grokking

1

"
=)
©
”)
&
aD
=¥
 :
E
~
-

Relat

Qiang Hao

Michail Tsikerdekis

i e L e *

T e " P

T e T I
T e g e,
e 2

Chapter
Chapter 1 &2

Chapter Breakdown

What you’ll learn

Essential SQL commands, data
management, table structures,
and entity concepts.

Why it's important

A foundation for building structured
databases and understanding core
relational concepts.

Chapter 3 Goals, subgoals, and phases of A road map for structured and stra-

database design tegic design, guiding you through
requirement gathering, analysis, and
testing.

Chapter 4 Identification and representation of Extracting meaningful entities and
key concepts in requirement analysis | attributes and their data types from
as entities and attributes in database | requirement analysis is an important
design; common data types of step in database design.
attributes

Chapter 5 How to connect entities via An understanding of the relational
relationships, and identify their aspect of databases is an important
cardinalities; how to build E-R step in database design and is essen-
diagrams tial in building E-R diagrams.

Chapter 6 Normalization of your database How to ensure data accuracy, reduce
design and implementation of anomalies, and improve efficiency in
your design your databases is a must-to-know.

Chapter 7 Approaches to secure data and Database security and performance
improved query performance, are critical in real-world applications.
including indexing and
denormalization

Chapter 8 How to use Al tools like ChatGPT to Generative Al can make database

speed up database modeling and
implementation

design more accessible and efficient.

Relational
Database
Design

Qiang Hao
Michail Tsikerdekis

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road, PO Box 761
Shelter Island, NY 11964

Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the

publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a

trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also
our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at

least 15 percent recycled and processed without the use of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result

from negligence, accident, or any other cause, or from any usage of the information herein.

Manning Publications Co. Development editor: Elesha Hyde
/“ 20 Baldwin Road Technical editor: Louis Davidson
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljevi¢
and Kishor Rit

Production editor: Andy Marinkovich
Copy editor: Keir Simpson
Proofreader: Keri Hales

Technical proofreader: Ross Turner
Typesetter: Dennis Dalinnik
lustrator: Cody Pham

Cover designer: Marija Tudor

ISBN 9781633437418
Printed in the United States of America

www.manning.com
mailto:orders@manning.com

To our family and friends, for their endless support and encouragement.
And to all those who believe in the power of curiosity and persistence,
may this book serve as a companion on your journey of learning.

brief contents

Part1 Getstarted 1
1 Introducing databases and SQL 3
2 Related tables and more SQL 25
3 Overview of database design 49
Part2 Master database design 71
4 Entities and attributes 73
5 Relationships 103
6 Normalization and implementation 137
7 Security and optimization 175
Part3 Database design and Al 21

8 Database design in the age of generative Al 213

contents
preface xi
acknowledgments xiii
about this book XV
about the authors XixX
Part1 Get started 1

1 Introducing databases and SQL

Overview
Your first SQL query 9
The basics of SQL queries n
Table and data management 19
Recap 24
2 Related tables and more SQL 25
Overview 26
Related tables 26
Revisit table and data management 35
Learn more SQL on your own 42
Recap 46

Overview 49

vii

viii contents

3 Overview of database design

Goals of database design
Overview of the design process
Key phases of database design
Recap

Part2 Master database design

49

50
55
60
69

71

4 Entities and attributes

Overview

Entities and attributes
Keys

Data types

Recap

5 Relationships

Overview
Entity-relationship diagrams
Connect related entities
Cardinality

Strong and weak entities
Recap

6 Normalization and implementation

Overview
Normalization
Implementation
Recap

73

74
74
78
85
101

103

104
104
106
109
129
135

137

138
138
156
173

contents

7 Security and optimization 175

Overview 176
Security 176
Storage considerations 187
Indexing 193
Denormalization 201
Recap 209
Part3 Database design and Al 211

8 Database design in the age of generative Al 213

Overview 214
Requirements analysis 216
Entities and attributes 218
Relationships among entities 232
Implementation 245
Recap 253

index 255

preface

For years, we have taught courses on database management systems, and one
recurring challenge we've noticed is the overwhelming difficulty students
have with conventional textbooks. These materials, while comprehensive,
often feel tedious and painful for students to chew through, making the
learning process more daunting than it needs to be.

Our teaching experiences led us to envision a different kind of resource—one
that makes the principles of relational database design more approachable
and engaging. That opportunity came when Dr. Daniel Zingaro, an editor

at Manning and a colleague from the University of Toronto Mississauga,
reached out to us. Daniel asked whether we would be interested in writing

a book that could bring these concepts to life in a way that learners could
better grasp and enjoy.

The result is Grokking Relational Database Design, a book that focuses
not just on the technicalities but also on how to teach them effectively,
emphasizing clarity, real-world relevance, and a step-by-step approach.
Whether you're new to the field or seeking a refresher on concepts you
learned years ago, this book is designed for you.

In today’s world, where AT and machine learning are rapidly transforming
industries, the role of relational databases remains fundamental. Although
new technologies such as NoSQL databases and Big Data solutions have
emerged, relational databases continue to be the backbone of data storage,
especially in environments that require structured, reliable, scalable data
solutions. Moreover, the rise of Al and machine learning has only increased
the demand for clean, organized data—something that relational databases
excel at providing. By mastering relational database design, you'll not only
gain a crucial skill but also position yourself to harness the full potential of

xi

Xii preface

AT and machine learning, ensuring the integrity and accessibility of the
data that powers these technologies.

We hope that this book becomes a valuable resource for anyone
venturing into this critical area of technology and helps bridge the gap
between foundational database principles and their applications in the
rapidly evolving tech landscape.

acknowledgments

We would like to sincerely thank the following people for their invaluable
contributions to this book:

Cody Pham—Cody created all the illustrations for this book. His vivid
visuals greatly enhance its readability, making complex concepts easier to
grasp.

Dr. Daniel Zingaro—Dr. Zingaro was instrumental in helping us define
the scope of the book. He offered insightful guidance on structuring the
content across chapters.

Elesha Hyde—Elesha provided invaluable support through her detailed
suggestions and feedback, which were essential to the editing process.

Louis Davidson—Louis offered insightful suggestions and feedback that
strengthened the robustness and clarity of each chapter.

Jonathan Gennick—Jonathan contributed useful suggestions to the revision
of this book.

The team at Manning Publications—We are grateful to the team at Manning
for their expertise and dedication in helping bring this book to life.

All the reviewers who took the time to provide their valuable feedback—
David Spenn, Ganesh Falak, Ganesh Swaminathan, Grant Colley, Heng
Zhang, Jim Amrhein, José Alberto Reyes Quevedo, Marcus Geselle,
Maxim Volgin, Nadir Doctor, Oliver Korten, Orlando Méndez Morales,
Patrick Regan, Peter A. Schott, Potito Coluccelli, Radhakrishna MV, Sasha
Sankova, Trevoir Williams, Valerie Parham-Thompson, Victor Duran,
Vojta Tuma, William Jamir Silva, and Yilun Zhang. Your suggestions
helped improve the book.

Xiii

about this book

Grokking Relational Database Design teaches the art of database design
through hands-on projects, insightful illustrations, and practical, action-
oriented learning. Unlike many introductory books that focus primarily on
SQL syntax and formal database theory, this book emphasizes a foundational
approach to relational design thinking. You'll learn how to structure
databases from the ground up, creating systems that are both efficient and
intuitive—databases that stand the test of time and are a pleasure to work
with long after they’re built.

Who should read this book?

This book is written primarily for those who are new to database design or
are seeking a refresher on concepts they may have learned years ago. Each
chapter is crafted to be both accessible and thorough, providing practical
guidance on every key concept essential to designing effective relational
databases.

How this book is organized: A road map

This book is organized in three parts covering eight chapters:

o Part 1, Get started—The first part introduces the essentials. In chapters 1
and 2, you gain foundational knowledge of Structured Query Language
(SQL), which is essential for effective database design. Chapter 3 provides
a comprehensive overview of the principles and processes that define
successful database design.

XV

Xvi about this book

o Part 2, Master database design—Spanning four chapters, this part
delves into the core skills needed to excel at database design:

— Entities and attributes—Learn how to identify and define entities
and their attributes based on requirements analysis, laying the
groundwork for a well-structured database.

- Relationships—Discover how to establish meaningful relationships
among entities, guided by design principles that ensure consistency
and usability.

- Normalization and implementation—Explore the process of
normalizing your design to minimize data anomalies during
insertion, updates, and deletions. You'll also learn how to translate
your design into SQL code, bringing your database to life.

— Security and optimization—Gain practical insights into securing
and optimizing your database, addressing performance, and
protecting data integrity.

o Part 3, Database design and AI—In this final part, you see how
generative Al can accelerate the design process, helping you
streamline workflows and enhance efficiency in database design. You
walk through the full process of designing a database from scratch
with the help of ChatGPT.

About the code

You can get executable snippets of code from the liveBook (online)
version of this book at https://livebook.manning.com/book/grokking-
relational-database-design. The complete code for the examples in the
book is available for download from the Manning website at
www.manning.com and from GitHub at https://github.com/Neo-Hao/
grokking-relational-database-design. Each chapter has a dedicated
folder in the repository, where you’ll find scripts and step-by-step
instructions that align with the content of that chapter.

liveBook discussion forum

Purchase of Grokking Relational Database Design includes free access to
liveBook, Manning’s online reading platform. Using liveBook’s exclusive
discussion features, you can attach comments to the book globally or

to specific sections or paragraphs. It’s a snap to make notes for yourself,

https://livebook.manning.com/book/grokking-relational-database-design
https://livebook.manning.com/book/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

about this book

ask and answer technical questions, and receive help from the authors
and other users. To access the forum, go to https://livebook.manning.com/
book/grokking-relational-database-design/discussion. You can also
learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where
meaningful dialogue between individual readers and between readers
and authors can take place. It is not a commitment to any specific
amount of participation on the part of the authors, whose contributions
to the forum remain voluntary (and unpaid). We suggest you try asking
the authors some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible on the
publisher’s website as long as the book is in print.

XVii

https://livebook.manning.com/book/grokking-relational-database-design/discussion
https://livebook.manning.com/book/grokking-relational-database-design/discussion
https://livebook.manning.com/discussion

about the authors

DR. QiaNnG Hao is an Associate Professor of Computer
Science at Western Washington University. His research
in computing education is widely recognized and

cited within the academic community. Dr. Hao has
extensive experience teaching a broad range of courses,
such as database systems, data structures, and mobile
development. His innovative approach to teaching

has earned him high praise from both students and
colleagues.

DR. MICHAIL TSIKERDEKIS is an Associate Professor
of Computer Science at Western Washington University.
His research in cybersecurity has been featured in many
top-tier journals and conferences. Over the years, he has
taught a variety of courses in various departments such
as computer science, information science, and sociology,
including database systems and database concepts. He

is an IEEE Senior Member and a 24/25 U.S. Fulbright
Scholar.

Xix

Part 1
Get started

Welcome to the journey into relational database design! In this part, you'll
gain foundational skills in Structured Query Language (SQL) that are
essential for designing efficient and effective databases. By mastering these
basics, you'll be prepared to tackle advanced database concepts with confi-
dence. This part is the “laying the foundation before building the structure”
phase. Whether youre new to SQL or need a refresher, this section will
guide you through the essentials.

Chapter 1 begins with the basics of SQL that you need for database
design. Think of this chapter as your “Hello, World!” moment in database
exploration; you’ll write your first SQL queries and begin interacting with
data in meaningful ways.

Chapter 2 dives a bit deeper into SQL by focusing on expressing the rela-
tionships between tables. By the end, you’ll have everything you need to use
SQL for database design.

Chapter 3 offers a bird’s-eye view of database design. You’'ll explore the
full process of good database design and what matters at each step.

Prepare your tool—a notepad, laptop, or database application—and set-
tle into a focused space. Let’s dive into the exciting world of relational data-
base design!

Introducing ‘ 1
databases and SQL

In this chapter

+ You get a foundation for the rest of the book.
+ You learn the basics of relational databases.
« You peek into database design.

« You write your first SQL query and learn more
about the basics of SQL.

What you need to know

As you read this chapter, you will find some code snippets. If you want
to execute those code snippets or see what changes need to be made to
the code for different relational database management systems (RDBMSs),
check the GitHub repository that accompanies this book (https://github.
com/Neo-Hao/grokking-relational-database-design). You can find the
scripts for this chapter in the chapter 01 folder; follow the instructions
in the README . md file to run the scripts.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

4 Chapter 1 | Introducing databases and SQL

Overview

Database design is a critical yet easily neglected step in software
development. Nearly every application requires data storage and
management to some extent, but not every application has a well-
designed database. If you design a database without knowing the
principles of effective database design, your application may suffer from
problems you weren’t expecting, such as disorganized data or queries
that take too long and too many resources to run. These problems can
lead to bugs and a bad user experience.

By contrast, effective database design can serve as a solid foundation
for effective software development. Effective database design makes
sure that an application’s data is well organized and structured, which in
turn supports efficient data querying and manipulation that contributes
to solid applications and superior user experience. Regardless of

where you are in your journey of learning programming and software
development, it is essential to learn how to design databases effectively
and possibly how to talk to nontech people without making their eyes
glaze over with boredom as well.

This book covers how to design databases and assumes no previous
knowledge of databases or programming. By the end of this book, you
will have a good understanding of how to design relational databases
from scratch. We aim to help you achieve this goal via down-to-

Overview

earth definitions and explanations, rich examples, and active learning
practice.

This chapter aims to introduce relational databases, define a set of
terms that you will see in the next few chapters, and cover the basics of
Structured Query Language (SQL). SQL (often pronounced “sequel”) is
the programming language used to manage data in relational databases,
and it’s essential for you to have some understanding of SQL to have a
robust understanding of database design.

Relational databases

Once upon a time, a small company used Microsoft Excel spreadsheets
to store all its customer data. At first, everything seemed to run
smoothly, and the company was able to access and update the data

as needed. As time went on, the company grew and acquired more
customers, and the spreadsheets became increasingly more difficult to
manage. There were duplicates and inconsistencies in the data, and the
spreadsheets became so large and unwieldy that they took a long time
to load and update.

One day, the company received a call from a customer who was charged
twice for a single purchase. When the company tried to access the
customer’s data in a spreadsheet to investigate the problem, they found
that the data had been corrupted and was no longer accessible. As more
and more customers began to report similar problems, the company
learned the hard way that spreadsheets are a bad choice for storing

6 Chapter 1 | Introducing databases and SQL

customer data. The company eventually invested in a relational database
system that could handle the scale of its data and ensure the integrity of
its records.

If you have a very small amount of data with a simple structure to
store, a spreadsheet can get the job done; you don’t need a database at
all. However, as data complexity and volume increase, you probably
should think again. When you need to apply access control to the data,
maintain its consistency, integrity, and scalability, and conduct routine
data analysis, you absolutely need a database.

Relational databases have been, and still are, the default technology

for storing and accessing data when scale, data consistency, and data
integrity are all required. In recent years, machine learning and AI have
helped sustain and even boost the popularity of relational databases.

In this section, you will learn some fundamental concepts of relational
databases, such as tables, entities, and RDBMS.

Tables, entities, and primary keys

A relational database is a collection of tables that store data. A table
is like a spreadsheet, which you are likely familiar with. Just like a
spreadsheet, the data in a table is organized into rows and columns.
A table can be used to represent an entity or a relationship between
entities, with each row representing a single data record of that entity
and each column representing an attribute of that entity.

What is an entity? An entity is an object or concept that can be
described by many attributes. Suppose that we are running an online
store called The Sci-Fi Collective that sells sci-fi products (such as a
time machine that takes you back only 5 minutes, in case you forgot
your keys). Products sold by The Sci-Fi Collective are entities, and each
can be described by at least four attributes: name, description, price,
and manufacturer. When we map products to a table in the database
supporting the online store of The Sci-Fi Collective, the four attributes
will be mapped to four individual columns, and each product will be
represented as a row in this table.

Overview

Entity: Producet

A N

[Nowe. j [Description) L Price. J[ManuPac-rurerJ

SN N !

(pmduc-f_id | nome. \\ deseription price. manufacturer j
Il .
| JAA—omic Wose. Hair Trimmer! a.aa Mad Tnvestors Inc. A rov
[bS : Selfie Toaster ! d4.aa 6700‘Pl/ Godgets Corp.]/
! |
A QDIUMV\

In addition to the four columns, you may notice that we added
another column, product_id, in the preceding table. All values in
the product_id column are unique and can be used to identify an
individual row. We call product_id the primary key of the product
table. Think of the primary key as the “one ring to rule them all”: each
table can have only one to uniquely identify its rows. You can find a
much deeper discussion of primary keys in chapter 4.

It is not uncommon for one spreadsheet to store the information

of multiple entities. You may wonder whether to do the same with
tables in a relational database. If we decide to store the information
of customers and products in one table for The Sci-Fi Collective, for
example, the table will look like this:

Goduc-k_id nome. price manufacturer customer_id customer_name customer_email quavﬂ’i-{’?
| Atromic Wose94 Mod Invertors Inc. al Bob Bob@gmail.eom 5
Selfie. Toaster 4.9 6700Pll Gmdge:l—s Corp. b, Dave dove@outlook.com 15
bob@email.com RS
Cot—Poop Coffee da.aa Absurd Accessories al Bob co@gmail.co
a The Infinite ... a.aa SI“!/ Supplic& Co. ¥ Tohn Jon@IR3.net [
K 6 The Mevralyzer 3356 Silly Supplies Co. [Koty Koty @33.net 2N)

8 Chapter 1 | Introducing databases and SQL

This table is a typical poorly designed table. Beyond the data
redundancy, which you can spot easily, such a design can cause many
unexpected problems. If a customer’s information appears in only one
row, for example, when we want to delete a product, we will have to
delete the customer in the same row from our database. This problem
is known as a delete anomaly. Consider another example: from time to
time we need to insert into this table a product that no customers have
bought, but the table requires us to provide valid customer information
whenever we add a row. The contradicting requirements leave us in

an awkward situation; we can’t add any new products. This problem is
known as an insertion anomaly.

As you can see, bad database design can lead to problems that
negatively affect software quality. To avoid such problems, you must
master the basic principles and best practices of database design.

Relational database management systems
and SQL

Relational databases and tables rely on the help of RDBMS to physically
store and manage the data. Edgar Codd at IBM developed the first
RDBMS in the 1970s.

An RDBMS is software that interacts with the underlying hardware
and operating system to physically store and manage data in relational
databases. Additionally, an RDBMS provides tools to
create, modify, and query databases along with
other important functions such as security
controls. You may be familiar with some
commonly used RDBMS, such as MySQL,
MariaDB, PostgreSQL, and SQLite.

When you need to deploy a database that
you designed, you will need to interact
with one of the available RDBMS on the
market.

manage}
wmaintaing

Doatabasels)

oot o
One of the most notable tools that nearly

all RDBMSs support is SQL, a programming
language that you can use to create, modify, and
query data stored in tables in an RDBMS. Although
different RDBMS vendors may implement their own
variations and extensions, SQL has been standardized over the years.

Your first SQL query

As a result, the consistency of SQL among RDBMSs is high, and the
variations don’t matter much in the context of this book.

Because this book is primarily a database design book, of course, SQL
may seem less important. Database design doesn’t necessarily require
you to use SQL. Some RDBMS comes with graphical tools to generate
SQL scripts that automatically create databases and tables based on
your design. But having some understanding of SQL can make it easier
to learn database design, especially when it relates to structural or
design problems such as data integrity, optimization, and scalability.
After all, SQL is a standardized language that most RDBMSs use, so
knowing SQL will allow you to rely less on graphical tools and work
with different types of RDBMSs. We will cover the basics of SQL in this
chapter and in chapter 2.

Your first SQL query

In this section, you will learn SQL by executing your first SQL query.
We will use the example that you saw in the preceding section, the
database of The Sci-Fi Collective (because who doesn’t like sci-fi stuff?).
The database contains many tables, but the product table is all you
need to focus on for now. The product table looks like the following:

produet_id nome. deseription price. manufacturer)
I Atomic Mose Hair Trimmer ... 1a.a4 Mad Invertors Inc.
X Selfie Toaster d4.a9 6;00{31/ Gmdge;rs Corp.
I Qod'—-Poop Coffee da.aa Absurd Accessories
aq The Infinite Impmbabih-ky a.aa ST“(/ Sueplie_s Co.
&enerator
K o) The Vevralyzer 3355 silly Supplies Co. y

First, you will load a prepared SQL script to generate a database and
this table. We prepared the SQL scripts that generate this table with

10 Chapter 1 | Introducing databases and SQL

data, which you can find in our GitHub repository (https://github.com/
Neo-Hao/grokking-relational-database-design). You can follow the
instructions of the README . md file in the chapter 01 folder to execute
the prepared script for your preferred RDBMS or tool. The easiest
approach is to use SQLite Online, as follows:

1. Clone or download our GitHub repository (https://github.com/Neo-
Hao/grokking-relational-database-design).

Navigate to SQLite Online (https://sqliteonline.com).

3. Choose your target RDBMS in the left sidebar, and click the Click
button to Connect.

4. Click Import, and load the script corresponding to your chosen
RDBMS (such asmysqgl db.sqgl from the downloaded or cloned
GitHub repository for MariaDB).

5. Click Okay.

After that, you will be ready to query the product table. You can type
the following query (as a whole) into the code editor on SQLite Online
and then click Run:

SELECT name
FROM product
WHERE price > 20;

What does this query do? The price > 20 part may be a dead giveaway.
The query retrieves the names of products whose prices are higher
than 20. We know that there are 10 rows representing 10 products

in the product table and that 5 products (such as Atomic Nose Hair
Trimmer) sell at a price below 20, so the names of the other 5 products
are returned. Your result should look like this:

3
9
3
®

Selfie Toaster

Inflotable Briefcase

i Coat—Poop Coffee
i Lightsabers

The Neyralyzer

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://sqliteonline.com

The basics of SQL queries 11

You may notice that this SQL query has a lot of similarities to plain
English. The reason is that SQL is special. You see, most programming
languages are imperative. Coding with an imperative language, such as
Java or Python, requires you to specify both what to do and how to do
it. SQL, however, is declarative, which means that you need to specify
only what to do. The steps required to carry out the task are SQLs job
to figure out. Specifying what you want instead of how to get it done

is more natural for human beings, and that’s why SQL resembles plain
English.

To be specific, SQL is like English, with little to no small talk. But you
don’t have the same freedom in word choices when it comes to putting
together a SQL query. You must use a set of SQL clauses (also known
as statements) and follow some rules. In your first query, you used the
following three clauses:

» SELECT—The SELECT clause allows you to specify the columns you
want to retrieve from a table. In your first query, you only asked for
the name column; thus, the SELECT statement was SELECT name.

« FROM—The FROM clause specifies the source you want to retrieve data
from one or more tables. In your first query, you asked only for data
from the product table; thus, the FROM clause was FROM product.

» WHERE—The WHERE clause allows you to specify conditions to filter
the data retrieved by the SELECT clause. In your first query, you want
only the names of those products whose prices are higher than 20;
thus, the query was SELECT name FROM product WHERE price > 20;.

When you finish a SQL query, you should use a semicolon (;) to
indicate its end. The semicolon tells the RDBMS that this is the end of a
SQL query and that anything after it belongs to a new query.

The basics of SQL queries

Our preferred approach for learning SQL is to grasp the most important
clauses and learn the rest only when necessary. Although SQL has many
clauses, they are not equally important. The most important ones can
help you build a solid foundation, as well as construct a mental map
that can guide your future learning.

12 Chapter 1 | Introducing databases and SQL

—— JOIN — — — 46 E
(I
| AGGREGATION — —

DATA MANIPULATION

Therefore, instead of trying to cover every SQL clause, we will cover
only the ones that are essential or critical to your future learning. In this
chapter, you will learn important clauses that you can use to query a
single table.

Filtering

Filtering is a common data retrieval task. Whenever you need only a
subset of data that meets some criteria, you need the help of the WHERE
clause to filter the data.

From your first SQL query, you know that the WHERE clause is followed
by the criteria you want to use to filter the data. The following query,
for example, retrieves the names and descriptions of products whose
prices are lower than 30 from the product table:

SELECT name, description
FROM product
WHERE price < 30;

When you want to retrieve more than one column, you can list all of
them after the SELECT keyword and separate them with commas.

What if we want to retrieve only the products that come from a specific
manufacturer, such as Mad Inventors Inc.? We can achieve this via the
following query:

SELECT name
FROM product
WHERE manufacturer = 'Mad Inventors Inc.';

The basics of SQL queries 13

This query yields the following result:

Atomic Nose. Hair T rimmer

| The Mind Probe E

In the preceding query, the operator that checks equality is a single
equal sign (=). Additionally, you may notice that the manufacturer
name is wrapped in single quotes (' '), indicating a string data type.
Does SQL have different data types? Yes. SQL data can be broadly
divided into six categories:

« Numeric data types (such as INT)

String data types (such as TEXT)

« Date or time data types (such as DATE)

« Unicode character string data types (such as VARCHAR)
« Binary data types (such as BINARY)

 Miscellaneous data types (such as xML)

In the product table, the data type of the manufacturer column is
string. By contrast, the price column is numeric.

Now that you know how to filter both numeric and string data, you
can create one filter that combines the two criteria by using logical
operators. AND and OR are the two most frequently used logical
operators. The AND operator means the same as it does in plain English;
the same can be said of OrR. We can combine two individual criteria
using AND, as follows:

SELECT *

FROM product

WHERE price < 30 AND

manufacturer = 'Mad Inventors Inc.';

This query yields the following result:

14 Chapter 1 | Introducing databases and SQL

4

| produet_id name description price manfacturer

|
e
| [Atomic Mose Hair Trimmer a.aa Mad Inventors Inc.

I

! 6 The Mind Probe. a.aa Mod Inventors Inc.

1

' 1 Lightsabers 35.00 Mad Inventors Inc.

Unlike previous queries, this query retrieves every column from the
product table. The star (*) following the seLECT keyword indicates
all columns. The combination of the two filtering criteria retrieves all
columns of only the products that are manufactured by Mad Inventors
Inc. and have a price below 30.

Aggregation

Aggregation, an important task in SQL, involves performing
calculations on a set of rows to produce a single result. By aggregating
data, you can gain insights into trends and patterns in the data that may
not be visible at the individual record level. The most frequently used
aggregate functions are

e COUNT () — Counts the number of rows

 sUM () — Calculates the sum of values in a numeric column

o AVG () — Calculates the average value in a numeric column

o MAX () — Finds the maximum value in a column

e MIN () — Finds the minimum value in a column

When we formulate a SQL query that involves aggregation, we should

place the aggregate function in the SELECT statement. We can count the
number of rows in the product table this way:

SELECT COUNT (*) FROM product;

This query yields the following result:

The basics of SQL queries

You may notice that the column name is the same as the aggregate
function command. If you are dealing with an RDBMS other than
MariaDB, the column name may be COUNT () or something else. If you
don’t like the default column name, you can provide a more readable
one by using an alias via the As clause. You can calculate the average
price of all products that are sold in the store and use avg price as the
column name, as in this example:

SELECT AVG (price) AS avg price
FROM product
WHERE manufacturer = 'Mad Inventors Inc.';

This query yields the following result, in which the column name is avg
price and the only value is the average of all product prices in the table:

In both examples, you applied aggregate functions to all rows in a table.
You can also apply aggregate functions to multiple groups of rows in a
table. Sometimes, you need to group the data by one or more columns
and analyze the grouped data. You can group data via the GROUP BY
clause, which is commonly used in combination with aggregate
functions. The GrouP BY clause is always followed by one or more
attribute names separated by commas. You can count the number of
products per manufacturer like this:

SELECT COUNT (*) AS product count, manufacturer
FROM product
GROUP BY manufacturer;

This query yields the following result, possibly in varying order:

3 Absurd Accessories
| G)OOPC/ Gpadgers Qorp.

|

I

|

|

1

3 Mod Inventors Inc. i
. N !

3 51“7 Supplses Co. !
I
|

| h/acl(t/ Wares Ltd.

16 Chapter 1 | Introducing databases and SQL

As another example, you can calculate the average price of products per
manufacturer:

SELECT AVG(price) AS avg price, manufacturer

FROM product
GROUP BY manufacturer;

This query yields the following result:

f avg_price. manufacturer \:
ivemm, | Absrd Accessories |
i dd.aa Goofy Gadgets Corp. i
i H.e5A... Mod Inventors Inc. i
| 189S silly supplies Co. |
:\ 3a.99 Wacky Wares L. ;

When you use aggregate functions with the GROUP BY clause, you need
to include the attributes following the GRoUP BY clause in the SELECT
statement. Otherwise, the results may not make much sense. The
following query groups the data by the manufacturer column but
doesn’t include it in the SELECT statement:

--comment: will yield something difficult to interpret
SELECT COUNT (*) AS product count

FROM product

GROUP BY manufacturer;

The result will be much harder to chew because you see only a column
of numbers and have no idea what the numbers stand for:

As another example, the following query calculates the average product
price per manufacturer but doesn’t include the manufacturer column
in the SELECT statement:

The basics of SQL queries

--comment: will yield something difficult to interpret
SELECT AVG(price) AS avg price

FROM product

GROUP BY manufacturer;

As in the last example, the result is difficult to interpret because you see
only a column of decimals and have no idea what they stand for:

Rd.bd4a...
d4.aa

I

]

I

I

:

I
ENP-v
I

E 1.893...
I

1

More important, you should exclude from the SELECT statement any
columns that are not in the GROUP BY clause unless they are used with
aggregate functions. The following query attempts to count the number
of products per manufacturer, but the name column in the SELECT
statement is neither in the GROUP BY clause nor used with an aggregate
function:

-- comment: will either lead to an error

-- comment: or yield a misleading result

SELECT COUNT (*) AS product count, manufacturer, name
FROM product

GROUP BY manufacturer;

A query like this one leads to errors or yields a misleading result,
depending on the RDBMS you use. PostgreSQL, for example, will make
the following complaint:

ERROR: column "product.name" must appear
in the GROUP BY clause or be used in
an aggregate function

18 Chapter 1 | Introducing databases and SQL

SQLite yields a misleading result without complaint:

C,mduq-r_ number manufacturer name.

X Absurd Accessories Coat—Poop Coffee

| 67009(/ 670«13&!’5 Qorp. SeJP?e, Toaster

3 Mad Inventors Inc. Atromic Vose Hair Trimmer
3 silly svpplies Ce. Unicorn Hair Polish
L | Waocky Wares Ldl. Inflatable Briefease
Z N\

If you check all 10 products in the product table, you see that there is
only 1 Atomic Nose Hair Trimmer instead of 3. But because the query
doesn’t know how to deal with the name column, it simply shows the
name value in the first row it encounters per group.

As another example, the following query attempts to calculate the
average price of products per manufacturer, but the product _id
column in the SELECT statement is not in the GROUP BY clause:

-- comment: will either lead to an error

-- comment: or yield a misleading result

SELECT product id, AVG(price) AS avg price, manufacturer
FROM product

GROUP BY manufacturer;

Depending on the RDBMS you use, you may get either an error or a
misleading result. PostgreSQL, for example, will make the following
complaint:

ERROR: column "product.product id" must appear

in the GROUP BY clause or be used in an
aggregate function

SQLite will yield a misleading result without complaint:

Table and data management 19

produet_id avg_price manfacturer)
3 3a.E4qda,.. Absurd Accessories
J d4.aa Gooty Gadgers Corp.
' H.e5A... Mod Tnvertors Inc.
5 7.843... Silly supplies Co.

L “ 3a.99 Wacky Wares L+dw
7\

If you check the third row of the product table, you will see that its
price is 29. 99 instead of 22.5449.... The preceding aggregated result

is obviously wrong. Because this query doesn’t know how to deal with
the product_id column, it simply shows the first product id value it
encounters per manufacturer group.

In summary, when you use aggregate functions with the GRouP BY

clause, you need to be careful about what attributes to include in

the SELECT statement. The SELECT statement should contain only

those nonaggregate attributes that show up in the GROUP BY clause.
Nonaggregate attributes are attributes that are not involved in aggregation.

Table and data management

You've worked with SQL on a table that we gave
you, but sometimes, you need to make your own
tables and to manage those tables and their data.

Table and data management are important tasks
in SQL. The SQL commands dedicated to such
tasks are commonly known as data definition
language (DDL). By contrast, the SQL clauses
and statements you saw in previous sections

are known as data manipulation language.
Understanding some DDL is particularly useful
for database design.

In this section, you will learn three common table management
tasks: creating, altering, and deleting a table. You will also learn
how to add data to a new table.

20 Chapter 1 | Introducing databases and SQL

Create tables and add data to tables

You will learn how to create a table and add data to it from the prepared
scripts that accompany this chapter. The scripts (such asmysgl db.sql
for MySQL or MariaDB) aim to create the product table for the database
supporting The Sci-Fi Collective and populate it with a set of sample
data. The product table is created with the following command:

CREATE TABLE product (
product id INT PRIMARY KEY,
name TEXT NOT NULL,
description TEXT NOT NULL,
price DECIMAL(5, 2) NOT NULL,
manufacturer TEXT NOT NULL

);

We need to answer two questions about the command that creates the
product table:

» What is the general syntax for creating a table?
« What do the different keywords do in this query example?

SQL drama: When your tables throw a fit over
duplications

If you have followed along and imported the given SQL script in previous
sections, you will see some complaints from SQL when you try to run the
following CREATE TABLE command.

Why? You ran the same command when you imported the given SQL script
in the section “Your first SQL query,” which creates a table named product.
The same RDBMS can’t have two tables with the same name. The same can be
said of the data insertion commands that will be covered next. A table can’t
have two identical rows, especially not two rows with the same primary key.

If you want to run the CREATE TABLE and data insertion commands
covered in this section after importing the prepared scripts, you can do
the following:

o If you are using SQLite Online, you can easily reset everything by
refreshing the browser tab.

o If you are using an RDBMS running locally or on a server, you need to
delete that corresponding table first. You will learn more about deleting
and altering tables in this section.

Table and data management 21

What is the general syntax for creating a table? To create a table, you
need the help of the CREATE TABLE command. The syntax of the
CREATE TABLE command is as follows:

CREATE TABLE table name (
columnl name datatype [optional parameters],
column2 name datatype [optional parameters],

columnN name datatype [optional parameters],
PRIMARY KEY (columnX name)
);

The definition of the primary key can also be part of the definition of
a column, as you saw in the product table example. Unlike optional
parameters, the primary key is required in every table.

What do the different keywords do in this query example? First, we
specified the table name as product and defined five columns:

e product id—A numeric data type (INT)
 name—A string data type (TEXT)

o description—A string data type (TEXT)
» price—A numeric data type (DECIMAL)

e manufacturer—A string data type (TEXT)

INT indicates integer, and TEXT indicates string. The only data type
worth explaining here is probably DECIMAL. DECIMAL, as a numeric
data type, accepts two parameters. The first parameter defines the total
number of digits, and the second one defines the number of digits to
the right of the decimal point. We use DECIMAL (5, 2) , for example, to
define the price attribute to allow five digits in total and two digits to
the right of the decimal point.

In addition to the data types, you may notice that we specified every
attribute as NOT NULL. In SQL, a NULL value represents an unknown
value. Similar to when you’re trying to remember someone’s name and
it’s on the tip of your tongue, the value is either missing or unknown.
Allowing NULL values for attributes may lead SQL to have unexpected
behaviors. When you add 10 and a NULL value, for example, you end

up with a NULL value; the sum of an unknown value and 10 is still
unknown. When you do calculations on NULL values, all the results may
end up as NULL.

22 Chapter 1 | Introducing databases and SQL

o+ nvl| = nll
3* il = vl
Clez+3t..7 M VALERL

Last, the PRIMARY KEY definition was used to specify which attribute we
want to use as the primary key for this table. The attribute name needs
to be placed in parentheses following the PRIMARY KEY definition.

When the product table is created in a database, it is ready for you to
add data to it. To add data to a table, you need help from the INSERT
INTO command. The INSERT INTO command allows you to insert one
or more rows of data into a table. Here’s its basic syntax:

INSERT INTO table name (columnl, columnZ, ...)
VALUES (valuel, value2, ...);

In the same script, you can find an example of adding data to the
product table. You can insert a single row into the table as follows:

INSERT INTO product (product id, name, description,
price, manufacturer)
VALUES (
1,
'Atomic Nose Hair Trimmer',
'Trim your nose hairs... of an atomic clock!"',
19.99,
'Mad Inventors Inc.'

Table and data management

Or you can insert multiple rows of data into the table:

INSERT INTO product
(product id, name, description, price, manufacturer)
VALUES

(
2,
'Selfie Toaster',
'Get your face on... with our selfie toaster',
24.99,
'Goofy Gadgets Corp.'

3,

'Cat-Poop Coffee',

'The only coffee... the finest cat poop ...',
29.99,

'Absurd Accessories'

)

Alter and drop tables

From time to time, you may need to alter or drop an existing table
because—let’s face it—sometimes you need to rearrange the furniture in
your data house.

There are many ways to alter a table, such as adding a column,
modifying the data type of a column, or renaming the entire table. You
can rely on the help of the ALTER TABLE command to perform all these
tasks. If you want to add another column representing serial numbers
to the product table, for example, you can use the following query:

ALTER TABLE product
ADD serial number INT;

When the preceding query gets executed, a new column named

serial number is added to this table, and its data type is integer.
When you realize that integer is not the best data type for serial
numbers, you may update its data type to string via the following query:

-- comment: SQLite doesn’t support altering
-- comment: a column’s data type directly
ALTER TABLE product

ALTER COLUMN serial_number TEXT;

23

24 Chapter 1 | Introducing databases and SQL

Although you have many ways to alter a table, there’s only one way to
drop a table. To do so, you need the brROP TABLE command followed
by the name of the table you want to drop. If you intend to drop the
product table, for example, you can use the following query:

DROP TABLE product;

You need to be careful when using the DROP TABLE command because
it will permanently delete the table and all its data.

This section doesn't aim to be an exhaustive list of all commands for
altering or dropping a table. If you want to know more, please check
out the SQL manual or your target RDBMS. That said, you have taken
an important step toward mastering databases and database design.
The things you've achieved in this chapter will propel your learning
throughout the rest of the book—small choices that may cascade into
a design masterpiece worthy of being displayed in a tech gala one day,
should they ever become reality.

Recap

o A relational database is a collection of tables that store data.

o A table is used to represent an entity or a relationship between
entities in a database.

An entity is an object or concept that can be described by
many attributes.

o An RDBMS is software that interacts with the underlying
hardware and operating system to physically store and manage
data in relational databases.

« Filtering data requires help from at least three SQL clauses:
SELECT, FROM, and WHERE.

« Data aggregation functions are often used in combination with
the GROUP BY clause.

« SQL commands that are used to manage tables are known as

DDL. Table management typically involves three commands:
CREATE TABLE, ALTER TABLE, and DROP TABLE.

« You can insert a single row or multiple rows of data into a table
via the INSERT TO ... VALUE ... statement.

Related tables 2
and more SQL

In this chapter

+ You learn what related tables are and how to query
them.

« You revisit table and data management.

+ You explore how to learn more SQL on your own.

What you need to know

To understand the SQL covered in this chapter, you need to know what
databases and tables are, as well as the basics of SQL queries. If not, read
chapter 1 first.

As you read this chapter, you will find more code snippets. If you want to
execute those code snippets or see their variations for different relational
database management systems (RDMBSs), check the GitHub repository that
accompanies this book (https://github.com/Neo-Hao/grokking-relational-
database-design). You can find the scripts for this chapter in the chapter 02
folder; follow the instructions in the README . md file to run the scripts.

25

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

26 Chapter 2 | Related tables and more SQL

(continued)

The easiest approach is to use SQLite Online as follows:

1. Clone or download our GitHub repository (https://github.com/Neo-
Hao/grokking-relational-database-design).

2. Locate the scripts in the chapter 02 folder.

3. Visit SQLite Online (https://sgliteonline.com). Choose your target
RDBMS in the left sidebar and click Click to Connect.

4. Click Import to load the script corresponding to your chosen RDBMS
(such as mysgl db.sgl from the downloaded or cloned GitHub
repository for MariaDB).

5. Click Okay.

Overview

In chapter 1, you learned the basics of SQL, and you learned how to
query or create a single table. In this chapter, you will continue learning
a bit more of SQL by querying and creating related tables. Then you will
peek into how to pick up more SQL keywords by yourself in the future.

Related tables

In this section, you will learn how to work with two or more tables

that are related. These related tables are tables in a database that are
connected by one or more common columns. The Sci-Fi Collective, for
example (the online store you know from chapter 1), allows customers
to create user accounts, shop online, and leave reviews for the products
they bought. The Sci-Fi Collective is supported by a database composed
of multiple tables. Among these tables are two that are related: product
and review. The product table represents the products that are

sold, and the revieuw table represents the reviews customers leave

for the products they bought. The two tables have a common column
(product_id). The relationship between the two tables is summarized
in the following figure:

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design
https://sqliteonline.com

Related tables

produet_iol name. price manufacturer
| Atomic Mose ... la.a9a Mad Inventors Inc.
X Selfie. Toaster d4.99 Goofy Gadgetrs Corp.

Cot—Poop Coffee 3499 Absurd Accessories

/

r‘e,vie_w_id \iroduc'r_id review_tesxt dote \
-o o=
| \ 3 Gireot Proo(uc-i' JOII-0I-0I IM:IO:00
Y =3 ..best thing ... AOXI-0OI-0J. 1R:45:00
3 2 ..not recommend AOAI-0OI-03 4:I5:00

L - y

The product_id column is shared by the product and review tables.
In the product table, the product id column is the primary key. In
the review table, the product id column is known as the foreign key,
which refers to the primary key of another table. In this case, the other
table is product.

In other words, the value in the product id column helps connect

a row in the product table and a row in the review table. In the
product table, for example, the row with a product id value of 3
records a product named Cat-Poop Coftee; in the review table, the row
with a review id value of 1 records a positive review for Cat-Poop
Coftee. How would you know that the review is for Cat-Poop Coffee?
The two rows have the same product_id value.

Number(s) of shared columns

As curious as you are, you may wonder whether the product and
review tables can share a few more columns. That’s a great question
about database design. A more generalized question would be whether
two related tables should share columns beyond the primary/foreign
key(s). The answer is no.

27

28 Chapter 2 | Related tables and more SQL

To simplify our discussion, let’s look at the scenario in which two
related tables use single columns as the primary keys: the product and
review tables. Theoretically speaking, the number of columns shared
by two related tables can range from only the primary/foreign key(s) to
all columns from both tables. Using the product and review tables as
an example, the following figure summarizes this spectrum:

4 produet \ 4 review w
(pmcxm) (review N product_id product_idl
produet_id review,_id —:i\:zw_id —:i\::‘/—;d
nome. produc—r_id oo price. price.
reiorren rerdvcreer || o
kmomupo‘c-h/r‘ej‘j Qxfe p kdad’e j Um—e j
Share | column Share. all columns

If two related tables share every column, it is obvious that one of them
is redundant and thus unnecessary. If you choose to delete one of them,
you will find yourself dealing with a problem similar to one you saw

in chapter 1: using one table to represent two entities, which will lead
to insertion or delete anomalies. OK, making two tables share every
column is a bad idea.

How about making the two tables share only a few columns, such as one
or two columns beyond the primary/foreign key(s)? That’s also a bad
idea. First, you would still have redundancy, even if it’s less serious than
a redundant table. Second, you will set a trap for yourself when you
need to update data in such tables. If you update data in only one table
and forget the other, you will end up with inconsistent data.

Suppose that you decide to make the product and review tables share
one more column—manufacturer—in addition to product id.
When you need to update the manufacturer of a product, you have to
update both the product and review tables. Otherwise, you will end
up with new manufacturer data in one table but old data in the other.
Such a problem is known as an update anomaly. As you can see in the
following figure, two related tables shouldn’t share columns beyond the
primary/foreign key(s).

Related tables

@ud’_ id name price. wanufacturer N

| Atromic Nose. ... 2.4 Mod Inventors Ine.

BN Selfie Toaster dq4.aa Goofy Gadgetrs Corp.

3 Qod'——Poop Coffee da.9a | Absurd Accessories \UPJo\-i'e_ 4o

k Moad Inventors Ine.

J

%v@hc—l— witth
Cevie_w_ id proo(uc-r_ id manufacturer M dote N

| 3 Absurd Acce,ssoﬁe_;q Gireat product ... 3 O3I~...

X 5 Si“t/ Supplie; Co. ...best +hing ... FOXI-...

3 i 6700{31/ G,chgem Corp. ..not recommend JOXI—...

Join data from related tables

From time to time, you will need to join data from related tables. If

you want to know about how each product of The Sci-Fi Collective is
reviewed, for example, you will need to join at least the product name
from the product table and the corresponding product reviews from
the review table and then make sure that data from both tables is joined
properly. In SQL, you can write the query that does this job as follows:

SELECT name, review text

FROM product

JOIN review

ON product.product id = review.product id;

This query yields the following result:

Cot—Poop Coffee Great produet ...
Unicorn Hom Polish s is +he best ...

1
I
I
:
I
: Se,lpic; Toaster Not worth the woney ...
|
\

30 Chapter 2 | Related tables and more SQL

We need to explain quite a few things about this query:

« What is the general syntax for retrieving data from related tables?
« What does the JOIN..ON... clause do?

o What is the dot, and how do we use dot notation as in product.
product idand review.product id?

What is the general syntax for retrieving data from related tables? The
general syntax is

SELECT columnl, column2,

FROM tablel

JOIN table2

ON tablel.column = table2.column;

What does the JOIN...ON clause do? Suppose that you have two toy
boxes, one with cars and the other with racetracks. You want to play
with both kinds of toys, so you pour all the toys from both boxes onto
the floor; then you need to find which cars would work on what types of
racetracks. That’s what the J0IN clause does.

AN

In detail, the JOIN clause takes two tables (toy boxes) and pours all the
rows (toys) on the floor; then it looks for matching values in the shared
column (like the match between a car and a racetrack) between the

Related tables 31

two tables. If it finds a match, it puts the corresponding rows (cars and
trucks that go together) together in a new table (your play area).

What is the dot, and how do we use dot notation as in product.
product idand review.product id? Dot notation is SQL syntax
used to separate parts of a name. product .product_id, for example,
refers to the product_id column in the product table. As another
example, product . name can refer to the name column in the product
table. Dot notation is especially handy when you query related tables
because it helps you to be specific about the columns in case they have
the same name, such as product.product idand review.product
id. This approach makes it clear which column and which table you are
referring to and prevents confusion.

If two tables that you want to join have multiple columns that share
a name, you may want to rename them in the SELECT statement to
prevent confusion. Otherwise, you might end up with a result set
that looks like a mixed-up game of Scrabble played by a mischievous
toddler.

Suppose that you have two related tables, employee and department,
and you want to join them to get the names of the departments to
which employees belong.

department
id name \
| MO\H((’_'HV\ﬁ
) sales e e -
\
X human resources (eynplok/e_e,name Jepar-rme_n'hname_ |
4 engineering e T T T !
I engineerin I
5 fnance. | Tohn Doe g g |
1 % I Toane Smith sales |
| |
L | I Michael Ho human resources
! . |
e"MPIOL/e'e' I| | Emilt/ Brown mari(e:hnsi |
. | < .
(id noame. department_id \ \ David Lee engineering /|
lo] Toln Doe. 9

10 Tane Smith *
03 Michael Ho 3
o4 Ewﬁlc/ Brown [
105 David Lee q

32 Chapter 2 | Related tables and more SQL

Both tables have a column named name, so you need to use dot notation
to specify which name column to select:

SELECT employee.name, department.name
FROM employee

JOIN department

ON employee.department id = department.id;

Depending on the RDBMS you use, you may see the same column
names, as in the preceding figure, or two identical column names (such
as name). To prevent confusion, you can rename the columns with an
alias via the As clause:

SELECT employees.name AS employee name,
departments.name AS department name

FROM employees

JOIN departments

ON employees.department id = departments.id;

Types of JOINS

Now that you know the basics of the J0IN clause, we'll dive a bit deeper
into joins by discussing their variations. Before we do so, we'll try to
refresh your memory on the general syntax of joining tables:

SELECT columnl, column2,

FROM tablel

JOIN table?2

ON tablel.column = table2.column;

The Jo1N keyword can be replaced by the following keywords, which
may lead to different query results:

 INNER JOIN returns only the rows that have matching values in both
tables; INNER JOIN is the same as JOIN.

e LEFT JOIN returns all the rows from table 1 and the matching rows
from table 2. If a record in table 1 has no match in table 2, the result
includes the table 1 record with NULL values for table 2 columns.

o RIGHT JOIN returns all the rows from the table 2 and the matching
rows from table 1. If a record in table 2 has no match in table 1,
the result includes the table 2 record with NULL values for table 1
columns.

Related tables 33

e FULL OUTER JOIN returns all the rows from both tables, including
the nonmatching rows. If a record in table 1 has a matching record in
table 2, the result includes a single row with data from both tables. If a
record in table 1 has no match in table 2, the result includes the table
1 record with NULL values for table 2 columns; if a record in table 2
has no match in table 1, the result includes the table 2 record with
NULL values for table 1 columns.

The relationships among the left table, the right table, and the returned
results are summarized in the following figure:

SELECT + SELECT «*
FRoM A FRoM A
TWVER Torv B FULL oUTER ToIv B

ov AA_d = BAid ow AAd = B.A

SELECT = SELECT *
FRoM A FRoM A
LEFT JoIv B RIGHT ToIwv B

ov AAd = BAd ow AAd = B.A

It is worth noting that LEFT JOIN, RIGHT JOIN, and FULL OUTER JOIN
may lead to query results with NULL values. One side effect of getting
NULL values in the result is that you need to handle them carefully.
NULL values can cause errors if you try to perform calculations or
comparison. (As an example, 10 + NULL will lead to NULL.) Our
product table, for example, contains some new products in our store
that have not been reviewed by any users. When we perform a LEFT
JOIN between the product and review tables, we end up with some
rows that have NULL values in the columns from the review table. The
LEFT JOIN query would be

SELECT name, review text

FROM product

LEFT JOIN review

ON product.product id = review.product id;

34 Chapter 2 | Related tables and more SQL

This query yields the following result:

\
! name. review _text '

]
| Atomic Vose Hair Trimmer Decent product For ... !
I
| 1
! Atomic Mose Hair Trimmer Would not recommend =y
| |
1 1
! The Mind Probe. NULL i
I I
| The Sonic Screwdriver NULL i
| I
! |
\

As you can see, every match between the product and review table is
included. A product like Atomic Nose Hair Trimmer can be reviewed
more than once and show up in the result table as multiple rows. Also, if
a product was not reviewed, it is still included in the result table, such as
The Mind Probe, with a review text value of NULL.

WHERE vs. JOIN

As curious as you are, you may be tempted to try joining two tables by
using the WHERE clause. You learned in chapter 1 how to use the WHERE
clause to filter a subset of data from a table that meets certain criteria. If
you know that it is possible to list multiple tables in the FrROM statement,
you might put together the following query to join the product and
review tables you saw earlier:

SELECT name, review text
FROM product, review
WHERE product.product id = review.product id;

Would this query work and yield the same result as the example we saw
earlier? Yes. This query will work fine to join the two tables, and it yields
the same result as the query using the JOIN clause:

SELECT name, review text

FROM product

JOIN review

ON product.product id = review.product id;

Revisit table and data management 35

Whenever you need to query related tables, however, JOIN is generally
preferred to WHERE for at least three reasons:

o Readability—Explicit J0IN makes the query’s intention clearer and
easier to understand.

o Maintainability—Explicit JOIN is less prone to errors and more
straightforward to modify or debug.

 Optimization—When you use a WHERE clause to query two related
tables, the query essentially asks for a cross join between the two
tables, which is more difficult for most RDBMSs to optimize than an
explicit JOIN.

Cross join: A wild dance in which everyone
twirls with everyone else

A cross join in SQL is an operation that combines every row from one table
with every row from another table. It generates all possible combinations of
rows between the two tables, returning a huge result.

If the FROM clause in your query is followed by two or more tables, your
query will perform a cross join between those tables. FROM product,
review, for example, means that every row in the product table will be
paired with every row in the review table whether or not a match exists.

Cross joins may require scanning the involved tables separately, and they
demand a large amount of memory from the RDBMS.

Revisit table and data management

This section explores how to manage related tables and their data. In
chapter 1, you learned how to manage a single table and its data. In
the preceding section, you worked with a pair of related tables that
we gave you. Now you will apply what you learned in chapter 1 and
the preceding section to expand your knowledge of table and data
management to related tables.

36 Chapter 2 | Related tables and more SQL

Manage related tables

You will learn how to create related tables from the prepared scripts that
accompany this chapter. The scripts aim to create two related tables,
product and revieuw, for the database supporting The Sci-Fi Collective
and to populate them with a set of sample data. You need to pick the
script that works with your target RDBMS, of course (such as mysql
db.sql for MySQL or MariaDB).

You create the product table the same way that you did in chapter 1:

CREATE TABLE product (
product id INT PRIMARY KEY,
name TEXT NOT NULL,
description TEXT NOT NULL,
price DECIMAL(5, 2) NOT NULL,
manufacturer TEXT NOT NULL

)i

You create the review table as follows:

-- comment: works for MySQL and MariaDB
-— comment: see the code repo for other RDBMS
CREATE TABLE review (
review id INT PRIMARY KEY,
product id INT NOT NULL,
review text TEXT NOT NULL,
datetime DATETIME NOT NULL
DEFAULT CURRENT TIMESTAMP,
CONSTRAINT fk product review
FOREIGN KEY (product id)
REFERENCES product (product id)
)

Revisit table and data management

We need to answer two questions about this query:

« What is the general syntax for creating two tables that have a
relationship?

o What does the CONSTRAINT..FOREIGN KEY..REFERENCES... clause do?

What is the general syntax for creating two tables that have a
relationship? As you know, the shared column product_id is the
primary key in the product table and the foreign key in the review
table. Given a pair of two related tables, we call a table like product
the parent table because it uses the shared column as the primary
key. We call a table like review the child table because it holds the
foreign key.

PRIMARY FORELGN

KEY J Key
N

d “oentIcaL Y

CHILWD

PARENT TABLE

As you can see from the command that creates the product table, the
syntax for creating a parent table is the same as the syntax for creating a
single table that is not related to other tables.

To create a child table, you need to specify the foreign key that
references the primary key in the parent table. You still need to define
all the columns, data types, and the primary key, of course. The general
syntax for creating a child table is

CREATE TABLE child table name (
columnl datatypel [NOT NULL],
column?2 datatype2 [NOT NULL],
.7
foreign key column datatype,
CONSTRAINT fk parent child
FOREIGN KEY (foreign key column) REFERENCES
parent table name (parent table primary key)
)i

37

38 Chapter 2 | Related tables and more SQL

Alternatively, you can create the two tables independently and add the
foreign key constraint to the child table afterward:

-- comment: assuming the parent and child tables
-- comment: have been created
ALTER TABLE child table name
ADD CONSTRAINT fk parent child
FOREIGN KEY (foreign key column) REFERENCES
parent table name (parent table primary key);

What does the CONSTRAINT..FOREIGN KEY..REFERENCES... clause do? In
short, the clause creates a foreign key constraint, which serves as a link
between two related tables. The constraint is twofold:

o The constraint ensures that the foreign key column in the child table
references only valid primary key values in the parent table.

o The constraint ensures that the updating or deletion of rows in the
parent table doesn’t violate the consistency between two related tables.

We refer to these two aspects as referential integrity. The CONSTRAINT...
FOREIGN KEY..REFERENCES... clause enforces referential integrity
between two related tables.

If you take a closer look at the CONSTRAINT..FOREIGN KEY...
REFERENCES... clause, you can divide it into two parts, as shown in the
following figure.

Revisit table and data management

Poart I name the constraint

7

(CONSTRAINT fk_parent_child)

REFERENCES parent_table_name(parent_table_primary_key)

\

Part & create the Por‘ejgn Key constraint

[FOREIGN KEY (foreign_key_column) }

The FOREIGN KEY..REFERENCES... statement creates the foreign key
constraint that enforces referential integrity. The CONSTRAINT... clause
allows you to name this constraint. When you create a foreign key
constraint, you don’t necessarily need to name it, but naming it will
make it easy to access whenever you need to modify such a constraint
in the future. We named the foreign key constraint £k _product
review in the review table, for example. If we ever need to drop this
constraint, we can access the constraint via this name:

-- comment: SQLite doesn't support ALTER TABLE
—-— comment: DROP CONSTRAINT
ALTER TABLE review

DROP CONSTRAINT fk product review;

If you don’t name a constraint yourself, the RDBMS will name it
automatically, using its default naming convention. Although the
automatically-picked name can be retrieved, this name and the default
naming convention vary from one RDBMS to another. To avoid this
hassle, we recommend that you always name constraints (as you should
always name pets). After all, dropping or disabling a constraint can be a
common task whenever you need to modify your database design.

Manage data in related tables

The syntax for adding, updating, and deleting data in related tables
remains the same as you saw in chapter 1. The scripts that we prepared for
this chapter added a set of data to both the product and review tables:

-- comment: add data to the product table
INSERT INTO product (product id, name,
description, price, manufacturer)
VALUES (
1,
'Atomic Nose Hair Trimmer',
'Trim your nose hairs .. an atomic clock!"',

39

40 Chapter 2 | Related tables and more SQL

19.99,
'Mad Inventors Inc.'
)

-—- comment: add data to the review table
INSERT INTO review (review id, product id,
review text, datetime)

VALUES (

1,

3,

'Great product, would definitely recommend!',

'2022-01-01 12:30:00"
),
What makes data management for related tables different, however, is
the foreign key constraint. Earlier in this chapter, you learned that the
foreign key constraint enforces referential integrity on a pair of two
related tables:

« The foreign key constraint ensures that the foreign key column in the
child table references only valid primary key values in the parent table.

« The foreign key constraint ensures that the deletion of rows in the
parent table doesn’t violate the consistency between two related tables.

When you try to add data to the child table, the new data needs to be
consistent with the existing data in the parent table; otherwise, the
RDBMS will complain. Suppose that you are trying to add a new row
of review data to the review table, but the product_id value (such as
3000) in this row can’t be found in the product table:

INSERT INTO review (review id, product id,
review text, datetime)

VALUES (

1,
3000,

'Great product!',

'2023-05-01 12:30:00"
);

When you execute this command, your RDBMS will give you an error
message similar to the following:

ERROR 1452 (23000) :
Cannot add or update a child row:
a foreign key constraint fails ..

Revisit table and data management 41

Likewise, when you alter or delete data from the parent table, the
alteration or deletion shouldn’t lead to orphan data records in the
child table; if it does, the RDBMS will complain. Suppose that you
want to delete a row of product data from the product table, but this
product data is referenced in the review table. If you delete this row,
the deletion will create some orphan review data in the review table.
Fortunately, the foreign key constraint will stop this situation from
happening, and you will get an error message similar to the following:

\

Croduc-f_ id name price. manufacturer

i ve
| Atromic Mose. ... 1a.aa Mod Tnventors Ine. remove the Sf‘d row

Selfie Toaster d4.aa GyooPy Gvacige,ﬁ Qorp.(d

Cat—Poop Coffee da.aq Absurd Accessories

ERROR 51 (Q.I000):
) Cannot delete or updod—e,
a parent row: a Porejgm

N

key constraint Rails ...

| 1w | ¥
L—]

review_id \prooluc-r_ id review,_text doate)
N\
| 3 Great product ... JOII-OI-Ol IMI0:00
kN 5 best Hhing ... A0II-OI-0X 134500
3 X .ot recommend ROII-OI-O03I 4:15:00

L - y

The ultimate form of deleting data records from the parent table is
dropping the table entirely. If this action is ever allowed, all the data
in the child table will become orphan data. Fortunately, the foreign
key constraint stops it from happening, and you get an error message
similar to the following:

ERROR: cannot drop table .. because other objects depend
on it
DETAIL: constraint.. on table..depends on table..

If you are still in the process of perfecting your database design and
need to modify the table structure, you can refer to chapter 1 to

42 Chapter 2 | Related tables and more SQL

see how to modify an individual table, or see the preceding section

to find out how to alter the foreign key constraint. In an extreme
scenario, you may need to drop a pair of related tables with some
sample data. In this case, always save the data first, and drop the

child table before dropping the parent table. This order is important
because dropping the child table first also eliminates the foreign key
constraint. Otherwise, you will see the error message in the preceding
figure because the foreign key constraint works hard to enforce the
referential integrity.

Learn more SQL on your own

In this section, you will explore how to learn more SQL on your own.
The journey to SQL mastery is a long one, but at least you'll have
plenty of time to contemplate all the ways that you misspelled SELECT
or messed up with NULL along the way. If you read chapter 1 and this
chapter up to this point, however, you have already equipped yourself
with the essentials of database design. This knowledge will serve as a
solid foundation for you to learn more SQL on your own.

In this brave new age, mastering SQL on your own is significantly easier
than it was a few years ago due to the rise of generative Al tools such

Learn more SQL on your own 43

as ChatGPT and Google Gemini. Please make no mistake: we are not
advocating relying on ChatGPT solely for learning SQL. If you use
generative Al tools like ChatGPT well, you will be able to gain new
knowledge quickly and efficiently, and we want to demonstrate how you
can use these tools to facilitate learning SQL.

Some aspects of learning SQL remain the same as in the past,

of course. You need help from a quality book to learn SQL
systematically, especially conceptual knowledge such as indexing
and query order of execution. This step can’t be replaced by
asking ChatGPT questions. Many quality SQL books are available,
including these two examples:

o Learn SQL in a Month of Lunches, by Jeff Iannucci (https://www.
manning.com/books/learn-sql-in-a-month-of-lunches)

o Learning SQL, 3rd ed., by Alan Beaulieu (https://mng.bz/Ge5V)

Some other aspects of learning SQL can be very different and more
efficient nowadays, especially when you have questions or want to know
how a SQL keyword is used. The greatest advantage of generative Al
tools such as ChatGPT is that they can provide relatively reliable just-
in-time help on common questions. Without such tools, you need to

go through an iterative process to get your questions answered, which
involves creating a search query, searching online, and filtering the
returned search results. This process—especially filtering all the search
results—can be daunting.

The wide availability of generative Al tools can help you avoid this
iterative process. If you want to know how to use the sum aggregate
function, for example, you can ask ChatGPT the following question:

Question: How do | use the sum aggregate function in SQL?

The answer is typically composed of the general syntax and a concrete
example, which is as good as and sometimes better than some tutorials
written by human beings.

https://www.manning.com/books/learn-sql-in-a-month-of-lunches
https://www.manning.com/books/learn-sql-in-a-month-of-lunches
https://mng.bz/Ge5V

44 Chapter 2 | Related tables and more SQL

A sample answer from ChatGPT is as follows:

Chatgpt

In Sql, The Sum Function Is Used To Calculate The Total Of A Set Of Values In
A Column Of A Table. Here’s The Basic Syntax:
Select Sum(Column name) From Table name;

For Example, Let’s Say We Have A Table Called Orders With The Following Col-
umns: Id, Customer name, Product name, And Price. If We Wanted
To Calculate The Total Revenue From All Orders, We Could Use The Following

Query:
Select Sum(Price) From Orders;

This Would Return A Single Value Representing The Total Sum Of All Prices In
The Price Column Of The Orders Table.

If you still find the answer difficult to chew, you can ask ChatGPT to be
more patient and explain in detail:

Question: How do | use the sum aggregate function in SQL? Explain with
more examples and as if | am five.

You will find that ChatGPT answers this question better than most
tutors can. A sample answer from ChatGPT follows:

ChatGPT

Sure! Let’s say you have a table with some numbers in it, like this:

Each row has a number in the Value column. You can think of these numbers
like pieces of candy. The ID column is like a label that helps us tell the differ-
ence between the pieces of candy.

Learn more SQL on your own

Now, let’s say you want to know how many pieces of candy you have in total.
You could count each piece of candy one by one, but that would take a long
time. Instead, you can use the SUM function in SQL to add up all the pieces of
candy for you! Here’s what the SQL query would look like:

SELECT SUM(Value) FROM my table;

When you run this query, the computer will add up all the numbers in the
Value column for you. In this case, the total is 20. You can think of this as
having 20 pieces of candy in total! Here's another example. Let’s say you have
a table with some prices in it, like this:

fomm e —— +
| ID | Price |
fom e ——— +
1	1.99
2	2.99
3	3.99
4	4.99
Fomm e ——— +

Each row has a price in the Price column. You can think of these prices like
the cost of buying things, like toys or candy. If you want to know how much
money you would need to buy all these things, you can use the SUM function
in SQL. Here's what the query would look like:

SELECT SUM(Price) FROM my table;

When you run this query, the computer will add up all the prices in the
Price column for you. In this case, the total is 13.96. You can think of this as
how much money you would need to buy all these things!

One of the most significant benefits of generative AI tools in SQL
learning is that they can provide relatively reliable just-in-time
help. For common questions, you don’t necessarily need to ask the
perfect question to receive immediate answers that are informative
and well-structured. What’s more, in contrast to fine-tuning search
engine queries, it’s easier to tune your questions to get better
answers.

45

46 Chapter 2 | Related tables and more SQL

Recap

« Related tables are tables in a database
that are connected by a common
column.

o In general, it is a bad idea to have
related tables share columns beyond the
primary/foreign key(s).

o The general syntax for querying two related
tables is

SELECT columnl, column2,

FROM tablel

JOIN table?2

ON tablel.column = table2.column;

« The most common join types include INNER JOIN, LEFT JOIN, RIGHT
JOIN, and OUTER JOIN. INNER JOIN is the same as JOIN, returning
only the rows that have matching values in two tables. The other three
types may return nonmatching values from one or two tables.

o In general, the JOIN clause is preferred to the WHERE clause for
querying related tables.

« Given a pair of two related tables, the table that uses the shared
column(s) as the primary key(s) is typically known as the parent
table. The table that holds the foreign key(s) is typically known as the
child table.

« You can create the parent table the same way that you create a table
that is not related to other tables.

o The general syntax for creating a child table is

CREATE TABLE child table name (
columnl datatypel [NOT NULL],
column?2 datatype2 [NOT NULL],

.7
foreign key column datatype,
CONSTRAINT fk parent child
FOREIGN KEY (foreign key column)
REFERENCES
parent table name (
parent table primary key
)

Recap

o The foreign key constraint enforces referential integrity in
related tables. Referential integrity applies to both table and data
management in related tables.

« In general, it is a good idea to name the foreign key constraint when
creating related tables.

« Taking advantage of generative Al tools like ChatGPT can make
learning SQL more efficient.

47

Overview of
database design

3

In this chapter

« You learn about the goals of database design.

« You get an overview of the database design
process.

« You jump-start the requirement analysis.

What you need to know

This chapter provides an overview of database design from a bird’s-eye
view. That said, this chapter doesn’t have accompanying scripts like those
in chapters 1 and 2.

Overview

In chapters 1 and 2, you learned the basics of relational databases and
SQL. Starting with this chapter, you will embark on your journey of
learning database design by designing a database from scratch for the
online store of The Sci-Fi Collective. In this chapter, you will get an

49

50 Chapter 3 | Overview of database design

overview of the goals and process of database design. After that, you
will jump-start the requirement analysis for The Sci-Fi Collective.

THE oCT-FT — V.

@ COLLECTIVE s >

Goals of database design

The overall goal of database design is to deliver a well-structured,
efficient database that meets the requirements of users and
organizations. Beyond meeting these requirements, a successful
database design typically meets five common goals:

o Data consistency and integrity
 Maintainability and ease of use
o Performance and optimization
 Data security

Scalability and flexibility

In this section, you will peek at these goals to better understand what
you should aim to achieve in database design.

Goals of database design

Data consistency and integrity

Data consistency and integrity are about defining appropriate data
types, constraints, and relationships among entities to ensure that

« Data remains consistent across tables.
« Data redundancy is minimized.

o Anomalies are prevented.

In chapters 1 and 2, you peeked at some poor designs that led to data
redundancy and learned about three types of anomalies. In short, data
consistency means taking measures to ensure that those problems
don’t happen.

Insertion, update, and delete anomalies

An insertion anomaly occurs when adding a new record to a database
requires adding unrelated data.

An update anomaly happens when modifying data results in inconsistencies
within the data.

A delete anomaly happens when removing data leads to unintentional loss
of information.

Maintainability and ease of use

A well-designed database should be intuitive to use and easy to
maintain by the people who use it, including database administrators,
data analysts, and developers of web or mobile applications that are
powered by the database.

You can take a lot of measures to increase the maintainability and ease of
use of a database. Following a consistent naming convention, for example,
is a small thing to do when you design a database, but it can save a lot

of time for people who use or maintain the database. If developers who
use a database have to spend time figuring out whether and where id,

Id, and identifier are used as the primary key columns, the database is
hardly intuitive to use, let alone easy to maintain. Think about having to
maintain a database with the following tables:

51

52

Chapter 3 | Overview of database design

INCONSISTENT UsE OF IDs

(B '1
PRODUCT) [REVIEW B USER 2 | |PAYMENT &
fame product_id usernome CardNumber
price review__text email esc
manvfacturer date password expirgDQ‘{'e.
\\ J - _) .)

Performance and optimization

A well-designed database should optimize query performance and
reduce response time. An efficient database can help save running costs

and boost the performance of the applications it supports, which in turn
will enhance the user experience.

You can take a lot of measures to optimize the performance of a
database. The data in the review table you saw in chapter 2, for

example, often needs to be sorted because the table and its database
support the online store of The Sci-Fi Collective, and potential
customers often want to see the latest reviews of the products they
browse. You can index the date column in the review table to speed the

sorting operation.

What is indexing? Think of the data in the review table as being a
library of books. Indexing is the process of creating an index-card
catalog that lists every book alphabetically along with its location.

When you need to sort, you can use the index-card catalog to locate

every book and put it in its sorted position.

Goals of database design

REFei2| ANATOMY, HuMAN 143

Life Science Librar
The bodg New York, Times, cl164.
200p. col. illus,

J
)
—0 [, Phgsioloaj
2
L®

2, Anoromy, human
3. Mind and body
T.t.

Remember cord Co*\'o\\oje?

Data security

A well-designed database should have robust security measures in
place. In other words, a well-designed database prevents unauthorized
access, insertion, modification, or deletion. Even when such problems
happen, the sensitive data should still be well protected and easy to
recover.

You can take a lot of measures to safeguard the data. If you ever need to
store payment method information in your database, for example, you
should store only encrypted information. Storing customers’ payment
method information in plain text is a bad idea. If an evil hacker gains
access to the database, they will know everyone’s credit card number. By
contrast, encryption helps protect sensitive information even in a worst-
case scenario.

53

54 Chapter 3 | Overview of database design

B —o=— &G

PLATIN TEXT ENCRYPTION ENCRYPTED

TEXT
[
r —_ Wt
/)
7 @. -
H4o| 6603 (442 3%7| 5%&53+41Me8N\wKQNﬁ
03/24 Jeln Doe EH B/zzLpwiStdstwkAOnPCz

Scalability and flexibility

A well-designed and efficient database should accommodate growth
and changing requirements without sacrificing performance (trying to
have your cake and eat it too).

You can take various measures to enhance the scalability and flexibility
of your database design. When you design your database schema, for
example, separating tables can make them smaller, which in turn can
speed data lookups. Also, you can implement a cache mechanism for
frequently accessed data, such as the product information in The Sci-Fi
Collective’s database. Caching involves storing frequently accessed data
in fast-access memory, such as RAM, which can significantly improve
database performance and responsiveness, particularly as the data

size grows. Popular caching systems such as Redis (https://redis.io)
and Memcached (https://www.memcached.org) can implement this
mechanism.

https://redis.io
https://www.memcached.org

Overview of the design process

In—-me_w\om/
cache Dotabase

&/-5-0--8

Overview of the design process

Applicod—ion

In this section, we review the overall database design process by
covering the key phases and steps in database design. Some approaches
to database design emphasize a well-defined sequential process such as
the waterfall approach, in which each phase must be completed before
moving to the next. Other approaches, such as the agile approach, focus
on an iterative, and flexible approach, allowing for adjustments as the
project unfolds. Despite the differences, all database design approaches
have the same key phases:

 Requirement gathering
« Analysis and design

 Implementation/integration and testing

Waoterfall approach Agile, approach

Requirement gothering
Requirement gathering

\J/ Review and retrospective
Analt/sis ancl ole,sign
\\/ Ano\lysis oii}d Jesian

Imple_mewl—od—ion and +e_$‘ﬁ'\3 Iv*e_gro\-ﬁon and +e,s+in3

55

56 Chapter 3 | Overview of database design

Requirement gathering

Requirement gathering refers to gathering information about the
database in different ways, such as talking to all the people who will be
involved with or using the database, studying existing databases (if any),
and examining other relevant aspects of information management.

To talk to all the people who will be involved with or using the
database, you need to organize meetings, ask good questions, and have
conversations with different groups. To build the database for The
Sci-Fi Collective, you would talk to shop owners and managers, future
database administrators, and software developers who will build the
web and mobile applications to find out what kind of information they
need to keep track of.

manage men+t
ond orng]zo\+ion
architecture ..,

data storage
and refrieval,.)

DATABASE SO0FTWARE
OWNER MANAGER ADMTN DEVELOPER

If a legacy application uses any existing databases, you need to study the
application and the databases carefully. Figuring out the gap between
current expectations and the old databases is critical to successful
database design.

The Sci-Fi Collective has a legacy online store. After you study its
database and talk to all the stakeholders, you see that the old database
doesn’t support tracking inventory numbers of in-stock products,
which sometimes leads to customers buying products that are no longer
in stock. The developers of The Sci-Fi Collective’s web app want the
new database to track inventory numbers so that the web app can let
customers know promptly when a particular product goes out of stock.

Overview of the design process 57

Any information management within the organization that is expected
to be part of the database you design is also relevant. The purchasing
manager of The Sci-Fi Collective used to manage the inventory
information by using a spreadsheet and a paper form. To make such
management activities part of your database design, you need to study
the paper form, the spreadsheet, and the management flow.

Product Form

L Product Name :[)
TSSN —

\Qu«m\i’rfes C—

| Individval Cost —— 1)

—-

Analysis and design

The analysis and design phase involves carefully thinking through all
the requirements and coming up with a solid plan for how the database
will be structured and how it will work. In the end, you will create a
detailed blueprint of the database. Some key steps in this phase include
data modeling and normalization.

Data modeling aims to create a conceptual design that shows how the
parts of a database fit together and relate to one another. The conceptual
design is typically represented visually as an entity-relationship (E-R)
diagram. An E-R diagram for the database of The Sci-Fi Collective
might look like this:

58 Chapter 3 | Overview of database design

(address

r Pat/me!\-r_me-rkod]

Q address_id TwT
street_address VARCHAR(IE5)
address_line,_optional VARCHAR(OO)
city VARCHAR(IOO)
postal_code CHAR(S)
state_id CHARG)

state

? stote,_id CHARG)
state VARCHARLO)

Q paymert_idl T
name. VARCHAR(IO)
card_number CHAR(YS)

expiry_date CHARWE)

email VARCHAR(IIO)

address_id T

(vser

Q email VARCHAR(IIO)
username. VARCHAR(IO)
password CHARGO)
first_nome. VARCHAR(SO)
last_name. VARCHAR(50)
phone,_number VARCHAR(S)
last_login_time. TIMEST AMP
address_id ThT

T oriose)

? purchase_id TV T
+oral_price. DECIMALUZ, 3)
purchase,_time TIMESTAMP
poymerdt_idk TWT

email VARCHAR(IIO)

purchase, product]

Q purchase, id VT
‘ review \ Q code CHARGD
review, id T product_price. DECIMALC, &)
review, +esxt TEXT produet_aquantity TVT
review +ime TIMESTAMP product_name. VARCHAR(OO)

email VARCHAR(3I.O)
code. CHARCY)

(produet A

Q code. CHARUY)
name. VARCHAR(IOO)
deseription TEXT
manfacturer VARCHAR(IOO)
photo VARCHAR(OOO)
price. DECIMALQT, &)
cost DECIMALT, A)

kﬁn\/&rﬂ’on{_quawﬁ‘h/ wT

We know that this diagram contains symbols and syntax that you may
not understand yet. You will learn about them, as well as learn how to
model data using E-R diagrams, in chapter 5.

Normalization comes after the E-R diagram is established.
Normalization minimizes redundancy by breaking down a table
representing more than one entity into smaller, logical units and
organizing them in separate tables. As an example, someone designed
aproduct review table to hold data on both products and their
reviews. As you saw in chapter 2, storing information about more than
one entity in the same table can lead to redundancy and anomalies. You
could normalize such a table by breaking it into two tables: product

and review.

Overview of the design process

(—\ product_id
product_review nome.
rice
produet_id e
- manfacturer
f‘eyle_w_ld)
nowme.
Price, .
review
manufacturer
review_text review i oA

\ Jod'e J

review_test
dod'e_

You will learn more about normalization and see how to determine
whether a table needs to be normalized in chapter 6.

Implementation/integration and testing

The implementation/integration and testing phase involves building and
validating the database based on the blueprint you made in the design
and analysis phase. If you use the waterfall approach, the database is
implemented all at the same time; if you use the agile approach, the
database is implemented part by part and integrated into what has been
implemented. Then you test the database to ensure that it functions
correctly, performs well, and meets the intended requirements.

During implementation, you create the tables, define the columns
and their data types, establish relationships between tables, apply any
constraints or rules specified in your design blueprint, and determine
which columns to index to optimize query performance. You learned
how to use SQL to create a single table or related tables in chapters 1
and 2, and that knowledge can be very useful for this step.

After the database has been implemented, you want to test it before
putting it to use. Typically, testing a database needs to validate at least
three aspects:

o Functionality—You need to check whether the database performs the
expected tasks correctly, such as creating, updating, and deleting a
data entry.

59

60 Chapter 3 | Overview of database design

o Performance—You need to check how well the database handles large
amounts of data or heavy use.

o Security—You need to verify that the database has appropriate
security measures in place to protect sensitive data such as passwords
and payment methods.

You should identify and fix any bugs discovered during testing, of
course. As in the implementation phase, the knowledge of SQL queries
you gained from chapters 1 and 2 will be very useful for testing. You
will learn more about the details of this phase in chapters 6 and 7.

Key phases of database design

In the preceding section, you got an overview of the process of database
design. Starting with this section, you will explore and learn the key
phases in database design by designing a database for the online store
of The Sci-Fi Collective from scratch. Working on a project from
scratch will give you hands-on experience and detailed knowledge of
components you would otherwise not pick up.

In this section, you will learn more about the first key phase in database
design: requirement gathering. Because requirement gathering is an art
rather than a science, following the advice and insights of experts and
veterans in this trade can make your life much easier.

The goals of the database

As you take on requirement-gathering tasks, you need to answer a
critical question based on all the information to collect: what are the
goals of the database?

Every database is created for some specific purpose, whether that
purpose is to handle the daily transactions of a business or manage the
information of an organization. You need to identify the goal of the
database clearly because the database will be used to make important
decisions.

Sometimes, it takes longer than expected to come to a full understanding
of the goals of the database, and you need to be ready for that situation.
To have a good understanding of the goal of the database for The Sci-
Fi Collective, you need to interview the owner, managers, staff, and

Key phases of database design

software developers. You can summarize the goals of this database as
follows:
The database of The Sci-Fi Collective is to maintain information about
products, such as their inventory and reviews, and information about
users, such as their payment information and purchases, as well as the
transaction information linking users and products.

Existing databases and other aspects
of information management

Sometimes you can refer to an existing database for your work. If so,
you should resist the urge to base your new design on the structure

of the existing database. There is a good reason why the organization/
business decided to hire you to design a database from scratch instead
of modifying the old database. Although the existing database can
contain valuable information in terms of what entities and attributes are
required to structure some tables, you must be careful about potential
design errors in the existing database. Also, you must recognize that

it will take the same amount of effort to figure out the demands of the
new database and how they differ from those of the existing database.

How do you figure out the current demands? Conduct interviews. How
do you figure out the gap between the existing database and current
demands? Conduct more interviews with more questions.

With respect to other aspects of information management, you
may find that many people discovered ingenious ways to use word
processors, spreadsheets, and paper forms to collect and manage data

61

62

Chapter 3 | Overview of database design

effectively. If this type of data management needs to be part of the new

database you're designing, you may want to do at least two things:

o Get a subject-matter expert (SME) to walk you through how the data
is managed. This walk-through should involve demonstration and

stepwise explanation because it is usually difficult to grasp data

management through interviews alone.

o Ask for data samples whenever possible. The data samples will play an
important role in helping you verify the attributes and data types in

the next phase of database design.

We'll use an example to illustrate the preceding two points. The

purchasing manager of The Sci-Fi Collective currently manages all

the inventory data in a spreadsheet, and the database you design will

eventually replace the spreadsheet to manage that data. Instead of

talking only to this manager and the purchasing team, you want them to
walk you through the whole process of purchasing a batch of products,
such as ordering, entering data about a new product, and updating and
removing records of products that are already in inventory. The process
can be complicated, so getting a demonstration is the best approach
whenever possible. More important, you should ask for a copy of the
authentic data, which ideally should be anonymized. The data will help
clarify many problems that the demonstration can't, such as the exact

number of attributes and data types.

A

Produet name

Nevro—Enhancer
Quantum Flux...
Plasma Blaster

Nonotech 67&!

B
Manufacturer
CyberDyme Corp
HyperTech Labs
Wovademory

BioSolutions Ine

C
Description
A/e_uroJ implam—
Revduﬁonaﬁl
Por-fable hand ...

Advanced nano...

>
Cos+

F4aa.aa
Faaa.aa
F3aa.aa

F1a.9a

F

Quantities

&
MSRP

Fraa.aa
Fyaaa.a9
F5aa.94

Fia.aa

Key phases of database design 63

Interviews

Interviews are the most important tasks in requirement gathering.
During and after the interviews, you need to identify three pieces of
information: subjects, characteristics, and relationships among subjects.
These three pieces of information will be critical to helping you sail
through the next phase of database design.

Relationships are self-explanatory, but what are subjects and
characteristics? Subjects are people, places, things, events, and the like.
Characteristics are the features of subjects.

Plo\n “+he questions

before. interviews T le\ other aspects

idertify subjeets

dur‘inf, interviews
— idawﬁ{ly characteristics

after interviews
identify relationships

Prepare for interviews

Before conducting interviews, carefully plan the questions and other
aspects of the interviews. What questions should you prepare? The
answer depends on the project as well as whom you are interviewing. To
simplify the problem, you may want to group the people you interview.
Although the number of groups can vary, a business or organization
typically has at least three groups of people you should consider
interviewing: stakeholders, SMEs, and I'T/technical staff.

64

Chapter 3 | Overview of database design

The Sci-Fi Collective happens to be a typical business. It has two
owners and one manager, two minotaurs who are responsible for tasks
such as data entry and customer service, and three elves who work as
software developers. Following are some sample interview questions
for each group:

Stakeholders

What is the primary purpose of the database, and what specific goals
do you want to achieve with it?

What key features or functionalities do you expect the database to
support?

Should the database support any specific reporting or analytics needs?

SME:s

How do you currently manage and organize your data? What
challenges or limitations do you face?

Can you walk me through the typical workflow or process you follow
when working with data?

What specific information or data elements are most critical to your work?

IT/technical staff

What are the main tasks or activities you perform that involve data
storage or retrieval?

What reports or outputs do you typically generate from the data?
What information do these reports provide?

Do you perform any specific calculations or computations on the data?

Key phases of database design 65

You should prepare more questions for each group yourself. What

is the guiding principle for preparing interview questions? A good
question should help you gather relevant information about what
data the database should store, how the data should be stored, and
what constraints should be put in place. If there’s no time constraint,
however, a bad question is better than no question. If you are new to
this process, you can ask for some example questions from ChatGPT.
You might ask ChatGPT to provide some sample questions by using a
prompt like the following.

When you need to design a database, you need to conduct interviews with
stakeholders. What questions are typically asked during such interviews?

Beyond interview questions, you need to prepare many things
beforehand. Here are some key questions that you need to ask yourself
during preparation:

« How do you want to record the interview? Will you take notes or
record the conversation? If you decide to record, do you need to gain
permission from the organization?

« Where do you want to conduct the interviews?

« Do you need to invite more than one group to the same interview? If
so, who had better not be invited to the same interview? Should there
be a limit on the number of interviewees?

Also, ask yourself more questions specific to the project and participants
of the interviews. The guiding principle of any preparation is to make
the interviews productive and informative.

Identify subjects, characteristics, and relationships

During and after the interviews, you need to identify subjects,
characteristics, and relationships among subjects. In case you wonder
why, one of the tasks you will take on during the next design phase

is mapping the subjects, characteristics, and relationships to entities,
attributes, and relationships among entities.

To identify subjects and characteristics during the interview or from
the record of the interview, you can look for nouns in the responses to
your questions. How do you differentiate subjects from characteristics?

66 Chapter 3 | Overview of database design

Typically, if you can build a sentence with two nouns in which one has
or owns the other, the one that is possessed is the characteristic, and
the other is the subject. You can put user and password in the following
sentence, for example:

A user has a password.

The password is possessed by the user, so it is a characteristic of a user,
whereas the user is a subject.

You need to perform similar deductions on interview conversations.
You might ask the following question of an IT staff member working for
The Sci-Fi Collective:

Q: What are the main tasks or activities you perform that involve data
storage or retrieval?

The participant may give you a response like this (in which all subjects
that can be identified are underlined):

A: As a software developer, | am mainly responsible for building and
maintaining the transaction system of the online store. When a user
makes an order, the transaction system is supposed to retrieve the
user’s account and payment method, generate an order with all the
information for the ordered products, calculate the total price, bill the
payment method, and generate an invoice.

This response is very good. The participant answered your question
well, with a lot of useful details. You can track all the nouns and see
whether they can be used in sentences with the verb has or owns to
identify the subjects and characteristics:

account
A vser has an account.

h vser
A USEr had & } \Pou/me_vﬂ' me:r‘nool

PO\‘/M&'* information.

An order has at
least one product. } order /

An order has a +otal price.

pf‘oduc-i' inPormation

Key phases of database design 67

As you can see, it is easy to deduce at least two subjects—user and
order—in this response. A user has two characteristics: account

and payment method. An order has two characteristics: product
information and total price. Two other subjects—invoice and product—
don’t have any characteristics.

Typically, you need to ask follow-up questions to get all the
characteristics of a given subject. You might have this follow-up
conversation with a participant:

Q: What information does a complete order have?

A: Well, the same as any other online store: the prices and quantities
of all the products bought by a customer. That’s it. An order is not
complicated.

Q: What about the total price? Is the total price a part of the order?
A: Sort of. Yes. The total price is calculated based on the unit price and
quantities of all the bought products.

Q: What about the date and time when an order was put into the
system? Is that a necessary piece of information for an order?
A:Yes, yes. That's absolutely a necessary piece.

Answers such as “the same as any other online store” and “Sort of” are
vague, often requiring you to follow up and ask clarification questions.
Luckily, the participant provided enough details after such vague
answers. Based on the answers, you can update the characteristics of the
order subject as follows:

produet informartion

order
\ +otal pr‘ice_

¥

produet price

roduct quants
order — e Yy

i +otal price.

doate and time

68 Chapter 3 | Overview of database design

To wrap up the discussion of subjects and characteristics, you
should always ask for sample data if possible. When you have a good
understanding of the subjects and characteristics discussed by the
participant, you could follow up with a question like this:

Q: Can you provide some sample data for products, orders, invoices,
and users? Anything will help.

After identifying the subjects and characteristics, you will be ready
to ask about relationships among subjects. Your focus should be the
relationship between every two subjects. You could ask a follow-up
question about the relationship between users and orders:

Q: How are orders related to users? Can a user make multiple orders?
Can multiple users contribute to one order?

The participant might give you this response:

A: A user can of course make as many orders as they like. However, our
system doesn’t support multiple users contributing to one order.

You could ask a follow-up question about the relationship between
products and orders:

Q: How are orders related to products? Can an order have more than
one product? Can a product show up in more than one order?

The participant might give you a response like this:

A: An order can have more than one product. Vice versa, a product can
show up in different orders.

You don’t necessarily need to do any analysis of these responses; just
record them well.

So far, you have walked through all the necessary steps in an
interview. When you finish interviewing all the groups in The
Sci-Fi Collective, you will be able to identify a set of subjects
and characteristics associated with each subject, as shown in the
following figure.

Recap 69

vser produet payment method
* username. * code * nome.
* email * nome * credit card number
* password + deseription * expiry dote
* Birst name. * manufacturer * bi“ing address
* last name * photo
* phone number * price.
™ O\JJPCSS * cost OPD(CF l
* NV vant * total price
review ertery = i * Pmducf— price.
* review fext * Phoduc-i' qUO\VH’H’l/

* dod'e and Time *® dod'e, and +ime.

You will also be able to identify the following relationships:

o A user can make multiple orders. An order can be made by only one
user.

o A user can review multiple products as long as the user bought those
products. A product can be reviewed by multiple users.

o A user can maintain multiple payment methods. A payment method
can be associated with only one user.

o An order can have more than one product. A product can show up in
multiple orders.

With this information, you are ready to start the next phase in your
journey of designing a database for The Sci-Fi Collective.

Recap

o The overall goal of database design is to deliver a well-
structured and efficient database.

« Key subgoals of database design include data
consistency and integrity, maintainability and ease of
use, performance and optimization, data security, and
scalability and flexibility.

o All database design approaches have the same key
phases, including requirement gathering, analysis and
design, and implementation/integration and testing.

70 Chapter 3 | Overview of database design

 Requirement gathering is the phase in which you gather information
about the database in different ways, such as talking to all the people
involved in using the database, studying existing databases, and
examining other relevant aspects of information management.

« The analysis and design phase focuses on thoroughly understanding
all requirements and creating a well-defined plan for the database’s
structure and functionality.

« The implementation/integration and testing phase is about building
and validating the database based on the blueprint you made in the
design and analysis phase.

 Conducting interviews is the most important task in requirement
gathering. Before interviews, plan the interview questions carefully.
During and after the interviews, identify subjects, characteristics, and
relationships among subjects.

Part 2
Master database design

Welcome to the heart of database design! This part takes you beyond the
basics and into the art and science of creating robust, efficient, and scalable
databases. Here, you'll learn how to structure data not just to store it but
also to enable powerful, reliable applications.

Chapter 4 begins with entities and attributes—the building blocks of any
database. You'll discover how to map real-world objects and concepts to
entities and attributes and how to select the right data types.

Chapter 5 focuses on relationships, demonstrating how to create mean-
ingful connections among entities. By the end of this chapter, you’ll know
how to translate real-world relationships into a coherent, well-structured
database.

Chapter 6 introduces normalization and implementation. You’ll learn
how to refine and strengthen your database designs through normalization
and how to translate your designs to SQL, bridging the gap between theory
and practice.

Chapter 7 delves into security and optimization. This chapter equips you
with strategies to safeguard sensitive data and enhance database perfor-
mance with techniques such as indexing and denormalization.

By the end of this part, you’ll have the expertise to design databases that
meet the demands of real-world applications. Whether youre building a
small project or tackling a complex enterprise system, this section will pre-
pare you to handle the challenges of modern database design with confi-
dence and precision.

Entities 4
and attributes

In this chapter

« You start the design and analysis phase of
database design.

+ You learn about keys and common data types
in databases.

+ You design your first few entities, identifying their
attributes, primary keys, and data types.

What you need to know

You can find the database design covered in this chapter (so far, only entities
and attributes) implemented in tools commonly used by practitioners,
such as dbdiagram.io and MySQL Workbench, in the GitHub repository
(https://github.com/Neo-Hao/grokking-relational-database-design). You
can navigate to the chapter 04 folder and follow the instructions in
README . md to load the database design into corresponding tools.

The data types covered in this chapter apply to most relational database
management systems (RDBMSs), such as MySQL, MariaDB, and
PostgreSQL. If you use another RDBMS, such as SQL Server or SQLite,
you need to make small modifications to the design by replacing certain
data types with equivalents specific to the target RDBMS. You can find such
information in README . md in the chapter 04 folder.

73

https://github.com/Neo-Hao/grokking-relational-database-design

74 Chapter 4 | Entities and attributes

Overview

In chapter 3, you walked through the database
design process and went over the requirements-
gathering phase for the online store of The Sci-Fi
Collective.

Starting with this chapter, you will move to

the next phase of database design: design and
analysis. The first step of design and analysis is
data modeling, which aims to generate an entity-
relationship (E-R) diagram. In this chapter, you will

focus on designing all the required entities for the database of The Sci-
Fi Collective. By doing so, you will learn about entities, attributes, keys,
and data types.

Entities and attributes

In this section, you will focus on turning the subjects and characteristics
you deduced from requirements gathering into entities and attributes.
The following figure shows the subjects and characteristics for The Sci-

Fi Collective:
vser product paymernt methocl
* username. + code * name.
* email * name * credit card number
* password + description * expiry dodre
* Birst name. + manfacturer * Bi“ing address
* last name * photo
* phone number * pr e
+ address * cost order
review * inventory quantity * +otal price

" * product price
* review text *+ product quantity
* date and +ime * dote and +ime

Chapter 1 introduced entities and attributes. Now is a good time to
refresh your memory of those concepts. An entity is a distinct object
or concept that can be described by many attributes. A subject and
its characteristics may seem ready to be turned into an entity with

Entities and attributes

attributes with few to no changes. A subject is simply an entity, and a
characteristic is simply an attribute. But you need to put a little bit of
thought into naming entities and attributes.

First, you need to choose between singular and plural names for your
entities and attributes.

Singular vs. plural: To s or not to s?

Edgar Codd at IBM developed the first RDBMS in the 1970s. In his database,
he used singular names for entities (such as employee). Other developers
followed his lead.

Singular names are best used with primary entities (such as a single
employee table). Singular approaches have their root in object-oriented
programming (OOP), in which a class translates as an entity that contains
several objects of the same class.

On the other hand, plural names are more natural as table titles. An
employees table contains records of employees, for example. Plural table
names, however, might cause confusion and errors for someone who isn't
sure whether to use plurals in writing queries. Our best recommendation is
to aim for consistent use of either convention.

Second, you need to pick a naming convention for the attributes and

stick to it. Sticking to a consistent naming convention can prevent typos

and other errors in query writing and database maintenance. In this
book, we will follow the singular naming convention.

Common naming conventions include

o Snake case (first name)
o Camel case (firstName)

o Pascal case (FirstName)
o Uppercase (FIRST NAME)

 Hungarian notation, a special case that includes the data type (often
abbreviated) as part of the name (strFirstName)

« Semantic naming, a special case that includes the purpose of a
variable as part of the name (customerName)

75

76

Chapter 4 | Entities and attributes

Among these naming conventions, snake and camel cases are
equally popular, followed by Pascal case. Make your choice based on
preference and unique software requirements. In this book, we will
stick to snake case.

With these two naming decisions made, you can easily map subjects/
characteristics to entities/attributes. The user subject and its
characteristics, for example, can be mapped to the user entity and
its attributes:

vser

* usermame
* ew\odl

* password
- Pirs-r nome.
- Ias—k nome.

* phone. number

- adolress

-

vser

—

vsermame.
emoi |
@ password
Pir‘S*_name_
l ast_name

Pl«\one__nuw\ber

& address

/

Following the two naming conventions, we will convert all the subjects/
characteristics for the online store of The Sci-Fi Collective to the
following entities/attributes:

(vser (produc—r \

vsemame. code
ema rome
passwo ~l o(escﬁp'ﬁon
st nowe. manufacturer
W

B hoto
las+_name e X

e

address priee
Pl«\one_ number J cost

review

3

annYS

review_test
review_time

)

{ao«/mejﬂ' method \

noame.

CO\NX numbe}‘
expiry_ dote

bi ”mg address

or‘der

k invmry_quami*y j

+otal_price
order_+ime.
Pmduc-r_price,
produc+_quan+i+y

Entities and attributes

Beyond the naming conventions, you need to check two things about
column names:

o Whether you have names longer than the upper limit—Many RDBMSs
have limits on column-name lengths. MariaDB, for example, limits
column names to 64 characters. If you have such a column name, you
should shorten it.

o Whether you used reserved SQL keywords as entity or attribute
names—Using reserved SQL keywords as names can lead to many
problems, such as syntax errors in SQL query execution and
maintainability problems.

If you use SELECT to name an entity, for example, the database system
may not understand whether you are referring to the keyword SELECT
or the entity with that name. Therefore, if you used any reserved
keywords as names, you should replace them.

The reserved SQL keywords may vary from one database system to
another. You can find a list of keywords in the MySQL documentation
(https://mng.bz/zZ6r).

All database systems have a set of common keywords, such as SELECT,
ORDER, INSERT, GROUP, and JOIN. We used the reserved SQL keyword
ORDER to name one of our entities, so we need to replace it with a
different word that has a similar meaning, such as purchase:

(o (e)

Mal_price_ +o+a|_price
produet_price produet_price
produet_quawntity produet_quantity
order_time. purchase,_time

Reserved keywords in SQL

Reserved keywords in SQL have specific meanings and functions. They
define, manipulate, and control the database structure and data. The list
of reserved keywords can vary depending on the RDBMS, but the most
common keywords are used in all RDBMSs.

If you want to know the common reserved keywords, the fastest approach
probably is to ask a generative Al tool such as ChatGPT:

77

https://mng.bz/zZ6r

78

(continued)

o What are the common reserved keywords in SQL?

Chapter 4 | Entities and attributes

If you need to know the reserved keywords of a specific RDBMS, asking a
generative Al tool can still be a good start. To find the reserved keywords in

MySQL, you can ask ChatGPT the following questions:

o What are the reserved keywords in MySQL?

o Where are the reserved keywords of MySQL listed in its manual?

When you finish all the preceding steps, the entities of The Sci-Fi
Collective’s online store will look like the following figure:

‘ review

review_text
review_time.

Keys

k inventory_quandtity J

+oral_Price
Purcho\se__-ﬁme
produc—i—_pr‘uce,

4 vser \ a Produc-\— \ (payme_m'_me:rhod \
e_mail code. nowme.
vsemame V\o‘me: . card_number
password description exping.dovre.
Frst name. manfacturer uill - Jd
- illing_address
la$+_name_ th K
address price f
phone,_number cost purchase w

k Pr‘oduc-r_quawﬁ-h/

Now that you have converted the subjects and characteristics you
deduced in chapter 2 to entities and attributes, you are ready to start

identifying primary keys in each entity.

In chapter 1, you learned about primary keys. A primary key refers to
one or more attributes that can be used to identify an individual data
record. The values of primary keys are unique. A table can have only

one primary key.

Why does an entity need a primary key? An entity (set) will eventually
be converted to a table in a database. The primary key identifies each

Keys 79

row in a table uniquely, enforces data integrity by preventing
duplication, and establishes relationships between tables in a relational
database. All in all, identifying primary keys is an important step in
completing your database design.

The guiding principle in identifying a primary key is simple: pick

the best candidate key as the primary key. If no good candidate key

is available, create a new attribute to serve as the primary key. In this
section, we explain what candidate keys are and demonstrate this
principle in two examples, starting with the user entity.

The user entity contains seven attributes. When you put the gathered
requirements and sample data side by side, you can easily spot the
attributes that should have unique values, preventing duplication of
user data:

e username—Two users can’'t have the same username. A new user
can't register with a username that’s already in the database.

+ email—Emails must be unique for verification and account recovery.
An email address can’t be used to register two different users.

 phone number—Phone numbers must be unique for verification
and account recovery. Different users can't register the same phone

number.
[e A -
/username_ email .. phone_ number

vserame.
emal dotaDiva diva @3mai|.com e AEO-ACO-3EEE
password p |
Birst_name. % kKeykeeper Keyld8¥a3@ouvtlookicom 336456440
las—k_ noawme.
address queryQueen queen....@yahoo.com - FAS Iy BT

\ phone,_ number J

First things first. What is a candidate key? The three attributes are

three different candidate keys for the user table. A candidate key is the
smallest possible combination of attributes that can uniquely identify

a row in a table. Smallest means that no subpart of a candidate key can
uniquely identify a row. The combination of username and first name,
for example, can identify a row uniquely, but username, when used as a

80 Chapter 4 | Entities and attributes

subpart of this combination, can also identity a row uniquely. Therefore,
the combination of username and first name is not a candidate key.
On the other hand, username is a candidate key.

[.{}nrs-i'_no\me, userv\amej

ide,n—ﬁpy a row uniquejy

\\ [.'P‘.r‘s—k_no\me_, username]
- —>}s NOT o candidate key.

Can you take a systematic approach to identifying candidate keys? Yes.
You start by examining each attribute to see whether it can identify

a row uniquely. If you can’t find such an attribute, start combining
columns to see whether they can identify a row uniquely. In our case,
the user table contains three candidate keys: username, email, and
phone number. To pick one primary key, you must compare their
qualities:

(usermame) (email) (Phone__number)

vnique. \/ \/ \/
A/on—-e_mp-h/ CGnoll) VvV Vv)(
Stable X Vv Vv
S}mple_ v Vv v
Short v X v
Familiar v v v
venti
ooy Y v v

The preceding list is not exhaustive but serves as a general guideline.
The meanings of these requirements are clear. Stable, for example,
means not likely to change, and simple means easy to understand and
use. The unique and nonempty (non-nullability) requirements are
satisfied almost by default in username and email. The phone number

Keys 81

values might be NULL because even if a customer doesn’t have or doesn’t
want to give us a phone number, we still welcome that customer to
register as a user.

The rest of the metrics can be quite subjective. Usernames, for example,
can be easier to change than email addresses; on the other hand, email
addresses tend to be longer, which affects access speed. In our case, we
will settle on email as the primary key for the user table because of its
stability. The Sci-Fi Collective allows users to update their usernames
but not their email addresses, and updates to primary key values are
strongly discouraged. You can indicate which attribute is the primary
key by underlining it or adding a key symbol to its left:

e A

password
ﬁm—r_ nome.
las-r_ nome.

address

\!& phone,_ number J

Consider another example. Among the seven attributes and their
possible combinations in the product table, you can identify at least
two candidate keys:

o Product codes—In the real world, most products have product codes,
which can help identify products uniquely. Because each product has
a unique code, the code can also prevent redundancy.

o Product names and manufacturers—The combination of product
names and manufacturers can also uniquely identify products and
prevent redundancy in the product table.

82 Chapter 4 | Entities and attributes

The following figure compares these candidate keys:

(code) (name, manufacturer)
vnique
A/on—-e,mp‘h/ ol
S-mble,

<

Y
Vv
Simple_ v
Short v
¢
4

Fomiliar

< IXX <LK

Preve_wﬁnf,
redundancy

The product code is a clear winner over the combination of product
name and manufacturer. The product code is simpler and shorter.

Although the concept of the product code may be less familiar, it is not
difficult to grasp. The product code is based on the Universal Product
Code (UPC), unique 12-digit numbers assigned to each product sold
in stores and online around the world. So you can settle for product
code and use it as the primary key for the product table:

(prodluet N
? code.

nome.
description

MO\V\UPO\Q“'U{‘QP

phod'o
Price_
cost

k invertory_ quantity j

In both examples, we picked the primary key from a set of candidate
keys. What if no candidate key is available or is a good fit? We will
answer this question by picking a primary key for the review table,
which has two columns: review text and review time. Neither
of the two columns can uniquely identify a row in the review table.
Although the combination of review text and review time can
identify rows uniquely in most cases, it is still possible for two reviews
with the same text to be recorded at the same time. That said, no
candidate key is available for the review table:

Keys

(review_txet) Creview time) (review tst, review. time)

vnique. X X e
Woneempry Gl v v
S-kable_ >(Vv X
S}mple_ X >(X
Short X X X
Fomiliar Vv V4 Vv
vV n
fgjwi:(:nzy x X X

When you are in a situation like this one, always think about the
alternative: creating a new column and using it as the primary key.

You can opt to create a numeric column and use it as the primary key
for the review table. Numeric primary keys are smaller and can fit
completely in computer memory, making them much faster to search.
They also scale better and are more standardized than a combination of
two attributes. We will create an autoincrementing numeric attribute,
review id,and use it as the primary key for the review table. This
type of key is known as a surrogate key.

Undoubtedly, a surrogate key can identify rows in a table uniquely. But
can such a key prevent redundancy? Well, not by itself. It is still possible
for two identical rows of data to be inserted into the review table, as
shown in the following figure:

review_id review_ +ext review_ +ime.
7 ‘Great product” ‘a/l4/3.034, IS5 A"
'3 "Greot produc-r" ‘a/l4/3.034, 515 AM"

Would redundancy be a problem? For tables such as user and
product, it is important to eliminate redundancy. Think about
maintaining two rows of data that represent the same user. Which row
should be used when the user updates their username? By contrast,
reviews are always displayed as lists of texts on the same screen. As long
as a row of review data can be identified uniquely, it can be updated or
deleted properly. Therefore, redundancy won’t be much of a problem for
the review table.

83

84 Chapter 4 | Entities and attributes

Following the same logic, you see that the payment method and
purchase tables are in a similar situation: identifying each row
uniquely is more important than eliminating redundancy. For

the purchase table, redundancy is tolerable. The purchase table
represents the transaction records of users. A transaction record is
immutable. For the payment method table, redundancy is not only
tolerable but also acceptable. The Sci-Fi Collective allows two different
users to add the same payment method to their individual accounts.
(Think about when a couple uses each other’s credit cards.)

In such a scenario, autoincrementing surrogate keys are a great choice
for the primary keys. We will name the surrogate keys payment id in
the payment method table and purchase idin the purchase table.
The following figure shows the primary keys of all entities:

vser pr‘oduc‘r (payment_ me:l'kod\
? email Q code Q Paymej\‘r_id
vsermoame. name. nome.
Password JQ—SC‘\;P'HO“ co\rd_number
Rirst_name manfacturer expiry_date
lost_name. phote bil ling_addr&ss
o e N
Phoneﬁnumbe}‘ cost
_sj inverdrory_auawntity j (purchase \
?

(" review \ purchase, id
? re_v?e_w_?d

review_text
review_time

+o+al_price
Pur‘chase,_'ﬁme_

pr‘oduc-r_pr‘ice_
Produc+_quan+i+y

Superkeys, candidate keys, and primary keys

Another type of key that we haven't mentioned yet is the superkey. A
superkey is a set of one or more columns of a table that can uniquely identify
a row in the table. But—shame on the superkey—it may contain columns
that aren’t required to uniquely identify a row.

Now you know what superkeys are, you can see candidate keys from a
different angle: a candidate key is a minimal superkey, which means that it
has no unnecessary columns.

Data types 85

Finally, of all the candidate keys in a table, one is chosen as the primary key.
The following figure shows the relationships among the three types of keys:

svperkey

candidate. Key

primary l(es,

Data types

You successfully identified or generated the primary keys of all entities
in the preceding section. In this section, you will work to define data
types for all attributes—a necessary step toward completing your design
of entities and attributes. To implement the database based on your
design, you need the data types of attributes.

Data types are not an entirely new topic. In chapters 1 and 2, you
saw how data types are used in SQL queries. In chapter 3, you were
encouraged to get sample data that helps you figure out the data
types of the characteristics of subjects in the requirements-gathering
phase. In this section, you will take advantage of the sample data
you accumulated and use it to define data types of all attributes
accurately. Meanwhile, you will pick up some new conceptual
knowledge of data types.

String data types: Power of personality

String data types are among the most-used data types in databases.
Before you use string data types, you will learn a little bit about their
variations.

86 Chapter 4 | Entities and attributes

CHAR, VARCHAR, and TEXT

The most common types of string data are CHAR, VARCHAR, and
TEXT. The major difference among them lies in storage requirements.
(Some require more bytes than others due to how they are physically
implemented, for example.)

You may wonder why bytes matter. After all, people have terabytes of
available space on their disks. When databases are small, the result is
negligible, but as databases grow, so do computational (such as access
speed) and memory requirements. Here’s an example that shows the
effect of data length on search speed:

/—W r B
| [,93,33,5496
3 3,33,5491,54
3 3,933,78¢,876
4q 5,456,189,349.
5 I,546,89%,3
¢ 7,546,76%,353
7 3,345,657,789
€ 2,33.4,546,16%
N J

Please try finding the number 8 in the left figure; then try finding
1,546,898,321 in the right figure. If it took you even a millisecond longer
to find the longer number, congratulations: you are no different from a
computer. Your choice of data types may cause data to bloat, which in
turn slows data lookups (such as SELECT) and other operations.

Now that you know that bytes matter, we can present some simple
guidelines for choosing a string data type:

« When an attribute has data of uniform length, use cHAR.

« When an attribute has data of a relatively short but varied length, use
VARCHAR. Relatively short here also implies that an upper limit can be ¢
easily estimated (such as 500 characters). =G N

« When an attribute is expected to have a large amount of text data that
regularly exceeds a few thousand characters (1,000 plus), use TEXT,
especially if the upper limit is hard to estimate.

Some examples can help demonstrate these guidelines. If you need an
attribute to store state/province data as part of the address information
of your customers in the United States and Canada, you can use

Data types 87

a two-character designation (such as WA for Washington state). CHAR is
the perfect data type for this attribute. As another example, if you need an
attribute to store users names, you can expect data length to vary. Also,
you can estimate the upper limit of the names; most names don't need to
go beyond 30 characters. Therefore, VARCHAR is the perfect data type for
this attribute. The following figure summarizes these two examples:

st W"G.S—-omd——province_s names
wAh Bob
cA :Dinglel:erm/
oR _J'\gglypupp
kY Wackadoodle.
GA Fzzwitz
CHAR(2) VARCHAR(30)

In the preceding figure, you may notice that CHAR and VARCHAR are
followed by parentheses with numbers in them. This syntax deserves
some explanation. When you use CHAR or VARCHAR to define data types,
you need to declare the length. CHAR (2) indicates that each data record
of this attribute will occupy exactly 2 bytes. VARCHAR (30) indicates that
each data record of its attribute can occupy up to 30 characters. In some
RDBMSs, such as MySQL, a record can be rejected or truncated when
its character length exceeds the declared length.

As for the data type TEXT, it is typically used to hold a large amount of
text data, such as a product description, a product manual, or book text.

Strings and database performance

In some databases, TExT may not be stored inline along with the rest of
the columns; instead, the data may exist in secondary file storage, requiring
further lookups and a performance delay. Use this data type sparingly and
only when necessary (for description fields, for example).

Also, text attributes are indexable through full-text indexes (specialized
indexes for larger text that work like a search engine), which are not
supported by all database systems. Before version 5.6, for example, MySQL
had no support for this feature in its InnoDB engine. In such cases, all
searches on text attributes have to be linear and therefore will be slow. If
the string data in an attribute is short, and if you expect this attribute to be
searched frequently, vARCHAR is the better choice of data type.

88 Chapter 4 | Entities and attributes

Identify string attributes in our database

Now that you have learned the basics of string data types, you are ready
to identify the attributes in our database for which string data types

are a good fit. To complete this task, you will do the following for each
entity:

1. Check the requirements and the sample data that you got from the
requirements-gathering phase.

Identify the attributes that should be strings.
3. Choose a string data type (CHAR, VARCHAR, Or TEXT).

First, you check the requirements and sample data. Our user entity, for
example, has seven attributes. The following figure shows the sample
data for this entity:

vsername. emanil po\sswor‘d first_name last_nowme

\\ \\ \ \\ / Phone__number

"dataDiva", "diva@gmail.com", "123456", "Jonna", "Diva", /
address —— "Acorn Street 125, Seattle, WA", "2602603555"

"keyKeeper", "key128893@outlook.com", "123qwerty", "John", "Keeper",
"Lemon tree avenue 300, Portland, OR", "3264564910"

"queryQueen", "queen.query@yahoo.com”, "query**sdt", "Berry", "Sanchez",
"Amanda Ln 310, Portland, OR", "7223471118"

Next, you identify attributes that should be strings. From the sample
data, you can tell that all the attributes are strings. In other words, all
seven attributes are string data types.

Finally, you choose a string data type for the identified attributes. From
the sample data, you can tell that all attributes have variable lengths, and
it is not difficult to estimate the maximum length for these variables.
Therefore, VARCHAR is the most appropriate data type. A phone

number, for example, cannot contain more than 15 digits (excluding
formatting) no matter where you are, thanks to the international phone
numbering plan. Therefore, the data type of phone number would be
VARCHAR (15) .

You may wonder whether storing the passwords as plain text using
VARCHAR would introduce a security problem. Of course it will! We will
address security-related challenges in chapter 7. For now, VARCHAR is
good enough.

Data types

When you identify all the data types of the attribute, you can put the
data type to the right of the attribute to complete your design of the
user entity:

(vser \

? email VARCHAR(IIO)
vsername. VARCHAR(IO)
password VARCHARQLO)
Pir’s-f_ nowme. VARCHAR(G0O)
last_ name. VARCHAR(SO)
address VARCHAR.EE)

K phone,_ number VARQHAR(IB)J

In case you have difficulty estimating a reasonable character limit for a
VARCHAR attribute, always ask the domain experts or developers follow-
up questions. When you don’t have access to them, at least consult
ChatGPT. A question like the following can help you learn a lot:

What's the maximum length of common names?™

Now let’s turn our focus to the product entity. The following figure
shows the sample data for the product entity:

nome. de;cr‘ifrﬁon MO\V\UPO\Q“’UPEJ‘
"Atomic Nose Hair Trimmer", "Trim your nose ...", "Mad Inventors Inc.", ...,

"https://hosting.photobucket.com/images/n627/....jpg" —_ ot
P ©

"Selfie Toaster", "Get your face on ...", "Goofy Gadgets Corp", ...,
"https://hosting.photobucket.com/images/n631/....jpg"

"Cat-Poop Coffee", "The only coffee made", "Absurd Accessories", ...,
"https://hosting.photobucket.com/images/n627/....jpg"

From the sample data, you can tell that all four attributes are strings.
VARCHAR is good enough for the name and manufacturer attributes.
But you can expect product descriptions and photo URLs to be long
strings—especially product descriptions. To be safe, you can assign
TEXT to the description attribute. Considering that the photo URLs

89

90 Chapter 4 | Entities and attributes

won't be unreasonably long, you can stick to VARCHAR but declare a
length that can accommodate URLs up to 1,000 characters. The updated
product entity looks like this:

(product)

? code
name. VACHAR(OO)
Je;cr‘ip'ﬁon TEXT
manfacturer VARCHAR(IOO)
photo VARCHARIOOO)

Pr‘nce,

cost

K\ \ nvertory_ quavH'H’!/ J

Lost in translation: Character sets

In every database you design and implement, you need to make a big
decision about the tables, columns, and data in it. That decision is which
character set to use for a database, and it’s better to make it early than late.

A character set is a set of rules determining how characters are represented
and stored in a database. You can think of a character set as being a set
of guidelines that a database system follows to handle letters, numbers,
symbols, and other characters from various languages and scripts.

Why do you need to decide on a character set for a database? Think about
human languages around the world; different languages use different letters
and characters. English uses the letters A, B, C, and so on, whereas Chinese
uses characters that look very different. Different character sets support
different languages. There are character sets for Latin-based languages (such
as Latinl), as well as character sets for internationalization and multilingual
content (such as UTF-8). When you design a database, it’s important to
choose a character set that aligns with the languages and symbols you'll be
working with to ensure data accuracy and compatibility.

You typically decide on the character set when you create a database is
created, which is why it’s best to make the decision early. Some RDBMS may
not allow you to change the character set, and even if you can, changing
character sets can be complex and may result in data loss or corruption.

Data types 91

What about the other entities? Feel free to pause reading and try to
identify and define their string attributes. If you are pressed for time,
here are the declared string attributes for all entities:

/ vser \ (pr‘oduc-f \ (Pou/meyﬂ'_ wmethod x
? email VARCHAR(RA.O) ? code ? payment_ id
usermame. VARCHAR(IO) nawme. VARCHARGOO) nowme. VARCHAR(IO)
password VARCHARG.O) description TEXT card_ number
first_ nawme. VARCHAR(EO) manufacturer VARCHAR(IOO) expiry_ dote
last_ name. VARC HAR(SO) photo VARCHARUOOO) billing_ address VARCHARGIEE)
address VARCHAR(LEE) price -
K phone,_ number VARCHAR(S) cost e
/ k invem—ory_ quowH'H'l/ j purchase_ \

r’ review \\ ? purchase, il

+otal rice
? review_ id -0
review_tex+ TEXT
review_ time

pumhase_ +ime.
produc—r_ price

K produc-r_ qUO\VH'H’l/

Integers: Number your way to success

Before you can use integer data types fluently, you need to learn a little
bit about them.

TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT

The most common types of integer data are TINYINT, SMALLINT, INT,
and BIGINT. These data types allocate a fixed number of bytes based
on a power of 2 and are 1, 2, 4, and 8 bytes, respectively. Also, these
data types have different minimum and maximum values, which vary
depending on whether they are set up as signed or unsigned.

In some database systems, an unsigned number doesn’t have a + or -
sign associated with it. In other words, an unsigned number cannot be
negative. By contrast, a signed number can be negative. The ranges of
the four integer types, signed and unsigned, are shown in the following
figure.

92 Chapter 4 | Entities and attributes

Signed i =% o 1T

T-IA/YI/VT-{ ur\signed ¢ O +o 355

signed | ~33,76% +o 33,767

SMALLIVT {
unsif’nej i O +o 65535

signed 1~ T 4B 4T o 3,147,983,647 (V3. billion)
VT _ -
unsigned ¢ O +o 4,3.94,961,395 (V4 billion)

signed ~38 40 35
BrevT {

unsigned ¢ O 4o &Gq

As you can see, TINYINT can hold a maximum value of 255 as unsigned
but only 127 as signed. INT can accommodate a maximum value as
4,294,967,295 as unsigned, which is big. But if you have a numeric
attribute with a data value that can be bigger than 4 billion, you need
the help of BIGINT.

Identify integer attributes in our database

Now that you have learned the basics of integer data types, you are
ready to identify the attributes for which integer data types are a good
fit in our database.

To complete this task, you will follow the same procedure you used

to identify string attributes. Start by examining the requirements and
sample data that you got from the requirements-gathering phase; then
identify the integer attributes and choose an appropriate integer data
type for each attribute.

First, focus your attention on the ID attributes. Numeric IDs are stable,
unique, simple, and efficient. Following this logic, you can declare the
payment id attribute as an integer attribute, for example. You need to
decide among the different types of integer data types, of course. It is
self-evident that TINYINT is too small and thus not a good fit. If you
aim to build a super online store that sells products across the galaxy,
SMALLINT is also too small and not a good fit. BIGINT would work

well and is big enough. But you can comfortably settle on INT because
INT is big enough for now and yields comparatively better database
performance. (The fewer bytes are used, the faster the SELECT query
will be, for example.) Although whether an integer attribute is signed or
unsigned is rarely reflected in an entity-relationship (E-R) diagram, you

Data types 93

still need to make that choice. All primary keys have no reason to have
negative values, so they are unsigned.

(vser \ (Pmduc+ \ (po\l/me_yﬂ'_ method x
? email VARCHAR(ILO) ? code. ? payme_n-\;iol vT

username. VARCHAR(ZO) nowe. VARCHAR(OO) name. VARCHAR(IO)

password VARCHAR(L.O) deseription TEXT card_ number

Birst_ name. VARCHAR(EO) monfacturer VARCHAR(IOO) expiry_ dore

last_ name. VARCHAR(S0) photo VARCHAR(IOOO) billing_ acldress VARCHARCILEE)

address VARCHARGISSE) price - _J
K phone,_ number VARCHARUS) cost

j K\ invemron/_ quar\‘ﬁh/ j (pur‘cl«ase, \

r review \\ ? purchase,_id AT
+otal_ pric
? review._ id TwT al_prece
review_text TEXT
review_ time

Pumhase_ +ime.
produc-r_ price.
produc-r_ quantity

Most integer attributes in our database are easy to identify, but there are
two tricky cases: the payment method entity and the code attribute

in the product entity. Here is the payment method entity in the
requirements-gathering phase:

name card_number exp?ry_ciod'e_
N\

N
"master card", 5260405254103227, 0227, ...
"boa visa", 3169596072241198,1225, ...
"amex", 1677288846463190, 1129, ...

The values of both card number and expiry date seem to be
integers in the sample data, but we recommend that you define them
as strings instead of integers. This case is one in which you have to
sacrifice storage efficiency for clarity, practicality, and correctness.
Because no mathematical operations are performed on information
such as debit/credit card numbers and expiry dates, you don’t need

to make the values integers. What’s more, making them integers will
cause unnecessary problems because a card number or expiry date
may have leading zeros. In numerical data types, the leading zeros are
eliminated, so such information would not be stored correctly. As a

94 Chapter 4 | Entities and attributes

result, you should define the data type of card numbers as CHAR (16)
and expiry date as CHAR (4), where 16 is the number of digits: all
debit/credit cards have 16 digits, and 4 is the number of digits in every
expiry date.

You may wonder whether it’s safe to store payment information, such as
card numbers, as plain text. Nope. We will revisit the data types of these
three attributes in chapter 7, which examines database security. For
now, plain-text payment information is good enough when you are still
learning about data types.

Your next challenge is the code attribute in the product entity. The
product code is based on the Universal Product Code (UPC), unique
12-digit numbers assigned to each product sold in stores and online.

|'

2

I

I

1120357

For the same reasons (leading zeros), it is more appropriate to define
the data type of code as a string than as an integer. Because all UPC
values have the same length, 12 digits, we can define the code attribute
as CHAR(12).

You can identify other integer attributes and define their data types

the same way. You should think about the maximum practical value

of giving an integer attribute a specific integer type. This approach will
help keep your database small and efficient in the long run. Here’s what
the remaining integer attributes look like for all entities:

Data types 95

(user \ 4 product w e paymert_method \
? email varchar(33.0) Q code CHARUA) N .
username. VARCHAR(IO) name. VARCHAR(IOO) ?e ‘/"&C’; ch :Z;z)
o description TEXT name
password VARCHAR(Q.0) eserp cord_number CHARGE)

manufacturer VARCHAR(IOO)

Rirst_name. VARCHAR(S0)
photo VARCHARIOOO)

expiry_date CHAR()
last_name. VARCHAREO)

billing_adldress VARQHAR(&E:E))

address VARCHARG.EE) price
Phone__number VARC HAR(IB) cost
k \ inventory_quantity INT J K purchase \

(review \ Q purchase, id THT

+otal rce
Q review_id InT -
review_text TEXT
review_time

Pumho\se__ﬁw\e,
Produc-r_price,

L Produc-r_quo\n-ﬂh/ VT

Float like a butterfly, decimal like a data queen

In the preceding section, you may have noticed that we did not assign
an integer data type to the price attribute of the product entity. You
may wonder what data types are more appropriate for this attribute and
others like it. The answer is decimals. Before you can use decimal data
types fluently, you need to learn a little bit about them.

Floating-point vs. fixed-point data types

You have two choices for declaring a decimal attribute: floating-

point types and fixed-point types. Common floating-point data types
include FLOAT and DOUBLE. FLOAT is typically 32-bit, and DOUBLE

is typically 64-bit. In other words, DOUBLE can accommodate bigger
numbers. FLOAT and DOUBLE are used widely when accuracy is not
strictly required, as in sensor reading, statistical analysis, and physical
simulation. When accuracy is required to the extent that you should
care about every decimal value, you should avoid the FLOAT and
DOUBLE data types due to the need for finite precision and the potential
for rounding errors.

Suppose that you have a database that keeps track of money exchanges
through different currencies for its users. (Handling other people’s
money is fun.)

96 Chapter 4 | Entities and attributes

If you want to convert 1,000,001 USD to EUR with an exchange rate
of 0.83, rounding errors in a 32-bit floating-point operation may result
in 830000.8125. This result is about 1.75 euro cents less than it should
be. This difference may not seem like much, but users of such a system
will lose money for no reason, especially frequent users and those who
transfer huge amounts of money.

3 x 053 Actual: €30000.83
1,000,001 33-bir Floot: $30000.8135
Error: —0.0115

Now that you have a rough idea of what we mean by accuracy, let’s
define the word formally before moving further. Accuracy means
specific requirements for precision and scale. Precision refers

to the total number of significant digits, and scale refers to I . 3956

the number of digits stored to the right of the decimal point. WN&P& 3
Consider the number 12.3456: its precision is 6, and its scale is 4.

Scale_ Heres 4

When accuracy is required, you should think about fixed-point data
types such as DECIMAL and NUMERIC. There are no real differences
between DECIMAL and NUMERIC in many RDBMSs, such as MySQL and
PostgreSQL. In such cases, you can use either data type. If you are not
sure whether the RDBMS you use falls into this category, refer to its
documentation or check with ChatGPT.

Identify decimal attributes in our database

Now that you know the basics of decimal data types, you are ready to
identify the decimal attributes in our database. To complete this task,
you will follow the same procedure that you used to identify string and
integer attributes. To identify the decimal attributes in the product
table, for example, take a look at the sample product data:

nowme. de,scri(xﬁon manufacturer price cost
"Atomic Nose Hair Trimmer", "Trim your nose ...", "Mad Inventors Inc.", 19.99, 9.99, ...

"Selfie Toaster", "Get your face on ...", "Goofy Gadgets Corp", 24.99, 15.02, ...

"Cat-Poop Coffee", "The only coffee made", "Absurd Accessories", 29.99, 21.85, ...

Do you see the values for the price and cost attributes? They
represent money. In other words, they require accuracy, so you should

Data types

think about using DECIMAL. For money, it makes sense for the scale

to be 2 because that’s the smallest unit of money (cents). In larger
monetary operations, a higher scale may be necessary to accommodate
for roundoff operations. All our products sell for less than $1,000, so
precision can comfortably stay as 7:

DeECIMALG, Q)

— qqqqr.qq —-j

Up +o 5 digits Up +o 3. digits
og —khe_ l g Jegnma' Pom+ on +he. ﬁglrﬂ’
Precision: 7 Scale;

Therefore, you define the data type of both the price and cost
attributes as DECIMAL (7, 2), where 7 specifies the precision and 2
specifies the scale. You can update your design of the product entity
accordingly:

(produet N

? code.
name. VACHAR(OO)
Jescrifrﬁon TEXT
manufacturer VARCHAR(IOO)
photo VARCHAR(IOOO)
price. DECIMALY, 3)
cost DECIMALQ, 3)

K Inve,n—kory_ quav\ﬁh/ VT J

You can apply the same steps to identify decimal attributes in other
tables—essentially any other attributes that are money-related,

such as the product price and the total price attributes in
purchase. If you worry that a single transaction may lead to a large
bill, you can increase precision for the total price attribute, such as
DECIMAL (13, 2). The following figure shows the updated design of all
the entities.

97

98

Chapter 4 | Entities and attributes

~

vser

(prodluet

-

Poxt/mev*_me;ﬁnod

email VARCHAR(ZA.O)
username. VARCHAR(IO)
password VARCHAR.O)
Rirst_nome. VARCHAR(SO)
last_name. VARCHAR(SO)
address VARCHARLEE)
Phone__numbef VARQHAR(IE:D

(o)

Q review_id wT
review _text TEXT
review_time

? code CHAR(AD
name. VARC HAR(IOO)

de_scr‘ip—ﬁon TEXT
manfacturer VARCHAR(IOO)
photo VARCHAR(IOOO)

price. DECIMALG, 3)

cost DECIMALG, 3)

K invertory_quawntity INT j

Q Po\c/mewf_id wT

name. VARC HAR(IO)
card_number CHARCIG)
expiry_dovre. CHARH)

&il ling_o\dcil‘&ss VARC HARE5)

Q purchase id VT
+otal_price. DECTMALUZ, 3)

Pur‘chaseh-ﬁw\e_
g

N\

pur‘chase,

product_price. DECTMAL(,
_ produet_quantity INT

Temporal data types: Time flies when you're

querying

In the preceding section, you may have noticed that we did not assign any
data types to the review time attribute of the review entity. You may
wonder what data types are appropriate for this attribute and others like
it. The answer is temporal data types, which belong to the last group of
data types you learned about in this chapter. Before you can use temporal
data types fluently, you need to learn a little bit about them.

DATE, TIME, DATETIME, and TIMESTAMP

Most database systems support some temporal data types, such as

DATE, TIME, DATETIM, and TIMESTAMP. Although implementations of
such data types vary across RDBMSs, here are some key points that are
consistent across most systems and can help you determine which one

to use:

« Use DATE when a date needs to be stored without any time

information, such as birthday data. The date '1980-05-15"
represents May 15, 1980, for example.

« Use TIME when only time needs to be stored. If you want to track the
time at which events occur during the day, you can use the TIME data
type. The time '14:30:00" represents 2:30 p.m., for example.

Data types

o Use DATETIME when both date and time information need to be
stored to represent historical time, future events, or other instances in
which the time zone is an inherent part of the time and should not be
adjusted.

o Use TIMESTAMP to record the exact moment of an event that needs
to be consistent across time zones, such as log timestamps, record
creation, and modification times. Typically, the RDBMS handles the
conversion of time zones in TIMESTAMP data automatically.

If you are designing a database for an application whose users are
strictly local, such as an ordering system for a restaurant, you don’t
need to worry about time-zone problems. But if you are building
an application that might be used around the globe, you may
wonder whether the time-zone data will be stored as part of the
temporal data attributes. Regardless of the specifics of the RDBMS,
you should consider storing date and time values in Coordinated
Universal Time (UTC) because it ensures consistency and prevents
problems with Daylight Saving Time changes, different time zones,
and traveling users.

UTC is like a big clock that everyone agrees to follow. It’s the same
time for everyone, no matter where they are. If you live in Seattle, and
your friends in Beijing want to let you know their local time without
explicitly giving you the exact time, they can say “Our local time is
UTC plus 8 hours.” You can not only calculate their local time but also
compare their time with yours because you know how your local time
compares with UTC. That said, any web or mobile applications can
calculate local time given a UTC time.

100

Chapter 4 | Entities and attributes

Identify attributes representing date and time in our database

Now you are ready to identify the attributes that represent date and time
in our database. To complete this task, follow the same steps you used
to declare data types in earlier sections. You start by referring to sample
data you collected in the requirements-gathering phase. In this case,
however, you may find the task trivial because the attributes related

to date and time have self-revealing names (that is, time is part of the
name).

Two attributes are related to date and time: the review time attribute
in review and the purchase time attribute in purchase. During the
requirements-gathering phase, you learned that both attributes require
date and time information because they represent exact moments of
some events that need to be consistent across time zones. Thus, you can
declare the data type of both attributes as TIMESTAMP.

Also, you learned that you need to track the last time a user accessed
the online store by adding another TIMESTAMP attribute to the user
entity and naming it last login time. With all these updates, here is
another version of the updated entities:

-

vser

fprorluc-i—)

?

N

email VARCHAR(IIO)
usermame. VARCHAR(IO)
password VARCHARG.O)
Rirst_name. VARCHAR(S0)
las-r_no\me_ VARC HAR(S0)
address VARCHARQE5)
Pl«one__numbef VARCHAR(S)

code CHARGY)

name. VARCHARUOO)
de;crifrﬁon TEXT
manufacturer VARCHAR(IOO)
photo VARCHARIOOO)

price. DECIMALG,)

cost DECTIMALQ,)

last_login_time. TIMESTAMP

J

_ inventory_quantity AT J

f Pou/mem'_merhod

Q payment_idd IWT
name. VARC HAR(IO)
cou‘d_numbef CHARCIE)
expiry_dode CHARKH)
billing_address VARQHAR(A\E)%

~

(pur‘chas&

e

Q review _id INT
review_time. TIMEST AMP

review_text TEXT

Q purchase_id T&T
+oral_price. DECIMALUZ, 1)
purchase, time TIMESTAMP
produet_price. DECIMALL, 3)

Qroduc-r_quo\wﬂh/ VT J

So far, you have successfully identified the data types of all the
attributes. Take another look at your masterpiece. You did a great job!

Recap 101

Inconsistencies of data types across RDBMSs

Like it or not, there are inconsistencies of data types across RDBMSs. The
data types that you have learned are common across RDBMSs, but you
need to learn about exceptions and particularities in individual systems.
The entities and attributes you developed in this chapter are perfect for
MySQL, MariaDB, and PostgreSQL, but you will need to make small or
big adjustments for other RDBMSs for the following reasons:

o In SQLite, it is common to use TEXT in place of TIMESTAMP.

 Oracle uses NUMBER in place of INT and DECIMAL and VARCHAR?
in place of TEXT.

o SQL Server uses NVARCHAR (MAX) in place of TEXT and DATETIME?2
or DATETIMEOFFSET in place of TIMESTAMP.

You can find such information in the GitHub repository that accompanies

this book.
[{
Recap
[USER PRODucT] [REVIEW

« Designing an entity requires =0 ~=9

identifying all its attributes, the —~—— e o o v O

primary key, and the data types of we - O ww— &

all attributes. _ - ~—5

o A primary key should be able

to identify each row in a table ‘ —
uniquely. Depending on your case, LA—_—
you may need a primary key to

prevent redundancies. If no candidate key is available or a

good fit, you can always create a numeric attribute and use it
as the primary key.

« Common data types in databases include string, integer, decimal, and
temporal. To decide which data type to use, think about what job a
data type is good for as well as the demands of your particular case.

102 Chapter 4 | Entities and attributes

« Given an attribute, to identify its data type, you need to examine the
sample data and the information collected during the requirements-
gathering phase, identify the proper data-type group (such as string),
and choose the best fit within that group (such as TExT) based on the
maximum allowed values or spaces derived from your requirements
analysis.

« Using proper data types ensures that a database stores data efficiently
and meets the demands of data querying.

Relationships 5

In this chapter

« You establish relationships between entities.
+ You identify the cardinality of each relationship.

« You decide whether to represent some entities as
weak entities.

What you need to know

You can find the database design covered in this chapter implemented
in tools commonly used by practitioners, such as dbdiagram.io and
MySQL Workbench, in the GitHub repository (https://github.com/
Neo-Hao/grokking-relational-database-design). You can navigate to the
chapter 05 folder and follow the instructions in README . md to load the
database design into corresponding tools.

The data types that show up in this chapter apply to most relational
database management systems (RDBMSs), such as MySQL, MariaDB, and
PostgreSQL. If you use another RDBMS, such as SQL Server or SQLite, you
may need to make small modifications to the design by replacing certain
data types with equivalents specific to the target RDBMS. You can find such
information in README . md in the chapter 05 folder.

103

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

104 Chapter 5 | Relationships

Overview

In this chapter, you will develop your entity-relationship (E-R) diagram
for The Sci-Fi Collective’s online store by establishing relationships
among entities you identified in chapter 4. By doing so, you will

learn important database design concepts, such as cardinality and
dependency.

Entity-relationship diagrams

E-R diagrams are graphical representations of entities and their
relationships in a database. E-R diagrams are not only visual tools but
also documents that describe database structures and rules. Over the
years, these diagrams have become a universal design language among
database designers.

An E-R diagram is typically composed of boxes representing the
entities and lines representing the relationships among the entities. The
diagram depicts the data structure (also known as the data schema) but
not the data. In an E-R diagram, a table with millions of records is still
represented as a single entity. The E-R diagram that you will develop by
the end of this chapter looks like this:

Entity-relationship diagrams

bil l?ng_address

~

Q Pat/me_m_id VT
street_address VARCHARG.ES)
addr&ss_hne__ofrﬁono‘l VARC HAR(OO)
aity VARCHARUOO)
state VARCHARLO)

Qos—hal_code_ CHAR(E)

@)

|
-

~

(Paymw_mej'hod

J

f Put‘chase_

)

? Pou/mevﬁ'_id VT ?
name. VARCHAR(IO) | Of
card_number CHARCE)

expiry_date CHAR)
emaiil VARQHAR(S&O)

purchase, id VT

+otal _price. DECTMALUS,)
purchase,_time TIMEST AMP
product_price. DECIMALG, 3)
Pr‘oduc-r aquowntity IANT

email VARCHAR(RIO)

i ﬁ prenf@T
(, vser

? eman l VARQHAR(S&O>

review

vsemame. VARC HAR(IO)
password VARCHAR(LO)
first_name. VARCHAR(EO)
la$+_name_ VARC HAR(50)
Phone,_numbe_r‘ VARCHARUS)
uoxsl'_login_-ﬁme 'T—IMEST'AM/P

—

Q

(user_o\o(dress

~

? f‘eV|e_w_|d VT

review_text+ TEXT
review_time. TIMEST AMP
email VARCHAR(ZLO)
code. CHARUNL)

Q email VARCHAR(II.0)
street_address VARCHAR(IES)
o\rldt‘ess_hne__op-ﬁono‘l VARC HAR(OO)
aity VARCHARUOO)

state VARCHARGQ.O)

Pos'hml_code, CHAR(B)

_ J

rpr‘oduc-r

105

purcho\se__produc-f w

Q purchase id VT
code. CHARGY)

Q code. CHARUY)

ane_n—roﬁ/_quam'i‘h/ wr)

name. VARCHARUOO)
Je;cr‘ipﬁon TEXT
manufacturer VARCHAR(IOO)
photo VARCHAR(IOOO)

price. DECTMALG, &)

cos+ DECIMALQ, &)

106

Chapter 5 | Relationships

This diagram uses Information Engineering notation, commonly
known as Crow’s Foot notation; we will briefly cover other notation

types later in the chapter. If you are designing a database for a

sophisticated application, you may need multiple E-R diagrams to
describe its structure fully. For The Sci-Fi Collective’s online store, one
E-R diagram is good enough.

Now that we have introduced E-R diagrams, let’s start developing the
diagram for The Sci-Fi Collective. We are not starting from scratch
because we developed a set of entities in chapter 4, but we haven’t
represented the relationships of those entities yet. In the next few
sections, you will learn more about relationships between entities and
take on the task of establishing relationships among entities for The

Sci-Fi Collective.

Connect related entities

Now is the perfect moment to reflect on and revisit all that you have
accomplished so far. In chapter 4, you established all the entities as

follows:

r vser

ﬁpr‘oduc’r

\ r Payw\e!\-l'_mcl—hod

? email VARCHAR(II.O)
vsermame. VARCHAR(IO)
Passworo(VARCHARG.O)
first_name. VARCHAREO)
las-f_name_ VARC HAR(G0)
address VARCHAR(LES)
Phone__number VARCHAR(S)

K la$+_|ogin_+ime_ TIMEST AMP

J

Q code CHARUL)

nome. VARCHAR(OO)
Jeﬁcrﬁp‘ﬁon TEXT
manfacturer VARCHARIOO)
photo VARCHARCIOOO)

price. DECIMALG, 3)

cost DECIMALQ,)

K inve;n—kon/_quom-ﬁ-ry VT J

Q payment_id TWT

name. VARCHAR(ZO)

card_number CHARCIG)
expiry_date CHARK)
billing_address VARCHARG.EE)

(purchase

¥,
\

=)

Q review_id TwWT
review_text TEXT
review_+ime. TIMEST AMP

Q purchase id T

+otal_price. DECIMALUS, 3)
purchase, time TIMESTAMP
product_price. DECIMALG, &)

Ur‘oduc-l'_quawﬁ-h/ VT

Connect related entities

In chapter 3, you went over the requirements-gathering phase and
collected useful information that pertains to the relationships among
the preceding entities. You copied this information:

o A user can make multiple purchases; an order can be made by only
one user.

o A user can review multiple products as long as the user bought those
products; a product can be reviewed by multiple users.

o A user can maintain multiple payment methods; a payment method
can be associated with only one user.

o A purchase can have more than one product; a product can show up in
multiple orders.

In an E-R diagram, you use a line to connect every pair of two entities
that are related. To establish relationships between two entities, you will
identify every relationship and connect every pair of related entities
using lines.

Your first step in connecting entities is synthesizing the information
you gathered and the design of entities. Your goal is to generate a list

of simple sentences composed only of subjects, verbs, and objects. The
sentences will help you understand the relationships between every pair
of entities. As you designed entities, you may have introduced changes
that conflicted with the gathered information. You designed a review

107

108 Chapter 5 | Relationships

entity, for example, but it didn’t appear as a noun in the information
you gathered. To reconcile such conflicts, think about whether it
makes sense to keep the review entity. If so, adapt the synthesized
information accordingly:

o A user makes purchases.

o A user writes reviews.

o A product has reviews.

o A user maintains payment methods.

o A purchase contains products.

Next, map this summary to a diagram. The nouns in every sentence
represent entities. If two nouns connected by some verbs show up in
one sentence, the two entities are+ likely to be related. You may go
through a few iterations of trial and error when mapping the summary
to a diagram because of possible inaccuracy and misinterpretation.
When you draw an entity in your draft E-R diagram, you can skip the
attributes for now because they don’t matter yet and listing all of them
is tedious. Based on the preceding summary, you will develop the
following draft diagram:

Paymem—_mej—hod '

A

When you generate a draft diagram, you should test every relationship
against the information you gathered and the sample data you collected.
Also, take the draft diagram to the stakeholders and explain your design
rationale to them because it is likely that you made some mistakes or
neglected something critical in your first few iterations. The software
developers of The Sci-Fi Collective, for example, will point out that an
online purchase can’t be performed without a payment method. Based

Cardinality 109

on the new information, you need to answer the following question
before revising the draft diagram:

Should payment method be related to purchase?

Without the payment method information, an online order can’t be
finished, and the online store can’t bill its users. In other words, each
purchase record needs to be mapped to a corresponding payment
method. Therefore, a relationship between payment method and
purchase makes sense. With this question answered, add one more
relationship:

nesly added

PQVMQ!H"_M@"/\OD(W purchase]

produet

review

In the next two sections, you will learn more about the characteristics of
a relationship between two entities, which will empower you to develop
the draft diagram further.

Cardinality

Cardinality is an important characteristic of a relationship between two
entities, describing the number of instances of one entity that can be
associated with a single instance of another entity via the relationship.
Based on that definition, cardinality is classified into several types, each
of which is represented differently in an E-R diagram.

To complete your E-R diagram, you need to analyze the information
you collected from the requirements-gathering phase, identify

the cardinality of each relationship, and update the draft diagram
accordingly.

110 Chapter 5 | Relationships

Direction and representation

If you consider directions, a relationship between two entities can be
broken into two directional relationships. In a banking system, for
example, user and account are two entities, and their relationship(s)
can be summarized using two sentences:

o Sentence 1—A user has zero, one, or more accounts.

« Sentence 2—An account is associated with one and only one user.

Sentences 1 and 2 represent two different directional relationships
between user and account. In both sentences, the direction flows
from the subject to the object:

Direction: from user +o account

Sentence. i
_—

A vser has zero, one, or wmore —

Direction: from account +o user

Sentence &

An account is associated with -

one. O\V\d OV\I‘/ one. vser. vser
Given a directional relationship from A to B, ——
cardinality describes the number of instances of B~ "¢ S in °“M;"“"K
with which a single instance of A can be
associated. Cardinality is represented by two

graphic symbols on the relationship line between ~ ovter side; max cardinality
A and B. The symbols are used in pairs to Same. asi
represent the cardinalities. The symbol on the P
inner side represents the minimum instance min cardinality
number of B that a single instance of A needs to be
associated with—the min cardinality. The symbol
on the outer side represents the maximum
instance number of B that a single instance of A
needs to be associated with—the max cardinality.

As you see in the preceding figure, to represent the C
cardinality of the relationship from A to B, you place the zere

two symbols closer to B on the relationship line. In this
example, the individual symbols represent quantities. You "7 one
need to know the symbols for zero, one, and many, shown

in the figure to the right. =% mowny

Cardinality

Cardinality notation: Complicated relationships
with math symbols

There are several ways to notate the cardinality of a relationship. The two
most popular are Chen notation and Crow’s Foot notation. Chen notation

has historic significance. Crow’s Foot notation is simpler and more popular
among professionals. In this book, we will stick to Crow’s Foot notation.

Chen notation

vser ! O ad review l

Crow's Foot notation

vser ” I < review

How do you represent the relationship cardinalities of the example you
saw at the beginning of this section—the relationship between the user
and account entities in a banking system?

« Sentence I—A user has zero, one, or more accounts.
« Sentence 2—An account is associated with one and only one user.

The two sentences represent two directional relationships; they also
contain the information you need to establish their cardinalities.
Because a user is associated with zero, one, or more accounts, the min
cardinality is zero, and the max cardinality is many for the relationship
from user to account. Similarly, an account is associated with one and
only one user, which means that both the max and min cardinalities for
the relationship from account to user are one.

Sentence |
A user has zero, one, or wore min co‘mhno\li-fy
accounts.
-
o =)
Sentence i

An account is associoted with
one. and onlc/ one. user.
e M (o) et

111

112 Chapter 5 | Relationships

As you see in the preceding figure, you can merge the two directional
relationships and use a single line to represent both. The cardinality
symbols closer to account represent the cardinality of the relationship
from user to account, whereas the symbols closer to user represent
the cardinality of the relationship from account to user.

Now you know what cardinality is and how to represent it in E-R
diagrams, you will learn about three common cardinality types and
apply what you learn to develop the draft E-R diagram further.

One-to-one: A perfect match

In a one-to-one relationship, each record in one entity is related to up
to one record in the other entity. One-to-one refers primarily to the max
cardinality of both directional relationships. The min cardinalities could
be either zero or one.

s
one—to—one. /
relationships ~—_

N\ Coo—os

Given a one-to-one relationship, if both of the two min cardinalities are
ones, one of the min cardinalities is typically converted to zero for easy
implementation.

Consider an example. In the database of a large corporation, both
departments and managers are represented, and their relationship
is as follows:

« A department has one and only one manager.
« A manager works for one and only one department.

Cardinality 113

You can represent such a relationship in an E-R diagram as follows:

min carchinality: |
A depomfme_n-\' has one,<
and onlt/ one. manager. moax cod‘o(?nah'h/: |

T~

o(epo\m'w\em' ’L { || I { 1' mo\no\ger

A manager works for one
and OV\Il/ one Je_Po\H'me_n-h

wmin Qo\r‘ohno\h-h/: |

mox cardinah—fy: [

This representation is theoretically solid but impossible to implement.
To link the two entities, you need help from foreign keys. If the two
entities in the preceding figure have attributes, you need to place
foreign keys in both tables because each department is associated with a
manager and each manager is associated with a department:

(Jepo«*me_vﬂ' \ (manager W

? Jepar'fme_n‘f_iri ? momo.gerjrj
nome. name.
size se_rvice__t/e,o\rs
p—_———————~ | | =TI
ano i ! ! s
Lmanagerie | departmerntid)

Foreign kKeys

Such an implementation is problematic for data entry or insertion.
When the two tables are created, they don't contain data, so you need

to start populating the tables by entering department or manager
information. If you enter a department record first, its manager data
won't be available yet. The foreign key constraints you put in place cause
SQL to complain and reject the data entry. If you switch the order and
enter manager information first, you face the same problem. In such

a situation, you can relax one of the two min cardinalities from one to
zero to make implementation possible. You can modity the relationship
between department and manager as follows:

o A department has zero or one manager.
« A manager works for one and only one department.

114 Chapter 5 | Relationships

The representation and implementation are updated accordingly:

A department has zero or one manager.

\

A mana:jer works for one and onll/ one Jepo\rﬂ'mey\-l'.

(Je‘co\r-l-me_wr W (manager 1

? o(e‘oar'fme_vﬂ'_id

? Mano\gej‘_}d

nome. nome

size

service,_years

—_——mm e _ e

r

Por‘ejgn k¢ ey= X S--—------

As you see in the preceding figure, the min cardinality can indicate
where to place the foreign key in a one-to-one relationship. Given
a directional relationship from table A to table B, if the minimum
cardinality is zero, not every instance of table A must have a
corresponding record in table B. In this case, you typically place
the foreign key in table B. This change enables data entry. In this
case, table A is department, and table B is manager.

Now you know what one-to-one relationships are, it’s time to work
on the E-R diagram of The Sci-Fi Collective.

Identify one-to-one relationships in your database

Based on the information you gathered in the requirements-gathering
phase, you don’t have a one-to-one relationship between the entities
that you've identified. But some new information about users’ addresses
that you learned in the iterative process propels you to redesign your
user entity. What is the problem? A user’s address might look like this:

20 Baldwin Rd, Shelter Island, New York, 11964

The data analysts of The Sci-Fi Collective need to filter users’ data
based on city, state/province, or zip code to conduct targeted marketing
analysis from time to time. Storing users’ address information in a
VARCHAR attribute will make such a task difficult. To address this
problem, factor the address information into a different entity with
multiple attributes:

(" vser)

? email VARCHAR(INO)
vsername. VARCHAR(IO)
password VARCHAR(O)
first_name VARCHAR(E0O)
las*_name_ VARCHAR(50)
address VARCHAR(LE5E)
phone_number VARC HAR(IE)

k last_login_time. ‘rmrss-r-A/'fy

Cardinality

[ser)

? email VARCHAR(IA.O)
vsername VARCHAR(IO)
password VARCHAR(L.O)
first_nome. VARCHAR(E0)

last_name. VARCHAR(SEO)
Phone,_number VARC HAR(S)

K\ la$+_|o$in_+ime, TIMESTAMP J

f user_address

~

Q address_id T#T
street_address VARCHARIES)

ity VARCHARGOO)
state VARCHAR(LO)

\ Poy\’al_coo(e_ CHAR(B)

address_line,_opﬁonal VARC HAR(IOO)

J

As you can see, most of the attributes of this new entity (user
address) are of a string data type. You need to decide whether to
assign CHAR or VARCHAR and their possible max lengths. To simplify
the solution, assume that The Sci-Fi Collective operates only within
the United States. This assumption will make it easier to determine the
maximum lengths of all the string attributes. The state attribute, for
example, can be assigned VARCHAR (20) . North Carolina and South
Carolina are among the longest state names (14 characters each).

To be safe and accommodate any possible future changes, you can
set the VARCHAR length 6 characters longer than 14. Or you can
assign CHAR (5) to the postal code attribute if you opt for the five-

digit format.

Now that you have successfully converted the address attribute to a
new entity, user address, let’s focus on the relationship between user
and user address. Here is the new information you gathered from
the developer of The Sci-Fi Collective’s online store:

o A user may not have an address when they first register an account,
but a user must have one and only one address before making a

purchase.

 An address is associated with only a single user.

115

116 Chapter 5 | Relationships

Based on this information, you can easily determine the min and max
cardinalities of the two directional relationships (from user to user
address and from user address to user), and represent the merged
relationship accordingly:

A uvser may not have an address
when ... registers an account; but a
user has 4o have one and onll/ one. Mo ca{‘d;y\ah-fy: |
address before moking o purchase. /
[
vser | l

\

min cardinali-fy: | An address is associatedd onlt/

with a s‘mgle_ vser.

wmin co‘r‘dino‘hh/: o

max coxr*dino‘h-h/: |

Is this relationship one-to-one? Yes. You may notice that the
representation is similar to the example featuring departments and
managers earlier in this chapter.

The representation of the relationship between user and user
address requires the help of a foreign key. As you learned in the
preceding section, the min cardinality can indicate where the foreign
key should be placed. In the directional relationship from user to
user address, the min cardinality is zero. Thus, you place the foreign
key in the user address entity:

first_name. VARCHAR(GO) city VARCHARGOO)

last+_nome. VARCHARSO) stote VARCHARG.O)
phone_number VARCHAR(S) pos-i'o\l_code_ CHAR(E)
k las—l'_login_-ﬁme_ ’T'IMES‘I"MPJ \ em ail VARC HAR(RI.O)

(vser \ / vser_oddress \
? email VARCHAR(ZLO) Q oaddress i ToT
username. VARC HAR(IO) street_address VARCHARGIEE)

Passwot‘d VARC HARG.O) l | O ‘ addr‘e;s_hne__op—ﬁonal VARC HAR(IOO)

Now you know what a one-to-one relationship is and how to represent
it, you should also know that one-to-one relationships are the rarest
type because few one-to-one relationships exist in real life.

Cardinality 117

One-to-many: A love triangle

One-to-many relationships are the most common cardinality type. As

in one-to-one relationships, one-to-many refers primarily to the max
cardinalities. If two entities are related, one directional relationship has
the max cardinality of one, and the other has the max cardinality of many.

s (5
eromman
reJacﬁonships ~—_ . 4

N\ Co—o)

As you saw in the preceding section, if both min cardinalities are
ones in one relationship, data entry will be problematic when the
representation is implemented. In such a case, you typically relax the
min cardinality of the many side from one to zero:

{ =&]

r‘eJo\x +to
(4]

Let’s deepen your understanding of a one-to-many relationship by
looking at a real example, the relationship between the user and
review entities in the draft diagram of The Sci-Fi Collective:

(vser \
? email VARCHAR(ILO) e

vsemame. VARC HAR(IO) review \\
password VARCHARQ.O) Q review_id TNT
Pir‘S*’_name_ VARC_HAR(EO) review_text TEXT
last_name. VARCHAR(S0) review +ime TIMEST AMP
Pkone_numbe_r‘ VARC HAR(S) \ —
la$+_login_+1me TIMEST AMP

_ /

118 Chapter 5 | Relationships

From the requirement-gathering phase and your follow-up inquiry on
the relationship between the two entities, you managed to put together
the following information:

o A user can write zero to many reviews.
o A review can be written by one and only user.

You can visualize this relationship as follows:

USERZL USER?

S EA R AR WYY 5Y %
Reviewl Review2 Review?

Based on this information, you can determine the min and max
cardinalities of the two directional relationships (from user to review
and from review to user), and represent the merged relationship
accordingly:

min cardinality: ©
A user can write zero +o many reviews. +V
mox car‘dinalH‘yz mony

e

- ,’ l’ %

min cardinal?-\'y: | A review can be written by one
and onlt/ vser.

monx cardinalH—y: |

Categorizing relationships by cardinality has implications for where to
place the foreign key, especially in one-to-many relationships. In a one-
to-many relationship, the foreign key needs to be placed on the many
side—the entity that the crow’s foot (=) points to.

Cardinality 119

Why should the foreign key be placed on the many side of a one-
to-many relationship? The many side may have multiple rows that
correspond to one row on the one side via the foreign key. If you insist
on putting the foreign key on the one side, the one side will need an
extra row for each additional record from the corresponding many side,
which is not possible.

In our case, the many side is the review entity. The foreign key in the
review entity should be the primary key of the user entity. You can
update the review entity accordingly:

-)

? email VARCHAR(IIO)

username. VARCHAR(IO) (review W
password VARCHARLO) ‘ Q review_id VT
first_name VARCHAR(EO) review_text+ TEXT
last+_nome VARCHAREO) review_time. TIMEST AMP
Thone_l_number VARCHAR(S) I{;M:;J ://I(?_Q_Hzg(iiaf"
ast n_tim ESTAMP | 0 N oo -

_ st_login_time. TIM AMP ")

Identify one-to-many relationships in our database

Now you know what one-to-many relationships are, and you have
updated the relationship between user and review entities in the draft
diagram. You can apply your new knowledge by identifying other one-
to-many relationships and updating them in the draft diagram of The
Sci-Fi Collective. Start by reviewing the information you gathered on
other relationships:

o A user can make multiple purchases. A purchase can be made by only
one user.

o A user can maintain multiple payment methods. A payment method
can be associated with only one user.

[new] A payment method can be associated with multiple purchases.
A purchase is associated with one payment method.

o A purchase can have more than one product. A product can show up
in multiple purchases.

120 Chapter 5 | Relationships

You can easily determine that the product and purchase relationship
shouldn’t fall into the one-to-many basket because if you examine its
two directional relationships, neither has the max cardinality of one.

Similarly, it's not difficult to identify the user and purchase
relationship as one-to-many because one of its two directional
relationships has the max cardinality of one (from purchase to
user) and the other has the max cardinality of many (from user

to purchase). There is some ambiguity about the min cardinality
from user to purchase, however, because a user can make multiple
transactions. But what does can mean? After following up with the
stakeholders, you learn that the relationship is optional. Think about
when you browse an online store for an hour without buying anything.
In other words, the min cardinality is zero. Update the user and
purchase relationship as follows:

A vser con make zero +o % wmin cowdmo\‘n-h/: o

many purchases. moax comd?no\li‘h/: mowny

7

= I' l' _%

wmin co\r‘dino\li-h/: | % A Pumhase, can be made

> bt/ onlt/ one. user.

mox car‘dino\li-h/: |

Next, insert a foreign key on the many side to establish this relationship
fully:

((%
ser \ fpumhase, ﬂ
? email VARCHAR(IAO)
usermame. VARCHAR(IO)
password VARCHARLO)
first_name. VARCHAR(SO)

last_name. VARCHAR(SO)
Phone__number VARC HAR(IE) T —
q last_login_time TIMESTAMP >, k 1 emaxil VARCHAR(3S.0) 1y,

Q purchase id IWT

| +oral_price. DECIMALZ, 3)
‘ purchase, time TIMEST AMP
product_price. DECIMAL(T,I)
produet_auantity INT

Cardinality 121

The relationships are one-to-many between user and payment
method and between purchase and payment method. Follow the
same steps to update them:

(Po‘t/meyﬂ—_me_-l—hod \ / Puf‘chase x

ament 1ol THT ? Purchase i TWT
Q payment_ +otal_price. DECTMALUZ, 3)

VAR R
nowne. VARCHARCSO) purchase, time TIMEST, AMP

rd_number CHARUE) 04 ~
::P;’:/m;o\ :er CHAR) produet_price. DECTMAL(T,I)
- Produc—k quo\vﬂ'rh/ VT

b‘lling_address VAR&HAR(A.SB) _____________
____________ |eyna|l VARCHAR(S&O) '

vser

Q email VARCHAR(3A.0)
vsermame. VARCHAR(IO)
password VARC HAR.O)
first_name VARCHAR(SO)

la$+_name_ VARCHAR(S0)
Phone__numbcr VARC HAR(S)
\ loxs-r_login_-ﬁme, TIMEST AMP W,

As you can see, you have two sets of relationships going from payment
method to user; one set goes through the purchase entity, and the
other is direct. This representation can lead to problems, which we will
address in chapter 6.

Many-to-many: The more, the merrier

The last cardinality type you will learn is the many-to-many
relationship. Like the other two types of relationships, many-to-many
refers primarily to max cardinalities. If two entities are related, the max
cardinality of both directional relationships is many, as shown in the
following figure.

122 Chapter 5 | Relationships

P
rangrommang
reJod'ionships §

(4 po—0{ =)

The preceding figure may help you grasp many-to-many relationships,
but many-to-many relationships are represented differently. In general,
a many-to-many relationship is represented as two one-to-many
relationships with the help of a junction table, as we'll demonstrate in
an example.

Note; moml./—-—i'o——momt/ reJo«Honships are
ﬂpica“y not re‘nre,se_m-e;l as below.

If you design a database for a bookstore application, you need to store
all the information about authors and books in two separate tables.
You know that an author can write many books and a book can have
multiple authors.

John | ‘% The Sirens
Scalz ﬁ, ‘f' of Titoan

(7) N
Terry -— :
oy et
Pratchnett ;.'3 :_v;} Redehirts
Connie ~~—| The Long
Wm'\s @ Z. | Earihn
— To Smj
Kurt ﬂ' = .
’ Noth of
VTS 25 Sl gc)

You know that this relationship is many-to-many as soon as you
identify the max cardinalities of the two directional relationships:

Cardinality 123

i relinaliy: |
An auvthor can write many books min cardinality

mox coxr*dino‘li-h/: many

author II Il ﬁi book™

0
wmin co\(‘o{inalih/: |

A A book can have mul-ﬁple_
175N
moax co\f‘dino\h-h/: mawny avthors

To represent this relationship properly, you need to go one step further
by making a junction table that contains only the primary keys of the
two involved entities: author and book. Also, you must convert the
many-to-many relationship to two one-to-many relationships between
the junction table and both entities. You can represent this many-to-
many relationship as follows:

auvthor)

awthor author_book

]] I ? book™ id Il l]]
/ ? auvthor_id N
win cordinality: | min cardinality: | A book can hav
An author can co ality i QZ <
write. many books. Mo Qapd;nal;w; many max co\rdino\li-h/: mawny Mu'-hPle_ authors.

As you see, the junction table, author book, contains only the primary
keys from the author and book entities. In this junction table, the

book idandauthor id attributes together serve as a composite
primary key. It’s worth noting that the crow’s feet always point to the
junction table. The author and book entities become indirectly related
via the junction table.

124 Chapter 5 | Relationships

Composite primary keys: The ultimate
combination in databases

A composite primary key is a primary key in a relational database that
consists of two or more attributes that together uniquely identify each row
in a table. Unlike a primary key based on a single column, a composite
primary key requires multiple columns to form a unique identifier for each
record.

You must use a composite primary key when a single column cannot
guarantee uniqueness for each row but a combination of multiple columns
does. This type of key is commonly used when a table has a many-to-many
relationship with another table or no simple key can uniquely identify a row
in the table.

Now you have two one-to-many relationships whose min cardinalities
are all ones. As you saw earlier in this chapter, given such a one-to-
many relationship, you need to relax the min cardinality on the many
side from one to zero so that you won't face problems in data entry
when you implement such a representation.

awvther author_ book”

? auvthor_id

noame.

address \¥ awrhor_id)

? book”_id

} II # ? book”_ id |

? auvthor_id

You may wonder why you can’t simply insert a foreign key into both the
entities in a many-to-many relationship. Well, representing a many-to-
many relationship this way leads to data redundancy and difficulties

in querying and modifying data. If you represent the author and

book relationship this way, the data-redundancy problem jumps out
immediately:

Cardinality

Bad practice

(auvthor \

? o\vHr\or_?cX

3)0\-1'0\ re,duv\domcy

(auvthor_id name. address bool(_id\

noame.

3 Connie. willis *
3 Connie. willis o

(book”_id +itle cover o\u-H«or_IdW

Q book”_id
+itle i Redshirts !
Y Redshirts 3

If an author wrote multiple books, the same author information has to

occupy multiple rows in the author table even if they are redundant:
different books have different book id values, and book id is the
foreign key in the author table. Similarly, if a book has multiple

authors, the information for the same book has to occupy multiple rows

in the book table: different authors have different author id values,
and author id is the foreign key in the book table. When the time
comes to implement the two tables, having redundant primary key
values, such as author idin the author table, is impossible. Thus,

simply inserting a foreign key into both tables involved in a many-to-

many relationship is not viable.

Cardinality yoga: Learning to flex with zeros

The default min cardinality is often set to one. But you need to relax the min
cardinalities from one to zero sometimes to enable data entry from time to time:

o In a one-to-one relationship, if one entity is typically created before the
other, you might set the minimum cardinality of the second entity to zero
to allow the first entity to exist without an immediate counterpart.

o In a one-to-many relationship, you can relax the cardinality that’s closer
to the many side to allow for cases in which the entity on the one side
might exist without corresponding entries on the many side. A customer
might exist without any addresses, for example.

125

126 Chapter 5 | Relationships

(continued)

o In a many-to-many relationship, the minimum cardinalities are often set
to zero on both sides if either entity can exist without the other. If there
are strict business rules on the order of their existence, you might keep
one of the two min cardinalities as one.

These rules of thumb may not always hold, depending on business rules and
requirements, but you can still use them to identify three relationships with
min cardinalities that require further examination.

Identify many-to-many relationships in your database

The draft diagram of The Sci-Fi Collective has one more relationship
that you haven't worked on yet. This relationship is between the
purchase and product entities:

A purchase can have more than one product. A product can show up
in multiple purchases.

After following up with the stakeholders for clarification, you see that a
product doesn’t necessarily need to show up in a purchase record, but a
purchase record has to be associated with at least one product:

K purchase N r Pr‘oduc-r

Q code CHARCA)
name. VARC HARUOO)
de,scrifrﬁon TEXT
manfacturer VARCHARIOO)
photo VARCHAR(IOOO)
price. DECTIMAL(,Q)

cost DECIMAL(G,I)
J K invertrory_quantity INT

? Purchase,_id INT
+otal_price. DECIMALU,)
purchase,_time TIMEST AMP
product_price. DECTMAL(T,)
produet_quantity INT
email VARCHAR(IIO)

pou/me;m'_iol INT

J

Based on this information, it is easy to identify this relationship as
many-to-many and to determine the max and min cardinalities:

Cardinality 127

A purchase can have one or win COJ‘JMOJH’{/: I

many Pmduc-rs. mox coxr*dino‘h-h/: many

e

R
wmin cowdino\h-h/: o A Produc-i' can show up in
max co\r‘dinah'h/i many zero to wany purchases.

To represent this many-to-many relationship, make a junction table
that contains only the primary keys from the purchase and product
entities, and convert the many-to-many relationship to two one-to-
many relationships:

A purchase is associoted % win cardinah-ky: |

with one or many produets. moux caro(inah-f—y: many

— (/ produet \

purchase x 9 code. CHARGL)

Q purchase, id TWT 4 purchase, produet \ name. VARCHARIOO)
roral_price DECIMALIZ, 3 G ¢ purchase.id /T degi';f*b" 'nex;- IR0
purchase, time. TIMESTAMP 9 co de CHARGS) manufacturer VARCHAR(IOO
Pr‘oduc—r _price. DeCIMALG, &) \ photo VARC HAR(IOOO)
product, avawntity INT price DECIMALG, &)
email VZRQHAR(&O) cost+ DECIMALQ, 3)

Q“‘/’“W_‘d wT / kinve_n—kory_quowﬁ-ky VT j

win QO‘FJMQIH’V: © A product can show up in
mox cou‘clinod"rh/: mowny) zero +o many purchases.

You may notice that the min cardinalities of the relationship between
purchase and purchase product are both one. To prevent problems
with data entry when this representation is implemented, you should
relax the min cardinality closer to the purchase product side from
one to zero, as shown in the following figure.

128

\\

pumhase,

Q Purchase,_id VT
+otal_price. DECTMALUZ, 3)
purchase, time TIMEST AMP
product_price. DECIMALG, &)
product_quantity IA/T
email VARCHAR(IIO)

u:o\ymevﬂ'_io(VT

_J

Chapter 5 | Relationships

-

produet

(purcha&e__produc—k \

Q purchase, id /T
Q code CHARUN)

Q code CHARCI)

name. VARC HAR(OO)
description TEXT
manufacturer VARCHARIOO)
photo VARCHAR(IOOO)

price DeECIMALT,)

cost+ DECTIMALT, 3)

\}nvem-on/_quam—ﬁ'y T J

After all your updates to the draft E-R diagram, it looks like this:

\

(pou/me_n-k_me_-ﬂ«od

Q payment_id TVT
name. VARCHAR(IO)
card_number CHARG)
expiry_dote. CHAR)
bil l"ms,_o\ddr‘ess VARC HARAE5)

email VARCHAR(RA.O)

¢
=

Qemail VARCHAR(IIO)
vsername VARCHAR(IO)
Passworo(VARCHARG.O)
Rirst_name. VARCHAR(SO)
last_name. VARCHAR(EO)
phone_numbe_r VARC HARUS)

uo‘s-f_login_-ﬁme_ ’[_IMES‘I—A/‘D

ru(‘clv\o\Se

P

\

Q Purchase_id VT
+otal_price. DECTMALUS,)
purchase, +ime TIMEST AMP
product_price. DECIMALGT,)
produc—\—_quanﬁ-h/ VT

payment_id TAT
email VARCHAR(ILO)

_J

(produc—k

Pumhase,_produc+

Q purchase_id IWT
Q code CHARUI)

ﬂ‘e_viey

AR
Q review_id IHT
review_text TEXT
review_time. TIMESTAMP
email VARCHAR(RA.0)
code CHAR)

Cser_addregs

\

Q address_id T/ T

aity VARCHARUIOO)

stote VARCHAR(LO)
Pos-fo\,_code_ CHAR(E)
\e,mo&l VARCHAR(II.0)

street_address VARCHARGQ.ES)
address_line,_optional VARCHAR(OO)

J

ane_wfom/_quawﬁ-h/ vT j

code CHARUY)

name. VARCHAR(OO)
de_scﬁp—ﬁon TEXT
manfacturer VARCHAR(IOO)
photo VARCHAR(IOOO)

price. DECIMALG, 3)

cost+ DECIMALQT, 3)

Strong and weak entities 129

Strong and weak entities

Strong and weak entities are another characteristic of a relationship
between two entities. This characteristic may come handy for refining
E-R diagrams. In this section, you will learn about strong and weak
entities and apply what you've learn to refine the E-R diagram of The
Sci-Fi Collective.

At their core, strong and weak entities involve a dependency relationship
between two entities. Given two related entities, if one is strong and the
other is weak, the strong entity can exist on its own, but the weak entity
cannot exist without the strong entity. In other words, weak entities
cannot be uniquely identified by their attributes alone.

Let’s try to understand strong and weak entities better via an example.
Suppose that you are designing the database for a movie theater’s web
application and need to represent the relationship between movies
(movie) and tickets (ticket). Between movie and ticket, movie

is the strong entity because movie can exist independently in the
database. By contrast, ticket is the weak entity because it depends on
movie to identify each of its instances. The following figure depicts this
relationship:

S—H‘ons, e_v\-H‘h/ Weok ev\-ﬁ-h/

Typically, the primary key of the weak entity is a composite key that
combines its own attribute(s) and the primary key of the related
strong entity. As you see in the preceding figure, ticket usesa
composite key composed of movie id and other attributes. movie
id is the primary key in the movie entity, and the other attributes
distinguish different tickets to the same movie. Such attributes are also
known as partial keys.

130 Chapter 5 | Relationships

It is worth noting, however, that strong and weak entities can always
be converted to two strong entities. If tickets need to be managed
independently for reselling and refund purposes, for example, you can
convert ticket to a strong entity:

S‘H‘ong entity S+ronﬁ entity

? seat number
? room_number
? +ime.

Q wovie_id
+H'|e_
genre.
o(ir‘ecd-or

Pore‘.gn Key

But what you should do if you have two entities that can be identified

as both strong and weak? Should you identify them as strong and weak
entities or treat them as two strong entities? The answer depends on a
variety of factors, such as business demands, data representation and
maintenance, and performance. If both options are possible, always
choose the one that makes E-R diagrams simpler and less susceptible to
bad data. As you apply this new knowledge to refine the E-R diagram of
The Sci-Fi Collective further, you will see several examples that involve
deciding whether to identify two entities as strong and weak entities.

Identify strong and weak entities in your database
In the E-R diagram of The Sci-Fi Collective, several entities fit the
definition of weak entities, such as review and payment method. You
can see the review entity, for example, as a weak entity that depends on
the existence of user and product:

Strong and weak entities 131

When you consider whether to convert a strong entity to a weak one,
you should ask whether the decision will simplify the database design
or improve data accuracy. If the answer is no, you should stay put. You
could convert review, for example, to a weak entity that depends on
user and product. But doing this means you need to start using a
composite primary key in the review entity, which doesn’t introduce
any benefits but can lead to increased storage and slower query
performance because composite primary keys require wider indexes
and slower index lookup. As a result, you shouldn’t convert review to a
weak entity.

Composite primary keys require Ligﬂer storage.

=) (e —7/(- "

e

Q email VARCHAR(3IO) 19 review_id T#T . Q code. CHARCI)
vsermame. VARCHAR(IO) 9 email VARCHAR(IIO) | name. VARCHARUIOO)
password VARCHAR(3.0) \Poode CHARGY) descriprion TEXT
first_name VARCHAR(S0) review_text TEXT wmanufacturer VARCHARIOO)

review._time. TIMEST AMP,

J

Composite primary Keys con leadl +o slower queries.

Following the same logic, you can tell that converting payment
method or purchase to weak entities is a bad idea. What about

the purchase product table? You can’t change anything about
purchase product because it is already a weak entity. The
purchase product table is a junction table that you created to

link purchase and product in a many-to-many relationship, and all
junction tables are weak entities by nature. In this case, purchase and
product are strong entities. As the weak entity, purchase product
uses a composite primary key composed of the primary keys of the
two strong entities.

The user address table turns out to be your only opportunity to
apply your knowledge of strong and weak entities in refining the
draft diagram. Your current design treats user address as a strong
entity that uses address_id as the primary key to identify each

132 Chapter 5 | Relationships

of its instances and email as the foreign key to maintain the link
between user address and user. If you convert user address to
a weak entity, its primary key will become email, and the foreign
key will be gone. Why? The user and user address entities are

in a one-to-one relationship, and email is good enough to identify
each instance of user address. As a result, you no longer need

a composite primary key. Converting user address to a weak
entity makes sense because it eliminates a foreign key constraint and
simplifies your design.

Two S'H‘onﬂ erthes: a Por‘ejgn l(e_t/ constrant

N

vsermame. VARCHAR(E0)

ﬁ / vser_address
eynoul VARCHAR(INO) — — — address_id THT

|
|as+ logm +ime. 'T_IMFS‘I_MJ Lo - - e,vnodl VARCHAR(33.0)

street_address VARCHARQ.EE)

Strong and weak entities:

(vser \
(vser_address

Q email VARCHARRIOY | ————————

L/

username. VARCHAR(E0) 0Ok LQ email VARCHAR(33.0)]

street_address VARQHAR(&BB)

last_login_time mgs—rAAy

After you convert user address to a weak entity, your E-R diagram
looks like this:

Strong and weak entities

\

(Po\t/me_yﬂ'_mcw\od

? paymeyﬂ-_?d IvVT
name. VARCHAR(IO)
card_number CHARCIE)

expiry_dovre. CHAR()
billing_address VARCHARGQ.EE)

Qm:l VARCHAR(IA.0))

i
=

Purchase

ﬁ

Q purchase, id I&VT
+otral_price. DECTMALUZ,)
purchase, time. TIMESTAMP

Produc+_quan+i+y VT
payment_id THT
email VARCHAR(ZI.0)

Qemail VARCHAR(ZI.O)

ﬂeﬂey

vsermame. VARCHAR(IO)
password VARCHAR(LO)
Rirst_name VARCHAR(S0)
last+_name. VARCHAR(SO)
phone__number VARC HAR(IE)

Q review_id TWT

review_text+ TEXT
review_time. TIMEST AMP
email VARCHAR(3I.0)
code CHARUY)

uo\s-r_login_-ﬁme 'T’IMEST‘MD

\

Cse_r_address

Q email VARCHAR(RI.O)
street_address VARCHAR(IES)
o\ddr‘e_ss_hne_opﬁono\l VARCHAR(OO)

city VARCHARGOO)
state VARCHARGQ.O)

o$+al_code_ CHAR(E)

\C _/

product_price. DECTMAL(,)

_

133

(purchase, product I

Q purchase_id T#T
Q code CHARUN)

(prooluc-r

Q code CHARUN)

ane_m—orl/_quo‘mi—ry VT J

name. VARCHARUOO)
rie_scripﬁon TEXT
manufacturer VARCHAR(IOO)
photo VARCHAR(IOOO)

price. DECTMALGT, 3)

cost+ DECTMALQ, 3)

When you take a closer look at other tables and columns, you notice
that payment method contains a column, billing address, that
represents the billing address of a payment method. The relationship
and nuances between a payment method and billing address are the
same as between a user and user address. In other words, you need

a table to fully represent the billing address the same way that you
modeled user address. Following the same logic, you can use a table

134

Chapter 5 | Relationships

called billing address to represent billing addresses. billing
address is a weak entity, and its corresponding strong entity is
payment method. After you incorporate this change, your E-R diagram

looks like this:

r billing_aderess

\

POJ/IMQ]H’ o TwT
street_address VARCHARGQ.ES)

address_line,_opﬁonal VARCHARCIOO)

city VARCHAR(OO)
state VARCHARG.O)
pos-kal_coo(e_ CHARS)

/

H- Ol

\

(pou/w\e_m—_me:rkod

uvrchase

e

? Pal/mev\—r_id VT
name. VARC HAR(IO)
card_number CHARCIE)
exp?mll_o(od'e_ CHAR(H)

email VARCHAR(3.0)

i
(" vser

@ email VARCHAR(ZI.0)
username. VARC HAR(IO)
password VARCHARGQ.O)
first_name. VARCHAREO)
las+_namc; VARCHAR(E0)
phone_numbe_r VARCHAR(S)

uo\s-r_log?n_-ﬁme, -rrMES‘rAm/P
J——

-
|

Q

?Pumhase_|d VT
+oral_price. DECTMALUZ,)
purchase, time. TIMESTAMP
produet_price. DECIMALL,)
produc-i'_quawﬁ-h/ wvT

email VARCHAR(IAO)

ﬁwp«eyf_?d VT J

(‘e,\/l ew

Q review_id TWT

review_text TEXT \
review_time. TIMEST AMP
email VARCHAR(IL.O)
code CHARUA)

/use_r_o\ridr‘&ss

~

@ email VARCHAR(IIO)
street_address VARCHARGES)

city VARCHAR(IOO)
stote VARCHARGY.O)

Pos-!—al_corie CHAR(E)
_

o‘do{r‘ess_lina_op—ﬁonoxl VARCHAR(OO)

J

(Pumha\se__f:roduc-i—

Q purchase, id W T
code. CHARUD

S

(produc-r

Q code CHARG)
name. VARCHAR(OO)
de_scﬁp—ﬁon TEXT
manacturer VARCHAR(IOO)
photo VARCHARUOOO)
price. DECIMALG, 3)
cost DECTMALT, &)
unve_v*oﬁ./_quawﬁ-h/ VT J

Recap 135

Give yourself a pat on the back: you have successfully wrapped up a
round of data modeling by developing and refining your E-R diagram.
Great job!

A\ A\ Anamm—
Recap =MW M
) P A -
« Relationships are the binding T NE
glue between entities. The AN SN o
representations of relationships 3 Z A T
are informed by information '\/ —A A
from the requirements- l) =
l\ E— Vo, ——

gathering phase and further
analysis.

« To represent relationships in
an E-R diagram, you typically
go through a three-step process: establishing relationships, identifying
the cardinality of each relationship, and identifying potential weak
entities and determining whether they should be converted to weak
entities.

o Cardinality is an important characteristic of a relationship between
two entities. Cardinalities come in three flavors: one-to-one, one-
to-many, and many-to-many. Different flavors of cardinalities are
represented differently, and the flavor has implications for where the
foreign key is placed.

o In a one-to-one relationship, both the max cardinalities are one,
represented by two bars. The foreign key connecting the two entities
can be placed on either side.

« In a one-to-many relationship, the max cardinalities of the two
directional relationships are one and many. Many is represented by
the crow’s foot. The foreign key should be placed on the many side
indicated by the crow’s foot.

« In a many-to-many relationship, both the max cardinalities of the
two directional relationships are many. Representing a many-to-
many relationship requires creating a junction table between the
two entities and converting the relationship to two one-to-many
relationships between each entity and the junction table. The junction
table contains the primary keys of both entities.

136 Chapter 5 | Relationships

« Strong and weak entities are another characteristic of a relationship.
If two entities can be represented as strong and weak entities, you
need to decide whether to do so, depending on whether such a
representation makes the E-R diagram simpler and the database
more efficient.

o A weak entity uses the primary key of its corresponding strong entity

as part of its composite primary key. Other than that, a weak entity is
not represented differently in Crow’s Foot notation.

Normalization 6
and implementation

In this chapter

+ You normalize your database design.
« You implement your database design.

« You learn important concepts such as using
constraints and cascade.

What you need to know

You can find the database design covered in this chapter implemented in
tools commonly used by practitioners, such as dbdiagram.io and MySQL
Workbench, in the GitHub repository (https://github.com/Neo-Hao/grokking-
relational-database-design). You can navigate to the chapter 06 folder
and follow the instructions in the README . md file to load the database
design into corresponding tools.

You can also find the SQL scripts corresponding to the almost-finalized
database design for different relational database management systems
(RDBMSs), including MySQL, MariaDB, PostgreSQL, SQLite, SQL Server,
and Oracle.

137

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

138 Chapter 6 | Normalization and implementation

Overview

In this chapter, you will normalize and implement your database
design for The Sci-Fi Collective. By doing so, you will learn about
important concepts in database design, such as functional dependency,
normalization, and constraints.

Normalization

Before converting your database design to a SQL script that creates the
corresponding database and tables, you need to normalize your design.
This critical step in database design is known as normalization.

Normalization is the process of organizing a database in a way that
minimizes redundancy and dependency while maximizing data
integrity and consistency. In other words, we break the database into
smaller, more manageable tables, each table representing a single entity
or concept. The primary goal of normalization is to strengthen data
integrity. Although you have worked toward this goal in the preceding
chapters, you are about to kick your work up a notch.

Normalization 139

You will use normal forms to guide the normalization process. There are
multiple normal forms, including the First Normal Form (1NF), Second
Formal Form (2NF), Third Normal Form (3NF), and Boyce-Codd
Normal Form (BCNF). The relationship among these normal forms is
hierarchical and sequential in database normalization. Each form builds
on the preceding one. Being the smallest nesting doll of these four
normal forms, BCNF has all the characteristics of the other three.

® Hove a primary key

® Have no mul-ﬁValued

Qoluwms

In WF

All nov\l(e_y columns are
dependert on +he primary
Key Gn s av\-ﬁre:ry).

In JWF

No V\onl(a/ columns are
+ran$i+ive|t/ depe_ndeyﬂ'
on the Pr‘imm‘y l(eJ/.

® I'n JWF

o All columns are depey\deyﬂ' onll/
on o l(eJ/ and norrh}ng, ere_.

140 Chapter 6 | Normalization and implementation

Superkeys, candidate keys, and primary keys

Do you remember what they are? The coverage of different types of keys
goes back to chapter 4.

A superkey is a set of one or more columns of a table that can uniquely
identify a row in the table, but it may contain columns that are not required
to uniquely identify a row. A candidate key is a minimal superkey, which
means that it is a superkey with no unnecessary columns. Of all the
candidate keys in a table, one is chosen as the primary key. The following
figure summarizes the relationships among the three types of key:

svperkey
candlidate.)(&/

primary l(esl

In practice, when all your tables are in BCNF, you can consider your
database fully normalized. A table in BCNF is already in INF to 3NF
and has the following characteristics:

o It has a primary key.

o It has no multivalued columns.

o All columns are dependent on a key but nothing else.
« It contains no transitive dependency.

You will find detailed definitions of these characteristics in the
following sections and use them as the guidelines to normalize the
database design of The Sci-Fi Collective. A table that doesn't meet one,
two, or any guidelines may cause problems such as update and deletion
anomalies. Remember attempting to combine product and customer
data into one table in chapter 1?

Normalization

141

ﬁroo(ue-«—_id nome. price wanfacturer customer_id customer_name customer_email qUOJH’H’\l/
I Aromic vose ... a.94 Mad Inventors Inc. al Bob bob@gmo{.l.cow« 5
pY Selfie Toaster d4.94 GyooPt/ Gvadg@’& Corp. b Dave dave@ovklool(.qom 15
3 Coat—Poop Coffee .99 Absurd Aecessories al Bob bob@gmo&l.com X
a The Infinite ... a.aa S'n“t/ Suppl}e_s Co. A2 Tohn :‘ow\@_l&s.n&k |
K (e} The A/euralyze_r 355 Si“l/ Supphe,s Co. e Koty l(wh/@lis.ne_-r B j

Normal forms: Crazy nesting dolls

You may wonder whether normal forms can go beyond BCNE. Yes! Fourth
Normal Form (4NF), Fifth Normal Form (5NF), and even Sixth Normal
Form (6NF) have been proposed and discussed in the theoretical framework
of database normalization.

4NE 5NE and 6NF build on previous normal forms, and each form targets
increasingly specific, less common design problems. 4NF addresses multivalued
dependencies, for example, and 5NF eliminates redundancy caused by join
dependencies that are not covered by 4NE 6NF is largely theoretical.

4NE 5NE and 6NF are beyond the scope of this book. If you want a quick
introduction to them, grab a textbook on databases (such as Database System
Concepts, 7th ed., by A. Silberschatz, H. F. Korth, and S. Sudarshan [McGraw-
Hill Education, 2019]) or make the following request of ChatGPT:

Give me an introduction to 4NF, 5NF, and 6NF, using plain
language and examples.

142 Chapter 6 | Normalization and implementation

There is always a primary key

A table in BCNF should always have a primary key. Do you see
primary keys everywhere in the entity-relationship (E-R) diagram you
developed in chapter 5? Great! That means each table follows the first
simple guideline of BCNE.

What if you have a table that doesn’t have a primary key? Well, you need
to stop and identify the primary key of that table before going any further.

There are no multivalued columns

A table in BCNF should have no multivalued columns. What is a
multivalued column? Think about a table named course registration
that represents students taking a variety of courses. The course column is a
multivalued column. Each course record holds multiple values.

ﬁ student_id student_name. !/ course. m

14 Tocob Teff

Moth, Biology, Physics

Ik Brian Don

|

|

|

|

| jm—m e m ==
\ |
\

{
| Computer science, Moth!

[S g S R G

344 Tina Clouvde

A string; courses
sepo\ro\—ke;l bt/ commas

The multivalued columns lead to problems such as difficult querying, data
redundancy, inconsistency, and anomalies. You can easily spot a course
repeated in different rows in course registration, for example.

Who decides whether something
is multivalued?

In a relational database, a table represents a single entity or a concept about
which information is stored. A column in a table represents a specific
attribute of the entity or concept that the table describes. Each column
has a distinct name and a data type that defines the kind of data it stores.
You may wonder who decides whether something should be considered a
single concept, entity, or attribute. The answer is the users of the application
supported by the database.

Normalization 143

Determining whether a column is multivalued is based on the standards
of users. In a table of an e-commerce database, for example, you would call
out a column that represents phone numbers and stores multiple phone
numbers per row as a multivalued column because each phone number
represents a value that's undividable to users. Dividing a phone number
into an area number and subscriber number makes no sense to any users of
the database. As another example, you won't consider a column in the same
database that stores single email addresses per row a multivalued column
because users don’t care about dividing an email address into a username
and domain name.

Overall, user requirements decide the purposes of databases, which in turn
decide whether a column is multivalued.

To fix such a problem, you typically need to redesign the multivalued
column so that it holds only a single value in each row. Often, you need
to move that multivalued column to a new table to prevent redundancy
and other problems. To fix course registration, for example,

you limit the course column to hold a single course per row. But

you can’t repeat the same student id values in different rows of the
original table because it’s the primary key. You need to break course
registration into two tables, one holding student information and
the other holding course registration information:

ﬁ S‘i’ucie!\‘i’ id $+Ude!\+ _V\o\mq

Tocob Tefk
Brian Don
ﬁ student_id student_name course. Tina Cloude
N Tacob Teff Mathy Biology, Physics
e Brion Don B-ologt/, Computer science
44 Tina Cloude Computer science; Math ﬁswa&m’ id courSe_}

Mot
Biologt/
Physics
Moth

144 Chapter 6 | Normalization and implementation

Does your database design have you have any tables containing
multivalued columns? Nope. When you mapped each entity to a table,
you didn’t attempt to use a column to hold more than one value. If you
do, you will fix such problems in a similar manner.

All columns are dependent on a key but nothing else

All columns of a table in BCNF should be functionally dependent on a
key. To understand this requirement, you need to understand functional
dependency.

Think about how functions work in any programming language.
Suppose that you have a function, power (x), that takes x as the only
input and returns its power as the output. Given the same input x,
the function power (x) always returns the same output. The input
functionally determines the output.

Now let’s switch our attention to a table. In a table, given a value of
column A, if there is always a unique corresponding value of column
B, column A functionally determines column B—that is, column B is
functionally dependent on column A. In the following table, which
represents employees, employee name is functionally dependent on
employee id.In other words, knowing the value of employee id
can help you determine the value of employee name. This functional
dependency can be expressed as follows:

employee id - employee name

r emplot/e_e_id e;nplol/e_e__no‘ma

(o) - - = Tom
03) - - --= Bwly
IP_IQS_Q ————— = Mke
I ICz‘(_ S = Sarah

Functional dependency is directional. In the preceding figure,

employee id functionally determines employee name. It doesn't
mean, however, that employee name functionally determines
employee id. The value of employee name can’t be used to determine
the value of employee id. Think what would happen if two different
employees had the same name.

Normalization 145

Now that you know what functional dependency is in the context of
relational databases, look at this BCNF requirement again:

A table in BCNF should have all its columns functionally dependent on
a key but nothing else.

You may wonder why we say “dependent on a key” without specifying
“primary key” There is a fine-grained difference, and edge cases exist. In
most cases that you'll deal with in practice, however, you don’t need to
worry about it and can relax this requirement to the following:

A table in BCNF should have all its columns functionally dependent on
the primary key but nothing else.

Toward a deeper understanding of BCNF

A deep understanding of BCNF and all other normal forms is helpful in
normalization (before they drive you crazy). Edge cases, which are good
opportunities to deepen your understanding, are beyond the scope of this
book, but it doesn’'t hurt to list them:

1. Table R has three columns, a, b, and c. The primary key of R is (a, b). If ¢
is functionally dependent on a, R is not in 2NEF, let alone 3NF or BCNE.

2. Table R has five columns, a, b, ¢, d, and e. The primary key of R is (a, b,
c). d and e are functionally dependent on (a, b, ¢). If ¢ is functionally
dependent on d, R is in 3NF but not in BCNE

3. Table R has five columns, a, b, ¢, d, and e. R has two candidate keys, (a, b)
and (c, d). The primary key is (a, b). If e is functionally dependent only
on (¢, d), R is still in BCNFE.

Before your head explodes, rest assured that you’ll rarely need to deal with
case 2 or 3.

In other words, if you find a table with one or more columns that are
not functionally dependent on the primary key, the table must be
normalized. How? You break the table into two or more tables, each
table containing only the columns that are dependent on the primary.
Depending on the relationship between the two new tables, you may
link them via a foreign key.

We'll demonstrate this process with an example. Imagine a product
table designed by a novice designer:

146 Chapter 6 | Normalization and implementation

mmduc-r_kl Produq—f_na»«g supplier_na»«e_ suppher_com—acd' cotegory 1

1R Stardust Brewlux 5565-01L.3 Kitechen
3% Time Machine. TmeCo 5550456 uﬁli-h/
d.54q Magic Wand Magico 555-07%4 vﬁli-h./

It may seem logical to include supplier contact information alongside
product details for convenience. But the column supplier contact
is functionally dependent only on supplier name.In other words, the
product table contains two functional dependencies:

product id - product name, supplier name, category
supplier name - supplier contact

To fix this problem, you need to remove the columns that are not
determined by the primary key of the product table. Where do they
fit in? A new table. The supplier contact column is functionally
dependent on supplier name. If the two columns are in one table
that represents suppliers, they fully meet the requirement of functional
dependency. If each supplier can be identified by a unique ID, you can
even use this piece of information as the primary key of this new table,
and it will naturally become the foreign key in the product table that

links product and supplier:
produet l

Q proo(uc-r_id
f pr‘oduc—i— \ PPODQUC*’_NAMQ_
cod'e_gon/
Q Pr‘oo(uc-i—_}d SUPplEe_r_id

produc+_name

Supplief_nowe
Suppher‘_con—fac-f (supp l?er w
K ca+e_3orn/ J

Q Suppher_io(

Suppher_name_
SUPPlier_cowrac+

Normalization 147

Normalize your database design

When you check the design of The Sci-Fi Collective’s database against
the requirement that all columns be functionally dependent on the
primary key, you need to examine every table, including purchase:

)

Pur‘chase_

Q purchase id v T
+otal_price. DECIMALUZ,)
purchase,_time TIMEST, AMP
product_price. DECIMALQ,)
Pr‘oduc—l’_quanﬁ-h/ VT

Uo‘yme_n—r_ﬂ wT J

Undoubtedly, many columns are functionally dependent on the
primary key, including total price,purchase time, payment id,
and email. If you think about what goes into a receipt, you see that
knowing the value of purchase id is equal to having a receipt, which
determines the values of total price and purchase time:

r The Sci-Fi Collective)
Rece'\do'\' of Purchase
2023-01|-0) 00:00:00
311205
Quantities Price
Aomic Nose Hair Trimmer 1 5
Selfie Toaster 2 3
Cat- P°°P Coffee 3 2
Inflatable Briefcase 3 2z
Total: 12
y,

148 Chapter 6 | Normalization and implementation

From this example receipt, you can tell that each purchase involves
multiple products with different quantities and prices. Product
quantities (product quantity) and prices (product price) are
functionally determined by a combination of purchase ID (purchase
id) and product code (code) . The product code (code) isn’t in the
purchase table. That said, you have two functional dependencies in
this table:

product id — total price, purchase time, payment id, email
purchase id, code - product quantity, product price

Because of the two functional dependencies, this table violates BCNE.

When you start adding data to the purchase table, you see how tricky
the problem is. Adding the data of a receipt to the purchase table, for
example, is a mission impossible:

All come. From +he same receipt.

A

(purchase, id / +otal _price. purchase, +ime. product_idd produet_price
= Ol Ol &0 OO:.00:00 | 5
I Ol Ol JOXI OO:00:00 X 3
AN Ol Ol Q03I OO:00:00 3 B
AN Ol Ol Q0¥ OO:00:00, q X
\ \
IMPossIUe_ Re_dudwxcy

You can't repeat the values of the primary key. Even if you could, you
would still face redundancy problems in other columns, such as total
price and purchase time.

To fix this problem, move the columns that are not functionally
dependent on the primary key to a new table. In this case, product
quantity and product price are functionally dependent on the
combination of purchase id and code. But neither purchase id nor
code can functionally determine product gquantity or product
price alone:

» purchase id does not functionally determine product gquantity
or product price. Each purchase can include multiple products
with different quantities and prices.

Normalization 149

« code does not functionally determine product quantity or
product price in the context of a purchase. The same product
can be sold in different quantities and at different prices in various
purchases.

Luckily, you already have a junction table, purchase product, that
connects purchase and product. The junction table uses the combo
of purchase idand code as its primary key. Moving product
quantity and product price to the purchase product table is like
killing two birds with one stone. With this change, both purchase and
purchase product meet the requirement of functional dependency:

(Pf‘oduc-f \
purchase ok
purchase,_product Q code CHARGI)

. nome. VARCHARUOO)
?Pumb\lase__|d :DIA/E s 3 ?Pumhase__io(wT description TEXT
+ort e CIM
Pum:;:e :M& - A,MP Qeode CHARGR manBacturer VARCHARIOO)
poment _ A TvT [product_price. DECTIMAL, 3 photo VARCHAR(IOOO)
email VARCHARGIO) | produer_quantity IvT price. DECIMALL, 3)

cost+ DECTMALQ,)
Moved from purchase +able hnve!ﬂ—or\/_quawﬁ‘h/ VT /

You may be tempted to eliminate product price from the
purchase product table because you can always retrieve a product’s
price from the product table. But it’s best not to do that. Over time,
the price of a product may change due to factors such as inflation or
market competition. If you rely on only the product table to retrieve
product prices, you may lose the data required to put together a
receipt from several months ago. For the same reason, you should add
a product name column to the purchase product table. After all,
nothing should lead to changes in a receipt—not even product name
changes.

150 Chapter 6 | Normalization and implementation

)

pumkase,

?Pumhase,_id wT
+oral_price. DECIMALUR,)
purchase, +ime. TIMESTAMP

payment_id TVT

l O% product_auantity TVT

@ml VARCHAR(RI.O) J

@mhase _product \

ﬂroduu— \

Q purchase_id IWT
Q code. CHARUA)

_—— e e e e m - - o

{ pr*oduc—k_pﬁce, :DEQIMALU,)

PO

| product_name. VARCHARCIOO)
ket rmme vitc o))

N\

Keep o receipt the same.

There is no transitive dependency

A table in 3NF should have no transitive dependency. Transitive

Qeode CHARUI)
nome. VARCHARUOO)
description TEXT
manfacturer VARCHAR(IOO)
photo VARCHARGIOOO)
price. DECIMALQ, 3)
cost DECIMALQG, &)

inventory_quantity INT /

dependency occurs when something depends on something else that

depends on yet another thing; it’s like a chain of things that need
one another to work. In the context of database design, transitive

dependency means that a nonkey column is functionally dependent

on another nonkey column, which in turn is functionally dependent
on a key of the table. The core concept of a transitive dependency is
that one nonkey column’s value depends on another through a chain of
dependencies, which is ultimately dependent on a key.

A—B—>c—>

\

primory l(e_t/

A table representing employees has the following columns and

functional dependencies:

%x

non)(e_t/ columns

()

? e_mplot/ee_id

wployee__name_
department_id
Jepomfme,wf_nama

e,mplon/e,e__}d - o(eparvrme_n—r_id - depm*l—me,m—_name_

Normalization 151

The primary key of the employee table is employee id.In this
table, department name is dependent on department id, and
department id is dependent on employee id. This chained
functional dependency is transitive dependency.

Transitive dependency is problematic. If a table contains transitive
dependency, it leads to all kinds of problems, such as data redundancy
and insertion/update/deletion anomalies. Updating a department name
in the preceding employee table properly means updating all the
department name values in every row:

emplov./ee,_id .. department_id ole.posf‘fme_m'_nowew
X5 I’ ’_30 Binonce \
IR7 \ 0 Pinomce, IS iredum}om-r
Iga X9 marketing requires updadting
(=TT - m - —— - all ot once
30 o] Fnance.]

k 30 43 T Yy,

What should you do with a table containing transitive dependency?
Break the table into two or more tables, each table containing columns
that are directly dependent on a key and dependent only on that key.
Depending on the relationship between the two new tables, you may
link them via a foreign key. If you stick to this principle, break the
employee table into two tables as follows:

GJ"PIOVCE.

Q eynployee__?d

lo employef__name_
employes de_po\ﬁfme_y\-l'_id

? e_mplot/e_e__id

¢

employee__name_
department_id

de_Po‘H'mevH'_V\O\Me_ (depaﬁrme,n* w

? de_paﬁ’meyﬂ’_id

Jepo‘r*me_vﬂ'ino\me_

152 Chapter 6 | Normalization and implementation

The department table contains the nonkey columns that are involved
in the transitive dependency, with the department id asits primary
key. The new employee table contains only the columns that are
directly dependent on employee idand dependent only on it,
including the foreign key department id. A foreign key is always
directly dependent on the primary key because each row has a unique
combination of the primary key and foreign key.

Normalize your database design: A cycle involving
three tables

A transitive dependency may be hard to spot without a deep understanding
of the data, requirement analysis, and some sample data. Your purchase

table, for example, uses two foreign keys, email and payment id,to
maintain its relationships with the payment method and user tables:

4 payrert_merhod h e

pur‘cho\se,
Q Po\ymey\-i’_io(vT Q purchase_id VT
nome. VARCHAR(IO) _|+__O< +oral_price. DECTMALUZ, 3)
card_number CHARCIE) purchase, time TIMEST AMP
expiry_date. CHAR() payment_id INT
email VARCHAR(II.0) B email VARCHAR(ZI.0) J

i
M

? email VARCHAR(ZIO)
usermame. VARCHAR(IO)
password VARCHARC.O)
Rirst_name VARCHAREO)
last_name. VARCHAR(SO)
phone,_number VARC HARUS)

k last_login_+ime. TIMESTMD

Normalization

Without question, in the purchase table, all other non-primary-key
columns are dependent on the primary key, including the foreign
keys.

If you look beyond the purchase table, however, you notice
something unexpected: the two foreign keys in the purchase table,
payment id and email, have a dependency relationship. From

the payment method table, you see that email is a foreign key
that helps maintain the relationship between payment method
and user. As in the purchase table, the foreign key (email)

is dependent on the primary key (payment method). When

you consider this new piece of information, you see a transitive
dependency in purchase:

B 3

purchasa_}d _— pm,me_wk_id — email

___ —) & b)
Whot we learn from Whot we learn from +he
+he purchase +able paymem'_me-rhod +oble

In theory, you need only two relationships to connect three tables.

If you notice that you are using three relationships and that the
relationships are starting to look like a cycle in your E-R diagram, you
may have a transitive dependency somewhere.

Now that you have identified the transitive dependency, how do you fix
it? The principle is the same a table should contain only columns that
are directly dependent on the primary key and dependent only on it.
You can remove the email column from the purchase table to break
the direct relationship between the user and purchase tables, but
user is still related to purchase via payment method, as shown in the
following figure.

153

154 Chapter 6 | Normalization and implementation

[payment_method \ (purchase j
Q poyment_id IVT Q purchase id AT
name. VARCHAR(IO) +otal_price. DECIMALUZ,)
card_number CHARCE) purchase, time TIMESTAMP
expirt/_olai—e_ CHAR) Pou/me_m—_id wT
email VARCHAR(ILO)
7 —/

(" eer)

? email VARCHAR(IIO)
vsermame. VARC HAR(ZO)
password VARCHAR.O)
first_name. VARCHAR(SO)
la$+_name_ VARC HAR(EO)
phone__nvmbej‘ VARC HAR(I5)

k las+_login_time. mes—rA@

If normalization is your only concern, removing the link between the
user and purchase tables is a brilliant move. But it may not be the
best move if you are also concerned with other problems, such as query
speed and cost. We will revisit the relationship between the user and
purchase tables in chapter 7.

When you go through all other tables in your database design, you won't
see other transitive dependency problems. That said, you have completed
all the steps to check each table against the 3NF requirements:

o It has a primary key.
o It has no multivalued columns.
o All columns are dependent on a key but nothing else.

o It contains no transitive dependency. (All its nonkey columns are
directly dependent on a key.)

Normalization

Your updated E-R diagram looks like this:

billing_adldress

~

? eayme_n-c—_‘.d vT
street_address VARCHARIEE)

city VARCHAR(IOO)
state VARCHARQ.O)

ap(dr‘e_ss_hne_oe—ﬁonal VARCHAR(OO)

J

K‘eos-fo\l_code CHARE)
1

@)

I
-

(Po\c/me_wr_me_-ﬁnod \

? Po\t/meyﬂ—_id VT
nowme. VARCHAR(IO)
card_number CHARCG)
expiry_date CHAR()

ke_mc.l VARC HAR(IA.0)
J

—

(" wser

Q email VARCHAR(ILO)
usermame. VARCHAR(IO)
password VARCHARQ.O)
Brst_name. VARCHAREO)
last_name. VARCHAR(EO)
Pl«ov\e__number VARCHAR(S)

& last_login_time. ’T‘IMES‘I"AMD

—
|

Q

‘ Pur‘chase_

Q purchase id TWT

Kuse,r_o‘ddress

~

Q email VARCHAR(Z3.0)
street_address VARCHARIES)

city VARCHAR(OO)
state VARCHARG.O)
\Posﬂ—al_coo(e_ CHAR(E)

o\do(r‘ess_hne__ogﬁomo\[VARCHAR(OO)

J

(review

? review_id TWT
review_text TEXT
review_time TIMESTAMP
email VARCHAR(ZA.0)
code CHARGA)

?
?
+oral_price. DECTHALUR,)
purchase, time. TIMESTAMP
Pal/mevﬂ—_‘nd VT

(produet

? code. CHARUY)

155

(pumha&e,_produc-k

purchase, id VT

code. CHARU)

product_price. DECIMALC,)
Phoduc+_quawk§+l/ VT
product_name. VARCHAROO)

K invertory_aquantity INT j

nawme. VARCHARUIOO)
d&gcﬁfrﬁon TEXT
manfacturer VARCHARIOO)
photo VARCHAR(IOOO)

price. DECTMALQ, 3)

cost DECIMALQG,)

156 Chapter 6 | Normalization and implementation

Implementation

When you finish normalization, you are ready to implement your
database design. You learned how to create tables via SQL in chapters
1 and 2. With this knowledge, you may feel that you can translate your
database design into SQL with little to no effort. Your user table looks
like this in your E-R diagram:

[er)

? email VARCHAR(3I.0)
vsemame. VARCHAR(IO)
password VARCHAR(LO)
first_name. VARCHAR(SO)
las+_nowme. VARCHAR(SO)
phone,_number VARCHAR(S)

k loast_login_+ime. —rmes—rMD

Translating this design directly to SQL leads to the following code
snippet:

-- comment: works for MySQL and MariaDB
-— comment: see the code repo for other RDBMS
CREATE TABLE user (

email VARCHAR (320) PRIMARY KEY,

username VARCHAR(30),

password VARCHAR (20),

first name VARCHAR (50),

last name VARCHAR (50),

phone number VARCHAR(15),

last login time TIMESTAMP
)i

Is the job done? Nope. To implement a database design successfully, you
need to learn more about constraints and use that knowledge to make
decisions beyond the E-R diagram.

You saw the use of constraints in chapter 2 but haven't been formally
introduced to them. Constraints are SQL rules applied to columns in
a table to ensure data accuracy and reliability. Constraints are used

Implementation

to enforce data integrity and can be established during or after table
creation. Are you worried that software developers may not follow
your database design when they develop the APIs? When you apply
constraints to your tables, they have to listen! Without constraints,
a database is like a toddler on a sugar high: chaotic and prone to
causing havoc.

In the following sections, you learn about common SQL constraints and
other design decisions that you need to make. We don't strive to cover
all the constraints or SQL code required to implement the database.

If you want to see the full SQL script, refer to the GitHub repository
(https://mng.bz/4a05).

NOT NULL: Can’t have null-thing to say

The NOT NULL constraint ensures that a
column does not accept NULL values in SQL.
In other words, when the NOT NULL constraint
is applied to a column, you have to provide a
value for that column. The NOT NULL constraint
can be handy for preventing problems in

data storage and analytics. As we stated in
chapter 1, a NULL value in SQL represents an
unknown value. Allowing NULL values for
columns may lead to unexpected behaviors

in SQL.

=

-,

— i
,/4;
%

a0
L >

=
.“4,

157

https://mng.bz/4ao5
https://mng.bz/4ao5

158 Chapter 6 | Normalization and implementation

When do you need help from NOT NULL constraints? In most cases.
Although their use depends on the requirements and the data, NOT
NULL constraints are commonly applied in a wide range of scenarios.
Columns that contain critical information for business operations
(such as usernames, email addresses, or passwords) often have NOT
NULL constraints. As another example, legal or compliance reasons
force some columns to use NOT NULL constraints, such as date of birth
in an option-trading application. Also, when two tables are related, the
foreign keys may need NOT NULL constraints, depending on the nature
of the relationship. You learn more about how NOT NULL constraints are
used with foreign keys later in this chapter.

Do you have any columns that require NOT NULL constraints in the
database design of The Sci-Fi Collective? Yes. Many columns in your
database design contain critical data necessary for business operations.
Six columns in the user table fall into this basket: username, email,
password, first name, last name, and last login time.

[er)

? email VARCHAR(IIO)
username. VARCHAR(IO)
password VARCHAR(I.O) VoT MWLL
Rirst_name. VARCHAR(SO)
last_name. VARCHAR(SO) ,
phone_number VARCHAR(S)

k last_login_+ime —r-mes—r-Aije NoT MmiLL

As aresult, you'll add NOT NULL constrains to these columns. You can
do so by adding NOT NULL in the same code lines that define columns:

-- comment: works for MySQL, MariaDB, and SQLite
-—- comment: see the code repo for other RDBMS
CREATE TABLE user (

email VARCHAR (320) PRIMARY KEY,

username VARCHAR (30) NOT NULL

password VARCHAR (20) NOT NULL

first name VARCHAR (50) NOT NULL,

last name VARCHAR (50) NOT NULL,

phone number VARCHAR(15),

last login time TIMESTAMP NOT NULL

Implementation 159

You may notice that the primary key, email, doesn’t have the NOT NULL
constraint. The reason is that it already has the PRIMARY KEY constraint,
which implies a NOT NULL constraint and enforces it automatically. You
learn more about the PRIMARY KEY constraint in the following section.

Primary key: The one and only

As you already know, in a solid database design, every table has a
primary key. When such a design is translated to SQL, it is expressed as
the primary key constraint.

The primary key constraint ensures that no duplicate rows with the
same primary key exist in the same table. In addition, the primary key
constraint guarantees that no row with a NULL value in the primary
key column can be inserted into the table.

MILL, +edCrazyO5I5, mike smith@gmail.com, mike©a09, ..., ...

xrnsem'lon won'+ be allowed. xl'nsepﬁon won'+ be allowed.
N\ /

(;_;\odl - ‘\ vsername. password ‘\
(fuse_r) \

Q email VARCHAR(IIO) | mike smith@gmail.com | wikeO30
I
vsername. VARCHAR(IO) | alextumer, @wusic.com | aTumer
Po\ssword. VARCHARGO) " omar.ali@fast.net omaromar

leizhang@yahoo.com leslaao

7/

All vnique; no noll VO\[UQS

The syntax of a primary key constraint is simple. You can add PRIMARY
KEY to the code line that defines the column:

-- comment: works for MySQL, MariaDB and PostgreSQL
-- comment: see the code repo for other RDBMS
CREATE TABLE user (

email VARCHAR (320) PRIMARY KEY,

username VARCHAR (30) NOT NULL,

password VARCHAR (20) NOT NULL,

first name VARCHAR (50) NOT NULL,

last_name VARCHAR (50) NOT NULL,

phone number VARCHAR(15),

last_login_time TIMESTAMP NOT NULL

160 Chapter 6 | Normalization and implementation

If your database design is ongoing and there’s a chance that the primary
key may change, however, you want to name the primary key constraint
explicitly:

-- comment: works for MySQL, MariaDB and PostgreSQL
-- comment: see the code repo for other RDBMS
CREATE TABLE user (

email VARCHAR (320),

username VARCHAR (30) NOT NULL,

password VARCHAR (20) NOT NULL,

ﬁrst_name VARCHAR (50) NOT NULL,

last name VARCHAR(50) NOT NULL,

phone number VARCHAR(15),

last_login_time TIMESTAMP NOT NULL,

CONSTRAINT pk_user PRIMARY KEY (email)
)i

The CONSTRAINT... clause allows you to name this constraint. The
PRIMARY KEY... statement creates the primary key constraint.

Naming constraints: A best practice

Naming constraints in SQL is not strictly required but is considered a best
practice for the following reasons:

o Named constraints communicate their purpose clearly, which improves
the readability of your database schema and makes it easier for anyone
who interacts with the database to understand the role of each constraint.

o When a constraint violation occurs, error messages include the name of
the constraint, which makes the messages more informative and allows
quicker identification of problems.

o If you don’t name a constraint, the SQL system will generate a name
automatically. Autogenerated names are often meaningless and vary from
one RDBMS to another, which may lead to confusion, especially when
you're porting the database schema to a different system.

Certain constraints, such as NOT NULL and DEFAULT, are not always named.
These constraints usually are integral parts of column definitions and could
rarely be referenced separately; keeping them as part of column definition
may make SQL scripts easier to write and simpler to read. In the case of
other constraints, such as primary key and foreign key, if there is even a
small chance that you’ll need to restructure or migrate the database, you
had better keep them named.

Implementation

What if you have a composite primary key that is composed of more
than one column? You can define the primary key separately from

any individual column definition. In the E-R diagram of The Sci-Fi
Collective, the purchase product table uses a composite primary key
composed of two columns, purchase id and code. You can define this
primary key separately from individual column definitions as follows:

-— comment: works for MySQL, MariaDB, and PostgreSQL
-— comment: see the code repo for other RDBMS
CREATE TABLE purchase product (

purchase id INT NOT NULL,

code CHAR(12) NOT NULL,

product price DECIMAL(7,2) NOT NULL,

product quantity INT NOT NULL,

product name VARCHAR (100) NOT NULL,

CONSTRAINT pk_purchase product

PRIMARY KEY (purchase_id, code)

);

Foreign key: Playing Cupid

When two tables have a relationship, you use a foreign key to link them.
As you know, a foreign key is at least one column in a table that refers

to the primary key in another table. When a foreign key is translated to
SQL, it is typically expressed as the foreign key constraint.

FOREIGN CHILD
KEY TABLE

The foreign key constraint enforces referential integrity. What is
referential integrity? Given a relationship between two tables, one table
contains the foreign key that references the primary key of the other
table. From chapter 2, you know that the table containing the foreign

161

162 Chapter 6 | Normalization and implementation

key is called a child table, and the other table is called a parent table. If
you attempt to add a row to the child table but your foreign key value
doesn't exist yet in the parent table, SQL would stop you and complain.

You have a one-to-many relationship between the user and review
tables in the E-R diagram of The Sci-Fi Collective, for example. In the
review table, email is the foreign key that links review to user. If the
foreign key constraint is implemented properly, SQL should stop you if
you try to add a review record with an email value that doesn't exist
in user yet.

Note; vser +able_ doesn't contain an e_modl VOJue_ as al&vﬂ‘\@gmo\il.eom.
\
= B .
\
? email VARCHAR(IIO) (review \

vsername. VARC HAR(IO) ? review A T
password VARCHAR(LO)

| I | O% review_text+ TEXT
Birst_name. VARCHAR(S0) review_+ime. TIMESTAMP

las+_name. VARCHAR(EO) email VARCHAR(RI.O)
Phone__numbej‘ VARC HAR(S) code. CHARU) ,
las+_lo$in_+1me, TIMESTAMP /
N *) y
&/
INSERT INTO review VALUES

All, 'Good Produc—i'!', ‘AOIH-0I-0A T 06 3.5:16.6710Z, 'QIM‘!ngodl.eom');

ERROR 453, (AI000): Cannct add or upolod'e o child row: x

a Por‘ejgn Key constraint Rails (‘sd@?_co“e,c-ﬁv&‘.‘re,v}ew\,
CONSTRAINT i user review' FOREIGWN kEY (email')
REFEREAMCES ‘vser' (email'))

Implementing a foreign key constraint is similar to implementing a
primary key constraint. Your review table, for example, contains two
foreign keys that reference the user and product tables. You can define
and name the foreign key constraints when creating the review table:

-- comment: works for MySQL and MariaDB
-- comment: see the code repo for other RDBMS
CREATE TABLE review (

review id INT PRIMARY KEY,

review text TEXT NOT NULL,

\
\

\
|
|
|
I

)

Implementation

review time TIMESTAMP NOT NULL,
email VARCHAR (320) NOT NULL,
code CHAR(12) NOT NULL,
CONSTRAINT fk_user review
FOREIGN KEY (email) REFERENCES user (email),
CONSTRAINT fk_product_review
FOREIGN KEY (code) REFERENCES product (code)
)

Or you can define the foreign key constraints after the review table is
created:

-- comment: works for MySQL, MariaDB and PostgreSQL
-- comment: SQLite doesn’t support
—-— comment: ALTER TABLE ADD CONSTRAINT
-- step 1l: create the review table first
CREATE TABLE review (
review id INT PRIMARY KEY,
review text TEXT NOT NULL,
review time TIMESTAMP NOT NULL,
email VARCHAR (320) NOT NULL,
code CHAR(12) NOT NULL
)i
-- step 2: add foreign key constraints afterward
ALTER TABLE review
ADD CONSTRAINT fk user_ review
FOREIGN KEY (email) REFERENCES user (email),
ADD CONSTRAINT fk product_review
FOREIGN KEY (code) REFERENCES product (code)

In the same way that a primary key constraint is defined and named,
the CONSTRAINT... clause names a constraint, and the FOREIGN KEY...
REFERENCES... statement creates a foreign key constraint that enforces
referential integrity.

It is worth noting that when a relationship is mandatory, the foreign
key typically requires help from the NOT NULL constraint. When

the minimum cardinality of a directional relationship is one, that
directional relationship is considered mandatory. The relationship from
review to user in your database design, for example, is mandatory:
the min cardinality is one, which means that a review is associated with
at least one user. If you have a review record that doesn't reference any
users in the user table, this row can’t be added to the review table.
That said, allowing email in review to accept NULL values makes no
sense because a NULL value of email doesn’t reference any users.

163

164 Chapter 6 | Normalization and implementation

A user is associated with
zero or many reviews.

frusﬁf‘

? email VARCHAR(3I.0) r review \

username. VARCHAR(IO)

Q review_id twWT

password VARCHAR(LO) | 1 review, +ext TEXT
Pirst_name. VARCHAR(S0) review_+ime. TIMESTAMP
last_name. VARCHAR(SO) 7 email VARCHAR(ILO)
phone, number VARC_HAR(IE») s code CHARU)

k las+ logm +ime. ’I"IMES‘F‘MJ

A review is associoted with
al‘fow\dod—om/; eview is associated vi

one. and onll/ one. vser.

Referential actions

In the preceding section, you learned that you can use foreign key
constraints to enforce one aspect of referential integrity: data insertion.
When someone tries to insert a row into a child table, but the foreign
key value in that row doesn’t reference anything in the parent table, the
foreign key constraint will stop the operation and raise a complaint.

Beyond data insertion, referential integrity cares about data deletion
and updating. When a row is removed from the parent table, how
should the corresponding rows in the child be handled? When a row’s
primary key value is updated in the parent table, what should happen to
the corresponding rows in the child table?

Product +able (parrent):
ﬁ—;o—rle\ \l nome. price wmanufacturer N To JGJC’:"&

1(30357 : Atromic pose. ... 1a.24 Moad Invertors Inc.
I

I Q046 : Sdﬁe_ Toaster d4.9a GyooPy Gymolsefs Qorp.
|

| 30467 : Coat—Poop Coffee 399 Absurd Accessories

N _' iy
|
______________________ .
Review +able. (ahild): | How should +hese
e be handled?
Q review_id review_text dote [“code ‘I rows € han
! [Grreat product ... 30AI~... | 30357 |
3 et thng o s0sa. 304w /| |- Stop delere (efavl)
[3 ..not recommend ;Oé&-...: JO3I57 :] > Qascade_ efpe,c—r

T T . Set+ 4o MULL

\ s

Implementation

You can handle such problems by respecting the default action, which
prevents you from updating or deleting a row in the parent table if there
are matching rows in the child table. To respect the default actions,
either do nothing or expand the foreign key constraint definitions with
the following statements:

ON DELETE RESTRICT
ON UPDATE RESTRICT

The oN DELETE line defines how to handle the corresponding rows

in the child table when a row is deleted in the parent table. The on
UPDATE line defines how to handle the corresponding rows in the child
table when a row’s primary key is updated in the parent table. You

can also swap RESTRICT with NO ACTION, which has the same effect.
These clauses are known as referential actions, which are triggered
automatically when you update primary key values or delete rows in the
parent table.

The default action, RESTRICT (or NO ACTION) maintains the integrity
and consistency of the database by preventing you from deleting or
updating a parent table. But what if you need to delete some data or
update a primary key value in a parent table? To maintain the integrity
and consistency of the database, use a different type of referential
action, called cASCADE:

o CASCADE delete—If a row in the parent table is deleted, the
corresponding rows in the child table are automatically be deleted
if possible. This action ensures that no rows in the child table lack
corresponding rows in the parent table.

o CASCADE update—If a primary key in the parent table changes, the
corresponding foreign keys in the child table automatically update
with the new key value. This action ensures that the link between the
two tables is maintained without manual update operations.

The implementation of a CASCADE action is simple. You expand
your foreign key constraint definitions a bit to include two different
statements:

ON DELETE CASCADE
ON UPDATE CASCADE

You see the cASCADE effect in the child table whenever a row is deleted
or a row’s primary key is updated in the parent table.

165

166 Chapter 6 | Normalization and implementation

Product +able (parent):

ﬁf code. \I name. price. manufacturer 3

:ﬁ;esgﬂ-%nubse——oq-qq—‘hwl—fnvmrs—ﬁm— Deletre
d.046% ! SeJPe_ Toaster 34.99 6,00&, Gvodge:rs Corp.

0a¢7 : Cot—Poop CofPee da.aa Absurd Accessories

L]

\
Review +able (ehild): : Cascade [effect
p——
ﬁ review_id review _+ext dote (“code. \3
T T
! reescr—prothretr—r—Or =035
; ' ! Dele+
X .best thing ... AO0AI~...| ROH6E | ere
I

I

IR P

In a less common scenario, you may want to support the delete
operation in the parent table but preserve the corresponding rows

in the child table. A database that tracks company assets might have
two related tables, device and employee. If an employee leaves the
company and is removed from employee, it may be beneficial to retain
the corresponding rows in device because those devices still exist in
the company’s inventory. In such a scenario, you can use the help of
another type of referential action, SET NULL:

ON DELETE SET NULL
ON UPDATE CASCADE

With the help of SET NULL, all corresponding foreign keys in the child
table are converted to NULL, and data in other columns is retained
when a row is deleted in the parent table. The SET NULL action can be
handy when a relationship between two tables is nonessential or when
you need to retain the child rows for recordkeeping. But this action
may introduce problems, such as creating orphan rows or complicating
queries that expect non-null foreign keys down the road.

Do you have any relationships that need help from explicit referential
actions in the database design of The Sci-Fi Collective? Yes. The user
table, for example, is a parent table of other tables, including payment
method. The email column is the primary key of the user table.

Implementat

[er)

ion

[Po.t/me_m'_merhod

? email VARCHAR(II.0)
vsermame. VARCHAR(IO)

P?rs-i—_name_ VARCHARE0)
last_name VARCHAR(SO)
Phoneﬁnumbej‘ VARC HAR(IE)

K Io\s-l'_login_ﬁme TTMESTMD

? Pak/me!\-r_id VT

password VARCHARQ.O) name. VARCHAR(IO)
l l C)\

card_number CHARCIC)
expirv./_dod'e, CHAR(H)
email VARCHAR(RI.O)

_J

If The Sci-Fi Collective ever allows users to change their email addresses

or delete their accounts, many possible updates and deletions may

occur in the parent table. To maintain the integrity and consistency of
the database, you can opt for the CASCADE action, which is part of the
foreign key constraint in the payment method table:

-- comment: works for MySQL, MariaDB and PostgreSQL

-—- comment: see the code repo
CREATE TABLE payment method (
payment id INT PRIMARY KEY,
name VARCHAR (30) NOT NULL,
card number CHAR(16) NOT NU
expiry date CHAR(4) NOT NUL
email VARCHAR (320) NOT NULL
CONSTRAINT fk payment metho
FOREIGN KEY (email) REFER
ON DELETE CASCADE
ON UPDATE CASCADE
);

Unique: Sorry, I'm taken

Unique constraints ensure that all values in a
column or a combination of columns are different.
If you have some nonkey columns that should all
contain unique values, you need to apply unique

constraints.

You need unique constraints when you have a
single column or a combination of nonkey
columns for which duplicate values make

no sense in the real world. Consider a table
containing a column that represents Social

for other RDBMS

LL,

L,

’

d user

ENCES user (email)

167

168 Chapter 6 | Normalization and implementation

Security numbers (SSN), which are unique nine-digit identifiers issued
by the U.S. government to track citizens’ earnings, taxes, and eligibility
for benefits. This column is a nonkey column. Each row in this table
represents a person, and it makes no sense for different people to

have the same SSN. In a scenario like this one, you need to use unique
constraints.

Your database design contains some nonkey columns that require
unique constraints. To identify these columns, rely on your
understanding of the requirements analysis. Your user table looks
like this:

[er)

Q email VARCHAR(3I.O)
vserame. VARCHAR(IO)
password VARCHARG.O)
Rirst_name. VARCHAR(EO)
las+_nome. VARCHAR(SO)
phone,_number VARCHAR(S)

K last_login_time ‘I’IMES‘I"AMPJ

The requirements analysis tells you that both the username and

phone number columns need to hold unique values. Both columns are
be nonkey columns. As a result, you should add unique constraints to
these two columns and name them accordingly:

-- comment: works for MySQL, MariaDB and PostgreSQL
-— comment: see the code repo for other RDBMS
CREATE TABLE user (

email VARCHAR (320) PRIMARY KEY,

username VARCHAR (30) NOT NULL,

password VARCHAR (20) NOT NULL,

first name VARCHAR (50) NOT NULL,

lastiname VARCHAR (50) NOT NULL,

phone number VARCHAR(15),

last login name TIMESTAMP NOT NULL,

CONSTRAINT unqg_username UNIQUE (username),

CONSTRAINT unqg_phone_number UNIQUE (phone number)
)i

Sometimes, you need to apply the unique constraint to a combination of
columns. Consider your product table:

Implementation 169

rpmducﬁ— \

Q code CHARUI)
name. VARCHAR(OO)
de,scr‘ifrﬁom TEXT
manufacturer VARCHAR(IOO)
photo VARCHARIOOO)
price. DECIMALY, &)
cost+ DECIMALT, &)

K nvertory_quowtity INT J

If your requirements analysis says you need to ensure the uniqueness
of the combination of two pieces of information, the name and
manufacturer of a product, you need to apply the unique constraint to a
combination of the two columns:
-- comment: works for MySQL, MariaDB and PostgreSQL
-— comment: see the code repo for other RDBMS
CREATE TABLE product (
code CHAR(12) PRIMARY KEY,
name VARCHAR (100) NOT NULL,
description TEXT NOT NULL,
manufacturer VARCHAR (100) NOT NULL,
photo VARCHAR(1000) NOT NULL,
price DECIMAL(7,2) NOT NULL,
cost DECIMAL(7,2) NOT NULL,
inventory quantity INT,
CONSTRAINT ung_name manufacturer
UNIQUE (name, manufacturer)
)

Default to awesome

You use the default constraint to set a default value for a column when
a new row is inserted into the table and no value is provided for that
column. The default constraint ensures that a column always has a
value, specified by either the user or the constraint.

You typically use the default constraint in the following situations:

 You have a column that stores timestamps, such as a column
representing when a row is created or modified.

« You have a numeric column on which you might perform
aggregation, such as a column representing the quantity or price.

« You have a column that is optional and can use the help of a
placeholder value.

170 Chapter 6 | Normalization and implementation

Your database design has columns that could use default constraints.
Your purchase table, for example, has a purchase time column that

stores timestamps:
Pumhase_ l

Q purchase id VT
+otal_price. DECTHMALUZ, 3)
purchase. time TIMESTAMP
Pal/me_yrk_id VT

When a purchase is made online, a row of data is supposed to be
inserted into the purchase table. Instead of relying solely on the
software developers to do the right thing, you can lessen their burden
by setting the default value of purchase_time to the time when a row
of purchase data is added. The syntax of the default constraint is simple.
Add the DEFAULT value to the same line of your column definition, and
make sure to provide the proper target value:

CREATE TABLE purchase (
purchase id INT PRIMARY KEY,
total price DECIMAL(13,2) NOT NULL,
purchase time TIMESTAMP NOT NULL
DEFAULT CURRENT TIMESTAMP,
payment id INT NOT NULL,
CONSTRAINT fk payment method purchase
FOREIGN KEY (payment id)
REFERENCES payment method (payment id)
);

Two things in the preceding SQL snippet require explanation:

« Both NOT NULL and default constraints were added to the purchase
time column. You may wonder whether the NOT NULL constraint is
still necessary, considering that the default value is already set. Well,
it is useful, especially if NULL values are problematic for that column.
The default constraint, after all, doesn’t prevent users from adding
NULL values.

o The default value was set to CURRENT TIMESTAMP, which is a widely
supported function in most RDBMSs, including MySQL, MariaDB,
SQLite, and PostgreSQL. CURRENT TIMESTAMP is commonly used to
obtain the current date and time.

Implementation

Clocking databases: Navigating UTC across
RDBMSs

In chapter 4, we recommended storing date and time values in Coordinated
Universal Time (UTC) because UTC ensures consistency and prevents
problems such as Daylight Saving Time changes and different time zones.

Does CURRENT TIMESTAMP adopt UTC automatically? The answer
depends on the RDBMS you use. CURRENT TIMESTAMP achieves what
you want in MySQL, for example, because the temporal data in MySQL is
stored in UTC by default. By contrast, TIMESTAMP comes in two flavors
in PostgreSQL. To get what you want in PostgreSQL, you need to specify
the data type of purchase time as TIMESTAMP WITH TIME ZONE.
When you do, CURRENT T IMESTAMP automatically stores temporal data
in UTC:

—-— PostgreSQL
CREATE TABLE purchase (
purchase id INT PRIMARY KEY,
total price DECIMAL(13,2) NOT NULL,
purchase time TIMESTAMP
WITH TIME ZONE NOT NULL
DEFAULT CURRENT TIMESTAMP,
payment id INT NOT NULL,
CONSTRAINT fk payment method purchase
FOREIGN KEY (payment id)
REFERENCES payment method (payment id)
)i

The TIMESTAMP data types also come in two flavors in PostgreSQL:
e TIMESTAMP WITHOUT TIME ZONE (TIMESTAMP is the same)
¢ TIMESTAMP WITH TIME ZONE

To enable time zones, you declare the data type of the target column as
TIMESTAMP WITH TIME ZONE.Otherwise, the data that you store in that
column will carry no time-zone information. This is one thing you want to
double-check in the manual of the RDBMS that you use. Or ask ChatGPT
when you're about to use some RDBMS that’s new to you:

« How do | create a column representing the current time and
store data in that column in UTC in SQLite?

« How do I create a column representing the current time and
store data in that column in UTC in SQL Server?

171

172 Chapter 6 | Normalization and implementation

Check: Enforce data decorum

A check constraint is a rule that specifies a condition each row must
meet for the data to be considered valid in a column. You can use a
check constraint to enforce data integrity by restricting the values that
can be inserted into columns.

You need a check constraint when you want to enforce specific rules on
the data, such as enforcing data ranges or validating data formats. If you
have a column representing the ages of people, for example, you can
use a check constraint to limit the table to accept only values between

0 and 120:

-- comment: works for MySQL, MariaDB and PostgreSQL
CREATE TABLE person (

person_id int NOT NULL,

last name varchar (255) NOT NULL,

first name varchar (255),

age int,

CONSTRAINT age check CHECK (age >= 0 AND age <= 120)
) ;

In the preceding example, Age >= 0 AND Age <= 120 is the condition of
the check constraint.

Do you have any columns that can use check constraints in your
database design? You have one case that fits the preceding scenarios
peﬂ%cﬂy.Boﬂlyouruser_addressandbilling_addresstabks
contain a state column that stores the names of states in the United
States. The valid values of this column are limited to 50 known names.
Instead of relying on your frontend or backend developers to do the
right thing, you can use the check constraint to take the burden off their
shoulders. Given that 50 is not a small number, you can opt to add the
constraint after you create the table, as follows:

-- comment: works for MySQL, MariaDB, PostgreSQL, and
-- comment: Oracle; see the code repo for other RDBMS
CREATE TABLE user address (

email VARCHAR (320) PRIMARY KEY,

street address VARCHAR (255),

address line optional VARCHAR(100),

city CHAR(100) NOT NULL,

state VARCHAR(20) NOT NULL,

postal code CHAR(5) NOT NULL

Recap

ALTER TABLE user address
ADD CONSTRAINT chk state
CHECK (
state IN (
'Alabama', 'Alaska', 'Arizona',
'Arkansas', 'California', ...,
'West Virginia', 'Wisconsin', 'Wyoming'
)
) i

('Alabama', 'Alaska', .. 'Wyoming') defines a list of the allowed
values. The 1N keyword requires all the values in that column to be one
of the values in the list.

Recap

 Normalization is the process of
breaking the database into smaller,
more manageable tables, each table
representing a single entity or concept.

o Typically, when all your tables are in
BCNE you can consider your database
fully normalized. A table in BCNF must
have the following features:
— It has a primary key.
— It has no multivalued columns.
— All columns are dependent on a key but nothing else.
— It contains no transitive dependency. (All its nonkey columns are

directly dependent on a key.)

In a sense, normalization involves checking your tables against the
guidelines of BCNE, identifying violations, and revising your database
design.

 NOT NULL and primary key/foreign key constraints play critical roles
in your database design.

« If you may need to restructure your database design or migrate your
database, name all constraints that can be named.

« To avoid using NULL values in a column, use the NOT NULL constraint.

174 Chapter 6 | Normalization and implementation

 The UNIQUE constraint is handy if you have some nonkey columns
that should all contain unique values.

« The DEFAULT constraint is handy for dealing with timestamps and
placeholder values.

« The CHECK constraint can validate data format, ranges, and other
complex business logic when other constraints fail.

Security 7
and optimization

In this chapter

+ You evaluate and strengthen the security of your
database.

« You further improve the storage efficiency of your
database design beyond normalization.

« You learn about indexing and how to apply it when
implementing your database design to improve
query performance.

« You learn about denormalization and apply it to
your database design to further improve query
performance.

What you need to know

You can find the database design covered in this chapter (it's finally
complete) represented using tools commonly used by practitioners, such
as dbdiagram.io and MySQL Workbench. in the GitHub repository (https://
github.com/Neo-Hao/grokking-relational-database-design). You can navigate
to the chapter 07 folder and follow the instructions in the README . md
file to load the database design into corresponding tools.

175

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

176 Chapter 7 | Security and optimization

(continued)

You can also find the SQL scripts corresponding to the finalized database
design for different relational database management systems (RDBMSs),
including MySQL, MariaDB, PostgreSQL, SQLite, SQL Server, and Oracle.

Overview

In this chapter, you will explore database security and optimization.
You will see how to evaluate the integrity and confidentiality of your
database design, enhance storage efficiency beyond normalization,
understand when to use denormalization, and apply indexing to
improve query performance.

Security

Security is an important aspect of

database design. To help safeguard =
the data against leaks, you need to

evaluate the security of your database

design and ensure that it follows at b
least a few key security principles.

In this section, you will learn about

two of those principles—integrity and
confidentiality—and see how to apply them

to your database design.

Integrity

Integrity involves maintaining the accuracy, completeness, and
trustworthiness of data and systems. In database design, using the
integrity lens to review your database design typically involves
checking whether all columns, tables, and relationships are designed
and implemented properly to preserve data integrity. By “designed
and implemented properly,” we mean that they follow the established

Security

principles of database design and implementation covered in chapters 4
to 6, such as the following:

o Every column has the best data type.

o Every table has a primary key.

« A foreign key maintains the relationship between tables.
« Constraints are based on requirement analysis.

Database design typically involves multiple iterations. It is easy to make
some small mistakes or neglect something. The foreign key constraint
may easily slip your mind, for example.

Imagine a database dedicated to storing authors and their books for a
publishing company’s web application. This database has two related
tables, author and book, with the following design:

(e R (" oo

w,

/ .
U author_id TAT Q book_id TWT

auvthor_name. VARC HAR(IOO))

auvthor_id TWT

+itle. VARCHARGQ.00)

Because entity-relationship (E-R) diagrams don't represent foreign keys
or other constraints, it is easy to neglect them and map the two tables to
the following SQL command:

CREATE TABLE author (

authoriid INT PRIMARY KEY,

author name VARCHAR (100) NOT NULL
)i
-- comment: the book table misses the
-- comment: foreign key constraints
CREATE TABLE book (
bookiid INT PRIMARY KEY,

title VARCHAR (200) NOT NULL,
author id INT NOT NULL
)i

Without a foreign key constraint, nothing prevents an orphan record
in the child table from referring to a nonexistent record in the parent
table. Such problems can make the database more complex to manage

177

178 Chapter 7 | Security and optimization

and secure, in turn creating gaps that attackers can exploit. To fix the
preceding SQL command, you need to add the foreign key constraint to
the book table:

CREATE TABLE book (
book id INT PRIMARY KEY,
title VARCHAR (200) NOT NULL,
author id INT NOT NULL,
CONSTRAINT FK_author id
FOREIGN KEY (author id)
REFERENCES author (author id)
) ;

Confidentiality

Confidentiality involves protecting information from unauthorized
access and disclosure, ensuring that data is accessed only by authorized
people and processes. You can take two approaches to confidentiality:
access control and encryption.

Access control

Using access control in databases is like posting a security guard at a
club entrance. This guard decides who gets in and what areas they can
access. In a database, access control determines who can view, modify,
or delete data. It’s essential to ensure that authorized users are given the
right amount of authority to access and modify the data they should be
able to control.

The two main types of access control are mandatory access control
(MAC) and role-based access control (RBAC). MAC is like a strict
school with rigid rules. In this system, a central authority controls
who can access what data, and the rules are very tight. Every piece of
data, such as a table or row, has a classification level (such as sensitive
or confidential), and users are given access permissions for different
classification levels. If your permission doesn't match the data’s
classification, you can’t access it. There are no exceptions.

Think about a high school database that manages student records. In
this database, tables are labeled by level of sensitivity:

Security

’ Public

: ';
I rode. :

:’ d veer !
I .
S

— ::Compio(er\'ﬁo\l :
: A
/ \ ¥ P User &

Only users with the right clearance can access tables labeled as sensitive
or confidential. In MAG, sensitivity classification needs to be configured
manually.

RBAC is more flexible and user-friendly. Instead of assigning permissions
to users individually, RBAC assigns permissions to roles, and users are
assigned to these roles. The system is like different types of membership
in a club: some members can access the VIP lounge, some can access only
the bar, and others can only access the general area. If RBAC is used in
the high school’s database, it adds an extra layer of roles:

/ Public \ "Sev\si-ﬁve_ \

Qonﬁd&wﬁal s %
é E vser |

&/

User

I
|
|
|
I
I
I
I
|
|
|
|
|
|
I
I
|

Adwin cole.

179

180 Chapter 7 | Security and optimization

Now you know the two main types of access control, lets walk through
implementing RBAC on a few tables of The Sci-Fi Collective’s database.

To keep this example simple, we'll have you work with only four tables:
product,purchase,review,andpurchase_review.Asmnnethatyouwe
done some requirements analysis of the user roles for the four tables:

« USER— View and buy products, and submit reviews for different
products.

o ANALYST—View records from all tables to perform statistical analysis.
» ADMIN—View, modify, or delete records from all four tables.

Based on these requirements, you can create the role, grant permissions
to the roles, and assign the roles to users. You can conduct this

process by using the graphical interface software of a RDBMS or SQL
commands. You can start by tackling the USER role:

-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
-— step 1: create a role
CREATE ROLE standard user;
-- step 2: grant permissions to a role
GRANT SELECT ON database name.product TO standard user;
GRANT INSERT ON database name.purchase TO standard user;
GRANT INSERT ON database name.purchase product

TO standard user;
GRANT INSERT ON database name.review TO standard user;
-- step 3: assign the role to a new user
CREATE USER 'morpheus'@'$' IDENTIFIED BY 'password';
GRANT standard user TO 'morpheus'@'S';

A few things about the preceding code snippet deserve explanation:

o The role’s name is standard user instead of user because userisa
reserved SQL keyword in most RDBMSs.

e A SELECT clause (such as SELECT ON database name .product)
corresponds to viewing a table, and an INSERT clause (such as
INSERT(HJdatabase_name.purchase)Confspondstoaddhgg
data to a table. The USER role allows users to view and buy products
as well as submit reviews. Viewing products translates to the GRANT
SELECT ON .. TO .. command; buying products and submitting
reviews translate to the GRANT INSERT ON ... TO .. command that is
applied to multiple tables.

Security 181

« Whenever you create a new user d via the CREATE command, the
standard_user role is immediately granted to that user.

« In MySQL and MariaDB, user accounts always require a
host specification in the format 'username'@'host'. The
'host ' portion determines where the user can connect from.
'username'@'% "' allows connections from any host.

The ANALYST role can be put together as follows:

-- comment: works for MySQL and MariaDB

-—- comment: consult ChatGPT on adaptations

-- comment: for other RDBMS

-— step 1: create a role

CREATE ROLE analyst;

-- step 2: grant permissions to a role

GRANT SELECT ON database name.product TO analyst;

GRANT SELECT ON database name.purchase TO analyst;

GRANT SELECT ON database name.purchase product
TO analyst;

GRANT SELECT ON database name.review TO analyst;

-- step 3: assign the role to a new user

CREATE USER 'smith'@'$' IDENTIFIED BY 'password';

GRANT analyst TO 'smith'@'S';

-- step 4: enable role by default (MySQL 8.0+)

ALTER USER 'smith'@'$' DEFAULT ROLE analyst;

Because the ANALYST role requires only view access to four tables,
only the GRANT SELECT clause is needed here.

The aDMIN role is addressed as follows:

-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-—- comment: for other RDBMS
-- step 1: create a role
CREATE ROLE admin;
-- step 2: grant permissions to a role
GRANT SELECT, INSERT, UPDATE, DELETE
ON database name.product TO admin;
GRANT SELECT, INSERT, UPDATE, DELETE
ON database name.purchase TO admin;
GRANT SELECT, INSERT, UPDATE, DELETE
ON database name.purchase product TO admin;
GRANT SELECT, INSERT, UPDATE, DELETE
ON database name.review TO admin;
-- step 3: assign the role to a new user
CREATE USER 'david'@'S$' IDENTIFIED BY 'password';
GRANT admin TO 'david'@'%';
-- step 4: enable role by default (MySQL 8.0+)
ALTER USER 'david'@'$' DEFAULT ROLE admin;

182 Chapter 7 | Security and optimization

Access control is an important task frequently performed by both
database designers and administrators to various degrees throughout
the software development process. This topic is worthy of its own
chapter or a whole book that goes beyond the focus of this book
(database design).

Encryption

Two types of encryption are commonly used in databases: one-way and
symmetric.

One-way encryption turns data into a fixed-size, seemingly random

string. This process, typically known as hashing, refers to a function
that takes an input and returns a fixed-size string of bytes. One-way
encryption is practically impossible to reverse, especially for longer
values. In other words, given a hashed value derived from one-way

encryption, you can't obtain its original input data.

One-way encryption is frequently used to hash passwords in

databases because people typically reuse passwords everywhere. If an
unauthorized person gains access to the database, they won’t know what
the original passwords were, so the damage won't be greatly amplified.
Common one-way encryption algorithms include berypt, PBKDF2, and
Sha512.

Your own database design includes columns that can benefit from
one-way encryption. The user table has a column (password) that’s
dedicated to storing users’ passwords. Up to now, this column has been
designed to store users’ passwords in plain text:

[er)

? email VARCHAR(ZIO)
usermame. VARCHAR(IO)
password VARCHARG.O)
first_name. VARCHAR(SO)
last_name. VARCHAR(EO)
Phone_numbe_r‘ VARC HARUS)

k lo\s-f_login_’ﬁme_ ‘I-IMES‘I_AMD

Security 183

When you apply a one-way encryption algorithm to hash all the
passwords, however, you need to revise the database design accordingly.
You could use the berypt algorithm to hash all the passwords, for
example. This algorithm results in sequences of 40-byte binary data.
Considering that some binary data can’t be printed easily, it is common
practice to further encode the binary data into a string of ASCII
characters via some encoding mechanism (such as Base64) so you can
store hashed passwords with the cHAR data type.

The encoded string from the 40-byte binary data will be 60 bytes long.
That said, VARCHAR (20) is too small for the hashed passwords, so you
have to update the data type of your password column to CHAR (60):

e RIS)

vser
? email VARCHAR(3A.0) Q email VARCHAR(33.0)

usermame. VARCHAR(IO) - vsername. VARCHAR(IO)
password VARCHARL.O) | password CHAR(O))
first_name. VARCHAREO) First_name VARCHARSO)
last+_name. VARCHAR(SO) last_name VARCHAR(SO)
Phone__number VARC HAR(I5) phone__numbe_r‘ VARCHAR(S)

k lovs_login_+ime. mss*rAmD Y las_login_+ime. mes—rAMD

If you have already implemented your database design, you can use the
following SQL command to update your user table:

-- comment: works for MySQL and MariaDB

-- comment: consult ChatGPT on adaptations

-—- comment: for other RDBMS

ALTER TABLE user MODIFY COLUMN password CHAR (60);

Unhashing the mystery

A hash function is a mathematical function that takes a variable-length input
(such as a password) and produces a fixed-length output: the hash. The
function is one-way, so you won't see the word unhashing in any dictionary!
Hash functions have many uses, but the hash functions we cover here are
used specifically for encryption.

184 Chapter 7 | Security and optimization

(continued)

Plain passwords in databases that are compromised can be stolen and reused
elsewhere, which is why good database design dictates that passwords be stored
in hash form. Many hash functions are well known and standardized (such as
Sha512 and berypt). Even hashed passwords can be vulnerable, though, because
an attacker may try a brute-force attack (try random passwords through the
hash function) or use a rainbow table (a list of known passwords and their
precalculated hashes). ost applications would concatenate a password with a
salt (random string) that is stored or produced by the application. An attacker
has no means of deducing what the password is without knowing the salt.

bh0i0a32UE0f 76 14u%e
576354be 756 394 £602

In case if you wonder how user authentication works, here is a breakdown
of the process:

1. The application takes the password that the user provides during the
login process and hashes it in the same approach.

2. The application compares the hashed result with what is already stored in
the database. If the hashed result matches the hash stored in the database,
the user is authenticated.

In contrast to one-way encryption, symmetric encryption is reversible.
In other words, when a symmetric encryption algorithm is used for
encryption, the encrypted value can be decrypted to retrieve the
original input data.

Symmetric encryption is commonly used to protect sensitive
information that needs to be used repeatedly and/or periodically in its
original form. Online stores, for example, want to protect users’ data,
so they don't users’ credit card information in plain text. Online stores
also want to make users’ lives easier by allowing them to save and reuse

Security

credit cards for the next order. As a result, symmetric encryption is used
to encrypt credit card information to keep it safe in the database. When
a user wants to reuse a credit card for a transaction, the application

can always decrypt the stored value. Symmetric encryption achieves
encryption and decryption by using the same key and same algorithm
in the process of encryption and decryption. The key is typically a string
of characters or numbers, and the security of symmetric encryption
relies on the secrecy and proper handling of this key.

I(e,y

(eg. 11395678 %abedefINI95678Anbedef)

v

Encryp—ﬁon Enc p+e_d
Cor :De,cm/pﬁon) i drzra
algor‘rﬂ«m

(&g bha3odfBI3A3LIIILF)

Common symmetric algorithms include Advanced Encryption
Standard (AES), Triple DES (3DES), and Blowfish. Each algorithm has a
set of variants. Depending on the key length (such as 128 bits, 192 bits,
or 256 bits), AES has three variants: AES-128, AES-192, and AES-256.
The key length determines the level of security and the computational
requirements for encryption and decryption. The longer the key is, the
higher the security and computational requirements are.

Can any columns in your own database design can benefit from
symmetric encryption? Yes. The payment method table stores some
columns of sensitive information that can be reused repeatedly, such as
card number and expiry date. The two columns represent the credit
card information required to place an order. Up to now, they’ve been set
to store everything in plain text:

'/ Po\t/me,n-r_me-l—l«\od \

? Payme_wf_id VT
noame. VARCHAR(ZO)
card_number CHARG)
expiry_dote. CHAR(A)
email VARCHAR(IIO) J

185

186 Chapter 7 | Security and optimization

If you want to store encrypted data instead of plain text, you must revise
the database design. You could use AES-256 to encrypt card number
first. AES-256 operates on blocks of 16 bytes. The card number is 16
bytes, which is one block in ES-256. AES algorithms commonly use
initialization vectors (IVs) to further enhance security. You can think
of an IV as a nonsecret 16-byte binary sequence used as an additional
input. When IV is used, the input data is 32-byte. As in one-way
encryption, the encrypted data is binary, and it is common to further
encode the binary data into a string of ASCII characters. Assuming
that Base64 was used to encode the binary data, the encoded string is
about 45-byte.

What about expiry date? AES-256 operates on blocks of 16 bytes;
when the plain text is shorter than 16 bytes, padding is required to
make the plain text fit into a 16-byte block, so AES-256 considers the
lengths of expiry date and card number to be the same (16 bytes).
If the same encryption and encoding procedure is applied, the encoded
and encrypted string will all be about 45-byte. That said, you need to
update the data types of both columns to CHAR (45):

—

(, Payme_n*_me;l’hoc‘

pxyment_method
Q payment_id VT Q paymert_id TAT
name. VARCHAR(IO) name. VARC HAR(ZO)
card_number CHARUE) ZZ% |' " card_number CHARWME) |
expiry_dare. CHAR() | expiry_dote. CHAREE) |
k email VARCHAR(32.0) " email VARCHAR(ZYOY

If you have already implemented your database design, you can use the
following SQL command to update your payment method table:

-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
ALTER TABLE payment method
MODIFY COLUMN card number CHAR(45),
MODIFY COLUMN expiry date CHAR(45);

Storage considerations

Symmetric encryption: Not the panacea

Symmetric encryption seems to be more convenient than one-way
encryption because it supports both encryption and decryption. You may
wonder why we don’t use symmetric encryption to encrypt passwords
and all other information that requires protection. Symmetric encryption
should not be used to encrypt passwords. To take this discussion one step
further, if the sensitive data doesn’t need to be used repeatedly in its original
form, you shouldn’t consider symmetric encryption.

One-way encryption is typically stronger than symmetric encryption.
Symmetric encryption works on a big assumption: the key used for
encryption and decryption is safe. If a hacker somehow gains access to the
key, all the sensitive information encrypted with symmetric encryption
could be in danger because everything can be reversed and the original data
exposed.

As a result, storage of the key in symmetric encryption is critical. You
don’t want to store this key in the same database as the encrypted data, for
example. In the real world, this key is stored in various ways, such as the
following:

o Via environmental variables in a file in the application server
o Via dedicated software known as a key management service

o Via a specialized physical device known as a hardware security module

Storage considerations

After a database is designed, revised,

implemented, and tested, it goes into 40 billon /T8
production and starts costing money.

You need to think about not only read

and write operations but also efficient

use of storage.

Historically, storage was expensive.
In the 1970s, 1 MB of storage could
cost about $250. The cost of that same $o /T8

187

megabyte today is about $0.00001. AB0s

ROXOs

188

Chapter 7 | Security and optimization

Despite this trend, improving your database design to save storage
space can still be valuable, especially if you are designing the database
for a scalable application that millions of people will use or that may

experience exponential growth.

What do you do in database design to save storage? Reduce data
redundancy. You have already done a lot in this respect. Normalization
addresses anomalies as well as reduces data redundancy. Beyond
normalization, you may find opportunities in your design to further
reduce data redundancy in your design, as you will see in this section.

Redundant tables

Your database design for The Sci-Fi Collective is normalized. But a
normalized design can still be improved to reduce redundancy.

When you review your design and check for redundancies, you can
start by asking a simple question: are there any redundant (or almost
redundant) tables? The answer is yes. If you focus on how addresses are
stored, you see two tables that are almost identical:

e e _— - — = =

street_address VARCHARGQES)
oxddf‘e,ss_hne__opﬁonal VARC HAR(OO)
Po$+a|_coo(& CHAR(S)

aity VARCHAR(OO)

\
|
|
|
|
I

1O -H

s—t—m—e_ VARCHARG.O)

(usgr_o\ddre,ss

? email VARCHAR(IIO)

—_—— e = — —

/ street_address VARCHARGEEY

N

addr‘e,ss_lme,_ophonal VARCHAR(OO) |
Pos—hxl_code_ CHARS)

ity VARCHARUOO)

Ot

state VARCHARGQ.O)

N

~

[Payme_n—r_meﬂqod

Q Pou/mewf_id T
name. VARC HAR(IO)
card_number CHAR(HS)

expin/_ciod'e_ CHARE)
email VARCHAR(ZA.0)

'

/)

[eer)

Q email VARCHAR(IXO)
username. VARCHAR(IO)
password CHAREO)
Birst_name. VARCHAR(EO)
last_nawme. VARCHAR(S0)
phone, number VARCHARUS)

k last_login_+ime. TIMESTAMPJ

Storage considerations 189

The tablesbilling address and user address have nearly identical
columns except for the primary key. This design is legit because an
address associated with a payment method may not be the same as a
user’s personal address. It is highly likely, however, that a user and their
payment methods share an address, so it would be nice to consolidate
that data.

How do you proceed? A good start is to analyze and update the
requirements. To consolidate address data, you can use a single address
entity that stores a single address that both the user and payment
method tables can point to or two different addresses so that you

don’t have to store the same address in two different tables. Based on
this change, the requirements that need to be fulfilled need further
clarification:

o A user has one address.
« A payment method has one address.

 An address is associated with zero to many users or zero to many
payment methods.

It’s not hard to map the requirements to an E-R diagram. If you use a
single entity (such as address) to represent addresses, what should
be its primary key? If you remember what you learned in chapter

4, you need a real-world concept to differentiate two addresses—a
combination of all columns, including street address, address_
line optional,postal code, city,and state. Using a composite
primary key composed of all columns is generally considered bad
design for two reasons:

« A composite key composed of every column significantly drags down
performance.

 The address entity is in a one-to-many relationship with user and
payment method. The choice of this composite key will force you to
put every column of address in user and payment method.

As a result, you may choose an alternative to the composite key:
surrogate key plus unique constraint. In chapter 4, you learned that

a surrogate key is often implemented as an autoincrementing numeric
attribute (such as address_1id), which is simple, flexible, and easy to
use as a single-column foreign key. The unique constraint will be placed

190 Chapter 7 | Security and optimization

on the combination of all columns except the surrogate key (address
id) to ensure that no redundant address data can be recorded in the
address table.

Now that you have nailed nearly every bit of the revised design, you are
ready to map the revised requirements to an E-R diagram:

Ko\ddreﬁs \

? address_id w1
street_address VARCHARIEES)
addr‘e_ss_hne,_op—ﬁono\l VARCHARCOO)
Pos-ral_code_ CHARS)
city VARCHARUOO)

k state CHARGQO) o J
J% min Qod‘d]no\li-ﬂ/ is relaxed

7
N (e)

[po«/meyﬁ_mc&‘hod

o ? email VARCHAR(ILO)
? Py iA;'&HAR(SO) vsername. VARCHAR(IO)
nowme.

rol VARCHAR(CO)
Comd_numl:ef‘ CHAR(YE) %-=H— passwe H
expiny._dacke. CHARGE) first_name. VARCHAR(EO)

Lilling_adciress VARCHAR(LESE) lo‘s-r'"ami VARiHAR:iCS) ,
email VARCHAR(I1.0) phone.number VARCHARNS

— d—o(_ - —J _”_-r‘_ - las+_|os,3n_+ime TIMEST AMP
7 N N T i i
e - (oddress dvr 1)

It is worth noting that the min cardinality of the relationship from user
to address tables is relaxed from one to zero. This relaxation is a must,
considering that users will register accounts with The Sci-Fi Collective
without providing personal address information. If the min cardinality
of this relationship stays as one, it will prevent user data from being
recorded in the user table without a corresponding address row.

Storage considerations

If you have already implemented your database design, you need to take
three steps to update your implementation:

1. Drop two old tables, billing address and user address.

2. Create a new table named address, and add a unique constraint to
the combination of all nonkey columns.

3. Update payment method and user by adding a new column.
address_id, and making it a foreign key in both tables.

To create the address table, you can use the following command:

-- comment: works for MySQL and MariaDB
-- comment: see the code repo for other RDBMS
CREATE TABLE IF NOT EXISTS address (
address id INT AUTO INCREMENT PRIMARY KEY,
street address VARCHAR (255) NOT NULL,
address line optional VARCHAR(100),
city VARCHAR(100) NOT NULL,
state VARCHAR(20) NOT NULL,
postal code CHAR(5) NOT NULL,
CONSTRAINT unique address constraint
UNIQUE (street address, address line optional,
postal code, city, state)
)i

To update the payment method table, you can use the following
command:

-- comment: works for MySQL, MariaDB, and PostgreSQL
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
ALTER TABLE payment method
ADD COLUMN address id INT NOT NULL;

ALTER TABLE payment method
ADD CONSTRAINT fk address payment method
FOREIGN KEY (address_ id)
REFERENCES address (address_id) ;

By contrast, the address _id won’t have the NOT NULL constraint in the
user table because of the relaxed min cardinality of the relationship
from user to address. Moreover, you need to ensure that the
address_id column starts with a NULL value by default:

-— comment: works for MySQL, MariaDB, and PostgreSQL

-- comment: consult ChatGPT on adaptations

-— comment: for other RDBMS

ALTER TABLE user
ADD COLUMN address id INT NULL;

191

192 Chapter 7 | Security and optimization

ALTER TABLE user
ADD CONSTRAINT fk address user
FOREIGN KEY (address id)
REFERENCES address (address_1id);

NULL values in foreign key columns represent optional relationships,
which is the business logic you want. In other words, not every record
in the child table (user) needs to have a corresponding link in the
referenced parent table (address). That logic also means, however, that
you need to be extra-cautious in handling NULL values when querying
the two tables.

Categorical data

After checking and dealing with redundant tables, you can go one step
further by checking for columns that contain redundant data. When
you review your database design, you can try a different question: Is
there a column that contains a lot of redundant data? Yes.

If you focus on the address table that you just added, you see that

the state column contains a lot of redundant data. After all, The
Sci-Fi Collective has millions of users, and there are only 50 states plus
Washington, DC, in the United States. (In chapter 4, we assumed that
The Sci-Fi Collective sells only in the United States.)

Ko\our‘ess \

Q address_id AT
street_address VARCHARGQ.S5)
o\ddress_hne_op—ﬁono\l VARC HAR(IOO)
postal_code CHARS)
city VARCHAR(IOO)

How do you address this problem? You can move the state column
from the address table to a new table named state and link the two
tables via a relationship. This new table, named state, will represent all
50 states plus the District of Columbia, and it will be in a one-to-many
relationship with the address table.

What would be the primary key for the state table? Every state plus
the District of Columbia has its own abbreviation, and the abbreviations

Indexing 193

are different but have the same length. As a result, the abbreviation is
the perfect primary key for the state table:

Aloboma: AL
Alaska: Ak

California: C A
Colorado: Co

District of Columbia: DC

Based on the preceding revision, your updated address table and new
state table will look like this:

/addras \

? address_id T rs—t—m—e_ W
street_oddress VARCHARQSS) >O | l ‘
Q stodre id CHARGQY)

o\ddress_line_op'ﬁono\l VARC HARCIOO)
postal_code CHAR(E) k stare VARCHARG.O)
ciry VARCHARGOO)

k state id CHARQ) /

As you learned in chapter 5, you need to relax the min cardinality of the
relationship from state to address a little to enable data entry.

Indexing

Now that you have taken action to further reduce data redundancy

in your database design, it is time to work on making data retrieval
efficient. Indexing is a critical optimization technique used to speed
retrieval of data from a database. When implementing a database
design, you need to index certain columns to speed tasks such as data
retrieval, sorting, and searching. In this section, you will learn why and
how to index; then you will decide whether you need to index certain
columns in your own database design.

194 Chapter 7 | Security and optimization

Why and how to index

Several types of indexing are used to optimize query performance in
databases, such as standard indexes, clustered indexes, spatial indexes,
and full-text indexes. In this section, you will learn why and how to
implement standard and full-text indexes.

Standard indexes

To index properly, you need to understand why indexes are important
and what problems they address. Let’s start with a simple movie table in
a database that supports a movie application:

The silence of Beavty and
The Yams +ne Feasw

3 &

The Shawshan Gone with
Rejection rhe Gin

The design of the movie table looks like this:

(movie. \

? movie_id TWNT
+itle. VARCHARCIOO)
dote TIMESTAMP
roting DECIMAL, 1)
K photo VARCHAR(IOOO)

Notice that the application frequently sorts all movies by ratings
because users always want to watch the highest-rated movies. As a

Indexing 195

result, your application frequently takes advantage of the following
query:

-- comment: works for MySQL, MariaDB,
-- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
—-— comment: for other RDBMS
SELECT *
FROM movie
ORDER BY rating DESC
LIMIT 30;

The query is executed clause by clause in the following order:

1. rroM—The query begins with the FrRoM clause. The database system
identifies the movie table from which the data will be retrieved and
reads data from the table.

2. seLECT—The SELECT clause selects every column for each row.

3. ORDER BY—ORDER BY sorts all the rows in the movie table by
rating in descending order.

4. piMIiT—Finally, the LIMIT 30 clause restricts the output to the first
30 rows of the ordered list.

Without the help of indexes, this query needs to sort all movies by rating
from scratch every time this query is executed. If the movie table holds
millions of records and keeps growing, you can imagine how easy it is
for this query to affect the performance of the database and slow the
application. To address this problem, you can index the rating column:

CREATE INDEX idx rating ON movie (rating);

What does an index do? An index creates additional data structures
that provide fast access to rows based on the values in one or more
columns. Indexes are typically implemented with data structures such
as B-trees. A B-tree is a self-balancing tree data structure that maintains
sorted data and allows searches, sequential access, insertions, and
deletions in logarithmic time. When an index is created on a column,
the database engine constructs the index by scanning the entire table
and recording the values of the indexed column along with pointers to
the corresponding rows. In our case, when the index on the rating
column is constructed, it will be used to speed queries that sort or
search for a value in the rating column of the movie table:

196 Chapter 7 | Security and optimization

)
r‘o\-ﬁngz RS “\
+itle; Devil hun—t—e\r Qu‘ncldt/ Find the movie with
J s, an average .5 rovting

)

\
\

\
\
rating: 3 rocting: 4
\
+itle; BL{& moon +itle; Red house

~

\r.

roting: 1.5 rocting: 3.5 roting: 35 rocting: 5
-H-Ha Space_ can -H-H&' Uml:rejla -H-He_; Crazt/ cow -H-Ha; Space_ cot

r‘o«Hng: |
+itle; Fll/ing monl(e;/

rodﬁng: 0.5
+itle; Bortle
opener

It is worth mentioning that all queries that use the wHERE clause to filter
data based on ratings perform searching tasks and are be optimized by
the index you added on the rating column:

SELECT *
FROM movie
WHERE rating = 5;

Similarly, if you foresee or observe that users often sort or search
for movies by release date, and the application frequently executes
the query

-- comment: works for MySQL, MariaDB,
-- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT *
FROM movie
ORDER BY date DESC
LIMIT 30;

you may want to index the date column too:

CREATE INDEX idx rating ON movie (date);

If the application allows users to sort movies by both release date and
rating, and the application frequently executes the query

-- comment: works for MySQL, MariaDB,
-- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT *
FROM movie

Indexing

ORDER BY date DESC, rating DESC
LIMIT 30;

you may want to index the combination of the rating and date
columns too:

CREATE INDEX idx combo ON movie (rating, date);

In all those cases, the columns that were explicitly indexed are not

the primary key. What if the primary key requires indexing? Well, the
primary key movie id column is already indexed. All primary keys are
indexed automatically.

Full-text indexes

A CREATE INDEX statement creates standard indexes, which are
suitable for speeding many tasks, such as sorting and exact matches.
Occasionally, however, you will find that standard indexes aren’t
sufficient for some indexing tasks. Your movie application may allow
users to search for movies by titles, and the search bar needs to support
keyword searching, partial word matching, and even fuzzy searching
(handling typos or misspellings).

When you need to support complex search on text, you need full-text
indexes, which make all such tasks much more efficient. In short, full-
text indexes tokenize each word or term and then store each token in a
lookup table. Without full-text indexing, keyword searching would look
like this example:

SELECT *
FROM movie
WHERE title LIKE 'S$exciting%';

As you can imagine, even if this search is doable, it is inefficient. As
the data size grows, this query takes longer to execute. With full-text
indexing, the same task is much faster and looks like this:

-- comment: works for MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-— comment: for other RDBMS
-— comment: add a full-text index
CREATE FULLTEXT INDEX ft_idx_title
ON movie (title);
-— comment: search
SELECT *
FROM movie
WHERE MATCH (title)
AGAINST ('exciting' IN NATURAL LANGUAGE MODE) ;

197

198 Chapter 7 | Security and optimization

Although the concept of a full-text index is consistent across RDBMSs, the
syntax varies significantly from one RDBMS to another. The preceding SQL
command adds a full-text index for the title column in the movie table
and works for MySQL and MariaDB. By contrast, to achieve the same thing
in PostgreSQL, you need to use the following code:

-- comment: works for PostgreSQL
-- comment: consult ChatGPT on adaptations
-— comment: for other RDBMS
-- comment: add a full-text index
ALTER TABLE movie ADD COLUMN tsv_title;
UPDATE movie
SET tsv_title = to_ tsvector('english', title);
CREATE INDEX gin_idx_title
ON movie USING gin(tsv_title);

If you want to figure out how to add a full-text index in a specific
RDBMS, ChatGPT is a great friend.

Indexes for your ER diagram

To explore whether you can use indexes to optimize your database design,
you need to understand what queries are generated by the application
logic. This step may require close collaboration between you (the database
designer) and application developers, especially backend engineers. In
this process, backend engineers can do the following things:

« Contribute detailed knowledge of how the application interacts with
the database, especially queries generated by the application logic.

« Provide insights into performance bottlenecks observed during
application runtime and user interactions.

o Ensure that changes in application logic or new features align with
best practices of database design.

During the collaboration, you will do the following things:

 Understand how to structure the database and design indexes to
optimize these queries, and use the shared information to adjust
database design, create appropriate indexes, and optimize query
execution plans.

« Ensure that database schema changes do not negatively affect
application performance or lead to inconsistencies.

Indexing 199

« Ensure that database-schema changes meet the customer’s
requirements (unless the requirements have changed).

Beyond collaborating with application developers, database designers
commonly take empirical approaches to identify indexing opportunities
by synthesizing data from query performance metrics and query logs
when the implemented database goes into production. If you have
identified opportunities to use indexes, the following three examples
show what you need to do next.

The product table

For the product table, you've identified one interaction scenario:

Users search for products based on their name.

~

produc—i—

? code CHARGN)
nome. VARCHARCIOO)
Jescﬁpﬁon’rEXT—
wmanufacturer VARCHAR(IOO)
photo VARCHAR(IOOO)
price. DECIMALG,)
cost DECIMALQ, 3)

k Invar\-rory_quo‘wﬁ‘fy VT j

This scenario corresponds to the following query:

-- comment: works with MySQL and MariaDB
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT * FROM product WHERE MATCH (name)
AGAINST ('some text' IN NATURAL LANGUAGE MODE) ;

This query performs a keyword search task on the name column. To
make the query possible and efficient, add a full-text index to this
column:

-- comment: works for MySQL and MariaDB

-- comment: consult ChatGPT on adaptations

-— comment: for other RDBMS

CREATE FULLTEXT INDEX ft_idx_name ON product (name);

200 Chapter 7 | Security and optimization

The review table

For the review table, you've identified the following interaction
between users and the application:

Users frequently check product reviews.

(o R

? review_ id ThT
review_text TEXT
review_time. TIMEST AMP
email VARCHAR(3.0)
code. CHARUR)

This interaction leads to frequent queries of the review table. When
a user tries to check the reviews of a product with code 23356, for
example, the following query is executed:

SELECT * FROM review WHERE code = '23356';

This query is a search task, but only because an exact match is involved.
In other words, if this column ever needs indexing, standard indexing
would be good enough. Indexing would improve the efficiency of

this query. The code column in the review table is a foreign key, and
foreign key columns are not indexed automatically. As a result, you can
index this column as follows:

CREATE INDEX idx code ON review (code);

The payment_method table
For the payment method table, you've identified the following scenario:

Users always need to select one of their many added payment
methods frequently to complete a transaction.

(/ Pou/mem'_me:w\od \

Q Paymeyrf_?d VT
name. VARC HAR(IO)
card_number CHAR(HYS)
exp?ry_dod'e, CHARHE)
email VARCHAR(ILO) W,

Denormalization

This interaction leads to frequent queries of the payment method table.

When a user with the email address john@gmail.com tries to access his
payment methods, for example, the following query executes:

SELECT * FROM payment method
WHERE email = 'Jjohn@gmail.com';

This query is also a search task that involves an exact match. The
email column in the payment method table is a foreign key. Standard
indexing on this column would be good enough:

CREATE INDEX idx email ON payment method (email);

Denormalization

So far, you have put a lot of effort into optimizing a database. Now we
are going to talk about edge cases in which optimization means actively
going against normalization. Yes, you read that right!

How to denormalize

Denormalization is a last-ditch database optimization technique that
intentionally introduces redundancy to a database to improve query
performance. Denormalization is rare, but if queries are performed
frequently and require joining multiple tables, denormalization can
significantly enhance the performance of your database.

Denormalization typically involves two steps:

1. Identify queries that are used frequently and require joining more
than two tables.

2. Duplicating some columns in some tables involved in the identified
query to reduce the number of tables that have to be joined.

To get a better understanding of denormalization, consider an
oversimplified example first. Suppose that you oversee a database
supporting a music app, and you have three tables representing artists,
albums, and songs in your database:

201

202 Chapter 7 | Security and optimization

(/ o N (b)

Q album_id THT

o\lbum_no\me VARCHAR(OO)
album_photo VARCHAR(IOOO)

artist_id TNT

(song W
? song_id BIéIvtT
song_name. VARC HAR(OO)

Q artist_id IWT

artist_name. VARCHARIOO)
artist_photo vARcuARQooy

song_lyries TEXT

K o\lbum_id VT

From the relationships among the tables, you can tell that songs are
organized by albums and albums are organized by artists. You can also tell
that the three tables are fully normalized. But the application supported
by the database often needs to display the top songs for every artist:

Retrieve artist_id
cor‘r‘e_sponding +o
+he. name. 'Vebula mova! Get top 5 songs Prom

Retrieve first 5
all albums Prom artist

songs From all
Retrieve all album albom with ‘Webula Mova!

ids correspondling
+o +he identified
artist_id

corre_sponding ids

I
J

:Do\—l'oxbase, Web Browser

Because of the relationships among the three tables, you need to join
them to map songs to artists. As a result, the following query has to be
executed frequently:

-- comment: works for MySQL, MariaDB,
-- comment: and PostgreSQL
-- comment: consult ChatGPT on adaptations

Denormalization

—-- comment: for other RDBMS
SELECT artist.artist name, song.song title
FROM artist
INNER JOIN album
ON artist.artist id = album.artist id
INNER JOIN song
ON album.album id = song.album id

WHERE artist.artist name = 'Nebula Nova'
ORDER BY album.album id, song.song id
LIMIT 5;

Because of the sizes of the three tables and the high frequency of the
query, this query may take more time and resources to run than you
expect. As a result, the pages or screens that require help from this
query become less responsive in your application. Further, this query
costs a lot of resources and money whenever it runs.

(o R (wloom \

? album_ i T

album_name. VARCHAR(IOO)
album_photo VARCHAR(IOOO)

\ artist_id TWT

\
SELECT query output / M. _
| artist_name | song_title | r“"ﬂ \}
| -eamnmees | neemmenn e |
| Nebula Nova | Cosmic Groove | Q song_id BI&GI#T
| Nebula Nova | Solar Serenade | song_name. VARCHARUOO)
| Nebula Nova | Lunar Lullaby | song_lyries TEXT

Q artist_id IWT
artist_nome VARCHAR(IOO)
artist_photo VARCHARIOOO) |

ox“:um_ici VT

How do you address this problem? You may notice that the album table
doesn’t contribute any data to the output data. Due to how the three
tables are related, you still need to join all three tables to get what you
want. If a direct relationship exists between artist and song, this
query will become much more efficient. Create this relationship, and
update the E-R diagram of the three tables:

203

204 Chapter 7 | Security and optimization

(M ™ (loom }

? artist i TAMT ? alloum_?d VT
artist_name VARCHARIOO) album_name. VARCHAR(UOO)
artist_photo VARCHAR(IOOO) album_photo VARCHARGIOOO)

artist_id TWT

! SOV\S' x

? Song_id BréevtT
song_name. VARCHAR(OO)
song_lyries TEXT
album_id TwT

As you can see, this new relationship is one-to-many, and you have to
add a new foreign key, artist i, to the song table. Does this update
address your problem? Yes. Now the query can be updated to a more
efficient version:

-- comment: works for MySQL, MariaDB,
-—- comment: PostgreSQL and SQLite
-- comment: consult ChatGPT on adaptations
-- comment: for other RDBMS
SELECT artist.artist name, song.song title
FROM artist
INNER JOIN song
ON artist.artist id = song.artist id

WHERE artist.artist name = 'Nebula Nova'
ORDER BY song.song id
LIMIT 5;

This update, however, introduces a new problem: it creates a transitive
dependency in the song table:

song_idd —= album_id — artist_id
¢) ., S
Whodt we. learn from What we learn from
+he song +able +he album +able

Denormalization 205

You deliberately introduced redundancy to the song table to make

a normalized design abnormal—hence, the name denormalization.
Sometimes, you have to weigh the benefits and costs of sticking to a
fully normalized design and tolerating some abnormal tables when you
need to improve query efficiency and database performance.

It's important to know that denormalization has the potential to
compromise data integrity if it is not managed meticulously. When
redundant data exists across denormalized tables, any alterations of
the data may require updates of all related tables.

After denormalization, you still need to pay close attention to
database performance to validate your move. If a significant volume of
INSERT, UPDATE, and DELETE operations occur on related tables, the
performance benefits of denormalization may diminish quickly, and
you may need to reevaluate the situation.

Comprehensive documentation and effective communication are
crucial to denormalizing a database design. After all, denormalization
can be a debatable, controversial move. To get other people to buy into
this change, you have to communicate the denormalization strategy to
members of the development team, stakeholders, and other interested
parties to establish shared understanding and ensure consistent
implementation. More important, to prevent future problems or
accidents, you want to thoroughly document the denormalization
strategy, outlining the rationale, tradeoffs, and factors that influenced
the denormalization decisions.

Denormalize your database design

Take a look at your database design to see whether denormalization
can be useful anywhere. Specifically, you want to look at the user,
payment method, and purchase tables, as shown in the following
figure.

206 Chapter 7 | Security and optimization

// Po‘yme_M'_me-HAod \

Pumhase_ W
Q payment_id INT (

name. VARCHAR(IO) @ purchase id IWT
card_number CHAR(HE) ” X +otal_price. DECTMALUZ, 3)
expiry_date CHARE) purchase, time TIMESTAMP
email VARCHAR(3I.0) J payment_id TWT

i

(" er)

? email VARCHAR(3A.0)
username. VARCHAR(IO)
password VARCHAR(CO)
first_name. VARCHAR(SO)
|a$+_name VARCHAR(EO)
phone,_number VARCHARUS)

K lo‘s'\'_login_-ﬁme ‘I"IMES‘I"AMU

In an online store like The Sci-Fi Collective’s, users commonly check
their orders or receipts. Whenever that happens, the application queries
the preceding three tables:

SELECT * FROM purchase
INNER JOIN payment method
ON purchase.payment method id =
payment method.payment method id
INNER JOIN user
ON purchase.user id = user.user id
WHERE user.email = 'customerCat@humor.com';

Apparently, the payment method table barely contributes to the output
data but has to be joined with the other two tables so that a purchase

can be mapped to a corresponding user. If you recall from chapter 6,

we removed the direct relationship between user and purchase when
we focused on normalizing the database design. If you have abundant
evidence showing that the preceding query is executed frequently, costing
significant money and resources and slowing the application, you need to
think again about whether to restore the direct relationship between user
and purchase (in other words, to denormalize your database design):

Denormalization

[pomertmermod) an)

Pumhmse
Q payment_id INT Q purchase, id VT
name. VARC HAR(IO) _H__O< +otal_price. DECIMALUZ,)
card_number CHARYE) purchase, +ime TIMESTAMP
e)(piﬁ/_dod’e_ QHAR(‘(Q) Pat/me_yﬂ'_id VT
R e
|

il VARCHAR(Z3.0) o 3
e i Jf”j i VARCHARGSIOY |)
(/Vuser‘

? email VARCHAR(ZIO)
username. VARCHAR(IO)
password VARCHAR(CO)
first_name. VARCHAR(SO)
last_name. VARCHAR(S0)
phone,_number VARCHARS)

K last_login_+ime TIMES’T‘MD

Undoubtedly, this change will introduce redundancy and create a
violation of Boyce-Codd Normal Form (BCNF; see chapter 6) in the
purchase table:

[v
Pur‘chase__?d _ payme,wk_id —_— e_modl
(& D _J

~— ~F

Whot we learmn from What we learn from +he
the purchase +able pou/me,n-k_mej'l«od +able.

If you focus on the purchase table, you see a transitive dependency
in which purchase id determines payment idand payment id
determines email.

Typically, you have to conduct a thorough cost-and-benefit analysis

to evaluate whether the improved database performance is worth

the trouble. A busy online store needs to generate receipts that
frequently associate purchase data with a user, of course, and the direct

207

208 Chapter 7 | Security and optimization

user-purchase relationship makes querying the two tables easier.
Without it, you would have to write complex queries by joining three
tables, which can be computationally expensive. Will there be any other
difficult challenges, such as insertion or deletion anomalies? The Sci-Fi
Collective doesn’t allow users to change their email addresses; the user
table even uses email as the primary key. Further, The Sci-Fi Collective
doesn’t allow people to make purchases without accounts. That said, no
insertion or deletion anomalies will occur, and there’s no chance that
some purchase data will be added to the purchase table without being
associated with an existing user. Overall, this scenario seems to be a
perfect opportunity for denormalization.

Summarizing all the changes you’ve made so far, your E-R diagram
looks like this:

r Paymey\-l'_mej-hod]

Q paymert_idl T

“oriose)

(address

? address_id TvT
street_address VARCHAR(IEE)
address_line,_optional VARCHAR(OO)
city VARCHARGIOO)
pos*nl_coo(c CHARE)
store_id CHARQY)

state

? state, id CHARG)
state VARCHARLO)

name. VARCHAR(IO)
card_number CHAR(YE)
expiry_dovre. CHAR(YE)
email VARCHAR(IIO)
address_id TwT

ruse_r

? email VARCHAR(ILO)
vsername. VARCHAR(IO)
password CHARGO)
First_name. VARCHAR(SO)
last_name. VARCHAR(50)
phone,_number VARCHAR(IS)
last_login_time. TIMEST AMP

address_id TvT

? Pumhase__‘nol vT
+otal_price DECIMALUZ, 3)
purchase,_time TIMEST AMP
payment_id IHT

email VARCHAR(ZIO)

pumhase,_pmduc-\-]

? purchase,id VT
[review ‘ Q code CHARGY)
ceview, id T product_price. DECIMALG, &)
review, +esxt TEXT produet_aquantity TVT
review +me TIHESTAMP product_name. VARCHAR(OO)
email VARCHAR(3I.0)
code CHARUY)

(produet h

Q code. CHARUL)
name. VARCHAR(IOO)
deseription TEXT
manfacturer VARCHAR(IOO)
photo VARCHAR(OOO)
price. DECTAHALL, &)
cost DECIMALT, 3)

k}nv&vﬂ'ory_qumi‘h/ wT

Recap 209

If you have made it to this point in your journey through database
design, you've done an amazing job! Each chapter in this book has
built on the previous one, guiding you through the intricate processes
that transform disconnected ideas and requirements into structured,
efficient, powerful databases. Your perseverance in understanding and
applying these principles of database design is a testament to your
commitment and is truly commendable. Well done!

Recap = =
\ T /

 You shouldn’t save sensitive information /

in plain text. Instead, pick the right encryption ¢

method, encrypt the data, and ensure that the = f — > / Q)

corresponding columns have enough room for the

encrypted data in your database design. |) ‘@'
 Beyond normalization, you may have opportunities V \

to further improve the storage efficiency of your =

database design. These opportunities may involve
redundant tables, columns, or categorical data. Be

careful, though, because you don’t want to negatively affect
your database performance.

« Indexing can contribute to increasing the query performance of your
database. You need to work closely with the application developers
and use log data to understand where to apply indexes. If you aim to
support queries that involve only sorting and exact-match searching,
standard indexing is good enough. But if you aim to support queries
that involve keyword searching, partial word matching, or fuzzy
searching, you need full-text searching.

« Denormalization deliberately introduces redundancy to improve
query efficiency. Denormalization is rare and requires you to be
careful about handling data insertion, updates, and deletions in the
same table.

Part 3
Database design and Al

Welcome to the future of database design! In this part, you’ll discover how
to enhance your database design process with the power of generative Al
You’ll learn how to collaborate effectively with AI tools to accelerate your
design workflow while maintaining control of the process.

Chapter 8 guides you through the complexities of database design in the
age of generative Al You’'ll explore practical ways to integrate Al into your
design process, ensuring efficiency without sacrificing quality or control.

Prepare to sharpen your skills and broaden your knowledge as you create
a fully functional database from the ground up.

Database design 8
in the age of generative Al

In this chapter

+ You explore how to use generative Al to speed
database design.

« You learn how to fine-tune the prompts to get
precisely what you want from generative Al tools.

« You go through the full pipeline to design and
implement a database for a spaceship manufacturer
with the help of generative Al tools.

What you need to know

This chapter is different from others in a major way. You are unlikely to
replicate the demonstrated interactions with large language models (LLMs)
due to their probabilistic nature and continuous changes. When we wrote
this chapter, we used ChatGPT 4o. That said, ChatGPT may get your
design exactly right or wrong in different ways even if you use the prompts
demonstrated in this chapter.

213

214 Chapter 8 | Database design in the age of generative Al

(continued)

The database design covered in this chapter (its finally complete), using
tools commonly used by practitioners, such as dbdiagram.io and MySQL
Workbench, can be found in the GitHub repository (https://github.com/Neo-
Hao/grokking-relational-database-design). Navigate to the chapter 08
folder and follow the instructions in the README.md file to load the
database design into corresponding tools.

Also, you can find the full-text prompts for ChatGPT and SQL scripts
corresponding to the final database design for different relational database
management systems (RDBMS), including MySQL, MariaDB, PostgreSQL,
SQLite, SQL Server, and Oracle.

Overview

In this chapter, you will explore how to take advantage of
generative Al to speed database design, and you will
see what a typical workflow looks like when you’re
working toward a complete database design with
help from generative Al

You picked up all the essentials for designing a -
robust database in the previous seven chapters by
working on the database of The Sci-Fi Collective. e
It is time for a change. In this chapter, you

will design a database for a company that

manufactures spaceships. By working on this

new project from scratch, you will start to appreciate
how generative Al tools can make your life easier and
understand their limitations in delivering what you
expect.

Quite a few LLMs can serve our purposes, such as ChatGPT, Claude,
Google Gemini, and Llama. We will use ChatGPT (GPT-40) to
demonstrate our interactions with a generative Al tool in this chapter.
Due to the way ChatGPT models were trained, specific prompt
formats and practices work particularly well and lead to more useful
responses.

https://github.com/Neo-Hao/grokking-relational-database-design
https://github.com/Neo-Hao/grokking-relational-database-design

Overview 215

Write ™Me o

poem for o lover IN SHADOWS, YOU LINGER,
s

AMONG THE SILENT DEAD,
YOUR MEMORY A WHISPERED ECHO,
WHERE \LOVES FINAL TEARS ARE SMED,

Following are three rules of thumb for working with ChatGPT:

« Be specific, descriptive, and as detailed as possible. All LLMs, including
ChatGPT, can’t be seven steps ahead of you and know what you truly
want to ask when your question or request is vague or imprecise. How
ChatGPT responds to your questions and instructions is captured
by the age-old adage “Garbage in, garbage out.” This axiom may
sound familiar if you are in the field of computer science or software
engineering.

o Separate instructions from context. Most LLMs work better when
you separate instructions from context. ChatGPT hopes that you’ll
put instructions at the beginning of a prompt and use ### or """ to
separate them from the context. When you need to summarize some
long text passages in bullet points, for example, here is what ChatGPT
recommends:

ChatGPT GPT-40

Summarize the text below as a bullet-point list of the most important
points.

Text: wun

some long texts go here

nuan

216 Chapter 8 | Database design in the age of generative Al

o Articulate the desired output format through examples. ChatGPT
responds better when you give it specific format requirements. This
practice also makes it easier to programmatically parse out multiple
outputs reliably. When you need to summarize some long text
passages in a few target entities, here is what ChatGPT recommends:

ChatGPT GPT-40

Extract the important entities mentioned in the text below. Extract all
company names, people names, and specific topics which fit the content
and the general overarching themes

Desired format:

Company names: <comma separated list>
People names: - | | -

Specific topics: - | | -

General themes: - | | -

Text: """

some long texts go here

LIRIN1]

You can read more about recommended practices for using ChatGPT at
https://mng.bz/QD41. In our experience, the three rules of thumb are
most important and helpful for database design.

Before you start the database design, we want to emphasize that

you shouldn’t dwell on replicating the interactions with ChatGPT
demonstrated in the chapter. The same request doesn’t necessarily lead
to the same answer for many reasons, including randomness, previous
context, and model updates or refinements. Instead, focus on learning
how to use ChatGPT efficiently, what working with ChatGPT looks like,
and when to rely on your own judgment.

Requirements analysis

In line with the galactic theme, you will design a database for a
company named SHIPS R US that specializes in manufacturing
spaceships. SHIPS R US distributes spaceships in large batches

https://mng.bz/QD41

Requirements analysis 217

to dealers across the galaxy, who eventually sell the spaceships to
customers. A good analogy is how Toyota and Ford sell cars. Like
those companies, SHIPS R US requires a web application powered by
a database to manage all the relevant information, such as spaceship
models, production records, and dealer and customer information.
Your task is to design a database for this web application.

—— —

.*-”\

SHIPS R US o/ @€ w®

g | |S

Space Bolt Ship Alternator 2-wing
§50.00 NAR £75.00 MKW 690,00 AT

L= \

For the sake of brevity, we'll assume that you've applied all the
techniques you learned in chapter 3 to collect and analyze the
requirements of the SHIPS R US database. The synthesized high-level
requirements are

o The database needs to maintain records on all spaceship brands
and models, manufactured spaceships, dealers, customers, and
relationships between dealers and customers.

o A spaceship brand is associated with multiple models, and a model is
associated with multiple spacecraft.

« One or more spaceships are distributed to a dealer, who serves one or
more customers.

o A customer is served by one or more dealers and is associated with
one or more spaceships that they bought from the dealer(s.)

o A spaceship is associated with one model and can be associated with
no more than one owner and no more than one dealer.

218 Chapter 8 | Database design in the age of generative Al

Purchases from Checks \nven+orj
and sales

=[]
ik

customer Dealer Web app Doatalbase

These requirements focus on entities and their relationships. Beyond
this summary, you have another set of requirements focusing on entities
and attributes (explored further in the next section).

Entities and attributes

In this section, you design entities and attributes based on the
requirement analysis with the help of ChatGPT.

Entities

Based on the high-level requirement summary, you extracted five
entities: brand, model, spaceship, dealer, and customer. If this fact is
not obvious to you or you want to see how capable ChatGPT is, you can
make the following request to ChatGPT:

| am designing a database. Help me identify all the entities based on the
given requirements.

Requirements: """

The database needs to maintain records of all spaceship brands and
models, manufactured spaceships, dealers, customers, and relationships
between dealers and customers.

A spaceship brand is associated with multiple models, and a model is
associated with multiple spacecrafts.

A dealer is distributed one or more spaceships and serves one or more
customers.

A customer is served by one or more dealers and is associated with one
or more spaceships that they bought from the dealers.

Entities and attributes

A spaceship is associated with one model and can be associated with no
more than one owner and no more than one dealer.

nuan

As you can see from this request, we deliberately separated the
instructions from the context to get better answers from ChatGPT. This
question is so simple that separating instructions from context does
very little, but it is a good idea to stick to the rules of thumb, and it will
make a difference when you have a much more complicated question
or request. Overall, the answer you get from ChatGPT will be similar to
the one shown in this image:

The database needs to
maintain records of all brand
spaceshlpaﬁﬂ/ wodel
nanu actured

Goalors, ——— desler

Coustomers) and A
relationshipmea\ spaceship
dealers and customers.

customer

Attributes

You worked hard on requirement analysis and have a set of synthesized
requirements to help you identify the attributes of each entity:

o A brand has a name. The number of brands is limited and smaller
than five.

o A model has a four-digit number and name. The number is unique per
model.

o A spaceship has a 17-digit serial number (like a vehicle identification
number for a car), a recommended price, and a year number. The serial
number is unique per spaceship. The unit for the recommended price
is US dollars (USD). The year number represents the year in which
the spaceship was manufactured.

o A dealer has a name, address, phone number, email address, and dealer
website URL. The dealer may be anywhere on Earth.

o A customer has a name, address, phone number, and email address.
Multiple customers may share an address. The customer may live
anywhere on Earth.

219

220 Chapter 8 | Database design in the age of generative Al

Developing the entity-relationship (E-R) diagram is a milestone in
database design, requiring you to identify the attributes and their
corresponding data types as well as the primary key for each entity.
This step can be tedious and requires you to dig deep into the details
of the gathered requirements. ChatGPT can offer help. You could use
the preceding requirements for attributes to formulate the following
request:

| am designing a database for a manufacturer of spaceships. | have iden-
tified five entities: brand, model, spaceship, dealer, and customer. Help
me identify attributes and the primary key per entity based on the given
requirements. Generate output using the desired format.

Desired format:

Entity name: spaceship

Attributes:

Serial number: CHAR (17)

Recommended price: NUMERIC (8, 2)

Primary key: Serial number

Requirements: """

A brand has a name The customer may live anywhere on Earth.

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

nuan

As you can see from this request, we added the desired format for the
output, which increases the consistency of the output and makes sure
that it is ready to use for future interactions with ChatGPT. Following is
a sample answer from ChatGPT to this request:

ChatGPT GPT-40

Entity name: Brand
Attributes:
Name: VARCHAR (100)

https://bit.ly/grdb

Entities and attributes

Primary key: Name

Entity name: Model
Attributes:

Model number: CHAR (4)
Model name: VARCHAR (100)
Primary key: Model number

Entity name: Spaceship

Attributes:

Serial number: CHAR (17)
Recommended price: NUMERIC (8, 2)

As soon as you see the answer, you may realize that you missed
something in formulating your request: naming the entities and
attributes properly. The names of entities and attributes don't follow

the naming conventions we discussed in chapter 3. To fix that problem,
you can ask ChatGPT a follow-up question or reformulate your initial
question. Regardless of your choice, we recommend that you give
ChatGPT an example of how the output should be formatted. Here is an
example follow-up request:

Regenerate your answer using a new format but the same requirements.
Make sure that names of entities and attributes are all snake-cased.

New format:

Entity name of Spaceship: spaceship

Attributes:

Serial number: serial number - CHAR (17)

Recommended price: recommended price - NUMERIC (8, 2)

Primary key: serial number

221

222 Chapter 8 | Database design in the age of generative Al

Here is a sample answer from ChatGPT to this request:

ChatGPT GPT-40

Entity name of Brand: brand
Attributes:
Name: name - VARCHAR (100)

Primary key: name

Entity name of Model: model

Attributes:

Model number: model number - CHAR (4)
Model name: model name - VARCHAR (100)

Primary key: model number

Entity name of Spaceship: spaceship

Attributes:

Serial number: serial number - CHAR (17)

Recommended price: recommended price — NUMERIC (8, 2)
Year: year - year

Primary key: serial number

Entity name of Dealer: dealer

Attributes:

Name: name - VARCHAR (100)

Address: address - VARCHAR (255)

Phone number: phone number - CHAR (15)
Email address: email address - VARCHAR (100)
Website URL: website url - VARCHAR (255)

Primary key: name

Entities and attributes 223

Entity name of Customer: customer

Attributes:

Name: name - VARCHAR (100)

Address: address - VARCHAR (255)

Phone number: phone_number - CHAR (15)
Email address: email address - VARCHAR (100)

Primary key: email address

As you see, ChatGPT does many things right, such as using the desired
format, following snake-case convention in naming entities and
attributes, and making some reasonable guesses on data length when no
requirements are specified.

Some design choices in the answer are questionable, however. Three
notable problems stand out.

First, the selection of primary keys of certain entities may not be what
you want. Because the requirement summaries don't provide enough
information about how primary keys should be selected, ChatGPT
took the liberty of sneaking in some assumptions. The name attribute
was chosen as the primary key of the dealer entity, for example, and
the email address attribute was chosen as the primary key of the

224 Chapter 8 | Database design in the age of generative Al

customer entity. Both choices are problematic. Although a dealer’s
name is not likely to change often, it is possible for two dealers to

have the same name, even in a single US state, let alone the world. A
different attribute should be used as the primary key, but what would
that be? After diving into the requirement analysis further, you find the
following information:

o A customer is allowed to update their email address and phone
number.

o A dealer is allowed to update their email address and phone number.

In other words, neither the email nor the phone number is stable. If
you make either attribute the primary key of an entity, you will face a
lot of trouble in updating phone number or email addresses. That said,
no single attributes are readily available to be used as the primary key
in dealer or customer. As you learned in chapter 4, a surrogate key
that increments automatically can be used as the primary key in this
situation. Such a primary key has no problems in identifying a data
record uniquely but can’t prevent data duplications by itself—that is,

it can’t prevent a person or a robot to register more than one account
using the same information. Based on what you learned in chapter 6,
you can add a unique constraint to the email address attribute and
another to the phone number attribute to address concerns about data
duplication. When you revise the design of the customer entity based
on these considerations, it looks like this:

Entity name of Customer: customer
Attributes:

Customer ID: customer id - INT
Name: name - VARCHAR (100)
Primary key: customer id

Note 1:email address requires a unique constraint; phone number
requires a unique constraint

Entities and attributes

The dealer entity has a similar update:

Entity name of Dealer: dealer
Attributes:

DealerID: dealer id- INT
Name: name - VARCHAR (100)

Second, the design of phone-number attributes failed to account for
the fact that a dealer or customer can be anywhere on Earth. Both
customer and dealer have a phone number attribute. The data length
CHAR (15) may not be sufficient for all international numbers. If you do
some research on phone-number lengths, you find that the maximum
length of a phone number is 15 digits, thanks to the international
phone-numbering plan. This length assumes that the country code

is included and that the number is a simple numeric string without
spaces, dashes, or parentheses. Some international numbers, however,
have non-numeric strings. In such a case, the total length may exceed
15 characters. To address this problem, you can separate the country
code from the phone number and prepare two attributes to store each
piece of data separately. When you revise the design of the customer
entity based on these considerations, it looks like this:

Entity name of Customer: customer
Attributes:

Customer ID: customer id - INT
Name: name - VARCHAR (100)

Phone number:

country code - CHAR(S)
customer phone number - CHAR(15)

225

226 Chapter 8 | Database design in the age of generative Al

The dealer entity has a similar update:

Entity name of Dealer: dealer
Attributes:
Dealer ID: dealer id - INT
Name: name - VARCHAR (100)
Phone number:
country code - CHAR(S)
dealer phone number - CHAR(15)

The separation between country codes and phone numbers can help
standardize phone numbers and ensure consistency in how phone
numbers are stored. More important, VARCHAR (15) is sufficient for any
phone numbers when the country code is not considered.

Third, the design of address attributes failed to account for the fact
that the dealer and customer can be anywhere on Earth. A single
attribute, VARCHAR (255) , may not be sufficient for storing some long
addresses. What's worse, this design will lead to many addresses with
unpredictable formats because no structure is enforced. Unpredictable
formats create further troubles in parsing, searching, and filtering, let
alone data validation and error handling.

To make address storage more robust and flexible, consider breaking
the address into multiple attributes. You might update the design of the
customer entity like this:

Entity name of Customer: customer
Attributes:

Address:

street address - VARCHAR(255)

suburb - VARCHAR (100)

city - VARCHAR (100)

state province - VARCHAR(100)

postal code - VARCHAR(20)
country - CHAR(2)

Entities and attributes

The design of the dealer entity is updated as follows:

Entity name of Dealer: dealer
Attributes:
Address:

street address - VARCHAR(255)
suburb - VARCHAR (100)

city - VARCHAR (100)

state province - VARCHAR(100)
postal code - VARCHAR(20)
country - CHAR(2)

As soon as you break the address information into six attributes in both
the customer and dealer entities, you may notice that the two entities
suddenly have significant overlap. This situation may ring a bell if you
remember chapter 7, which addressed a similar problem between a
user address and a billing address. If you use the same solution, you can
prepare a new table representing addresses and link that table to both
the dealer and customer entities. The new table looks like this:

Entity name of Address: address

Attributes:

Address ID: address id - INT

Street address: street address - VARCHAR (255)
Suburb: suburb - VARCHAR (100)

City: city - VARCHAR (100)

State/Province: state province - VARCHAR (100)
Postal code: postal code - VARCHAR (20)
Country: country - CHAR (2)

Primary key: address id

The postal codes are not universally applicable. Some countries use
them, and others don’t. Countries that use postal codes tend to have
different opinions about how they should be formatted. As a result, you
should make the postal code attribute optional, which means that

227

228 Chapter 8 | Database design in the age of generative Al

it can be nul1. The same can be said of the suburb attribute. With the
address entity representing addresses, you can remove the attributes
about addresses from the customer and dealer entities.

It is important to keep a record of your revisions in text because you
are not done designing and implementing the database, and ChatGPT
is a primarily a text-based AI tool. You'll feed your design of entities
and attributes to ChatGPT again for future design revisions and
implementations. When you merge all your revisions with the answers
from ChatGPT, you get the following results:

Entity name of Brand: brand
Attributes:

Name: name - VARCHAR (100)
Primary key: name

Entity name of Model: model

Attributes:

Model number: model number - CHAR (4)
Model name: model name - VARCHAR (100)
Primary key: model number

Entity name of Spaceship: spaceship

Attributes:

Serial number: serial number - CHAR (17)

Recommended price: recommended price - NUMERIC (8, 2)
Year: year - year

Primary key: serial number

Entity name of Dealer: dealer
Attributes:

DealerID: dealer id- INT
Name: name - VARCHAR (100)

Entities and attributes 229

Email address: email address - VARCHAR (100)
Website URL: website url - VARCHAR (255)

Phone number:

country code - CHAR(S)
dealer phone number - CHAR(15)

Primary key: dealer id

Note 1: email address requires a unique constraint; (country
code, phone number) requires a unique constraint

Entity name of Customer: customer

Attributes:

Customer ID: customer id - INT

Name: name - VARCHAR (100)

Email address: email address - VARCHAR (100)

Phone number:

country code - CHAR(S)
customer phone number - CHAR(15)

Primary key: customer id

Note 1: email address requires a unique constraint; (country
code, phone number) requires a unique constraint

Entity name of Address: address

Attributes:

Address ID: address _id - INT

Street address: street address - VARCHAR (255)
Suburb: suburb - VARCHAR (100)

City: city - VARCHAR (100)

State/Province: state province - VARCHAR (100)
Postal code: postal code - VARCHAR (20)
Country: country - CHAR (2)

Primary key: address_id

Note 1: suburb and postal code are optional

230 Chapter 8 | Database design in the age of generative Al

Communicate your design

You have completed the design of entities and attributes based on
the requirement analysis and ChatGPT. Everything is stored in a
long, formatted piece of text. The text is essential for communicating
with ChatGPT but not great for sharing your design with other
people. To communicate your design effectively, you have to
visualize it.

If you have only a few entities, you can use any diagram tool to draw
them. You can draw all the entities of SHIPS R US as follows:

(ot) ([d [e)

Q name VARQHAR(IOOJ ? wodel_number CHARH) Q serial_number CHARAT)

nome. VARCHARUIOO) recommended_price. MUMERTC (S,)
[address N pere YEAR
. / dealer \
Q address_id T a customer)

street_address VARCHARIES)
suburb VARC HARUOO)
city VARCHARGOO)

Q dealer_ic TaT
name. VARC HAR(OCO)
email_address VARCHAR(IOO)
stavre,_province. CHARICO) websire_url VARCHARGSE)
postal_code VARCHAR(O) country_code CHAR(S)

Kcoum—n/ CHARGL) j K\phone__mumber CHAR(S) j KPL\OV\&'"UMBU\ CHARUS) j

Q custromer_id TWT
name. VARCHAR(OO)
email_address VARCHAR(IOO)
country_code. CHAR(S)

If you are working on a much bigger project that involves a dozen
or more entities, however, you may want to turn to ChatGPT

for help again. Although ChatGPT can’t generate the diagram

you need in the target format, you can ask it to generate the
corresponding SQL code and import the code into a tool that
visualizes database design based on SQL code, such as dbdiagram.
io (https://dbdiagram.io). To ask ChatGPT for SQL code, try the
following example request:

https://dbdiagram.io

Entities and attributes 231

| am designing a database. Help me generate MySQL code based on the
following description of entities and attributes. Keep the entities inde-
pendent from one another.

Description: """

Entity name of Brand: brand

Attributes:

Name: name - VARCHAR (100)

Primary key: name

Country: country — CHAR (2)

Primary key: address id

Note 1: suburb and postal code are optional

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LIRIN1]

After getting the code, you can copy and paste it by using the import
function of dbdiagram.io:

-¢ v Untitled Diagram ersona © Upgrade v
1
& Import from MySQL v 8 Instructions ('@ Upload .sql
MysQL 1

1. Install mysaidump.
2. In your terminal, run the
following command (On Linux, you

(T8 = dbdocs: Allov might need to add Eilsly] before

Invite others to collaborate 1t):
even better database docur

S mysqldump -h <host> -u

m New dbdocs <username> —P <port> —
Integrate live database diag n ——nn_data
like Notion and Confluence ¥ Append converted DBML to the end

Cancel

B & Embed Dashbo

Fast, flexible, and pixel-perfect embedded analytics is just a — 100% + 0 ‘0 i
snippet away. B D L tt D

https://bit.ly/grdb

232 Chapter 8 | Database design in the age of generative Al

The generated visualization is much easier to share with others and
appropriate for communication:

spaceship

name © VARCHAR(100) model_number 2 CHAR(4) serial_number 2 CHAR(17)
model_name VARCHAR(100) recommended_price NUMERIC(8,2)

street_address VARCHAR(255) dealer_id 2 INT _
suburb VARCHAR(100) name VARCHAR(100) customer_id £ INT
city VARCHAR(100) email_address VARCHAR(100) name VARCHAR(100)
state_province VARCHAR(100) website_url VARCHAR(255) email_address VARCHAR(100)
postal_code VARCHAR(20) dealer_phone_number CHAR(15) customer_phone_number CHAR(15)
country CHAR(2) country_code CHAR(5) country_code CHAR(5)

As you can see, ChatGPT can speed the process of database design.
Although you can't use the answers directly, they are useful as the
starting point in your problem-solving journey. When you get some
answers from ChatGPT, it is up to you to identify the problems in
those answers and fix them based on your requirement analysis and
knowledge of database design. When you need to communicate your
design to others, ChatGPT can convert the text-based design to SQL
code, which in turn can be turned into a diagram.

Relationships among entities

Now that you have identified and designed all the entities, their
attributes, and corresponding data types for the database, you are ready
to work on the relationships among entities. The following list may
refresh your memory of the requirements for relationships:

« The database needs to maintain records of all spaceship brands
and models, manufactured spaceships, dealers, customers, and
relationships between dealers and customers.

dbdiagram.io

Relationships among entities 233

A spaceship brand is associated with multiple models, and a model is
associated with multiple spacecraft.

A dealer is distributed one or more spaceships and serves one or more
customers.

A customer is served by one or more dealer, and is associated with
one or more spaceships that they bought from the dealer.

A spaceship is associated with one model and can be associated with
no more than one owner and no more than one dealer.

A customer is associated with one address. Multiple customers may
share an address. A dealer is associated with one address.

You added the last item when you decided to use an independent entity
to represent addresses. You need to address the relationship between
customers and addresses as you build the relationships among entities;
the same is true of dealers and addresses.

As what you did in the preceding section, you can start by asking
ChatGPT to generate a design draft. To achieve a more useful response,
follow the rules of thumb to structure your request. Try the following
request:

| am designing a database for a manufacturer of spaceships. | have iden-
tified six entities: brand, model, spaceship, dealer, customer, and address.
Help me identify the relationships between each pair of entities based
on the given requirements. Generate output using the desired format.

Desired format:

brand | model

Relationship: one to many

Note: The side pointing to model is many
Requirements: """

The database needs to maintain records of all spaceship brands and
models A dealer is associated with one address.

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LIRIN1]

https://bit.ly/grdb

234 Chapter 8 | Database design in the age of generative Al

Here is a sample response from ChatGPT:

ChatGPT GPT-40

brand | model
Relationship: one to many
Note: the side pointing to model is many

model | spaceship
Relationship: one to many
Note: The side pointing to spaceship is many

spaceship | dealer
Relationship: many to one
Note: The side pointing to dealer is one

spaceship | customer
Relationship: many to one

Note: A customer can own multiple spaceships, and a spaceship can be
owned by multiple customers (e.g., shared ownership)

dealer | address
Relationship: one to one
Note: Each dealer is associated with exactly one address

customer | address
Relationship: many to one
Note: The side pointing to address is one

As in the design of entities and attributes, ChatGPT does many things
right. In the preceding answer, most relationships were developed
properly with the exception of the relationship between customer and
spaceship. The requirements you gathered were quite explicit:

Relationships among entities 235

A customer is served by o
dealer and is associated with
one or wore spaceships that
+hey bougm—.

~— A customer is associated
with one or more spo\ce_sl«}ps.

A spaceship is associated A spaceship is associated
with one mode] and can be / with vp +o one owner.
associated with no more than

one. owner and no more. than
one ae_oxler .

It is possible that when the information on a relationship is scattered
across multiple sentences, ChatGPT has difficulty parsing it properly.
It is also possible that ChatGPT somehow starts to hallucinate when
answering this question. Regardless, you have a robust mastery of
database design after reading the first seven chapters of this book, and
the error is not hard to fix:

spaceship | customer
Relationship: many to one
Note: the side pointing to customer is one

You may also notice that the relationship between customer and
dealer is missing. The requirement you gathered is clear:

o A dealer serves one or more customers.
o A customer is served by a dealer.

You can add this relationship yourself to the text of relationships:

customer | dealer
Relationship: many to many
Note: both sides are many

Minimum cardinalities and foreign keys

ChatGPT didn’t provide much information about the min cardinalities
or foreign keys of relationships between pairs of entities. You didn’t ask
for this information to begin with because you needed to make sure that
each relationship (max cardinalities) was identified properly first. Now

236 Chapter 8 | Database design in the age of generative Al

is a good time to make a new request to ChatGPT. Here is an example
of how you might structure this request:

| am designing a database for a manufacturer of spaceships. | have iden-
tified some of the characteristics of six entities: brand, model, spaceship,
dealer, customer, and address. Help me identify the min cardinality and
where the foreign key should be placed between each pair of entities
based on the given requirements and the known relationship character-
istics. Generate output using the desired format.

Desired format:

brand | model

Relationship: one to many

Note 1: The side pointing to model is many
Note 2: The foreign is in model

Note 3: The min cardinality close to model is relaxed from 1 to 0

Requirements: """

The database needs to maintain records of all spaceship brands and
models A dealer is associated with one address.

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

[IRIN1]

Characteristics: """

brand | model

Relationship: one to many

Note: The side pointing to model is many

customer | address

Relationship: many to one

Note: The side pointing to address is one

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LIRIN1]

Following is a sample answer from ChatGPT to this request:

https://bit.ly/grdb
https://bit.ly/grdb

Relationships among entities 237

ChatGPT GPT-40

brand | model

Relationship: one to many

Note 1: The side pointing to model is many
Note 2: The foreign key is in model

Note 3: The minimum cardinality close to model is relaxed from 1 to 0

model | spaceship

Relationship: one to many

Note 1: The side pointing to spaceship is many
Note 2: The foreign key is in spaceship

Note 3: The minimum cardinality close to spaceship is relaxed from 1 to
0

customer | dealer

Relationship: many to many

Note 1: A junction table customer dealer is needed
Note 2: The foreign keys are in customer dealer

Note 3: The minimum cardinalities close to customer dealer are re-
laxed from 1 to O

spaceship | dealer

Relationship: many to one

Note 1: The side pointing to dealer is one
Note 2: The foreign key is in spaceship

Note 3: The minimum cardinality close to dealer is relaxed from 1 to 0

spaceship | customer

Relationship: many to one

Note 1: The side pointing to customer is one

Note 2: The foreign key is in spaceship

Note 3: The minimum cardinality close to spaceship is relaxed from 1 to 0

238 Chapter 8 | Database design in the age of generative Al

(continued)

dealer | address

Relationship: one to one

Note 1: Each dealer is associated with exactly one address

Note 2: The foreign key is in dealer

Note 3: The minimum cardinality close to address is 1

customer | address

Relationship: many to one

Note 1: The side pointing to address is one

Note 2: The foreign key is in customer

Note 3: The minimum cardinality close to address is relaxed from 1 to 0

ChatGPT handled the placement of foreign keys quite well, especially
when three entities are related. The relationships among customer,
dealer, and address are similar to a challenge you tackled in earlier
chapters: how to handle the relationships among address, user, and
payment methods for The Sci-Fi Collective. The relationships among
customer, dealer, and address are summarized as follows:

Onlt/ $howin3 +he max cardinal'rhl

<

Holds +he Porejsm Holds +he. Pof‘ejgﬂ
kKey address_id key address_id

Beyond foreign keys, ChatGPT is rather confused about the min
cardinalities, especially when a min cardinality needs to be relaxed
from one to zero. It is up to you to fix those mistakes, using what you
learned from chapter 5. If your memory is blurred, here are some rules
of thumb about when to relax a min cardinality:

« In a one-to-one relationship, if one entity is typically created before
the other, you may set the min cardinality of the second entity to zero
to allow the first entity to exist without an immediate counterpart.

Relationships among entities

« In a one-to-many relationship, the cardinality that’s closer to
the many side needs to be relaxed. This relaxation allows for
cases in which the entity on the one side might exist without any
corresponding entries on the many side. A customer might exist
without any addresses, for example.

« In a many-to-many relationship, the min cardinalities are often set to
zero on both sides if either entity can exist without the other. If there
are strict business rules about the existence of the entities, however,
you might keep one cardinality set to one.

You can start with the relationships between dealer and address and
between customer and address. The gathered requirements don't say
much about the min cardinalities of their relationships. After following
up with the software developers, you gained some new understanding:

o A dealer can’t have an account without an address. SHIPS R US’s web
app doesn't allow dealers to register accounts without providing
address information. In other words, it is not possible for a dealer
record to exist without a corresponding address.

o SHIPS R US maintains user records for purposes such as outreach and
recalls but doesn’t allow customers to register accounts directly. Instead,
dealers enter the customer information plus the address information
into the system. In other words, it is not possible for a customer
record to exist without a corresponding address.

Combining such information and rules of thumb about when to relax a
min cardinality, you can make the following revisions:

The min co\r‘dino\li-h/ close, +o
customer | address custowmer is r‘eJoxxe,d from | 40 O
Relationship: many to one

Note 1: The side pointing to a@ddress is one
Note 2: The foreign key is injcustomer

Note 3: inimum-cardinali S
address-is+elaxed-from-1+te- 0————

dealer | address The wmin co\r‘d?no\h-h/ close +o
Relationship: one to one dealer is relaxed From | +o O
Note 1: Each dealer is associated with exactly

one address Note 2: The foreign key is in dealer
Note 3: ini inai

address-is-t———

240 Chapter 8 | Database design in the age of generative Al

The revision to the relationship between customer and address is
straightforward considering that the relationship is one-to-many. The
min cardinality of the many side needs to be relaxed to make data entry
possible. By contrast, the revision to the relationship between dealer
and address is more nuanced. You may wonder whether you can relax
the side closer to address instead of dealer. You can, but doing so
will make things messier and less consistent, as demonstrated in the
following figure:

(addre,ss \

Q address_id T
street_address VARCHARGES)
suburb VARCHAR(OO)
city VARCHARGOO)
stodre._province. CHAR(IOO)
postal_code VARCHAR(LO)

& country CHARGY) /

A cecord of dealer
nee_ds 4o exist first.

4 N

dealer

Q dealer i T
name. VARCHAR(IOO)
email_address VARCHARIOO)
website, url VARCHARG.ESE) The por‘ejs,n l(e,y needs
country_code CHAR(S) |y To reference an

Phone,_number &HAW e)(is-ﬁma add(‘@}&_id.
\ Ccdbosrr

Because dealer is the child table in this relationship, it contains the
foreign key address_id. In other words, a new record in the dealer
table needs to reference an existing address_id value. As the result,
relaxing the cardinality closer to dealer is a better choice. The revised
relationships between customer and address and between dealer
and address can be summarized as follows:

Relationships among entities

K o\ddre,ss

\

Q oaddress_id vT

suburb VARCHARUOO)

aity VARCHAR(OO)
state_province. CHARUIOO)
postal_code VARCHAR(LO)

& country CHARG)

street_address VARCHAR(ASE)

/

C ’jl/'ReJO\XQCX <+«

-

customer

=)

|
J

B s

dealer \

Q customer_id VT
nome. VARCHARUOO)
email_address VARCHARUOO)
country_code CHAR(E)

Q dealer id TwT
name. VARCHARUOO)
email_address VARCHARUOO)
website, url VARCHARI.E5)

([~ -
|

Pl«one,_numbe_r CHAR(B)

coun—kry_coo(e_ CHARB)

address_id TWT L——p Forejgn)(e_ys phone,_number CHAR(S)
— — AN

Lodelress i VT)

Beyond the two relationships, you can find one more min cardinalities
that need to be relaxed in the relationship between spaceship and
customer. The requirements for this relationship are

o A spaceship is associated with one model and can be associated with
no more than one owner and no more than one dealer.

« A customer is associated with one or more spaceships that they

bought.

In other words, when a spaceship is manufactured, its record is entered
into the system immediately without being associated with a customer.
Based on this information, the min cardinality close to customer
rather than spaceship needs to be relaxed to zero:

241

242 Chapter 8 | Database design in the age of generative Al

The min co\rci‘mo\l‘.—i—t/ close +o

spaceship I customer customer is relaxed from | +o0 O

Relationship: many to one

Note 1: The side pointing to cugtomer is one
Note 2: The foreign key is in gpaceship
Note 3: Fhe-mi intmum-cardinality-elose-to
spaceship-isrelaxed-from-1+te 86—

The revised relationship can be summarized as follows:

\

(spoceship ™ e customer

Q customer_id T/T
name. VARCHAR(OO)

? Seﬁal_number CHARAT)

re,commende_d_grice, MUMERTC(E, &) >1 O emanil_address VARCHARUOO)

year YEAR

p - coum'rt/_coo(e_ CHARCE)
| eustomer_id TAT ;4,/‘4 For/ejsm Key g ohone_number CHARGE)

— o == = = e = -

J

You may notice that the foreign key of this relationship (customer id)
is in spaceship. By default, customer id needs to reference a record
in customer. To make sure that the foreign key is aligned with the
requirements, make it optional. In other words, it should allow NULL
values.

Communicate your design

As discussed earlier in this chapter in the “Entities and attributes”
section, you are likely to need visualization to communicate your design
better. If you choose to draw your design by hand, you’ll get something
like the following figure.

Relationships among entities 243

(brand W 4 customer N

uStom id TWT

Q name VARCHARIOO) § cvstomer.
name. VARCHARUOO)
email_address VARCHAR(IOO)
couvﬂ'ry_coo(e_ CHAR(E)

(° d eJ \ phone, number CHARUS)
Mmool] e e e e e e = -
,ado(ress i TwT) A
? moo(e,l_number CHAR) N(O\JAP&S \
!

nome. VARCHARIOO)
IZr‘;n;(_;_\o;\; \ZA(EQ:J-UERglo:OA' Q address_idd TwT
(QuS‘koMe!‘_de‘Ql er] street_address VARCHARG.E5)
_________ suburb VARCHAR(IOO)
Q [evsromerd T 7 ety VARCHARGOO)
f SPQCG,SNP ? '~Jef‘kf -—“}i wr__ J state,_province. CHARIOO)
Pos-i'o\l_coo(e_ VARCHARQ.O)
Q serial_number CHAR(T) i Yo)&oum—m/ CHARG) j
recommerded_price. MUMERTC(E, 3) t
yer YEAR 4 dealer
‘ “wodel_nomber CHARE) \
| customer_id INT | M Q dealer_id Ty
der»\l_er_no_l wr /l . nawme. VARC HARGIOO) T
email_address VARCHARCIOO) L _) Foreign keys

website_url VARCHAR(LEE)
couvﬂ'ﬁ/_coole, CHAR(E)
phone,_number CHARUS)

‘
\lokeess sl v)

If you need ChatGPT and dbdigram.io for a much bigger project, you
must retrieve the SQL code first. The following request aims to get
MySQL code from ChatGPT:

244 Chapter 8 | Database design in the age of generative Al

| am designing a database. Help me generate MySQL code based on the
following description of entities and relationships.

Description: """

description of entities starts here

Entity name of Brand: brand

Attributes:

Name: name - VARCHAR (100)

Primary key: name

description of relationships starts here
brand | model

Relationship: one to many

Note 1: The side pointing to model is many
Country: country - CHAR (2)

Primary key: address id

Note 1: suburb and postal code are optional

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LIRIN1]

After getting the code, you can copy and paste it into dbdiagram.io to
get the following diagram:

https://bit.ly/grdb

Implementation

name & VARCHAR(100) —uﬁ

model_number £ CHAR(4) —1|——\

model_name VARCHAR(100) NN

brand_name VARCHAR(100) NN 3/

spaceship

serial_number 2 CHAR(17)
recommended_price NUMERIC(8,2) NN

year YEAR NN

model_number CHAR@) NN 3/
dealer_id INT >

*
customer_id INT >

Implementation

1

r—|1‘ dealer_id & INT =
name VARCHAR(100) NN
email_address VARCHAR(100) NN
website_url VARCHAR(255) NN
dealer_phone_number CHAR(15) NN
country_code CHAR(5) INN 1
address_id INT NN ;——fﬁ_
customer_id 2 INT NN ;—
dealer_id 2 INT NN ;—/
G S|
——+1- customer_id 2 INT 2
name VARCHAR(100) INN
email_address VARCHAR(100) NN
customer_phone_number CHAR(15) INN
country_code CHAR(5) INN
address_id INTINN| >—

Now that you designed the entities, attributes, and relationships for
the database of SHIPS R US, you are ready to implement the database.
First, however, you have to make sure that your database design

is normalized. When you check your database design against the
requirements for normal forms, you see that your database design is in

Boyce-Codd Normal Form (BCNF). You can also ask ChatGPT to help
with the checking (“Is my database design normalized?”) and verify the

answers later.

245

address_id £ INT

street_address VARCHAR(255) NN

suburb

city

VARCHAR(100)

VARCHAR(100) NN

state_province VARCHAR(100) NN

postal_code VARCHAR(20)

country

CHAR(2) NN

dbdiagram.io

246 Chapter 8 | Database design in the age of generative Al

® Have a primary l(e,y

® Have no mulﬁwxluefl
Qo'uw\ns

® In WF

o All nonl(e;/ columns are.
dependeyﬂ' on the primary
Key Gn s entirety).

® In JWMF
] ¢ No nonl(e_y columns are
#answivdy dependent
on the pﬁmary '(EJ{.

® In IWF

o Al colomns are dependert
on o l(a/ and noﬂ«?ng dse,

Constraints

Applying constraints based on requirement analysis is a necessary step
in implementing your database design. In chapter 6, you learned about
a variety of constraints, such as primary key, foreign key, NOT NULL,
and unique constraints. Review your analysis to identify the attributes
that require constraints and the type of constraints that are appropri-
ate. ChatGPT can offer help for this task as well. Copy and paste all the
relevant requirements and the revised output from the preceding two
sections and then formulate a new request:

| am designing a database. Help me identify the attributes that need con-
straints and the type of constraints using the desired format based on
the given requirements, entities and attributes, and relationships among
entities.

Desired formats:

Entity name: brand
Attribute in focus:

*model number: primary key
*model name:NOT NULL

*pbrand name: foreign key

Implementation 247

Requirements: """

The database needs to maintain records of all spaceship brands and
models, manufactured

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

[IRIN1]

Entity and attributes: """

Entity name of Brand: brand

Attributes:

Name: name - VARCHAR (100)

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

Relationships: """

brand | model

Relationship: one to many

Note 1: The side pointing to model is many......

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LARIR1]

Here is a sample answer to this request:

ChatGPT GPT-40

Entity: Brand
Attribute in focus:
name: primary key

Entity: Model

Attributes in focus:

model number: primary key constraint
model name:NOT NULL

brand name: foreign key constraint (references brand. name)

https://bit.ly/grdb
https://bit.ly/grdb
https://bit.ly/grdb

248 Chapter 8 | Database design in the age of generative Al

(continued)

Entity: Spaceship

Attributes in focus:

serial number: primary key

recommended price:CHECK (e.g., CHECK (recommended price>=
0))

year: CHECK (e.g., CHECK (year >=1900))

model number:foreign key (references model .model number)
dealer id:foreign key (references dealer.dealer id)
customer id:foreign key (references customer.customer id)

Entity: Dealer

Attributes in focus:

dealer id:primary key

name: NOT NULL

email address:UNIQUE

website url:NOT NULL

(country_code, dealer_phone_number): UNIQUE
address_id:foreign key (references address.address_1id)

Entity: Customer

Attributes in focus:

customer id:primary key

name: NOT NULL

email address:UNIQUE

(country_code, customer_phone_number): UNIQUE

address_id:foreign key (references address.address_id)

Entity: Customer Dealer

Attributes in focus:

(customer id, dealer id):primary key

customer id:foreign key (references customer. customer id)
dealer id:foreign key (references dealer.dealer id)

Implementation 249

Entity: Address
Attributes in focus:
address_id: primary key

country: CHECK (ensures valid country codes, e.g., CHECK
(country IN ('US', '"CA', ...)))

As you see, ChatGPT properly identified most of the constraints, but

it missed a few attributes that require NOT NULL constraints. Also, it
neglected the scenarios in which an attribute requires more than one
constraint. email address in dealer, for example, requires both NOT
NULL and UNIQUE constraints. You need to fix these problems yourself
and store revised text of the constraints so that you can use them for the
next step.

Optimization

In optimization, you aim to reduce redundancy and increase the
consistency and efficiency of your database design before converting it
to code. You can pose some open-ended general questions to ChatGPT
(such as “How do I optimize my database design?”). But asking specific
questions about certain things that you notice always results in better

responses.
T want a
spaceship | Heres your
spaceship.
Con You wauke
] aster?
x fly ol Gure.
. 2
Moke 1+ blue’ Con a\o!

Wc\\’r--qo ‘ocxckl. OKaj.

250 Chapter 8 | Database design in the age of generative Al

You may notice, for example, that the ChatGPT suggested using a
CHECK constraint on the country attribute in address. Considering
that there are about 200 countries in the world, however, this constraint
will be painful to code and messy. You can raise a question about this
aspect:

Q1. Applying a CHECK constraint to the country attribute in the ad-
dress table is painful because there are about 200 countries in the
world. What's a common and recommended approach to store such in-
formation without this constraint but still retain the data validity check?

You can raise the same question about the country code attribute in
customer and dealer:

Q2. To ensure the validity of the country code of phone numbers in the
customer/address tables, what’s a common and recommended ap-
proach to store such information?

ChatGPT’s responses are quite useful:

ChatGPT GPT-40

Q1 Answer: Instead of using a CHECK constraint for the country code, a
better approach is to use a reference to a separate Country table. This
table would contain a list of valid country codes and their correspond-
ing names ...

Q2 Answer: To ensure the data validity, you can follow a similar approach
to use a separate table ...

To synthesize the two suggestions, you can create a single table to store
information about each country, such as country abbreviation, country
code, and name. The table will be prepopulated with valid information,
so it can be linked to customer, dealer, and address to ensure data
validity. The updated database design is as follows:

(brand w
b nome. vARQHAR(IooiJ

X
(model

? modd_numl:;er CHAR)
 nowe. VARCHARUOO)

-

SPO\QeSWP

Implementation

-

\

customer

? cu$+omer_§ci vT

(o‘o(dress i VT ,'

nome. VARCHAR(OO)
email_address VARCHARIOO)
phone_ number CHAR(S)

\ coun—m, id ThT

Q serial_number CHARGT
recommended _price MIMERTC(E, &)
(Mo_de_J nomber CHARG

| eustomer_id INT

? [Cus_-i't;me_‘r-:d_rxfl: - ‘\
7 | deslerid v

4 dealer

Vals

251

This is for pl«one,_numbef.

~

address

Q address_id T
street_address VARCHARGQ.EE)
suburb VARCHAR(IOO)
ity VARCHAR(IOO)
state_province. CHAR(OO)
postal_code VARCHAR(.O)

o

I
|
K\de;ale_r i T |

—-

c_) For‘ejgn keys

J

Q dealer_id T
nawme. VARCHAR(0OO)
email_address VARCHAR(IOO)
website_url VARCHARG.E5)
phone,_number CHAR(IS)

’coum—n, o T |
Qo\ddr‘e,ss W T)

ommyd vt __))
country
Q country_id THT

country_abbr CHARCL)
coum-rv./_code_ CHAR(E)
country_name. VARCHARIOO)

This is for Phone__numl:ef.

You need to update the information you stored about entities, attributes,
relationships, and constraints. Then you will be ready to convert the
updated design to SQL code with the help of ChatGPT. To achieve the
best result, be specific in your request. Here is an example request that

asks for MySQL code:

| am designing a database. Generate MySQL code based on the given
entity, attributes, and relationships, and constraints.

Entity and attributes: """

Entity name of Brand: brand

(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LLRIR1]

https://bit.ly/grdb

252 Chapter 8 | Database design in the age of generative Al

(continued)

Relationships: """
brand | model
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LLRIR1]

Constraints: """
Entity: brand
(This is an excerpt. Full text can be found at https://bit.ly/grdb.)

LLRIR1]

Depending on the RDBMS you are using, you may want the code to
be in a different SQL dialect. As long as the provided information is
detailed enough, it is hard for ChatGPT to make serious mistakes at
this step. You can find the full SQL code in chapter 08 folder in our
GitHub repository. If your requirements have sufficient information
about which columns require indexing, chapter 7 shows you how to
take preemptive measures to index those columns. Otherwise, you can
wait for the data and the use of database tell you more.

Finally, ChatGPT can be very useful for generating sample data that you
can use to test your database and for identifying problems preemptively.
Following is a sample request for testing data:

| am designing a database. Generate sample data that can be used for
testing based on the given SQL code that implements the database.

SQL Code:

v

-- Create brand table
CREATE TABLE brand (name VARCHAR (100) PRIMARY KEY);
-— Create customer dealer table
CREATE TABLE customer dealer (
customer id INT NOT NULL,
dealer id INT NOT NULL,
CONSTRAINT pk customer dealer ...
CONSTRAINT fk customer dealer customer ...
CONSTRAINT fk customer dealer dealer ...
)i

(This is a snippet. Full code can be found at https://bit.ly/grdb.)

wan

https://bit.ly/grdb
https://bit.ly/grdb
https://bit.ly/grdb

Recap 253

Now you’ve gone through the full process of database design with the
help of ChatGPT. Good job!

Recap

« To use ChatGPT for database design effectively, follow some rules of
thumb: be specific, descriptive, and as detailed as possible; separate
instructions from context; and articulate the desired output format
through examples.

« You should take a stepwise approach to using ChatGPT to help with
database design and make verifications and revisions to ChatGPT’s
output at each step.

o Store the design at each milestone in text for smooth communication
with ChatGPT in the future.

« If you need to communicate your design draft with coworkers, you
can convert your design to SQL code with the help of ChatGPT and
visualize it by using tools such as dbdiagram.io.

index

INF (First Normal Form) 139
2NF (Second Normal Form) 139
3DES (Triple DES) 185

3NF (Third Normal Form) 139
4NF (Fourth Normal Form) 141
5NF (Fifth Normal Form) 141
6NF (Sixth Normal Form) 141

access control 178-182
accuracy, defined 96
address entity 189, 228
address_id attribute 190
address table 190-193, 250
AES (Advanced Encryption
Standard) 185
aggregation 14-19
ALTER TABLE command 23
analysis and design 57
AND operator 13
AS clause 15,32
attributes 74-78
spaceship manufacturer data-
base 218-232
author entity 123
author table 125
AVG() function 14

BCNF (Boyce-Codd Normal
Form) 139, 145,207, 245

BIGINT data type 91

billing address table 189, 191

Blowfish 185

book entity 123

book_id attribute 123, 125

B-trees 195

caching 54
candidate key 79, 80, 140
cardinality 109-128
direction and representation
110
many-to-many relationships
121-128
one-to-many relationships
117-121
one-to-one relationships
112-116
card_number attribute 94
CASCADE actions 165
categorical data 192
character sets 90
CHAR data type 86, 183
ChatGPT 47,77
GPT-40 214-216
check constraint 172-174, 250
child table 37, 162

255

code attribute 94

composite primary keys 124

confidentiality 178-187
access control 178-182
encryption 182-187

CONSTRAINT...FOREIGN
KEY...REFERENCES... clause
37

constraints
implementation 246
naming 160

cost attribute 97

COUNT() function 14

country attribute 250

Country table 250

CREATE TABLE command 20,
21

cross join 35

CURRENT_TIMESTAMP func-
tion 170, 171

customer entity 224-228

customer table 250

data
adding to tables 19-24
creating tables 19-24
managing 35-42

database design 49, 138, 213
entity-relationship models 104
relational database design,

overview 104

256

database design goals 50-54
data consistency and integrity
51
data security 53
maintainability and ease of use
51
performance and optimization
52
scalability and flexibility 54
databases
design phases 60-69
existing databases 61
goals of 60
relational 9-11, 26-35
data manipulation language 19
data schema 104
data types 13, 85-100. See
also specific data types
decimal 95
integer 91-94
string 85-91
temporal 98-100
DATE data type 98
DATETIME data types 98, 101
DDL (data definition language)
19-24
dealer entity 224-228
dealer table 250
DECIMAL data type 95-96, 101
default constraint 169
delete anomaly 8, 51
denormalization 201-209
database design 205-209
overview 201-205
dot notation 31
DOUBLE data type 95
DROP TABLE command 24

email address attribute 224
encryption 182-187
entities 6, 74-78. See also specific
entities
relationships among 232-244
spaceship manufacturer data-
base 218-232

index

strong 129-136
weak 129-136

E-R (entity-relationship)
diagram 74, 93, 104, 142, 220
models 104

expiry_date attribute 94

Fifth Normal Form (5NF) 141
filtering 12
First Normal Form (1INF) 139
fixed-point data types 95
FLOAT data type 95
floating-point data types 95
foreign keys 236-242
constraint 161
defined 27
Fourth Normal Form (4NF) 141
FROM clause 11, 34
full-text indexes 197
functional dependency 144-146

generative Al 214
GROUP BY clause 15, 16
GROUP keyword 77

hash function 183
hashing 182

imperative language 11

implementation 156-174, 245-253
check constraint 172-174
constraints 246
default constraint 169
foreign key constraint 161
NOT NULL constraint 157
optimization 249-253
primary key constraint 159
referential actions 164-167
unique constraint 167

implementation/integration and
testing phase 59

inconsistencies of data types across
RDBMSs 101

indexing 52, 193-201
for ER diagrams 198-200
overview of full-text indexes 197
overview of standard indexes

194-198

information management 61

INNER JOIN 46

INSERT INTO command 22

insertion anomaly 8, 51

INSERT keyword 77

INT data type 91

integer data types 91-94

integrity 177

interviews 63-69
identifying subjects, characteris-

tics, and relationships 65-69

preparing for 63

IVs (initialization vectors) 186

JOIN clause 34, 46
JOIN keyword 77
JOIN...ON clause 30
joins, types of 32
JOINs vs. WHERE 34

last_login_time attribute 100
LEFT JOIN 46

LLMs (large language models) 213
logarithmic time 195

MAC (mandatory access control)
178
manufacturer attribute 90

many-to-many relationships
121-128
identifying in database 126
max cardinality 110
MAX() function 14
MEDIUMINT data type 91
MIN() function 14
minimum cardinalities 110,
236-242
multivalued columns 142

name attribute 90, 224
NO ACTION action 165
nonempty (non-nullability) re-
quirement 81
normalization 137-155
database design 147
functional dependency 144-146
multivalued columns 142
primary keys 142
transitive dependency 150-155
NOT NULL constraint 157
NUMBER data type 101
NUMERIC data type 96
NVARCHAR(MAX) data type 101

one-to-many relationships
117-121
identifying in database 119

one-to-one relationships 112-116
identifying in database 114

OOP (object-oriented program-
ming) 75

ORDER keyword 77

OR operator 13

OUTER JOIN 46

parent table 37, 162

partial keys 129
payment_id attribute 93
payment_method entity 93

index

payment_method table 189, 191

indexing for ER diagrams 200
phone_number attribute 224, 225
postal_code attribute 115, 228
power(x) function 144
precision 96
price attribute 95,97
primary keys 6, 142

composite 124

constraint 159

defined 78
product codes 81
product entity 93
product_id column 27, 37
product_id value 40
product names 81
product_price attribute 97
product_review table 58
product table 9, 26

indexing for ER diagrams 199
purchase_time attribute 100

queries 11-19
aggregation 14-19
filtering 12

RBAC (role-based access control)
178
RDBMSs (relational database
management systems) 3, 8, 25,
73,103, 137,176, 214
README.md file 10, 137,175
redundant tables 188-192
referential actions 164-167
referential integrity 38
related tables 25-39
joining data from 29
managing data in 39
number of shared columns 27
types of joins 32
WHERE vs. JOIN 34
relational database design 4-9, 50
connecting related entities 106

257

entities 6
entities and attributes 73
implementation 156-174
overview 74, 104
overview of design process
55-60
primary keys 6
RDBMS (relational database
management systems) 8
related tables 25
security and optimization 176
SQL 8
tables 6
relational databases 5
data types 85-100
designing implementation
245-253
managing data and tables 35-42
overview 26
related tables 26-39
SQL, first query 9-11
relationships 103
among entities 232-244
requirement gathering, defined 56
requirements analysis 217
reserved keywords 77
RESTRICT action 165
review table 26
indexing for ER diagrams 200
review_time attribute 98, 100
RIGHT JOIN 46

scale 96

Second Normal Form (2NF) 139

security 176
and optimization 175
confidentiality 178-187
integrity 177

SELECT statement 11, 16, 17, 19,
77,93

SET NULL action 166

SHIPS R US database, implemen-
tation 245-253
constraints 246
optimization 249-253

258

Sixth Normal Form (6NF) 141

SMALLINT data type 91

SMEs (subject-matter experts) 62

spaceship manufacturer database,
entities and attributes 218-232
attributes 219, 223-228
communicating design 230
entities 218

SQL (Structured Query Language)
58
first query 9-11
learning on your own 42-45
queries 11-19

standard indexes 194-197

state attribute 115

state table 189, 192, 193

storage considerations 187-193
categorical data 192
redundant tables 188-192

street_address column 189

string data types 85-91

strong entities 129-136
identifying in database 130-136

index

suburb attribute 228

sum aggregate function 43
sum function 44

SUM function 14, 45
superkey 140

surrogate key 83

tables 6. See also specific tables
creating, altering and dropping
19-24
managing 35-42
temporal data types 98-100
testing 59
TEXT data type 86, 87, 90,
101
Third Normal Form (3NF) 139
TIME data type 98
TIMESTAMP data type 98
TINYINT data type 91
total_price attribute 97
transitive dependency 150-155

unique constraint 167

UPC (Universal Product Code)
82,94

update anomaly 28, 51

user_address entity 115,116

user table 189, 190, 191, 192

UTC (Coordinated Universal
Time) 99

VARCHAR data type 86
VARCHAR?2 data type 101
VARCHAR(15) 226
VARCHAR(255) 226

weak entities 129-136
identifying in database 130-136
WHERE clause 11, 12, 34, 46

Goal Achieved

Achievement & Skills Map

Skill Gained

Page Number

Foundational knowledge of |Proficiency in basic SQL queries, data manipula- |Page 4
SQL and relational concepts | tion, and table management
Relational database design | Ability to extract entities and attributes from Page 74
skills requirement analysis
Ability to identify the data types for attributes Page 85
Ability to identify relationships between entities | Page 104
and cardinalities of relationships
Normalization of relational | An understanding of different normal forms; Page 138
databases ability to normalize a given database design
based on the understanding of normal forms
Implementation of Ability to translate a database design to SQL code, | Page 156
relational databases implementing constraints according to the design
Database security Ability to take measures to secure a database, Page 176
such as encryption and access control
Database optimization Ability to take measures to optimize a database, |Page 193
such as indexing and denormalization
Use generative Al to speed | Ability to use accurate prompts to query genera- |Page 214

up database design

tive Al tools to design, optimize, and implement
databases iteratively

DATABASES

grokking
Relational Database Design

Qiang Hao ¢ Michail Tsikerdekis

Imost every business uses a relational database system.
AWhether you're a software developer, an analyst creat-

ing reports and dashboards, or a business user just
trying to pull the latest numbers, it pays to understand how a
relational database operates. This friendly, easy-to-follow book

guides you from square one through the basics of relational
database design.

Grokking Relational Database Design introduces the core
skills you need to assemble and query tables using SQL. The
clear explanations, intuitive illustrations, and hands-on proj-
ects make database theory come to life, even if you can’t tell a

primary key from an inner join. As you go, you’ll design, imple-

ment, and optimize a database for an e-commerce application
and explore how generative Al simplifies the mundane tasks of
database designs.

‘What's Inside

* Define entities and their relationships

* Minimize anomalies and redundancy

¢ Use SQL to implement your designs

* Security, scalability, and performance

For self-taught programmers, software engineers, data scien-

tists, and business data users. No previous experience with
relational databases assumed.

Dr. Qiang Hao and Dr. Michail Tsikerdekis are both profes-

sors of Computer Science at Western Washington University.
The technical editor on this book was Louis Davidson.

Cody Pham created the illustrations for this book.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

| | PARSNN

Qf

cC eBoo 4

See first page

“If anyone is looking to improve
their database design skills,
they can’t go wrong with this

book.”

—Ben Brumm, DatabaseStar

“Goes beyond SQL syntax and
explores the core principles.
An invaluable resource!”

—VWilliam Jamir Silva, Adjust

“Relational database design is
best done right the first time.
This book is a great help to

achieve that!”
—Maxim Volgin, KLM

“Provides necessary notions to
design and build databases
that can stand the data
challenges we face.”

—Orlando Méndez, Experian

ISBN-13: 978-1-63343-741-8

9 ‘

781633

1

437418

90000

	Grokking Relational Database Design
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the authors
	Part 1
Get started
	1 Introducing databases and SQL
	Overview
	Your first SQL query
	The basics of SQL queries
	Table and data management
	Recap

	2 Related tables and more SQL
	Overview
	Related tables
	Revisit table and data management
	Learn more SQL on your own
	Recap
	Overview

	3 Overview of database design
	Goals of database design
	Overview of the design process
	Key phases of database design
	Recap

	Part 2
Master database design
	4 Entities and attributes
	Overview
	Entities and attributes
	Keys
	Data types
	Recap

	5 Relationships
	Overview
	Entity-relationship diagrams
	Connect related entities
	Cardinality
	Strong and weak entities
	Recap

	6 Normalization and implementation
	Overview
	Normalization
	Implementation
	Recap

	7 Security and optimization
	Overview
	Security
	Storage considerations
	Indexing
	Denormalization
	Recap

	Part 3
Database design and AI
	8 Database design in the age of generative AI
	Overview
	Requirements analysis
	Entities and attributes
	Relationships among entities
	Implementation
	Recap

	index
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

