pretty dramatic, and at first sight it may seem odd that it is a good thing for high availability.
In this recipe, we will discuss why fencing is required in all clusters, and then discuss its
implementation using the scripts provided with RHEL and CentOS.

There is only one way to be sure that something is dead—that is, to kill it yourself. For a
shared-storage cluster, it is considered good enough to ask something to die—but only if it
is able to confirm with absolute clarity that it has indeed successfully died. The reason for
this caution is that if a node is considered dead, but is in fact able to consider writing
to a shared-storage device (as may occur in the case of a kernel bug for example), the
consequences may be total data loss on the shared-storage volume.

What this means in practical terms with shared-storage clusters is that in the event of a
controlled movement of a service (for example, either a user asks for a service to be moved
from node A to node B, or the service itself fails—but the machine and the cluster is set to
relocate failed services), the other nodes in the cluster will ask the node to unmount its
storage and release its IP address. As soon as the node confirms that it has done so, this
will be considered as sufficient.

However, the most common reason to move a service is that the previously active node has
failed (because it had crashed, had a power problem, or had been removed from the network
for some reason). In this case, the remaining nodes have a problem—as the node that is being
moved away, almost certainly, will not be able to confirm that it has unmounted the storage.
Even if it has been removed from the network, it could still quite happily be connected via
a separate (fibre) network to a Fibre Channel storage volume. If this is the case, it is almost
certainly writing to the volume, and, if another node attempts to start the service, all the data
will be corrupted. It is therefore critical that if automatic failover is required, the remaining
nodes must have a way to be sure that the node is dead and is no longer writing to the storage.

Fencing provides this technique. In broad terms, configuring fencing is as simple as saying "do
x to kill node y", where "x" is a normal script that is run to connect to a remote management
card, smart power distribution unit, or to a storage switch to mask the host.

High Availability with MySQL and Shared Storage

192

In this recipe, we will show how to configure fencing. Unfortunately, fencing configuration does
vary from method to method, but we will explain the process to be followed.

It is possible to configure manual fencing, however, this is a bit of a botch—it
effectively tells the cluster to do nothing in the case of node failure, and wait
for a human operator to decide what to do. This rather defeats many of the
benefits of a cluster, and furthermore, due to the problems inherent in manual
fencing, namely that it is not sufficient to ensure data integrity and is strongly
not recommended, nodes may get stuck while waiting for this man—and not
respond to standard reboot commands requiring a physical power boot.

It is also possible to create a dummy fencing script that fools the cluster into
thinking that a node has successfully been fenced, when in fact it has not. It
goes without saying that doing this is risking data, even if you do get slightly
easier high availability. Fencing is an absolute requirement and it is a really
bad idea to skip it.

How to do it…
The first step is to add a user on the fencing device. This may involve adding a user to the
remote management card, power system, or storage switch. Once this is done, you should
record the IP address of the fencing device (such as the iLO card) as well as the username
and password that you have created.

Once a user is added on the fencing device, ensure that you can actually connect to the
fencing device interface from your nodes. For example, for most modern fencing devices,
a connection will run over port 22 on SSH, but it may also involve a telnet, SNMP, or
other connection.

For example, testing a SSH connection is easy—just SSH to the fencing user at the fencing
device from the nodes in your cluster as follows:

[root@node1 ~]# ssh fencing-user@ip-of-fencing-device

The authenticity of host can't be established.

RSA key fingerprint is 08:62:18:11:e2:74:bc:e0:b4:a7:2c:00:c4:28:36:c8.

Are you sure you want to continue connecting (yes/no)? yes

fence@ip-of-esxserviceconsole's password:

[fence@host5 ~]$

Once this is successful, we need to configure the cluster to use fencing. Return to the luci
page for your cluster and select Cluster | Cluster List, select a node, scroll down to Fencing,
and select Add an instance.

Chapter 6

193

Fill in the details appropriate for your specific solution; the fields are fairly self-explanatory
and vary from one fencing method to another. But, in general, they ask for an IP, username,
and password for the fencing device and some unique aspect of this particular device (for
example, a port number).

Once completed, click on Update main fence properties.

In the case of redundant power supply units, be sure to add two methods
to the primary fencing method rather than one to the primary and
secondary (the secondary technique is only used if the primary fails).

Repeat this exercise for both your nodes, and be sure to check that it works for each node in
luci (from Actions, select Fence this node, ideally while pinging the node to ensure that it
dies almost immediately).

There's more…
To set up fencing on VMware ESX—a common testing environment—make the following
changes to the generic setup explained previously.

The bundled scripts will only work if you are running the full version of
ESX (not the embedded, ESXi, product). However, there are newer scripts
available at the Cluster Suite wiki (http://sources.redhat.com/
cluster/wiki/), that handle pretty much all versions of VMware, but
do require you to install the VMware Perl API on all nodes.

Firstly, to add a fence user in VMware, connect directly to the host (even if it is usually
managed by vCenter) with the VI client, navigate to the Users and Groups tab, right click and
select Add. Enter a username, name, and password and select Enable shell access and click
on OK.

Secondly, a specific requirement of VMware ESX fencing is the need to enable the SSH
server running inside the service console by selecting the Configuration tab inside the host
configuration in the VI client. Click on the Security Profile, click on the Properties menu,
and check SSH Server. Click on OK and exit the VI client.

High Availability with MySQL and Shared Storage

194

When adding your fence device, select VMware fencing in luci and use the following details:

Name—vmware_fence_nodename (or any other unique convention)

Hostname—hostname of ESX service console

Login—user that you created

Password—password that you have set

VMWare ESX Management Login—a user with privilege to start and stop the virtual
machines on the ESX server, often used for testing root

VMWare ESX Management Password—the associated password for the account

Port—22

Check—use SSH

In my testing, ESX 4 is not supported by the fence_vmware script supplied with RHEL/
CentOS 5.3. There are two main problems—firstly, detecting node state, and secondly,
with the command called.

The hack fix is to simply prevent it from checking that the node is not already powered off
before trying to power the virtual machine off (which works fine, although may result in
unnecessary reboots); the shortest way to achieve this is to edit /usr/lib/fence/fence.
py on all nodes to change lines 419 and 428 to effectively disable the check, as follows:

if status == "off-HACK":

This change will not just affect VMware fencing operations, and
so it should not be used except for testing fencing on VMware ESX
(vSphere) 4.

The second problem is the addition of a –A flag to the command executed on the VMware
server. Comment out lines 94 and 95 of /sbin/fence_vmware to fix this as follows:

94: #if 0 == options.has_key("-A"):
95: # options["-A"] = "localhost"

This is Python, so be sure to keep the indentation correct. There
are also a thousand more elegant solutions, but none that I am
aware of that can be represented in four lines!

See also
You can browse the latest available fencing agent scripts for new devices at
http://sources.redhat.com/cgi-bin/cvsweb.cgi/cluster/fence/agents/
?cvsroot=cluster.

















Chapter 6

195

Configuring MySQL with GFS
In this recipe, we will configure a two-node GFS cluster, running MySQL. GFS allows multiple
Linux servers to simultaneously read and write a shared filesystem on an external storage
array, ensuring consistency through locking.

MySQL does not have any support for active-active cluster configurations using shared
storage. However, with a cluster filesystem (such as GFS), you can mount the same filesystem
on multiple servers allowing for far faster failovers from node to node and protecting against
data loss caused by accidently mounting on more than one server on a normal filesystem on
shared storage. To reiterate—even with GFS, you must only ever run one MySQL process at a
time, and not allow two MySQL processes to start on the same data or you will likely end up
with corrupt data (in the same way as running two mysql processes on the same server with
the same data directory would cause corruption).

GFS2 is a substantially improved version of the original GFS, which is
now stable in recent versions of RHEL/CentOS. In this recipe, we use
GFS2, and all mentions of GFS should be read as referring to GFS2.

It is strongly recommended that you create your GFS filesystems on top of Logical Volume
Manager's (LVM) logical volumes. In addition to all the normal advantages of LVM, in the
specific case of shared storage, relying on /dev/sdb and /dev/sdc always being the same
is often an easy assumption to make that can go horribly wrong, when you add or modify a
LUN on your storage (which can sometimes completely change the ordering of volumes). As
LVM uses unique identifiers to identify logical volumes, renumbering of block devices has
no effect.

In this example, we will assume that you have followed the earlier recipe showing how to run
MySQL on shared storage with Conga, and have a volume group clustervg with spare space
in it.

How to do it…
Ensure that the GFS utilities are installed as follows:

[root@node1 ~]# yum -y install gfs2-utils

Check the current space available in our volume groups with the vgs command:

[root@node1 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 clustervg 1 1 0 wz--nc 1020.00M 720.00M

 system 1 2 0 wz--n- 29.41G 19.66G

High Availability with MySQL and Shared Storage

196

Create a new logical volume that we will use in this volume group to test, called
mysql_data_gfs, as follows:

[root@node1 ~]# lvcreate --size=300M --name=mysql_data_gfs2 clustervg

Logical volume "mysql_data_gfs2" created

Now, we will create a GFS filesystem on this new logical volume. We create this with a cluster
name of mysqlcluster and a volume name of mysql_data. The 2 parameter to –j is
the number of journals; this must be at least the number of nodes (although it can be
increased later).

[root@node1 ~]# mkfs.gfs2 -t mysqlcluster:mysql_data_ext3 -j 2 /dev/
clustervg/mysql_data_gfs2

Now log in to luci, select Cluster from the top bar, select your cluster name
(mysqlcluster, in our example). From the left bar, select Resources | Add a resource |
GFS Filesystem from the drop-down box and enter the following details:

Name—a descriptive name (I use the final part of the path, in this case
mysql_data_gfs2)

Mount point—/var/lib/mysql

Device—/dev/clustervg/mysql_data_gfs2

Filesystem type— GFS2

Options—noatime (see the upcoming There's more… section)

Select reboot host node if unmount fails to ensure data integrity

Click on Submit and then click on OK on the pop-up box that appears

The next step is to modify our mysql service to use this new GFS filesystem. Firstly, stop the
mysql service. In luci, click on Services, your service name (in our example mysql). From
the Choose a task menu, select Disable this service.

At this point, the service should be stopped on whichever node it was active. Check this at
the command line by ensuring that /var/lib/mysql is not mounted and that the MySQL
process is not running, on both nodes:

[root@node2 ~]# ps aux | grep mysql

root 6167 0.0 0.0 61184 748 pts/0 R+ 20:38 0:00 grep
mysql

[root@node2 ~]# cat /proc/mounts | grep mysql | wc –l

0

Now, we need to start MySQL for the first time to run the mysql_install_db script to build
the mysql database. If you have important data on the existing volume, you could, of course,
mount that somewhere else and copy the important data onto the new GFS volume.















Chapter 6

197

If you do not need to import any data, you could just start the service for the first time in
luci and if all goes well, it would work fine. But I always prefer to start the service for the
first time manually. Any errors that may occur are normally easier to deal with from the
command line than through luci. In any case, it is a good idea to know how to mount
GFS filesystems manually.

Firstly, mount the filesystem manually on either node as follows:

[root@node1 ~]# mount -t gfs2 /dev/clustervg/mysql_data_gfs2 /var/lib/
mysql/

Check that it has mounted properly by using following command:

[root@node1 ~]# cat /proc/mounts | grep mysql

/dev/mapper/clustervg-mysql_data_gfs2 /var/lib/mysql gfs2
rw,hostdata=jid=0:id=65537:first=1 0 0

Start mysql to run mysql_install_db (as there is nothing in our new filesystem on
/var/lib/mysql):

[root@node1 ~]# service mysql start

Initializing MySQL database: Installing MySQL system tables...

OK

Filling help tables...

OK

...

 [OK]

Starting MySQL: [OK]

You can enter the mysql client at this point if you wish to verify that everything is okay or
import data.

Now, stop the mysql service by using following command:

[root@node1 ~]# service mysql stop

Stopping MySQL: [OK]

Unmount the filesystem as follows:

[root@node1 ~]# umount /var/lib/mysql/

And check that it has unmounted okay by ensuring the exit code as follows:

[root@node1 ~]# cat /proc/mounts | grep mysql | wc -l

0

High Availability with MySQL and Shared Storage

198

There's more…
There are a couple of useful tricks that you should know when using GFS. These are:

Cron job woes
By default, CentOS/RHEL run a cron job early in the morning to update the updatedb
database. This allows you to rapidly search for a file on your system using the locate
command. Unfortunately, this sort of scanning of the entire filesystem simultaneously by
multiple nodes can cause extreme problems with GFS partitions. So, it is recommended that
you add your GFS mount point (/var/lib/mysql, in our example) to /etc/updatedb.conf
in order to tell it to skip these paths (and everything in them), when it scans the filesystem:

PRUNEPATHS = "/afs /media /net /sfs /tmp /udev /var/spool/cups /var/
spool/squid /var/tmp /var/lib/mysql"

Preventing unnecessary small writes
Another performance booster of a node is the noatime mount option. noatime is a
timestamp for the time the file was last accessed, which may be required by your application.
However, if you do not (most applications do not) require it, you can save yourself a (small)
write for every read, which can be extremely slow as the node must get a lock on that file. To
configure this, in the luci web interface, select the Filesystem resource and add noatime
to the options field.

Mounting filesystem on both nodes
In this recipe, we configured the filesystem as a cluster resource, which means that the
filesystem will be mounted only on the active node. The only benefit from GFS, therefore, is
the guarantee that if for whatever reason the filesystem did become mounted in more than
one place (administrator error, fencing failure, and so on), data is much safer.

It is however possible to permanently mount the filesystem on all nodes and save the cluster
processes from having to mount and unmount it on failure. To do this, stop the service in
luci, remove the filesystem from the service configuration in luci, and add the following
to /etc/fstab on all nodes:

/dev/clustervg/mysql_data_gfs2 /var/lib/mysql gfs2 noatime_netdev 0 0

Chapter 6

199

Mount the filesystem manually for the first time as follows:

[root@node2 ~]# mount /var/lib/mysql/

And start the service in luci. You should find that planned moves from one node to another
are slightly quicker, although you must ensure that nobody starts the MySQL process on more
than one node!

If you wish to configure active / active MySQL—that is, have two nodes, both servicing clients
based on the same storage, see the note at http://sources.redhat.com/cluster/
wiki/FAQ/GFS#gfs_mysql. It is possible, but not a configuration that is much used.

7
High Availability
with Block Level

Replication

In this chapter, we will cover:

Introduction

Installing DRBD on two Linux servers

Manually moving services within a DRBD Cluster

Using heartbeat for automatic failover

Introduction
Block level replication allows you to keep a highly-available database by replicating data at
the hard drive (block) level between two machines. In other words, in two machines, every
time a write is made by the kernel on the main server, it is sent to server 2 so as to be
written to its disk.

The leading open source software for block level replication is DRBD. DRBD stands
for Distributed Replicated Block Device and describes itself as a "software-based,
shared-nothing, replicated storage solution mirroring the content of block devices
(such as hard disks, partitions, logical volumes, and so on) between servers".









High Availability with Block Level Replication

202

DRBD works by installing a kernel module on the Linux machines involved in the cluster.
Once loaded, this kernel module picks up the IO operations of writes just before they are
scheduled for writing by the disk driver. Once the DRBD receives a write, it sends it (via TCP/
IP) to the replica server, which itself sends the write to its local disk. At some stage during this
process, the first node sends its write to its disk and reports to MySQL that the write has been
completed. There is a consistency versus performance trade-off, and a parameter is specified
to state at exactly which point in the process of one node receiving a write the application is
told that the write has succeeded. For maximum durability, this will be done only after the
write has made it onto the disk on the peer nodes, and this is called a synchronous mode.

The process of a single write transaction with this maximum data protection configuration
(that is "synchronous" configuration) is illustrated in the following diagram:

NODE 1MySQL

DRBD

COMPLEX
6

1

10 SCHEDULE

5

WRITE

3

NODE 2

DRBD

10 SCHEDULE

TCP / IP

2

4

The preceding diagram illustrates the process as follows:

1.	 The write is committed in MySQL on node1 and sent by the Kernel to the
DRBD module.

2.	 DRBD sends the write to node2.
3.	 DRBD on node2 sends the write to its drive.
4.	 DRBD on node2 confirms to node1 that it has received the write and sent it

to its disk.
5.	 DRBD on node1 sends the write to its local disk.
6.	 The kernel on node1 reports that the write is completed. At this point, the data

is almost certainly on the drive in both node1 and node2. There are two possible
reasons why it may not be. There may be a cache that is hidden from the Linux
Kernel, and there may have been failure on node2 between the time the change
hit the scheduler and before it could actually be written to the disk.

Chapter 7

203

As you can probably tell, it is possible for power failures, at unfortunate times,
to cause a minute loss of data and / or inconsistency. DRBD recognizes this,
and provides a wealth of both automated and manual tools to recover from
this situation in a sensible way.

A consequence of DRBD's design is that, as with shared storage devices, if you wish to write
to multiple nodes at the same time, a cluster-aware filesystem (for example, GFS) is required.
DRBD disables the ability to write to multiple nodes at the same time by default.

Before you start with any of the recipes explained in this chapter, it is worth exploring in
slightly more detail the three options for "data availability versus performance" that are
available with DRBD. In broad terms, these three are as follows:

1.	 "Protocol A": Asynchronous—local writes are dealt with as normal (each write only
has to make it as far as the local TCP buffer before it is declared as completed to the
application). In this example, power loss on the master node will result in consistent
but slightly out-of-date data on the slave.

2.	 "Protocol B": Semi-synchronous—local writes are only declared completed when the
write reaches the other node's RAM. In this example, power loss on the master will
result in consistent and up-to-date data on the slave, but in the case of power loss
to both nodes, the outcome is the same as with Protocol A.

3.	 "Protocol C": Synchronous—local writes are only declared as completed when the
write reaches the other nodes actual disk. In the event of simultaneous power failure,
the slave node is both consistent and up-to-date. This is the most common setup if
data is valuable.

The obvious benefit to the asynchronous setting (A) is that the performance impact on the
master node is minimal—the synchronous option slows down each write by at least an order
of magnitude, as it involves two TCP/IP connections which are relatively slow. Unfortunately,
this must be balanced with the loss of data that will occur in the event of failure.

The performance reduction of Protocol C can be partially mitigated through
the use of high-speed and low-overhead Dolphin SuperSockets, which are
provided by http://www.dolphinics.com/.

Installing DRBD on two Linux servers
In this recipe, we will take two freshly installed CentOS 5.3 servers and configure DRBD
to synchronize a LVM logical volume on both nodes, running MySQL. We will demonstrate
how to manually failover the service.

High Availability with Block Level Replication

204

Getting ready
Ensure that both nodes are freshly installed and, if possible, have a clean kernel. When
you install MySQL, ensure that you are not allocating all of the space to the / logical volume
(the default in the CentOS / RHEL installer Anaconda). You can either create the LVM logical
volume that DRBD will use during setup, or leave the space unallocated in a volume group
and create the logical volume later. You can check the space available in a volume group
using the vgs command:

[root@node3 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 system 1 2 0 wz--n- 25.00G 15.25G

This shows that the volume group system has just over 15G spare space, which is sufficient
for this test.

Ensure that both nodes have the CentOS "Extras" repository installed. If the yum list | grep
drbd command doesn't show a package for DRBD, add the following to a .repo file in
/etc/yum.repos.d/, such as to the bottom of CentOS-Base.repo:

[extras]
name=CentOS-$releasever - Extras
mirrorlist=http://mirrorlist.centos.org/
?release=$releasever&arch=$basearch&repo=extras
#baseurl=http://mirror.centos.org/centos/$releasever/extras/$basearch/
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5

If you're using RedHat rather than CentOS, you can still use the CentOS repository.

How to do it...
On both nodes, install the DRBD user-space tools, the kernel module, and the MySQL server:

[root@node3 ~]# yum -y install drbd kmod-drbd mysql-server

Create the logical volume for DRBD to use on both nodes (ensuring they are identical in name
and size); the final parameter in this command is the volume group name, which must have
sufficient free extents as shown in the vgs command.

 [root@node3 ~]# lvcreate --name=mysql_drbd --size=5G system

 Logical volume "mysql_drbd" created

Copy the sample configuration file to save typing the entire thing out:

[root@node3 ~]# cp /usr/share/doc/drbd-8.0.16/drbd.conf /etc/drbd.conf

cp: overwrite `/etc/drbd.conf'? y

Chapter 7

205

Using the text editor of your choice, make the following changes to /etc/drbd.conf:

Modify the resource name to mysql, that is:

resource mysql {

Move down to the node configuration (as defined in the hostname). Remove the existing two
nodes (alf and amd) and replace them with the details of your nodes, following the template
explained as follows:

I recommend using the private IP addresses of the nodes here if there is
a private network—if not, the public address can be used (but of course,
traffic between nodes is insecure and vulnerable).

 on node3 {
 device /dev/drbd0;
 disk /dev/system/mysql_drbd;
 address IP_OF_NODE3:7788;
 meta-disk internal;
 }

 on node4 {
 device /dev/drbd0;
 disk /dev/system/mysql_drbd;
 address IP_OF_NODE4:7788;
 meta-disk internal;
 }

You should use the hostname as returned by the "hostname" command
to replace node3 and node4 in the previous example, and you should
ensure that /etc/hosts and DNS are correctly set in order to
avoid weird problems. It would be possible to configure some sort of
encrypted tunnel between nodes in these cases, but performance is
likely to be extremely poor.

Remove the final three resources (r0, r1, and r2).

Save your DRBD configuration and copy it to the second node:

[root@node3 ~]# scp /etc/drbd.conf node4:/etc/

root@node4's password:

drbd.conf 100% 16KB 16.3KB/s
00:00

High Availability with Block Level Replication

206

On the first node, initialize the DRBD metadata with the following command: the final
parameter is the resource name, which we defined as mysql in /etc/drbd.conf.

[root@node3 ~]# drbdadm create-md mysql

We have selected "internal" metadata option, which means DRBD will take
a very small amount of the raw block device and use it for metadata–it is
possible (but more complex and with limited benefit) to store metadata
in a separate partition.

Repeat this command on the second node.

Now we have DRBD metadata on both nodes, reboot each of them (or restart the drbd
service) to start the DRBD user space tools and load the kernel module. When the nodes
come back up, have a look at the drbd-overview information:

[root@node3 ~]# drbd-overview

 0:mysql WFConnection Secondary/Unknown Inconsistent/DUnknown C r---

This will show that the local device role is Secondary and the local block device state is
Inconsistent. This is because at the moment DRBD has no idea which node is "master" and
thus which node has correct and which has incorrect data. To introduce some consistency we
must choose a point in time and say that one node is "master"" and one "slave". This is done
with the following command:

[root@node3 ~]# drbdadm -- --overwrite-data-of-peer primary mysql

The double set of double dashes are not erroneous. -- signals the
end of options and disables further option processing. Any arguments
after -- are treated as filenames and arguments.

This quote literally says, "take my data and send it to the second node". This process make
some time, depending on the network link between the nodes, the configured synchronization
speed limits, and the performance of the hardware in each of the nodes. You can use
drbd-overview to monitor progress:

 [root@node3 ~]# drbd-overview

 0:mysql SyncSource Primary/Secondary UpToDate/Inconsistent C r---

 [>....................] sync'ed: 2.2% (5012/5116)M

Chapter 7

207

If you see output such as this on the primary node:
[root@node3 ~]# drbd-overview

 0:mysql WFConnection Primary/Unknown UpToDate/
DUnknown C r---

Check that the drbd.conf file has been synced correctly and restart
drbd on the second node.

While this is syncing, you can happily use the new filesystem on the first node. Create a ext3
filesystem on it:

[root@node3 ~]# mkfs.ext3 /dev/drbd0

Mount this filesystem on /var/lib/mysql.

In this example cluster we have not installed MySQL yet, so /var/lib/
mysql is empty. If you already have data in /var/lib/mysql, stop MySQL;
mount /dev/drbd0 somewhere else, copy everything in /var/lib/mysql
to the temporary mount point you selected, unmount it and then remount on
/var/lib/mysql. Finally be sure to check permissions and ownerships.

[root@node3 ~]# mount /dev/drbd0 /var/lib/mysql/

Check that it has mounted correctly and with the expected size:

[root@node3 ~]# df -h /var/lib/mysql

/dev/drbd0 5.0G 139M 4.6G 3% /var/lib/mysql

When the sync has finished, drbd-overview should look like this on the primary node:

[root@node3 ~]# drbd-overview

 0:mysql Connected Primary/Secondary UpToDate/UpToDate C r---

In other words, "I am the primary node (role) and I am up-to-date (status)". By contrast, the
secondary should look like this:

 [root@node4 ~]# drbd-overview

 0:mysql Connected Secondary/Primary UpToDate/UpToDate C r---

This shows that it is secondary but also up-to-date.

Congratulations! DRBD is now replicating data on the primary node to the standby, and in
a later recipe we will show you how to make use of this standby data.

High Availability with Block Level Replication

208

How it works...
DRBD employs some extremely clever tricks to attempt to minimize the amount of data that is
sent between nodes, regardless of what happens while still aiming for 100% data consistency.

The precise details of how DRBD works are beyond the scope of this recipe, but the manual
pages at http://www.drbd.org/docs/more/ are strongly recommended for anyone
looking for a detailed yet understandable explanation.

There's more...
While following this recipe almost certainly you will have noticed a message promoting
you to make some permission changes. This is to allow the Linux software heartbeat,
which is installed with DRBD for automatic failover (the configuration for this can be found
in the "Using heartbeat for automatic failover" recipe later in this chapter) to execute some
DRBD commands as root in the event of a failure. To eliminate these errors, execute the
following commands:

[root@node4 ~]# groupadd haclient

[root@node4 ~]# chgrp haclient /sbin/drbdsetup
[root@node4 ~]# chmod o-x /sbin/drbdsetup
[root@node4 ~]# chmod u+s /sbin/drbdsetup

[root@node4 ~]# chgrp haclient /sbin/drbdmeta
[root@node4 ~]# chmod o-x /sbin/drbdmeta
[root@node4 ~]# chmod u+s /sbin/drbdmeta

Manually moving services within a DRBD
cluster

In this recipe, we will take the DRBD cluster configured in the previous recipe, install a MYSQL
server on it, and show how it is possible to move the MySQL service from one node to another
quickly and safely.

Getting ready
Ensure that you have completed the previous recipe and that your two nodes are both in sync
(drbd-overview showing both nodes as UpToDate).

In the previous recipe we installed the MySQL server. Now, establish which node is active
(which should have /var/lib/mysql mounted on top of the DRBD volume during the last
recipe) by executing the df command on each node and checking to see which has the
MySQL volume mounted:

Chapter 7

209

 [root@node3 ~]# df -h | grep mysql

/dev/drbd0 5.0G 139M 4.6G 3% /var/lib/mysql

On this node only, start MySQL (which will cause the system tables to be built):

 [root@node3 ~]# service mysqld start

Initializing MySQL database: Installing MySQL system tables...

Still on the primary node only, download the world dataset from MySQL into a
temporary directory:

[root@node3 ~]# cd /tmp

[root@node3 tmp]# wget http://downloads.mysql.com/docs/world.sql.gz

[root@node3 tmp]# gunzip world.sql.gz

Create the world database:

 [root@node3 ~]# mysql

mysql> CREATE DATABASE `world`;

Query OK, 1 row affected (0.01 sec)Import the world database:

 [root@node3 tmp]# mysql world < world.sql

The world database, by default, uses the MyISAM storage engine. MyISAM has some problems
with DRBD (see the How it Works... section) so while in the MySQL client ALTER these tables
to be InnoDB:

[root@node4 ~]# mysql

mysql> use world;

mysql> show tables;

+-----------------+

| Tables_in_world |

+-----------------+

| City |

| Country |

| CountryLanguage |

+-----------------+

3 rows in set (0.00 sec)

mysql> ALTER TABLE City ENGINE=INNODB;

Query OK, 4079 rows affected (0.23 sec)

Records: 4079 Duplicates: 0 Warnings: 0

High Availability with Block Level Replication

210

mysql> ALTER TABLE Country ENGINE=INNODB;

Query OK, 239 rows affected (0.03 sec)

Records: 239 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE CountryLanguage ENGINE=INNODB;

Query OK, 984 rows affected (0.14 sec)

Records: 984 Duplicates: 0 Warnings: 0

How to do it...
With a MySQL server installed and running on the first node (in our example node3) it is now
time to test a "clean" failover. Before starting, confirm that the secondary is up-to-date:

[root@node4 tmp]# drbd-overview

 0:mysql Connected Secondary/Primary UpToDate/UpToDate C r---

Shutdown MySQL on the active node:

[root@node3 tmp]# service mysqld stop

Stopping MySQL: [OK]

Unmount the filesystem:

[root@node3 tmp]# umount /var/lib/mysql

Make the primary node secondary:

[root@node3 tmp]# drbdadm secondary mysql

Now, switch to the secondary node. Make it active:

[root@node4 ~]# drbdadm primary mysql

Mount the filesystem:

[root@node4 ~]# mount /dev/drbd0 /var/lib/mysql/

Start MySQL on the new primary node (previously the secondary):

[root@node4 ~]# service mysqld start

Check that the world database has some data:

[root@node4 ~]# echo "select count(ID) from City where 1;" | mysql world

count(ID)
4079

Chapter 7

211

How it works...
In this recipe we have shown the most simple technique possible for achieving high availability
around where both nodes are still alive (for example, for planned maintenance).

By cleanly stopping MySQL, unmounting the filesystem, and gracefully telling the Primary
DRBD node to become Secondary there has been no need to recover anything (either from
a filesystem or MySQL perspective). In this case, it would be possible to use MyISAM tables.

Unfortunately, in the next recipe and in the real world DRBD is at its most useful when the
primary node fails in a unclean way (for example sudden crash or power outage). In this case,
the data on disk may not be in a completely consistent state. In noDB is designed to handle
this, and will simply roll back transactions that were not completed to end up with consistent
data; MyISAM unfortunately is not to do so, and may do various undesirable things depending
on exactly what state the machine was in when it crashed.

Therefore, while not technically required, it is strongly recommended to always use InnoDB for
tables stored on DRBD partitions, with the exception of the "MySQL" database which is always
left as MyISAM. To change the default table format, add the following to your /etc/my.cnf in
the [mysqld] section:

default_table_type = INNODB

Using heartbeat for automatic failover
In this recipe we will take a already-functioning DRBD setup as produced in the previous
recipe, and using the open source software heartbeat add automatic failover to ensure that
the MySQL service survives the failure of a node. Heartbeat version 2 is included in the EPEL
repository for CentOS and RedHat Enterprise Linux, and in this recipe we will use the Cluster
Resource Manager which is the recommended technique.

If you are familiar with heartbeat version 1 clusters, the configuration
for CRM-enabled clusters is slightly more verbose, although it has many
benefits (not the least of which you no longer need to maintain all
configuration files on all nodes manually).

Getting ready
This recipe will start from the point of a configured DRBD setup, with manual failover
working (as described in the previous recipe).

High Availability with Block Level Replication

212

Before starting this recipe, stop any services using a DRBD volume and unmount any
DRBD filesystems:

[root@node4 mysql]# service mysqld stop

umStopping MySQL: [OK]

[root@node4 /]# umount /var/lib/mysql/

Ensure that DRBD is fully working, that one node is primary, one node is secondary and both
are Up-To-Date. In the following example, node3 is secondary and node4 is primary:

[root@node3 ~]# drbd-overview

 0:mysql Connected Secondary/Primary UpToDate/UpToDate C r---

[root@node4 /]# drbd-overview

 0:mysql Connected Primary/Secondary UpToDate/UpToDate C r---

How to do it...
Start by installing heartbeat. You will find this in the Extra Packages for Enterprise Linux
(EPEL) repository we have used elsewhere in this book. Install heartbeat on both nodes:

[root@node3 ~]# yum install heartbeat

Copy the example configuration to the configuration directory:

[root@node3 ha.d]# cp /usr/share/doc/heartbeat-2.1.4/ha.cf /etc/ha.d

Modify this file:

[root@node3 ha.d]# vi /etc/ha.d/ha.cf

At the bottom of the file, add the following:

keepalive 1
deadtime 30
warntime 5
initdead 120
bcast eth0
node node3.xxx.com
node node4.xxx.com
crm yes

Save ha.cf and execute the following bash scriptlet to create a authkeys file, which
contains keys to effectively sign traffic between nodes:

[root@node3 ha.d]# (echo -ne "auth 1\n1 sha1 "; \

> dd if=/dev/urandom bs=512 count=1 | openssl md5) \

> > /etc/ha.d/authkeys

Chapter 7

213

1+0 records in
1+0 records out
512 bytes (512 B) copied, 0.000161 seconds, 3.2 MB/s

[root@node3 ha.d]# chmod 0600 /etc/ha.d/authkeys

Either copy and paste, or SCP this file to the other node (ensuring it keeps permissions
of 0600 if you copy and paste):

root@node3 ha.d]# scp /etc/ha.d/authkeys node4:/etc/ha.d/

Now, we need to produce the Cluster Information Base (CIB). This is in effect the central list
of the nodes in the cluster and lists nodes, unique identifiers, resources and any resource
constraints. At this point, we only want a super simple configuration listing the two nodes.
Firstly, generate unique identifiers for two nodes by running uuidgen on each node:

[root@node3 ha.d]# uuidgen

7ae6a335-b124-4b28-9e7c-2b20d4f6e5e3

Take these two unique IDs with the two node names (full hostnames, check with
hostname –n command) and insert them into the following template, which should
be created in /var/lib/heartbeat/crm/cib.xml:

<cib>
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <attributes/>
 </cluster_property_set>
 </crm_config>
 <nodes>
 <node uname="node3.xxx.com" type="normal" id="7ae6a335-b124-
4b28-9e7c-2b20d4f6e5e3"/>
 <node uname="node4.xxx.com" type="normal" id="3e702838-f41a-
4961-9880-13e20a5d39f7"/>
 </nodes>
 <resources/>
 <constraints/>
 </configuration>
</cib>

Start heartbeat on both servers, and configure it to start on boot:

[root@node4 ha.d]# chkconfig heartbeat on

[root@node4 ha.d]# service heartbeat start

Starting High-Availability services:

 [OK]

High Availability with Block Level Replication

214

Check the status of your new cluster (note that unlike in previous versions, the service start
returns very quickly and the cluster then continues to start in the background, so do not be
alarmed if it takes a few minutes for your nodes to come alive):

[root@node3 crm]# crm_mon

Output should show like this:

Node: node4.xxx.com (a64f7c5b-096a-4fee-a812-4f9896c69e1d): online

Node: node3.xxx.com (735a8f07-1b29-4a72-a6aa-85e31cbf946e): online

Now we must tell the cluster about our DRBD block device, our ext3 filesystem residing on
that, our MySQL service and a virtual IP address to keep on whichever node is "active". This is
done by creating a XML file and passing it to the cibadmin command. The syntax for this file
is provided in the DRBD manual (http://www.drbd.org/users-guide/s-heartbeat-
crm.html) and the only change that you need to make if you followed the recipes in this book
is the IP address. Edit /etc/drbd.xml and insert the following:

<group ordered="true" collocated="true" id="rg_mysql">
 <primitive class="heartbeat" type="drbddisk"provider="heartbeat"
id="drbddisk_mysql">
 <meta_attributes>
 <attributes>
 <nvpair name="target_role" value="started"/>
 </attributes>
 </meta_attributes>
 <instance_attributes>
 <attributes>
 <nvpair name="1" value="mysql"/>
 </attributes>
 </instance_attributes>
 </primitive>
 <primitive class="ocf" type="Filesystem" provider="heartbeat"
id="fs_mysql">
 <instance_attributes>
 <attributes>
 <nvpair name="device" value="/dev/drbd0"/>
 <nvpair name="directory" value="/var/lib/mysql"/>
 <nvpair name="type" value="ext3"/>
 </attributes>
 </instance_attributes>
 </primitive>
 <primitive class="ocf" type="IPaddr2" provider="heartbeat" id="ip_
mysql">
 <instance_attributes>
 <attributes>

Chapter 7

215

 <nvpair name="ip" value="10.0.0.10"/>
 <nvpair name="cidr_netmask" value="24"/>
 <nvpair name="nic" value="eth1"/>
 </attributes>
 </instance_attributes>
 </primitive>
 <primitive class="lsb" type="mysqld" provider="heartbeat"
id="mysqld"/>
</group>

Import this with the following command, and check the exit code of the command to ensure
it exits with code 0 (that is successful):

[root@node3 crm]# cibadmin -o resources -C -x /etc/drbd.xml

[root@node3 crm]# echo $?

0

crm_mon now should show these new resources:

Node: node4.xxx.com (a64f7c5b-096a-4fee-a812-4f9896c69e1d): online

Node: node3.xxx.com (735a8f07-1b29-4a72-a6aa-85e31cbf946e): online

Resource Group: rg_mysql

 drbddisk_mysql	 (heartbeat:drbddisk): Started node4.xxx.com

 fs_mysql (ocf::heartbeat:Filesystem): Started node4.xxx.com

 ip_mysql (ocf::heartbeat:IPaddr2):	 Started node4.xxx.com

 mysqld	 (lsb:mysqld): Started node4.xxx.com

Now, let's check each resource turn by turn. Node4 is the active node.

Verify that this (node4) is the Primary DRBD node:

[root@node4 crm]# drbd-overview

 0:mysql Connected Primary/Secondary UpToDate/UpToDate C r--- /var/lib/
mysql ext3 5.0G 168M 4.6G 4%

Check that it has the /var/lib/mysql filesystem mounted:

[root@node4 crm]# df -h /var/lib/mysql

/dev/drbd0 5.0G 168M 4.6G 4% /var/lib/mysql

Check that MySQL is started:

[root@node4 crm]# service mysqld status

mysqld (pid 12175) is running...

High Availability with Block Level Replication

216

Check that MySQL is working and that the world database that was imported at the start
of this chapter is still present:

[root@node4 crm]# echo "SELECT Count(ID) from City where 1;" | mysql
world

Count(ID)

4079

Check that the shared IP address is up:

[root@node4 crm]# ifconfig eth1:0

eth1:0 Link encap:Ethernet HWaddr 00:50:56:B1:50:D0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 Base address:0x2000 Memory:d8920000-d8940000

Now, reboot the node (either with a reboot command or by pulling a power plug). In crm_mon
on node3 you should notice that it picks up the failure, and then starts by bringing up the
DRBD disk:

Resource Group: rg_mysql

 drbddisk_mysql	 (heartbeat:drbddisk): Started node3.torn.com

 fs_mysql (ocf::heartbeat:Filesystem): Stopped

 ip_mysql (ocf::heartbeat:IPaddr2):	 Stopped

 mysqld	 (lsb:mysqld): Stopped

After a short while you should see that all of the services are started, but node4 is still down:

Node: node4.torn.com (a64f7c5b-096a-4fee-a812-4f9896c69e1d): OFFLINE

Node: node3.torn.com (735a8f07-1b29-4a72-a6aa-85e31cbf946e): online

Resource Group: rg_mysql

 drbddisk_mysql	 (heartbeat:drbddisk): Started node3.torn.com

 fs_mysql (ocf::heartbeat:Filesystem): Started node3.torn.com

 ip_mysql (ocf::heartbeat:IPaddr2):	 Started node3.torn.com

 mysqld	 (lsb:mysqld): Started node3.torn.com

Repeat all of the checks for node3. In addition, verify the MySQL connection to the virtual
IP address from a third server.

If all of these checks pass, congratulations—you have a clustered setup.

Chapter 7

217

How it works...
Heartbeat runs in the background and uses one or more communication methods such as
unicast (connection from node to node), multicast (sending packets to a multicast address
that all nodes are subscribed to) or serial cables (only useful for two node environments but
extremely simple).

In the example setup of a two-node cluster with only a single communication method (a single
network card), the nodes monitor each other. Unfortunately, if a node fails the only thing that
the other node will know with absolute certainty is that the other node is in a unknown state.
It can not, for example be sure that it has failed—it may merely have had its network cable cut
or a kernel crash.

Having more than one communication method between nodes reduces the chances of split
brain—as the most likely cause of a split brain is some sort of network failure adding a serial
link into a two-node cluster for example makes this less likely. However, it is still possible to
consider a situation where even with two communication links between nodes each considers
the other dead (someone could cut both the serial and Ethernet cables, for example).

One solution is to have multiple nodes and use the concept of quorum (discussed in more
detail in the context of MySQL Cluster in Chapter 1). However, the detection and failure times
from such a setup tend to be fairly slow and it is uncommon (although possible) to have more
than two nodes in a DRBD cluster.

It would clearly be bad for DRBD to allow a two-node cluster with DRBD running to become
two separate one-node clusters (each thinking that the "other node" has failed) because when
the network cable is plugged back in the data is inconsistent and the data updated on one
node will be lost. However, this is nothing as bad as the corruption and total data loss that
can occur when using shared storage devices as in the previous chapter.

If a split brain is allowed to occur, DRBD does have logic to allow you to choose which nodes
data to keep. As soon as the link between two previously split DRBD nodes is resumed, DRBD
will look at the metadata exchanged to work out when the last write and the last time both
nodes were UpToDate. If it detects a split brain (last write is more recent than last sync on
both nodes) it immediately stops further writes to the DRBD disk and prints the following to
the log:

Split-Brain detected, dropping connection!

At this point, the first node to detect the split brain will have a connection state of
StandAlone. The other node will either be in the same state (in the case both nodes
discovered the split brain more or less simultaneously) or in state WFConnection if it
was the slower node.

High Availability with Block Level Replication

218

If this occurs, you need to decide which node will "survive" and you will in effect destroy the
data on the other node (the "victim") by resyncing it with the master. Do this with the following
command on the victim, replacing mysql with the resource name if appropriate:

[root@node4 crm]# drbdadm secondary mysql

[root@node4 crm]# drbdadm -- --discard-my-data connect mysql

If the other node is in StandAlone state, enter the following command:

[root@node4 crm]# drbdadm connect mysql

At this point the victim will resync from the master, loosing any changes that were made to it
since it erroneously became primary.

To avoid this situation, configure multiple communication paths between your two nodes
(including a non-ethernet one such as a serial cable if possible in two-node clusters). If it is
absolutely vital to prevent split brain situations it is possible to use fencing with DRBD; refer
to the DRBD documentation and in particular consider using a Pacemaker (the successor
to Heartbeat version 2) cluster.

It is possible to configure DRBD to automatically recover from split brain
scenarios. If you value your data, it is not recommended to enable this.

8
Performance Tuning

In this chapter, we will cover:

Tuning the Linux kernel IO

Tuning the Linux kernel CPU schedulers

Tuning MySQL Cluster storage nodes

Tuning MySQL Cluster SQL nodes

Tuning queries within a MySQL Cluster

Tuning GFS on shared storage

MySQL Replication tuning

Introduction
In this chapter, we will cover performance tuning techniques applicable to RedHat and CentOS
5 servers that are used with any of the high-availability techniques covered so far in this book.
Some of the techniques in this chapter will only work with some high-availability methods
(for example, the "MySQL Cluster" recipes are MySQL Cluster-specific), and some will work
on pretty much any Linux server (for example, the discussion of the Linux kernel IO and
CPU tuning).

There are some golden rules for performance tuning, which we introduce now:

Make one modification at a time

It is extremely easy, when faced with a slow system, to change multiple things that could be
causing the slow performance in one go. This is bad for many reasons, the most obvious being
the possibility that one performance tweak could in fact interfere with a negative aggregate
effect, when in fact one of the changes on its own could be extremely valuable.















Performance Tuning

220

Aim your efforts towards the biggest "bang for buck"

Looking at your entire system, consider the area that makes most sense to optimize. This may
in fact not be the database; it makes very little sense to improve your query time from 0.3 to
0.2 seconds if your application takes 2 seconds to process the data. It is extremely easy to
continue tuning a system to the point of making changes that are not even noticed except in
stress testing—however, such tuning is not only pointless but also damaging, because carrying
out performance tuning on a live server is always slightly more risky than doing nothing.

Be scientific in your approach

Never start tuning the performance of a system until you have a performance baseline for the
current system, otherwise you will find it very difficult to judge whether tuning has worked.

Don't always rely on user complaints / reports for response time or availability
measurements—they may be a poor measure.

With these rules in mind, read on for the recipes, each of which is targeted at a
particular requirement.

Tuning the Linux kernel IO
In this recipe, we will get started by showing the tools that can be used to monitor the Input/
Output (IO) from a block device. We will then show how to tune the way that the Linux Kernel
handles IO to meet your requirements in the best possible manner and finally explain how the
Kernel handles IO requests in a little bit more detail.

Getting ready
In this section, we will see how to monitor the IO characteristics of your system using
commands that will come installed on a RedHat or CentOS system.

The first command for monitoring IO is a command used most often for other things and it
is called top. Running top and pressing 1 to show per-CPU statistics will give you an idea
of what your CPUs are doing. Most importantly, in this context, the wa column shows what
percentage of time the CPU is spending waiting for IO operations to be completed.

In systems that are very IO-bound, this I/O waiting figure can effectively be 100 percent, which
means that the CPUs in the system are doing absolutely nothing but waiting for an IO requests
to come back. A value of 0 shows that the logical CPUs are not waiting for IO requests.

The following output from the top command (with the 1 key pressed to show details for
each CPU) shows a system under IO load, as is obvious from the wa column—this is high. It is
additionally clear that the load falls on a single CPU (therefore, it is likely to be caused by a
single process).

Chapter 8

221

By comparison, the following output shows the same system under high CPU usage. In
this case, there is no I/O waiting but all the CPU time is spent in sy (system mode) and
us (user mode), with effectively 0 in idle or I/O waiting states:

A more detailed view of what is going on can be seen with the vmstat command. vmstat is
best launched with the following argument, which will show the statistics every second (the
first line of results should be ignored as it is the average for each parameter since the system
was last rebooted):

Units in output are kilobytes unless specified otherwise; you can change it to
megabytes with the –s M flag.

In the output of the previous vmstat command, the following fields are particularly useful:

Swap: The two important swap values are:

si: KB/second of memory that is "swapped in" (read) from disk

so: KB/second of memory that is "swapped out" (written) to disk







Performance Tuning

222

In a database server, swapping is likely to be bad news—any
significant value here suggests that more physical RAM is required,
or the configuration of buffers and cache are set to use too much
virtual memory.

IO: The two important io values are:

bi: Blocks read from block devices (blocks/s)

bo: Blocks written to block devices (blocks/s)

CPU: The single most important cpu value is wa, which gives the percentage of CPU
time spent waiting for IO.

Looking at the example screenshot, it is clear that there was a significant output of bytes to
disk in the 9th second of the command, and that the disk was not able to absorb all the IO
immediately (causing 22 percent of the CPU to be in iowait state during this second). All
the other time, the CPU loads were low and stable.

Another useful tool is the sar command. When run with the -d flag, sar can provide, in
Kilobytes, data read from and written to a block device.

When installed as part of the sysstat package, sar creates a
file /etc/cron.d/sysstat, which takes a snapshot of system
health every 10 minutes and produces a daily summary.

sar also gives an indication of the number of major and minor page faults (see the There's
more… section for a detailed explanation of these terms). For now, remember that a large
number of major faults, as the name suggests, is bad and also suggests that a lot of IO
operations are only being satisfied from the disk and not from a RAM cache.

sar, unlike the other commands mentioned so far, requires installation and is part of the
sysstat package. Install this using yum:

[root@node1 etc]# yum -y install sysstat

Look at the manual page for sar to see some of the many modes that you can run it in. In
the following example, we will show statistics related to paging (the –B flag). The number next
to the mode is the refresh rate (in the example, it's 1 second) and the second number is the
number of values to print:

[root@node1 etc]# sar -B 1 2

Linux 2.6.18-164.el5 (node1) 	 11/22/2009









Chapter 8

223

09:00:06 PM pgpgin/s pgpgout/s fault/s majflt/s

09:00:07 PM 0.00 15.84 12.87 0.00

09:00:08 PM 0.00 0.00 24.24 0.00

Average: 0.00 8.00 18.50 0.00

This shows the number of kilobytes the system has paged in and out to the disk. A detailed
explanation of these Page Faults can be found in the There’s more... section. Now, we look
at the general disk IO figures with the lowercase -b flag:

[root@node1 etc]# sar -b 1 2

Linux 2.6.18-164.el5 (node1) 	 11/22/2009

08:59:53 PM tps rtps wtps bread/s bwrtn/s

08:59:54 PM 0.00 0.00 0.00 0.00 0.00

08:59:55 PM 23.00 0.00 23.00 0.00 456.00

Average: 11.50 0.00 11.50 0.00 228.00

This shows a number of useful IO statistics—the number of operations per second (total (tps)
in first column, reads (rtps) in the second and writes (rtps) in the third) as well as the fourth
and fifth columns, which give the number of blocks read and written per second (bread/s
and bwrtn/s respectively).

The final command that we will introduce in this section is iostat, which is also included
in the sysstat package and can be executed with the –x flag to display extended statistics
followed by the refresh rate and number of times to refresh:

This shows the details of an average CPU utilization (that is, those shown using top/vmstat),
but it also shows the details for each block device on the system. Before looking at the results,
notice that the final three lines relating to dm-x refer to the Device Mapper in the Linux kernel,
which is the technology that LVM is based on. It is often useful to know statistics by physical
block device but it can be useful to find statistics on a per LVM volume basis (in this case, sda).
To manually translate your LVM logical volumes to the dm-x number, follow these steps:

Performance Tuning

224

Firstly, look at the /proc/diskstats file, select out the lines for device mapper
objects and print the first three fields:
[root@node1 dev]# grep "dm-" /proc/diskstats | awk '{print $1, $2,
$3}'

253 0 dm-0

253 1 dm-1

253 2 dm-2

Take the two numbers, mentioned previously (known as a major and minor device
number, for example, in the example dm-0 has major number 253 and minor 0) and
check the output of ls -l for a match:
[root@node1 mapper]# ls -l /dev/mapper/

total 0

crw------- 1 root root 10, 63 Feb 11 00:42 control

brw------- 1 root root 253, 0 Feb 11 00:42 dataVol-root

brw------- 1 root root 253, 1 Feb 11 00:42 dataVol-tmp

brw------- 1 root root 253, 2 Feb 11 00:42 dataVol-var

In this example, dm-0 is dataVol-root (which is mounted on /, as shown in the
df command).

You can pass the -p option to sar and the -N option to iostat, which will
automatically print the statistics on a per logical volume basis

Looking at the results from iostat, the most interesting fields are:

r/s and w/s: The number of read and write requests sent to the device per second

rsec/s and wsec/s: The number of sectors read and written from the device
per second

avgrq-sz: The average size of the requests issued to the device (in sectors)

avgqu-sz: The average queue length of requests for this device

await: The average time in milliseconds for IO requests issued to the device to be
served—this includes both queuing time and time for the device to return the request

svctm: The average service time in milliseconds for IO requests issued to the device

Of these, far and away, the most useful is await, which gives you a good idea of the time the
average request takes—this is almost always a good proxy for relative IO performance.

















Chapter 8

225

How to do it...
Now we have seen how to monitor the IO performance of the system and briefly discussed the
meaning of the numbers that come out of the monitoring tools; this section looks at some of
the practical and immediate things that we can tune.

The Linux kernel comes with multiple IO schedulers, each of which implement the same
core functions in slightly different ways. The first function merges multiple requests into one
(that is, if three requests are made in a very short period of time, and the first and third are
adjacent requests on the disk, it makes sense to "merge" them and run them as one single
request). The second function is performed by a disk elevator algorithm and involves ordering
the incoming requests, much as a elevator in a large building must decide in which order to
service the requests.

A complication is the requirement for a "prevent starvation" feature to ensure that a request,
that is an "inconvenient" place, is not constantly deferred in favor of a "more efficient"
next request.

The four schedulers and their relative features are discussed in the There's more… section.
The default scheduler cfq is not likely the best choice and, on most database servers, you
may find value by changing it to deadline.

To check which is the current scheduler in use, read this file using cat (replacing sda with the
correct device name):

[root@node1 dev]# cat /sys/block/sda/queue/scheduler

noop anticipatory deadline [cfq]

To change the scheduler, echo the new scheduler name into this file:

[root@node1 dev]# echo "deadline" > /sys/block/sda/queue/scheduler

This takes effect immediately, although it would be a good idea to verify that your new setting
has been recorded by the kernel:

[root@node1 dev]# cat /sys/block/sda/queue/scheduler

noop anticipatory [deadline] cfq

Add this echo command to the bottom of /etc/rc.local to make this change persistent
across all reboots.

How it works...
Disks are the slowest part of any Linux system, generally, by an order of magnitude. Unless
you are using extremely high performance Solid State Disks (SSDs) or your block device has
significant amounts of battery-backed cache, it is likely that a small percentage increase in
IO performance will result in the greatest “bang for buck” to increase the performance of
your system.

Performance Tuning

226

Broadly speaking, there are a couple of key things that can be done (in order of effectiveness):

Reduce the amount of IO generated

Optimize the way that this IO is carried out given the particular hardware is available

Tweak buffers and kernel parameters

Virtual memory is divided into fixed-size chunks called "pages". On x86 systems, the default
page size is 4 KB. Some of those memory pages are used by a disk cache mechanism of the
Linux kernel named "page cache", with the purpose of reducing the amount of IO generated.
The page cache uses pages of memory (RAM) that is otherwise unused to store data, which
is also stored on a block device such as a disk. When any data is requested from the block
device, before going anywhere near a hard disk or other block device, the kernel checks the
page cache to see if the page it is looking for is stored in memory. If it is, it can be returned to
the application at RAM speeds; if it is not, the data is requested from the disk, returned to the
application and, if there is unused memory, stored in the page cache.

When there is no more space in the page cache (or something else requires the memory that
is allocated to the page cache), the kernel simply expires the pages in the cache that have the
longest time since their last access.

In the case of read operations, this is all very simple. However, when writes become involved,
it becomes more complicated. If the kernel receives a write request, it does exactly the same
thing—it will attempt to use the page cache to complete the write without sending it to disk if
possible. Such pages are referred to as "dirty pages" and they must be flushed to a physical
disk at some point (writes committed to the virtual memory, but those that have not made it to
disk will disappear if the server is rebooted or crashes). Dirty pages are written to disk by the
pdflush group of kernel threads, which continually checks the dirty pages in the page cache
and attempts to write them to disk in a sensible order.

Obviously, it may not be acceptable for data that has been written to a database to be left
in memory until pdflush comes around to write it to disk. In particular, it would cause
chaos with the entire atomicity, consistency, isolation, and durability (ACID) concept of
databases if transactions that were committed were in fact undone when the server rebooted.
Consequently, applications have the option of issuing a fsync() or sync() system call, which
issues a direct "sync" instruction to the IO scheduler, forcing it to write immediately to disk. The
application can then be sure that the write has made it to a persistent storage device.

There's more...
The four schedulers mentioned earlier in this section available in RHEL and CentOS 5 are:

Noop: This is a bit of an oddity as it only implements the request merging function, doing
nothing to elevate requests. This scheduler makes sense where something else further down
the chain is carrying out this functionality and there is no point doing it twice. This is generally
used for fully virtualized virtual machines.







Chapter 8

227

Deadline: This scheduler implements request merging and elevation, and it prevents starvation
with a simple algorithm—each request has a "deadline" and the scheduler will ensure that each
request is completed within its deadline (if this is not possible, requests outside of deadline
are completed on a first-in-first-out system). The deadline scheduler has a preference for read
queries, because Linux can cache writes before they hit the disk (and thus not delay the process)
whereas readers for data not in the page cache have no choice but to wait for their data.

Anticipatory: This scheduler is focused on minimizing head movements on the disk with an
aggressive algorithm designed to wait for more reads.

CFQ: The "completely fair scheduler" aims to ensure all processes get equal access to a
storage device over time.

As mentioned, most database servers perform best with the deadline scheduler except for
those connected to extremely high-end SAN disk arrays, which can use the noop scheduler.

While thinking about shared storage and SANs, it is often valuable to check the kilobyte-per-IO
figure that can be established by dividing the "kilobytes read per second (rkB/s)" by the "reads
per second (r/s)" (and the same for writes) in the output of iostat -x. This figure will be
significantly lower if you are experiencing random IO (which, unfortunately, is likely going to be
what a database server experiences). The maximum number of IOPS experienced is a useful
figure for configuring your backend storage—particularly, if using a shared storage, as these
tend to be certified to complete a certain number of IOPS.

A database server using a lot of swap is likely to be a bad idea. If a server does not have
sufficient RAM, it will start using the configured swap filesystems. Unfortunately, writes to
the swap device are just as any other writes (unless, of course, the swap device is on its own
dedicated block device). It is possible that a "paging storm" will develop where the IO from
the system and the required swap IO contend (endlessly fight) for actual IO, and this generally
ends with the kernel out of memory (OOM) killer terminating one of the processes that is
using a large amount of RAM (which unfortunately is likely to be MySQL).

One way to ensure that this does not happen is to set the kernel parameter vm.swappiness
to be equal to 0. This kernel parameter can be thought of as the kernel's tendency to "claim
back" physical memory (RAM) by moving data to disk that had not been used for some time.
In other words, the higher the vm.swappiness value, the more the system will swap. As
swapping is generally bad for database servers, you may find some value in setting this
parameter to 0.

To check kernel parameters at the command line, use sysctl:

[root@node1 etc]# sysctl vm.swappiness

vm.swappiness = 60

60 (on a scale of 0 to 100) is the default value. To set it to 0, use sysctl –w:

[root@node1 etc]# sysctl -w vm.swappiness=0

vm.swappiness = 0

Performance Tuning

228

To make such a change persistent across reboots, add the following line to the bottom
of /etc/sysctl.conf:

vm.swappiness = 0

Tuning MySQL Cluster storage nodes
In this recipe, we will cover some simple techniques to get the most performance out of
storage nodes in a MySQL Cluster.

This recipe assumes that your cluster is already working and configured, and discusses
specific and simple tips to improve performance.

How to do it...
MySQL Cluster supports a conditional pushdown feature, which allows for a significant
reduction in the amount of data sent between SQL and storage nodes during the execution
of a query. In typical storage engines, a WHERE query is executed at a higher level than the
storage engine. Typically, this is a relatively cheap operation as the data is being moved
around in memory on the same node. However, with MySQL Cluster, this effectively involves
moving every row in a table from the storage nodes that they are stored on to the SQL node
where most of the data is potentially discarded. Conditional Pushdowns move this filtering of
unnecessary rows into the storage engine. This means that the WHERE condition is executed
on each storage node and applied before the data crosses the network to the SQL node
coordinating that particular query.

This is a very obvious optimization and can speed up queries by an order of magnitude with
no cost. To enable conditional pushdowns, add the following to the [mysqld] section of
each SQL node's my.cnf:

engine_condition_pushdown=1

Another useful parameter, ndb-use-exact-count, allows you to trade-off between very fast
SELECT COUNT(*) queries and slightly slower queries (with ndb-use-exact-count=1)
and vice versa with ndb-use-exact-count=0. Again, add the following to the [mysqld]
section of each SQL node's my.cnf file:

ndb_use_exact_count=0

The default value, 1, only really makes sense if you value the SELECT COUNT(*) time. If
your normal query scenario is primary key lookups set this parameter to 0 if your normal
query scenario is primary key lookups set this parameter to 0. Again, add the following to
the [mysqld] section of each SQL node's my.cnf:

ndb_use_exact_count=0

Chapter 8

229

How it works...
Conditional pushdowns broadly work on the following type of query, where x is a constant:

SELECT field1,field2 FROM table WHERE field = x;

They do not work where "field" is an index (at which point it is more efficient to just look the
index up).

They do not work where x is something more complicated such as another field.

They do work where the equality condition is replaced with >, <, IS IN and IS NOT.

To confirm if a query is using a conditional pushdown or not, you can use a EXPLAIN SELECT
query, as in the following example:

mysql> EXPLAIN select * from titles where emp_no < 10010;

+----+-------------+--------+-------+----------------+---------+---------
+------+------+-----------------------------------+

| id | select_type | table | type | possible_keys | key | key_len
| ref | rows | Extra |

+----+-------------+--------+-------+----------------+---------+---------
+------+------+-----------------------------------+

| 1 | SIMPLE | titles | range | PRIMARY,emp_no | PRIMARY | 4
| NULL | 10 | Using where with pushed condition |

+----+-------------+--------+-------+----------------+---------+---------
+------+------+-----------------------------------+

1 row in set (0.00 sec)

It is possible to enable and disable this feature at runtime for the current session with a SET
command. This is very useful for testing:

mysql> SET engine_condition_pushdown=OFF;

Query OK, 0 rows affected (0.00 sec)

With conditional pushdown enabled, the output from the EXPLAIN SELECT query shows that
the query is now using a simple where rather than a "pushed down" where:

mysql> EXPLAIN select * from titles where emp_no < 10010;

+----+-------------+--------+-------+----------------+---------+---------
+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len
| ref | rows | Extra |

+----+-------------+--------+-------+----------------+---------+---------
+------+------+-------------+

Performance Tuning

230

| 1 | SIMPLE | titles | range | PRIMARY,emp_no | PRIMARY | 4
| NULL | 10 | Using where |

+----+-------------+--------+-------+----------------+---------+---------
+------+------+-------------+

1 row in set (0.00 sec)

Tuning MySQL Cluster SQL nodes
In this recipe, we will discuss some performance tuning tips for SQL queries that will be
executed against a MySQL Cluster.

How to do it...
A major performance benefit in a MySQL Cluster can be obtained by reducing the percentage
of times that queries spend waiting for intra-cluster node network communication. The
simplest way to achieve this is to make transactions as large as possible, subject to the
constraints that really enormous queries can hit hard and soft limits within MySQL Cluster.

There are a couple of ways to do this. Firstly, turn off AUTOCOMMIT that is enabled by
default and automatically wraps every statement within a transaction of its own. To check
if AUTOCOMMIT is enabled, execute this query:

mysql> SELECT @@AUTOCOMMIT;

+--------------+

| @@AUTOCOMMIT |

+--------------+

| 1 |

+--------------+

1 row in set (0.00 sec)

This shows that AUTOCOMMIT is enabled. With AUTOCOMMIT enabled, the execution of two
insert queries would, in fact, be executed as two different transactions, with the overhead
(and benefits) associated with that. If, in fact, you would prefer to define your own COMMIT
points, you can disable this parameter and enormously reduce the number of transactions
that are executed. The correct way to disable AUTOCOMMIT is to execute the following at the
start of every connection:

mysql> SET AUTOCOMMIT=0;

Query OK, 0 rows affected (0.00 sec)

Chapter 8

231

However, applications that are not written to do this can be difficult to modify and it is often
simpler to use a trick that disables AUTOCOMMIT for all new connections (this does not
include connections made by the superuser). Add the following to the [mysqld] section
in my.cnf on each SQL node:

init_connect='SET autocommit=0'

To achieve the real performance benefits from this change using MySQL, two other changes
must be made.

Firstly, there is a parameter ndb_force_send that forces a thread to send its part
of a transaction to other nodes regardless of other transactions that are going on
(rather than waiting and combining the transactions together). Disable the parameter
ndb_force_send in the [mysqld] section of /etc/my.cnf on each SQL node:
ndb_force_send=OFF

Secondly, enable the NDB parameter transaction_allow_batching, which
allows transactions that appear together when AUTOCOMMIT is disabled to be
sent between nodes in one go. Add the following to the [mysqld] section of
/etc/my.cnf on each SQL node:
transaction_allow_batching=ON

How it works...
When using MySQL Cluster in-memory tables, the weak point from a performance point of
view is almost always the latency introduced by a two phase commit—the requirement for
each query to get to two nodes before being committed. This latency, however, is almost
independent of transaction size; that is to say the latency of talking to multiple nodes is
the same for a tiny transaction as for one that affects an enormous number of rows.

In a traditional database, the weak point, however, is the physical block device (typically a
hard disk). The time a hard disk takes to complete a random IO transaction is a function of
the number of blocks that are read and written.

Therefore, with a traditional disk base MySQL install, it makes very little difference if you have
one transaction or one hundred transactions each one-hundredth the size—the overall time
to complete will be broadly similar. However, with a MYSQL Cluster, it makes an enormous
difference. In the case of a hundred small transactions, you have the latency delay 100 times
(and, this is far and away the slowest part of a transaction); when compared to a single large
transaction, the latency delay is incurred only once.





Performance Tuning

232

There's more...
In the How to do it… section, we configured our SQL nodes to batch transactions. There is a
maximum batch size, that is, the maximum amount of data that the SQL node will wait for
before sending its inter-node communication. This defaults to 32 megabytes, and is defined
in bytes with the ndb-batch-size parameter in /etc/my.cnf. You may find that if you
have lots of large transactions, you gain value by increasing this parameter—to do so, add the
following to the [mysqld] section in /etc/my.cnf on each SQL node. This will increase
the default setting to four times its value (it is often worth experimenting with significantly
higher values):

ndb-batch-size=131072

Tuning queries within a MySQL Cluster
In this recipe, we will explore some techniques to maximize the performance you get when
using MySQL Cluster.

Getting ready
There is often more than one way to obtain the same result in SQL. Often applications take
the one that results in either the least amount of thought for the developer or the shortest SQL
query. In this recipe we show that, if you have the ability to modify the way that applications use
your queries, you can obtain significant improvement in performance.

How to do it...
MySQL Cluster's killer and most impressive feature is its near linear write scalability. MySQL
Cluster is pretty much unique in this regard—there are limited other techniques for obtaining
write scalability without splitting the database up (of course, MySQL Cluster achieves this
scalability by internally partitioning data over different nodegroups. However, because this
partitioning is internal to the cluster, applications do not need to worry or even know about it).

Therefore, particularly in larger clusters (clusters with more than one nodegroup), it makes
sense to attempt to execute queries in parallel. This may seem a direct contradiction to
the suggestion to reduce the number of queries—and there is a tradeoff with an optimum,
which can only be discovered with testing. In the case of truly enormous inserts, for example,
a million single-integer inserts, it is likely that the following options will both produce
terrible performance:

One million transactions

One transaction with a million inserts





Chapter 8

233

It is likely that something like 1000 transactions consisting of 1000 inserts each will
be most optimal.

If it is not possible for whatever reason to configure a primary key and use it within most
queries, the next best thing (it is still a very poor alternative) is to increase the parameter
ndb_autoincrement_prefetch_sz on SQL nodes, which increases the number of
auto-increment IDs that are obtained between statements. The effect of increasing this
value (from the default of 32) is to speed up inserts at the cost of reducing the likelihood
that consecutive auto increments will be used in a batch of inserts. Add the following to
the [mysqld] section in /etc/my.cnf on each SQL node:

ndb_autoincrement_prefetch_sz=512

Note that within a statement, IDs are always obtained in blocks of 32.

Tuning GFS on shared storage
In this recipe, we will cover some basic tips for maximizing GFS performance.

Getting ready
This recipe assumes that you already have a GFS cluster configured, and that it consists of
at least two nodes and is fully working.

There are lots of performance changes that can be made if you are running
GFS on a single node, but these are not covered in this book.

How to do it...
The single-most effective technique for increasing GFS performance is to minimize the
number of concurrent changes to the same files, that is, to ensure that only one node at
a time is accessing a specific file, if at all possible.

Ironically, the thing most likely to cause this problem is the operating system itself in the form
of the updatedb cron job that runs each day on a clean install. The relevant cron job can be
seen at /etc/cron.daily/makewhatis.cron and should be disabled unless you need it:

[root@node4 ~]# rm –f /etc/cron.daily/makewhatis.cron

Performance Tuning

234

Additionally, for performance reasons, in general all GFS filesystems should be mounted with
the following options:

_netdev: This ensures that this filesystem is not mounted until after the network
is started.

noatime: Do not update the access time. This prevents a write each time a read
is made.

nodiratime: Do not update the directory access time each time a read is made
inside it.

An example line in /etc/fstab may look like this:

/dev/clustervg/mysql_data_gfs2	 /var/lib/mysql	 gfs2	 _
netdev,nodiratime,noatime		 0 0

GFS2 has a large number of tunable parameters that can be customized. One of the major
advantages of GFS2 when compared to the original version of GFS is the self-tuning design
of GFS2; however, there are still a couple of parameters worth considering about tuning
depending on environment.

The first step to modifying any of them to improve performance is to check the current
configuration, which is done with the following command (this assumes that /var/lib/
mysql is a GFS filesystem, as seen in the examples in Chapter 6, High Availability with
MySQL and Shared Storage):

[root@node4 ~]# gfs_tool gettune /var/lib/mysql

This command will list the tunable parameters you can set.

A tunable parameter that can improve performance is demote_secs. This parameter
determines how often gfsd wakes and scans for locks that can be demoted and
subsequently flushed from cache to disk. A lower value helps to prevent GFS accumulating
too much cached data associated with burst-mode flushing activities. The default (5 minutes)
is often higher than needed and can safely be reduced. To reduce it to 1 minute, execute the
following command:

[root@node4 ~]# gfs2_tool settune /var/lib/mysql demote_secs 60

To set demote_secs to persist across reboots, there are several techniques; the simplest
is to add the previous command to the bottom of the /etc/rc.local script, which is
executed on boot:

[root@node4 ~]# echo "gfs2_tool settune /var/lib/mysql demote_secs 60" >>
/etc/rc.local







Chapter 8

235

Another tunable parameter that can improve performance is glock_purge. This parameter
tells gfsd the proportion of unused locks to purge every 5 seconds; the documentation
recommends starting testing at 50 and increasing it until performance drops off, with a
recommended value of 50-60. To set it to 60, execute these commands:

[root@node4 ~]# gfs2_tool settune /var/lib/mysql glock_purge 60

[root@node4 ~]# echo "gfs2_tool settune /var/lib/mysql glock_purge 60" >>
/etc/rc.local

It is a good idea to remove the default alias for the ls command that includes --color.
--color can be useful, but can cause performance problems. When using GFS, remove
this alias for all users by adding the following to the bottom of /etc/profile:

alias ll='ls -l' 2>/dev/null
alias l.='ls -d .*' 2>/dev/null
unalias ls

How it works...
Removing the alias to --color deserves more explanation. There are two problems with
adding --color to ls:

Every directory item listed requires a stat() system call when --color is specified
(to find out whether it is a symbolic link).

If it is a symbolic link, ls will actually go and check if the destination exists.
Unfortunately, this can result in an additional lock required for each destination and
can cause significant contention.

These problems are worsened by the tendency for administrators to run ls a lot in the event
of any problems with a cluster. Therefore, it is safest to remove the automatic use of --color
with ls when using GFS.

MySQL Replication tuning
MySQL Replication tuning is generally focused on preventing slave servers from falling
behind. This can be an inconvenience or a total disaster depending on how reliant you are on
consistency (if you are completely reliant on consistency, of course, MySQL Replication is not
the solution for you).

In this chapter, we focus on tips for preventing slaves from "falling behind" the master.





Performance Tuning

236

How to do it...
INSERT SELECT is a common and convenient SQL command, however, it it is best avoided
by using MySQL Replication. This is because anything other than a trivial SELECT will
significantly increase the load on the single thread running on the slave, and cause replication
lag. It makes far more sense to write a SELECT and then an INSERT based on the result of
this request.

MySQL replication, as discussed in detail in Chapter 5, High Availability with MySQL
Replication, uses one thread per discrete task. This unfortunately means that to prevent
replication "lag", it is necessary to prevent any long-running write transactions.

The simplest way to achieve this is to use LIMIT with your UPDATE or DELETE queries to
ensure that each query (or transaction consisting of many UPDATE and DELETE queries—its
effect is the same) does not cause replication lag.

ALTER TABLE is very often an enormous query with significant locking time on the relevant
table. Within a replication chain, however, this query will lock all queries executed on the
slave, which may be unacceptable. One way to achieve ALTER TABLE queries without slaves
becoming extremely out of date is to:

Execute the ALTER TABLE query on the master prefixed with SET SQL_BIN_LOG=0;
and followed by SET SQL_BIN_LOG=1;. This disables binary logging for this query
(be sure to have SUPER permissions to execute this or run the query as a superuser).

Execute the ALTER TABLE on the slave at the same time.

In situations where the time taken to run ALTER TABLE on a master is unacceptable, this
can be taken further to ensure only the downtime involved in failing over from your master
to slave and vice versa (for example, using MMM as shown in Chapter 5). Carry out the
following procedure:

Execute the ALTER TABLE with SET SQL_BIN_LOG=0; and with
SET SQL_BIN_LOG=1; as above on the slave

Move the active writer master to the slave, typically by failing over the writer role
virtual IP address

Execute the ALTER TABLE with SET SQL_BIN_LOG=0; and with
SET SQL_BIN_LOG=1 on the new slave (previous master)

If required, fail the master, role back

In the case of extremely large tables, this technique can provide the only viable way of
making modifications.













Chapter 8

237

The single-threaded nature of the slave thread means that it is extremely unlikely that your
slave can cope with an identical update load if hosted on the same performance equipment
as the master. Therefore, loading a master server as far as possible with INSERT and UPDATE
queries will almost certainly cause a large replication lag as there is no way that the slaves
single thread can keep up. If you have regular jobs such as batch scripts running in cron, it is
wise to spread these out and certainly not to execute them in parallel to ensure that the slave
has a chance to keep up with the queries on the master.

There's more...
A open source utility, mk-slave-prefetch, is available to "prime" a slave that is not
currently handling any queries, but is ready to handle queries in the case of a master failing.
This helps to prevent a scenario where a heavily-loaded master, with primed caches at storage
system, kernel and MySQL level, fails and the slave is suddenly hit with the load, and crashes
due to having empty caches.

This tool parses the entries in the relay log on a slave and transforms (where possible) queries
that modify data (INSERT, UPDATE) into queries that do not (SELECT). It then executes these
queries against the slave which will draw approximately the same data into the caches on
the slave.

This tool may be useful if you have a large amount of cache at a low level, for example,
battery-backed cache in a RAID controller and a slave with multiple CPU threads and
IO capacity (which will likely mean that the single replication slave SQL thread is not
stressing the server). The full documentation can be found on the Maatkit website at
http://www.maatkit.org/doc/mk-slave-prefetch.html.

While the query parsing is excellent, it is strongly recommended to
run this as a read-only user just to be sure!

A
Base Installation

All the recipes in this book were completed by starting with a base OS installation shown in
the following kickstart file. The same outcome could be achieved by following the Anaconda
installer and adding the additional packages, but there are some things that must be done
at installation time. For example, if you "click through" the installer without thinking you will
create a single-volume group with a root logical volume that uses all the spare space. This
will prevent you from using LVM snapshots in future without adding an additional storage
device, which can be a massive pain. In the following kickstart file, we allocate what we know
are sensible minimum requirements to the various logical volumes and leave the remainder of
the space unallocated within a volume group to be used for snapshots or added to any logical
volume at any time.

When building identical cluster nodes, it is helpful to be able to quickly build and rebuild
identical nodes. The best way to do this is to use PXE boot functionality in the BIOS of servers
for a hands-off installation. The easiest way to do this is to use something like Cobbler
(https://fedorahosted.org/cobbler/).

The following kickstart file can be used with Cobbler or any other kickstart system, or using
an install CD, by replacing the network line with just the word cdrom. Full documentation on
the options available can be found at http://www.redhat.com/docs/manuals/linux/
RHL-9-Manual/custom-guide/s1-kickstart2-options.html.

The kickstart file used is as follows:

install
url --url http://path/to/DVD/files/
lang en_US.UTF-8
keyboard uk
network --device eth0 --bootproto static --ip 0.0.0.0 --netmask
255.255.255.0 --gateway 0.0.0.0 --nameserver 8.8.8.8 --hostname nodex
If you know the secure password (from /etc/shadow), use
rootpw –iscrypted 1....

Base Installation

240

rootpw changeme
firewall --disabled
authconfig --enableshadow --enablemd5
selinux --disabled
timezone --utc Europe/London
bootloader --location=mbr --driveorder=sda
Here, we use /dev/sda to produce a single volume group
(plus a small /boot partition)
In this PV, we add a single Volume Group, "dataVol"
On this VG we create LVs for /, /var/log, /home, /var/lib/mysql and
/tmp
clearpart --all --drives=sda
part /boot --fstype ext3 --size=100 --ondisk=sda --asprimary
part local --size=20000 --grow --ondisk=sda
part swap --size=500 --ondisk=sda --asprimary
volgroup dataVol --pesize=32768 local
logvol / --fstype ext3 --name=root --vgname=dataVol --size=8000
logvol /var/log --fstype ext3 --name=log --vgname=dataVol --size=2000
logvol /var/lib/mysql --fstype ext3 --name=mysql --vgname=dataVol --
size=10000
logvol /tmp --fstype ext3 --name=tmp --vgname=dataVol --size=2000
logvol /home --fstype ext3 --name=home --vgname=dataVol --size=1000

Packages that are used in many recipes in this book
%packages
@editors
@text-internet@core
@base
device-mapper-multipath
vim-enhanced
screen
ntp
lynx
iscsi-initiator-utils
If you are using the packaged version of MySQL
(NB not for MySQL Cluster)
mysql-server

Install the EPEL repo
This is used to install some of the packages required for Chapter 5
(MMM)
rpm --nosignature -Uvh http://download.fedora.redhat.com/pub/epel/5/
i386/epel-release-5-3.noarch.rpm

Appendix A

241

Broadly speaking, this file does the following:

Installs everything apart from /boot onto LVM volumes, leaving some space in the
volume group (essential for recipes that involve snapshots and creating additional
logical volumes)

Disables SELinux (essential for many recipes)

Installs some useful packages used in each recipe, but otherwise uses a
minimal install

Installs the bundled mysql-server package (remove this if you are installing
a MySQL Cluster node, as you will install the package from mysql.com)

Installs the Extra Packages For Enterprise Linux (EPEL) packages provided by
Fedora, which we use in Chapter 5, High Availability with MySQL Replication
extensively and provides a large number of open source packages that are built
for CentOS / RedHat Enterprise Linux











B
LVM and MySQL

The default installation of RedHat Enterprise Linux and CentOS 5 will create all mount
points (including the root mount point, /) on Logical Volume Manager's (LVM) Logical
Volumes (LVs).

LVM brings about many benefits. With particular relevance for MySQL high availability
is the snapshot feature. This allows you to take a consistent snapshot of a logical volume
(for example, the logical volume with the ext3 filesystem mounted on /var/lib/mysql)
without affecting the currently mounted volume.

LVM then allows for this snapshot to be mounted somewhere else (/mnt/mysql-3pmtoday)
and a backup can then be run against this snapshot without affecting the MySQL instance
running on the original logical volume.

The actual process of creating a snapshot takes a very short period of time, normally fractions
of a second. Therefore, to take a fully-consistent backup of your MySQL database, you only
need to flush all the transactions and caches to disk for that short period of time and then
the database can continue as normal.

This is useful for the following reasons:

The time during which your main database is down will be significantly reduced

It is possible to get consistent backups of multiple database servers at the same
time easily

While it is possible to carry out this backup process manually, there is a Perl script
mylvmbackup available at http://lenzg.net/mylvmbackup/, which carries this
out automatically. mylvmbackup was created by Aleksey "Walrus" Kishkin and was
released under the GNU Public License.





LVM and MySQL

244

The definition for mylvmbackup from the website at http://lenzg.net/mylvmbackup/
states:

mylvmbackup is a tool for quickly creating backups of a MySQL server's data files.
To perform a backup, mylvmbackup obtains a read lock on all tables and flushes all
server caches to disk, creates a snapshot of the volume containing the MySQL data
directory, and unlocks the tables again. The snapshot process takes only a small
amount of time. When it is done, the server can continue normal operations, while
the actual file backup proceeds.

The LVM snapshot is mounted to a temporary directory and all data is backed up
using the tar program. By default, the archive file is created using a name of the
form backup-YYYYMMDD_hhmmss_mysql.tar.gz, where YYYY, MM, DD, hh,
mm, and ss represent the year, month, day, hour, minute, and second of the time
at which the backup occurred. The default prefix backup, date format and file
suffix can be modified. The use of timestamped archive names allows you to run
mylvmbackup many times without danger of overwriting old archives.

How to do it...
Installing mylvmbackup on a RedHat Enterprise Linux or CentOS 5 system is simple and it is
shown in this section:

Firstly, install perl-Config-IniFiles and perl-TimeDate:

perl-Config-IniFiles is available only in the EPEL repository.
This was covered earlier in this book in Chapter 3, MySQL Cluster
Management; you can read the simple install guide for this repository
at http://fedoraproject.org/wiki/EPEL/FAQ#How_can_
I_install_the_packages_from_the_EPEL_software_
repository.3F.

[root@node2 ~]# yum -y install perl-Config-IniFiles perl-TimeDate

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

 * epel: www.mirrorservice.org

Installed: perl-Config-IniFiles.noarch 0:2.39-6.el5 perl-TimeDate.noarch
1:1.16-5.el5

Complete!

Appendix B

245

Download mylvmbackup and extract the tar.gz file as follows:

[root@node2 ~]# cd /usr/src/

[root@node2 src]# wget http://lenzg.net/mylvmbackup/mylvmbackup-0.13.tar.
gz

--18:16:11-- http://lenzg.net/mylvmbackup/mylvmbackup-0.13.tar.gz

Resolving lenzg.net... 213.83.63.50

Connecting to lenzg.net|213.83.63.50|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 37121 (36K) [application/x-tar]

Saving to: `mylvmbackup-0.13.tar.gz'

100%[==
===================================>] 37,121 --.-K/s in 0.06s

18:16:11 (593 KB/s) - `mylvmbackup-0.13.tar.gz' saved [37121/37121]

[root@node2 src]# tar zxvf mylvmbackup-0.13.tar.gz

mylvmbackup-0.13/

mylvmbackup-0.13/ChangeLog

mylvmbackup-0.13/COPYING

mylvmbackup-0.13/CREDITS

mylvmbackup-0.13/hooks/

mylvmbackup-0.13/hooks/backupfailure.pm

mylvmbackup-0.13/hooks/logerr.pm

mylvmbackup-0.13/hooks/preflush.pm

mylvmbackup-0.13/INSTALL

mylvmbackup-0.13/Makefile

mylvmbackup-0.13/man/

mylvmbackup-0.13/man/mylvmbackup.pod

mylvmbackup-0.13/man/mylvmbackup.1

mylvmbackup-0.13/mylvmbackup

mylvmbackup-0.13/mylvmbackup.conf

mylvmbackup-0.13/mylvmbackup.pl.in

mylvmbackup-0.13/mylvmbackup.spec

mylvmbackup-0.13/mylvmbackup.spec.in

mylvmbackup-0.13/README

mylvmbackup-0.13/TODO

LVM and MySQL

246

Change to the new directory and install mylvmbackup as follows:

[root@node2 src]# cd mylvmbackup-0.13

[root@node2 mylvmbackup-0.13]# make install

test -d /usr/local/bin || /usr/bin/install -d /usr/local/bin

test -d /usr/local/man/man1 || /usr/bin/install -d /usr/local/man/man1

test -d /etc || /usr/bin/install -d /etc

test -d /usr/local/share/mylvmbackup || /usr/bin/install -d /usr/local/
share/mylvmbackup

/usr/bin/install -m 755 mylvmbackup /usr/local/bin

/usr/bin/install -m 644 man/mylvmbackup.1 /usr/local/man/man1/
mylvmbackup.1

if test -f /etc/mylvmbackup.conf ; then /bin/mv /etc/mylvmbackup.conf /
etc/mylvmbackup.conf.bak ; fi

/usr/bin/install -m 600 mylvmbackup.conf /etc

for HOOK in hooks/backupfailure.pm hooks/logerr.pm hooks/preflush.pm ; do
if [! -f /usr/local/share/mylvmbackup/$HOOK] ; then /usr/bin/install -m
644 -v $HOOK /usr/local/share/mylvmbackup ; fi ; done

`hooks/backupfailure.pm' -> `/usr/local/share/mylvmbackup/backupfailure.
pm'

`hooks/logerr.pm' -> `/usr/local/share/mylvmbackup/logerr.pm'

`hooks/preflush.pm' -> `/usr/local/share/mylvmbackup/preflush.pm'

mylvmbackup requires two things to work: the MySQL data directory must be on a logical
volume and the volume group that contains this logical volume must have some spare space
to hold the snapshot copy for writing. Check these with the following commands:

Firstly, run the vgs command to confirm that there is spare space available. In this case,
there is 9.66G spare space in the volume group:

[root@node1 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 system 1 3 0 wz--n- 29.41G 9.66G

Secondly, check that there is a logical volume for MySQL with the lvs command and note the
volume group (system in the following example):

[root@node1 ~]# lvs

 LV VG Attr LSize Origin Snap% Move Log Copy% Convert

 log system -wi-ao 1.94G

 mysql system -wi-ao 10.00G

 root system -wi-ao 7.81G

Appendix B

247

Finally, check that the MySQL data directory is mounted on this logical volume:

[root@node1 ~]# df -h | grep mysql

/dev/mapper/system-mysql

 9.9G 172M 9.2G 2% /var/lib/mysql

With these things verified, you are ready to configure /etc/mylvmbackup.conf file.

Start with the self-explanatory [mysql] section that gives a user the privileges to lock tables.

In the [lvm] section, define the vgname and lvname from the output of vgs / lvs
commands used earlier (in our example, the vgname is system and the lvname is mysql).
The parameter lvsize determines how much space to keep for the snapshot—the volume
group must have that much space free, and this is used to hold the data that is changed while
the snapshot is open. The correct setting for this parameter depends on how busy your server
is and how long backups take; you can start with 20 percent of the logical volume size.

An example configuration file is as follows:

#
mylvmbackup configuration file
#

[mysql]
user=USER
password=PASSWORD
host=localhost
port=
socket=
mycnf=/etc/my.cnf

#
LVM-specific options
#
[lvm]
vgname=dataVol
lvname=mysql
backuplv=
lvsize must be able to cope with differences
lvsize=1G

#
File system specific options
#
[fs]
xfs=0

LVM and MySQL

248

mountdir=/var/tmp/mylvmbackup/mnt/
backupdir=/var/tmp/mylvmbackup/backup/
relpath=

#
Names of required external utilities
Make sure the $PATH is set accordingly, especially for cron jobs!
#
[tools]
lvcreate=lvcreate
lvremove=lvremove
lvs=lvs
mount=mount
tar=tar
compress=gzip
rsync=rsync
rsnap=rsnap
umount=umount

#
Other configuration options
#

[misc]
backuptype=tar
prefix=backup-ibactive
suffix=_mysql
tararg=cvf
tarsuffixarg=
tarfilesuffix=.tar.gz
compressarg=--stdout --verbose --best
rsyncarg=-avWP
rsnaparg=7
datefmt=%Y%m%d_%H%M%S
innodb_recover=0
pidfile=/var/tmp/mylvmbackup_recoverserver.pid
skip_flush_tables=0
extra_flush_tables=0
skip_mycnf=0
hooksdir=/usr/share/mylvmbackup
skip_hooks=0
keep_snapshot=0
keep_mount=0
quiet=0

Appendix B

249

#
Logging options. The Sys::Syslog module is required for syslog
option
See "perldoc Sys::Syslog" for more information.
#
[logging]
'console' (STDOUT, STDERR) or 'syslog' or 'both'.
log_method=console
'native', 'tcp', 'udp'. Default is 'native'
syslog_socktype=native
syslog_facility=
If using remote syslog, don't forget to change the socket type to
tcp or udp.
syslog_remotehost=

With the configuration file created, execute mylvmbackup to test your backup as follows:

[root@node1 ~]# mylvmbackup

20091206 18:39:24 Info: Connecting to database...

20091206 18:39:24 Info: Flushing tables with read lock...

20091206 18:39:24 Info: Taking position record into /tmp/mylvmbackup-
backup-20091206_183924_mysql-mxAD4A.pos...

20091206 18:39:24 Info: Running: lvcreate -s --size=5G --name=mysql_
snapshot /dev/system/mysql

File descriptor 4 (socket:[17769919]) leaked on lvcreate invocation.
Parent PID 20180: /usr/bin/perl

 Logical volume "mysql_snapshot" created

20091206 18:39:25 Info: DONE: taking LVM snapshot

20091206 18:39:25 Info: Unlocking tables...

20091206 18:39:25 Info: Disconnecting from database...

20091206 18:39:25 Info: Mounting snapshot...

20091206 18:39:25 Info: Running: lvremove -f /dev/system/mysql_snapshot

 Logical volume "mysql_snapshot" successfully removed

20091206 18:39:26 Info: DONE: Removing snapshot

[root@node1 ~]# echo $?

0

LVM and MySQL

250

In this case, the tables were locked for less than a second.

Various parts of this procedure can fail for the following reasons:

The MySQL server can be down

The read lock cannot be successfully acquired

Insufficient spare space in the volume group to create the snapshot

The volume group or logical volume name does not exist (that is, a typo in the
configuration file)

It is therefore essential in automated scripts to check the exit code ($?) and ensure that it
is 0—and if it is not, you must schedule a manual look at the backup job.

If the script exits with an exit code of 0, the backup can be found in /var/tmp/
mylvmbackup/backup/, which is ready for sending to a backup location. For example,
you could scp or rsync it to an offsite location.

How it works…
mylvmbackup works by using the following procedure:

1.	 FLUSH TABLES: Forces MyISAM buffers to disk as far as possible, but it does not lock
the tables.

2.	 FLUSH TABLES WITH READ LOCK: Forces MyISAM buffers to disk that have been
dirtied since the last FLUSH TABLES command. This time, all queries modifying the
databases are locked.

3.	 lvcreate -s: This creates a consistent snapshot.

4.	 UNLOCK TABLES: This writes to the database resume.

5.	 Mount the snapshot to a temporary directory.

6.	 tar and compress the snapshot. If configured (not covered in this appendix), rsync
this file to another location.

7.	 Destroy the snapshot.

Be aware that when holding an open snapshot, the "copy on write" architecture of LVM can
cause significant performance degradation—one I/O operation without a snapshot may take
three to six I/O operations, when there is an open snapshot.

If you only use InnoDB tables and the additional activity at block-device level during
snapshots causes problems, you can consider the open source Xtrabackup project
(https://launchpad.net/percona-xtrabackup), which aims to achieve zero downtime
backups at application level and without this overhead. However, for a database server with
cyclical load, it is often possible to schedule backups at a low time where additional I/O will
not cause problems.









C
Highly Available

Architectures

In this appendix, we will show very briefly some architectures that are worth considering, with
some pros and cons for each.

For the purpose of this appendix, a site is a single geographical location within which
it is possible to have very high-bandwidth and low-latency connections over trusted
network infrastructure.

Single-site architectures
There are various single-site architectures available, as described in this section:

MySQL master / slave replication
This replication has two servers—one master and one slave, and an application connecting
to an IP address of the master as follows:

MASTER SLAVE

VIP

APPLICATION

Highly Available Architectures

252

This is the most simple setup; the Virtual IP address (VIP) can be manually moved. However,
in the event of failure of the master, there is a possibility of some data loss and a manual VIP
failover can take time. To set this up, go through the recipes Designing a replication setup,
Configuring a replication master, and Configuring a replication slave without synchronizing
data in Chapter 5, High Availability with MySQL Replication.

MySQL master / master replication
Two servers, both configured as slaves to the other server, with a management agent such
as MMM (which was covered in Chapter 5 in the recipes Multi Master Replication Manager
(MMM) and Managing and using Multi Master Replication Manager (MMM)) for automated
failover and health checking. It can be shown as follows:

MASTER

VIP

APPLICATION

MMM

MASTER

This has the advantage of simplicity (although, it is more complex than master / slave
architecture) with automated and faster failover. However, similar to all replication-based
high-availability designs, there is a risk of data loss here.

Shared storage
This involves two servers connected either to a redundant shared-storage device such as
a shared disk array, which was covered in Chapter 6, High Availability with MySQL and
Shared Storage, or by using block-level replication such as DRBD and a cluster manager
for automated failover, which was covered in Chapter 7, High Availability with Block Level
Replication. The architecture diagram can be shown as follows:

ACTIVE PASSIVE

VIP

APPLICATION

SAN

Appendix C

253

Block level replication
The other type of shared storage is block-level replication—DRBD shown as follows:

A P
DRBD

APPLICATION

This has the advantage of extremely fast failover and, if configured correctly, there are no
lost transactions in the event of a failover. The disadvantage is that it has relatively poor
performance. Better performance, which is similar to or greater than the previous two
architectures, can be achieved with local storage that requires expensive hardware
such as Fibre Channel connectivity to a SAN or Dolphin Interconnects for DRBD.

MySQL Cluster
MySQL Cluster requires a minimum of three servers connected together in a local network
as covered in detail in the first four chapters in this book. In the following example, the
application is hosted on two servers, which are running SQL nodes that allow the application
to connect to the localhost MySQL Server. A load balancer is therefore required to
distribute users of the application between the two servers and to conduct health
checking. It can be shown in the following diagram:

Storage Node

SQL Node +
Application

MGM
MODE

VIP + LOADBALANCER

Storage Node

SQL Node +
Application

Multi-site architectures
There are two common techniques used for disaster recovery between multiple sites.
Such techniques take into account the Internet latency and the overheads of virtual
private networks or the other secure systems. The first is MySQL Replication. This can be
implemented between MySQL Clusters (which was covered in Chapter 3, MySQL Cluster
Management) or as standard MySQL Replication (which was covered in Chapter 5).
Additionally, DRBD can be run in asynchronous mode. DRBD was covered in Chapter 7.

Highly Available Architectures

254

Summary of options

Method Chapter(s) Advantages Disadvantages

MySQL Clustering 1-4 Scalable

High performance

Very high uptimes
possible







Heavy RAM requirement

Relatively complicated

Heavy reliance on good
network links







MySQL Replication 5 Simple

Highly available

Virtually no
performance impact







Not scalable

Data can be lost in
failure





MySQL Replication
between MySQL
Clusters

3 All the advantages of
MySQL Clustering, with
excellent disaster recovery

Extremely expensive

Manual failover





Shared-storage
clustering

6 Excellent uptimes possible Expensive storage
required to minimize
performance impact

Complexity, limited
scalability





Block-level
replication

7 Low cost Performance impact

Scalability





Index
Symbols
--all-databases command 153
--all-databases option 69
--all-tablespaces option 70
--config-file=config.ini flag 78
--delete-master-logs command 152
--hex-blob command 153
--initial flag 28 77
--lock-all-tables command 153
--lock-all-tables option 69
--master-data command 152
--ndb-nodeid=X flag 77
--nostart flag 30
-d parameter 88
<nodeid> REPORT MemoryUsage command

80
<nodeid> STATUS command 25

A
abort command 58
ALTER TABLE command

designing 51
Arbitrator 43
attributes 15

B
base installations

about 239, 240
cluster nodes, building 239
kickstart file, actions 241
kickstart file, using 239, 240

Binary logs 140
binlog-format parameter 146
block-level replication

advantages 254
disadvantages 254

block level replication
about 201
DRBD 202
synchronous mode 202

Bonnie 84
Bytes column 83

C
CentOS 5

anticipatory scheduler 227
CFQ scheduler 227
deadline scheduler 227
noop scheduler 226

CHANGE MASTER TO command
about 93
working 153

clustat command 189, 190
cluster shutdown

complete cluster failure 43
partial cluster failure 42
recovering from 42, 43
split brain problem 43
working 44

cluster SQL file
importing, to unclustered MySQL server 72

clusvcadm command 190
config.ini file

creating 17
config.ini file, creating

steps 17-19
Conga

luci 185
luci, installing 186
ricci 185

256

using, configuration 185
using, for MySQL configuration 185-188
working 189

CREATE LOGFILE GROUP command 107
CREATE NODEGROUP <nodeID>,<nodeID>

command 87
CREATE TABLESPACE SQL command 105
cron job

woes 198

D
DataMemory

calculating 109-113
requirements 110

DBD@mysql
installing, commands 113

DESC tablename command 54
df -h command 81
disk-based tables

configuring 104-106
working 106, 107

disk space
binary logs, rotating 149
individual binary log size, limiting 149
some databases, logging 148

Distributed Replicated Block Device. See
DRBD

downloading
SQL nodes 32

DRBD
about 201
asynchronous setting 203
consequence 203
installing, on two Linux servers 203
semi-synchronous setting 203
synchronous setting 203

DRBD, installing on two Linux servers
starting with 204
steps 204-207
working 208

DRBD cluster
MySQL service, moving 209, 210
MySQL service, moving manually 208

E
echo command 225
endianness 16

F
fencing

about 191
configuring 192, 193
device, adding 194
dummy fencing, creating 192
for high availability 191
manual fencing, configuring 192
setting up, on VMware 193

filesystem
mounting, on both nodes 198

fragments 11

G
GFS

about 177, 176
MySQL, configuring 195-197

GFS2 195
GFS performance

--color adding to ls, problems 235
_netdev option 234
maximizing 233, 234
noatime option 234
nodiratime option 234
requirements 233
working 235

Global File System. See GFS

H
HBAs 179
heartbeat

about 211
using, for automatic failover 212-215
working 217, 218

HeartbeatIntervalDbApi parameter 120
HeartbeatIntervalDbDb parameter 120
Host Bus Adapters. See HBAs
HostName parameter 19 76

257

I
IndexMemory

calculating 109-112
requirements 111

installing
management node 20-23
mylvmbackup 244
SQL nodes 32

iptables command 122
iptraf command 83
IQN 179
iSCSI

software initiators, using 179
volume, preparing 177, 178

iSCSI Qualified Name. See IQN

K
kill command 25

L
LCP 44
Linux kernel IO

about 220
Avggu-sz field 224
Avgrq-sz field 224
await field 224
CPU field options 222
IO field options 222
monitoring, top commmand 220, 221
nd w/s field 224
r/s field 224
Rsec/s field 224
sar command 222
svctm field 224
swap 221
swap, field options 221
tuning 220-225
working 225, 226
wsec/s field 224

Linux server
preparing, for shared storage 176-178

Local Checkpoint. See LCP
Logical Unit Number. See LUN
Logical Volume Manager. See LVM

Logical Volumes. See LVs
LUN 179
lvcreate command 155
LVM

about 153, 243
benefits 243
use 243
using, to reduce master down time 154-156

LVs 243
lvsize parameter 247

M
management node

installing 20-23
starting 23-25

master
about 139
slaves 139

mk-slave-prefetch 237
mkdir command 28
MMM

about 158, 159
failure, detecting 172, 173
initial installation 158-161
managing 169-171
monitoring node, installing 166-169
MySQL nodes, installing 162-166
Perl scripts, mmmd_agent 159
Perl scripts, mmmd_mon 159
using 169-171
working 171, 172

mmm_control set_online command
using 169

move_role command 172
multi-site architectures 253
Multi Master Replication Manager. See MMM
multiple management nodes

configuring 76-79
multiple storage node failure

handling 121, 122
options 120

mylvmbackup
defining 244
installing 244
working 250

258

mylvmbackup installation
perl-Config-IniFiles, installing 244-250
perl-TimeDate, installing 244-250

MySQL
configuring, with GFS 195-197

mysqlbinlog command 145
MySQL Cluster

about 7
advantages 254
API nodes 8
application error 48
Arbitrator 43
backing up, ways 47
data chopping 11-13
data or storage node 8
deploying 13
designing 8, 9, 49
disadvantages 254
disaster recovery 48
human error 48
indexes, limitation 14
initial cluster configuration file, creating 17
management node 8
MySQL Clusterqueries, tuning

within 232, 233
network requirements 15
offline backup, obtaining 69, 71
operating system requirements 14
problems 9
processor architecture requirements 16
queries, tuning within 232, 233
replicating between 91-95
restarting, without downtime 38
shared nothing property 11
storage node, partitioning 123
storage nodes 26
System RAM, best practices 15, 16
System RAM, requirements 15, 16
table, creating 35
transactions, limitation 14
troubleshooting 115
two-phase commit 13
version 7 limitations 15
working 10, 11
write access restricting, single-user mode

used 64-68

MySQL Cluster, debugging
firewalls 128, 129
host resolution 129
memory 129
points 126
steps 127

MySQL Cluster, restarting without downtime
management node, restarting 41
requirements 38
SQL node, restarting 42
storage node, restarting 39, 40

MySQL Cluster management
about 75
disk-based tables 104
multiple management nodes, configuring 76
online storage nodes, adding 84
usage, obtaining 80
user-defined partitioning 100

MySQL Cluster offline backup
obtaining 69, 71

MySQL Cluster online backup
about 54
backups in progress, aborting 58
command hanging, preventing 58
consistent backup time, defining 58
initiating 55, 56
initiation tricks 58
metadata 55
ndb_restore process 60
obtaining 55
restoration principles 59
restoring from 59-64
table data 55
transaction logs 55

MySQL Cluster SQL nodes
stuning 230, 231
working 231

MySQL Cluster storage nodes
tuning 228
working 229, 230

MySQL Cluster table
about 35
creating 35-38

MySQL Cluster troubleshooting
debugging 126
multiple storage node failure, handling 120

259

network redundancy 131
Seeking help 130
single storage node failure, handling 116

MySQL Cluster usage
obtaining 80-83
working 82

mysql command 32
MySQL configuration

cluster status, using 189, 190
on shared storage, Conga used 185-188
service migration, from node to node 190

mysqldump command
about 47, 152
running, for consistent backup 72-74

MySQL replication
about 139
advantages 254
disadvantages 254
setup, designing 140

MySQL Replication setup
row-based replication 145

MySQL replication setup
Active / passive master replication 142, 143
Binary logs 140
binlog_format 146
designing 140
master 140
Master-Slave setup 140
Master-Slave setup, disadvantages 141
Master-Slave setup, uses 141
mixed-mode replication 144
Multi-master 142
slaves 140
statement-based replication 144
working 144, 145

MySQL Replication tuning
about 235
ALTER TABLE, achieving 236
steps 236, 237

N
NDB 7, 53
ndb_desc command 91
ndb_restore command 62

ndb_size.pl
additional options 114

NDBCLUSTER. See NDB
Network DataBase. See NDB
network redundancy

MySQL cluster, using 132-137
noatime mount option 198
nodegroups 12
NoOfReplicas parameter 18

O
objects 15
online storage nodes

adding 84-87
working 88, 89

P
partitions 89

R
RedHat Package Manager. See RPM
replication

between MySQL Clusters 91-96
between MySQL Clusters, backup channel

used 97-100
safety tricks 156
working 96

replication, safety tricks
about 156
auto-increment problems, solving 157, 158
my cnf values 157
MySQL server data, preventing 157, 158

replication channel
about 91
diagram 92

replication master
binary log, configuring 147
binary log caching 149
disk space 148
node ID, configuring 146
performance 149
replication user account, configuring 147

260

setting up, process 146
working 148

replication slave
configuring, SQL dump used 152, 153
configuring, without syncing data 150, 151

restart parameter 188
RHEL

anticipatory scheduler 227
CFQ scheduler 227
deadline scheduler 227
noop scheduler 226

RPM 20

S
sar command

sar commandabout 222
Seeking help

about 130
bug, posting 131
using 130

server-id parameter 150
service command 79
shared-storage clustering

advantages 254
disadvantages 254

shared MySQL storage
CentOS required package, installing 181, 182
filesystem, creating 183
logical volume, creating 183
MySQL, installing 184
two servers, configuring 181

shared storage cluster
architecture,designing 178-180
Linux server, preparing 176, 177
preparing, for Liux server 177
simplified structure 176

Shoot The Other Node In The Head.
See STONITH

SHOW command 33
show command 78
SHOW ENGINES command 34, 54
SHOW MASTER STATUS command 164

single-site architectures
MySQL master / master replication 252
MySQL master / slave replication 251
shared storage 252, 253
shared storage, block-level replication 253
shared storage, storage area network 252

single storage node failure
handling 116-119
working 120

single user mode
using, for write access restriction 64-68

single write transaction
diagrammatic representation 202

site 251
sizer 114
slave-allow-batching option 100
split brain problem 9, 43
SQL files

converting, to MySQL cluster 50-52
importing, to MySQL server 49-52
row number, checking 53

SQL nodes
about 32
downloading 32
installing 32
starting 33, 34

START BACKUP command 55
START BACKUP NOWAIT option 58
START BACKUP WAIT STARTED 58
STONITH 191
STONITH See also fencing
storage node

arbitration 124
files, downloading 26, 27
installing 26
partitioned nodes, working 125
partitioning 123
phases 31
starting 27-30

T
tail -f command 122
tar command 161

261

U
UNDO_BUFFER_SIZE parameter 107
user-defined partitioning

starting with 101
steps 102, 103
uses 104

UUID() function 144

V
vgs command 154, 204, 246
VIP 252
Virtual IP address. See VIP
vm.swappiness parameter 227
vmstat command 82, 221

W
w/s 224

Y
yum list | grep drbd command 204

Thank you for buying

High Availability MySQL Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

MySQL Admin Cookbook
ISBN: 978-1-847197-96-2 Paperback: 376 pages

99 great recipes for mastering MySQL configuration and
administration

1.	 Set up MySQL to perform administrative tasks
such as efficiently managing data and database
schema, improving the performance of MySQL
servers, and managing user credentials

2.	 Deal with typical performance bottlenecks and
lock-contention problems

3.	 Restrict access sensibly and regain access to your
database in case of loss of administrative user
credentials

4.	 Part of Packt’s Cookbook series: Each recipe is
a carefully organized sequence of instructions to
complete the task as efficiently as possible

Creating your MySQL
Database
ISBN: 978-1-904811-30-5 Paperback: 108 pages

A short guide for everyone on how to structure your data
and set-up your MySQL database tables efficiently and
easily.

1.	 How best to collect, name, group, and structure
your data

2.	 Design your data with future growth in mind

3.	 Practical examples from initial ideas to final
designs

4.	 The quickest way to learn how to design good data
structures for MySQL

Please check www.PacktPub.com for information on our titles

Mastering phpMyAdmin
3.1 for Effective MySQL
Management
ISBN: 978-1-847197-86-3 Paperback: 352 pages

Create your own complete blog or web site from scratch
with WordPress

1.	 Covers version 3.1, the latest version of
phpMyAdmin

2.	 Administer your MySQL databases with
phpMyAdmin

3.	 Manage users and privileges with MySQL Server
Administration tools

4.	 Get to grips with the hidden features and
capabilities of phpMyAdmin

Mastering phpMyAdmin
2.11 for Effective MySQL
Management
ISBN: 978-1-847194-18-3 Paperback: 340 pages

Increase your MySQL productivity and control by
discovering the real power of phpMyAdmin 2.11

1.	 Effectively administer your MySQL databases with
phpMyAdmin.

2.	 Manage users and privileges with MySQL Server
Administration tools.

3.	 Get to grips with the hidden features and
capabilities of phpMyAdmin

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: High Availability with MySQL Cluster
	Introduction
	Designing a MySQL Cluster
	Creating an initial cluster configuration file—config.ini
	Installing a management node
	Starting a management node
	Installing and starting storage nodes
	Installing and starting SQL nodes
	Creating a MySQL Cluster table
	Restarting a MySQL Cluster without downtime
	Recovering from a cluster shutdown

	Chapter 2: MySQL Cluster Backup and Recovery
	Introduction
	Importing SQL files to a MySQL server and converting them to MySQL Cluster
	Taking an online backup of a MySQL Cluster
	Restoring from a MySQL Cluster online backup
	Restricting write access to a MySQL Cluster with single-user mode
	Taking an offline backup with MySQL Cluster

	Chapter 3: MySQL Cluster Management
	Introduction
	Configuring multiple management nodes
	Obtaining usage information
	Adding storage nodes online
	Replicating between MySQL Clusters
	Replication between clusters with
	a backup channel
	User-defined partitioning
	Disk-based tables
	Calculating DataMemory and IndexMemory

	Chapter 4: MySQL Cluster Troubleshooting
	Introduction
	Single storage node failure
	Multiple storage node failures
	Storage node partitioning and arbitration
	Debugging MySQL Clusters
	Seeking help
	NIC teaming with MySQL Cluster

	Chapter 5: High Availability with MySQL Replication
	Introduction
	Designing a replication setup
	Configuring a replication master
	Configuring a replication slave
	without syncing data
	Configuring a replication slave,
	migrating data with a simple SQL dump
	Using LVM to reduce downtime
	on a master when bringing a slave online
	Replication safety tricks
	Multi Master Replication Manager (MMM):
	initial installation
	Multi Master Replication Manager (MMM):
	installing the MySQL nodes
	Multi Master Replication Manager (MMM):
	installing monitoring node
	Managing and using
	Multi Master Replication Manager (MMM)

	Chapter 6: High Availability with MySQL and Shared Storage
	Introduction
	Preparing a Linux server for shared storage
	Configuring two servers for shared storage MySQL
	Configuring MySQL on shared storage with Conga
	Fencing for high availability
	Configuring MySQL with GFS

	Chapter 7: High Availability with Block Level Replication
	Introduction
	Installing DRBD on two Linux servers
	Manually moving services within a DRBD cluster
	Using heartbeat for automatic failover

	Chapter 8: Performance Tuning
	Introduction
	Tuning the Linux kernel IO
	Tuning MySQL Cluster storage nodes
	Tuning MySQL Cluster SQL nodes
	Tuning queries within a MySQL Cluster
	Tuning GFS on shared storage
	MySQL Replication tuning

	Appendix A: Base Installation
	Appendix B: LVM and MySQL
	Appendix C: Highly Available Architectures
	Single-site architectures
	Multi-site architectures
	Summary of options

	Index

