
Qiang Hao
Michail Tsikerdekis

Chapter Breakdown

Chapter What you’ll learn Why it’s important

Chapter 1 & 2 Essential SQL commands, data
management, table structures,
and entity concepts.

A foundation for building structured
databases and understanding core
relational concepts.

Chapter 3 Goals, subgoals, and phases of
database design

A road map for structured and stra-
tegic design, guiding you through
requirement gathering, analysis, and
testing.

Chapter 4 Identification and representation of
key concepts in requirement analysis
as entities and attributes in database
design; common data types of
attributes

Extracting meaningful entities and
attributes and their data types from
requirement analysis is an important
step in database design.

Chapter 5 How to connect entities via
relationships, and identify their
cardinalities; how to build E-R
diagrams

An understanding of the relational
aspect of databases is an important
step in database design and is essen-
tial in building E-R diagrams.

Chapter 6 Normalization of your database
design and implementation of
your design

How to ensure data accuracy, reduce
anomalies, and improve efficiency in
your databases is a must-to-know.

Chapter 7 Approaches to secure data and
improved query performance,
including indexing and
denormalization

Database security and performance
are critical in real-world applications.

Chapter 8 How to use AI tools like ChatGPT to
speed up database modeling and
implementation

Generative AI can make database
design more accessible and efficient.

Grokking
Relational
Database
Design

Qiang Hao
Michail Tsikerdekis

MANN ING
Shelter Island

For online information and ordering of this and other Manning books, please visit
www​.manning​.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road, PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

 �Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also
our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

Manning Publications Co.		 Development editor:	Elesha Hyde
  20 Baldwin Road 		 Technical editor:	Louis Davidson

Shelter Island, NY 11964		 Review editor:	Aleksandar Dragosavljević 	
			 and Kishor Rit
		 Production editor:	Andy Marinkovich
		 Copy editor:	Keir Simpson
		 Proofreader:	Keri Hales
		 Technical proofreader:	Ross Turner
		 Typesetter:	Dennis Dalinnik
		 Illustrator:	Cody Pham
		 Cover designer:	Marija Tudor

ISBN 9781633437418
Printed in the United States of America

www.manning.com
mailto:orders@manning.com

To our family and friends, for their endless support and encouragement.
And to all those who believe in the power of curiosity and persistence,

may this book serve as a companion on your journey of learning.

v

brief contents

Part 1  Get started	 1

1	 Introducing databases and SQL	 3
2	 Related tables and more SQL	 25
3	 Overview of database design	 49

Part 2  Master database design	 71

4	 Entities and attributes	 73
5	 Relationships	 103
6	 Normalization and implementation	 137
7	 Security and optimization	 175

Part 3  Database design and AI	 211

8	 Database design in the age of generative AI	 213

vii

contents

preface	 xi

acknowledgments	 xiii

about this book	 xv

about the authors	 xix

Part 1  Get started	 1

1	 Introducing databases and SQL	 3
Overview	 4
Your first SQL query	 9
The basics of SQL queries	 11
Table and data management	 19
Recap	 24

2	 Related tables and more SQL	 25
Overview	 26
Related tables	 26
Revisit table and data management	 35
Learn more SQL on your own	 42
Recap	 46
Overview	 49

contentsviii

3	 Overview of database design	 49
Goals of database design	 50
Overview of the design process	 55
Key phases of database design	 60
Recap	 69

Part 2  Master database design	 71

4	 Entities and attributes	 73
Overview	 74
Entities and attributes	 74
Keys	 78
Data types	 85
Recap	 101

5	 Relationships	 103
Overview	 104
Entity-relationship diagrams	 104
Connect related entities	 106
Cardinality	 109
Strong and weak entities	 129
Recap	 135

6	 Normalization and implementation	 137
Overview	 138
Normalization	 138
Implementation	 156
Recap	 173

contents ix

7	 Security and optimization	 175
Overview	 176
Security	 176
Storage considerations	 187
Indexing	 193
Denormalization	 201
Recap	 209

Part 3  Database design and AI	 211

8	 Database design in the age of generative AI	 213
Overview	 214
Requirements analysis	 216
Entities and attributes	 218
Relationships among entities	 232
Implementation	 245
Recap	 253

index	 255

xi

preface
For years, we have taught courses on database management systems, and one
recurring challenge we’ve noticed is the overwhelming difficulty students
have with conventional textbooks. These materials, while comprehensive,
often feel tedious and painful for students to chew through, making the
learning process more daunting than it needs to be.
Our teaching experiences led us to envision a different kind of resource—one
that makes the principles of relational database design more approachable
and engaging. That opportunity came when Dr. Daniel Zingaro, an editor
at Manning and a colleague from the University of Toronto Mississauga,
reached out to us. Daniel asked whether we would be interested in writing
a book that could bring these concepts to life in a way that learners could
better grasp and enjoy.
The result is Grokking Relational Database Design, a book that focuses
not just on the technicalities but also on how to teach them effectively,
emphasizing clarity, real-world relevance, and a step-by-step approach.
Whether you’re new to the field or seeking a refresher on concepts you
learned years ago, this book is designed for you.
In today’s world, where AI and machine learning are rapidly transforming
industries, the role of relational databases remains fundamental. Although
new technologies such as NoSQL databases and Big Data solutions have
emerged, relational databases continue to be the backbone of data storage,
especially in environments that require structured, reliable, scalable data
solutions. Moreover, the rise of AI and machine learning has only increased
the demand for clean, organized data—something that relational databases
excel at providing. By mastering relational database design, you’ll not only
gain a crucial skill but also position yourself to harness the full potential of

prefacexii

AI and machine learning, ensuring the integrity and accessibility of the
data that powers these technologies.
We hope that this book becomes a valuable resource for anyone
venturing into this critical area of technology and helps bridge the gap
between foundational database principles and their applications in the
rapidly evolving tech landscape.

xiii

acknowledgments
We would like to sincerely thank the following people for their invaluable
contributions to this book:

•	 Cody Pham—Cody created all the illustrations for this book. His vivid
visuals greatly enhance its readability, making complex concepts easier to
grasp.

•	 Dr. Daniel Zingaro—Dr. Zingaro was instrumental in helping us define
the scope of the book. He offered insightful guidance on structuring the
content across chapters.

•	 Elesha Hyde—Elesha provided invaluable support through her detailed
suggestions and feedback, which were essential to the editing process.

•	 Louis Davidson—Louis offered insightful suggestions and feedback that
strengthened the robustness and clarity of each chapter.

•	 Jonathan Gennick—Jonathan contributed useful suggestions to the revision
of this book.

•	 The team at Manning Publications—We are grateful to the team at Manning
for their expertise and dedication in helping bring this book to life.

•	 All the reviewers who took the time to provide their valuable feedback—
David Spenn, Ganesh Falak, Ganesh Swaminathan, Grant Colley, Heng
Zhang, Jim Amrhein, José Alberto Reyes Quevedo, Marcus Geselle,
Maxim Volgin, Nadir Doctor, Oliver Korten, Orlando Méndez Morales,
Patrick Regan, Peter A. Schott, Potito Coluccelli, Radhakrishna MV, Sasha
Sankova, Trevoir Williams, Valerie Parham-Thompson, Víctor Durán,
Vojta Tuma, William Jamir Silva, and Yilun Zhang. Your suggestions
helped improve the book.

xv

about this book
Grokking Relational Database Design teaches the art of database design
through hands-on projects, insightful illustrations, and practical, action-
oriented learning. Unlike many introductory books that focus primarily on
SQL syntax and formal database theory, this book emphasizes a foundational
approach to relational design thinking. You’ll learn how to structure
databases from the ground up, creating systems that are both efficient and
intuitive—databases that stand the test of time and are a pleasure to work
with long after they’re built.

Who should read this book?
This book is written primarily for those who are new to database design or
are seeking a refresher on concepts they may have learned years ago. Each
chapter is crafted to be both accessible and thorough, providing practical
guidance on every key concept essential to designing effective relational
databases.

How this book is organized: A road map
This book is organized in three parts covering eight chapters:

•	 Part 1, Get started—The first part introduces the essentials. In chapters 1
and 2, you gain foundational knowledge of Structured Query Language
(SQL), which is essential for effective database design. Chapter 3 provides
a comprehensive overview of the principles and processes that define
successful database design.

about this bookxvi

•	 Part 2, Master database design—Spanning four chapters, this part
delves into the core skills needed to excel at database design:

	– Entities and attributes—Learn how to identify and define entities
and their attributes based on requirements analysis, laying the
groundwork for a well-structured database.

	– Relationships—Discover how to establish meaningful relationships
among entities, guided by design principles that ensure consistency
and usability.

	– Normalization and implementation—Explore the process of
normalizing your design to minimize data anomalies during
insertion, updates, and deletions. You’ll also learn how to translate
your design into SQL code, bringing your database to life.

	– Security and optimization—Gain practical insights into securing
and optimizing your database, addressing performance, and
protecting data integrity.

•	 Part 3, Database design and AI—In this final part, you see how
generative AI can accelerate the design process, helping you
streamline workflows and enhance efficiency in database design. You
walk through the full process of designing a database from scratch
with the help of ChatGPT.

About the code
You can get executable snippets of code from the liveBook (online)
version of this book at https://livebook.manning.com/book/grokking-
relational-database-design. The complete code for the examples in the
book is available for download from the Manning website at
www.manning.com and from GitHub at https://github.com/Neo-Hao/
grokking-relational-database-design. Each chapter has a dedicated
folder in the repository, where you’ll find scripts and step-by-step
instructions that align with the content of that chapter.

liveBook discussion forum
Purchase of Grokking Relational Database Design includes free access to
liveBook, Manning’s online reading platform. Using liveBook’s exclusive
discussion features, you can attach comments to the book globally or
to specific sections or paragraphs. It’s a snap to make notes for yourself,

https://livebook.manning.com/book/grokking-relational-database-design
https://livebook.manning.com/book/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

about this book xvii

ask and answer technical questions, and receive help from the authors
and other users. To access the forum, go to https://livebook.manning.com/
book/grokking-relational-database-design/discussion. You can also
learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/discussion.
Manning’s commitment to our readers is to provide a venue where
meaningful dialogue between individual readers and between readers
and authors can take place. It is not a commitment to any specific
amount of participation on the part of the authors, whose contributions
to the forum remain voluntary (and unpaid). We suggest you try asking
the authors some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible on the
publisher’s website as long as the book is in print.

https://livebook.manning.com/book/grokking-relational-database-design/discussion
https://livebook.manning.com/book/grokking-relational-database-design/discussion
https://livebook.manning.com/discussion

xix

about the authors
Dr. Qiang Hao is an Associate Professor of Computer
Science at Western Washington University. His research
in computing education is widely recognized and
cited within the academic community. Dr. Hao has
extensive experience teaching a broad range of courses,
such as database systems, data structures, and mobile
development. His innovative approach to teaching
has earned him high praise from both students and
colleagues.

Dr. Michail Tsikerdekis is an Associate Professor
of Computer Science at Western Washington University.
His research in cybersecurity has been featured in many
top-tier journals and conferences. Over the years, he has
taught a variety of courses in various departments such
as computer science, information science, and sociology,
including database systems and database concepts. He
is an IEEE Senior Member and a 24/25 U.S. Fulbright
Scholar.

Welcome to the journey into relational database design! In this part, you’ll
gain foundational skills in Structured Query Language (SQL) that are
essential for designing efficient and effective databases. By mastering these
basics, you’ll be prepared to tackle advanced database concepts with confi-
dence. This part is the “laying the foundation before building the structure”
phase. Whether you’re new to SQL or need a refresher, this section will
guide you through the essentials.

Chapter 1 begins with the basics of SQL that you need for database
design. Think of this chapter as your “Hello, World!” moment in database
exploration; you’ll write your first SQL queries and begin interacting with
data in meaningful ways.

Chapter 2 dives a bit deeper into SQL by focusing on expressing the rela-
tionships between tables. By the end, you’ll have everything you need to use
SQL for database design.

Chapter 3 offers a bird’s-eye view of database design. You’ll explore the
full process of good database design and what matters at each step.

Prepare your tool—a notepad, laptop, or database application—and set-
tle into a focused space. Let’s dive into the exciting world of relational data-
base design!

Part 1
Get started

3

1

In this chapter

•	 You get a foundation for the rest of the book.

•	 You learn the basics of relational databases.

•	 You peek into database design.

•	 You write your first SQL query and learn more
about the basics of SQL.

Introducing
databases and SQL

What you need to know
As you read this chapter, you will find some code snippets. If you want
to execute those code snippets or see what changes need to be made to
the code for different relational database management systems (RDBMSs),
check the GitHub repository that accompanies this book (https://github.
com/Neo-Hao/grokking-relational-database-design). You can find the
scripts for this chapter in the chapter_01 folder; follow the instructions
in the README.md file to run the scripts.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

Chapter 1 I Introducing databases and SQL4

Overview
Database design is a critical yet easily neglected step in software
development. Nearly every application requires data storage and
management to some extent, but not every application has a well-
designed database. If you design a database without knowing the
principles of effective database design, your application may suffer from
problems you weren’t expecting, such as disorganized data or queries
that take too long and too many resources to run. These problems can
lead to bugs and a bad user experience.

By contrast, effective database design can serve as a solid foundation
for effective software development. Effective database design makes
sure that an application’s data is well organized and structured, which in
turn supports efficient data querying and manipulation that contributes
to solid applications and superior user experience. Regardless of
where you are in your journey of learning programming and software
development, it is essential to learn how to design databases effectively
and possibly how to talk to nontech people without making their eyes
glaze over with boredom as well.
This book covers how to design databases and assumes no previous
knowledge of databases or programming. By the end of this book, you
will have a good understanding of how to design relational databases
from scratch. We aim to help you achieve this goal via down-to-

Overview 5

earth definitions and explanations, rich examples, and active learning
practice.
This chapter aims to introduce relational databases, define a set of
terms that you will see in the next few chapters, and cover the basics of
Structured Query Language (SQL). SQL (often pronounced “sequel”) is
the programming language used to manage data in relational databases,
and it’s essential for you to have some understanding of SQL to have a
robust understanding of database design.

Relational databases
Once upon a time, a small company used Microsoft Excel spreadsheets
to store all its customer data. At first, everything seemed to run
smoothly, and the company was able to access and update the data
as needed. As time went on, the company grew and acquired more
customers, and the spreadsheets became increasingly more difficult to
manage. There were duplicates and inconsistencies in the data, and the
spreadsheets became so large and unwieldy that they took a long time
to load and update.

One day, the company received a call from a customer who was charged
twice for a single purchase. When the company tried to access the
customer’s data in a spreadsheet to investigate the problem, they found
that the data had been corrupted and was no longer accessible. As more
and more customers began to report similar problems, the company
learned the hard way that spreadsheets are a bad choice for storing

Chapter 1 I Introducing databases and SQL6

customer data. The company eventually invested in a relational database
system that could handle the scale of its data and ensure the integrity of
its records.
If you have a very small amount of data with a simple structure to
store, a spreadsheet can get the job done; you don’t need a database at
all. However, as data complexity and volume increase, you probably
should think again. When you need to apply access control to the data,
maintain its consistency, integrity, and scalability, and conduct routine
data analysis, you absolutely need a database.
Relational databases have been, and still are, the default technology
for storing and accessing data when scale, data consistency, and data
integrity are all required. In recent years, machine learning and AI have
helped sustain and even boost the popularity of relational databases.
In this section, you will learn some fundamental concepts of relational
databases, such as tables, entities, and RDBMS.

Tables, entities, and primary keys
A relational database is a collection of tables that store data. A table
is like a spreadsheet, which you are likely familiar with. Just like a
spreadsheet, the data in a table is organized into rows and columns.
A table can be used to represent an entity or a relationship between
entities, with each row representing a single data record of that entity
and each column representing an attribute of that entity.
What is an entity? An entity is an object or concept that can be
described by many attributes. Suppose that we are running an online
store called The Sci-Fi Collective that sells sci-fi products (such as a
time machine that takes you back only 5 minutes, in case you forgot
your keys). Products sold by The Sci-Fi Collective are entities, and each
can be described by at least four attributes: name, description, price,
and manufacturer. When we map products to a table in the database
supporting the online store of The Sci-Fi Collective, the four attributes
will be mapped to four individual columns, and each product will be
represented as a row in this table.

Overview 7

Product

Name Description Price Manufacturer

product_id

1
2

name

Atomic Nose Hair Trimmer
Selfie Toaster

description

...

...

price

19.99
24.99

manufacturer

Mad Investors Inc.
Goofy Gadgets Corp.

A column

Entity:

Attributes:

A row

In addition to the four columns, you may notice that we added
another column, product_id, in the preceding table. All values in
the product_id column are unique and can be used to identify an
individual row. We call product_id the primary key of the product
table. Think of the primary key as the “one ring to rule them all”: each
table can have only one to uniquely identify its rows. You can find a
much deeper discussion of primary keys in chapter 4.

It is not uncommon for one spreadsheet to store the information
of multiple entities. You may wonder whether to do the same with
tables in a relational database. If we decide to store the information
of customers and products in one table for The Sci-Fi Collective, for
example, the table will look like this:

product_id name price manufacturer

Atomic Nose ...

Selfie Toaster

Mad Inventors Inc.19.99

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

1

2

3 Absurd Accessories

...

9 The Infinite ...

10 The Neuralyzer

9.99

33.55

Silly Supplies Co.

Silly Supplies Co.

......

customer_id customer_name customer_email quantity

a1

b2

a1

j8

p9

Bob

Bob

Dave

John

Katy

bob@gmail.com

dave@outlook.com

bob@gmail.com

john@123.net

katy@123.net

5
15

2

1

2

...

Chapter 1 I Introducing databases and SQL8

This table is a typical poorly designed table. Beyond the data
redundancy, which you can spot easily, such a design can cause many
unexpected problems. If a customer’s information appears in only one
row, for example, when we want to delete a product, we will have to
delete the customer in the same row from our database. This problem
is known as a delete anomaly. Consider another example: from time to
time we need to insert into this table a product that no customers have
bought, but the table requires us to provide valid customer information
whenever we add a row. The contradicting requirements leave us in
an awkward situation; we can’t add any new products. This problem is
known as an insertion anomaly.
As you can see, bad database design can lead to problems that
negatively affect software quality. To avoid such problems, you must
master the basic principles and best practices of database design.

Relational database management systems
and SQL
Relational databases and tables rely on the help of RDBMS to physically
store and manage the data. Edgar Codd at IBM developed the first
RDBMS in the 1970s.
An RDBMS is software that interacts with the underlying hardware
and operating system to physically store and manage data in relational
databases. Additionally, an RDBMS provides tools to
create, modify, and query databases along with
other important functions such as security
controls. You may be familiar with some
commonly used RDBMS, such as MySQL,
MariaDB, PostgreSQL, and SQLite.
When you need to deploy a database that
you designed, you will need to interact
with one of the available RDBMS on the
market.
One of the most notable tools that nearly
all RDBMSs support is SQL, a programming
language that you can use to create, modify, and
query data stored in tables in an RDBMS. Although
different RDBMS vendors may implement their own
variations and extensions, SQL has been standardized over the years.

RDBMS

manages
maintains

Database(s)

organizes
data into

Table(s)

Your first SQL query 9

As a result, the consistency of SQL among RDBMSs is high, and the
variations don’t matter much in the context of this book.
Because this book is primarily a database design book, of course, SQL
may seem less important. Database design doesn’t necessarily require
you to use SQL. Some RDBMS comes with graphical tools to generate
SQL scripts that automatically create databases and tables based on
your design. But having some understanding of SQL can make it easier
to learn database design, especially when it relates to structural or
design problems such as data integrity, optimization, and scalability.
After all, SQL is a standardized language that most RDBMSs use, so
knowing SQL will allow you to rely less on graphical tools and work
with different types of RDBMSs. We will cover the basics of SQL in this
chapter and in chapter 2.

Your first SQL query
In this section, you will learn SQL by executing your first SQL query.
We will use the example that you saw in the preceding section, the
database of The Sci-Fi Collective (because who doesn’t like sci-fi stuff?).
The database contains many tables, but the product table is all you
need to focus on for now. The product table looks like the following:

product_id name description price manufacturer

Atomic Nose Hair Trimmer

Selfie Toaster

Mad Inventors Inc.19.99...

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

1

2

3

...

... Absurd Accessories

...

9 The Infinite Improbability
Generator

10 The Neuralyzer

...

...

9.99

33.55

Silly Supplies Co.

Silly Supplies Co.

......

First, you will load a prepared SQL script to generate a database and
this table. We prepared the SQL scripts that generate this table with

Chapter 1 I Introducing databases and SQL10

data, which you can find in our GitHub repository (https://github.com/
Neo-Hao/grokking-relational-database-design). You can follow the
instructions of the README.md file in the chapter_01 folder to execute
the prepared script for your preferred RDBMS or tool. The easiest
approach is to use SQLite Online, as follows:

1.	 Clone or download our GitHub repository (https://github.com/Neo-
Hao/grokking-relational-database-design).

2.	 Navigate to SQLite Online (https://sqliteonline.com).
3.	 Choose your target RDBMS in the left sidebar, and click the Click

button to Connect.
4.	 Click Import, and load the script corresponding to your chosen

RDBMS (such as mysql_db.sql from the downloaded or cloned
GitHub repository for MariaDB).

5.	 Click Okay.

After that, you will be ready to query the product table. You can type
the following query (as a whole) into the code editor on SQLite Online
and then click Run:

SELECT name
FROM product
WHERE price > 20;

What does this query do? The price > 20 part may be a dead giveaway.
The query retrieves the names of products whose prices are higher
than 20. We know that there are 10 rows representing 10 products
in the product table and that 5 products (such as Atomic Nose Hair
Trimmer) sell at a price below 20, so the names of the other 5 products
are returned. Your result should look like this:

name

Selfie Toaster

Cat-Poop Coffee

Inflatable Briefcase

Lightsabers

The Neuralyzer

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://sqliteonline.com

The basics of SQL queries 11

You may notice that this SQL query has a lot of similarities to plain
English. The reason is that SQL is special. You see, most programming
languages are imperative. Coding with an imperative language, such as
Java or Python, requires you to specify both what to do and how to do
it. SQL, however, is declarative, which means that you need to specify
only what to do. The steps required to carry out the task are SQL’s job
to figure out. Specifying what you want instead of how to get it done
is more natural for human beings, and that’s why SQL resembles plain
English.
To be specific, SQL is like English, with little to no small talk. But you
don’t have the same freedom in word choices when it comes to putting
together a SQL query. You must use a set of SQL clauses (also known
as statements) and follow some rules. In your first query, you used the
following three clauses:

•	 SELECT—The SELECT clause allows you to specify the columns you
want to retrieve from a table. In your first query, you only asked for
the name column; thus, the SELECT statement was SELECT name.

•	 FROM—The FROM clause specifies the source you want to retrieve data
from one or more tables. In your first query, you asked only for data
from the product table; thus, the FROM clause was FROM product.

•	 WHERE—The WHERE clause allows you to specify conditions to filter
the data retrieved by the SELECT clause. In your first query, you want
only the names of those products whose prices are higher than 20;
thus, the query was SELECT name FROM product WHERE price > 20;.

When you finish a SQL query, you should use a semicolon (;) to
indicate its end. The semicolon tells the RDBMS that this is the end of a
SQL query and that anything after it belongs to a new query.

The basics of SQL queries
Our preferred approach for learning SQL is to grasp the most important
clauses and learn the rest only when necessary. Although SQL has many
clauses, they are not equally important. The most important ones can
help you build a solid foundation, as well as construct a mental map
that can guide your future learning.

Chapter 1 I Introducing databases and SQL12

Therefore, instead of trying to cover every SQL clause, we will cover
only the ones that are essential or critical to your future learning. In this
chapter, you will learn important clauses that you can use to query a
single table.

Filtering
Filtering is a common data retrieval task. Whenever you need only a
subset of data that meets some criteria, you need the help of the WHERE
clause to filter the data.

From your first SQL query, you know that the WHERE clause is followed
by the criteria you want to use to filter the data. The following query,
for example, retrieves the names and descriptions of products whose
prices are lower than 30 from the product table:

SELECT name, description
FROM product
WHERE price < 30;

When you want to retrieve more than one column, you can list all of
them after the SELECT keyword and separate them with commas.

What if we want to retrieve only the products that come from a specific
manufacturer, such as Mad Inventors Inc.? We can achieve this via the
following query:

SELECT name
FROM product
WHERE manufacturer = 'Mad Inventors Inc.';

The basics of SQL queries 13

This query yields the following result:

name

Atomic Nose Hair Trimmer

The Mind Probe

Lightsabers

In the preceding query, the operator that checks equality is a single
equal sign (=). Additionally, you may notice that the manufacturer
name is wrapped in single quotes (' '), indicating a string data type.
Does SQL have different data types? Yes. SQL data can be broadly
divided into six categories:

•	 Numeric data types (such as INT)
•	 String data types (such as TEXT)
•	 Date or time data types (such as DATE)
•	 Unicode character string data types (such as VARCHAR)
•	 Binary data types (such as BINARY)
•	 Miscellaneous data types (such as XML)

In the product table, the data type of the manufacturer column is
string. By contrast, the price column is numeric.

Now that you know how to filter both numeric and string data, you
can create one filter that combines the two criteria by using logical
operators. AND and OR are the two most frequently used logical
operators. The AND operator means the same as it does in plain English;
the same can be said of OR. We can combine two individual criteria
using AND, as follows:

SELECT *
FROM product
WHERE price < 30 AND
manufacturer = 'Mad Inventors Inc.';

This query yields the following result:

Chapter 1 I Introducing databases and SQL14

product_id name description price manufacturer

Atomic Nose Hair Trimmer

The Mind Probe
Mad Inventors Inc.19.99...
Mad Inventors Inc.19.99

Lightsabers 25.00

1
6

7
...

... Mad Inventors Inc.

Unlike previous queries, this query retrieves every column from the
product table. The star (*) following the SELECT keyword indicates
all columns. The combination of the two filtering criteria retrieves all
columns of only the products that are manufactured by Mad Inventors
Inc. and have a price below 30.

Aggregation
Aggregation, an important task in SQL, involves performing
calculations on a set of rows to produce a single result. By aggregating
data, you can gain insights into trends and patterns in the data that may
not be visible at the individual record level. The most frequently used
aggregate functions are

•	 COUNT()— Counts the number of rows
•	 SUM()— Calculates the sum of values in a numeric column
•	 AVG()— Calculates the average value in a numeric column
•	 MAX()— Finds the maximum value in a column
•	 MIN()— Finds the minimum value in a column

When we formulate a SQL query that involves aggregation, we should
place the aggregate function in the SELECT statement. We can count the
number of rows in the product table this way:

SELECT COUNT(*) FROM product;

This query yields the following result:

COUNT(*)

10

The basics of SQL queries 15

You may notice that the column name is the same as the aggregate
function command. If you are dealing with an RDBMS other than
MariaDB, the column name may be COUNT() or something else. If you
don’t like the default column name, you can provide a more readable
one by using an alias via the AS clause. You can calculate the average
price of all products that are sold in the store and use avg_price as the
column name, as in this example:

SELECT AVG(price) AS avg_price
FROM product
WHERE manufacturer = 'Mad Inventors Inc.';

This query yields the following result, in which the column name is avg_
price and the only value is the average of all product prices in the table:

avg_price

21.66

In both examples, you applied aggregate functions to all rows in a table.
You can also apply aggregate functions to multiple groups of rows in a
table. Sometimes, you need to group the data by one or more columns
and analyze the grouped data. You can group data via the GROUP BY
clause, which is commonly used in combination with aggregate
functions. The GROUP BY clause is always followed by one or more
attribute names separated by commas. You can count the number of
products per manufacturer like this:

SELECT COUNT(*) AS product_count, manufacturer
FROM product
GROUP BY manufacturer;

This query yields the following result, possibly in varying order:

product_count manufacturer

Absurd Accessories2

Goofy Gadgets Corp.1

Mad Inventors Inc.

Silly Supplies Co.

Wacky Wares Ltd.

3

3

1

Chapter 1 I Introducing databases and SQL16

As another example, you can calculate the average price of products per
manufacturer:

SELECT AVG(price) AS avg_price, manufacturer
FROM product
GROUP BY manufacturer;

This query yields the following result:

avg_price manufacturer

Absurd Accessories22.5449...
Goofy Gadgets Corp.24.99

Mad Inventors Inc.

Silly Supplies Co.

Wacky Wares Ltd.

21.659...

17.843...

39.99

When you use aggregate functions with the GROUP BY clause, you need
to include the attributes following the GROUP BY clause in the SELECT
statement. Otherwise, the results may not make much sense. The
following query groups the data by the manufacturer column but
doesn’t include it in the SELECT statement:

--comment: will yield something difficult to interpret
SELECT COUNT(*) AS product_count
FROM product
GROUP BY manufacturer;

The result will be much harder to chew because you see only a column
of numbers and have no idea what the numbers stand for:

product_count

2

1

3

3

1

As another example, the following query calculates the average product
price per manufacturer but doesn’t include the manufacturer column
in the SELECT statement:

The basics of SQL queries 17

--comment: will yield something difficult to interpret
SELECT AVG(price) AS avg_price
FROM product
GROUP BY manufacturer;

As in the last example, the result is difficult to interpret because you see
only a column of decimals and have no idea what they stand for:

avg_price

22.5449...

24.99

21.659...

17.843...

39.99

More important, you should exclude from the SELECT statement any
columns that are not in the GROUP BY clause unless they are used with
aggregate functions. The following query attempts to count the number
of products per manufacturer, but the name column in the SELECT
statement is neither in the GROUP BY clause nor used with an aggregate
function:

-- comment: will either lead to an error
-- comment: or yield a misleading result
SELECT COUNT(*) AS product_count, manufacturer, name
FROM product
GROUP BY manufacturer;

A query like this one leads to errors or yields a misleading result,
depending on the RDBMS you use. PostgreSQL, for example, will make
the following complaint:

ERROR: column "product.name" must appear
in the GROUP BY clause or be used in
an aggregate function

Chapter 1 I Introducing databases and SQL18

SQLite yields a misleading result without complaint:

product_ number manufacturer

Absurd Accessories2

Goofy Gadgets Corp.1

Mad Inventors Inc.

Silly Supplies Co.

Wacky Wares Ltd.

3

3

1

name

Cat-Poop Coffee

Selfie Toaster

Atomic Nose Hair Trimmer

Unicorn Hair Polish

Inflatable Briefcase

If you check all 10 products in the product table, you see that there is
only 1 Atomic Nose Hair Trimmer instead of 3. But because the query
doesn’t know how to deal with the name column, it simply shows the
name value in the first row it encounters per group.

As another example, the following query attempts to calculate the
average price of products per manufacturer, but the product_id
column in the SELECT statement is not in the GROUP BY clause:

-- comment: will either lead to an error
-- comment: or yield a misleading result
SELECT product_id, AVG(price) AS avg_price, manufacturer
FROM product
GROUP BY manufacturer;

Depending on the RDBMS you use, you may get either an error or a
misleading result. PostgreSQL, for example, will make the following
complaint:

ERROR: column "product.product_id" must appear
in the GROUP BY clause or be used in an
aggregate function

SQLite will yield a misleading result without complaint:

Table and data management 19

avg_ price manufacturer

Absurd Accessories22.5449...
Goofy Gadgets Corp.24.99

Mad Inventors Inc.

Silly Supplies Co.

Wacky Wares Ltd.

21.659...

17.843...

39.99

product_ id

3

2

1

5

4

If you check the third row of the product table, you will see that its
price is 29.99 instead of 22.5449… . The preceding aggregated result
is obviously wrong. Because this query doesn’t know how to deal with
the product_id column, it simply shows the first product_id value it
encounters per manufacturer group.

In summary, when you use aggregate functions with the GROUP BY
clause, you need to be careful about what attributes to include in
the SELECT statement. The SELECT statement should contain only
those nonaggregate attributes that show up in the GROUP BY clause.
Nonaggregate attributes are attributes that are not involved in aggregation.

Table and data management
You’ve worked with SQL on a table that we gave
you, but sometimes, you need to make your own
tables and to manage those tables and their data.
Table and data management are important tasks
in SQL. The SQL commands dedicated to such
tasks are commonly known as data definition
language (DDL). By contrast, the SQL clauses
and statements you saw in previous sections
are known as data manipulation language.
Understanding some DDL is particularly useful
for database design.
In this section, you will learn three common table management
tasks: creating, altering, and deleting a table. You will also learn
how to add data to a new table.

Chapter 1 I Introducing databases and SQL20

Create tables and add data to tables
You will learn how to create a table and add data to it from the prepared
scripts that accompany this chapter. The scripts (such as mysql_db.sql
for MySQL or MariaDB) aim to create the product table for the database
supporting The Sci-Fi Collective and populate it with a set of sample
data. The product table is created with the following command:

CREATE TABLE product (
 product_id INT PRIMARY KEY,
 name TEXT NOT NULL,
 description TEXT NOT NULL,
 price DECIMAL(5, 2) NOT NULL,
 manufacturer TEXT NOT NULL
);

We need to answer two questions about the command that creates the
product table:

•	 What is the general syntax for creating a table?
•	 What do the different keywords do in this query example?

SQL drama: When your tables throw a fit over
duplications
If you have followed along and imported the given SQL script in previous
sections, you will see some complaints from SQL when you try to run the
following CREATE TABLE command.

Why? You ran the same command when you imported the given SQL script
in the section “Your first SQL query,” which creates a table named product.
The same RDBMS can’t have two tables with the same name. The same can be
said of the data insertion commands that will be covered next. A table can’t
have two identical rows, especially not two rows with the same primary key.

If you want to run the CREATE TABLE and data insertion commands
covered in this section after importing the prepared scripts, you can do
the following:

•	 If you are using SQLite Online, you can easily reset everything by
refreshing the browser tab.

•	 If you are using an RDBMS running locally or on a server, you need to
delete that corresponding table first. You will learn more about deleting
and altering tables in this section.

Table and data management 21

What is the general syntax for creating a table? To create a table, you
need the help of the CREATE TABLE command. The syntax of the
CREATE TABLE command is as follows:

CREATE TABLE table_name (
 column1_name datatype [optional_parameters],
 column2_name datatype [optional_parameters],
 ...
 columnN_name datatype [optional_parameters],
 PRIMARY KEY (columnX_name)
);

The definition of the primary key can also be part of the definition of
a column, as you saw in the product table example. Unlike optional
parameters, the primary key is required in every table.

What do the different keywords do in this query example? First, we
specified the table name as product and defined five columns:

•	 product_id—A numeric data type (INT)
•	 name—A string data type (TEXT)
•	 description—A string data type (TEXT)
•	 price—A numeric data type (DECIMAL)
•	 manufacturer—A string data type (TEXT)

INT indicates integer, and TEXT indicates string. The only data type
worth explaining here is probably DECIMAL. DECIMAL, as a numeric
data type, accepts two parameters. The first parameter defines the total
number of digits, and the second one defines the number of digits to
the right of the decimal point. We use DECIMAL(5,2), for example, to
define the price attribute to allow five digits in total and two digits to
the right of the decimal point.

In addition to the data types, you may notice that we specified every
attribute as NOT NULL. In SQL, a NULL value represents an unknown
value. Similar to when you’re trying to remember someone’s name and
it’s on the tip of your tongue, the value is either missing or unknown.
Allowing NULL values for attributes may lead SQL to have unexpected
behaviors. When you add 10 and a NULL value, for example, you end
up with a NULL value; the sum of an unknown value and 10 is still
unknown. When you do calculations on NULL values, all the results may
end up as NULL.

Chapter 1 I Introducing databases and SQL22

Last, the PRIMARY KEY definition was used to specify which attribute we
want to use as the primary key for this table. The attribute name needs
to be placed in parentheses following the PRIMARY KEY definition.

When the product table is created in a database, it is ready for you to
add data to it. To add data to a table, you need help from the INSERT
INTO command. The INSERT INTO command allows you to insert one
or more rows of data into a table. Here’s its basic syntax:

INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);

In the same script, you can find an example of adding data to the
product table. You can insert a single row into the table as follows:

INSERT INTO product (product_id, name, description,
price, manufacturer)
VALUES (
 1,
 'Atomic Nose Hair Trimmer',
 'Trim your nose hairs... of an atomic clock!',
 19.99,
 'Mad Inventors Inc.'
);

Table and data management 23

Or you can insert multiple rows of data into the table:

INSERT INTO product
 (product_id, name, description, price, manufacturer)
VALUES
(
 2,
 'Selfie Toaster',
 'Get your face on... with our selfie toaster',
 24.99,
 'Goofy Gadgets Corp.'
),
 (
 3,
 'Cat-Poop Coffee',
 'The only coffee... the finest cat poop ...',
 29.99,
 'Absurd Accessories'
);

Alter and drop tables
From time to time, you may need to alter or drop an existing table
because—let’s face it—sometimes you need to rearrange the furniture in
your data house.
There are many ways to alter a table, such as adding a column,
modifying the data type of a column, or renaming the entire table. You
can rely on the help of the ALTER TABLE command to perform all these
tasks. If you want to add another column representing serial numbers
to the product table, for example, you can use the following query:

ALTER TABLE product
ADD serial_number INT;

When the preceding query gets executed, a new column named
serial_number is added to this table, and its data type is integer.
When you realize that integer is not the best data type for serial
numbers, you may update its data type to string via the following query:

-- comment: SQLite doesn’t support altering
-- comment: a column’s data type directly
ALTER TABLE product
ALTER COLUMN serial_number TEXT;

Chapter 1 I Introducing databases and SQL24

Although you have many ways to alter a table, there’s only one way to
drop a table. To do so, you need the DROP TABLE command followed
by the name of the table you want to drop. If you intend to drop the
product table, for example, you can use the following query:

DROP TABLE_product;

You need to be careful when using the DROP TABLE command because
it will permanently delete the table and all its data.

This section doesn’t aim to be an exhaustive list of all commands for
altering or dropping a table. If you want to know more, please check
out the SQL manual or your target RDBMS. That said, you have taken
an important step toward mastering databases and database design.
The things you’ve achieved in this chapter will propel your learning
throughout the rest of the book—small choices that may cascade into
a design masterpiece worthy of being displayed in a tech gala one day,
should they ever become reality.

Recap
•	 A relational database is a collection of tables that store data.
•	 A table is used to represent an entity or a relationship between

entities in a database.
•	 An entity is an object or concept that can be described by

many attributes.
•	 An RDBMS is software that interacts with the underlying

hardware and operating system to physically store and manage
data in relational databases.

•	 Filtering data requires help from at least three SQL clauses:
SELECT, FROM, and WHERE.

•	 Data aggregation functions are often used in combination with
the GROUP BY clause.

•	 SQL commands that are used to manage tables are known as
DDL. Table management typically involves three commands:
CREATE TABLE, ALTER TABLE, and DROP TABLE.

•	 You can insert a single row or multiple rows of data into a table
via the INSERT TO … VALUE … statement.

25

2

In this chapter

•	 You learn what related tables are and how to query
them.

•	 You revisit table and data management.

•	 You explore how to learn more SQL on your own.

Related tables
and more SQL

What you need to know
To understand the SQL covered in this chapter, you need to know what
databases and tables are, as well as the basics of SQL queries. If not, read
chapter 1 first.

As you read this chapter, you will find more code snippets. If you want to
execute those code snippets or see their variations for different relational
database management systems (RDMBSs), check the GitHub repository that
accompanies this book (https://github.com/Neo-Hao/grokking-relational-
database-design). You can find the scripts for this chapter in the chapter_02
folder; follow the instructions in the README.md file to run the scripts.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

Chapter 2 I Related tables and more SQL26

(continued)

The easiest approach is to use SQLite Online as follows:

1.	 Clone or download our GitHub repository (https://github.com/Neo-
Hao/grokking-relational-database-design).

2.	 Locate the scripts in the chapter_02 folder.

3.	 Visit SQLite Online (https://sqliteonline.com). Choose your target
RDBMS in the left sidebar and click Click to Connect.

4.	 Click Import to load the script corresponding to your chosen RDBMS
(such as mysql_db.sql from the downloaded or cloned GitHub
repository for MariaDB).

5.	 Click Okay.

Overview
In chapter 1, you learned the basics of SQL, and you learned how to
query or create a single table. In this chapter, you will continue learning
a bit more of SQL by querying and creating related tables. Then you will
peek into how to pick up more SQL keywords by yourself in the future.

Related tables
In this section, you will learn how to work with two or more tables
that are related. These related tables are tables in a database that are
connected by one or more common columns. The Sci-Fi Collective, for
example (the online store you know from chapter 1), allows customers
to create user accounts, shop online, and leave reviews for the products
they bought. The Sci-Fi Collective is supported by a database composed
of multiple tables. Among these tables are two that are related: product
and review. The product table represents the products that are
sold, and the review table represents the reviews customers leave
for the products they bought. The two tables have a common column
(product_id). The relationship between the two tables is summarized
in the following figure:

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://sqliteonline.com

Related tables 27

product_id name price manufacturer

Atomic Nose ...

Selfie Toaster

Mad Inventors Inc.19.99

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

1

2

3 Absurd Accessories

.........

review_id review_text date

2023-01-01 12:30:00Great product ...

2023-01-02 13:45:00...best thing ...

...not recommend

product_id

3

5

2

...

1

2

3 2023-01-03 14:15:00

.........

The product_id column is shared by the product and review tables.
In the product table, the product_id column is the primary key. In
the review table, the product_id column is known as the foreign key,
which refers to the primary key of another table. In this case, the other
table is product.
In other words, the value in the product_id column helps connect
a row in the product table and a row in the review table. In the
product table, for example, the row with a product_id value of 3
records a product named Cat-Poop Coffee; in the review table, the row
with a review_id value of 1 records a positive review for Cat-Poop
Coffee. How would you know that the review is for Cat-Poop Coffee?
The two rows have the same product_id value.

Number(s) of shared columns
As curious as you are, you may wonder whether the product and
review tables can share a few more columns. That’s a great question
about database design. A more generalized question would be whether
two related tables should share columns beyond the primary/foreign
key(s). The answer is no.

Chapter 2 I Related tables and more SQL28

To simplify our discussion, let’s look at the scenario in which two
related tables use single columns as the primary keys: the product and
review tables. Theoretically speaking, the number of columns shared
by two related tables can range from only the primary/foreign key(s) to
all columns from both tables. Using the product and review tables as
an example, the following figure summarizes this spectrum:

...

product

name

price

manufacturer

product_id

review

product_id

review_text

date

review_id

product

name
price
manufacturer

product_id

review

review_id

review_text
date

Share 1 column Share all columns

name
price
manufacturer

product_id
review_id

review_text
date

If two related tables share every column, it is obvious that one of them
is redundant and thus unnecessary. If you choose to delete one of them,
you will find yourself dealing with a problem similar to one you saw
in chapter 1: using one table to represent two entities, which will lead
to insertion or delete anomalies. OK, making two tables share every
column is a bad idea.
How about making the two tables share only a few columns, such as one
or two columns beyond the primary/foreign key(s)? That’s also a bad
idea. First, you would still have redundancy, even if it’s less serious than
a redundant table. Second, you will set a trap for yourself when you
need to update data in such tables. If you update data in only one table
and forget the other, you will end up with inconsistent data.
Suppose that you decide to make the product and review tables share
one more column—manufacturer—in addition to product_id.
When you need to update the manufacturer of a product, you have to
update both the product and review tables. Otherwise, you will end
up with new manufacturer data in one table but old data in the other.
Such a problem is known as an update anomaly. As you can see in the
following figure, two related tables shouldn’t share columns beyond the
primary/foreign key(s).

Related tables 29

product_ id name price manufacturer

Atomic Nose ...

Selfie Toaster

Mad Inventors Inc.19.99

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

1

2

3 Absurd Accessories

.........

review_ id product_ id review_ text date

3

5

2023-...Great product ...

2023-......best thing ...

2 ...not recommend

...

1

2

3 2023-...

.........

manufacturer

Absurd Accessories

Silly Supplies Co.

Goofy Gadgets Corp.

...

Mad Inventors Inc.

conflict with

update to:

Join data from related tables
From time to time, you will need to join data from related tables. If
you want to know about how each product of The Sci-Fi Collective is
reviewed, for example, you will need to join at least the product name
from the product table and the corresponding product reviews from
the review table and then make sure that data from both tables is joined
properly. In SQL, you can write the query that does this job as follows:

SELECT name, review_text
FROM product
JOIN review
ON product.product_id = review.product_id;

This query yields the following result:

name review_text

Cat-Poop Coffee

Unicorn Horn Polish
Great product ...
This is the best ...

Selfie Toaster

...
Not worth the money ...
...

Chapter 2 I Related tables and more SQL30

We need to explain quite a few things about this query:

•	 What is the general syntax for retrieving data from related tables?
•	 What does the JOIN…ON… clause do?
•	 What is the dot, and how do we use dot notation as in product.
product_id and review.product_id?

What is the general syntax for retrieving data from related tables? The
general syntax is

SELECT column1, column2, ...
FROM table1
JOIN table2
ON table1.column = table2.column;

What does the JOIN…ON clause do? Suppose that you have two toy
boxes, one with cars and the other with racetracks. You want to play
with both kinds of toys, so you pour all the toys from both boxes onto
the floor; then you need to find which cars would work on what types of
racetracks. That’s what the JOIN clause does.

In detail, the JOIN clause takes two tables (toy boxes) and pours all the
rows (toys) on the floor; then it looks for matching values in the shared
column (like the match between a car and a racetrack) between the

Related tables 31

two tables. If it finds a match, it puts the corresponding rows (cars and
trucks that go together) together in a new table (your play area).
What is the dot, and how do we use dot notation as in product.
product_id and review.product_id? Dot notation is SQL syntax
used to separate parts of a name. product.product_id, for example,
refers to the product_id column in the product table. As another
example, product.name can refer to the name column in the product
table. Dot notation is especially handy when you query related tables
because it helps you to be specific about the columns in case they have
the same name, such as product.product_id and review.product_
id. This approach makes it clear which column and which table you are
referring to and prevents confusion.
If two tables that you want to join have multiple columns that share
a name, you may want to rename them in the SELECT statement to
prevent confusion. Otherwise, you might end up with a result set
that looks like a mixed-up game of Scrabble played by a mischievous
toddler.
Suppose that you have two related tables, employee and department,
and you want to join them to get the names of the departments to
which employees belong.

employee.name

John Doe

department.name

id name

1
2
3
4
5

marketing
sales
human resources
engineering
finance

id name

101
102
103
104
105

John Doe
Jane Smith
Michael Ho
Emily Brown
David Lee

department

department_id

4
2
3
1
4

employee

Jane Smith
Michael Ho
Emily Brown

David Lee

engineering
sales

human resources
marketing

engineering

Chapter 2 I Related tables and more SQL32

Both tables have a column named name, so you need to use dot notation
to specify which name column to select:

SELECT employee.name, department.name
FROM employee
JOIN department
ON employee.department_id = department.id;

Depending on the RDBMS you use, you may see the same column
names, as in the preceding figure, or two identical column names (such
as name). To prevent confusion, you can rename the columns with an
alias via the AS clause:

SELECT employees.name AS employee_name,
 departments.name AS department_name
FROM employees
JOIN departments
ON employees.department_id = departments.id;

Types of JOINS
Now that you know the basics of the JOIN clause, we’ll dive a bit deeper
into joins by discussing their variations. Before we do so, we’ll try to
refresh your memory on the general syntax of joining tables:

SELECT column1, column2, ...
FROM table1
JOIN table2
ON table1.column = table2.column;

The JOIN keyword can be replaced by the following keywords, which
may lead to different query results:

•	 INNER JOIN returns only the rows that have matching values in both
tables; INNER JOIN is the same as JOIN.

•	 LEFT JOIN returns all the rows from table 1 and the matching rows
from table 2. If a record in table 1 has no match in table 2, the result
includes the table 1 record with NULL values for table 2 columns.

•	 RIGHT JOIN returns all the rows from the table 2 and the matching
rows from table 1. If a record in table 2 has no match in table 1,
the result includes the table 2 record with NULL values for table 1
columns.

Related tables 33

•	 FULL OUTER JOIN returns all the rows from both tables, including
the nonmatching rows. If a record in table 1 has a matching record in
table 2, the result includes a single row with data from both tables. If a
record in table 1 has no match in table 2, the result includes the table
1 record with NULL values for table 2 columns; if a record in table 2
has no match in table 1, the result includes the table 2 record with
NULL values for table 1 columns.

The relationships among the left table, the right table, and the returned
results are summarized in the following figure:

A B

SELECT *
FROM A
LEFT JOIN B
ON A.A_id = B.A_id

A B

SELECT *
FROM A
RIGHT JOIN B
ON A.A_id = B.A_id

A B

SELECT *
FROM A
INNER JOIN B
ON A.A_id = B.A_id

A B

SELECT *
FROM A
FULL OUTER JOIN B
ON A.A_id = B.A_id

It is worth noting that LEFT JOIN, RIGHT JOIN, and FULL OUTER JOIN
may lead to query results with NULL values. One side effect of getting
NULL values in the result is that you need to handle them carefully.
NULL values can cause errors if you try to perform calculations or
comparison. (As an example, 10 + NULL will lead to NULL.) Our
product table, for example, contains some new products in our store
that have not been reviewed by any users. When we perform a LEFT
JOIN between the product and review tables, we end up with some
rows that have NULL values in the columns from the review table. The
LEFT JOIN query would be

SELECT name, review_text
FROM product
LEFT JOIN review
ON product.product_id = review.product_id;

Chapter 2 I Related tables and more SQL34

This query yields the following result:

name review_text

......

Atomic Nose Hair Trimmer Decent product for ...

The Mind Probe

Would not recommend ...Atomic Nose Hair Trimmer

NULL

The Sonic Screwdriver NULL
... ...

As you can see, every match between the product and review table is
included. A product like Atomic Nose Hair Trimmer can be reviewed
more than once and show up in the result table as multiple rows. Also, if
a product was not reviewed, it is still included in the result table, such as
The Mind Probe, with a review_text value of NULL.

WHERE vs. JOIN
As curious as you are, you may be tempted to try joining two tables by
using the WHERE clause. You learned in chapter 1 how to use the WHERE
clause to filter a subset of data from a table that meets certain criteria. If
you know that it is possible to list multiple tables in the FROM statement,
you might put together the following query to join the product and
review tables you saw earlier:

SELECT name, review_text
FROM product, review
WHERE product.product_id = review.product_id;

Would this query work and yield the same result as the example we saw
earlier? Yes. This query will work fine to join the two tables, and it yields
the same result as the query using the JOIN clause:

SELECT name, review_text
FROM product
JOIN review
ON product.product_id = review.product_id;

Revisit table and data management 35

Whenever you need to query related tables, however, JOIN is generally
preferred to WHERE for at least three reasons:

•	 Readability—Explicit JOIN makes the query’s intention clearer and
easier to understand.

•	 Maintainability—Explicit JOIN is less prone to errors and more
straightforward to modify or debug.

•	 Optimization—When you use a WHERE clause to query two related
tables, the query essentially asks for a cross join between the two
tables, which is more difficult for most RDBMSs to optimize than an
explicit JOIN.

Cross join: A wild dance in which everyone
twirls with everyone else
A cross join in SQL is an operation that combines every row from one table
with every row from another table. It generates all possible combinations of
rows between the two tables, returning a huge result.

If the FROM clause in your query is followed by two or more tables, your
query will perform a cross join between those tables. FROM product,
review, for example, means that every row in the product table will be
paired with every row in the review table whether or not a match exists.

Cross joins may require scanning the involved tables separately, and they
demand a large amount of memory from the RDBMS.

Revisit table and data management
This section explores how to manage related tables and their data. In
chapter 1, you learned how to manage a single table and its data. In
the preceding section, you worked with a pair of related tables that
we gave you. Now you will apply what you learned in chapter 1 and
the preceding section to expand your knowledge of table and data
management to related tables.

Chapter 2 I Related tables and more SQL36

Manage related tables
You will learn how to create related tables from the prepared scripts that
accompany this chapter. The scripts aim to create two related tables,
product and review, for the database supporting The Sci-Fi Collective
and to populate them with a set of sample data. You need to pick the
script that works with your target RDBMS, of course (such as mysql_
db.sql for MySQL or MariaDB).
You create the product table the same way that you did in chapter 1:

CREATE TABLE product (
 product_id INT PRIMARY KEY,
 name TEXT NOT NULL,
 description TEXT NOT NULL,
 price DECIMAL(5, 2) NOT NULL,
 manufacturer TEXT NOT NULL
);

You create the review table as follows:

-- comment: works for MySQL and MariaDB
-- comment: see the code repo for other RDBMS
CREATE TABLE review (
 review_id INT PRIMARY KEY,
 product_id INT NOT NULL,
 review_text TEXT NOT NULL,
 datetime DATETIME NOT NULL
 DEFAULT CURRENT_TIMESTAMP,
 CONSTRAINT fk_product_review
 FOREIGN KEY (product_id)
 REFERENCES product (product_id)
);

Revisit table and data management 37

We need to answer two questions about this query:

•	 What is the general syntax for creating two tables that have a
relationship?

•	 What does the CONSTRAINT…FOREIGN KEY…REFERENCES… clause do?

What is the general syntax for creating two tables that have a
relationship? As you know, the shared column product_id is the
primary key in the product table and the foreign key in the review
table. Given a pair of two related tables, we call a table like product
the parent table because it uses the shared column as the primary
key. We call a table like review the child table because it holds the
foreign key.

As you can see from the command that creates the product table, the
syntax for creating a parent table is the same as the syntax for creating a
single table that is not related to other tables.
To create a child table, you need to specify the foreign key that
references the primary key in the parent table. You still need to define
all the columns, data types, and the primary key, of course. The general
syntax for creating a child table is

CREATE TABLE child_table_name (
 column1 datatype1 [NOT NULL],
 column2 datatype2 [NOT NULL],
 ...,
 foreign_key_column datatype,
 CONSTRAINT fk_parent_child
 FOREIGN KEY (foreign_key_column) REFERENCES
 parent_table_name(parent_table_primary_key)
);

Chapter 2 I Related tables and more SQL38

Alternatively, you can create the two tables independently and add the
foreign key constraint to the child table afterward:

-- comment: assuming the parent and child tables
-- comment: have been created
ALTER TABLE child_table_name
 ADD CONSTRAINT fk_parent_child
 FOREIGN KEY (foreign_key_column) REFERENCES
 parent_table_name(parent_table_primary_key);

What does the CONSTRAINT…FOREIGN KEY…REFERENCES… clause do? In
short, the clause creates a foreign key constraint, which serves as a link
between two related tables. The constraint is twofold:

•	 The constraint ensures that the foreign key column in the child table
references only valid primary key values in the parent table.

•	 The constraint ensures that the updating or deletion of rows in the
parent table doesn’t violate the consistency between two related tables.

We refer to these two aspects as referential integrity. The CONSTRAINT…
FOREIGN KEY…REFERENCES… clause enforces referential integrity
between two related tables.
If you take a closer look at the CONSTRAINT…FOREIGN KEY…
REFERENCES… clause, you can divide it into two parts, as shown in the
following figure.

Revisit table and data management 39

CONSTRAINT fk_parent_child

FOREIGN KEY (foreign_key_column)
REFERENCES parent_table_name(parent_table_primary_key)

Part 1: name the constraint

Part 2: create the foreign key constraint

The FOREIGN KEY…REFERENCES… statement creates the foreign key
constraint that enforces referential integrity. The CONSTRAINT… clause
allows you to name this constraint. When you create a foreign key
constraint, you don’t necessarily need to name it, but naming it will
make it easy to access whenever you need to modify such a constraint
in the future. We named the foreign key constraint fk_product_
review in the review table, for example. If we ever need to drop this
constraint, we can access the constraint via this name:

-- comment: SQLite doesn't support ALTER TABLE
-- comment: DROP CONSTRAINT
ALTER TABLE review
 DROP CONSTRAINT fk_product_review;

If you don’t name a constraint yourself, the RDBMS will name it
automatically, using its default naming convention. Although the
automatically-picked name can be retrieved, this name and the default
naming convention vary from one RDBMS to another. To avoid this
hassle, we recommend that you always name constraints (as you should
always name pets). After all, dropping or disabling a constraint can be a
common task whenever you need to modify your database design.

Manage data in related tables
The syntax for adding, updating, and deleting data in related tables
remains the same as you saw in chapter 1. The scripts that we prepared for
this chapter added a set of data to both the product and review tables:

-- comment: add data to the product table
INSERT INTO product (product_id, name,
 description, price, manufacturer)
VALUES (
 1,
 'Atomic Nose Hair Trimmer',
 'Trim your nose hairs … an atomic clock!',

Chapter 2 I Related tables and more SQL40

 19.99,
 'Mad Inventors Inc.'
),
...;

-- comment: add data to the review table
INSERT INTO review (review_id, product_id,
 review_text, datetime)
VALUES (
 1,
 3,
 'Great product, would definitely recommend!',
 '2022-01-01 12:30:00'
),
...;

What makes data management for related tables different, however, is
the foreign key constraint. Earlier in this chapter, you learned that the
foreign key constraint enforces referential integrity on a pair of two
related tables:

•	 The foreign key constraint ensures that the foreign key column in the
child table references only valid primary key values in the parent table.

•	 The foreign key constraint ensures that the deletion of rows in the
parent table doesn’t violate the consistency between two related tables.

When you try to add data to the child table, the new data needs to be
consistent with the existing data in the parent table; otherwise, the
RDBMS will complain. Suppose that you are trying to add a new row
of review data to the review table, but the product_id value (such as
3000) in this row can’t be found in the product table:

INSERT INTO review (review_id, product_id,
 review_text, datetime)
VALUES (
 1,
 3000,
 'Great product!',
 '2023-05-01 12:30:00'
);

When you execute this command, your RDBMS will give you an error
message similar to the following:

ERROR 1452 (23000):
Cannot add or update a child row:
a foreign key constraint fails …

Revisit table and data management 41

Likewise, when you alter or delete data from the parent table, the
alteration or deletion shouldn’t lead to orphan data records in the
child table; if it does, the RDBMS will complain. Suppose that you
want to delete a row of product data from the product table, but this
product data is referenced in the review table. If you delete this row,
the deletion will create some orphan review data in the review table.
Fortunately, the foreign key constraint will stop this situation from
happening, and you will get an error message similar to the following:

product_ id name price manufacturer

Atomic Nose ...

Selfie Toaster

Mad Inventors Inc.19.99

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

1

2

3 Absurd Accessories

.........

review_ id product_ id review_ text date

3

5

2023-01-01 12:30:00Great product ...

2023-01-02 13:45:00...best thing ...

2 ...not recommend

...

1

2

3 2023-01-03 14:15:00

.........

ERROR 1451 (23000):
Cannot delete or update
a parent row: a foreign
key constraint fails ...

remove the 3rd row

The ultimate form of deleting data records from the parent table is
dropping the table entirely. If this action is ever allowed, all the data
in the child table will become orphan data. Fortunately, the foreign
key constraint stops it from happening, and you get an error message
similar to the following:

ERROR: cannot drop table … because other objects depend
on it
DETAIL: constraint… on table…depends on table…

If you are still in the process of perfecting your database design and
need to modify the table structure, you can refer to chapter 1 to

Chapter 2 I Related tables and more SQL42

see how to modify an individual table, or see the preceding section
to find out how to alter the foreign key constraint. In an extreme
scenario, you may need to drop a pair of related tables with some
sample data. In this case, always save the data first, and drop the
child table before dropping the parent table. This order is important
because dropping the child table first also eliminates the foreign key
constraint. Otherwise, you will see the error message in the preceding
figure because the foreign key constraint works hard to enforce the
referential integrity.

Learn more SQL on your own
In this section, you will explore how to learn more SQL on your own.
The journey to SQL mastery is a long one, but at least you’ll have
plenty of time to contemplate all the ways that you misspelled SELECT
or messed up with NULL along the way. If you read chapter 1 and this
chapter up to this point, however, you have already equipped yourself
with the essentials of database design. This knowledge will serve as a
solid foundation for you to learn more SQL on your own.

In this brave new age, mastering SQL on your own is significantly easier
than it was a few years ago due to the rise of generative AI tools such

Learn more SQL on your own 43

as ChatGPT and Google Gemini. Please make no mistake: we are not
advocating relying on ChatGPT solely for learning SQL. If you use
generative AI tools like ChatGPT well, you will be able to gain new
knowledge quickly and efficiently, and we want to demonstrate how you
can use these tools to facilitate learning SQL.
Some aspects of learning SQL remain the same as in the past,
of course. You need help from a quality book to learn SQL
systematically, especially conceptual knowledge such as indexing
and query order of execution. This step can’t be replaced by
asking ChatGPT questions. Many quality SQL books are available,
including these two examples:

•	 Learn SQL in a Month of Lunches, by Jeff Iannucci (https://www.
manning.com/books/learn-sql-in-a-month-of-lunches)

•	 Learning SQL, 3rd ed., by Alan Beaulieu (https://mng.bz/Ge5V)

Some other aspects of learning SQL can be very different and more
efficient nowadays, especially when you have questions or want to know
how a SQL keyword is used. The greatest advantage of generative AI
tools such as ChatGPT is that they can provide relatively reliable just-
in-time help on common questions. Without such tools, you need to
go through an iterative process to get your questions answered, which
involves creating a search query, searching online, and filtering the
returned search results. This process—especially filtering all the search
results—can be daunting.
The wide availability of generative AI tools can help you avoid this
iterative process. If you want to know how to use the sum aggregate
function, for example, you can ask ChatGPT the following question:

Question: How do I use the sum aggregate function in SQL?

The answer is typically composed of the general syntax and a concrete
example, which is as good as and sometimes better than some tutorials
written by human beings.

https://www.manning.com/books/learn-sql-in-a-month-of-lunches
https://www.manning.com/books/learn-sql-in-a-month-of-lunches
https://mng.bz/Ge5V

Chapter 2 I Related tables and more SQL44

A sample answer from ChatGPT is as follows:

Chatgpt
In Sql, The Sum Function Is Used To Calculate The Total Of A Set Of Values In
A Column Of A Table. Here’s The Basic Syntax:

Select Sum(Column_name) From Table_name;

For Example, Let’s Say We Have A Table Called Orders With The Following Col-
umns: Id, Customer_name, Product_name, And Price. If We Wanted
To Calculate The Total Revenue From All Orders, We Could Use The Following
Query:

Select Sum(Price) From Orders;

This Would Return A Single Value Representing The Total Sum Of All Prices In
The Price Column Of The Orders Table.

If you still find the answer difficult to chew, you can ask ChatGPT to be
more patient and explain in detail:

Question: How do I use the sum aggregate function in SQL? Explain with
more examples and as if I am five.

You will find that ChatGPT answers this question better than most
tutors can. A sample answer from ChatGPT follows:

ChatGPT
Sure! Let’s say you have a table with some numbers in it, like this:
+----+-------+
| ID | Value |
+----+-------+
1	2
2	4
3	6
4	8
+----+-------+

Each row has a number in the Value column. You can think of these numbers
like pieces of candy. The ID column is like a label that helps us tell the differ-
ence between the pieces of candy.

Learn more SQL on your own 45

Now, let’s say you want to know how many pieces of candy you have in total.
You could count each piece of candy one by one, but that would take a long
time. Instead, you can use the SUM function in SQL to add up all the pieces of
candy for you! Here’s what the SQL query would look like:

SELECT SUM(Value) FROM my_table;

When you run this query, the computer will add up all the numbers in the
Value column for you. In this case, the total is 20. You can think of this as
having 20 pieces of candy in total! Here’s another example. Let’s say you have
a table with some prices in it, like this:

+----+-------+
| ID | Price |
+----+-------+
1	1.99
2	2.99
3	3.99
4	4.99
+----+-------+

Each row has a price in the Price column. You can think of these prices like
the cost of buying things, like toys or candy. If you want to know how much
money you would need to buy all these things, you can use the SUM function
in SQL. Here’s what the query would look like:

SELECT SUM(Price) FROM my_table;

When you run this query, the computer will add up all the prices in the
Price column for you. In this case, the total is 13.96. You can think of this as
how much money you would need to buy all these things!

One of the most significant benefits of generative AI tools in SQL
learning is that they can provide relatively reliable just-in-time
help. For common questions, you don’t necessarily need to ask the
perfect question to receive immediate answers that are informative
and well-structured. What’s more, in contrast to fine-tuning search
engine queries, it’s easier to tune your questions to get better
answers.

Chapter 2 I Related tables and more SQL46

Recap
•	 Related tables are tables in a database

that are connected by a common
column.

•	 In general, it is a bad idea to have
related tables share columns beyond the
primary/foreign key(s).

•	 The general syntax for querying two related
tables is

 SELECT column1, column2, ...
 FROM table1
 JOIN table2
 ON table1.column = table2.column;

•	 The most common join types include INNER JOIN, LEFT JOIN, RIGHT
JOIN, and OUTER JOIN. INNER JOIN is the same as JOIN, returning
only the rows that have matching values in two tables. The other three
types may return nonmatching values from one or two tables.

•	 In general, the JOIN clause is preferred to the WHERE clause for
querying related tables.

•	 Given a pair of two related tables, the table that uses the shared
column(s) as the primary key(s) is typically known as the parent
table. The table that holds the foreign key(s) is typically known as the
child table.

•	 You can create the parent table the same way that you create a table
that is not related to other tables.

•	 The general syntax for creating a child table is

 CREATE TABLE child_table_name (
 column1 datatype1 [NOT NULL],
 column2 datatype2 [NOT NULL],
 ...,
 foreign_key_column datatype,
 CONSTRAINT fk_parent_child
 FOREIGN KEY (foreign_key_column)
 REFERENCES
 parent_table_name(
 parent_table_primary_key
)
);

Recap 47

•	 The foreign key constraint enforces referential integrity in
related tables. Referential integrity applies to both table and data
management in related tables.

•	 In general, it is a good idea to name the foreign key constraint when
creating related tables.

•	 Taking advantage of generative AI tools like ChatGPT can make
learning SQL more efficient.

49

3

In this chapter

•	 You learn about the goals of database design.

•	 You get an overview of the database design
process.

•	 You jump-start the requirement analysis.

Overview of
database design

What you need to know
This chapter provides an overview of database design from a bird’s-eye
view. That said, this chapter doesn’t have accompanying scripts like those
in chapters 1 and 2.

Overview
In chapters 1 and 2, you learned the basics of relational databases and
SQL. Starting with this chapter, you will embark on your journey of
learning database design by designing a database from scratch for the
online store of The Sci-Fi Collective. In this chapter, you will get an

Chapter 3 I Overview of database design50

overview of the goals and process of database design. After that, you
will jump-start the requirement analysis for The Sci-Fi Collective.

Goals of database design
The overall goal of database design is to deliver a well-structured,
efficient database that meets the requirements of users and
organizations. Beyond meeting these requirements, a successful
database design typically meets five common goals:

•	 Data consistency and integrity
•	 Maintainability and ease of use
•	 Performance and optimization
•	 Data security
•	 Scalability and flexibility

In this section, you will peek at these goals to better understand what
you should aim to achieve in database design.

Goals of database design 51

Data consistency and integrity
Data consistency and integrity are about defining appropriate data
types, constraints, and relationships among entities to ensure that

•	 Data remains consistent across tables.
•	 Data redundancy is minimized.
•	 Anomalies are prevented.

In chapters 1 and 2, you peeked at some poor designs that led to data
redundancy and learned about three types of anomalies. In short, data
consistency means taking measures to ensure that those problems
don’t happen.

Insertion, update, and delete anomalies
An insertion anomaly occurs when adding a new record to a database
requires adding unrelated data.

An update anomaly happens when modifying data results in inconsistencies
within the data.

A delete anomaly happens when removing data leads to unintentional loss
of information.

Maintainability and ease of use
A well-designed database should be intuitive to use and easy to
maintain by the people who use it, including database administrators,
data analysts, and developers of web or mobile applications that are
powered by the database.
You can take a lot of measures to increase the maintainability and ease of
use of a database. Following a consistent naming convention, for example,
is a small thing to do when you design a database, but it can save a lot
of time for people who use or maintain the database. If developers who
use a database have to spend time figuring out whether and where id,
Id, and identifier are used as the primary key columns, the database is
hardly intuitive to use, let alone easy to maintain. Think about having to
maintain a database with the following tables:

Chapter 3 I Overview of database design52

Performance and optimization
A well-designed database should optimize query performance and
reduce response time. An efficient database can help save running costs
and boost the performance of the applications it supports, which in turn
will enhance the user experience.
You can take a lot of measures to optimize the performance of a
database. The data in the review table you saw in chapter 2, for
example, often needs to be sorted because the table and its database
support the online store of The Sci-Fi Collective, and potential
customers often want to see the latest reviews of the products they
browse. You can index the date column in the review table to speed the
sorting operation.
What is indexing? Think of the data in the review table as being a
library of books. Indexing is the process of creating an index-card
catalog that lists every book alphabetically along with its location.
When you need to sort, you can use the index-card catalog to locate
every book and put it in its sorted position.

Goals of database design 53

Data security
A well-designed database should have robust security measures in
place. In other words, a well-designed database prevents unauthorized
access, insertion, modification, or deletion. Even when such problems
happen, the sensitive data should still be well protected and easy to
recover.
You can take a lot of measures to safeguard the data. If you ever need to
store payment method information in your database, for example, you
should store only encrypted information. Storing customers’ payment
method information in plain text is a bad idea. If an evil hacker gains
access to the database, they will know everyone’s credit card number. By
contrast, encryption helps protect sensitive information even in a worst-
case scenario.

Chapter 3 I Overview of database design54

Scalability and flexibility
A well-designed and efficient database should accommodate growth
and changing requirements without sacrificing performance (trying to
have your cake and eat it too).
You can take various measures to enhance the scalability and flexibility
of your database design. When you design your database schema, for
example, separating tables can make them smaller, which in turn can
speed data lookups. Also, you can implement a cache mechanism for
frequently accessed data, such as the product information in The Sci-Fi
Collective’s database. Caching involves storing frequently accessed data
in fast-access memory, such as RAM, which can significantly improve
database performance and responsiveness, particularly as the data
size grows. Popular caching systems such as Redis (https://redis.io)
and Memcached (https://www.memcached.org) can implement this
mechanism.

https://redis.io
https://www.memcached.org

Overview of the design process 55

Application
In-memory

cache Database
SQL

Overview of the design process
In this section, we review the overall database design process by
covering the key phases and steps in database design. Some approaches
to database design emphasize a well-defined sequential process such as
the waterfall approach, in which each phase must be completed before
moving to the next. Other approaches, such as the agile approach, focus
on an iterative, and flexible approach, allowing for adjustments as the
project unfolds. Despite the differences, all database design approaches
have the same key phases:

•	 Requirement gathering
•	 Analysis and design
•	 Implementation/integration and testing

Requirement gathering

Analysis and design

Implementation and testing

Requirement gathering

Integration and testing

Waterfall approach Agile approach

Review and retrospective

Analysis and design

Chapter 3 I Overview of database design56

Requirement gathering
Requirement gathering refers to gathering information about the
database in different ways, such as talking to all the people who will be
involved with or using the database, studying existing databases (if any),
and examining other relevant aspects of information management.
To talk to all the people who will be involved with or using the
database, you need to organize meetings, ask good questions, and have
conversations with different groups. To build the database for The
Sci-Fi Collective, you would talk to shop owners and managers, future
database administrators, and software developers who will build the
web and mobile applications to find out what kind of information they
need to keep track of.

If a legacy application uses any existing databases, you need to study the
application and the databases carefully. Figuring out the gap between
current expectations and the old databases is critical to successful
database design.
The Sci-Fi Collective has a legacy online store. After you study its
database and talk to all the stakeholders, you see that the old database
doesn’t support tracking inventory numbers of in-stock products,
which sometimes leads to customers buying products that are no longer
in stock. The developers of The Sci-Fi Collective’s web app want the
new database to track inventory numbers so that the web app can let
customers know promptly when a particular product goes out of stock.

Overview of the design process 57

Any information management within the organization that is expected
to be part of the database you design is also relevant. The purchasing
manager of The Sci-Fi Collective used to manage the inventory
information by using a spreadsheet and a paper form. To make such
management activities part of your database design, you need to study
the paper form, the spreadsheet, and the management flow.

Analysis and design
The analysis and design phase involves carefully thinking through all
the requirements and coming up with a solid plan for how the database
will be structured and how it will work. In the end, you will create a
detailed blueprint of the database. Some key steps in this phase include
data modeling and normalization.
Data modeling aims to create a conceptual design that shows how the
parts of a database fit together and relate to one another. The conceptual
design is typically represented visually as an entity-relationship (E-R)
diagram. An E-R diagram for the database of The Sci-Fi Collective
might look like this:

Chapter 3 I Overview of database design58

user

payment_method
purchase

payment_id INT
name VARCHAR(30)
card_number CHAR(45)
expiry_date CHAR(45)
email VARCHAR(320)
address_id INT

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
payment_id INT
email VARCHAR(320)

email VARCHAR(320)
username VARCHAR(30)
password CHAR(60)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP
address_id INT

address

address_id INT
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
postal_code CHAR(5)
state_id CHAR(2)

product

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

purchase_product
purchase_id INT
code CHAR(12)
product_price DECIMAL(7, 2)
product_quantity INT
product_name VARCHAR(100)

state
state_id CHAR(2)

state VARCHAR(20)

review
review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

We know that this diagram contains symbols and syntax that you may
not understand yet. You will learn about them, as well as learn how to
model data using E-R diagrams, in chapter 5.
Normalization comes after the E-R diagram is established.
Normalization minimizes redundancy by breaking down a table
representing more than one entity into smaller, logical units and
organizing them in separate tables. As an example, someone designed
a product_review table to hold data on both products and their
reviews. As you saw in chapter 2, storing information about more than
one entity in the same table can lead to redundancy and anomalies. You
could normalize such a table by breaking it into two tables: product
and review.

Overview of the design process 59

product_review

name
price
manufacturer

product_id
review_id

review_text
date

product

name
price

manufacturer

product_id

review

review_text
date

review_id

You will learn more about normalization and see how to determine
whether a table needs to be normalized in chapter 6.

Implementation/integration and testing
The implementation/integration and testing phase involves building and
validating the database based on the blueprint you made in the design
and analysis phase. If you use the waterfall approach, the database is
implemented all at the same time; if you use the agile approach, the
database is implemented part by part and integrated into what has been
implemented. Then you test the database to ensure that it functions
correctly, performs well, and meets the intended requirements.
During implementation, you create the tables, define the columns
and their data types, establish relationships between tables, apply any
constraints or rules specified in your design blueprint, and determine
which columns to index to optimize query performance. You learned
how to use SQL to create a single table or related tables in chapters 1
and 2, and that knowledge can be very useful for this step.
After the database has been implemented, you want to test it before
putting it to use. Typically, testing a database needs to validate at least
three aspects:

•	 Functionality—You need to check whether the database performs the
expected tasks correctly, such as creating, updating, and deleting a
data entry.

Chapter 3 I Overview of database design60

•	 Performance—You need to check how well the database handles large
amounts of data or heavy use.

•	 Security—You need to verify that the database has appropriate
security measures in place to protect sensitive data such as passwords
and payment methods.

You should identify and fix any bugs discovered during testing, of
course. As in the implementation phase, the knowledge of SQL queries
you gained from chapters 1 and 2 will be very useful for testing. You
will learn more about the details of this phase in chapters 6 and 7.

Key phases of database design
In the preceding section, you got an overview of the process of database
design. Starting with this section, you will explore and learn the key
phases in database design by designing a database for the online store
of The Sci-Fi Collective from scratch. Working on a project from
scratch will give you hands-on experience and detailed knowledge of
components you would otherwise not pick up.
In this section, you will learn more about the first key phase in database
design: requirement gathering. Because requirement gathering is an art
rather than a science, following the advice and insights of experts and
veterans in this trade can make your life much easier.

The goals of the database
As you take on requirement-gathering tasks, you need to answer a
critical question based on all the information to collect: what are the
goals of the database?
Every database is created for some specific purpose, whether that
purpose is to handle the daily transactions of a business or manage the
information of an organization. You need to identify the goal of the
database clearly because the database will be used to make important
decisions.
Sometimes, it takes longer than expected to come to a full understanding
of the goals of the database, and you need to be ready for that situation.
To have a good understanding of the goal of the database for The Sci-
Fi Collective, you need to interview the owner, managers, staff, and

Key phases of database design 61

software developers. You can summarize the goals of this database as
follows:

The database of The Sci-Fi Collective is to maintain information about
products, such as their inventory and reviews, and information about
users, such as their payment information and purchases, as well as the
transaction information linking users and products.

Existing databases and other aspects
of information management
Sometimes you can refer to an existing database for your work. If so,
you should resist the urge to base your new design on the structure
of the existing database. There is a good reason why the organization/
business decided to hire you to design a database from scratch instead
of modifying the old database. Although the existing database can
contain valuable information in terms of what entities and attributes are
required to structure some tables, you must be careful about potential
design errors in the existing database. Also, you must recognize that
it will take the same amount of effort to figure out the demands of the
new database and how they differ from those of the existing database.
How do you figure out the current demands? Conduct interviews. How
do you figure out the gap between the existing database and current
demands? Conduct more interviews with more questions.

With respect to other aspects of information management, you
may find that many people discovered ingenious ways to use word
processors, spreadsheets, and paper forms to collect and manage data

Chapter 3 I Overview of database design62

effectively. If this type of data management needs to be part of the new
database you’re designing, you may want to do at least two things:

•	 Get a subject-matter expert (SME) to walk you through how the data
is managed. This walk-through should involve demonstration and
stepwise explanation because it is usually difficult to grasp data
management through interviews alone.

•	 Ask for data samples whenever possible. The data samples will play an
important role in helping you verify the attributes and data types in
the next phase of database design.

We’ll use an example to illustrate the preceding two points. The
purchasing manager of The Sci-Fi Collective currently manages all
the inventory data in a spreadsheet, and the database you design will
eventually replace the spreadsheet to manage that data. Instead of
talking only to this manager and the purchasing team, you want them to
walk you through the whole process of purchasing a batch of products,
such as ordering, entering data about a new product, and updating and
removing records of products that are already in inventory. The process
can be complicated, so getting a demonstration is the best approach
whenever possible. More important, you should ask for a copy of the
authentic data, which ideally should be anonymized. The data will help
clarify many problems that the demonstration can’t, such as the exact
number of attributes and data types.

A | B | C | D | F | G |

Product name Manufacturer Description Cost Quantities MSRP

Neuro-Enhancer CyberDyne Corp Neural implant ... 10 $799.99

Quantum Flux... HyperTech Labs Revolutionary 2 $2999.99

Plasma Blaster NovaArmory Portable hand ... 15 $599.99

Nanotech Gel BioSolutions Inc Advanced nano...

$499.99

$999.99

$299.99

$79.99 50 $149.99

...

1

2

3

4

5

...

Key phases of database design 63

Interviews
Interviews are the most important tasks in requirement gathering.
During and after the interviews, you need to identify three pieces of
information: subjects, characteristics, and relationships among subjects.
These three pieces of information will be critical to helping you sail
through the next phase of database design.

Relationships are self-explanatory, but what are subjects and
characteristics? Subjects are people, places, things, events, and the like.
Characteristics are the features of subjects.

during interviews
after interviews

plan the questions

plan other aspects

identify subjects

identify relationships

before interviews

identify characteristics

Prepare for interviews

Before conducting interviews, carefully plan the questions and other
aspects of the interviews. What questions should you prepare? The
answer depends on the project as well as whom you are interviewing. To
simplify the problem, you may want to group the people you interview.
Although the number of groups can vary, a business or organization
typically has at least three groups of people you should consider
interviewing: stakeholders, SMEs, and IT/technical staff.

Chapter 3 I Overview of database design64

The Sci-Fi Collective happens to be a typical business. It has two
owners and one manager, two minotaurs who are responsible for tasks
such as data entry and customer service, and three elves who work as
software developers. Following are some sample interview questions
for each group:

•	 Stakeholders
What is the primary purpose of the database, and what specific goals
do you want to achieve with it?
What key features or functionalities do you expect the database to
support?
Should the database support any specific reporting or analytics needs?

•	 SMEs
How do you currently manage and organize your data? What
challenges or limitations do you face?
Can you walk me through the typical workflow or process you follow
when working with data?
What specific information or data elements are most critical to your work?

•	 IT/technical staff
What are the main tasks or activities you perform that involve data
storage or retrieval?
What reports or outputs do you typically generate from the data?
What information do these reports provide?
Do you perform any specific calculations or computations on the data?

Key phases of database design 65

You should prepare more questions for each group yourself. What
is the guiding principle for preparing interview questions? A good
question should help you gather relevant information about what
data the database should store, how the data should be stored, and
what constraints should be put in place. If there’s no time constraint,
however, a bad question is better than no question. If you are new to
this process, you can ask for some example questions from ChatGPT.
You might ask ChatGPT to provide some sample questions by using a
prompt like the following.

When you need to design a database, you need to conduct interviews with
stakeholders. What questions are typically asked during such interviews?

Beyond interview questions, you need to prepare many things
beforehand. Here are some key questions that you need to ask yourself
during preparation:

•	 How do you want to record the interview? Will you take notes or
record the conversation? If you decide to record, do you need to gain
permission from the organization?

•	 Where do you want to conduct the interviews?
•	 Do you need to invite more than one group to the same interview? If

so, who had better not be invited to the same interview? Should there
be a limit on the number of interviewees?

Also, ask yourself more questions specific to the project and participants
of the interviews. The guiding principle of any preparation is to make
the interviews productive and informative.

Identify subjects, characteristics, and relationships

During and after the interviews, you need to identify subjects,
characteristics, and relationships among subjects. In case you wonder
why, one of the tasks you will take on during the next design phase
is mapping the subjects, characteristics, and relationships to entities,
attributes, and relationships among entities.
To identify subjects and characteristics during the interview or from
the record of the interview, you can look for nouns in the responses to
your questions. How do you differentiate subjects from characteristics?

Chapter 3 I Overview of database design66

Typically, if you can build a sentence with two nouns in which one has
or owns the other, the one that is possessed is the characteristic, and
the other is the subject. You can put user and password in the following
sentence, for example:

A user has a password.

The password is possessed by the user, so it is a characteristic of a user,
whereas the user is a subject.
You need to perform similar deductions on interview conversations.
You might ask the following question of an IT staff member working for
The Sci-Fi Collective:

Q: What are the main tasks or activities you perform that involve data
storage or retrieval?

The participant may give you a response like this (in which all subjects
that can be identified are underlined):

A: As a software developer, I am mainly responsible for building and
maintaining the transaction system of the online store. When a user
makes an order, the transaction system is supposed to retrieve the
user’s account and payment method, generate an order with all the
information for the ordered products, calculate the total price, bill the
payment method, and generate an invoice.

This response is very good. The participant answered your question
well, with a lot of useful details. You can track all the nouns and see
whether they can be used in sentences with the verb has or owns to
identify the subjects and characteristics:

A user has a
payment information.

An order has at
least one product.

user

account

payment method

order

product information

total price

A user has an account.

An order has a total price.

Key phases of database design 67

As you can see, it is easy to deduce at least two subjects—user and
order—in this response. A user has two characteristics: account
and payment method. An order has two characteristics: product
information and total price. Two other subjects—invoice and product—
don’t have any characteristics.
Typically, you need to ask follow-up questions to get all the
characteristics of a given subject. You might have this follow-up
conversation with a participant:

Q: What information does a complete order have?
A: Well, the same as any other online store: the prices and quantities
of all the products bought by a customer. That’s it. An order is not
complicated.

Q: What about the total price? Is the total price a part of the order?
A: Sort of. Yes. The total price is calculated based on the unit price and
quantities of all the bought products.

Q: What about the date and time when an order was put into the
system? Is that a necessary piece of information for an order?
A: Yes, yes. That’s absolutely a necessary piece.

Answers such as “the same as any other online store” and “Sort of ” are
vague, often requiring you to follow up and ask clarification questions.
Luckily, the participant provided enough details after such vague
answers. Based on the answers, you can update the characteristics of the
order subject as follows:

order

product information

total price

order

product price

product quantity

total price

date and time

Chapter 3 I Overview of database design68

To wrap up the discussion of subjects and characteristics, you
should always ask for sample data if possible. When you have a good
understanding of the subjects and characteristics discussed by the
participant, you could follow up with a question like this:

Q: Can you provide some sample data for products, orders, invoices,
and users? Anything will help.

After identifying the subjects and characteristics, you will be ready
to ask about relationships among subjects. Your focus should be the
relationship between every two subjects. You could ask a follow-up
question about the relationship between users and orders:

Q: How are orders related to users? Can a user make multiple orders?
Can multiple users contribute to one order?

The participant might give you this response:

A: A user can of course make as many orders as they like. However, our
system doesn’t support multiple users contributing to one order.

You could ask a follow-up question about the relationship between
products and orders:

Q: How are orders related to products? Can an order have more than
one product? Can a product show up in more than one order?

The participant might give you a response like this:

A: An order can have more than one product. Vice versa, a product can
show up in different orders.

You don’t necessarily need to do any analysis of these responses; just
record them well.
So far, you have walked through all the necessary steps in an
interview. When you finish interviewing all the groups in The
Sci-Fi Collective, you will be able to identify a set of subjects
and characteristics associated with each subject, as shown in the
following figure.

Recap 69

user
* username
* email
* password
* first name
* last name
* phone number
* address

product
* code
* name
* description
* manufacturer
* photo
* price
* cost
* inventory quantityreview

* review text
* date and time

payment method
* name
* credit card number
* expiry date
* billing address

order
* total price
* product price
* product quantity
* date and time

You will also be able to identify the following relationships:

•	 A user can make multiple orders. An order can be made by only one
user.

•	 A user can review multiple products as long as the user bought those
products. A product can be reviewed by multiple users.

•	 A user can maintain multiple payment methods. A payment method
can be associated with only one user.

•	 An order can have more than one product. A product can show up in
multiple orders.

With this information, you are ready to start the next phase in your
journey of designing a database for The Sci-Fi Collective.

Recap
•	 The overall goal of database design is to deliver a well-

structured and efficient database.
•	 Key subgoals of database design include data

consistency and integrity, maintainability and ease of
use, performance and optimization, data security, and
scalability and flexibility.

•	 All database design approaches have the same key
phases, including requirement gathering, analysis and
design, and implementation/integration and testing.

Chapter 3 I Overview of database design70

•	 Requirement gathering is the phase in which you gather information
about the database in different ways, such as talking to all the people
involved in using the database, studying existing databases, and
examining other relevant aspects of information management.

•	 The analysis and design phase focuses on thoroughly understanding
all requirements and creating a well-defined plan for the database’s
structure and functionality.

•	 The implementation/integration and testing phase is about building
and validating the database based on the blueprint you made in the
design and analysis phase.

•	 Conducting interviews is the most important task in requirement
gathering. Before interviews, plan the interview questions carefully.
During and after the interviews, identify subjects, characteristics, and
relationships among subjects.

Welcome to the heart of database design! This part takes you beyond the
basics and into the art and science of creating robust, efficient, and scalable
databases. Here, you’ll learn how to structure data not just to store it but
also to enable powerful, reliable applications.

Chapter 4 begins with entities and attributes—the building blocks of any
database. You’ll discover how to map real-world objects and concepts to
entities and attributes and how to select the right data types.

Chapter 5 focuses on relationships, demonstrating how to create mean-
ingful connections among entities. By the end of this chapter, you’ll know
how to translate real-world relationships into a coherent, well-structured
database.

Chapter 6 introduces normalization and implementation. You’ll learn
how to refine and strengthen your database designs through normalization
and how to translate your designs to SQL, bridging the gap between theory
and practice.

Chapter 7 delves into security and optimization. This chapter equips you
with strategies to safeguard sensitive data and enhance database perfor-
mance with techniques such as indexing and denormalization.

By the end of this part, you’ll have the expertise to design databases that
meet the demands of real-world applications. Whether you’re building a
small project or tackling a complex enterprise system, this section will pre-
pare you to handle the challenges of modern database design with confi-
dence and precision.

Part 2
Master database design

73

4

In this chapter

•	 You start the design and analysis phase of
database design.

•	 You learn about keys and common data types
in databases.

•	 You design your first few entities, identifying their
attributes, primary keys, and data types.

Entities
and attributes

What you need to know
You can find the database design covered in this chapter (so far, only entities
and attributes) implemented in tools commonly used by practitioners,
such as dbdiagram.io and MySQL Workbench, in the GitHub repository
(https://github.com/Neo-Hao/grokking-relational-database-design). You
can navigate to the chapter_04 folder and follow the instructions in
README.md to load the database design into corresponding tools.
The data types covered in this chapter apply to most relational database
management systems (RDBMSs), such as MySQL, MariaDB, and
PostgreSQL. If you use another RDBMS, such as SQL Server or SQLite,
you need to make small modifications to the design by replacing certain
data types with equivalents specific to the target RDBMS. You can find such
information in README.md in the chapter_04 folder.

https://github.com/Neo-Hao/grokking-relational-database-design

Chapter 4 I Entities and attributes74

Overview
In chapter 3, you walked through the database
design process and went over the requirements-
gathering phase for the online store of The Sci-Fi
Collective.
Starting with this chapter, you will move to
the next phase of database design: design and
analysis. The first step of design and analysis is
data modeling, which aims to generate an entity-
relationship (E-R) diagram. In this chapter, you will
focus on designing all the required entities for the database of The Sci-
Fi Collective. By doing so, you will learn about entities, attributes, keys,
and data types.

Entities and attributes
In this section, you will focus on turning the subjects and characteristics
you deduced from requirements gathering into entities and attributes.
The following figure shows the subjects and characteristics for The Sci-
Fi Collective:

user
* username
* email
* password
* first name
* last name
* phone number
* address

product
* code
* name
* description
* manufacturer
* photo
* price
* cost
* inventory quantityreview

* review text
* date and time

payment method
* name
* credit card number
* expiry date
* billing address

order
* total price
* product price
* product quantity
* date and time

Chapter 1 introduced entities and attributes. Now is a good time to
refresh your memory of those concepts. An entity is a distinct object
or concept that can be described by many attributes. A subject and
its characteristics may seem ready to be turned into an entity with

Entities and attributes 75

attributes with few to no changes. A subject is simply an entity, and a
characteristic is simply an attribute. But you need to put a little bit of
thought into naming entities and attributes.
First, you need to choose between singular and plural names for your
entities and attributes.

Singular vs. plural: To s or not to s?
Edgar Codd at IBM developed the first RDBMS in the 1970s. In his database,
he used singular names for entities (such as employee). Other developers
followed his lead.

Singular names are best used with primary entities (such as a single
employee table). Singular approaches have their root in object-oriented
programming (OOP), in which a class translates as an entity that contains
several objects of the same class.

On the other hand, plural names are more natural as table titles. An
employees table contains records of employees, for example. Plural table
names, however, might cause confusion and errors for someone who isn’t
sure whether to use plurals in writing queries. Our best recommendation is
to aim for consistent use of either convention.

Second, you need to pick a naming convention for the attributes and
stick to it. Sticking to a consistent naming convention can prevent typos
and other errors in query writing and database maintenance. In this
book, we will follow the singular naming convention.
Common naming conventions include

•	 Snake case (first_name)
•	 Camel case (firstName)
•	 Pascal case (FirstName)
•	 Uppercase (FIRST_NAME)
•	 Hungarian notation, a special case that includes the data type (often

abbreviated) as part of the name (strFirstName)
•	 Semantic naming, a special case that includes the purpose of a

variable as part of the name (customerName)

Chapter 4 I Entities and attributes76

Among these naming conventions, snake and camel cases are
equally popular, followed by Pascal case. Make your choice based on
preference and unique software requirements. In this book, we will
stick to snake case.
With these two naming decisions made, you can easily map subjects/
characteristics to entities/attributes. The user subject and its
characteristics, for example, can be mapped to the user entity and
its attributes:

user
* username
* email
* password
* first name
* last name
* phone number
* address

user

username
email
password

first_name

last_name
phone_number
address

Following the two naming conventions, we will convert all the subjects/
characteristics for the online store of The Sci-Fi Collective to the
following entities/attributes:

user

username
email
password

first_name

last_name

phone_number
address

product

name
description
manufacturer
photo
price
cost
inventory_quantity

payment_method

name
card_number
expiry_date
billing_address

product_price
product_quantity

review

review_text
review_time

order

total_price
order_time

code

Entities and attributes 77

Beyond the naming conventions, you need to check two things about
column names:

•	 Whether you have names longer than the upper limit—Many RDBMSs
have limits on column-name lengths. MariaDB, for example, limits
column names to 64 characters. If you have such a column name, you
should shorten it.

•	 Whether you used reserved SQL keywords as entity or attribute
names—Using reserved SQL keywords as names can lead to many
problems, such as syntax errors in SQL query execution and
maintainability problems.

If you use SELECT to name an entity, for example, the database system
may not understand whether you are referring to the keyword SELECT
or the entity with that name. Therefore, if you used any reserved
keywords as names, you should replace them.
The reserved SQL keywords may vary from one database system to
another. You can find a list of keywords in the MySQL documentation
(https://mng.bz/zZ6r).
All database systems have a set of common keywords, such as SELECT,
ORDER, INSERT, GROUP, and JOIN. We used the reserved SQL keyword
ORDER to name one of our entities, so we need to replace it with a
different word that has a similar meaning, such as purchase:

order

total_price
product_price
product_quantity

order_time

purchase

total_price
product_price
product_quantity
purchase_time

Reserved keywords in SQL
Reserved keywords in SQL have specific meanings and functions. They
define, manipulate, and control the database structure and data. The list
of reserved keywords can vary depending on the RDBMS, but the most
common keywords are used in all RDBMSs.

If you want to know the common reserved keywords, the fastest approach
probably is to ask a generative AI tool such as ChatGPT:

https://mng.bz/zZ6r

Chapter 4 I Entities and attributes78

(continued)
•	 What are the common reserved keywords in SQL?

If you need to know the reserved keywords of a specific RDBMS, asking a
generative AI tool can still be a good start. To find the reserved keywords in
MySQL, you can ask ChatGPT the following questions:

•	 What are the reserved keywords in MySQL?

•	 Where are the reserved keywords of MySQL listed in its manual?

When you finish all the preceding steps, the entities of The Sci-Fi
Collective’s online store will look like the following figure:

payment_method

name
card_number
expiry_date

billing_address

product_price
product_quantity

purchase

total_price
purchase_time

product

name
description
manufacturer
photo
price
cost
inventory_quantity

review

review_text
review_time

code

user

username
password
first_name

last_name

phone_number
address

email

Keys
Now that you have converted the subjects and characteristics you
deduced in chapter 2 to entities and attributes, you are ready to start
identifying primary keys in each entity.
In chapter 1, you learned about primary keys. A primary key refers to
one or more attributes that can be used to identify an individual data
record. The values of primary keys are unique. A table can have only
one primary key.
Why does an entity need a primary key? An entity (set) will eventually
be converted to a table in a database. The primary key identifies each

Keys 79

row in a table uniquely, enforces data integrity by preventing
duplication, and establishes relationships between tables in a relational
database. All in all, identifying primary keys is an important step in
completing your database design.
The guiding principle in identifying a primary key is simple: pick
the best candidate key as the primary key. If no good candidate key
is available, create a new attribute to serve as the primary key. In this
section, we explain what candidate keys are and demonstrate this
principle in two examples, starting with the user entity.
The user entity contains seven attributes. When you put the gathered
requirements and sample data side by side, you can easily spot the
attributes that should have unique values, preventing duplication of
user data:

•	 username—Two users can’t have the same username. A new user
can’t register with a username that’s already in the database.

•	 email—Emails must be unique for verification and account recovery.
An email address can’t be used to register two different users.

•	 phone_number—Phone numbers must be unique for verification
and account recovery. Different users can’t register the same phone
number.

user

username
email
password

first_ name

last_ name
address
phone_ number

username email ... phone_ number

dataDiva diva@gmail.com

keyKeeper key128893@outlook.com

... ...

queryQueen queen....@yahoo.com 722-347-1118

326-456-4910

260-260-3555...

... ...

...

First things first. What is a candidate key? The three attributes are
three different candidate keys for the user table. A candidate key is the
smallest possible combination of attributes that can uniquely identify
a row in a table. Smallest means that no subpart of a candidate key can
uniquely identify a row. The combination of username and first_name,
for example, can identify a row uniquely, but username, when used as a

Chapter 4 I Entities and attributes80

subpart of this combination, can also identity a row uniquely. Therefore,
the combination of username and first_name is not a candidate key.
On the other hand, username is a candidate key.

username

[first_name, username] identify a row uniquely

[first_name, username]
is NOT a candidate key.

Can you take a systematic approach to identifying candidate keys? Yes.
You start by examining each attribute to see whether it can identify
a row uniquely. If you can’t find such an attribute, start combining
columns to see whether they can identify a row uniquely. In our case,
the user table contains three candidate keys: username, email, and
phone_number. To pick one primary key, you must compare their
qualities:

unique
Non-empty (null)

(username) (email) (phone_number)

Stable
Simple
Short
Familiar

Preventing
redundancy

The preceding list is not exhaustive but serves as a general guideline.
The meanings of these requirements are clear. Stable, for example,
means not likely to change, and simple means easy to understand and
use. The unique and nonempty (non-nullability) requirements are
satisfied almost by default in username and email. The phone_number

Keys 81

values might be NULL because even if a customer doesn’t have or doesn’t
want to give us a phone number, we still welcome that customer to
register as a user.
The rest of the metrics can be quite subjective. Usernames, for example,
can be easier to change than email addresses; on the other hand, email
addresses tend to be longer, which affects access speed. In our case, we
will settle on email as the primary key for the user table because of its
stability. The Sci-Fi Collective allows users to update their usernames
but not their email addresses, and updates to primary key values are
strongly discouraged. You can indicate which attribute is the primary
key by underlining it or adding a key symbol to its left:

user

email
username
password

first_ name

last_ name

address
phone_ number

Consider another example. Among the seven attributes and their
possible combinations in the product table, you can identify at least
two candidate keys:

•	 Product codes—In the real world, most products have product codes,
which can help identify products uniquely. Because each product has
a unique code, the code can also prevent redundancy.

•	 Product names and manufacturers—The combination of product
names and manufacturers can also uniquely identify products and
prevent redundancy in the product table.

Chapter 4 I Entities and attributes82

The following figure compares these candidate keys:

unique
Non-empty (null)

Stable
Simple
Short
Familiar

(code) (name, manufacturer)

Preventing
redundancy

The product code is a clear winner over the combination of product
name and manufacturer. The product code is simpler and shorter.
Although the concept of the product code may be less familiar, it is not
difficult to grasp. The product code is based on the Universal Product
Code (UPC), unique 12-digit numbers assigned to each product sold
in stores and online around the world. So you can settle for product_
code and use it as the primary key for the product table:

product

code
name
description
manufacturer
photo
price
cost
inventory_ quantity

In both examples, we picked the primary key from a set of candidate
keys. What if no candidate key is available or is a good fit? We will
answer this question by picking a primary key for the review table,
which has two columns: review_text and review_time. Neither
of the two columns can uniquely identify a row in the review table.
Although the combination of review_text and review_time can
identify rows uniquely in most cases, it is still possible for two reviews
with the same text to be recorded at the same time. That said, no
candidate key is available for the review table:

Keys 83

unique
Non-empty (null)
Stable
Simple
Short
Familiar

(review_txt) (review_time) (review_txt, review_time)

Preventing
redundancy

When you are in a situation like this one, always think about the
alternative: creating a new column and using it as the primary key.
You can opt to create a numeric column and use it as the primary key
for the review table. Numeric primary keys are smaller and can fit
completely in computer memory, making them much faster to search.
They also scale better and are more standardized than a combination of
two attributes. We will create an autoincrementing numeric attribute,
review_id, and use it as the primary key for the review table. This
type of key is known as a surrogate key.
Undoubtedly, a surrogate key can identify rows in a table uniquely. But
can such a key prevent redundancy? Well, not by itself. It is still possible
for two identical rows of data to be inserted into the review table, as
shown in the following figure:

review_ id review_ text review_ time

...

7
8

"Great product"
"Great product"

"9/14/2024, 9:15:15 AM"
"9/14/2024, 9:15:15 AM"

Would redundancy be a problem? For tables such as user and
product, it is important to eliminate redundancy. Think about
maintaining two rows of data that represent the same user. Which row
should be used when the user updates their username? By contrast,
reviews are always displayed as lists of texts on the same screen. As long
as a row of review data can be identified uniquely, it can be updated or
deleted properly. Therefore, redundancy won’t be much of a problem for
the review table.

Chapter 4 I Entities and attributes84

Following the same logic, you see that the payment_method and
purchase tables are in a similar situation: identifying each row
uniquely is more important than eliminating redundancy. For
the purchase table, redundancy is tolerable. The purchase table
represents the transaction records of users. A transaction record is
immutable. For the payment_method table, redundancy is not only
tolerable but also acceptable. The Sci-Fi Collective allows two different
users to add the same payment method to their individual accounts.
(Think about when a couple uses each other’s credit cards.)
In such a scenario, autoincrementing surrogate keys are a great choice
for the primary keys. We will name the surrogate keys payment_id in
the payment_method table and purchase_id in the purchase table.
The following figure shows the primary keys of all entities:

product payment_ method

review

purchase

code
name
description
manufacturer
photo
price
cost
inventory_quantity

payment_id
name
card_number
expiry_date

billing_address

purchase_id
total_price
purchase_time
product_price
product_quantity

review_id
review_text
review_time

user

email
username
password
first_name

last_name
address
phone_number

Superkeys, candidate keys, and primary keys
Another type of key that we haven’t mentioned yet is the superkey. A
superkey is a set of one or more columns of a table that can uniquely identify
a row in the table. But—shame on the superkey—it may contain columns
that aren’t required to uniquely identify a row.

Now you know what superkeys are, you can see candidate keys from a
different angle: a candidate key is a minimal superkey, which means that it
has no unnecessary columns.

Data types 85

Finally, of all the candidate keys in a table, one is chosen as the primary key.
The following figure shows the relationships among the three types of keys:

superkey

candidate key

primary key

Data types
You successfully identified or generated the primary keys of all entities
in the preceding section. In this section, you will work to define data
types for all attributes—a necessary step toward completing your design
of entities and attributes. To implement the database based on your
design, you need the data types of attributes.
Data types are not an entirely new topic. In chapters 1 and 2, you
saw how data types are used in SQL queries. In chapter 3, you were
encouraged to get sample data that helps you figure out the data
types of the characteristics of subjects in the requirements-gathering
phase. In this section, you will take advantage of the sample data
you accumulated and use it to define data types of all attributes
accurately. Meanwhile, you will pick up some new conceptual
knowledge of data types.

String data types: Power of personality
String data types are among the most-used data types in databases.
Before you use string data types, you will learn a little bit about their
variations.

Chapter 4 I Entities and attributes86

CHAR, VARCHAR, and TEXT

The most common types of string data are CHAR, VARCHAR, and
TEXT. The major difference among them lies in storage requirements.
(Some require more bytes than others due to how they are physically
implemented, for example.)
You may wonder why bytes matter. After all, people have terabytes of
available space on their disks. When databases are small, the result is
negligible, but as databases grow, so do computational (such as access
speed) and memory requirements. Here’s an example that shows the
effect of data length on search speed:

1
2
3
4
5
6
7
8

1,231,321,546
3,321,547,542
3,432,786,876
5,456,789,342
1,546,898,321
7,546,768,853
2,345,657,789
9,324,546,768

Please try finding the number 8 in the left figure; then try finding
1,546,898,321 in the right figure. If it took you even a millisecond longer
to find the longer number, congratulations: you are no different from a
computer. Your choice of data types may cause data to bloat, which in
turn slows data lookups (such as SELECT) and other operations.
Now that you know that bytes matter, we can present some simple
guidelines for choosing a string data type:

•	 When an attribute has data of uniform length, use CHAR.
•	 When an attribute has data of a relatively short but varied length, use
VARCHAR. Relatively short here also implies that an upper limit can be
easily estimated (such as 500 characters).

•	 When an attribute is expected to have a large amount of text data that
regularly exceeds a few thousand characters (1,000 plus), use TEXT,
especially if the upper limit is hard to estimate.

Some examples can help demonstrate these guidelines. If you need an
attribute to store state/province data as part of the address information
of your customers in the United States and Canada, you can use

Data types 87

a two-character designation (such as WA for Washington state). CHAR is
the perfect data type for this attribute. As another example, if you need an
attribute to store users’ names, you can expect data length to vary. Also,
you can estimate the upper limit of the names; most names don’t need to
go beyond 30 characters. Therefore, VARCHAR is the perfect data type for
this attribute. The following figure summarizes these two examples:

states-and-provinces
WA
CA
OR
KY
GA

names
Bob

Dingleberry
Jigglypuff

Wackadoodle
Fizzwitz

CHAR(2) VARCHAR(30)

In the preceding figure, you may notice that CHAR and VARCHAR are
followed by parentheses with numbers in them. This syntax deserves
some explanation. When you use CHAR or VARCHAR to define data types,
you need to declare the length. CHAR(2) indicates that each data record
of this attribute will occupy exactly 2 bytes. VARCHAR(30) indicates that
each data record of its attribute can occupy up to 30 characters. In some
RDBMSs, such as MySQL, a record can be rejected or truncated when
its character length exceeds the declared length.
As for the data type TEXT, it is typically used to hold a large amount of
text data, such as a product description, a product manual, or book text.

Strings and database performance
In some databases, TEXT may not be stored inline along with the rest of
the columns; instead, the data may exist in secondary file storage, requiring
further lookups and a performance delay. Use this data type sparingly and
only when necessary (for description fields, for example).

Also, text attributes are indexable through full-text indexes (specialized
indexes for larger text that work like a search engine), which are not
supported by all database systems. Before version 5.6, for example, MySQL
had no support for this feature in its InnoDB engine. In such cases, all
searches on text attributes have to be linear and therefore will be slow. If
the string data in an attribute is short, and if you expect this attribute to be
searched frequently, VARCHAR is the better choice of data type.

Chapter 4 I Entities and attributes88

Identify string attributes in our database

Now that you have learned the basics of string data types, you are ready
to identify the attributes in our database for which string data types
are a good fit. To complete this task, you will do the following for each
entity:

1.	 Check the requirements and the sample data that you got from the
requirements-gathering phase.

2.	 Identify the attributes that should be strings.
3.	 Choose a string data type (CHAR, VARCHAR, or TEXT).

First, you check the requirements and sample data. Our user entity, for
example, has seven attributes. The following figure shows the sample
data for this entity:

"dataDiva", "diva@gmail.com", "123456", "Jonna", "Diva",
"Acorn Street 125, Seattle, WA", "2602603555"

"keyKeeper", "key128893@outlook.com", "123qwerty", "John", "Keeper",
"Lemon tree avenue 300, Portland, OR", "3264564910"

"queryQueen", "queen.query@yahoo.com", "query**sdt", "Berry", "Sánchez",
"Amanda Ln 310, Portland, OR", "7223471118"

username email password first_name last_name

address

phone_number

Next, you identify attributes that should be strings. From the sample
data, you can tell that all the attributes are strings. In other words, all
seven attributes are string data types.
Finally, you choose a string data type for the identified attributes. From
the sample data, you can tell that all attributes have variable lengths, and
it is not difficult to estimate the maximum length for these variables.
Therefore, VARCHAR is the most appropriate data type. A phone
number, for example, cannot contain more than 15 digits (excluding
formatting) no matter where you are, thanks to the international phone
numbering plan. Therefore, the data type of phone_number would be
VARCHAR(15).
You may wonder whether storing the passwords as plain text using
VARCHAR would introduce a security problem. Of course it will! We will
address security-related challenges in chapter 7. For now, VARCHAR is
good enough.

Data types 89

When you identify all the data types of the attribute, you can put the
data type to the right of the attribute to complete your design of the
user entity:

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_ name VARCHAR(50)

last_ name VARCHAR(50)

phone_ number VARCHAR(15)
address VARCHAR(255)

In case you have difficulty estimating a reasonable character limit for a
VARCHAR attribute, always ask the domain experts or developers follow-
up questions. When you don’t have access to them, at least consult
ChatGPT. A question like the following can help you learn a lot:

What’s the maximum length of common names?``

Now let’s turn our focus to the product entity. The following figure
shows the sample data for the product entity:

"Atomic Nose Hair Trimmer", "Trim your nose ...", "Mad Inventors Inc.", ...,
"https://hosting.photobucket.com/images/n627/....jpg"

"Selfie Toaster", "Get your face on ...", "Goofy Gadgets Corp", ...,
"https://hosting.photobucket.com/images/n631/....jpg"

"Cat-Poop Coffee", "The only coffee made", "Absurd Accessories", ...,
"https://hosting.photobucket.com/images/n627/....jpg"

name description manufacturer

photo

From the sample data, you can tell that all four attributes are strings.
VARCHAR is good enough for the name and manufacturer attributes.
But you can expect product descriptions and photo URLs to be long
strings—especially product descriptions. To be safe, you can assign
TEXT to the description attribute. Considering that the photo URLs

Chapter 4 I Entities and attributes90

won’t be unreasonably long, you can stick to VARCHAR but declare a
length that can accommodate URLs up to 1,000 characters. The updated
product entity looks like this:

product

i

code
name VACHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price
cost
nventory_ quantity

Lost in translation: Character sets
In every database you design and implement, you need to make a big
decision about the tables, columns, and data in it. That decision is which
character set to use for a database, and it’s better to make it early than late.

A character set is a set of rules determining how characters are represented
and stored in a database. You can think of a character set as being a set
of guidelines that a database system follows to handle letters, numbers,
symbols, and other characters from various languages and scripts.

Why do you need to decide on a character set for a database? Think about
human languages around the world; different languages use different letters
and characters. English uses the letters A, B, C, and so on, whereas Chinese
uses characters that look very different. Different character sets support
different languages. There are character sets for Latin-based languages (such
as Latin1), as well as character sets for internationalization and multilingual
content (such as UTF-8). When you design a database, it’s important to
choose a character set that aligns with the languages and symbols you’ll be
working with to ensure data accuracy and compatibility.

You typically decide on the character set when you create a database is
created, which is why it’s best to make the decision early. Some RDBMS may
not allow you to change the character set, and even if you can, changing
character sets can be complex and may result in data loss or corruption.

Data types 91

What about the other entities? Feel free to pause reading and try to
identify and define their string attributes. If you are pressed for time,
here are the declared string attributes for all entities:

user

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_ name VARCHAR(50)
last_ name VARCHAR(50)
address VARCHAR(255)
phone_ number VARCHAR(15)

product

i

payment_ method

name VARCHAR(30)
card_ number
expiry_ date

billing_ address VARCHAR(255)

review

purchase

code
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price
cost
nventory_ quantity

review_ id
review_ text TEXT
review_ time

payment_ id

purchase_ id
total_ price
purchase_ time
product_ price
product_ quantity

Integers: Number your way to success
Before you can use integer data types fluently, you need to learn a little
bit about them.

TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT

The most common types of integer data are TINYINT, SMALLINT, INT,
and BIGINT. These data types allocate a fixed number of bytes based
on a power of 2 and are 1, 2, 4, and 8 bytes, respectively. Also, these
data types have different minimum and maximum values, which vary
depending on whether they are set up as signed or unsigned.
In some database systems, an unsigned number doesn’t have a + or –
sign associated with it. In other words, an unsigned number cannot be
negative. By contrast, a signed number can be negative. The ranges of
the four integer types, signed and unsigned, are shown in the following
figure.

Chapter 4 I Entities and attributes92

TINYINT

SMALLINT

INT

BIGINT

signed

unsigned

signed

unsigned

signed

unsigned

signed

unsigned

0 to 255

-128 to 127

0 to 65,535

-32,768 to 32,767

0 to 4,294,967,295 (~4 billion)

-2,147,483,648 to 2,147,483,647 (~2 billion)

-263 to 263 - 1

0 to 264

:
:
:

:
:
:

:
:

As you can see, TINYINT can hold a maximum value of 255 as unsigned
but only 127 as signed. INT can accommodate a maximum value as
4,294,967,295 as unsigned, which is big. But if you have a numeric
attribute with a data value that can be bigger than 4 billion, you need
the help of BIGINT.

Identify integer attributes in our database

Now that you have learned the basics of integer data types, you are
ready to identify the attributes for which integer data types are a good
fit in our database.
To complete this task, you will follow the same procedure you used
to identify string attributes. Start by examining the requirements and
sample data that you got from the requirements-gathering phase; then
identify the integer attributes and choose an appropriate integer data
type for each attribute.
First, focus your attention on the ID attributes. Numeric IDs are stable,
unique, simple, and efficient. Following this logic, you can declare the
payment_id attribute as an integer attribute, for example. You need to
decide among the different types of integer data types, of course. It is
self-evident that TINYINT is too small and thus not a good fit. If you
aim to build a super online store that sells products across the galaxy,
SMALLINT is also too small and not a good fit. BIGINT would work
well and is big enough. But you can comfortably settle on INT because
INT is big enough for now and yields comparatively better database
performance. (The fewer bytes are used, the faster the SELECT query
will be, for example.) Although whether an integer attribute is signed or
unsigned is rarely reflected in an entity-relationship (E-R) diagram, you

Data types 93

still need to make that choice. All primary keys have no reason to have
negative values, so they are unsigned.

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_ name VARCHAR(50)
last_ name VARCHAR(50)

phone_ number VARCHAR(15)
address VARCHAR(255)

product

name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price
cost
inventory_ quantity

payment_ method

name VARCHAR(30)
card_ number
expiry_ date

billing_ address VARCHAR(255)

product_ price
product_ quantity

review

review_ text TEXT
review_ time

purchase

total_ price
purchase_ time

code

review_ id INT

payment_id INT

purchase_ id INT

Most integer attributes in our database are easy to identify, but there are
two tricky cases: the payment_method entity and the code attribute
in the product entity. Here is the payment_method entity in the
requirements-gathering phase:

"master card", 5260405254103227, 0227, ...

"boa visa", 3169596072241198,1225, ...

"amex", 1677288846463190, 1129, ...

name card_number expiry_date

The values of both card_number and expiry_date seem to be
integers in the sample data, but we recommend that you define them
as strings instead of integers. This case is one in which you have to
sacrifice storage efficiency for clarity, practicality, and correctness.
Because no mathematical operations are performed on information
such as debit/credit card numbers and expiry dates, you don’t need
to make the values integers. What’s more, making them integers will
cause unnecessary problems because a card number or expiry date
may have leading zeros. In numerical data types, the leading zeros are
eliminated, so such information would not be stored correctly. As a

Chapter 4 I Entities and attributes94

result, you should define the data type of card numbers as CHAR(16)
and expiry_date as CHAR(4), where 16 is the number of digits: all
debit/credit cards have 16 digits, and 4 is the number of digits in every
expiry date.
You may wonder whether it’s safe to store payment information, such as
card numbers, as plain text. Nope. We will revisit the data types of these
three attributes in chapter 7, which examines database security. For
now, plain-text payment information is good enough when you are still
learning about data types.
Your next challenge is the code attribute in the product entity. The
product code is based on the Universal Product Code (UPC), unique
12-digit numbers assigned to each product sold in stores and online.

For the same reasons (leading zeros), it is more appropriate to define
the data type of code as a string than as an integer. Because all UPC
values have the same length, 12 digits, we can define the code attribute
as CHAR(12).
You can identify other integer attributes and define their data types
the same way. You should think about the maximum practical value
of giving an integer attribute a specific integer type. This approach will
help keep your database small and efficient in the long run. Here’s what
the remaining integer attributes look like for all entities:

Data types 95

payment_method

purchase

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
billing_address VARCHAR(255)

purchase_id INT
total_price
purchase_time
product_price
product_quantity INT

product

review

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price
cost
inventory_quantity INT

review_id INT
review_text TEXT
review_time

user

email varchar(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
address VARCHAR(255)
phone_number VARCHAR(15)

Float like a butterfly, decimal like a data queen
In the preceding section, you may have noticed that we did not assign
an integer data type to the price attribute of the product entity. You
may wonder what data types are more appropriate for this attribute and
others like it. The answer is decimals. Before you can use decimal data
types fluently, you need to learn a little bit about them.

Floating-point vs. fixed-point data types

You have two choices for declaring a decimal attribute: floating-
point types and fixed-point types. Common floating-point data types
include FLOAT and DOUBLE. FLOAT is typically 32-bit, and DOUBLE
is typically 64-bit. In other words, DOUBLE can accommodate bigger
numbers. FLOAT and DOUBLE are used widely when accuracy is not
strictly required, as in sensor reading, statistical analysis, and physical
simulation. When accuracy is required to the extent that you should
care about every decimal value, you should avoid the FLOAT and
DOUBLE data types due to the need for finite precision and the potential
for rounding errors.
Suppose that you have a database that keeps track of money exchanges
through different currencies for its users. (Handling other people’s
money is fun.)

Chapter 4 I Entities and attributes96

If you want to convert 1,000,001 USD to EUR with an exchange rate
of 0.83, rounding errors in a 32-bit floating-point operation may result
in 830000.8125. This result is about 1.75 euro cents less than it should
be. This difference may not seem like much, but users of such a system
will lose money for no reason, especially frequent users and those who
transfer huge amounts of money.

$1,000,001
$1 x 0.83€ Actual: 830000.83

32-bit Float: 830000.8125
Error: -0.0175

Now that you have a rough idea of what we mean by accuracy, let’s
define the word formally before moving further. Accuracy means
specific requirements for precision and scale. Precision refers
to the total number of significant digits, and scale refers to
the number of digits stored to the right of the decimal point.
Consider the number 12.3456: its precision is 6, and its scale is 4.
When accuracy is required, you should think about fixed-point data
types such as DECIMAL and NUMERIC. There are no real differences
between DECIMAL and NUMERIC in many RDBMSs, such as MySQL and
PostgreSQL. In such cases, you can use either data type. If you are not
sure whether the RDBMS you use falls into this category, refer to its
documentation or check with ChatGPT.

Identify decimal attributes in our database

Now that you know the basics of decimal data types, you are ready to
identify the decimal attributes in our database. To complete this task,
you will follow the same procedure that you used to identify string and
integer attributes. To identify the decimal attributes in the product
table, for example, take a look at the sample product data:

"Atomic Nose Hair Trimmer", "Trim your nose ...", "Mad Inventors Inc.", 19.99, 9.99, ...

"Selfie Toaster", "Get your face on ...", "Goofy Gadgets Corp", 24.99, 15.02, ...

"Cat-Poop Coffee", "The only coffee made", "Absurd Accessories", 29.99, 21.85, ...

name description manufacturer price cost

Do you see the values for the price and cost attributes? They
represent money. In other words, they require accuracy, so you should

12 . 3456

Scale

Precision

Here: 4

Here: 6

Data types 97

think about using DECIMAL. For money, it makes sense for the scale
to be 2 because that’s the smallest unit of money (cents). In larger
monetary operations, a higher scale may be necessary to accommodate
for roundoff operations. All our products sell for less than $1,000, so
precision can comfortably stay as 7:

DECIMAL(7, 2)

99999.99

Up to 2 digits
on the right

Up to 5 digits
on the left

decimal point

Scale: 2Precision: 7

Therefore, you define the data type of both the price and cost
attributes as DECIMAL(7, 2), where 7 specifies the precision and 2
specifies the scale. You can update your design of the product entity
accordingly:

product

code
name VACHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_ quantity INT

You can apply the same steps to identify decimal attributes in other
tables—essentially any other attributes that are money-related,
such as the product_price and the total_price attributes in
purchase. If you worry that a single transaction may lead to a large
bill, you can increase precision for the total_price attribute, such as
DECIMAL(13, 2). The following figure shows the updated design of all
the entities.

Chapter 4 I Entities and attributes98

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)

phone_number VARCHAR(15)
address VARCHAR(255)

product

name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

payment_method

name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
billing_address VARCHAR(255)

product_price DECIMAL(7, 2)
product_quantity INT

review

review_text TEXT
review_time

purchase

total_price DECIMAL(13, 2)
purchase_time

code CHAR(12)

review_id INT

payment_id INT

purchase_id INT

Temporal data types: Time flies when you’re
querying
In the preceding section, you may have noticed that we did not assign any
data types to the review_time attribute of the review entity. You may
wonder what data types are appropriate for this attribute and others like
it. The answer is temporal data types, which belong to the last group of
data types you learned about in this chapter. Before you can use temporal
data types fluently, you need to learn a little bit about them.

DATE, TIME, DATETIME, and TIMESTAMP

Most database systems support some temporal data types, such as
DATE, TIME, DATETIM , and TIMESTAMP. Although implementations of
such data types vary across RDBMSs, here are some key points that are
consistent across most systems and can help you determine which one
to use:

•	 Use DATE when a date needs to be stored without any time
information, such as birthday data. The date '1980-05-15'
represents May 15, 1980, for example.

•	 Use TIME when only time needs to be stored. If you want to track the
time at which events occur during the day, you can use the TIME data
type. The time '14:30:00' represents 2:30 p.m., for example.

Data types 99

•	 Use DATETIME when both date and time information need to be
stored to represent historical time, future events, or other instances in
which the time zone is an inherent part of the time and should not be
adjusted.

•	 Use TIMESTAMP to record the exact moment of an event that needs
to be consistent across time zones, such as log timestamps, record
creation, and modification times. Typically, the RDBMS handles the
conversion of time zones in TIMESTAMP data automatically.

If you are designing a database for an application whose users are
strictly local, such as an ordering system for a restaurant, you don’t
need to worry about time-zone problems. But if you are building
an application that might be used around the globe, you may
wonder whether the time-zone data will be stored as part of the
temporal data attributes. Regardless of the specifics of the RDBMS,
you should consider storing date and time values in Coordinated
Universal Time (UTC) because it ensures consistency and prevents
problems with Daylight Saving Time changes, different time zones,
and traveling users.
UTC is like a big clock that everyone agrees to follow. It’s the same
time for everyone, no matter where they are. If you live in Seattle, and
your friends in Beijing want to let you know their local time without
explicitly giving you the exact time, they can say “Our local time is
UTC plus 8 hours.” You can not only calculate their local time but also
compare their time with yours because you know how your local time
compares with UTC. That said, any web or mobile applications can
calculate local time given a UTC time.

Chapter 4 I Entities and attributes100

Identify attributes representing date and time in our database

Now you are ready to identify the attributes that represent date and time
in our database. To complete this task, follow the same steps you used
to declare data types in earlier sections. You start by referring to sample
data you collected in the requirements-gathering phase. In this case,
however, you may find the task trivial because the attributes related
to date and time have self-revealing names (that is, time is part of the
name).
Two attributes are related to date and time: the review_time attribute
in review and the purchase_time attribute in purchase. During the
requirements-gathering phase, you learned that both attributes require
date and time information because they represent exact moments of
some events that need to be consistent across time zones. Thus, you can
declare the data type of both attributes as TIMESTAMP.
Also, you learned that you need to track the last time a user accessed
the online store by adding another TIMESTAMP attribute to the user
entity and naming it last_login_time. With all these updates, here is
another version of the updated entities:

product payment_method

review

purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
billing_address VARCHAR(255)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT

review_id INT
review_text TEXT
review_time TIMESTAMP

user

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
address VARCHAR(255)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

So far, you have successfully identified the data types of all the
attributes. Take another look at your masterpiece. You did a great job!

Recap 101

Inconsistencies of data types across RDBMSs
Like it or not, there are inconsistencies of data types across RDBMSs. The
data types that you have learned are common across RDBMSs, but you
need to learn about exceptions and particularities in individual systems.
The entities and attributes you developed in this chapter are perfect for
MySQL, MariaDB, and PostgreSQL, but you will need to make small or
big adjustments for other RDBMSs for the following reasons:

•	 In SQLite, it is common to use TEXT in place of TIMESTAMP.

•	 Oracle uses NUMBER in place of INT and DECIMAL and VARCHAR2
in place of TEXT.

•	 SQL Server uses NVARCHAR(MAX) in place of TEXT and DATETIME2
or DATETIMEOFFSET in place of TIMESTAMP.

You can find such information in the GitHub repository that accompanies
this book.

Recap
•	 Designing an entity requires

identifying all its attributes, the
primary key, and the data types of
all attributes.

•	 A primary key should be able
to identify each row in a table
uniquely. Depending on your case,
you may need a primary key to
prevent redundancies. If no candidate key is available or a
good fit, you can always create a numeric attribute and use it
as the primary key.

•	 Common data types in databases include string, integer, decimal, and
temporal. To decide which data type to use, think about what job a
data type is good for as well as the demands of your particular case.

Chapter 4 I Entities and attributes102

•	 Given an attribute, to identify its data type, you need to examine the
sample data and the information collected during the requirements-
gathering phase, identify the proper data-type group (such as string),
and choose the best fit within that group (such as TEXT) based on the
maximum allowed values or spaces derived from your requirements
analysis.

•	 Using proper data types ensures that a database stores data efficiently
and meets the demands of data querying.

103

5

In this chapter

•	 You establish relationships between entities.

•	 You identify the cardinality of each relationship.

•	 You decide whether to represent some entities as
weak entities.

Relationships

What you need to know
You can find the database design covered in this chapter implemented
in tools commonly used by practitioners, such as dbdiagram.io and
MySQL Workbench, in the GitHub repository (https://github.com/
Neo-Hao/grokking-relational-database-design). You can navigate to the
chapter_05 folder and follow the instructions in README.md to load the
database design into corresponding tools.

The data types that show up in this chapter apply to most relational
database management systems (RDBMSs), such as MySQL, MariaDB, and
PostgreSQL. If you use another RDBMS, such as SQL Server or SQLite, you
may need to make small modifications to the design by replacing certain
data types with equivalents specific to the target RDBMS. You can find such
information in README.md in the chapter_05 folder.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

Chapter 5 I Relationships104

Overview
In this chapter, you will develop your entity-relationship (E-R) diagram
for The Sci-Fi Collective’s online store by establishing relationships
among entities you identified in chapter 4. By doing so, you will
learn important database design concepts, such as cardinality and
dependency.

Entity-relationship diagrams
E-R diagrams are graphical representations of entities and their
relationships in a database. E-R diagrams are not only visual tools but
also documents that describe database structures and rules. Over the
years, these diagrams have become a universal design language among
database designers.
An E-R diagram is typically composed of boxes representing the
entities and lines representing the relationships among the entities. The
diagram depicts the data structure (also known as the data schema) but
not the data. In an E-R diagram, a table with millions of records is still
represented as a single entity. The E-R diagram that you will develop by
the end of this chapter looks like this:

Entity-relationship diagrams 105

user
product

payment_method

review

purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)

email VARCHAR(320)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT
email VARCHAR(320)
payment_id INT

review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

user_address

purchase_product

purchase_id INT
code CHAR(12)

email VARCHAR(320)
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)

billing_address

payment_id INT
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)

Chapter 5 I Relationships106

This diagram uses Information Engineering notation, commonly
known as Crow’s Foot notation; we will briefly cover other notation
types later in the chapter. If you are designing a database for a
sophisticated application, you may need multiple E-R diagrams to
describe its structure fully. For The Sci-Fi Collective’s online store, one
E-R diagram is good enough.
Now that we have introduced E-R diagrams, let’s start developing the
diagram for The Sci-Fi Collective. We are not starting from scratch
because we developed a set of entities in chapter 4, but we haven’t
represented the relationships of those entities yet. In the next few
sections, you will learn more about relationships between entities and
take on the task of establishing relationships among entities for The
Sci-Fi Collective.

Connect related entities
Now is the perfect moment to reflect on and revisit all that you have
accomplished so far. In chapter 4, you established all the entities as
follows:

product payment_method

review

purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
billing_address VARCHAR(255)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT

review_id INT
review_text TEXT
review_time TIMESTAMP

user

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
address VARCHAR(255)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

Connect related entities 107

In chapter 3, you went over the requirements-gathering phase and
collected useful information that pertains to the relationships among
the preceding entities. You copied this information:

•	 A user can make multiple purchases; an order can be made by only
one user.

•	 A user can review multiple products as long as the user bought those
products; a product can be reviewed by multiple users.

•	 A user can maintain multiple payment methods; a payment method
can be associated with only one user.

•	 A purchase can have more than one product; a product can show up in
multiple orders.

In an E-R diagram, you use a line to connect every pair of two entities
that are related. To establish relationships between two entities, you will
identify every relationship and connect every pair of related entities
using lines.

Your first step in connecting entities is synthesizing the information
you gathered and the design of entities. Your goal is to generate a list
of simple sentences composed only of subjects, verbs, and objects. The
sentences will help you understand the relationships between every pair
of entities. As you designed entities, you may have introduced changes
that conflicted with the gathered information. You designed a review

Chapter 5 I Relationships108

entity, for example, but it didn’t appear as a noun in the information
you gathered. To reconcile such conflicts, think about whether it
makes sense to keep the review entity. If so, adapt the synthesized
information accordingly:

•	 A user makes purchases.
•	 A user writes reviews.
•	 A product has reviews.
•	 A user maintains payment methods.
•	 A purchase contains products.

Next, map this summary to a diagram. The nouns in every sentence
represent entities. If two nouns connected by some verbs show up in
one sentence, the two entities are+ likely to be related. You may go
through a few iterations of trial and error when mapping the summary
to a diagram because of possible inaccuracy and misinterpretation.
When you draw an entity in your draft E-R diagram, you can skip the
attributes for now because they don’t matter yet and listing all of them
is tedious. Based on the preceding summary, you will develop the
following draft diagram:

payment_method purchase

user review product

When you generate a draft diagram, you should test every relationship
against the information you gathered and the sample data you collected.
Also, take the draft diagram to the stakeholders and explain your design
rationale to them because it is likely that you made some mistakes or
neglected something critical in your first few iterations. The software
developers of The Sci-Fi Collective, for example, will point out that an
online purchase can’t be performed without a payment method. Based

Cardinality 109

on the new information, you need to answer the following question
before revising the draft diagram:

Should payment_method be related to purchase?

Without the payment method information, an online order can’t be
finished, and the online store can’t bill its users. In other words, each
purchase record needs to be mapped to a corresponding payment
method. Therefore, a relationship between payment_method and
purchase makes sense. With this question answered, add one more
relationship:

newly added

payment_method purchase

user review product

In the next two sections, you will learn more about the characteristics of
a relationship between two entities, which will empower you to develop
the draft diagram further.

Cardinality
Cardinality is an important characteristic of a relationship between two
entities, describing the number of instances of one entity that can be
associated with a single instance of another entity via the relationship.
Based on that definition, cardinality is classified into several types, each
of which is represented differently in an E-R diagram.
To complete your E-R diagram, you need to analyze the information
you collected from the requirements-gathering phase, identify
the cardinality of each relationship, and update the draft diagram
accordingly.

Chapter 5 I Relationships110

Direction and representation
If you consider directions, a relationship between two entities can be
broken into two directional relationships. In a banking system, for
example, user and account are two entities, and their relationship(s)
can be summarized using two sentences:

•	 Sentence 1—A user has zero, one, or more accounts.
•	 Sentence 2—An account is associated with one and only one user.

Sentences 1 and 2 represent two different directional relationships
between user and account. In both sentences, the direction flows
from the subject to the object:

Sentence 1:
A user has zero, one, or more
accounts.

Sentence 2:
An account is associated with
one and only one user.

user account

user account

Direction: from user to account

Direction: from account to user

Given a directional relationship from A to B,
cardinality describes the number of instances of B
with which a single instance of A can be
associated. Cardinality is represented by two
graphic symbols on the relationship line between
A and B. The symbols are used in pairs to
represent the cardinalities. The symbol on the
inner side represents the minimum instance
number of B that a single instance of A needs to be
associated with—the min cardinality. The symbol
on the outer side represents the maximum
instance number of B that a single instance of A
needs to be associated with—the max cardinality.
As you see in the preceding figure, to represent the
cardinality of the relationship from A to B, you place the
two symbols closer to B on the relationship line. In this
example, the individual symbols represent quantities. You
need to know the symbols for zero, one, and many, shown
in the figure to the right.

A B

min cardinality

max cardinality

B A

min cardinality

max cardinality

Same as:

inner side:

outer side:

one

zero

many

Cardinality 111

Cardinality notation: Complicated relationships
with math symbols
There are several ways to notate the cardinality of a relationship. The two
most popular are Chen notation and Crow’s Foot notation. Chen notation
has historic significance. Crow’s Foot notation is simpler and more popular
among professionals. In this book, we will stick to Crow’s Foot notation.

user review1 N
Chen notation

Crow's Foot notation

user review

How do you represent the relationship cardinalities of the example you
saw at the beginning of this section—the relationship between the user
and account entities in a banking system?

•	 Sentence 1—A user has zero, one, or more accounts.
•	 Sentence 2—An account is associated with one and only one user.

The two sentences represent two directional relationships; they also
contain the information you need to establish their cardinalities.
Because a user is associated with zero, one, or more accounts, the min
cardinality is zero, and the max cardinality is many for the relationship
from user to account. Similarly, an account is associated with one and
only one user, which means that both the max and min cardinalities for
the relationship from account to user are one.

A user has zero, one, or more
accounts.

An account is associated with
one and only one user.

Sentence 1:

Sentence 2:

user account

user account

user account

min cardinality

max cardinality

Chapter 5 I Relationships112

As you see in the preceding figure, you can merge the two directional
relationships and use a single line to represent both. The cardinality
symbols closer to account represent the cardinality of the relationship
from user to account, whereas the symbols closer to user represent
the cardinality of the relationship from account to user.
Now you know what cardinality is and how to represent it in E-R
diagrams, you will learn about three common cardinality types and
apply what you learn to develop the draft E-R diagram further.

One-to-one: A perfect match
In a one-to-one relationship, each record in one entity is related to up
to one record in the other entity. One-to-one refers primarily to the max
cardinality of both directional relationships. The min cardinalities could
be either zero or one.

A

one-to-one
relationships

A

A

B

B

B

A B

Given a one-to-one relationship, if both of the two min cardinalities are
ones, one of the min cardinalities is typically converted to zero for easy
implementation.
Consider an example. In the database of a large corporation, both
departments and managers are represented, and their relationship
is as follows:

•	 A department has one and only one manager.
•	 A manager works for one and only one department.

Cardinality 113

You can represent such a relationship in an E-R diagram as follows:

A department has one
and only one manager.

A manager works for one
and only one department.

department manager

min cardinality: 1

max cardinality: 1

min cardinality: 1

max cardinality: 1

This representation is theoretically solid but impossible to implement.
To link the two entities, you need help from foreign keys. If the two
entities in the preceding figure have attributes, you need to place
foreign keys in both tables because each department is associated with a
manager and each manager is associated with a department:

department

department_id
name

manager_id
size

manager

manager_id
name
service_years

foreign keys

department_id

Such an implementation is problematic for data entry or insertion.
When the two tables are created, they don’t contain data, so you need
to start populating the tables by entering department or manager
information. If you enter a department record first, its manager data
won’t be available yet. The foreign key constraints you put in place cause
SQL to complain and reject the data entry. If you switch the order and
enter manager information first, you face the same problem. In such
a situation, you can relax one of the two min cardinalities from one to
zero to make implementation possible. You can modify the relationship
between department and manager as follows:

•	 A department has zero or one manager.
•	 A manager works for one and only one department.

Chapter 5 I Relationships114

The representation and implementation are updated accordingly:

A department has zero or one manager.

A manager works for one and only one department.

department manager

department

department_id
name

department_id
size

manager

manager_id
name
service_years

foreign key

As you see in the preceding figure, the min cardinality can indicate
where to place the foreign key in a one-to-one relationship. Given
a directional relationship from table A to table B, if the minimum
cardinality is zero, not every instance of table A must have a
corresponding record in table B. In this case, you typically place
the foreign key in table B. This change enables data entry. In this
case, table A is department, and table B is manager.
Now you know what one-to-one relationships are, it’s time to work
on the E-R diagram of The Sci-Fi Collective.

Identify one-to-one relationships in your database

Based on the information you gathered in the requirements-gathering
phase, you don’t have a one-to-one relationship between the entities
that you’ve identified. But some new information about users’ addresses
that you learned in the iterative process propels you to redesign your
user entity. What is the problem? A user’s address might look like this:

20 Baldwin Rd, Shelter Island, New York, 11964

The data analysts of The Sci-Fi Collective need to filter users’ data
based on city, state/province, or zip code to conduct targeted marketing
analysis from time to time. Storing users’ address information in a
VARCHAR attribute will make such a task difficult. To address this
problem, factor the address information into a different entity with
multiple attributes:

Cardinality 115

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)

phone_number VARCHAR(15)
last_login_time TIMESTAMP

user_address

street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)

address_id INT

address VARCHAR(255)

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

As you can see, most of the attributes of this new entity (user_
address) are of a string data type. You need to decide whether to
assign CHAR or VARCHAR and their possible max lengths. To simplify
the solution, assume that The Sci-Fi Collective operates only within
the United States. This assumption will make it easier to determine the
maximum lengths of all the string attributes. The state attribute, for
example, can be assigned VARCHAR(20). North Carolina and South
Carolina are among the longest state names (14 characters each).
To be safe and accommodate any possible future changes, you can
set the VARCHAR length 6 characters longer than 14. Or you can
assign CHAR(5) to the postal_code attribute if you opt for the five-
digit format.
Now that you have successfully converted the address attribute to a
new entity, user_address, let’s focus on the relationship between user
and user_address. Here is the new information you gathered from
the developer of The Sci-Fi Collective’s online store:

•	 A user may not have an address when they first register an account,
but a user must have one and only one address before making a
purchase.

•	 An address is associated with only a single user.

Chapter 5 I Relationships116

Based on this information, you can easily determine the min and max
cardinalities of the two directional relationships (from user to user_
address and from user_address to user), and represent the merged
relationship accordingly:

A user may not have an address
when ... registers an account, but a
user has to have one and only one
address before making a purchase.

max cardinality: 1

min cardinality: 0

user user_address

An address is associated only
with a single user.max cardinality: 1

min cardinality: 1

Is this relationship one-to-one? Yes. You may notice that the
representation is similar to the example featuring departments and
managers earlier in this chapter.
The representation of the relationship between user and user_
address requires the help of a foreign key. As you learned in the
preceding section, the min cardinality can indicate where the foreign
key should be placed. In the directional relationship from user to
user_address, the min cardinality is zero. Thus, you place the foreign
key in the user_address entity:

user_address

street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)

address_id INT

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP email VARCHAR(320)

Now you know what a one-to-one relationship is and how to represent
it, you should also know that one-to-one relationships are the rarest
type because few one-to-one relationships exist in real life.

Cardinality 117

One-to-many: A love triangle
One-to-many relationships are the most common cardinality type. As
in one-to-one relationships, one-to-many refers primarily to the max
cardinalities. If two entities are related, one directional relationship has
the max cardinality of one, and the other has the max cardinality of many.

A

one-to-many
relationships

A

A

B

B

B

A B

As you saw in the preceding section, if both min cardinalities are
ones in one relationship, data entry will be problematic when the
representation is implemented. In such a case, you typically relax the
min cardinality of the many side from one to zero:

A

A

B

B

relax to

Let’s deepen your understanding of a one-to-many relationship by
looking at a real example, the relationship between the user and
review entities in the draft diagram of The Sci-Fi Collective:

review

review_text TEXT
review_time TIMESTAMP

review_id INT

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

Chapter 5 I Relationships118

From the requirement-gathering phase and your follow-up inquiry on
the relationship between the two entities, you managed to put together
the following information:

•	 A user can write zero to many reviews.
•	 A review can be written by one and only user.

You can visualize this relationship as follows:

Based on this information, you can determine the min and max
cardinalities of the two directional relationships (from user to review
and from review to user), and represent the merged relationship
accordingly:

A user can write zero to many reviews.
max cardinality: many
min cardinality: 0

user review

A review can be written by one
and only user.max cardinality: 1

min cardinality: 1

Categorizing relationships by cardinality has implications for where to
place the foreign key, especially in one-to-many relationships. In a one-
to-many relationship, the foreign key needs to be placed on the many
side—the entity that the crow’s foot (à) points to.

Cardinality 119

Why should the foreign key be placed on the many side of a one-
to-many relationship? The many side may have multiple rows that
correspond to one row on the one side via the foreign key. If you insist
on putting the foreign key on the one side, the one side will need an
extra row for each additional record from the corresponding many side,
which is not possible.
In our case, the many side is the review entity. The foreign key in the
review entity should be the primary key of the user entity. You can
update the review entity accordingly:

review

review_text TEXT
review_time TIMESTAMP

review_id INT

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

email VARCHAR(320)

Identify one-to-many relationships in our database

Now you know what one-to-many relationships are, and you have
updated the relationship between user and review entities in the draft
diagram. You can apply your new knowledge by identifying other one-
to-many relationships and updating them in the draft diagram of The
Sci-Fi Collective. Start by reviewing the information you gathered on
other relationships:

•	 A user can make multiple purchases. A purchase can be made by only
one user.

•	 A user can maintain multiple payment methods. A payment method
can be associated with only one user.

•	 [new] A payment method can be associated with multiple purchases.
A purchase is associated with one payment method.

•	 A purchase can have more than one product. A product can show up
in multiple purchases.

Chapter 5 I Relationships120

You can easily determine that the product and purchase relationship
shouldn’t fall into the one-to-many basket because if you examine its
two directional relationships, neither has the max cardinality of one.
Similarly, it’s not difficult to identify the user and purchase
relationship as one-to-many because one of its two directional
relationships has the max cardinality of one (from purchase to
user) and the other has the max cardinality of many (from user
to purchase). There is some ambiguity about the min cardinality
from user to purchase, however, because a user can make multiple
transactions. But what does can mean? After following up with the
stakeholders, you learn that the relationship is optional. Think about
when you browse an online store for an hour without buying anything.
In other words, the min cardinality is zero. Update the user and
purchase relationship as follows:

A user can make zero to
many purchases. max cardinality: many

min cardinality: 0

user purchase

A purchase can be made
by only one user.max cardinality: 1

min cardinality: 1

Next, insert a foreign key on the many side to establish this relationship
fully:

purchase

total_price DECIMAL(13, 2)
purchase_time TIMESTAMP

purchase_id INT

product_price DECIMAL(7,2)

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

product_quantity INT

email VARCHAR(320)

Cardinality 121

The relationships are one-to-many between user and payment_
method and between purchase and payment_method. Follow the
same steps to update them:

payment_method

name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
billing_address VARCHAR(255)

payment_id INT

purchase

total_price DECIMAL(13, 2)
purchase_time TIMESTAMP

purchase_id INT

product_price DECIMAL(7,2)

user

username VARCHAR(30)
email VARCHAR(320)

password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

product_quantity INT

email VARCHAR(320)
email VARCHAR(320)
payment_id INT

As you can see, you have two sets of relationships going from payment_
method to user; one set goes through the purchase entity, and the
other is direct. This representation can lead to problems, which we will
address in chapter 6.

Many-to-many: The more, the merrier

The last cardinality type you will learn is the many-to-many
relationship. Like the other two types of relationships, many-to-many
refers primarily to max cardinalities. If two entities are related, the max
cardinality of both directional relationships is many, as shown in the
following figure.

Chapter 5 I Relationships122

A

many-to-many
relationships

A

A

B

B

B

A B

Note: many-to-many relationships are
typically not represented as below.

The preceding figure may help you grasp many-to-many relationships,
but many-to-many relationships are represented differently. In general,
a many-to-many relationship is represented as two one-to-many
relationships with the help of a junction table, as we’ll demonstrate in
an example.
If you design a database for a bookstore application, you need to store
all the information about authors and books in two separate tables.
You know that an author can write many books and a book can have
multiple authors.

You know that this relationship is many-to-many as soon as you
identify the max cardinalities of the two directional relationships:

Cardinality 123

An author can write many books
max cardinality: many
min cardinality: 1

author book

A book can have multiple
authorsmax cardinality: many

min cardinality: 1

To represent this relationship properly, you need to go one step further
by making a junction table that contains only the primary keys of the
two involved entities: author and book. Also, you must convert the
many-to-many relationship to two one-to-many relationships between
the junction table and both entities. You can represent this many-to-
many relationship as follows:

An author can
write many books. max cardinality: many

min cardinality: 1 A book can have
multiple authors.max cardinality: many

min cardinality: 1

book

title
cover

book_id

author

author_id

author_id
name

address

book_id

author_book

author

author_id
name

address

book

title
cover

book_id

As you see, the junction table, author_book, contains only the primary
keys from the author and book entities. In this junction table, the
book_id and author_id attributes together serve as a composite
primary key. It’s worth noting that the crow’s feet always point to the
junction table. The author and book entities become indirectly related
via the junction table.

Chapter 5 I Relationships124

Composite primary keys: The ultimate
combination in databases
A composite primary key is a primary key in a relational database that
consists of two or more attributes that together uniquely identify each row
in a table. Unlike a primary key based on a single column, a composite
primary key requires multiple columns to form a unique identifier for each
record.

You must use a composite primary key when a single column cannot
guarantee uniqueness for each row but a combination of multiple columns
does. This type of key is commonly used when a table has a many-to-many
relationship with another table or no simple key can uniquely identify a row
in the table.

Now you have two one-to-many relationships whose min cardinalities
are all ones. As you saw earlier in this chapter, given such a one-to-
many relationship, you need to relax the min cardinality on the many
side from one to zero so that you won’t face problems in data entry
when you implement such a representation.

book

book_ id
title
cover

author

author_ id
name
address

book_ id
author_ id

author_ book

book

book_ id
title
cover

author

author_ id
name
address

book_ id
author_ id

author_ book

You may wonder why you can’t simply insert a foreign key into both the
entities in a many-to-many relationship. Well, representing a many-to-
many relationship this way leads to data redundancy and difficulties
in querying and modifying data. If you represent the author and
book relationship this way, the data-redundancy problem jumps out
immediately:

Cardinality 125

book

title
cover

book_id

author

author_id

author_id

name
address
book_id

author_id name address book_id

Connie Willis3
Connie Willis3

2
4

...
...
...

...

...

book_id title cover author_id

Redshirts2
Redshirts2

1
3

...
...
...

...

...

Bad practice
Data redundancy

If an author wrote multiple books, the same author information has to
occupy multiple rows in the author table even if they are redundant:
different books have different book_id values, and book_id is the
foreign key in the author table. Similarly, if a book has multiple
authors, the information for the same book has to occupy multiple rows
in the book table: different authors have different author_id values,
and author_id is the foreign key in the book table. When the time
comes to implement the two tables, having redundant primary key
values, such as author_id in the author table, is impossible. Thus,
simply inserting a foreign key into both tables involved in a many-to-
many relationship is not viable.

Cardinality yoga: Learning to flex with zeros
The default min cardinality is often set to one. But you need to relax the min
cardinalities from one to zero sometimes to enable data entry from time to time:

•	 In a one-to-one relationship, if one entity is typically created before the
other, you might set the minimum cardinality of the second entity to zero
to allow the first entity to exist without an immediate counterpart.

•	 In a one-to-many relationship, you can relax the cardinality that’s closer
to the many side to allow for cases in which the entity on the one side
might exist without corresponding entries on the many side. A customer
might exist without any addresses, for example.

Chapter 5 I Relationships126

(continued)
•	 In a many-to-many relationship, the minimum cardinalities are often set

to zero on both sides if either entity can exist without the other. If there
are strict business rules on the order of their existence, you might keep
one of the two min cardinalities as one.

These rules of thumb may not always hold, depending on business rules and
requirements, but you can still use them to identify three relationships with
min cardinalities that require further examination.

Identify many-to-many relationships in your database

The draft diagram of The Sci-Fi Collective has one more relationship
that you haven’t worked on yet. This relationship is between the
purchase and product entities:

A purchase can have more than one product. A product can show up
in multiple purchases.

After following up with the stakeholders for clarification, you see that a
product doesn’t necessarily need to show up in a purchase record, but a
purchase record has to be associated with at least one product:

purchase

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7,2)
product_quantity INT
email VARCHAR(320)
payment_id INT

product

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7,2)
cost DECIMAL(7,2)
inventory_quantity INT

Based on this information, it is easy to identify this relationship as
many-to-many and to determine the max and min cardinalities:

Cardinality 127

A purchase can have one or
many products. max cardinality: many

min cardinality: 1

purchase product

A product can show up in
zero to many purchases.max cardinality: many

min cardinality: 0

To represent this many-to-many relationship, make a junction table
that contains only the primary keys from the purchase and product
entities, and convert the many-to-many relationship to two one-to-
many relationships:

A purchase is associated
with one or many products. max cardinality: many

min cardinality: 1

A product can show up in
zero to many purchases.max cardinality: many

min cardinality: 0

product

purchase code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT
email VARCHAR(320)
payment_id INT

purchase_product

purchase_id INT
code CHAR(12)

You may notice that the min cardinalities of the relationship between
purchase and purchase_product are both one. To prevent problems
with data entry when this representation is implemented, you should
relax the min cardinality closer to the purchase_product side from
one to zero, as shown in the following figure.

Chapter 5 I Relationships128

product
purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT
email VARCHAR(320)
payment_id INT

purchase_product

purchase_id INT
code CHAR(12)

After all your updates to the draft E-R diagram, it looks like this:

user product

payment_method

review

purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
billing_address VARCHAR(255)
email VARCHAR(320)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT
payment_id INT
email VARCHAR(320)

review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

user_address

purchase_product

purchase_id INT
code CHAR(12)

address_id INT
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)
email VARCHAR(320)

Strong and weak entities 129

Strong and weak entities
Strong and weak entities are another characteristic of a relationship
between two entities. This characteristic may come handy for refining
E-R diagrams. In this section, you will learn about strong and weak
entities and apply what you’ve learn to refine the E-R diagram of The
Sci-Fi Collective.
At their core, strong and weak entities involve a dependency relationship
between two entities. Given two related entities, if one is strong and the
other is weak, the strong entity can exist on its own, but the weak entity
cannot exist without the strong entity. In other words, weak entities
cannot be uniquely identified by their attributes alone.
Let’s try to understand strong and weak entities better via an example.
Suppose that you are designing the database for a movie theater’s web
application and need to represent the relationship between movies
(movie) and tickets (ticket). Between movie and ticket, movie
is the strong entity because movie can exist independently in the
database. By contrast, ticket is the weak entity because it depends on
movie to identify each of its instances. The following figure depicts this
relationship:

movie

movie_id
title
genre
director

ticket

movie_id
seat_number

price

Partial keys

Composite key

Strong entity Weak entity

room_number
time

Typically, the primary key of the weak entity is a composite key that
combines its own attribute(s) and the primary key of the related
strong entity. As you see in the preceding figure, ticket uses a
composite key composed of movie_id and other attributes. movie_
id is the primary key in the movie entity, and the other attributes
distinguish different tickets to the same movie. Such attributes are also
known as partial keys.

Chapter 5 I Relationships130

It is worth noting, however, that strong and weak entities can always
be converted to two strong entities. If tickets need to be managed
independently for reselling and refund purposes, for example, you can
convert ticket to a strong entity:

movie

movie_id
title
genre
director

ticket

movie_id

seat_number

price foreign key

Strong entity Strong entity

room_number
time

But what you should do if you have two entities that can be identified
as both strong and weak? Should you identify them as strong and weak
entities or treat them as two strong entities? The answer depends on a
variety of factors, such as business demands, data representation and
maintenance, and performance. If both options are possible, always
choose the one that makes E-R diagrams simpler and less susceptible to
bad data. As you apply this new knowledge to refine the E-R diagram of
The Sci-Fi Collective further, you will see several examples that involve
deciding whether to identify two entities as strong and weak entities.

Identify strong and weak entities in your database
In the E-R diagram of The Sci-Fi Collective, several entities fit the
definition of weak entities, such as review and payment_method. You
can see the review entity, for example, as a weak entity that depends on
the existence of user and product:

user product

payment_method

review

purchase

user_address

product
_purchase

Possible weak entities

Strong and weak entities 131

When you consider whether to convert a strong entity to a weak one,
you should ask whether the decision will simplify the database design
or improve data accuracy. If the answer is no, you should stay put. You
could convert review, for example, to a weak entity that depends on
user and product. But doing this means you need to start using a
composite primary key in the review entity, which doesn’t introduce
any benefits but can lead to increased storage and slower query
performance because composite primary keys require wider indexes
and slower index lookup. As a result, you shouldn’t convert review to a
weak entity.

user productreview

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
...

review_id INT
email VARCHAR(320)
code CHAR(12)
review_text TEXT
review_time TIMESTAMP

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
...

Composite primary keys require bigger storage.

Composite primary keys can lead to slower queries.

Following the same logic, you can tell that converting payment_
method or purchase to weak entities is a bad idea. What about
the purchase_product table? You can’t change anything about
purchase_product because it is already a weak entity. The
purchase_product table is a junction table that you created to
link purchase and product in a many-to-many relationship, and all
junction tables are weak entities by nature. In this case, purchase and
product are strong entities. As the weak entity, purchase_product
uses a composite primary key composed of the primary keys of the
two strong entities.
The user_address table turns out to be your only opportunity to
apply your knowledge of strong and weak entities in refining the
draft diagram. Your current design treats user_address as a strong
entity that uses address_id as the primary key to identify each

Chapter 5 I Relationships132

of its instances and email as the foreign key to maintain the link
between user_address and user. If you convert user_address to
a weak entity, its primary key will become email, and the foreign
key will be gone. Why? The user and user_address entities are
in a one-to-one relationship, and email is good enough to identify
each instance of user_address. As a result, you no longer need
a composite primary key. Converting user_address to a weak
entity makes sense because it eliminates a foreign key constraint and
simplifies your design.

user

username VARCHAR(50)
email VARCHAR(320)

last_login_time TIMESTAMP

user_address

street_address VARCHAR(255)
address_id INT

... ...

Two strong entities:

user

username VARCHAR(50)
email VARCHAR(320)

last_login_time TIMESTAMP

user_address

street_address VARCHAR(255)

email VARCHAR(320)

...
...

Strong and weak entities:

a foreign key constraint

email VARCHAR(320)

After you convert user_address to a weak entity, your E-R diagram
looks like this:

Strong and weak entities 133

user product

payment_method

review

purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)

billing_address VARCHAR(255)
email VARCHAR(320)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT
payment_id INT
email VARCHAR(320)

review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

user_address

purchase_product

purchase_id INT
code CHAR(12)

email VARCHAR(320)
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)

When you take a closer look at other tables and columns, you notice
that payment_method contains a column, billing_address, that
represents the billing address of a payment method. The relationship
and nuances between a payment method and billing address are the
same as between a user and user address. In other words, you need
a table to fully represent the billing address the same way that you
modeled user_address. Following the same logic, you can use a table

Chapter 5 I Relationships134

called billing_address to represent billing addresses. billing_
address is a weak entity, and its corresponding strong entity is
payment_method. After you incorporate this change, your E-R diagram
looks like this:

user
product

payment_method

review

purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)

email VARCHAR(320)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
product_price DECIMAL(7, 2)
product_quantity INT
email VARCHAR(320)
payment_id INT

review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP

user_address

purchase_product

purchase_id INT
code CHAR(12)

email VARCHAR(320)
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)

billing_address

payment_id INT
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
state VARCHAR(20)
postal_code CHAR(5)

Recap 135

Give yourself a pat on the back: you have successfully wrapped up a
round of data modeling by developing and refining your E-R diagram.
Great job!

Recap
•	 Relationships are the binding

glue between entities. The
representations of relationships
are informed by information
from the requirements-
gathering phase and further
analysis.

•	 To represent relationships in
an E-R diagram, you typically
go through a three-step process: establishing relationships, identifying
the cardinality of each relationship, and identifying potential weak
entities and determining whether they should be converted to weak
entities.

•	 Cardinality is an important characteristic of a relationship between
two entities. Cardinalities come in three flavors: one-to-one, one-
to-many, and many-to-many. Different flavors of cardinalities are
represented differently, and the flavor has implications for where the
foreign key is placed.

•	 In a one-to-one relationship, both the max cardinalities are one,
represented by two bars. The foreign key connecting the two entities
can be placed on either side.

•	 In a one-to-many relationship, the max cardinalities of the two
directional relationships are one and many. Many is represented by
the crow’s foot. The foreign key should be placed on the many side
indicated by the crow’s foot.

•	 In a many-to-many relationship, both the max cardinalities of the
two directional relationships are many. Representing a many-to-
many relationship requires creating a junction table between the
two entities and converting the relationship to two one-to-many
relationships between each entity and the junction table. The junction
table contains the primary keys of both entities.

Chapter 5 I Relationships136

•	 Strong and weak entities are another characteristic of a relationship.
If two entities can be represented as strong and weak entities, you
need to decide whether to do so, depending on whether such a
representation makes the E-R diagram simpler and the database
more efficient.

•	 A weak entity uses the primary key of its corresponding strong entity
as part of its composite primary key. Other than that, a weak entity is
not represented differently in Crow’s Foot notation.

137

6

In this chapter

•	 You normalize your database design.

•	 You implement your database design.

•	 You learn important concepts such as using
constraints and cascade.

Normalization
and implementation

What you need to know
You can find the database design covered in this chapter implemented in
tools commonly used by practitioners, such as dbdiagram.io and MySQL
Workbench, in the GitHub repository (https://github.com/Neo-Hao/grokking-
relational-database-design). You can navigate to the chapter_06 folder
and follow the instructions in the README.md file to load the database
design into corresponding tools.

You can also find the SQL scripts corresponding to the almost-finalized
database design for different relational database management systems
(RDBMSs), including MySQL, MariaDB, PostgreSQL, SQLite, SQL Server,
and Oracle.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

Chapter 6 I Normalization and implementation138

Overview
In this chapter, you will normalize and implement your database
design for The Sci-Fi Collective. By doing so, you will learn about
important concepts in database design, such as functional dependency,
normalization, and constraints.

Normalization
Before converting your database design to a SQL script that creates the
corresponding database and tables, you need to normalize your design.
This critical step in database design is known as normalization.
Normalization is the process of organizing a database in a way that
minimizes redundancy and dependency while maximizing data
integrity and consistency. In other words, we break the database into
smaller, more manageable tables, each table representing a single entity
or concept. The primary goal of normalization is to strengthen data
integrity. Although you have worked toward this goal in the preceding
chapters, you are about to kick your work up a notch.

Normalization 139

You will use normal forms to guide the normalization process. There are
multiple normal forms, including the First Normal Form (1NF), Second
Formal Form (2NF), Third Normal Form (3NF), and Boyce-Codd
Normal Form (BCNF). The relationship among these normal forms is
hierarchical and sequential in database normalization. Each form builds
on the preceding one. Being the smallest nesting doll of these four
normal forms, BCNF has all the characteristics of the other three.

Have a primary key

Have no multivalued
columns

All nonkey columns are
dependent on the primary
key (in its entirety).

In 1NF

BCNF

3NF

2NF

1NF

In 2NF

No nonkey columns are
transitively dependent
on the primary key.

In 3NF

All columns are dependent only
on a key and nothing else.

Chapter 6 I Normalization and implementation140

Superkeys, candidate keys, and primary keys
Do you remember what they are? The coverage of different types of keys
goes back to chapter 4.

A superkey is a set of one or more columns of a table that can uniquely
identify a row in the table, but it may contain columns that are not required
to uniquely identify a row. A candidate key is a minimal superkey, which
means that it is a superkey with no unnecessary columns. Of all the
candidate keys in a table, one is chosen as the primary key. The following
figure summarizes the relationships among the three types of key:

primary key

candidate key

superkey

In practice, when all your tables are in BCNF, you can consider your
database fully normalized. A table in BCNF is already in 1NF to 3NF
and has the following characteristics:

•	 It has a primary key.
•	 It has no multivalued columns.
•	 All columns are dependent on a key but nothing else.
•	 It contains no transitive dependency.

You will find detailed definitions of these characteristics in the
following sections and use them as the guidelines to normalize the
database design of The Sci-Fi Collective. A table that doesn’t meet one,
two, or any guidelines may cause problems such as update and deletion
anomalies. Remember attempting to combine product and customer
data into one table in chapter 1?

Normalization 141

product_id name price manufacturer

Atomic Nose ...

Selfie Toaster

Mad Inventors Inc.19.99

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

1

2

3 Absurd Accessories

...

9 The Infinite ...

10 The Neuralyzer

9.99

33.55

Silly Supplies Co.

Silly Supplies Co.

......

customer_id customer_name customer_email quantity

a1

b2

a1

j8

p9

Bob

Bob

Dave

John

Katy

bob@gmail.com

dave@outlook.com

bob@gmail.com

john@123.net

katy@123.net

5

15

2

1

2

...

Normal forms: Crazy nesting dolls
You may wonder whether normal forms can go beyond BCNF. Yes! Fourth
Normal Form (4NF), Fifth Normal Form (5NF), and even Sixth Normal
Form (6NF) have been proposed and discussed in the theoretical framework
of database normalization.

4NF, 5NF, and 6NF build on previous normal forms, and each form targets
increasingly specific, less common design problems. 4NF addresses multivalued
dependencies, for example, and 5NF eliminates redundancy caused by join
dependencies that are not covered by 4NF. 6NF is largely theoretical.

4NF, 5NF, and 6NF are beyond the scope of this book. If you want a quick
introduction to them, grab a textbook on databases (such as Database System
Concepts, 7th ed., by A. Silberschatz, H. F. Korth, and S. Sudarshan [McGraw-
Hill Education, 2019]) or make the following request of ChatGPT:

Give me an introduction to 4NF, 5NF, and 6NF, using plain
language and examples.

Chapter 6 I Normalization and implementation142

There is always a primary key
A table in BCNF should always have a primary key. Do you see
primary keys everywhere in the entity-relationship (E-R) diagram you
developed in chapter 5? Great! That means each table follows the first
simple guideline of BCNF.
What if you have a table that doesn’t have a primary key? Well, you need
to stop and identify the primary key of that table before going any further.

There are no multivalued columns
A table in BCNF should have no multivalued columns. What is a
multivalued column? Think about a table named course_registration
that represents students taking a variety of courses. The course column is a
multivalued column. Each course record holds multiple values.

student_id student_name course

124 Jacob Jeff Math, Biology, Physics

178 Brian Don Biology, Computer science

Tina Cloude249 Computer science, Math

Multivalued column

A string; courses
separated by commas

The multivalued columns lead to problems such as difficult querying, data
redundancy, inconsistency, and anomalies. You can easily spot a course
repeated in different rows in course_registration, for example.

Who decides whether something
is multivalued?
In a relational database, a table represents a single entity or a concept about
which information is stored. A column in a table represents a specific
attribute of the entity or concept that the table describes. Each column
has a distinct name and a data type that defines the kind of data it stores.
You may wonder who decides whether something should be considered a
single concept, entity, or attribute. The answer is the users of the application
supported by the database.

Normalization 143

Determining whether a column is multivalued is based on the standards
of users. In a table of an e-commerce database, for example, you would call
out a column that represents phone numbers and stores multiple phone
numbers per row as a multivalued column because each phone number
represents a value that’s undividable to users. Dividing a phone number
into an area number and subscriber number makes no sense to any users of
the database. As another example, you won’t consider a column in the same
database that stores single email addresses per row a multivalued column
because users don’t care about dividing an email address into a username
and domain name.

Overall, user requirements decide the purposes of databases, which in turn
decide whether a column is multivalued.

To fix such a problem, you typically need to redesign the multivalued
column so that it holds only a single value in each row. Often, you need
to move that multivalued column to a new table to prevent redundancy
and other problems. To fix course_registration, for example,
you limit the course column to hold a single course per row. But
you can’t repeat the same student_id values in different rows of the
original table because it’s the primary key. You need to break course_
registration into two tables, one holding student information and
the other holding course registration information:

student_id student_name course

124 Jacob Jeff Math, Biology, Physics

178 Brian Don Biology, Computer science

Tina Cloude249 Computer science, Math

student_id student_name

124 Jacob Jeff

178 Brian Don

Tina Cloude249

student_id course

124 Math

124 Biology
124 Physics

... ...
249 Math

Chapter 6 I Normalization and implementation144

Does your database design have you have any tables containing
multivalued columns? Nope. When you mapped each entity to a table,
you didn’t attempt to use a column to hold more than one value. If you
do, you will fix such problems in a similar manner.

All columns are dependent on a key but nothing else
All columns of a table in BCNF should be functionally dependent on a
key. To understand this requirement, you need to understand functional
dependency.
Think about how functions work in any programming language.
Suppose that you have a function, power(x), that takes x as the only
input and returns its power as the output. Given the same input x,
the function power(x) always returns the same output. The input
functionally determines the output.
Now let’s switch our attention to a table. In a table, given a value of
column A, if there is always a unique corresponding value of column
B, column A functionally determines column B—that is, column B is
functionally dependent on column A. In the following table, which
represents employees, employee_name is functionally dependent on
employee_id. In other words, knowing the value of employee_id
can help you determine the value of employee_name. This functional
dependency can be expressed as follows:

employee_id → employee_name

employee_id

101
102
103
104

employee_name

John
Emily
Mike
Sarah

Functional dependency is directional. In the preceding figure,
employee_id functionally determines employee_name. It doesn’t
mean, however, that employee_name functionally determines
employee_id. The value of employee_name can’t be used to determine
the value of employee_id. Think what would happen if two different
employees had the same name.

Normalization 145

Now that you know what functional dependency is in the context of
relational databases, look at this BCNF requirement again:

A table in BCNF should have all its columns functionally dependent on
a key but nothing else.

You may wonder why we say “dependent on a key” without specifying
“primary key.” There is a fine-grained difference, and edge cases exist. In
most cases that you’ll deal with in practice, however, you don’t need to
worry about it and can relax this requirement to the following:

A table in BCNF should have all its columns functionally dependent on
the primary key but nothing else.

Toward a deeper understanding of BCNF
A deep understanding of BCNF and all other normal forms is helpful in
normalization (before they drive you crazy). Edge cases, which are good
opportunities to deepen your understanding, are beyond the scope of this
book, but it doesn’t hurt to list them:

1.	Table R has three columns, a, b, and c. The primary key of R is (a, b). If c
is functionally dependent on a, R is not in 2NF, let alone 3NF or BCNF.

2.	Table R has five columns, a, b, c, d, and e. The primary key of R is (a, b,
c). d and e are functionally dependent on (a, b, c). If c is functionally
dependent on d, R is in 3NF but not in BCNF.

3.	Table R has five columns, a, b, c, d, and e. R has two candidate keys, (a, b)
and (c, d). The primary key is (a, b). If e is functionally dependent only
on (c, d), R is still in BCNF.

Before your head explodes, rest assured that you’ll rarely need to deal with
case 2 or 3.

In other words, if you find a table with one or more columns that are
not functionally dependent on the primary key, the table must be
normalized. How? You break the table into two or more tables, each
table containing only the columns that are dependent on the primary.
Depending on the relationship between the two new tables, you may
link them via a foreign key.
We’ll demonstrate this process with an example. Imagine a product
table designed by a novice designer:

Chapter 6 I Normalization and implementation146

product_id

1224

3378

2549

product_name

Stardust

Time Machine

Magic Wand

supplier_name

Brewlux

TimeCo

Magico

supplier_contact

555-0123

555-0456

555-0789

category

kitchen

utility

utility

It may seem logical to include supplier contact information alongside
product details for convenience. But the column supplier_contact
is functionally dependent only on supplier_name. In other words, the
product table contains two functional dependencies:

product_id → product_name, supplier_name, category
supplier_name → supplier_contact

To fix this problem, you need to remove the columns that are not
determined by the primary key of the product table. Where do they
fit in? A new table. The supplier_contact column is functionally
dependent on supplier_name. If the two columns are in one table
that represents suppliers, they fully meet the requirement of functional
dependency. If each supplier can be identified by a unique ID, you can
even use this piece of information as the primary key of this new table,
and it will naturally become the foreign key in the product table that
links product and supplier:

supplier_contact

product

product_name
supplier_name

product_id

product

product_name
category

product_id

supplier_name

supplier

supplier_id

category

supplier_id

supplier_contact

Normalization 147

Normalize your database design
When you check the design of The Sci-Fi Collective’s database against
the requirement that all columns be functionally dependent on the
primary key, you need to examine every table, including purchase:

product_price DECIMAL(7, 2)
product_quantity INT

purchase

total_price DECIMAL(13, 2)
purchase_time TIMESTAMP

purchase_id INT

payment_id INT

Undoubtedly, many columns are functionally dependent on the
primary key, including total_price, purchase_time, payment_id,
and email. If you think about what goes into a receipt, you see that
knowing the value of purchase_id is equal to having a receipt, which
determines the values of total_price and purchase_time:

#

Chapter 6 I Normalization and implementation148

From this example receipt, you can tell that each purchase involves
multiple products with different quantities and prices. Product
quantities (product_quantity) and prices (product_price) are
functionally determined by a combination of purchase ID (purchase_
id) and product code (code). The product code (code) isn’t in the
purchase table. That said, you have two functional dependencies in
this table:

product_id → total_price, purchase_time, payment_id, email
purchase_id, code → product_quantity, product_price

Because of the two functional dependencies, this table violates BCNF.
When you start adding data to the purchase table, you see how tricky
the problem is. Adding the data of a receipt to the purchase table, for
example, is a mission impossible:

purchase_id

1335
1335
1335
1335
...

total_price

12
12
12
12
...

purchase_time

01 01 2023 00:00:00
01 01 2023 00:00:00
01 01 2023 00:00:00
01 01 2023 00:00:00

...

product_id

1
2
3
4
...

product_price

5
3
2
2
...

...

...

Impossible Redudancy

All come from the same receipt.

You can’t repeat the values of the primary key. Even if you could, you
would still face redundancy problems in other columns, such as total_
price and purchase_time.
To fix this problem, move the columns that are not functionally
dependent on the primary key to a new table. In this case, product_
quantity and product_price are functionally dependent on the
combination of purchase_id and code. But neither purchase_id nor
code can functionally determine product_quantity or product_
price alone:

•	 purchase_id does not functionally determine product_quantity
or product_price. Each purchase can include multiple products
with different quantities and prices.

Normalization 149

•	 code does not functionally determine product_quantity or
product_price in the context of a purchase. The same product
can be sold in different quantities and at different prices in various
purchases.

Luckily, you already have a junction table, purchase_product, that
connects purchase and product. The junction table uses the combo
of purchase_id and code as its primary key. Moving product_
quantity and product_price to the purchase_product table is like
killing two birds with one stone. With this change, both purchase and
purchase_product meet the requirement of functional dependency:

product
purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)

photo VARCHAR(1000)
price DECIMAL(7, 2)

cost DECIMAL(7, 2)
inventory_quantity INT

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
payment_id INT
email VARCHAR(320)

purchase_product

purchase_id INT

code CHAR(12)

product_price DECIMAL(7, 2)
product_quantity INT

Moved from purchase table

You may be tempted to eliminate product_price from the
purchase_product table because you can always retrieve a product’s
price from the product table. But it’s best not to do that. Over time,
the price of a product may change due to factors such as inflation or
market competition. If you rely on only the product table to retrieve
product prices, you may lose the data required to put together a
receipt from several months ago. For the same reason, you should add
a product name column to the purchase_product table. After all,
nothing should lead to changes in a receipt—not even product name
changes.

Chapter 6 I Normalization and implementation150

product
purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)

photo VARCHAR(1000)
price DECIMAL(7, 2)

cost DECIMAL(7, 2)
inventory_quantity INT

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP

payment_id INT

email VARCHAR(320)

purchase_product

purchase_id INT

code CHAR(12)

product_quantity INT

product_price DECIMAL(7, 2)
product_name VARCHAR(100)

Keep a receipt the same.

There is no transitive dependency
A table in 3NF should have no transitive dependency. Transitive
dependency occurs when something depends on something else that
depends on yet another thing; it’s like a chain of things that need
one another to work. In the context of database design, transitive
dependency means that a nonkey column is functionally dependent
on another nonkey column, which in turn is functionally dependent
on a key of the table. The core concept of a transitive dependency is
that one nonkey column’s value depends on another through a chain of
dependencies, which is ultimately dependent on a key.

A B C X...

primary key nonkey columns

A table representing employees has the following columns and
functional dependencies:

employee_id → department_id → department_name

department_name

employee

employee_name
department_id

employee_id

Normalization 151

The primary key of the employee table is employee_id. In this
table, department_name is dependent on department_id, and
department_id is dependent on employee_id. This chained
functional dependency is transitive dependency.
Transitive dependency is problematic. If a table contains transitive
dependency, it leads to all kinds of problems, such as data redundancy
and insertion/update/deletion anomalies. Updating a department name
in the preceding employee table properly means updating all the
department_name values in every row:

employee_id

125

... department_id department_name

30 finance

137 30 finance

189 39
finance260 30

marketing

310 42 IT

redundant

requires updating
all at once

What should you do with a table containing transitive dependency?
Break the table into two or more tables, each table containing columns
that are directly dependent on a key and dependent only on that key.
Depending on the relationship between the two new tables, you may
link them via a foreign key. If you stick to this principle, break the
employee table into two tables as follows:

department_name

employee

employee_name
department_id

employee_id

employee

employee_name
department_id

employee_id

department_name

department

department_id

Chapter 6 I Normalization and implementation152

The department table contains the nonkey columns that are involved
in the transitive dependency, with the department_id as its primary
key. The new employee table contains only the columns that are
directly dependent on employee_id and dependent only on it,
including the foreign key department_id. A foreign key is always
directly dependent on the primary key because each row has a unique
combination of the primary key and foreign key.

Normalize your database design: A cycle involving
three tables
A transitive dependency may be hard to spot without a deep understanding
of the data, requirement analysis, and some sample data. Your purchase
table, for example, uses two foreign keys, email and payment_id, to
maintain its relationships with the payment_method and user tables:

user

payment_method purchase

payment_id INT

name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
email VARCHAR(320)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
payment_id INT
email VARCHAR(320)

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

last_login_time TIMESTAMP

Normalization 153

Without question, in the purchase table, all other non-primary-key
columns are dependent on the primary key, including the foreign
keys.
If you look beyond the purchase table, however, you notice
something unexpected: the two foreign keys in the purchase table,
payment_id and email, have a dependency relationship. From
the payment_method table, you see that email is a foreign key
that helps maintain the relationship between payment_method
and user. As in the purchase table, the foreign key (email)
is dependent on the primary key (payment_method). When
you consider this new piece of information, you see a transitive
dependency in purchase:

payment_id emailpurchase_id

What we learn from the
payment_method table

What we learn from
the purchase table

In theory, you need only two relationships to connect three tables.
If you notice that you are using three relationships and that the
relationships are starting to look like a cycle in your E-R diagram, you
may have a transitive dependency somewhere.
Now that you have identified the transitive dependency, how do you fix
it? The principle is the same a table should contain only columns that
are directly dependent on the primary key and dependent only on it.
You can remove the email column from the purchase table to break
the direct relationship between the user and purchase tables, but
user is still related to purchase via payment_method, as shown in the
following figure.

Chapter 6 I Normalization and implementation154

user

payment_method purchase

payment_id INT

name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
email VARCHAR(320)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
payment_id INT

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

last_login_time TIMESTAMP

If normalization is your only concern, removing the link between the
user and purchase tables is a brilliant move. But it may not be the
best move if you are also concerned with other problems, such as query
speed and cost. We will revisit the relationship between the user and
purchase tables in chapter 7.
When you go through all other tables in your database design, you won’t
see other transitive dependency problems. That said, you have completed
all the steps to check each table against the 3NF requirements:

•	 It has a primary key.
•	 It has no multivalued columns.
•	 All columns are dependent on a key but nothing else.
•	 It contains no transitive dependency. (All its nonkey columns are

directly dependent on a key.)

Normalization 155

Your updated E-R diagram looks like this:

user product

payment_method

review

purchase

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)

photo VARCHAR(1000)
price DECIMAL(7, 2)

cost DECIMAL(7, 2)
inventory_quantity INT

payment_id INT

name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)

email VARCHAR(320)

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP

payment_id INT

review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

last_login_time TIMESTAMP

user_address

purchase_product

purchase_id INT
code CHAR(12)
product_price DECIMAL(7, 2)
product_quantity INT

product_name VARCHAR(100)

email VARCHAR(320)
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)

state VARCHAR(20)
postal_code CHAR(5)

billing_address

payment_id INT
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)

state VARCHAR(20)
postal_code CHAR(5)

Chapter 6 I Normalization and implementation156

Implementation
When you finish normalization, you are ready to implement your
database design. You learned how to create tables via SQL in chapters
1 and 2. With this knowledge, you may feel that you can translate your
database design into SQL with little to no effort. Your user table looks
like this in your E-R diagram:

user

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)

last_name VARCHAR(50)

phone_number VARCHAR(15)

last_login_time TIMESTAMP

Translating this design directly to SQL leads to the following code
snippet:

 -- comment: works for MySQL and MariaDB
 -- comment: see the code repo for other RDBMS
 CREATE TABLE user (
 email VARCHAR(320) PRIMARY KEY,
 username VARCHAR(30),
 password VARCHAR(20),
 first_name VARCHAR(50),
 last_name VARCHAR(50),
 phone_number VARCHAR(15),
 last_login_time TIMESTAMP
);

Is the job done? Nope. To implement a database design successfully, you
need to learn more about constraints and use that knowledge to make
decisions beyond the E-R diagram.
You saw the use of constraints in chapter 2 but haven’t been formally
introduced to them. Constraints are SQL rules applied to columns in
a table to ensure data accuracy and reliability. Constraints are used

Implementation 157

to enforce data integrity and can be established during or after table
creation. Are you worried that software developers may not follow
your database design when they develop the APIs? When you apply
constraints to your tables, they have to listen! Without constraints,
a database is like a toddler on a sugar high: chaotic and prone to
causing havoc.

In the following sections, you learn about common SQL constraints and
other design decisions that you need to make. We don’t strive to cover
all the constraints or SQL code required to implement the database.
If you want to see the full SQL script, refer to the GitHub repository
(https://mng.bz/4ao5).

NOT NULL: Can’t have null-thing to say
The NOT NULL constraint ensures that a
column does not accept NULL values in SQL.
In other words, when the NOT NULL constraint
is applied to a column, you have to provide a
value for that column. The NOT NULL constraint
can be handy for preventing problems in
data storage and analytics. As we stated in
chapter 1, a NULL value in SQL represents an
unknown value. Allowing NULL values for
columns may lead to unexpected behaviors
in SQL.

https://mng.bz/4ao5
https://mng.bz/4ao5

Chapter 6 I Normalization and implementation158

When do you need help from NOT NULL constraints? In most cases.
Although their use depends on the requirements and the data, NOT
NULL constraints are commonly applied in a wide range of scenarios.
Columns that contain critical information for business operations
(such as usernames, email addresses, or passwords) often have NOT
NULL constraints. As another example, legal or compliance reasons
force some columns to use NOT NULL constraints, such as date of birth
in an option-trading application. Also, when two tables are related, the
foreign keys may need NOT NULL constraints, depending on the nature
of the relationship. You learn more about how NOT NULL constraints are
used with foreign keys later in this chapter.
Do you have any columns that require NOT NULL constraints in the
database design of The Sci-Fi Collective? Yes. Many columns in your
database design contain critical data necessary for business operations.
Six columns in the user table fall into this basket: username, email,
password, first_name, last_name, and last_login_time.

user

username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)

last_name VARCHAR(50)

phone_number VARCHAR(15)

email VARCHAR(320)

last_login_time TIMESTAMP

NOT NULL

NOT NULL

As a result, you’ll add NOT NULL constrains to these columns. You can
do so by adding NOT NULL in the same code lines that define columns:

 -- comment: works for MySQL, MariaDB, and SQLite
 -- comment: see the code repo for other RDBMS
 CREATE TABLE user (
 email VARCHAR(320) PRIMARY KEY,
 username VARCHAR(30) NOT NULL,
 password VARCHAR(20) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 last_name VARCHAR(50) NOT NULL,
 phone_number VARCHAR(15),
 last_login_time TIMESTAMP NOT NULL
);

Implementation 159

You may notice that the primary key, email, doesn’t have the NOT NULL
constraint. The reason is that it already has the PRIMARY KEY constraint,
which implies a NOT NULL constraint and enforces it automatically. You
learn more about the PRIMARY KEY constraint in the following section.

Primary key: The one and only
As you already know, in a solid database design, every table has a
primary key. When such a design is translated to SQL, it is expressed as
the primary key constraint.
The primary key constraint ensures that no duplicate rows with the
same primary key exist in the same table. In addition, the primary key
constraint guarantees that no row with a NULL value in the primary
key column can be inserted into the table.

user

username VARCHAR(30)
password VARCHAR(20).

email VARCHAR(320)

..

email username password ...

mike.smith@gmail.com
alex.turner@music.com
omar.ali@fast.net
leizhang@yahoo.com

mike0309
aTurner
omaromar
lei1990

...

...

...

...

...
...
...

...

mike.smith@gmail.com, mike0909, ..., ...

All unique; no null values

NULL, tedCrazy0515, ..., ...

Insertion won't be allowed.Insertion won't be allowed.

The syntax of a primary key constraint is simple. You can add PRIMARY
KEY to the code line that defines the column:

 -- comment: works for MySQL, MariaDB and PostgreSQL
 -- comment: see the code repo for other RDBMS
 CREATE TABLE user (
 email VARCHAR(320) PRIMARY KEY,
 username VARCHAR(30) NOT NULL,
 password VARCHAR(20) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 last_name VARCHAR(50) NOT NULL,
 phone_number VARCHAR(15),
 last_login_time TIMESTAMP NOT NULL
);

Chapter 6 I Normalization and implementation160

If your database design is ongoing and there’s a chance that the primary
key may change, however, you want to name the primary key constraint
explicitly:

 -- comment: works for MySQL, MariaDB and PostgreSQL
 -- comment: see the code repo for other RDBMS
 CREATE TABLE user (
 email VARCHAR(320),
 username VARCHAR(30) NOT NULL,
 password VARCHAR(20) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 last_name VARCHAR(50) NOT NULL,
 phone_number VARCHAR(15),
 last_login_time TIMESTAMP NOT NULL,
 CONSTRAINT pk_user PRIMARY KEY (email)
);

The CONSTRAINT… clause allows you to name this constraint. The
PRIMARY KEY… statement creates the primary key constraint.

Naming constraints: A best practice
Naming constraints in SQL is not strictly required but is considered a best
practice for the following reasons:

•	 Named constraints communicate their purpose clearly, which improves
the readability of your database schema and makes it easier for anyone
who interacts with the database to understand the role of each constraint.

•	 When a constraint violation occurs, error messages include the name of
the constraint, which makes the messages more informative and allows
quicker identification of problems.

•	 If you don’t name a constraint, the SQL system will generate a name
automatically. Autogenerated names are often meaningless and vary from
one RDBMS to another, which may lead to confusion, especially when
you’re porting the database schema to a different system.

Certain constraints, such as NOT NULL and DEFAULT, are not always named.
These constraints usually are integral parts of column definitions and could
rarely be referenced separately; keeping them as part of column definition
may make SQL scripts easier to write and simpler to read. In the case of
other constraints, such as primary key and foreign key, if there is even a
small chance that you’ll need to restructure or migrate the database, you
had better keep them named.

Implementation 161

What if you have a composite primary key that is composed of more
than one column? You can define the primary key separately from
any individual column definition. In the E-R diagram of The Sci-Fi
Collective, the purchase_product table uses a composite primary key
composed of two columns, purchase_id and code. You can define this
primary key separately from individual column definitions as follows:

 -- comment: works for MySQL, MariaDB, and PostgreSQL
 -- comment: see the code repo for other RDBMS
 CREATE TABLE purchase_product (
 purchase_id INT NOT NULL,
 code CHAR(12) NOT NULL,
 product_price DECIMAL(7,2) NOT NULL,
 product_quantity INT NOT NULL,
 product_name VARCHAR(100) NOT NULL,
 CONSTRAINT pk_purchase_product
 PRIMARY KEY (purchase_id, code)
);

Foreign key: Playing Cupid
When two tables have a relationship, you use a foreign key to link them.
As you know, a foreign key is at least one column in a table that refers
to the primary key in another table. When a foreign key is translated to
SQL, it is typically expressed as the foreign key constraint.

The foreign key constraint enforces referential integrity. What is
referential integrity? Given a relationship between two tables, one table
contains the foreign key that references the primary key of the other
table. From chapter 2, you know that the table containing the foreign

Chapter 6 I Normalization and implementation162

key is called a child table, and the other table is called a parent table. If
you attempt to add a row to the child table but your foreign key value
doesn’t exist yet in the parent table, SQL would stop you and complain.
You have a one-to-many relationship between the user and review
tables in the E-R diagram of The Sci-Fi Collective, for example. In the
review table, email is the foreign key that links review to user. If the
foreign key constraint is implemented properly, SQL should stop you if
you try to add a review record with an email value that doesn’t exist
in user yet.

user

review

review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

last_login_time TIMESTAMP

INSERT INTO review VALUES
(111, 'Good product!', '2024-01-02T06:25:16.670Z', 'alex99@gmail.com');

Note: user table doesn't contain an email value as alex99@gmail.com.

ERROR 1452 (23000): Cannot add or update a child row:
a foreign key constraint fails (`scifi_collective`.`review`,
 CONSTRAINT `fk_user_review` FOREIGN KEY (`email`)
 REFERENCES `user` (`email`))

Implementing a foreign key constraint is similar to implementing a
primary key constraint. Your review table, for example, contains two
foreign keys that reference the user and product tables. You can define
and name the foreign key constraints when creating the review table:

 -- comment: works for MySQL and MariaDB
 -- comment: see the code repo for other RDBMS
 CREATE TABLE review (
 review_id INT PRIMARY KEY,
 review_text TEXT NOT NULL,

Implementation 163

 review_time TIMESTAMP NOT NULL,
 email VARCHAR(320) NOT NULL,
 code CHAR(12) NOT NULL,
 CONSTRAINT fk_user_review
 FOREIGN KEY (email) REFERENCES user(email),
 CONSTRAINT fk_product_review
 FOREIGN KEY (code) REFERENCES product(code)
);

Or you can define the foreign key constraints after the review table is
created:

-- comment: works for MySQL, MariaDB and PostgreSQL
-- comment: SQLite doesn’t support
-- comment: ALTER TABLE ADD CONSTRAINT
-- step 1: create the review table first
CREATE TABLE review (
 review_id INT PRIMARY KEY,
 review_text TEXT NOT NULL,
 review_time TIMESTAMP NOT NULL,
 email VARCHAR(320) NOT NULL,
 code CHAR(12) NOT NULL
);
-- step 2: add foreign key constraints afterward
ALTER TABLE review
 ADD CONSTRAINT fk_user_review
 FOREIGN KEY (email) REFERENCES user(email),
 ADD CONSTRAINT fk_product_review
 FOREIGN KEY (code) REFERENCES product(code)

In the same way that a primary key constraint is defined and named,
the CONSTRAINT… clause names a constraint, and the FOREIGN KEY…
REFERENCES… statement creates a foreign key constraint that enforces
referential integrity.
It is worth noting that when a relationship is mandatory, the foreign
key typically requires help from the NOT NULL constraint. When
the minimum cardinality of a directional relationship is one, that
directional relationship is considered mandatory. The relationship from
review to user in your database design, for example, is mandatory:
the min cardinality is one, which means that a review is associated with
at least one user. If you have a review record that doesn’t reference any
users in the user table, this row can’t be added to the review table.
That said, allowing email in review to accept NULL values makes no
sense because a NULL value of email doesn’t reference any users.

Chapter 6 I Normalization and implementation164

user

review

review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

A user is associated with
zero or many reviews.

A review is associated with
one and only one user.Mandatory:

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

last_login_time TIMESTAMP

Referential actions
In the preceding section, you learned that you can use foreign key
constraints to enforce one aspect of referential integrity: data insertion.
When someone tries to insert a row into a child table, but the foreign
key value in that row doesn’t reference anything in the parent table, the
foreign key constraint will stop the operation and raise a complaint.
Beyond data insertion, referential integrity cares about data deletion
and updating. When a row is removed from the parent table, how
should the corresponding rows in the child be handled? When a row’s
primary key value is updated in the parent table, what should happen to
the corresponding rows in the child table?

code name price manufacturer

Atomic Nose ...

Selfie Toaster

Mad Inventors Inc.19.99

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

20357

20468

30967 Absurd Accessories
.........

review_id codereview_text date

20357
20468

2023-...Great product ...

2023-......best thing ...
20357...not recommend
...

1
2

3 2023-...

.........

To delete

Product table (parent):

Review table (child): How should these
rows be handled?

1. Stop delete (default)
2. Cascade effect
3. Set to NULL

Implementation 165

You can handle such problems by respecting the default action, which
prevents you from updating or deleting a row in the parent table if there
are matching rows in the child table. To respect the default actions,
either do nothing or expand the foreign key constraint definitions with
the following statements:

 ON DELETE RESTRICT
 ON UPDATE RESTRICT

The ON DELETE line defines how to handle the corresponding rows
in the child table when a row is deleted in the parent table. The ON
UPDATE line defines how to handle the corresponding rows in the child
table when a row’s primary key is updated in the parent table. You
can also swap RESTRICT with NO ACTION, which has the same effect.
These clauses are known as referential actions, which are triggered
automatically when you update primary key values or delete rows in the
parent table.
The default action, RESTRICT (or NO ACTION) maintains the integrity
and consistency of the database by preventing you from deleting or
updating a parent table. But what if you need to delete some data or
update a primary key value in a parent table? To maintain the integrity
and consistency of the database, use a different type of referential
action, called CASCADE:

•	 CASCADE delete—If a row in the parent table is deleted, the
corresponding rows in the child table are automatically be deleted
if possible. This action ensures that no rows in the child table lack
corresponding rows in the parent table.

•	 CASCADE update—If a primary key in the parent table changes, the
corresponding foreign keys in the child table automatically update
with the new key value. This action ensures that the link between the
two tables is maintained without manual update operations.

The implementation of a CASCADE action is simple. You expand
your foreign key constraint definitions a bit to include two different
statements:

 ON DELETE CASCADE
 ON UPDATE CASCADE

You see the CASCADE effect in the child table whenever a row is deleted
or a row’s primary key is updated in the parent table.

Chapter 6 I Normalization and implementation166

code name price manufacturer

Atomic Nose ...

Selfie Toaster

Mad Inventors Inc.19.99

Goofy Gadgets Corp.24.99

Cat-Poop Coffee 29.99

...

20357

20468

30967 Absurd Accessories
.........

review_id codereview_text date

20357
20468

2023-...Great product ...

2023-......best thing ...
20357...not recommend
...

1
2

3 2023-...

.........

Product table (parent):

Review table (child):

2

2

Cascade effect

Delete

Delete

1

In a less common scenario, you may want to support the delete
operation in the parent table but preserve the corresponding rows
in the child table. A database that tracks company assets might have
two related tables, device and employee. If an employee leaves the
company and is removed from employee, it may be beneficial to retain
the corresponding rows in device because those devices still exist in
the company’s inventory. In such a scenario, you can use the help of
another type of referential action, SET NULL:

 ON DELETE SET NULL
 ON UPDATE CASCADE

With the help of SET NULL, all corresponding foreign keys in the child
table are converted to NULL, and data in other columns is retained
when a row is deleted in the parent table. The SET NULL action can be
handy when a relationship between two tables is nonessential or when
you need to retain the child rows for recordkeeping. But this action
may introduce problems, such as creating orphan rows or complicating
queries that expect non-null foreign keys down the road.
Do you have any relationships that need help from explicit referential
actions in the database design of The Sci-Fi Collective? Yes. The user
table, for example, is a parent table of other tables, including payment_
method. The email column is the primary key of the user table.

Implementation 167

user

username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

payment_method

name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)

payment_id INT
email VARCHAR(320)

last_login_time TIMESTAMP

email VARCHAR(320)

If The Sci-Fi Collective ever allows users to change their email addresses
or delete their accounts, many possible updates and deletions may
occur in the parent table. To maintain the integrity and consistency of
the database, you can opt for the CASCADE action, which is part of the
foreign key constraint in the payment_method table:

 -- comment: works for MySQL, MariaDB and PostgreSQL
 -- comment: see the code repo for other RDBMS
 CREATE TABLE payment_method (
 payment_id INT PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 card_number CHAR(16) NOT NULL,
 expiry_date CHAR(4) NOT NULL,
 email VARCHAR(320) NOT NULL,
 CONSTRAINT fk_payment_method_user
 FOREIGN KEY (email) REFERENCES user (email)
 ON DELETE CASCADE
 ON UPDATE CASCADE
);

Unique: Sorry, I’m taken
Unique constraints ensure that all values in a
column or a combination of columns are different.
If you have some nonkey columns that should all
contain unique values, you need to apply unique
constraints.
You need unique constraints when you have a
single column or a combination of nonkey
columns for which duplicate values make
no sense in the real world. Consider a table
containing a column that represents Social

Chapter 6 I Normalization and implementation168

Security numbers (SSN), which are unique nine-digit identifiers issued
by the U.S. government to track citizens’ earnings, taxes, and eligibility
for benefits. This column is a nonkey column. Each row in this table
represents a person, and it makes no sense for different people to
have the same SSN. In a scenario like this one, you need to use unique
constraints.
Your database design contains some nonkey columns that require
unique constraints. To identify these columns, rely on your
understanding of the requirements analysis. Your user table looks
like this:

user

username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)

last_name VARCHAR(50)

phone_number VARCHAR(15)

email VARCHAR(320)

last_login_time TIMESTAMP

The requirements analysis tells you that both the username and
phone_number columns need to hold unique values. Both columns are
be nonkey columns. As a result, you should add unique constraints to
these two columns and name them accordingly:

 -- comment: works for MySQL, MariaDB and PostgreSQL
 -- comment: see the code repo for other RDBMS
 CREATE TABLE user (
 email VARCHAR(320) PRIMARY KEY,
 username VARCHAR(30) NOT NULL,
 password VARCHAR(20) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 last_name VARCHAR(50) NOT NULL,
 phone_number VARCHAR(15),
 last_login_name TIMESTAMP NOT NULL,
 CONSTRAINT unq_username UNIQUE(username),
 CONSTRAINT unq_phone_number UNIQUE(phone_number)
);

Sometimes, you need to apply the unique constraint to a combination of
columns. Consider your product table:

Implementation 169

product

name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)

photo VARCHAR(1000)
price DECIMAL(7, 2)

cost DECIMAL(7, 2)
inventory_quantity INT

code CHAR(12)

If your requirements analysis says you need to ensure the uniqueness
of the combination of two pieces of information, the name and
manufacturer of a product, you need to apply the unique constraint to a
combination of the two columns:
 -- comment: works for MySQL, MariaDB and PostgreSQL
 -- comment: see the code repo for other RDBMS
 CREATE TABLE product (
 code CHAR(12) PRIMARY KEY,
 name VARCHAR(100) NOT NULL,
 description TEXT NOT NULL,
 manufacturer VARCHAR(100) NOT NULL,
 photo VARCHAR(1000) NOT NULL,
 price DECIMAL(7,2) NOT NULL,
 cost DECIMAL(7,2) NOT NULL,
 inventory_quantity INT,
 CONSTRAINT unq_name_manufacturer
 UNIQUE(name, manufacturer)
);

Default to awesome
You use the default constraint to set a default value for a column when
a new row is inserted into the table and no value is provided for that
column. The default constraint ensures that a column always has a
value, specified by either the user or the constraint.
You typically use the default constraint in the following situations:

•	 You have a column that stores timestamps, such as a column
representing when a row is created or modified.

•	 You have a numeric column on which you might perform
aggregation, such as a column representing the quantity or price.

•	 You have a column that is optional and can use the help of a
placeholder value.

Chapter 6 I Normalization and implementation170

Your database design has columns that could use default constraints.
Your purchase table, for example, has a purchase_time column that
stores timestamps:

purchase

total_price DECIMAL(13, 2)
purchase_time TIMESTAMP

purchase_id INT

payment_id INT

When a purchase is made online, a row of data is supposed to be
inserted into the purchase table. Instead of relying solely on the
software developers to do the right thing, you can lessen their burden
by setting the default value of purchase_time to the time when a row
of purchase data is added. The syntax of the default constraint is simple.
Add the DEFAULT value to the same line of your column definition, and
make sure to provide the proper target value:

 CREATE TABLE purchase (
 purchase_id INT PRIMARY KEY,
 total_price DECIMAL(13,2) NOT NULL,
 purchase_time TIMESTAMP NOT NULL
 DEFAULT CURRENT_TIMESTAMP,
 payment_id INT NOT NULL,
 CONSTRAINT fk_payment_method_purchase
 FOREIGN KEY (payment_id)
 REFERENCES payment_method(payment_id)
);

Two things in the preceding SQL snippet require explanation:

•	 Both NOT NULL and default constraints were added to the purchase_
time column. You may wonder whether the NOT NULL constraint is
still necessary, considering that the default value is already set. Well,
it is useful, especially if NULL values are problematic for that column.
The default constraint, after all, doesn’t prevent users from adding
NULL values.

•	 The default value was set to CURRENT_TIMESTAMP, which is a widely
supported function in most RDBMSs, including MySQL, MariaDB,
SQLite, and PostgreSQL. CURRENT_TIMESTAMP is commonly used to
obtain the current date and time.

Implementation 171

Clocking databases: Navigating UTC across
RDBMSs
In chapter 4, we recommended storing date and time values in Coordinated
Universal Time (UTC) because UTC ensures consistency and prevents
problems such as Daylight Saving Time changes and different time zones.

Does CURRENT_TIMESTAMP adopt UTC automatically? The answer
depends on the RDBMS you use. CURRENT_TIMESTAMP achieves what
you want in MySQL, for example, because the temporal data in MySQL is
stored in UTC by default. By contrast, TIMESTAMP comes in two flavors
in PostgreSQL. To get what you want in PostgreSQL, you need to specify
the data type of purchase_time as TIMESTAMP WITH TIME ZONE.
When you do, CURRENT_TIMESTAMP automatically stores temporal data
in UTC:

 -- PostgreSQL
 CREATE TABLE purchase (
 purchase_id INT PRIMARY KEY,
 total_price DECIMAL(13,2) NOT NULL,
 purchase_time TIMESTAMP
 WITH TIME ZONE NOT NULL
 DEFAULT CURRENT_TIMESTAMP,
 payment_id INT NOT NULL,
 CONSTRAINT fk_payment_method_purchase
 FOREIGN KEY (payment_id)
 REFERENCES payment_method(payment_id)
);

The TIMESTAMP data types also come in two flavors in PostgreSQL:

•	 TIMESTAMP WITHOUT TIME ZONE (TIMESTAMP is the same)

•	 TIMESTAMP WITH TIME ZONE

To enable time zones, you declare the data type of the target column as
TIMESTAMP WITH TIME ZONE. Otherwise, the data that you store in that
column will carry no time-zone information. This is one thing you want to
double-check in the manual of the RDBMS that you use. Or ask ChatGPT
when you’re about to use some RDBMS that’s new to you:

•	 How do I create a column representing the current time and
store data in that column in UTC in SQLite?

•	 How do I create a column representing the current time and
store data in that column in UTC in SQL Server?

Chapter 6 I Normalization and implementation172

Check: Enforce data decorum
A check constraint is a rule that specifies a condition each row must
meet for the data to be considered valid in a column. You can use a
check constraint to enforce data integrity by restricting the values that
can be inserted into columns.
You need a check constraint when you want to enforce specific rules on
the data, such as enforcing data ranges or validating data formats. If you
have a column representing the ages of people, for example, you can
use a check constraint to limit the table to accept only values between
0 and 120:

 -- comment: works for MySQL, MariaDB and PostgreSQL
 CREATE TABLE person (
 person_id int NOT NULL,
 last_name varchar(255) NOT NULL,
 first_name varchar(255),
 age int,
 CONSTRAINT age_check CHECK (age >= 0 AND age <= 120)
);

In the preceding example, Age >= 0 AND Age <= 120 is the condition of
the check constraint.
Do you have any columns that can use check constraints in your
database design? You have one case that fits the preceding scenarios
perfectly. Both your user_address and billing_address tables
contain a state column that stores the names of states in the United
States. The valid values of this column are limited to 50 known names.
Instead of relying on your frontend or backend developers to do the
right thing, you can use the check constraint to take the burden off their
shoulders. Given that 50 is not a small number, you can opt to add the
constraint after you create the table, as follows:

 -- comment: works for MySQL, MariaDB, PostgreSQL, and
 -- comment: Oracle; see the code repo for other RDBMS
 CREATE TABLE user_address (
 email VARCHAR(320) PRIMARY KEY,
 street_address VARCHAR(255),
 address_line_optional VARCHAR(100),
 city CHAR(100) NOT NULL,
 state VARCHAR(20) NOT NULL,
 postal_code CHAR(5) NOT NULL
);

Recap 173

 ALTER TABLE user_address
 ADD CONSTRAINT chk_state
 CHECK (
 state IN (
 'Alabama', 'Alaska', 'Arizona',
 'Arkansas', 'California', ...,
 'West Virginia', 'Wisconsin', 'Wyoming'
)
);

('Alabama', 'Alaska', … 'Wyoming') defines a list of the allowed
values. The IN keyword requires all the values in that column to be one
of the values in the list.

Recap
•	 Normalization is the process of

breaking the database into smaller,
more manageable tables, each table
representing a single entity or concept.

•	 Typically, when all your tables are in
BCNF, you can consider your database
fully normalized. A table in BCNF must
have the following features:

	– It has a primary key.
	– It has no multivalued columns.
	– All columns are dependent on a key but nothing else.
	– It contains no transitive dependency. (All its nonkey columns are
directly dependent on a key.)

In a sense, normalization involves checking your tables against the
guidelines of BCNF, identifying violations, and revising your database
design.

•	 NOT NULL and primary key/foreign key constraints play critical roles
in your database design.

•	 If you may need to restructure your database design or migrate your
database, name all constraints that can be named.

•	 To avoid using NULL values in a column, use the NOT NULL constraint.

Chapter 6 I Normalization and implementation174

•	 The UNIQUE constraint is handy if you have some nonkey columns
that should all contain unique values.

•	 The DEFAULT constraint is handy for dealing with timestamps and
placeholder values.

•	 The CHECK constraint can validate data format, ranges, and other
complex business logic when other constraints fail.

175

7

In this chapter

•	 You evaluate and strengthen the security of your
database.

•	 You further improve the storage efficiency of your
database design beyond normalization.

•	 You learn about indexing and how to apply it when
implementing your database design to improve
query performance.

•	 You learn about denormalization and apply it to
your database design to further improve query
performance.

Security
and optimization

What you need to know
You can find the database design covered in this chapter (it’s finally
complete) represented using tools commonly used by practitioners, such
as dbdiagram.io and MySQL Workbench. in the GitHub repository (https://
github.com/Neo-Hao/grokking-relational-database-design). You can navigate
to the chapter_07 folder and follow the instructions in the README.md
file to load the database design into corresponding tools.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

Chapter 7 I Security and optimization176

(continued)
You can also find the SQL scripts corresponding to the finalized database
design for different relational database management systems (RDBMSs),
including MySQL, MariaDB, PostgreSQL, SQLite, SQL Server, and Oracle.

Overview
In this chapter, you will explore database security and optimization.
You will see how to evaluate the integrity and confidentiality of your
database design, enhance storage efficiency beyond normalization,
understand when to use denormalization, and apply indexing to
improve query performance.

Security
Security is an important aspect of
database design. To help safeguard
the data against leaks, you need to
evaluate the security of your database
design and ensure that it follows at
least a few key security principles.
In this section, you will learn about
two of those principles—integrity and
confidentiality—and see how to apply them
to your database design.

Integrity
Integrity involves maintaining the accuracy, completeness, and
trustworthiness of data and systems. In database design, using the
integrity lens to review your database design typically involves
checking whether all columns, tables, and relationships are designed
and implemented properly to preserve data integrity. By “designed
and implemented properly,” we mean that they follow the established

Security 177

principles of database design and implementation covered in chapters 4
to 6, such as the following:

•	 Every column has the best data type.
•	 Every table has a primary key.
•	 A foreign key maintains the relationship between tables.
•	 Constraints are based on requirement analysis.

Database design typically involves multiple iterations. It is easy to make
some small mistakes or neglect something. The foreign key constraint
may easily slip your mind, for example.
Imagine a database dedicated to storing authors and their books for a
publishing company’s web application. This database has two related
tables, author and book, with the following design:

author

author_name VARCHAR(100)
author_id INT

book

title VARCHAR(200)
author_id INT

book_id INT

Because entity-relationship (E-R) diagrams don’t represent foreign keys
or other constraints, it is easy to neglect them and map the two tables to
the following SQL command:

 CREATE TABLE author (
 author_id INT PRIMARY KEY,
 author_name VARCHAR(100) NOT NULL
);
 -- comment: the book table misses the
 -- comment: foreign key constraints
 CREATE TABLE book (
 book_id INT PRIMARY KEY,
 title VARCHAR(200) NOT NULL,
 author_id INT NOT NULL
);

Without a foreign key constraint, nothing prevents an orphan record
in the child table from referring to a nonexistent record in the parent
table. Such problems can make the database more complex to manage

Chapter 7 I Security and optimization178

and secure, in turn creating gaps that attackers can exploit. To fix the
preceding SQL command, you need to add the foreign key constraint to
the book table:

 CREATE TABLE book (
 book_id INT PRIMARY KEY,
 title VARCHAR(200) NOT NULL,
 author_id INT NOT NULL,
 CONSTRAINT FK_author_id
 FOREIGN KEY (author_id)
 REFERENCES author(author_id)
);

Confidentiality
Confidentiality involves protecting information from unauthorized
access and disclosure, ensuring that data is accessed only by authorized
people and processes. You can take two approaches to confidentiality:
access control and encryption.

Access control

Using access control in databases is like posting a security guard at a
club entrance. This guard decides who gets in and what areas they can
access. In a database, access control determines who can view, modify,
or delete data. It’s essential to ensure that authorized users are given the
right amount of authority to access and modify the data they should be
able to control.
The two main types of access control are mandatory access control
(MAC) and role-based access control (RBAC). MAC is like a strict
school with rigid rules. In this system, a central authority controls
who can access what data, and the rules are very tight. Every piece of
data, such as a table or row, has a classification level (such as sensitive
or confidential), and users are given access permissions for different
classification levels. If your permission doesn’t match the data’s
classification, you can’t access it. There are no exceptions.
Think about a high school database that manages student records. In
this database, tables are labeled by level of sensitivity:

Security 179

student

course

grade

medical

Public Sensitive

Confidential

User 1

User 2

User 3 User 4

Only users with the right clearance can access tables labeled as sensitive
or confidential. In MAC, sensitivity classification needs to be configured
manually.
RBAC is more flexible and user-friendly. Instead of assigning permissions
to users individually, RBAC assigns permissions to roles, and users are
assigned to these roles. The system is like different types of membership
in a club: some members can access the VIP lounge, some can access only
the bar, and others can only access the general area. If RBAC is used in
the high school’s database, it adds an extra layer of roles:

student

course

grade

medical

Public Sensitive

Confidential

User 1

User 2

User 3 User 4

Student role

Teacher role

Admin role

Chapter 7 I Security and optimization180

Now you know the two main types of access control, let’s walk through
implementing RBAC on a few tables of The Sci-Fi Collective’s database.
To keep this example simple, we’ll have you work with only four tables:
product, purchase, review, and purchase_review. Assume that you’ve
done some requirements analysis of the user roles for the four tables:

•	 USER—View and buy products, and submit reviews for different
products.

•	 ANALYST—View records from all tables to perform statistical analysis.
•	 ADMIN—View, modify, or delete records from all four tables.

Based on these requirements, you can create the role, grant permissions
to the roles, and assign the roles to users. You can conduct this
process by using the graphical interface software of a RDBMS or SQL
commands. You can start by tackling the USER role:
-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
-- step 1: create a role
CREATE ROLE standard_user;
-- step 2: grant permissions to a role
GRANT SELECT ON database_name.product TO standard_user;
GRANT INSERT ON database_name.purchase TO standard_user;
GRANT INSERT ON database_name.purchase_product
 TO standard_user;
GRANT INSERT ON database_name.review TO standard_user;
-- step 3: assign the role to a new user
CREATE USER 'morpheus'@'%' IDENTIFIED BY 'password';
GRANT standard_user TO 'morpheus'@'%';

A few things about the preceding code snippet deserve explanation:

•	 The role’s name is standard_user instead of user because user is a
reserved SQL keyword in most RDBMSs.

•	 A SELECT clause (such as SELECT ON database_name.product)
corresponds to viewing a table, and an INSERT clause (such as
INSERT ON database_name.purchase) corresponds to adding
data to a table. The USER role allows users to view and buy products
as well as submit reviews. Viewing products translates to the GRANT
SELECT ON … TO … command; buying products and submitting
reviews translate to the GRANT INSERT ON … TO … command that is
applied to multiple tables.

Security 181

•	 Whenever you create a new user d via the CREATE command, the
standard_user role is immediately granted to that user.

•	 In MySQL and MariaDB, user accounts always require a
host specification in the format 'username'@'host'. The
'host' portion determines where the user can connect from.
'username'@'%' allows connections from any host.

The ANALYST role can be put together as follows:
-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
-- step 1: create a role
CREATE ROLE analyst;
-- step 2: grant permissions to a role
GRANT SELECT ON database_name.product TO analyst;
GRANT SELECT ON database_name.purchase TO analyst;
GRANT SELECT ON database_name.purchase_product
 TO analyst;
GRANT SELECT ON database_name.review TO analyst;
-- step 3: assign the role to a new user
CREATE USER 'smith'@'%' IDENTIFIED BY 'password';
GRANT analyst TO 'smith'@'%';
-- step 4: enable role by default (MySQL 8.0+)
ALTER USER 'smith'@'%' DEFAULT ROLE analyst;

Because the ANALYST role requires only view access to four tables,
only the GRANT SELECT clause is needed here.

The ADMIN role is addressed as follows:
-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
-- step 1: create a role
CREATE ROLE admin;
-- step 2: grant permissions to a role
GRANT SELECT, INSERT, UPDATE, DELETE
 ON database_name.product TO admin;
GRANT SELECT, INSERT, UPDATE, DELETE
 ON database_name.purchase TO admin;
GRANT SELECT, INSERT, UPDATE, DELETE
 ON database_name.purchase_product TO admin;
GRANT SELECT, INSERT, UPDATE, DELETE
 ON database_name.review TO admin;
-- step 3: assign the role to a new user
CREATE USER 'david'@'%' IDENTIFIED BY 'password';
GRANT admin TO 'david'@'%';
-- step 4: enable role by default (MySQL 8.0+)
ALTER USER 'david'@'%' DEFAULT ROLE admin;

Chapter 7 I Security and optimization182

Access control is an important task frequently performed by both
database designers and administrators to various degrees throughout
the software development process. This topic is worthy of its own
chapter or a whole book that goes beyond the focus of this book
(database design).

Encryption

Two types of encryption are commonly used in databases: one-way and
symmetric.
One-way encryption turns data into a fixed-size, seemingly random
string. This process, typically known as hashing, refers to a function
that takes an input and returns a fixed-size string of bytes. One-way
encryption is practically impossible to reverse, especially for longer
values. In other words, given a hashed value derived from one-way
encryption, you can’t obtain its original input data.
One-way encryption is frequently used to hash passwords in
databases because people typically reuse passwords everywhere. If an
unauthorized person gains access to the database, they won’t know what
the original passwords were, so the damage won’t be greatly amplified.
Common one-way encryption algorithms include bcrypt, PBKDF2, and
Sha512.
Your own database design includes columns that can benefit from
one-way encryption. The user table has a column (password) that’s
dedicated to storing users’ passwords. Up to now, this column has been
designed to store users’ passwords in plain text:

user

email VARCHAR(320)
username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)

last_name VARCHAR(50)
phone_number VARCHAR(15)

last_login_time TIMESTAMP

Security 183

When you apply a one-way encryption algorithm to hash all the
passwords, however, you need to revise the database design accordingly.
You could use the bcrypt algorithm to hash all the passwords, for
example. This algorithm results in sequences of 40-byte binary data.
Considering that some binary data can’t be printed easily, it is common
practice to further encode the binary data into a string of ASCII
characters via some encoding mechanism (such as Base64) so you can
store hashed passwords with the CHAR data type.
The encoded string from the 40-byte binary data will be 60 bytes long.
That said, VARCHAR(20) is too small for the hashed passwords, so you
have to update the data type of your password column to CHAR(60):

user

username VARCHAR(30)
password VARCHAR(20)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

email VARCHAR(320)

last_login_time TIMESTAMP

user

username VARCHAR(30)
password CHAR(60)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

email VARCHAR(320)

last_login_time TIMESTAMP

If you have already implemented your database design, you can use the
following SQL command to update your user table:

-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
ALTER TABLE user MODIFY COLUMN password CHAR(60);

Unhashing the mystery
A hash function is a mathematical function that takes a variable-length input
(such as a password) and produces a fixed-length output: the hash. The
function is one-way, so you won’t see the word unhashing in any dictionary!
Hash functions have many uses, but the hash functions we cover here are
used specifically for encryption.

Chapter 7 I Security and optimization184

(continued)
Plain passwords in databases that are compromised can be stolen and reused
elsewhere, which is why good database design dictates that passwords be stored
in hash form. Many hash functions are well known and standardized (such as
Sha512 and bcrypt). Even hashed passwords can be vulnerable, though, because
an attacker may try a brute-force attack (try random passwords through the
hash function) or use a rainbow table (a list of known passwords and their
precalculated hashes). ost applications would concatenate a password with a
salt (random string) that is stored or produced by the application. An attacker
has no means of deducing what the password is without knowing the salt.

In case if you wonder how user authentication works, here is a breakdown
of the process:

1.	The application takes the password that the user provides during the
login process and hashes it in the same approach.

2.	The application compares the hashed result with what is already stored in
the database. If the hashed result matches the hash stored in the database,
the user is authenticated.

In contrast to one-way encryption, symmetric encryption is reversible.
In other words, when a symmetric encryption algorithm is used for
encryption, the encrypted value can be decrypted to retrieve the
original input data.
Symmetric encryption is commonly used to protect sensitive
information that needs to be used repeatedly and/or periodically in its
original form. Online stores, for example, want to protect users’ data,
so they don’t users’ credit card information in plain text. Online stores
also want to make users’ lives easier by allowing them to save and reuse

Security 185

credit cards for the next order. As a result, symmetric encryption is used
to encrypt credit card information to keep it safe in the database. When
a user wants to reuse a credit card for a transaction, the application
can always decrypt the stored value. Symmetric encryption achieves
encryption and decryption by using the same key and same algorithm
in the process of encryption and decryption. The key is typically a string
of characters or numbers, and the security of symmetric encryption
relies on the secrecy and proper handling of this key.

Input
data

Encryption
(or Decryption)

algorithm

Encrypted
data

Key

(e.g., 123456789abcdef123456789abcdef)

(e.g., bh23odfj8392f3212f4)(e.g., Hello)

Common symmetric algorithms include Advanced Encryption
Standard (AES), Triple DES (3DES), and Blowfish. Each algorithm has a
set of variants. Depending on the key length (such as 128 bits, 192 bits,
or 256 bits), AES has three variants: AES-128, AES-192, and AES-256.
The key length determines the level of security and the computational
requirements for encryption and decryption. The longer the key is, the
higher the security and computational requirements are.
Can any columns in your own database design can benefit from
symmetric encryption? Yes. The payment_method table stores some
columns of sensitive information that can be reused repeatedly, such as
card_number and expiry_date. The two columns represent the credit
card information required to place an order. Up to now, they’ve been set
to store everything in plain text:

payment_method

payment_id INT
name VARCHAR(30)
card_number CHAR(16)
expiry_date CHAR(4)
email VARCHAR(320)

Chapter 7 I Security and optimization186

If you want to store encrypted data instead of plain text, you must revise
the database design. You could use AES-256 to encrypt card_number
first. AES-256 operates on blocks of 16 bytes. The card_number is 16
bytes, which is one block in ES-256. AES algorithms commonly use
initialization vectors (IVs) to further enhance security. You can think
of an IV as a nonsecret 16-byte binary sequence used as an additional
input. When IV is used, the input data is 32-byte. As in one-way
encryption, the encrypted data is binary, and it is common to further
encode the binary data into a string of ASCII characters. Assuming
that Base64 was used to encode the binary data, the encoded string is
about 45-byte.
What about expiry_date? AES-256 operates on blocks of 16 bytes;
when the plain text is shorter than 16 bytes, padding is required to
make the plain text fit into a 16-byte block, so AES-256 considers the
lengths of expiry_date and card_number to be the same (16 bytes).
If the same encryption and encoding procedure is applied, the encoded
and encrypted string will all be about 45-byte. That said, you need to
update the data types of both columns to CHAR(45):

payment_method

name VARCHAR(30)
card_number CHAR(16)

expiry_date CHAR(4)
email VARCHAR(320)

payment_id INT

payment_method

name VARCHAR(30)
card_number CHAR(45)

expiry_date CHAR(45)
email VARCHAR(320)

payment_id INT

If you have already implemented your database design, you can use the
following SQL command to update your payment_method table:

-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
ALTER TABLE payment_method
 MODIFY COLUMN card_number CHAR(45),
 MODIFY COLUMN expiry_date CHAR(45);

Storage considerations 187

Symmetric encryption: Not the panacea
Symmetric encryption seems to be more convenient than one-way
encryption because it supports both encryption and decryption. You may
wonder why we don’t use symmetric encryption to encrypt passwords
and all other information that requires protection. Symmetric encryption
should not be used to encrypt passwords. To take this discussion one step
further, if the sensitive data doesn’t need to be used repeatedly in its original
form, you shouldn’t consider symmetric encryption.

One-way encryption is typically stronger than symmetric encryption.
Symmetric encryption works on a big assumption: the key used for
encryption and decryption is safe. If a hacker somehow gains access to the
key, all the sensitive information encrypted with symmetric encryption
could be in danger because everything can be reversed and the original data
exposed.

As a result, storage of the key in symmetric encryption is critical. You
don’t want to store this key in the same database as the encrypted data, for
example. In the real world, this key is stored in various ways, such as the
following:

•	 Via environmental variables in a file in the application server

•	 Via dedicated software known as a key management service

•	 Via a specialized physical device known as a hardware security module

Storage considerations
After a database is designed, revised,
implemented, and tested, it goes into
production and starts costing money.
You need to think about not only read
and write operations but also efficient
use of storage.
Historically, storage was expensive.
In the 1970s, 1 MB of storage could
cost about $250. The cost of that same
megabyte today is about $0.00001. 1950s 2020s

$10 / TB

$10 billion / TB

Chapter 7 I Security and optimization188

Despite this trend, improving your database design to save storage
space can still be valuable, especially if you are designing the database
for a scalable application that millions of people will use or that may
experience exponential growth.
What do you do in database design to save storage? Reduce data
redundancy. You have already done a lot in this respect. Normalization
addresses anomalies as well as reduces data redundancy. Beyond
normalization, you may find opportunities in your design to further
reduce data redundancy in your design, as you will see in this section.

Redundant tables
Your database design for The Sci-Fi Collective is normalized. But a
normalized design can still be improved to reduce redundancy.
When you review your design and check for redundancies, you can
start by asking a simple question: are there any redundant (or almost
redundant) tables? The answer is yes. If you focus on how addresses are
stored, you see two tables that are almost identical:

user

username VARCHAR(30)
password CHAR(60)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

payment_method

name VARCHAR(30)
card_number CHAR(45)
expiry_date CHAR(45)

payment_id INT

email VARCHAR(320)

last_login_time TIMESTAMP

user_address

street_address VARCHAR(255)
address_line_optional VARCHAR(100)

city VARCHAR(100)
state VARCHAR(20)

postal_code CHAR(5)

email VARCHAR(320)

email VARCHAR(320)

billing_address

street_address VARCHAR(255)
address_line_optional VARCHAR(100)

city VARCHAR(100)
state VARCHAR(20)

postal_code CHAR(5)

payment_id INT

Storage considerations 189

The tables billing_address and user_address have nearly identical
columns except for the primary key. This design is legit because an
address associated with a payment method may not be the same as a
user’s personal address. It is highly likely, however, that a user and their
payment methods share an address, so it would be nice to consolidate
that data.
How do you proceed? A good start is to analyze and update the
requirements. To consolidate address data, you can use a single address
entity that stores a single address that both the user and payment_
method tables can point to or two different addresses so that you
don’t have to store the same address in two different tables. Based on
this change, the requirements that need to be fulfilled need further
clarification:

•	 A user has one address.
•	 A payment method has one address.
•	 An address is associated with zero to many users or zero to many

payment methods.

It’s not hard to map the requirements to an E-R diagram. If you use a
single entity (such as address) to represent addresses, what should
be its primary key? If you remember what you learned in chapter
4, you need a real-world concept to differentiate two addresses—a
combination of all columns, including street_address, address_
line_optional, postal_code, city, and state. Using a composite
primary key composed of all columns is generally considered bad
design for two reasons:

•	 A composite key composed of every column significantly drags down
performance.

•	 The address entity is in a one-to-many relationship with user and
payment_method. The choice of this composite key will force you to
put every column of address in user and payment_method.

As a result, you may choose an alternative to the composite key:
surrogate key plus unique constraint. In chapter 4, you learned that
a surrogate key is often implemented as an autoincrementing numeric
attribute (such as address_id), which is simple, flexible, and easy to
use as a single-column foreign key. The unique constraint will be placed

Chapter 7 I Security and optimization190

on the combination of all columns except the surrogate key (address_
id) to ensure that no redundant address data can be recorded in the
address table.
Now that you have nailed nearly every bit of the revised design, you are
ready to map the revised requirements to an E-R diagram:

user

username VARCHAR(30)
password VARCHAR(60)

first_name VARCHAR(50)

last_name VARCHAR(50)

phone_number VARCHAR(15)

payment_method

name VARCHAR(30)
card_number CHAR(45)
expiry_date CHAR(45)

billing_address VARCHAR(255)

payment_id INT
email VARCHAR(320)

last_login_time TIMESTAMP
email VARCHAR(320)

address

street_address VARCHAR(255)
address_line_optional VARCHAR(100)
postal_code CHAR(5)
city VARCHAR(100)

state CHAR(20)

address_id INT

address_id INT
address_id INT

min cardinality is relaxed

It is worth noting that the min cardinality of the relationship from user
to address tables is relaxed from one to zero. This relaxation is a must,
considering that users will register accounts with The Sci-Fi Collective
without providing personal address information. If the min cardinality
of this relationship stays as one, it will prevent user data from being
recorded in the user table without a corresponding address row.

Storage considerations 191

If you have already implemented your database design, you need to take
three steps to update your implementation:

1.	 Drop two old tables, billing_address and user_address.
2.	 Create a new table named address, and add a unique constraint to

the combination of all nonkey columns.
3.	 Update payment_method and user by adding a new column.

address_id, and making it a foreign key in both tables.

To create the address table, you can use the following command:

-- comment: works for MySQL and MariaDB
-- comment: see the code repo for other RDBMS
CREATE TABLE IF NOT EXISTS address (
 address_id INT AUTO_INCREMENT PRIMARY KEY,
 street_address VARCHAR(255) NOT NULL,
 address_line_optional VARCHAR(100),
 city VARCHAR(100) NOT NULL,
 state VARCHAR(20) NOT NULL,
 postal_code CHAR(5) NOT NULL,
 CONSTRAINT unique_address_constraint
 UNIQUE (street_address, address_line_optional,
 postal_code, city, state)
);

To update the payment_method table, you can use the following
command:
-- comment: works for MySQL, MariaDB, and PostgreSQL
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
ALTER TABLE payment_method
 ADD COLUMN address_id INT NOT NULL;

ALTER TABLE payment_method
 ADD CONSTRAINT fk_address_payment_method
 FOREIGN KEY (address_id)
 REFERENCES address(address_id);

By contrast, the address_id won’t have the NOT NULL constraint in the
user table because of the relaxed min cardinality of the relationship
from user to address. Moreover, you need to ensure that the
address_id column starts with a NULL value by default:
-- comment: works for MySQL, MariaDB, and PostgreSQL
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
ALTER TABLE user
 ADD COLUMN address_id INT NULL;

Chapter 7 I Security and optimization192

ALTER TABLE user
 ADD CONSTRAINT fk_address_user
 FOREIGN KEY (address_id)
 REFERENCES address(address_id);

NULL values in foreign key columns represent optional relationships,
which is the business logic you want. In other words, not every record
in the child table (user) needs to have a corresponding link in the
referenced parent table (address). That logic also means, however, that
you need to be extra-cautious in handling NULL values when querying
the two tables.

Categorical data
After checking and dealing with redundant tables, you can go one step
further by checking for columns that contain redundant data. When
you review your database design, you can try a different question: Is
there a column that contains a lot of redundant data? Yes.
If you focus on the address table that you just added, you see that
the state column contains a lot of redundant data. After all, The
Sci‑Fi Collective has millions of users, and there are only 50 states plus
Washington, DC, in the United States. (In chapter 4, we assumed that
The Sci-Fi Collective sells only in the United States.)

address

street_address VARCHAR(255)
address_line_optional VARCHAR(100)
postal_code CHAR(5)
city VARCHAR(100)

state VARCHAR(20)

address_id INT

How do you address this problem? You can move the state column
from the address table to a new table named state and link the two
tables via a relationship. This new table, named state, will represent all
50 states plus the District of Columbia, and it will be in a one-to-many
relationship with the address table.
What would be the primary key for the state table? Every state plus
the District of Columbia has its own abbreviation, and the abbreviations

Indexing 193

are different but have the same length. As a result, the abbreviation is
the perfect primary key for the state table:

Alabama: AL
Alaska: AK

...
California: CA
Colorado: CO

...
District of Columbia: DC

Based on the preceding revision, your updated address table and new
state table will look like this:

address

street_address VARCHAR(255)
address_line_optional VARCHAR(100)
postal_code CHAR(5)
city VARCHAR(100)

state_id CHAR(2)

address_id INT state

state VARCHAR(20)
state_id CHAR(2)

As you learned in chapter 5, you need to relax the min cardinality of the
relationship from state to address a little to enable data entry.

Indexing
Now that you have taken action to further reduce data redundancy
in your database design, it is time to work on making data retrieval
efficient. Indexing is a critical optimization technique used to speed
retrieval of data from a database. When implementing a database
design, you need to index certain columns to speed tasks such as data
retrieval, sorting, and searching. In this section, you will learn why and
how to index; then you will decide whether you need to index certain
columns in your own database design.

Chapter 7 I Security and optimization194

Why and how to index
Several types of indexing are used to optimize query performance in
databases, such as standard indexes, clustered indexes, spatial indexes,
and full-text indexes. In this section, you will learn why and how to
implement standard and full-text indexes.

Standard indexes

To index properly, you need to understand why indexes are important
and what problems they address. Let’s start with a simple movie table in
a database that supports a movie application:

The design of the movie table looks like this:

movie

title VARCHAR(100)
movie_id INT

date TIMESTAMP

photo VARCHAR(1000)
rating DECIMAL(2, 1)

Notice that the application frequently sorts all movies by ratings
because users always want to watch the highest-rated movies. As a

Indexing 195

result, your application frequently takes advantage of the following
query:

-- comment: works for MySQL, MariaDB,
-- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT *
 FROM movie
 ORDER BY rating DESC
 LIMIT 30;

The query is executed clause by clause in the following order:

1.	 FROM—The query begins with the FROM clause. The database system
identifies the movie table from which the data will be retrieved and
reads data from the table.

2.	 SELECT—The SELECT clause selects every column for each row.
3.	 ORDER BY—ORDER BY sorts all the rows in the movie table by

rating in descending order.
4.	 LIMIT—Finally, the LIMIT 30 clause restricts the output to the first

30 rows of the ordered list.

Without the help of indexes, this query needs to sort all movies by rating
from scratch every time this query is executed. If the movie table holds
millions of records and keeps growing, you can imagine how easy it is
for this query to affect the performance of the database and slow the
application. To address this problem, you can index the rating column:

CREATE INDEX idx_rating ON movie (rating);

What does an index do? An index creates additional data structures
that provide fast access to rows based on the values in one or more
columns. Indexes are typically implemented with data structures such
as B-trees. A B-tree is a self-balancing tree data structure that maintains
sorted data and allows searches, sequential access, insertions, and
deletions in logarithmic time. When an index is created on a column,
the database engine constructs the index by scanning the entire table
and recording the values of the indexed column along with pointers to
the corresponding rows. In our case, when the index on the rating
column is constructed, it will be used to speed queries that sort or
search for a value in the rating column of the movie table:

Chapter 7 I Security and optimization196

rating: 0.5
title: Bottle

opener

rating: 1.5
title: Space can

rating: 2.5
title: Umbrella

rating: 3.5
title: Crazy cow

rating: 5
title: Space cat

rating: 1
title: Flying monkey

rating: 3
title: Blue moon

rating: 4
title: Red house

Quickly find the movie with
an average 3.5 rating

rating: 2
title: Devil hunter

It is worth mentioning that all queries that use the WHERE clause to filter
data based on ratings perform searching tasks and are be optimized by
the index you added on the rating column:

SELECT *
 FROM movie
 WHERE rating = 5;

Similarly, if you foresee or observe that users often sort or search
for movies by release date, and the application frequently executes
the query

-- comment: works for MySQL, MariaDB,
-- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT *
 FROM movie
 ORDER BY date DESC
 LIMIT 30;

you may want to index the date column too:
CREATE INDEX idx_rating ON movie (date);

If the application allows users to sort movies by both release date and
rating, and the application frequently executes the query

-- comment: works for MySQL, MariaDB,
-- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT *
 FROM movie

Indexing 197

 ORDER BY date DESC, rating DESC
 LIMIT 30;

you may want to index the combination of the rating and date
columns too:

CREATE INDEX idx_combo ON movie (rating, date);

In all those cases, the columns that were explicitly indexed are not
the primary key. What if the primary key requires indexing? Well, the
primary key movie_id column is already indexed. All primary keys are
indexed automatically.

Full-text indexes

A CREATE INDEX statement creates standard indexes, which are
suitable for speeding many tasks, such as sorting and exact matches.
Occasionally, however, you will find that standard indexes aren’t
sufficient for some indexing tasks. Your movie application may allow
users to search for movies by titles, and the search bar needs to support
keyword searching, partial word matching, and even fuzzy searching
(handling typos or misspellings).
When you need to support complex search on text, you need full-text
indexes, which make all such tasks much more efficient. In short, full-
text indexes tokenize each word or term and then store each token in a
lookup table. Without full-text indexing, keyword searching would look
like this example:

SELECT *
 FROM movie
 WHERE title LIKE '%exciting%';

As you can imagine, even if this search is doable, it is inefficient. As
the data size grows, this query takes longer to execute. With full-text
indexing, the same task is much faster and looks like this:
-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
-- comment: add a full-text index
CREATE FULLTEXT INDEX ft_idx_title
 ON movie (title);
-- comment: search
SELECT *
 FROM movie
 WHERE MATCH(title)
 AGAINST('exciting' IN NATURAL LANGUAGE MODE);

Chapter 7 I Security and optimization198

Although the concept of a full-text index is consistent across RDBMSs, the
syntax varies significantly from one RDBMS to another. The preceding SQL
command adds a full-text index for the title column in the movie table
and works for MySQL and MariaDB. By contrast, to achieve the same thing
in PostgreSQL, you need to use the following code:

-- comment: works for PostgreSQL
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
-- comment: add a full-text index
ALTER TABLE movie ADD COLUMN tsv_title;
UPDATE movie
 SET tsv_title = to_tsvector('english', title);
CREATE INDEX gin_idx_title
 ON movie USING gin(tsv_title);

If you want to figure out how to add a full-text index in a specific
RDBMS, ChatGPT is a great friend.

Indexes for your ER diagram
To explore whether you can use indexes to optimize your database design,
you need to understand what queries are generated by the application
logic. This step may require close collaboration between you (the database
designer) and application developers, especially backend engineers. In
this process, backend engineers can do the following things:

•	 Contribute detailed knowledge of how the application interacts with
the database, especially queries generated by the application logic.

•	 Provide insights into performance bottlenecks observed during
application runtime and user interactions.

•	 Ensure that changes in application logic or new features align with
best practices of database design.

During the collaboration, you will do the following things:

•	 Understand how to structure the database and design indexes to
optimize these queries, and use the shared information to adjust
database design, create appropriate indexes, and optimize query
execution plans.

•	 Ensure that database schema changes do not negatively affect
application performance or lead to inconsistencies.

Indexing 199

•	 Ensure that database-schema changes meet the customer’s
requirements (unless the requirements have changed).

Beyond collaborating with application developers, database designers
commonly take empirical approaches to identify indexing opportunities
by synthesizing data from query performance metrics and query logs
when the implemented database goes into production. If you have
identified opportunities to use indexes, the following three examples
show what you need to do next.

The product table

For the product table, you’ve identified one interaction scenario:

Users search for products based on their name.

product

name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)

photo VARCHAR(1000)
price DECIMAL(7, 2)

cost DECIMAL(7, 2)
inventory_quantity INT

code CHAR(12)

This scenario corresponds to the following query:

-- comment: works with MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT * FROM product WHERE MATCH (name)
 AGAINST ('some text' IN NATURAL LANGUAGE MODE);

This query performs a keyword search task on the name column. To
make the query possible and efficient, add a full-text index to this
column:

-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
CREATE FULLTEXT INDEX ft_idx_name ON product (name);

Chapter 7 I Security and optimization200

The review table

For the review table, you’ve identified the following interaction
between users and the application:

Users frequently check product reviews.

review

review_text TEXT
review_time TIMESTAMP

review_id INT

email VARCHAR(320)
code CHAR(12)

This interaction leads to frequent queries of the review table. When
a user tries to check the reviews of a product with code 23356, for
example, the following query is executed:

SELECT * FROM review WHERE code = '23356';

This query is a search task, but only because an exact match is involved.
In other words, if this column ever needs indexing, standard indexing
would be good enough. Indexing would improve the efficiency of
this query. The code column in the review table is a foreign key, and
foreign key columns are not indexed automatically. As a result, you can
index this column as follows:

CREATE INDEX idx_code ON review (code);

The payment_method table

For the payment_method table, you’ve identified the following scenario:

Users always need to select one of their many added payment
methods frequently to complete a transaction.

payment_method

name VARCHAR(30)
card_number CHAR(45)
expiry_date CHAR(45)

payment_id INT

email VARCHAR(320)

Denormalization 201

This interaction leads to frequent queries of the payment_method table.
When a user with the email address john@gmail.com tries to access his
payment methods, for example, the following query executes:

SELECT * FROM payment_method
 WHERE email = 'john@gmail.com';

This query is also a search task that involves an exact match. The
email column in the payment_method table is a foreign key. Standard
indexing on this column would be good enough:
CREATE INDEX idx_email ON payment_method (email);

Denormalization
So far, you have put a lot of effort into optimizing a database. Now we
are going to talk about edge cases in which optimization means actively
going against normalization. Yes, you read that right!

How to denormalize
Denormalization is a last-ditch database optimization technique that
intentionally introduces redundancy to a database to improve query
performance. Denormalization is rare, but if queries are performed
frequently and require joining multiple tables, denormalization can
significantly enhance the performance of your database.
Denormalization typically involves two steps:

1.	 Identify queries that are used frequently and require joining more
than two tables.

2.	 Duplicating some columns in some tables involved in the identified
query to reduce the number of tables that have to be joined.

To get a better understanding of denormalization, consider an
oversimplified example first. Suppose that you oversee a database
supporting a music app, and you have three tables representing artists,
albums, and songs in your database:

Chapter 7 I Security and optimization202

artist

artist_id INT

artist_name VARCHAR(100)
artist_photo VARCHAR(1000)

album

album_id INT

album_name VARCHAR(100)
album_photo VARCHAR(1000)
artist_id INT

song

song_id BIGINT

song_name VARCHAR(100)
song_lyrics TEXT
album_id INT

From the relationships among the tables, you can tell that songs are
organized by albums and albums are organized by artists. You can also tell
that the three tables are fully normalized. But the application supported
by the database often needs to display the top songs for every artist:

Database BrowserWeb
server

Get top 5 songs from
all albums from artist
'Nebula Nova'

Retrieve artist_id
corresponding to
the name 'Nebula Nova'

Retrieve all album
ids corresponding
to the identified
artist_id

Retrieve first 5
songs from all
album with
corresponding ids

Because of the relationships among the three tables, you need to join
them to map songs to artists. As a result, the following query has to be
executed frequently:

-- comment: works for MySQL, MariaDB,
-- comment: and PostgreSQL
-- comment: consult ChatGPT on adaptations

Denormalization 203

-- comment: for other RDBMS
SELECT artist.artist_name, song.song_title
 FROM artist
 INNER JOIN album
 ON artist.artist_id = album.artist_id
 INNER JOIN song
 ON album.album_id = song.album_id
 WHERE artist.artist_name = 'Nebula Nova'
 ORDER BY album.album_id, song.song_id
 LIMIT 5;

Because of the sizes of the three tables and the high frequency of the
query, this query may take more time and resources to run than you
expect. As a result, the pages or screens that require help from this
query become less responsive in your application. Further, this query
costs a lot of resources and money whenever it runs.

artist_name	song_title
-------------	-------------- -
Nebula Nova	Cosmic Groove
Nebula Nova	Solar Serenade
Nebula Nova	Lunar Lullaby

SELECT query output

artist

artist_name VARCHAR(100)
artist_photo VARCHAR(1000)

artist_id INT

album

album_name VARCHAR(100)
album_photo VARCHAR(1000)

album_id INT

artist_id INT

song

song_name VARCHAR(100)
song_lyrics TEXT

song_id BIGINT

album_id INT

How do you address this problem? You may notice that the album table
doesn’t contribute any data to the output data. Due to how the three
tables are related, you still need to join all three tables to get what you
want. If a direct relationship exists between artist and song, this
query will become much more efficient. Create this relationship, and
update the E-R diagram of the three tables:

Chapter 7 I Security and optimization204

artist

artist_name VARCHAR(100)
artist_photo VARCHAR(1000)

artist_id INT

album

album_name VARCHAR(100)
album_photo VARCHAR(1000)

album_id INT

artist_id INT

song

song_name VARCHAR(100)
song_lyrics TEXT

song_id BIGINT

album_id INT
artist_id INT

As you can see, this new relationship is one-to-many, and you have to
add a new foreign key, artist_i, to the song table. Does this update
address your problem? Yes. Now the query can be updated to a more
efficient version:
-- comment: works for MySQL, MariaDB,
-- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT artist.artist_name, song.song_title
 FROM artist
 INNER JOIN song
 ON artist.artist_id = song.artist_id
 WHERE artist.artist_name = 'Nebula Nova'
 ORDER BY song.song_id
 LIMIT 5;

This update, however, introduces a new problem: it creates a transitive
dependency in the song table:

album_idsong_id artist_id

What we learn from
the song table

What we learn from
the album table

Denormalization 205

You deliberately introduced redundancy to the song table to make
a normalized design abnormal—hence, the name denormalization.
Sometimes, you have to weigh the benefits and costs of sticking to a
fully normalized design and tolerating some abnormal tables when you
need to improve query efficiency and database performance.
It’s important to know that denormalization has the potential to
compromise data integrity if it is not managed meticulously. When
redundant data exists across denormalized tables, any alterations of
the data may require updates of all related tables.
After denormalization, you still need to pay close attention to
database performance to validate your move. If a significant volume of
INSERT, UPDATE, and DELETE operations occur on related tables, the
performance benefits of denormalization may diminish quickly, and
you may need to reevaluate the situation.
Comprehensive documentation and effective communication are
crucial to denormalizing a database design. After all, denormalization
can be a debatable, controversial move. To get other people to buy into
this change, you have to communicate the denormalization strategy to
members of the development team, stakeholders, and other interested
parties to establish shared understanding and ensure consistent
implementation. More important, to prevent future problems or
accidents, you want to thoroughly document the denormalization
strategy, outlining the rationale, tradeoffs, and factors that influenced
the denormalization decisions.

Denormalize your database design
Take a look at your database design to see whether denormalization
can be useful anywhere. Specifically, you want to look at the user,
payment_method, and purchase tables, as shown in the following
figure.

Chapter 7 I Security and optimization206

user

username VARCHAR(30)
password VARCHAR(60)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

payment_method

name VARCHAR(30)
card_number CHAR(45)
expiry_date CHAR(45)

payment_id INT

email VARCHAR(320)

last_login_time TIMESTAMP

purchase

total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
payment_id INTemail VARCHAR(320)

purchase_id INT

In an online store like The Sci-Fi Collective’s, users commonly check
their orders or receipts. Whenever that happens, the application queries
the preceding three tables:

SELECT * FROM purchase
 INNER JOIN payment_method
 ON purchase.payment_method_id =
 payment_method.payment_method_id
 INNER JOIN user
 ON purchase.user_id = user.user_id
 WHERE user.email = 'customerCat@humor.com';

Apparently, the payment_method table barely contributes to the output
data but has to be joined with the other two tables so that a purchase
can be mapped to a corresponding user. If you recall from chapter 6,
we removed the direct relationship between user and purchase when
we focused on normalizing the database design. If you have abundant
evidence showing that the preceding query is executed frequently, costing
significant money and resources and slowing the application, you need to
think again about whether to restore the direct relationship between user
and purchase (in other words, to denormalize your database design):

Denormalization 207

user

username VARCHAR(30)
password VARCHAR(60)

first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)

payment_method

name VARCHAR(30)
card_number CHAR(45)
expiry_date CHAR(45)

purchase

total_price DECIMAL(13, 2)
purchase_time TIMESTAMP

payment_id INT purchase_id INT

email VARCHAR(320)

last_login_time TIMESTAMP

email VARCHAR(320)
payment_id INT

email VARCHAR(320)

Undoubtedly, this change will introduce redundancy and create a
violation of Boyce-Codd Normal Form (BCNF; see chapter 6) in the
purchase table:

payment_idpurchase_id email

What we learn from
the purchase table

What we learn from the
payment_method table

If you focus on the purchase table, you see a transitive dependency
in which purchase_id determines payment_id and payment_id
determines email.
Typically, you have to conduct a thorough cost-and-benefit analysis
to evaluate whether the improved database performance is worth
the trouble. A busy online store needs to generate receipts that
frequently associate purchase data with a user, of course, and the direct

Chapter 7 I Security and optimization208

user‑purchase relationship makes querying the two tables easier.
Without it, you would have to write complex queries by joining three
tables, which can be computationally expensive. Will there be any other
difficult challenges, such as insertion or deletion anomalies? The Sci-Fi
Collective doesn’t allow users to change their email addresses; the user
table even uses email as the primary key. Further, The Sci-Fi Collective
doesn’t allow people to make purchases without accounts. That said, no
insertion or deletion anomalies will occur, and there’s no chance that
some purchase data will be added to the purchase table without being
associated with an existing user. Overall, this scenario seems to be a
perfect opportunity for denormalization.
Summarizing all the changes you’ve made so far, your E-R diagram
looks like this:

user

payment_method
purchase

payment_id INT
name VARCHAR(30)
card_number CHAR(45)
expiry_date CHAR(45)
email VARCHAR(320)
address_id INT

purchase_id INT
total_price DECIMAL(13, 2)
purchase_time TIMESTAMP
payment_id INT
email VARCHAR(320)

email VARCHAR(320)
username VARCHAR(30)
password CHAR(60)
first_name VARCHAR(50)
last_name VARCHAR(50)
phone_number VARCHAR(15)
last_login_time TIMESTAMP
address_id INT

address

address_id INT
street_address VARCHAR(255)
address_line_optional VARCHAR(100)
city VARCHAR(100)
postal_code CHAR(5)
state_id CHAR(2)

product

code CHAR(12)
name VARCHAR(100)
description TEXT
manufacturer VARCHAR(100)
photo VARCHAR(1000)
price DECIMAL(7, 2)
cost DECIMAL(7, 2)
inventory_quantity INT

purchase_product
purchase_id INT
code CHAR(12)
product_price DECIMAL(7, 2)
product_quantity INT
product_name VARCHAR(100)

state
state_id CHAR(2)

state VARCHAR(20)

review
review_id INT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(320)
code CHAR(12)

Recap 209

If you have made it to this point in your journey through database
design, you’ve done an amazing job! Each chapter in this book has
built on the previous one, guiding you through the intricate processes
that transform disconnected ideas and requirements into structured,
efficient, powerful databases. Your perseverance in understanding and
applying these principles of database design is a testament to your
commitment and is truly commendable. Well done!

Recap
•	 You shouldn’t save sensitive information

in plain text. Instead, pick the right encryption
method, encrypt the data, and ensure that the
corresponding columns have enough room for the
encrypted data in your database design.

•	 Beyond normalization, you may have opportunities
to further improve the storage efficiency of your
database design. These opportunities may involve
redundant tables, columns, or categorical data. Be
careful, though, because you don’t want to negatively affect
your database performance.

•	 Indexing can contribute to increasing the query performance of your
database. You need to work closely with the application developers
and use log data to understand where to apply indexes. If you aim to
support queries that involve only sorting and exact-match searching,
standard indexing is good enough. But if you aim to support queries
that involve keyword searching, partial word matching, or fuzzy
searching, you need full-text searching.

•	 Denormalization deliberately introduces redundancy to improve
query efficiency. Denormalization is rare and requires you to be
careful about handling data insertion, updates, and deletions in the
same table.

Welcome to the future of database design! In this part, you’ll discover how
to enhance your database design process with the power of generative AI.
You’ll learn how to collaborate effectively with AI tools to accelerate your
design workflow while maintaining control of the process.

Chapter 8 guides you through the complexities of database design in the
age of generative AI. You’ll explore practical ways to integrate AI into your
design process, ensuring efficiency without sacrificing quality or control.

Prepare to sharpen your skills and broaden your knowledge as you create
a fully functional database from the ground up.

Part 3
Database design and AI

213

8

In this chapter

•	 You explore how to use generative AI to speed
database design.

•	 You learn how to fine-tune the prompts to get
precisely what you want from generative AI tools.

•	 You go through the full pipeline to design and
implement a database for a spaceship manufacturer
with the help of generative AI tools.

Database design
in the age of generative AI

What you need to know
This chapter is different from others in a major way. You are unlikely to
replicate the demonstrated interactions with large language models (LLMs)
due to their probabilistic nature and continuous changes. When we wrote
this chapter, we used ChatGPT 4o. That said, ChatGPT may get your
design exactly right or wrong in different ways even if you use the prompts
demonstrated in this chapter.

Chapter 8 I Database design in the age of generative AI214

(continued)
The database design covered in this chapter (it’s finally complete), using
tools commonly used by practitioners, such as dbdiagram.io and MySQL
Workbench, can be found in the GitHub repository (https://github.com/Neo-
Hao/grokking-relational-database-design). Navigate to the chapter_08
folder and follow the instructions in the README.md file to load the
database design into corresponding tools.

Also, you can find the full-text prompts for ChatGPT and SQL scripts
corresponding to the final database design for different relational database
management systems (RDBMS), including MySQL, MariaDB, PostgreSQL,
SQLite, SQL Server, and Oracle.

Overview
In this chapter, you will explore how to take advantage of
generative AI to speed database design, and you will
see what a typical workflow looks like when you’re
working toward a complete database design with
help from generative AI.
You picked up all the essentials for designing a
robust database in the previous seven chapters by
working on the database of The Sci-Fi Collective.
It is time for a change. In this chapter, you
will design a database for a company that
manufactures spaceships. By working on this
new project from scratch, you will start to appreciate
how generative AI tools can make your life easier and
understand their limitations in delivering what you
expect.
Quite a few LLMs can serve our purposes, such as ChatGPT, Claude,
Google Gemini, and Llama. We will use ChatGPT (GPT-4o) to
demonstrate our interactions with a generative AI tool in this chapter.
Due to the way ChatGPT models were trained, specific prompt
formats and practices work particularly well and lead to more useful
responses.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

Overview 215

Following are three rules of thumb for working with ChatGPT:

•	 Be specific, descriptive, and as detailed as possible. All LLMs, including
ChatGPT, can’t be seven steps ahead of you and know what you truly
want to ask when your question or request is vague or imprecise. How
ChatGPT responds to your questions and instructions is captured
by the age-old adage “Garbage in, garbage out.” This axiom may
sound familiar if you are in the field of computer science or software
engineering.

•	 Separate instructions from context. Most LLMs work better when
you separate instructions from context. ChatGPT hopes that you’ll
put instructions at the beginning of a prompt and use ### or """ to
separate them from the context. When you need to summarize some
long text passages in bullet points, for example, here is what ChatGPT
recommends:

ChatGPT GPT-4o
Summarize the text below as a bullet-point list of the most important
points.

Text: """

some long texts go here

"""

Chapter 8 I Database design in the age of generative AI216

•	 Articulate the desired output format through examples. ChatGPT
responds better when you give it specific format requirements. This
practice also makes it easier to programmatically parse out multiple
outputs reliably. When you need to summarize some long text
passages in a few target entities, here is what ChatGPT recommends:

ChatGPT GPT-4o
Extract the important entities mentioned in the text below. Extract all
company names, people names, and specific topics which fit the content
and the general overarching themes

Desired format:

Company names: <comma_separated_list>

People names: -||-

Specific topics: -||-

General themes: -||-

Text: """

some long texts go here

"""

You can read more about recommended practices for using ChatGPT at
https://mng.bz/QD41. In our experience, the three rules of thumb are
most important and helpful for database design.
Before you start the database design, we want to emphasize that
you shouldn’t dwell on replicating the interactions with ChatGPT
demonstrated in the chapter. The same request doesn’t necessarily lead
to the same answer for many reasons, including randomness, previous
context, and model updates or refinements. Instead, focus on learning
how to use ChatGPT efficiently, what working with ChatGPT looks like,
and when to rely on your own judgment.

Requirements analysis
In line with the galactic theme, you will design a database for a
company named SHIPS R US that specializes in manufacturing
spaceships. SHIPS R US distributes spaceships in large batches

https://mng.bz/QD41

Requirements analysis 217

to dealers across the galaxy, who eventually sell the spaceships to
customers. A good analogy is how Toyota and Ford sell cars. Like
those companies, SHIPS R US requires a web application powered by
a database to manage all the relevant information, such as spaceship
models, production records, and dealer and customer information.
Your task is to design a database for this web application.

For the sake of brevity, we’ll assume that you’ve applied all the
techniques you learned in chapter 3 to collect and analyze the
requirements of the SHIPS R US database. The synthesized high-level
requirements are

•	 The database needs to maintain records on all spaceship brands
and models, manufactured spaceships, dealers, customers, and
relationships between dealers and customers.

•	 A spaceship brand is associated with multiple models, and a model is
associated with multiple spacecraft.

•	 One or more spaceships are distributed to a dealer, who serves one or
more customers.

•	 A customer is served by one or more dealers and is associated with
one or more spaceships that they bought from the dealer(s.)

•	 A spaceship is associated with one model and can be associated with
no more than one owner and no more than one dealer.

Chapter 8 I Database design in the age of generative AI218

These requirements focus on entities and their relationships. Beyond
this summary, you have another set of requirements focusing on entities
and attributes (explored further in the next section).

Entities and attributes
In this section, you design entities and attributes based on the
requirement analysis with the help of ChatGPT.

Entities
Based on the high-level requirement summary, you extracted five
entities: brand, model, spaceship, dealer, and customer. If this fact is
not obvious to you or you want to see how capable ChatGPT is, you can
make the following request to ChatGPT:

I am designing a database. Help me identify all the entities based on the
given requirements.
Requirements: """
The database needs to maintain records of all spaceship brands and
models, manufactured spaceships, dealers, customers, and relationships
between dealers and customers.
A spaceship brand is associated with multiple models, and a model is
associated with multiple spacecrafts.
A dealer is distributed one or more spaceships and serves one or more
customers.
A customer is served by one or more dealers and is associated with one
or more spaceships that they bought from the dealers.

Entities and attributes 219

A spaceship is associated with one model and can be associated with no
more than one owner and no more than one dealer.

"""

As you can see from this request, we deliberately separated the
instructions from the context to get better answers from ChatGPT. This
question is so simple that separating instructions from context does
very little, but it is a good idea to stick to the rules of thumb, and it will
make a difference when you have a much more complicated question
or request. Overall, the answer you get from ChatGPT will be similar to
the one shown in this image:

The database needs to
maintain records of all
spaceship brands and
models, manufactured
spaceships, dealers,
customers, and
relationships between
dealers and customers.

brand

model

spaceship

customer

dealer

Attributes
You worked hard on requirement analysis and have a set of synthesized
requirements to help you identify the attributes of each entity:

•	 A brand has a name. The number of brands is limited and smaller
than five.

•	 A model has a four-digit number and name. The number is unique per
model.

•	 A spaceship has a 17-digit serial number (like a vehicle identification
number for a car), a recommended price, and a year number. The serial
number is unique per spaceship. The unit for the recommended price
is US dollars (USD). The year number represents the year in which
the spaceship was manufactured.

•	 A dealer has a name, address, phone number, email address, and dealer
website URL. The dealer may be anywhere on Earth.

•	 A customer has a name, address, phone number, and email address.
Multiple customers may share an address. The customer may live
anywhere on Earth.

Chapter 8 I Database design in the age of generative AI220

Developing the entity-relationship (E-R) diagram is a milestone in
database design, requiring you to identify the attributes and their
corresponding data types as well as the primary key for each entity.
This step can be tedious and requires you to dig deep into the details
of the gathered requirements. ChatGPT can offer help. You could use
the preceding requirements for attributes to formulate the following
request:

I am designing a database for a manufacturer of spaceships. I have iden-
tified five entities: brand, model, spaceship, dealer, and customer. Help
me identify attributes and the primary key per entity based on the given
requirements. Generate output using the desired format.

Desired format:

Entity name: spaceship

Attributes:

Serial number: CHAR(17)

Recommended price: NUMERIC(8, 2)

Primary key: Serial number

Requirements: """

A brand has a name …… The customer may live anywhere on Earth.

 (This is an excerpt. Full text can be found at https://bit.ly/grdb.)

"""

As you can see from this request, we added the desired format for the
output, which increases the consistency of the output and makes sure
that it is ready to use for future interactions with ChatGPT. Following is
a sample answer from ChatGPT to this request:

ChatGPT GPT-4o
Entity name: Brand

Attributes:

Name: VARCHAR(100)

https://bit.ly/grdb

Entities and attributes 221

Primary key: Name

Entity name: Model

Attributes:

Model number: CHAR(4)

Model name: VARCHAR(100)

Primary key: Model number

Entity name: Spaceship

Attributes:

Serial number: CHAR(17)

Recommended price: NUMERIC(8, 2)

……

As soon as you see the answer, you may realize that you missed
something in formulating your request: naming the entities and
attributes properly. The names of entities and attributes don’t follow
the naming conventions we discussed in chapter 3. To fix that problem,
you can ask ChatGPT a follow-up question or reformulate your initial
question. Regardless of your choice, we recommend that you give
ChatGPT an example of how the output should be formatted. Here is an
example follow-up request:

Regenerate your answer using a new format but the same requirements.
Make sure that names of entities and attributes are all snake-cased.

New format:

Entity name of Spaceship: spaceship

Attributes:

Serial number: serial_number - CHAR(17)

Recommended price: recommended_price – NUMERIC(8, 2)

Primary key: serial_number

Chapter 8 I Database design in the age of generative AI222

Here is a sample answer from ChatGPT to this request:

ChatGPT GPT-4o
Entity name of Brand: brand

Attributes:

Name: name - VARCHAR(100)

Primary key: name

Entity name of Model: model

Attributes:

Model number: model_number - CHAR(4)

Model name: model_name - VARCHAR(100)

Primary key: model_number

Entity name of Spaceship: spaceship

Attributes:

Serial number: serial_number - CHAR(17)

Recommended price: recommended_price – NUMERIC(8, 2)

Year: year - year

Primary key: serial_number

Entity name of Dealer: dealer

Attributes:

Name: name - VARCHAR(100)

Address: address - VARCHAR(255)

Phone number: phone_number - CHAR(15)

Email address: email_address - VARCHAR(100)

Website URL: website_url - VARCHAR(255)

Primary key: name

Entities and attributes 223

Entity name of Customer: customer

Attributes:

Name: name - VARCHAR(100)

Address: address - VARCHAR(255)

Phone number: phone_number - CHAR(15)

Email address: email_address - VARCHAR(100)

Primary key: email_address

As you see, ChatGPT does many things right, such as using the desired
format, following snake-case convention in naming entities and
attributes, and making some reasonable guesses on data length when no
requirements are specified.

Some design choices in the answer are questionable, however. Three
notable problems stand out.
First, the selection of primary keys of certain entities may not be what
you want. Because the requirement summaries don’t provide enough
information about how primary keys should be selected, ChatGPT
took the liberty of sneaking in some assumptions. The name attribute
was chosen as the primary key of the dealer entity, for example, and
the email_address attribute was chosen as the primary key of the

Chapter 8 I Database design in the age of generative AI224

customer entity. Both choices are problematic. Although a dealer’s
name is not likely to change often, it is possible for two dealers to
have the same name, even in a single US state, let alone the world. A
different attribute should be used as the primary key, but what would
that be? After diving into the requirement analysis further, you find the
following information:

•	 A customer is allowed to update their email address and phone
number.

•	 A dealer is allowed to update their email address and phone number.

In other words, neither the email nor the phone number is stable. If
you make either attribute the primary key of an entity, you will face a
lot of trouble in updating phone number or email addresses. That said,
no single attributes are readily available to be used as the primary key
in dealer or customer. As you learned in chapter 4, a surrogate key
that increments automatically can be used as the primary key in this
situation. Such a primary key has no problems in identifying a data
record uniquely but can’t prevent data duplications by itself—that is,
it can’t prevent a person or a robot to register more than one account
using the same information. Based on what you learned in chapter 6,
you can add a unique constraint to the email_address attribute and
another to the phone_number attribute to address concerns about data
duplication. When you revise the design of the customer entity based
on these considerations, it looks like this:

Entity name of Customer: customer

Attributes:

Customer ID: customer_id – INT

Name: name - VARCHAR(100)

……

Primary key: customer_id

Note 1: email_address requires a unique constraint; phone_number
requires a unique constraint

Entities and attributes 225

The dealer entity has a similar update:

Entity name of Dealer: dealer

Attributes:

Dealer ID: dealer_id – INT

Name: name - VARCHAR(100)

……

Primary key: dealer_id

……

Second, the design of phone-number attributes failed to account for
the fact that a dealer or customer can be anywhere on Earth. Both
customer and dealer have a phone_number attribute. The data length
CHAR(15) may not be sufficient for all international numbers. If you do
some research on phone-number lengths, you find that the maximum
length of a phone number is 15 digits, thanks to the international
phone-numbering plan. This length assumes that the country code
is included and that the number is a simple numeric string without
spaces, dashes, or parentheses. Some international numbers, however,
have non-numeric strings. In such a case, the total length may exceed
15 characters. To address this problem, you can separate the country
code from the phone number and prepare two attributes to store each
piece of data separately. When you revise the design of the customer
entity based on these considerations, it looks like this:

Entity name of Customer: customer

Attributes:

Customer ID: customer_id – INT

Name: name - VARCHAR(100)

Phone number:

 country_code - CHAR(5)
 customer_phone_number - CHAR(15)

……

Chapter 8 I Database design in the age of generative AI226

The dealer entity has a similar update:

Entity name of Dealer: dealer

Attributes:

Dealer ID: dealer_id – INT

Name: name - VARCHAR(100)

Phone number:
 country_code - CHAR(5)
 dealer_phone_number - CHAR(15)

……

The separation between country codes and phone numbers can help
standardize phone numbers and ensure consistency in how phone
numbers are stored. More important, VARCHAR(15) is sufficient for any
phone numbers when the country code is not considered.
Third, the design of address attributes failed to account for the fact
that the dealer and customer can be anywhere on Earth. A single
attribute, VARCHAR(255), may not be sufficient for storing some long
addresses. What’s worse, this design will lead to many addresses with
unpredictable formats because no structure is enforced. Unpredictable
formats create further troubles in parsing, searching, and filtering, let
alone data validation and error handling.
To make address storage more robust and flexible, consider breaking
the address into multiple attributes. You might update the design of the
customer entity like this:

Entity name of Customer: customer

Attributes:

……

Address:

 street_address - VARCHAR(255)
 suburb - VARCHAR(100)
 city - VARCHAR(100)
 state_province - VARCHAR(100)
 postal_code - VARCHAR(20)
 country - CHAR(2)

……

Entities and attributes 227

The design of the dealer entity is updated as follows:

Entity name of Dealer: dealer

Attributes:

……

Address:

 street_address - VARCHAR(255)
 suburb - VARCHAR(100)
 city - VARCHAR(100)
 state_province - VARCHAR(100)
 postal_code - VARCHAR(20)
 country - CHAR(2)

……

As soon as you break the address information into six attributes in both
the customer and dealer entities, you may notice that the two entities
suddenly have significant overlap. This situation may ring a bell if you
remember chapter 7, which addressed a similar problem between a
user address and a billing address. If you use the same solution, you can
prepare a new table representing addresses and link that table to both
the dealer and customer entities. The new table looks like this:

Entity name of Address: address

Attributes:

Address ID: address_id - INT

Street address: street_address - VARCHAR(255)

Suburb: suburb - VARCHAR(100)

City: city - VARCHAR(100)

State/Province: state_province - VARCHAR(100)

Postal code: postal_code - VARCHAR(20)

Country: country - CHAR(2)

Primary key: address_id

The postal codes are not universally applicable. Some countries use
them, and others don’t. Countries that use postal codes tend to have
different opinions about how they should be formatted. As a result, you
should make the postal_code attribute optional, which means that

Chapter 8 I Database design in the age of generative AI228

it can be null. The same can be said of the suburb attribute. With the
address entity representing addresses, you can remove the attributes
about addresses from the customer and dealer entities.
It is important to keep a record of your revisions in text because you
are not done designing and implementing the database, and ChatGPT
is a primarily a text-based AI tool. You’ll feed your design of entities
and attributes to ChatGPT again for future design revisions and
implementations. When you merge all your revisions with the answers
from ChatGPT, you get the following results:

Entity name of Brand: brand

Attributes:

Name: name - VARCHAR(100)

Primary key: name

Entity name of Model: model

Attributes:

Model number: model_number - CHAR(4)

Model name: model_name - VARCHAR(100)

Primary key: model_number

Entity name of Spaceship: spaceship

Attributes:

Serial number: serial_number - CHAR(17)

Recommended price: recommended_price – NUMERIC(8, 2)

Year: year - year

Primary key: serial_number

Entity name of Dealer: dealer

Attributes:

Dealer ID: dealer_id – INT

Name: name - VARCHAR(100)

Entities and attributes 229

Email address: email_address - VARCHAR(100)

Website URL: website_url – VARCHAR(255)

Phone number:
 country_code - CHAR(5)
 dealer_phone_number - CHAR(15)

Primary key: dealer_id

Note 1: email_address requires a unique constraint; (country_
code, phone_number) requires a unique constraint

Entity name of Customer: customer

Attributes:

Customer ID: customer_id – INT

Name: name - VARCHAR(100)

Email address: email_address - VARCHAR(100)

Phone number:
 country_code - CHAR(5)
 customer_phone_number - CHAR(15)

Primary key: customer_id

Note 1: email_address requires a unique constraint; (country_
code, phone_number) requires a unique constraint

Entity name of Address: address

Attributes:

Address ID: address_id - INT

Street address: street_address - VARCHAR(255)

Suburb: suburb - VARCHAR(100)

City: city - VARCHAR(100)

State/Province: state_province - VARCHAR(100)

Postal code: postal_code - VARCHAR(20)

Country: country - CHAR(2)

Primary key: address_id

Note 1: suburb and postal_code are optional

Chapter 8 I Database design in the age of generative AI230

Communicate your design
You have completed the design of entities and attributes based on
the requirement analysis and ChatGPT. Everything is stored in a
long, formatted piece of text. The text is essential for communicating
with ChatGPT but not great for sharing your design with other
people. To communicate your design effectively, you have to
visualize it.
If you have only a few entities, you can use any diagram tool to draw
them. You can draw all the entities of SHIPS R US as follows:

brand

name VARCHAR(100)

model

model_number CHAR(4)

name VARCHAR(100)

spaceship

serial_number CHAR(17)

recommended_price NUMERIC(8, 2)
year YEAR

dealer

dealer_id INT

name VARCHAR(100)
email_address VARCHAR(100)

website_url VARCHAR(255)

country_code CHAR(5)
phone_number CHAR(15)

customer

customer_id INT

name VARCHAR(100)
email_address VARCHAR(100)
country_code CHAR(5)
phone_number CHAR(15)

address

address_id INT

street_address VARCHAR(255)
suburb VARCHAR(100)

city VARCHAR(100)

state_province CHAR(100)
postal_code VARCHAR(20)

country CHAR(2)

If you are working on a much bigger project that involves a dozen
or more entities, however, you may want to turn to ChatGPT
for help again. Although ChatGPT can’t generate the diagram
you need in the target format, you can ask it to generate the
corresponding SQL code and import the code into a tool that
visualizes database design based on SQL code, such as dbdiagram.
io (https://dbdiagram.io). To ask ChatGPT for SQL code, try the
following example request:

https://dbdiagram.io

Entities and attributes 231

I am designing a database. Help me generate MySQL code based on the
following description of entities and attributes. Keep the entities inde-
pendent from one another.

Description: """

Entity name of Brand: brand

Attributes:

Name: name - VARCHAR(100)

Primary key: name

……

Country: country - CHAR(2)

Primary key: address_id

Note 1: suburb and postal_code are optional

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

"""

After getting the code, you can copy and paste it by using the import
function of dbdiagram.io:

https://bit.ly/grdb

Chapter 8 I Database design in the age of generative AI232

The generated visualization is much easier to share with others and
appropriate for communication:

As you can see, ChatGPT can speed the process of database design.
Although you can’t use the answers directly, they are useful as the
starting point in your problem-solving journey. When you get some
answers from ChatGPT, it is up to you to identify the problems in
those answers and fix them based on your requirement analysis and
knowledge of database design. When you need to communicate your
design to others, ChatGPT can convert the text-based design to SQL
code, which in turn can be turned into a diagram.

Relationships among entities
Now that you have identified and designed all the entities, their
attributes, and corresponding data types for the database, you are ready
to work on the relationships among entities. The following list may
refresh your memory of the requirements for relationships:

•	 The database needs to maintain records of all spaceship brands
and models, manufactured spaceships, dealers, customers, and
relationships between dealers and customers.

Relationships among entities 233

•	 A spaceship brand is associated with multiple models, and a model is
associated with multiple spacecraft.

•	 A dealer is distributed one or more spaceships and serves one or more
customers.

•	 A customer is served by one or more dealer, and is associated with
one or more spaceships that they bought from the dealer.

•	 A spaceship is associated with one model and can be associated with
no more than one owner and no more than one dealer.

•	 A customer is associated with one address. Multiple customers may
share an address. A dealer is associated with one address.

You added the last item when you decided to use an independent entity
to represent addresses. You need to address the relationship between
customers and addresses as you build the relationships among entities;
the same is true of dealers and addresses.
As what you did in the preceding section, you can start by asking
ChatGPT to generate a design draft. To achieve a more useful response,
follow the rules of thumb to structure your request. Try the following
request:

I am designing a database for a manufacturer of spaceships. I have iden-
tified six entities: brand, model, spaceship, dealer, customer, and address.
Help me identify the relationships between each pair of entities based
on the given requirements. Generate output using the desired format.

Desired format:

brand | model

Relationship: one to many

Note: The side pointing to model is many

Requirements: """

The database needs to maintain records of all spaceship brands and
models …… A dealer is associated with one address.

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

"""

https://bit.ly/grdb

Chapter 8 I Database design in the age of generative AI234

Here is a sample response from ChatGPT:

ChatGPT GPT-4o
brand | model
Relationship: one to many

Note: the side pointing to model is many

model | spaceship
Relationship: one to many

Note: The side pointing to spaceship is many

spaceship | dealer
Relationship: many to one

Note: The side pointing to dealer is one

spaceship | customer
Relationship: many to one

Note: A customer can own multiple spaceships, and a spaceship can be
owned by multiple customers (e.g., shared ownership)

dealer | address
Relationship: one to one

Note: Each dealer is associated with exactly one address

customer | address
Relationship: many to one

Note: The side pointing to address is one

As in the design of entities and attributes, ChatGPT does many things
right. In the preceding answer, most relationships were developed
properly with the exception of the relationship between customer and
spaceship. The requirements you gathered were quite explicit:

Relationships among entities 235

A customer is served by a
dealer and is associated with
one or more spaceships that
they bought.

A spaceship is associated
with one model and can be
associated with no more than
one owner and no more than
one dealer.

A spaceship is associated
with up to one owner.

A customer is associated
with one or more spaceships.

It is possible that when the information on a relationship is scattered
across multiple sentences, ChatGPT has difficulty parsing it properly.
It is also possible that ChatGPT somehow starts to hallucinate when
answering this question. Regardless, you have a robust mastery of
database design after reading the first seven chapters of this book, and
the error is not hard to fix:

spaceship | customer

Relationship: many to one

Note: the side pointing to customer is one

You may also notice that the relationship between customer and
dealer is missing. The requirement you gathered is clear:

•	 A dealer serves one or more customers.
•	 A customer is served by a dealer.

You can add this relationship yourself to the text of relationships:

customer | dealer

Relationship: many to many

Note: both sides are many

Minimum cardinalities and foreign keys
ChatGPT didn’t provide much information about the min cardinalities
or foreign keys of relationships between pairs of entities. You didn’t ask
for this information to begin with because you needed to make sure that
each relationship (max cardinalities) was identified properly first. Now

Chapter 8 I Database design in the age of generative AI236

is a good time to make a new request to ChatGPT. Here is an example
of how you might structure this request:

I am designing a database for a manufacturer of spaceships. I have iden-
tified some of the characteristics of six entities: brand, model, spaceship,
dealer, customer, and address. Help me identify the min cardinality and
where the foreign key should be placed between each pair of entities
based on the given requirements and the known relationship character-
istics. Generate output using the desired format.

Desired format:

brand | model

Relationship: one to many

Note 1: The side pointing to model is many

Note 2: The foreign is in model

Note 3: The min cardinality close to model is relaxed from 1 to 0

Requirements: """

The database needs to maintain records of all spaceship brands and
models …… A dealer is associated with one address.

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

"""

Characteristics: """

brand | model

Relationship: one to many

Note: The side pointing to model is many

……

customer | address

Relationship: many to one

Note: The side pointing to address is one

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

"""

Following is a sample answer from ChatGPT to this request:

https://bit.ly/grdb
https://bit.ly/grdb

Relationships among entities 237

ChatGPT GPT-4o
brand | model

Relationship: one to many

Note 1: The side pointing to model is many

Note 2: The foreign key is in model

Note 3: The minimum cardinality close to model is relaxed from 1 to 0

model | spaceship

Relationship: one to many

Note 1: The side pointing to spaceship is many

Note 2: The foreign key is in spaceship

Note 3: The minimum cardinality close to spaceship is relaxed from 1 to
0

customer | dealer

Relationship: many to many

Note 1: A junction table customer_dealer is needed

Note 2: The foreign keys are in customer_dealer

Note 3: The minimum cardinalities close to customer_dealer are re-
laxed from 1 to 0

spaceship | dealer

Relationship: many to one

Note 1: The side pointing to dealer is one

Note 2: The foreign key is in spaceship

Note 3: The minimum cardinality close to dealer is relaxed from 1 to 0

spaceship | customer

Relationship: many to one

Note 1: The side pointing to customer is one

Note 2: The foreign key is in spaceship

Note 3: The minimum cardinality close to spaceship is relaxed from 1 to 0

Chapter 8 I Database design in the age of generative AI238

(continued)
dealer | address
Relationship: one to one

Note 1: Each dealer is associated with exactly one address

Note 2: The foreign key is in dealer

Note 3: The minimum cardinality close to address is 1

customer | address
Relationship: many to one

Note 1: The side pointing to address is one

Note 2: The foreign key is in customer

Note 3: The minimum cardinality close to address is relaxed from 1 to 0

ChatGPT handled the placement of foreign keys quite well, especially
when three entities are related. The relationships among customer,
dealer, and address are similar to a challenge you tackled in earlier
chapters: how to handle the relationships among address, user, and
payment methods for The Sci-Fi Collective. The relationships among
customer, dealer, and address are summarized as follows:

dealercustomer

address

Holds the foreign
key address_id

Holds the foreign
key address_id

Only showing the max cardinality

Beyond foreign keys, ChatGPT is rather confused about the min
cardinalities, especially when a min cardinality needs to be relaxed
from one to zero. It is up to you to fix those mistakes, using what you
learned from chapter 5. If your memory is blurred, here are some rules
of thumb about when to relax a min cardinality:

•	 In a one-to-one relationship, if one entity is typically created before
the other, you may set the min cardinality of the second entity to zero
to allow the first entity to exist without an immediate counterpart.

Relationships among entities 239

•	 In a one-to-many relationship, the cardinality that’s closer to
the many side needs to be relaxed. This relaxation allows for
cases in which the entity on the one side might exist without any
corresponding entries on the many side. A customer might exist
without any addresses, for example.

•	 In a many-to-many relationship, the min cardinalities are often set to
zero on both sides if either entity can exist without the other. If there
are strict business rules about the existence of the entities, however,
you might keep one cardinality set to one.

You can start with the relationships between dealer and address and
between customer and address. The gathered requirements don’t say
much about the min cardinalities of their relationships. After following
up with the software developers, you gained some new understanding:

•	 A dealer can’t have an account without an address. SHIPS R US’s web
app doesn’t allow dealers to register accounts without providing
address information. In other words, it is not possible for a dealer
record to exist without a corresponding address.

•	 SHIPS R US maintains user records for purposes such as outreach and
recalls but doesn’t allow customers to register accounts directly. Instead,
dealers enter the customer information plus the address information
into the system. In other words, it is not possible for a customer
record to exist without a corresponding address.

Combining such information and rules of thumb about when to relax a
min cardinality, you can make the following revisions:

customer | address
Relationship: many to one
Note 1: The side pointing to address is one
Note 2: The foreign key is in customer
Note 3: The minimum cardinality close to
address is relaxed from 1 to 0

dealer | address
Relationship: one to one
Note 1: Each dealer is associated with exactly
one address Note 2: The foreign key is in dealer
Note 3: The minimum cardinality close to
address is 1

The min cardinality close to
dealer is relaxed from 1 to 0

The min cardinality close to
customer is relaxed from 1 to 0

Chapter 8 I Database design in the age of generative AI240

The revision to the relationship between customer and address is
straightforward considering that the relationship is one-to-many. The
min cardinality of the many side needs to be relaxed to make data entry
possible. By contrast, the revision to the relationship between dealer
and address is more nuanced. You may wonder whether you can relax
the side closer to address instead of dealer. You can, but doing so
will make things messier and less consistent, as demonstrated in the
following figure:

dealer

dealer_id INT

name VARCHAR(100)
email_address VARCHAR(100)

website_url VARCHAR(255)

country_code CHAR(5)

phone_number CHAR(15)
address_id INT

address

address_id INT

street_address VARCHAR(255)
suburb VARCHAR(100)

city VARCHAR(100)

state_province CHAR(100)

postal_code VARCHAR(20)

country CHAR(2)
A record of dealer
needs to exist first.

The foreign key needs
to reference an
existing address_id.

Conflicting design

Because dealer is the child table in this relationship, it contains the
foreign key address_id. In other words, a new record in the dealer
table needs to reference an existing address_id value. As the result,
relaxing the cardinality closer to dealer is a better choice. The revised
relationships between customer and address and between dealer
and address can be summarized as follows:

Relationships among entities 241

dealer

dealer_id INT

name VARCHAR(100)

email_address VARCHAR(100)

website_url VARCHAR(255)

country_code CHAR(5)

phone_number CHAR(15)
address_id INT

customer

customer_id INT

name VARCHAR(100)

email_address VARCHAR(100)

country_code CHAR(5)

phone_number CHAR(15)

address_id INT

address

address_id INT

street_address VARCHAR(255)

suburb VARCHAR(100)

city VARCHAR(100)

state_province CHAR(100)

postal_code VARCHAR(20)

country CHAR(2)

Relaxed

Foreign keys

Beyond the two relationships, you can find one more min cardinalities
that need to be relaxed in the relationship between spaceship and
customer. The requirements for this relationship are

•	 A spaceship is associated with one model and can be associated with
no more than one owner and no more than one dealer.

•	 A customer is associated with one or more spaceships that they
bought.

In other words, when a spaceship is manufactured, its record is entered
into the system immediately without being associated with a customer.
Based on this information, the min cardinality close to customer
rather than spaceship needs to be relaxed to zero:

Chapter 8 I Database design in the age of generative AI242

spaceship | customer
Relationship: many to one
Note 1: The side pointing to customer is one
Note 2: The foreign key is in spaceship
Note 3: The minimum cardinality close to
spaceship is relaxed from 1 to 0

The min cardinality close to
customer is relaxed from 1 to 0

The revised relationship can be summarized as follows:

spaceship

serial_number CHAR(17)

recommended_price NUMERIC(8, 2)

year YEAR

customer_id INT

customer

customer_id INT

name VARCHAR(100)

email_address VARCHAR(100)

country_code CHAR(5)

phone_number CHAR(15)Foreign key

You may notice that the foreign key of this relationship (customer_id)
is in spaceship. By default, customer_id needs to reference a record
in customer. To make sure that the foreign key is aligned with the
requirements, make it optional. In other words, it should allow NULL
values.

Communicate your design
As discussed earlier in this chapter in the “Entities and attributes”
section, you are likely to need visualization to communicate your design
better. If you choose to draw your design by hand, you’ll get something
like the following figure.

Relationships among entities 243

model

model_number CHAR(4)

name VARCHAR(100)
brand_name VARCHAR(100)

spaceship

serial_number CHAR(17)

recommended_price NUMERIC(8, 2)
year YEAR

model_number CHAR(4)
customer_id INT

dealer_id INT

dealer

dealer_id INT

name VARCHAR(100)
email_address VARCHAR(100)

website_url VARCHAR(255)

country_code CHAR(5)

phone_number CHAR(15)
address_id INT

customer
customer_id INT

name VARCHAR(100)
email_address VARCHAR(100)

country_code CHAR(5)
phone_number CHAR(15)

address_id INT

address

address_id INT

street_address VARCHAR(255)
suburb VARCHAR(100)

city VARCHAR(100)

state_province CHAR(100)

postal_code VARCHAR(20)

country CHAR(2)

Foreign keys

customer_dealer

customer_id INT

dealer_id INT

brand

name VARCHAR(100)

If you need ChatGPT and dbdigram.io for a much bigger project, you
must retrieve the SQL code first. The following request aims to get
MySQL code from ChatGPT:

Chapter 8 I Database design in the age of generative AI244

I am designing a database. Help me generate MySQL code based on the
following description of entities and relationships.

Description: """

description of entities starts here

Entity name of Brand: brand

Attributes:

Name: name - VARCHAR(100)

Primary key: name

……

description of relationships starts here

brand | model

Relationship: one to many

Note 1: The side pointing to model is many

……

Country: country - CHAR(2)

Primary key: address_id

Note 1: suburb and postal_code are optional

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

"""

After getting the code, you can copy and paste it into dbdiagram.io to
get the following diagram:

https://bit.ly/grdb

Implementation 245

Implementation
Now that you designed the entities, attributes, and relationships for
the database of SHIPS R US, you are ready to implement the database.
First, however, you have to make sure that your database design
is normalized. When you check your database design against the
requirements for normal forms, you see that your database design is in
Boyce-Codd Normal Form (BCNF). You can also ask ChatGPT to help
with the checking (“Is my database design normalized?”) and verify the
answers later.

Chapter 8 I Database design in the age of generative AI246

Have a primary key

Have no multivalued
columns

All nonkey columns are
dependent on the primary
key (in its entirety).

In 1NF

BCNF

3NF

2NF

1NF

In 2NF

No nonkey columns are
transitively dependent
on the primary key.

In 3NF

All columns are dependent
on a key and nothing else.

Constraints
Applying constraints based on requirement analysis is a necessary step
in implementing your database design. In chapter 6, you learned about
a variety of constraints, such as primary key, foreign key, NOT NULL,
and unique constraints. Review your analysis to identify the attributes
that require constraints and the type of constraints that are appropri-
ate. ChatGPT can offer help for this task as well. Copy and paste all the
relevant requirements and the revised output from the preceding two
sections and then formulate a new request:

I am designing a database. Help me identify the attributes that need con-
straints and the type of constraints using the desired format based on
the given requirements, entities and attributes, and relationships among
entities.
Desired formats:
Entity name: brand
Attribute in focus:
* model_number: primary key
* model_name: NOT NULL
* brand_name: foreign key

Implementation 247

Requirements: """
The database needs to maintain records of all spaceship brands and
models, manufactured ……
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)
"""

Entity and attributes: """
Entity name of Brand: brand
Attributes:
Name: name - VARCHAR(100)……
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)
"""

Relationships: """
brand | model
Relationship: one to many
Note 1: The side pointing to model is many……
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)
"""

Here is a sample answer to this request:

ChatGPT GPT-4o
Entity: Brand
Attribute in focus:
name: primary key

Entity: Model
Attributes in focus:
model_number: primary key constraint

model_name: NOT NULL

brand_name: foreign key constraint (references brand.name)

https://bit.ly/grdb
https://bit.ly/grdb
https://bit.ly/grdb

Chapter 8 I Database design in the age of generative AI248

(continued)
Entity: Spaceship
Attributes in focus:
serial_number: primary key
recommended_price: CHECK (e.g., CHECK (recommended_price >=
0))
year: CHECK (e.g., CHECK (year >= 1900))
model_number: foreign key (references model.model_number)
dealer_id: foreign key (references dealer.dealer_id)
customer_id: foreign key (references customer.customer_id)

Entity: Dealer
Attributes in focus:
dealer_id: primary key
name: NOT NULL
email_address: UNIQUE
website_url: NOT NULL
(country_code, dealer_phone_number): UNIQUE
address_id: foreign key (references address.address_id)

Entity: Customer
Attributes in focus:
customer_id: primary key
name: NOT NULL
email_address: UNIQUE
(country_code, customer_phone_number): UNIQUE
address_id: foreign key (references address.address_id)

Entity: Customer_Dealer
Attributes in focus:
(customer_id, dealer_id): primary key
customer_id: foreign key (references customer. customer_id)
dealer_id: foreign key (references dealer.dealer_id)

Implementation 249

Entity: Address

Attributes in focus:

address_id: primary key

country: CHECK (ensures valid country codes, e.g., CHECK
(country IN ('US', 'CA', ...)))

As you see, ChatGPT properly identified most of the constraints, but
it missed a few attributes that require NOT NULL constraints. Also, it
neglected the scenarios in which an attribute requires more than one
constraint. email_address in dealer, for example, requires both NOT
NULL and UNIQUE constraints. You need to fix these problems yourself
and store revised text of the constraints so that you can use them for the
next step.

Optimization
In optimization, you aim to reduce redundancy and increase the
consistency and efficiency of your database design before converting it
to code. You can pose some open-ended general questions to ChatGPT
(such as “How do I optimize my database design?”). But asking specific
questions about certain things that you notice always results in better
responses.

Chapter 8 I Database design in the age of generative AI250

You may notice, for example, that the ChatGPT suggested using a
CHECK constraint on the country attribute in address. Considering
that there are about 200 countries in the world, however, this constraint
will be painful to code and messy. You can raise a question about this
aspect:

Q1. Applying a CHECK constraint to the country attribute in the ad-
dress table is painful because there are about 200 countries in the
world. What’s a common and recommended approach to store such in-
formation without this constraint but still retain the data validity check?

You can raise the same question about the country_code attribute in
customer and dealer:

Q2. To ensure the validity of the country code of phone numbers in the
customer/address tables, what’s a common and recommended ap-
proach to store such information?

ChatGPT’s responses are quite useful:

ChatGPT GPT-4o
Q1 Answer: Instead of using a CHECK constraint for the country code, a
better approach is to use a reference to a separate Country table. This
table would contain a list of valid country codes and their correspond-
ing names …

Q2 Answer: To ensure the data validity, you can follow a similar approach
to use a separate table …

To synthesize the two suggestions, you can create a single table to store
information about each country, such as country abbreviation, country
code, and name. The table will be prepopulated with valid information,
so it can be linked to customer, dealer, and address to ensure data
validity. The updated database design is as follows:

Implementation 251

brand

name VARCHAR(100)

model

model_number CHAR(4)

name VARCHAR(100)
brand_name VARCHAR(100)

spaceship

serial_number CHAR(17)

recommended_price NUMERIC(8, 2)
year YEAR

model_number CHAR(4)
customer_id INT

dealer_id INT

dealer

dealer_id INT

name VARCHAR(100)
email_address VARCHAR(100)

website_url VARCHAR(255)

phone_number CHAR(15)

country_id INT
address_id INT

customer
customer_id INT

name VARCHAR(100)
email_address VARCHAR(100)

phone_number CHAR(15)

country_id INT
address_id INT

address

address_id INT

street_address VARCHAR(255)
suburb VARCHAR(100)

city VARCHAR(100)

state_province CHAR(100)

postal_code VARCHAR(20)

country_id INT

Foreign keys

country

country_id INT

country_abbr CHAR(2)

country_code CHAR(5)

country_name VARCHAR(100)

customer_dealer
customer_id INT

dealer_id INT

This is for phone_number.

This is for phone_number.

You need to update the information you stored about entities, attributes,
relationships, and constraints. Then you will be ready to convert the
updated design to SQL code with the help of ChatGPT. To achieve the
best result, be specific in your request. Here is an example request that
asks for MySQL code:

I am designing a database. Generate MySQL code based on the given
entity, attributes, and relationships, and constraints.
Entity and attributes: """
Entity name of Brand: brand ……
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)
"""

https://bit.ly/grdb

Chapter 8 I Database design in the age of generative AI252

(continued)
Relationships: """
brand | model ……
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)
"""

Constraints: """
Entity: brand ……
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)
"""

Depending on the RDBMS you are using, you may want the code to
be in a different SQL dialect. As long as the provided information is
detailed enough, it is hard for ChatGPT to make serious mistakes at
this step. You can find the full SQL code in chapter_08 folder in our
GitHub repository. If your requirements have sufficient information
about which columns require indexing, chapter 7 shows you how to
take preemptive measures to index those columns. Otherwise, you can
wait for the data and the use of database tell you more.
Finally, ChatGPT can be very useful for generating sample data that you
can use to test your database and for identifying problems preemptively.
Following is a sample request for testing data:

I am designing a database. Generate sample data that can be used for
testing based on the given SQL code that implements the database.

SQL Code:
'''
-- Create brand table
CREATE TABLE brand (name VARCHAR(100) PRIMARY KEY);
……
-- Create customer_dealer table
CREATE TABLE customer_dealer (
 customer_id INT NOT NULL,
 dealer_id INT NOT NULL,
 CONSTRAINT pk_customer_dealer ……
 CONSTRAINT fk_customer_dealer_customer ……
 CONSTRAINT fk_customer_dealer_dealer ……
);

(This is a snippet. Full code can be found at https://bit.ly/grdb.)

"""

https://bit.ly/grdb
https://bit.ly/grdb
https://bit.ly/grdb

Recap 253

Now you’ve gone through the full process of database design with the
help of ChatGPT. Good job!

Recap
•	 To use ChatGPT for database design effectively, follow some rules of

thumb: be specific, descriptive, and as detailed as possible; separate
instructions from context; and articulate the desired output format
through examples.

•	 You should take a stepwise approach to using ChatGPT to help with
database design and make verifications and revisions to ChatGPT’s
output at each step.

•	 Store the design at each milestone in text for smooth communication
with ChatGPT in the future.

•	 If you need to communicate your design draft with coworkers, you
can convert your design to SQL code with the help of ChatGPT and
visualize it by using tools such as dbdiagram.io.

255

index

Numbers
1NF (First Normal Form) 139
2NF (Second Normal Form) 139
3DES (Triple DES) 185
3NF (Third Normal Form) 139
4NF (Fourth Normal Form) 141
5NF (Fifth Normal Form) 141
6NF (Sixth Normal Form) 141

A
access control 178–182
accuracy, defined 96
address entity 189, 228
address_id attribute 190
address table 190–193, 250
AES (Advanced Encryption

Standard) 185
aggregation 14–19
ALTER TABLE command 23
analysis and design 57
AND operator 13
AS clause 15, 32
attributes 74–78

spaceship manufacturer data-
base 218–232

author entity 123
author table 125
AVG() function 14

B
BCNF (Boyce-Codd Normal

Form) 139, 145, 207, 245
BIGINT data type 91
billing_address table 189, 191
Blowfish 185
book entity 123
book_id attribute 123, 125
B-trees 195

C
caching 54
candidate key 79, 80, 140
cardinality 109–128

direction and representation
110

many-to-many relationships
121–128

one-to-many relationships
117–121

one-to-one relationships
112–116

card_number attribute 94
CASCADE actions 165
categorical data 192
character sets 90
CHAR data type 86, 183
ChatGPT 47, 77

GPT-4o 214–216
check constraint 172–174, 250
child table 37, 162

code attribute 94
composite primary keys 124
confidentiality 178–187

access control 178–182
encryption 182–187

CONSTRAINT…FOREIGN
KEY…REFERENCES… clause
37

constraints
implementation 246
naming 160

cost attribute 97
COUNT() function 14
country attribute 250
Country table 250
CREATE TABLE command 20,

21
cross join 35
CURRENT_TIMESTAMP func-

tion 170, 171
customer entity 224–228
customer table 250

D
data

adding to tables 19–24
creating tables 19–24
managing 35–42

database design 49, 138, 213
entity-relationship models 104
relational database design,

overview 104

index256

database design goals 50–54
data consistency and integrity

51
data security 53
maintainability and ease of use

51
performance and optimization

52
scalability and flexibility 54

databases
design phases 60–69
existing databases 61
goals of 60
relational 9–11, 26–35

data manipulation language 19
data schema 104
data types 13, 85–100. See

also specific data types
decimal 95
integer 91–94
string 85–91
temporal 98–100

DATE data type 98
DATETIME data types 98, 101
DDL (data definition language)

19–24
dealer entity 224–228
dealer table 250
DECIMAL data type 95–96, 101
default constraint 169
delete anomaly 8, 51
denormalization 201–209

database design 205–209
overview 201–205

dot notation 31
DOUBLE data type 95
DROP TABLE command 24

E
email_address attribute 224
encryption 182–187
entities 6, 74–78. See also specific

entities
relationships among 232–244
spaceship manufacturer data-

base 218–232

strong 129–136
weak 129–136

E-R (entity-relationship)
diagram 74, 93, 104, 142, 220
models 104

expiry_date attribute 94

F
Fifth Normal Form (5NF) 141
filtering 12
First Normal Form (1NF) 139
fixed-point data types 95
FLOAT data type 95
floating-point data types 95
foreign keys 236–242

constraint 161
defined 27

Fourth Normal Form (4NF) 141
FROM clause 11, 34
full-text indexes 197
functional dependency 144–146

G
generative AI 214
GROUP BY clause 15, 16
GROUP keyword 77

H
hash function 183
hashing 182

I
imperative language 11
implementation 156–174, 245–253

check constraint 172–174
constraints 246
default constraint 169
foreign key constraint 161
NOT NULL constraint 157
optimization 249–253
primary key constraint 159
referential actions 164–167
unique constraint 167

implementation/integration and
testing phase 59

inconsistencies of data types across
RDBMSs 101

indexing 52, 193–201
for ER diagrams 198–200
overview of full-text indexes 197
overview of standard indexes

194–198
information management 61
INNER JOIN 46
INSERT INTO command 22
insertion anomaly 8, 51
INSERT keyword 77
INT data type 91
integer data types 91–94
integrity 177
interviews 63–69

identifying subjects, characteris-
tics, and relationships 65–69

preparing for 63
IVs (initialization vectors) 186

J
JOIN clause 34, 46
JOIN keyword 77
JOIN…ON clause 30
joins, types of 32
JOINs vs. WHERE 34

K
keys 78–84

L
last_login_time attribute 100
LEFT JOIN 46
LLMs (large language models) 213
logarithmic time 195

M
MAC (mandatory access control)

178
manufacturer attribute 90

index 257

many-to-many relationships
121–128
identifying in database 126

max cardinality 110
MAX() function 14
MEDIUMINT data type 91
MIN() function 14
minimum cardinalities 110,

236–242
multivalued columns 142

N
name attribute 90, 224
NO ACTION action 165
nonempty (non-nullability) re-

quirement 81
normalization 137–155

database design 147
functional dependency 144–146
multivalued columns 142
primary keys 142
transitive dependency 150–155

NOT NULL constraint 157
NUMBER data type 101
NUMERIC data type 96
NVARCHAR(MAX) data type 101

O
one-to-many relationships

117–121
identifying in database 119

one-to-one relationships 112–116
identifying in database 114

OOP (object-oriented program-
ming) 75

ORDER keyword 77
OR operator 13
OUTER JOIN 46

P
parent table 37, 162
partial keys 129
payment_id attribute 93
payment_method entity 93

payment_method table 189, 191
indexing for ER diagrams 200

phone_number attribute 224, 225
postal_code attribute 115, 228
power(x) function 144
precision 96
price attribute 95, 97
primary keys 6, 142

composite 124
constraint 159
defined 78

product codes 81
product entity 93
product_id column 27, 37
product_id value 40
product names 81
product_price attribute 97
product_review table 58
product table 9, 26

indexing for ER diagrams 199
purchase_time attribute 100

Q
queries 11–19

aggregation 14–19
filtering 12

R
RBAC (role-based access control)

178
RDBMSs (relational database

management systems) 3, 8, 25,
73, 103, 137, 176, 214

README.md file 10, 137, 175
redundant tables 188–192
referential actions 164–167
referential integrity 38
related tables 25–39

joining data from 29
managing data in 39
number of shared columns 27
types of joins 32
WHERE vs. JOIN 34

relational database design 4–9, 50
connecting related entities 106

entities 6
entities and attributes 73
implementation 156–174
overview 74, 104
overview of design process

55–60
primary keys 6
RDBMS (relational database

management systems) 8
related tables 25
security and optimization 176
SQL 8
tables 6

relational databases 5
data types 85–100
designing implementation

245–253
managing data and tables 35–42
overview 26
related tables 26–39
SQL, first query 9–11

relationships 103
among entities 232–244

requirement gathering, defined 56
requirements analysis 217
reserved keywords 77
RESTRICT action 165
review table 26

indexing for ER diagrams 200
review_time attribute 98, 100
RIGHT JOIN 46

S
scale 96
Second Normal Form (2NF) 139
security 176

and optimization 175
confidentiality 178–187
integrity 177

SELECT statement 11, 16, 17, 19,
77, 93

SET NULL action 166
SHIPS R US database, implemen-

tation 245–253
constraints 246
optimization 249–253

index258

Sixth Normal Form (6NF) 141
SMALLINT data type 91
SMEs (subject-matter experts) 62
spaceship manufacturer database,

entities and attributes 218–232
attributes 219, 223–228
communicating design 230
entities 218

SQL (Structured Query Language)
5, 8
first query 9–11
learning on your own 42–45
queries 11–19

standard indexes 194–197
state attribute 115
state table 189, 192, 193
storage considerations 187–193

categorical data 192
redundant tables 188–192

street_address column 189
string data types 85–91
strong entities 129–136

identifying in database 130–136

suburb attribute 228
sum aggregate function 43
sum function 44
SUM function 14, 45
superkey 140
surrogate key 83

T
tables 6. See also specific tables

creating, altering and dropping
19–24

managing 35–42
temporal data types 98–100
testing 59
TEXT data type 86, 87, 90,

101
Third Normal Form (3NF) 139
TIME data type 98
TIMESTAMP data type 98
TINYINT data type 91
total_price attribute 97
transitive dependency 150–155

U
unique constraint 167
UPC (Universal Product Code)

82, 94
update anomaly 28, 51
user_address entity 115, 116
user table 189, 190, 191, 192
UTC (Coordinated Universal

Time) 99

V
VARCHAR data type 86
VARCHAR2 data type 101
VARCHAR(15) 226
VARCHAR(255) 226

W
weak entities 129–136

identifying in database 130–136
WHERE clause 11, 12, 34, 46

Achievement & Skills Map

Goal Achieved Skill Gained Page Number

Foundational knowledge of
SQL and relational concepts

Proficiency in basic SQL queries, data manipula-
tion, and table management

Page 4

Relational database design
skills

Ability to extract entities and attributes from
requirement analysis

Page 74

Ability to identify the data types for attributes Page 85
Ability to identify relationships between entities
and cardinalities of relationships

Page 104

Normalization of relational
databases

An understanding of different normal forms;
ability to normalize a given database design
based on the understanding of normal forms

Page 138

Implementation of
relational databases

Ability to translate a database design to SQL code,
implementing constraints according to the design

Page 156

Database security Ability to take measures to secure a database,
such as encryption and access control

Page 176

Database optimization Ability to take measures to optimize a database,
such as indexing and denormalization

Page 193

Use generative AI to speed
up database design

Ability to use accurate prompts to query genera-
tive AI tools to design, optimize, and implement
databases iteratively

Page 214

A lmost every business uses a relational database system.
Whether you’re a software developer, an analyst creat-
ing reports and dashboards, or a business user just

trying to pull the latest numbers, it pays to understand how a
relational database operates. This friendly, easy-to-follow book
guides you from square one through the basics of relational
database design.

Grokking Relational Database Design introduces the core
skills you need to assemble and query tables using SQL. The
clear explanations, intuitive illustrations, and hands-on proj-
ects make database theory come to life, even if you can’t tell a
primary key from an inner join. As you go, you’ll design, imple-
ment, and optimize a database for an e-commerce application
and explore how generative AI simplifi es the mundane tasks of
database designs.

What’s Inside

• Defi ne entities and their relationships
• Minimize anomalies and redundancy
• Use SQL to implement your designs
• Security, scalability, and performance

For self-taught programmers, software engineers, data scien-
tists, and business data users. No previous experience with
relational databases assumed.

Dr. Qiang Hao and Dr. Michail Tsikerdekis are both profes-
sors of Computer Science at Western Washington University.

The technical editor on this book was Louis Davidson.

Cody Pham created the illustrations for this book.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

grokking
Relational Database Design
Qiang Hao ● Michail Tsikerdekis

“If anyone is looking to improve
their database design skills,
they can’t go wrong with this
book.”
—Ben Brumm, DatabaseStar

“Goes beyond SQL syntax and
explores the core principles.
An invaluable resource!”
—William Jamir Silva, Adjust

“Relational database design is
best done right the fi rst time.
This book is a great help to
achieve that!”
—Maxim Volgin, KLM

“Provides necessary notions to
design and build databases
that can stand the data
challenges we face.”
—Orlando Méndez, Experian

MANNING

Free eBook

DATABASES

See fi rst page

ISBN-13: 978-1-63343-741-8

	Grokking Relational Database Design
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the authors
	Part 1
Get started
	1 Introducing databases and SQL
	Overview
	Your first SQL query
	The basics of SQL queries
	Table and data management
	Recap

	2 Related tables and more SQL
	Overview
	Related tables
	Revisit table and data management
	Learn more SQL on your own
	Recap
	Overview

	3 Overview of database design
	Goals of database design
	Overview of the design process
	Key phases of database design
	Recap

	Part 2
Master database design
	4 Entities and attributes
	Overview
	Entities and attributes
	Keys
	Data types
	Recap

	5 Relationships
	Overview
	Entity-relationship diagrams
	Connect related entities
	Cardinality
	Strong and weak entities
	Recap

	6 Normalization and implementation
	Overview
	Normalization
	Implementation
	Recap

	7 Security and optimization
	Overview
	Security
	Storage considerations
	Indexing
	Denormalization
	Recap

	Part 3
Database design and AI
	8 Database design in the age of generative AI
	Overview
	Requirements analysis
	Entities and attributes
	Relationships among entities
	Implementation
	Recap

	index
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

