
Getting Started
with SQL and
Databases

Managing and Manipulating Data
with SQL
—
Mark Simon

Getting Started with
SQL and Databases

Managing and Manipulating Data
with SQL

Mark Simon

Getting Started with SQL and Databases: Managing and Manipulating Data
with SQL

ISBN-13 (pbk): 978-1-4842-9492-5		 ISBN-13 (electronic): 978-1-4842-9493-2
https://doi.org/10.1007/978-1-4842-9493-2

Copyright © 2023 by Mark Simon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Editorial Assistant: Mark Powers

Cover image designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Mark Simon
Ivanhoe VIC, VIC, Australia

https://doi.org/10.1007/978-1-4842-9493-2

To Sachiko. Thanks for your patience, forbearance, and trust.

v

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Chapter 1: ��Starting with SQL��� 1

Basic SELECT Statement�� 2

Case Sensitivity�� 3

Spacing��� 3

Clause Ordering�� 4

The Semicolon (;)�� 4

Selecting Specific Columns��� 5

Column Order��� 6

Layout��� 6

Using SELECT *��� 7

Calculated Columns�� 7

Aliases�� 8

Comments�� 9

Block Comments�� 10

Uses of Comments��� 10

Filtering Rows�� 11

Clause Ordering�� 12

Placing the Semicolon�� 13

Ordering the Results�� 13

Clause Order��� 14

Distinct Rows��� 15

Table of Contents

vi

Summary��� 18

Writing SQL��� 19

Columns�� 20

Comments�� 20

Filtering Data�� 20

Row Order��� 21

Clause Order��� 21

Coming Up�� 21

Chapter 2: ��Database�� 23

About the Sample Database��� 23

Database�� 24

Tables��� 26

Normalized Tables�� 27

Multiple Values��� 33

Summary�� 37

Coming Up�� 39

Chapter 3: ��Filtering Data��� 41

The WHERE Clause��� 41

Unrelated Assertions�� 44

All and Nothing��� 44

Dealing with NULL�� 45

Deliberately Ignoring NULLs��� 46

Finding NULLs��� 47

Numbers�� 49

Discrete vs. Continuous Values�� 49

Strings�� 52

Quotes�� 53

More on MySQL/MariaDB Modes�� 54

More on Double and Single Quotes�� 55

Case Sensitivity�� 57

Trailing Spaces��� 58

Table of Contents

vii

Filtering with String Functions��� 59

Handling Quotes and Apostrophes��� 61

Before and After Strings��� 62

Dates�� 63

Dates Are Not Strings��� 64

Alternative Date Formats�� 65

Date Comparisons�� 66

Filtering with a Date Calculation�� 69

Multiple Assertions�� 70

AND and OR�� 70

The IN Operator�� 76

Derived Lists��� 78

Wildcard Matches�� 81

Case Sensitivity and Patterns��� 83

Pattern Characters��� 84

Wildcards with Non-strings�� 87

Extensions to Wildcards��� 89

A Simple Pattern Match Example��� 91

Summary��� 92

NULL��� 93

Numbers��� 93

Strings�� 93

Dates�� 94

Multiple Assertions��� 94

The IN Operator�� 94

Wildcard Matches��� 94

Coming Up�� 95

Chapter 4: ��Ordering Results�� 97

Using the ORDER BY Clause��� 97

Sort Direction�� 99

Missing Data (NULL)��� 100

Table of Contents

viii

Data Types�� 102

Case Sensitivity and Collation�� 106

Multiple Columns��� 107

Interdependence of Columns�� 109

Sort Direction on Multiple Columns�� 110

Sorting by Calculated Columns�� 112

Limiting the Number of Results��� 115

Paging�� 116

Using LIMIT … OFFSET … (MySQL/MariaDB, SQLite, and PostgreSQL)������������������������������� 117

Using TOP (MSSQL)��� 117

Fetching a Random Row�� 118

Nonalphabetical String Order��� 119

Special Strings��� 120

Summary��� 121

Sorting with ORDER BY��� 121

Limiting Results�� 122

Sorting Strings�� 122

Coming Up�� 122

Chapter 5: ��Calculating Column Values��� 123

Testing Calculations��� 125

Emulating Variables��� 126

Some Basic Calculations�� 127

Basic Number Calculations�� 127

Basic String Calculations�� 128

Basic Date Calculations�� 129

Working with NULL��� 129

Using Aliases�� 135

Aliases Without AS�� 136

Awkward Aliases�� 138

Calculating with Numbers�� 140

Table of Contents

ix

Arithmetic Operators�� 140

Integers�� 141

Remainder�� 143

Extra Decimals�� 144

Mathematical Functions��� 145

Approximation Functions�� 146

Formatting Functions��� 147

Calculating with Dates��� 149

Simple Calculations�� 149

Age Calculations��� 151

Extracting Parts of a Date��� 153

Formatting a Date��� 155

Strings�� 160

Character Functions��� 161

Subqueries��� 165

The CASE Expression��� 169

Casting to Different Data Types�� 173

The cast() Function�� 174

Casting to a String�� 175

Casting Date Literals�� 177

Creating a View�� 177

Using Views in Microsoft SQL��� 180

Summary��� 181

Data Types�� 181

NULLs��� 181

Aliases�� 182

Subqueries��� 182

The CASE Expression�� 182

Casting a Value��� 182

Views�� 183

Coming Up�� 183

Table of Contents

x

Chapter 6: ��Joining Tables�� 185

How a Join Works�� 186

Joining the Tables��� 189

Alternative Syntax�� 189

Selecting the Results�� 191

Table Aliases��� 193

Developing a Price List�� 194

Join Types�� 195

The INNER JOIN�� 197

The LEFT OUTER JOIN and RIGHT OUTER JOIN��� 197

The “Preferred” Outer Join��� 199

Some Recommendations on JOINS�� 200

Finishing the Price List��� 201

Joining Many Tables��� 202

Building a Larger JOIN�� 204

Revisiting Some Subqueries��� 209

A More Complex Join��� 211

Using a Self-Join�� 216

Summary��� 220

Syntax��� 220

Table Aliases��� 220

The ON Clause�� 220

Join Types��� 221

Coming Up�� 221

Chapter 7: ��Aggregating Data��� 223

Counting Data�� 224

Counting Values�� 224

How Aggregates Work�� 225

Counting Selectively�� 226

Distinct Values��� 232

Table of Contents

xi

Summarizing Numbers�� 233

Bad Examples��� 235

Scales of Measurement�� 236

Aggregating Calculated Data��� 237

Other Aggregate Functions�� 239

Using Aggregates As Filters��� 240

Grouping�� 243

Using the GROUP BY Clause��� 245

GROUP BY vs. DISTINCT�� 250

Grouping with Multiple Tables�� 251

Redundant Groups��� 254

Preparing Data for Aggregating��� 256

Using CASE in a CTE��� 259

Using a Join in the CTE��� 260

Summarizing Strings�� 262

Filtering Grouped Results with HAVING�� 264

Using Results in a CTE�� 268

Finding Duplicates�� 269

Using Aggregates on Aggregates��� 272

Summary��� 275

Coming Up�� 276

Chapter 8: ��Working with Tables��� 277

How Tables Are Created��� 278

Creating a Table�� 279

Column Names��� 280

Data Type�� 281

Primary Keys�� 282

Constraints��� 284

NOT NULL�� 285

UNIQUE��� 286

DEFAULT�� 286

Table of Contents

xii

CHECK��� 287

Foreign Keys��� 287

Indexes��� 289

Adding Rows to a Table�� 290

Deleting Rows from a Table��� 292

Adding More Rows��� 294

Updating Rows��� 295

Altering the Table��� 297

DML in Real Life��� 299

Security�� 299

Front-End Software�� 300

Summary��� 301

Data Types�� 301

Constraints��� 301

Foreign Keys��� 302

Indexes��� 302

Manipulating Data�� 302

Chapter 9: ��Set Operations�� 303

Unions�� 303

Selective Unions��� 307

SELECT Clauses Must Be Compatible��� 309

Only Column Names from the First SELECT Statement Are Used��� 311

Sorting Results��� 312

Intersections�� 314

Differences��� 317

Some Tricks with Set Operations��� 321

Comparing Results��� 321

Virtual Tables�� 323

Mixing Aggregates�� 326

Summary��� 330

Table of Contents

xiii

��Appendix 1: Differences Between SQL Dialects��� 333

��Appendix 2: A Crash Course in PDO��� 341

��Appendix 3: Additional Notes�� 357

Index�� 369

Table of Contents

xv

About the Author

Mark Simon has been involved in training and education

since the beginning of his career. He started as a teacher

of mathematics but soon moved into IT consultancy and

training because computers are much easier to work

with than high school students. He has worked with and

trained in several programming and coding languages and

currently focuses mainly on web development and database

languages. When not involved in work, you will generally

find him listening to or playing music, reading, or just

wandering about.  

xvii

About the Technical Reviewer

Atul Tyagi is a database developer who has worked

extensively in the field of data analytics for over eight years.

He has worked with various industries, including general

insurance and banking domains, and has contributed

significantly to several projects involving reporting,

datamarts, automation, data model development, and

project migration.

Atul is skilled in SQL, SAS, Python, and ETL tools such as

Informatica, SAS DI, Datastage, and SAS Visual Analytics. His

expertise in these areas has helped numerous organizations

effectively manage and analyze their data, leading to

improved decision-making and business outcomes. Atul has worked with leading

companies such as Accenture Solutions, Wipro Pvt Ltd, Acxiom Technologies, and EXL

Services.

Apart from his professional work, Atul is also passionate about sharing his

knowledge, cloud platforms, and data analytics. In his free time, he enjoys reading,

traveling, and exploring new cuisines.

xix

Acknowledgments

The sample data includes information about classical paintings and their artists. This

information is an extract of the hard work that went into the WebMuseum

(www.ibiblio.org/wm/).

http://www.ibiblio.org/wm/

xxi

Introduction

In the distant past, data was managed by computers in all sorts of ways, and there was

no one way to do this. There still isn’t, which isn’t a bad thing, because not all data can

be handled the same way. There is, however, a large body of data which can be handled

in a common way, and the early 1970s saw the development of a set of mathematical

principles in the relational model.

Starting in a lab at IBM, software was developed to handle relational data, and a

language was developed to manage it. The language eventually became the Structured

Query Language. In the early days, different vendors had their own idea of how the

language should work, but this was eventually rolled into a standard. The standard has

grown over the decades, which means that the language is also growing.

Not all database vendors follow the standard to the same degree. Some standards

were late in coming, and database vendors filled in some gaps with their imagination.

Other standards are harder to implement than it looks, and some vendors are “still

working on it.” And sometimes, the vendor just wants to do something differently.

This book looks at using SQL for basic tasks. Mostly that means fetching data and

possibly processing it. There are many database packages available, all with their own

quirks, and all with their own variations of the SQL standard. This book covers a few of

the most popular packages and makes a point of showing not only what the standard

says but also how the individual packages do things.

We’ll also look at how databases are designed, but not because we’ll be designing

any. One of the big mysteries to any new SQL user is why do we do things this way or

that, and why is the data the way it is. By understanding some design principles, you’ll be

in a better position to know why.

In this book, we make no assumptions about your prior knowledge, except that you

have an idea what a table is. You have probably had some experience with spreadsheets

as well.

As to what you might do afterward, that depends. It might be your job to fetch data to

feed it into some sort of analysis or reporting software. You might do all of your analysis

in SQL directly, or you might write queries in a specialized database application. Or you

might be a web developer looking to manage a blog or an ecommerce site.

xxii

�The Sample Data
We’ll talk more about the sample data later in the book, but the book is based on a

sample database. You can sit in an armchair and read the book as it is if you like, but

you’ll probably want to work through the exercises.

To work through the exercises, you’ll need the following:

•	 A database server and a suitable database client.

•	 Permissions to do anything you like on the database. If you’ve

installed the software locally, you probably have all the permissions

you need, but if you’re doing this on somebody else’s system, you

need to check.

•	 The script which produces the sample database.

You can get a fresh copy of the script from

https://sample-db.net

and choose your options.

If that’s too much like hard work, you can use the following links to download

a script:

•	 PostgreSQL: https://sample-db.net/?dbmss[]=pgsql-10&db=prin

ts&br=crlf&refresh&download

•	 SQLite: https://sample-db.net?dbmss[]=sqlite-script&db=print

s&br=crlf&refresh&download

•	 MySQL/MariaDB: https://sample-db.net/?dbmss[]=mysql-ansi&d

b=prints&br=crlf&refresh&download

•	 Microsoft SQL: https://sample-db.net/?dbmss[]=mssql-16&db=pr

ints&br=crlf&refresh&download

•	 Oracle: https://sample-db.net/?dbmss[]=oracle-12&db=prints&b

r=crlf&refresh&download

These links are for current versions of the software. If you want older versions, visit

the preceding site.

Introduction

https://sample-db.net
https://sample-db.net/?dbmss[]=pgsql-10&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=pgsql-10&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=sqlite-script&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=sqlite-script&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=mysql-ansi&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=mysql-ansi&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=mssql-16&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=mssql-16&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=oracle-12&db=prints&br=crlf&refresh&download
https://sample-db.net/?dbmss[]=oracle-12&db=prints&br=crlf&refresh&download

xxiii

�Notes
Throughout the book, you’ll come across a few terms and a few expectations:

•	 MySQL and MariaDB are essentially the same; MariaDB is an

increasingly popular spin-off. With very few exceptions (as noted),

the code is interchangeable.

•	 The book makes a great deal of using MySQL/MariaDB in so-called

ANSI mode. This is easily done, as you’ll see in the book, and makes

working with standard SQL much easier.

•	 The Microsoft product will sometimes be referred to as Microsoft SQL

Server and sometimes as MSSQL for short. If you’re looking for T-SQL

(Transact SQL), it’s also the same thing.

Introduction

1

CHAPTER 1

Starting with SQL
If you’re new to database in general, and to SQL in particular, it can be a little daunting at first.

In this chapter, we’ll have a taste of SQL by looking at how we fetch data from a simple table.

In principle, you can choose to manage your data any way you want, and some

people do just that in spreadsheets or even in word processors. For serious data, that’s

not organized enough, so we rely on something more structured.

There is no one way to organize data, and not all data can be organized in the same

way. However, for much of the time, there is a popular way of organizing the data for

which the SQL language has been developed. Software that manages a database is often

referred to as Database Management System that’s quite a lot to say every time, so we’ll

refer to it as DBMS.

An SQL database is a collection of one or more tables. Each table is a collection of

one type of data. Some of the tables in the sample database are

•	 Customers

•	 Paintings

•	 Artists

We will have a closer look at the structure of the database later, but the important

thing at this point is that the data is not mixed up. For example, the customers table has

all of the information about customers, and nothing else.

Each table contains rows and columns. A row is one instance of the data. For

example, each row in the customers table represents one customer. A column has

a detail of the row. For example, the customers table has separate columns for the

customer’s email address, phone number, and so on.

Of course, there’s more to a database than that, and Chapter 2 will focus on these

ideas more thoroughly.

In this chapter, we will explore the contents of one table, the customers table, using

the SELECT statement, which is the basic command to fetch data. Along the way, you’ll

see how the results can be filtered, recalculated, and sorted.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_1

https://doi.org/10.1007/978-1-4842-9493-2_1

2

Everything we cover here will be covered in more detail in later chapters, so you can

take a fairly relaxed approach to what we’re doing in this chapter.

If you run the following sample code, your results may not be exactly the same.
This is because the sample data, which is randomized, may not be the same as
the data used in the book. You may also find differences in the way DBMSs present
unsorted data.

�Basic SELECT Statement
To read data from a table, you use SELECT:

SELECT * FROM customers;

You’ll get a result similar to Table 1-1.

Table 1-1.  Results

id familyname givenname email registered

474 Free Judy judy.free474@example.net … 2022-06-12

186 Gunn Ray ray.gunn186@example.net … 2021-11-15

144 King Ray ray.king144@example.net … 2021-10-18

179 Inkling Ivan ivan.inkling179@example.com … 2021-11-08

475 Blood Drew drew.blood475@example.net … 2022-06-13

523 Sights Seymour seymour.sights523@example.net … 2022-07-11

~ 304 rows ~

This is called a SELECT statement and will fetch all the rows from the

customers table.

Statements usually comprise two or more clauses. In this case, they are the SELECT

clause and the FROM clause.

Chapter 1 Starting with SQL

3

Note 

•	 SELECT doesn’t mean display, although the database client doesn’t know what

else to do with the results. Other software might simply fetch the data to be

further processed.

•	 The * doesn’t mean all rows. It is a shorthand for all columns of the table.

•	 Most of what we’ll be doing will involve a SELECT statement.

�Case Sensitivity
The SQL language is case insensitive, meaning that you can type the statement in upper

or lower case:

select * from customers;

•	 It is traditional to use UPPER CASE for keywords (SELECT and FROM)

to highlight them, but it’s not so important when you have color

highlighting.

•	 It is also traditional that table and column names be entered in lower

case, but most DBMSs don’t really care.

This book will use UPPER CASE for keywords, but you don’t have to.

�Spacing
Although a simple statement might easily fit on one line, you can add as many line

breaks and extra spaces or tabs as you like:

SELECT

 *

FROM customers;

The most important thing is to keep your code readable and to use spacing to help in

managing the statement.

As the book progresses, there will be more recommendations on layout. However,

these are recommendations only, as SQL will work just as well with minimal spacing.

Chapter 1 Starting with SQL

4

�Clause Ordering
The original proposed name for SQL was SEQUEL, Structured English Query Language.

The idea was that the syntax would resemble the English language.

This has led to a syntax quirk. For example, if you say

Get the Milk

From the Refrigerator

you first go to the refrigerator and then get the milk. That is, From is processed

before Get.

Similarly, in the SELECT statement, the FROM clause is processed before the

SELECT clause.

However, you cannot write the statement that way:

•	 You must write SELECT … FROM … ;.

•	 It means FROM … SELECT … ;.

Later, you will see additional clauses and where they fit in.

In this simple example, the fact of the clause order is not important. However, later,

the clause order will explain why some more complex examples don’t work the way you

would expect.

�The Semicolon (;)
The SQL standard requires a semicolon ; at the end of each statement. You can break

up the statement over many lines, but the semicolon then marks the eventual end of the

statement.

•	 Most DBMSs will allow you to ignore the semicolon if there is a single

statement. However, you will at least need a semicolon between

multiple statements.

•	 Microsoft SQL will also allow you to omit semicolons for multiple

statements, unless you have them on one line, but even Microsoft

doesn’t think that’s a good idea (see https://docs.microsoft.com/

en-us/sql/t-sql/language-elements/transact-sql-syntax-

conventions-transact-sql#transact-sql-syntax-conventions-

transact-sql).

Chapter 1 Starting with SQL

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-syntax-conventions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-syntax-conventions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-syntax-conventions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-syntax-conventions-transact-sql

5

We recommend that you always use semicolons, even for a single statement or for

Microsoft SQL. This way, you make sure that your code is less prone to errors.

�Selecting Specific Columns
The star character * is a shorthand for selecting all columns from the table. You can

specify one or more columns instead:

SELECT id, givenname, familyname

FROM customers;

This gives you Table 1-2.

Table 1-2.  Results

id givenname familyname

474 Judy Free

186 Ray Gunn

144 Ray King

179 Ivan Inkling

475 Drew Blood

523 Seymour Sights

~ 304 rows ~

This selects three columns; it still selects all rows.

The column list is separated by commas:

•	 The columns do not have to be in the original order.

•	 You can skip any columns you like.

•	 Note that in this case the givenname and familyname order is reversed

and that the email column is omitted.

•	 The space after the comma is optional: include it if you think it makes

it more readable.

Chapter 1 Starting with SQL

6

•	 The comma is a separator: don’t put a column after the last column,

as SQL will expect another column.

This is a common mistake:

SELECT id, givenname, familyname, -- extra comma

FROM customers;

It’s a good idea to always specify the columns, even if it’s all of them.

�Column Order
The default column order, which you see with SELECT *, is defined when the table is

created. You may not be able to change it, even if you have permission.

In SQL, there is no correct column order, and there is no performance difference if

you select in a different order. That is, there is no preferred column order, so you choose

the order which best suits your needs, either for presentation or to feed into another

application.

�Layout
With a growing column list, it makes sense to lay the columns out more creatively:

SELECT

 id,

 givenname, familyname

FROM customers;

As mentioned before, the actual spacing is insignificant, so the preceding example

uses spacing to make the statement more readable.

•	 The column list is vertical rather than inline.

•	 The column list is indented from the SELECT command to show that

they are part of the same clause.

•	 givenname and familyname are on the same line to show that

conceptually they are related to each other.

You will find layout easier to maintain if you remember to use the tab key.

Chapter 1 Starting with SQL

7

Also, as mentioned before, you can use any spacing you like; just make sure that the

statement is as readable as possible.

�Using SELECT *
It is considered bad practice to use SELECT * in real life, even if you really want all of the

columns; always specify all of the columns. This is because

•	 You get no control over the column order of the results.

•	 A change in the underlying table structure might lead to different

results next time.

However, in this book, you will see SELECT * used very often:

•	 SELECT * is a good way of exploring a table.

•	 Many examples will focus on new clauses, so the actual columns

selected are not relevant.

Just remember that when using SQL in earnest, you should always list the actual

column names.

�Calculated Columns
The selected columns don’t have to be the original columns. They can be derived from

one or more columns. Among other things, this means that the table never needs to keep

variations on a value since it can always be recalculated when the time comes.

For example:

SELECT

 id, givenname, familyname,

 height, -- height in centimetres

 height/2.54 -- height in inches

FROM customers;

Table 1-3 shows the results.

Chapter 1 Starting with SQL

8

Table 1-3.  Results

474 Judy Free

186 Ray Gunn 163.8 64.488…

144 Ray King 176.8 69.606…

179 Ivan Inkling 170.3 67.047…

475 Drew Blood 171.0 67.323…

523 Seymour Sights 167.3 65.866…

~ 304 rows ~

In the customers table, height is measured in centimeters. For those who prefer a

legacy measurement, you can convert to inches by dividing by 2.54.1

It would have been a mistake to design a table with both centimeters and inches.

Tables should never have a column which is basically the same as another in disguise. As

you see, you can always recalculate the other value.

�Aliases
When experimenting with a SELECT statement, you can leave calculations as they are, but

you will notice that the result will have a missing or dummy name.

When taking your SELECT statement seriously, you will need to give calculated

columns a distinct name:

SELECT

 id, givenname, familyname,

 height as centimetres,

 height/2.54 as inches

FROM customers;

Now you have the results in Table 1-4.

1 Apparently, only three countries haven’t yet officially adopted the metric system: Myanmar,
Liberia, and the United States. However, the United States has long adopted the metric system as
the basis for customary units. In this case, the old inch is now fixed at exactly 2.54 cm.

Chapter 1 Starting with SQL

9

Table 1-4.  Results

id givenname familyname centimetres inches

474 Judy Free [NULL] [NULL]

186 Ray Gunn 163.8 64.488…

144 Ray King 176.8 69.606…

179 Ivan Inkling 170.3 67.047…

475 Drew Blood 171.0 67.323…

523 Seymour Sights 167.3 65.866…

~ 304 rows ~

As you see, you can also alias uncalculated columns if you feel the need to make the

point clearer.

You will see more on calculated columns and aliases later.

�Comments
In an elaborate script, it is useful to include comments about what is going on. A

comment is any text which will be ignored by SQL, but is meant for humans to read.

You’ve already seen a few comments in the previous examples. The standard

comment is text following the -- characters, until the end of the line:

SELECT

 id, givenname, familyname,

 height/2.54 as inches -- 1in = 2.54cm

FROM customers;

The preceding comment is to explain why we are dividing by 2.54.

Strictly speaking, the -- must be followed by a space. However, most, but not all,

DBMSs will allow a tab instead of a space, and some, but not all, DBMSs don’t require

spacing character:

-- This is a standard comment (space)

-- This uses a tab, and will probably work, but not necessarily (tab)

--This may also work

Chapter 1 Starting with SQL

10

You will find out soon enough which variations work for your DBMS. Usually,

comments are highlighted in a different color.

�Block Comments
Most DBMSs also support an unofficial block comment:

/* block comment */

This style is also known as the C-style comment because of its use in the C

programming language.

The block comment begins with the /* combination and ends with the reverse */

combination. It can span multiple lines or take up just part of a line.

/* This is an introductory SELECT statement

 The rest of the book will go into more detail */

 SELECT

 id,

 /* name: */ givenname, familyname

 FROM customers;

Normally, you should avoid non-standard SQL features, since you never know what

the future holds. However, this one is so widely supported that you can regard it as

simply a missing feature supplied unofficially.

�Uses of Comments
Since SQL completely ignores comment text, you can write anything you like, even if it

amounts to gibberish. However, the following are common uses of comments:

•	 Explain something which is not obvious in code

•	 Act as section headers in complex scripts

•	 Temporarily disable some code

Here is an example with different uses of comments:

/* SQL Sampler

Chapter 1 Starting with SQL

11

 ==

 This is an introductory SELECT statement

 The rest of the book will go into more detail

 == */

 SELECT

 id,

 -- email,

 givenname, familyname,

 height/2.54 as inches -- 2.54 cm = 1 inch

 FROM customers;

In the preceding example, the email column is disabled, the inches column is

explained, and the whole script is preceded by a header comment block. The actual

query is also indented for good measure.

Normally, if you want to disable code, you simply delete it. Using a comment

instead is called commenting the code out. The reasons why you would comment code

out include

•	 Testing or troubleshooting

•	 Leaving it there as an option, subject to further consultation

•	 Using it as an alternative to other code

As regards explanatory code, don’t overcomment. Only explain what isn’t obvious.

Saying too much is like the boy who cried wolf. As a rule, others will simply tune out.

�Filtering Rows
Often, you don’t want all rows of a table, but only some of them. The WHERE clause is used

to decide which rows to select:

SELECT

 id,

 givenname,familyname,

 height/2.54 AS inches

FROM customers

WHERE state='NSW';

Chapter 1 Starting with SQL

12

This time, you get what’s in Table 1-5.

Table 1-5.  Results

id givenname familyname inches

474 Judy Free [NULL]

144 Ray King 69.606…

341 Val Idate 69.724…

351 Dick Tate 66.063…

429 Tom Morrow 61.772…

234 Nat Ering 67.638…

~ 67 rows ~

The expression state='NSW' is called an assertion and is either true or false. The

WHERE clause selects only those rows where the assertion is true.

Note the single quotes ' … ' around the NSW. In SQL, text values are called strings

and are enclosed in single quotes. Don’t use double quotes " … " because most DBMSs

will interpret double quotes differently. Also, note that the string is in UPPER CASE,

which matches the data in the customers table. In some DBMSs, you can also use lower

case, but not in others.

You will learn more about strings later in the book.

�Clause Ordering
The WHERE clause is evaluated after FROM, but before SELECT:

SELECT …

FROM …

-- SELECT processed here!

WHERE … ;

In English, this reads as

	 1.	 Start with the table.

	 2.	 Filter some rows.

Chapter 1 Starting with SQL

13

	 3.	 Select some columns.

Remember, however, that you must write the SQL in the preceding order.

�Placing the Semicolon
When developing your code, it is easy to make the following mistake:

SELECT *

FROM customers;

WHERE state='NSW' -- oops

This is because you have correctly ended the previous version with a semicolon and

simply added a new clause after it. While you are developing your code, it may be helpful

to put the semicolon on a separate line:

SELECT *

FROM customers

WHERE state='NSW'

;

This makes it easier to add the additional clauses as you go. You can always tidy up

the semicolon when you have finished everything.

�Ordering the Results
Mathematically speaking, a table is a set of rows. Among other things, this means that

row order is insignificant.

Some DBMSs will output the results in the same order they were added. Some

DBMSs will output them in a seemingly random order, depending on how the data is

managed internally.

The SQL standard makes a point of not telling a DBMS how to do its job, and the only

guarantee is that row order is not guaranteed, that is, unless you force the issue.

The ORDER BY clause puts the results in a specified order:

SELECT

 id,

 givenname, familyname,

Chapter 1 Starting with SQL

14

 height/2.54 as inches

FROM customers

WHERE state='NSW'

ORDER BY familyname, givenname;

The results will appear in Table 1-6.

Table 1-6.  Results

id givenname familyname inches

44 Helen Back 67.913…

162 Ginger Beer 70.039…

99 Minnie Bus 65.315…

270 Mary Christmas 65.118…

487 Horace Cope 68.622…

419 Barbie Cue 62.520…

~ 67 rows ~

In this example, you order the results by familyname and, in the event of a tie, by the

givenname.

You can order by one or more columns, in ascending or descending order.

Strictly speaking, the result is no longer a set, as a set is unordered. In some cases,

you won’t be able to do any more processing once the ORDER BY clause is used.

You will learn more about the ORDER BY clause later.

�Clause Order
The ORDER BY is both written and evaluated last:

SELECT …

FROM …

WHERE …

-- SELECT processed here

ORDER BY … ;

Chapter 1 Starting with SQL

15

In English, this reads as

	 1.	 Start with the table.

	 2.	 Filter some rows.

	 3.	 Select some columns.

	 4.	 Finally, sort the results.

Remember, however, that you must still write the SQL in the preceding order.

�Distinct Rows
Sometimes, you will need to interpret what somebody asks for. For example, if you want

a list of email addresses, the following would do the job:

SELECT email FROM customers;

The results in Table 1-7 are reasonable enough.

Table 1-7.  Results

email

judy.free474@example.net

ray.gunn186@example.net

ray.king144@example.net

ivan.inkling179@example.com

drew.blood475@example.net

seymour.sights523@example.net

~ 304 rows ~

On the other hand, if you want a list of states, the following is probably not what

you want:

SELECT state FROM customers;

The results in Table 1-8 are not so reasonable.

Chapter 1 Starting with SQL

16

Table 1-8.  Results

state

NSW

VIC

NSW

WA

QLD

VIC

NSW

NSW

QLD

TAS

~ 304 rows ~

You will, of course, get a list of all of the state values (as well as a few NULLs which

represent missing values). However, you probably don’t want the duplicates. If you want

one of each, you will need to use DISTINCT:

SELECT DISTINCT state FROM customers; -- one of each

The results in Table 1-9 are probably more reasonable.

Chapter 1 Starting with SQL

17

Table 1-9.  Results

state

WA

[NULL]

TAS

VIC

NSW

NT

QLD

SA

~ 8 rows ~

Using DISTINCT treats each value not as an individual value but as a group. You can

say that you now have the state groups.

Note that one of the groups is NULL, meaning that you also have some missing states.

The DISTINCT operator acts only on what is in the SELECT clause. If you add the town

column as well:

SELECT DISTINCT state, town FROM customers; -- one of each

You’ll get results like Table 1-10.

Chapter 1 Starting with SQL

18

Table 1-10.  Results

state town

SA Windsor

[NULL] [NULL]

VIC Belmont

SA Alberton

NSW Hamilton

WA Wattle Grove

VIC Stirling

VIC Gordon

TAS Beaconsfield

SA Richmond

~ 79 rows ~

Here, you will get distinct combinations of state and town. In the result set, it’s not

the state which is distinct nor the town—it’s the combination. We can say that we now

have state/town groups.

Again, you will see the NULL as a separate group. In this set of data, there is no state

without a town and vice versa, which is why there’s only one group with NULLs.

�Summary
Here is a sample of the SQL we have been developing:

/* SQL Sampler

 ==

 This is an introductory SELECT statement

 The rest of the book will go into more detail

 == */

Chapter 1 Starting with SQL

19

 SELECT

 id,

 -- email,

 givenname, familyname,

 height/2.54 as inches -- 2.54 cm = 1 inch

 FROM customers

 WHERE state='NSW'

 ORDER BY familyname,givenname;

This illustrates the main parts of an SQL SELECT statement, as well as the use of

comments and layout.

The basic SELECT statement is

SELECT columns

FROM table;

Note that SELECT is evaluated after FROM.

�Writing SQL
SQL is a simple language which has a few rules and a few recommendations for

readability.

•	 SQL is relaxed about using extra spacing. You should use as much

spacing as required to make your SQL more readable.

•	 Each SQL statement ends with a semicolon (;).

•	 The SQL language is case insensitive, as are the column names. Table

names may be case sensitive, depending on the operating system.

Remember, some parts of the language are flexible, but there is still a strict syntax to

be followed.

Chapter 1 Starting with SQL

20

�Columns
The SELECT statement will select one or more columns of data from a table.

•	 You can select columns in any order.

•	 The SELECT * expression is used to select all columns.

•	 Columns may be calculated.

•	 Calculated columns should be named with an alias; noncalculated

columns can also be aliased.

Remember that in well-written SQL statements, you shouldn’t use SELECT * for your

columns. However, in this book we’ll use it to focus on the new clauses.

�Comments
A comment is additional text for the human reader which is ignored by SQL.

•	 SQL has a standard single-line comment: -- etc

•	 Most DBMSs also support the non-standard block comment: /* … */

•	 Comments can be used to explain something or to act as section

headers. They can also be used to disable some code as you might

when troubleshooting or testing.

Remember to use comments sparingly, only when they actually tell the reader what

they need to know.

�Filtering Data
Rows can be filtered with a WHERE clause.

•	 Sometimes, the filter results in no rows at all; this is not an error.

•	 When filtering strings, the values may or may not be case sensitive,

depending on the DBMS and the actual database.

The WHERE clause can be used to return a single row, which is known to be unique, or

a subset of rows. Occasionally, you’ll get nothing which matches the criterion.

Chapter 1 Starting with SQL

21

�Row Order
SQL tables are unordered collections of rows.

•	 Row order is insignificant and may be unexpected.

•	 You can sort the results using an ORDER BY clause.

Technically, once you use ORDER BY, the result is not a true set. Often, that doesn’t

matter, but some operations can’t be performed after ORDER BY.

�Clause Order
The four main clauses so far are written in this order:

SELECT columns

FROM table

WHERE conditions

-- SELECT is evaluated here

ORDER BY columns

The SELECT clause is the last to be evaluated before the ORDER BY clause.

�Coming Up
This has been a simple sampler of how SQL works. In the following chapters, you’ll see

more details on the individual clauses as well as how to work with multiple tables, how

to calculate and summarize data, and how to make simple changes to the data.

Before that, however, we’ll have a look at how SQL databases are structured.

Chapter 1 Starting with SQL

23

CHAPTER 2

Database
In Chapter 1, you had a taste of using SQL to extract data from a database. We were

a little bit in the dark there, since we weren’t fully informed about what was in the

database. Sadly, that’s often the case in real life, but here we’ll get a better look at the

databases itself.

In this chapter, we’ll look at what’s going on. This will be on two fronts:

•	 You’ll learn a little about the theory and practice of database design:

Why is it the way it is?

•	 You’ll also learn about the details of the sample database itself: What

specifically is in this database?

The theory part won’t be too heavy. You’ll learn about tables, which are the basic

structure of all data, and the rules of so-called normal tables: how data is structured to

be as simple and reliable as possible. You’ll also look at how we manage working with

multiple values.

The sample database follows a typical design, even if it’s quite a small database. It

will have enough to make it worth searching and analyzing. More to the point, it will

have a bit of everything we need to explore.

�About the Sample Database
For the sample database, we will imagine an online store selling printed copies of

famous artworks.

To manage the store, we will need (at least) the following tables:

•	 A table of customers which will hold the customer details.

•	 A table of paintings with some details of the paintings available. This

is not a stock table, since the paintings will be printed on demand.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_2

https://doi.org/10.1007/978-1-4842-9493-2_2

24

•	 One detail of the paintings is the artist. We do not store the artist’s

details in the paintings table. Instead, there is a separate table, and

the painting has a reference to the artist.

•	 A table of artists, referred to in the preceding paintings table.

•	 Two tables to manage the sales: a sales table to manage a customer

purchase and a saleitems table to manage the individual items

in a sale.

Figure 2-1 will give you a good idea of how the database is structured.

Figure 2-1.  The Sample Database

In this chapter, we’ll have a look at some of the ideas that go into designing a

database, and we will also get a closer look at the sample database for the exercises.

�Database
SQL databases are based on the theory of Relational Database. In turn, this is based on

some important mathematical concepts, including Sets and Logic.

An important principle of Relational Database is this:

There is one unique place for each item of data.

In particular, this means

•	 Data is never repeated.

Chapter 2 Database

25

•	 There is never any ambiguity as to where to place or find an item

of data.

In theory, SQL databases are a limited version of “pure” Relational Databases. For

this reason, we will refer to them more specifically as SQL databases.

�Database Terminology

We’ll try not to get too pedantic on terminology, but some terms are important to make

things clear.

A database is a collection of data. In theory, this data can be managed any way you

like, such as in word processing documents or record cards or on notches on pieces of

wood. Here, of course, we’re talking about managing the data on a computer system.

A DBMS is the software that manages the data. There are, of course, many DBMSs

available, and this book accommodates some of the more popular ones.

SQL, or Structured Query Language (officially, it is pronounced as it is spelled), is the

language used to communicate with the database. There is an official ISO standard, but

all DBMSs have variations on this standard.

Some users try to pronounce it as SeQueL, which was earlier proposed as its official

name. Due to a naming conflict with other software, in the end it was just called SQL. If

you like, you can also pronounce it as SQuaLl, SQueaL, SQueLch, or SQuaLlid.

�Data vs. Value

What is your given name? We will refer to your given name as an item of data. The

answer to the question, however, will be referred to as its value.

Think of data as a placeholder (such as a box on a form) and a value as the contents

of the placeholder.

To say that data is never repeated means that there is only one placeholder for your

name: there are no duplicates.

On the other hand, values may be duplicated. There is nothing stopping another

person from having the same name as you. However, that would be regarded as a

coincidence in its technical, nonmysterious sense.

More importantly, changing the value of your name places no obligation on the

other person to do the same. Values are independent of each other.

Chapter 2 Database

26

�Tables
An SQL database is a collection of distinct tables. Each table describes a type of data,

such as a customer or a painting.

For example:

SELECT * FROM customers;

SELECT * FROM paintings;

When you run the preceding code, you will find that the customer table has nothing

to say about paintings, and vice versa.

�Table Terminology

SQL uses the language of tables, and tables have rows and columns.

•	 A table is a collection, such as a collection of customers.

•	 A row is an instance or member of that collection, such as one of the

customers.

•	 A column is a detail of the members, such as the date of birth of the

customer.

You will sometimes see some other words used to describe the data, but they are not

the language of SQL. Table 2-1 shows some of the alternative terminology used for some

of the concepts.

Table 2-1.  Alternative Names

Relational Database SQL Other

Collection Relation Table File

Instance Tuple Row Record

Detail Attribute Column Field

In particular, avoid using the terms Record and Field in the company of other SQL

developers, as they will tend to look down their noses at you. On the other hand, the word

Field in particular does sometimes appear in official documentation, so it’s not quite so bad.

In this book, we will use the standard SQL terminology. You will sometimes see the

word record used in its original sense, that of saving information.

Chapter 2 Database

27

�Normalized Tables
In principle, you could organize your data table any way you want, but if you want your

data to be as maintainable as possible, it needs to follow some rules.

The following rules are not there just to make the game more interesting. The rules

will result in tables where data is in its simplest, most dependable form. Mathematicians

refer to this form as its normal form.

Overall, the goal of normalization is to ensure that every piece of data has exactly one

place. There should be no repetitions and no ambiguity.

As you’ll see, this often results in creating additional tables, so the data you’re

looking for may be spread all over the place. That can be inconvenient. Later, when we

look at joining tables, we’ll see how we can manage this inconvenience.

Database theory defines a number of levels of normalization, but most of the

principles are covered in the following text.

In real life, you’ll find that database developers often relax some of these principles

to avoid spreading the data in too many places, making even the simplest query a

challenge. However, that always risks making the data less reliable.

�Data Is Atomic

If you select

SELECT

 id,

 givenname, familyname

FROM customers;

you will note that the given name and family name are in separate columns. This

makes it easier to sort the data and to search for it.

Data should be in its smallest practical unit. If it is, we say that the data is atomic,

from a Greek word meaning that it can’t get any smaller.

Note the word “practical” earlier. You could try the same thing with the email

address:

SELECT

 id,

 email

FROM customers;

Chapter 2 Database

28

You could possibly argue that the email address could be broken down further into

two parts: user@host. If you really want to, go ahead. However, most would argue that

this is getting carried away, since you will probably never use the parts separately.

On the other hand, if you really need to group customers by their email host, such as

for filtering or sorting purposes, then the email address should indeed be separated into

two columns.

Deciding whether data should be further separated is one of the skills of the

experienced database developer.

�Columns Are Independent

When you select multiple columns:

SELECT

 id,

 givenname, familyname,

 phone,

 dob

FROM customers;

one thing you will notice is that the value in one column offers no clue to the value

in another column. Knowing your date of birth, for example, tells us nothing about your

phone number. Further, changing your date of birth doesn’t require a change in your

phone number.1

This is a key factor to maintaining “clean” data. It means you can maintain a single

item of data without affecting anything else.

1 Remember, a database stores data, not information. Although your actual date of birth is
unlikely to change, unless we have a dramatic change to the calendar, the data storing this may
well change. The most obvious reason is to correct a data entry error.

If you happened to live in England in 1752, when they adopted the Gregorian calendar, nearly
200 years after it was introduced in Europe, your date of birth might indeed have changed. Before
then, there was a date discrepancy of over a week between England and Europe. When England did
adopt the Gregorian calendar, there was a sudden jump from September 3 to September 13, and
your date of birth may well have been affected.

Chapter 2 Database

29

Not all tables strictly follow this rule. For example:

SELECT

 id,

 givenname, familyname,

 street,

 town, state, postcode

FROM customers;

If the customer changes their address, you will probably have to update four items

of data (street, town, state, and postcode). On top of that, changing the postcode may

well dictate the state and town. Clearly, these three are not independent of each other.

Even the street is limited: the same street name may or may not exist in the next town,

but the street number may still be wrong.

This is a weakness in the design of the sample customers table. The correct approach

would involve another table of locations, so that the customers table contains a single

reference to one of the locations.

Sometimes, we can get away with a loose design, but that won’t be forever. At some

point in the future, a customer’s address will have been partially updated, and your data

will have lost some reliability.

For now, we’ll stick to this loose design and hope for the best. This is because getting

a complete list of all possible addresses is too difficult.

�Columns Are of a Single Type

If you examine a date column:

SELECT

 id, givenname, familyname,

 dob

FROM customers;

you will notice that all the values in the dob column are, of course, dates. By design,

the dob column will only accept dates, not numbers or strings or any other type of data.

Chapter 2 Database

30

In SQL, each column is assigned a single type.2 The only values you can enter must

be compatible with that type.

There are a number of advantages to this principle:

•	 Limiting the data type affords a little validity checking; for example, a

number or a string would be invalid for a date of birth.

•	 When you need to process the data, such as calculating the age from

the date of birth, SQL doesn’t have to handle the sorts of errors you

get from inappropriate data, because there isn’t any.

•	 When sorting data, the data type will affect the results. You will see

more of this in Chapter 4 on sorting.

There are a few disadvantages too. For example, with dates:

•	 You can’t vary the level of detail, such as recording just the year or

including the time in a date column.

•	 You can’t have text, such as “a long time ago” or “year of the

aardvark,” in a date column.

In Relational Theory, acceptable values for an item of data are referred to as its

domain. For example:

SELECT

 id,

 givenname, familyname,

 state

FROM customers;

The value of state is a string, which in theory could be any string, but really should

be limited to legitimate state name abbreviations.

2 The most conspicuous exception to this is SQLite. You may or may not assign a type to a column,
but you can still go ahead and add data of any other type. You can even make up your own
type, which will be politely ignored. Instead of enforcing data typing, SQLite uses what is called
Type Affinity which is how SQLite will attempt to interpret the data, if possible, when it’s being
processed. The expectation is that the host application will do all of the type checking.

Chapter 2 Database

31

�Rows Are Unordered

More realistically, row order is not significant.

If you simply select from the table:

SELECT *

FROM customers;

there is no guarantee what order the rows will be in. In database theory, that’s

perfectly fine, since a collection is unordered.

The SQL standard makes a point of not saying anything about row order. In particular

•	 The data itself may be stored in any order the DBMS sees fit.

•	 The data may be returned in any order the DBMS sees fit.

With some DBMSs, the data may appear to be in a random order. With some,

however, it may be in insertion order: the order in which the data was added. However,

the actual order will depend on how the data has been processed as well as how the data

has changed.

Of course, you can always impose your own order using the ORDER BY clause.

�Rows Are Unique

If you simply select from the table:

SELECT *

FROM artists;

you will see that no artist appears twice. If your first experience with data

management is through a spreadsheet program, you may well find accumulated multiple

copies of artists, since cross-referencing is not a strong point with spreadsheets.

In a well-managed database, each artist is recorded only once, and multiple

paintings can then refer to a single artist.

Of course, there will be errors; for example, an artist may have been registered twice.

Remember the database doesn’t really know what’s happening, so there will need to be

some human intervention to ensure that this doesn’t happen.

Chapter 2 Database

32

SQL does offer some help to maintain uniqueness:

•	 Each table should define a primary key column, which is a unique

identifier. In principle, even if all other details are the same, the

primary key can distinguish between them.

•	 Some columns can have a unique constraint added, which will

disallow accidental duplicates. For example, you could argue that

a customer’s email address should never be repeated, so there is a

unique constraint on that column.

In Chapter 8 on working with tables, you’ll see that you can build a variety

of additional requirements, known as constraints. For now, the primary key and

uniqueness attributes are important.

�Rows Are Independent

If you simply select from the table:

SELECT *

FROM artists;

you will see that details for one artist have no bearing on details for another artist.

What goes on in one row stays in that one row.

That’s not to say that multiple artists can’t have some of the same details. For

example, both Rembrandt and Van Gogh are listed with a Dutch nationality. However,

if you were to decide that Van Gogh should be listed as, say, French, that will have no

impact on Rembrandt’s nationality.

This isn’t completely true of the customers table, however. If the postcode matching

one town were to change, it probably means that other customers in the same town will

need to be updated. That is why the location really should have been in a separate table.

�Column Names Are Unique

This goes without saying. You can’t have two columns with the same name; otherwise,

there is no way of reliably identifying the column.

With a well-formed table, that shouldn’t be a problem, but there’s sometimes a little

uncertainty as to how to handle multiple values. We’ll see later how multiple values are

properly handled.

Chapter 2 Database

33

�Columns Are Unordered

When you select from a table, of course you will get the result in some row order and

some column order. However, as with row order, column order is not significant. Unlike

row order, however, column order isn’t entirely unpredictable.

For example:

SELECT *

FROM customers;

If you use SELECT *, you will get the columns in the order defined either when the

table was created or when the table structure was subsequently altered.

SELECT id, givenname, familyname, dob, email

FROM customers;

If you specify columns, you will, of course, get the columns in the specified order.

The point is that the database has no preferred column order, and you can select

them in any order without affecting the significance of the results.

SQL allows you to add additional columns after the original design. Sometimes, it is

tricky or even impossible to add these columns at arbitrary locations, so you may find the

newly placed columns at the end. That’s not always convenient, but at least it doesn’t matter.

�Multiple Values
One of the principles of a well-formed table deals with multiple values. For example:

•	 How do you manage multiple phone numbers for customers?

•	 How would you manage books with multiple authors?

Two mistakes which should be avoided are

•	 Putting multiple values in a single column, possibly separated with a

comma or semicolon

You saw earlier that data should be atomic. This would violate that

principle and will make searching and sorting impractical. Later,

you will want to group data together, and using multiple values

like this will make that impossible.

•	 Having multiple columns for the multiple values, such as phone1,

phone2, etc.

Chapter 2 Database

34

There is no longer an unambiguous location for an item of data

in that you can’t be sure which column it’s in. Further, you will

invariably end up with some empty columns and possibly with

not enough in some cases.

There may be a case where multiple columns might be used if there is a clear

distinction between them. For example, for customers, you might record a mobile phone

number, a landline number, and a fax (remember faxes?) number. They’re all phone

numbers, but they’re different enough to be unambiguous.

�Using Related Tables

In the sample database, we see this problem a few times:

•	 Sales can have multiple sale items.

•	 Artists can have multiple paintings.

•	 Customers can have multiple sales.

In all cases, the solution is the same: another table. For example, to manage multiple

sale items, there is an additional table, saleitems, for each sale item. The key to making

it work is that all of these sale items have a reference to a sale.

�Example: Paintings and Artists

As we mentioned earlier, we have the situation that one artist can have painted many

paintings. To put it another way, many paintings are by the same artist. It’s really the

same problem, looking at it from two different directions.

The way you look at the problem will depend on the purpose of the database. For

example, if you were managing the artist agency, then your main interest will be in the

artist table, and the question would be how to manage multiple paintings per artist. It

would be the same question as how to manage multiple items per sale, or multiple sales

per customer.

In this database, we are more interested in the paintings, so the question is how to

manage multiple paintings by the same artist.

In both cases, the solution is the same.

If you look at both tables:

SELECT * FROM paintings;

SELECT * FROM artists;

Chapter 2 Database

35

you will see the important artistid column in the paintings table. The artistid is

a reference to an id in the artists table. This is called a foreign key because it refers to

another table.

Figure 2-2 has a simplified version of this relationship.

Figure 2-2.  A Relationship Between Tables

If you look at the arrows, you’ll notice they are pointing from the paintings to the

artists, that is, from the foreign key to the primary key. You will also notice that many

paintings point to a single artist. This relationship is commonly called a one-to-many

relationship, that is, from one artist to many paintings.

Regardless of whether you are more interested in the paintings or the artists, the

actual relationship is defined in the artist table that is in the many table.

�Examples of Alternative Terminology

Although most references would simply refer to a one-to-many relationship, it is often

more convenient to use a more informal term, such as one of those in Table 2-2.

Table 2-2.  The One-to-Many Relationship

One Many

Parent-Child Parent Children

Container Container Contents

Shopping Cart Items

Later, we will be looking at combining data from related tables.

Chapter 2 Database

36

�A More Complex Relationship

In the sample database, we have paintings and we have customers. We also need to

manage the sales of paintings to customers.

The relationship between customers and paintings is more complex than that

between paintings and artists. Whereas a painting can only have one artist, customers

can buy more than one painting, and multiple customers can buy the same painting.

Obviously, multiple customers are not actually buying the same article, but simply

copies. You can actually have multiple customers buying the same article serially, that is,

one after another, as you might with antiques or properties. The same applies to loans:

multiple borrowers can borrow the same article once it has been returned.

To manage sales, you will need an additional table or two just for the sales.

If the nature of the sale is simple enough, you can manage it with a single table. For

example, if you are into real estate, you can have a table of properties and a single table

to manage the sales, such as in Figure 2-3.

Figure 2-3.  Property Sales

Since you’re only selling one property at a time, you can manage the transaction in a

simple sales table. This table records which customer bought which property, as well as

other data related to the same, such as the date and the amount.

If the customer were to actually buy two properties, they would be happy enough to

transact that as two sales.

You can use the same design for, say, car rentals, where most customers would rent

one car at a time.

In the case of smaller items, such as paintings, it’s quite possible that the customer

will buy multiple items and possibly multiple copies. In this case, transacting multiple

sales would be annoying, and you need a more subtle approach. Here, you will need two

tables as in Figure 2-4.

Chapter 2 Database

37

Figure 2-4.  Shopping Cart

You have probably had the experience of buying multiple items on the Internet.

Typically, your purchases are in the form of a shopping cart with one or more cart items.

This would be true even if you bought one copy of a single item.

To manage the purchase in the database, you have a table of carts, each of which is

related to a customer through a foreign key. The final details, such as checkout date, total

price, and payment and delivery methods, would be in this table.

Each product purchased would be stored in a second table of items. This table has

two foreign keys. One relates to the shopping cart, which in turn is related to a customer.

The other relates to the table of products. You can think of the shopping cart as a

container of cart items.

The same structure is used whenever you need to manage multiple items in a

single transaction. This includes multiple library loan items or, in our sample database,

multiple sale items.

�Summary
A database is a collection of distinct tables. Each table is a collection of related data.

In a properly designed table, there is exactly one correct place for every item of data.

�Terms

Regarding the database itself

•	 A database is the entire collection of data.

•	 A DBMS or Database Management System is the software that

manages the data.

•	 SQL or Structured Query Language is the language used to

communicate with the database.

Chapter 2 Database

38

As for items of data

•	 Think of data as a placeholder and a value as the contents of the

placeholder.

SQL uses the language of tables. With each table

•	 A row is an instance of the data in the table, such as a customer

or a book.

•	 A column is a detail of the rows, such as the name.

�Normalized Tables

SQL tables need to be organized so that it follows certain rules to make the data as

simple and as reliable as possible.

•	 Data Is Atomic

•	 Columns Are Independent

•	 Columns Are of a Single Type

•	 Rows Are Unordered

•	 Rows Are Unique

•	 Rows Are Independent

•	 Column Names Are Unique

•	 Columns Are Unordered

�Multiple Values

Database tables should not store multiple values in a single column. Managing multiple

values requires an additional table with a reference back to the original table.

Chapter 2 Database

39

�Coming Up
You now have an idea of how the sample database was designed and why it was designed

that way. In real life, not all working databases are built to follow these principles

completely, and some databases are very sloppy indeed. The point is, the further you

stray from these principles, the harder it will be to work with the database.

The next chapter will focus on a simple concept: how to select some rows from a

table, that is, how to filter the table with the WHERE clause.

Chapter 2 Database

41

CHAPTER 3

Filtering Data
One of the main roles of a DBMS is to store data. The other main role is to retrieve it. To

retrieve data, you use the SELECT statement. However, you often don’t want all the data,

so you will want to filter the results.

In this chapter, we’ll look at how you filter your requests with a WHERE clause. As we

do, we’ll cover important topics such as

•	 How the WHERE clause works

•	 Working with missing values

•	 Working with different data types: numbers, strings, and dates

•	 Combining filters

•	 Working with “wildcards”

If you have a million rows of data, you don’t normally want a million rows of results.

Later, we’ll look at how we summarize a large amount of data. For now, we will look at

how to get some of the data.

�The WHERE Clause
The WHERE clause is used to limit the results to certain criteria. For example, if you want

to limit customers to shorter customers, you can use

SELECT *

FROM customers

WHERE height<170;

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_3

https://doi.org/10.1007/978-1-4842-9493-2_3

42

You should see something like this:

id familyname givenname … height … registered

186 Gunn Ray … 163.8 … 2021-11-15

523 Sights Seymour … 167.3 … 2022-07-11

351 Tate Dick … 167.8 … 2022-03-13

422 Why Wanda … 163.2 … 2022-05-05

121 Ting Lil … 162.8 … 2021-10-06

545 Knife Jack … 167.4 … 2022-07-24

~ 116 rows ~

The WHERE clause is followed by an assertion—a test which is either true or false. In

this case, the test is height<170, and only the rows where this is true are returned.

For simple comparisons like this, you use the classic operators that you learned at

school. There’s a table of them a little bit later.

You can reverse the assertion by using the NOT operator:

SELECT *

FROM customers

WHERE NOT height<170;

This will return only those rows where the height is not less than 170.

id familyname givenname … height … registered

144 King Ray … 176.8 … 2021-10-18

179 Inkling Ivan … 170.3 … 2021-11-08

475 Blood Drew … 171.0 … 2022-06-13

341 Idate Val … 177.1 … 2022-03-03

588 Skies Grace … 171.5 … 2022-08-13

326 Todeath Boris … 186.3 … 2022-02-15

~ 132 rows ~

Chapter 3 Filtering Data

43

In many cases, the NOT has an alternative expression:

SELECT *

FROM customers

WHERE height >= 170; -- or height>=170

The spaces around >= are not necessary; they are there to make it more obvious.

Similarly, you can test for matches:

SELECT *

FROM customers

WHERE height=170;

There won’t be many:

id familyname givenname … height … registered

118 Barrow Will … 170.0 … 2021-10-04

15 Second Millie … 170.0 … 2021-07-22

Or you can test for nonmatches:

SELECT *

FROM customers

WHERE height<>170;

SELECT *

FROM customers

WHERE NOT height=170

This gives the others:

id familyname givenname … height … registered

186 Gunn Ray … 163.8 … 2021-11-15

144 King Ray … 176.8 … 2021-10-18

179 Inkling Ivan … 170.3 … 2021-11-08

475 Blood Drew … 171.0 … 2022-06-13
(continued)

Chapter 3 Filtering Data

44

id familyname givenname … height … registered

523 Sights Seymour … 167.3 … 2022-07-11

341 Idate Val … 177.1 … 2022-03-03

~ 246 rows ~

With simple arithmetic expressions like the preceding example, you won’t often see

the NOT form used. However, with some other expressions, it is more natural.

�Unrelated Assertions
The assertion in the WHERE clause doesn’t have to involve any columns in the table at all.

For example, these are acceptable:

SELECT *

FROM customers

WHERE 1=1; -- all rows

SELECT *

FROM customers

WHERE 1=0; -- no rows

In the first example, the assertion 1=1 is obviously true for all rows, so all rows are

returned. The assertion 1=0 is never true, so no rows are returned.

These queries are obviously trivial, and you will probably never need to run them.

However, there will be some other cases where you might want to test the assertion itself,

rather than get the actual data.

�All and Nothing
The result of a WHERE clause is always valid, even if it’s not what you’re looking for. For

example:

SELECT * FROM customers WHERE id>0; -- All rows

SELECT * FROM customers WHERE id<0; -- Nothing

Chapter 3 Filtering Data

45

An assertion may result in all rows. That may be a trivial assertion, but it doesn’t

make it meaningless: next time, it may be different.

An assertion may result in no rows at all. Again, next time it may be different. It is not

an error to ask for something which isn’t there; it may be an error if you then go on and

presume more results.

Note that in this case, there is no technical reason why the id must be positive. That’s

just a very common convention.

�Dealing with NULL
The WHERE clause returns rows where an assertion is true. If an assertion is not true, it’s

not necessarily false. The other option is that it’s unknown.

If you count the results from the preceding examples, you will find that the number

of customers where height is less than 170, plus the number of customers where it isn’t,

is less than the total number of customers. This is because some of the customers don’t

have a height value recorded.

In SQL, NULL represents a missing value. For your convenience, and possible

confusion, it is usually displayed with the word NULL, often with a different color or

background color. However, in reality there is nothing at all.

There are a number of reasons why a value might be missing:

•	 The information is not applicable, such as a date of death when the

person hasn’t died yet.

•	 The information is not available, such as a date of birth which was

not supplied; you can’t argue that the person hasn’t been born.

•	 The information is regarded as irrelevant, such as additional delivery

instructions.

•	 None of the preceding reasons, but we just don’t care, so it hasn’t

been entered.

Unfortunately, SQL doesn’t distinguish between the different reasons, so you will

need to be careful when interpreting how to deal with missing values; technically, all

you can say about NULL is that the data is missing, though sometimes you can infer

something from the context.

Chapter 3 Filtering Data

46

For example, a missing date of death doesn’t of itself mean that a person hasn’t died.

You would need more data to be sure.

Sometimes, people will refer to a “NULL value,” but this is a contradiction in terms.

This is important, because NULL is always skipped when values are involved. That is why

the rows where height<170 combined with rows where NOT height<170 do not give the

total number of rows: both assertions only test for values, never for NULLs. In this case,

we will simply use NULL as a noun; some prefer the expression “NULL marker.”

You could try to find the NULLs with the following:

SELECT *

FROM customers

WHERE height=NULL; -- doesn't work

but it won’t work. More correctly, it will work, but you will get no results. This is

because the equality comparison = compares two values only.

This makes absolute sense. If you don’t know the height, then you can’t say how it

compares with another. And if two heights are NULL, you can’t say they’re equal, because

you simply don’t know what they are.

You can see a NULL comparison in the following trivial example:

SELECT *

FROM customers

WHERE NULL=NULL;

There will be no results since comparing NULL is always false.

�Deliberately Ignoring NULLs
Why would SQL even allow comparing NULLs when NULL=NULL is always false? More

realistically, you might compare two columns, both of which might happen to contain

NULLs. For example:

SELECT *

FROM artists

WHERE born=died;

Chapter 3 Filtering Data

47

There shouldn’t be any, but you may get a few:

id familyname givenname aka born died nationality

348 Daumier Honoré daumier 1879 1879 French

370 Vermeer Johannes vermeer 1675 1675 Dutch

~ 2 rows ~

Nobody who dies in the year they were born ever became a famous artist so any

matches would indicate an error. However, a match would only make sense when both

values exist and are the same.

Here, you definitely want to ignore NULLs for the comparison.

�Finding NULLs
How, then, do you find missing values? SQL has a special expression IS NULL to

find NULLs:

SELECT *

FROM customers

WHERE height IS NULL; -- missing height

This will give you all the missing heights:

id familyname givenname … height … registered

474 Free Judy … … 2022-06-12

377 Money Xavier … … 2022-04-02

321 King May … … 2022-02-11

46 Ering Hank … … 2021-08-15

350 Bea May … … 2022-03-12

500 Mentary Rudi … … 2022-06-25

~ 56 rows ~

Chapter 3 Filtering Data

48

You can also find all the existing heights:

SELECT *

FROM customers

WHERE height IS NOT NULL; -- existing heights

That will give you the rest of them:

id familyname givenname email … registered

186 Gunn Ray ray.gunn186@example.net … 2021-11-15

144 King Ray ray.king144@example.net … 2021-10-18

179 Inkling Ivan ivan.inkling179@example.com … 2021-11-08

475 Blood Drew drew.blood475@example.net … 2022-06-13

523 Sights Seymour seymour.sights523@example.net … 2022-07-11

341 Idate Val val.idate341@example.com … 2022-03-03

~ 248 rows ~

In the first example, IS NULL selects for missing values. In the second, IS NOT NULL

selects for values which exist. You will find that the number of results for the second

example is the same as adding up the results for height<170 and NOT height<170.

You can verify that if you combine the results of those queries:

SELECT * FROM customers WHERE height<170

UNION

SELECT * FROM customers WHERE NOT height<170;

The UNION clause combines the results from two or more SELECT statements, as long

as the columns match. You will see more on UNION later.

Speaking of NOT, SQL will also accept an alternative expression:

SELECT *

FROM customers

WHERE NOT height IS NULL;

Chapter 3 Filtering Data

49

The expression reads less naturally in English, perhaps more naturally if your name

is Yoda. However, it does have the minor benefit of following the same pattern as other

uses of NOT in that it immediately follows the WHERE keyword. That way, your filter is

either WHERE or WHERE NOT (there is no “maybe”).

�Numbers
In the preceding example, the height is a number, so comparisons are simple. Numbers

follow the so-called Goldilocks Trichotomy: when comparing numbers, the second is

too low, too high, or just right.

To compare two numbers, you can use the comparison operators shown in Table 3-1.

Table 3-1.  Comparison Operators

Operator Meaning Negation

a = b Equal Value NOT a = b ; a <> b

a < b Less Than NOT a < b ; a >= b

a > b Greater Than NOT a > b ; a <= b

a <= b Less Than or Equal To(“Up to”) NOT a <= b ; a > b

a >= b Greater Than or Equal To(“From”) NOT a >= b ; a < b

Note that NOT a < b is not the same as a > b, as you have to allow for the

equals case.

As you will see later, these operators will also do for nonnumeric comparisons, but

will need more appropriate meanings.

�Discrete vs. Continuous Values
Compare the two statements:

SELECT *

FROM artists

WHERE born >= 1700;

Chapter 3 Filtering Data

50

SELECT *

FROM artists

WHERE born > 1699;

They will, of course, give you the same results, since 1700 comes immediately

after 1699.

id familyname givenname aka born died nationality

147 Pissarro Camille pissarro 1830 1903 French

107 Legros Alphonse legros 1837 1911 French

176 Caillebotte Gustave caillebotte 1848 1894 French

133 Constable John constable 1776 1837 English

158 Shaw Joshua shaw 1776 1860 American

5 Puvis de Chavannes Pierre puvis 1824 1898 French

~ 99 rows ~

However, that’s not always true. Try this:

SELECT *

FROM customers

WHERE height >= 170;

id familyname givenname … height … registered

144 King Ray … 176.8 … 2021-10-18

179 Inkling Ivan … 170.3 … 2021-11-08

475 Blood Drew … 171.0 … 2022-06-13

341 Idate Val … 177.1 … 2022-03-03

588 Skies Grace … 171.5 … 2022-08-13

326 Todeath Boris … 186.3 … 2022-02-15

~ 132 rows ~

Chapter 3 Filtering Data

51

Compare that to

SELECT *

FROM artists

WHERE height > 169;

id familyname givenname … height … registered

144 King Ray … 176.8 … 2021-10-18

179 Inkling Ivan … 170.3 … 2021-11-08

475 Blood Drew … 171.0 … 2022-06-13

341 Idate Val … 177.1 … 2022-03-03

588 Skies Grace … 171.5 … 2022-08-13

326 Todeath Boris … 186.3 … 2022-02-15

~ 145 rows ~

This will probably give a very different result, since 170cm doesn’t immediately come

after 169cm. Unlike the year of birth, height in centimeters can involve fractional parts.

We say that values for the year of birth are discrete: there are whole values, but no

between values. On the other hand, values for the height are continuous: there are

between values.1

Whenever you have discrete values, you have a choice between the first two

examples earlier, since one discrete value is definitely before the next. With continuous

values, however, you don’t have this choice.

Sometimes, continuous values can be simplified as discrete values. For example,

time is continuous, but you can simplify it into discrete dates. Monetary value may

be continuous, but you can make it discrete by ignoring fractional parts (e.g., dollars

without cents).

1 On a computer, nothing is truly continuous: ultimately, values are stored as binary numbers,
which is why we say that the values are digital. However, for practical purposes, they can allow
small enough differences to be virtually continuous.

Chapter 3 Filtering Data

52

�Strings
The most basic string filter is to look for exact matches:

SELECT *

FROM customers

WHERE state='VIC';

This gives customers in VIC:

id familyname givenname … state … registered

186 Gunn Ray … VIC … 2021-11-15

523 Sights Seymour … VIC … 2022-07-11

545 Knife Jack … VIC … 2022-07-24

505 Singers Carol … VIC … 2022-06-29

492 Long Miles … VIC … 2022-06-21

374 Sharalike Sharon … VIC … 2022-03-29

~ 52 rows ~

To get the customers living elsewhere:

SELECT *

FROM customers

WHERE state<>'VIC'; -- WHERE NOT state='VIC'

This should give you customers in all the other states:

id familyname givenname … state … registered

474 Free Judy … NSW … 2022-06-12

144 King Ray … NSW … 2021-10-18

179 Inkling Ivan … WA … 2021-11-08

475 Blood Drew … QLD … 2022-06-13

(continued)

Chapter 3 Filtering Data

53

id familyname givenname … state … registered

341 Idate Val … NSW … 2022-03-03

351 Tate Dick … NSW … 2022-03-13

~ 217 rows ~

As with all filters, filtering for nonexistent values is not an error:

SELECT *

FROM customers

WHERE state='XYZ';

However, it may be an error if your data types don’t match:

SELECT *

FROM customers

WHERE state=23;

With some DBMSs, such as PostgreSQL and Oracle, this would result in an error,

since you cannot match a string with a number. To make the comparison work, you

would need to express the number as a string: WHERE state='23'. With some others,

such as SQLite, MySQL/MariaDB, and MSSQL, the number is implicitly converted to a

string for comparison purposes.

�Quotes
In SQL, strings are enclosed in single quotes. Double quotes have a completely different

meaning.

There are a few rare exceptions to this:

•	 Microsoft Access allows you to use double quotes as an alternative to

single quotes; indeed, it appears to prefer them, but you shouldn’t.

•	 MySQL/MariaDB also allows you to use double quotes, but this

depends on the mode it’s running in; in ANSI mode, double quotes

cannot be used for strings.

Chapter 3 Filtering Data

54

In any case, single quotes always do the job.

What happens if you use double quotes instead of single quotes?

SELECT *

FROM customers

WHERE state="VIC"; -- may be OK in MySQL/MariaDB

With most DBMSs, you will get an error message to the effect that the column VIC

is unknown. That is, the double quotes are interpreted as enclosing a column name,

and not a string. SQL imagines that you are trying to match the state column with the

unknown VIC column.

There are times when this can lead to confusion:

SELECT * FROM customers WHERE familyname='Town';

SELECT * FROM customers WHERE familyname="Town";

The preceding first example looks for customers whose familyname matches Town,

while the second looks for customers whose family name happens to be the same as the

town where they live.

If you don’t run MySQL/MariaDB in ANSI mode, the double quotes will be

interpreted as a string, and you will get a successful result. See the following section on

running MySQL/MariaDB in ANSI mode.

You can use double quotes around any column:

SELECT *

FROM customers

WHERE "state"='VIC';

The double quotes here will make no difference at all, since SQL already knows that

state is a column name.

Chapter 5 on Calculating Column Values has more information on using double quotes.

�More on MySQL/MariaDB Modes
If you are using MySQL or MariaDB, we recommend you always set the session to ANSI

mode. You can do this at the beginning:

SET SESSION sql_mode = 'ANSI';

Chapter 3 Filtering Data

55

This statement only needs to be run only once at the beginning of the session. For

our purposes, the most important differences will be in

•	 The use of double quotes

•	 String concatenation (joining strings), which you will see later when

working with calculations.

If you don’t use ANSI mode, you can still do most things, but some of the syntax may

need to be adapted.

This book will assume that you have set the session to ANSI mode.

�More on Double and Single Quotes
There is a table called badtable in which you can see all sort of problematic names:

SELECT * FROM badtable;

You will see the following results:

customer code customer order 1st 42 last-date

23 Fred 42 2020-01-01 Life, … 2020-01-31

37 Wilma 54 2020-02-01 I think …. 2020-02-29

So far, so good. However, if you try to select the columns individually, you will get all

sorts of errors:

SELECT

 customer code, -- customer AS code

 customer,

 order, -- ORDER BY

 1st, -- number 1 AS st

 42, -- number 42

 last-date -- last - date

FROM badtable;

Only the customer column is correct. Some will lead to errors, and some will be

misinterpreted.

Chapter 3 Filtering Data

56

The only way to refer to the problematic column names is to double-quote them:

SELECT

 customer code, -- customer AS code

 customer,

 "order",

 1st, -- number 1 AS st

 42, -- number 42

 "last-date"

FROM badtable;

code customer order st ?column? last-date

Fred Fred 42 1 42 2020-01-31

Wilma Wilma 54 1 42 2020-02-29

Two of the misinterpreted columns involve aliases. You will see more on aliases later,

but you’ll see that the ambiguity is due to the fact that the word AS is optional.

The other misinterpreted column is that the 42 is interpreted as a value, which is

legitimate, rather than as a column name. To finish the job, you’ll need quotes around

these names too:

SELECT

 "customer code",

 customer,

 "order",

 "1st",

 "42",

 "last-date"

FROM badtable

There are a few simple rules regarding column names, which we appear to have

taken a lot of effort to violate:

•	 Names shouldn’t include spaces or other special characters such

as the hyphen. If you need a separator, you would typically use the

underscore (_).

Chapter 3 Filtering Data

57

•	 Names shouldn’t start with a number and certainly shouldn’t be

a number.

•	 Names should avoid SQL keywords such as order. Some DBMSs may

catch you by surprise here. For example, PostgreSQL regards “name”

as a keyword.

Under normal circumstances, your queries shouldn’t need double quotes, because

a good SQL developer should know how to avoid these problems. However, you can’t

always be held accountable for what another developer has done, so you may need the

double quotes some time.

�Case Sensitivity
How strings compare isn’t always the same. For example, the customers table has all

states in upper case. If you try to match lower case:

SELECT *

FROM customers

WHERE state='vic';

your results will vary.

In PostgreSQL, Oracle, and SQLite, by default, you won’t get any matches. With

MySQL/MariaDB and MSSQL, however, you will get your matches as before.

How variations of strings compare is called the collation. In other languages, there

can be many variations, but in English the main variation is upper/lower case.

The default collation for PostgreSQL, Oracle, and SQLite is case sensitive; that is,

upper case and lower case are treated as different. In MySQL/MariaDB and MSSQL, the

default collation is case insensitive. However, an individual database may have been set

up with an alternative collation.

The table sorting uses inconsistent case in its stringvalue column, so you can try

SELECT *

FROM sorting

WHERE stringvalue='APPLE';

Again, the number of results will depend on the collation.

Chapter 3 Filtering Data

58

In any case, the collation for your table or database may not be the default. If you’re

not sure about your collation, you can run this trivial query:

SELECT *

FROM customers

WHERE 'a'='A';

If your collation is case sensitive, then the assertion 'a'='A' is false, so you will get

no rows. If it is case insensitive, then assertion is true, so you will get all of the rows.

If your collation is case sensitive, but you still want a case-insensitive match, there

are two solutions.

First, you can force convert the data to upper or lower case, and test the results. For

example:

SELECT *

FROM customers

WHERE lower(state)='vic';

This is a slightly costly solution, since the DBMS will need to perform an operation

on every row before it can make the comparison.

The second solution is to ask the DBMS to use an alternative collation for the query.

However, this can be very complicated.

If your database collation is case sensitive, and you find that you need to make many

case-insensitive searches, you might be able to use an index to reduce the workload.

A database index is like an index in a book and can help the DBMS to find things more

quickly. Indexes are discussed later.

�Trailing Spaces
If you add a space to the end of a search string:

SELECT *

FROM customers

WHERE state='VIC '; -- additional space at the end

Chapter 3 Filtering Data

59

you may get some results, depending on the DBMS:

•	 MySQL/MariaDB as well as MSSQL will trim the trailing space, so

you will get all the matches for VIC.

•	 PostgreSQL, SQLite, and Oracle will not trim the space, so there will

be no matches.

If, on the other hand, you put the extra space at the beginning:

SELECT *

FROM customers

WHERE state=' VIC'; -- additional space at the beginning

you would get no matches.

Although SQL would normally only accept exact matches for strings, the SQL

standard requires that shorter strings are right-padded with spaces before comparing

with longer strings. So, if you are trying to match a string with extra spaces at the end,

the data will also be right-padded, and you will get a match. This doesn’t apply to left

padding or any other characters.

Of the popular DBMSs, only MySQL/MariaDB and MSSQL appear to follow this

standard.

�Filtering with String Functions
You have already seen that, depending on the DBMS, you may need to use the lower()

function in the WHERE clause.

You can use any function you like in the WHERE clause. For example, to select for

shorter family names, you could use the length() function:

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle

 SELECT *

 FROM customers

 WHERE length(familyname)<5;

-- MSSQL

 SELECT *

 FROM customers

 WHERE len(familyname)<5;

Chapter 3 Filtering Data

60

This will give you the shorter names:

id familyname givenname … registered

474 Free Judy … 2022-06-12

186 Gunn Ray … 2021-11-15

144 King Ray … 2021-10-18

351 Tate Dick … 2022-03-13

422 Why Wanda … 2022-05-05

191 Moss Pete … 2021-11-19

~ 135 rows ~

There are also string functions for extracting parts of a string, but if you are doing this

to compare values, you will probably get more out of wildcards later.

If the length of a string is important enough to filter, then it’s possibly also important

enough to select:

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle

 SELECT *, length(familyname) AS size

 FROM customers

 WHERE length(familyname)<5;

-- MSSQL

 SELECT *, len(familyname)<5 AS size

 FROM customers

 WHERE len(familyname)<5;

id email familyname givenname

474 judy.free474@example.net Free Judy

186 ray.gunn186@example.net Gunn Ray

144 ray.king144@example.net King Ray

351 dick.tate351@example.com Tate Dick

(continued)

Chapter 3 Filtering Data

61

id email familyname givenname

422 wanda.why422@example.com Why Wanda

191 pete.moss191@example.com Moss Pete

~ 135 rows ~

Remember that the SELECT clause is evaluated after the WHERE clause, which means

that you can’t use the calculated alias in the WHERE clause:

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle

 SELECT *, length(familyname) AS size

 FROM customers

 WHERE size<5; -- Error

-- MSSQL

 SELECT *, len(familyname)<5 AS size

 FROM customers

 WHERE size<5; -- Error

You’ll see more on calculations and functions in a later chapter.

�Handling Quotes and Apostrophes
It is possible that your string data contain single quotes, especially when used as

apostrophes. For example, your family name might be O'Shea, or your hometown may

be 's-Gravenhage (the formal name of The Hague).

If you try to enter them in a normal single-quoted string, you will run into problems:

-- This is broken:

 SELECT *

 FROM customers

 WHERE familyname = 'O'Shea'

 OR town=''s-Gravenhage';

The single quote in the string will prematurely end the string, which makes a mess of

the rest of the statement.

Chapter 3 Filtering Data

62

If you need to include single quotes, you need to enter the single quote twice (which

is not the same as a double quote):

-- '' inside a string is interpreted as '

-- '' is NOT the same as "

 SELECT *

 FROM customers

 WHERE familyname = 'O''Shea' OR town='''s-Gravenhage';

Better still, your data should use typographic apostrophes:

-- Uses 'Typographic' quotes:

 SELECT *

 FROM customers

 WHERE familyname = 'O'Shay' OR town=''s-Gravenhage';

You can enter the typographic apostrophe by entering

•	 Shift+Option+] on the Macintosh

•	 Alt+0146 on Windows

Of course, that will only work if the data was originally entered that way, which,

unfortunately, is not very often.

�Before and After Strings
The other comparison operators also work with strings, but you should think of them in

terms of their position in alphabetical order, as in Table 3-2.

Table 3-2.  String Comparison Operators

Operator Meaning

a < b a is Before b

a <= b a is Up To b

a > b a is After b

a >= b as is From b

Chapter 3 Filtering Data

63

For example:

-- Names before K

 SELECT *

 FROM customers

 WHERE familyname<'K';

id familyname givenname email … registered

474 Free Judy judy.free474@example.net … 2022-06-12

186 Gunn Ray ray.gunn186@example.net … 2021-11-15

179 Inkling Ivan ivan.inkling179@example.com … 2021-11-08

475 Blood Drew drew.blood475@example.net … 2022-06-13

341 Idate Val val.idate341@example.com … 2022-03-03

234 Ering Nat nat.ering234@example.net … 2021-12-15

~ 137 rows ~

You won’t see this sort of comparison very often. When we look at wildcards later,

we’ll see a more flexible way of filtering these strings.

�Dates
Dates look simple enough, but can lead to confusion and difficulty. To begin with, the

term “date” may or may not include time.

Broadly speaking, time is a point in history, measured from some arbitrary beginning

in the past. For convenience, time is grouped into seconds, minutes, hours, and days.

What happens after that gets more complicated.

You can find all the customers with a particular date of birth with a statement

like this:

SELECT *

FROM customers

WHERE dob='1989-11-09';

Chapter 3 Filtering Data

64

This will give you customers who match the date of birth:

id familyname givenname … dob … registered

320 Branch Olive … 1989-11-09 … 2022-02-10

568 Peace Warren … 1989-11-09 … 2022-08-08

~ 2 rows ~

You will probably find two or three matches.

Oracle, by default, uses a different date format and may not automatically interpret the
preceding format. You may need to use the expression date '1989-11-09' instead.

As you know, in SQL you enclose strings in single quotes. You also enclose dates in

single quotes. However, a date is not a string.2

If you’re trying this in Oracle, you may find that Oracle doesn’t like this date format.

By default, Oracle prefers a default format like 09 NOV 89.

You can, however, force Oracle to recognize the preceding format using the date prefix:

-- Oracle

 SELECT *

 FROM customers

 WHERE dob = date '1989-11-09';

You’ll see some other variations on date literals later.

Dates Are Not Strings
Even though date literals are written in single quotes, they are not strings. You can see

this instantly when you experiment with extra spaces:

SELECT *

FROM customers

WHERE dob=' 1989-11-09 ';

2 In the case of SQLite there is no separate date type, so, in fact, it may well be a string. See the
section on SQLite and Dates.

Chapter 3 Filtering Data

65

A string match would fail here, but the date still matches. You can also see this in the

next section on date formats.

�Alternative Date Formats
The recommended format is the ISO 8601 format, which is a standard that describes

dates, times, and other related data. For dates, the format is yyyy-mm-dd, as you see in

previous examples.

The ISO 8601 format also allows you to omit the hyphens:

SELECT *

FROM customers

WHERE dob='19891109'; -- Same as '1989-11-09'

However, this is harder to read, so it’s hard to justify. This won’t work in Oracle or

in SQLite.

Some DBMSs will allow you to use an alternative format:

-- PostgreSQL, MSSQL, MySQL/MariaDB only:

 SELECT *

 FROM customers

 WHERE dob='9 Nov 1989';

 SELECT *

 FROM customers

 WHERE dob='November 9, 1989';

However, don’t use the forward slash format ??/??/yyyy, even if it’s available. This

is because different countries differ in how to interpret the first two parts, with some

countries interpreting it as day/month and some as month/day.

-- PostgreSQL, MSSQL, MySQL/MariaDB only:

 SELECT *

 FROM customers

 WHERE dob='9/11/1989'; -- d/m or m/d ?

For SQL

•	 The DBMS may not agree with your interpretation.

•	 Other users may not be sure how you interpret the two parts.

Chapter 3 Filtering Data

66

We recommend that you always use ISO 8601 format to write the date if possible.

On the other hand, when displaying the date, it is probably better to use a more human-

friendly format. You will see how to do this later.

�Date Comparisons
Apart from two dates being the same, you can also make the same sort of comparisons as

with numbers. However, it is probably better to reword their meanings as in Table 3-3.

Table 3-3.  Reworded Comparison Operators

Operator Meaning

a = b Equal Value

a < b a is Before b

a <= b a is Up To b

a > b a is After b

a >= b as is From b

Of course, the actual words don’t matter; they are simply more meaningful.

For example:

-- Born BEFORE 1 Jan 1980

 SELECT *

 FROM customers

 WHERE dob<'1980-01-01';

You’ll get the older customers:

id familyname givenname … dob … registered

474 Free Judy … 1978-04-01 … 2022-06-12

523 Sights Seymour … 1965-01-06 … 2022-07-11

341 Idate Val … 1976-06-04 … 2022-03-03

351 Tate Dick … 1969-08-03 … 2022-03-13

(continued)

Chapter 3 Filtering Data

67

id familyname givenname … dob … registered

121 Ting Lil … 1964-09-17 … 2021-10-06

545 Knife Jack … 1962-09-24 … 2022-07-24

~ 96 rows ~

-- Born FROM 1 Jan 1980

 SELECT *

 FROM customers

 WHERE dob>='1980-01-01';

Those who are not older:

id familyname givenname … dob … registered

475 Blood Drew … 1989-12-06 … 2022-06-13

588 Skies Grace … 1999-06-28 … 2022-08-13

422 Why Wanda … 1999-07-15 … 2022-05-05

326 Todeath Boris … 1992-06-16 … 2022-02-15

191 Moss Pete … 1995-09-27 … 2021-11-19

234 Ering Nat … 1996-02-05 … 2021-12-15

~ 139 rows ~

As always, NULLs will be omitted from the results: if you don’t know the date of birth,

you can’t claim that they were born before or from a particular date.

You can also use BETWEEN:

-- Born in the 1980s

 SELECT *

 FROM customers

 WHERE dob BETWEEN '1980-01-01' AND '1989-12-31';

Chapter 3 Filtering Data

68

The children of the 1980s:

id familyname givenname … dob … registered

475 Blood Drew … 1989-12-06 … 2022-06-13

492 Long Miles … 1989-11-18 … 2022-06-21

468 Fer Connie … 1985-09-22 … 2022-06-09

86 Byrd Dicky … 1980-06-02 … 2021-09-09

75 Tone Barry … 1989-07-18 … 2021-09-01

306 Noir Bette … 1987-08-27 … 2022-01-28

~ 59 rows ~

If you want the others:

-- Born some other time

 SELECT *

 FROM customers

 WHERE dob NOT BETWEEN '1980-01-01' AND '1989-12-31';

You get the following:

id familyname givenname … dob … registered

474 Free Judy … 1978-04-01 … 2022-06-12

523 Sights Seymour … 1965-01-06 … 2022-07-11

341 Idate Val … 1976-06-04 … 2022-03-03

351 Tate Dick … 1969-08-03 … 2022-03-13

588 Skies Grace … 1999-06-28 … 2022-08-13

422 Why Wanda … 1999-07-15 … 2022-05-05

~ 176 rows ~

Note that BETWEEN is inclusive: the first and last dates of the range are also a match.

Also note that in all cases, the NULL dates of birth are omitted.

Chapter 3 Filtering Data

69

�Filtering with a Date Calculation
As with strings, you can use a date calculation to filter your results. For example, to find

customers over 40 years old (whose date of birth is before 40 years ago):

-- PostgreSQL, Oracle, MySQL/MariaDB

 SELECT * FROM customers

 WHERE dob<current_timestamp - INTERVAL '40' YEAR;

-- MSSQL

 SELECT * FROM customers

 WHERE dob<dateadd(year,-40,current_timestamp);

-- SQLite

 SELECT * FROM customers

 WHERE dob<date('now','-40 year');

This gives customers over 40:

id familyname givenname … dob … registered

474 Free Judy … 1978-04-01 … 2022-06-12

523 Sights Seymour … 1965-01-06 … 2022-07-11

341 Idate Val … 1976-06-04 … 2022-03-03

351 Tate Dick … 1969-08-03 … 2022-03-13

121 Ting Lil … 1964-09-17 … 2021-10-06

545 Knife Jack … 1962-09-24 … 2022-07-24

~ 111 rows ~

You’ll see more on date calculations later.

Chapter 3 Filtering Data

70

�Multiple Assertions
The BETWEEN operation earlier can also be written as

-- Born in the 1980s

 SELECT *

 FROM customers

 WHERE dob>='1980-01-01' AND dob<='1989-12-31';

There are now two assertions: dob >= '1980-01-01' and dob <= '1989-12-31',

both of which must be true.

This will give the same results, and it’s likely that, on the inside, SQL has performed

the same operation. Sometimes, SQL will work out what you mean and find its own way

of doing it.

�AND and OR
The AND operator is often called a logical operator and uses the rules of

mathematical logic.

Using the AND operator, you can also implement variations of BETWEEN:

-- Inclusive Range (same as BETWEEN)

 SELECT *

 FROM artists

 WHERE born>=1700 AND born<=1799;

-- Exclusive Range

 SELECT *

 FROM artists

 WHERE born>1699 AND born<1801;

-- Mixed Range

 SELECT *

 FROM artists

 WHERE born>1699 AND born<=1799;

Chapter 3 Filtering Data

71

All of these should give the same results:

id familyname givenname aka born died nationality

133 Constable John constable 1776 1837 English

158 Shaw Joshua shaw 1776 1860 American

78 Turner Joseph Mallord William turner 1775 1851 English

298 Hiroshige Ando hiroshige 1797 1858 Japanese

356 Gros Antoine-Jean gros 1771 1835 French

208 Feke Robert feke 1705 1752 American

~ 25 rows ~

Note that since the year of birth is discrete, you have a choice of how you express

the range.

The AND operator can be used to combine more than two assertions. For example:

SELECT *

FROM customers

WHERE state='VIC' AND height>170 AND dob<'1980-01-01';

This gives you a very limited group:

id familyname givenname state height dob

505 Singers Carol VIC 170.1 1969-07-24

406 Shoes Jim VIC 173.5 1970-12-10

59 Field Lily VIC 172.1 1972-01-17

537 Rise Theo VIC 176.9 1977-10-27

300 Bee Bill VIC 171.3 1975-12-21

380 Downe Bob VIC 178.1 1976-02-24

~ 8 rows ~

Chapter 3 Filtering Data

72

In this case, all of the assertions must be true. Note that here the three assertions

are independent of each other, unlike the previous examples where they are testing the

same value.

You can also combine assertions with the OR operator:

SELECT *

FROM customers

WHERE state='VIC' OR state='QLD';

Here, we have customers from the combined states:

id familyname givenname state

186 Gunn Ray VIC

475 Blood Drew QLD

523 Sights Seymour VIC

588 Skies Grace QLD

305 Net Clara QLD

121 Ting Lil QLD

~ 104 rows ~

The OR operator requires at least one of the assertions to be true.

Unlike English, OR effectively combines groups. In English, you might say the

customers are from VIC and QLD, but we take that to mean not at the same time. In logic,

we need to say OR.

Also, unlike English, the logical OR is always inclusive: one or more assertions must

be true. The only way to fail the OR operation is for everything to be false. In English, “or”

is sometimes exclusive (such as “Tea or Coffee”); in logic, this is not the case.

You will see this point more clearly where the two assertions are independent. For

example:

-- ALL must be true:

 SELECT *

 FROM customers

 WHERE state='QLD' AND dob<'1980-01-01';

Chapter 3 Filtering Data

73

This gives a limited group:

id familyname givenname state dob

121 Ting Lil QLD 1964-09-17

377 Money Xavier QLD 1969-07-14

266 Blind Rob QLD 1965-12-23

524 Syrup Mabel QLD 1978-03-09

28 Aphone Meg QLD 1963-01-20

201 Soar Dinah QLD 1971-06-09

~ 16 rows ~

Changing AND to OR:

-- ANY (or ALL) must be true:

 SELECT *

 FROM customers

 WHERE state='QLD' OR dob<'1980-01-01';

This gives you a more mixed group:

id familyname givenname state dob

474 Free Judy NSW 1978-04-01

475 Blood Drew QLD 1989-12-06

523 Sights Seymour VIC 1965-01-06

341 Idate Val NSW 1976-06-04

351 Tate Dick NSW 1969-08-03

588 Skies Grace QLD 1999-06-28

~ 132 rows ~

Chapter 3 Filtering Data

74

Note 

•	 OR is more generous than AND.

•	 OR includes all the results from AND.

You can think of AND as more filtering and OR as combining results. If you’re familiar

with mathematical sets, AND is the intersection of multiple sets (the ones in common),

and OR is the union of multiple sets (all of them combined).

Things get a little complicated if you mix AND with OR:

-- Operator Precedence

 SELECT *

 FROM customers

 WHERE state='QLD' OR state='VIC' AND dob<'1980-01-01';

The results may not match your expectations, depending on what you were

expecting:

id familyname givenname state dob

475 Blood Drew QLD 1989-12-06

523 Sights Seymour VIC 1965-01-06

588 Skies Grace QLD 1999-06-28

305 Net Clara QLD

121 Ting Lil QLD 1964-09-17

545 Knife Jack VIC 1962-09-24

~ 70 rows ~

In the arithmetic expression 1 + 2 × 3, you know that you multiply before you add.

That is, multiplication takes precedence over addition.

Chapter 3 Filtering Data

75

Similarly, in the logical expression AssertionA OR AssertionB AND AssertionC,

AND takes precedence over OR. The upshot of this is that the result of the preceding

statement is the same as

-- Same as: state='QLD' OR state='VIC' AND dob<'1980-01-01'

 SELECT *

 FROM customers

 WHERE state='QLD' OR (state='VIC' AND dob<'1980-01-01');

In English, it means combine all of one state with the older ones of another.

If you really meant to apply the date of birth assertion to both states, you will need to

change the precedence using parentheses:

-- Change Precedence

 SELECT *

 FROM customers

 WHERE (state='QLD' OR state='VIC') AND dob<'1980-01-01';

Now you will get the older customers from both states.

id familyname givenname email … registered

523 Sights Seymour seymour.sights523@example.net … 2022-07-11

121 Ting Lil lil.ting121@example.com … 2021-10-06

545 Knife Jack jack.knife545@example.com … 2022-07-24

505 Singers Carol carol.singers505@example.net … 2022-06-29

377 Money Xavier xavier.money377@example.net … 2022-04-02

266 Blind Rob rob.blind266@example.net … 2022-01-01

~ 34 rows ~

Some developers prefer always to include parentheses whether they need to or not

to make the point clearer. Either way, remember that SQL has a clearly defined way of

interpreting mixed logical operators.

Chapter 3 Filtering Data

76

�The IN Operator
Using OR, there is a special case. You might test a single expression for an exact match

against different values, such as

-- Change Precedence

 SELECT *

 FROM customers

 WHERE state='VIC' OR state='QLD' OR state='WA'; -- etc

You’ll get the following group:

id familyname givenname state

186 Gunn Ray VIC

179 Inkling Ivan WA

475 Blood Drew QLD

523 Sights Seymour VIC

588 Skies Grace QLD

191 Moss Pete WA

~ 151 rows ~

Here, the expression state is tested against various values. You can rewrite the test

using the IN expression:

SELECT *

FROM customers

WHERE state IN ('VIC','QLD','WA');

There are two requirements to using this expression:

•	 The test is for a single column or similar expression. In this case, it

tests the state column.

•	 The test is against a discrete list of possibilities. Here, the group is a

list of state values.

Chapter 3 Filtering Data

77

The IN takes two forms. In this example, you supply a parenthesized list of hard-

coded alternatives. In English, you could say “where state is in the following list:” or,

more naturally, “where state is one of:”.

Your list can also include unmatched values or duplicate values:

SELECT *

FROM customers

WHERE state IN ('VIC','QLD','VIC','ETC');

It’s always OK to look for values that aren’t there, but you wouldn’t normally repeat

a value. However, this is the sort of thing which might happen indirectly, as you will

see later.

Using IN makes it easy to reverse the condition:

-- Change Precedence

 SELECT *

 FROM customers

 WHERE state NOT IN ('VIC','QLD','WA');

This gives us the other states:

id familyname givenname state

474 Free Judy NSW

144 King Ray NSW

341 Idate Val NSW

351 Tate Dick NSW

422 Why Wanda TAS

429 Morrow Tom NSW

~ 118 rows ~

In the preceding examples, the list is a hard-coded set of possible values. You can

also use the IN expression with a list generated from a subquery.

Chapter 3 Filtering Data

78

�Derived Lists
The IN clause also takes on a second form which is more sophisticated.

Suppose, for example, you want to find the biggest spenders, based on single

sales. The problem is that the sales totals are in one table (sales), while the customer

details are in another (customers). Fortunately, the sales table includes the important

customerid, which relates back to the customers table.

To get the results:

	 1.	 From the sales table, get the customerids where the total

exceeds some value.

	 2.	 From the customers table, get the data for customers whose id

matches the results of the first step.

For the first step:

SELECT customerid FROM sales WHERE total>1200

We get a list of customer ids:

customerid

2

10

19

46

24

69

~ 147 rows ~

(There is no semicolon in the preceding expression, since it will be incorporated in

the next step).

Chapter 3 Filtering Data

79

For the second step, use the IN expression to match customers against the multiple

values in the first step:

SELECT *

FROM customers

WHERE id IN(SELECT customerid FROM sales WHERE total>1200);

This gives us the customers which match:

id familyname givenname … registered

186 Gunn Ray … 2021-11-15

144 King Ray … 2021-10-18

179 Inkling Ivan … 2021-11-08

351 Tate Dick … 2022-03-13

191 Moss Pete … 2021-11-19

305 Net Clara … 2022-01-26

~ 106 rows ~

The SELECT statement in the IN clause is called a subquery. In principle, it is

evaluated first, and the results are used in the main query.

If you are using IN with a subquery, there is an alternative expression which may be

more intuitive:

-- PostgreSQL, MySQL/MariaDB, MSSQL, Oracle (not SQLite)

 SELECT *

 FROM customers

 WHERE id = ANY(SELECT customerid FROM sales

 WHERE total>1200);

Similarly, you can use a subquery to find all the paintings by Dutch artists:

	 1.	 Find the ids of the artists whose nationality is Dutch.

	 2.	 Find the paintings whose artistid is one of the previous ids:

-- All SQLs

 SELECT *

Chapter 3 Filtering Data

80

 FROM paintings

 WHERE artistid IN (SELECT id FROM artists WHERE nationality='Dutch');

-- not SQLite

 SELECT *

 FROM paintings

 WHERE artistid=ANY(SELECT id FROM artists

 WHERE nationality='Dutch');

This should give us the paintings by Dutch artists:

id artistid title year price

81 198 The Garden of Earthly Delights

1503 182 Breakfast of Crab 1648 160.00

2128 370 The Geographer 125.00

264 370 Girl with a Pearl Earring 1666 140.00

1446 266 Entrance to the Public Garden in Arles 1888 115.00

968 50 Basket of Fruits 1622 140.00

~ 172 rows ~

Note that the Dutch people don’t actually refer to themselves as “Dutch”; that is an

English name based on confusion with Germans. In the artists table, some artists are

listed as Netherlandish. You should include them as well:

SELECT *

FROM paintings

WHERE artistid IN (

 SELECT id FROM artists

 WHERE nationality='Dutch' OR nationality='Netherlandish'

);

Chapter 3 Filtering Data

81

This broadens the group:

id artistid title year price

541 256 Butcher’s Stall with the Flight into Egypt 110.00

81 198 The Garden of Earthly Delights

1503 182 Breakfast of Crab 1648 160.00

2128 370 The Geographer 125.00

264 370 Girl with a Pearl Earring 1666 140.00

1446 266 Entrance to the Public Garden in Arles 1888 115.00

~ 186 rows ~

Or using another IN expression:

SELECT *

FROM paintings

WHERE artistid IN (

 SELECT id FROM artists WHERE nationality IN ('Dutch','Netherlandish')

);

You will see more subqueries throughout the book. In some cases, there may be an

alternative, possibly more efficient, way to get the same results, such as joining tables.

You will learn about joining tables later.

�Wildcard Matches
For strings, you can broaden your search using wildcard matching. For example:

SELECT *

FROM customers

WHERE familyname LIKE 'Ring%';

Chapter 3 Filtering Data

82

This will select the customers whose family name begins with Ring.

id familyname givenname …

90 Ringer Belle …

309 Ringing Belle …

165 Ring Wanda …

164 Ringing Isabelle …

~ 4 rows ~

The string Ring% is no longer a simple string: it is now a pattern.

Wildcard matching has two requirements:

•	 The LIKE keyword is used to indicate that what follows is a pattern.

•	 The pattern includes special characters.

You can use LIKE without special pattern characters, but then the pattern will simply

be an exact match. For example:

-- Using LIKE

 SELECT *

 FROM customers

 WHERE familyname LIKE 'Ring';

-- Same as simple match

 SELECT *

 FROM customers

 WHERE familyname='Ring';

Not many customers match the string exactly:

id familyname givenname …

165 Ring Wanda …

Chapter 3 Filtering Data

83

On the other hand, if you don’t use the LIKE keyword, pattern character will be

simply treated as other ordinary characters:

SELECT *

FROM customers

WHERE familyname='Ring%'; -- nobody called Ring%

Remember, depending on your collation, the other characters may or may not be

case sensitive.

�Case Sensitivity and Patterns
Remember that some DBMSs and some databases are case sensitive and some are not.

For MySQL/MariaDB and Microsoft SQL Server, which are, by default, case

insensitive, you don’t need to worry, so you can just as readily use lower case:

-- MySQL/MariaDB and SQL Server

 SELECT *

 FROM customers

 WHERE familyname LIKE 'ring%'; -- also 'Ring%'

SQLite may also perform a case-insensitive match by default.

For the others, you can emulate case-insensitive matching by folding the case

(converting to upper or lower case):

-- All DBMSs:

 SELECT *

 FROM customers

 WHERE lower(familyname) LIKE 'ring%'; -- also 'Ring%'

PostgreSQL has the ILIKE operator which is for case-insensitive matches:

-- PostgreSQL

 SELECT *

 FROM customers

 WHERE familyname ILIKE 'ring%'; -- also 'Ring%'

For the rest of this chapter, we will simply use LIKE and presume a case-

insensitive match.

Chapter 3 Filtering Data

84

�Pattern Characters
Standard SQL has two main pattern characters shown in Table 3-4.

Table 3-4.  Wildcard Characters

Character Meaning File Glob

% Zero or more characters *

_ Exactly one character ?

The column “File Glob” shows the character you would use on your operating system

if you were trying to use pattern matching when looking for files; “glob” is geek speak for

pattern matching. You can’t use those characters in SQL, but it’s there for comparison.

Nobody knows why SQL doesn’t use them.

Note that the % wildcard matches zero or more characters. This means that there may

or may not be additional characters. For example:

-- All DBMSs

 SELECT *

 FROM customers

 WHERE lower(familyname) LIKE 'ring%';

-- Case Insensitive DBMSs: MSSQL, MySQL / MariaDB

 SELECT *

 FROM customers

 WHERE familyname LIKE 'ring%';

-- PostgreSQL

 SELECT *

 FROM customers

 WHERE familyname ILIKE 'ring%';

This will yield anybody whose family name starts with Ring, even if there’s no more

after that.

The other wildcard character _ matches exactly one character. It’s the sort of match

you might use for crosswords. For example:

SELECT *

FROM customers

WHERE familyname LIKE 'R__e'; -- Rate, Rise, Rice, Rowe

Chapter 3 Filtering Data

85

This gives you four-character strings, two of which are wild:

id familyname givenname …

537 Rise Theo …

359 Rice Jasmin …

551 Rowe Mike …

536 Rate Amelia …

Watch out for the underscore (_) character. For historical reasons, it’s a little wider
than ordinary characters, so adjacent underscores actually touch. That makes it a
little difficult to count if you’ve got more than, say, two in a row.

Some coding fonts, such as Source Code Pro, have a slightly narrower underscore
for this reason.

When you combine both wildcard characters, you create the sense of at least. For

example:

-- At least 4 characters, starting with S:

 SELECT *

 FROM customers

 WHERE familyname LIKE 'S___%';

Here are some more examples using the % wildcard, with their English translations:

-- Begins with Ring

 SELECT *

 FROM customers

 WHERE familyname LIKE 'Ring%';

-- Ends with ring

 SELECT *

 FROM customers

 WHERE lower(familyname) LIKE '%ring';

-- Contains ring

Chapter 3 Filtering Data

86

 SELECT *

 FROM customers

 WHERE lower(familyname) LIKE '%ring%';

-- Begins with S and Ends with e

 SELECT *

 FROM customers

 WHERE familyname LIKE 'S%e';

You’ll note that where the position of the match could be anywhere, we used the

lower() function to be safe. For case-insensitive databases, that’s not necessary.

And using the _ wildcard:

-- Wholly Contains s

 SELECT *

 FROM customers

 WHERE familyname LIKE '%_s_%';

-- Exactly 4 characters

 SELECT *

 FROM customers

 WHERE familyname LIKE '____';

-- Exactly 4 characters, starting with R

 SELECT *

 FROM customers

 WHERE familyname LIKE 'R___';

-- At least 4 characters

 SELECT *

 FROM customers

 WHERE familyname LIKE '____%';

-- At least 4 characters, starting with S

 SELECT *

 FROM customers

 WHERE familyname LIKE 'S___%';

Using these two wildcard characters, you can perform some rather flexible searches

on string data. Sometimes, however, you also need to search other types of data.

Chapter 3 Filtering Data

87

�Wildcards with Non-strings
Generally, wildcards are meant to be used with strings. However, some DBMSs are more

relaxed with using wildcards if the data can be converted to a string.

For example, using a wildcard with numbers:

-- MySQL/MariaDB, SQLite, MSSQL, Oracle - NOT PostgreSQL

 SELECT *

 FROM customers

 WHERE height LIKE '17%';

This gives you heights in the 170s:

id familyname givenname height

144 King Ray 176.8

179 Inkling Ivan 170.3

475 Blood Drew 171.0

341 Idate Val 177.1

588 Skies Grace 171.5

191 Moss Pete 172.3

~ 114 rows ~

Of the preceding DBMSs, only PostgreSQL is strict enough about data types to

disallow the comparison and will generate an error.

You may also have some success with dates:

-- MySQL/MariaDB, SQLite*, MSSQL, Oracle* - NOT PostgreSQL

 SELECT *

 FROM customers

 WHERE dob LIKE '19%';

Chapter 3 Filtering Data

88

id familyname givenname dob

474 Free Judy 1978-04-01

475 Blood Drew 1989-12-06

523 Sights Seymour 1965-01-06

341 Idate Val 1976-06-04

351 Tate Dick 1969-08-03

588 Skies Grace 1999-06-28

~ 206 rows ~

Of the preceding DBMSs, again only PostgreSQL disallows the comparison.

However, note

•	 SQLite doesn’t have a proper date type, and the date in this example

is stored as string anyway.

•	 Oracle’s default date format starts with the day number, so it will

attempt to match dates whose day number starts with 19.

If you want this to work with PostgreSQL, you can cast the values to strings. Technically,

this is what you should be doing anyway; it’s just that some DBMSs do this automatically:

SELECT *

FROM customers

WHERE cast(height AS VARCHAR(255)) LIKE '17%';

SELECT *

FROM customers

WHERE cast(dob AS VARCHAR(255)) LIKE '19%';

Note that

•	 VARCHAR is the SQL term for string.

•	 cast() changes the data from one type to another.

•	 PostgreSQL has a shorter operator (::) for casting, but will also use

the longer version.

You will see more of casting types in a later chapter.

Chapter 3 Filtering Data

89

�Extensions to Wildcards
Most of the time, these two wildcards will do. However, some DBMSs offer extensions

which allow you to fine-tune your match.

Many DBMSs offer Regular Expressions, which is a very sophisticated pattern

matching syntax. Some, such as MSSQL, simply extend the syntax available with the

LIKE clause; this is covered in the next section.

Here are some implementations.

�Regular Expressions (PostgreSQL, MySQL/MariaDB, Oracle)

Regular Expressions give you more precise control over matching individual characters.

For example, to find family names which start with the letters A - K, but are not

followed by h or y, you would use the pattern ^[A-K][^hy]:

•	 The first ^ starts at the beginning of the string.

•	 [A-K] matches any character in the range from A to K inclusive.

•	 [^hy] does not (^) match any of the characters h, y.

Using Regular Expressions varies between DBMSs. To match the preceding pattern:

-- PostgreSQL

 SELECT *

 FROM customers

 WHERE familyname ~ '^[A-K][^hy].*';

-- MariaDB/MySQL

 SELECT *

 FROM customers

 WHERE familyname REGEXP '^[A-K][^hy]';

-- Oracle

 SELECT *

 FROM customers

 WHERE REGEXP_LIKE(familyname,'[A-K][^hy].*');

Chapter 3 Filtering Data

90

The results look like this:

id familyname givenname … registered

474 Free Judy … 2022-06-12

186 Gunn Ray … 2021-11-15

144 King Ray … 2021-10-18

179 Inkling Ivan … 2021-11-08

475 Blood Drew … 2022-06-13

341 Idate Val … 2022-03-03

~ 147 rows ~

Regular Expressions can get very complex and are not for the fainthearted. You’ll

also find that they are rarely needed in day-to-day SQL.

�Simpler Extensions (PostgreSQL, MSSQL)

Microsoft SQL doesn’t natively support Regular Expressions, but it offers a simpler

variation. Using the (square) brackets ([…]) wildcard with the LIKE keyword, it takes

the following forms:

•	 [abcde]: Any one of the individual characters inside brackets

•	 [a-e]: Any one character in the range from the first to the last

•	 [^abcde], [^a-e]: Any character which does not match what follows

SELECT *

FROM customers

WHERE familyname LIKE '[a-k][^hy]%';

Note that MSSQL is normally case insensitive, and using lower case will also match

capital letters.

Chapter 3 Filtering Data

91

PostgreSQL does support Regular Expressions, but it also offers a simpler variation

using SIMILAR TO:

SELECT *

FROM customers

WHERE familyname SIMILAR TO '[A-K][^hy]%';

Note that PostgreSQL is normally case sensitive, so the first character is in upper

case, while the second is in lower case. Of course, you can use the lower() function and

just use lower case.

�A Simple Pattern Match Example
When all is said and done, you will get most use out of the simple % wildcard. For

example, if you want to find the paintings with the word portrait in the title:

SELECT * FROM paintings

WHERE title LIKE '%portrait%';

-- WHERE lower(title) LIKE '%portrait%';

These are the candidates:

id artistid title year price

2023 58 Self-Portrait 1925

1989 Portrait of Trabuc 1889 160.00

2178 102 Portrait of Hieronymus Holzschuher 1526 145.00

2244 346 Model with Unfinished Self-Portrait 1977 135.00

815 108 Portrait of a Cardinal 1600 155.00

1491 333 Portrait of Sarah Swaim Chase (The Artist’s Mother) 1892 190.00

~ 100 rows ~

Chapter 3 Filtering Data

92

If you want to match self portrait, you will need to allow for the fact that sometimes

there’s a space and sometimes there’s a hyphen. You can do that with the _ wildcard:

SELECT * FROM paintings

WHERE title LIKE '%self_portrait%';

-- WHERE lower(title) LIKE '%self_portrait%'

This narrows down the results:

id artistid title year price

2023 58 Self-Portrait 1925

2244 346 Model with Unfinished Self-Portrait 1977 135.00

625 Self-portrait 160.00

2133 102 Self-Portrait at 26 1498 115.00

1944 233 Self Portrait with black Vase 1911 105.00

1054 Self-Portrait 1889 150.00

~ 35 rows ~

Note that if you’re really looking for portraits, this isn’t quite enough. Some of the

most famous portraits, such as the Mona Lisa and the Girl with a Pearl Earring, will slip

through the search.

To really facilitate searching for categories of paintings, you would need to have

additional columns, and possibly additional tables, to maintain the categories.

�Summary
When you have a large number of rows, you can filter them using the WHERE clause. The

WHERE clause is followed by one or more assertions which evaluate either to true or

false, determining whether a particular row is to be included in the result set.

The syntax for the WHERE clause is

SELECT columns

FROM table

WHERE conditions;

Chapter 3 Filtering Data

93

The conditions are one or more assertions, expressions which evaluate to true

or false.

Normally, the assertions are related to column data. However, any unrelated

assertion will also work, though you will probably get either the whole table or nothing.

�NULL
NULL represents a missing value, so testing it is tricky.

•	 NULLs will always fail a comparison, such as =.

•	 Testing for NULL requires the special expression IS NULL or IS

NOT NULL.

�Numbers
Number literals are represented bare: they do not have any form of quotes.

•	 Numbers are compared in number line order and can be filtered

using the basic comparison operators.

•	 When filtering continuous values, you need to remember to use

equality comparisons (<= or >=) to include in-between values.

�Strings
String literals are in single quotes. Some DBMSs also allow double quotes, but double

quotes are more correctly used for names rather than values.

•	 In some DBMSs and databases, upper and lower case may not match.

•	 Trailing spaces should be ignored, but aren’t always.

•	 Nesting single quotes requires two consecutive single quotes:

'Don''t do that'.

Chapter 3 Filtering Data

94

�Dates
Date literals are also in single quotes.

•	 The preferred date format is ISO 8601 (yyyy-mm-dd).

•	 Most DBMSs allow alternative formats, but you should avoid the

??/??/yyyy format.

•	 Dates are compared in historical order.

�Multiple Assertions
You can combine multiple assertions with the logical AND and OR operators. If you

combine them, AND takes precedence over OR.

�The IN Operator
The IN operator will match from a list. It can also be used with a subquery which

generates a single column of values.

�Wildcard Matches
Strings can be compared more loosely using wildcard patterns and the LIKE operator.

•	 Wildcards include special pattern characters.

•	 Some DBMSs allow you to use LIKE with non-string data, implicitly

converting them to strings for comparison.

•	 Some DBMSs supplement the standard wildcard characters with

additional characters.

•	 Some DBMSs support Regular Expressions, which are more

sophisticated than regular wildcard pattern matching.

Chapter 3 Filtering Data

95

�Coming Up
The result sets so far have been unordered. From a data point of view, that’s fine, and

SQL will regard two result sets as the same if their only difference is row order.

Occasionally, however, you will want to specify the result order, which is what we’ll

be doing in the next chapter.

Chapter 3 Filtering Data

97

CHAPTER 4

Ordering Results
A Relational Database is based on a number of mathematical principles, including the

notion that a table is a set of rows. Two important properties of mathematical sets are

•	 A set has no duplicates.

•	 A set is not ordered.

We will discuss the question of duplicates later, but for now let’s have a look at

row order.

SQL does not specify how data is to be stored, as that is a matter for the DBMS

software. Neither does it specify in what order data should be fetched.

However, you do have the option to specify a row order using the ORDER BY clause.

Note that once you specify a row order, the result is no longer technically a set. Often,

this doesn’t matter, but there will be times when you won’t be able to use the result in

more complex SQL statements.

In this chapter, we will look at sorting the results of a SELECT statement. We’ll see

how data is sorted depending on the data type. We’ll also look at sorting on one or

more columns, controlling the direction of the sort order, and sorting on derived or

calculated data.

We’ll also look at using sorting to generate pages of results, fetching random data,

and performing non-standard sort orders.

�Using the ORDER BY Clause
You can order the result set by using ORDER BY at the end of the SELECT statement:

SELECT *

FROM customers

ORDER BY id;

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_4

https://doi.org/10.1007/978-1-4842-9493-2_4

98

The ORDER BY is followed by one or more columns to be sorted.

id familyname givenname …

2 Wreath Laurel …

8 Leaves Russell …

9 Downe Ida …

10 Fied Terry …

11 Onair Deb …

15 Second Millie …

~ 304 rows ~

Note

•	 ORDER BY is the last main clause in the SELECT statement.

•	 ORDER BY is also evaluated last.

Later, you will limit the number of results, using another clause which can be

considered part of the ORDER BY clause.

The ORDER BY clause is independent of the SELECT clause, so you don’t have to select

the data you are sorting by:

SELECT givenname, familyname

FROM customers

ORDER BY id;

This gives the following, slightly mystifying results:

familyname givenname

Wreath Laurel

Leaves Russell

Downe Ida
(continued)

Chapter 4 Ordering Results

99

familyname givenname

Fied Terry

Onair Deb

Second Millie

~ 304 rows ~

If a particular order is important for ordering, it is likely that you want to include it:

SELECT

 id, -- include sorted column

 givenname, familyname

FROM customers

ORDER BY id;

Later, you will see that the sort columns don’t need to be original columns: they can

also be calculated values.

�Sort Direction
By default, sort order is ascending, that is, increasing. You can make the point by

including the ASC keyword:

SELECT *

FROM customers

ORDER BY id ASC; -- ASC is redundant

However, since the default direction is ascending anyway, the ASC keyword is

redundant, and most SQL developers don’t bother with it.

On the other hand, you can reverse the sort order by appending DESC (descending):

SELECT*

FROM customers

ORDER BY id DESC;

Chapter 4 Ordering Results

100

This gives the customers in the reverse sort order:

id familyname givenname …

595 Time Mark …

594 Mander Sally …

592 Highwater Camilla …

589 O’Shea Rick …

588 Skies Grace …

583 Knife Jack …

~ 304 rows ~

You will see more on sort direction later.

�Missing Data (NULL)
Some of your data may include NULLs in some columns. This represents a missing value.

The SQL standard is vague about how NULLs should be treated by ORDER BY; the only

requirement is that they should be grouped together, either at the beginning or at the end.

SELECT *

FROM customers

ORDER BY height;

Because there are many NULLs in the height column, you will see them bunched

either at the beginning or the end of the data.

id familyname givenname … height …

517 Open Doris … 150.3 …

42 Worry Donna … 150.3 …

154 Pan Sam … 154.2 …

551 Rowe Mike … 155.6 …

(continued)

Chapter 4 Ordering Results

101

(continued)

id familyname givenname … height …

216 Driver Laurie … 156.3 …

330 Fied Clara … 156.6 …

~ 304 rows ~

Different DBMSs have different ideas on where to group the NULLs. For example:

DBMS NULLS

SQLite Low

MSSQL Low

MySQL/MariaDB Low

PostgreSQL High

Oracle High

PostgreSQL and Oracle group NULLs with the highest values, while MySQL/MariaDB,

SQLite, and Microsoft SQL group them with the lowest values.

If you reverse the sort direction:

SELECT *

FROM customers

ORDER BY height DESC;

you will see the NULLs at the other end:

id familyname givenname … height …

95 Banks Bonnie … …

377 Money Xavier … …

321 King May … …

46 Ering Hank … …

Chapter 4 Ordering Results

102

id familyname givenname … height …

350 Bea May … …

500 Mentary Rudi … …

~ 304 rows ~

With some DBMS, you can overrule their default placement using the NULLS

FIRST|LAST clause:

-- PostgreSQL, Oracle & SQLite:

 SELECT *

 FROM customers

 ORDER BY height NULLS FIRST; -- or NULLS LAST

This is available for PostgreSQL, Oracle, and SQLite.

For the others, where this is not an option, you can fake the option with coalesce:

-- Pseudo NULLS FIRST

 SELECT *

 FROM customers

 ORDER BY coalesce(height,0);

-- Pseudo NULLS LAST

 SELECT *

 FROM customers

 ORDER BY coalesce(height,1000);

The coalesce() function replaces NULL with an alternative value. If you use an

exaggerated value, it will place them either at the beginning or at the end. You will see

more on coalesce() later.

�Data Types
Which comes first? January or February? If that looks like a trick question, it is. The

answer depends on whether we are talking about dates or words.

Chapter 4 Ordering Results

103

In SQL, there are various types of data, but most of the types are variations on three

core types:

•	 Numbers measure or count something.

•	 Dates mark a point in time.

•	 Strings are any miscellaneous text—they are strings of characters;

SQL also refers to this as character data.

The following table, sorting, has examples of the different types:

SELECT * FROM sorting;

If you examine the SQL statements which define the table, you will see the following

broad data types:

column type

id number

numbervalue number

datevalue date

stringvalue string

datestring string

numberstring string

numbername, fullname,

email, firstname, lastname

string

Two columns, datestring and numberstring, have the date and numbers stored as

strings instead of the more suitable type.

Data types are important for ensuring that the data is valid, but it is also important in

determining sort order:

•	 Numbers are, of course, sorted in numeric order; negative numbers

are lower than positive numbers.

•	 Dates are sorted in historical order, with older dates before

newer dates.

Chapter 4 Ordering Results

104

Note that in most DBMSs, the date normally appears in yyyy-

mm-dd format, more correctly known as ISO 8601 format; Oracle

normally uses a different format. You can change the format using

various functions.

•	 Strings are sorted in alphabetical order.

Note that some of the strings begin with upper case, while some

start with lower case. Depending on your DBMS and collation,

these may be sorted together or separately.

The fact that data type influences sort order is one reason why it’s important to get

the data type correct when designing a database. Sometimes, it is tempting to cheat and

store all the data as a string, which will accept any type of value. However, that will make

a mess of the sort order.

For example:

-- sorted as number

 SELECT * FROM sorting ORDER BY numbervalue;

-- sorted as string

 SELECT * FROM sorting ORDER BY numberstring;

You will see that the string version is sorted strictly in alphabetical order, from left to

right, while the suitably typed version is sorted more appropriately.

id numberstring

3 0

8 1024

5 16

2 32

1 -4

4 4

7 -8

6 8

Chapter 4 Ordering Results

105

If you have a column full of strings which are supposed to be numbers, you can use

the cast function:

-- sorted as number

 SELECT * FROM sorting ORDER BY cast(numberstring as int);

The cast function changes the data type to another. Here, the type is set to INT,

which is short for INTEGER. Once the data has been cast, it will sort accordingly.

You can do the same with dates:

-- sorted as date

 SELECT * FROM sorting ORDER BY datevalue;

-- sorted as string

 SELECT * FROM sorting ORDER BY datestring;

-- sorted as date

 SELECT * FROM sorting ORDER BY cast(datestring as date);

Using cast(), you’ll see the results in proper date order:

id dateString

1 10 Dec 1815

4 12 May 1820

3 13 Sep 1819

5 15 Sep 1890

8 16 Dec 1775

2 29 Sep 1794

6 30 Jun 1917

7 7 Nov 1867

You will see more on cast() later.

The cast() function has a tendency to overreact when faced with values which don’t

look like numbers. MySQL/MariaDB and SQLite will return 0. SQL Server has a try_

cast() function which will return NULL. Oracle has an option to return some value on

error. PostgreSQL and SQL Server return fatal errors on the cast() function. PostgreSQL

has no friendly alternative, but it’s easy to write a function.

Chapter 4 Ordering Results

106

�Case Sensitivity and Collation
If you run the following:

SELECT * FROM sorting ORDER BY stringvalue;

your results may vary from DBMS to DBMS and from database to database. For example:

id stringvalue

1 apple

6 Apple

7 banana

5 Banana

3 cherry

2 Cherry

4 date

8 Date

~ 8 rows ~

One thing which can affect your results is whether the data is treated as case

sensitive or case insensitive, that is, whether or not upper and lower case are regarded as

the same. How the DBMS regards upper and lower case, as well as accented variations

on letters, is called the collation.

Broadly speaking, collation refers to how variations on the same letter are treated.

This includes whether these variations are treated as the same character and, if not,

which comes before which.

The two main variations to be considered are

•	 Case: Upper and lower case

•	 Accents: Accented variations such as e, é, ê, and è in French

How the data is collated in your table is affected by

•	 The default collation of the DBMS

•	 The assigned collection (if any) of a table or column

Chapter 4 Ordering Results

107

•	 An optional COLLATE clause after the ORDER BY clause

The issue of case sensitivity is also important when filtering data, since it affects

whether strings match.

�Multiple Columns
If you attempt to sort by a compound column (one which includes multiple values), you

will have a few problems:

SELECT id, firstname, lastname, fullname

FROM sorting

ORDER BY fullname;

You’ll get a result, but probably not what you want:

id firstname lastname fullname

1 Ada Lovelace Ada Lovelace

5 Agatha Christie Agatha Christie

3 Clara Schumann Clara Schumann

4 Florence Nightingale Florence Nightingale

8 Jane Austen Jane Austen

6 Lena Horne Lena Horne

7 Marie Curie Marie Curie

2 Rose de Freycinet Rose de Freycinet

One of the many problems in combining data is that you can’t sort it properly

without going through the extra effort of splitting it when the time comes.

To sort the data properly, you need the name split into parts:

SELECT id, firstname, lastname, fullname

FROM sorting

ORDER BY lastname, firstname;

Chapter 4 Ordering Results

108

id firstname lastname fullname

8 Jane Austen Jane Austen

5 Agatha Christie Agatha Christie

7 Marie Curie Marie Curie

2 Rose de Freycinet Rose de Freycinet

6 Lena Horne Lena Horne

1 Ada Lovelace Ada Lovelace

4 Florence Nightingale Florence Nightingale

3 Clara Schumann Clara Schumann

Back to the real data, you can do the same with details from the paintings table,

where the columns are meant to be distinct:

SELECT *

FROM paintings

ORDER BY price, title;

This result makes more sense:

id artistid title year price

681 163 Amerika (Baseball) 1983 100.00

1928 237 Arrangement in Yellow and Grey: Effie Deans 100.00

1820 188 Bacchus 1638 100.00

2367 188 Battle of the Amazons 1618 100.00

2039 18 Bords d’une rivière (Riverbanks) 1904 100.00

1269 67 Bouquet of Spring Flowers (Spring Bouquet) 1866 100.00

~ 1273 rows ~

Generally, the data is sorted by the first column (price); then, if there are two or

more with the value, it is further sorted by the next column (title). The next column is

sometimes referred to as the tiebreaker.

Chapter 4 Ordering Results

109

What happens if there are also duplicates in the next column? There are two possibilities:

•	 If there are more ORDER BY columns, then the data is further sorted.

•	 If there are no more ORDER BY columns, there is no guaranteed order.

SQL makes no promises about sort order apart from what you have specified in the

ORDER BY clause. If you want to guarantee a distinct sort order, you need to finish the

ORDER BY list with a column guaranteed to be distinct:

SELECT *

FROM paintings

ORDER BY price, title, id;

Here, id is the last resort; being a primary key, it cannot be duplicated, so its order is

guaranteed. In some cases, you could also have used a nonprimary key column, such as

email in the customers table, since, in that particular table, it is also required to be unique.

�Interdependence of Columns
In the preceding example, the two main columns, price and title, are independent of

each other.

There is no technical reason why you can’t sort them the other way round:

SELECT *

FROM paintings

ORDER BY title, price;

By and large, the choice is a matter of taste. More accurately, the choice is a matter of

who wants to know. For example, collectors might prefer to see a list in title order, while

the sales manager might prefer price order.

Sometimes, the columns are related.1 For example:

SELECT *

FROM customers

ORDER BY state, town;

1 Strictly speaking, two columns should never be related this way: changing one forces you to
change the other, and you run the risk of having conflicting data, such as a town in the wrong
state. It would be better to have the towns in a separate table. Developers often relax this rule for
simplicity, but it does put the quality of data at risk.

Chapter 4 Ordering Results

110

id givenname familyname town state

234 Nat Ering Bald Hills NSW

592 Camilla Highwater Bald Hills NSW

342 Hugh Morris Bald Hills NSW

91 Cat Nip Bald Hills NSW

308 Noah Vale Bald Hills NSW

10 Terry Fied Bald Hills NSW

~ 304 rows ~

In this case, the state would almost always be sorted first, since it is regarded as a

collection of towns: you generally order large groups before smaller groups. Again, you

could have sorted the other way round, but most people wouldn’t expect that.

There is an exception to the preceding discussion. Historically, we order people’s

names by family name first:

SELECT *

FROM customers

ORDER BY familyname, givenname;

There is no technical reason for this, as the family name is not necessarily a grouping.

�Sort Direction on Multiple Columns
If you are sorting by multiple columns, be aware that each column has its own sort

direction. For example:

SELECT *

FROM paintings

ORDER BY price, title DESC;

Chapter 4 Ordering Results

111

The result may be a little confusing:

id artistid title year price

2121 252 Winter Scene on a Canal 100.00

1938 135 Un village (Le village de Maurecourt) 100.00

787 235 Untitled (The Hotel Eden) 1945 100.00

1960 235 Untitled (Paul and Virginia) 1948 100.00

1262 334 The Young Beggar 100.00

173 355 The Toreador 1873 100.00

~ 1273 rows ~

This reverses the title order, but the main order, price, is still ascending. If you

include the default ASC, it is more obvious:

SELECT *

FROM paintings

ORDER BY price ASC, title DESC;

However, nobody writes it this way, and it could give the false impression that the

ASC keyword is actually doing something different. It is better to get used to the default

behavior.

If you really want to totally reverse the data, you would need to use DESC for both

columns:

SELECT *

FROM paintings

ORDER BY price DESC, title DESC;

Chapter 4 Ordering Results

112

This now gives you the expected order.

id artistid title year price

379 111 Woman with a Yellow Bodice 1899

209 192 Woman with a Mandolin 1760

461 39 Woman with a Basket

1438 252 Winter landscape with a frozen river and figures 1620

1281 266 Village Street in Auvers 1890

2454 266 Vegetable Gardens in Montmartre 1887

~ 1273 rows ~

Note that in this example, the NULLs are sorted last.

Remember, each column has its own independent sort direction.

�Sorting by Calculated Columns
The ORDER BY clause is followed by one or more columns to be sorted. However, those

columns don’t need to be the original table columns. You can sort by any calculated

value. For example:

SELECT id, givenname, familyname

FROM artists

ORDER BY died - born;

This gives you a result, but the sort order is unclear:

id givenname familyname

348 Honoré Daumier

370 Johannes Vermeer

233 Egon Schiele

(continued)

Chapter 4 Ordering Results

113

id givenname familyname

10 Frédéric Bazille

112 Dirck van Baburen

296 William Winstanley

~ 187 rows ~

As usual, you probably want to list the calculation in the SELECT clause, so you can

calculate it there and order by the result:

SELECT id, givenname, familyname, died - born

FROM artists

ORDER BY died - born;

The sort order is clearer now.

id givenname familyname ?column?

348 Honoré Daumier 0

370 Johannes Vermeer 0

233 Egon Schiele 28

10 Frédéric Bazille 29

112 Dirck van Baburen 29

296 William Winstanley 31

~ 187 rows ~

Remember that if your DBMS sorts NULLs first, then you’ll see them before the actual

values. Also, remember that we discovered a few artists whose born and died values

were the same, which explains the zeroes.

Of course, every calculated column should have an alias:

SELECT id, givenname, familyname, died - born AS age

FROM artists

ORDER BY died - born;

Chapter 4 Ordering Results

114

This makes the result clearer:

id givenname familyname age

348 Honoré Daumier 0

370 Johannes Vermeer 0

233 Egon Schiele 28

10 Frédéric Bazille 29

112 Dirck van Baburen 29

296 William Winstanley 31

~ 187 rows ~

Since the ORDER BY clause is the only one processed after the SELECT clause, you can

actually use the alias:

SELECT id, givenname, familyname, died - born as age

FROM artists

ORDER BY age;

The moral of which is that you can sort by a calculated column, but you will probably

end up calculating it in the SELECT clause and sorting by the result.

Note that you can’t do that with the WHERE clause:

SELECT *, died-born AS age

FROM artists

WHERE died-born<50 -- not age<50 ∵ age not (yet) available
-- SELECT

ORDER BY age;

We’ve included a commented SELECT clause to remind you about evaluation order: only

the ORDER BY clause is evaluated after SELECT, so only this clause can use column aliases.

You can do the same thing with a string function:

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle

 SELECT *, length(familyname) AS ln

 FROM customers

 ORDER BY ln;

Chapter 4 Ordering Results

115

-- MSSQL

 SELECT *, len(familyname) AS ln

 FROM customers

 ORDER BY ln;

This gives you the results in name length order:

id givenname familyname … ln

452 Sue Me … 2

383 Rose Up … 2

226 Carrie On … 2

467 Luke Up … 2

99 Minnie Bus … 3

312 Frank Lee … 3

~ 304 rows ~

You will see more on calculations later in the book.

�Limiting the Number of Results
You have already seen how to limit the results to certain criteria, such as customers

from a state or paintings which cost less than a certain amount. Here, we look at simply

limiting the number of results.

Originally, SQL didn’t have a standard way of doing this, presumably because

nobody saw the need. Since then, the OFFSET … FETCH … clause has become available.

However, this is only available for PostgreSQL, Microsoft SQL Server, and Oracle. There

is an unofficial alternative for the other DBMSs in the next sections.

For example, to limit the results to the first five:

-- PostgreSQL, MSSQL, Oracle

 SELECT *

 FROM customers

 WHERE dob IS NOT NULL -- exclude missing dobs

 ORDER BY dob OFFSET 0 ROWS FETCH FIRST 5 ROWS ONLY;

Chapter 4 Ordering Results

116

The WHERE dob IS NOT NULL clause is added to filter out the missing dates of birth.

Otherwise, you will only see NULL dates of birth for the first or last groups:

id givenname familyname dob …

344 Rose Boat 1962-09-24 …

545 Jack Knife 1962-09-24 …

416 Pam Pered 1962-09-28 …

440 Percy Monn 1962-12-12 …

261 Vic Tory 1962-12-12 …

~ 5 rows ~

This very verbose OFFSET … FETCH clause has two important parts: the OFFSET part

effectively means skipping the first so many rows, while the FETCH FIRST part is the

maximum number of rows you want. If there aren’t so many rows, you will get as many as

are available.

Note the following:

•	 OFFSET … FETCH … is an extension of the ORDER BY clause.

•	 FIRST can be replaced by NEXT: It has exactly the same effect.

•	 ROWS can be written as ROW: It also has the same effect.

Some further flexibility may be allowed by some DBMS.

Also, note that OFFSET … FETCH … is somewhat overstrict in the number of results.

For example, if you use FETCH FIRST 5, you will never get more, even if the next few rows

have the same values.

�Paging
One reason you might want to use this is to page results, such as viewing a catalog of 20

items per page:

-- First Page

 SELECT * FROM paintings

 ORDER BY title OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY;

-- Page 4 (skip 3 pages)

Chapter 4 Ordering Results

117

 SELECT * FROM paintings

 ORDER BY title OFFSET 3*20 ROWS FETCH FIRST 20 ROWS ONLY;

 SELECT * FROM paintings

 ORDER BY title OFFSET 60 ROWS FETCH FIRST 20 ROWS ONLY;

-- Reverse Order: Last page first

 SELECT * FROM paintings

 ORDER BY title DESC

 OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY;

As you see, you can also use DESC to reverse the order.

�Using LIMIT … OFFSET … (MySQL/MariaDB, SQLite,
and PostgreSQL)
MySQL/MariaDB and SQLite do not (yet) support the OFFSET … FETCH … clause.

However, they do support a much simpler clause:

SELECT *

FROM customers

WHERE dob IS NOT NULL

ORDER BY dob LIMIT 5 OFFSET 0;

This clause is also supported by PostgreSQL, so PostgreSQL has the benefit of

flexibility and simplicity.

�Using TOP (MSSQL)
Older versions of MSSQL do not support LIMIT … OFFSET … either, but you can use

something like this:

SELECT top 5 *

FROM customers

WHERE dob IS NOT NULL

ORDER BY dob;

Chapter 4 Ordering Results

118

This is simpler, but not as flexible as the LIMIT … OFFSET … because you can’t specify

a starting point. To get the last rows, you need to reverse the sort order:

SELECT top 5 *

FROM customers

WHERE dob IS NOT NULL

ORDER BY dob DESC;

MSSQL does not actually require the ORDER BY clause with the TOP clause, but the

result would be meaningless without it, since otherwise you have no control over which

rows are the first.

�Fetching a Random Row
If you want to fetch one or more rows at random, as you might if testing your application

or sampling data, you can limit the results after a random sort. To get a random sort, you

will need one of the randomization functions, which vary across DBMSs:

-- PostgreSQL, SQLite

 SELECT * FROM customers

 ORDER BY random();

-- MySQL / MariaDB

 SELECT * FROM customers

 ORDER BY rand();

-- Oracle

 SELECT * FROM customers

 ORDER BY dbms_random.value;

-- MSSQL

 SELECT * FROM customers

 ORDER BY newid();

The idea is that the function generates a random value for each row, which is used to

sort the data.

MSSQL does have a random() function, but it’s not like the others: it only generates a

random number once and uses it for the whole table.

You can combine this with OFFSET 0 FETCH … (or LIMIT … OFFSET 0 or TOP) to fetch

a limited number of random rows.

Chapter 4 Ordering Results

119

�Nonalphabetical String Order
Strings, as noted earlier, are sorted in alphabetical order. The problem is that in the real

world, most things are not in alphabetical order: days of the week, colors in the rainbow,

elements in the periodic table, and stations on a railway line are all in their own order,

and sorting them alphabetically will only annoy people.

SQL has no intrinsic method of sorting strings nonalphabetically. There are multiple

workarounds, including a separate table with the values in preferred order. However, you

can achieve the same result by creating a string with the values in your preferred order

and locating the position of each value within the string.

For example, the sorting table has a column numbername which is a number written

as text. Obviously, sorting alphabetically will be of no use at all. To sort by value

•	 Create a string with the values in order: 'One,Two,Three,Four,Five,

Six,Seven,Eight,Nine'

•	 Use a function to locate your value within the string.

The function will vary between DBMSs. Here is the SQL for various DBMSs:

-- MySQL/MariaDB, SQLite, Oracle:

-- INSTR('values',value)

 SELECT *

 FROM sorting

 ORDER BY

 INSTR('One,Two,Three,Four,Five,Six,Seven,Eight,Nine',

 numbername);

-- PostgreSQL:

-- POSITION(value IN 'values')

 SELECT *

 FROM sorting

 ORDER BY

 POSITION(numbername IN

 'One,Two,Three,Four,Five,Six,Seven,Eight,Nine');

-- MSSQL:

-- CHARINDEX(value, 'values')

 SELECT *

 FROM sorting

Chapter 4 Ordering Results

120

 ORDER BY

 CHARINDEX(numbername,

 'One,Two,Three,Four,Five,Six,Seven,Eight,Nine');

This will now sort in the correct order:

id numbername …

7 One …

5 Two …

3 Three …

2 Four …

8 Five …

1 Six …

6 Seven …

4 Eight …

Note 

•	 The comma in the string is purely for readability. You could have used a space,

a hyphen, a pipe, or any other character between values. You can also join the

values without a separator.

•	 In this example, the case of the value is compatible with the string. If you have

a mixed case, you may need to use the lower function and have a value string

in lower case.

�Special Strings
As a rule, sorting in alphabetical order is an agreed practice, but the actual sort order has

no significance. For example, if you sort by day of the week, month name, or the name of

a number, the result won’t be in any real order.

Chapter 4 Ordering Results

121

There are times, however, when you are stuck with a string, but still need to sort the

column more meaningfully. You saw earlier that you can use cast() to reinterpret the

string, but here are some ideas on preparing the string itself:

•	 A number string can be zero-padded. This means adding zeroes to

the beginning of the number to pad it to a fixed length. For example,

'1234', '0056', and '0789' will be correctly sorted.

•	 A date string can be in ISO 8601 format, which has the parts going

from larger to smaller. One of the format’s features is that an

alphabetical sort will result in the correct sort order.

If your strings are in a suitable top-down format, then the result will indeed be

meaningful.

�Summary
SQL does not guarantee the order of results unless you specify it using the ORDER

BY clause. This is by design, as SQL focuses on sets of data, which do not have an

implicit order.

Note that sorting data is overrated. The most common reason to sort is to help find

something, and SQL already does that. In particular, alphabetical order is overrated,

since items which are near each other alphabetically are rarely near each other in any

other sense.

However, there will be times when data appears more orderly when sorted, and it

may help if you have to scan through a displayed version of the data without the benefit

of searching tools.

�Sorting with ORDER BY
Sorting a table is done using the ORDER BY clause:

SELECT columns

FROM table

ORDER BY …;

Chapter 4 Ordering Results

122

•	 Sorting does not change the actual table, just the order of the results

for the present query.

•	 You can sort using original columns or calculated values.

•	 You can sort using multiple columns, which will effectively group the

rows; column order is arbitrary, but will affect how the grouping is

effected.

•	 Each individual sorting column can be qualified by the DESC clause

which will reverse the order. There is also ASC which changes nothing

as it’s the default anyway.

•	 Different DBMSs will have their own approach as to where to place

sorted NULLs, but they will all be grouped either at the beginning or

the end.

•	 The data type will affect the sort order.

•	 Some DBMSs will sort upper and lower case values separately.

�Limiting Results
A SELECT statement can also include a limit on the number of rows. This feature has been

available unofficially for a long time, but is now an official feature.

Many DBMSs still offer their proprietary unofficial limiting clauses. Some now also

offer the official version.

�Sorting Strings
Sorting alphabetically is, by and large, meaningless. However, there are techniques to

sort strings in a more meaningful order.

�Coming Up
So far, we have been working mostly with the original table data. In the next chapter, we

will have a closer look at recalculating values from the original values.

Chapter 4 Ordering Results

123

,

CHAPTER 5

Calculating Column
Values
To this point, you’ve been working mostly with straightforward data values from the

tables. However, you can also recalculate values to give you a form that’s more suitable to

a particular situation.

There are a number of interrelated principles involving the type of values you keep in

SQL table columns:

•	 Values should never be repeated.

This includes variations of the same value, such as the height

in centimeters and the height in inches or the date of birth and

the age.

•	 All columns should be independent of each other.

In principle, it should be possible to change the value in one

column without affecting another, such as the date of birth and

the phone number.

•	 Values should be in their simplest possible form.

This especially applies to formatting characters such as currency

symbols or spaces in phone numbers.

In other words, when you do need variations on the values stored in your database,

the solution is to store the simplest value and to calculate the rest.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases https://doi.org/10.1007/978-1-4842-9493-2_5

https://doi.org/10.1007/978-1-4842-9493-2_5

124

SQL has some ability to calculate values. When working with various DBMSs, you will

soon note that

•	 This ability is limited. SQL is not really a data processing tool, but it

can do some simple calculations.

•	 Standard SQL is even more limited, and various DBMSs have

supplemented this with their own extensions. The problem here is

that no two DBMSs have the same features.

Sometimes, the solution is to leave the data in its simple form and let additional

software do more complex data processing. For example:

•	 You can extract basic data from a database and use a language like

PHP, which is used to generate web pages, to perform more complex

calculations and formatting.

•	 Accounting software will extract data from a database and perform all

of its specialized processing within the application.

•	 There are specialized programs and languages, such as R, which

will extract the data from the database and perform sophisticated

analysis on it.

Nevertheless, it is useful to see what the DBMS can do for us before passing it off to

additional software.

In this chapter, we’ll have a look at some of the ways we can recalculate values. We

will look at basic calculations for numbers, strings, and dates, along with specialized

functions to process them harder. We’ll also look at how NULLs affect calculations and at

techniques for naming calculated results.

We’ll also look at some special techniques, such as fetching results from other tables

in a subquery, categorizing values in a CASE expression, and reinterpreting data types

using the case() function.

Finally, we will look at how to save complex queries in the database in the form

of a view.

Chapter 5 Calculating Column Values

125

�Testing Calculations
Most DBMSs include a feature which is technically non-standard, but very useful for

testing a calculation:

SELECT 2+5 AS result; -- Not Oracle

Technically, the SELECT statement requires a FROM clause. However, in the absence of

one, most DBMSs will provide a dummy one-row table, but with no columns of its own,

as shown in the following result:

result

7

You can even count the rows in this dummy table:

SELECT count(*) AS count; -- 1 Row

Oracle also provides this feature, but it uses a dummy table called dual:

-- Oracle Only

 SELECT 2+5 FROM dual;

 SELECT count(*) FROM dual;

We won’t be writing FROM dual for most of the examples, but if you’re using Oracle,

remember to include it.

Of course, if you don’t include a table, you can’t expect any real data. You’re limited

to data literals and some built-in values such as the current time. If you really want to

include real data, you’ll need to use a subquery, which you’ll learn about later.

We can use this feature whenever we want to test calculations without involving

real tables.

Chapter 5 Calculating Column Values

126

�Emulating Variables
Some of our examples will use a set arbitrary value. In coding, when you want to set

a temporary value, you create a variable. For example, in JavaScript, you could set a

variable as follows:

var a = 23;

Some DBMSs do have something similar, but we’re going to take different approach

using pure SQL. Suppose, for example, that you want to set an arbitrary tax rate which

you want to apply to a price list. You can do it this way:

WITH vars AS (SELECT 0.1 AS taxrate)

SELECT

 id, title, price, price*taxrate AS tax

FROM paintings, vars;

This gives us a simple price list:

id title price tax

1222 Haymakers Resting 125.00 12.500

251 Death in the Sickroom 105.00 10.500

2190 Cache-cache (Hide-and-Seek) 185.00 18.500

1560 Indefinite Divisibility 125.00 12.500

172 Girl with Racket and Shuttlecock 195.00 19.500

2460 The Procession to Calvary 165.00 16.500

~ 1273 rows ~

•	 The WITH clause creates a virtual table of (in this case) one row of

one column.

The virtual table is known as a Common Table Expression (CTE).

You can call it anything you like; here, it’s called vars which is a

common abbreviation for “variables.”

Chapter 5 Calculating Column Values

127

•	 The FROM clause combines the real paintings table with the virtual

table, effectively adding another column.

Technically, this is called a CROSS JOIN which combines every

row from the vars virtual table (one row) with every row of the

paintings table.

In this simple case, you could have just used price*0.1 in the calculation and

dispensed with the extra code. However, in more complex examples, using a CTE this

way can make your code both easier to manage and easier to read.

You will learn more about joining tables in Chapter 6. You will also learn more about

using CTEs in the chapters ahead.

�Some Basic Calculations
In general, you can think of the three basic data types when calculating:

•	 Numbers are used to count or measure something or to indicate

some sort of order. Some things look like numbers, such as phone

numbers, but don’t actually do any of this, so they don’t qualify.

•	 Dates are used to indicate when something happened. They may also

include times and, in some cases, time zones.

•	 For the most part, the rest are strings. Strings are strings of characters,

which may or may not make textual sense. SQL also refers to strings

as character data.

�Basic Number Calculations
For numbers, SQL supports the basic arithmetic operations. For example:

SELECT id, title, price, price*0.1 AS tax

FROM paintings;

Note that some of the prices are NULL. Naturally, the calculated result is also NULL.

There may be additional mathematical functions, depending on the DBMS.

Chapter 5 Calculating Column Values

128

�Basic String Calculations
As for strings, there is only one basic calculation:

-- Standard

 SELECT givenname || ' ' || familyname AS fullname

 FROM customers;

-- MSSQL

 SELECT givenname + ' ' + familyname AS fullname

 FROM customers;

-- MySQL

 SELECT concat(givenname,' ',familyname) AS fullname

 FROM customers;

fullname

Judy Free

Ray Gunn

Ray King

Ivan Inkling

Drew Blood

Seymour Sights

~ 304 rows ~

This operation is called concatenation, and it joins strings together.

Note that Microsoft SQL Server uses the plus (+) operator, which will cause some

confusion in more complex examples.

If you try this in MySQL/MariaDB, it may not work. In traditional mode, MySQL/

MariaDB treats the || operator as a logical operator; in ANSI mode, it should work.

If you are using MySQL/MariaDB, remember you can switch to ANSI mode by using

Chapter 5 Calculating Column Values

129

SET SESSION sql_mode = 'ANSI';

SELECT givenname || ' ' || familyname AS fullname;

The concat() function is available for most DBMSs, but not for SQLite.

�Basic Date Calculations
Dates, on the other hand, are more complicated to work with. Even with basic

operations, you will need some extra work, which is discussed later.

�Working with NULL
There is always the risk that you will be attempting a calculation with some NULLs. For

example:

SELECT

 id, givenname, familyname,

 height/2.54 as inches

FROM customers;

id givenname familyname inches

474 Judy Free

186 Ray Gunn 64.48…

144 Ray King 69.60…

179 Ivan Inkling 67.04…

475 Drew Blood 67.32…

523 Seymour Sights 65.86…

~ 304 rows ~

Chapter 5 Calculating Column Values

130

Many rows have NULL for the height. As you see, their result is also NULL: if you don’t

know a value, then, regardless of what you try to do with it, you still don’t know. This is

true for all types of data.

One thing you can do is to filter out these rows:

SELECT

 id, givenname, familyname,

 height/2.54 as inches

FROM customers

WHERE height IS NOT NULL;

Sometimes, however, you can take a guess at the missing value or at least substitute

a reasonable alternative. To generate the substitute, you can use the coalesce(original,

alternative) function.

For example, there is a table of employees which includes many phone numbers:

SELECT id, givenname, familyname, phone FROM employees;

This gives us the names and some phone numbers:

id givenname familyname phone

26 Mildred Thisenthat 0491570159

2 Clarisse Cringinghut 0491571491

3 Joe Kerr

5 Norris Toof

20 Jim Pills

17 Harold Prott

~ 34 rows ~

Chapter 5 Calculating Column Values

131

Some of the phone numbers are missing, but that doesn’t necessarily mean that

they can’t be contacted. For these missing phone numbers, you can substitute the

company number:

SELECT

 id, givenname, familyname,

 coalesce(phone,'1300975707') AS phone

FROM employees;

id givenname familyname phone

26 Mildred Thisenthat 0491570159

2 Clarisse Cringinghut 0491571491

3 Joe Kerr 1300975707

5 Norris Toof 1300975707

20 Jim Pills 1300975707

17 Harold Prott 1300975707

~ 34 rows ~

Sometimes, it might be more obvious. For example, the saleitems table includes the

number of copies (quantity) for each item:

SELECT

 id, saleid, paintingid, quantity, price

FROM saleitems;

id saleid paintingid quantity price

1505 619 495 1 190.00

3278 1324 806 1 145.00

5505 2203 1585 105.00

806 329 1643 1 130.00

5805 2321 1713 3 105.00

(continued)

Chapter 5 Calculating Column Values

132

(continued)

id saleid paintingid quantity price

1416 586 2147 3 160.00

367 147 630 1 200.00

497 202 2290 2 180.00

188 78 2186 155.00

964 395 701 1 190.00

~ 6315 rows ~

Here, you will see that some of the quantities are NULL. It would make no sense

to include a sale item if you don’t know what the quantity is, but you can reasonably

guess that if they don’t say otherwise, it should have been 1. You can use coalesce() to

implement that guess:

SELECT

 id, saleid, paintingid,

 coalesce(quantity,1) AS quantity, price

FROM saleitems;

We now have a viable quantity for each item:

id saleid paintingid quantity price

1505 619 495 1 190.00

3278 1324 806 1 145.00

5505 2203 1585 1 105.00

806 329 1643 1 130.00

5805 2321 1713 3 105.00

1416 586 2147 3 160.00

367 147 630 1 200.00

497 202 2290 2 180.00

Chapter 5 Calculating Column Values

133

id saleid paintingid quantity price

188 78 2186 1 155.00

964 395 701 1 190.00

~ 6315 rows ~

You could also reasonably argue that if 1 is the obvious value, it should have been the

default built into the table. However, you don’t always have control over how the table

should have been designed.

Sometimes, the best alternative is nothing, or at least something which looks like

nothing. For example, in the artists table, there are some missing given names. If you

try to concatenate them, your result would also be NULL:

SELECT

 id, givenname, familyname,

 givenname||' '||familyname AS fullname

 -- givenname+' '+familyname AS fullname -- MSSQL

FROM artists;

Here is the result with some missing names:

id givenname familyname fullname

215 Cuyp

349 Armand Guillaumin Armand Guillaumin

345 Paolo Uccello Paolo Uccello

341 Auguste Rodin Auguste Rodin

284 Domenico Ghirlandaio Domenico Ghirlandaio

2 Charles de La Fosse Charles de La Fosse

~ 187 rows ~

Chapter 5 Calculating Column Values

134

While it’s technically correct to say that if you don’t know the given name, you don’t

know the full name, it’s more helpful to say that it doesn’t matter. In this case, we can

coalesce the missing given name, as well as the space which follows it, to an empty

string (''):

SELECT

 id, givenname, familyname,

 coalesce(givenname||' ','') || familyname AS fullname

 -- coalesce(givenname+' ','') + familyname AS fullname -- MSSQL

FROM artists;

Now we have a name for everybody:

id givenname familyname fullname

215 Cuyp Cuyp

349 Armand Guillaumin Armand Guillaumin

345 Paolo Uccello Paolo Uccello

341 Auguste Rodin Auguste Rodin

284 Domenico Ghirlandaio Domenico Ghirlandaio

2 Charles de La Fosse Charles de La Fosse

~ 187 rows ~

Remember the following points about coalesce():

•	 Only use coalesce() if the alternative value is obvious or harmless.

It’s up to you to work out what is obvious or harmless.

•	 Once you use coalesce(), you cannot tell whether the result is

genuine or guessed.

The existence of NULL has always been a source of misery with database developers.

Remember that it represents a missing value, and one thing you need to do is work out

why it’s missing and whether it matters.

Chapter 5 Calculating Column Values

135

�Using Aliases
When you calculate values, you generate another column, but SQL doesn’t know what

to call it. If you run the SELECT query in the console, you will probably see some dummy

name, such as “Unnamed Column,” or the expression that you used for the calculation.

However, that’s not a real name, and when you need to take the statement more

seriously, it will fail for lack of a proper name.

The result of a SELECT statement is a virtual table, and, like real tables, each column

must have a unique name. To give the calculated column a name, you use the AS

keyword to create an alias:

SELECT

 id, givenname, familyname,

 height/2.54 AS inches

FROM customers;

Here, the alias for the calculation is inches.

You can use any valid name for an alias, even the name of another column:

SELECT

 id, givenname, familyname,

 height/2.54 AS email -- probably a bad idea

FROM customers;

However, you run the risk of confusing everybody else, including yourself, if you start

doing that sort of thing:

id givenname familyname email

474 Judy Free

186 Ray Gunn 64.48…

144 Ray King 69.60…

179 Ivan Inkling 67.04…

475 Drew Blood 67.32…

523 Seymour Sights 65.86…

~ 304 rows ~

Chapter 5 Calculating Column Values

136

You can alias any column you like, even if it’s not a calculated value:

SELECT

 id,

 givenname AS firstname, familyname AS lastname,

 height/2.54 AS email -- still probably a bad idea

FROM customers;

One reason you might alias existing columns is that you consider the original column

names unsuitable for your purpose: they may not be clear enough or the software that

will be using the data is expecting different names.

�Aliases Without AS
SQL has what you might consider a major design flaw at this point: the word AS is

optional, and any spacing will generate an alias:

-- Not Recommended:

 SELECT

 id,

 givenname firstname, familyname lastname,

 height/2.54 email -- seriously, probably a bad idea

 FROM customers;

id firstname lastname email

474 Judy Free

186 Ray Gunn 64.48…

144 Ray King 69.60…

179 Ivan Inkling 67.04…

475 Drew Blood 67.32…

523 Seymour Sights 65.86…

~ 304 rows ~

Chapter 5 Calculating Column Values

137

As you see from the first comment in the example, we don’t recommend this. Here

are two mistakes which you are likely to make some time in your SQL career:

-- Trailing Comma:

 SELECT

 id,

 givenname,

 familyname,

 FROM customers;

The first mistake is when you get carried away and add an extra comma after the last

column. SQL simply refuses to work with it, and you will get a syntax error: SQL cannot

make sense of your statement.

Here is another mistake you will make:

-- Missing Comma:

 SELECT

 id

 givenname,

 familyname

 FROM customers;

Technically, this isn’t an error:

givenname familyname

474 Free

186 Gunn

144 King

179 Inkling

475 Blood

523 Sights

~ 304 rows ~

Chapter 5 Calculating Column Values

138

This time, the statement will work, but you will get the wrong result. SQL will

interpret the givenname as an alias for id, because it follows after some spacing. This is

called a logical error: it will work, but it’s not what you meant.

This sort of error can be a very difficult one to identify, especially if you have a large

number of columns with similar looking data.

There is no way to prevent this sort of error, other than to be very careful. We

recommend that you always use AS for aliases. That won’t avoid the error, but it might

make missing columns stand out a little more.

�Awkward Aliases
You can also wrap aliases in double quotes:

SELECT

 id, givenname, familyname,

 height/2.54 AS "inches" -- quoted alias

FROM customers;

In this case, the double quotes are unnecessary, but certainly make it clear the

inches is an alias.

Here again, if you are using MariaDB/MySQL, you should put it in ANSI mode.

Otherwise, the double quotes will be interpreted as a string.

Why would SQL allow you to enclose a column name if you don’t need to? There are

some situations where a column name might not be clear to SQL. For example, you may

remember a table called badtable, full of bad column names:

SELECT * FROM badtable;

customer code customer order 1st 42 last-date

23 Fred 42 2020-01-01 Life, … 2020-01-31

37 Wilma 54 2020-02-01 I think … 2020-02-29

Here are some things that can go wrong:

Chapter 5 Calculating Column Values

139

First, a column name might be the same as an SQL keyword, for example, if a column

is called order, which will be confused with ORDER BY:

-- SQL Keyword

 SELECT order -- Syntax Error

 FROM sales;

A column name might be a number, or start with a number, which is normally

invalid. For example:

-- Numbers

 SELECT 1st, 42 -- Interpreted: 1 as st, 42

 FROM events;

Here, you will get the values 1 and 42, which is legitimate; however, the first will gain

an alias, while the second is anonymous.

The column might include spaces or other characters which will be misinterpreted.

For example:

-- Invalid Characters

-- Interpreted: customer as code, last - date

 SELECT customer code, last-date

 FROM data;

They are both misinterpreted. The second is made worse as it looks like a subtraction

of two nonexistent columns.

Generally, the double quotes are required if the column name is problematic. This is

sometimes the result of sloppy design, in that a database developer should learn to avoid

problematic names.

Some DBMSs have alternatives for double quotes:

•	 MSSQL allows square brackets ([…]) as an alternative. Although

they seem to prefer the square brackets, this creates another

unnecessary incompatibility in your code, and you should use

double quotes instead.

•	 MySQL/MariaDB allows so-called backticks (` … `) as an alternative.

In ANSI mode, you should avoid these and use double quotes.

However, in traditional mode, you have no alternative.

Here, we will be using double quotes, and only if we need them.

Chapter 5 Calculating Column Values

140

�Calculating with Numbers
One of the core data types in SQL is numbers. There are a number of variations of

numbers:

•	 Integer numbers are whole numbers. Variations include the range of

numbers as well as whether negative numbers are included.

•	 Decimal, a.k.a. numeric, numbers have a predefined number of

decimal places. Historically, they have been called fixed point.

•	 Floating-point, a.k.a. real, numbers have varying decimal places.

The reason there are so many variations is for storage and processing. You can

decide how much storage you want to use for each value, depending on the precision

and range. Integers are also simplest to process, followed by fixed point and then

floating-point decimals. Floating point is also less precise.

SQL provides some calculation abilities using arithmetic operators and

mathematical functions:

•	 Arithmetic operators perform the basic arithmetic which you learned

about early in school.

•	 Mathematical functions perform more complex operations, many of

which you might have learned about later in school.

The names of the different types are unfortunate: “decimal” and “numeric” are too

generic, and mathematicians regard all of the preceding types as “real” numbers. We

will often use the word “decimal” in its more relaxed meaning to include the non-integer

types, and the word “numeric” will often be used in its standard meaning as anything

related to numbers.

�Arithmetic Operators
You have already seen a simple calculation in SQL:

SELECT

 id, givenname, familyname,

 height/2.54 AS inches

FROM customers;

Chapter 5 Calculating Column Values

141

All DBMSs recognize the four basic arithmetic operators: +, -, *, and /. Note that

when you combine these operations, SQL follows the usual rules:

SELECT 1+2*3; -- 1+6 = 7 NOT 9

SELECT 12/2*3; -- 6*3 = 18 NOT 2

As you would have learned in school:

•	 Multiply or divide before you add or subtract. This is called operator

precedence.

•	 Operators of the same precedence are performed left to right. This is

called associativity.

Of course, you can always include parentheses (…) to override the rules:

SELECT (1+2)*3; -- 3*3 = 9 NOT 7

SELECT 12/(2*3); -- 12/6 = 2 NOT 18

You can also include more complex combinations of parentheses:

SELECT 2 * (3 + 4) + 3 * (4 + 5) -- 2*7+3*9 = 14+27 = 41

Here, the principle is that you process parentheses before the rest.

�Integers
Mathematically, an integer is a whole number, positive, negative, or zero. You can add,

subtract, or multiply any two integers, and you will get another integer. The problem is

when you attempt to divide two integers: sometimes, the result is not another integer. In

the trade, we say that integers are not closed under division.

On a normal calculator, which only has one job to do, all numbers are regarded as

decimals; integers are decimals with .0 at the end. On a database, whose main job is

storing and managing data, decimals are more complicated and distinguished from

integers which are easier to handle.

The practical upshot of this is when you run the following:

SELECT 200/7;

you may not get what you expect.

Chapter 5 Calculating Column Values

142

SQLite, PostgreSQL, and MSSQL will give you a result of 28 which is short: 28*7

= 196. Treating the calculation as integer-only, any remainder, no matter how large,

is ignored. MySQL/MariaDB and Oracle, on the other hand, will return a decimal

result 28.57….

This is also true if you extract real data from a table:

SELECT

 id, quantity, quantity/3 AS third

FROM saleitems;

In the saleitems table, quantity is definitely an integer, and the three

aforementioned DBMSs will truncate the result, while the others return a decimal.

id quantity third

2621 3 1

5169 1 0

667 1 0

6905 3 1

886 1 0

6729 2 0

~ 6315 rows ~

You can force the other DBMSs to treat numbers as decimals if you add a .0 to

the end:

SELECT 200/7 AS plain, 200.0/7 as decimalised;

It doesn’t matter which number is decimalized as long as at least one is.

If you’re calculating with column data only, you won’t be able to add the .0 to the

end. Instead, you will need to use the cast() function to change the type from an integer

to a decimal. For example:

SELECT cast(200 as float)/cast(7 as float);

The float data type is a floating-point decimal (it can have any number of decimal

places).

Chapter 5 Calculating Column Values

143

You can also reverse the process by casting the decimal to an integer:

SELECT cast(6.5 as int);

Note that the results vary according to the DBMS:

•	 For PostgreSQL, MySQL/MariaDB, and Oracle, the integer will be

rounded using the classic 4/5 rule; here, the result will be 7.

•	 For MSSQL and SQLite, the decimal part will be discarded, regardless

of how large it is. This is called truncating the decimal.

If you really want to truncate the decimal, some DBMSs have a floor() function to

specifically do the job.

You will see more on cast() later.

�Remainder
If you’re working with integer division, there may be times when you want the remainder

only. Many DBMSs use the % operator for this:

SELECT 200/7, 200.0/7, 200%7; -- not Oracle

This is often called the modulus (“mod”) operator, though strictly speaking it isn’t

the true mathematical modulus. The difference is in how negative numbers are handled.

It really is a remainder operator.

If you try this in Oracle, you will get an error as the % is not supported. Instead, you

should use the mod() function:

-- Oracle

 SELECT 200/7, 200.0/7, mod(200,7) FROM dual;

Again, this is not strictly a modulus operation, but a remainder operation. Oracle

does have a remainder() function, but that gives neither the true modulus nor the true

remainder.

Why is the remainder operation useful? There are many values which are cyclic, such

as the day of the week or the month of the year. To work out what day of the week it will

be in 200 days, you get its remainder (200%7 = 4) and add that to today. The same with

months: get the remainder (200%12 = 8) and add that to the current month.

Chapter 5 Calculating Column Values

144

�Extra Decimals
When dividing by 7, you will come across a fundamental problem with decimals: divisors

of anything other than 2 or 5 will result in an infinitely recurring decimal. Depending on

the DBMS, you can end up with anything from a few to many decimal places, but this is

(a) never exact and (b) probably more than you want anyway.

Mathematically, the numbers 3, 3.0, and 3.00 are the same. However, when the

numbers are used for analysis, such as in science and statistics, the number of decimal

places is used to imply accuracy: 3.0 is accurate to the nearest tenth (0.1), but no

guarantees are made for hundredths or further. Six decimal places suggest the result is

accurate to one millionth.

You will see this in the height calculation:

SELECT

 id, givenname, familyname,

 height/2.54 as inches

FROM customers;

The result has many decimal places due to the arithmetic, but nobody would claim

that the measurement is any more accurate than to a tenth of an inch.

The normal solution is to round off the decimal to a few decimal places:

SELECT

 id, givenname, familyname,

 round(height/2.54,2) as inches

FROM customers;

This gives a more realistic result:

id givenname familyname inches

474 Judy Free

186 Ray Gunn 64.49

144 Ray King 69.61

179 Ivan Inkling 67.05

(continued)

Chapter 5 Calculating Column Values

145

id givenname familyname inches

475 Drew Blood 67.32

523 Seymour Sights 65.87

~ 304 rows ~

The round() function rounds off the first number to the set number of places. This

correctly adjusts the last place if the following is 5 or more: the so-called “4/5” rule.

Some DBMSs, such as SQL Server, may still show additional decimal places, even

though they’re all zero.

You will see more on this and other functions next.

�Mathematical Functions
Mathematical functions perform more complex operations on numbers. The SQL

standard has little to say on these functions, so you will find that their availability,

behavior, and even their name may vary between DBMSs.

Here are some examples of mathematical functions:

-- PostgreSQL, MariaDB/MySQL, MSSQL

 SELECT

 pi() AS pi,

 sin(radians(45)) AS sin45, -- Trigonometry uses Radians

 sqrt(2) AS root2, -- √2

 log10(3) AS log3,

 ln(10) AS ln10, -- Natural Logarithm

 power(4,3) AS four_cubed -- 43

 ;

-- Oracle

 SELECT

 acos(-1) AS pi, -- different

 sin(45*acos(-1)/180) AS sin45, -- different

 sqrt(2) AS root2,

 log(10,3) AS log3, -- different

Chapter 5 Calculating Column Values

146

 ln(10) AS ln10,

 power(4,3) AS four_cubed

 FROM dual;

As you see in the preceding code, Oracle has a slightly different set of functions, and

SQLite has none of these at all.

Also, note that the trigonometric functions don’t use degrees: that would be too

easy. Instead, they use radians, which involve the value of π (about 3.142…). Oracle

complicates this by not having a pi() or radians() function, so this is emulated using

the acos() function.

�Approximation Functions
There are also functions which give an approximate value of a decimal number. Here is a

sampler:

SELECT

-- Not MariaDB/MySQL or Oracle

 200/7 AS integer_result,

-- All DBMSs

 200/7.0 AS decimal_result,

-- Oracle: ceil(200/7.0)

-- SQLite: round(200/7.0 + 0.5)

 ceiling(200/7.0) AS ceiling,

-- SQLite: round(200/7.0 - 0.5)

 floor(200/7.0) AS floor,

-- not MSSQL

 round(200/7.0,0) AS rounded_integer,

-- All DBMSs

 round(200/7.0,2) AS rounded_decimal

-- FROM DUAL -- Oracle

;

Chapter 5 Calculating Column Values

147

Again, there are variations between DBMSs. The first two calculations are for

comparison, to see what a raw decimal value would look like. Note that the expression

200/7 may give a truncated integer, depending on the DBMS.

The round() function rounds off the decimal to the given number of places. If the

number of places is 0, then it is the nearest whole number. In most DBMSs, you can leave

out the 0.

The ceiling() function always rounds a decimal up to the next whole number,

regardless of how small the fractional part is, while the floor() function rounds the

decimal down to the whole number, regardless of how large the fractional part is. These

functions are not available in SQLite, but are easily emulated.

�Formatting Functions
Formatting functions change the appearance of a value. Unlike approximation and other

mathematical functions, the result of a formatting function is not another number but is

a string; that’s the only way you can change the way a number appears.

Again, the different DBMSs have wildly different functions.

As an example, here are some ways of formatting a number as currency with

currency symbol and thousands separators. In this case, we’re formatting for dollars and

possibly euros:

-- PostgreSQL, Oracle

 -- Current Locale

 SELECT to_char(total,'FML999G999G999D00')

 FROM sales;

 -- Manual Locale

 SELECT to_char(total,'FM$999,999,999.00')

 FROM sales;

-- MariaDB/MySQL

 SET SESSION sql_mode = 'ANSI';

 -- Current Locale

 SELECT '$'||format(total,2)

 FROM sales;

 -- Manual Locale

 SELECT '€'||format(total,2,'de_DE')

 FROM sales;

Chapter 5 Calculating Column Values

148

-- MSSQL

 -- Current Locale

 SELECT format(total,'c')

 FROM sales;

 -- Specific Locale

 SELECT format(total,'c','nl-NL'))

 FROM sales;

 -- Manual

 SELECT format(total,'€###,###,###.00','de-de')

 FROM sales;

-- SQLite

 SELECT printf('$%,d.%02d',total,round(total*100)%100)

 FROM sales;

In all cases, we’re trying to format a number using the local currency or a specific

alternative. Sometimes, that means adding the currency symbol yourself.

Note 

•	 Both PostgreSQL and Oracle have a flexible to_char() function which can

also be used to format dates.

•	 MariaDB/MySQL uses the format() function which adds thousands separators

and decimal places; you can also tell it to adjust for different locales.

•	 MSSQL has its own format() function with its more intuitive formatting

codes; it also adjusts for locale and can be used to format a date.

•	 SQLite only has a generic printf() function which may be more familiar to

programmers; SQLite presumes that you will format data in the host application

such as PHP or wherever SQLite has been embedded.

Note that if you do run a number through a formatting function, it is no longer a number!

If all you do is look at it, then that doesn’t matter. However, if you have plans to do any further

calculations, or to sort the results, then a formatted number is likely to backfire on you.

When all is said and done, formatting is probably something you won’t do much

in SQL. The main purpose of SQL is to get the data and prepare it for the next step.

Formatting comes last and is often done in other software.

Chapter 5 Calculating Column Values

149

�Calculating with Dates
Calculating with dates is notoriously varied between DBMSs. On top of that, a date may

also include a time component; often, this is referred to as a “datetime” or a “timestamp.”

Here, we will simply refer to it as a “date.”

For most operations, DBMSs tend to rely on a function.

Generally, the three things you want to do with dates are

•	 Simple calculations: Calculate the difference between dates and

offset dates by a certain amount.

•	 Extract parts of a date, such as the month or the year.

•	 Format the date.

Here is a rundown on the main calculations you can perform with dates.

SQLite has a completely different approach to working with dates. That’s partly

because it doesn’t actually support dates. As a result, SQLite will be missing from much

of the following discussion. Appendix 3 (Additional Notes) has some information on

handling dates in SQLite.

�Simple Calculations
One important value you will need to get is the current date and time. In most DBMSs,

you can use current_timestamp:

SELECT current_timestamp; -- Oracle: FROM dual;

Some DBMSs also have various functions to get the same result, such as now() for

MariaDB or getdate() for MSSQL. However, they give the same result. SQLite doesn’t

have any direct version of this since it doesn’t support dates natively; however, when

needed, the string 'now' does the job.

From there on, it gets complicated. Here are some examples to add 4 months:

-- PostgreSQL

 SELECT

 date '2015-10-31' + interval '4 months',

 current_timestamp + interval '4 months',

 current_timestamp + interval '4' month -- same

 ;

Chapter 5 Calculating Column Values

150

-- MariaDB/MySQL

 SELECT

 date_add('2015-10-31',interval 4 month),

 date_add(current_timestamp,interval 4 month),

 current_timestamp + interval '4' month -- same

 ;

-- MSSQL

 SELECT

 dateadd(month,4,'2015-10-31'),

 dateadd(month,4,current_timestamp)

 ;

-- Oracle

 SELECT

 add_months('31 Oct 2015',4),

 current_timestamp + interval '4' month,

 add_months(current_timestamp,4) -- also works

 FROM dual;

-- SQLite

 SELECT

 strftime('%Y-%m-%d','2015-10-31','+4 month'),

 strftime('%Y-%m-%d','now','+4 month')

 ;

You’ll get something like this, depending on when you run the code:

specified current_timestamp

2016-02-29 00:00:00 2023-07-28 13:15:29.066381+10

The important thing here is that all of the preceding examples are smart enough to

cope with varying lengths of months; adding 4 months can mean anything from 120 days

to 123 days, but the preceding calculations adjust for that. However, if the result goes

past the end of the month, all but SQLite will limit it to the end of the month; SQLite will

move into the next month.

Chapter 5 Calculating Column Values

151

�Age Calculations
An important calculation is to find the difference between two dates, such as to find

an age. The problem here is that the true result is usually not a whole number of years

(or months, or whatever you are measuring). For example, PostgreSQL has the age()

function:

-- PostgreSQL

 SELECT id, givenname, familyname, dob, age(dob)

 FROM customers;

This will give you the ages:

id givenname familyname dob age

474 Judy Free 1978-04-01 44 years 11 mons 2 days

186 Ray Gunn

144 Ray King

179 Ivan Inkling

475 Drew Blood 1989-12-06 33 years 2 mons 28 days

523 Seymour Sights 1965-01-06 58 years 1 mon 28 days

~ 304 rows ~

However, the result will be something like 38 years 6 mons 7 days, which is

pretty good, if you really want that detail. The resulting expression is called an interval.
Intervals are an important part of date calculations with PostgreSQL.

Much of the time, however, you probably just need the number of years (or months

or whatever), so the following calculations will probably do:

-- PostgreSQL

 SELECT

 id, givenname, familyname, dob,

 age(dob) AS interval,

 extract(year from age(dob)) AS samething

 FROM customers;

-- MariaDB/MySQL

Chapter 5 Calculating Column Values

152

 SELECT

 id, givenname, familyname, dob,

 timestampdiff(year,dob,current_timestamp) AS age

 FROM customers;

-- MSSQL

 SELECT

 id, givenname, familyname, dob,

 datediff(year,dob,current_timestamp)

 AS age -- but not quite!

 FROM customers;

-- Oracle

 SELECT

 id, givenname, familyname, dob,

 trunc(months_between(current_timestamp,dob)/12)

 AS age

 FROM customers;

-- SQLite

 SELECT

 id, givenname, familyname, dob,

 cast(

 strftime('%Y.%m%d', 'now')

 - strftime('%Y.%m%d', dob)

 as int) AS age

 FROM customers;

You get something like this.

id givenname familyname dob years

474 Judy Free 1978-04-01 44

186 Ray Gunn

144 Ray King

179 Ivan Inkling

475 Drew Blood 1989-12-06 33
(continued)

Chapter 5 Calculating Column Values

153

id givenname familyname dob years

523 Seymour Sights 1965-01-06 58

~ 304 rows ~

Note that only PostgreSQL has a built-in function to calculate the age. Oracle has

the months_between() which nearly does the job; this number is divided by 12, and the

trunc() function removes the remainder.

Of the preceding calculations, MSSQL has a simple function which is too simple. All

it does is calculate the difference between the years, which is way out if the date of birth

is at the end of the year but the asking date is at the beginning of the year. Getting a more

correct result takes a lot more work.

�Extracting Parts of a Date
Another technique with dates is to extract parts of the date, such as the day or the year.

Here again, the different DBMSs vary widely.

SQLite has a completely different way of working with parts of a date, which we

won’t be discussing here.

�Date Extraction in PostgreSQL, MariaDB/MySQL, and Oracle

The standard method of extracting part of a date is to use the extract() function. This

function takes the form

extract(part from datetime)

You can see the extract() function in action:

WITH moonshot AS (

 SELECT

 timestamp '1969-07-20 20:17:40' AS datetime

 -- FROM dual -- (Oracle)

)

SELECT

---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 datetime,

Chapter 5 Calculating Column Values

154

 EXTRACT(year FROM datetime) AS year, -- 1969

 EXTRACT(month FROM datetime) AS month, -- 7

 EXTRACT(day FROM datetime) AS day, -- 20

 -- not Oracle or MariaDB/MySQL:

 EXTRACT(dow FROM datetime) AS weekday, -- 0

 EXTRACT(hour FROM datetime) AS hour, -- 20

 EXTRACT(minute FROM datetime) AS minute, -- 17

 EXTRACT(second FROM datetime) AS second -- 40

FROM moonshot;

Note that Oracle and MariaDB/MySQL don’t have a direct way of extracting the day

of the week, which can be a problem if, say, you want to use it for grouping. However, as

you will see later, you can use a formatting function to get the day of the week, as well as

the preceding values.

PostgreSQL also includes a function called date_part('part',datetime) as an

alternative to the preceding function.

The date/time 1969-07-20 20:17:40 is when the first human foot trod on the moon.

�Date Extraction in Microsoft SQL

Microsoft SQL has two main functions to extract part of a date:

•	 datepart(part,datetime) extracts the part of a date/time as

a number.

•	 datename(part,datetime) extracts the part of a date/time as a

string. For most parts, such as the year, it’s simply a string version of

the datepart number. However, for the weekday and the month, it’s

actually the human-friendly name.

You can see these two functions in action:

WITH moonshot AS (

 SELECT cast('1969-07-20 20:17:40' as datetime) AS datetime

)

SELECT

 datepart(year, datetime) AS year, -- aka year()

 datename(year, datetime) AS yearstring,

 datepart(month, datetime) AS month, -- aka month()

Chapter 5 Calculating Column Values

155

 datename(month, datetime) AS monthname,

 datepart(day, datetime) AS day, -- aka day()

 datepart(weekday, datetime) AS weekday, -- Sunday=1

 datename(weekday, datetime) AS weekdayname,

 datepart(hour, datetime) AS hour,

 datepart(minute, datetime) AS minute,

 datepart(second, datetime) AS second

FROM moonshot;

Note 

•	 datename(date,year) just gives a string version of 2013.

•	 There are three short functions, day(), month(), and year(), which are

synonyms of datepart().

�Extracting a Date from a Datetime

Something conspicuously missing is the ability to extract a date from a datetime. The

most direct approach is to cast it:

WITH moonshot AS (

 -- …

)

SELECT cast(thetime AS DATE) AS thedate -- 1969-07-20 (Not Oracle)

FROM moonshot;

With Oracle, you’ll need a slightly different approach. Casting as a date won’t actually

remove the time component. Instead, you should use trunc(thetime); it won’t look the

same, but it will work.

You will need this technique later when we try to analyze data with dates and times.

�Formatting a Date
Formatting a date is all about presenting it in a useful or friendly way. Generally, this involves

generating a string, since a string is the only way you can control which characters result.

Chapter 5 Calculating Column Values

156

As with numbers, a formatted date is no longer a date. That means if you need to do

any further calculations or sorting, you may have problems.

Date Formatting in PostgreSQL and Oracle

For both PostgreSQL and Oracle, you can use the to_char function. Here are two useful

formats:

-- PostgreSQL

 WITH vars AS (

 SELECT timestamp '1969-07-20 20:17:40' AS moonshot

)

 SELECT

 moonshot,

 to_char(moonshot,'FMDay, DDth FMMonth YYYY') AS full,

 to_char(moonshot,'Dy DD Mon YYYY') AS short

 FROM vars;

-- Oracle

 WITH vars AS (

 SELECT timestamp '1969-07-20 20:17:40' AS moonshot

 FROM dual

)

 SELECT

 moonshot,

 to_char(moonshot,'FMDay, ddth Month YYYY')

 AS fulldate,

 to_char(moonshot,'Dy DD Mon YYYY') AS shortdate

 FROM vars;

This should give you the following:

moonshot fulldate shortdate

1969-07-20 20:17:40 Sunday, 20th July 1969 Sun 20 Jul 1969

You’ll notice that there is a slight difference in the format codes between PostgreSQL

and Oracle.

Chapter 5 Calculating Column Values

157

You can learn more about the format codes at

•	 PostgreSQL: www.postgresql.org/docs/current/functions-

formatting.html#FUNCTIONS-FORMATTING-DATETIME-TABLE

•	 Oracle: https://docs.oracle.com/en/database/oracle/oracle-

database/21/sqlrf/Format-Models.html

�Date Formatting in MariaDB/MySQL

For MariaDB/MySQL, there is the date_format() function:

WITH vars AS (

 SELECT timestamp '1969-07-20 20:17:40' AS moonshot

)

SELECT

 moonshot,

 date_format(moonshot,'%W, %D %M %Y') AS fulldate,

 date_format(moonshot,'%a %d %b %Y') AS shortdate

FROM vars;

You can learn more about the format codes at

•	 MariaDB: https://mariadb.com/kb/en/date_format/

•	 MySQL: https://dev.mysql.com/doc/refman/8.0/en/date-and-

time-functions.html

�Date Formatting in Microsoft SQL Server

The format() function in Microsoft SQL can also be used for dates. For example:

WITH vars AS (

 SELECT cast('1969-07-20 20:17:40' AS datetime)

 AS moonshot

)

SELECT

 format(moonshot,'dddd, d MMMM yyy') AS fulldate,

 format(moonshot,'ddd d MMM yyy') AS shortdate

FROM vars;

Chapter 5 Calculating Column Values

http://www.postgresql.org/docs/current/functions-formatting.html#FUNCTIONS-FORMATTING-DATETIME-TABLE
http://www.postgresql.org/docs/current/functions-formatting.html#FUNCTIONS-FORMATTING-DATETIME-TABLE
https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Format-Models.html]
https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Format-Models.html]
https://mariadb.com/kb/en/date_format/
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html

158

You can learn more about the various date format codes at

https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-

date-and-time-format-strings

�Using a Formatted Date for Grouping by Month

Sometimes, you need to take a fine-grained date/time and analyze it in larger groups.

One very useful date format is something like yyyy-mm, which is a truncated form.

For example:

-- PostgreSQL, Oracle

 SELECT id, ordered, to_char(ordered,'YYYY-MM') AS month

 FROM sales;

-- MariaDB / MySQL

 SELECT id, ordered, date_format(ordered,'%Y-%m') AS month

 FROM sales;

-- MSSQL

 SELECT id, ordered, format(ordered,'yyyy-MM') AS month

 FROM sales;

-- SQLite

 SELECT id, ordered, strftime('%Y-%m',ordered) AS month

 FROM sales;

The results look something like this:

id ordered month

52 2022-03-07 16:10:45.739071 2022-03

54 2022-03-08 00:23:39.53316 2022-03

55 2022-03-08 06:23:28.387395 2022-03

57 2022-03-09 00:02:29.974004 2022-03

59 2022-03-09 06:26:24.808237 2022-03

60 2022-03-09 15:01:05.592177 2022-03

 ~ 2509 rows

Chapter 5 Calculating Column Values

https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

159

A date string in this format will sort correctly since the results are the same length

and start with the larger part.

You’ll learn about grouping data later.

�Using a Formatted Date for Grouping by Weekday

You can also use the same technique for extracting the weekday name. For example:

-- PostgreSQL, Oracle

 SELECT

 id, ordered,

 to_char(ordered,'Dy') AS weekday -- or 'Day'

 FROM sales;

-- MariaDB / MySQL

 SELECT

 id, ordered,

 date_format(ordered,'%a') AS weekday -- or '%W'

 FROM sales;

-- MSSQL

 SELECT

 id, ordered,

 format(ordered,'ddd') AS weekday -- or 'dddd'

 FROM sales;

This gives you the following:

id ordered weekday

52 2022-03-07 16:10:45.739071 Mon

54 2022-03-08 00:23:39.53316 Tue

55 2022-03-08 06:23:28.387395 Tue

57 2022-03-09 00:02:29.974004 Wed

59 2022-03-09 06:26:24.808237 Wed

60 2022-03-09 15:01:05.592177 Wed

 ~ 2509 rows

Chapter 5 Calculating Column Values

160

SQLite doesn’t have a simple way to generate the day name. In any case, you can

always group by the weekday number.

Remember that if you need to sort by weekday, you’ll need the special

nonalphabetical sorting technique mentioned in Chapter 4.

�Strings
A string is simply a series of characters. In SQL, it is normally described as character

data, and you will see it defined as CHAR (fixed length) or VARCHAR (varying length).

On the inside, each character is stored as a number. Exactly what this number
is may vary. Historically, strings are stored using ASCII, which is a single-byte
character code. For example, the letter A is stored as the number 65.

Because ASCII is single byte, it is limited in character range. If you need characters
outside the most basic range, you would need to vary it, such as using extra bits in
the byte or switching to an alternative character set.

Modern DBMSs can use Unicode, which can be used for all languages and special
characters. For traditional ASCII characters, the code number is the same, but
Unicode can use multibyte codes to extend the range, giving each character its
own unique code without having to compete with others.

Some DBMSs always use Unicode, while some use ASCII unless otherwise
specified. The sample database uses Unicode, but that’s not really important for
now. What follows will work the same way for either.

There’s not much you can do with a string directly. One thing you can do is join it to

another string:

SELECT 'abc' || 'def'; -- Standard

SELECT 'abc' + 'def'; -- MSSQL Only

The technical term for this is concatenation.

If you try this in MySQL/MariaDB, it may not work. In traditional mode, MySQL/

MariaDB treats the || operator as a logical operator; in ANSI mode, it should work. If you

are stuck in traditional mode, you will need a different approach.

Chapter 5 Calculating Column Values

161

There is a common, though non-standard, function called concat():

SELECT concat('abc','def'); -- Not SQLite

The concat() function is not available with SQLite, but it is available with MySQL/

MariaDB along with PostgreSQL, MSSQL, and Oracle. If you’re running MySQL/

MariaDB in traditional mode, it’s the only way to concatenate strings.

Of course, if you are using MySQL/MariaDB, you can always switch to ANSI mode.

Apart from concatenation, SQL includes a collection of functions that work with

strings. Broadly, they fall into two categories:

•	 Character functions: Functions which extract some part of the string

or which change some of the characters in the string

•	 Formatting functions: Functions which convert from numbers and

dates to formatted strings

The problem is that different DBMSs have their own string functions, so you’ll

see a lot of variation in what follows. This is not meant to be a dictionary of all of the

available functions, but will give you a taste of what you can do with string functions in

your DBMS.

�Character Functions
Generally, SQL includes functions to perform the following operations:

•	 Length: Find the length of a string

•	 Replace: Replace part of a string with another string

•	 Find: Find a character or substring within a string

•	 Trim: Remove leading or trailing spaces

•	 Change case: Change between upper and lower case

•	 Substrings: Return part of the string

Here is an overview of these operations.

Chapter 5 Calculating Column Values

162

�String Length

The length of a string is the number of characters in the string. To find the length,

you can use

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle

 SELECT length('abcde');

-- MSSQL

 SELECT len('abcde');

A length of 0 means that it’s an empty string.

Note that the number of characters is not necessarily the number of bytes. If the

strings are in Unicode, characters can take two or more bytes.

�Searching for a Substring

To find where part of a string is, you can use the following:

-- MySQL/MariaDB, SQLite, Oracle: INSTR('values',value)

 SELECT instr('abcdefghijklmnop','m');

-- PostgreSQL: POSITION(value IN 'values')

 SELECT position('m' in 'abcdefghijklmnop')

-- MSSQL: CHARINDEX(value, 'values')

 SELECT charindex('m','abcdefghijklmnop');

In all cases, if the substring can’t be found, the result will be 0.

Although the examples search for a single character, you can also search for a

multicharacter substring, in which you will get the position of the substring.

This is part of the technique we used to sort a string in nonalphabetical order.

�Replace

You can use replace to replace substrings in a string:

-- replace(original,search,replace)

 SELECT replace('text with spaces',' ','-')

Note that whether the search substring matches upper and lower case depends on

the database collation, as with the WHERE clause.

Chapter 5 Calculating Column Values

163

�Change Case

To change between upper and lower case, there is

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle, MSSQL

 SELECT lower('mIxEd cAsE'), upper('mIxEd cAsE');

For PostgreSQL and Oracle, you can also capitalize the first letter of each word:

-- PostgreSQL, Oracle

 SELECT initcap('mIxEd cAsE')

The other DBMSs don’t have anything quite so convenient.

�Trim Spaces

Sometimes, you get a few stray spaces at the beginning or the end of a string. To remove

them, you can use trim() to remove from both ends or ltrim() or rtrim() to remove

from the beginning or end of the string:

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle, MSSQL

 SELECT rtrim(ltrim(' abcdefghijklmnop '))

-- PostgreSQL, MySQL/MariaDB, SQLite, Oracle, MSSQL>=2017

 SELECT trim(' abcdefghijklmnop ');

The trim() functions don’t affect any of the spaces inside the string.

�Substrings

A substring is part of a string. The most direct way to extract a substring is

Substring

-- PostgreSQL, MariaDB/MySQL, Oracle, SQLite

 SELECT substr('abcdefghijklmnop',3,5)

-- MSSQL

 SELECT substring('abcdefghijklmnop',3,5)

-- Results in: cdefg

Here, you specify the original string, the start of the substring, and the length of the

substring.

Chapter 5 Calculating Column Values

164

Some DBMSs offer specialized functions to get the first or last part of a string. In

some cases, you can use a negative start to get the last part of a string:

-- Left

 -- PostgreSQL, MariaDB/MySQL, MSSQL

 SELECT left('abcdefghijklmnop',5);

 -- Can also use substr(string,1,n)

-- Right

 -- PostgreSQL, MariaDB/MySQL, MSSQL

 SELECT right('abcdefghijklmnop',4);

 -- MariaDB/MySQL, Oracle, SQLite

 substr('abcdefghijklmnop',-4)

In most cases, you don’t really need to extract part of a string for normal data. You

will sometimes see extraction used in cases where data has been combined, and you

need to pull it apart again. However, if the database is built properly, this won’t be

very often.

You might also extract parts of a string as part of a formatting process. For example,

the customer phone numbers are all stored as ten-digit strings, without spaces or other

formatting characters. While it is always best to store data in its purest form, it’s not

always at its most readable.

You can use the following substrings to generate a phone number in a 00 0000

0000 format:

-- PostgreSQL, MariaDB/ MySQL

 SELECT

 id, givenname, familyname,

 left(phone,2)||' '||substr(phone,3,4)

 ||' '||right(phone,4) AS phone

 FROM customers;

-- Oracle

 SELECT

 id, givenname, familyname,

 substr(phone,1,2)||' '||substr(phone,3,4)

 ||' '||substr(phone,-4) AS phone

 FROM customers;

Chapter 5 Calculating Column Values

165

-- SQLite

 SELECT

 id, givenname, familyname,

 substr(phone,1,2)||' '||substr(phone,3,4)

 ||' '||substr(phone,-4) AS phone

 FROM customers;

-- MSSQL

 SELECT

 id, givenname, familyname,

 left(phone,2)+' '+substring(phone,3,4)+' '+right(phone,4) AS phone

 FROM customers;

This now gives a more readable phone number.

id givenname familyname phone

474 Judy Free

186 Ray Gunn 03 5550 5761

144 Ray King 02 7010 6710

179 Ivan Inkling 08 7010 1382

475 Drew Blood 07 5550 8581

523 Seymour Sights 03 7010 3920

~ 304 rows ~

You might wonder why the phone number isn’t stored that way. The problem is that

not everyone enters the phone format the same way, so you’re not sure whether the

stored value matches the string you’re looking for. By removing all formatting altogether,

you have a definitive form which you can format later.

�Subqueries
Sometimes, the data you want is in another table. One way of getting that data into the

current query is to use a subquery. You have already seen subqueries in Chapter 3 on

filtering data; here, you will use a subquery as a calculated column.

Chapter 5 Calculating Column Values

166

You can use a subquery if you want to include data from a table in a tableless query.

For example:

SELECT (SELECT title FROM paintings WHERE id=123);

This will give you the selected title:

title

The Harvest Wagon

All subqueries appear inside parentheses, as you have seen earlier. Of course, in the

preceding example, using a subquery this way is pointless, but it makes more sense if

you’re combining this with other data.

More realistically, you might use a subquery if you want data from multiple tables.

For example, suppose you want to include the artist’s nationality with the painting

details:

SELECT

 id,

 artistid,

 title, price,

 (SELECT nationality FROM artists

 WHERE artists.id=paintings.artistid)

 AS nationality

FROM paintings;

You now have the artist nationalities:

id artistid title price nationality

1222 147 Haymakers Resting 125.00 French

251 40 Death in the Sickroom 105.00 Norwegian

2190 135 Cache-cache (Hide-and-Seek) 185.00 French

1560 293 Indefinite Divisibility 125.00 French

(continued)

Chapter 5 Calculating Column Values

167

id artistid title price nationality

172 156 Girl with Racket and Shuttlecock 195.00 French

2460 83 The Procession to Calvary 165.00 Flemish

~ 1273 rows ~

The expression in the WHERE clause artists.id=paintings.artistid includes the

table names. We say that the columns are qualified. You can write the WHERE clause

without table names, but qualifying column names will help you to understand and

maintain the query.

This type of subquery is called a correlated subquery: it contains a reference to

the main query. Among other things, it means that the subquery must be evaluated

individually for every row of the main query, so there is some performance cost involved.

Some subqueries, such as those used in Chapter 3 on filtering data, are noncorrelated:

they are independent of the main query, are evaluated only once, and so are much

less costly.

As for the actual name of the artist, a subquery in a SELECT clause can only return one

value. This will not work:

SELECT

 id,

 (SELECT givenname, familyname FROM artists

 WHERE artists.id=paintings.artistid),

 title, price,

 (SELECT nationality FROM artists

 WHERE artists.id=paintings.artistid) AS nationality

FROM paintings;

However, you can return a calculated value from a subquery:

-- Standard

 SELECT

 id,

 (SELECT givenname||' '||familyname FROM artists

 WHERE artists.id=paintings.artistid) AS artist,

 title, price,

Chapter 5 Calculating Column Values

168

 (SELECT nationality FROM artists WHERE

 artists.id=paintings.artistid) AS nationality

 FROM paintings;

-- MSSQL

 SELECT

 id,

 (SELECT givenname+' '+familyname FROM artists

 WHERE artists.id=paintings.artistid) AS artist,

 title, price,

 (SELECT nationality FROM artists WHERE

 artists.id=paintings.artistid) AS nationality

 FROM paintings;

-- Not SQLite

 SELECT

 id,

 (SELECT concat(givenname,' ',familyname) FROM artists

 WHERE artists.id=paintings.artistid) AS artist,

 title, price,

 (SELECT nationality FROM artists WHERE

 artists.id=paintings.artistid) AS nationality

 FROM paintings;

We now have the artists’ name as well as nationality:

id title artist … nationality

1222 Haymakers Resting Camille Pissarro … French

251 Death in the Sickroom Edvard Munch … Norwegian

2190 Cache-cache (Hide-and-Seek) Berthe Morisot … French

1560 Indefinite Divisibility Yves Tanguy … French

172 Girl with Racket and Shuttlecock Jean-Baptiste-Siméon Chardin … French

2460 The Procession to Calvary Pieter the Elder Bruegel … Flemish

 ~ 1273 rows

Chapter 5 Calculating Column Values

169

When selecting more than one value from the same subquery table, you need to

use multiple subqueries. This can start to get very costly for your performance, and you

might do better with joining tables instead. You will look at joining tables in the next

chapter.

�The CASE Expression
SQL has an expression to generate categories out of values or, in some cases, out of other

categories. This is the CASE … END expression.

For example, if you want to categorize paintings into price groups, you can use

SELECT

 id, title, price, -- basic values

 CASE

 WHEN price<130 THEN 'cheap'

 END AS price_group

FROM paintings;

This gives you the pricing categories:

id title price price_group

1222 Haymakers Resting 125.00 cheap

251 Death in the Sickroom 105.00 cheap

2190 Cache-cache (Hide-and-Seek) 185.00

1560 Indefinite Divisibility 125.00 cheap

172 Girl with Racket and Shuttlecock 195.00

2460 The Procession to Calvary 165.00

~ 1273 rows ~

The WHEN expression acts as a sort of IF operation: if the condition matches, then use

this value.

Note that if the condition doesn’t match, then the result is NULL. This is regardless of

whether the price is something else or NULL.

Chapter 5 Calculating Column Values

170

Of course, you’re not limited to one case:

SELECT

 id, title, price, -- basic values

 CASE

 WHEN price<130 THEN 'cheap'

 WHEN price<=170 THEN 'reasonable'

 END AS price_group

FROM paintings;

You now have two price categories:

id title price price_group

1222 Haymakers Resting 125.00 cheap

251 Death in the Sickroom 105.00 cheap

2190 Cache-cache (Hide-and-Seek) 185.00

1560 Indefinite Divisibility 125.00 cheap

172 Girl with Racket and Shuttlecock 195.00

2460 The Procession to Calvary 165.00 reasonable

~ 1273 rows ~

The expression is evaluated from the beginning. Even though a price of, say, 120 is

technically less than 170, the fact that it matches the first condition is enough, and no

further tests are made. We say the expression is short-circuited.

For the more expensive paintings, note that it’s not correct to say that they’re the rest.

That includes NULLs you want to exclude.

Noting that NULL fails a comparison, you can use

SELECT

 id, title, price, -- basic values

 CASE

 WHEN price<130 THEN 'cheap'

 WHEN price<=170 THEN 'reasonable'

Chapter 5 Calculating Column Values

171

 WHEN price>170 THEN 'luxury'

 END AS price_group

FROM paintings;

Everything now has a price category, except for the unpriced paintings.

id title price price_group

1222 Haymakers Resting 125.00 cheap

251 Death in the Sickroom 105.00 cheap

2190 Cache-cache (Hide-and-Seek) 185.00 luxury

1560 Indefinite Divisibility 125.00 cheap

172 Girl with Racket and Shuttlecock 195.00 luxury

2460 The Procession to Calvary 165.00 reasonable

~ 1273 rows ~

Alternatively, you might use WHEN price IS NOT NULL.

In all examples, prices which are not matched return a NULL. You can make this

explicit if you want:

SELECT

 id, title, price, -- basic values

 CASE

 WHEN price<130 THEN 'cheap'

 WHEN price<=170 THEN 'reasonable'

 WHEN price>170 THEN 'luxury'

 ELSE NULL -- redundant ∵ this is the default
 END AS price_group

FROM paintings;

The ELSE case is really more useful if you want to finish with an alternative value:

SELECT

 id, title, price, -- basic values

 CASE

 WHEN price<130 THEN 'cheap'

Chapter 5 Calculating Column Values

172

 WHEN price<=170 THEN 'reasonable'

 WHEN price>170 THEN 'luxury'

 ELSE '-'

 END AS price_group

FROM paintings;

You can also use CASE when the values are already in categories, but you want to

recode them. For example, the spam column is set to True/False or 1/0. You can use

CASE to make this clearer:

SELECT

 id, email,

 CASE

 WHEN spam=1 THEN 'yes'

 WHEN spam=0 THEN 'no'

 ELSE '' -- empty string

 END AS spam

FROM customers;

This is a more friendly version:

id email spam

474 judy.free474@example.net no

186 ray.gunn186@example.net yes

144 ray.king144@example.net no

179 ivan.inkling179@example.com yes

475 drew.blood475@example.net no

523 seymour.sights523@example.net yes

~ 304 rows ~

Note that the values tested are discrete. For discrete cases, there is an

alternative syntax:

SELECT

 id, email,

Chapter 5 Calculating Column Values

173

 CASE spam

 WHEN 1 THEN 'yes'

 WHEN 0 THEN 'no'

 ELSE '' -- empty string

 END AS spam

FROM customers;

This isn’t significantly shorter, but it makes the point clearer that you’re choosing

from a discrete set of alternatives.

�Casting to Different Data Types
There are times when it’s not the value but the data type itself which needs changing.

This may be for a number of reasons, but will often be necessary when combining values

of different types. Changing the type of data is called casting.

Some DBMS will automatically cast data when the context is simple enough:

-- Not MSSQL

-- MySQL: SET SESSION sql_mode = 'ANSI';

 SELECT id||': '||givenname||' '||familyname AS info

 FROM customers;

Here is the combined information:

info

474: Judy Free

186: Ray Gunn

144: Ray King

179: Ivan Inkling

475: Drew Blood

523: Seymour Sights

~ 304 rows ~

Chapter 5 Calculating Column Values

174

Although id is an integer, it will be automatically cast as a string to concatenate with

other strings. This won’t work with Microsoft SQL, however, since the “+” operator will

add two numbers and concatenate two strings, but doesn’t know how to mix them.

You can also do this with dates:

SELECT

 id||': '||givenname||' '||familyname||' - '||dob AS info

FROM customers;

You may, however, get disappointing results:

info

474: Judy Free - 1978-04-01

[NULL]

523: Seymour Sights - 1965-

01-06

~ 304 rows ~

As you see, the situation gets complicated when there are NULLs to crash the

calculation. We’ll solve that in the next section, as well as how to work with MSSQL.

�The cast() Function
The cast() function is used to change the type of a value. In general, there are four ways

the cast() function is used:

•	 You can cast to a smaller version of the same type.

For example, you can cast from a float to an integer, or from a

datetime to a date. When you do, you will, of course, lose the

fine detail.

•	 You can cast to a wider version of the same type.

For example, you can cast an integer to a float, or from a date to a

datetime. If you do, the finer detail will be filled with zero or the

equivalent.

Chapter 5 Calculating Column Values

175

•	 You can cast from any type to a string.

The only thing which might go wrong is if you specify a string

type which is too short, such as when you attempt to cast a date to

varchar(4).

•	 You can sometimes cast a string to a different type.

If the string doesn’t fit the correct form, the classic response is

to overreact by raising an error. Some DBMSs do offer a gentler

fallback.

We had a taste of cast() when trying to sort by a string which had the form of a

number or a date.

�Casting to a String
For all DBMSs, you can forcibly cast a value to a string using the cast() function:

-- Standard

 SELECT

 cast(id AS varchar(5))||': '||givenname||' '

 ||familyname||' - '||cast(dob as varchar(12))

 AS info

 FROM customers;

-- MSSQL:

 SELECT

 cast(id AS varchar(5))+': '+givenname+' '

 +familyname+' - '+cast(dob as varchar(12))

 AS info

 FROM customers;

The cast() function returns an equivalent value, in this case a string of up to 5 or 12

characters.

You should see the same results as before, but now you have made the cast specific.

You need to be a little careful with the VARCHAR type. As you see, you specify a maximum

length. If it’s not enough, you will probably see the string truncated. If you’re not sure

how much to allow, it’s always safe to overestimate.

Chapter 5 Calculating Column Values

176

Here again, the NULLs have come back to haunt us. While the id, givenname, and

familyname all have values, the dob may not. Oracle is the only one which politely

returns an empty string, while all the others all implode with a NULL.

Since a missing dob shouldn’t be a major issue, you can coalesce it (and its preceding

hyphen) to an empty string:

-- Standard

 SELECT

 cast(id AS varchar(5))||': '||givenname||' '||familyname

 ||coalesce(' - '||cast(dob as varchar(12)),'') AS info

 FROM customers;

-- MSSQL:

 SELECT

 cast(id AS varchar(5))+': '+givenname+' '+familyname

 +coalesce(' - '+cast(dob as varchar(12)),'') AS info

 FROM customers;

This is similar to what you did to the artist names before:

info

474: Judy Free - 1978-04-01

186: Ray Gunn

144: Ray King

179: Ivan Inkling

475: Drew Blood - 1989-12-06

523: Seymour Sights - 1965-01-06

~ 304 rows ~

While casting to strings can often be handled automatically, converting from strings

can be a challenge. The following should succeed:

SELECT cast('20 Jul 1969' as date) AS moon_landing;

However, Oracle makes things difficult if you attempt to use a variation of the date

format; the others should be OK.

Chapter 5 Calculating Column Values

177

On the other hand, don’t expect this to work:

SELECT cast('tomorrow' as date) AS birthday;

There are some coding languages (such as PHP) which will actually interpret this

type of string, but as for SQL, only PostgreSQL supports this. Don’t even try with any

other type of string. You’ll probably get an error.

�Casting Date Literals
One place where you may need to use cast() is when trying to specify a date literal.

Because a date literal uses single quotes, the DBMS may get confused about whether it’s

supposed to be a string.

For example, if you use a date literal when the context is obvious, such as when

comparing to a known date type, you don’t need to worry:

SELECT * FROM customers WHERE dob<'1980-01-01';

Since dob is known to be a date type, the literal must also be a date.

However, in many of the previous examples, we used a date literal without a known

date type. There, we had to force the issue with cast():

SELECT cast('20 Jul 1969' as date) AS moon_landing;

If you’re not sure about how a literal will be interpreted, it is always safe to cast

it anyway.

�Creating a View
Some of your calculations may get complicated, and some of your queries certainly will.

When you need to reuse a query, you may be able to save it as a view.

A view is a saved query. The view is saved permanently in the database itself. For

example, suppose you have a query which generates a simple price list, using some of

the calculations in this chapter:

SELECT

 id,

 (SELECT givenname||' '||familyname FROM artists WHERE

Chapter 5 Calculating Column Values

178

 artists.id=paintings.artistid) AS artist,

 title,

 price, price*0.1 AS tax, price*1.1 AS inc,

 CASE

 WHEN price<130 THEN 'cheap'

 WHEN price<=170 THEN 'reasonable'

 WHEN price>170 THEN 'expensive'

 ELSE ''

 END AS pricegroup,

 (SELECT nationality FROM artists

 WHERE artists.id=paintings.artistid) AS nationality

FROM paintings;

You have a result which would do as a price list.

id artist title price … pricegroup nationality

1222 … … 125 … cheap French

251 … … 105 … cheap Norwegian

2190 … … 185 … expensive French

1560 … … 125 … cheap French

172 … … 195 … expensive French

2460 … … 165 … reasonable Flemish

 ~ 1273 rows

That’s something you won’t want to redo every time. Instead, you can save the query

by creating a view:

CREATE VIEW pricelist AS

SELECT

 id,

 (SELECT givenname||' '||familyname FROM artists WHERE

 artists.id=paintings.artistid) AS artist,

 title,

 price, price*0.1 AS tax, price*1.1 AS inc,

Chapter 5 Calculating Column Values

179

 CASE

 WHEN price<130 THEN 'cheap'

 WHEN price<=170 THEN 'reasonable'

 WHEN price>170 THEN 'expensive'

 ELSE ''

 END AS pricegroup

 (SELECT nationality FROM artists

 WHERE artists.id=paintings.artistid) AS nationality

FROM paintings;

You can now use the pricelist view as if it were another table:

SELECT * FROM pricelist;

You can think of a view as a virtual table. The important thing is that it’s not a copy

of the data; if you drop the view, you don’t lose anything but the view itself. The original

data is still intact.

You can name the view almost anything you like, but you can’t have two views with

the same name, obviously. It’s less obvious that you can’t have a view with the same

name as a table. That’s because SQL treats a view as another table.

If you no longer need the view, you can use the DROP VIEW statement:

DROP VIEW pricelist;

To be safe, you might qualify the statement with IF EXISTS; otherwise, you might get

an error if the view wasn’t there in the first place:

-- Not Oracle or older MSSQL

 DROP VIEW IF EXISTS pricelist;

Note that Oracle as well as older versions of MSSQL doesn’t support IF EXISTS.

You don’t need to worry about dropping views just to save space, since they take up

virtually no space.

If you want to change a view, however, the simplest way is to drop it first and then

create it again.

Once you have an appreciation for views, you will find that they are a useful

technique for building on your code. When you have put in the hard work to create your

SELECT statement, you can just save it and reuse it whenever you like.

Chapter 5 Calculating Column Values

180

The only downside is that CREATE VIEW requires additional database privileges, since

you are making changes to the database itself. We recommend that you do whatever is

needed to get these privileges—badger, bribe, blackmail, or whatever works.

�Using Views in Microsoft SQL
For the most part, views work the same way as they do for any other DBMS. However,

there are some significant quirks with Microsoft:

•	 A view cannot include an ORDER BY clause, unless you combine it

with either an OFFSET … FETCH … clause or a TOP expression.

•	 The CREATE VIEW statement must be separated from the rest of

the script.

•	 Older versions didn’t support IF EXISTS; you would have to use a

more complex expression like IF OBJECT_ID('something','V') IS

NOT NULL DROP VIEW something.

Microsoft requires you to separate most CREATE something statements from the rest

of the script, with the outstanding exception of CREATE TABLE. This can be done using a

special keyword GO, for example:

GO

CREATE VIEW pricelist AS

SELECT

 -- etc

FROM paintings;

GO

GO is really an instruction to process the preceding code and to start a new batch.

GO is not part of the SQL standard (no other DBMS requires it) and has quirky

behaviors of its own. Generally, it should appear on a separate line, probably not

indented, and shouldn’t have anything after the keyword.

Chapter 5 Calculating Column Values

181

�Summary
Although your data should be saved in its simplest form, you can generate variations on

that data using calculations.

You can experiment with calculations and formulas using a SELECT clause without a

table; in Oracle, you use a dummy table called dual.

Although you normally calculate a value from existing values in a table, there are

times when you might use a built-in value, such as the current date and time. You can

also use a fixed value.

�Data Types
In SQL, there are three main data types: numbers, strings, and dates. Each data type has

its own methods and functions to calculate values:

•	 For numbers, you can do simple arithmetic and calculate with more

complex functions. There are also functions which approximate

numbers.

•	 For dates, you can calculate an age between dates or offset a date.

You can also extract various parts of the date.

•	 For strings, you can concatenate them, change parts of the string, or

extract parts of the string.

•	 For numbers and dates, you can generate a formatted string which

gives you a possibly more friendly version.

�NULLs
Whenever a calculation involves a NULL, it has a catastrophic effect on the result, and the

result will be NULL.

In some cases, you may be able to substitute a value using coalesce() which will

replace NULL with a reasonable alternative. Of course, you will need to work out what you

mean by “reasonable.”

Chapter 5 Calculating Column Values

182

�Aliases
Every column should have a distinct name. When you calculate a value, you supply this

name as an alias using AS. You can also do this with noncalculated columns to provide a

more suitable name.

Aliases and other names should be distinct. They should also follow standard

column naming rules, such as not being the same as an SQL keyword and not having

special characters.

If, for any reason, a name or an alias needs to break the naming rules, you can always

wrap the name in double quotes, or whatever the DBMS supplies as an alternative.

�Subqueries
A column can also include a value derived from a subquery. This is especially useful if

you want to include data from a separate related table.

If the subquery involves a value from the main table, it is said to be correlated. Such

subqueries can be costly, but are nonetheless a useful technique.

�The CASE Expression
You can generate categories using CASE … END, which tests a value against possible

matches and results in one out of a number of alternative values.

�Casting a Value
You may be able to change the data type of a value, using cast():

•	 You can change within a main type to a type with more or less detail.

•	 You can sometimes change between major types if the value

sufficiently resembles the other type.

Sometimes, casting is performed automatically, but sometimes you need to do it

yourself.

One case where you might need to cast from a string is when you need a date literal.

Since both string and date literals use single quotes, SQL might misinterpret the date for

a string.

Chapter 5 Calculating Column Values

183

�Views
You can save a SELECT statement into the database by creating a view. A view allows you

to save a complex statement as a virtual table, which you can use later in a simpler form.

Views are a good way of building a collection of useful statements.

�Coming Up
Most of the work so far has involved single tables. Whenever we need to include data

from another table, we simply used a subquery, which queries the other table and

returns a result.

In the next chapter, we will look at generating a new virtual table by combining two

or more tables in what we call a join.

Chapter 5 Calculating Column Values

185

CHAPTER 6

Joining Tables
If you select the data from the paintings table:

SELECT *

FROM paintings;

You will see the artist is represented by the artistid, not the name or any other

detail. That is how it should be in good database design, but it’s not convenient. In the

previous chapter, you got around this by including a subquery:

SELECT

 title,

 (SELECT givenname||' '||familyname FROM artists

 WHERE artists.id=paintings.artistid) AS artist

 -- etc

FROM paintings;

Apart from being tedious, subqueries can also be costly in terms of extra processing,

and they can be difficult to manage.

It would have been easier if the artist’s name were to be included in the paintings

table. However, as discussed earlier, that would result in poorly organized data.

The solution, the best of both worlds, is to generate a temporary virtual table where

the artists’ details are indeed included with the painting details. This is called a join.

When you join two tables, you take a row from one table and attach it to the end of

a row from another. Of course, you’ll need to make sure that the attached row somehow

matches the other. Once you have done this, you can read from the result as a single

table without the need for messing about with subqueries.

In this chapter, we’ll learn how to join two or more tables to make extracting data

from the combined tables easy and practical.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_6

https://doi.org/10.1007/978-1-4842-9493-2_6

186

We’ll begin by recreating the price list using a join instead of subqueries. As we do,

we’ll see that there are different join types which control what happens if some of the

rows don’t match.

We’ll also look at joining more than two tables, joining a table to itself, and how to

join tables which aren’t obviously related to each other.

First, however, we’ll need to see what’s happening when you do a join.

�How a Join Works
In order to understand joins, you will need to understand some basic concepts of how

tables are related. Of course, SQL doesn’t really require you to understand what’s going

on, but joins can get very tricky if you don’t.

In Chapter 2, some of the central points in designing a database are as follows:

•	 A table contains data on a single type of object. So, for example, a

paintings table has no artists details, and a books table has no

authors details.

•	 Multiple rows should not have the same data. So, for example,

two paintings by the same artist should not both have the artist’s

name, and two books by the same author should not have the same

author’s name.

In reality, these aren’t different points, but two manifestations of the same principle:

a table describes a single type of data. If you attempt to include unrelated data, you will

end up repeating that data.

The correct solution is to put related data into its own table and use a foreign key to

link one table to the primary key in the other, as shown in Figure 6-1.

Chapter 6 Joining Tables

187

Figure 6-1.  A Relationship Between Tables

When the time comes, the next step will be to join the tables into a single virtual

table. To join the two tables is to copy one row from one table to the end of the matching

row in the other table as in Figure 6-2.

Figure 6-2.  The Tables Joined

You can then use the resulting virtual table to read data from both tables.

You will probably have noticed a few important features of the join:

•	 There may be some missing rows from either table.

Later, you will see how to include the missing rows.

Chapter 6 Joining Tables

188

•	 Some connected rows will be duplicated. If this were a real table, you

would have all sorts of problems in managing data, but with a virtual

table, this is perfectly all right and convenient.

There is one other important feature you will see later in the SQL itself:

•	 It is not enough to specify which tables are to be joined; you also

need to specify which column matches which. Although you would

normally join a foreign key to a primary key, SQL allows for more

complex joins.

Once you have joined the tables, you can read from the result using a SELECT

statement.

To illustrate the process, we will use the following join:

SELECT *

FROM paintings JOIN artists ON paintings.artistid=artists.id;

You’ll get something like this with all of the columns from both tables:

id artistid title … id familyname …

1222 147 Haymakers Resting … 147 Pissarro …

251 40 Death in the Sickroom … 40 Munch …

2190 135 Cache-cache (Hide-and-Seek) … 135 Morisot …

1560 293 Indefinite Divisibility … 293 Tanguy …

172 156 Girl with Racket and Shuttlecock … 156 Chardin …

2460 83 The Procession to Calvary … 83 Bruegel …

~ 1228 rows ~

The details will be explained as we go. For now, we will see a result set with data from

the combined tables.

The results from the previous query illustrate all of the preceding points. Note

especially that some of the rows are missing. We’ll look at this later.

Chapter 6 Joining Tables

189

�Joining the Tables
The basic join is achieved with the JOIN ... ON clause:

SELECT *

FROM paintings JOIN artists ON paintings.artistid=artists.id;

You will notice some data which is repeated. For example, there are 57 paintings by

Van Gogh. This means you get 57 copies of his name, nationality, and dates.

If this were a real table, it would be a sign of very poor design. You have 57

opportunities to make mistakes, and there are other discrepancies you risk introducing.

This is why it is important to keep this sort of data in a separate table where it is entered

only once and can be properly maintained.

However, the join produces only a virtual table: the repeated data is convenient for

reading and will never be stored anywhere.

Note that the join can be written in different ways. Because the focus is on the

paintings, it makes visual sense to write the paintings table first. However, you can write

the two tables the other way round:

SELECT *

FROM artists JOIN paintings ON paintings.artistid=artists.id;

This will give exactly the same results, except that the column order will be different.

The same applies to the ON clause: it doesn’t matter which way round you write it,

since the match will be the same.

At this point, it doesn’t matter which table you write first. Later, however, you will

need to remember when it comes to variations on the JOIN clause.

�Alternative Syntax
The JOIN keyword was not in the original SQL standard. Instead, you would use

this syntax:

SELECT *

FROM paintings,artists WHERE paintings.artistid=artists.id;

That is, the JOIN is replaced with a comma, and the ON replaced by the WHERE.

Chapter 6 Joining Tables

190

Technically, what was happening was that all the possible combinations of

paintings and artists were generated (this is called a Cross Join), and only those

where the artist matched the painting were filtered through. In reality, the DBMS never

did this the long way.

This is a very old syntax, and you will only see it used by diehards who haven’t got

used to the newer syntax. On the inside, SQL will generate the same results using the

same process as with the JOIN syntax.

You should always use the newer syntax:

•	 The older syntax identifies you as one of the diehards.

•	 The newer syntax is more flexible, as you will see when examining

join types. As you’ll see later, the preceding syntax is limited to what

is called an INNER JOIN.

•	 The newer syntax makes using an additional WHERE clause

filter easier.

On the last point, suppose you want only the cheaper paintings. Using the JOIN

clause, you could run

SELECT *

FROM paintings JOIN artists ON paintings.artistid=artists.id

WHERE price<150;

Here are the cheaper paintings:

id artistid title price … id familyname …

1222 147 Haymakers Resting 125.00 … 147 Pissarro …

251 40 Death in the Sickroom 105.00 … 40 Munch …

1560 293 Indefinite Divisibility 125.00 … 293 Tanguy …

1836 273 Male and Female 105.00 … 273 Pollock …

575 18 Corner of Quarry 125.00 … 18 Cézanne …

1353 67 Nini in the Garden 105.00 … 67 Renoir …

~ 543 rows ~

Chapter 6 Joining Tables

191

Using the older syntax, you would have to append the filter to the existing

WHERE clause:

SELECT *

FROM paintings,artists

WHERE paintings.artistid=artists.id

 AND price<150;

Again, SQL will give the same results using the same process internally, but the

newer syntax makes your own intentions clear.

�Selecting the Results
You can always use SELECT * to see what’s going on:

SELECT *

FROM paintings JOIN artists ON paintings.artistid=artists.id;

However, you will probably want to be more selective about which columns to

include. For example, you might choose the painting’s id, title, and the artist’s

givenname and familyname:

-- This won't work:

 SELECT

 id,

 title,

 givenname, familyname

 FROM paintings JOIN artists

 ON paintings.artistid=artists.id;

but it won’t work yet.

The error message you get will refer to an ambiguous column. In a single table, you

can’t have two columns with the same name, but when you join two different tables,

there is always that possibility.

Chapter 6 Joining Tables

192

The solution is to include the table’s name as a prefix:

SELECT

 paintings.id,

 title,

 givenname, familyname

FROM paintings JOIN artists ON paintings.artistid=artists.id;

This will now work, since you have qualified the troublesome name; that is, you have

said which one.

id title givenname familyname

1222 Haymakers Resting Camille Pissarro

251 Death in the Sickroom Edvard Munch

2190 Cache-cache (Hide-and-Seek) Berthe Morisot

1560 Indefinite Divisibility Yves Tanguy

172 Girl with Racket and Shuttlecock Jean-Baptiste-Siméon Chardin

2460 The Procession to Calvary Pieter the Elder Bruegel

~ 1228 rows ~

The notation table.column is referred to as a qualified name and can be thought of

as the full name of a column.

Note that in the result set, the column name is still the simpler unqualified name.

Although, as you see, only the ambiguous names need to be qualified, you can

qualify the rest of the columns:

SELECT

 paintings.id,

 paintings.title,

 artists.givenname, artists.familyname

FROM paintings JOIN artists ON paintings.artistid=artists.id;

You will get exactly the same results.

Chapter 6 Joining Tables

193

In fact, it is recommended that you do qualify all of the columns. This is because

•	 You can easily see which table has the original data.

•	 More complex joins will be easier to manage.

•	 If someone has decided to add a column with the same name to the

other table, you’ll need to qualify it anyway.

We’ll qualify all names from here on.

�Table Aliases
If you’re going to fully qualify each column name, it gets very tedious very quickly. It

also makes the statement more difficult to read as you need to trudge through multiple

redundant table names. You can simplify the statement by using a table alias, which is a

temporary nickname for a table. This is similar to a column alias used when calculating

column values.

To use table aliases

•	 Alias the table with the AS keyword.

•	 Use the alias instead of the original name.

Note that in Oracle, however, you will have to alias the tables without the AS keyword.

For example:

-- Not Oracle

 SELECT

 p.id,

 p.title,

 a.givenname, a.familyname

 FROM paintings AS p JOIN artists AS a ON p.artistid=a.id;

-- Oracle, as well as the others:

 SELECT

 p.id,

 p.title,

 a.givenname, a.familyname

 FROM paintings p JOIN artists a ON p.artistid=a.id;

Chapter 6 Joining Tables

194

If you’re not using Oracle, we recommend that you always use AS to make your code

more readable and to reduce error; with Oracle, you don’t have the option.

There are many reasons to use table aliases, but in this case, it is purely for

convenience. Reducing the table name to a single letter is easier to type and much easier

to scan.

Remembering that FROM is evaluated before SELECT, be aware that once you set a

table alias, you are committed to using it for the rest of the statement: you cannot mix

original names with aliased names.

�Developing a Price List
We have already started building a price list when working with calculations. Using joins,

we can develop one easily:

SELECT

 p.id,

 p.title,

 a.givenname||' '||a.familyname AS artist,

 a.nationality,

 p.price, p.price*0.1 AS tax, p.price*1.1 AS total

FROM paintings AS p JOIN artists AS a ON p.artistid=a.id;

You should get the same results:

id title artist price tax inc nationality

1222 Haymakers Restin … Camille Pissarro … 125.00 12.500 137.500 French

251 Death in the Sic … Edvard Munch … 105.00 10.500 115.500 Norwegian

2190 Cache-cache (Hid … Berthe Morisot … 185.00 18.500 203.500 French

1560 Indefinite Divis … Yves Tanguy … 125.00 12.500 137.500 French

172 Girl with Racket … Jean-Baptiste-Si … 195.00 19.500 214.500 French

2460 The Procession t … Pieter the Elder … 165.00 16.500 181.500 Flemish

~ 1228 rows ~

Chapter 6 Joining Tables

195

Except, of course, some of the rows are still missing.

You can also add p.year or other columns without extra work as they are always

present in the join.

�Join Types
We have so far ignored the fact that some of the rows are missing.

The reason is simple enough. Some paintings don’t have a matching artist, and some

artists don’t have a matching painting.

To find the unmatched (anonymous) paintings, you can find the NULL artist ids:

SELECT *

FROM paintings

WHERE artistid IS NULL;

This gives you the anonymous paintings:

id title artistid …

1989 Portrait of Trabuc …

1179 The Green Vineyard …

1774 The vase with 12 sunflowers …

625 Self-portrait …

908 Village Street and Stairs with Figures …

2220 Noon: Rest from Work (After Millet) …

~ 45 rows ~

Chapter 6 Joining Tables

196

To find the unmatched artists is a bit trickier, since the match is only defined in the

paintings table:

•	 Find the artistid paintings which do have an artistid.

•	 Find the artists whose id isn’t in the above.

SELECT * FROM artists

WHERE id NOT IN (

 SELECT artistid FROM paintings WHERE artistid IS NOT NULL

);

This gives you a list of artists whose paintings we haven’t (yet) included:

id givenname familyname …

37 Francisco de Zurbarán …

127 Pietro Cavallini …

38 Altichiero Da Verona …

164 Alonso Cano …

23 Paul Klee …

338 Gentile da Fabriano …

~ 19 rows ~

When you join two tables, by default, only those rows in one table with a matching

row in the other are included. In our case, since some of the paintings have a NULL

artistid, SQL can’t find a match for them in the artists table. The unmatched

paintings are left out. This is called an INNER JOIN and is the default.

This isn’t always what you want, so SQL provides a number of join types:

•	 The INNER JOIN returns only the matched rows. This is the default.

•	 The OUTER JOIN types return the matched rows as well as some

unmatched rows. There are three different OUTER JOIN types.

•	 The CROSS JOIN returns all the possible combinations of child and

parent rows. You very rarely want the CROSS JOIN by itself, but it is

sometimes used in special cases.

Chapter 6 Joining Tables

197

Here, we’ll explore the various types of joins. To make it easier, we’ll run the

examples on miniature versions of the artists and paintings tables, called

miniartists and minipaintings. These are the tables you saw in Figure 6-1.

�The INNER JOIN
The default join type is the INNER JOIN:

SELECT *

FROM minipaintings AS p

 INNER JOIN miniartists AS a ON p.artistid=a.id;

id title artistid id fullname

1 The Bathers 2 2 Pierre-Auguste Renoir

2 Starry Night 1 1 Vincent Van Gogh

3 Snowstorm 3 3 Joseph Turner

4 Danseuse 2 2 Pierre-Auguste Renoir

5 Moonlight 3 3 Joseph Turner

7 The Woman of Arles 1 1 Vincent Van Gogh

8 On the Terrace 2 2 Pierre-Auguste Renoir

The only difference between this and the previous examples is the word INNER, and

you can see that it’s not really doing anything special. Being the default, you can leave it

out altogether.

Remember, with an INNER JOIN, you can write the tables in either order. You’ll get

the same results, but the column order may change.

�The LEFT OUTER JOIN and RIGHT OUTER JOIN
An OUTER JOIN is used to include unmatched rows. It always includes the INNER JOIN.

As there are two tables involved, you have a choice of whether to include the unmatched

rows of the first or second table. If you really want both, you would use a FULL OUTER JOIN.

However, you probably want the unmatched rows from the minipaintings, that

is, the rows from the minipaintings table which have no matching rows from the

miniartists table. In English, that’s the anonymous paintings.

Chapter 6 Joining Tables

198

As mentioned earlier, you can write the tables in either order. However, when it

comes to OUTER JOINs, you will need to remember which you wrote first.

If you want to include the unmatched minipaintings table rows, you change the

INNER JOIN to a corresponding LEFT OUTER JOIN or RIGHT OUTER JOIN.

If you’re working with SQLite, you’ll find that it doesn’t support RIGHT JOIN. They
recommend you just change the two tables round till you get what you want with a
LEFT JOIN.

You can still follow the rest of this, but ignore the samples with RIGHT JOIN.

Putting the minipaintings table on the left:

SELECT *

FROM minipaintings AS p LEFT OUTER JOIN miniartists AS a

 ON p.artistid=a.id;

You’ll see that you now get the anonymous painting missing from the inner join:

id title artistid id fullname

1 The Bathers 2 2 Pierre-Auguste Renoir

2 Starry Night 1 1 Vincent Van Gogh

3 Snowstorm 3 3 Joseph Turner

4 Danseuse 2 2 Pierre-Auguste Renoir

5 Moonlight 3 3 Joseph Turner

6 The Green Vineyard

7 The Woman of Arles 1 1 Vincent Van Gogh

8 On the Terrace 2 2 Pierre-Auguste Renoir

Putting the minipaintings table on the right:

SELECT *

FROM miniartists AS a RIGHT OUTER JOIN minipaintings AS p

 ON a.id=p.artistid;

Chapter 6 Joining Tables

199

That is, you select LEFT or RIGHT depending on whether the table you want is on the

left or right of the JOIN keyword. The ON artists.id=paintings.artistid clause can

still be written either way.

As with the INNER JOIN, the OUTER word is also optional, so you can omit it:

-- minipaintings Table on LEFT

 SELECT *

 FROM minipaintings AS p LEFT JOIN artists AS a

 ON p.artistid=a.id;

-- paintings Table on RIGHT

 SELECT *

 FROM miniartists AS a RIGHT JOIN minipaintings AS p

 ON paintings.artistid=artists.id;

Where there is an unmatched row, the corresponding data will be filled with NULLs.

�The “Preferred” Outer Join
In the working sample, we used OUTER JOIN to include all of the paintings, but not the

artists. That’s partly because we’re more interested in the paintings, since that’s what

we’re selling. It’s also because of the relationship between the tables.

Note that the minipaintings table has a foreign key referring to the miniartists,

but not the other way round. We say that there is a one-to-many relationship between

the tables. One artist can have many paintings, or, if you prefer, many paintings can

reference the one artist.

Sometimes, we say that the minipaintings table is a child table, while the

miniartists table is a parent table. In SQL, a child table references the parent table, but

not the other way.

When you join two tables, you normally want the child outer join. However, you can

also get the parent outer join:

-- minipaintings Table on LEFT

 SELECT *

 FROM minipaintings AS p RIGHT JOIN miniartists AS a

 ON p.artistid=a.id;

-- minipaintings Table on RIGHT

 SELECT *

Chapter 6 Joining Tables

200

 FROM artists AS a LEFT JOIN minipaintings AS p

 ON p.artistid=a.id;

This will result in the INNER JOIN together with unmatched artists. This is not

commonly required, but can be useful in a few cases.

First, in this database, you are more interested in the paintings, and you would

regard the artist information as extra details for the paintings. If, however, you were

acting as an agent for the artists (which in this case is probably too late), you would be

more interested in the miniartists table, and you might then have an interest in the

parent outer join earlier.

Second, you can use this sort of join to find the unmatched artists. For example:

SELECT a.*

FROM minipaintings AS p RIGHT JOIN miniartists AS a

 ON p.artistid=a.id

WHERE p.id IS NULL;

This gives you the following:

id fullname

5 Leonardo da Vinci

4 Ando Hiroshige

Here, you are looking for artists with no matching paintings by generating the outer

join and filtering out the matched paintings. This will get you a similar result to the

“unmatched artists” earlier.

�Some Recommendations on JOINS
You obviously get a few choices when it comes to writing joins. As long as it works, it

shouldn’t matter which way you go. However, a good developer will always write code

which is clear and maintainable.

Here are some recommendations. In the end, whatever you choose, you should be

consistent and not keep changing the rules.

Chapter 6 Joining Tables

201

�(Almost) Always Alias Your Tables

In a few minor cases, you might throw together a join without aliasing your tables, but

the minute you start selecting individual columns, it starts to get messy. It’s always a

good idea to alias your tables.

�Which Table Comes First?

Clearly, we have a choice of which table we write first. How do you decide?

To begin with, it doesn’t matter, so nothing will break if you decide the other way. In

practice, however, you’re probably more interested in one table than the other.

If you were an agent for the artists, then you’re more interested in listing the artists

with their paintings. In this sample, we’re selling paintings so we’re more interested in

listing paintings with their artists.

It’s normal to put the table you’re more interested in on the left. That means, when it

comes to outer joins, you’re more likely to use a LEFT JOIN. That’s what we’ll use for the

most part.

Remember, SQLite doesn’t even support RIGHT JOIN, and they advise you to swap

tables, if necessary, to use a LEFT JOIN. Apparently, nobody misses the RIGHT JOIN.

�Decide Whether You Use INNER and OUTER

Both INNER and OUTER are optional, so, in principle, you can do whatever you wish.

However, we recommend that you pick a rule and stick to it. It can be confusing and

misleading if you use these keywords sometimes, but not other times.

In this book, we leave them out, but in reality it’s up to you.

�Finishing the Price List
We’ve started on creating a price list using joined tables:

SELECT

 p.id,

 p.title,

 a.givenname||' '||a.familyname AS artist,

 a.nationality,

 p.price, p.price*0.1 AS tax, p.price*1.1 AS total

FROM paintings AS p JOIN artists AS a ON p.artistid=a.id;

Chapter 6 Joining Tables

202

Compared to the previous version with the subquery, this has both less than we want

and more than what we want.

First, there’s the matter of the missing paintings. Remember that there are some

paintings without an artistid, and the inner join earlier will miss them. A suitable outer

join should fix that.

Second, there are some paintings without a price. It’s not for us to decide why they’re

without a price: perhaps they are new paintings which haven’t been priced yet or old

paintings we don’t sell anymore. The point is that there’s no point in including them in a

price list. For that, we can filter out the NULLs.

What we can do now is drop the old version of the price list and replace it with the

join version:

DROP VIEW IF EXISTS pricelist;

CREATE VIEW pricelist AS

SELECT

 p.id,

 p.title,

 a.givenname||' '||a.familyname AS artist,

 a.nationality,

 p.price, p.price*0.1 AS tax, p.price*1.1 AS total

FROM paintings AS p LEFT JOIN artists AS a ON p.artistid=a.id

WHERE p.price IS NULL;

For the various DBMSs, remember:

•	 Oracle doesn’t support IF EXISTS.

•	 Microsoft requires GO before and after the CREATE VIEW block.

•	 MySQL/MariaDB needs to be set to ANSI mode for the

concatenation; otherwise, you’ll need to use the concat() function.

Microsoft needs the + for concatenation.

�Joining Many Tables
The purpose of a join is to combine data from two or more tables. Sometimes, the

additional data is from many other tables, and sometimes the data is from another table

not directly related to the main table.

Chapter 6 Joining Tables

203

For example, suppose you want a list of customers and the artists from whom they

purchased paintings. You might be considering a promotion where customers get a

discount on purchases for previously purchased artists.

The statement would look something like this:

SELECT

 c.id, c.givenname, c.familyname,

 a.id,

 a.givenname||' '||a.familyname AS artist

FROM ... ;

You know that you will be using a join which includes the customers and artists

table and that you will alias these tables with suitable initials.

The problem is that the two tables involved are not directly related to each other.

As you see from the database diagram, the relationship between these tables is a long

one, involving the sales, saleitems, and paintings tables. Intuitively, this makes sense:

for each customer, you can check their sales and sale items, then check the paintings for

each sale item, and finally get to the artist for each painting.

To facilitate this, you will need to join all five tables, two at a time:

customers ← sales ← saleitems → paintings → artists

Note the direction of the arrows. They indicate where a foreign key is referencing a

primary key. In more detail:

customers.id

 ← customerid.sales.id

 ← saleid.saleitems.paintingid

 → id.paintings.artistid

 → id.artists

Your real database may have many more tables. However, generally, the principle

will be the same: you usually work with a relatively small number of tables for a

particular query.

Chapter 6 Joining Tables

204

�Building a Larger JOIN
The purpose of the join is to get data from the end tables. However, we can also get data

from any of the tables in between.

You can easily join five tables if you start on one end of the chain and keep on to the

other end:

SELECT

 *

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

;

Remember to leave out the AS if you’re using Oracle.

This will give you a very long list:

id givenname familyname … id givenname familyname …

79 Daisy Chain … 20 Frans Hals …

459 Matt Black … 314 (Eugène-Henri-) Paul Gauguin …

28 Meg Aphone … 43 Johan-Barthold Jongkind …

179 Ivan Inkling … 266 Vincent Van Gogh …

94 Stan Dover … 344 Edgar Degas …

373 April Showers … 3 Diego Velázquez …

~ 6099 rows ~

Note that all of the joins follow the foreign keys. The pattern is

table

JOIN table ON relationship

JOIN table ON relationship

JOIN table ON relationship

JOIN table ON relationship

Chapter 6 Joining Tables

205

Five tables, four joins between them.

The layout is purely a matter of preference. In a simple two-table join, we put

everything on one line. In a larger join, we separated the joins out to make them easier

to follow.

As usual, we use a simple initial as a table alias. In one case, saleitems, this wouldn’t

work as its initial was already used, so si seemed suitable. As always, any distinct alias

will do, but it makes sense to use an alias which is intuitive.

Once you do this, you’ll find a large number of columns and a huge number of rows.

Let’s deal with the columns first. You can simplify the SELECT clause to only include the

columns you’re interested in:

SELECT

 c.id,

 c.givenname, c.familyname,

 s.id,

 a.givenname||' '||a.familyname AS artist

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

;

This gives a simplified result as follows:

id givenname familyname id artist

79 Daisy Chain 1066 Frans Hals

459 Matt Black 2067 (Eugène-Henri-) Paul Gauguin

28 Meg Aphone 271 Johan-Barthold Jongkind

179 Ivan Inkling 2749 Vincent Van Gogh

94 Stan Dover 361 Edgar Degas

373 April Showers 2681 Diego Velázquez

~ 6099 rows ~

Chapter 6 Joining Tables

206

For convenience, the artist’s name is concatenated. Remember to use + in MSSQL.

This query will work, but there is a minor technical problem with the id. If you have

plans of taking the query seriously, such as in a view, you can’t have two columns with

the same name. It’s not hard to give one of them an alias:

SELECT

 c.id,

 c.givenname, c.familyname,

 s.id AS sid,

 a.givenname||' '||a.familyname AS artist

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

;

You can alias the other columns if you like, but only the id is necessary.

�Simplifying the Result

There’s a lot of data there, and it can be a little overwhelming. For one thing, there is

likely to be some repetition.

It’s quite conceivable that a particular customer/combination will occur multiple

times. After all, if the artist really is a favorite of the customers, then you would expect

multiple purchases.

To see whether this might be the case, you can first sort the results by

customer name:

SELECT

 c.id,

 c.givenname, c.familyname,

 s.id AS sid,

 a.givenname||' '||a.familyname AS artist

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

Chapter 6 Joining Tables

207

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

ORDER BY c.familyname, c.givenname

;

id givenname familyname sid artist

260 Aiden Abet 902 Pierre-Auguste Renoir

260 Aiden Abet 902 Pierre-Auguste Renoir

260 Aiden Abet 902 Rembrandt van Rijn

260 Aiden Abet 1006 Kasimir Malevich

260 Aiden Abet 1006 Paul Cézanne

260 Aiden Abet 818 Rembrandt van Rijn

~ 6099 rows ~

If you look hard enough, you will see some duplicates. At this point, we’re not

interested in how often this appears nor how much money was spent. We just want the

names. For that, we can use DISTINCT:

SELECT DISTINCT

 c.id,

 c.givenname, c.familyname,

 s.id AS sid,

 a.givenname||' '||a.familyname AS artist

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

ORDER BY c.familyname, c.givenname

;

Chapter 6 Joining Tables

208

id givenname familyname sid artist

260 Aiden Abet 818 Auguste Rodin

260 Aiden Abet 818 Paul Cézanne

260 Aiden Abet 818 Rembrandt van Rijn

260 Aiden Abet 902 Pierre-Auguste Renoir

260 Aiden Abet 902 Rembrandt van Rijn

260 Aiden Abet 1006 Jean-Antoine Watteau

~ 5997 rows ~

That will substantially reduce the number of results, though it’s still a large number.

Remember that DISTINCT only operates on what’s in the SELECT clause; it doesn’t

know (or care) about any other values. Say you were to forget about the customer’s id:

SELECT DISTINCT

 -- c.id,

 c.givenname, c.familyname,

 s.id AS sid,

 a.givenname||' '||a.familyname AS artist

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

ORDER BY c.familyname, c.givenname

;

You’d get a slightly smaller dataset, but it would not be technically correct. There are

some customers who have the same name as other customers, and it’s possible that two

with the same name just happen to have bought something by the same artist. Without

something unique to distinguish them, they would be combined.

That’s still a lot of data. In the next chapter, we’ll see how we can produce a summary

of large amounts of data like this.

Chapter 6 Joining Tables

209

�Revisiting Some Subqueries
In Chapter 3, we used some subqueries to use data from one table as a filter for another.

Here, we’ll look at using joined tables instead.

For the first one, we found customers who had spent a large amount in

individual sales:

SELECT *

FROM customers

WHERE id IN(SELECT customerid FROM sales WHERE total>1200);

You can get a similar result using a join:

SELECT DISTINCT c.*

FROM customers AS c JOIN sales AS s on c.id=s.customerid

WHERE s.total>1200;

This gives you the following:

id givenname familyname …

115 Robin Banks …

163 Artie Choke …

172 Kenny Doit …

241 Gail Warning …

26 Orson Buggy …

29 June Hills …

~ 106 rows ~

Note 

•	 We use c.* to get the same results as the first query, which only queries the

customers table.

•	 To get exactly the same results, the second query uses DISTINCT, since the

join might have produced duplicated rows.

Chapter 6 Joining Tables

210

In fact, using the join, you can also get results from the sales table, such as the actual

value of the sale. However, then you shouldn’t use DISTINCT, since we’re talking about

different sales:

SELECT c.*, s.total

FROM customers AS c JOIN sales AS s on c.id=s.customerid

WHERE s.total>1200;

Here are the results with sales totals:

id givenname1 familyname … total

2 Laurel Wreath … 1380.00

10 Terry Fied … 1230.00

19 Millie Pede … 2005.00

46 Hank Ering … 1555.00

24 Bart Ender … 1830.00

69 Pat Downe … 1315.00

~ 147 rows ~

You can do the same thing to get your Dutch paintings:

SELECT *

FROM paintings

WHERE artistid IN (

 SELECT id FROM artists WHERE nationality IN

 ('Dutch','Netherlandish')

);

Using a join, you can use

SELECT p.*

FROM paintings AS p JOIN artists AS a on p.artistid=a.id

WHERE a.nationality IN ('Dutch','Netherlandish');

Chapter 6 Joining Tables

211

Here are the Dutch (and Netherlandish) artists:

id artistid title year price

541 256 Butcher’s Stall with the Flight … 110.00

81 198 The Garden of Earthly Delights

1503 182 Breakfast of Crab 1648 160.00

2128 370 The Geographer 125.00

264 370 Girl with a Pearl Earring 1666 140.00

1446 266 Entrance to the Public Garden … 1888 115.00

~ 186 rows ~

Again, we’ve limited the results to one table, but you can also include data from the

other table.

�A More Complex Join
All of our joins have involved a foreign key connected to a primary key. You would have

thought that SQL might have guessed that without having to be told via the ON clause.

However, not all joins work the same way.

In our sample database, there is a supplementary table called artistsdates. This table

has only the artist ids and their dates of birth and death, if known:

SELECT * FROM artistsdates;

Here, you’ll see just a few columns:

id borndate dieddate

41 1619-02-24 1690-02-12

302

369 1833-08-28 1898-06-17

170 1823-09-28 1889-01-23

(continued)

Chapter 6 Joining Tables

212

id borndate dieddate

176 1848-08-19 1894-02-21

164 1601-03-19 1667-09-03

~ 187 rows ~

Although the artists table also includes similar information, it is just the year, and not the

full date. By itself, the additional table isn’t worth much, but you can join it to the artists table:

SELECT *

FROM artists JOIN artistsdates ON artists.id=artistsdates.id;

Now you have more complete artist details:

id givenname familyname … borndate dieddate

120 Rembrandt van Rijn … 1606-07-15 1669-10-04

252 Hendrick Avercamp … 1585-01-27 1634-05-15

17 Jan Davidsz de Heem … 1606-04-17 1684-04-26

288 Antoine Caron …

361 Pieter de Hooch … 1629-12-20 1684-03-24

147 Camille Pissarro … 1830-07-10 1903-11-13

~ 187 rows ~

Here, you are joining the primary keys of both tables. In effect, the artistsdates

table is there to provide additional columns for the artists table, and we say that there

is a one-to-one relationship between the tables.

Most SQLs have a simpler join syntax where the ON clause connects two columns of

the same name:

-- Not MSSQL

 SELECT *

 FROM artists NATURAL JOIN artistsdates;

Chapter 6 Joining Tables

213

As you see, this doesn’t include Microsoft SQL.

Joining two one-to-one tables along the primary key is an obvious thing to do. Now,

suppose we want something less obvious.

Suppose we’re running a promotion where the customer gets a discount if they have

the same birthday as the artist. We’ll get a list of customers and their matching artists.

Starting with the preceding join, let’s first get the artists’ details. We’ll also alias the

tables for the next step:

SELECT

 a.id, a.givenname, a.familyname, ad.borndate

FROM

 artists AS a

 JOIN artistsdates AS ad ON a.id=ad.id;

Here are the artists and their dates of birth:

id givenname familyname borndate

120 Rembrandt van Rijn 1606-07-15

252 Hendrick Avercamp 1585-01-27

17 Jan Davidsz de Heem 1606-04-17

288 Antoine Caron

361 Pieter de Hooch 1629-12-20

147 Camille Pissarro 1830-07-10

~ 187 rows ~

To get the birthday, we’ll need the month and day without the year. In the various

DBMSs, we can use the following for the customers:

-- PostgreSQL, Oracle

 SELECT to_char(dob,'MM-DD') AS birthday FROM customers;

-- MariaDB / MySQL

 SELECT date_format(dob,'%m-%d') AS birthday

 FROM customers;

-- MSSQL

Chapter 6 Joining Tables

214

 SELECT format(dob,'MM-dd') AS birthday FROM customers;

-- SQLite

 SELECT strftime('%m-%d',dob) AS birthday FROM customers;

Here are the birthdays:

birthday

04-01

12-06

01-06

~ 304 rows ~

We can now join the previous query to the customers table using the birthday

calculations:

-- PostgreSQL, Oracle

 SELECT

 c.id, c.givenname, c.familyname, c.dob,

 a.id, a.givenname, a.familyname, ad.borndate

 FROM

 artists AS a

 JOIN artistsdates AS ad ON a.id=ad.id

 JOIN customers AS c ON

 to_char(ad.borndate,'MM-DD')=

 to_char(c.dob,'MM-DD');

-- MSSQL

 SELECT

 c.id, c.givenname, c.familyname, c.dob,

 a.id, a.givenname, a.familyname, ad.borndate

 FROM

 artists AS a

 JOIN artistsdates AS ad ON a.id=ad.id

 JOIN customers AS c ON

 format(ad.borndate,'MM-dd')= format(c.dob,'MM-dd');

-- SQLite

Chapter 6 Joining Tables

215

 SELECT

 c.id, c.givenname, c.familyname, c.dob,

 a.id, a.givenname, a.familyname, ad.borndate

 FROM

 artists AS a

 JOIN artistsdates AS ad ON a.id=ad.id

 JOIN customers AS c ON

 strftime('%m-%d',ad.borndate)=

 strftime('%m-%d',c.dob);

-- MySQL / MariaDB

 SELECT

 c.id, c.givenname, c.familyname, c.dob,

 a.id, a.givenname, a.familyname, ad.borndate

 FROM

 artists AS a

 JOIN artistsdates AS ad ON a.id=ad.id

 JOIN customers AS c ON

 date_format(ad.borndate,'%m-%d')=

 date_format(c.dob,'%m-%d');

This now gives us the matching birthdays:

id givenname … dob id givenname … borndate

475 Drew … 1989-12-06 10 Frédéric … 1841-12-06

523 Seymour … 1965-01-06 327 Gustave … 1832-01-06

588 Grace … 1999-06-28 188 Peter Paul … 1577-06-28

422 Wanda … 1999-07-15 120 Rembrandt … 1606-07-15

377 Xavier … 1969-07-14 71 Gustav … 1862-07-14

86 Dicky … 1980-06-02 284 Domenico … 1448-06-02

~ 93 rows ~

The only difference between the preceding versions is in the ON clause which

calculates the birthdays.

Chapter 6 Joining Tables

216

You can, for the most part, join anything you want to anything else you want, as long

as the data is compatible. Not all joins make sense. The most obvious join is, of course, a

foreign key, but you can join any other columns that you think might be worth matching.

�Using a Self-Join
Generally, you would expect a join between two or more tables. When we have a look

at summarizing data in the next chapter, we’ll see how one of those tables might be a

virtual summary table. Here, we’ll look at joining a table to itself.

There is an employees table which includes a reference to the supervisor as you can

see in Figure 6-3.

Figure 6-3.  A Self-Referencing Table

In designing such a table, there are two common mistakes when it comes to the

supervisor:

•	 The novice designer might include the supervisor details with the rest

of the employee details. This is a poor design for the same reasons

that you shouldn’t include artist details with the paintings.

•	 The novice designer might create an additional table for supervisors.

The second error is more subtle, but is still an error. First, a supervisor is also an

employee, so their details will be duplicated in two tables. This is unlike the paintings

and artists which are different things. Second, there may be a higher level of supervision,

which would entail creating additional supervisor tables, making everything worse.

The solution is to note that the supervisor is another employee. What we need is a

foreign key referencing another employee in the same table. This is the reference we see

in the diagram.

Chapter 6 Joining Tables

217

You can see the contents of the employees table with

SELECT * FROM employees ORDER BY id;

You’ll see a list of employees and their supervisor ids.

id supervisorid givenname familyname …

1 21 Marmaduke Mayhem …

2 16 Clarisse Cringinghut …

3 12 Joe Kerr …

4 29 Beryl Bubbles …

5 30 Norris Toof …

6 27 Osric Pureheart …

~ 34 rows ~

You’ll notice the supervisorid foreign key column. If you want to actually see the

supervisor’s name, you will need to follow the foreign key the same way you did to get

the artist’s name with the paintings.

You can do this with a subquery, as with the earlier version of the price list:

-- This won't work:

 SELECT

 id, supervisorid, givenname, familyname,

 (

 SELECT givenname||' '||familyname FROM employees

 WHERE employees.supervisorid=employees.id

) as supervisor

 FROM employees

 ORDER BY id;

Chapter 6 Joining Tables

218

If you do, you’ll run into a problem of ambiguity with the tables. The solution is to

rename the table in the subquery with an alias:

SELECT

 id, supervisorid, givenname, familyname,

 (

 SELECT givenname||' '||familyname

 FROM employees AS supervisors

 WHERE employees.supervisorid=supervisors.id

) as supervisor

FROM employees

ORDER BY id;

id supervisorid givenname familyname supervisor

1 21 Marmaduke Mayhem Irving Klutzmeyer

2 16 Clarisse Cringinghut Sylvester Underbar

3 12 Joe Kerr Beryl Standover

4 29 Beryl Bubbles Beryl Standover

5 30 Norris Toof Mildred Codswallup

6 27 Osric Pureheart Fred Nurke

~ 34 rows ~

This will work, but a much cleaner solution is to join the tables. The trick is to join

the same tables with different aliases as you can see in Figure 6-4.

Figure 6-4.  The Self-Referenced Tables Joined

Chapter 6 Joining Tables

219

It should be something like this:

-- This won't work either:

 SELECT

 id, supervisorid, givenname, familyname,

 givenname||' '||familyname as supervisor

 FROM employees AS e JOIN employees AS s

 ON e.supervisorid=s.id

 ORDER BY id;

However, this won’t work either, because you now have multiple columns with the

same name, all of which you will have to qualify:

SELECT

 e.id, e.supervisorid, e.givenname, e.familyname,

 s.givenname||' '||s.familyname as supervisor

FROM employees AS e JOIN employees AS s ON e.supervisorid=s.id

ORDER BY e.id;

The only problem now is that not all of the employees have supervisors, so their

supervisor is NULL. The preceding (INNER) join will overlook these, so we’ll need an

outer join:

SELECT

 e.id, e.supervisorid, e.givenname, e.familyname,

 s.givenname||' '||s.familyname as supervisor

FROM employees AS e LEFT JOIN employees AS s

 ON e.supervisorid=s.id

ORDER BY e.id;

This took some fixing, but it is still a cleaner solution than using the preceding

subquery.

Remember to use + for concatenation if you’re using Microsoft SQL or to put MySQL/

MariaDB into ANSI mode. Otherwise, you can always concatenate with the concat()

function.

Chapter 6 Joining Tables

220

�Summary
To ensure the database’s integrity, multiple values are saved into separate tables.

When you need data from multiple related tables, you can use the JOIN clause to

combine them.

The basic principle of a join is that the columns of the child table are supplemented

by columns from the matching parent table.

The result of a join is a virtual table; you can add your WHERE and ORDER BY clauses as

you require.

�Syntax
The basic syntax for a join is

SELECT columns

FROM table JOIN table;

There is an older syntax using the WHERE clause, but it’s not as useful for most joins.

Although tables are joined pairwise, you can join any number of tables to get results

from any related tables.

�Table Aliases
When joining tables, it is best to distinguish the columns. This is especially important if

the tables have column names in common.

•	 You should fully qualify all column names.

•	 It is helpful to use table aliases to simplify the names. These aliases

can then be used to qualify the columns.

�The ON Clause
The ON clause is used to describe how rows from one table are matched to rows from

the other.

The standard join is from the child’s foreign key to the parent’s primary keys. More

complex joins are possible.

Chapter 6 Joining Tables

221

�Join Types
The default join type is the INNER JOIN. The INNER is presumed when no join type is

specified.

•	 An INNER JOIN results only in child rows for which there is a parent.

Rows with a NULL foreign key are omitted.

•	 An OUTER JOIN is an INNER JOIN combined with unmatched rows.

�Coming Up
So far, we have worked with the original or calculated data. Next, we’ll be working with

summarizing data.

Chapter 6 Joining Tables

223

CHAPTER 7

Aggregating Data
Nobody wants to look at a million rows of data. What you really want is either

•	 Some of the data

•	 A summary of the data

Getting some of the data is usually a matter of filtering using the WHERE clause, as you

have seen earlier. Summarizing the data is a matter of running the data through one or

more aggregate functions, which will summarize either the whole set of data or smaller

groups of it.

The simplest aggregate function is very intuitive:

SELECT count(*)

FROM customers;

The count(*) function counts all the rows. There is, of course, much more than that.

Among other things, you can choose what exactly you’re counting.

In this chapter, you will look at some of the more common aggregate functions, such

as sum() and avg() which summarize numbers or max() and min() which find the end

points of any range.

First, however, we’ll look at how aggregates work in SQL and what you can and can’t

do with them. You’ll then look at aggregating different parts of the data. You will also see

how aggregates can be used to filter your data.

Aggregates can be applied to the whole of the data or in groups as in subtotals. We’ll

see how to generate group summaries and how to filter your group summaries.

We will also look at summarizing over multiple tables, as well as using virtual tables

to produce more suitable summaries.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_7

https://doi.org/10.1007/978-1-4842-9493-2_7

224

�Counting Data
The preceding count() function is a special case: count(*) counts all the rows in a

dataset. The dataset may also be filtered:

SELECT count(*) AS countrows

FROM customers

WHERE height<160.5;

in which case you will count the number of rows which match the criterion.

countrows

20

Unlike the SELECT * expression, the star in this case means all rows, not all columns.

�Counting Values
Apart from counting rows, you can count values in a column:

SELECT

 count(*) as countrows,

 count(id) as ids, -- same

 count(email) as emails, -- same again

 count(familyname) as familynames, -- same again

 count(phone) as phones,

 count(state) as states

FROM customers;

This gives you the following summary:

rows ids emails familynames phones states

304 304 304 304 268 269

Chapter 7 Aggregating Data

225

Note the number of rows will be the same as the number of ids and the number

of emails and familynames. However, it is not the same for phones and states. When

counting values, note

•	 Every row must have a primary key (here, it is id), so the number of

values in the primary key column is the same as the number of rows.

•	 In this set of data, the email address and family name are required

(in SQL, it is set to NOT NULL), so the number of values in the email

column is also the same as the number of rows.

•	 Not all of the customers have a (recorded) phone number, so this

number is less than the number of rows.

•	 The same goes for states, but there will be a further complication of

interpretation, which we’ll discuss later.

With the exception of counting rows, count(…) means count the number of values

in a column. Since NULL is not a value, count() skips over them and only counts what is

there. This is why the count for phones and states, as well as for some others, is less than

the number of rows.

In fact, all aggregate functions skip over NULLs, as you will see.

�How Aggregates Work
With the preceding examples, you will note that the results, as with all SELECT

statements, come in a virtual table. This virtual table always has a single row.

To understand the aggregate process, imagine that there are two tables: the original,

possibly virtual, table and a summary table. The summary table is generated whenever

SQL sees an aggregate query.

You can make the summarizing process more explicit:

SELECT

 count(*) as countrows,

 count(phone) as phones,

 count(dob) as dobs

FROM customers

GROUP BY () -- PostgreSQL, MSSQL, Oracle only

-- SELECT

;

Chapter 7 Aggregating Data

226

The GROUP BY () clause means that the original table (customers) is to be

summarized. It doesn’t actually change anything, because it’s implied whenever SQL

encounters aggregate functions, such as count(). In fact, some DBMSs won’t even allow

you to add it; this is no great loss since the summary will occur anyway.

Note the clause order. Again, SELECT is the last to be processed before ORDER BY, and

it’s included as a comment to remind you.

In this summary table, you will have access to any conceivable summary;

so far, it’s only count(), but we’ll see more soon. What you won’t get is access to

unsummarized data.

For example, this one is doomed to failure:

SELECT

 id, givenname, familyname, -- etc, it doesn't matter

 count(*) as countrows,

 count(phone) as phones,

 count(dob) as dobs

FROM customers

-- GROUP BY ()

;

Even though GROUP BY () is commented out, the table is being summarized, and the

id, givenname, familyname, and other individual values are no longer accessible.1

The moral to this is that you can’t select both summaries and unsummarized values

in the same query.

You will see more on the GROUP BY clause later, when it is used more seriously.

�Counting Selectively
Most of the paintings have a price value. You can count how many with

SELECT count(price) FROM paintings;

1 In MySQL in traditional mode, you can indeed mix unsummarized data with summarized data.
However, even if there are multiple matches, you will only get one match, and there’s no telling
which one. This is not a very useful feature unless you can be sure that there will only ever be one.
This is not possible in ANSI mode, and it’s no great loss.

Chapter 7 Aggregating Data

227

This gives you something like

count

1137

Sometimes, you might want to count only some of these, such as the cheaper

paintings or the more expensive ones.

You could try this:

SELECT count(price)

FROM paintings

WHERE price<130;

You now have a summary of the filtered table:

count

345

This will work, but you can’t also include other summaries at the same time; you

would need a separate query.

What you want is something like this:

SELECT count(price<130) -- doesn't work as expected

FROM paintings;

but it either doesn’t work or doesn’t give the expected result, depending on

the DBMS.

Modern SQL allows an aggregate filter in the following form:

-- PostgreSQL & SQLite only

 SELECT count(price) FILTER (WHERE price<130)

 FROM paintings;

Chapter 7 Aggregating Data

228

This will give a truly filtered summary:

count

345

However, it is not (yet) widely supported.

Alternatively, you can take advantage of the CASE … END expression. Remember, you

can use CASE … END to generate categories. For example:

SELECT

 id, title, price,

 CASE

 WHEN price<130 THEN 'inexpensive'

 WHEN price<=170 THEN 'reasonable'

 WHEN price>170 THEN 'prestige'

 -- ELSE NULL

 END as pricegroup

FROM paintings;

The results look like this:

id title price pricegroup

1222 Haymakers Resting 125 inexpensive

251 Death in the Sickroom 105 inexpensive

2190 Cache-cache (Hide-and-Seek) 185 prestige

1560 Indefinite Divisibility 125 inexpensive

172 Girl with Racket and Shuttlecock 195 prestige

2460 The Procession to Calvary 165 reasonable

~ 1273 rows ~

Chapter 7 Aggregating Data

229

In particular, you can use a simple version just to highlight the cheap ones:

SELECT

 id, title, price,

 CASE WHEN price<130 THEN 'cheap' END AS status

FROM paintings;

This highlights only the cheap ones:

id title price status

1222 Haymakers Resting 125 cheap

251 Death in the Sickroom 105 cheap

2190 Cache-cache (Hide-and-Seek) 185

1560 Indefinite Divisibility 125 cheap

172 Girl with Racket and Shuttlecock 195

2460 The Procession to Calvary 165

~ 1273 rows ~

Remember, the default is always NULL unless you include an ELSE clause to make it

something else.

The word cheap is unimportant. You could have used not so terribly expensive.

If all you want to do is count them, you could even have used orang utan or 23, since

counting doesn’t care what the actual value is. It is traditional to use the value 1.

Now, if we want to count cheap paintings, we use the CASE … END expression to set

the values at 1 (or whatever arbitrary value we want) and count the results:

SELECT

 count(CASE WHEN price<130 THEN 1 END) AS cheap

FROM paintings;

This should work for all DBMSs:

cheap

345

Chapter 7 Aggregating Data

230

Remember that the ones that don’t match will have a NULL, and aggregate functions

always skip NULL, so they won’t be counted.

At the same time, you can also include the more expensive ones:

SELECT

 count(CASE WHEN price<130 THEN 1 END) AS cheap,

 count(CASE WHEN price BETWEEN 130 AND 170 THEN 1 END)

 AS reasonable,

 count(CASE WHEN price>=170 THEN 1 END) AS expensive

FROM paintings;

You now get summaries of all of the categories:

cheap reasonable expensive

345 489 359

If you wanted only the cheap ones, the original WHERE price<130 clause would

have done. However, when you want other summaries as well, you’ll need to filter the

aggregates, not the table. This is what’s happening here.

Similarly, you can count the results in the spam column. The spam column represents

whether or not the customer has agreed to a newsletter. In some cases, the column has a

NULL, which some will assume implies consent, while others assume the opposite.2

The spam column contains either a true or false value where the DBMS supports

it, or a 1 or 0 where it doesn’t. A value of true or false is referred to as a boolean value

after the mathematician George Boole.

To count the different values, you can use

-- PostgreSQL, MySQL/MariaDB, SQLite

 SELECT

 count(*) AS total,

 count(spam) AS known,

 count(CASE spam WHEN true THEN 1 END) AS yes,

 count(CASE spam WHEN false THEN 1 END) AS no

2 The General Data Protection Regulation in Europe indicates, among many other things, that
newsletters and similar communications require specific user consent. In this case, the NULL
should imply no user consent.

Chapter 7 Aggregating Data

231

 FROM customers;

-- MSSQL, Oracle

 SELECT

 count(*) AS total,

 count(spam) AS known,

 count(CASE spam WHEN 1 THEN 1 END) AS yes,

 count(CASE spam WHEN 0 THEN 1 END) AS no

 FROM customers;

You now have the following:

total known yes no

304 279 106 173

The result for count(spam) indicates how many have a value, but not whether it is

true or false. Note that the value for count(spam) will be the total for yes and no.

If you specifically want to count NULLs for a column, you could do something like this:

SELECT count(*)-count(spam) AS nulls

FROM customers;

This gives something like

nulls

25

That is, the total number of rows minus the values in the column gives the number

of NULLs.

Alternatively, you can count NULLs by using CASE … END to make NULL something,

and everything else NULL:

SELECT

 count(*) AS total,

 -- etc,

 count(CASE WHEN spam IS NULL THEN 1 END) AS unknown

FROM customers;

Chapter 7 Aggregating Data

232

You’ll get the same result:

total unknown

304 25

Here, we’re effectively reversing NULLs: if it’s NULL, make it something; if it’s not NULL,

make it NULL.

�Distinct Values
How many states are in the customers table? You could try this:

SELECT count(state) AS states

FROM customers;

For the number of states, the statement correctly indicates the number of state values

in the dataset:

states

269

However, if you want to answer the question “How many states are there in the

customers table,” it’s possible that it actually means “How many different states … ?”

without actually saying so. If this seems likely, you can use the DISTINCT keyword:

-- List distinct states:

 SELECT DISTINCT state

 FROM customers;

-- Count distinct states:

 SELECT

 count(state) AS addresses,

 count(DISTINCT state) AS states

 FROM customers;

Chapter 7 Aggregating Data

233

You now have the following:

addresses states

269 7

This is one of many examples where what we say in English isn’t always what we

mean in code.

As you have seen earlier, there is still some meaning in counting state values. Given

that every address includes a state, counting (nondistinct) states implies counting the

number of recorded addresses.

�Summarizing Numbers
When it comes to numbers, there are additional aggregate functions which are useful:

SELECT

 count(height) as heights,

 sum(height) AS total,

 avg(height) AS average,

 sum(height)/count(height) AS computed_average

FROM customers;

This gives some statistical results:

heights total average computed_average

248 42242.3 170.332 170.332

The sum() function adds all the values in the column, and the avg() function

calculates the average of the values. In the preceding example, the average is also

calculated using the sum/count formula, and you see that it gives the same result; in

principle, the avg() function is just a convenience.

Chapter 7 Aggregating Data

234

Note that all of the preceding aggregate functions only use actual values, and, as

always, NULL is skipped. You won’t see any difference with sum(), but it is very important

to note that the average is only calculated over the number of values, not the number of

rows. If you had foolishly entered 0 for missing heights, they would have been included

and drastically reduced the average.

You can see the results of this error either by dividing by the total number of rows or

by coalescing the NULLs to 0:

SELECT

 count(height) as heights,

 sum(height) AS total,

 avg(height) AS average,

 sum(height)/count(height) AS computed_average,

 sum(height)/count(*) AS not_ca,

 avg(coalesce(height,0)) AS not_ca_again

FROM customers;

We now get some misleading values:

heights total average computed_average not_ca not_ca_again

248 42242.3 170.332 170.332 138.955 138.955

In the preceding query

•	 The expression sum(height)/count(*) divides the total height by the

number of rows, not the number of heights, so the result will be much

too low.

•	 The expression coalesce(height,0) substitutes the NULLs with a 0;

these zeroes will be added, making no difference, but, again, you will

be dividing by too many.

If you are statistically minded, you can also compute the standard deviation:

-- Not SQLite

 SELECT

 count(height) as heights,

 sum(height) AS total,

Chapter 7 Aggregating Data

235

 avg(height) AS average,

 stddev(height) AS sd -- MSSQL: stdev(height)

 FROM customers;

Now we have some more comprehensive statistics.

heights total average sd

248 42242.3 170.332 6.926

Note that none of these functions works if the data you are aggregating is not

numeric.

�Bad Examples
There are some things you should never do with aggregate functions, even if SQL

allows you.

Here is a statement which will work:

-- Don't do any of this:

 SELECT

 sum(id) AS total_id,

 sum(year) AS total_year,

 sum(price) AS total_price

 FROM paintings;

You will get a result, but you’ll regret it:

total_id total_year total_price

1619593 1906235 168995

SQL is somewhat naive when it comes to numbers. All three columns summed

earlier are numbers, and SQL will happily add them as instructed. However, some

numbers should never be treated that way.

Chapter 7 Aggregating Data

236

First, some numbers aren’t really used as numbers. The most important feature of a

true number is that it counts something. The customer height counts centimeters, and

the sales total counts dollars.

The id is a number, but it’s not used for counting. Instead, it is used for sequencing,

and any other sequence, such as the alphabet, might have done. Clearly, adding ids is

meaningless, and the reason is that you shouldn’t add sequences.

The year is also used as a sequence. It does count the number of years since BC, but

here it is not used that way, and again it is meaningless to add the years.

The price is more subtle. It is indeed being used to count the number of dollars, but

it doesn’t actually represent a fixed value. Instead, it is the number of dollars per copy.

Effectively, it is an average, and you will need to multiply it by the number of copies

before you have a fixed value you can add.

The price is an example where the name may be misleading. Perhaps it should have

been called price_per_copy to make the point clearer. On the other hand, price is a

simpler name. The point is, you will all too often encounter examples of table or column

names which you need to work around.

�Scales of Measurement
Statisticians sometimes talk about different uses of numbers. They’re all numbers,

technically, but how they’re used will affect what you can do with them.

The following types are often referred to as Scales of Measurement:

•	 Nominal: Nominal numbers are used simply as code, with no

numeric significance at all. For example:

•	 Phone “numbers” are simply codes, but they don’t actually

measure anything.

•	 You might assign a number to a category, such as type of artwork,

but there’s no significance in either the value or the sort order.

•	 Ordinal: Ordinal numbers can be ordered, but there is no significance

in the actual magnitude. For example:

•	 Ranking, where the position is significant, but the distance

between values is insignificant

•	 Scales, such as opinions which range from good to bad

Chapter 7 Aggregating Data

237

The id, which is used in the sample database for primary keys, would be in either the

Nominal or Ordinal category, depending on whether you regard the sequence as significant.

•	 Interval: The difference between numbers has meaning, but there is

no fixed zero. For example:

•	 Distance from a fixed point (which is arbitrary)

•	 The year of an event (which is arbitrarily measured from the

nonexistent year 0 AD)

Note that there is no meaning in adding these numbers, but you

can subtract them to get an interval between.

•	 Ratio: With these numbers, there is a true zero, so magnitudes are

significant. For example:

•	 Total cost of a sale

•	 Height of a person

Only the last type of number can be added.

�Aggregating Calculated Data
The saleitems table includes some data which is worth summarizing:

SELECT * FROM saleitems;

Here is the raw data:

id saleid paintingid quantity price

2621 1066 1065 3 100

5169 2067 870 1 155

667 271 2061 1 165

6905 2749 1796 3 115

886 361 1874 1 140

6729 2681 1516 2 160

~ 6315 rows ~

Chapter 7 Aggregating Data

238

This includes a quantity column, which is the number of copies of each item, and a

price column which is the price per copy of each item.

You can total these columns, but you need to be sure that it’s meaningful:

•	 The quantity column has the actual number of copies sold, so

adding this is meaningful: it is the number of prints which had to be

printed, packaged, or otherwise processed.

•	 The price column is the price per copy, so just adding this is not

meaningful, for the reasons discussed in the bad example earlier.

•	 However, you can multiply the price by the number of copies and

then add them up.

Bearing this in mind, the following should work:

SELECT

 sum(quantity) AS total_copies,

 sum(quantity*price) AS total_value

FROM saleitems;

Here is the summary:

total_copies total_value

9722 1450390

It should, but there’s a problem. Recall that some of the quantities are missing, so

you had to coalesce the NULLs to 1 which is the presumed meaning. You’ll have to do the

same with the summary. Otherwise, you will fall short:

SELECT

 sum(coalesce(quantity,1)) AS total_copies,

 sum(coalesce(quantity,1)*price) AS total_value

FROM saleitems;

Chapter 7 Aggregating Data

239

This gives you a truer result:

total_copies total_value

10237 1527050

Incidentally, the preceding total_value should be the same as the result you

get from

SELECT sum(total) FROM sales;

You should get the same result for the total value:

sum

1527050

Obviously, the coalesce() function was used to calculate the sales total.

�Other Aggregate Functions
So far, you have counted things, and, for numbers, you’ve run some statistical functions.

There are other functions available, but here we will concentrate on just two: the max()

and min() functions.

Like the count() function, you can use max() and min() on all main types of data.

For example:

SELECT

 min(height) as shortest, max(height) as tallest,

 min(dob) as oldest, max(dob) as youngest,

 min(familyname) as first, max(familyname) as last

FROM customers;

You’ll get these end values:

shortest tallest oldest youngest first last

150.3 186.3 1962-09-24 2002-08-05 Abet Yourbusiness

Chapter 7 Aggregating Data

240

The max() and min() functions give you what would have been at the extreme ends

of an ORDER BY clause, except that, as usual, they omit any NULL which might turn up.

As with sorting, the data type will affect which values will be at the beginning or end.

For example:

SELECT

 count(*) AS countrows,

 max(numbervalue) AS most, min(numbervalue) AS least,

 max(datevalue) AS latest, min(datevalue) AS earliest,

 max(stringvalue) AS last, min(stringvalue) AS first

FROM sorting;

Whether the value is a string or not will affect the results:

rows most least latest earliest last first

8 1024 -8 1917-06-30 1775-12-16 Date apple

Having got the minimum and maximum values, you might want to ask which rows

actually match these values. For example, who is the oldest customer, or which is the

most popular painting?

�Using Aggregates As Filters
You have already seen that you can’t mix unsummarized data with summarized data.

However, you can use summaries to filter unsummarized data in a subquery. This is

basically doing the query in two steps.

For example, who is the oldest customer? To get the answer:

	 1.	 Find the minimum date of birth:

SELECT min(dob) FROM customers

This will be the subquery for the next step. (Notice there’s no semicolon yet, because

we haven’t finished; you can still run this individually.)

Chapter 7 Aggregating Data

241

	 2.	 Find the customer(s) whose date of birth matches the result:

SELECT * FROM customers

WHERE dob=(SELECT min(dob) FROM customers);

This will give you something like this:

id email … dob …

545 jack.knife545@example.com … 1962-09-24 …

344 rose.boat344@example.net … 1962-09-24 …

You will notice that there is more than one match. That is one reason why it would be

meaningless to expect to be able to mix unsummarized data with summarized data.

You can use the same technique to find the youngest customer or the tallest or

shortest customers.

Sometimes, you need a query which involves related tables. For example, suppose

you want the customer with the largest single sale.

First, you get the customerid from the sales table:

SELECT customerid FROM sales WHERE total=(

 SELECT max(total) FROM sales

);

Here, we use the max(total) and find the customerid which matches. Of course,

there may be more than one.

Next, we find the matching customers from the customers table:

-- Biggest Spender

 SELECT *

 FROM customers

 WHERE id IN (

 SELECT customerid FROM sales WHERE total=(

 SELECT max(total) FROM sales

)

);

Chapter 7 Aggregating Data

242

You now get the customer details:

id email familyname givenname …

19 millie.pede19@example.net Pede Millie …

For this example, you could have used

WHERE id=(SELECT …)

However, that’s risky because there might have been multiple results if more than

one customer tied for max(total). In that case, you would have got an error.

You can also use other statistical functions as filters. For example, if you want to find

customers whose height is shorter than average:

SELECT * FROM customers

WHERE height<(SELECT avg(height) FROM customers);

You get the shorter customers:

id email familyname … height

186 ray.gunn186@example.net Gunn … 163.8

179 ivan.inkling179@example.com Inkling … 170.3

523 seymour.sights523@example.net Sights … 167.3

351 dick.tate351@example.com Tate … 167.8

422 wanda.why422@example.com Why … 163.2

121 lil.ting121@example.com Ting … 162.8

~ 128 rows ~

If you want those who are significantly shorter, you can also use the standard

deviation:

SELECT * FROM customers

WHERE height<(SELECT avg(height)-stddev(height) FROM customers);

-- MSSQL: Use stdev(height)

Chapter 7 Aggregating Data

243

You now get the much shorter customers:

id email familyname … height

422 wanda.why422@example.com Why … 163.2

121 lil.ting121@example.com Ting … 162.8

429 tom.morrow429@example.com Morrow … 156.9

138 al.fresco138@example.net Fresco … 162.6

468 connie.fer468@example.com Fer … 161.3

330 clara.fied330@example.com Fied … 156.6

~ 40 rows ~

As usual, you can’t mix aggregate and nonaggregate values in a single SELECT

statement. However, you can use aggregates in a subquery and use the result in a

non-aggregate query.

�Grouping
As you have already seen, you can filter your results with the WHERE clause:

SELECT count(*) AS countrows

FROM customers

WHERE state='VIC';

You’ll get the following:

countrows

52

If you want, you can do the same for another filter value:

SELECT count(*) AS countrows FROM customers WHERE state='VIC';

SELECT count(*) AS countrows FROM customers WHERE state='NSW';

SELECT count(*) AS countrows FROM customers WHERE state='QLD';

Chapter 7 Aggregating Data

244

countrows

52

countrows

67

countrows

52

What you have done manually is run your count() function in multiple groups.

You can combine the results into a single result set using the UNION operator:

SELECT count(*) AS countrows FROM customers WHERE state='VIC'

UNION ALL

SELECT count(*) AS countrows FROM customers WHERE state='NSW'

UNION ALL

SELECT count(*) AS countrows FROM customers WHERE state='QLD';

countrows

52

67

52

The UNION ALL clause can be used to combine results from multiple SELECT

statements. Note that there is no semicolon between the statements as they’re all part of

one statement. You’ll see more on the UNION clause later.

The result is slightly less informative, because there is nothing to identify the

different rows. You can hard-code a value to do that:

SELECT 'vic' AS state, count(*) AS countrows

FROM customers WHERE state='VIC'

UNION ALL

SELECT 'nsw' AS state, count(*) AS countrows

Chapter 7 Aggregating Data

245

FROM customers WHERE state='NSW'

UNION ALL

SELECT 'qld' AS state, count(*) AS countrows

FROM customers WHERE state='QLD';

This is more readable:

state countrows

vic 52

nsw 67

qld 52

Now you also have the state name. However, this is pretty tedious, and there must be

a better way to do this, which, of course, there is.

�Using the GROUP BY Clause
A better way to run your aggregate functions separately for different groups is to let SQL

do the hard work with the GROUP BY clause:

SELECT count(*) AS countrows

FROM customers

GROUP BY state;

This is more convenient, but, as you see, not quite finished:

countrows

47

35

26

52

67

Chapter 7 Aggregating Data

246

countrows

3

52

22

This time, you will get multiple rows: one for each distinct state. Or we think so. The

problem is that last time you knew which one state you were filtering, but now you have

multiple results and no way of identifying which is which.

The GROUP BY () clause used earlier is implied whenever you just use aggregate

functions. It gives us grand totals: summaries for the whole (filtered) table, and only one

row of those. It’s not supported by all DBMSs and never required.

On the other hand, GROUP BY something is different. It generates subtotals: multiple

rows of group summaries, together with the group names. It is supported by all DBMSs.

If you want to identify the results, you will need to include the group name in the

SELECT clause:

SELECT state, count(*) AS countrows

FROM customers

GROUP BY state;

This gives something like this:

state countrows

WA 47

35

TAS 26

VIC 52

NSW 67

NT 3

QLD 52

SA 22

Chapter 7 Aggregating Data

247

You can also group by more than one column:

SELECT state, town, count(*) AS countrows

FROM customers

GROUP BY state, town;

You now have a further breakdown:

state town countrows

SA Windsor 1

35

VIC Belmont 2

SA Alberton 3

NSW Hamilton 5

WA Wattle Grove 4

~ 79 rows ~

Grouping by multiple columns creates groups within groups. In this case, your main

groups are states, while your subgroups are towns.

With some DBMSs, you may also see your results in some sort of order, while in

others, notably PostgreSQL and Oracle, you won’t. In MySQL/MariaDB and SQLite, the

results will be ordered by state,town, while in MSSQL the results will be ordered by

town only.

As always, never rely on the order of results unless you use the ORDER BY clause! SQL

does not require GROUP BY to do any ordering, and any ordering you do see is probably

a by-product of how the DBMS does its grouping internally. If you do something more

complex, the order will probably change again.

To finish the job, then, add an ORDER BY clause:

SELECT state, town, count(*) AS countrows

FROM customers

GROUP BY state, town

ORDER BY state, town;

Chapter 7 Aggregating Data

248

The result is more readable:

state town countrows

NSW Bald Hills 6

NSW Belmont 4

NSW Broadwater 5

NSW Buchanan 3

NSW Darlington 1

NSW Glenroy 2

~ 79 rows ~

Remember that there are some NULLs, and, depending on the DBMS, you might see a

NULL group either at the beginning or at the end.

You might imagine that SQL would have worked out that you want it ordered that

way, but that is asking SQL to start guessing your intentions, and ORDER BY takes too

much work for something it hasn’t actually been asked to do.

However, 9½ times out of 9.5, you will probably want it this way:

•	 Include the groups in the SELECT clause

•	 ORDER BY the same as GROUP BY, or something like that

You don’t necessarily need to sort by exactly the same as the GROUP BY. In the section

on redundant groups ahead, you’ll see how you might sort on something similar to the

grouping. However, the principle stands.

From SQL’s perspective, you can GROUP BY in either order:

SELECT state, town, count(*) AS countrows

FROM customers

GROUP BY town, state

ORDER BY state, town;

You will get the same rows, and the ORDER BY clause will see to the ordering.

That’s because the columns are supposed to be independent, and SQL certainly has

no idea of any relationship between them. However, in this case, we understand that a

state is a container of towns, so it makes logical sense to group the state before the town.

Chapter 7 Aggregating Data

249

Similarly with ORDER BY, we could order by anything we like. However, it makes most

sense to order by the same columns as the grouping.

There is one minor variation. When we write an address, we usually write it from

small to large, so you can change the order in the SELECT clause:

SELECT town, state, count(*) AS countrows

FROM customers

GROUP BY state, town

ORDER BY state, town;

This gives the same results with a different column order:

town state countrows

Bald Hills NSW 6

Belmont NSW 4

Broadwater NSW 5

Buchanan NSW 3

Darlington NSW 1

Glenroy NSW 2

~ 79 rows ~

Remember that column order in the SELECT clause is insignificant.

You can use the same technique to get the number and value of sales per customer:

SELECT customerid, sum(total) as total, count(*) AS countrows

FROM sales

GROUP BY customerid

ORDER BY customerid;

Chapter 7 Aggregating Data

250

You will get customer sales totals like this:

customerid total countrows

2 14920 24

8 7885 16

9 10645 19

10 9010 19

11 16460 29

15 6005 13

~ 256 rows ~

In the grand total aggregates, you have a single row with only summaries. You
can’t get nonaggregate values. In a group summary, you have an additional column
for every group, as you see.

In an aggregate query, you can only select summaries or groups. Nothing else.

�GROUP BY vs. DISTINCT
When you first encountered the DISTINCT clause, it was described as listing groups. You

can see that most clearly if you don’t actually use any aggregate functions. For example:

SELECT state, town

FROM customers

GROUP BY state, town

ORDER BY state, town;

SELECT DISTINCT state, town -- same result

FROM customers

ORDER BY state, town;

Chapter 7 Aggregating Data

251

Clearly, to get the groups, using DISTINCT is simpler if you don’t want any additional

aggregates. However, if you want additional aggregates, then use the GROUP BY clause.

There is never a reason to use both.

�Grouping with Multiple Tables
Often, the data you want to summarize is to be found in more than one table. For

example, we can get the total sales by customer, which first of all requires summarizing

the sales table:

SELECT

 customerid,

 count(*) AS number_of_sales,

 sum(total) AS total

FROM sales

GROUP BY customerid

ORDER BY total, customerid;

This gives you the sales data for customer ids:

customerid number_of_sales total

440 1 115

444 1 200

461 1 240

526 1 285

567 1 310

575 1 310

~ 256 rows ~

Note that the total name has two meanings. In the sales table, it refers to

the individual sales totals. In the preceding query, it has been used as an alias for

sum(total), which is in the same spirit. Since the ORDER BY is processed after SELECT,

it is the summed total which is being sorted. If you consider that a bit confusing or

misleading, you might use another name such as customer_total.

Chapter 7 Aggregating Data

252

The preceding query will give us the customerid, which is OK, but it would be better

if we had the customers’ names and other details.

One approach is to use a subquery to get the customer’s name and use that in the

aggregate:

SELECT

 customerid,

 (SELECT givenname||' '||familyname -- MSSQL: Use +

 FROM customers

 WHERE customers.id = sales.customerid

) AS customer,

 count(*) AS number_of_sales,

 sum(total) AS total

FROM sales

GROUP BY customerid

ORDER BY total, customerid;

You now have more details:

customerid customer number_of_sales total

440 Percy Monn 1 115

444 Jo King 1 200

461 Carol Singer 1 240

526 Cliff Face 1 285

567 Perry Patetic 1 310

575 Gene Poole 1 310

~ 256 rows ~

You would expect that selecting columns that aren’t even in the same table, let alone

in the GROUP BY clause, would give you errors. However, remember that the subquery is

separate to the main aggregate query.

Chapter 7 Aggregating Data

253

You can also use a join to get the same result:

SELECT

 c.id, c.givenname||' '||c.familyname AS customer,

 count(*) AS number_of_sales, sum(s.total) AS total

FROM sales AS s JOIN customers AS c ON s.customerid=c.id

GROUP BY c.id, c.givenname||' '||c.familyname

ORDER BY total, customerid;

(Remember MSSQL uses + for concatenation, and Oracle doesn’t like table AS, the

same with the following example.)

This is a much cleaner version. However, the GROUP BY is a little clumsy, since you

can’t use the customer alias (remember that SELECT isn’t processed until after). There is

also the small risk of your attempting to group by a slightly different calculation (which

won’t work).

If you want, you can wrap the join in a Common Table Expression, which will

simplify the aggregate query:

WITH cte AS (

 SELECT

 c.id, c.givenname||' '||c.familyname AS customer,

 s.total

 FROM customers AS c JOIN sales AS s ON c.id=s.customerid

)

SELECT

 id, customer, count(*) AS number_of_sales,

 sum(total) AS total

FROM cte

GROUP BY id, customer

ORDER BY total, id;

This will give the same results. Overall, this is slightly longer than the previous

version; however, it does simplify the main aggregate query by preparing the data to be

used in the CTE.

Chapter 7 Aggregating Data

254

�Redundant Groups
As we noted before, an aggregate can only select summaries or groups. This leads to

a minor problem when you’re trying to select something more informative than what

you’re grouping. Sometimes, you need to group more than you expected.

Here is a trivial example:

SELECT state, count(*) AS countrows

FROM customers

GROUP BY state, state;

Yes, we’re grouping by state twice, and, yes, that’s a waste of time. For each state, we

want a subgrouping of states within the state, and, of course, there’s only one.

However, it’s not so silly if the groups are actually variations of the same thing. For

example, if you want to group sales by the day of the week, you’ll want two versions of

the day: one for display and one for sorting.

Here’s how that would work:

-- PostgreSQL, Oracle

 SELECT to_char(ordered,'FMDay') AS dayname,

 sum(total) AS total

 FROM sales

 GROUP BY to_char(ordered,'FMDay'), to_char(ordered,'D')

 ORDER BY to_char(ordered,'D');

-- MySQL / MariaDB

 SELECT date_format(ordered,'%W') AS dayname,

 sum(total) AS total

 FROM sales

 GROUP BY date_format(ordered,'%W'),

 date_format(ordered,'%w')

 ORDER BY date_format(ordered,'%w');

-- MSSQL

 SELECT datename(weekday,ordered) AS dayname,

 sum(total) AS total

 FROM sales

Chapter 7 Aggregating Data

255

 GROUP BY datename(weekday,ordered),

 datepart(weekday,ordered)

 ORDER BY datepart(weekday,ordered);

-- Not Available in SQLite

Remember, SQL will only let you select or sort by what’s in the GROUP BY clause. Note

that the GROUP BY groups by the name of the day of the week, then the number of the day

of the week. Technically, that’s redundant, since there’s only one day per day. However,

having both in the GROUP BY enables you to select one and sort by the other.

dayname total

Sunday 214285

Monday 214950

Tuesday 214090

Wednesday 211050

Thursday 224720

Friday 223640

Saturday 224315

If you think that looks like a legal loophole, well, you may be right.

You saw the same thing in the previous section, where you grouped by the customer

id, then the customer name. Again, that’s redundant (there can only be one name per

customer), but it allows you to include both in the SELECT clause, even though only the

id is necessary for grouping.

If you feel guilty about unnecessary grouping, you can use another workaround.

Here is an alternative version of the sales by customer query earlier:

WITH cte AS (

 SELECT c.id, c.givenname||' '||c.familyname AS customer,

 s.total

 FROM customers AS c JOIN sales AS s ON c.id=s.customerid

)

Chapter 7 Aggregating Data

256

SELECT id, min(customer), count(*) AS number_of_sales, sum(total) AS total

FROM cte

GROUP BY id

ORDER BY total, id;

This time, we group only by the id, but use the min() function (or max() if you like);

since technically it’s a summary, you can use it safely.

�Preparing Data for Aggregating
Group aggregates only work when there is data to be grouped, which means that many

rows have exactly the same value in a column. Sometimes, the data doesn’t quite fit, but

you still need to aggregate it.

For example, suppose you want to find daily sales totals. If you check the sales table:

SELECT * FROM sales;

Here is the raw data:

id customerid total ordered shipped

52 52 940 2022-03-07 16:10:45.739071 2022-03-19

54 37 1005 2022-03-08 00:23:39.53316 2022-03-22

55 19 795 2022-03-08 06:23:28.387395 2022-03-19

57 42 505 2022-03-09 00:02:29.974004 2022-03-14

59 53 360 2022-03-09 06:26:24.808237 2022-03-17

60 10 340 2022-03-09 15:01:05.592177 2022-03-23

~ 2509 rows ~

You will find that every sale has an ordered value which is a datetime type. It is

highly unlikely, if not impossible, that two sales were transacted at the same moment, so

you won’t get anything out of attempting to group it.

Chapter 7 Aggregating Data

257

However, you can simplify the ordered column if you extract just the date. The most

direct way of doing this is to cast the data as a date type, which will discard the time

component. For the summary, you only need the date and the total for each sale:

SELECT cast(ordered as date) as ordered, total FROM sales;

Oracle doesn’t quite work the same way — it won’t remove the time which is the
whole point of this operation.

Instead you should use trunc(date).

Here is the simplified data:

ordered total

2022-03-07 940

2022-03-08 1005

2022-03-08 795

2022-03-09 505

2022-03-09 360

2022-03-09 340

~ 2509 rows ~

For Oracle, you will need to use trunc(ordered) to get the same idea, though it will

include a zero time. The original name is used as its alias, since it’s still doing the same

job of stating when the sale was ordered.

You can regard the preceding statement as a first step; you can then use the

simplified data in a summary:

WITH data AS (-- Oracle: Use trunc(ordered)

 SELECT cast(ordered as date) as ordered, total FROM sales

)

SELECT ordered, sum(total) AS total

FROM data

GROUP BY ordered;

Chapter 7 Aggregating Data

258

You now have the daily total:

ordered total

2022-10-10 3630

2022-07-14 5890

2022-09-22 6730

2022-05-19 1785

2023-02-25 8495

2022-05-23 6835

~ 385 rows ~

The results may not be ordered, of course, so you can add

ORDER BY ordered

at the end.

If you do have sorted results, you may notice that there are gaps in the dates. There’s

nothing wrong with that: it just means that there were no completed sales on those days.

It happens.

This is another Common Table Expression. You can do the same thing using a table

subquery:

SELECT ordered, sum(total) AS total

FROM (

 SELECT cast(ordered as date) as ordered, total FROM sales

) AS data

GROUP BY ordered;

This will do the same thing, but the CTE will be easier to work with: it’s always better

to prepare your data first and then use it next. CTEs are also more flexible and allow

more complex coding if you need it.

Chapter 7 Aggregating Data

259

�Using CASE in a CTE
One place where a CTE comes in very handy is in complex calculations. For example, we

saw how to generate price groups in a CASE … END expression:

SELECT

 id, title,

 CASE

 WHEN price < 130 THEN 'cheap'

 WHEN price <= 170 THEN 'reasonable'

 WHEN price IS NOT NULL THEN 'expensive'

 ELSE 'unpriced'

 END AS price_category

FROM paintings;

Again, this gives us the price categories:

id title price_category

1222 Haymakers Resting cheap

251 Death in the Sickroom cheap

2190 Cache-cache (Hide-and-Seek) expensive

1560 Indefinite Divisibility cheap

172 Girl with Racket and Shuttlecock expensive

2460 The Procession to Calvary reasonable

~ 1273 rows ~

If you wanted to use this in a GROUP BY expression, you would have to repeat the

expression exactly. This is tedious, unreadable, inflexible, and prone to error.

Instead, you can use a CTE and summarize the results:

WITH cte AS (

 SELECT

 id, title, -- you don't really need this

 CASE

 WHEN price < 130 THEN 'cheap'

Chapter 7 Aggregating Data

260

 WHEN price <= 170 THEN 'reasonable'

 WHEN price IS NOT NULL THEN 'expensive'

 ELSE 'unpriced'

 END AS price_category

 FROM paintings

)

SELECT price_category, count(*) AS countrows

FROM cte

GROUP BY price_category;

You now have the price category summaries:

price_category countrows

reasonable 489

cheap 345

unpriced 136

expensive 303

As you see, you don’t actually need the id and title since you’re only using the groups

and counting.

�Using a Join in the CTE
You can also use a join in the CTE, which simplifies summarizing with multiple tables.

For example, if you want to get sales per state, you will need the totals from the sales

table and the states from the customers table.

To get just the state and the total, we can use

SELECT c.state, s.total

FROM customers AS c JOIN sales AS s ON c.id=s.customerid;

Chapter 7 Aggregating Data

261

The simplified results give us the following:

state total

QLD 940

SA 1005

WA 795

VIC 505

TAS 360

NSW 340

~ 2509 rows ~

Using this as a CTE, we can group by the state:

WITH cte AS (

 SELECT c.state, s.total

 FROM customers AS c JOIN sales AS s ON c.id=s.customerid

)

SELECT state, sum(total) AS total

FROM cte

GROUP BY state;

We now have state totals:

state total

TAS 156305

VIC 272695

NSW 374660

NT 18855

QLD 333575

SA 115700

WA 255260

Here again, the purpose of the CTE was to prepare the data before summarizing it.

Chapter 7 Aggregating Data

262

�Summarizing Strings
Here’s one final example. When discussing joins, we looked at joining multiple tables to

get the customer’s favorite artists:

SELECT DISTINCT

 c.id,

 c.givenname, c.familyname,

 s.id AS sid,

 a.givenname||' '||a.familyname AS artist

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

ORDER BY c.familyname, c.givenname;

(Remember MSSQL uses + for concatenation, and Oracle doesn’t like table AS, the

same with the following example.)

id givenname familyname sid artist

260 Aiden Abet 818 Auguste Rodin

260 Aiden Abet 818 Paul Cézanne

260 Aiden Abet 818 Rembrandt van Rijn

260 Aiden Abet 902 Pierre-Auguste Renoir

260 Aiden Abet 902 Rembrandt van Rijn

260 Aiden Abet 1006 Jean-Antoine Watteau

~ 5997 rows ~

The problem was that you still get a long list of individual customer/artist

combinations. It would be less overwhelming to combine all of the artists into a

single string.

Chapter 7 Aggregating Data

263

Various DBMSs have different names for the aggregate function to combine strings

(and older versions of MSSQL don’t have one at all, but do have a very complicated

workaround).

DBMS Function

PostgreSQL string_agg(data, separator)

Oracle listagg(data, separator)

MySQL/MariaDB group_concat(data SEPARATOR separator)

SQLite group_concat(data, separator)

MSSQL string_agg(data, separator)

We can now use the preceding query a CTE and use this to produce a list of artists for

each customer:

WITH cte AS (

 SELECT DISTINCT

 c.id,

 c.givenname, c.familyname,

 s.id AS sid,

 a.givenname||' '||a.familyname AS artist

 FROM -- Oracle: Omit AS for table aliases:

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

 JOIN artists AS a ON p.artistid=a.id

)

-- PostgreSQL, MSSQL:

 SELECT

 id, givenname, familyname, string_agg(artist, ', ')

-- Oracle:

-- SELECT id, givenname, familyname, listagg(artist, ', ')

-- MySQL / MariaDB:

-- SELECT

Chapter 7 Aggregating Data

264

-- id, familyname, givenname,

-- group_concat(artist SEPARATOR ', ')

-- SQLite:

-- SELECT

-- id, givenname, familyname, group_concat(artist, ', ')

FROM cte

GROUP BY id, givenname, familyname

ORDER BY familyname, givenname, id;

This will give us a list of customers and all of the artists:

id givenname familyname truncate

260 Aiden Abet Piero della Francesca, Sandro Bottic …

323 Alf Abet James Abbott McNeill Whistler, Jacop …

563 Ollie Agenous Claude Monet, Kasimir Malevich, Henr …

54 Corey Ander Juan Gris, Amedeo Modigliani, Berthe …

549 Ike Andy Ando Hiroshige, Jackson Pollock, Rem …

263 Adam Ant Kasimir Malevich, Joseph Mallord Wil …

~ 256 rows ~

As you see from the results, the combined string can get very long. In real life, you

would want to be sure that it doesn’t get too long if you want your results to be practical.

�Filtering Grouped Results with HAVING
Previously, you got the number and value of sales per customer. You might then want

to limit the results to higher totals or higher numbers. To do that, you need to use the

HAVING clause.

For example, to show only the customers who have spent more money, you can filter

on the sum(total) value:

SELECT customerid, sum(total) AS total, count(*) AS countrows

FROM sales

GROUP BY customerid

Chapter 7 Aggregating Data

265

HAVING sum(total)>10000

-- SELECT

ORDER BY customerid;

We now have a filtered summary:

customerid total countrows

2 14920 24

9 10645 19

11 16460 29

19 16530 23

20 12145 17

24 16565 28

~ 42 rows ~

The HAVING clause does the same sort of thing as the WHERE clause, except that it

filters the summary, not the original table data.3 Note that it comes after the GROUP BY

clause, which does the actual summarizing.

Also, note that the HAVING clause is still processed before the SELECT clause, so if

you’re tempted to filter by any of the preceding calculated columns, you’re out of luck.

This gives us the clause order as in Figure 7-1.

Figure 7-1.  Clause Order with GROUP BY and Having

3 Some DBMSs allow you to use `HAVING` instead of `WHERE` for ungrouped queries. Don’t.
Just … don’t.

Chapter 7 Aggregating Data

266

Of course, you can also use both the WHERE and HAVING clauses if you need to filter

the data before and after summarizing.

For example, suppose you’re interested in the customers with larger total sales in the

last month. For that, you will need two filters:

•	 Recent sales: You get that by filtering sales.ordered minus

one month.

•	 Larger totals: You get that by filtering sum(total) in the summary.

This gives us

-- PostgreSQL, MySQL/MariaDB

 SELECT customerid, sum(total) AS total

 FROM sales

 WHERE ordered>current_timestamp - INTERVAL '1' MONTH

 GROUP BY customerid

 HAVING sum(total)>2000

 -- SELECT

 ORDER BY customerid;

This should give you something like the following:

customerid total

167 2155

179 2105

250 5000

379 2010

445 2350

455 3890

Remember other DBMSs have a different calculation to subtract one month:

-- MSSQL

 SELECT customerid, sum(total) AS total

 FROM sales

 WHERE ordered>dateadd(month,-1,current_timestamp)

Chapter 7 Aggregating Data

267

 GROUP BY customerid

 HAVING sum(total)>2000

 -- SELECT

 ORDER BY customerid;

-- SQLite

 SELECT customerid, sum(total) AS total

 FROM sales

 WHERE ordered>date('now','-1 month')

 GROUP BY customerid

 HAVING sum(total)>2000

 -- SELECT

 ORDER BY customerid;

-- Oracle

 SELECT customerid, sum(total) AS total

 FROM sales

 WHERE ordered>add_months(current_timestamp,-1)

 GROUP BY customerid

 HAVING sum(total)>2000

 -- SELECT

 ORDER BY customerid;

The only thing that spoils the simplicity of the preceding example is the fact that

the alias in the SELECT clause isn’t available yet in the HAVING clause, so you’re forced

to rewrite the calculations. However, on the inside, SQL is smart enough not to actually

recalculate the values.

If you installed the sample database some time ago, you may not get any results,
since the dates will have gone stale.

At the very end of the sample script is an UPDATE statement. If you run it, it will
adjust the dates to something more recent.

Chapter 7 Aggregating Data

268

�Using Results in a CTE
If you want to get more details on the big-spending customers earlier, you can use the

results in a Common Table Expression and then join with the customers table:

WITH cte AS (

 SELECT customerid, sum(total) AS total

 FROM sales

 WHERE ordered>current_timestamp - INTERVAL '1' MONTH

 -- MSSQL:

 -- WHERE ordered>dateadd(month,-1,current_timestamp)

 -- SQLite:

 -- WHERE ordered>date('now','-1 month')

 -- Oracle:

 -- WHERE ordered>add_months(current_timestamp,-1)

 GROUP BY customerid

 HAVING sum(total)>2000

)

SELECT * FROM customers JOIN cte ON customers.id=cte.customerid

ORDER BY customers.id;

You now have a combined result:

id email familyname givenname … total

167 lucy.fer167@example.net Fer Lucy … 2155

179 ivan.inkling179@example.com Inkling Ivan … 2105

250 rae.ning250@example.net Ning Rae … 5000

379 artie.chokes379@example.net Chokes Artie … 2010

445 ida.dunnit445@example.net Dunnit Ida … 2350

455 pierce.dears455@example.com Dears Pierce … 3890

~ 6 rows ~

Chapter 7 Aggregating Data

269

Note that once again you’re trying to mix two different types of data here. You need

a summary query to find the recent big spenders, and you need a nonsummary query to

find the customer details.

In previous examples, you put the summary in the form of a subquery. Here, it’s in a

CTE, which is really a type of subquery.

Note also that the CTE omits the ORDER BY clause. It’s useless in that context, and

MSSQL won’t permit it without some extra trickery.

�Finding Duplicates
One simple application of the HAVING clause is to find duplicate values. Duplicate values

are not necessarily a problem, as they might just be a coincidence, but sometimes it’s

useful to check anyway.

The HAVING clause simply needs to filter groups where there’s more than one, that is,

count(*)>1.

For example, to find duplicate dates of birth:

SELECT dob

FROM customers

GROUP BY dob

HAVING count(*)>1;

You’ll get a list of duplicates:

dob

[null]

1963-01-20

1996-12-09

2002-01-29

1990-06-21

1980-06-02

~ 15 rows ~

Chapter 7 Aggregating Data

270

You will also get some NULLs. SQL really has an ambivalent relationship with NULLs

and, in this case, is prepared to regard them as a group.

Again, using a CTE, you can get more details on the customers:

WITH cte AS (

 SELECT dob FROM customers

 GROUP BY dob HAVING count(*)>1

)

SELECT * FROM customers AS c JOIN cte ON c.dob=cte.dob

ORDER BY c.dob;

(Remember Oracle doesn’t like table AS; the same for the following examples.)

id email familyname givenname dob …

344 rose.boat344@example.net Boat Rose 1962-09-24 …

545 jack.knife545@example.com Knife Jack 1962-09-24 …

440 percy.monn440@example.com Monn Percy 1962-12-12 …

261 vic.tory261@example.net Tory Vic 1962-12-12 …

187 mikey.fitz187@example.com Fitz Mikey 1963-01-20 …

28 meg.aphone28@example.net Aphone Meg 1963-01-20 …

~ 28 rows ~

Here, any NULLs in the CTE get left out in the inner join, since no customer has a

NULL id.

You can also do this with multiple columns. For example, to find duplicate names,

you need to check both the familyname and givenname:

SELECT familyname, givenname

FROM customers

GROUP BY familyname, givenname

HAVING count(*)>1;

This gives you a list of names:

Chapter 7 Aggregating Data

271

familyname givenname

Money Owen

O’Shea Rick

Gon Tara

Dover Eileen

Highwater Camilla

Knife Jack

~ 11 rows ~

And to get more details:

WITH cte AS (

 SELECT familyname, givenname FROM customers

 GROUP BY familyname, givenname HAVING count(*)>1

)

SELECT *

FROM customers AS c JOIN cte

 ON c.givenname=cte.givenname AND c.familyname=cte.familyname

ORDER BY c.familyname, c.givenname;

This gives you the customer details:

id familyname givenname …

455 Dears Pierce …

317 Dears Pierce …

145 Dover Eileen …

197 Dover Eileen …

287 Gettit Carmen …

223 Gettit Carmen …

~ 22 rows ~

Note that here the ON clause matches two columns, rather than the usual one.

Chapter 7 Aggregating Data

272

�Using Aggregates on Aggregates
Earlier, we mentioned finding the most popular paintings. That’s actually more complex

than it sounds. For one thing, you can’t use an expression like max(count()), which

might have made things a bit easier: SQL won’t allow nesting aggregate functions.

We’ll start by finding how many copies of each painting we’ve sold. You’ll find the

information in the saleitems table which includes the paintingid. All you need to do is

group by paintingid:

SELECT paintingid, count(*) AS countrows

FROM saleitems

GROUP BY paintingid;

You’ll get a list of painting ids:

paintingid countrows

1798 8

1489 4

1269 5

1989 3

273 6

1560 5

~ 1136 rows ~

That tells us how many times each painting was included. However, remember that

there is a quantity column, which has the number of copies sold, which we can then

add up. Unfortunately, that might contain a NULL, so it will have to be coalesced:

SELECT paintingid, sum(coalesce(quantity,1)) AS quantity

FROM saleitems

GROUP BY paintingid;

Chapter 7 Aggregating Data

273

This gives us a more correct result:

paintingid quantity

1798 13

1489 7

1269 5

1989 5

273 6

1560 5

~ 1136 rows ~

This gives us the data we need to work with, so we’ll put it into a CTE:

WITH quantities AS (

 SELECT paintingid, sum(coalesce(quantity,1)) AS quantity

 FROM saleitems

 GROUP BY paintingid

)

SELECT paintingid, quantity

FROM quantities

GROUP BY paintingid, quantity;

This last query is redundant for now, in that it gives us the same results as we had

without the CTE. However, the second grouping allows us to use an additional aggregate

function which we otherwise can’t nest:

WITH quantities AS (

 SELECT paintingid, sum(coalesce(quantity,1)) AS quantity

 FROM saleitems

 GROUP BY paintingid

)

SELECT paintingid, quantity

FROM quantities

GROUP BY paintingid, quantity

HAVING quantity=(SELECT max(quantity) FROM quantities);

Chapter 7 Aggregating Data

274

We now have a final result:

paintingid quantity

1246 23

2138 23

The subquery works around the lack of nested aggregate functions, since it simply

aggregates a previous value. The HAVING clause filters for rows where the total quantity

matches the maximum. There may, of course, be more than one.

If you want to get more details on the painting, you’ll need to join the results with the

paintings table. For that, we can use a second CTE:

WITH

 quantities AS (

 SELECT paintingid,

 sum(coalesce(quantity,1)) AS quantity

 FROM saleitems

 GROUP BY paintingid

),

 favourites AS (

 SELECT paintingid, quantity

 FROM quantities

 GROUP BY paintingid, quantity

 HAVING quantity=(SELECT max(quantity) FROM quantities)

)

SELECT *

FROM paintings JOIN favourites ON paintings.id=favourites.paintingid;

We now have the combined results:

id artistid title … quantity

2138 256 Cook in front of the Sto … … 23

1246 85 Two Studies of the Head … … 23

Chapter 7 Aggregating Data

275

Here, the second SELECT statement has been wrapped in a second CTE. You can have

multiple CTEs as before, as long as you separate them with commas.

You’ll notice that the second CTE queries the first CTE. This way, you can build up

a complex query from smaller components. You’ll also notice that the layout has been

changed slightly to make the CTEs easier to track.

Finally, we joined the second CTE to the paintings table to get the rest of the details.

Of course, you can be more selective in your selection of columns.

�Summary
Instead of just fetching simple data from the database tables, you can generate various

summaries using aggregate queries. Aggregate queries use one or more aggregate

functions and imply some grouping of the data.

Aggregate queries effectively transform the data into a secondary summary table.

With grand total aggregates, you can only select summaries. You cannot also select

nonaggregated values.

The main aggregate functions include

•	 count(), which counts the number of rows or values in a column

•	 min() and max() which fetch the first or last of the values in sort order

For numbers, you also have

•	 sum(), avg(), and stddev() which perform the sum, average, and

standard deviation on a column of numbers

When it comes to working with numbers, not all numbers are used in the same way,

so not all numbers should be summarized.

For strings, you also have

•	 string_agg(), group_concat(), and listagg() which concatenate

strings in a column

In all cases, aggregate functions only work with values: they all skip over NULL.

You can control which values in a column are included:

•	 You can use DISTINCT to count only one instance of each value.

•	 You can use CASE … END to work as a filter for certain values.

Without a GROUP BY clause, or using GROUP BY (), the aggregates are grand totals:

you will get one row of summaries.

Chapter 7 Aggregating Data

276

You can also use GROUP BY to generate summaries in multiple groups. Each group is

distinct. When you do, you get summaries for each group, as well as additional columns

with the group values themselves.

Aggregates are not limited to single tables:

•	 You can join multiple tables and aggregate the result.

•	 You can join an aggregate to one or more other tables.

In many cases, it makes sense to work with your aggregates in more than one step.

For that, it’s convenient to put your first step into a Common Table Expression, which is a

virtual table which can be used with the next step.

When grouping your data, sometimes you want to filter some of the groups. This is

done with a HAVING clause, which you add after the GROUP BY clause.

�Coming Up
So far, we have concentrated on extracting from an existing database.

Chapter 2 gave you some insight on some of the design principles in constructing a

database. In the next chapter, we’ll look at some other aspects of SQL:

•	 First, we’ll look at the code which generated the actual sample

database, to get a better idea of how the tables are put together.

•	 Next, we’ll look at changing some of the data using the Data

Manipulation Language statements.

The next chapter is not intended to make you an expert on constructing a database,

but will put you in a better position to understand what’s going on.

As for manipulating the data, this is not the sort of thing you normally do by hand;

however, it is very important to have an idea how it’s done.

Chapter 7 Aggregating Data

277

CHAPTER 8

Working with Tables
For the most part, we have used the SELECT statement for extracting data from the

database. The SELECT statement, with its various clauses, is often referred to as the

DQL—the Data Query Language.

SQL does much more than allow you to select data. Among other things, it allows

you to manipulate the data.

There are three main operations in SQL which manipulate data:

•	 INSERT statements are how you add new data to a table.

•	 UPDATE statements allow you to change existing data in a table.

•	 DELETE is used to delete one or more rows from a table.

Collectively, these statements are part of what is called the DML—Data
Manipulation Language.

There are also statements which manipulate not the data but the actual database

structures, such as tables and views:

•	 CREATE is used to create a new table, view, or other objects in the

database.

•	 DROP is used to remove a CREATEd object. If this is used on a table,

then the data is also lost.

•	 ALTER will allow you to make changes to an existing object.

•	 TRUNCATE can be used to reset a table. That mostly means deleting all

the rows and restarting an auto number if any.

Collectively, these statements are part of the DDL—the Data Definition Language.

So far, we’ve been taking the database tables more or less for granted. Chapter 2

discussed some of the principles of how an SQL database should work, but here we’ll

look a little closer on how the database was constructed.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_8

https://doi.org/10.1007/978-1-4842-9493-2_8

278

In this chapter, we will look at

•	 How SQL tables are constructed

This will include how a table is created and the names and data

types of columns. We’ll also look at how we ensure data integrity

with primary and foreign keys and other constraints which limit

the data that can be added to them. We’ll look at adding table

indexes to improve the ability to search through the table. Finally,

we’ll look at how to make changes to a table.

•	 How data is added or modified

Here, we’ll look at adding, updating, and deleting rows in a table.

By the end of this, you’ll know a little more about creating and managing a database,

but this won’t qualify you to pass yourself off as a database developer. As regards

developing a database, there are many decisions which need to be made which require

more knowledge and experience.

However, you will be in a better position to understand what’s going on, and you

might be able to experiment with a few of your own small databases.

�How Tables Are Created
The sample database you’ve been working on started off as a script. For this discussion,

we’ll work closely with this script to see what’s happening.

If you didn’t install the database yourself, you can download a copy of the script from

https://sampledb.webcraft101.com and choose for your own DBMS. The first part of

the script, which creates the tables, will be the same, but the second part, which adds the

actual data, will be different, as much of the data is randomized.

By now, you’ll also be aware that every DBMS has its quirks, so some of the minor

details which follow will vary. Overall, however, the ideas are the same.

Chapter 8 Working with Tables

https://sampledb.webcraft101.com/

279

�Creating a Table
A table is created with a CREATE TABLE statement. For example:

CREATE TABLE customers (

 id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

 email VARCHAR(60) NOT NULL UNIQUE,

 familyname VARCHAR(40) NOT NULL,

 givenname VARCHAR(40) NOT NULL,

 street VARCHAR(64),

 town VARCHAR(48),

 state VARCHAR(3) default 'VIC',

 postcode CHAR(4)

 CHECK (postcode SIMILAR TO '[0-9][0-9][0-9][0-9]'),

 dob date

 CHECK (dob < current_date - interval '18 years'),

 phone char(10)

 CHECK (phone SIMILAR

 '[01][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]'),

 spam boolean default false,

 height decimal(4,1),

 registered date NOT NULL

);

This statement is for the PostgreSQL DBMS, but it will be very similar for other

DBMSs, as we’ll note as we go.

The CREATE TABLE statement, as the name might suggest, creates a new table. It looks

something like this:

CREATE TABLE something (

 -- details

);

There are many CREATE statements in SQL, such as CREATE VIEW, but this one is

slightly different in that the details are wrapped in parentheses.

Chapter 8 Working with Tables

280

The preceding details generally define the columns in the table. They follow this

pattern:

name type [constraints etc …]

Constraints are additional rules which constrain (limit) which values are valid for

that column. There are sometimes some other properties which affect the behavior of

the column.

Constraints and other properties can be added in three ways:

•	 They may be added inline with the definition of the column.

•	 They can be added separately in the CREATE TABLE statement,

typically at the end.

•	 They can be added after the table has been created.

This is in increasing order of flexibility and in decreasing order of convenience.

To remove a table, SQL gets a little pedantic. You might think that you can delete a

table, but that won’t work: DELETE is reserved for rows within the table. Instead, you DROP

the table:

DROP TABLE something;

DROP TABLE IF EXISTS something; -- not Oracle

If you try to drop a table which doesn’t exist, you’ll get an error. The second form

earlier overlooks this. Oracle doesn’t support IF EXISTS, so you need to be more

careful there.

You’ll have to be careful anyway, because dropping a table also drops the data, which

is the sort of mistake you make once before you start looking for a new job. An expert

may be able to recover the data, but don’t count on it.

�Column Names
We have discussed what makes a valid name earlier. Generally, they shouldn’t interfere

with the SQL language and should avoid special characters such as spaces or hyphens,

unless you want to pay for that with double quotes.

Column names should also be distinct: obviously, you can’t have two columns with

the same name.

Chapter 8 Working with Tables

281

There are no special names. For example, calling something id doesn’t make it a

primary key. It’s up to the developer to think of a suitable name. There are also no special

positions. You can have your columns in any order that you like, but, again, it’s up to the

developer to think of a suitable order.

Many developers forget (or don’t care) about who will be using the database, so you

will sometimes get very cryptic or confusing table and column names. Seriously, there’s

no excuse for this. A good name should be easy to work with.

�Data Type
In SQL, there are three main data types and some variations between types. Here is a

sample of some of them:

Numbers Dates Strings

integer, decimal(), float date, datetime char(), varchar()

There may be other data types, such as Boolean (true/false value) or BLOB

(binary data).

There are also further variations. For example, you can decide whether an integer is

a short one with a limited range or a longer one with a greater range. You can decide how

long a string can be or how precise a decimal can be. Here are some used the sample

database:

Type Description

INT a.k.a. INTEGER: A whole number, in this case ranging between -2,147,483,648

to 2,147,483,647

DECIMAL(4,1) a.k.a. NUMERIC: This is a decimal with a fixed number of decimal places.

The notation may be confusing: it means up to four digits, including one fixed

decimal place. There is also FLOAT which has variable precision

VARCHAR(60) A string which can stretch to a maximum of 60 characters long

(continued)

Chapter 8 Working with Tables

282

Type Description

CHAR(4) A string which is fixed at four characters. If you enter fewer than four

characters, it will be padded with spaces, which is why trailing spaces

should be ignored

BOOLEAN A value which is either true or false, named for George Boole, one of the

pioneers of mathematical logic

DATE A date without the time

TIMESTAMP a.k.a. DATETIME: A date which includes the time down to a tiny part of a

second

Note 

•	 In principle, VARCHAR is more space efficient, while CHAR is more processing

efficient (the DBMS doesn’t need to work out how long the string is because it

already knows); in practice, modern DBMSs are pretty efficient anyway, so the

distinction is not so important.

•	 Some DBMSs don’t support a boolean data type, so have to make do with an

integer 1 or 0. Some DBMSs also support a very short integer called BIT.

•	 Note that the postcode and phone number are strings, even though they

are limited to digits. This is because they are not really numbers: there is no

significance in their numeric value; one value isn’t truly greater or less than

another, and even their order is insignificant.

Choosing which type of data is partly a matter of the most correct type (the data of

birth must be a date) and partly a matter of knowing what you might expect in real life (is

60 characters long enough for an email address?).

�Primary Keys
A primary key is the unique identifier for each row in the table. It doesn’t need to have a

particular name, and it doesn’t have to be the first column. It’s just easier if you develop

good patterns.

Chapter 8 Working with Tables

283

In principle, any column with unique values, such as the customer’s email address,

might have qualified as a primary key. A good primary key, however, has the following

features:

•	 Primary keys are guaranteed to be unique.

•	 Primary keys are never NULL.

•	 Primary keys are unlikely to change.

It’s the last feature that makes the email address a little difficult. It’s possible for a

customer to change their email address, and, while it’s possible for the database to cope,

it does make it a little less reliable.

This leads us to the next point. Generally, there are two types of primary key:

•	 A natural primary key is one which represents real data. For example,

the customer’s email address or a country’s unique two- or three-

letter code.

•	 A surrogate primary key has no intrinsic value—it is an arbitrary code

which tells us nothing else about the data.

Some natural primary keys, such as the country code, will never change, so they

might make a good candidate. Many will change, so it’s common to rely on a separate

surrogate key instead, which has no reason to change.

Many database developers use all sorts of names for their primary keys, but they

very often include a variation of id. In fact, id is often used as a loose synonym for the

primary key.

What really makes a primary key is adding PRIMARY KEY to the definition.

There can only be one primary key in a table. However, a primary key can be

compound: a combination of two columns instead of the usual one.

Sometimes, the primary key is defined at the end of the CREATE TABLE statement:

CREATE TABLE something (

 id INT,

 -- etc

 PRIMARY KEY (id)

);

There’s usually no need to define the primary key this way, but it is the only way to

define a compound primary key.

Chapter 8 Working with Tables

284

SQL allows you to define a new primary key after the table definition (as long as

there isn’t one already). It also allows you to add the primary key to an existing column,

as long as it hasn’t any NULLs and the existing values are unique.

A primary key doesn’t have to be an integer. For example, it can be a carefully crafted

string, as long as it’s guaranteed to be unique.

If you’re feeling lazy, however, a primary key can be a simple automatic sequence

number. Apparently, many database developers are feeling lazy, because many

databases use an automatic sequence number for their primary key.

The automatic sequence number wasn’t in the original SQL, so each DBMS went off

and made up its own version. Here are some variations:

DBMS Auto Sequence

PostgreSQL GENERATED BY DEFAULT AS IDENTITY

Oracle GENERATED BY DEFAULT AS IDENTITY

Microsoft SQL IDENTITY(1,1)

MySQL AUTO_INCREMENT

SQLite AUTOINCREMENT

The SQL standard is GENERATED BY DEFAULT AS IDENTITY, as used by PostgreSQL

and Oracle. Older versions of PostgreSQL used SERIAL, and older versions of Oracle

didn’t have one at all and had to make do with triggers, which are a type of automation.

�Constraints
As we mentioned, a constraint is any rule which limits what constitutes a valid value.

Generally, if you attempt to enter a value which violates the constraint, the DBMS will

raise an error and won’t let you.

The DBMS doesn’t care whether the data is, in fact, correct, or even whether it

makes sense. If you enter your place of birth in your familyname, good luck to you. All

the DBMS cares about is whether the data is valid; that is, whether the data passes the

constraints.

The first constraint is the data type itself. If you define a column as a number, then

you can’t put a string in it.

Chapter 8 Working with Tables

285

Ignore the previous statement1 and the next one for SQLite. It will allow any type

of data in any column. When you define a column, you set an affinity, which is a

preference, but it doesn’t force you.

The data type also includes additional constraints such as the length of a string or the

precision of a number.

As well as the data type, you can get more control over the data with additional

constraints. These constraints include

•	 NOT NULL which states that the column cannot be empty.

•	 UNIQUE which will disallow duplicate values in the column.

•	 DEFAULT which will automatically supply a value for a new row if a

value wasn’t specified.

•	 CHECK which is a custom rule.

•	 In addition to the data type, you can get more control over the

data which specifies that the value must match another table.

This is called a foreign key.

Here, we’ll look at these constraints in more detail.

�NOT NULL
The second constraint you might encounter is NOT NULL. This means what it looks like:

the data cannot be NULL; in other words, a value is required at all times.

A column which may contain a value is sometimes said to be nullable.

Having a nullable column doesn’t mean that you don’t actually need the value. For

example, you can’t ship an order to a customer unless you know their address. Being

nullable simply means that you can gather this information at a later date, and not

necessarily immediately on adding the row.

A column with a NOT NULL constraint looks something like this:

familyname VARCHAR(24) NOT NULL

The NOT NULL constraint, together with the others discussed here, can be combined

with other constraints.

1�The most recent versions of SQLite will, in fact support a STRICT mode, which does enforce
data types.

Chapter 8 Working with Tables

286

�UNIQUE
There’s no reason two customers can’t have the same date of birth, but you wouldn’t

expect them to have exactly the same email address. SQL neither knows nor cares about

what any of this means, so you need to tell the DBMS about this yourself.

Marking a column as UNIQUE causes the DBMS to ensure that a new email address

cannot be the same as one for another customer. It doesn’t care who gets in first, the

second one is out of luck.

A unique column doesn’t necessarily have to have a value, unless it’s also NOT

NULL. Only actual values will be compared for uniqueness, and NULLs are all ignored.

Except for Microsoft. Microsoft has a quirk which will indeed match NULLs, and

against all expectations will declare two NULLs to be the same, and therefore violate the

unique constraint. Thankfully, there’s a workaround for this, but it does make adding a

unique constraint on a nullable column just that little bit trickier.

A column with a UNIQUE constraint looks something like this:

title VARCHAR(24) CONSTRAINT uq_minipaintings_title UNIQUE

or more simply:

title VARCHAR(24) UNIQUE

The first form allows you to give the unique constraint a name. Everything in a

database, including constraints, has a distinct name. If you don’t care what the name is,

you can use the second form and let the DBMS make one up; however, it may not be a

pretty sight.

The name of a constraint can be used, for example, if you ever need to remove it at

some point in the future.

�DEFAULT
Technically, this is regarded as a constraint, though you might be forgiven for wondering

whether that’s right.

Sometimes, you can assume a value unless contradicted. For example, you might

assume that the number of copies of a painting should be 1, unless another value is entered.

If you want to implement a default, you can have

quantity NOT NULL DEFAULT 1

Chapter 8 Working with Tables

287

These are two different constraints: the first NOT NULL disallows NULL, while the

second DEFAULT 1 will automatically fill in the value 1 if there isn’t another value.

In the sample database, this wasn’t done, which is why some NULLs were allowed to

appear, and you had to use coalesce() to force the value.

Sometimes, the default is a simple convenience. Sometimes, it can be used as a safe

fallback.

�CHECK
The preceding constraints are fairly broad and involve some basic properties of SQL

data. Sometimes, you need a constraint which can be regarded simply as specific your

environment. This is sometimes referred to as a business rule.

The CHECK constraint is a general-purpose miscellaneous constraint which allows

you to use anything which SQL understands. It takes this form:

CHECK (condition)

The preceding condition looks exactly like a WHERE clause. In essence, it means that

if you were looking for a match (WHERE …), then this one should be included. With the

constraint, all values (except NULL, of course, which isn’t a value) should match.

For example:

-- match 4 digits:

 CHECK (postcode SIMILAR TO [0-9][0-9][0-9][0-9])

-- born date before (up to) died date:

 CHECK (born<=died)

Constraints can apply to single columns as in the first example earlier, but also to

multiple columns, such as when you want to compare them.

�Foreign Keys
A foreign key is also a type of constraint. In this case, it requires that the value in one

table must match a value in the other table. It takes this form:

column type REFERENCES table(column)

Chapter 8 Working with Tables

288

Each column must have a data type, and the referenced column must have exactly

the same type. You will notice that the preceding form doesn’t actually use the term

“foreign key.” This is the short form, and there is a longer form which does.

Note that the foreign key is defined in the table which references the other—from the

“child” table to the “parent” table—not the other way round.

As you have seen from the paintings table, a foreign key column isn’t necessarily

required to have a value. As with all constraints, the foreign key requirement only applies

to actual values, not to NULLs.

If you also require a value, you need to set NOT NULL as well. You’ll see this in

the sales table, where the customerid foreign key must have a valid value, and the

saleitems table, where both the saleid and paintingid columns must have a value; it

wouldn’t make any sense to have a sale where you don’t know who the customer is, or a

sale item where you don’t know what the painting is. On the other hand, it’s OK to have a

painting with an unknown artist.

As with all constraints, SQL won’t permit you to include invalid data. The question is,

what happens if one of the rows in the other table is deleted?

For example, what happens if you try to delete an artist? If there are no paintings

referencing this artist, then we can go ahead. On the other hand, if there are some

paintings, then the delete would result in the paintings’ referencing an invalid

(nonexistent) artist, which would violate the constraint.

The DBMS will never allow invalid data, so there are three possible ways of

handling this:

•	 First, it could simply disallow the delete until you first delete the

troublesome paintings. This is the default.

•	 Second, it could allow the delete, but then automatically set the

painting.artistid foreign key to NULL.

•	 Third, it could allow the delete, but then automatically delete the

offending paintings. This is called cascading the delete.

The first option is the default, and the other options need to be specified if you want

one of them. Setting NULL is a relatively painless option, so it’s a possibility here if you

want it.

Deleting related rows from the other table is pretty drastic, and probably a bad idea

in this case, especially since the paintings may also affect the sale items.

Chapter 8 Working with Tables

289

However, the situation is different for sales and sale items. Here, you might decide to

delete a sale, such as when the sale hasn’t been completed (hasn’t been paid for). In this

case, it would make sense to also delete the related sale items.

To enable cascading the delete, we append

ON DELETE CASCADE

It’s another question, of course, whether you should be deleting the data in the

first place.

�Indexes
As a rule, the SQL standard doesn’t tell the DBMS how to do its job, and, among other

things, it leaves internal storage and organization up to the software.

One of the consequences is that data may not be stored in any particularly useful

order; it’s probably stored in a way that’s fastest and most efficient for the software. That’s

why you can’t be sure what order the results of a SELECT statement will come in unless

you force it with an ORDER BY clause.

The only downside to that arrangement is that it makes it a bit harder for the DBMS

to look for a particular value, since it could be anywhere.

For example, if you were searching for a customer by family name, it could have been

anywhere, and the DBMS may find it soon, or it may find it when it’s nearly gone through

all of them. It would be faster if the data were in order.

On the other hand, if the data is in family name order, it wouldn’t help in looking for

a customer by email address.

The solution is to leave the table alone and maintain a separate index, which is

similar to an index in the back of a book or to a library catalog. Instead of searching

through the original table, the DBMS searches through the index. The index will have a

copy of the data in order, as well as a reference to where the row is in the table.

To create an index, the SQL is

CREATE INDEX name ON table(columns);

Each index has a name and is defined on a particular table, using one or more

columns.

Chapter 8 Working with Tables

290

In your SELECT statement, you don’t do anything different, so you need never worry

about it; the index is used automatically if there is one and if the DBMS thinks it’s worth

using. If the table is large enough, you should notice an improvement in searching.

Indexes do require a little extra storage in the database and do require a little extra

maintenance to keep up with changes to the table. For that reason, you don’t index

everything: just the columns you think you’ll want to search often enough.

There are two types of column you don’t bother indexing. The primary key is always

indexed and so are any UNIQUE columns.

�Adding Rows to a Table
Here, we will work with one of the tables, the customers table. We’ll add and change

some data and make a few changes to the table itself.

To begin with, we’ll add a new customer. To add rows, use the INSERT statement:

INSERT INTO table(columns)

VALUES (values);

For example:

INSERT INTO customers(givenname, familyname,

 email, registered)

VALUES ('Norris', 'Lurker', 'norris.lurker@example.com',

 current_timestamp);

The INSERT statement can be used to add new values, as you see here, or to copy

values from another table. It normally includes a list of columns, but you can leave out

the list if you promise to fill in all of the columns in the correct order. It’s generally more

reliable to include the list.

When it comes to the column list, there are some obvious rules:

•	 All NOT NULL columns must be included, unless they have a default.

•	 The values must match the column in number (how many) and in

respective types.

•	 SQL really doesn’t care if you get the actual values wrong, such as,

say, reversing the givenname and familyname, as long as the values

are compatible.

Chapter 8 Working with Tables

291

All other columns will get a NULL, with some exceptions. If the column definition

includes a DEFAULT (such as the false for the spam column), then that value will be used

if you omit the column. That includes any NOT NULL column with a default. This means

you can leave them out of the column list.

If you wish to force the issue on a DEFAULT column, you can also include the DEFAULT

keyword as a dummy value. This doesn’t work, however, in SQLite.

Even so

•	 You can, of course, also include columns which are not NOT NULL. In

this case, we didn’t.

•	 You can also include a column with a default value, giving it an

alternative value.

Technically, the primary key, id, should be NOT NULL, so in principle it should have

been included in the column list. However, since, in this case, there is an autogenerated

number, this acts as the default, so you can, and should, omit it. Where the primary key is

not autogenerated, you would also be expected to include it.

Now run the INSERT statement again, but change the email address:

INSERT INTO customers(givenname, familyname,

 email, registered)

VALUES ('Norris', 'Lurker', 'norris.lurker@example.net',

 current_timestamp);

That’s right: you have added the customer twice. You can see the results with

SELECT * FROM customers ORDER BY id DESC;

There’s nothing technically wrong with adding two customers with the same name,

so this may not have been a mistake. At this point, SQL can’t help you decide whether

you really have two customers with the same name or a duplicate, so you’ll have to work

that out some other way; often, that means chasing them up personally.

Note that even the email address doesn’t prove anything. Even though the email

addresses differ (duplicate email addresses are disallowed), this wouldn’t be the first

user with multiple email addresses.

Chapter 8 Working with Tables

292

�Deleting Rows from a Table
Let’s assume that the second customer with the same name is indeed a duplicate, so you

will have to delete it. For this, you use

DELETE

FROM table;

However, you need to be very careful with this. Of itself, it will delete all rows, which

may not be what you mean. If you only want to delete some of the rows, you will need to

qualify it with a WHERE clause:

DELETE

FROM table

WHERE …;

Sometimes, you’re not sure whether you’re targeting the right rows, and you

certainly don’t want to find out afterward. You can do a check by changing DELETE to

SELECT *:

SELECT *

FROM table

WHERE …;

If you’re satisfied that that’s what you meant, you can go ahead. If you’re still not

sure, you may be able to do a trial run. In some DBMSs, you can run the following

statements one at a time:

-- PostgreSQL, MSSQL, MySQL / MariaDB:

BEGIN TRANSACTION; -- MySQL / MariaDB: START TRANSACTION

DELETE FROM minipaintings;

SELECT * FROM minipaintings;

ROLLBACK;

SELECT * FROM minipaintings;

Chapter 8 Working with Tables

293

A transaction is a group of statements which allows you to reverse any changes,

using ROLLBACK. If you want to keep the changes, you use COMMIT instead. All of the

DBMSs in this book support transactions,2 but SQLite and Oracle don’t support running

them one line at a time.

Normally, a single statement would autocommit, which is why deleting (as well as

updating, as you’ll see later) is so dangerous.

Back to the customers table, first, check which rows you have just added:

SELECT * FROM customers ORDER BY id desc;

Using the last id (the first one in reverse order earlier):

DELETE

FROM customers

WHERE id= … ;

Now, when you check the table:

SELECT * FROM customers;

you should only see one new customer.

Deleting a presumed duplicate isn’t always so straightforward. Sometimes, the two

rows have different or even conflicting data, and you will need to decide what to keep

and what to reject.

When should you delete a row? The short answer is never. The longer answer is that

data which should have been there should stay there. The obvious exceptions are data

which was entered in error (such as this example) or test data.

Another exception is if data has been entered speculatively, such as a sale which

might not go ahead. You might then delete it if you decide you don’t want to keep it for

historical purposes. If you really have data that you have finished with, then you should

mark it as expired (such as with another column).

2 MySQL/MariaDB only supports transactions on some table storage types. The default type,
MyISAM, doesn’t. However, the sample database was built with INNODB, which does.

Chapter 8 Working with Tables

294

�Adding More Rows
At this point, you can add more customers. With most DBMSs, you can add multiple

rows with a single INSERT statement:

-- Not Oracle:

 INSERT INTO customers(givenname, familyname,

 email, registered)

 VALUES

 ('Sylvia','Nurke',

 'sylvia.nurke@example.com', current_date),

 ('Murgatroyd','Murdoch',

 'murgatroyd.murdoch@example.com', current_timestamp)

 -- etc

;

Oracle, however, won’t let you do that. There are various workarounds for Oracle, but

the simplest way is the old-fashioned way of multiple INSERT statements:

-- All DBMSs

 INSERT INTO customers(givenname, familyname,

 email, registered)

 VALUES ('Sylvia','Nurke',

 'sylvia.nurke@example.com', current_timestamp);

 INSERT INTO customers(givenname, familyname,

 email, registered)

 VALUES ('Murgatroyd','Murdoch',

 'murgatroyd.murdoch@example.com', current_timestamp);

 -- etc

;

If you have a large number of rows, multiple individual INSERT statements tend to

get very slow, so in Oracle it’s worth investigating the workarounds. The script for the

sample database is full of them.

Note that the value of current_timestamp is technically too fine-grained, as it also

includes the time. Most, but not all, DBMSs have current_date which would fit better.

However, the DBMS will also happily cast current_timestamp automatically to fit it in.

Chapter 8 Working with Tables

295

When you now check the table:

SELECT * FROM customers ORDER BY id DESC;

You will notice a gap where the duplicate customer was. There are two principles

working together here:

	 1.	 Primary keys should never be recycled. This way, you don’t inherit

old data.

	 2.	 Auto-incremented columns don’t rewind, so they don’t end up

reusing old values.

It is possible to override these principles, such as when you are trying to repair data.

�Updating Rows
Now that we have added a few more customers, we can start to fill in a few missing

details. Among other things, we might add their phone numbers.

To change values in an existing row, use the UPDATE statement:

UPDATE table

SET column=value -- column=value, column=value, etc

WHERE …

Optionally, you can set more than one value as before.

For example, using the id of one of your newly added customers:

SELECT id FROM customers ORDER BY id DESC;

you can update the phone number:

UPDATE customers

SET phone='0370101234'

WHERE id= … ;

Since the id is a primary key, and therefore unique, this will limit the damage to

one row.

Chapter 8 Working with Tables

296

The UPDATE statement can be very dangerous. For example:

-- Don't do this!

 UPDATE customers

 SET phone='0370101234';

This could ruin your day. Without the WHERE clause, this would change the phone

column for all rows. At this point, there is no requirement for the phone number to

be unique.

Now is probably a good time to reflect that SQL has no undo. Sometimes, you
can reconstruct your data after you make a mistake, and sometimes the DB
administrator can reconstruct it. If not, there’s nothing anyone can do.

You may be able to test your UPDATE using the same methods discussed for the
DELETE statement.

Unlike the INSERT statement, you can’t set different values for each row, unless that

value can be calculated.

You can, for example, increase the prices of all of the paintings:

-- Don't run this unless you really want to:

 UPDATE paintings SET price=price*0.1;

Here, you can raise the price by 10% if you run it once. The only trouble is that if you

(accidentally) run it again, you’ll increase the price to 21%, then 33.1%, then 46.41%, and,

well, you know where this is headed.

The problem with the phone number may be alleviated if you decide that the phone

number is supposed to be unique. You can modify an existing table using the CREATE

UNIQUE INDEX statement. For example:

-- Not MSSQL:

 CREATE UNIQUE INDEX uq_customers_phone ON

 customers(phone);

-- MSSQL:

 CREATE UNIQUE INDEX uq_customers_phone ON

 customers(phone);

 WHERE phone IS NOT NULL;

Chapter 8 Working with Tables

297

Microsoft SQL has a quirk which will compare NULLs when checking for uniqueness,

so you need the extra clause to stop it from doing that.

Note that there may be good reasons not to enforce unique phone numbers, such

as multiple customers from the same organization. This is the sort of decision which a

database developer alone can’t make—there needs to be a real understanding of how

the database is to be used in real life.

�Altering the Table
Once you have a table and started populating it, you may discover that you need to make

changes to the table. It’s too late to drop the table and recreate it, but you can use the

ALTER statement to make some changes after the event.

Typical changes include adding or dropping columns, adding an index, or changing

the type of column. Pretty well all of the table properties discussed in the chapter can be

retrofitted onto an existing table, as long as it doesn’t violate existing integrity rules in the

process. For example:

-- Add Column

 ALTER TABLE customers

 ADD country VARCHAR(60);

-- Drop Columns

 ALTER TABLE customers

 DROP COLUMN town, state, postcode;

-- Add Foreign Key

 ALTER TABLE customers

 ADD townid INT REFERENCES towns(id);

-- Add Check Constraint

 ALTER TABLE saleitems

 ADD CHECK (quantity>0);

-- Drop Constraint

 ALTER TABLE customers

 DROP CONSTRAINT ck_customers_postcode;

-- Add NOT NULL constraint

 ALTER TABLE saleitems

 ALTER COLUMN quantity SET NOT NULL;

Chapter 8 Working with Tables

298

-- Add Default

 ALTER TABLE saleitems

 ALTER COLUMN quantity SET DEFAULT 1;

Here, we will add another column.

Although the customers table includes the address, it doesn’t include a country. This

is fine if you want to limit sales to one country, but if you have bigger plans, you’ll want to

add the country:

-- All DBMSs

 ALTER TABLE customers

 ADD country varchar(48);

-- MySQL / MariaDB

 ALTER TABLE customers

 ADD country varchar(48)

 AFTER postcode;

The new column will be placed at the end. Aesthetically, it should go after the other

address columns. Unfortunately, most DBMSs don’t allow you to specify where the new

column appears without some slightly risky trickery,3 so we have to live with it. As you

have seen earlier, MySQL/MariaDB does allow you to specify a position.

For now, let’s assume that all of your customers come from one country, but we’ll

only make that assumption for customers already with an address. We can set the

country for these customers as follows:

UPDATE customers

SET country='Australia' -- or whatever

WHERE state IS NOT NULL;

As with all of the DDL statements, your ability to alter the table in real life may be

limited. The database administrator probably doesn’t want just anybody to tinker with

the database.

For the sample database, however, we’ll assume that you have complete control.

3 This trickery generally involves copying the table into a new one with the columns where you
want them. This is just a little bit risky, can get complicated, and can be disruptive.

Chapter 8 Working with Tables

299

�DML in Real Life
While you may spend a lot of time using the SELECT statement, it’s unlikely that you’ll

spend much time using INSERT, UPDATE, or DELETE.

The SELECT statement is used to fetch data, and, other than questions of security

and confidentiality, it’s a relatively harmless operation. You can’t break anything with a

simple SELECT statement.

On the other hand, it is very easy to make a mess of your database with the other

statements. Once you start adding data that shouldn’t be there, or you change something

to the wrong value, or you delete data which should have remained, your database is

unreliable and, therefore, useless.

For that reason, the database is normally secured against unauthorized tampering.

�Security
All normal DBMSs include some sort of security. In this sense, SQLite is not normal, in

that the client is built into some other software, and any security you want to implement

is up to the host software. If you’re working with SQLite, you can ignore this section or

politely nod your head and pretend you’re interested anyway.

When you connect to a database, you would normally be expected to log in.

Sometimes, logging in is automatic, but you often would be expected to enter a

username and a password.

Typically, security is set up in two layers:

•	 A user is an individual with their own username and password.

•	 A role is a collection of users with similar attributes.

A user may be assigned to more than one role.

Typically, permissions required to do something—anything at all—are assigned to a

role. They may also be assigned to individual users, but that would be harder to maintain

if users change.

These permissions include (but are not limited to, as they say)

•	 Which tables can be read with a SELECT statement

•	 Which tables can be modified with the other DML statements

•	 Whether tables can be altered or anything can be created or dropped

Chapter 8 Working with Tables

300

Depending on the DBMS, these permissions can be very fine-grained. Generally,

they are under the control of the database administrator (DBA). There is often a special

user with this role called root. There can be more than one root user or DBA.

If you install your own DBMS software, then you will be the DBA, and you can do

anything you like.

�Front-End Software
The other reason that you won’t INSERT, UPDATE, or DELETE so much is that data is not

normally modified manually. For example, the sample database is for a web application,

and you would normally make all of the changes using web forms. This would also be

the case in an office environment, with similar front-end software.

However, regardless of how the data is actually entered, it will, at some point, find its

way into a DML statement as described earlier.

For example, when you enter your registration details on a web form and submit,

the data will be received on the web server. In turn, it will be processed by a server-

side script, often written in a programming language such as PHP, wrapped into DML

statements, and then sent off to the database server for further processing.

Fetching data, such as viewing a catalog, would be the same, mostly in reverse.

After submitting your search criteria, the web server script would generate a suitable

SELECT statement, use it to get the data from the database server, format the results

appropriately, and then send it back to the user.

On the other hand, there is much more you can do with a SELECT statement:

•	 You can fetch ad hoc results, as you have been doing throughout

this book.

•	 You can fetch data for further processing in a statistical or analysis

package.

Of course, even if you don’t use the other DML statements directly, it’s very

important to understand what’s going on.

Chapter 8 Working with Tables

301

�Summary
In this chapter, we looked at how database tables are created and how to add or change

data in the tables.

Tables are created using the CREATE TABLE statement. This statement includes

	 1.	 Column names

	 2.	 Data types

	 3.	 Other table and column properties

A table design can be changed afterward, such as adding triggers or indexes. More

serious changes, such as adding or dropping columns, can be effected using ALTER

TABLE statements.

�Data Types
There are three main types of data:

	 1.	 Numbers

	 2.	 Strings

	 3.	 Dates

There are many variations of the preceding types which make data storage and

processing more efficient and help to validate the data values.

There are also additional types such as boolean or binary data, which you won’t see

so much in a typical database.

�Constraints
Constraints define what values are considered valid. Standard constraints include

•	 NOT NULL

•	 UNIQUE

•	 DEFAULT

•	 Foreign keys

Chapter 8 Working with Tables

302

You can construct your own additional constraints with the generic CHECK constraint.

Here, you add a condition similar to a WHERE clause which defines your own particular

validation rule.

�Foreign Keys
A foreign key is a reference to another table and is also regarded as a constraint in that it

limits values to those which match the other table.

The foreign key is defined in the child table.

A foreign key also affects any attempt to delete a row from the parent table. By

default, the parent row cannot be deleted if there are matching child rows. However, this

can be changed to either setting the foreign key to NULL or to cascading the delete to all of

the children.

�Indexes
Since tables are not stored in any particular order, they can be time-consuming to

search. An optional index can be added for any column you routinely search, which

makes searching much quicker.

�Manipulating Data
Data Manipulation Language statements are used to add or change data. In addition to

the SELECT statement, there are

•	 INSERT

•	 UPDATE

•	 DELETE

Unlike SELECT, these have the potential to make a mess of a database, especially

since SQL doesn’t have an undo.

Chapter 8 Working with Tables

303

CHAPTER 9

Set Operations
Behind all SQL databases is Relational Database theory, which gives databases

a solid mathematical foundation. Among other things, databases are based on

mathematical sets.

In mathematics, a set is a collection of things. You don’t need to worry about all of

the details, but two points are important:

•	 A set has no duplicates. This is part of why good database design

ensues that there are no repetitions.

•	 A set is unordered. Of course, you can’t view the contents without its

being in some sort of order, but the order is not significant.

For now, the most important part of all of this is that a table is a set of rows, and that

means that rows are not duplicated and that row order is not significant.

So far, all of our queries have produced a single result set. Even when you joined

tables, the product was a single result set. In this chapter, we’ll look at combining

multiple result sets.

�Unions
A union is the most basic combination of two or more sets. The result is another set

containing all the members of the sets. The usual diagram for this is something like

Figure 9-1.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2_9

https://doi.org/10.1007/978-1-4842-9493-2_9

304

Figure 9-1.  The Union of Two Sets

Sometimes, there are elements which are members of both sets, as you see in

Figure 9-1. We’ll discuss the overlap in a moment.

In SQL, there are times when we need to combine rows from multiple tables or

virtual table. This is not the same as joining two tables. When you join tables, you add

columns to an existing table. Here, we’re talking about adding rows.

Suppose you’re planning some sort of event and want to invite customers as well as

employees. You can get their names easily enough:

SELECT givenname, familyname FROM customers;

SELECT givenname, familyname FROM employees;

At this stage, you will have two sets of data. To combine them into one set of data,

you use the UNION clause between the SELECT statements:

SELECT givenname, familyname FROM customers

UNION

SELECT givenname, familyname FROM employees

;

givenname familyname

Matt Black

Ali Gator

Emmy Grate

Claire de Lune

(continued)

Chapter 9 Set Operations

305

givenname familyname

Len Till

Jack Potts

~ 322 rows ~

Note that the semicolon from the first statement has been removed. This is because

a UNION is a single statement. The second semicolon has been moved further down to

accommodate more changes.

If you run the preceding statement, you may notice that the total number of rows is

actually less than the number of customers and the number of employees combined.

That’s because of a feature of the UNION operation.

Since the result of a UNION is supposed to be a set, there should be no duplicates,

so after the data is combined, duplicates are removed. Unfortunately, SQL has no way

of knowing which names are the genuine duplicates, so it has only the resulting names

to go on.

In this case, there are three sources of duplicates:

•	 Duplicate names in the customers table

•	 Duplicate names in the employees table

•	 Names which appear in both the customers and employees tables

Note that they are not genuine duplicates and are really different people, but they

happen, by coincidence, to share their given and family names, so SQL sees them as

the same.

If you are satisfied that duplicate names are OK, then you can use the UNION

ALL clause:

SELECT givenname, familyname FROM customers

UNION ALL -- don't remove duplicates

SELECT givenname, familyname FROM employees

;

Chapter 9 Set Operations

306

givenname familyname

Judy Free

Ray Gunn

Ray King

Ivan Inkling

Drew Blood

Seymour Sights

~ 338 rows ~

The UNION ALL clause doesn’t remove duplicate values, so the total number of rows

should be right.

There’s an added benefit of using UNION ALL. Finding and removing duplicates

actually takes extra work on the part of the DBMS, so, if it doesn’t have to remove them,

there’s less work involved.

Note that the definition of a duplicate depends entirely on the SELECT clause. If you

had chosen some additional information, such as the email:

SELECT givenname, familyname, email FROM customers

UNION ALL

SELECT givenname, familyname, email FROM employees

;

givenname familyname email

Judy Free judy.free474@example.net

Ray Gunn ray.gunn186@example.net

Ray King ray.king144@example.net

Ivan Inkling ivan.inkling179@example.com

Drew Blood drew.blood475@example.net

Seymour Sights seymour.sights523@example.

net

~ 338 rows ~

Chapter 9 Set Operations

307

Here, it’s likely that there won’t be any duplicates to worry about. That’s because the

email address is supposed to be distinct.

It’s still a good idea to use UNION ALL, since you don’t want to waste time looking for

duplicates when there aren’t any.

You can have as many SELECT statements as you like, all with UNION or UNION ALL

statements in between:

SELECT givenname, familyname FROM customers

UNION ALL

SELECT givenname, familyname FROM employees

UNION ALL

SELECT givenname, familyname FROM artists

;

givenname familyname

Judy Free

Ray Gunn

Ray King

Ivan Inkling

Drew Blood

Seymour Sights

~ 525 rows ~

Different DBMSs may have a theoretical limit to the number of SELECT statements

you can have, but it’s likely to be more than you’ll ever want.

�Selective Unions
Each SELECT statement can be as complex as you like. For example, they can include

joins and aggregates. They can also be Common Table Expressions. One thing you can’t

do is use ORDER BY, which we’ll look at later.

For example, suppose you want to include all of the employees, but only some of the

customers:

SELECT givenname, familyname, email FROM customers

Chapter 9 Set Operations

308

 WHERE state='VIC'

UNION ALL

SELECT givenname, familyname, email FROM employees

;

givenname familyname email

Ray Gunn ray.gunn186@example.net

Seymour Sights seymour.sights523@example.net

Jack Knife jack.knife545@example.com

Carol Singers carol.singers505@example.net

Miles Long miles.long492@example.com

Sharon Sharalike sharon.sharalike374@example.

com

~ 86 rows ~

You can even combine differently filtered results from the same table:

SELECT givenname, familyname, email FROM customers

 WHERE state='VIC'

UNION ALL

SELECT givenname, familyname, email FROM customers

 WHERE dob<'1980-01-01'

;

givenname familyname email

Ray Gunn ray.gunn186@example.net

Seymour Sights seymour.sights523@example.

net

Jack Knife jack.knife545@example.com

Carol Singers carol.singers505@example.

net

Miles Long miles.long492@example.com

(continued)

Chapter 9 Set Operations

309

givenname familyname email

Sharon Sharalike sharon.sharalike374@

example.com

~ 148 rows ~

but you probably shouldn’t. The preceding example is better expressed with an OR

operator:

SELECT givenname, familyname, email FROM customers

WHERE state='VIC' OR dob<'1980-01-01'

;

Not only is it better expressed, it is likely to be much more efficient. Generating two

filtered result sets and combining them is much more work than filtering a single result

set. To put it another way, you would only use UNION if there’s no other way to do it.

�SELECT Clauses Must Be Compatible
SQL doesn’t actually care what you’re combining, as long as the data is compatible. To

begin with, there must be the same number of columns in each SELECT statement:

-- This won't work:

 SELECT givenname, familyname, email -- 3 columns

 FROM customers

 UNION ALL

 SELECT givenname, familyname -- 2 columns

 FROM employees

 ;

Second, the data types of each column should match:

-- This shouldn't work either:

 SELECT /* string: */ email, givenname, familyname

 FROM customers

 UNION ALL

 SELECT /* number: */ id, givenname, familyname

 FROM employees

 ;

Chapter 9 Set Operations

310

This will not work in PostgreSQL, Oracle, and MSSQL. That’s because the email is a

string, while the id is a number, and you can’t mix data types.

However, you will get away with it in MariaDB/MySQL, which is prepared to

automatically cast the number as a string, and in SQLite, which doesn’t care about data

types anyway.

If you want to mix types properly, you should cast the types yourself:

-- Using cast()

 SELECT email, givenname, familyname

 FROM customers

 UNION ALL

 SELECT cast(id as varchar(4)), givenname, familyname

 FROM employees

;

Whether you really want the following result is, of course, another question:

email givenname familyname

may.bea350@example.com May Bea

16 Sylvester Underbar

pearl.divers20@example.net Pearl Divers

tom.morrow429@example.com Tom Morrow

grace.skies588@example.com Grace Skies

8 Seymour Something

~ 94 rows ~

Where there is a real trap is that UNION aligns the values in the SELECT clause without

any regard for their names or meanings. Both of the following will produce results:

-- Reversed Columns

 SELECT givenname, familyname FROM customers

 UNION ALL

 SELECT familyname, givenname FROM employees

 ;

Chapter 9 Set Operations

311

-- Mis-aligned Columns

 SELECT email, givenname, familyname FROM customers

 UNION ALL

 SELECT givenname, familyname, email FROM employees

 ;

but the results are probably meaningless. However, this is useful if you really need to

align columns with disparate names:

-- Mixed Column Names

 SELECT givenname, familyname FROM customers

 UNION ALL

 SELECT firstname, lastname FROM sorting

 ;

In this case, we know what you mean:

givenname familyname

Judy Free

Ray Gunn

Ray King

Ivan Inkling

Drew Blood

Seymour Sights

~ 312 rows ~

This is often the case when you’re trying to combine data from different tables.

�Only Column Names from the First SELECT Statement
Are Used
If you ran the last few examples, you will have noticed that the columns all get their

name from the first SELECT statement only. This is what makes it particularly confusing if

you start switching around the SELECT columns.

You can also alias column names in a UNION:

Chapter 9 Set Operations

312

SELECT givenname AS gn, familyname FROM customers

UNION ALL

SELECT givenname, familyname AS fn FROM employees;

You’ll get the following result:

gn familyname

Judy Free

Ray Gunn

Ray King

Ivan Inkling

Drew Blood

Seymour Sights

~ 338 rows ~

You will see that the givenname column is successfully aliased to gn, but the

familyname column stays unaliased. The names in the second and subsequent SELECT

statement are ignored, even if you went to the trouble of aliasing them. The moral to the

story is that you should only bother with the first SELECT statement:

SELECT givenname AS gn, familyname AS fn FROM customers

UNION ALL

SELECT givenname, familyname FROM employees;

Of course, you can still alias the additional SELECT clauses if you think it makes things

clearer.

�Sorting Results
If you try the following statement:

-- Doomed to failure

 SELECT givenname, familyname, email FROM customers

 ORDER BY familyname, givenname

 UNION ALL

 SELECT givenname, familyname, email FROM employees

Chapter 9 Set Operations

313

 ORDER BY familyname, givenname

 ;

it won’t work. A UNION can only occur between two sets, and a set is unordered. It

wouldn’t make sense anyway, since there’s no point in sorting part of your results before

you’ve finished.

This will work:

-- This works

 SELECT givenname, familyname, email FROM customers

 UNION ALL

 SELECT givenname, familyname, email FROM employees

 ORDER BY familyname, givenname

 ;

but is open to misinterpretation. In the same way that the first SELECT can’t have an

ORDER BY clause, neither can the second, for the same reason. What is being sorted is not

the individual SELECT statement, but the result of the UNION. For this reason, it may be

helpful to separate the ORDER BY clause to make this clear:

SELECT givenname, familyname, email FROM customers

UNION ALL

SELECT givenname, familyname, email FROM employees

ORDER BY familyname, givenname;

This now works as expected:

givenname familyname email

Aiden Abet aiden.abet260@example.net

Alf Abet alf.abet323@example.com

Ollie Agenous ollie.agenous563@example.com

Corey Ander corey.ander54@example.com

Ike Andy ike.andy549@example.com

Adam Ant adam.ant263@example.net

~ 338 rows ~

Chapter 9 Set Operations

314

If you don’t like the empty line, you can always fill it in with a comment:

SELECT givenname, familyname, email FROM customers

UNION ALL

SELECT givenname, familyname, email FROM employees

-- Sort Results:

ORDER BY familyname, givenname;

Either way, remember that the ORDER BY clause is for the whole union, not just one of

the SELECT statements.

�Intersections
The intersection of two sets is the elements which are members of both.

Diagrammatically, it looks like Figure 9-2.

Figure 9-2.  The Intersection of Two Sets

It’s possible, of course, that two sets have nothing in common, in which case we say

that they are disjoint.
Suppose, for example, you’re wondering whether some of your customers also

happen to be employees. You could ask them, of course, but let’s see how SQL can help.

To find names that appear in both the customers and employees table, you could

run this:

SELECT givenname, familyname FROM customers

INTERSECT

SELECT givenname, familyname FROM employees;

Chapter 9 Set Operations

315

You’ll probably get a few:

givenname familyname

Bonnie Banks

Joe Kerr

Russell Leaves

Remember only the data in the SELECT clause is checked, so all you can be sure of is

that the names appear in both tables. Of itself, it’s no guarantee that they are, in fact, the

same person.

Here’s a slightly more involved example. Suppose you want to find which paintings

are popular all over the country. That will involve two ideas:

•	 First, you’ll need to get a set of paintings related to states. You have

already done something similar when you got a set of customers and

artists. This will be a join between multiple tables.

•	 Second, SQL doesn’t have a simple way of testing whether something

is sometimes one thing and sometimes another. This is where the

INTERSECT will help.

To get a list of states and paintings, we can use the following join:

SELECT p.id, c.state,p.title

FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

;

You’ll get quite a long list:

id state truncate

1065 TAS Pieter van den Broecke …

870 NT Nave, Nave Moe (Miraculous

Source) …

(continued)

Chapter 9 Set Operations

316

id state truncate

2061 QLD The Church of Overschie …

1796 WA Wheat Field …

1874 QLD L’etoile [La danseuse sur la

scene] …

1516 WA The Count-Duke of Olivares

on Horseb …

~ 6315 rows ~

Having got that result, we’ll wrap it in a CTE:

WITH cte AS (

 SELECT p.id, c.state, p.title

 FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

)

-- more

;

The next part’s tedious, but copy and paste is your friend here:

WITH cte AS (

 SELECT p.id, c.state, p.title

 FROM

 customers AS c

 JOIN sales AS s ON c.id=s.customerid

 JOIN saleitems AS si ON s.id=si.saleid

 JOIN paintings AS p ON si.paintingid=p.id

)

SELECT id, title FROM cte WHERE state='NSW'

INTERSECT

SELECT id, title FROM cte WHERE state='VIC'

Chapter 9 Set Operations

317

INTERSECT

SELECT id, title FROM cte WHERE state='QLD'

ORDER BY title;

As long as we select only the relevant columns, we’ll get something like this:

id title

2144 A Domestic Affliction

1745 Aeneas’ Flight from Troy

1426 Aesop

2214 Alexander and Porus

16 Algerian Women in Their

Apartments

964 Allegory

~ 384 rows ~

In this example, we’ve only listed the three larger states, all of which are likely to

include the paintings. You need to be careful here. If you include the smaller states as

well, that’s OK, but they will match fewer of the paintings, so the INTERSECT will return

fewer results.

Also, note the inclusion of the id column. Just as with UNION, only the columns in

the SELECT clause are matched. If you don’t include the id column, then two different

paintings with the same title would be matched, and you’d get a false impression.

�Differences
One more operation is finding elements in one set which don’t belong in the other. This

uses the EXCEPT operator. Oracle calls this MINUS, which is not technically standard, but

makes the point very clear.

The operation looks like Figure 9-3.

Chapter 9 Set Operations

318

Figure 9-3.  The Difference of Two Sets

For example, if you’re looking for employees whose names don’t match customers,

you can do this with

SELECT givenname, familyname FROM employees

EXCEPT -- Standard

-- MINUS -- Oracle

SELECT givenname, familyname FROM customers

ORDER BY familyname, givenname;

This gives you the following:

givenname familyname

Gladys Bowles

Beryl Bubbles

Mildred Codswallup

Clarisse Cringinghut

Rubin Croucher

Nugent Dirt

~ 29 rows ~

Unlike UNION and INTERSECT, this operation is not symmetrical: you will get a

different result if you reverse the SELECT statements:

Chapter 9 Set Operations

319

SELECT givenname, familyname FROM customers

EXCEPT -- Standard

-- MINUS -- Oracle

SELECT givenname, familyname FROM employees

ORDER BY familyname, givenname;

This gives you a different result:

givenname familyname

Aiden Abet

Alf Abet

Ollie Agenous

Corey Ander

Ike Andy

Adam Ant

~ 290 rows ~

Suppose, for example, you want to find the customers who haven’t bought anything.

The most direct approach is to get all the customer ids and exclude those whose

customerid appears in the sales table:

SELECT id FROM customers

EXCEPT -- Oracle: MINUS

SELECT customerid FROM sales;

Here, you’ll get a list of customer ids:

id

394

169

309

(continued)

Chapter 9 Set Operations

320

556

493

529

~ 48 rows ~

Of course, that’s all you get. Like all set operations, you can’t select extra columns if

you don’t want them to interfere. If you want the rest of the customer details, you might

prefer an outer join and filter for missing sales:

SELECT c.id, c.givenname, c.familyname -- etc

FROM customers AS c LEFT JOIN sales AS s

 ON s.customerid=c.id

WHERE s.id IS NULL;

This gives you something more informative:

id givenname familyname

209 Gideon Wine

101 Lindsay Doyle

330 Clara Fied

178 Kurt See

17 Anne Onymous

57 Bess Twishes

~ 48 rows ~

The same technique can be used to look for artists whose paintings we don’t have:

-- EXCEPT

 SELECT id FROM artists

 EXCEPT -- Oracle: MINUS

 SELECT artistid FROM paintings;

Chapter 9 Set Operations

321

-- Using OUTER JOIN

 SELECT a.id, a.givenname, a.familyname -- etc

 FROM paintings AS p RIGHT JOIN artists AS a

 ON p.artistid=a.id

 WHERE p.id IS NULL;

As with all the set operators, EXCEPT is most useful when you only want the actual

data which is different, such as the id earlier. If you want more details, you might be

better off using an alternative.

�Some Tricks with Set Operations
Generally, the most common use case of UNION is to combine data from multiple tables,

as in our first example. In a well-designed database, you may not see much need for that.

For example, you might have different tables for customers in different states, and

you might then combine them with UNION. However, it would have been better to have all

the customers in one table in the first place.

Multiple tables aren’t always the result of bad design. For example, you might

separate your sales into current sales and older sales, so that working with current sales

is easier and faster. When you occasionally need to search through the lot, you can

combine them.

In this section, we’ll look at how a UNION can be used for a few special techniques.

�Comparing Results
In Chapter 7 on aggregates, we commented that two queries would give the same results:

-- Sub Query

 SELECT

 customerid,

 (SELECT givenname||' '||familyname -- MSSQL: Use +

 FROM customers

 WHERE customers.id = sales.customerid

) AS customer,

 count(*) AS number_of_sales,

Chapter 9 Set Operations

322

 sum(total) AS total

 FROM sales

 GROUP BY customerid;

-- Join

 SELECT

 c.id, c.givenname||' '||c.familyname AS customer,

 count(*) AS number_of_sales, sum(s.total) AS total

 FROM sales AS s JOIN customers AS c ON s.customerid=c.id

 GROUP BY c.id, c.givenname||' '||c.familyname;

Both should give the same:

customerid customer number_of_sales total

384 Mickey Finn 6 5445

351 Dick Tate 12 7650

184 Dee Lighted 11 5040

116 Tim Burr 14 8470

273 Harry Leggs 13 9070

550 Kate Ering 1 805

~ 256 rows ~

We’ve left out the ORDER BY clauses, since we’re focusing on the data only.

How can we be sure that the two results really are the same? If it’s only a handful of rows,

you can just compare them, but if it’s a larger number, then you’ll need a different approach.

First, note that the two queries produce the same number of rows. That’s a start. Also,

note that the columns are the same.

After that, you can use a set operation to do the hard work. Actually, it doesn’t matter

which one you use, but all three can give you a stronger feeling of assurance:

-- Sub Query

 SELECT

 customerid,

 (SELECT givenname||' '||familyname -- MSSQL: Use +

 FROM customers

Chapter 9 Set Operations

323

 WHERE customers.id = sales.customerid

) AS customer,

 count(*) AS number_of_sales,

 sum(total) AS total

 FROM sales

 GROUP BY customerid

 UNION -- or INTERSECT or EXCEPT / MINUS

 SELECT

 c.id, c.givenname||' '||c.familyname AS customer,

 count(*) AS number_of_sales, sum(s.total) AS total

 FROM sales AS s JOIN customers AS c ON s.customerid=c.id

 GROUP BY c.id, c.givenname||' '||c.familyname;

Remember to remove the semicolon after the first query.

If both results really are the same, then the second result set should be the same as

the first. The test results will be as follows:

•	 UNION: Since UNION removes the duplicates, you should get only the

first result set.

•	 INTERSECT: This returns only the results which are in both, which

should be all of them.

•	 EXCEPT/MINUS: This should return an empty set, since you are

removing all of the results which are the same in the second set. In

this case, you don’t have to worry about reversing the order, since you

already know that they have the same number of rows.

Any one test should do, but it’s not hard to try all three if you’re not wholly convinced.

�Virtual Tables
In Chapter 5 on calculations, we noted that you can add to dates. Dates are notoriously

awkward because months vary in length, and you might want to test what happens when

you add a number of days to different months.

We can test what happens if we have a table of samples. In this case, we’ll generate a

virtual table in the form of a UNION.

Chapter 9 Set Operations

324

First, we can generate a UNION with some sample values:

-- PostgreSQL, MSSQL, MySQL / MariaDB

 SELECT 'one' AS test,

 cast('2020-01-29' as date) AS testdate

 UNION

 SELECT 'two', cast('2020-02-28' as date)

 UNION

 SELECT 'three', cast('2020-03-30' as date)

-- SQLite

 SELECT 'one' AS test, '2020-01-29' AS testdate

 UNION

 SELECT 'two', '2020-02-28'

 UNION

 SELECT 'three', '2020-03-30'

-- Oracle

 SELECT 'one' AS test,

 cast('29 Jan 2020' as date) AS testdate

 FROM dual

 UNION

 SELECT 'two', cast('28 Feb 2020' as date)

 FROM dual

 UNION

 SELECT 'three', cast('30 Mar 2020' as date)

 FROM dual

;

You’ll get a simple three-row table:

test testdate

one 2020-01-29

three 2020-03-30

two 2020-02-28

Chapter 9 Set Operations

325

We can now wrap that in a CTE:

WITH samples AS (

 SELECT …

 UNION

 SELECT …

 UNION

 SELECT …

)

and test the arithmetic:

-- PostgreSQL, MySQL / MariaDB, Oracle

 WITH samples AS (

 …

)

 SELECT test, testdate, testdate+interval '30' day

 FROM samples;

-- MSSQL

 WITH samples AS (

 …

)

 SELECT test, testdate, dateadd(day,30,testdate)

 FROM samples;

-- SQLite

 WITH samples AS (

 …

)

 SELECT test, testdate,

 strftime('%Y-%m-%d',testdate,'+30 day')

 FROM samples;

We now have the samples together with their calculated values:

test testdate ?column?

one 2020-01-29 2020-02-28 00:00:00

three 2020-03-30 2020-04-29 00:00:00

two 2020-02-28 2020-03-29 00:00:00

Chapter 9 Set Operations

326

Some DBMSs also supply a table value literal notation, which may be simpler:

-- PostgreSQL, MySQL / MariaDB, SQLite

 WITH samples(test, testdate) AS (

 VALUES('one','2020-01-29'),('two','2020-02-28')

 ('three', '2020-03-30')

)

 SELECT …

 FROM samples;

Using a virtual table of samples this way makes it easier to test out some techniques

without the need to create real tables.

�Mixing Aggregates
One thing you’ll notice with aggregates is that the result is pretty homogenous. For

example:

-- Town totals

 SELECT state, town, count(*) AS count

 FROM customers

 GROUP BY state, town

 ORDER BY state, town;

This will give you totals for each individual town, but it won’t include other totals:

state town count

NSW Bald Hills 6

NSW Belmont 4

NSW Broadwater 5

NSW Buchanan 3

NSW Darlington 1

NSW Glenroy 2

~ 79 rows ~

If you want the other totals, you will need

Chapter 9 Set Operations

327

-- State totals

 SELECT state, count(*) AS count

 FROM customers

 GROUP BY state

 ORDER BY state;

-- Grand total

 SELECT count(*) FROM customers AS count;

The two sets of results are as follows:

state count

NSW 67

NT 3

QLD 52

SA 22

TAS 26

VIC 52

WA 47

[null] 35

count 304

If you want them in the same result set, you can combine them. For example, to

combine the state and the grand totals, you can use

SELECT state, count(*) AS count

FROM customers

GROUP BY state

UNION

SELECT 'total', count(*)

FROM customers;

Chapter 9 Set Operations

328

state count

[null] 35

WA 47

total 304

QLD 52

VIC 52

TAS 26

NT 3

SA 22

NSW 67

Note that the second SELECT has a dummy value of total. As expected, it sits in the

state column.

Depending on the DBMS, the order may or may not be to your liking. You can use the

ORDER BY clause, but you run the risk of putting the total in the middle of the results,

since that’s the way alphabetical order works. You can, however, force the issue by using

a level number:

SELECT 0 AS statelevel, state, count(*) AS count

FROM customers GROUP BY state

UNION

SELECT 1, 'total', count(*) FROM customers

ORDER BY statelevel, state;

This will now be sorted by level and order.

statelevel state count

0 NSW 67

0 NT 3

0 QLD 52

0 SA 22

(continued)

Chapter 9 Set Operations

329

statelevel state count

0 TAS 26

0 VIC 52

0 WA 47

0 35

1 total 304

You can do the same with the towns. Here, you’ll need two levels:

SELECT

 0 AS statelevel, 0 as townlevel,

 state, town, count(*) AS count

FROM customers GROUP BY state, town

UNION

SELECT

 0, 1,

 state, 'total', count(*) AS count

FROM customers

GROUP BY state

UNION

SELECT

 1, 1,

 'national', 'total', count(*)

FROM customers

-- Sort Results:

ORDER BY statelevel, state, townlevel, town;

In this case, we’re using a binary sort with the 0s and 1s:

statelevel townlevel state town count

0 0 NSW Bald Hills 6

0 0 NSW Belmont 4

0 0 NSW Broadwater 5

(continued)

Chapter 9 Set Operations

330

statelevel townlevel state town count

0 0 NSW Buchanan 3

0 0 NSW Darlington 1

0 0 NSW Glenroy 2

~ 88 rows ~

Most DBMSs support a simpler version of this, called ROLLUP. The syntax varies:

-- PostgreSQL, MSSQL, Oracle

 SELECT state, town, count(*) AS count

 FROM customers GROUP BY rollup(state, town)

 ORDER BY grouping(state),state, grouping(town), town;

-- MSSQL, MySQL / MariaDB

 SELECT state, town, count(*) AS count

 FROM customers

 GROUP BY state, town WITH rollup;

The second syntax is simpler, but less flexible.

Note also that MariaDB doesn’t support the grouping(…) function in the ORDER BY

clause, so you can’t control the order; however, it will probably result in the correct

order anyway.

�Summary
In SQL, tables are mathematical sets of rows. This means that they contain no duplicates

and are unordered. It also means that you can combine tables and virtual tables with set

operations.

A table is not necessarily a stored table; any virtual table behaves the same way. With

set operations, you use a virtual table which results from SELECT statements.

There are three main set operations:

•	 UNION combines two or more tables and results in all of the rows, with

any duplicates filtered out. If you want to keep the duplicates, you use

the UNION ALL clause.

Chapter 9 Set Operations

331

•	 INTERSECT returns only the rows which appear in all of the

participating tables.

•	 EXCEPT (a.k.a. MINUS in Oracle) returns the rows in the first table

which are not also present in the second.

When applying a set operation, there are some rules regarding the columns in each

SELECT statement:

•	 The columns must match in number and type.

•	 Only the names and aliases from first SELECT are used.

•	 Only the values are matched, which means that if your various

SELECTS change the column order or select different columns, they

will be matched if they are compatible.

A SELECT can include any of the standard clauses, such as WHERE and GROUP BY, but

not the ORDER BY clause. You can, however, sort the final results with an ORDER BY at

the end.

Set operations can also be used for special techniques, such as creating sample data,

comparing result sets, and combining aggregates.

Chapter 9 Set Operations

333

�APPENDIX 1

Differences Between
SQL Dialects
This book covers writing code for the following popular DBMSs:

•	 PostgreSQL

•	 MySQL/MariaDB

•	 MSSQL: Microsoft SQL Server

•	 SQLite

•	 Oracle

Although there is an SQL standard, there will be variations in how well these DBMSs

support them. For the most part, the SQL is 95% the same, with the most obvious

differences discussed later.

As a rule, if there’s a standard and non-standard way of doing the same thing, it’s

always better to follow the standard. That way, you can easily work with the other

dialects. More importantly, you’re future-proofing your code, as all vendors move toward

implementing standards.

�Writing SQL
In general, all DBMSs write the actual SQL in the same way. There are a few differences

in syntax and in some of the data types.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2

https://doi.org/10.1007/978-1-4842-9493-2

334

�Semicolons
MSSQL does not require the semicolon between statements. However, apart from being

best practice to use it, Microsoft has stated that it will in a future version,1 so you should

always use them.

�Data Types
All DBMSs have their own variations on data types, but they have much in common.

•	 SQLite doesn’t enforce data types, but has general type affinities.

•	 PostgreSQL, MySQL/MariaDB, and SQLite support boolean types,

while MSSQL and Oracle don’t. MySQL/MariaDB tends to treat

boolean values as integers.

The rest is similar enough.

�Dates
Generally, DBMSs have a special date/time data type and generally work the same way.

•	 Oracle doesn’t like ISO 8601 date formats (yyyy-mm-dd). However, it

is easy enough to get this to work.

•	 SQLite doesn’t actually have a date data type, so it’s a bit more

complicated. Generally, it’s simplest to use a TEXT type to store ISO

8601 strings, with appropriate functions to process it.

Actual date processing varies widely.

1 Microsoft’s comment on semicolons: https://docs.microsoft.com/en-us/sql/t-sql/
language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-
syntax-conventions-transact-sql

Appendix 1 Differences Between SQL Dialects

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-syntax-conventions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-syntax-conventions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql#transact-sql-syntax-conventions-transact-sql

335

�Case Sensitivity
Generally, the SQL language is case insensitive. However

•	 MySQL/MariaDB as well as Oracle may have issues with table names,

depending on the underlying operating system.

•	 Strings may well be case sensitive depending on the DBMS defaults

and additional options when creating the database or table.

By default

•	 MSSQL and MySQL/MariaDB are case insensitive.

•	 PostgreSQL, SQLite, and Oracle are case sensitive.

A particular database may differ from the preceding defaults.

�Quote Marks
In standard SQL

•	 Single quotes are for 'values'.

•	 Double quotes are for "names".

However

•	 MySQL/MariaDB has two modes. In traditional mode, double quotes

are also used for values, and you need the unofficial `backtick` for

names. In ANSI mode, double quotes are for names.

•	 MSSQL also allows (and seems to prefer) square brackets for names.

Personally, I discourage this, so it’s not an issue.

This book always prefers double quotes for names. This may mean putting MySQL/

MariaDB in ANSI mode, which is not a bad thing anyway.

Appendix 1 Differences Between SQL Dialects

336

�Sorting (ORDER BY)
Using the ORDER BY clause is mostly the same.

•	 Different DBMSs have different opinions on whether NULLs go at the

beginning or the end.

•	 PostgreSQL, Oracle, and SQLite give you a choice.

�Limiting Results
This is a feature not included in the original SQL standards, so DBMSs have followed

their own paths. However

•	 PostgreSQL, Oracle, and MSSQL all now use the OFFSET … FETCH

standard, with some minor variations.

•	 PostgreSQL, MySQL/MariaDB, and SQLite all support the non-

standard LIMIT … OFFSET clause. (That’s right, PostgreSQL has both.)

•	 MSSQL also has its own non-standard TOP clause.

•	 Oracle also supports a non-standard row number.

�Filtering (WHERE)
DBMSs also vary in how values are matched for filtering.

�Case Sensitivity
This was discussed earlier.

�String Comparisons
In standard SQL, trailing spaces are ignored for string comparisons, presumably to

accommodate CHAR padding. More technically, shorter strings are right-padded to longer

strings with spaces.

Appendix 1 Differences Between SQL Dialects

337

PostgreSQL, SQLite, and Oracle ignore this standard, so trailing spaces are

significant. MSSQL and MySQL/MariaDB follow the standard.

�Dates
Oracle’s date handling was mentioned earlier. This will affect how you express a date

comparison.

There is also the issue of how the ??/??/???? is interpreted. It may be the US d/m/y

format, but it may not. It is always better to avoid this format.

�Wildcard Matching
All DBMSs support the basic wildcard matches with the LIKE operator.

•	 PostgreSQL doesn’t support wildcard matching with non-string data.

As for extensions to wildcards

•	 PostgreSQL, MySQL/MariaDB, and Oracle support Regular

Expressions, but each one handles them differently.

•	 MSSQL doesn’t support Regular Expressions, but does have a simple

set of extensions to basic wildcards.

•	 SQLite has recently added native support for Regular Expressions

(www.sqlite.org/releaselog/3_36_0.html).

�Calculations
Basic calculations are the same, with the exceptions as follows. Functions, on the other

hand, are very different.

Of the DBMSs listed earlier, SQLite has the fewest built-in functions, assuming that

the work would be done mostly in the host application.

�SELECT Without FROM
For testing purposes, all DBMSs except Oracle support SELECT without a FROM clause.

Appendix 1 Differences Between SQL Dialects

https://www.sqlite.org/releaselog/3_36_0.html

338

Oracle requires the dummy DUAL table.

You can easily create your own DUAL table with the following code:

CREATE TABLE dual(

 dummy CHAR(1)

);

INSERT INTO dual VALUES('X');

Whether you would bother is, of course, another question.

�Arithmetic
Arithmetic is mostly the same, but working with integers varies slightly:

•	 PostgreSQL, SQLite, and MSSQL will truncate integer division; Oracle

and MySQL/MariaDB will return a decimal.

•	 Oracle doesn’t support the remainder operator (%), but uses the

mod() function.

Microsoft also has quirks in how many decimal places it generates for decimal

calculations.

�Formatting Functions
Generally, they’re all different. However

•	 PostgreSQL and Oracle both have the to_char() function.

•	 Microsoft has the format() function.

•	 SQLite only has a printf() function and is the most limited.

•	 MySQL/MariaDB has various specialized functions.

Appendix 1 Differences Between SQL Dialects

339

�Date Functions
Again, all of the DBMSs have different sets of functions. However, for simple offsetting

•	 PostgreSQL and Oracle have the interval which makes adding to

and subtracting from a data simple.

•	 MySQL/MariaDB has something similar, but less flexible.

•	 MSSQL relies on the dateadd() function.

•	 SQLite doesn’t do dates, but it has some functions to process date-

like strings.

�Concatenation
This is a basic operation for strings.

•	 MSSQL uses the non-standard + operator to concatenate. Others

use the || operator, with the partial exception of the following for

MySQL/MariaDB.

•	 MySQL/MariaDB has two modes. In traditional mode, there

is no concatenation operator; in ANSI mode, the standard ||

operator works.

•	 All DBMSs support the non-standard concat() function, with the

exception of SQLite.

�String Functions
Suffice to say that although there are some SQL standards

•	 Most DBMSs ignore them.

•	 Those that support them also have additional variations and

functions.

Generally, the DBMSs support the popular string functions, such as lower() and

upper(), but sometimes in different ways. There is, however, a good deal of overlap

between DBMSs.

Appendix 1 Differences Between SQL Dialects

340

�Joining Tables
Everything is mostly the same. However

•	 Oracle doesn’t permit the keyword AS for table aliases.

•	 SQLite doesn’t support the RIGHT join.

Nobody knows why.

�Aggregate Functions
The basic aggregate functions are generally the same between DBMSs. Some of the more

esoteric functions are not so well supported by some.

PostgreSQL, Oracle, and MSSQL support an optional explicit GROUP BY () clause,

which doesn’t actually do anything important, but helps to illustrate a point. The

others don’t.

�Manipulating Data
All DBMSs support the same basic operations. However

•	 Oracle doesn’t support INSERT multiple values without a messy

workaround.

•	 MSSQL supports them, but only to a limit of 1000 rows, but there is

also a less messy workaround for this limit. The rest are OK.

�Manipulating Tables
All DBMSs support the same basic operations, but each one has its own variation on

actual data type and autogenerated numbers.

Among other things, this means that the create table scripts are not cross-DBMS

compatible.

•	 MSSQL has a quirk regarding unique indexes on nullable columns,

for which there is a workaround.

Appendix 1 Differences Between SQL Dialects

341

�APPENDIX 2

A Crash Course in PDO
PDO (PHP Data Objects) provides a vendor-neutral method of accessing a database

through PHP. This means that, once you have established a connection to the specific

database, the methods used to access and manipulate data are all generic and do not

require rewriting if you change the type of database. Features which may not be present

in a particular database will generally be emulated or at least ignored.

The main references for PDO are

•	 www.php.net/manual/en/class.pdo.php

•	 www.php.net/manual/en/class.pdostatement.php

PHP also includes individual functions for various popular DBMSs. However, PDO is

designed to unify all of this in a simple set of methods.

�PDO Objects
PDO makes use of two main objects. The PDO object itself represents a connection to the

database and provides simple methods to execute an SQL statement. It also provides a

method to prepare an SQL statement for later use. The PDOStatement object represents a

prepared statement, as well as a result set from an executed SQL statement.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2

https://doi.org/10.1007/978-1-4842-9493-2
http://www.php.net/manual/en/class.pdo.php
http://www.php.net/manual/en/class.pdostatement.php

342

�The PDO Object
A PDO object represents a connection to the database. All database operations are initiated

through the PDO object. The PDO object is created when you connect to the database. After

that, you use its methods to access the database. The most useful methods are as follows:

Method Purpose

exec() Executes an SQL statement returning the number of rows affected

query() Executes an SQL statement returning a result set as a PDOStatement

prepare() Prepares a statement returning a result set as a PDOStatement

�The PDOStatement Object
The PDOStatement represents a prepared statement, as well as a returned result set.

The name is possibly confusing, since it represents a prepared statement before it is

executed, as well as the result after it is executed.

A PDOStatement is created as a result of a PDO->query operation (where it represents

a result set), a PDO->prepare operation (where it represents a prepared statement), or a

PDO->execute operation (where it represents a result set from your prepared statement).

The most useful methods are as follows:

For a prepared statement:

execute() Executes the prepared statement

You can use an array of values to replace the question mark parameters

For a result set:

fetch() Returns the next row

Useful arguments: PDO::FETCH_ASSOC, PDO::FETCH_NUM,

PDO::FETCH_BOTH (default)

fetchAll() Returns the whole result set as an array

fetchColumn() Returns a single column of the next row

PDOStatement implements the Traversable interface. This means that a result set

can be iterated with foreach().

Appendix 2 A Crash Course in PDO

343

�Working with PDO
PHP Data Objects allow you to work with a database without having to worry about the

details of the database functions. In principle, you can use the same code to work with

different database types, though some SQL statements may need adjustment, due to

differences between DBMSs.

�Establishing a Connection
Before working with PDO, you will need to create a connection. You will require the

following:

•	 A connection string: This informs PDO which database you are

connecting to. This will also include the location of the data.

•	 Possibly a username and password: Depending on the database, you

may need to authenticate your connection.

For example, here is some code to connect to MySQL/MariaDB or to SQLite:

$database = 'things';

$user = 'me';

$password = 'secret';

$dsn = "mysql:host=localhost;dbname=$database"; // mysql

$dsn = "sqlite:$database.sqlite"; // sqlite

MySQL/MariaDB is a true client-server database, so you’ll need a username and

password. SQLite, on the other hand, is handled by PHP itself, so all it needs is a

file name.

A connection attempt may result in an error. The normal behavior is to display as

much information as possible, but this is probably more than you wish to share with

others. For this reason, it is best to wrap the connection inside a try … catch block:

Appendix 2 A Crash Course in PDO

344

try {

 $pdo = new PDO($dsn); // sqlite

 $pdo = new PDO($dsn,$user,$password); // mysql

} catch(PDOException $e) {

 die ('Oops'); // Exit, with an error message

}

Of course, you can do more than bailing out with an error message. You might take

some remedial action or divert to an alternative page.

�Other DBMSs
If you want to connect to a different DBMS, the following connection strings may

be used:

// PostgreSQL

 $dsn = "pgsql:host=localhost;dbname=$database";

// Microsoft SQL Server

 $dsn = "sqlsrv:Server=localhost;Database=$database";

// Oracle

 $dsn = "oci:dbname=//localhost:1521/$database";

PHP normally has PostgreSQL support built in, but you may need to enable it in the

PHP settings. MSSQL and Oracle typically require installing additional drivers.

You can get more information on various DBMS support at www.php.net/manual/

en/pdo.drivers.php.

�Prepared Statements and SQL Injection
The biggest risk to your database comes from including user data in your SQL

statements. This may be misinterpreted as part of the SQL statement. Where a user is

deliberately supplying this data to break into the database, this is called SQL injection.

Appendix 2 A Crash Course in PDO

http://www.php.net/manual/en/pdo.drivers.php
http://www.php.net/manual/en/pdo.drivers.php

345

For example, suppose you are performing a simple login using an email and

password supplied by the user. The SQL statement might be something like this:

SELECT count(*) FROM users WHERE email='…' AND passwd='…'

Now, suppose the user supplies the following as their email address:

fred' OR 1=1; --

This clearly is not a proper email address, but it might still be inserted as follows:

SELECT count(*) FROM users WHERE email='fred' OR 1=1; -- ' AND passwd='…'

The condition OR 1=1 will always be true, and what follows after the comment

code -- will be ignored. This simple injection will allow a user to break into the database.

The problem arises because the inserted data will be interpreted with the rest of

the SQL.

Note that this example is a little naive in its handling of passwords. Later, you’ll see

how a login script should be handled.

�Prepared Statements

Most databases allow you to prepare a statement before executing it. SQL statements

need to be interpreted, checked for errors, analyzed, and optimized, all before executing

them with actual data.

To protect yourself against SQL injection, you prepare your SQL statement first and

then execute it with the data afterward. When the data is inserted, it can no longer be

interpreted and so will be passed purely as data. Note that the preceding email address

would presumably not be in the database and would result simply in a failed login.

To prepare and execute the data, you would follow these steps:

	 1.	 Define your SQL, using question marks as placeholders.

	 2.	 Using the PDO object, prepare the SQL. This will result in a

PDOStatement object.

	 3.	 Execute the PDOStatement object with an array of the data to

replace the question marks.

	 4.	 If your SQL is a SELECT statement, you will need to examine the

results (later).

Appendix 2 A Crash Course in PDO

346

For example:

$sql = 'SELECT * FROM users WHERE email=? AND passwd=?';

$sql = 'INSERT INTO users(email,passwd) VALUES(?,?)';

$sql = 'UPDATE users SET email=?, passwd=? WHERE id=?';

$sql = 'DELETE FROM users WHERE id=?';

$pds = $pdo->prepare($sql);

$pds->execute([…]); // array of values

Note that you do not put the question mark placeholders inside quotes even if they

represent strings. If you do, the quotes will be added to the data.

Note also that execute takes an array argument, even if there is only one value.

Remember, preparing your SQL statements is important if your data comes from a

user. This is essential to protect yourself from SQL injection.

If there is no user data involved, or if the data is guaranteed to be numeric (which

could not possibly contain spurious SQL), then you might prefer the following

unprepared methods.

�Repeated Execution

Another use of prepared statements is with repeated execution. Whether the data is

suspect or not, if you need to execute the same statement many times, it can be more

efficient to prepare the statement once and to execute the prepared statement many

times, as in a loop.

For example, suppose you have a number of rows to be inserted, the data for which

may already be inside an array. Then you could execute the SQL as follows:

$SQL = 'INSERT INTO products(description) VALUES(?)';

$pds = $pdo->prepare($sql);

foreach($products as $p) {

 $pds->execute([$p]);

}

Even if the data isn’t suspect, the preceding code needs to prepare the statement

only once, and so the overhead of interpreting, analyzing, and optimizing the statement

is reduced. The multiple executes will run much faster.

Appendix 2 A Crash Course in PDO

347

�Unprepared (Direct) SQL Statements
If there is no risk of malicious user data, then you may not need to prepare your

statements first. This will result in slightly simpler code. In this case, you can use one of

two PDO functions to run your SQL statement.

�SELECT Statements

SELECT statements expect a result set. In some cases, the result set will have only one

row, while in some other cases, the result set may have many.

To get data using an unprepared statement

	 1.	 Define your SQL, including the data. This may include data in

variables, if you use a double-quoted string.

	 2.	 Using the PDO object, use the query() function on the SQL

statement. This will also result in a PDOStatement object, but this

will contain the result set if any.

	 3.	 In the case of a SELECT statement, you will need to examine the

results (later).

For example:

$sql = 'SELECT code,description,price FROM products';

$sql = "SELECT code,description,price FROM products

 WHERE id=$id";

$pds = $PDO->query($sql);

The variable $pds will contain the result set. It is technically a PDOStatement object,

though in this case does not contain a prepared statement.

The variable $id in the second SQL statement earlier may be subject to SQL injection

unless your data has already been tested for this. For example, the PHP intval()

function will always guarantee an integer, which cannot contain malicious SQL.

�INSERT, UPDATE, and DELETE Statements

INSERT, UPDATE, and DELETE statements do not expect a result set. In each case, PDO will

return a value which is the number of records affected by the SQL statement, but you

may choose to ignore this result.

Appendix 2 A Crash Course in PDO

348

To put data using an unprepared statement

	 1.	 Define your SQL, including the data.

	 2.	 Using the PDO object, use the exec() function on the SQL

statement. This will return the number of rows affected.

For example:

$price = 20; $id = 3;

$sql = "UPDATE products SET price=$price,modified=now()

 WHERE id=$id";

$PDO->exec($sql); // or $rowcount = $PDO->exec($sql);

The variable $rowcount will contain the number of rows affected. Typically for an

INSERT statement, or when a WHERE clause has been used to identify a single row, this will

be 1. However, it may contain 0 or any other number, depending on the SQL statement.

Again, as before, your variables need to be checked for malicious SQL before

including them directly into an SQL statement.

�Selecting Data
To select data from a database table, use the SELECT command:

SELECT … FROM …;

SELECT … FROM … WHERE …;

In PHP, you would write

// Prepared Statement

 $sql = 'SELECT … FROM …';

 $pds = $pdo->prepare($sql);

 $pds->execute([…]);

// Unprepared Statement

 $sql = "SELECT … FROM …";

 $pds = $pdo->query($sql);

In both cases, you will have a result set in $pds, which is a PDOStatement.

Appendix 2 A Crash Course in PDO

349

�Fetching Data
To retrieve the data, you can fetch one row at a time, or you can iterate through a

collection.

To fetch a single row:

$row = $pds->fetch();

What’s not immediately obvious is that the fetch() function returns a row, starting

with the first, and then sets a pointer to the next. If you call it repeatedly, you iterate

through the collection. When there are no more rows, it returns false:

$row = $pds->fetch(); // first row

$row = $pds->fetch(); // next row

$row = $pds->fetch(); // next row

$row = $pds->fetch(); // etc, possibly false

You can iterate through the whole collection using while:

while($row=$pds->fetch()) {

 …

}

or, more simply, you can use foreach:

foreach($pds as $row) {

 …

}

Using foreach is generally the simplest method.

�The Result Set
Each row in a result set, unless set otherwise, will be an array containing the data twice,

both with numbered keys and with associative keys.

For example:

SELECT code,description,price FROM products

Appendix 2 A Crash Course in PDO

350

will return rows of the following array:

key value

code ABC123

description Things

price 42.00

0 ABC123

1 Things

2 42.00

This redundancy will allow you to read the values in a convenient way. For example,

to use the row data inside a string, you may wish to use the associative keys:

$tr = sprintf('<tr><td>%s</td><td>%s</td><td>%s</td></tr>',

 $row['code'],$row['description'],$row['price']);

The sprintf() function replaces the %s placeholders with the following values.

On the other hand, you can use the numeric keys as follows:

$code = $row[0];

$description = $row[1];

$price = $row[2];

In the preceding example, you can also use PHP’s destructuring assignment:

[$code,$description,$price] = $row;

This places the values of the numbered keys only into the three variables.

Newer versions of PHP also allow destructuring with associative keys, but it’s much

simpler with numeric keys.

If you want to specify the type of array you get, you can use one of

$row = $pds->fetch(PDO::FETCH_ASSOC);

$row = $pds->fetch(PDO::FETCH_NUM);

// This is the default:

$row = $pds->fetch(PDO::FETCH_BOTH);

Appendix 2 A Crash Course in PDO

351

You can also fetch the entire result set into an array with all of the rows:

$rows = $pds->fetchAll();

You can, but you probably shouldn’t, unless you can be sure that your result set isn’t

too big for memory.

�Fetching a Single Column
Sometimes, you need only one column of the result set. For this, you can use

fetchColumn(). The optional parameter is the column number (starting at 0, which is

the default).

One common use of this is when you want to count the number of rows in a table.

You know you’re going to get a result set with one row and one column, so you can just

use fetchColumn():

$sql = 'SELECT count(*) FROM …';

$count = $pdo->query($sql)->fetchColumn();

or

$count = $pdo->query('SELECT count(*) FROM …')

 ->fetchColumn();

Each subsequent call to fetchColumn() will fetch the same column from the next

row, as with the fetch() method.

�A Simple Login Script
Often, you are interested in a specific row, so a simple fetch() will do the job. Here, we’ll

look at a simple script to fetch a row from a user table and see whether the password

matches.

Appendix 2 A Crash Course in PDO

352

Your database should never include passwords, because of the risk of compromise.
Instead, you should store a hash which cannot be unscrambled.

PHP includes functions php_hash() and php_verify() to hash and check
passwords.

Login pages are definitely a target for attackers, so you’ll certainly need to use

prepared statements:

$sql = 'SELECT id, password, etc FROM users WHERE email=?';

$prepared=$pdo->prepare($sql);

Once the PHP script has collected data from the login form, you can then execute:

$email = '…'; // From login form

$password = '…'; // From login form

$prepared->execute([$email]);

We haven’t yet checked the password, which we can do when fetching the row:

$row=$prepared->fetch();

if($row && password_verify($password,$row['hash'])) {

 // successful

}

else {

 // no good

}

Here, we use the password_verify() function to compare the submitted password

against the stored hash.

�Getting the Last Auto-Incremented Key
Many databases offer an auto-incremented value for a primary key.

Generally speaking, auto-incremented values are a non-standard feature of

SQL. Although most databases offer a version of this feature, they are implemented

differently. In particular, it can be difficult to get the last auto-incremented value reliably.

Appendix 2 A Crash Course in PDO

353

PDO wraps the various techniques for getting the last auto-incremented value inside

the PDO->lastInsertId() function. Note that this will give the last auto-incremented

value from the database, which may or may not be that of your table of interest. Or to put

it another way, you should call this function immediately after you insert the row, before

its value is lost on the next insert.

For example:

$sql = 'INSERT INTO products(code, description) VALUES(?,?)';

$prepared = $pdo->prepare($sql);

$prepared->execute(['XYZ123','Stuff']);

$id = $pdo->lastInsertId();

The variable $id will contain the newly generated auto-incremented key.

�Error Reporting
By default, PDO is silent about errors. There are two processes involved: PHP sends

some code to the database, and the database then has to do something with it. The PHP

may be OK, but the code sent to the database may have problems.

This can make troubleshooting very difficult. Sometimes, if you are expecting a

record set, the error will be apparent in the next few lines, as you will end up trying to

read from an empty record set.

At the development stage, you will want your errors to be as clear as possible, so you

might want to change your error reporting to be less silent. For this, we use the PDO-

>setAttribute() to change the ATTR_ERRMODE property:

// Default

 PDO->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_SILENT);

// Warning Only

 PDO->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_WARNING);

// Die displaying error

 PDO->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);

Appendix 2 A Crash Course in PDO

354

By changing this attribute to one of the more serious levels, you are instructing PHP

to regard all database errors as PHP errors.

For development, you should use the ERRMODE_EXCEPTION value. You might want to

set it back to ERRMODE_SILENT for a production environment.

�Summary of PDO
�Connection
To connect to a database:

$pdo = new PDO(DSN[,USER,PASSWORD]);

Because the default error reporting might give away too much detail, it is normal to

include the connection inside a try … catch block:

try {

 $pdo = new PDO(DSN[,USER,PASSWORD]);

}

catch (PDOException $e) {

 // Handle Error

}

This allows you to intercept the default verbose error message with your own action.

�Executing Simple Statements
Simple statements include any data directly in the SQL string.

�INSERT, UPDATE, and DELETE

You can execute a simple statement with the exec() method:

$sql = "…";

$count = $pdo->exec($sql);

The returned value will be the number of rows affected, if you want it.

Appendix 2 A Crash Course in PDO

355

�SELECT Statements

The SELECT statement is expected to return a result set, so you’ll need to use the

query() method:

$sql = "SELECT … FROM … ";

$result = $pdo->query($sql);

The returned value will be a PDOStatement pointing to the result set.

�Executing Prepared Statements
Prepared statements take an extra step to allow the database to preprocess the query

without data.

$sql = "…";

PDOStatement = PDO->prepare($sql);

Although some data may be included directly in the SQL string, the major benefit

from preparing statements is the ability to insert the data after the SQL string has

been prepared. In this case, you replace the data with question mark placeholders;

placeholders are never to be quoted, even if they are strings.

You can then run the query with data using the execute() method. This normally

includes an array of values to replace the placeholders:

$sql = 'INSERT into … VALUES(?,?)';

$pds = $pdo->prepare($sql);

$pds->execute([… , …]);

�Reading Data
Whether or not the SQL statement was prepared, the dataset will always be in a

PDOStatement.

�Reading a Single Row

Each row is an array containing data with both numeric and associative keys. You may

use either (or both) types of key as convenient.

Appendix 2 A Crash Course in PDO

356

To fetch a single row:

PDOStatement->fetch();

$row = $pds->fetch();

This will fetch the next row, which may, of course, be the first or only row. If there is

no next row (or no result to begin with), fetch() will return FALSE.

�Reading Multiple Rows

To fetch multiple rows, you can either use while or foreach:

while($row=PDOStatement->fetch() {

 …

}

foreach(PDOStatement as $row) {

 …

}

Each will produce exactly the same result. The foreach statement is similar to

iterating through an array and automatically fetches the next row and assigns it to $row.

�Reading a Single Column

For convenience, there is a function which will read a single value from a row. This will

return a simple value and avoids having to deal with the data in an array.

PDOStatement->fetchColumn([col]);

The optional parameter is the number of the column and defaults to 0, the

first column.

This is particularly handy when the result set itself has only one row.

Appendix 2 A Crash Course in PDO

357

�APPENDIX 3

Additional Notes
In this book, we’ve made a few assumptions about the type of data we’re storing and how

to handle them.

These notes will help to describe these assumptions.

�Cultural Notes
The sample database was based on the way we do things in Australia. This is pretty

similar to the rest of the world, of course, but there are some details that might need

clearing up.

�Addresses and Phone Numbers
A standard address follows this pattern:

Street Number & Name

Town State Postcode

Australian addresses don’t make much use of Cities, which have a pretty broad

definition in Australia.

�Towns

Depending on how you define a town, there are about 15,000–20,000 towns in Australia.

In the sample database, town names have been deliberately selected as those

occurring at least three times in Australia, though not necessarily in the sample.

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2

https://doi.org/10.1007/978-1-4842-9493-2

358

�States

Australia has eight geographical states. Technically, two of them are territories, since

they don’t have the same political features.

Each state has a two- or three-letter code.

Name Code

Northern Territory NT

New South Wales NSW

Australian Capital Territory ACT

Victoria VIC

Queensland QLD

South Australia SA

Western Australia WA

Tasmania TAS

�Postcodes

A postcode is a four-digit code typically, though not exclusively, associated with a town.

•	 Two adjacent towns may have the same postcode.

•	 A large town may have more than one postcode.

•	 A large organization may have its own postcode.

The postcode is closely associated with the state, though some towns close to the

border may have a postcode from the neighboring state.

�Phone Numbers

In Australia, a normal phone number has ten digits. For nonmobile numbers, the first

two digits are an area code, starting with 0, which indicates one of four major regions.

Mobile phones have a region code of 04.

There are also special types of phone numbers. Numbers beginning with 1800 are

toll free, while numbers starting with 1300 are used for large businesses.

Appendix 3 Additional Notes

359

Shorter numbers starting with 13 are for very large organizations. Other shorter

numbers are for special purposes, such as emergency numbers.

Australia maintains a group of fake phone numbers, and all of the phone numbers

used in the database are, of course, fake. Don’t waste your time trying to phone one.

�Email Addresses
There are a number of special domains reserved for testing or teaching. These include

example.com and example.net, which is why all of the email addresses use them.

This is true over the world.

�Measurements, Prices, and Currency
Australia uses the metric system, like most of the world. In particular, the sample

database measures heights in centimeters. For those using legacy measurements, 1 inch

= 2.54 cm.

For currency, Australia uses dollars and cents.

Prices on most things attract a tax called the Goods and Services Tax or GST to its

friends. There are some exceptions to this, but not for anything in the sample database.

GST is a standard 10%.

In Australia, the GST is always expected to be displayed and should be included in

the asking price.

�Dates
Short dates in Australia are in the day/month/year format, which can get particularly

confusing when mixed with American and Canadian dates. It is for this reason that we

recommend using the month name instead of the month number or, better still, the ISO

8601 format.

�SQL Data Values
Some newcomers to a coding language experience some confusion when writing values.

One question often asked is when do we use quotes, and when don’t we. Here, we’ll look

at how values are represented.

Appendix 3 Additional Notes

360

Generally, values come in three forms:

•	 A value may be stored. Typically, this is in a table column, but some

DBMSs allow you to create variables, which are small pieces of

temporary values.

•	 A value may be entered literally, which is writing the actual value in

your code. Typically, you would use this for new values. This is where

quotes come in.

•	 A value may be calculated. These calculations typically involve

stored or literal values.

This applies to the three main data types. You can see some examples here:

SELECT

 -- numbers

 23 AS number_literal,

 4*7 AS number_calculated,

 height AS number_stored,

 -- dates

 '1989-11-09' AS date_literal,

 current_timestamp as date_calculated,

 dob AS date_stored,

 -- strings

 'Australia' AS string_literal,

 �givenname||' '||familyname as string_

calculated, -- MSSQL: use +

 town AS string_stored

 FROM customers;

We can see more detail in what follows.

�Stored Values
Data is normally stored in a table. To refer to these values, you normally refer to the bare

column name:

SELECT id, email FROM customers;

Appendix 3 Additional Notes

361

SQL may have difficulty with some column names, especially if they can be confused

with other parts of the language. For example:

SELECT customer, order FROM badtable; -- error

Here, the problem is that the name order will be confused with the ORDER BY clause,

and so this will generate a syntax error. Other problematic names might include spaces

or hyphens which are also subject to misinterpretation.

This is the price we pay for simplicity: it is harder to distinguish between bare names

and other SQL terms.

If the name is problematic, you can wrap it inside double quotes which

delimit names:

SELECT customer, "order" FROM badtable; -- OK

You can also use double quotes for the other names, but it’s unnecessary and

actually makes the statement more cumbersome to read and write.

Note 

•	 MSSQL has an alternative notation with square brackets: [order]. This is

unnecessary.

•	 MySQL/MariaDB may not understand the double quotes if it’s not in ANSI mode;

in that case, they will be interpreted as a string. If you stick to ANSI mode, it

will be OK.

As an alternative, MySQL/MariaDB can always use the so-called backticks: `order`:

Stored values include values in virtual tables, such as joins and CTEs.

�Variables

Some DBMSs also allow you to create variables as part of a script. In some cases, such

as MySQL/MariaDB and MSSQL, the variable has a special prefix @ so that it reduces

ambiguity. Not all of them, though.

Appendix 3 Additional Notes

362

�Literals
Literals represent new values in code. For example:

SELECT

 23 AS numeric_literal,

 'hello' AS string_literal,

 '1989-11-09' as date_literal

;

If you’re using Oracle, remember the note on Oracle data, as well as using FROM dual.

You’ll note that both string literals and date literals use single quotes. That’s because

there are only so many characters on the keyboard, so inevitably we end up doubling up.

However, they are not the same thing.

Generally, SQL relies on context to distinguish between string and date literals. If it’s

not clear enough, you need to use cast() for dates.

If you put quotes around a number, it won’t work. Numbers must be unquoted.

Note that quotes are only for coding. They are not included in the string or date itself.

�Calculated Values
Values can be the result of a calculation. Normally, the calculation will be based on other

stored or literal values, but sometimes they can be a result of a built-in operation.

Depending on the DBMS, there are various operators and functions to do the

calculations. Here are some examples:

SELECT

 3*5 AS calculated_number,

 'hello' || ' ' || 'goodbye' as concatenated_string,

 current_timestamp AS builtin_date

;

Appendix 3 Additional Notes

363

Most of the time, calculating on one type of value will result in the same type of

value, but some calculations are designed to return a different type. For example:

•	 Formatting functions, such as to_char() or format(), will always

return a string, even if the input is a number or a date.

•	 Some extracting functions, such as for dates, generally return a

number, but sometimes a string.

SQL tables should store data in its simplest form, so the ability to recalculate data is

an important feature.

�Some Notes on Dates (and Times)
Handling dates is notoriously varied among DBMSs. Here is some additional

information on handling dates in some of them.

Working with dates can get complicated. For example, sometimes you just need a

date, while sometimes you need the time as well, and, occasionally, just the time.

Technically, dates and times should take account of the time zone and even

daylight saving. Sometimes, we don’t really care. For example, your 18th birthday might

technically be half a day later if you were born in another part of the world, but nobody

makes a fuss about that.

When using dates for tracking purposes, however, the time zone and daylight saving

might be significant, especially if you’re planning a phone call.

In the sample database, we have ignored all considerations of time zones.

Most DBMSs have the option to include this information with the date and time.

Some organizations end up settling on a standard time zone such as UTC.

Some DBMSs allow you to process dates with simple operations, such as adding days

or subtracting dates. Otherwise, DBMSs tend to rely on date functions to do the job.

Appendix 3 Additional Notes

364

�Oracle Date Format
Oracle does not default to the ISO 8601 format. Instead, it probably defaults to a format

they describe as DD-MON-RR, which means something like 09-NOV-89. The two-digit year

is in the century closes to the current date.

If you try to enter dates in the ISO 8601 format, such as '1989-11-09', you will get

the error ORA-01861: literal does not match format string. You can force Oracle

to convert the date using the SQL standard date literal date '1989-11-09'.

For example:

SELECT *

FROM customers

WHERE dob = date '1989-11-09';

If you have many dates to enter this way in the current session, you can run

ALTER SESSION SET nls_date_format = 'yyyy-mm-dd';

This will also change the output format.

�Microsoft Age Function
Microsoft includes functions to calculate the difference between dates, but they are too

blunt. For example, you can use the datediff() function to try to calculate the age of

your customers:

SELECT

 id, givenname, familyname, dob,

 datediff(year,dob,current_timestamp) AS age

FROM customers;

In this example, the datediff() function will only find the difference in the year

component of the date, which is particularly inaccurate if the date of birth is near the end

of the year, but current date is near the beginning of the year.

You can use the datediff() function, however, if you adjust the dates to the

beginning of the year. The true calculation can be overwhelming, but you can simplify it

if you are in a position to add user-defined functions:

Appendix 3 Additional Notes

365

DROP FUNCTION IF EXISTS age;

GO

CREATE FUNCTION age(@dob date, @today date) RETURNS INT AS

BEGIN

 SET @today = dateadd(month,-month(@dob)+1,@today);

 SET @today = dateadd(day,-day(@dob)+1,@today);

 RETURN datediff(year,@dob,@today);

END;

GO

You can then use the function as follows:

SELECT

 id, givenname, familyname, dob,

 dbo.age(dob,current_timestamp) AS age

FROM customers;

The dbo prefix for the function is to do with a Microsoft quirk with this type of

function.

�Working with SQLite Dates
SQLite does not have a date type at all. The simplest and most familiar method is to use

strings to store ISO 8601 dates, so we’ll concentrate on that.

Of course, the whole trick is to use special SQLite functions to interpret the more

generic types as dates.

�ISO 8601 Dates and Times
ISO 8601 is an international standard for representing dates and times as well as

durations and intervals. It is based on the Gregorian calendar, which is the calendar that

most of the world uses as the official calendar.

For our purposes, the most important parts of ISO 8610 are about dates and times:

•	 A Date is a string in the format YYYY-MM-DD.

•	 A Time is a string in the format HH:MM. You can also include seconds

and milliseconds, using HH::MM::SS and HH:MM:SS.SSS.

Appendix 3 Additional Notes

366

•	 A DateTime is a string which obviously combines a Date and a Time.

It can be written in the form YYYY-MM-DDTHH:MM:SS, with the time

in any of the previous forms. SQLite also allows you to omit the T in

the form YYYY-MM-DD HH:MM:SS, which is not strictly ISO 8601, but is

common in databases.

•	 A Time Zone is added using something like ±HH:MM at the end of the

string. UTC, a.k.a. “Zulu” time, can be written as +00:00 or as Z.

ISO 8601 has many other variations, but SQLite only supports the ones listed here.

�Date Functions
There is one main function to manipulate various date formats:

strftime(format,timestring,modifier)

There are some additional functions, but they are really just convenient versions of

the strftime function:

Function Equivalent strftime()

date(timestring,

 modifiers…)

strftime('%Y-%m-%d',

timestring,modifiers…)

time(timestring,

 modifiers…)

strftime('%H:%M:%S',

timestring,modifiers…)

datetime(timestring,

 modifiers…)

strftime('%Y-%m-%d %H:%M:%S',

timestring,modifiers…)

The datetime() function is not strictly in ISO 8601 format, since the date and time

should be separated by a T. If you need this, you will have to use the strftime() format

in full.

These functions do all of the hard work with dates.

The timestring can be one of the following formats:

•	 An ISO 8601 date or time as before

•	 now for the current datetime

Appendix 3 Additional Notes

367

�Manipulating Dates and Times
The optional modifiers can be used to modify a date or time. Here are some of the

most useful:

Modifier Meaning

[±n] days|hours|minutes|seconds|

months|years

Add interval

start of month|year|day Move back (if necessary) to start of interval

weekday [n] Move forward (if necessary) to weekday (0=Sunday)

You can also use multiple modifiers. For example:

SELECT date('now','1 month','2 days'); -- 1 month 2 days from now

SELECT date('now','1 month','start of month'); -- start of next month

SELECT date('now','1 month','-7 days', 'weekday 0'); -- Sunday

�Formatting Dates and Times
The core function for formatting in SQLite is strftime(), which takes a format string as

the first parameter. The different format codes are as follows:

Unit Code

Year %Y: year (0000-9999)

Month %m: month: 01-12

Day %d: day of month(00)

%w: day of week (0-6 with Sunday=0)

%j: day of year (001-366)

Hour %H: hour (00-24)

Minute %M: minute (00-59)

(continued)

Appendix 3 Additional Notes

368

Unit Code

Second %S: seconds (00-59)

%f: fractional seconds (SS.SSS)

Other %s: seconds since 1970-01-01 (epoch)

%W: week of year (00-53)

For example, you can get the yyyy-mm formatted month using the following:

SELECT id, SELECT strftime('%Y-%m','2023-03-30') AS month, total

FROM sales;

Unfortunately, you can’t get the actual names of the months or weekday in SQLite

directly.

Appendix 3 Additional Notes

369

Index

A
acos() function, 146
Affinity, 30, 285
Aggregate functions, 223, 340

calculated data, 237–239
counting data, 224
as filters, 240–243
numbers, 233–237
process, 225, 226
values, 232, 233

Aggregates, 272–276, 326–330
Aliases, 8, 9, 135–137, 193, 201

column name, 139
in double quotes, 138
spacing, 136
without AS, 136–138

Alphabetical order, 62, 104, 119–121, 328
ALTER statement, 297
Ambiguous column, 191
AND operator, 70–75
ANSI mode, 128
Apostrophes, 61, 62
Approximation functions, 146, 147
Arithmetic calculations, 338
Arithmetic operations, 127
Arithmetic operators, 140
Artists, 34, 35
Assertions, 42

all and nothing, 45
unrelated, 44

Atomic data, 27, 28

© Mark Simon 2023
M. Simon, Getting Started with SQL and Databases, https://doi.org/10.1007/978-1-4842-9493-2

Auto-incremented key, 352
Automatic sequence number, 284

B
BETWEEN operation, 70
BLOB (binary data), 281
Boolean data, 281
boolean value, 230
Brackets, 90

C
Cascading, 288
CASE, 259–261
CASE expression, 124, 169–173
Case sensitivity, 3, 57, 58, 83, 106, 107,

335, 336
cast() function, 105, 174, 175
Casting

date literals, 177
to string, 175–177

Character data, 160
Character functions

change case, 163
replace substrings, 162
string length, 162
substring, 162
trim spaces, 163

CHECK constraint, 287
Child table, 199
Clause order, 4, 14, 15

https://doi.org/10.1007/978-1-4842-9493-2

370

coalesce() function, 102, 132, 134
Collation, 57, 106, 107
Columns, 1

calculations, 7, 8
independent, 28, 29
interdependence, 109, 110
layout, 6
names, 32, 192, 280, 311, 312
order, 6, 33
single type, 29, 30
using SELECT *, 7
selection, 6, 7

Column values
casting, 173–177
dates (see Dates)
strings (see Strings)
subqueries, 165–169
testing calculations, 125

Comments, 9
block, 10
uses, 10, 11

Common Table Expression (CTE), 126,
259–261, 268, 269

aggregate function, 273
big-spending customers, 268
group, 261
joining, 260, 261
subquery, 269

Comparison operators, 63, 64
concat() function, 161, 202
Concatenation, 55, 128, 160, 161, 219, 253,

262, 339
Constraints, 280

CHECK, 287
data type, 285
DBMS, 284
DEFAULT, 286, 287
foreign keys, 287–289

indexes, 289, 290
NOT NULL, 285
UNIQUE, 286

Continuous values, 49–51, 93
Correlated subquery, 167
count() function, 224, 239, 244
count(*) function, 223
Counting, 236, 237

dataset, 224
selective data, 226–232
values, 224, 225

CREATE statements, 279
CREATE TABLE statement, 279, 280,

283, 301
CREATE UNIQUE INDEX

statement, 296
CREATE VIEW, 180–183, 202, 279
CROSS JOIN, 127, 196
Cultural notes

addresses, 357
currency, 359
dates, 359
email addresses, 359
geographical states, 358
measurements, 359
phone numbers, 357, 358
postcode, 358
prices, 359
town, 357

D
Data, 25, 27, 28
Database

data vs. value, 25
definitions, 25
terminology, 25

Database administrator (DBA), 300

INDEX

371

Database Management System (DBMS), 1,
13, 20, 25, 31, 37, 41, 58, 59, 65, 97,
101, 102, 104, 106, 113, 116, 124,
127, 143, 144, 147, 161, 173, 177,
180, 182, 190, 227, 230, 247, 248,
278, 279, 284, 286, 288–290, 294,
300, 306, 328, 335, 344, 362

Data manipulation, 276, 277, 340
Data Manipulation Language (DML), 277,

299, 300
DELETE, 299
front-end software, 300
INSERT, 299
security, 299, 300
UPDATE, 299

Data processing, 124
Data Query Language, 277
Data selection, 348

fetching, 349
login script, 351
result set, 349–351
single column, 351

Data types, 281, 282, 334
cast function, 105
case sensitivity, 106, 107
collation, 106
dates, 103
numbers, 103
sort order, 103
strings, 103

datediff() function, 364
Dates, 63–65, 103, 334, 337

age calculations, 151–154
calculations, 69, 70, 129
comparisons, 66–68
extraction

from datetime, 155
in MariaDB/MySQL, 153

in Microsoft SQL, 154
Oracle, 153
in PostgreSQL, 153

formats, 65, 66
formatting

grouping by month, 158, 159
grouping by week day,

159, 160
MariaDB, 157
Microsoft SQL, 157
MySQL, 157
Oracle, 156, 157
PostgreSQL, 156, 157

functions, 339, 366
literals, 177
simple calculations, 149, 150

datetime() function, 366
Datetime, 155
Decimals, 140, 144–146
DEFAULT constraint, 286, 287
DELETE statements, 347
Derived lists, 78–82
Differences, 317–321
Discrete values, 49–51
Disjoint, 314
DISTINCT clause, 250
DISTINCT keyword, 232, 233
DISTINCT operator, 17–20
Domain, 30
Double quotes, 53–57, 139
DROP VIEW statement, 179
Duplicates, 269–271, 305, 306

E
Error reporting, 353, 354
EXCEPT operator, 317
Extensions, 89–92

INDEX

372

F
fetch() function, 349
fetchColumn(), 342, 351
Field, 26
Filtering, 264–267

case sensitivity, 336
dates, 337
groups, 264–267
string, 336
wildcard matching, 337

Filtering data
assertions, multiple, 70–82
dates, 63–69
NULLs, 45–49
numbers, 49–51
strings, 52–64
WHERE clause, 41–45
wildcard matching, 82–93

Filters, 240–243
Fixed point, 140
floor() function, 147
Foreign keys, 186, 287–289
Formatting

dates, 367, 368
functions, 147, 148, 338
times, 367, 368

FROM clause, 125
Front-end software, 300

G
Goldilocks Trichotomy, 49
Goods and Services Tax

(GST), 359
Grand totals, 246
Group aggregates, 256–258
GROUP BY clause, 245–250, 252, 255

Grouping
count() function, 244
with multiple tables, 251–253
WHERE clause, 243

H
HAVING clause, 264–267, 269, 274
Historical order, 103

I
ILIKE operator, 83
Indexes, 289, 290
INNER JOIN, 197–199
IN operator, 76, 77
Insertion order, 31
INSERT statements, 290, 347
Integers, 140–143
INTERSECT, 323
Intersection, 74, 314–317
Intervals, 151, 237
ISO 8601, 365, 366

J, K
JOIN clause, 190
JOIN syntax, 190
Joining, tables

columns, 206
layout, 205
simplifications, 206–208
subqueries, 209–212
supplementary

table, 211
Join types

INNER JOIN, 196
NULL, 195

INDEX

373

L
Layout, 6
LEFT JOIN, 201
Logical error, 138
Logical expression, 75
Logical operator, 70–75
Login pages, 352

M
MariaDB, 53, 54, 101, 117, 128, 139, 153,

157, 202, 247, 298, 310, 334
Mathematical functions, 140, 145, 146
max() functions, 239
Microsoft, 364, 365
Microsoft Access, 53
Microsoft SQL Server, 101, 115, 154, 157,

174, 180, 297
min() functions, 239
Misinterpreted column, 56
Missing data, 100–102
Modifiers, 367
Modulus (“mod”) operator, 143
MSSQL, 118, 139, 206, 310, 334
Multiple rows, 186
Multiple values

complex relationship, 36, 37
one-to-many relationship, 35
principles, 33
related tables, 34
relationship between tables, 35

MySQL, 53, 54, 101, 117, 128, 139, 153,
157, 202, 247, 298, 310, 334

N
Non-alphabetical string order, 119, 120
Non-strings, 87–89

NOT operator, 42
NOT NULL, 285
Nullable, 285
NULLs, 45–49, 100–102, 113, 129–134, 170,

202, 219, 225, 231, 234, 238, 248,
270, 273, 284, 291

finding, 47–49
ignoring, 46, 47

Numbers, 103
aggregate functions, 233–237
approximation functions, 146, 147
arithmetic operators, 140
calculations, 127
comparison operators, 49
decimals, 144–146
discrete vs. continuous values, 49–51
formatting functions, 147, 148
integers, 141–143
mathematical functions, 145, 146
remainder, 143
variations, 140

Numeric order, 103

O
ON clause, 211, 216, 272
One-to-many relationship, 199, 200
One-to-one relationship, 212
Online store, 23
Operators, 141
Oracle, 101, 115, 125, 153, 156, 157, 310
Oracle date format, 364
ORDER BY clause, 13–15, 118, 226, 247,

248, 269, 289, 313, 322, 328, 331, 336
columns, 107–109

interdependence, 109, 110
sort direction, 110–112

NULLs, 100–102

INDEX

374

number of results
customers, 115
OFFSET part, 116
MariaDB, 117
MySQL, 117
paging, 116
PostgreSQL, 117
SQLite, 117

sort direction, 99, 100
sorting, 112–115

Ordinal numbers, 236
OR operator, 72–74
OUTER JOIN, 197–200

P
Paintings, 34, 35
password_verify() function, 352
Patterns, 82

and case sensitivity, 83
characters, 84–86
matches, 92, 93

PDO (PHP Data Objects)
connection establishment, 343, 344
DBMS, 344
PDO object, 341
PDOStatement, 342
prepared statements, 345, 346
repeated execution, 346
unprepared SQL statements, 347–349
vendor-neutral method, 341

PostgreSQL, 83, 88, 101, 115, 117, 153, 156,
157, 310, 334, 344

Preceding query, 251
Price list, 194, 195, 201, 202
Primary key column, 109
Primary keys, 32, 186, 211, 282–284

Q
Quote marks, 335
Quotes, 61, 62

R
random() function, 118
Range, 90
Ratio, 237
Real numbers, 140
Record, 26
Redundant groups, 254–257
Regular expressions, 89, 90
Remainder operator, 143
Repeated execution, 346
RIGHT JOIN, 201
ROLLBACK, 293
Root, 300
Rows, 1, 11, 12, 15–18

addition, 290, 291, 294–296
at random, 118
Clause ordering, 12, 13
deletion, 292–294
independent, 32
semicolon, 13
uniqueness, 31, 32
unordered, 31
updation, 295–297

S
Sample database, 23, 24

related tables, 34
Relational Database, 24, 25

Scales of measurement,
236, 237

Security, 299, 300
Selective unions, 307–309

ORDER BY clause (cont.)

INDEX

375

SELECT clause, 2, 4, 98, 113, 114, 167, 205,
208, 249, 255, 265, 306, 309–311,
315, 317

SELECT statements, 2, 3, 41, 97, 98,
125, 180, 243, 244, 275, 289–290,
304, 307, 311–313, 319, 330,
331, 347

case sensitivity, 3
clause ordering, 4
spacing, 3

SELECT without FROM clause, 337
Self-join, 216–219
Self portrait, 92
Self-referencing table, 216
Semicolons, 4, 13, 334
Sequencing, 236
Set operations

aggregates, 326–330
comparisons, 321–323
virtual tables, 323–326

Sets, 303
Simpler extensions, 90
Single quotes, 53–57
Sort direction, 110–112
Sorting, 312–314, 336

in alphabetical order, 120
calculated columns, 112–115
multiple columns, 110
ORDER BY cast, 105
ORDER BY clause, 122, 123
SELECT statement, 97
table, 119

Sort order, 99, 100, 104
Spaces, trailing, 58, 59
Spacing, 3
Special strings, 121, 122
sprintf() function, 350
SQL database

aggregates (see Aggregate functions)
case sensitivity, 335
Columns selection, 5–9
data types, 334
dates, 334
DBMSs, 334
ORDER By clause, 13–15
quote marks, 335
Relational Database, 24, 25
rows, 11–13
SELECT Statement, 2–5
semicolons, 334
table columns, 123
tables (see Tables)
terminology, 25

SQL data values, 360
calculation, 362, 363
stored values, 360, 361
string literals, 362
variables, 361

SQL injection, 344
SQLite, 101, 117, 247, 293, 334, 365
Stored values, 360, 361
strftime(), 366, 367
strftime function, 366
Strings, 52, 53, 103, 160, 161,

262–265, 336
apostrophes, 61, 62
calculations, 128, 129
case sensitivity, 57, 58
character functions, 161–165
comparison operators, 63, 64
MariaDB, 54
MySQL, 54
quotes, 53, 54, 61, 62
trailing spaces, 58, 59

Structured Query Language (SQL), see
SQL database

INDEX

376

Subqueries, 79, 165–169, 186, 209–212, 217
Substrings, 163–166
Sub totals, 246
sum() function, 233
Syntax error, 137

T
Tables, 340

adding rows, 290, 291
aliases, 193, 201
altering, 297, 298
alternative syntax, 189–191
column names, 280
creation, 279, 280
customers, 232
deletion, rows, 292–294
GROUP BY (), 226
grouping, 251–253
joining (see Joining, tables)
manipulation, 340
matching row, 187
multiple rows addition,

294–296
normalizsation, 27–34
primary keys, 282–284
selection, 191–193
SELECT statement, 188
terminology, 26
updating rows, 295–297

Testing calculations, 125
TEXT type, 334
Time Zone, 366
Transaction, 293
trim() functions, 163
Trim spaces, 163

U
Union, 74, 321

clause, 48, 304
column names, 311, 312
duplicates, 305, 306
operator, 244
SELECT clause, 309–311
SELECT statement, 307–309
semicolon, 305
sets combination, 303
sorting, 312–314
tables, 304

UNION, 323
UNION ALL clause, 306, 307
UNIQUE, 286
Unique constraints, 32
UPDATE statements, 295, 347
Users, 299

V
Values, 25, 49–51, 232, 233
VARCHAR type, 175
Variables, 126–128, 360, 361
Virtual tables, 323–326

W, X, Y, Z
WHEN expression, 169
WHERE clause, 41–44, 114, 167, 190, 243,

287, 292
all and nothing, 45
assertion, 42
functions, 59–61
NULLs, 45–49
unrelated assertions, 44

INDEX

377

Wildcard, 82–84
case sensitivity, 83
extensions, 89–92
non-strings, 87–89
pattern characters, 84–86

patterns, 83
regular expressions, 89, 90
simpler extensions, 90, 91

Wildcard matching, 337
WITH clause, 126

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Starting with SQL
	Basic SELECT Statement
	Case Sensitivity
	Spacing
	Clause Ordering
	The Semicolon (;)

	Selecting Specific Columns
	Column Order
	Layout
	Using SELECT *
	Calculated Columns
	Aliases

	Comments
	Block Comments
	Uses of Comments

	Filtering Rows
	Clause Ordering
	Placing the Semicolon

	Ordering the Results
	Clause Order

	Distinct Rows
	Summary
	Writing SQL
	Columns
	Comments
	Filtering Data
	Row Order
	Clause Order

	Coming Up

	Chapter 2: Database
	About the Sample Database
	Database
	Database Terminology
	Data vs. Value

	Tables
	Table Terminology

	Normalized Tables
	Data Is Atomic
	Columns Are Independent
	Columns Are of a Single Type
	Rows Are Unordered
	Rows Are Unique
	Rows Are Independent
	Column Names Are Unique
	Columns Are Unordered

	Multiple Values
	Using Related Tables
	Example: Paintings and Artists
	Examples of Alternative Terminology
	A More Complex Relationship

	Summary
	Terms
	Normalized Tables
	Multiple Values

	Coming Up

	Chapter 3: Filtering Data
	The WHERE Clause
	Unrelated Assertions
	All and Nothing

	Dealing with NULL
	Deliberately Ignoring NULLs
	Finding NULLs

	Numbers
	Discrete vs. Continuous Values

	Strings
	Quotes
	More on MySQL/MariaDB Modes
	More on Double and Single Quotes
	Case Sensitivity
	Trailing Spaces
	Filtering with String Functions
	Handling Quotes and Apostrophes
	Before and After Strings

	Dates
	Dates Are Not Strings
	Alternative Date Formats
	Date Comparisons
	Filtering with a Date Calculation

	Multiple Assertions
	AND and OR
	The IN Operator
	Derived Lists

	Wildcard Matches
	Case Sensitivity and Patterns
	Pattern Characters
	Wildcards with Non-strings
	Extensions to Wildcards
	Regular Expressions (PostgreSQL, MySQL/MariaDB, Oracle)
	Simpler Extensions (PostgreSQL, MSSQL)

	A Simple Pattern Match Example

	Summary
	NULL
	Numbers
	Strings
	Dates
	Multiple Assertions
	The IN Operator
	Wildcard Matches

	Coming Up

	Chapter 4: Ordering Results
	Using the ORDER BY Clause
	Sort Direction

	Missing Data (NULL)
	Data Types
	Case Sensitivity and Collation

	Multiple Columns
	Interdependence of Columns
	Sort Direction on Multiple Columns

	Sorting by Calculated Columns
	Limiting the Number of Results
	Paging
	Using LIMIT … OFFSET … (MySQL/MariaDB, SQLite, and PostgreSQL)
	Using TOP (MSSQL)

	Fetching a Random Row
	Nonalphabetical String Order
	Special Strings
	Summary
	Sorting with ORDER BY
	Limiting Results
	Sorting Strings

	Coming Up

	Chapter 5: Calculating Column Values
	Testing Calculations
	Emulating Variables
	Some Basic Calculations
	Basic Number Calculations
	Basic String Calculations
	Basic Date Calculations

	Working with NULL
	Using Aliases
	Aliases Without AS
	Awkward Aliases

	Calculating with Numbers
	Arithmetic Operators
	Integers
	Remainder
	Extra Decimals
	Mathematical Functions
	Approximation Functions
	Formatting Functions

	Calculating with Dates
	Simple Calculations
	Age Calculations
	Extracting Parts of a Date
	Date Extraction in PostgreSQL, MariaDB/MySQL, and Oracle
	Date Extraction in Microsoft SQL
	Extracting a Date from a Datetime

	Formatting a Date
	Date Formatting in PostgreSQL and Oracle
	Date Formatting in MariaDB/MySQL
	Date Formatting in Microsoft SQL Server
	Using a Formatted Date for Grouping by Month
	Using a Formatted Date for Grouping by Weekday

	Strings
	Character Functions
	String Length
	Searching for a Substring
	Replace
	Change Case
	Trim Spaces
	Substrings

	Subqueries
	The CASE Expression
	Casting to Different Data Types
	The cast() Function
	Casting to a String
	Casting Date Literals

	Creating a View
	Using Views in Microsoft SQL

	Summary
	Data Types
	NULLs
	Aliases
	Subqueries
	The CASE Expression
	Casting a Value
	Views

	Coming Up

	Chapter 6: Joining Tables
	How a Join Works
	Joining the Tables
	Alternative Syntax
	Selecting the Results
	Table Aliases

	Developing a Price List
	Join Types
	The INNER JOIN
	The LEFT OUTER JOIN and RIGHT OUTER JOIN
	The “Preferred” Outer Join
	Some Recommendations on JOINS
	(Almost) Always Alias Your Tables
	Which Table Comes First?
	Decide Whether You Use INNER and OUTER

	Finishing the Price List
	Joining Many Tables
	Building a Larger JOIN
	Simplifying the Result

	Revisiting Some Subqueries

	A More Complex Join
	Using a Self-Join
	Summary
	Syntax
	Table Aliases
	The ON Clause
	Join Types
	Coming Up

	Chapter 7: Aggregating Data
	Counting Data
	Counting Values

	How Aggregates Work
	Counting Selectively
	Distinct Values
	Summarizing Numbers
	Bad Examples
	Scales of Measurement

	Aggregating Calculated Data
	Other Aggregate Functions
	Using Aggregates As Filters
	Grouping
	Using the GROUP BY Clause
	GROUP BY vs. DISTINCT

	Grouping with Multiple Tables
	Redundant Groups
	Preparing Data for Aggregating
	Using CASE in a CTE
	Using a Join in the CTE
	Summarizing Strings

	Filtering Grouped Results with HAVING
	Using Results in a CTE
	Finding Duplicates
	Using Aggregates on Aggregates

	Summary
	Coming Up

	Chapter 8: Working with Tables
	How Tables Are Created
	Creating a Table
	Column Names
	Data Type
	Primary Keys

	Constraints
	NOT NULL
	UNIQUE
	DEFAULT
	CHECK
	Foreign Keys
	Indexes

	Adding Rows to a Table
	Deleting Rows from a Table
	Adding More Rows
	Updating Rows
	Altering the Table
	DML in Real Life
	Security
	Front-End Software

	Summary
	Data Types
	Constraints
	Foreign Keys
	Indexes
	Manipulating Data

	Chapter 9: Set Operations
	Unions
	Selective Unions
	SELECT Clauses Must Be Compatible
	Only Column Names from the First SELECT Statement Are Used
	Sorting Results

	Intersections
	Differences
	Some Tricks with Set Operations
	Comparing Results
	Virtual Tables
	Mixing Aggregates

	Summary

	Appendix 1: Differences Between SQL Dialects
	Writing SQL
	Semicolons
	Data Types
	Dates
	Case Sensitivity
	Quote Marks

	Sorting (ORDER BY)
	Limiting Results

	Filtering (WHERE)
	Case Sensitivity
	String Comparisons
	Dates
	Wildcard Matching

	Calculations
	SELECT Without FROM
	Arithmetic
	Formatting Functions
	Date Functions
	Concatenation
	String Functions

	Joining Tables
	Aggregate Functions
	Manipulating Data
	Manipulating Tables

	Appendix 2: A Crash Course in PDO
	PDO Objects
	The PDO Object
	The PDOStatement Object

	Working with PDO
	Establishing a Connection
	Other DBMSs
	Prepared Statements and SQL Injection
	Prepared Statements
	Repeated Execution

	Unprepared (Direct) SQL Statements
	SELECT Statements
	INSERT, UPDATE, and DELETE Statements

	Selecting Data
	Fetching Data
	The Result Set
	Fetching a Single Column
	A Simple Login Script

	Getting the Last Auto-Incremented Key
	Error Reporting
	Summary of PDO
	Connection
	Executing Simple Statements
	INSERT, UPDATE, and DELETE
	SELECT Statements

	Executing Prepared Statements
	Reading Data
	Reading a Single Row
	Reading Multiple Rows
	Reading a Single Column

	Appendix 3: Additional Notes
	Cultural Notes
	Addresses and Phone Numbers
	Towns
	States
	Postcodes
	Phone Numbers

	Email Addresses
	Measurements, Prices, and Currency
	Dates

	SQL Data Values
	Stored Values
	Variables

	Literals
	Calculated Values

	Some Notes on Dates (and Times)
	Oracle Date Format
	Microsoft Age Function

	Working with SQLite Dates
	ISO 8601 Dates and Times
	Date Functions
	Manipulating Dates and Times
	Formatting Dates and Times

	Index

