

Fundamentals of Database
Management Systems

Mark L. Gillenson
Fogelman College of Business and Economics
University of Memphis

Fundamentals of Database
Management Systems

Third Edition

VP, Content Kristen Ford
PUBLISHER Lise Johnson
EDITOR Jennifer Manias
EDITORIAL ASSISTANT Campbell McDonald
SENIOR MANAGING EDITOR Judy Howarth
PRODUCTION EDITOR Umamaheswari Gnanamani
MARKETING COORDINATOR Jessica Spettoli
COVER PHOTO CREDIT © Blackboard/Shutterstock

This book was set in 10/12 STIX Two Text by Straive™.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on
a foundation of principles that include responsibility to the communities we serve and where we live and work. In
2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic,
and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper
specifications and procurement, ethical conduct within our business and among our vendors, and community and
charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2023, 2012, 2005 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923,
website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008,
website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of
charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook
for use in your course, please accept this book as your complimentary desk copy. Outside of the United States, please
contact your local sales representative.

ISBN: 978-1-119-90746-6 (Print)
ISBN: 978-1-119-90743-5 (EVAL)

Library of Congress Cataloging-in-Publication Data

Names: Gillenson, Mark L., author.
Title: Fundamentals of database management systems / Mark L. Gillenson.
Description: Third edition. | Hoboken, NJ : Wiley, [2023] | Includes index.
Identifiers: LCCN 2023013761 (print) | LCCN 2023013762 (ebook) | ISBN
 9781119907466 (paperback) | ISBN 9781119907411 (adobe pdf) | ISBN
 9781119907428 (epub)
Subjects: LCSH: Database management.
Classification: LCC QA76.9.D3 G5225 2023 (print) | LCC QA76.9.D3 (ebook)
 | DDC 005.75/65—dc23/eng/20230404
LC record available at https://lccn.loc.gov/2023013761
LC ebook record available at https://lccn.loc.gov/2023013762

The inside back cover will contain printing identification and country of origin if omitted from this page. In addition,
if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

http://www.wiley.com/go/citizenship
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

For Leslie and

For Rochelle and Caroline

vii

BRIEF CONTENTS

Preface� xix
About The Author� xxiii

	 1	 Data: The New Corporate Resource� 1
	 2	 Data Modeling� 16
	 3	 The Database Management System Concept� 36
	 4	 Relational Data Retrieval: SQL� 59
	 5	 The Relational Database Model: Introduction� 95
	 6	 The Relational Database Model: Additional Concepts� 127
	 7	 Logical Database Design� 145
	 8	 Physical Database Design� 185
	 9	 Object-Oriented Database Management� 229
	 10	 �Data Administration, Database Administration,

and Data Dictionaries� 248
	 11	 �Database Control Issues: Security, Backup and Recovery,

Concurrency� 268
	 12	 �The Data Warehouse� 289
	 13	 NoSQL Database Management� 319
	 14	 Blockchain� 341
	 15	 Database in the Cloud� 352
	 16	 Database Applications� 363

Index� I-1

ix

CONTENTS

Preface� xix
About The Author� xxiii

	 1	 Data: The New Corporate Resource  1
Introduction  1
The History of Data  2

The Origins of Data  2
Data Through the Ages  4
Early Data Problems Spawn Calculating Devices  5
Swamped with Data  6
Modern Data Storage Media  8

Data in Today’s Information Systems Environment  10
Using Data for Competitive Advantage  10
Problems in Storing and Accessing Data  11
Data as a Corporate Resource  12
The Database Environment  13

Summary  14

	 2	 Data Modeling  16
Introduction  16
Binary Relationships  17

What Is a Binary Relationship?  17
Cardinality  18
Modality  19
More About Many-to-Many Relationships  20

Unary Relationships  24
One-to-One Unary Relationship  24
One-to-Many Unary Relationship  24
Many-to-Many Unary Relationship  24

x   Contents

Ternary Relationships  26
Example: The General Hardware Company  27
Example: Good Reading Book Stores  29
Example: World Music Association  30
Example: Lucky Rent-A-Car  31
Summary  32

	 3	 The Database Management System Concept  36
Introduction  37
Data Before Database Management  37

Records and Files  38
Basic Concepts in Storing and Retrieving Data  40

The Database Concept  41
Data as a Manageable Resource  42
Data Integration and Data Redundancy  43
Multiple Relationships  49
Data Control Issues  52
Data Independence  53

DBMS Approaches  53
Summary  55

	 4	 Relational Data Retrieval: SQL  59
Introduction  60
Data Retrieval with the SQL SELECT Command  60

Introduction to the SQL SELECT Command  60
Basic Functions  61
Built-In Functions  72
Grouping Rows  74
The Join  76
Subqueries  77
A Strategy for Writing SQL SELECT Commands  80

Example: Good Reading Book Stores  81
Example: World Music Association  84
Example: Lucky Rent-A-Car  86
Relational Query Optimizer  88

Relational DBMS Performance  88
Relational Query Optimizer Concepts  88

Summary  90

Contents   xi

	 5	 The Relational Database Model: Introduction  95
Introduction  96
The Relational Database Concept  96

Relational Terminology  96
Primary and Candidate Keys  97
Foreign Keys and Binary Relationships  99
Many-to-Many Binary Relationship  102

Data Retrieval from a Relational Database  113
Extracting Data from a Relation  113
The Relational Select Operator  114
The Relational Project Operator  114
Combination of the Relational Select and Project Operators  115
Extracting Data Across Multiple Relations: Data Integration  116

Example: Good Reading Book Stores  118
Example: World Music Association  120
Example: Lucky Rent-A-Car  121
Summary  122

	 6	� The Relational Database Model: Additional �
Concepts  127
Introduction  127
Relational Structures for Unary and Ternary Relationships  128

Unary One-to-Many Relationships  128
Unary Many-to-Many Relationships  132
Ternary Relationships  134

Referential Integrity  138
The Referential Integrity Concept  138
Three Delete Rules  140

Summary  142

	 7	 Logical Database Design  145
Introduction  145
Converting E-R Diagrams into Relational Tables  146

Introduction  146
Converting a Simple Entity  146
Converting Entities in Binary Relationships  147
Converting Entities in Unary Relationships  151
Converting Entities in Ternary Relationships  153

xii   Contents

Designing the General Hardware Co. Database  153
Designing the Good Reading Bookstores Database  156
Designing the World Music Association Database  158
Designing the Lucky Rent-A-Car Database  160

The Data Normalization Process  161
Introduction to the Data Normalization Technique  162
Steps in the Data Normalization Process  163
Example: General Hardware Co.  171
Example: Good Reading Bookstores  172
Example: World Music Association  174
Example: Lucky Rent-A-Car  174

Testing Tables Converted from E-R Diagrams with Data
Normalization  175
Building the Data Structure with SQL  177
Manipulating the Data with SQL  178
Summary  179

	 8	 Physical Database Design  185
Introduction  186
Disk Storage  187

The Need for Disk Storage  187
How Rotating Disk Storage Works  187

File Organizations and Access Methods  191
The Goal: Locating a Record  191
The Index  192
Hashed Files  200

Inputs to Physical Database Design  202
The Tables Produced by the Logical Database Design
Process  203
Business Environment Requirements  203
Data Characteristics  204
Application Characteristics  204
Operational Requirements: Data Security, Backup,
and Recovery  204

Physical Database Design Techniques  205
Adding External Features  206
Reorganizing Stored Data  208
Splitting a Table into Multiple Tables  210
Changing Attributes in a Table  211
Adding Attributes to a Table  212

Contents   xiii

Combining Tables  214
Adding New Tables  216

Example: Good Reading Book Stores  216
Example: World Music Association  217
Example: Lucky Rent-A-Car  219
Summary  220

	 9	 Object-Oriented Database Management  229
Introduction  230
Terminology  231
Complex Relationships  232

Generalization  232
Inheritance of Attributes  232
Operations, Inheritance of Operations, and Polymorphism  234
Aggregation  235
The General Hardware Co. Class Diagram  236
The Good Reading Bookstores Class Diagram  238
The World Music Association Class Diagram  239
The Lucky Rent-A-Vehicle Class Diagram  240

Encapsulation  242
Abstract Data Types  243
Object/Relational Database  244
Summary  244

10	� Data Administration, Database Administration, and Data
Dictionaries  248
Introduction  249
The Advantages of Data and Database Administration  249

Data as a Shared Corporate Resource  249
Efficiency in Job Specialization  250
Operational Management of Data  251
Managing Externally Acquired Databases  251
Managing Data in the Decentralized Environment  251

The Responsibilities of Data Administration  252
Data Coordination  252
Data Planning  253
Data Standards  253
Liaison to Systems Analysts and Programmers  254
Training  254

xiv   Contents

Arbitration of Disputes and Usage Authorization  254
Documentation and Publicity  255
Data’s Competitive Advantage  255

The Responsibilities of Database Administration  255
DBMS Performance Monitoring  256
DBMS Troubleshooting  256
DBMS Usage and Security Monitoring  257
Data Dictionary Operations  257
DBMS Data and Software Maintenance  257
Database Design  258

Data Dictionaries  258
Introduction  258
A Simple Example of Metadata  259
Passive and Active Data Dictionaries  262
Relational DBMS Catalogs  264
Data Repositories  264

Summary  264

11	� Database Control Issues: Security, Backup and Recovery,
Concurrency  268
Introduction  269
Data Security  269

The Importance of Data Security  269
Types of Data Security Breaches  269
Methods of Breaching Data Security  270
Types of Data Security Measures  272

Backup and Recovery  278
The Importance of Backup and Recovery  278
Backup Copies and Journals  278
Forward Recovery  279
Backward Recovery  280
Duplicate or “Mirrored” Databases  281
The Cloud  282
Disaster Recovery  282

Concurrency Control  283
The Importance of Concurrency Control  283
The Lost Update Problem  283
Locks and Deadlock  284
Versioning  286

Summary  286

Contents   xv

12	� The Data Warehouse  289
Introduction  290
The Data Warehouse Concept  291

The Data Is Subject Oriented  292
The Data Is Integrated  292
The Data Is Non-Volatile  292
The Data Is Time Variant  292
The Data Must Be High Quality  293
The Data May Be Aggregated  293
The Data Is Often Denormalized  293
The Data Is Not Necessarily Absolutely Current  294

Types of Data Warehouses  294
The Enterprise Data Warehouse (EDW)  294
The Data Mart (DM)  295
Which to Choose: The EDW, the DM, or Both?  295

Designing a Data Warehouse  296
Introduction  296
General Hardware Co. Data Warehouse  298
Good Reading Bookstores Data Warehouse  300
Lucky Rent-A-Car Data Warehouse  303
What About a World Music Association Data Warehouse?  305

Building a Data Warehouse  305
Introduction  305
Data Extraction  306
Data Cleaning  307
Data Transformation  310
Data Loading  310

Using a Data Warehouse  311
On-Line Analytic Processing  311
Data Mining  311

Administering a Data Warehouse  314
Challenges in Data Warehousing  315
Summary  315

13	 NoSQL Database Management  319
Introduction  319

The Lead-Up to NoSQL Database Management  319
Limitations of Relational Database  320
Advanced Database Management System Concepts  322

xvi   Contents

NoSQL Database Management Systems  323
Key-Value Database  323

The Key-Value Database Concept  323
Hadoop  325
The Hadoop Environment  326

Document Database  327
Column Family Database  331
Graph Database  335
Querying NoSQL Databases and the Rise of NewSQL  337

NoSQL Query Languages  337
NewSQL  338

Summary  339

14	 Blockchain  341
Introduction  341
What Is a Blockchain?  342
Hashing  343

Cryptographic Hashing  343
Cryptographic Hashing in the Blockchain  344

Public-Key Encryption  345
Public-Key Encryption Revisited  345
Public-Key Encryption in the Blockchain  346

Additional Blockchain Topics  348
Merkle Trees  348
Consensus  348
Smart Contracts  349

Summary  349

15	 Database in the Cloud  352
Introduction  352
The Cloud: What, Why, How?  353

New Technologies  353
Cloud Usage Models  354
Cloud Pricing Models  354
Advantages of the Cloud  355

Data and Database in the Cloud  355
Where Should the Data Be Stored?  356
The Pros and Cons of Storing Data in the Cloud  356

Contents   xvii

From Distributed Database to the Cloud  358
Introduction to Distributed Database  358
Distributed Database Architecture  358
The Cloud and Distributed Database  360

Summary  360

16	 Database Applications  363
Introduction  363
Business Intelligence and Data Analytics  364

Data Mining  365
Text Mining and Web Mining  367

Artificial Intelligence  368
Artificial Intelligence Applications  368
Artificial Intelligence Techniques  370

Enterprise Resource Planning (ERP)  371
Customer Relationship Management (CRM)  372
Supply Chain Management (SCM)  373
Summary  375

INDEX  I-1

xix

PREFACE

Purpose of this Book
A course in database management has become well established as a required course in both
undergraduate and graduate management information systems degree programs. This is as
it should be, considering the central position of the database field in the information systems
environment. Indeed, a solid understanding of the fundamentals of database management
is crucial for success in the information systems field. An IS professional should be able
to talk to the users in a business setting, ask the right questions about the nature of their
entities, their attributes, and the relationships among them, and quickly decide whether
their existing data and database designs are properly structured or not. An IS professional
should be able to design new databases with confidence that they will serve their owners
and users well. An IS professional should be able to guide a company in the best use of the
various database-related technologies.

Over the years, at the same time that database management has increased in importance,
it has also increased tremendously in breadth. In addition to such fundamental topics as
data modeling, relational database concepts, logical and physical database design, and SQL,
a basic set of database topics today includes object-oriented databases, data administration,
data security, data warehousing, NoSQL database, and data in the cloud, among others. The
dilemma faced by database instructors and by database books is to cover as much of this
material as is reasonably possible so that students will come away with a solid background in
the fundamentals without being overwhelmed by the tremendous breadth and depth of the
field. Exposure to too much material in too short a time at the expense of developing a sound
foundation is of no value to anyone. We believe that a one-semester course in database man-
agement should provide a firm grounding in the fundamentals of databases and provide a
solid survey of the major database subfields, while deliberately not being encyclopedic in its
coverage. With these goals in mind, this book:

•	 Is designed to be a carefully and clearly written, friendly, narrative introduction to the
subject of database management that can reasonably be completed in a one-semester
course.

•	 Provides a clear exposition of the fundamentals of database management while at the
same time presenting a broad survey of all of the major topics of the field. It is an applied
book of important basic concepts and practical material that can be used immediately
in business.

•	 Makes extensive use of examples. Four major examples are used throughout the text
where appropriate, plus two minicases that are included among the chapter exercises at
the end of every chapter. Having multiple examples solidifies the material and helps the
student not miss the point because of the peculiarities of a particular example.

•	 Starts with the basics of data and file structures and then builds up in a progressive, step-
by-step way through the distinguishing characteristics of database.

xx   Preface

•	 A “movable chapter” on data retrieval with SQL that can be covered early in the
book, where it appears as Chapter 4, or later in the book after the chapters on data-
base design. This is introduced in response to a large reviewer survey that indi-
cated a roughly 50–50 split between instructors who like to introduce data retrieval
with SQL early in their courses to engage their students in hands-on exercises as
soon as possible to pique their interest and instructors who feel that data retrieval
with SQL should come after database design.

•	 Internet-accessible databases that match the four main examples running through
the book’s chapters for hands-on student practice in data retrieval with SQL, plus
additional hands-on material.

New in the Third Edition
It is important to reflect advances in the database management systems environment
in this book as the world of information systems continues to progress. Furthermore,
we want to continue adding materials for the benefit of the students who use this book.
Thus we have made the following additions to the third edition.

•	 A new chapter on NoSQL database management including key-value database,
document database, column-family database, and graph database.

•	 A new chapter on blockchain. While not strictly speaking database management,
blockchain does present a new methodology for handling data.

•	 A new chapter on data in “the cloud” with all of its associated advantages and dis-
advantages, and comparisons with distributed database.

•	 A new chapter on the use of data including data analytics, artificial intelligence,
enterprise resource planning, customer relationship management, and supply
chain management.

Organization of This Book
The book effectively divides into two halves. After the introduction in Chapter 1,
Chapter 2 lays the foundation of data modeling. Chapter 3 describes the fundamen-
tal concepts of databases and contrasts them with ordinary files. Importantly, this is
done separately from and prior to the discussion of relational databases. Chapter 4 is
the “movable chapter” on data retrieval with SQL that can be covered as Chapter 4
or can be covered after the chapters on database design. Chapters 5 and 6 explain the
major concepts of relational databases. This is done separately from and prior to the
discussion of logical database design in Chapter 7 and physical database design (yes, a
whole chapter on this subject) in Chapter 8. Separating out general database concepts
from relational database concepts and from relational database design serves to bring
the student along gradually and deliberately with the goal of a solid understanding at
the end.

Then, in the second half of the book, each chapter describes one or more of the
major database subfields and new approaches to data management. These latter chap-
ters are generally independent and for the most part can be approached in any order.
They include Chapter 9 on object-oriented database, Chapter 10 on data administra-
tion, database administration, and data dictionaries, Chapter 11 on security, backup
and recovery, and concurrency, Chapter 12 on the data warehouse, Chapter 13 on
NoSQL database, Chapter 14 on blockchain, Chapter 15 on data in the cloud, and
Chapter 16 on the uses of data.

Preface   xxi

Supplements (www.wiley.com/go/gillenson/
databasemanagement3e.)
The Web site includes several resources designed to aid the learning process:

•	 PowerPoint slides for each chapter that instructors can use as is or tailor as they
wish and that students can use both to take notes on in the classroom and to help
in studying at home.

•	 Narration of the PowerPoint slides by the author.
•	 Interactive Quizzes for each chapter that students can take on their own to test

their knowledge.
•	 For instructors: The Instructors’ Manual, written by the author. Each chapter

includes a guide to presenting the chapter, discussion stimulation points, and
answers to every question, exercise, and minicase at the end of each chapter.

•	 For instructors: The Test Bank, written by the author. Questions are organized by
chapter and are designed to test the level of understanding of the chapter’s con-
cepts, as well as such basic knowledge as the definitions of key terms presented in
the chapter. A computerized Respondus test bank is also available.

Finally, I would like to thank the crew at John Wiley & Sons for their continuous
support and professionalism, in particular Jennifer Manias and Judy Howarth, my edi-
tors for this edition of the book.

Mark L. Gillenson

Memphis, TN
December 2022

http://www.wiley.com/go/gillenson/databasemanagement3e
http://www.wiley.com/go/gillenson/databasemanagement3e

xxiii

ABOUT THE AUTHOR

Dr. Mark L. Gillenson has been practicing, researching, teaching, writing, and, most impor-
tantly, thinking, about data and database management for over 50 years, split between
working for the IBM Corporation and being a professor in the academic world. While
working for IBM he designed databases for IBM’s corporate headquarters, consulted on
database issues for some of IBM’s largest customers, taught database management at the
prestigious IBM Systems Research Institute in New York, and conducted database semi-
nars throughout the United States and on four continents. In one such seminar, he taught
introduction to database to an IBM development group that went on to develop IBM’s first
relational database management system products, SQL/DS.

Dr. Gillenson conducted some of the earliest studies on data and database administra-
tion and has written extensively about that subject as well as about database design. He
is an associate editor of the Journal of Database Management, with which he has been
associated since its inception. This is the third edition of his third book on database man-
agement, all published by John Wiley & Sons, Inc. Dr. Gillenson is currently University
Research Professor in the Fogelman College of Business and Economics of The University of
Memphis. He is also the Director of the UofM’s Systems Testing Excellence Program (STEP).
His degrees are from Rensselaer Polytechnic Institute and The Ohio State University.

Oh, and speaking of interesting kinds of data, as a graduate student Dr. Gillenson
invented the world’s first computerized facial compositor and codeveloped an early com-
puter graphics system that, among other things, was used to produce some of the special
effects in the first Star Wars movie.

1

CHAPTER 1

Data: The New Corporate
Resource

The development of database management systems, as well
as the development of modern computers, came about as a
result of society’s recognition of the crucial importance of stor-
ing, managing, and retrieving its rapidly expanding volumes
of business data. To understand how far we have come in this
regard, it is important to know where we began and how the con-
cept of managing data has developed. This chapter begins with
the historical background of the storage and uses of data and
then continues with a discussion of the importance of data to the
modern corporation.

Introduction
What a fascinating world we live in today! Technological advances are all around us in
virtually every aspect of our daily lives. From cellular telephones to satellite television
to advanced aircraft to modern medicine to computers—especially computers—high
tech is with us wherever we look. Businesses of every description and size rely on
computers and the information systems they support to a degree that would have been

CHAPTER OUTLINE
Introduction
The History of Data

The Origins of Data
Data Through the Ages
Early Data Problems Spawn

Calculating Devices
Swamped with Data
Modern Data Storage Media

Data in Today’s Information Systems
Environment
Using Data for Competitive

Advantage
Problems in Storing and

Accessing Data
Data as a Corporate Resource
The Database Environment

Summary

OBJECTIVES

Explain why humankind’s interest in data dates back
to ancient times.

Describe how data needs have historically driven
many information technology developments.

Describe the evolution of data storage media during
the last century.

Relate the idea of data as a corporate resource that
can be used to gain a competitive advantage to
the development of the database management
systems environment.

2   Chapter 1  Data: The New Corporate Resource

unimaginable just a few short years ago. Businesses routinely use automated manufac-
turing and inventory-control techniques, automated financial transaction procedures,
and high-tech marketing tools. As consumers, we take for granted being able to call
our banks, insurance companies, and department stores to instantly get up-to-the-
minute information on our accounts. And everyone, businesses and consumers alike,
has come to rely on the Internet for instant worldwide communications. Beneath the
surface, the foundation for all of this activity is data: the stored facts that we need to
manage all of our human endeavors.

This book is about data. It’s about how to think about data in a highly organized
and deliberate way. It’s about how to store data efficiently and how to retrieve it effec-
tively. It’s about ways of managing data so that the exact data that we need will be
there when we need it. It’s about the concept of assembling data into a highly orga-
nized collection called a “database” and about the sophisticated software known
as a “database management system” that controls the database and oversees the
database environment. It’s about the various approaches people have taken to data-
base management and about the roles people have assumed in the database environ-
ment. We will see many real-world examples of data usage throughout this book.

Computers came into existence because we needed help in processing and using the
massive amounts of data we have been accumulating. Is the converse true? Could data
exist without computers? The answer to this question is a resounding “yes.” In fact,
data has existed for thousands of years in some very interesting, if by today’s standards
crude, forms. Furthermore, some very key points in the history of the development of
computing devices were driven, not by any inspiration about computing for comput-
ing’s sake, but by a real need to efficiently handle a pesky data management problem.
Let’s begin by tracing some of these historical milestones in the evolution of data and
data management.

The History of Data
The Origins of Data
What is data? To start, what is a single piece of data? A single piece of data is a single
fact about something we are interested in. Think about the world around you, about
your environment. In any environment, there are things that are important to you and
there are facts about those things that are worth remembering. A “thing” can be an
obvious object like an automobile or a piece of furniture. But the concept of an object
is broad enough to include a person, an organization like a company, or an event that
took place such as a particular meeting. A fact can be any characteristic of an object. In
a university environment, it may be the fact that student Gloria Thomas has completed
96 credits; or it may be the fact that Professor Howard Gold graduated from Ohio State
University; or it may be the fact that English 349 is being held in Room 830 of Alumni
Hall. In a commercial environment, it may be the fact that employee John Baker’s
employee number is 137; or it may be the fact that one of a company’s suppliers, the
Superior Products Co., is located in Chicago; or it may be the fact that the refrigerator
with serial number 958304 was manufactured on November 5, 2004.

Actually, people have been interested in data for at least the past 12,000 years. While
today we often associate the concept of data with the computer, historically there have
been many more primitive methods of data storage and handling.

In the ancient Middle East, shepherds kept track of their flocks with pebbles,
Figure 1.1. As each sheep left its pen to graze, the shepherd placed one pebble in a

The History of Data    3

small sack. When all of the sheep had left, the shepherd had a record of how many
sheep were out grazing. When the sheep returned, the shepherd discarded one pebble
for each animal, and if there were more pebbles than sheep, he knew that some of his
sheep still hadn’t returned or were missing. This is, indeed, a primitive but legitimate
example of data storage and retrieval. What is important to realize about this example
is that the count of the number of sheep going out and coming back in was all that
the shepherd cared about in his “business environment” and that his primitive data
storage and retrieval system satisfied his needs.

Excavations in the Zagros region of Iran, dated to 8500 B.C., have unearthed clay
tokens or counters that we think were used for record keeping in primitive forms
of accounting. Such tokens have been found at sites from present-day Turkey to
Pakistan and as far afield as the present-day Khartoum in Sudan, dating as long ago as
7000 B.C. By 3000 B.C., in the present-day city of Susa in Iran, the use of such tokens
had reached a greater level of sophistication. Tokens with special markings on them,
Figure 1.2, were sealed in hollow clay vessels that accompanied commercial goods
in transit. These primitive bills of lading certified the contents of the shipments. The
tokens represented the quantity of goods being shipped and, obviously, could not be

FIGURE 1.1  Shepherd using peb-
bles to keep track of sheep

FIGURE 1.2  Ancient clay tokens
used to record goods in transit

4   Chapter 1  Data: The New Corporate Resource

tampered with without the clay vessel being broken open. Inscriptions on the out-
side of the vessels and the seals of the parties involved provided a further record. The
external inscriptions included such words or concepts as “deposited,” “transferred,”
and “removed.”

At about the same time that the Susa culture existed, people in the city-state of Uruk
in Sumeria kept records in clay texts. With pictographs, numerals, and ideographs,
they described land sales and business transactions involving bread, beer, sheep, cattle,
and clothing. Other Neolithic means of record keeping included storing tallies as cuts
and notches in wooden sticks and as knots in rope. The former continued in use in
England as late as the medieval period; South American Indians used the latter.

Data Through the Ages
As in Susa and Uruk, much of the very early interest in data can be traced to the rise
of cities. Simple subsistence hunting, gathering, and, later, farming had only limited
use for the concept of data. But when people live in cities they tend to specialize in the
goods and services they produce. They become dependent on one another, bartering
and using money to trade these goods and services for mutual survival. This trade
encouraged record keeping—the recording of data—to track how much someone
has produced and what it can be bartered or sold for.

As time went on, more and different kinds of data and records were kept. These
included calendars, census data, surveys, land ownership records, marriage records,
records of church contributions, and family trees, Figure 1.3. Increasingly sophisti-
cated merchants had to keep track of inventories, shipments, and wage payments in
addition to production data. Also, as farming went beyond the subsistence level and
progressed to the feudal manor stage, there was a need to keep data on the amount of
produce to consume, to barter with, and to keep as seed for the following year.

The Crusades took place from the late eleventh to the late thirteenth centuries. One
side effect of the Crusades was a broader view of the world on the part of the Europe-
ans, with an accompanying increase in interest in trade. A common method of trade
in that era was the establishment of temporary partnerships among merchants, ship

BILL OF LADING

MARCH 2005

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

S M T W T F S

Family Tree

FIGURE 1.3  New types of data
with the advance of civilization

The History of Data    5

captains, and owners to facilitate commercial voyages. This increased level of com-
mercial sophistication brought with it another round of increasingly complex record
keeping, specifically, double-­entry bookkeeping.

Double-entry bookkeeping originated in the trading centers of fourteenth-
century Italy. The earliest known example, from a merchant in Genoa, dates to the
year 1340. Its use gradually spread, but it was not until 1494, in Venice (about 25 years
after Venice’s first movable type printing press came into use), that a Franciscan monk
named Luca Pacioli published his “Summa de Arithmetica, Geometrica, Proportioni
et Proportionalita,” a work important in spreading the use of double-entry bookkeep-
ing. Of course, as a separate issue, the increasing use of paper and the printing press
furthered the advance of record keeping as well.

As the dominance of the Italian merchants declined, other countries became more
active in trade and thus in data and record keeping. Furthermore, as the use of tem-
porary trading partnerships declined and more stable long-term mercantile organiza-
tions were established, other types of data became necessary. For example, annual as
opposed to venture-by-venture statements of profit and loss were needed. In 1673, the
“Code of Commerce” in France required every businessman to draw up a balance
sheet every two years. Thus the data had to be periodically accumulated for report-
ing purposes.

Early Data Problems Spawn Calculating Devices
It was also in the seventeenth century that data began to prompt people to take an
interest in devices that could “automatically” process their data, if only in a rudimen-
tary way. Blaise Pascal produced one of the earliest and best known such devices in
France in the 1640s, reputedly to help his father track the data associated with his job
as a tax collector, Figure 1.4. This was a small box containing interlocking gears that
was capable of doing addition and subtraction. In fact, it was the forerunner of today’s
mechanical automobile odometers.

FIGURE 1.4  Blaise Pascal and his adding
machine

Courtesy of IBM Archives

6   Chapter 1  Data: The New Corporate Resource

In 1805, Joseph Marie Jacquard of France invented a device that automatically
reproduced patterns used in textile weaving. The heart of the device was a series of
cards with holes punched in them; the holes allowed strands of material to be inter-
woven in a sequence that produced the desired pattern, Figure 1.5. While Jacquard’s
loom wasn’t a calculating device as such, his method of storing fabric patterns, a form
of graphic data, as holes in punched cards was a very clever means of data storage
that would have great importance for computing devices to follow. Charles Babbage,
a nineteenth-century English mathematician and inventor, picked up Jacquard’s con-
cept of storing data in punched cards. Beginning in 1833, Babbage began to think about
an invention that he called the “Analytical Engine.” Although he never completed it
(the state of the art of machinery was not developed enough), included in its design
were many of the principles of modern computers. The Analytical Engine was to con-
sist of a “store” for holding data items and a “mill” for operating upon them. Babbage
was very impressed by Jacquard’s work with punched cards. In fact, the Analytical
Engine was to be able to store calculation instructions in punched cards. These would
be fed into the machine together with punched cards containing data, would operate
on that data, and would produce the desired result.

Swamped with Data
In the late 1800s, an enormous (for that time) data storage and retrieval problem and
greatly improved machining technology ushered in the era of modern information
processing. The 1880 U.S. Census took about seven years to compile by hand. With
a rapidly expanding population fueled by massive immigration, it was estimated that
with the same manual techniques, the compilation of the 1890 census would not be
completed until after the 1900 census data had begun to be collected. The solution
to processing census data was provided by a government engineer named Herman
Hollerith. Basing his work on Jacquard’s punched-card concept, he arranged to have

FIGURE 1.5  The Jacquard loom recorded patterns in punched cards

Courtesy of IBM Archives

The History of Data    7

the census data stored in punched cards. He built devices to punch the holes into cards
and devices to sort the cards, Figure 1.6. Wire brushes touching the cards completed
circuits when they came across the holes and advanced counters. The equipment came
to be classified as “electromechanical,” “electro” because it was powered by electricity
and “mechanical” because the electricity powered mechanical counters that tabulated
the data. By using Hollerith’s electromechanical equipment, the total population
count of the 1890 census was completed a month after all the data was in. The com-
plete set of tabulations, including data on questions that had never before even been
practical to ask, took two years to complete. In 1896, Hollerith formed the Tabulating
Machine Company to produce and commercially market his devices. That company,
combined with several others, eventually formed what is today the International
Business Machines Corporation (IBM).

Toward the turn of the century, immigrants kept coming and the U.S. population
kept expanding. The Census Bureau, while using Hollerith’s equipment, continued
experimenting on its own to produce even more advanced data-tabulating machinery.
One of its engineers, James Powers, developed devices to automatically feed cards into
the equipment and automatically print results. In 1911, he formed the Powers Tabu-
lating Machine Company, which eventually formed the basis for the UNIVAC division
of the Sperry Corporation, which eventually became the Unisys Corporation.

From the days of Hollerith and Powers through the 1940s, commercial data
processing was performed on a variety of electromechanical punched-card-based
devices. They included calculators, punches, sorters, collators, and printers. The data
was stored in punched cards, while the processing instructions were implemented as
collections of wires plugged into specially designed boards that in turn were inserted
into slots in the electromechanical devices. Indeed, electromechanical equipment
overlapped with electronic computers, which were introduced commercially in the
mid-1950s.

In fact, the introduction of electronic computers in the mid-1950s coincided with a
tremendous boom in economic development that raised the level of data storage and
retrieval requirements another notch. This was a time of rapid commercial growth in

FIGURE 1.6  Herman Hollerith and his
tabulator/sorter, circa 1890.

Bell, C. M. / Wikimedia Commons / Public
domain; Courtesy of IBM Archives.

8   Chapter 1  Data: The New Corporate Resource

the post–World War II United States as well as the rebuilding of Europe and the Far
East. From this time onward, the furious pace of new data storage and retrieval require-
ments with more and more commercial functions and procedures were automated and
the technological advances in computing devices has been one big blur. From this
point on, it would be virtually impossible to tie advances in computing devices to spe-
cific, landmark data storage and retrieval needs. And there is no need to try to do so.

Modern Data Storage Media
Paralleling the growth of equipment to process data was the development of new
media on which to store the data. The earliest form of modern data storage was
punched paper tape, which was introduced in the 1870s and 1880s in conjunction
with early teletype equipment. Of course we’ve already seen that Hollerith in the
1890s and Powers in the early 1900s used punched cards as a storage medium. In fact,
punched cards were the only data storage medium used in the increasingly sophis-
ticated electromechanical accounting machines of the 1920s, 1930s, and 1940s.They
were still used extensively in the early computers of the 1950s and 1960s and could
even be found well into the 1970s in smaller information systems installations, to a
progressively reduced degree.

The middle to late 1930s saw the beginning of the era of erasable magnetic storage
media, with Bell Laboratories experimenting with magnetic tape for sound storage.
By the late 1940s, there was early work on the use of magnetic tape for recording data.
By 1950, several companies, including RCA and Raytheon, were developing the mag-
netic tape concept for commercial use. Both UNIVAC and Raytheon offered commer-
cially available magnetic tape units in 1952, followed by IBM in 1953, Figure 1.7. During
the mid-1950s and into the mid-1960s, magnetic tape gradually became the dominant
data-storage medium in computers. Magnetic tape technology has been continually
improved since then and is still in limited use today, particularly for archived data.

The original concept that eventually grew into the magnetic disk actually began
to be developed at MIT in the late 1930s and early 1940s. By the early 1950s, several
companies including UNIVAC, IBM, and Control Data had developed prototypes of
magnetic “drums” that were the forerunners of magnetic disk technology. In 1953,
IBM began work on its 305 RAMAC (Random Access Memory Accounting Machine)

1.1  The Development of Data
The need to organize and store data has arisen
many times and in many ways throughout history.
In addition to the data-focused events presented
in this chapter, what other historical events can
you think of that have made people think about
organizing and storing data? As a hint, you might
think about the exploration and conquest of new
lands, wars, changes in type of governments such

as the introduction of democracy, and the impli-
cations of new inventions such as trains, printing
presses, and electricity.

Question:
Develop a timeline showing several historical events
that influenced the need to organize and store
data. Include a few noted in this chapter as well as
a few that you can think of independently.

Your Turn

The History of Data    9

fixed disk storage device. By 1954, there was a multi-platter version, which became
commercially available in 1956, Figure 1.8.

During the mid-1960s, a massive conversion from tape to magnetic disk as the pre-
eminent data storage medium began and disk storage is still the data storage medium
of choice today. After the early fixed disks, the disk storage environment became geared
toward the removable disk-pack philosophy, with a dozen or more packs being juggled
on and off a single drive as a common ratio. But, with the increasingly tighter envi-
ronmental controls that fixed disks permitted, more data per square inch (or square

FIGURE 1.7  Early magnetic tape drive, circa 1953

Courtesy of IBM Archives

FIGURE 1.8  IBM RAMAC disk storage device, circa 1956

Courtesy of IBM Archives

10   Chapter 1  Data: The New Corporate Resource

centimeter) could be stored on fixed disk devices. Eventually, the disk drives on main-
frames and servers, as well as the fixed disks or “hard drives” of PCs, all became non-
removable, sealed units. But the removable disk concept stayed with us a while in the
form of PC diskettes, the Iomega Corp.’s Zip Disks, and external hard drives that can
be easily moved from one computer to another simply by plugging them into a USB
port. These have been joined by the laser-based, optical technology compact disk
(CD), introduced as a data storage medium in 1985. Originally, data could be recorded
on these CDs only at the factory and once created, they were non-erasable. Later, data
could be recorded on them, erased, and re-recorded in a standard PC. Eventually,
solid-state technology became so miniaturized and inexpensive that a popular option
for removable media developed as the flash drive. Finally, as solid-state technology
continues on the path of being more compact and cheaper, rotating disk technology is
gradually being replaced by “solid-state disks” (SSDs).

Data in Today’s Information Systems
Environment
Using Data for Competitive Advantage
Today’s computers are technological marvels. Their speeds, compactness, ease of use,
price as related to capability, and, yes, their data storage capacities are truly amazing.
And yet, our fundamental interest in computers is the same as that of the ancient
Middle Eastern shepherds in their pebbles and sacks: they are the vehicles we need to
store and utilize the data that is important to us in our environment.

Indeed, data has become indispensable in every kind of modern business and
government organization. Data, the applications that process the data, and the com-
puters on which the applications run are fundamental to every aspect of every kind
of endeavor. When speaking of corporate resources, people used to list such items
as capital, plant and equipment, inventory, personnel, and patents. Today, any such
list of corporate resources must include the corporation’s data. It has even been sug-
gested that data is the most important corporate resource because it describes all of
the others.

Data can provide a crucial competitive advantage for a company. We routinely
speak of data and the information derived from it as competitive weapons in hotly
contested industries. For example, FedEx had a significant competitive advantage
when it first provided access to its package tracking data on its Web site. Then, once
one company in an industry develops a new application that takes advantage of its
data, the other companies in the industry are forced to match it to remain competi-
tive. This cycle continually moves the use of data to ever-higher levels, making it an
ever more important corporate resource than before. Examples of this abound. Banks
give their customers online access to their accounts. Package shipping companies
provide up-to-the-minute information on the whereabouts of a package. Retailers
send manufacturers product sales data that the manufacturers use to adjust inven-
tories and production cycles. Manufacturers automatically send their parts suppliers
inventory data and expect the suppliers to use the data to keep a steady stream of
parts flowing.

Data in Today’s Information Systems Environment    11

Problems in Storing and Accessing Data
But being able to store and provide efficient access to a company’s data while also
maintaining its accuracy so that it can be used to competitive advantage is anything
but simple. In fact, several factors make it a major challenge. First and foremost, the
volume or amount of data that companies have is massive and growing all the time. At
the time of this writing, Walmart estimates that its data warehouse (a type of database
we will explore later) alone contains 30 petabytes (30 quadrillion bytes) of data and is
constantly growing. The number of people who want access to the data is also growing:
at one time, only a select group of a company’s own employees were concerned with
retrieving its data, but this has changed. Now, not only do vastly more of a compa-
ny’s employees demand access to the company’s data but also so do the company’s
customers and trading partners. All major banks today give their depositors Internet
access to their accounts. Increasingly, tightly linked “supply chains” require that com-
panies provide other companies, such as their suppliers and customers, with access
to their data. The combination of huge volumes of data and large numbers of people
demanding access to it has created a major performance challenge. How do you sift
through so much data for so many people and give them the data that they want in an
acceptably small amount of time? How much patience would you have with an insur-
ance company that kept you on the phone for five or ten minutes while it retrieved
claim data about which you had a question? Of course, the tremendous advances in
computer hardware, including data storage hardware, have helped—indeed, it would
have been impossible to have gone as far as we have in information systems without
them. But as the hardware continues to improve, the volumes of data and the number
of people who want access to it also increase, making it a continuing struggle to pro-
vide them with acceptable response times.

Other factors that enter into data storage and retrieval include data security, data
privacy, and backup and recovery. Data security involves a company protecting its
data from theft, malicious destruction, deliberate attempts to make phony changes
to the data (e.g. someone trying to increase his own bank account balance), and even
accidental damage by the company’s own employees. Data privacy implies assuring
that even employees who normally have access to the company’s data (much less out-
siders) are given access only to the specific data they need in their work. Put another

1.2  Data as a Competitive Weapon
Think about a company with which you or your
family regularly does business. This might be a
supermarket, a department store, or a pharmacy,
as examples. What kind of data do you think they
collect about their suppliers, their inventory, their
sales, and their customers? What kind of data
do you think they should collect and how do you

think they might be able to use it to gain a com-
petitive advantage?

Question:
Choose one of the companies that you or your
family does business with and develop a plan for
the kinds of data it might collect and the ways
in which it might use the data to gain a business
advantage over its competitors.

Your Turn

12   Chapter 1  Data: The New Corporate Resource

way, sensitive data such as employee salary data and personal customer data should
be accessible only by employees whose job functions require it. Backup and recovery
means the ability to reconstruct data if it is lost or corrupted, say in a hardware failure.
The extreme case of backup and recovery is known as disaster recovery when an infor-
mation system is destroyed by fire, a hurricane, or other calamity. Today, data in “the
cloud” has changed the way that we think about some of these issues. We will explore
this later in this book.

Another whole dimension involves maintaining the accuracy of a company’s data.
Historically, and in many cases even today, the same data is stored several, sometimes
many, times within a company’s information system. Why does this happen? For sev-
eral reasons. Many companies are simply not organized to share data among multiple
applications. Every time a new application is written, new data files are created to store
its data. As recently as the early 1990s, I spoke to a database administration manager
(more on this type of position later) in the securities industry who told me that one
of the reasons he was hired was to reduce duplicate data appearing in as many as
60–70 files! Eventually, the advent of Enterprise Resource Planning (ERP) systems,
which we will discuss later in this book, helped alleviate this problem.

Furthermore, depending on how database files are designed, data can even be
duplicated within a single file. We will explore this issue much more in this book, but
for now, suffice it to say that duplicate data, either in multiple files or in a single file,
can cause major data accuracy problems.

Data as a Corporate Resource
Every corporate resource must be carefully managed so that the company can keep
track of it, protect it, and distribute it to those people and purposes in the company that
need it. Furthermore, public companies have a responsibility to their shareholders
to competently manage the company’s assets. Can you imagine a company’s money
just sort of out there somewhere without being carefully managed? In fact, the chief
financial officer with a staff of accountants and financial professionals is responsible
for the money, with outside accounting firms providing independent audits of it. Typ-
ically vice presidents of personnel and their staffs are responsible for the administra-
tive functions necessary to manage employee affairs. Production managers at various
levels are responsible for parts inventories, and so on. Data is no exception.

But data may just be the most difficult corporate resource to manage. In data, we
have a resource of tremendous volume, billions, trillions, and more individual pieces
of data, each piece of which is different from the next. And it has the characteristic
that much of it is in a state of change at any one time. It’s not as if we’re talking about
managing a company’s employees. Even the largest companies have only a few hun-
dred thousand of them, and they don’t change all that frequently. Or the money a com-
pany has: sure, there is a lot of it, but it’s all the same in the sense that a dollar that goes
to payroll is the same kind of dollar that goes to paying a supplier for raw materials.

As far back as the early to mid-1960s, barely ten years after the introduction of
commercially viable electronic computers, some forward-looking companies began to
realize that storing each application’s data separately, in simple files, was becoming
problematic and would not work in the long run, for just the reasons that we’ve talked
about: the increasing volumes of data (even way back then), the increasing demand
for data access, the need for data security, privacy, backup, and recovery, and the desire
to share data and cut down on data redundancy. Several things were becoming clear.
The task was going to require both a new kind of software to help manage the data

Data in Today’s Information Systems Environment    13

and progressively faster hardware to keep up with the increasing volumes of data and
data access demands. And data-management specialists would have to be developed,
educated, and made responsible for managing the data as a corporate resource.

Out of this need was born a new kind of software, the database management system
(DBMS), and a new category of personnel, with titles like database administrator and
data management specialist. And yes, hardware has progressively gotten faster and
cheaper for the performance it provides. The integration of these advances adds up to
much more than the simple sum of their parts. They add up to the database environment.

The Database Environment
Back in the early 1960s, the emphasis in what was then called data processing was
on programming. Data was little more than a necessary afterthought in the applica-
tion development process and in running the data-processing installation. There was
a good reason for this. By today’s standards, the rudimentary computers of the time
had very small main memories and very simplistic operating systems. Even relatively
basic application programs had to be shoehorned into main memory using low-level
programming techniques and a lot of cleverness. But then, as we progressed further
into the 1960s and beyond, two things happened simultaneously that made this picture
change forever. One was that main memories became progressively larger and cheaper
and operating systems became much more powerful. Plus, computers progressively
became faster and cheaper on a price/performance basis. All these changes had the
effect of permitting the use of higher-level programming languages that were easier
for a larger number of personnel to use, allowing at least some of the emphasis to
shift elsewhere. Well, nature hates a vacuum, and at the same time that all of this was
happening, companies started becoming aware of the value of thinking of data as a
corporate resource and using it as a competitive weapon.

The result was the development of database management systems (DBMS) soft-
ware and the creation of the “database environment.” Supported by ever-improved
hardware and specialized database personnel, the database environment is designed
largely to correct all the problems of the non-database environment. It encourages
data sharing and the control of data redundancy with important improvements in
data accuracy. It permits storage of vast volumes of data with acceptable access and
response times for database queries. And it provides the tools to control data security,
data privacy, and backup and recovery.

This book is a straightforward introduction to the fundamentals of database in the
current information systems environment. It is designed to teach you the important
concepts of the database approach and also to teach you specific skills, such as how
to design relational databases, how to improve database performance, and how to
retrieve data from relational databases using the SQL language. In addition, as you
proceed through the book you will explore such topics as entity-relationship dia-
grams, object-oriented database, database administration, distributed database, data
warehousing, NoSQL database management, blockchain, data in the cloud, and data-
focused applications.

We start with the basics of database and take a step-by-step approach to exploring
all the various components of the database environment. Each chapter progressively
adds more to an understanding of both the technical and managerial aspects of the
field. Database is a very powerful concept. Overall it provides ingenious solutions to
a set of very difficult problems. As a result, it tends to be a multifaceted and complex
subject that can appear difficult when one attempts to swallow it in one gulp. But

14   Chapter 1  Data: The New Corporate Resource

database is approachable and understandable if we proceed carefully, cautiously, and
progressively step by step. And this is an understanding that no one involved in infor-
mation systems can afford to be without.

Summary
Recognition of the commercial importance of data, of storing it, and of retrieving it
can be traced back to ancient times. As trade routes lengthened and cities grew larger,
data became increasingly important. Eventually, the importance of data led to the
development of electromechanical calculating devices and then to modern electronic
computers, complete with magnetic and optical disk-based data storage media.

While the use of data has given many companies a competitive advantage in their
industries, the storage and retrieval of today’s vast amounts of data holds many chal-
lenges. These include speedy retrieval of data when many people try to access the data
at the same time, maintaining the accuracy of the data, the issue of data security, and
the ability to recover the data if it is lost.

The recognition that data is a critical corporate resource and that managing data is
a complex task has led to the development and continuing refinement of specialized
software known as database management systems, the subject of this book.

Key Terms
Balance sheet
Barter
Calculating devices
Census
Compact disk
Competitive advantage
Corporate resource

Data
Database
Database environment
Database management

system
Data storage
Disk drive

Double-entry
bookkeeping

Electromechanical
equipment

Electronic computer
Flash drive
Information processing

Magnetic disk
Magnetic drum
Magnetic tape
Punched cards
Punched paper tape
Record keeping
Token

Questions
  1.	 What did the Middle Eastern shepherds’ pebbles and

sacks, Pascal’s calculating device, and Hollerith’s
punched-card devices all have in common?

  2.	 What did the growth of cities have to do with the
need for data?

  3.	 What did the growth of trade have to do with the
need for data?

  4.	 What did Jacquard’s textile weaving device have to do
with the development of data?

  5.	 Choose what you believe to be the:
	 a.	 One most important
	 b.	 Two most important
	 c.	 Three most important landmark events in the

history of data. Defend your choices.

  6.	 Do you think that computing devices would have been
developed even if specific data needs had not come
along? Why or why not?

  7.	 What did the need for data among ancient Middle East-
ern shepherds have in common with the need for data
of modern corporations?

  8.	 List several problems in storing and accessing data in
today’s large corporations. Which do you think is the
most important? Why?

  9.	 How important an issue do you think data accuracy
is? Explain.

10.	 How important a corporate resource is data compared
to other corporate resources? Explain.

11.	 What factors led to the development of database man-
agement systems?

Exercises    15

Exercises
  1.	 Draw a timeline showing the landmark events in the

history of data from ancient times to the present day.
Do not include the development of computing devices
in this timeline.

  2.	 Draw a timeline for the last four hundred years compar-
ing landmark events in the history of data to landmark
events in the development of computing devices.

  3.	 Draw a timeline for the last two hundred years com-
paring the development of computing devices to the
development of data storage media.

  4.	 Invent a fictitious company in one of the following
industries and list several ways in which the company
can use data to gain a competitive advantage.

	 a.	 Banking
	 b.	 Insurance
	 c.	 Manufacturing
	 d.	 Airlines
  5.	 Invent a fictitious company in one of the following

industries and describe the relationship between data
as a corporate resource and the company’s other corpo-
rate resources.

	 a.	 Banking
	 b.	 Insurance
	 c.	 Manufacturing
	 d.	 Airline

  1.	 Worldwide, vacation cruises on increasingly larger
ships have been steadily growing in popularity. Peo-
ple like the all-inclusive price for food, room, and en-
tertainment, the variety of shipboard activities, and
the ability to unpack just once and still visit several
different places. The first of the two minicases used
throughout this book is the story of Happy Cruise
Lines. Happy Cruise Lines has several ships and
operates (begins its cruises) from a number of ports.
It has a variety of vacation cruise itineraries, each
involving several ports of call. The company wants
to keep track of both its past and future cruises and
of the passengers who sailed on the former and
are booked on the latter. Actually, you can think
of a cruise line as simply a somewhat specialized
instance of any passenger transportation company,
including airlines, trains, and buses. Beyond that, a
cruise line is, after all, a business and like any other
business of any kind it must be concerned about its
finances, employees, equipment, and so forth.

	 a.	 Using this introductory description of (and hints
about) Happy Cruise Lines, make a list of the
things in Happy Cruise Lines’ business environ-
ment about which you think the company would
want to maintain data. Do some or all of these
qualify as “corporate resources”? Explain.

	 b.	 Develop some ideas about how the data you
identified in part a above can be used by Happy
Cruise Lines to gain a competitive advantage
over other cruise lines.

  2.	 Sports are universally enjoyed around the globe.
Whether the sport is a team or individual sport,
whether a person is a participant or a spectator,

and whether the sport is played at the amateur or
professional level, one way or another this kind of
activity can be enjoyed by people of all ages and
interests. Furthermore, professional sports today are
a big business involving very large sums of money.
And so, the second of the two minicases to be used
throughout this book is the story of the professional
Super Baseball League. Like any sports league, the
Super Baseball League wants to maintain informa-
tion about its teams, coaches, players, and equip-
ment, among other things. If you are not particularly
familiar with baseball or simply prefer another sport,
bear in mind that most of the issues that will come
up in this minicase easily translate to any team sport
at the amateur, college, or professional levels. After
all, all team sports have teams, coaches, players,
fans, equipment, and so forth. When specialized
equipment or other baseball-specific items come up,
we will explain them.

	 a.	 Using this introductory description of (and hints
about) the Super Baseball League, list the things
in the Super Baseball League’s business
environment about which you think the league
would want to maintain data. Do some or all of
these qualify as “corporate resources,” where the
term is broadened to include the resources of a
sports league? Explain.

	 b.	 Develop some ideas about how the data that you
identified in part a above can be used by the
Super Baseball League to gain a competitive
advantage over other sports leagues for the fans’
interest and entertainment dollars (Euros, pesos,
yen, etc.).

Minicases

16

CHAPTER 2

Data Modeling

Before reaching database management, there is an important
preliminary to cover. In order ultimately to design databases to
support an organization, we must have a clear understanding of
how the organization is structured and how it functions. We have
to understand its components, what they do, and how they relate
to each other. The bottom line is that we have to devise a way of
recording, of diagramming, the business environment. This is the
essence of data modeling.

Introduction
The diagramming technique we will use is called the entity-­relationship or
E-­R model. It is well named, as it diagrams entities (together with their attributes)
and the relationships among them. Actually, there are many variations of E-R dia-
grams and drawing them is as much an art as a science. We will use the E-R diagram-
ming technique provided by Microsoft Visio with the “crow’s foot” variation.

To begin, an entity is an object or event in our environment that we want to keep
track of. A person is an entity. So is a building, a piece of inventory sitting on a shelf,
a finished product ready for sale, and a sales meeting (an event). An attribute is a

OBJECTIVES

Explain the concept and practical use of data mod-
eling.

Recognize which relationships in the business environ-
ment are unary, binary, and ternary relationships.

Describe one-to-one, one-to-many, and many-to-many
unary, binary, and ternary relationships.

Recognize and describe intersection data.
Model data in business environments by drawing

entity-relationship diagrams that involve unary,
binary, and ternary relationships.

CHAPTER OUTLINE
Introduction
Binary Relationships

What Is a Binary Relationship?
Cardinality
Modality
More About Many-to-Many

Relationships
Unary Relationships

One-to-One Unary Relationship
One-to-Many Unary Relationship
Many-to-Many Unary Relationship

Ternary Relationships
Example: The General Hardware

Company
Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Summary

Binary Relationships    17

property or characteristic of an entity. Examples of attributes include an employee’s
employee number, the weight of an automobile, a company’s address, or the date
of a sales meeting. Figure 2.1, with its rectangular shape, represents a type of entity.
The name of the entity type (SALESPERSON) is set in caps at the top of the box. The
entity type’s attributes are shown below it. The attribute label PK and the boldface
type denote the one or more attributes that constitute the entity type’s unique iden-
tifier. Visio uses the abbreviation PK to stand for “primary key,” which is a concept
we define later in this book. For now, just consider these attributes as the entity type’s
unique identifier.

Entities in the real world never really stand alone. They are typically associated
with one another. Parents are associated with their children, automobile parts are
associated with the finished automobile in which they are installed, firefighters are
associated with the fire engines to which they are assigned, and so forth. Recognizing
and recording the associations among entities provides a far richer description of an
environment than recording the entities alone. In order to deal intelligently and use-
fully with the associations or relationships among entities, we have to recognize
that there are several different kinds of relationships and several different aspects of
describing them. The most basic way of categorizing a relationship is by the number
of entity types involved.

Binary Relationships
What Is a Binary Relationship?
The simplest kind of relationship is known as a binary relationship. A binary rela-
tionship is a relationship between two entity types. Figure 2.2 shows a small E-R dia-
gram with a binary relationship between two entity types, salespersons and products.

One
Salesperson

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

FIGURE 2.1  An E-R model entity and its attributes

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Many
Salespersons

Many
Products

Sells

Sold by

FIGURE 2.2  A binary relationship

18   Chapter 2  Data Modeling

The E-R diagram in Figure 2.2 tells us that a salesperson “sells” products. Conversely,
products are “sold by” salespersons. That’s good information, but we can do better
than that at the price of a very small increase in effort. Just knowing that a salesperson
sells products leaves open several obvious and important questions. Is a particular
salesperson allowed to sell only one kind of product, or two, or three, or all of the
available products? Can a particular product be sold by only a single salesperson or by
all salespersons? Might we want to keep track of a new salesperson who has just joined
the company but has not yet been assigned to sell any products (assuming that there is
indeed a restriction on which salespersons can sell which products)?

Cardinality
One-to-One Binary Relationship  Figure 2.3 shows three binary relationships
of different cardinalities, representing the maximum number of entities that can
be involved in a particular relationship. Figure 2.3a shows a one-to-one (1–1) binary
relationship, which means that a single occurrence of one entity type can be asso-
ciated with a single occurrence of the other entity type and vice versa. A particular

OFFICE

PK Office
 Number

Telephone
Size

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Works in

Occupied by

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells to

Buys from

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells

Sold by

One
Salesperson

One
Office

Many
Customers

Many
Products

One
Salesperson

Many
Salespersons

(a) One-to-one (1–1) binary relationship

(b) One-to-many (1–M) binary relationship

(c) Many-to-many (M–M) binary relationship

FIGURE 2.3  Binary relationships with cardinalities

Binary Relationships    19

salesperson is assigned to one office. Conversely, a particular office (in this case they
are all private offices!) has just one salesperson assigned to it. Note the “bar” or “one”
symbol on either end of the relationship in the diagram indicating the maximum one
cardinality. The way to read these diagrams is to start at one entity, read the relation-
ship on the connecting line, pick up the cardinality on the other side of the line near the
second entity, and then finally reach the other entity. Thus, Figure 2.3a, reading from
left to right, says, “A salesperson works in one (really at most one, since it is a maxi-
mum) office.” The bar or one symbol involved in this statement is the one just to the
left of the office entity box. Conversely, reading from right to left, “An office is occupied
by one salesperson.”

One-to-Many Binary Relationship  Associations can also be multiple in nature.
Figure 2.3b shows a one-­to-­many (1–M) binary relationship between salespersons
and customers. The “crow’s foot” device attached to the customer entity box represents
the multiple association. Reading from left to right, the diagram indicates that a sales-
person sells to many customers. (Note that “many,” as the maximum number of occur-
rences that can be involved, means a number that can be 1, 2, 3, . . ., n. It also means
that the number is not restricted to being exactly one, which would require the “one”
or “bar” symbol instead of the crow’s foot.) Reading from right to left, Figure 2.3b says
that a customer buys from only one salesperson. This is reasonable, indicating that in
this company each salesperson has an exclusive territory and thus each customer can
be sold to by only one salesperson from the company.

Many-to-Many Binary Relationship  Figure 2.3c shows a many-­to-­many (M–M)
binary relationship among salespersons and products. A salesperson is authorized
to sell many products; a product can be sold by many salespersons. By the way, in
some circumstances, in either the 1–M or M–M case, “many” can be either an exact
number or have a known maximum value. For example, a company rule may set a
limit of a maximum of ten customers in a sales territory. Then the “many” in the 1–M
relationship of Figure 2.3b can never be more than ten (a salesperson can have many
customers but not more than ten). Sometimes people include this exact number or
maximum next to or even instead of the crow’s foot in the E-R diagram.

Modality
Figure 2.4 shows the addition of the modality, the minimum number of entity occur-
rences that can be involved in a relationship. In our particular salesperson environ-
ment, every salesperson must be assigned to an office. On the other hand, a given
office might be empty or it might be in use by exactly one salesperson. This situation is
recorded in Figure 2.4a, where the “inner” symbol, which can be a zero or a one, rep-
resents the modality—the minimum—and the “outer” symbol, which can be a one or
a crow’s foot, represents the cardinality—the maximum. Reading Figure 2.4a from left
to right tells us that a salesperson works in a minimum of one and a maximum of one
office, which is another way of saying exactly one office. Reading from right to left, an
office may be occupied by or assigned to a minimum of no salespersons (i.e. the office
is empty) or a maximum of one salesperson.

Similarly, Figure 2.4b indicates that a salesperson may have no customers or many
customers. How could a salesperson have no customers? (What are we paying her
for?!?) Actually, this allows for the case in which we have just hired a new salesperson
and have not as yet assigned her a territory or any customers. On the other hand, a

20   Chapter 2  Data Modeling

customer is always assigned to exactly one salesperson. We never want customers to be
without a salesperson—how would they buy anything from us when they need to? We
never want to be in a position of losing sales! If a salesperson leaves the company, the
company’s procedures require that another salesperson or, temporarily, a sales man-
ager be immediately assigned the departing salesperson’s customers. Figure 2.4c says
that each salesperson is authorized to sell at least one or many of our products and
each product can be sold by at least one or many of our salespersons. This includes the
extreme, but not surprising, case in which each salesperson is authorized to sell all the
products and each product can be sold by all the salespersons.

More About Many-to-Many Relationships
Intersection Data  Generally, we think of attributes as facts about entities. Each
salesperson has a salesperson number, a name, a commission percentage, and a year
of hire. At the entity occurrence level, for example, one of the salespersons has sales-
person number 528, the name Jane Adams, a commission percentage of 15%, and the
year of hire of 2003. In an E-R diagram, these attributes are written or drawn together

Works in

Occupied by

OFFICE

PK Office
 Number

Telephone
Size

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells to

Buys from

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells

Sold by

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

(a) One-to-one (1–1) binary relationship

(b) One-to-many (1–M) binary relationship

(c) Many-to-many (M–M) binary relationship

One
Salesperson

One
Salesperson

One
Salesperson

No
Salespersons

One
Office

Many
Customers

No
Customers

Many
Products

One
Product

Many
Salespersons

Modality

Cardinality

FIGURE 2.4  Binary relationships with cardinalities (maximums) and modalities (minimums)

Binary Relationships    21

with the entity, as in Figure 2.1 and the succeeding figures. This certainly appears to be
very natural and obvious. Are there ever any circumstances in which an attribute can
describe something other than an entity?

Consider the many-to-many relationship between salespersons and products in
Figure 2.4c. As usual, salespersons are described by their salesperson number, name,
commission percentage, and year of hire. Products are described by their product
number, name, and unit price. But, what if there is a requirement to keep track of the
number of units (call it “quantity”) of a particular product that a particular salesperson
has sold? Can we add the quantity attribute to the product entity box? No, because for
a particular product, while there is a single product number, product name, and unit
price, there would be lots of “quantities,” one for each salesperson selling the product.
Can we add the quantity attribute to the salesperson entity box? No, because for a
particular salesperson, while there is a single salesperson number, salesperson name,
commission percentage, and year of hire, there will be lots of “quantities,” one for each
product that the salesperson sells. It makes no sense to try to put the quantity attribute
in either the salesperson entity box or the product entity box. While each salesperson
has a single salesperson number, name, commission percentage, and year of hire, each
salesperson has many “quantities,” one for each product he sells. Similarly, while each
product has a single product number, product name, and unit price, each product has
many “quantities,” one for each salesperson who sells that product. But an entity box
in an E-R diagram is designed to list the attributes that simply and directly describe the
entity, with no complications involving other entities. Putting quantity in either the
salesperson entity box or the product entity box just will not work.

The quantity attribute doesn’t describe either the salesperson alone or the product
alone. It describes the combination of a particular salesperson and a particular prod-
uct. In general, we can say that it describes the combination of a particular occurrence
of one entity type and a particular occurrence of the other entity type. Let’s say that
since salesperson number 137 joined the company, she has sold 170 units of product
number 24 013. The quantity 170 doesn’t make sense as a description or characteristic
of salesperson number 137 alone. She has sold many different kinds of products. To
which one does the quantity 170 refer? Similarly, the quantity 170 doesn’t make sense
as a description or characteristic of product number 24 013 alone. It has been sold by
many different salespersons.

In fact, the quantity 170 falls at the intersection of salesperson number 137 and prod-
uct number 24013. It describes the combination of or the association between that par-
ticular salesperson and that particular product and it is known as intersection data.
Figure 2.5 shows the many-to-many relationship between salespersons and products
with the intersection data, quantity, represented in a separate box attached to the rela-
tionship line. That is the natural place to draw it. Pictorially, it looks as if it is at the
intersection between the two entities, but there is more to it than that. The intersec-
tion data describes the relationship between the two entities. We know that an occur-
rence of the Sells relationship specifies that salesperson 137 has sold some of product
24013. The quantity 170 is an attribute of this occurrence of that relationship, further
describing this occurrence of the relationship. Not only do we know that salesperson
137 sold some of product 24013 but we know how many units of that product that sales-
person sold.

Associative Entity  Since we know that entities can have attributes and now we see
that many-to-many relationships can have attributes, too, does that mean that entities
and many-to-many relationships can in some sense be treated in the same way within
E-R diagrams? Indeed they can! Figure 2.6 shows the many-to-many relationship Sells

22   Chapter 2  Data Modeling

converted into the associative entity SALES. An occurrence of the SALES associative
entity does exactly what the many-to-many relationship did: it indicates a relationship
between a salesperson and a product, specifically the fact that a particular salesperson
has been involved in selling a particular product, and includes any intersection data
that describes this relationship. Note very, very carefully the reversal of the cardinal-
ities and modalities when the many-to-many relationship is converted to an associa-
tive entity. SALES is now a kind of entity in its own right. Again, a single occurrence
of the new SALES entity type records the fact that a particular salesperson has been
involved in selling a particular product. A single occurrence of SALES relates to a
single occurrence of SALESPERSON and to a single occurrence of PRODUCT, which
is why the diagram indicates that a sales occurrence involves exactly one salesperson
and exactly one product. On the other hand, since a salesperson sells many products,
the diagram shows that a salesperson will tie into many sales occurrences. Similarly,
since a product is sold by many salespersons, the diagram shows that a product will tie
into many sales occurrences.

If the many-to-many relationship E-R diagram style of Figure 2.5 is equivalent to
the associative entity style of Figure 2.6, which one should you use? This is an in-
stance in which this type of diagramming is an art with a lot of leeway for personal
taste. However, you should be aware that over time the preference has shifted toward
the associative entity style of Figure 2.6, and that is what we will use from here on in
this book.

Sells

Sold by

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Quantity

FIGURE 2.5  Many-to-many binary relationship with intersection data

Sold

Sold by

Sold

Sold
Product

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESSALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PK

Quantity

PK Product
 Number

Salesperson
 Number

FIGURE 2.6  Associative entity with intersection data

Binary Relationships    23

The Unique Identifier in Many-to-Many Relationships  Since, as we have just
seen, a many-to-many relationship can appear to be a kind of an entity, complete with
attributes, it also follows that it should have a unique identifier, like other entities. (If
this seems a little strange or even unnecessary here, it will become essential later in
the book when we actually design databases based on these E-R diagrams.) In its most
basic form, the unique identifier of the many-to-many relationship or the associative
entity is the combination of the unique identifiers of the two entities in the many-
to-many relationship. So, the unique identifier of the many-to-many relationship of
Figure 2.5 or, as shown in Figure 2.6, of the associative entity, is the combination of the
Salesperson Number and Product Number attributes.

Sometimes, an additional attribute or attributes must be added to this combination
to produce uniqueness. This often involves a time element. As currently constructed,
the E-R diagram in Figure 2.6 indicates the quantity of a particular product sold by a
particular salesperson since the salesperson joined the company. Thus, there can be only
one occurrence of SALES combining a particular salesperson with a particular prod-
uct. But if, for example, we wanted to keep track of the sales on an annual basis, we
would have to include a year attribute and the unique identifier would be Salesperson
Number, Product Number, and Year. Clearly, if we want to know how many units of
each product were sold by each salesperson each year, the combination of Salesperson
Number and Product Number would not be unique because for a particular sales-
person and a particular product, the combination of those two values would be the
same each year! Year must be added to produce uniqueness, not to mention to make it
clear in which year a particular value of the Quantity attribute applies to a particular
salesperson-product combination.

The third and last possibility occurs when the nature of the associative entity is such
that it has its own unique identifier. For example, a company might specify a unique
serial number for each sales record. Another example would be the many-to-many
relationship between motorists and police officers who give traffic tickets for moving
violations. (Hopefully it’s not too many for each motorist!) The unique identifier could
be the combination of police officer number and motorist driver’s license number plus
perhaps date and time. But, typically, each traffic ticket has a unique serial number
and this would serve as the unique identifier.

2.1  Modeling Your World—Part 1
Whether it’s a business environment or a per-
sonal environment, the entities, attributes, and
relationships around us can be modeled with
E-R diagrams.

Question:
How many binary relationships can you think of
in your school environment? The entities might be

students, professors, courses, sections, buildings,
departments, textbooks, and so forth. Make a list
of the binary relationships between pairs of these
entities and diagram them with E-R diagrams. Do
any of the many-to-many binary relationships have
intersection data? Explain.

Your Turn

24   Chapter 2  Data Modeling

Unary Relationships
Unary relationships associate occurrences of an entity type with other occurrences
of the same entity type. Take the entity person, for example. One person may be mar-
ried to another person and vice versa. One person may be the parent of other people;
conversely, a person may have another person as one of their parents.

One-to-One Unary Relationship
Figure 2.7a shows the one-­to-­one unary relationship called Back-Up involving the
salesperson entity. The salespersons are organized in pairs as backup to each other
when one is away from work. Following one of the links, say the one that extends
from the right side of the salesperson entity box, we can say that salesperson number
137 backs up salesperson number 186. Then, going in the other direction, salesperson
number 186 backs up salesperson 137. Notice that in each direction the modality of one
rather than zero forbids the situation of a salesperson not having a backup.

One-to-Many Unary Relationship
Some of the salespersons are also sales managers, managing other salespersons. A
sales manager can manage several other salespersons. Further, there can be several
levels of sales managers, i.e. several low-level sales managers can be managed by a
higher-level sales manager. Each salesperson (or sales manager) is managed by exactly
one sales manager. This situation describes a one-­to-­many unary relationship.
Consider Figure 2.7b and follow the downward branch out of its salesperson entity
box. It says that a salesperson manages zero to many other salespersons, meaning that
a salesperson may not be a sales manager (the zero modality case) or may be a sales
manager with several subordinate salespersons (the many cardinality case). Following
the branch that extends from the right side of the salesperson entity box, the diagram
says that a salesperson is managed by exactly one other salesperson (who must, of
course, be a sales manager).

Many-to-Many Unary Relationship
Unary relationships also come in the many-to-many variety. One classic example of
a many-­to-­many unary relationship is known as the “bill of materials” problem.
Consider a complex mechanical object like an automobile, an airplane, or a large fac-
tory machine tool. Any such object is made of basic parts like nuts and bolts that are
used to make other components or sub-assemblies of the object. Small sub-assemblies
and basic parts go together to make bigger sub-assemblies, and so on until ultimately
they form the entire object. Each basic part and each sub-assembly can be thought of
as a “part” of the object. Then, the parts are in a many-to-many unary relationship to
each other. Any one particular part can be made up of several other parts while at the
same time itself being a component of several other parts.

In Figure 2.7c, think of the products sold in hardware and home improvement stores.
Basic items like hammers and wrenches can be combined and sold as sets. Larger tool
sets can be composed of smaller sets plus additional single tools. All of these, single
tools and sets of all sizes can be classified as products. Thus, as shown in Figure 2.7c,
a product can be part of no other products or part of several other products. Going in

Unary Relationships    25

COMPONENT

PK

Quantity

PK Sub-assembly
 Number

Product
 Number

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Backs-up

Backed-up by

Manages

Reports to

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

(a) One-to-one (1–1) unary relationship

(b) One-to-many (1–M) unary relationship

Part of
Includes

Part of
Includes

One
Salesperson

One
Salesperson

One
Salesperson

Many
Products

Many
Products

No
Products

No
Products

No
Salespersons

Many
Salespersons

Salesperson
 Number

(c) Many-to-many (M–M) unary relationship FIGURE 2.7  Unary relationships

26   Chapter 2  Data Modeling

the reverse direction, a product can be composed of no other products or be composed
of several other products.

Ternary Relationships
A ternary relationship involves three different entity types. Assume for the moment
that any salesperson can sell to any customer. Then, Figure 2.8 shows the most gen-
eral, many-to-many-to-many ternary relationship among salespersons, customers,
and products. It means that we know which salesperson sold which product to which
customer. Each sale has intersection data consisting of the date of the sale and the
number of units of the product sold.

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALE

PK Salesperson
 Number

PK Product
 Number

PK Customer
 Number

Date
Quantity

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

One
Salesperson

Many
Salespersons

One
Customer

Many
Customers

Purchased
Sold to

Sold

Sold
Product

Sold

Sold by

One
Product

Many
Products

FIGURE 2.8  Ternary relationship

2.2  Modeling Your World—Part 2
Can you think of unary and ternary relationships in
your world?

Question:
How many unary and ternary relationships can
you think of in your school environment? As in Your

Turn 2.1, make a list of the unary and ternary rela-
tionships in the school environment and diagram
them with E-R diagrams. Do any of the many-to-
many-to-many ternary relationships have intersec-
tion data? Explain.

Your Turn

Example: The General Hardware Company    27

Example: The General Hardware Company
Figure 2.9 is the E-R diagram for the General Hardware Company, parts of which we
have been using throughout this chapter. General Hardware is a wholesaler and dis-
tributor of various manufacturers’ tools and other hardware products. Its customers
are hardware and home improvement stores, which in turn sell the products at retail
to individual consumers. Again, as a middleman it buys its goods from the manufac-
turers and then sells them to the retail stores. How exactly does General Hardware
operate? Now that we know something about E-R diagrams, let’s see if we can figure
it out from Figure 2.9!

Begin with the SALESPERSON entity box in the middle on the left. SALES-
PERSON has four attributes with one of them, Salesperson Number, serving as the
unique identifier of the salespersons. Looking upward from SALESPERSON, a sales-
person works in exactly one office (indicated by the double ones or bars encountered
on the way to the OFFICE entity). OFFICE has three attributes; Office Number is
the unique identifier. Looking back downward from the OFFICE entity box, an office
has either no salespersons working in it (the zero modality symbol) or one sales-
person (the one or bar cardinality symbol). Starting again at the SALESPERSON
entity box and moving to the right, a salesperson has no customers or many cus-
tomers. (Remember that the customers are hardware or home improvement stores.)
The CUSTOMER entity has three attributes; Customer Number is the unique iden-
tifier. In the reverse direction, a customer must have exactly one General Hardware
salesperson.

Below the CUSTOMER entity is the CUSTOMER EMPLOYEE entity. According
to the figure, a customer must have at least one but can have many employees. An
employee works for exactly one customer. This is actually a special situation. General
Hardware only has an interest in maintaining data about the people who are its cus-
tomers’ employees as long as their employer remains a customer of General Hard-
ware. If a particular hardware store or home improvement chain stops buying goods
from General Hardware, then General Hardware no longer cares about that store’s or
chain’s employees. Furthermore, while General Hardware assumes that each of its
customers assigns their employees unique employee numbers, those numbers can be
assumed to be unique only within that customer store or chain. Thus, the unique identi-
fier for a customer employee must be the combination of the Customer Number and
the Employee Number attributes. In this situation, CUSTOMER EMPLOYEE is called
a dependent or weak entity.

Returning to the SALESPERSON entity box and looking downward, there is a one-
to-many relationship between salespersons and sales. But, below that, there is also a
one-to-many relationship from products to sales. Also note that the unique identifier
of SALES is the combination of Salesperson Number and Product Number. This is the
signal that there is a many-to-many relationship between salespersons and products! A
salesperson is authorized to sell at least one and generally many products. A product is
sold by at least one and generally many salespersons. The PRODUCT entity has three
attributes, with Product Number being the unique identifier. The attribute Quantity is
intersection data in the many-to-many relationship and so becomes an attribute in the
associative entity SALES that links salespersons with the products they have sold in a
many-to-many relationship.

28   Chapter 2  Data Modeling

PK Employee
 Number

Customer
 Number

PK

CUSTOMER
EMPLOYEE

Employee
 Name
Title

Office
 Number

OFFICE

PK

Telephone
Size

Salesperson
 Number

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

Customer
 Number

CUSTOMER

PK

Customer
 Name
HQ City

Product
 Number

PRODUCT

PK

Product
 Name
Unit Price

PK Product
 Number

Salesperson
 Number

SALES

PK

Quantity

Occupied by
Works in

Sells to

Buys from

Sold
Sold by

Sold

Sold
Product

Employs

Employed by

FIGURE 2.9  The General Hardware Company
E-R diagram

Example: Good Reading Book Stores    29

Example: Good Reading Book Stores
Figure 2.10 shows the E-R diagram for Good Reading Bookstores. Good Reading is a
chain of bookstores that wants to keep track of the books that it sells, their publishers,
their authors, and the customers who buy them. The BOOK entity has four attrib-
utes. Book Number is the unique identifier. A book has exactly one publisher. Pub-
lisher Name is the unique identifier of the PUBLISHER entity. A publisher may have
(and generally has) published many books that Good Reading carries; however, Good
Reading also wants to be able to keep track of some publishers that currently have no
books in Good Reading’s inventory (note the zero-modality symbol from PUBLISHER

Publisher
 Name

PUBLISHER

PK

City
Country
President
Year Founded

Customer
 Number

Author
 Number

Book
 Number

BOOK

PK

Book Name
Publication
 Year
Pages

PK Author
 Number

Book
 Number

WROTE

PK

PK Customer
 Number

Book
 Number

CUSTOMER

PK

Customer
 Name
Street
City
State
Country

AUTHOR

PK

Author Name
Year Born
Year Died

SALE

PK

Date
Price
Quantity

Published

Published by Wrote

Written by

Wrote
Written by

Bought

Bought by

Sold
In sale

FIGURE 2.10  Good Reading Bookstores entity-relationship diagram

2.3  Modeling Your World—Part 3
Now it’s time to put the university environment
all together.

Question:
Create one comprehensive E-R diagram for your
university environment that you developed in Your
Turn Parts 1 and 2.

Your Turn

30   Chapter 2  Data Modeling

toward BOOK). A book must have at least one author but can have many (where in
this case “many” means a few, generally two or three at most). For a person to be of
interest to Good Reading as an author, she must have written at least one and possibly
many books that Good Reading carries. Note that there is a many-to-many relationship
between the BOOK and AUTHOR that is realized in the associative entity WROTE,
which has no intersection data. The company wants to keep track of which authors
wrote which books, but there are no attributes that further describe that many-to-
many relationship. The associative entity SALE indicates that there is a many-to-many
relationship between books and customers. A book can be involved in many sales and
so can a customer. But a particular sale involves just one book and one customer. Date,
Price, and Quantity are intersection data in the many-to-many relationship between
the BOOK and CUSTOMER entities.

Does this make sense? Might a customer have bought several copies of the same
book on the same date? After all, that’s what the presence of the Quantity attribute
implies. And might she have then bought more copies of the same book on a later
date? Yes to both questions! A grandmother bought a copy of a book for each of three
of her grandchildren one day and they liked it so much that she returned and bought
five more copies of the same book for her other five grandchildren several days later.
By the way, notice that the modality 0 going from book to sale says that a book may not
have been involved in any sales (maybe it just came out). The modality of 1 going from
customer to book says that for a person to be considered a customer, he must have par-
ticipated in at least one sale, which is reasonable.

Example: World Music Association
The World Music Association (WMA) is an organization that maintains informa-
tion about its member orchestras and the recordings they have made. The WMA E-R
diagram in Figure 2.11 shows the information about the orchestras and their musi-
cians across the top and the information about the recordings in the rest of the dia-
gram. Each orchestra has at least one and possibly many musicians. (In this case, the
modality expressing “at least one” is a technicality. Certainly an orchestra must have
many musicians.) A musician might not work for any orchestra (perhaps she is cur-
rently unemployed but WMA wants to keep track of her anyway) or may work for just
one orchestra. A musician may not be a college graduate or may have several college
degrees. A degree belongs to just one musician (for the moment we ignore the possibil-
ity that more than one musician earned the same degree from the same university in
the same year). Since the DEGREE entity is dependent on the MUSICIAN entity, the
unique identifier for DEGREE is the combination of the Musician Number and Degree
(e.g. B.A.) attributes.

Looking downward from the ORCHESTRA entity box, an orchestra may have made
no recordings of a particular composition or may have made many. In the reverse
direction, a composition may not have been recorded by any orchestra (but we still
want to maintain data about it) or may have been recorded by many orchestras. For
a particular recording, we note the year of the recording and the retail price, as inter-
section data of the many-to-many relationship between orchestras and compositions.
In fact, RECORDING is an associative entity. A composer may have several compo-
sitions to his credit but must have at least one to be of interest to WMA. A composi-
tion is associated with exactly one composer. COMPOSITION is a dependent entity

Example: Lucky Rent-A-Car    31

to COMPOSER, which means that the unique identifier of COMPOSITION is the
combination of Composer Name and Composition Name. After all, there could be
Beethoven’s “Third Symphony” and Mozart’s “Third Symphony.” This has an impor-
tant implication for the RECORDING associative entity. To uniquely identify a record-
ing (and attach the year and price intersection data to it) requires an Orchestra Name,
Composition Name, and Composer Name.

Example: Lucky Rent-A-Car
Lucky Rent-A-Car’s business environment is, obviously, centered on its cars. This is
literally true in its E-R diagram, shown in Figure 2.12. A car was manufactured by
exactly one manufacturer. A manufacturer manufactured at least one and generally
many of Lucky’s cars. A car has had many maintenance events (but a brand new car
may not have had any, yet). A car may not have been rented to any customers (again,
the case of a brand new car) or to many customers. A customer may have rented
many cars from Lucky, and to be in Lucky’s business environment must have rented
at least one. Rental Date, Return Date, and Total Cost are intersection data to the
many-to-many relationship between CAR and CUSTOMER, as shown in the associa-
tive entity RENTAL.

Orchestra
 Name

ORCHESTRA

PK

City
Country
Music
 Director

Orchestra
 Name

Composer
 Name

Musician
 Number

MUSICIAN

PK

Musician
 Name
Instrument
Annual
 Salary

PK Degree

Musician
 Number

DEGREE

PK

University
Year

PK Composer
 Name

Composition
 Name

RECORDING

PK

Composition
 Name

PK

Composer
 Name

PK

Year
Price

COMPOSER

PK

Country
Date of Birth

COMPOSITION

PK

Year

Employs

Employed by Earned by

Earned

Recorded

Contains

Wrote

Written by

Recorded
Recorded by

FIGURE 2.11  World Music Association entity-relationship diagram

32   Chapter 2  Data Modeling

Summary
Being able to express entities, attributes, and relationships is an important preliminary
step toward database management. The entity-relationship model is a diagramming
technique that gives us this capability. The E-R model can display unary relationships
(relationships between entities of the same type), binary relationships (relationships
between entities of two different types), and ternary relationships (relationships between
entities of three different types). Based on the number of distinct entities involved in
a relationship, we expand this to one-to-one, one-to-many, and many-to-many unary
relationships, one-to-one, one-to-many, and many-to-many binary relationships, and
ternary relationships (which we consider to in general be many-to-many-to-many).

PK Customer
 Number

Car Serial
 Number

RENTAL

PK

Rental Date
Return Date
Total Cost

Manufacturer
 Name

MANUFACTURER

PK

Manufacturer
 Country
Sales Rep
 Name
Sales Rep
 Number

Car Serial
 Number

CAR

PK

Model
Year
Class

Customer
 Number

CUSTOMER

PK

Customer
 Name
Customer
 Address
Customer
 Credit Rating

MAINTENANCE
EVENT

Manufactured
Manufactured by

Rented

Car rented

Repaired
Car Repaired

Rented
Rented by

Repair
 Number

PK

Date
Procedure
Mileage
Repair Time

FIGURE 2.12  Lucky Rent-A-Car entity-relationship diagram

Exercises    33

Key Terms
Associative entity
Attribute
Binary relationship
Cardinality
Data modeling

Entity
Entity-relationship

(E-R) diagram
Entity-relationship

(E-R) model

Intersection data
Many-to-many

relationship
Modality
One-to-many relationship

One-to-one relationship
Relationship
Ternary relationship
Unary relationship
Unique identifier

Other terms and concepts discussed include cardinality (the maximum number
of entities that can be involved in a particular relationship), modality (the minimum
number of entity occurrences that can be involved in a relationship), intersection data
(data that describes a many-to-many relationship), and associative entities.

Questions
  1.	 What is data modeling? Why is it important?
  2.	 What is the entity-relationship model?
  3.	 What is a relationship?
  4.	 What are the differences among a unary relationship, a

binary relationship, and a ternary relationship?
  5.	 Explain and compare the cardinality of a relationship

and the modality of a relationship.
  6.	 Explain the difference between a one-to-one, a one-to-

many, and a many-to-many binary relationship.
  7.	 What is intersection data in a many-to-many binary

relationship? What does the intersection data describe?
  8.	 Can a many-to-many binary relationship have no inter-

section data? Explain.
  9.	 Can intersection data be placed in the entity box of

one of the two entities in the many-to-many relation-
ship? Explain.

10.	 What is an associative entity? How does intersection
data relate to an associative entity?

11.	 Describe the three cases of unique identifiers for as-
sociative entities.

12.	 Describe the concept of the unary relationship.
13.	 Explain how a unary relationship can be described as

one-to-one, one-to-many, and many-to-many if only
one entity type is involved in the relationship.

14.	 Describe the ternary relationship concept.
15.	 Can a ternary relationship have intersection

data? Explain.
16.	 What is a dependent entity? (See the description in the

General Hardware example.)

Exercises
  1.	 Draw an entity-relationship diagram that describes the

following business environment.
The city of Chicago, IL, wants to maintain information
about its extensive system of high schools, including
its teachers and their university degrees, its students,
administrators, and the subjects that it teaches.

Each school has a unique name, plus an address,
telephone number, year built, and size in square feet.
Students have a student number, name, home address,
home telephone number, current grade, and age. Re-
garding a student’s school assignment, the school sys-
tem is only interested in keeping track of which school

a student currently attends. Each school has several
administrators, such as the principal and assistant prin-
cipals. Administrators are identified by an employee
number and also have a name, telephone number, and
office number.

Teachers are also identified by an employee number
and each has a name, age, subject specialty such as
English (assume only one per teacher), and the year
that they entered the school system. Teachers tend to
move periodically from school to school and the school
system wants to keep track of the history of which
schools the teacher has taught in, including the current

34   Chapter 2  Data Modeling

school. Included will be the year in which the teacher
entered the school, and the highest pay rate that the
teacher attained at the school. The school system wants
to keep track of the universities that each teacher at-
tended, including the degrees earned and the years in
which they were earned. The school system wants to re-
cord each university’s name, address, year founded, and
Internet URL (address). Some teachers, as department
heads, supervise other teachers. The school system
wants to keep track of these supervisory relationships
but only for teachers’ current supervisors.

The school system also wants to keep track of the
subjects that it offers (e.g. French I, Algebra III). Each

subject has a unique subject number, a subject name,
the grade level in which it is normally taught, and the
year in which it was introduced in the school system.
The school system wants to keep track of which teacher
taught which student which subject, including the year
this happened and the grade received.

  2.	 The following entity-relationship diagram describes the
business environment of Video Centers of Europe, Ltd.,
which is a chain of videotape and DVD rental stores.
Write a verbal description of how VCE conducts its
business, based on this E-R diagram.

Recorded on

Contains

Rents

Rented by

Acts in

Has actor

Owns

Located in

Is rented

Involves

Name

ACTOR

PK

Date of Birth
Nationality

Store
 Number

STORE

PK

City
Country
Telephone

Title

MOVIE

PK

Length
Year Made

Serial
 Number

DISK

PK

Type (DVD
 or Blu Ray)

Customer
 Number

CUSTOMER

PK

Name
Address
Telephone

Serial
 Number
Customer
 Number
Date

RENTAL

PK

PK

PK

Rental Price

  1.	 Draw an entity-relationship diagram that describes
the following business environment.
Happy Cruise Lines has several ships and a variety
of cruise itineraries, each involving several ports of
call. The company wants to maintain information on
the sailors who currently work on each of its ships.
It also wants to keep track of both its past and future
cruises and of the passengers who sailed on the for-
mer and are booked on the latter.

Each ship has at least one and, of course, nor-
mally many sailors on it. The unique identifier of
each ship is its ship number. Other ship attributes
include ship name, weight, year built, and passenger
capacity. Each sailor has a unique sailor identifica-
tion number, as well as a name, date of birth, and
nationality. Some of the sailors are in supervisory
positions, supervising several other sailors. Each
sailor reports to just one supervisor. A cruise is iden-
tified by a unique cruise serial number. Other cruise
descriptors include a sailing date, a return date, and
a departure port (which is also the cruise’s ending
point). Clearly, a cruise involves exactly one ship;
over time a ship sails on many cruises, but there is
a requirement to be able to list a new ship that has
not yet sailed on any cruises at all. Each cruise stops
at at least one and usually several ports of call, each
of which is normally host to many cruises, over
time. In addition, the company wants to maintain
information about ports that it has not yet used in its
cruises but may use in the future. A port is identified
by its name and the country it is in. Other informa-
tion about a port includes its population, whether
a passport is required for passengers to disembark
there, and its current docking fee, which is assumed
to be the same for all ships. Passenger information
includes a unique passenger number, name, home
address, nationality, and date of birth. A cruise
typically has many passengers on it (certainly at
least one). Hoping for return business, the company
assumes that each passenger may have sailed on sev-
eral of its cruises (and/or may be booked for a future
cruise). For a person to be of interest to the company,

he or she must have sailed on or be booked on at
least one of the company’s cruises. The company
wants to keep track of how much money each pas-
senger paid (or will pay) for each of their cruises, as
well as their satisfaction rating of the cruise, if it has
been completed.

  2.	 Draw an entity-relationship diagram that describes
the following business environment. The Super
Baseball League wants to maintain information
about its teams, their coaches, players, and bats.
The information about players is historical. For each
team, the league wants to keep track of all of the
players who have ever played on the team, including
the current players. For each player, it wants to know
about every team the player ever played for. On the
other hand, coach affiliation and bat information is
only current.
The league wants to keep track of each team’s team
number, which is unique, its name, the city in which
it is based, and the name of its manager. Coaches
have a name (which is assumed to be unique only
within its team) and a telephone number. Coaches
have units of work experience that are described by
the type of experience and the number of years of
that type of experience. Bats are described by their
serial numbers (which are unique only within a
team) and their manufacturer’s name. Players have
a player number that is unique across the league, a
name, and an age.

A team has at least one and usually several coaches.
A coach works for only one team. Each coach has
several units of work experience or may have none.
Each unit of work experience is associated with the
coach to whom it belongs. Each team owns at least
one and generally many bats. Currently and histori-
cally, each team has and has had many players. To be
of interest to the league, a player must have played
on at least one and possibly many teams during his
career. Further, the league wants to keep track of the
number of years that a player has played on a team
and the batting average that he compiled on that
team.

Minicases

Exercises    35

36

CHAPTER 3

Data has always been the key component of information systems. In the
beginning of the modern information systems era, data was stored in
simple files. As companies became more and more dependent on their
data for running their businesses, shortcomings in simple files became
apparent. These shortcomings led to the development of the database
management system concept, which provides a solid basis for the modern
use of data in organizations of all descriptions.

The Database Management System
Concept

OBJECTIVES
Define data-related terms such as entity and attribute and

storage-related terms such as field, record, and file.
Identify the four basic operations performed on stored data.
Compare sequential access of data with direct access of

data.
Discuss the problems encountered in a non-database infor-

mation systems environment.
List the five basic principles of the database concept.
Describe how data can be considered to be a manageable

resource.
List the three problems created by data redundancy.
Describe the nature of data redundancy among many files.
Explain the relationship between data integration and data

redundancy in one file.
State the primary defining feature of a database manage-

ment system.
Explain why the ability to store multiple relationships is an

important feature of the database approach.
Explain why providing support for such control issues as data

security, backup and recovery, and concurrency is an
important feature of the database approach.

Explain why providing support for data independence is an
important feature of the database approach.

CHAPTER OUTLINE
Introduction
Data Before Database

Management
Records and Files
Basic Concepts in Storing

and Retrieving Data
The Database Concept

Data as a Manage-
able Resource

Data Integration and Data
Redundancy

Multiple Relationships
Data Control Issues
Data Independence

DBMS Approaches
Summary

Data Before Database Management    37

Introduction
Before the database concept was developed, all data in information systems (then gen-
erally referred to as “data processing systems”) was stored in simple linear files. Some
applications and their programs required data from only one file. Some applications
required data from several files. Some of the more complex applications used data
extracted from one file as the search argument (the item to be found) for extracting
data from another file. Generally, files were created for a single application and were
used only for that application. There was no sharing of files or of data among applica-
tions and, as a result, the same data often appeared redundantly in multiple files. In
addition to this data redundancy among multiple files, a lack of sophistication in the
design of individual files often led to data redundancy within those individual files.

As information systems continued to grow in importance, a number of the ground
rules began to change. Hardware became cheaper—much cheaper relative to the com-
puting power that it provided. Software development took on a more standardized,
“structured” form. Large backlogs of new applications to be implemented built up,
making the huge amount of time spent on maintaining existing programs more and
more unacceptable. It became increasingly clear that the lack of a focus on data was
one of the major factors in this program maintenance dilemma. Furthermore, the
redundant data across multiple files and even within individual files was causing data
accuracy nightmares (to be explained further in this chapter), just as companies were
relying more and more on their information systems to substantially manage their
businesses. As we will begin to see in this chapter, the technology that came to the
rescue was the database management system.

Summarizing, the problems included:

•	 Data was stored in different formats in different files.
•	 Data was often not shared among different programs that needed it, necessitating

the duplication of data in redundant files.
•	 Little was understood about file design, resulting in redundant data within indi-

vidual files.
•	 Files often could not be rebuilt after damage by a software error or a hard-

ware failure.
•	 Data was not secure and was vulnerable to theft or malicious mischief by people

inside or outside the company.
•	 Programs were usually written in such a manner that if the way that the data was

stored changed, the program had to be modified to continue working.
•	 Changes in everything from access methods to tax tables required program-

ming changes.

This chapter will begin by presenting some basic definitions and concepts about
data. Then it will describe the type of file environment that existed before database
management emerged. Then it will describe the problems inherent in the file environ-
ment and show how the database concept overcame them and set the stage for a vastly
improved information systems environment.

Data Before Database Management
As we said in Chapter 1, pieces of data are facts in our environment that are impor-
tant to us. Usually we have many facts to describe something of interest to us.

38   Chapter 3  The Database Management System Concept

For example, let’s consider the facts we might be interested in about an employee
of ours named John Baker. Our company is a sales-oriented company and John
Baker is one of our salespersons. We want to remember that his employee number
(which we will now call his salesperson number) is 137. We are also interested in the
facts that his commission percentage on the sales he makes is 10%, his home city is
Detroit, his home state is Michigan, his office number is 1284, and he was hired in
1995. There are, of course, reasons that we need to keep track of these facts about
John Baker, such as generating his paycheck every week. It certainly seems reason-
able to collect together all of the facts about Baker that we need and to hold all of
them together. Figure 3.1 shows all of these facts about John Baker presented in an
organized way.

Records and Files
Since we have to generate a paycheck each week for every employee in our company,
not just for Baker, we are obviously going to need a collection of facts like those
in Figure 3.1 for every one of our employees. Figure 3.2 shows a portion of that
collection.

Let’s proceed by revisiting some terminology from Chapter 2, and introducing some
additional terminology along with some additional concepts. What we have been
loosely referring to as a “thing” or “object” in our environment that we want to keep
track of is called an entity. Remember that this is the real physical object or event,
not the facts about it. John Baker, the real, living, breathing person whom you can
go over to and touch, is an entity. A collection of entities of the same type (e.g. all the
company’s employees) is called an entity set. An attribute is a property of, a char-
acteristic of, or a fact that we know about an entity. Each characteristic or property
of John Baker, including his salesperson number 137, his name, city of Detroit, state
of Michigan, office number 1284, commission percentage 10, and year of hire 1995, is
an attributes of John Baker. Some attributes have unique values within an entity set.

Salesperson
Number

Salesperson
Name City State

Office
Number

Commission
Percentage

Year of
Hire

119 Taylor New York NY 1211 15 2003
137 Baker Detroit MI 1284 10 1995
186 Adams Dallas TX 1253 15 2001
204 Dickens Dallas TX 1209 10 1998
255 Lincoln Atlanta GA 1268 20 2003
361 Carlyle Detroit MI 1227 20 2001
420 Green Tucson AZ 1263 10 1993

FIGURE 3.2  Salesperson file

Salesperson
Number

Salesperson
Name City State

Office
Number

Commission
Percentage

Year of
Hire

137 Baker Detroit MI 1284 10 1995FIGURE 3.1  Facts about
salesperson Baker

Data Before Database Management    39

For example, the salesperson numbers are unique within the salesperson entity set,
meaning each salesperson has a different salesperson number. We can use the fact
that salesperson numbers are unique to distinguish among the different salespersons.

Using the structure in Figure 3.2, we can define some standard file-structure terms
and relate them to the terms entity, entity set, and attribute. Each row in Figure 3.2
describes a single entity. In fact, each row contains all the facts that we know about a
particular entity. The first row contains all the facts about salesperson 119, the second
row contains all the facts about salesperson 137, and so on. Each row of a structure like
this is called a record. The columns representing the facts are called fields. The entire
structure is called a file. The file in Figure 3.2, which is about the most basic kind of
file imaginable, is often called a simple file or a simple linear file (linear because it
is a collection of records listed one after the other in a long line). Since the salesperson
attribute is unique, the salesperson field values can be used to distinguish the indi-
vidual records of the file. Speaking loosely at this point, the salesperson number field
can be referred to as the key field or key of the file.

Tying together the two kinds of terminology that we have developed, a record of a
file describes an entity, a whole file contains the descriptions of an entire entity set,
and a field of a record contains an attribute of the entity described by that record. In
Figure 3.2, each row is a record that describes an entity, specifically a single sales-
person. The whole file, row by row or record by record, describes each salesperson in
the collection of salespersons. Each column of the file represents a different attribute
of salespersons. At the row or entity level, the salesperson name field for the third row
of the file indicates that the third salesperson, salesperson 186, has Adams as his sales-
person name attribute, i.e. he is named Adams.

One last terminology issue is the difference between the terms “type” and “occur-
rence.” Let’s talk about it in the context of a record. If you look at a file, like that
in Figure 3.2, there are two ways to describe “a record.” One, which is referred to as
the record type, is a structural description of each and every record in the file. Thus,
we would describe the salesperson record type as a record consisting of a salesperson
number field, a salesperson name field, a city field, and so forth. This is a general
description of what any of the salesperson records looks like. The other way of
describing a record is referred to as a record occurrence or a record instance. A specific
record of the salesperson file is a record occurrence or instance. Thus, we would say
that, for example, the set of values {186, Adams, Dallas, TX, 1253, 15, 2001} is an occur-
rence of the salesperson record type.

3.1  Entities and Attributes
Entities and their attributes are all around us in our
everyday lives. Normally, we don’t stop to think
about the objects or events in our world formally
as entities with their attributes, but they’re there.

Question:
Choose an object in your world that you interact
with frequently. It might be a university, a person,

an automobile, your home, etc. Make a list of some
of the chosen entity’s attributes. Then, generalize
them to “type.” For example, you may have a
backpack (an entity) that is green in color (an attri-
bute of that entity). Generalize that to the entity set
of all backpacks and to the attribute type color.
Next, go through the same exercise for an event in
your life, such as taking a particular exam, your last
birthday party and eating dinner last night.

Your Turn

40   Chapter 3  The Database Management System Concept

Basic Concepts in Storing and Retrieving Data
Having established the idea of a file and its records, we can now, in simple terms at
this point, envision a company’s data as a large collection of files. The next step is to
discuss how we might want to access data from these files and otherwise manipulate
the data in them.

Retrieving and Manipulating Data  There are four fundamental operations that
can be performed on stored data, whether it is stored in the form of a simple linear file,
such as that of Figure 3.2, or in any other form. They are:

•	 Retrieve or Read
•	 Insert
•	 Delete
•	 Update

It is convenient to think of each of these operations as basically involving one record
at a time, although in practice they can involve several records at once, as we will
see later in the book. Retrieving or reading a record means looking at a record’s con-
tents without changing them. For example, using the Salesperson file of Figure 3.2,
we might read the record for salesperson 204 because we want to find out which
year she was hired. Insertion means adding a new record to the file, as when a new
salesperson is hired. Deletion means deleting a record from the file, as when a sales-
person leaves the company. Updating means changing one or more of a record’s field
values, for example, if we want to increase salesperson 420’s commission percentage
from 10 to 15. There is clearly a distinction between retrieving or reading data and
the other three operations. Retrieving data allows a user to refer to the data for some
business purpose without changing it. All of the other three operations involve chang-
ing the data. Different topics in this book will focus on one or another of these opera-
tions simply because a particular one of the four operations may be more important for
a particular topic than the others.

One particularly important concept concerning data retrieval is that, while infor-
mation systems applications come in a countless number of variations, there are fun-
damentally only two kinds of access to stored data that any of them require. These two
ways of retrieving data are known as sequential access and direct access.

Sequential Access  The term sequential access means the retrieval of all or a por-
tion of the records of a file one after another, in some sequence, starting from the
beginning, until all the required records have been retrieved. This could mean all the
records of the file, if that is the goal, or all the records up to some point, such as up
to the point that a record being searched for is found. The records will be retrieved in
some order and there are two possibilities for this. In “physical” sequential access,
the records are retrieved one after the other, just as they are stored on the disk device
(more on these devices later). In “logical” sequential access, the records are retrieved
in order based on the values of one or a combination of the fields.

Assuming the records of the Salesperson file of Figure 3.2 are stored on the disk
in the order shown in the figure, if they are retrieved in physical sequence they will
be retrieved in the order shown in the figure. However, if, for example, they are to be
retrieved in logical sequence based on the Salesperson Name field, then the record for
Adams would be retrieved first, followed by the record for Baker, followed by the record
for Carlyle, and so on in alphabetic order. An example of an application that would

The Database Concept    41

require the sequential retrieval of the records of this file would be the weekly payroll
processing. If the company wants to generate a payroll check for each salesperson in
the order of their salesperson numbers, it can very simply retrieve the records phys-
ically sequentially, since that’s the order in which they are stored on the disk. If the
company wants to produce the checks in the order of the salespersons’ names, it will
have to perform a logical sequential retrieval based on the Salesperson Name field.
It can do this either by sorting the records on the Salesperson Name field or by using
an index (see below) that is built on this field.

We said that sequential access could involve retrieving a portion of the records of
a file. This sense of sequential retrieval usually means starting from the beginning of
the file and searching every record, in sequence, until finding a particular record that
is being sought. Obviously, this could take a long time for even a moderately large file
and so is not a particularly desirable kind of operation, which leads to the concept of
direct access.

Direct Access  The other mode of access is direct access. Direct access is the retrieval
of a single record of a file or a subset of the records of a file based on one or more
values of a field or a combination of fields in the file. For example, in the Salesperson
file of Figure 3.2, if we need to retrieve the record for salesperson 204 to find out her
year of hire, we would perform a direct access operation on the file specifying that
we want the record with a value of 204 in the Salesperson Number field. How do we
know that we would retrieve only one record? Because the Salesperson Number field
is the unique, key field of the file, there can only be one record (or none) with any one
particular value. Another possibility is that we want to retrieve the records for all the
salespersons with a commission percentage of 10. The subset of the records retrieved
would consist of the records for salespersons 137, 204, and 420.

Direct access is a crucial concept in information systems today. If you telephone
a bank with a question about your account, you would not be happy having to wait
on the phone while the bank’s information system performs a sequential access of its
customer file until it finds your record. Clearly this example calls for direct access. In
fact, the vast majority of information systems operations that all companies perform
today require direct access.

Both sequential access and direct access can certainly be accomplished with data
stored in simple files. But simple files leave a lot to be desired. What is the concept of
database and what are its advantages?

The Database Concept
The database concept is one of the most powerful, enduring technologies in the infor-
mation systems environment. It encompasses a variety of technical and managerial
issues and features that are at the heart of today’s information systems scene. In order
to get started and begin to develop the deep understanding of database that we seek, we
will focus on five issues that establish a set of basic principles of the database concept:

1.	 The creation of a datacentric environment in which a company’s data can
truly be thought of as a significant corporate resource. A key feature of this
environment is the ability to share data among those inside and outside of the
company who require access to it.

2.	 The ability to achieve data integration while at the same time storing data
in a non-redundant fashion. This, alone, is the central, defining feature of the
database approach.

42   Chapter 3  The Database Management System Concept

3.	 The ability to store data representing entities involved in multiple relationships
without introducing data redundancy or other structural problems.

4.	 The establishment of an environment that manages certain data control issues,
such as data security, backup and recovery, and concurrency control.

5.	 The establishment of an environment that permits a high degree of data
independence.

Data as a Manageable Resource
Broadly speaking, the information systems environment consists of several compo-
nents including hardware, networks, applications software, systems software, people,
and data. The relative degree of focus placed on each of these has varied over time.
In particular, the amount of attention paid to data has undergone a radical transfor-
mation. In the earlier days of “data processing,” most of the time and emphasis in
application development was spent on the programs, as opposed to on the data and
data structures. Hardware was expensive and the size of main memory was extremely
limited by today’s standards. Programming was a new discipline and there was much
to be learned about it in order to achieve the goal of efficient processing. Standards for
effective programming were unknown. In this environment, the treatment of the data
was hardly the highest-priority concern.

At the same time, as more and more corporate functions at the operational, tac-
tical, and strategic levels became dependent on information systems, data increasingly
became recognized as an important corporate resource. Furthermore, the corporate
community became increasingly convinced that a firm’s data about its products, man-
ufacturing processes, customers, suppliers, employees, and competitors could, with
proper storage and use, give the firm a significant competitive advantage.

Money, plant and equipment, inventories, and people are all important enterprise
resources and, indeed, a great deal of effort has always been expended to manage them.
As corporations began to realize that data is also an important enterprise resource, it
became increasingly clear that data would have to be managed in an organized way,
too, Figure 3.3. What was needed was a software utility that could manage and pro-
tect data while providing controlled shared access to it so that it could fulfill its destiny

People

Money Plant &
Equipment

Inventory

Data

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

FIGURE 3.3  Corporate resources

The Database Concept    43

as a critical corporate resource. Out of this need was born the database manage-
ment system.

As we look to the future and look back at the developments of the last few years,
we see several phenomena that emphasize the importance of data and demand its
careful management as a corporate resource. These include reengineering, electronic
commerce, and enterprise resource planning (ERP) systems that have placed an
even greater emphasis on data. In reengineering, data and information systems are
aggressively used to redesign business processes for maximum efficiency. At the heart
of every electronic commerce Web site is a database through which companies and
their customers transact business. Another very important development was that of
enterprise resource planning (ERP) systems, which are collections of application pro-
grams built around a central shared database. ERP systems very much embody the
principles of shared data and of data as a corporate resource.

Data Integration and Data Redundancy
Data integration and data redundancy, each in their own right, are critical issues in the
field of database management.

•	 Data integration refers to the ability to tie together pieces of related data within an
information system. If a record in one file contains customer name, address, and
telephone data and a record in another file contains sales data about an item that
the customer has purchased, there may come a time when we want to contact the
customer about the purchased item.

•	 Data redundancy refers to the same fact about the business environment being
stored more than once within an information system. Data integration is clearly a
positive feature of a database management system. Data redundancy is a negative
feature (except for performance reasons under certain circumstances that will be
discussed later in this book).

In terms of the data structures used in database management systems, data inte-
gration and data redundancy are tied together and will be discussed together in this
section of the book.

Data stored in an information system describes the real-world business environ-
ment. Put another way, the data is a reflection of the environment. Over the years
that information systems have become increasingly sophisticated, they and the data
that they contain have revolutionized the ways that we conduct virtually all aspects of
business. But, as valuable as the data is, if the data is duplicated and stored multiple
times within a company’s information systems facilities, it can result in a nightmare
of poor performance, lack of trust in the accuracy of the data, and a reduced level of
competitiveness in the marketplace. Data redundancy and the problems it causes can
occur within a single file or across multiple files. The problems caused by data redun-
dancy are threefold:

•	 First, the redundant data takes up a great deal of extra disk space. This alone can
be quite significant.

•	 Second, if the redundant data has to be updated, additional time is needed to do
so since, if done correctly, every copy of the redundant data must be updated. This
can create a major performance issue.

•	 Third and potentially the most significant is the potential for data integrity prob-
lems. The term data integrity refers to the accuracy of the data. Obviously, if the

44   Chapter 3  The Database Management System Concept

data in an information system is inaccurate, it and the whole information system
are of limited value. The problem with redundant data, whether in a single file
or across multiple files, occurs when it has to be updated (or possibly when it
is first stored). If data is held redundantly and all the copies of the data record
being updated are not all correctly updated to the new values, there is clearly a
problem in data integrity. There is an old saying that has some applicability here,
“The person with one watch always knows what time it is. The person with several
watches is never quite sure,” Figure 3.4.

Data Redundancy Among Many Files  Beginning with data redundancy across
multiple files, consider the following situation involving customer names and addresses.
Frequently, different departments in an enterprise in the course of their normal every-
day work need the same data. For example, the sales department, the accounts receiv-
able department, and the credit department may need customer name and address data.
Often, the solution to this multiple need is redundant data. The sales department has its
own stored file that, among other things, contains the customer name and address, and
likewise for the accounts receivable and credit departments, Figure 3.5.

One day, customer John Jones, who currently lives at 123 Elm Street, moves to 456
Oak Street. If his address is updated in two of the files but not the third, then the com-
pany’s data is inconsistent, Figure 3.6. Two of the files indicate that John Jones lives
at 456 Oak Street but one file still shows him living at 123 Elm Street. The company
can no longer trust its information system. How could this happen? It could have been
a software or a hardware error. But more likely it was because whoever received the
new information and was responsible for updating one or two of the files simply did

FIGURE 3.4  With several watches the correct time
might not be clear

Sales file
Customer
Number

Customer
Name

Customer
Address

2746795 John Jones 123 Elm Street

Accounts Receivable file
Customer
Number

Customer
Name

Customer
Address

2746795 John Jones 123 Elm Street

Credit file
Customer
Number

Customer
Name

Customer
Address

2746795 John Jones 123 Elm Street
FIGURE 3.5  Three files with redundant data

The Database Concept    45

not know of the existence of the third. As mentioned earlier, at various times in infor-
mation systems history it has not been unusual in large companies for the same data
to be held redundantly in sixty or seventy files! Thus, the possibility of data integrity
problems is great.

Multiple file redundancy begins as more a managerial issue than single file redun-
dancy, but it also has technical components. The issue is managerial to the extent that
a company’s management does not encourage data sharing among departments and
their applications. But it is technical when it comes to the reality of whether the com-
pany’s software systems are capable of providing shared access to the data without
compromising performance and data security.

Data Integration and Data Redundancy Within One File  Data redundancy
in a single file results in exactly the same three problems that resulted from data
redundancy in multiple files: wasted storage space, extra time on data update, and
the potential for data integrity problems. To begin developing this scenario, consider
Figure 3.7, which shows two files from the General Hardware Co. information system.
General Hardware is a wholesaler of hardware, tools, and related items. Its customers
are hardware stores, home improvement stores, and department stores, or chains of
such stores. Figure 3.7a shows the Salesperson file, which has one record for each of
General Hardware’s salespersons. Salesperson Number is the unique identifying “key”
field and as such is underlined in the figure. Clearly, there is no data redundancy in
this file. There is one record for each salesperson and each individual fact about a
salesperson is listed once in the salesperson’s record.

Figure 3.7b shows General Hardware’s Customer file. Customer Number is the
unique key field. Again, there is no data redundancy, but two questions have to be
answered regarding the Salesperson Number field appearing in this file. First, why is
it there? After all, it seems already to have a good home as the unique identifying field
of the Salesperson file. The Salesperson Number field appears in the Customer file to
record which salesperson is responsible for a given customer account. In fact, there is
a one-to-many relationship between salespersons and customers. A salesperson can
and generally does have several customer accounts, while each customer is serviced
by only one General Hardware salesperson. The second question involves the data in
the Salesperson Number field in the Customer file. For example, salesperson number
137 appears in four of the records (plus once in the first record of the Salesperson file!).

Sales file
Customer
Number

Customer
Name

Customer
Address

2746795 John Jones 456 Oak Street

Accounts Receivable file
Customer
Number

Customer
Name

Customer
Address

2746795 John Jones 456 Oak Street

Credit file
Customer
Number

Customer
Name

Customer
Address

2746795 John Jones 123 Elm Street
FIGURE 3.6  Three files with a data integrity problem

46   Chapter 3  The Database Management System Concept

Does this constitute data redundancy? The answer is no. For data to be redundant
(and examples of data redundancy will be coming up shortly), the same fact about
the business environment must be recorded more than once. The appearance of sales-
person number 137 in the first record of the Salesperson file establishes 137 as the iden-
tifier of one of the salespersons. The appearance of salesperson number 137 in the first
record of the Customer file indicates that salesperson number 137 is responsible for
customer number 0121. This is a different fact about the business environment. The
appearance of salesperson number 137 in the third record of the Customer file indi-
cates that salesperson number 137 is responsible for customer number 0933. This is yet
another distinct fact about the business environment. And so on through the other
appearances of salesperson number 137 in the Customer file.

Retrieving data from each of the files of Figure 3.7 individually is straightforward
and can be done on a direct basis if the files are setup for direct access. Thus, if there is a
requirement to find the name or commission percentage or year of hire of salesperson
number 204, it can be satisfied by retrieving the record for salesperson number 204 in
the Salesperson file. Similarly, if there is a requirement to find the name or responsible
salesperson (by salesperson number!) or headquarters city of customer number 1525,
we simply retrieve the record for customer number 1525 in the Customer file.

But, what if there is a requirement to find the name of the salesperson responsible
for a particular customer account, say for customer number 1525? Can this require-
ment be satisfied by retrieving data from only one of the two files of Figure 3.7? No,
it cannot! The information about which salesperson is responsible for which cus-
tomers is recorded only in the Customer file and the salesperson names are recorded
only in the Salesperson file. Thus, finding the salesperson name will be an exercise in
data integration. In order to find the name of the salesperson responsible for a par-
ticular customer, first the record for the customer in the Customer file would have
to be retrieved. Then, using the salesperson number found in that record, the correct

(a) Salesperson file

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995
186 Adams 15 2001
204 Dickens 10 1998
361 Carlyle 20 2001

(b) Customer file
Customer
Number

Customer
Name

Salesperson
Number HQ City

0121 Main St. Hardware 137 New York
0839 Jane’s Stores 186 Chicago
0933 ABC Home Stores 137 Los Angeles
1047 Acme Hardware Store 137 Los Angeles
1525 Fred’s Tool Stores 361 Atlanta
1700 XYZ Stores 361 Washington
1826 City Hardware 137 New York
2198 Western Hardware 204 New York
2267 Central Stores 186 New York

FIGURE 3.7  General Hardware Company files

The Database Concept    47

salesperson record can be retrieved from the Salesperson file to find the salesperson
name. For example, if there is a need to find the name of the salesperson responsible
for customer number 1525, the first operation would be to retrieve the record for cus-
tomer number 1525 in the Customer file. As shown in Figure 3.7b, this would yield
salesperson number 361 as the number of the responsible salesperson. Then, accessing
the record for salesperson 361 in the Salesperson file in Figure 3.7a determines that the
name of the salesperson responsible for customer 1525 is Carlyle. While it’s true that
the data in the record in the Salesperson file and the data in the record in the Customer
file have been integrated, the data integration process has been awfully laborious.

This kind of custom-made, multicommand, multifile access (which, by the
way, could easily require more than two files, depending on the query and the files
involved) is clumsy, potentially error prone, and expensive in terms of performance.
While the two files have the benefit of holding data non-redundantly, what is lack-
ing is a good level of data integration. That is, it is overly difficult to find and retrieve
pieces of data in the two files that are related to each other. For example, customer
number 1525 and salesperson name Carlyle in the two files in Figure 3.7 are related
to each other by virtue of the fact that the two records they are in both include a ref-
erence to salesperson number 361. Yet, as shown above, ultimately finding the sales-
person name Carlyle by starting with the customer number 1525 is an unacceptably
laborious process.

A fair question to ask is, if we knew that data integration was important in this
application environment and if we knew that there would be a frequent need to find
the name of the salesperson responsible for a particular customer, why were the files
structured as in Figure 3.7 in the first place? An alternative arrangement is shown in
Figure 3.8. The single file in Figure 3.8 combines the data in the two files of Figure 3.7.
Also, the Customer Number field values of both are identical.

The file in Figure 3.8 was created by merging the salesperson data from Figure 3.7a
into the records of Figure 3.7b, based on corresponding salesperson numbers. As a
result, notice that the number of records in the file in Figure 3.8 is identical to the
number of records in the Customer file of Figure 3.7b. This is actually a result of the
“direction” of the one-to-many relationship in which each salesperson can be asso-
ciated with several customers. The data was “integrated” in this merge operation.
Notice, for example, that in Figure 3.7b, the record for customer number 1525 is asso-
ciated with salesperson number 361. In turn, in Figure 3.7a, the record for salesperson
number 361 is shown to have the name Carlyle. Those two records were merged, based
on the common salesperson number, into the record for customer number 1525 in
Figure 3.8. (Notice, by the way, that the Salesperson Number field appears twice in
Figure 3.8 because it appeared in each of the files of Figure 3.7. The field values in
each of those two fields are identical in each record in the file in Figure 3.8, which
must be the case since it was on those identical values that the record merge that
created the file in Figure 3.8 was based. That being the case, certainly one of the two
Salesperson Number fields in the file in Figure 3.8 could be deleted without any loss
of information.)

The file in Figure 3.8 is certainly well integrated. Finding the name of the sales-
person who is responsible for customer number 1525 now requires a single record
access of the record for customer number 1525. The salesperson name, Carlyle, is
right there in that record. This appears to be the solution to the earlier multifile access
problem. Unfortunately, integrating the two files caused another problem: data redun-
dancy. Notice in Figure 3.8 that, for example, the fact that salesperson number 137 is
named Baker is repeated four times, as are his commission percentage and year of
hire. This is, indeed, data redundancy, as it repeats the same facts about the business

48   Chapter 3  The Database Management System Concept

environment multiple times within the one file. If a given salesperson is responsible
for several customer accounts, then the data about the salesperson must appear in
several records in the merged or integrated file. It would make no sense from a logical
or a retrieval standpoint to specify, for example, the salesperson name, commission
percentage, and year of hire for one customer that the salesperson services and not for
another. This would imply a special relationship between the salesperson and that one
customer that does not exist and would remove the linkage between the salesperson
and his other customers. To be complete, the salesperson data must be repeated for
every one of his customers.

The combined file in Figure 3.8 also illustrates what have come to be referred to
as anomalies in poorly structured files. The problems arise when two different kinds
of data, like salesperson and customer data in this example, are merged into one file.
Look at the record in Figure 3.8 for customer number 2198, Western Hardware. The
salesperson for this customer is Dickens, salesperson number 204. Look over the table
and note that Western Hardware happens to be the only customer that Dickens cur-
rently has. If Western Hardware has gone out of business or General Hardware has
stopped selling to it and they decide to delete the record for Western Hardware from
the file, they also lose everything they know about Dickens: his commission percent-
age, his year of hire, even his name associated with his salesperson number, 204.
This situation, which is called the deletion anomaly, occurs because salesperson data
doesn’t have its own file, as in Figure 3.7a. The only place in the combined file of
Figure 3.8 that you can store salesperson data is in the records with the customers. If
you delete a customer and that record was the only one for that salesperson, the sales-
person’s data is gone.

Conversely, in the insertion anomaly, General Hardware can’t record data in the
combined file of Figure 3.8 about a new salesperson the company just hired until she
is assigned at least one customer. After all, the identifying field of the records of the
combined file is Customer Number! Finally, the update anomaly notes that the redun-
dant data of the combined file, such as Baker’s commission percentage of 10 repeated
four times, must be updated each place it exists when it changes (for example, if Baker
is rewarded with an increase to a commission percentage of 15).

There appears to be a very significant tradeoff in the data structures between data
integration and data redundancy. The two files of Figure 3.7 are non-redundant but

Customer
Number

Customer
Name

Salesperson
Number HQ City

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

0121 Main St. Hardware 137 New York 137 Baker 10 1995
0839 Jane’s Stores 186 Chicago 186 Adams 15 2001
0933 ABC Home Stores 137 Los Angeles 137 Baker 10 1995
1047 Acme Hardware Store 137 Los Angeles 137 Baker 10 1995
1525 Fred’s Tool Stores 361 Atlanta 361 Carlyle 20 2001
1700 XYZ Stores 361 Washington 361 Carlyle 20 2001
1826 City Hardware 137 New York 137 Baker 10 1995
2198 Western Hardware 204 New York 204 Dickens 10 1998
2267 Central Stores 186 New York 186 Adams 15 2001

FIGURE 3.8  General Hardware Company combined file

The Database Concept    49

have poor data integration. Finding the name of the salesperson responsible for a
particular customer account requires a multicommand, multifile access that can be
slow and error-prone. The merged file of Figure 3.8, in which the data is very well
integrated, eliminates the need for a multicommand, multifile access for this query,
but is highly data redundant. Neither of these situations is acceptable. A poor level
of data integration slows down the company’s information systems and, perhaps, its
business! Redundant data can cause data accuracy and other problems. Yet both the
properties of data integration and of non-redundant data are highly desirable. And,
while the above example appears to show that the two are hopelessly incompatible,
over the years a few—very few—ways have been developed to achieve both goals in
a single data management system. In fact, this concept is so important that it is the
primary defining feature of database management systems:

Any data storage and retrieval system that does not have this property should
not be called a database management system. Notice a couple of fine points in the
above definition. It says, “data can be stored with no redundancy,” indicating that
non-redundant storage is feasible but not required. In certain situations, particularly
involving performance issues, the database designer may choose to compromise on
the issue of data redundancy. Also, it says, “that gives the end-user the impression
that the data is well integrated.” Depending on the approach to database manage-
ment taken by the particular database management system, data can be physically
integrated and stored that way on the disk or it can be integrated at the time that a
data retrieval query is executed. In either case, the data will, “give the end-user the
impression that the data is well integrated.” Both of these fine points will be explored
further later in this book.

Multiple Relationships
Chapter 2 demonstrated how entities can relate to each other in unary, binary, and
ternary one-to-one, one-to-many, and many-to-many relationships. Clearly, a database
management system must be able to store data about the entities in a way that reflects
and preserves these relationships. Furthermore, this must be accomplished in such a
way that it does not compromise the fundamental properties of data integration and
non-redundant data storage described above. Consider the following problems with
attempting to handle multiple relationships in simple linear files, using the binary
one-to-many relationship between General Hardware Company’s salespersons and
customers as an example.

First, the Customer file of Figure 3.7 does the job with its Salesperson Number
field. The fact that, for example, salesperson number 137 is associated with four of the
customers (it appears in four of the records) while, for example, customer number
1826 has only one salesperson associated with it demonstrates that the one-to-many
relationship has been achieved. However, as has already been shown, the two files
of this figure lack an efficient data integration mechanism; i.e. trying to link detailed

A database management system is a software utility for storing and retrieving data
that gives the end-user the impression that the data is well integrated even though
the data can be stored with no redundancy at all.

50   Chapter 3  The Database Management System Concept

salesperson data with associated customer data is laborious. (Actually, as will be seen
later in this book, the structures of Figure 3.7 are quite viable in the relational DBMS
environment. In that case, the relational DBMS software will handle the data inte-
gration requirement. But without that relational DBMS software, these structures are
deficient in terms of data integration.) Also, the combined file of Figure 3.8 supports
the one-to-many relationship but, of course, introduces data redundancy.

Figure 3.9 shows a “horizontal” solution to the problem. The Salesperson Number
field has been removed from the Customer file. Instead, each record in the Salesperson
file lists all the customers, by customer number, that the particular salesperson is
responsible for. This could conceivably be implemented as one variable-length field of
some sort containing all the associated customer numbers for each salesperson, or it
could be implemented as a series of customer number fields. While this arrangement
does represent the one-to-many relationship, it is unacceptable for two reasons. One is
that the record length could be highly variable depending on how many customers a
particular salesperson is responsible for. This can be tricky from a space management
point of view. If a new customer is added to a salesperson’s record, the new larger
size of the record may preclude its being stored in the same place on the disk as it
came from, but putting it somewhere else may cause performance problems in future
retrievals. The other reason is that once a given salesperson record is retrieved, the
person or program that retrieved it would have a difficult time going through all the
associated customer numbers looking for the one desired. With simple files like these,
the normal expectation is that there will be one value of each field type in each record
(e.g. one salesperson number, one salesperson name, and so on). In the arrangement
in Figure 3.9, the end-user or supporting software would have to deal with a list of
values, i.e. of customer numbers, upon retrieving a salesperson record. This would be
an unacceptably complex process.

(a) Salesperson file
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Customer
Numbers

137 Baker 10 1995 0121, 0933, 1047, 1826
186 Adams 15 2001 0839, 2267
204 Dickens 10 1998 2198
361 Carlyle 20 2001 1525, 1700

(b) Customer file
Customer
Number

Customer
Name HQ City

0121 Main St. Hardware New York
0839 Jane’s Stores Chicago
0933 ABC Home Stores Los Angeles
1047 Acme Hardware Store Los Angeles
1525 Fred’s Tool Stores Atlanta
1700 XYZ Stores Washington
1826 City Hardware New York
2198 Western Hardware New York
2267 Central Stores New YorkFIGURE 3.9  General Hardware Com-

pany combined files: One-to-many
relationship horizontal variation

The Database Concept    51

Figure 3.10 shows a “vertical” solution to the problem. In a single file, each sales-
person record is immediately followed by the records for all of the customers for which
the salesperson is responsible. While this does preserve the one-to-many relationship,
the complexities involved in a system that has to manage multiple record types in a
single file make this solution unacceptable, too.

A database management system must be able to handle all of the various unary,
binary, and ternary relationships in a logical and efficient way that does not intro-
duce data redundancy or interfere with data integration. The database management
system approaches that are in use today all satisfy this requirement. In particular,
the way that the relational approach to database management handles it will be
explained in detail.

0121

0933

1047

1826

Main St. Hardware

ABC Home Stores

Acme Hardware Store

City Hardware

137

137

137

137

New York

Los Angeles

Los Angeles

New York

2198 Western Hardware 204 New York

361 Carlyle 20 2001

204 Dickens 10 1998

186 Adams 15 2001

137 Baker 10 1995

1525

1700

Fred’s Tool Stores

XYZ Stores

361

361

Atlanta

Washington

0839

2267

Jane’s Stores

Central Stores

186

186

Chicago

New York

FIGURE 3.10  General Hardware Company combined files:
One-to-many relationship vertical variation

Concurrency Control

Security Backup and Recovery

FIGURE 3.11  Three data control issues

52   Chapter 3  The Database Management System Concept

Data Control Issues
The people responsible for managing the data in an information systems environment
must be concerned with several data control issues. This is true regardless of which
database management system approach is in use. It is even true if no database man-
agement system is in use, that is, if the data is merely stored in simple files. Most
prominent among these data control issues are data security, backup and recovery,
and concurrency control, Figure 3.11. These are introduced here and will be covered
in more depth later in this book. The reason for considering these data control issues
in this discussion of the essence of the database management system concept is that
such systems should certainly be expected to handle these issues frequently for all the
data stored in the system’s databases.

Computer security has become a very broad topic with many facets and con-
cerns. These include protecting the physical hardware environment, defend-
ing against hacker attacks, encrypting data transmitted over networks, educating
employees on the importance of protecting the company’s data, and many more. All
computer security exposures potentially affect a company’s data. Some exposures
represent direct threats to data while others are more indirect. For example, the theft
of transmitted data is a direct threat to data while a computer virus, depending on
its nature, may corrupt programs and systems in such a way that the data is affected
on an incidental or delayed basis. The types of direct threats to data include outright
theft of the data, unauthorized exposure of the data, malicious corruption of the
data, unauthorized updates of the data, and loss of the data. Protecting a company’s
data assets has become a responsibility that is shared by its operating systems, spe-
cial security utility software, and its database management systems. All database
management systems incorporate features that are designed to help protect the data
in their databases.

Data can be lost or corrupted in any of a variety of ways, not just from the data
security exposures just mentioned. Entire files, portions of databases, or entire data-
bases can be lost when a disk drive suffers a massive accidental or deliberate failure.
At the extreme, all of a company’s data can be lost to a disaster such as a fire, a hurri-
cane, or an earthquake. Hackers, computer viruses, or even poorly written application
programs can corrupt from a few to all of the records of a file or database. Even an
unintentional error in entering data into a single record can be propagated to other
records that use its values as input into the creation of their values. Clearly, every com-
pany (and even every PC user!) must have more than one copy of every data file and
database. Furthermore, some of the copies must be kept in different buildings, or even
different cities, to prevent a catastrophe from destroying all copies of the data. The pro-
cess of using this duplicate data, plus other data, special software, and even specially
designed disk devices to recover lost or corrupted data is known as “backup and recov-
ery.” As a key issue in data management, backup and recovery must be considered and
incorporated within the database management system environment.

In today’s multi-user environments, it is quite common for two or more users to
attempt to access the same data record simultaneously. If they are merely trying to
read the data without updating it, this does not cause a problem. However, if two or
more users are trying to update a particular record simultaneously, say a bank account
balance or the number of available seats on an airline flight, they run the risk of gener-
ating what is known as a “concurrency problem.” In this situation, the updates can
interfere with each other in such a way that the resulting data values will be incorrect.
This intolerable possibility must be guarded against and, once again, the database man-
agement system must be designed to protect its databases from such an eventuality.

DBMS Approaches    53

A fundamental premise of the database concept is that these three data control
issues—data security, backup and recovery, and concurrency—must be managed by
or coordinated with the database management system. This means that when a new
application program is written for the database environment, the programmers can
concentrate on the details of the application and not have to worry about writing code
to manage these data control issues. It means that there is a good comfort level that
the potential problems caused by these issues are under control since they are being
managed by long-tested components of the DBMS. It means that the functions are
standard for all of the data in the environment, which leads to easier management and
economies of scale in assigning and training personnel to be responsible for the data.
This kind of commonality of control is a hallmark of the database approach.

Data Independence
In the earlier days of “data processing,” many decisions involving the way that appli-
cation programs were written were made in concert with the specific file designs and
the choice of file organization and access method used. The program logic itself was
dependent upon the way in which the data is stored. In fact, the “data dependence”
was often so strong that if for any reason the storage characteristics of the data had to
be changed, the program itself had to be modified, often extensively. That was a very
undesirable characteristic of the data storage and programming environments because
of the time and expense involved in such efforts. In practice, storage structures some-
times have to change, to reflect improved storage techniques, application changes,
attempts at sharing data, and performance tuning, to name a few reasons. Thus, it is
highly desirable to have a data storage and programming environment in which as
many types of changes in the data structure as possible would not require changes in
the application programs that use them. This goal of “data independence” is an objec-
tive of today’s database management systems.

DBMS Approaches
We have established a set of principles for the database concept and said that a data-
base management system is a software utility that embodies those concepts. The next
question concerns the nature of a DBMS in terms of how it organizes data and how
it permits its retrieval. Considering that the database concept is such a crucial com-
ponent of the information systems environment and that there must be a huge profit
motive tied up with it, you might think that many people have worked on the problem
over the years and come up with many different approaches to designing DBMSs.
It’s true that many very bright people have worked on this problem for a long time
but, interestingly, you can count the number of different viable approaches that have
emerged on the fingers of one hand. In particular, the central issue of providing a non-
redundant data environment that also looks as though it is integrated is a very hard nut
to crack. Let’s just say that we’re fortunate that even a small number of practical ways
to solve this problem have been discovered.

Basically, there are five major DBMS approaches:

•	 Hierarchical
•	 Network
•	 Relational
•	 Object-oriented
•	 NoSQL

54   Chapter 3  The Database Management System Concept

3.2  Integrating Data
The need to integrate data is all around us, even
in our personal lives. We integrate data many
times each day without realizing that that’s what
we’re doing. When we compare the ingredients
needed for a recipe with the food “inventory” in
our cupboards, we are integrating data. When
we think about buying something and relate its
price to the money we have in our wallets or in our
bank accounts or to the credit remaining on our
credit cards, we are integrating data. When we
compare our schedules with our children’s sched-
ules and perhaps those of others with whom we

carpool, we are integrating data. Can you think
of other ways in which you integrate data on a
daily basis?

Question:
Consider a medical condition for which you or
someone you know is being treated. Describe
the different ways that you integrate data in tak-
ing care of that condition. Hints: Consider your
schedule, your doctors’ schedules, the amount of
prescription medication you have on hand, the
inventory of medication at the pharmacy you use,
and so on.

Your Turn

The hierarchical and network approaches to database are both called “naviga-
tional” approaches because of the way that programs have to “navigate” through
hierarchies and networks of data to find the data they need. Both of these technol-
ogies were developed in the 1960s and, relative to the other approaches, are somewhat
similar in structure. IBM’s Information Management System (IMS), a DBMS based
on the hierarchical approach, was released in 1969. It was followed in the early 1970s
by several network-based DBMSs developed by such computer manufacturers of the
time as UNIVAC, Honeywell, Burroughs, and Control Data. There was also a network-
based DBMS called Integrated Data Management Store (IDMS) produced by an inde-
pendent software vendor originally called Cullinane Systems, which was eventually
absorbed into Computer Associates. These navigational DBMSs, which were suitable
only for mainframe computers, were an elegant solution to the redundancy/integra-
tion problem at the time that they were developed. But they were complex, difficult
to work with in many respects, and, as we said, required a mainframe computer. Now
often called “legacy systems,” some of them interestingly have survived to this very day
for certain applications that require a lot of data and fast data response times.

The relational database approach became commercially viable in about 1980. After
several years of user experimentation, it became the preferred DBMS approach and
has remained so ever since. Chapters 4–8 of this book, as well as portions of later
chapters, are devoted to the relational approach. The object-oriented approach has
proven useful for a variety of niche applications and will be discussed in Chapter 9. It
is interesting to note that some key object-oriented database concepts have found their
way into some of the mainstream relational DBMSs and some are described as taking
a hybrid “object/relational” approach to database. NoSQL database will be described
in Chapter 13.

Questions    55

Summary
There are five major components in the database concept. One is the development of
a datacentric environment that promotes the idea of data being a significant corpo-
rate resource and encourages the sharing of data. Another, which is really the central
premise of database management, is the ability to achieve data integration while at the
same time storing data in a non-redundant fashion. The third, which at the structural
level is actually closely related to the integration/redundancy paradigm, is the ability to
store data representing entities involved in multiple relationships without introducing
redundancy. Another component is the presence of a set of data controls that address
such issues as data security, backup and recovery, and concurrency control. The final
component is that of data independence, the ability to modify data structures without
having to modify programs that access them.

There are basically five approaches to database management: the early hierar-
chical and network approaches, the current standard relational approach, and the
specialty object-oriented approach, many features of which are incorporated into
today’s expanded relational database management systems. The latest approach
is NoSQL database.

Key Terms
Attribute
Backup and recovery
Computer security
Concurrency control
Concurrency problem
Corporate resource
Data control issues
Data dependence
Data independence

Data integration
Data integrity problem
Data redundancy
Data retrieval
Data security
Datacentric environment
Direct access
Enterprise resource

planning (ERP) system

Entity
Entity set
Fact
Field
File
Key field
Logical sequential access
Logical sequential

retrieval

Multiple relationships
Physical sequential access
Record
Sequential access
Simple linear file
Software utility
Well integrated

Questions
  1.	 What is data? Do you think the word “data” should be

treated as a singular or plural word? Why?
  2.	 Name some entities and their attributes in a university

environment.
  3.	 Name some entities and attributes in an insurance

company environment.
  4.	 Name some entities and attributes in a furniture store

environment.
  5.	 What is the relationship between:
	 a.	 An entity and a record?
	 b.	 An attribute and a field?
	 c.	 An entity set and a file?
  6.	 What is the difference between a record type and an

occurrence of that record? Give some examples.

  7.	 Name the four basic operations on stored data. In what
important way is one in particular different from the
other three?

  8.	 What is sequential access? What is direct access? Which
of the two is more important in today’s business envi-
ronment? Why?

  9.	 Give an example of and describe an application that
would require sequential access in:

	 a.	 The university environment.
	 b.	 The insurance company environment.
	 c.	 The furniture store environment.
10.	 Give an example of and describe an application that

would require direct access in:
	 a.	 The university environment.

56   Chapter 3  The Database Management System Concept

	 b.	 The insurance company environment.
	 c.	 The furniture store environment.
11.	 Should data be considered a true corporate resource?

Why or why not? Compare and contrast data to other
corporate resources (capital, plant and equipment,
personnel, etc.) in terms of importance, intrinsic value,
and modes of use.

12.	 Defend or refute the following statement: “Data is the
most important corporate resource because it describes
all of the others.”

13.	 What are the two kinds of data redundancy, and what
are the three types of problems that they cause in the
information systems environment?

14.	 What factors might lead to redundant data across
multiple files? Is the problem managerial or technical
in nature?

15.	 Describe the apparent tradeoff between data redun-
dancy and data integration in simple linear files.

16.	 In your own words, describe the key quality of a DBMS
that sets it apart from other data handling systems.

17.	 Do you think that the single-file redundancy problem
is more serious, less serious, or about the same as the
multifile redundancy problem? Why?

18.	 What are the two defining goals of a database manage-
ment system?

19.	 What expectation should there be for a database
management system with regard to handling multiple
relationships? Why?

20.	 What are the problems with the “horizontal” and “ver-
tical” solutions to the handling of multiple relation-
ships as described in the chapter?

21.	 What expectation should there be for a database man-
agement system with regard to handling data control
issues such as data security, backup and recovery, and
concurrency control? Why?

22.	 What would the alternative be if database management
systems were not designed to handle data control issues
such as data security, backup and recovery, and concur-
rency control?

23.	 What is data independence? Why is it desirable?
24.	 What expectation should there be for a database

management system with regard to data indepen-
dence? Why?

25.	 What are the four major DBMS approaches? Which
approaches are used the most and least today?

Exercises
  1.	 Consider a hospital in which each doctor is responsible

for many patients while each patient is cared for by
just one doctor. Each doctor has a unique employee
number, name, telephone number, and office number.
Each patient has a unique patient number, name, home
address, and home telephone number.

	 a.	 What kind of relationship is there between doctors
and patients?

	 b.	 Develop sample doctor and patient data and
construct two files in the style of Figure 3.5 in
which to store your sample data.

	 c.	 Do any fields have to be added to one or the other
of the two files to record the relationship between
doctors and patients? Explain.

	 d.	 Merge these two files into one, in the style of
Figure 3.6. Does this create any problems with the
data? Explain.

  2.	 The Dynamic Chemicals Corp. keeps track of its cus-
tomers and its orders. Customers typically have several
outstanding orders while each order was generated by a
single customer. Each customer has a unique customer
number, a customer name, address, and telephone
number. An order has a unique order number, a date,
and a total cost.

	 a.	 What kind of relationship is there between
customers and orders?

	 b.	 Develop sample customer and order data and
construct two files in the style of Figure 3.7 in
which to store your sample data.

	 c.	 Do any fields have to be added to one or the other
of the two files to record the relationship between
customers and orders? Explain.

	 d.	 Merge these two files into one, in the style of
Figure 3.6. Does this create any problems with the
data? Explain.

Exercises    57

  1.	 Answer the following questions based on the follow-
ing Happy Cruise Lines’ data.

(a) Ship table

Ship Ship Year Weight
Number Name Built (Tons)

005 Sea Joy 1999 80,000
009 Ocean IV 2003 75,000
012 Prince Al 2004 90,000
020 Queen Shirley 1999 80,000

(b) Crew Member table

Sailor Sailor Ship Home Job
Number Name Number Country Title

00536 John Smith 009 USA Purser
00732 Ling Chang 012 China Engineer
06988 Maria

Gonzalez
020 Mexico Purser

16490 Prashant
Kumar

005 India Navigator

18535 Alan Jones 009 UK Cruise
Director

20254 Jane Adams 012 USA Captain
23981 Rene Lopez 020 Philippines Captain
27467 Fred Jones 020 UK Waiter
27941 Alain

DuMont
009 France France

28184 Susan Moore 009 Canada Wine
Steward

31775 James
Collins

012 USA Waiter

32856 Sarah
McLachlan

012 Ireland Cabin
Steward

	 a.	 Regarding the Happy Cruise Lines Crew
Member file.

i.	 Describe the file’s record type.
ii.	 Show a record occurrence.

iii.	 Describe the set or range of values that the
Ship Number field can take.

iv.	 Describe the set or range of values that the
Home Country field can take.

	 b.	 Assume that the records of the Crew Member
file are physically stored in the order shown.

i.	 Retrieve all of the records of the file physi-
cally sequentially.

ii.	 Retrieve all of the records of the file
logically sequentially based on the Sailor
Name field.

iii.	 Retrieve all of the records of the file
logically sequentially based on the Sailor
Number field.

iv.	 Retrieve all of the records of the file
logically sequentially based on the Ship
Number field.

v.	 Perform a direct retrieval of the records
with a Sailor Number field value of 27467.

vi.	 Perform a direct retrieval of the records
with a Ship Number field value of 020.

vii.	 Perform a direct retrieval of the records
with a Job Title field value of Captain.

	 c.	 The value 009 appears as a ship number once in
the Ship file and four times in the Crew Member
file. Does this constitute data redundan-
cy? Explain.

	 d.	 Merge the Ship and Crew Member files based on
the common ship number field (in a manner
similar to Figure 3.8 for the General Hardware
database). Is the merged file an improvement
over the two separate files in terms of:

i.	 Data redundancy? Explain.
ii.	 Data integration? Explain.

	 e.	 Explain why the Ship Number field is in the
Crew Member file.

	 f.	 Explain why ship number 012 appears four
times in the Crew Member file.

	 g.	 How many files must be accessed to find:
i.	 The year that ship number 012 was built?

ii.	 The home country of sailor number 27941?
iii.	 The name of the ship on which sailor num-

ber 18535 is employed?
	 h.	 Describe the procedure for finding the weight of

the ship on which sailor number 00536
is employed.

	 i.	 What is the mechanism for recording the
one-to-many relationship between crew
members and ships in the Happy Cruise Lines
database above?

Minicases

58   Chapter 3  The Database Management System Concept

  2.	 Answer the following questions based on the follow-
ing Super Baseball League data.

(a) TEAM file

Team Team
Number Name City Manager

137 Eagles Orlando Smith
275 Cowboys San Jose Jones
294 Statesmen Springfield Edwards
368 Pandas El Paso Adams
422 Sharks Jackson Vega

(b) PLAYER file

Player Player Team
Number Name Age Position Number

1209 Steve Marks 24 Catcher 294
1254 Roscoe Gomez 19 Pitcher 422
1536 Mark Norton 32 First

Baseman
368

1953 Alan Randall 24 Pitcher 137
2753 John Harbor 22 Shortstop 294
2843 John Yancy 27 Center

Fielder
137

3002 Stuart Clark 20 Catcher 422
3274 Lefty Smith 31 Third

Baseman
137

3388 Kevin Taylor 25 Shortstop 294
3740 Juan Vidora 25 Catcher 368

	 a.	 Regarding the Super Baseball League Player file
shown above:

i.	 Describe the file’s record type.
ii.	 Show a record occurrence.

iii.	 Describe the set or range of values that the
Player Number field can take.

	 b.	 Assume that the records of the Player file are
physically stored in the order shown.

i.	 Retrieve all of the records of the file physi-
cally sequentially.

ii.	 Retrieve all of the records of the file
logically sequentially based on the Player
Name field.

iii.	 Retrieve all of the records of the file
logically sequentially based on the Player
Number field.

iv.	 Retrieve all of the records of the file
logically sequentially based on the Team
Number field.

v.	 Perform a direct retrieval of the records
with a Player Number field value of 3274.

vi.	 Perform a direct retrieval of the records
with a Team Number field value of 294.

vii.	 Perform a direct retrieval of the records
with an Age field value of 24.

	 c.	 The value 294 appears as a team number once in
the Team file and three times in the Player file.
Does this constitute data redundancy? Explain.

	 d.	 Merge the Team and Player files based on the
common Team Number field (in a manner
similar to Figure 3.8 for the General Hardware
database). Is the merged file an improvement
over the two separate tables in terms of:

i.	 Data redundancy? Explain.
ii.	 Data integration? Explain.

	 e.	 Explain why the Team Number field is in the
Player file.

	 f.	 Explain why team number 422 appears twice in
the Player file.

	 g.	 How many files must be accessed to find:
i.	 The age of player number 1953?

ii.	 The name of the team on which player
number 3388 plays?

iii.	 The number of the team on which player
number 3388 plays?

	 h.	 Describe the procedure for finding the name of
the city in which player number 3002 is based.

	 i.	 What is the mechanism for recording the one-to-
many relationship between players and teams in
the Super Baseball League database above?

59

CHAPTER 4

Relational Data Retrieval:
SQL

As we move forward into the discussion of database manage-
ment systems, we will cover a wide range of topics and skills includ-
ing how to design databases, how to modify database designs to
improve performance, how to organize corporate departments
to manage databases, and others. But first, to whet your appe-
tites for what is to come, we’re going to dive right into one of
the most intriguing aspects of database management: retrieving
data from relational databases using the industry-standard SQL
database management language.

OBJECTIVES
Write SQL SELECT commands to retrieve relational

data using a variety of operators including GROUP
BY, ORDER BY, and the built-in functions AVG, SUM,
MAX, MIN, COUNT.

Write SQL SELECT commands that join relational tables.
Write SQL SELECT subqueries.
Describe a strategy for writing SQL SELECT statements.
Describe the principles of a relational query optimizer.

CHAPTER OUTLINE
Introduction
Data Retrieval with the SQL

SELECT Command
Introduction to the SQL SELECT

Command
Basic Functions
Built-In Functions
Grouping Rows
The Join
Subqueries
A Strategy for Writing SQL SELECT

Commands
Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Relational Query Optimizer

Relational DBMS Performance
Relational Query Optimizer

Concepts
Summary

Note: Some instructors may prefer to cover relational data
retrieval with SQL after logical database design, Chapter 7, or
after physical database design, Chapter 8. This chapter, Chap-
ter 4 on relational data retrieval with SQL, is designed to work
just as well in one of those positions as it is here.

60   Chapter 4  Relational Data Retrieval: SQL

Introduction
There are two aspects of data management: data definition and data manipulation.
Data definition, which is operationalized with a data definition language (DDL),
involves instructing the DBMS software on what tables will be in the database, what
attributes will be in the tables, which attributes will be indexed, and so forth. Data
manipulation refers to the four basic operations that can and must be performed
on data stored in any DBMS (or in any other data storage arrangement, for that
matter): data retrieval, data update, insertion of new records, and deletion of exist-
ing records. Data manipulation requires a special language with which users can
communicate data manipulation commands to the DBMS. Indeed, as a class, these
are known as data manipulation languages (DMLs).

A standard language for data management in relational databases, known as Struc-
tured Query Language or SQL, was developed in the early 1980s. SQL incorporates
both DDL and DML features. It was derived from an early IBM research project in
relational databases called “System R.” SQL has long since been declared a standard
by the American National Standards Institute (ANSI) and by the International Stan-
dards Organization (ISO). Indeed, several versions of the standards have been issued
over the years. Using the standards, many manufacturers have produced versions of
SQL that are all quite similar, at least at the level at which we will look at SQL in this
book. These SQL versions are found in such mainstream DBMSs as DB2, Oracle, MS
Access, Informix, and others. SQL in its various implementations is used very heavily
in practice today by companies and organizations of every description.

SQL is a comprehensive database management language. The most interesting
aspect of SQL and the aspect that we want to explore in this chapter is its rich data
retrieval capability. The other SQL data manipulation features, as well as the SQL data
definition features, will be considered in the database design chapters that come later
in this book.

Data Retrieval with the SQL
SELECT Command
Introduction to the SQL SELECT Command
Data retrieval in SQL is accomplished with the SELECT command. There are a
few fundamental ideas about the SELECT command that you should understand
before looking into the details of using it. The first point is that the SQL SELECT
command is not the same thing as the relational algebra Select operator discussed
in Chapter 5. It’s a bit unfortunate that the same word is used to mean two different
things, but that’s the way it is. The fact is that the SQL SELECT command is capable
of performing relational Select, Project, and Join operations singly or in combina-
tion, and much more.

SQL SELECT commands are considered, for the most part, to be “declarative” rather
than “procedural” in nature. This means that you specify what data you are looking
for rather than provide a logical sequence of steps that guide the system in how to find
the data. Indeed, as we will see later in this chapter, the relational DBMS analyzes the
declarative SQL SELECT statement and creates an access path, a plan for what steps
to take to respond to the query. The exception to this, and the reason for the qualifier

Data Retrieval with the SQL SELECT Command    61

“for the most part” at the beginning of this paragraph, is that a feature of the SELECT
command known as “subqueries” permits the user to specify a certain amount of logi-
cal control over the data retrieval process.

Another point is that SQL SELECT commands can be run in either a “query” or
an “embedded” mode. In the query mode, the user types the command at a worksta-
tion and presses the Enter key. The command goes directly to the relational DBMS,
which evaluates the query and processes it against the database. The result is then
returned to the user at the workstation. Commands entered this way can normally also
be stored and retrieved at a later time for repetitive use. In the embedded mode, the
SELECT command is embedded within the lines of a higher-level language program
and functions as an input or “read” statement for the program. When the program
is run and the program logic reaches the SELECT command, the program executes
the SELECT command. The SELECT command is sent to the DBMS which, as in the
query-mode case, processes it against the database and returns the results, this time to
the program that issued it. The program can then use and further process the returned
data. The only tricky part to this is that traditional higher-level language programs are
designed to retrieve one record at a time. The result of a relational retrieval command
is itself, a relation. A relation, if it consists of a single row, can resemble a record, but
a relation of several rows resembles, if anything, several records. In the embedded
mode, the program that issued the SQL SELECT command and receives the resulting
relation back, must treat the rows of the relation as a list of records and process them
one at a time.

SQL SELECT commands can be issued against either the actual, physical database
tables or against a “logical view” of one table or of several joined tables. Good business
practice dictates that in the commercial environment, SQL SELECT commands should
be issued against such logical views rather than directly against the base tables. As we
will see later in this book, this is a simple but effective security precaution.

Finally, the SQL SELECT command has a broad array of features and options and
we will only cover some of them at this introductory level. But what is also very impor-
tant is that our discussion of the SELECT command and the features that we will cover
will work in all of the major SQL implementations, such as Oracle, MS Access, SQL
Server, DB2, and Informix, possibly with minor syntax variations in some cases.

Basic Functions
The Basic SELECT Format  In the simplest SELECT command, we will indicate
from which table of the database we want to retrieve data, which rows of that table
we are interested in, and which attributes of those rows we want to retrieve. The basic
format of such a SELECT statement is:

SELECT<columns>
FROM<table>
WHERE<predicates identifying rows to be included>;

We will illustrate the SQL SELECT command with the General Hardware Co. data-
base of Figure 4.1, which is derived from the General Hardware entity-relationship
diagram of Figure 2.9. If you have not as yet covered the database design chapters
in this book, just keep in mind that some of the columns are present to tie together
related data from different tables, as discussed in Chapter 3. For example, the SPNUM
column in the CUSTOMER table is present to tie together related salespersons and
customers.

62   Chapter 4  Relational Data Retrieval: SQL

(a) SALESPERSON table

SPNUM SPNAME COMMPERCT YEARHIRE OFFNUM
137 Baker 10 1995 1284

186 Adams 15 2001 1253

204 Dickens 10 1998 1209

361 Carlyle 20 2001 1227

(b) CUSTOMER table

CUSTNUM CUSTNAME SPNUM HQCITY
0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE table

CUSTNUM EMPNUM EMPNAME TITLE
0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(d) PRODUCT table

PRODNUM PRODNAME UNITPRICE
16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50FIGURE 4.1  The General
Hardware Company
relational database

(continues)

Data Retrieval with the SQL SELECT Command    63

As is traditional with SQL, the SQL statements will be shown in all capital letters,
except for data values taken from the tables. Note that the attribute names in Figure 4.1
have been abbreviated for convenience and set in capital letters to make them easily
recognizable in the SQL statements. Also, spaces in the names have been removed.
Using the General Hardware database, an example of a simple query that demon-
strates the basic SELECT format is:

“Find the commission percentage and year of hire of salesperson
number 186.”

The SQL statement to accomplish this would be:

SELECT COMMPERCT, YEARHIRE
FROM SALESPERSON
WHERE SPNUM=186;

How is this command constructed? The desired attributes are listed in the SELECT
clause, the required table is listed in the FROM clause, and the restriction or predicate
indicating which row(s) is involved is shown in the WHERE clause in the form of an
equation. Notice that SELECT statements always end with a single semicolon (;) at the
very end of the entire statement.

(e) SALES table

SPNUM PRODNUM QUANTITY

137 19440   473

137 24013   170

137 26722   688

186 16386 1745

186 19440 2529

186 21765 1962

186 24013 3071

204 21765   809

204 26722   734

361 16386 3729

361 21765 3110

361 26722 2738

(f) OFFICE table

OFFNUM TELEPHONE SIZE
1253 901-555-4276 120

1227 901-555-0364 100

1284 901-555-7335 120

1209 901-555-3108   95
FIGURE 4.1  (Continued)
The General Hardware
Company relational database

64   Chapter 4  Relational Data Retrieval: SQL

The result of this statement is:

COMMPERCT YEARHIRE
15 2001

As is evident from this query, an attribute like SPNUM that is used to search for the
required rows, also known as a “search argument,” does not have to appear in the
query result, as long as its absence does not make the result ambiguous, confusing, or
meaningless.

To retrieve the entire record for salesperson 186, the statement would change to:

SELECT *
FROM SALESPERSON
WHERE SPNUM=186;

resulting in:

SPNUM SPNAME COMMPERCT YEARHIRE OFFNUM
186 Adams 15 2001 1253

The “*” in the SELECT clause indicates that all attributes of the selected row are
to be retrieved. Notice that this retrieval of an entire row of the table is, in fact, a rela-
tional Select operation (see Chapter 5)! A relational Select operation can retrieve one
or more rows of a table, depending, in this simple case, on whether the search argu-
ment is a unique or non-unique attribute. The search argument is non-unique in the
following query:

“List the salesperson numbers and salesperson names of those salespersons
who have a commission percentage of 10.”

SELECT SPNUM, SPNAME
FROM SALESPERSON
WHERE COMMPERCT=10;

which results in:

SPNUM SPNAME
137 Baker
204 Dickens

The SQL SELECT statement can also be used to accomplish a relational Project
operation. This is a vertical slice through a table involving all rows and some attrib-
utes. Since all of the rows are included in the Project operation, there is no need for a
WHERE clause to limit which rows of the table are included. For example,

“List the salesperson number and salesperson name of all of the sales
persons.”

SELECT SPNUM, SPNAME
FROM SALESPERSON;

Data Retrieval with the SQL SELECT Command    65

results in:

SPNUM SPNAME
137 Baker
186 Adams
204 Dickens
361 Carlyle

To retrieve an entire table, that is to design an SQL SELECT statement that places
no restrictions on either the rows or the attributes, you would issue:

SELECT *
FROM SALESPERSON;

and have as the result:

SPNUM SPNAME COMMPERCT YEARHIRE OFFNUM
137 Baker 10 1995 1284
186 Adams 15 2001 1253
204 Dickens 10 1998 1209
361 Carlyle 20 2001 1227

Comparisons  In addition to equal (=), the standard comparison operators, greater
than (>), less than (<), greater than or equal to (>=), less than or equal to (<=), and
not equal to (<>) can be used in the WHERE clause.

“List the salesperson numbers, salesperson names, and commission per-
centages of the salespersons whose commission percentage is less than 12.”

SELECT SPNUM, SPNAME, COMMPERCT
FROM SALESPERSON
WHERE COMMPERCT<12;

This results in:

SPNUM SPNAME COMMPERCT
137 Baker 10
204 Dickens 10

As another example:

“List the customer numbers and headquarters cities of the customers that
have a customer number of at least 1700.”

SELECT CUSTNUM, HQCITY
FROM CUSTOMER
WHERE CUSTNUM>=1700;

66   Chapter 4  Relational Data Retrieval: SQL

results in:

CUSTNUM HQCITY
1700 Washington
1826 New York
2198 New York
2267 New York

ANDs and ORs  Frequently, there is a need to specify more than one limiting condi-
tion on a table’s rows in a query. Sometimes, for a row to be included in the result it
must satisfy more than one condition. This requires the Boolean AND operator. Some-
times a row can be included if it satisfies one of two or more conditions. This requires
the Boolean OR operator.

AND  An example in which two conditions must be satisfied is:

“List the customer numbers, customer names, and headquarters cities of
the customers that are headquartered in New York and that have a customer
number higher than 1500.”

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY='New York'
AND CUSTNUM>1500;

resulting in:

CUSTNUM CUSTNAME HQCITY
1826 City Hardware New York
2198 Western Hardware New York
2267 Central Stores New York

Notice that customer number 0121, which is headquartered in New York, was not
included in the results because it failed to satisfy the condition of having a customer
number greater than 1500. With the AND operator, it had to satisfy both conditions to
be included in the result.

OR  To look at the OR operator, let’s change the last query to:

“List the customer numbers, customer names, and headquarters cities of
the customers that are headquartered in New York or that have a customer
number higher than 1500.”

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY='New York'
OR CUSTNUM>1500;

Data Retrieval with the SQL SELECT Command    67

results in:

CUSTNUM CUSTNAME HQCITY
0121 Main St. Hardware New York
1525 Fred’s Tool Stores Atlanta
1700 XYZ Stores Washington
1826 City Hardware New York
2198 Western Hardware New York
2267 Central Stores New York

Notice that the OR operator really means one or the other or both. Customer 0121
is included because it is headquartered in New York. Customers 1525 and 1700 are
included because they have customer numbers higher than 1500. Customers 1826,
2198, and 2267 are included because they satisfy both conditions.

Both AND and OR  What if both AND and OR are specified in the same WHERE
clause? AND is said to be “higher in precedence” than OR, and so all ANDs are con-
sidered before any ORs are considered. The following query, which has to be worded
very carefully, illustrates this point:

“List the customer numbers, customer names, and headquarters cities of
the customers that are headquartered in New York or that satisfy the two
conditions of having a customer number higher than 1500 and being head-
quartered in Atlanta.”

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY='New York'
OR CUSTNUM>1500
AND HQCITY='Atlanta';

The result of this query is:

CUSTNUM CUSTNAME HQCITY
0121 Main St. Hardware New York
1525 Fred’s Tool Stores Atlanta
1826 City Hardware New York
2198 Western Hardware New York
2267 Central Stores New York

Notice that since the AND is considered first, one way for a row to qualify for the
result is if its customer number is greater than 1500 and its headquarters city is Atlanta.
With the AND taken first, it’s that combination or the headquarters city has to be
New York. Considering the OR operator first would change the whole complexion of
the statement. The best way to deal with this, especially if there are several ANDs and
ORs in a WHERE clause, is by using parentheses. The rule is that anything in paren-
theses is done first. If the parentheses are nested, then whatever is in the innermost

68   Chapter 4  Relational Data Retrieval: SQL

parentheses is done first and then the system works from there toward the outermost
parentheses. Thus, a “safer” way to write the last SQL statement would be:

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY='New York'
OR (CUSTNUM>1500
AND HQCITY='Atlanta');

If you really wanted the OR to be considered first, you could force it by writing
the query as:

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE (HQCITY='New York'
OR CUSTNUM>1500)
AND HQCITY='Atlanta';

This would mean that, with the AND outside of the parentheses, both of two con-
ditions have to be met for a row to qualify for the results. One condition is that the
headquarters city is New York or the customer number is greater than 1500. The other
condition is that the headquarters city is Atlanta. Since for a given row, the headquar-
ters city can’t be both Atlanta and New York, the situation looks grim. But, in fact, cus-
tomer number 1525 qualifies. Its customer number is greater than 1500, which satisfies
the OR of the first of the two conditions, and its headquarters city is Atlanta, which
satisfies the second condition. Thus, both conditions are met for this and only this row.

BETWEEN, IN, and LIKE  BETWEEN, IN, and LIKE are three useful operators.
BETWEEN allows you to specify a range of numeric values in a search. IN allows
you to specify a list of character strings to be included in a search. LIKE allows you to
specify partial character strings in a “wildcard” sense.

BETWEEN  Suppose that you want to find the customer records for those customers
whose customer numbers are between 1000 and 1700 inclusive (meaning that both
1000 and 1700, as well as all numbers in between them, are included). Using the AND
operator, you could specify this as:

SELECT *
FROM CUSTOMER
WHERE (CUSTNUM>=1000
AND CUSTNUM>=1700);

Or, you could use the BETWEEN operator and specify it as:

SELECT *
FROM CUSTOMER
WHERE CUSTNUM BETWEEN 1000 AND 1700;

With either way of specifying it, the result would be:

CUSTNUM CUSTNAME SPNUM HQCITY
1047 Acme Hardware Store 137 Los Angeles
1525 Fred’s Tool Stores 361 Atlanta
1700 XYZ Stores 361 Washington

Data Retrieval with the SQL SELECT Command    69

IN  Suppose that you want to find the customer records for those customers head-
quartered in Atlanta, Chicago, or Washington. Using the OR operator, you could spec-
ify this as:

SELECT *
FROM CUSTOMER
WHERE (HQCITY='Atlanta'
OR HQCITY='Chicago'
OR HQCITY='Washington');

Or, you could use the IN operator and specify it as:

SELECT *
FROM CUSTOMER
WHERE HQCITY IN ('Atlanta', 'Chicago', 'Washington');

With either way of specifying it, the result would be:

CUSTNUM CUSTNAME SPNUM HQCITY
0839 Jane’s Stores 186 Chicago
1525 Fred’s Tool Stores 361 Atlanta
1700 XYZ Stores 361 Washington

LIKE  Suppose that you want to find the customer records for those customers whose
names begin with the letter “A”. You can accomplish this with the LIKE operator and
the “%” character used as a wildcard to represent any string of characters. Thus, ‘A%’
means the letter “A” followed by any string of characters, which is the same thing as
saying ‘any word that begins with “A”.’

SELECT *
FROM CUSTOMER
WHERE CUSTNAME LIKE 'A%';

The result would be:

CUSTNUM CUSTNAME SPNUM HQCITY
0933 ABC Home Stores 137 Los Angeles
1047 Acme Hardware Store 137 Los Angeles

Note that, unlike BETWEEN and IN, there is no easy alternative way in SQL of
accomplishing what LIKE can do.

In a different kind of example, suppose that you want to find the customer records
for those customers whose names have the letter “a” as the second letter of their
names. Could you specify ‘%a%’? No, because the ‘%a’ portion of it would mean any
number of letters followed by “a”, which is not what you want. In order to make sure
that there is just one character followed by “a”, which is the same thing as saying that
“a” is the second letter, you would specify ‘_a%’. The “_” wildcard character means that
there will be exactly one letter (any one letter) followed by the letter “a”. The “%”, as we
already know, means that any string of characters can follow afterwards.

SELECT *
FROM CUSTOMER
WHERE CUSTNAME LIKE '_a%';

70   Chapter 4  Relational Data Retrieval: SQL

The result would be:

CUSTNUM CUSTNAME SPNUM HQCITY
0121 Main St. Hardware 137 New York
0839 Jane’s Stores 186 Chicago

Notice that both the words “Main” and “Jane’s” have “a” as their second letter. Also
notice that, for example, customer number 2267 was not included in the result. Its
name, “Central Stores”, has an “a” in it but it is not the second letter of the name.
Again, the single “_” character in the operator LIKE ‘_a%’ specifies that there will be
one character followed by “a”. If the operator had been LIKE ‘%a%’, then Central Stores
would have been included in the result.

Filtering the Results of an SQL Query  Two ways to modify the results of an SQL
SELECT command are by the use of DISTINCT and the use of ORDER BY. It is
important to remember that these two devices do not affect what data is retrieved from
the database but rather how the data is presented to the user.

DISTINCT  There are circumstances in which the result of an SQL query may contain
duplicate items and this duplication is undesirable. Consider the following query:

“Which cities serve as headquarters cities for General Hardware cus-
tomers?”

This could be taken as a simple relational Project that takes the HQCITY column of the
CUSTOMER table as its result. The SQL command would be:

SELECT HQCITY
FROM CUSTOMER;

which results in:

HQCITY
New York
Chicago
Los Angeles
Los Angeles
Atlanta
Washington
New York
New York
New York

Technically, this is the correct result, but why is it necessary to list New York four
times or Los Angeles twice? Not only is it unnecessary to list them more than once,
but doing so produces unacceptable clutter. Based on the way the query was stated, the
result should have each city listed once. The DISTINCT operator is used to eliminate
duplicate rows in a query result. Reformulating the SELECT statement as:

SELECT DISTINCT HQCITY
FROM CUSTOMER;

Data Retrieval with the SQL SELECT Command    71

results in:

HQCITY
New York
Chicago
Los Angeles
Atlanta
Washington

ORDER BY  The ORDER BY clause simply takes the results of an SQL query and
orders them by one or more specified attributes. Consider the following query:

“Find the customer numbers, customer names, and headquarters cities of
those customers with customer numbers greater than 1000. List the results
in alphabetic order by headquarters cities.”

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE CUSTNUM>1000
ORDER BY HQCITY;

This results in:

CUSTNUM CUSTNAME HQCITY
1525 Fred’s Tool Stores Atlanta
1047 Acme Hardware Store Los Angeles
1826 City Hardware New York
2198 Western Hardware New York
2267 Central Stores New York
1700 XYZ Stores Washington

If you wanted to have the customer names within the same city alphabetized, you
would write:

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE CUSTNUM>1000
ORDER BY HQCITY, CUSTNAME;

This results in:

CUSTNUM CUSTNAME HQCITY
1525 Fred’s Tool Stores Atlanta
1047 Acme Hardware Store Los Angeles
2267 Central Stores New York
1826 City Hardware New York
2198 Western Hardware New York
1700 XYZ Stores Washington

72   Chapter 4  Relational Data Retrieval: SQL

The default order for ORDER BY is ascending. The clause can include the term ASC
at the end to make ascending explicit or it can include DESC for descending order.

Built-In Functions
A number of so-called “built-in functions” give the SQL SELECT command addi-
tional capabilities. They involve the ability to perform calculations based on attribute
values or to count the number of rows that satisfy stated criteria.

AVG and SUM  Recall that the SALES table shows the lifetime quantity of particu-
lar products sold by particular salespersons. For example, the first row indicates that
Salesperson 137 has sold 473 units of Product Number 19440 dating back to when she
joined the company or when the product was introduced. Consider the following query:

“Find the average number of units of the different products that Salesperson
137 has sold (i.e. the average of the quantity values in the first three records
of the SALES table).”

Using the AVG operator, you would write:

SELECT AVG(QUANTITY)
FROM SALES
WHERE SPNUM=137;

and the result would be:

AVG(QUANTITY)
443.67

To find the total number of units of all products that she has sold, you would use
the SUM operator and write:

SELECT SUM(QUANTITY)
FROM SALES
WHERE SPNUM=137;

and the result would be:

SUM(QUANTITY)
1331

MIN and MAX  You can also find the minimum or maximum of a set of attribute
values. Consider the following query:

“What is the largest number of units of Product Number 21765 that any
individual salesperson has sold?”

Data Retrieval with the SQL SELECT Command    73

Using the MAX operator, you would write:

SELECT MAX(QUANTITY)
FROM SALES
WHERE PRODNUM=21765;

and the result would be:

MAX(QUANTITY)
3110

To find the smallest number of units you simply replace MAX with MIN:

SELECT MIN(QUANTITY)
FROM SALES
WHERE PRODNUM=21765;

and get:

MIN(QUANTITY)
809

COUNT  COUNT is a very useful operator that counts the number of rows that sat-
isfy a set of criteria. It is often used in the context of “how many of something” meet
some stated conditions. Consider the following query:

“How many salespersons have sold Product Number 21765?”

Remember that each row of the SALES table describes the history of a particular
salesperson selling a particular product. That is, each combination of SPNUM and
PRODNUM is unique; there can only be one row that involves a particular SPNUM/
PRODNUM combination. If you can count the number of rows of that table that
involve Product Number 21765, then you know how many salespersons have a history
of selling it. Using the notational device COUNT(*), the SELECT statement is:

SELECT COUNT(*)
FROM SALES
WHERE PRODNUM=21765;

and the answer is:

COUNT(*)
3

Don’t get confused by the difference between SUM and COUNT. As we demon-
strated above, SUM adds up a set of attribute values; COUNT counts the number of
rows of a table that satisfy a set of stated criteria.

74   Chapter 4  Relational Data Retrieval: SQL

Grouping Rows
Using the built-in functions, we were able to calculate results based on attribute values
in several rows of a table. In effect, we formed a single “group” of rows and performed
some calculation on their attribute values. There are many situations that require such
calculations to be made on several different groups of rows. This is a job for the GROUP
BY clause.

GROUP BY  A little earlier we found the total number of units of all products that
one particular salesperson has sold. It seems reasonable that at some point we might
want to find the total number of units of all products that each salesperson has sold.
That is, we want to group together the rows of the SALES table that belong to each
salesperson and calculate a value—the sum of the Quantity attribute values in this
case—for each such group. Here is how such a query might be stated:

“Find the total number of units of all products sold by each salesperson.”

The SQL statement, using the GROUP BY clause, would look like this:

SELECT SPNUM, SUM(QUANTITY)
FROM SALES
GROUP BY SPNUM;

and the results would be:

SPNUM SUM(QUANTITY)
137 1331
186 9307
204 1543
361 9577

Notice that GROUP BY SPNUM specifies that the rows of the table are to be grouped
together based on having the same value in their SPNUM attribute. All the rows for
Salesperson Number 137 will form one group, all of the rows for Salesperson Number
186 will form another group, and so on. The Quantity attribute values in each group
will then be summed—SUM(QUANTITY)—and the results returned to the user. But
it is not enough to provide a list of sums:

1331
9307
1543
9577

These are indeed the sums of the quantities for each salesperson. But, without iden-
tifying which salesperson goes with which sum, they are meaningless! That’s why the
SELECT clause includes both the SPNUM and the SUM(QUANTITY). Including the
attribute(s) specified in the GROUP BY clause in the SELECT clause allows you to
properly identify the sums calculated for each group.

Data Retrieval with the SQL SELECT Command    75

An SQL statement with a GROUP BY clause may certainly also include a WHERE
clause. Thus, the query:

“Find the total number of units of all products sold by each salesperson
whose salesperson number is at least 150.”

would look like:

SELECT SPNUM, SUM(QUANTITY)
FROM SALES
WHERE SPNUM>=150
GROUP BY SPNUM;

and the results would be:

SPNUM SUM(QUANTITY)
186 9307
204 1543
361 9577

HAVING  Sometimes there is a need to limit the results of a GROUP BY based on the
values calculated for each group with the built-in functions. For example, take the last
query above,

“Find the total number of units of all products sold by each salesperson
whose salesperson number is at least 150.”

Now modify it with an additional sentence so that it reads:

“Find the total number of units of all products sold by each salesperson
whose salesperson number is at least 150. Include only salespersons whose
total number of units sold is at least 5000.”

This would be accomplished by adding a HAVING clause to the end of the SELECT
statement:

SELECT SPNUM, SUM(QUANTITY)
FROM SALES
WHERE SPNUM>=150
GROUP BY SPNUM
HAVING SUM(QUANTITY)>=5000;

and the results would be:

SPNUM SUM(QUANTITY)
186 9307
361 9577

with Salesperson Number 204, with a total of only 1543 units sold, dropping out of
the results.

76   Chapter 4  Relational Data Retrieval: SQL

Notice that in this last SELECT statement, there are two limitations: One, that the
Salesperson Number must be at least 150, appears in the WHERE clause and the other,
that the sum of the number of units sold must be at least 5000, appears in the HAV-
ING clause. It is important to understand why this is so. If the limitation is based on
individual attribute values that appear in the database, then the condition goes in the
WHERE clause. This is the case with the limitation based on the Salesperson Number
value. If the limitation is based on the group calculation performed with the built-in
function, then the condition goes in the HAVING clause. This is the case with the lim-
itation based on the sum of the number of product units sold.

The Join
Up to this point, all the SELECT features we have looked at have been shown in the
context of retrieving data from a single table. The time has come to look at how the
SQL SELECT command can integrate data from two or more tables or “join” them.
There are two specifications to make in the SELECT statement to make a join work.
One is that the tables to be joined must be listed in the FROM clause. The other is that
the join attributes in the tables being joined must be declared and matched to each
other in the WHERE clause. And there is one more point. Since two or more tables are
involved in a SELECT statement that involves a join, there is the possibility that the
same attribute name can appear in more than one of the tables. When this happens,
these attribute names must be “qualified” with a table name when used in the SELECT
statement. All of this is best illustrated in an example.

Consider the following query, which we discussed earlier in this book:

“Find the name of the salesperson responsible for Customer Number 1525.”

The SELECT statement to satisfy this query is:

SELECT SPNAME
FROM SALESPERSON, CUSTOMER
WHERE SALESPERSON.SPNUM=CUSTOMER.SPNUM
AND CUSTNUM=1525;

and the result is:

SPNAME
Carlyle

Let’s take a careful look at this last SELECT statement. Notice that the two tables
involved in the join, SALESPERSON and CUSTOMER, are listed in the FROM clause.
Also notice that the first line of the WHERE clause:

	 SALESPERSON.SPNUM CUSTOMER.SPNUM	

links the two join attributes: the SPNUM attribute of the SALESPERSON table
(SALESPERSON.SPNUM) and the SPNUM attribute of the CUSTOMER table (CUS-
TOMER.SPNUM). The notational device of having the table name “.” the attribute
name is known as “qualifying” the attribute name. As we said earlier, this qualification
is necessary when the same attribute name is used in two or more tables in a SELECT

Data Retrieval with the SQL SELECT Command    77

statement. By the way, notice in the SELECT statement that the attributes SPNAME
and CUSTNUM don’t have to be qualified because each appears in only one of the
tables included in the SELECT statement.

Here is an example of a join involving three tables, assuming for the moment that
salesperson names are unique:

“List the names of the products of which salesperson Adams has sold more
than 2000 units.”

The salesperson name data appears only in the SALESPERSON table and the product
name data appears only in the PRODUCT table. The SALES table shows the linkage
between the two, including the quantities sold. And so the SELECT statement will be:

SELECT PRODNAME
FROM SALESPERSON, PRODUCT, SALES
WHERE SALESPERSON.SPNUM=SALES.SPNUM
AND SALES.PRODNUM=PRODUCT.PRODNUM
AND SPNAME='Adams'
AND QUANTITY>2000;

which results in:

PRODNAME
Hammer
Saw

Subqueries
A variation on the way that the SELECT statement works is when one SELECT state-
ment is “nested” within another in a format known as a subquery. This can go on
through several levels of SELECT statements, with each successive SELECT statement
contained in a pair of parentheses. The execution rule is that the innermost SELECT
statement is executed first and its results are then provided as input to the SELECT
statement at the next level up. This procedure can be an alternative to the join.

4.1  Queries Galore!
Having a relational database to query in any
business environment opens up a new world of
information for managers to use to help them run
their portion of the business.

Question:
Think about a business environment that you are
familiar with from your daily life. It might be a

university, a supermarket, a department store,
even a sports league. Write a list of ten questions
that you would like to be able to ask that would
enhance your interaction with that environment.
Is it reasonable that a database could be con-
structed that would support your ability to ask the
questions you’ve come up with? Do you think that
you would be able to formulate your questions
using SQL? Explain.

Your Turn

78   Chapter 4  Relational Data Retrieval: SQL

Furthermore, there are certain circumstances in which this procedure must be used.
These latter circumstances are common enough and important enough to include in
this treatment of the SQL SELECT command.

Subqueries as Alternatives to Joins  Let’s reconsider the first join example
given above:

“Find the name of the salesperson responsible for Customer Number 1525.”

If you methodically weave through the database tables to solve this, as we discussed
earlier in the book, you start at the CUSTOMER table, find the record for Customer
Number 1525 and discover in that record that the salesperson responsible for this
customer is Salesperson Number 361. You then take that information to the SALES-
PERSON table where you look up the record for Salesperson Number 361 and discover
in it that the salesperson’s name is Carlyle. Using a subquery, this logic can be built
into an SQL statement as:

SELECT SPNAME
FROM SALESPERSON
WHERE SPNUM=
 (SELECT SPNUM
 FROM CUSTOMER
 WHERE CUSTNUM=1525);

and the result will again be:

SPNAME
Carlyle

Follow the way that the description given above of methodically solving the
problem is reconstructed as a SELECT statement with a subquery. Since the inner-
most SELECT (the indented one), which constitutes the subquery, is considered first,
the CUSTOMER table is queried first, the record for Customer Number 1525 is found
and 361 is returned as the SPNUM result. How do we know that only one salesperson
number will be found as the result of the query? Because CUSTNUM is a unique attri-
bute, Customer Number 1525 can only appear in one record and that one record only
has room for one salesperson number! Moving along, Salesperson Number 361 is then
fed to the outer SELECT statement. This, in effect, makes the main query, that is the
outer SELECT, look like:

SELECT SPNAME
FROM SALESPERSON
WHERE SPNUM=361;

and this results in:

SPNAME
Carlyle

Notice, by the way, that in the SELECT statement, there is only one semicolon at the
end of the entire statement, including the subquery.

Data Retrieval with the SQL SELECT Command    79

When a Subquery is Required  There is a very interesting circumstance in which
a subquery is required. This situation is best explained with an example up front. Con-
sider the following query:

“Which salespersons with salesperson numbers greater than 200 have the
lowest commission percentage?” (We’ll identify salespersons by their sales-
person number.)

This seems like a perfectly reasonable request, and yet it turns out to be deceptively
difficult. The reason is that the query really has two very different parts. First, the
system has to determine what the lowest commission percentage is for salespersons
with salesperson numbers greater than 200. Then, it has to see which of these salesper-
sons has that lowest percentage. It’s really tempting to try to satisfy this type of query
with an SQL SELECT statement like:

SELECT SPNUM, MIN(COMMPERCT)
FROM SALESPERSON
WHERE SPNUM>200;

or, perhaps:

SELECT SPNUM
FROM SALESPERSON
WHERE SPNUM>200
AND COMMPERCT=MIN(COMMPERCT);

But these will not work! It’s like asking SQL to perform two separate operations and
somehow apply one to the other in the correct sequence. This turns out to be asking
too much. But there is a way to do it and it involves subqueries. In fact, what we will
do is ask the system to determine the minimum commission percentage first, in a sub-
query, and then use that information in the main query to determine which salesper-
sons have it:

SELECT SPNUM
FROM SALESPERSON
WHERE SPNUM>200
AND COMMPERCT=
 (SELECT MIN(COMMPERCT)
 FROM SALESPERSON)
 WHERE SPNUM>200);

which results in:

SPNUM
204

The minimum commission percentage across all of the salespersons with sales-
person numbers greater than 200 is determined first in the subquery and the result
is 10. The main query then, in effect, looks like:

SELECT SPNUM
FROM SALESPERSON
WHERE SPNUM>200
AND COMMPERCT=10;

which yields the result of salesperson number 204, as shown.

80   Chapter 4  Relational Data Retrieval: SQL

Actually, this is a very interesting example of a required subquery. What makes it
really interesting is why the predicate, SPNUM>200, appears in both the main query
and the subquery. Clearly it has to be in the subquery because you must first find
the lowest commission percentage among the salespersons with salesperson numbers
greater than 200. But then why does it have to be in the main query, too? The answer
is that the only thing that the subquery returns to the main query is a single number,
specifically a commission percentage. No memory is passed on to the main query of how
the subquery arrived at that value. If you remove SPNUM>200 from the main query, so
that it now looks like:

SELECT SPNUM
FROM SALESPERSON
WHERE COMMPERCT=
 (SELECT MIN(COMMPERCT)
 FROM SALESPERSON)
 WHERE SPNUM>200);

you would find every salesperson with any salesperson number whose commission per-
centage is equal to the lowest commission percentage of the salespersons with sales-
person numbers greater than 20. (Of course, if for some reason you do want to find all
of the salespersons, regardless of salesperson number, who have the same commission
percentage as the salesperson who has the lowest commission percentage of the sales-
persons with salesperson numbers greater than 20, then this last SELECT statement is
exactly what you should write!)

A Strategy for Writing SQL SELECT Commands
Before we go on to some more examples, it will be helpful to think about developing a
strategy for writing SQL SELECT statements. The following is an ordered list of steps:

1.	 Determine what the result of the query is to be and write the needed attributes
and functions in the SELECT clause. This may seem an obvious instruction,
but it will really pay to think this through carefully before going on. In fact, it
is at this very first step that you must determine whether the query will require
a GROUP BY clause or a subquery. If either of these is required, you should
start outlining the overall SELECT statement by writing the GROUP BY clause
or the nested SELECT for the subquery further down the page (or screen).

2.	 Determine which tables of the database will be needed for the query and write
their names in the FROM clause. Include only those tables that are really
necessary for the query. Sometime this can be tricky. For example, you might
need an attribute that is the primary key of a table and you might be tempted
immediately to include that table in the FROM clause. However, it could be
that the attribute in question is a foreign key in another table that is already in
the FROM clause for other reasons. It is then unnecessary to include the table
in which it is the primary key unless, of course, other attributes from that table
are needed, too.

3.	 Begin constructing the WHERE clause by equating the join attributes from the
tables that are in the FROM clause. Once this job is out of the way, you can begin
considering the row limitations that must be stated in the WHERE clause.

Example: Good Reading Book Stores    81

4.	 Continue filling in the details of the WHERE clause, the GROUP BY clause,
and any subqueries.

One final piece of advice: If you are new to writing SQL SELECT commands but
you have a programming background, you may be tempted to avoid setting up joins
and try writing subqueries instead. Resist this temptation, for two reasons! One is that
joins are an essential part of the relational database concept. Embrace them; don’t be
afraid of them. The other is that writing multiple levels of nested subqueries can be
extremely error prone and difficult to debug.

Example: Good Reading Book Stores
The best way to gain confidence in understanding SQL SELECT statements is to write
some! And there are some further refinements of the SQL SELECT that we have yet
to present. We will use the same three example databases that appeared in previous
chapters but, as with the General Hardware database, we will shorten the attribute
names. We will state a variety of queries and then give the SELECT statements that
will satisfy them, plus commentary as appropriate. You should try to write the SELECT
statements yourself before looking at our solutions!

Figure 4.2 is the Good Reading Bookstores relational database. Here is a list of
queries for Good Reading Bookstores.

PUBLISHER table

PUBNAME CITY COUNTRY TELEPHONE YRFOUND

AUTHOR table

AUTHORNUM AUTHORNAME YEARBORN YEARDIED

BOOK table

BOOKNUM BOOKNAME PUBYEAR PAGES PUBNAME

CUSTOMER table

CUSTNUM CUSTNAME STREET CITY STATE COUNTRY

WRITING table

BOOKNUM AUTHORNUM

SALE table

BOOKNUM CUSTNUM DATE PRICE QUANTITY
FIGURE 4.2  Good reading
Bookstores Relational database

82   Chapter 4  Relational Data Retrieval: SQL

1.	 “Find the book number, book name, and number of pages of all the
books published by London Publishing Ltd. List the results in order by
book name.”

This query obviously requires the PUBNAME attribute but it does not
require the PUBLISHER table. All of the information needed is in the BOOK
table, including the PUBNAME attribute, which is there as a foreign key. The
SELECT statement is:

SELECT BOOKNUM, BOOKNAME, PAGES
FROM BOOK
WHERE PUBNAME='London Publishing Ltd.'
ORDER BY BOOKNAME;

2.	 “How many books of at least 400 pages does Good Reading Bookstores carry
that were published by publishers based in Paris, France?”

This is a straightforward join between the PUBLISHER and BOOK tables
that uses the built-in function COUNT. All of the attribute names are unique
between the two tables, except for PUBNAME, which must be qualified
with a table name every time it is used. Notice that “Good Reading Book-
stores” does not appear as a condition in the SELECT statement, although
it was mentioned in the query. The entire database is about Good Reading
Bookstores and no other! There is no BOOKSTORE CHAIN table in the
database and there is no STORENAME or CHAINNAME attribute in any of
the tables.

SELECT COUNT(*)
FROM PUBLISHER, BOOK
WHERE PUBLISHER.PUBNAME=BOOK.PUBNAME
AND CITY='Paris'
AND COUNTRY='France'
AND PAGES>=400;

3.	 “List the publishers in Belgium, Brazil, and Singapore that publish books writ-
ten by authors who were born before 1920.”

Sometimes a relatively simple-sounding query can be fairly involved. This
query actually requires four tables of the database! To begin with, we need the
PUBLISHER table because that’s the only place that a publisher’s country is
stored. But we also need the AUTHOR table because that’s where author birth
years are stored. The only way to tie the PUBLISHER table to the AUTHOR
table is to connect PUBLISHER to BOOK, then to connect BOOK to WRITING,
and finally to connect WRITING to AUTHOR. With simple, one-attribute
keys such as those in these tables, the number of joins will be one fewer than
the number of tables. The FROM clause below shows four tables and the first
three lines of the WHERE clause show the three joins. Also, notice that since
a publisher may have published more than one book with the stated specifica-
tions, DISTINCT is required to prevent the same publisher name from appear-
ing several, perhaps many, times in the result. Finally, since we want to include
publishers in three specific countries, we list the three countries as Belgium,

Example: Good Reading Book Stores    83

Brazil, and Singapore. But, in the SELECT statement, we have to indicate that
for a record to be included in the result, the value of the COUNTRY attribute
must be Belgium, Brazil, or Singapore.

SELECT DISTINCT PUBLISHER.PUBNAME
FROM PUBLISHER, BOOK, WRITING, AUTHOR
WHERE PUBLISHER.PUBNAME=BOOK.PUBNAME
AND BOOK.BOOKNUM=WRITING.BOOKNUM
AND WRITING.AUTHORNUM=AUTHOR.AUTHORNUM
AND COUNTRY IN ('Belgium', 'Brazil', 'Singapore')
AND YEARBORN < 1920;

4.	 “How many books did each publisher in Oslo, Norway; Nairobi, Kenya; and
Auckland, New Zealand, publish in 2001?”

The keyword here is “each.” This query requires a separate total for each
publisher that satisfies the conditions. This is a job for the GROUP BY clause.
We want to group together the records for each publisher and count the
number of records in each group. Each line of the result must include both a
publisher name and count of the number of records that satisfy the conditions.
This SELECT statement requires both a join and a GROUP BY. Notice the
seeming complexity but really the unambiguous beauty of the ANDs and ORs
structure regarding the cities and countries.

SELECT PUBLISHER.PUBNAME, CITY, COUNTRY, COUNT(*)
FROM PUBLISHER, BOOK
WHERE PUBLISHER.PUBNAME=BOOK.PUBNAME
AND ((CITY='Oslo' AND COUNTRY='Norway')
 OR (CITY='Nairobi' AND COUNTRY='Kenya')
 OR (CITY='Auckland' AND COUNTRY='New Zealand'))
AND PUBYEAR=2001
GROUP BY PUBLISHER.PUBNAME;

5.	 “Which publisher published the book that has the earliest publication year
among all the books that Good Reading Bookstores carries?”

All that is called for in this query is the name of the publisher, not the name
of the book. This is a case that requires a subquery. First the system has to
determine the earliest publication year, then it has to see which books have
that earliest publication year. Once you know the books, their records in the
BOOK table give you the publisher names. Since more than one publisher
may have published a book in that earliest year, there could be more than one
publisher name in the result. And, since a particular publisher could have pub-
lished more than one book in that earliest year, DISTINCT is required to avoid
having that publisher’s name listed more than once.

SELECT DISTINCT PUBNAME
FROM BOOK
WHERE PUBYEAR=
 (SELECT MIN(PUBYEAR)
 FROM BOOK);

84   Chapter 4  Relational Data Retrieval: SQL

Example: World Music Association
Figure 4.3 is the World Music Association relational database. Here is a list of queries
for the World Music Association.

1.	 “What is the total annual salary cost for all the violinists in the Berlin Sym-
phony Orchestra?”

SELECT SUM(ANNSALARY)
FROM MUSICIAN
WHERE ORCHNAME='Berlin Symphony Orchestra'
AND INSTRUMENT='Violin';

2.	 “Make a single list, in alphabetic order, of all of the universities attended by
the cellists in India.”

SELECT DISTINCT UNIVERSITY
FROM ORCHESTRA, MUSICIAN, DEGREE
WHERE ORCHESTRA.ORCHNAME=MUSICIAN.ORCHNAME
AND MUSICIAN.MUSNUM=DEGREE.MUSNUM
AND INSTRUMENT='Cello'
AND COUNTRY='India'
ORDER BY UNIVERSITY;

ORCHESTRA table

ORCHNAME CITY COUNTRY MUSICDIR

MUSICIAN table

MUSNUM MUSNAME INSTRUMENT ANNSALARY ORCHNAME

DEGREE table

MUSNUM DEGREE UNIVERSITY YEAR

COMPOSER table

COMPOSERNAME COUNTRY DATEBIRTH

COMPOSITION table

COMPOSITIONNAME COMPOSERNAME YEAR

RECORDING table

ORCHNAME COMPOSITIONNAME COMPOSERNAME YEAR PRICE
FIGURE 4.3  World Music
Association relational database

Example: World Music Association    85

3.	 “What is the total annual salary cost for all of the violinists of each orchestra in
Canada? Include in the result only those orchestras whose total annual salary
for its violinists is in excess of $150,000.”

Since this query requires a separate total for each orchestra, the SELECT
statement must rely on the GROUP BY clause. Since the condition that
the total must be over 150,000 is based on figures calculated by the SUM
built-in function, it must be placed in a HAVING clause rather than in the
WHERE clause.

SELECT ORCHESTRA.ORCHNAME, SUM(ANNSALARY)
FROM ORCHESTRA, MUSICIAN
WHERE ORCHESTRA.ORCHNAME=MUSICIAN.ORCHNAME
AND COUNTRY='Canada'
AND INSTRUMENT='Violin'
GROUP BY ORCHESTRA.ORCHNAME
HAVING SUM(ANNSALARY)>150000;

4.	 “What is the name of the most highly paid pianist?”

It should be clear that a subquery is required. First the system has to
determine what the top salary of pianists is and then it has to find out which
pianists have that salary.

SELECT MUSNAME
FROM MUSICIAN
WHERE INSTRUMENT='Piano'
AND ANNSALARY=
 (SELECT MAX(ANNSALARY)
 FROM MUSICIAN
 WHERE INSTRUMENT='Piano');

This is another example in which a predicate, INSTRUMENT=‘Piano’ in
this case, appears in both the main query and the subquery. Clearly it has
to be in the subquery because you must first find out how much money the
highest-paid pianist makes. But then why does it have to be in the main query,
too? The answer is that the only thing that the subquery returns to the main
query is a single number, specifically a salary value. No memory is passed on
to the main query of how the subquery arrived at that value. If you remove
INSTRUMENT=‘Piano’ from the main query so that it now looks like:

SELECT MUSNAME
FROM MUSICIAN
WHERE ANNSALARY=
 (SELECT MAX(ANNSALARY)
 FROM MUSICIAN
 WHERE INSTRUMENT='Piano');

you would find every musician who plays any instrument whose salary is equal
to the highest- paid pianist. Of course, if for some reason you do want to find
all of the musicians, regardless of the instrument they play, who have the same
salary as the highest-paid pianist, then this last SELECT statement is exactly
what you should write.

86   Chapter 4  Relational Data Retrieval: SQL

5.	 “What is the name of the most highly paid pianist in any orchestra in
Australia?”

This is the same idea as the last query but involves two tables, both of which
must be joined in both the main query and the subquery. The reasoning for
this is the same as in the last query. The salary of the most highly paid pianist
in Australia must be determined first in the subquery. Then that result must
be used in the main query, where it must be compared only to the salaries of
Australian pianists.

SELECT MUSNAME
FROM MUSICIAN, ORCHESTRA
WHERE MUSICIAN.ORCHNAME=ORCHESTRA.ORCHNAME
AND INSTRUMENT='Piano'
AND COUNTRY='Australia'
AND ANNSALARY=
 (SELECT MAX(ANNSALARY)
 FROM MUSICIAN, ORCHESTRA
 WHERE MUSICIAN.ORCHNAME=ORCHESTRA.ORCHNAME
 AND INSTRUMENT='Piano'
 AND COUNTRY='Australia');

Example: Lucky Rent-A-Car
Figure 4.4 is the Lucky Rent-A-Car relational database. Here is a list of queries for
Lucky Rent-A-Car.

1.	 “List the manufacturers whose names begin with the letter “C” or the letter
“D” and that are located in Japan.”

SELECT MANUFNAME
FROM MANUFACTURER
WHERE (MANUFNAME LIKE 'C%'
 OR MANUFNAME LIKE 'D%')
AND COUNTRY='Japan';

2.	 “What was the average mileage of the cars that had tune-ups in August, 2003?”

SELECT AVG(MILEAGE)
FROM MAINTENANCE
WHERE PROCEDURE='Tune-Up'
AND DATE BETWEEN 'AUG-01-2003' AND 'AUG-31-2003';

The exact format for specifying dates may differ among SQL processors and
a given processor may have several options.

3.	 “How many different car models are made by manufacturers in Italy?”

This query will use an interesting combination of COUNT and DISTINCT
that may not work in all SQL processors. In this case it literally counts the dif-
ferent models among the cars made in Italy. Since many different cars are of
the same model, DISTINCT is needed to make sure that each model is counted
just once.

Example: Lucky Rent-A-Car    87

SELECT COUNT(DISTINCT MODEL)
FROM MANUFACTURER, CAR
WHERE MANUFACTURER.MANUFNAME=CAR.MANUFNAME
AND COUNTRY='Italy';

4.	 “How many repairs were performed on each car manufactured by Superior
Motors during the month of March, 2004? Include only cars in the result that
had at least three repairs.”

SELECT CAR.CARNUM, COUNT(*)
FROM CAR, MAINTENANCE
WHERE CAR.CARNUM=MAINTENANCE.CARNUM
AND MANUFNAME='Superior Motors'
AND DATE BETWEEN 'MAR-01-2004' AND 'MAR-31-2004'
GROUP BY CAR.CARNUM
HAVING COUNT(*)>=3;

5.	 “List the cars of any manufacturer that had an oil change in January, 2004, and
had at least as many miles as the highest-mileage car manufactured by Supe-
rior Motors that had an oil change that same month.”

SELECT MAINTENANCE.CARNUM
FROM MAINTENANCE
WHERE PROCEDURE='Oil Change'
AND DATE BETWEEN 'JAN-01-2004' AND 'JAN-31-2004'
AND MILEAGE>=
 (SELECT MAX(MILEAGE)
 FROM CAR, MAINTENANCE
 WHERE CAR.CARNUM = MAINTENANCE.CARNUM
 AND PROCEDURE='Oil Change'
 AND DATE BETWEEN 'JAN-01-2004' AND 'JAN-31-2004'
 AND MANUFNAME='Superior Motors');

MANUFACTURER table
MANUFNAME COUNTRY SALESREPNAME SALESREPPHONE

CAR table
CARNUM MODEL YEAR CLASS MANUFNAME

MAINTENANCE table
REPAIRNUM CARNUM DATE PROCEDURE MILEAGE REPAIRTIME

CUSTOMER table
CUSTNUM CUSTNAME CUSTADDR CUSTPHONE

RENTAL table
CARNUM CUSTNUM RENTALDATE RETURNDATE COST

FIGURE 4.4  Lucky Rent-A-Car
relational database

88   Chapter 4  Relational Data Retrieval: SQL

Relational Query Optimizer
Relational DBMS Performance
An ever-present issue in data retrieval is performance: the speed with which the
required data can be retrieved. In a typical relational database application environ-
ment, and as we’ve seen in the examples above, many queries require only one table.
It is certainly reasonable to assume that such single-table queries using indexes, hash-
ing, and the like, should, more or less, not take any longer in a relational database
system environment than in any other kind of file management system. But, what
about the queries that involve joins? Recall the detailed explanation of how data inte-
gration works earlier in the book that used the Salesperson and Customer tables as an
example. These very small tables did not pose much of a performance issue, even if the
join was carried out in the worst-case way, comparing every row of one table to every
row of the other table, as was previously described. But what if we attempted to join
a 1-million-row table with a 3-million-row table? How long do you think that would
take—even on a large, fast computer? It might well take much longer than a person
waiting for a response at a workstation would be willing to tolerate. This was actually
one of the issues that caused the delay of almost ten years from the time the first article
on relational database was published in 1970 until relational DBMSs were first offered
commercially almost ten years later.

The performance issue in relational database management has been approached
in two different ways. One, the tuning of the database structure, which is known as
“physical database design,” will be the subject of an entire chapter of this book, Chap-
ter 8. It’s that important. The other way that the relational database performance issue
has been approached is through highly specialized software in the relational DBMS
itself. This software, known as a relational query optimizer, is in effect an “expert
system” that evaluates each SQL SELECT statement sent to the DBMS and determines
an efficient way to satisfy it.

Relational Query Optimizer Concepts
All major SQL processors (meaning all major relational DBMSs) include a query opti-
mizer. Using a query optimizer, SQL attempts to figure out the most efficient way of
answering a query, before actually responding to it. Clearly, a query that involves only
one table should be evaluated to take advantage of aids such as indexes on pertinent
attributes. But, again, the most compelling and interesting reason for having a query
optimizer in a relational database system is the goal of executing multiple-table data
integration or join-type operations without having to go through the worst-case, very
time-consuming, exhaustive row-comparison process. Exactly how a specific rela-
tional DBMS’s query optimizer works is typically a closely held trade secret. Retrieval
performance is one way in which the vendors of these products compete with one
another. Nevertheless, there are some basic ideas that we can discuss here.

When an SQL query optimizer is presented with a new SELECT statement to evalu-
ate, it seeks out information about the tables named in the FROM clause. This infor-
mation includes:

•	 Which attributes of the tables have indexes built over them.
•	 Which attributes have unique values.
•	 How many rows each table has.

Relational Query Optimizer    89

The query optimizer finds this information in a special internal database known as
the “relational catalog,” which will be described further in Chapter 10.

The query optimizer uses the information about the tables, together with the var-
ious components of the SELECT statement itself, to look for an efficient way to retrieve
the data required by the query. For example, in the General Hardware Co. SELECT
statement:

SELECT SPNUM, SPNAME
FROM SALESPERSON
WHERE COMMPERCT=10;

the query optimizer might check on whether the COMMPERCT attribute has an index
built over it. If this attribute does have an index, the query optimizer might decide to
use the index to find the rows with a commission percentage of 10. However, if the
number of rows of the SALESPERSON table is small enough, the query optimizer
might decide to read the entire table into main memory and scan it for the rows with
a commission percentage of 10.

Another important decision that the query optimizer makes is how to satisfy a join.
Consider the following General Hardware Co. example that we looked at above:

SELECT SPNAME
FROM SALESPERSON, CUSTOMER
WHERE SALESPERSON.SPNUM=CUSTOMER.SPNUM
AND CUSTNUM=1525;

In this case, the query optimizer should be able to recognize that since CUSTNUM is
a unique attribute in the CUSTOMER table and only one customer number is speci-
fied in the SELECT statement, only a single record from the CUSTOMER table, the
one for customer number 1525, will be involved in the join. Once it finds this CUS-
TOMER record (hopefully with an index), it can match the SPNUM value found in it
against the SPNUM values in the SALESPERSON records looking for a match. If it is
clever enough to recognize that SPNUM is a unique attribute in the SALESPERSON
table, then all it has to do is find the single SALESPERSON record (hopefully with an
index) that has that salesperson number and pull the salesperson name (SPNAME)
out of it to satisfy the query. Thus, in this type of case, an exhaustive join can be com-
pletely avoided.

When a more extensive join operation can’t be avoided, the query optimizer can
choose from one of several join algorithms. The most basic, known as a Cartesian
product, is accomplished algorithmically with a “nested-loop join.” One of the two
tables is selected for the “outer loop” and the other for the “inner loop.” Each of the
records of the outer loop is chosen in succession and, for each, the inner-loop table is
scanned for matches on the join attribute. If the query optimizer can determine that
only a subset of the rows of the outer or inner tables is needed, then only those rows
need to be included in the comparisons.

A more efficient join algorithm than the nested-loop join, the “merge-scan join,”
can be used only if certain conditions are met. The principle is that for the merge-
scan join to work, each of the two join attributes either must be in sorted order or
must have an index built over it. An index, by definition, is in sorted order and so,
one way or the other, each join attribute has a sense of order to it. If this condition is
met, then comparing every record of one table to every record of the other table as
in a nested-loop join is unnecessary. The system can simply start at the top of each
table or index, as the case may be, and move downwards, without ever having to
move upwards.

90   Chapter 4  Relational Data Retrieval: SQL

Key Terms
Access path
AND and OR
Base table
BETWEEN
Built-in functions
Comparisons
Data definition language

(DDL)

Data manipulation
language (DML)

Declarative
DISTINCT
Embedded mode
GROUP BY
HAVING
IN

LIKE
Merge-scan join
ORDER BY
Nested-loop join
Procedural
Query
Relational query

optimizer

Search argument
SELECT
Structured Query

Language (SQL)
Subquery

Summary
SQL has become the standard relational database management data definition and
data manipulation language. Data retrieval in SQL is accomplished with the SELECT
command. SELECT commands can be run in a direct query mode or embedded in
higher-level language programs in an embedded mode. The SELECT command can
be used to retrieve one or more rows of a table, one or more columns of a table, or
particular columns of particular rows. There are built-in functions that can sum and
average data, find the minimum and maximum values of a set of data, and count the
number of rows that satisfy a condition. These built-in functions can also be applied to
multiple subsets or groups of rows. The SELECT command can also integrate data by
joining two or more tables. Subqueries can be developed for certain specific circum-
stances. There is a strategy for writing SQL commands successfully.

Performance is an important issue in the retrieval of data from relational data-
bases. All relational database management systems have a relational query opti-
mizer, which is software that looks for a good way to solve each relational query
presented to it. While the ways that these query optimizers work are considered
trade secrets, there are several standard concepts and techniques that they gener-
ally incorporate.

Questions
  1.	 What are the four basic operations that can be per-

formed on stored data?
  2.	 What is Structured Query Language (SQL)?
  3.	 Name several of the fundamental SQL commands and

discuss the purpose of each.
  4.	 What is the purpose of the SQL SELECT command?
  5.	 How does the SQL SELECT command relate to the rela-

tional Select, Project, and Join concepts?
  6.	 Explain the difference between running SQL in query

mode and in embedded mode.
  7.	 Describe the basic format of the SQL SELECT

command.

  8.	 In a general way, describe how to write an SQL SELECT
command to accomplish a relational Select operation.

  9.	 In a general way, describe how to write an SQL
SELECT command to accomplish a relational Project
operation.

10.	 In a general way, describe how to write an SQL SELECT
command to accomplish a combination of a relational
Select operation and a relational Project operation.

11.	 What is the purpose of the WHERE clause in SQL
SELECT commands?

12.	 List and describe some of the common operators that
can be used in the WHERE clause.

13.	 Describe the purpose of each of the following operators
in the WHERE clause:

	 a.	 AND
	 b.	 OR
	 c.	 BETWEEN
	 d.	 IN
	 e.	 LIKE
14.	 What is the purpose of the DISTINCT operator?
15.	 What is the purpose of the ORDER BY clause?
16.	 Name the five SQL built-in functions and describe the

purpose of each.
17.	 Explain the difference between the SUM and COUNT

built-in functions.
18.	 Describe the purpose of the GROUP BY clause. Why

must the attribute in the GROUP BY clause also appear
in the SELECT clause?

19.	 Describe the purpose of the HAVING clause. How do
you decide whether to place a row-limiting predicate in
the WHERE clause or in the HAVING clause?

20.	 How do you construct a Join operation in an SQL
SELECT statement?

21.	 What is a subquery in an SQL SELECT statement?
22.	 Describe the circumstances in which a subquery

must be used.
23.	 What is a relational query optimizer? Why are they

important?
24.	 How do relational query optimizers work?
25.	 What information does a relational query optimizer use

in making its decisions?
26.	 What are some of the ways that relational query opti-

mizers can handle joins?

Exercises    91

Exercises
  1.	 Consider the following relational database that Best

Airlines uses to keep track of its mechanics, their
skills, and their airport locations. Mechanic number
(MECHNUM), airport name (AIRNAME), and skill
number are all unique fields. SIZE is an airport’s size in
acres. SKILLCAT is a skill category, such as an engine
skill, wing skill, and tire skill. YEARQUAL is the year
that a mechanic first qualified in a particular skill;
PROFRATE is the mechanic’s proficiency rating in a
particular skill.

MECHANIC Table
MECHNUM MECHNAME AGE SALARY AIRNAME

AIRPORT Table
AIRNAME CITY STATE SIZE YEAROPENED

SKILL Table
SKILLNUM SKILLNAME SKILLCAT

QUALIFICATION Table
MECHNUM SKILLNUM YEARQUAL PROFRATE

Write SQL SELECT commands to answer the
following queries.

	 a.	 List the names and ages of all the mechanics.
	 b.	 List the airports in California that are at least

20 acres in size and have been open since 1935.
Order the results from smallest to largest airport.

	 c.	 List the airports in California that are at least
20 acres in size or have been open since 1935.

	 d.	 Find the average size of the airports in California
that have been open since 1935.

	 e.	 How many airports have been open in California
since 1935?

	 f.	 How many airports have been open in each state
since 1935?

	 g.	 How many airports have been open in each state
since 1935? Include in your answer only those
states that have at least five such airports.

	 h.	 List the names of the mechanics who work in
California.

	 i.	 Fan blade replacement is the name of a skill. List
the names of the mechanics who have a proficiency
rating of 4 in fan blade replacement.

	 j.	 Fan blade replacement is the name of a skill. List
the names of the mechanics who work in Califor-
nia who have a proficiency rating of 4 in fan blade
replacement.

	 k.	 List the total, combined salaries of all of the
mechanics who work in each city in California.

92   Chapter 4  Relational Data Retrieval: SQL

	 l.	 Find the largest of all of the airports.
	 m.	 Find the largest airport in California.

  2.	 Consider the following relational database for the
Quality Appliance Manufacturing Co. The database is
designed to track the major appliances (refrigerators,
washing machines, dishwashers, etc.) that Quality
manufactures. It also records information about Qual-
ity’s suppliers, the parts they supply, the buyers of the
finished appliances, and the finished goods inspectors.
Note the following facts about this environment:

•	 Suppliers are the companies that supply Qual-
ity with its major components, such as electric
motors, for the appliances. Supplier number is a
unique identifier.

•	 Parts are the major components that the sup-
pliers supply to Quality. Each part comes with a
part number but that part number is only unique
within a supplier. Thus, from Quality’s point of
view, the unique identifier of a part is the combi-
nation of part number and supplier number.

•	 Each appliance that Quality manufactures is
given an appliance number that is unique across
all of the types of appliances that Quality makes.

•	 Buyers are major department stores, home
improvement chains, and wholesalers. Buyer
numbers are unique.

•	 An appliance may be inspected by several inspec-
tors. There is clearly a many-to-many relationship
among appliances and inspectors, as indicated by
the INSPECTION table.

•	 There are one-to-many relationships between
suppliers and parts (Supplier Number is a for-
eign key in the PART table), parts and appliances
(Appliance Number is a foreign key in the PART
table), and appliances and buyers (Buyer Number
is a foreign key in the APPLIANCE table).

SUPPLIER Table
SUPPLIER
NUM

SUPPLIER
NAME

CITY COUNTRY PRESIDENT

PART Table
PARTNUM SUPPLIER

NUM
PARTTYPE COST APPLIANCE

NUM

APPLIANCE Table
APPLIANCE
NUM

APPLIANCE
TYPE

DATE
MANUF

BUYERNUM PRICE

BUYER Table
BUYERNUM BUYER

NAME
CITY COUNTRY CREDIT

RATING

INSPECTOR Table
INSPECTORNUM INSPECTOR

NAME
SALARY DATEHIRE

INSPECTION Table
APPLIANCE
NUM

INSPECTOR
NUM

DATEINSPECTION SCORE

Write SQL SELECT commands to answer the
following queries.

	 a.	 List the names, in alphabetic order, of the suppliers
located in London, Liverpool, and Manchester, UK.

	 b.	 List the names of the suppliers that supply motors
(see PARTTYPE) costing between $50 and $100.

	 c.	 Find the average cost of the motors (see
PARTTYPE) supplied by supplier number 3728.

	 d.	 List the names of the inspectors who were
inspecting refrigerators (see APPLIANCETYPE) on
April 17, 2011.

	 e.	 What was the highest inspection score achieved by
a refrigerator on November 3, 2011?

	 f.	 Find the total amount of money spent on Quality
Appliance products by each buyer from Mexico,
Venezuela, and Argentina.

	 g.	 Find the total cost of the parts used in each
dishwasher manufactured on February 28, 2010.
Only include in the results those dishwashers that
used at least $200 in parts.

	 h.	 List the highest paid inspectors.
	 i.	 List the highest paid inspectors who were

hired in 2009.
	 j.	 Among all of the inspectors, list those who earn

more than the highest-paid inspector who was
hired in 2009.

Exercises    93

  1.	 Consider the following relational database for Happy
Cruise Lines. It keeps track of ships, cruises, ports,
and passengers. A “cruise” is a particular sailing of a
ship on a particular date. For example, the seven-day
journey of the ship Pride of Tampa that leaves on
June 13, 2011, is a cruise. Note the following facts
about this environment.
•	 Both ship number and ship name are unique in

the SHIP Table.
•	 A ship goes on many cruises over time. A cruise

is associated with a single ship.
•	 A port is identified by the combination of port

name and country.
•	 As indicated by the VISIT Table, a cruise includes

visits to several ports and a port is typically
included in several cruises.

•	 Both Passenger Number and Social Security
Number are unique in the PASSENGER Table. A
particular person has a single Passenger Number
that is used for all the cruises she takes.

•	 The VOYAGE Table indicates that a person can
take many cruises and a cruise, of course, has
many passengers.

SHIP Table
SHIPNUM SHIPNAME BUILDER LAUNCH

DATE
WEIGHT

CRUISE Table
CRUISE
NUM

STARTDATE ENDDATE DIRECTOR SHIPNUM

PORT Table
PORTNAME COUNTRY NUMDOCKS MANAGER

VISIT Table
CRUISE
NUM

PORTNAME COUNTRY ARRDATE DEPDATE

PASSENGER Table
PASSENGER
NUM

PASSENGER
NAME

SOCSEC
NUM

STATE COUNTRY

VOYAGE Table
PASSENGERNUM CRUISENUM ROOMNUM FARE

Write SQL SELECT commands to answer the
following queries.

	 a.	 Find the start and end dates of cruise number
35218.

	 b.	 List the names and ship numbers of the ships
built by the Ace Shipbuilding Corp. that weigh
more than 60,000 tons.

	 c.	 List the companies that have built ships for
Happy Cruise Lines.

	 d.	 Find the total number of docks in all the ports
in Canada.

	 e.	 Find the average weight of the ships built by the
Ace Shipbuilding Corp. that have been launched
since 2000.

	 f.	 How many ports in Venezuela have at least
three docks?

	 g.	 Find the total number of docks in each country.
List the results in order from most to least.

	 h.	 Find the total number of ports in each country.
	 i.	 Find the total number of docks in each country

but include only those countries that have at
least twelve docks in your answer.

	 j.	 Find the name of the ship that operated on (was
used on) cruise number 35218.

	 k.	 List the names, states and countries of the
passengers who sailed on The Spirit of Nashville
on cruises that began during July, 2011.

	 l.	 Find the names of the company’s heaviest ships.
	 m.	 Find the names of the company’s heaviest ships

that began a cruise between July 15, 2011 and
July 31, 2011.

  2.	 Consider the following relational database for the
Super Baseball League. It keeps track of teams
in the league, coaches and players on the teams,

Minicases

94   Chapter 4  Relational Data Retrieval: SQL

work experience of the coaches, bats belonging
to each team, and which players have played on
which teams. Note the following facts about this
environment:
•	 The database keeps track of the history of all the

teams that each player has played on and all the
players who have played on each team.

•	 The database only keeps track of the current
team that a coach works for.

•	 Team number, team name, and player number
are each unique attributes across the league.

•	 Coach name is unique only within a team (and
we assume that a team cannot have two coaches
of the same name).

•	 Serial number (for bats) is unique only
within a team.

•	 In the Affiliation table, the Years attribute indi-
cates the number of years that a player played on
a team; the batting average is for the years that a
player played on a team.

TEAM Table
TEAMNUM TEAMNAME CITY MANAGER

COACH Table
TEAMNUM COACHNAME ADDRESS

WORK EXPERIENCE Table
TEAMNUM COACHNAME EXPERIENCE

TYPE
YEARS
EXPERIENCE

BATS Table
TEAMNUM SERIALNUM MANUFACTURER

PLAYER Table
PLAYERNUM PLAYERNAME AGE

AFFILIATION Table
PLAYERNUM TEAMNUM YEARS BATTINGAVG

Write SQL SELECT commands to answer the
following queries.

	 a.	 Find the names and cities of all of the teams
with team numbers greater than 15. List the
results alphabetically by team name.

	 b.	 List all of the coaches whose last names begin
with “D” and who have between 5 and 10 years
of experience as college coaches (see YEARSEX-
PERIENCE and EXPERIENCETYPE).

	 c.	 Find the total number of years of experience of
Coach Taylor on team number 23.

	 d.	 Find the number of different types of experience
that Coach Taylor on team number 23 has.

	 e.	 Find the total number of years of experience of
each coach on team number 23.

	 f.	 How many different manufacturers make bats
for the league’s teams?

	 g.	 Assume that team names are unique. Find the
names of the players who have played for the
Dodgers for at least five years (see YEARS in the
AFFILIATION Table).

	 h.	 Assume that team names are unique. Find the
total number of years of work experience of
each coach on the Dodgers, but include in the
result only those coaches who have more than
eight years of experience.

	 i.	 Find the names of the league’s youngest players.
	 j.	 Find the names of the league’s youngest players

whose last names begin with the letter “B”.

95

CHAPTER 5

The Relational Database
Model: Introduction

In 1970, Dr. Edgar F. (Ted) Codd of IBM published in
Communications of the ACM a paper entitled “A Relational
Model of Data for Large Shared Data Banks.” This paper
marked the beginning of the field of relational databases.
During the 1970s, the relational approach to databases
progressed from being a technical curiosity to a subject of
serious interest in the information systems community. But it
was not until the early 1980s that commercially viable rela-
tional database management systems became available.
There were two basic reasons for this. One was that, while
the relational database was very tempting in concept,
its application in a real-world environment was elusive for
performance-related reasons. The second reason was that
at exactly the time that Codd’s paper was published, the
earlier hierarchical and network database management
systems were just coming onto the commercial scene and
were the focus of intense marketing efforts by the soft-
ware and hardware vendors of the day. Eventually, both of
these obstacles were overcome and the relational model
became and remains the database model of choice.

OBJECTIVES
Explain why the relational database model became practical in about 1980.
Define such basic relational database terms as relation and tuple.
Describe the major types of keys including primary, candidate, and foreign.
Describe how one-to-one, one-to-many, and many-to-many binary relationships are implemented

in a relational database.
Describe how relational data retrieval is accomplished using the relational algebra select, project,

and join operators.
Understand how the join operator facilitates data integration in relational database.

CHAPTER OUTLINE
Introduction
The Relational Database Concept

Relational Terminology
Primary and Candidate Keys
Foreign Keys and Binary Relationships

Data Retrieval from a Relational Database
Extracting Data from a Relation
The Relational Select Operator
The Relational Project Operator
Combination of the Relational Select and

Project Operators
Extracting Data Across Multiple Relations:

Data Integration
Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Summary

96   Chapter 5  The Relational Database Model: Introduction

Introduction
Several factors converged in the early 1980s to begin turning the tide toward rela-
tional database. One was that the performance issues that held back its adoption in
the 1970s began to be resolved. Another was that, after a decade of use of hierarchical
and network database management systems, information systems professionals were
interested in an alternative that would move toward simplifying the database design
process and produce database structures that were easier to use and understand at all
levels. Also, at this time there was increasing interest in a DBMS environment that
would allow easier, more intuitive access to the data by an increasingly broad range
of personnel. Finally, the early 1980s saw the advent of the personal computer. As
software developers began trying to create all manner of applications and supporting
software utilities for the PC, it quickly became clear that the existing hierarchical and
network database approaches would not work in the PC environment, for two reasons.
One was that these DBMSs were simply too large to store and use on the early PCs.
The other was that they were too complex to be used by the very broad array of non-
information-systems professionals at whom the PCs were targeted.

Today, the relational approach to database management is by far the primary data-
base management approach used in all levels of information systems and for most
application purposes, from accounting to banking to manufacturing to sales on the
World Wide Web. Relational database management is represented today by such prod-
ucts as Microsoft Access and SQL Server, Oracle, Sybase, and IBM’s DB2 and Infor-
mix. While these and other relational database systems differ in their features and
implementations, they all share a common data structure philosophy and a common
data access tool: Structured Query Language (SQL) (often pronounced “sequel”). This
chapter will focus on the basic concepts of how data is stored and retrieved in a rela-
tional database by a relational DBMS. Chapter 6 will discuss some additional rela-
tional database concepts. Then, Chapter 7 will describe logical database design and
Chapter 8 will go into physical database design.

The Relational Database Concept
Relational Terminology
In spite of the apparent conflict between non-redundant, linear file data storage and
data integration demonstrated in Chapter 3, the relative simplicity of simple, linear
files or structures that resemble them in a true database environment is very desirable.
After all, the linear file arrangement is the most basic and commonly used data struc-
ture there is. This is precisely one of the advantages of relational database management.

To begin with, consider the data structure used in relational databases. In a rela-
tional database, the data appears to be stored in what we have been referring to as
simple, linear files. Following the conventions of the area of mathematics on which
relational database is based, we will begin calling those simple linear files relations,
although in common practice they are also referred to as “tables.” In the terminology
of files, each row is called a “record,” while in a relation, each row is called a tuple.
In files, each column is called a “field,” while in a relation each column is called an
attribute. In practice, in speaking about relational database, people commonly use
the terms relation, table, and file synonymously. Similarly, tuple, row, and record are
often used synonymously, as are attribute, column, and field, Figure 5.1. We will use

The Relational Database Concept    97

an appropriate term in each particular situation during our discussion. In particular,
we will use the term “relation” in this chapter and the next, in which we are talking
about relational database concepts. Following common usage, we will generally use
the word “table” in the more applied parts of the book, such as in the corporate data-
base stories in each chapter and in the discussion of SQL in Chapter 4.

It is important to note that there are technical differences between the concept of a
file and the concept of a relation (which is why we say that in a relational database the
data only appears to be stored in structures that look like files). The differences include:

•	 The columns of a relation can be arranged in any order without affecting the
meaning of the data. This is not true of a file.

•	 Similarly, the rows of a relation can be arranged in any order, which is not true
of a file.

•	 Every row/column position, sometimes referred to as a “cell,” can have only a
single value, which is not necessarily true in a file.

•	 No two rows of a relation are identical, which is not necessarily true in a file.

A relational database is simply a collection of relations that, as a group, contain the
data describing a particular business environment.

Primary and Candidate Keys
Primary Keys  Figure 5.2 contains two relations, the SALESPERSON relation and the
CUSTOMER relation, from General Hardware Company’s relational database. The
SALESPERSON relation has four rows, each representing one salesperson. Also,
the SALESPERSON relation has four columns, each representing a characteristic of
salespersons. Similarly, the CUSTOMER relation has nine rows, each representing a
customer, and four columns.

A relation always has a unique primary key. A primary key (sometimes short-
ened in practice to just “the key”) is an attribute or group of attributes whose values
are unique throughout all rows of the relation. In fact, the primary key represents the
characteristic of a collection of entities that uniquely identifies each one. For example,
in the situation described by the relations in Figure 5.2, each salesperson has been
assigned a unique salesperson number and each customer has been assigned a unique

Attribute
(or Column or Field) Relation (or Table or File)

Student
Number

Student
Name Class Major

03657 Robert Shaw Senior Biology Tuple
(or Row or Record) 05114 Gloria Stuart Freshman English

05950 Fred Simpson Junior Mathematics
12746 W. Shin Junior English
15887 Pedro Marcos Senior History
19462 H. Yamato Sophomore French
21682 Mary Jones Freshman Chemistry
24276 Steven Baker Sophomore History FIGURE 5.1  Relational database

terminology

98   Chapter 5  The Relational Database Model: Introduction

customer number. Therefore the Salesperson Number attribute is the primary key of
the SALESPERSON relation and the Customer Number attribute is the primary
key of the CUSTOMER relation. As in Figure 5.2, we will start marking the primary key
attribute(s) with a single, solid underline.

The number of attributes involved in the primary key is always the minimum
number of attributes that provide the uniqueness quality. For example, in the SALES-
PERSON relation, it would make no sense to have the combination of Salesperson
Number and Salesperson Name as the primary key because Salesperson Number is
unique by itself. However, consider the situation of a SALESPERSON relation that
does not include a Salesperson Number attribute, but instead has a First Name attri-
bute, a Middle Name attribute, and a Last Name attribute. The primary key might
then be the combination of the First, Middle, and Last Name attributes (assuming
this would always produce a unique combination of values. If it did not, then a fourth
attribute could be added to the relation and to the primary key as a sequence field to
produce, for example, John Alan Smith #1, John Alan Smith #2, and so forth.) Some
attribute or combination of attributes of a relation has to be unique and this can serve
as the unique primary key, since, by definition, no two rows can be identical. In the
worst case, all of the relation’s attributes combined could serve as the primary key if
necessary (but this situation is uncommon in practice).

Candidate Keys  If a relation has more than one attribute or minimum group of
attributes that represents a way of uniquely identifying the entities, then they are each
called a candidate key. (Actually, if there is only one unique attribute or minimum

(a) SALESPERSON relation
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation
Customer
Number

Customer
Name

Salesperson
Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New YorkFIGURE 5.2  General Hardware Company relational
database

The Relational Database Concept    99

group of attributes it can also be called a candidate key.) For example, in a personnel
relation, an employee number attribute and a Social Security Number attribute (each
of which is obviously unique) would each be a candidate key of that relation. When
there is more than one candidate key, one of them must be chosen to be the primary
key of the relation. That is where the term “candidate key” comes from, since each one
is a candidate for selection as the primary key. The decision of which candidate key
to pick to be the primary key is typically based on which one will be the best for the
purposes of the applications that will use the relation and the database. Sometimes
the term alternate key is used to describe a candidate key that was not chosen to
be the primary key of the relation, Figure 5.3.

Foreign Keys and Binary Relationships
Foreign Keys  If, in a collection of relations that make up a relational database,
an attribute or group of attributes serves as the primary key of one relation and also
appears in another relation, then it is called a foreign key in that other relation. Thus
Salesperson Number, which is the primary key of the SALESPERSON relation, is con-
sidered a foreign key in the CUSTOMER relation, Figure 5.4. As shown in Figure 5.4,
we will start marking the foreign key attribute(s) with a dashed underline. The concept
of the foreign key is crucial in relational databases, as the foreign key is the mechanism
that ties relations together to represent unary, binary, and ternary relationships. We
begin the discussion by considering how binary relationships are stored in relational
databases. These are both the most common and the easiest to deal with. The unary
and ternary relationships will come later. Recall from the discussion of the entity-
relationship model that the three kinds of binary relationships among the entities
in the business environment are the one-to-one, one-to-many, and many-to-many

CandidateKey 1

CandidateKey 3

CandidateKey 2

CandidateKey 1

CandidateKey 3

CandidateKey 2

Alternate
Key

Alternate
Key

The Winner and
Primary Key

FIGURE 5.3  Candidate keys become either primary or alternate keys

100   Chapter 5  The Relational Database Model: Introduction

relationships. The first case is the one-to-many relationship, which is typically the
most common of the three.

One-to-Many Binary Relationship  Consider the SALESPERSON and CUS-
TOMER relations of Figure 5.2, repeated in Figure 5.4. As one would expect in most
sales-oriented companies, notice that each salesperson is responsible for several cus-
tomers while each customer has a single salesperson as their point of contact with
General Hardware. This one-to-many binary relationship can be represented as:

Salesperson Customer

For example, the Salesperson Number attribute of the CUSTOMER relation shows
that salesperson 137 is responsible for customers 0121, 0933, 1047, and 1826. Looking at
it from the point of view of the customer, the same relation shows that the only sales-
person associated with customer 0121 is salesperson 137, Figure 5.5. This last point has
to be true. After all, there is only one record for each customer in the CUSTOMER
relation (the Customer Number attribute is unique since it is the relation’s primary
key) and there is only one place to put a salesperson number in it. The bottom line is
that the Salesperson Number foreign key in the CUSTOMER relation effectively estab-
lishes the one-to-many relationship between salespersons and customers.

By the way, notice that, in this case, the primary key of the SALESPERSON relation
and the corresponding foreign key in the CUSTOMER relation both have the same
attribute name, Salesperson Number. This will often be the case but it does not have to
be. What is necessary is that both attributes have the same domain of values; that is,
they must both have values of the same type, such as (in this case) three-digit whole
numbers that are the identifiers for salespersons.

137

186

204

361

Baker

Adams

Dickens

Carlyle

10

15

10

20

1995

2001

1998

2001

Salesperson
Number

Salesperson
Name

Year
of Hire

Commission
Percentage

0121

0839

0933

1047

1525

1700

1826

2198

2267

Main St. Hardware

Jane’s Hardware

ABC Home Stores

Acme Hardware Store

Fred’s Tool Stores

XYZ Stores

City Hardware

Western Hardware

Central Stores

137

186

137

137

361

361

137

204

186

New York

Chicago

Los Angeles

Los Angeles

Atlanta

Washington

New York

New York

New York

Customer
Number

Customer
Name HQ City

Salesperson
Number

Primary
Key

Foreign
Key

(a) SALESPERSON relation (b) CUSTOMER relation

United States Europe

FIGURE 5.4  A foreign key

The Relational Database Concept    101

It is the presence of a salesperson number in a customer record that indicates which
salesperson the customer is associated with. Fundamentally, that is why the Sales-
person Number attribute is in the CUSTOMER relation and that is the essence of
its being a foreign key in that relation. In Chapter 7, we will discuss database design
issues in detail. But, for now, note that when building a one-to-many relationship into
a relational database, it will always be the case that the unique identifier of the entity
on the “one side” of the relationship (Salesperson Number, in this example) will be
placed as a foreign key in the relation representing the entity on the “many side” of the
relationship (the CUSTOMER relation, in this example).

Here’s something else about foreign keys. There are situations in which a relation
doesn’t have a single, unique attribute to serve as its primary key. Then, it requires a
combination of two or more attributes to reach uniqueness and serve as its primary
key. Sometimes one or more of the attributes in that combination can be a foreign key!
Yes, when this happens, a foreign key is actually part of the relation’s primary key!
This was not the case in the CUSTOMER relation of Figure 5.2b. In this relation, the
primary key only consists of one attribute, Customer Number, which is unique all by
itself. The foreign key, Salesperson Number, is clearly not a part of the primary key.

Here is an example of a situation in which a foreign key is part of a relation’s primary
key. Figure 5.6 adds the CUSTOMER EMPLOYEE relation, Figure 5.6c, to the General
Hardware database. Remember that General Hardware’s customers are the hardware
stores, home improvement stores, or chains of such stores that it supplies. Figure 5.6c,
the CUSTOMER EMPLOYEE relation, lists the employees of each of General Hard-
ware’s customers. In fact, there is a one-to-many relationship between customers and
customer employees. A customer (like a hardware store) has many employees but an
employee, a person, works in only one store:

Customer Customer Employee

Customer 1826

Customer 1047

Customer 0933

Customer 0121

Salesperson 137
Mr. Baker

FIGURE 5.5  A salesperson and his four customers

102   Chapter 5  The Relational Database Model: Introduction

For example, Figure 5.6c shows that customer 2198 has four employees, Smith,
Jones, Garcia, and Kaplan. Each of those people is assumed to work for only one cus-
tomer company, customer 2198. Following the rule we developed for setting up a one-
to-many relationship with a foreign key, the Customer attribute must appear in the
CUSTOMER EMPLOYEE relation as a foreign key, and indeed it does.

Now, what about finding a legitimate primary key for the CUSTOMER EMPLOYEE
relation? The assumption here is that employee numbers are unique only within a com-
pany; they are not unique across all of the customer companies. Thus, as shown in
the CUSTOMER EMPLOYEE relation in Figure 5.6c, there can be an employee of
customer number 0121 who is employee number 30441 in that company’s employee
numbering system, an employee of customer number 0933 who is employee number
30441 in that company’s system, and also an employee of customer number 2198 who
is also employee number 30441. That being the case, the Employee Number is not a
unique attribute in this relation. Neither it nor any other single attribute of the CUS-
TOMER EMPLOYEE relation is unique and can serve, alone, as the relation’s primary
key. But the combination of Customer Number and Employee Number is unique.
After all, we know that customer numbers are unique and within each customer
company, employee numbers are unique. That means that, as shown in Figure 5.6c,
the combination of Customer Number and Employee Number can be and is the rela-
tion’s primary key. Further, that means that Customer Number is both a foreign key
in the CUSTOMER EMPLOYEE relation and a part of its primary key. As shown in
Figure 5.6c, we will start marking attributes that are both a foreign key and a part of
the primary key with an underline consisting of a dashed line over a solid line.

Many-to-Many Binary Relationship
Storing the Many-to-Many Binary Relationship  Figure 5.7 expands the General
Hardware database by adding two more relations, the PRODUCT relation, Figure 5.7d,
and the SALES relation, Figure 5.7e. The PRODUCT relation simply lists the products
that General Hardware sells, one row per product, with Product Number as the unique
identifier and thus the primary key of the relation. Each of General Hardware’s sales-
persons can sell any or all of the company’s products and each product can be sold
by any or all of its salespersons. Therefore the relationship between salespersons and
products is a many-to-many relationship.

Salesperson Product

So, the database will somehow have to keep track of this many-to-many relation-
ship between salespersons and products. The way that a many-to-many relationship
is represented in a relational database is by the creation of an additional relation, in
this example, the SALES relation in Figure 5.7e. The SALES relation of Figure 5.7e
is intended to record the lifetime sales of a particular product by a particular sales-
person. Thus, there will be a single row in the relation for each applicable combina-
tion of salesperson and product (i.e., when a particular salesperson has actually sold
some of the particular product). For example, the first row of the SALES relation
indicates that salesperson 137 has sold product 19440. Since it is sufficient to record
that fact once, the combination of the Salesperson Number and Product Number
attributes always produces unique values. So, in general, the new relation created
to record the many-to-many relationship will have as its primary key the combined
unique identifiers of the two entities in the many-to-many relationship. That’s why,

The Relational Database Concept    103

in this example, the Salesperson Number and Product Number attributes both appear
in the SALES relation. Each of the two is a foreign key in the SALES relation since
each is the primary key of another relation in the database. The combination of these
two attributes is unique, and combined they comprise the primary key of the newly
created SALES relation.

(a) SALESPERSON relation
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation
Customer
Number

Customer
Name

Salesperson
Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation
Customer
Number

Employee
Number

Employee
Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

FIGURE 5.6  General Hardware
Company relational data-
base including the CUS-
TOMER EMPLOYEE
relation

104   Chapter 5  The Relational Database Model: Introduction

FIGURE 5.7  General Hardware
Company relational database
including the PRODUCT and
SALES relation

(a) SALESPERSON relation
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995
186 Adams 15 2001
204 Dickens 10 1998
361 Carlyle 20 2001

(b) CUSTOMER relation
Customer
Number

Customer
Name

Salesperson
Number HQ City

0121 Main St. Hardware 137 New York
0839 Jane’s Stores 186 Chicago
0933 ABC Home Stores 137 Los Angeles
1047 Acme Hardware Store 137 Los Angeles
1525 Fred’s Tool Stores 361 Atlanta
1700 XYZ Stores 361 Washington
1826 City Hardware 137 New York
2198 Western Hardware 204 New York
2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation
Customer
Number

Employee
Number

Employee
Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner
0933 25270 Chen VP Sales
0933 30441 Levy Sales Manager
0933 48285 Morton President
1525 33779 Baker Sales Manager
2198 27470 Smith President
2198 30441 Jones VP Sales
2198 33779 Garcia VP Personnel
2198 35268 Kaplan Senior Accountant

(d) PRODUCT relation
Product
Number

Product
Name

Unit
Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50
(continues)

The Relational Database Concept    105

The new SALES relation of Figure 5.7e effectively records the many-to-many
relationship between salespersons and products. This is illustrated from the “sales-
person side” of the many-to-many relationship by looking at the first three rows of
the SALES relation and seeing that salesperson 137 sells products 19440, 24013, and
26722. It is illustrated from the “product side” of the many-to-many relationship
by scanning down the Product Number column of the SALES relation, looking for
the value 19440, and seeing that product 19440 is sold by salespersons 137 and 186,
Figure 5.8.

Salesperson 137
Mr. Baker

Product 19440
 Hammer

Product 24013
 Saw

Product 26722
 Pliers

Salesperson 186
Ms. Adams

FIGURE 5.8  Many-to-many relationship between salespersons and products as shown in the SALES relation

(e) SALES relation
Salesperson
Number

Product
Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1,745

186 19440 2,529

186 21765 1,962

186 24013 3,071

204 21765 809

204 26722 734

361 16386 3,729

361 21765 3,110

361 26722 2,738

FIGURE 5.7  (Continued)
General Hardware Company
relational database includ-
ing the PRODUCT and
SALES relation

106   Chapter 5  The Relational Database Model: Introduction

Intersection Data  What about the Quantity attribute in the SALES relation? In
addition to keeping track of which salespersons have sold which products, General
Hardware wants to record how many of each particular product each salesperson has
sold since the product was introduced or since the salesperson joined the company.
So, it sounds like there has to be a “Quantity” attribute. And, an attribute describes an
entity, right? Then, which entity does the Quantity attribute describe? Does it describe
salespersons the way the Year of Hire does in the SALESPERSON relation? Does it
describe products the way Unit Price does in the PRODUCT relation? Each salesperson
has exactly one date of hire. Each product has exactly one unit price. But a salesperson
doesn’t have just one “quantity” associated with her because she sells many products
and similarly, a product doesn’t have just one “quantity” associated with it because it
is sold by many salespersons.

While year of hire is clearly a characteristic of salespersons and unit price is clearly
a characteristic of products, “quantity” is a characteristic of the relationship between
salesperson and product. For example, the fact that salesperson 137 appears in the first
row of the SALES relation of Figure 5.7e along with product 19440 indicates that he
has a history of selling this product. But do we know more about his history of selling
it? Yes! That first row of Figure 5.7e indicates that salesperson 137 has sold 473 units
of product 19440. Quantity describes the many-to-many relationship between salesper-
sons and products. In a sense it falls at the intersection between the two entities and is
thus called “intersection data,” Figure 5.9.

Since the many-to-many relationship has its own relation in the database and since
it can have attributes, does that mean that we should think of it as a kind of entity?
Yes! Many people do just that and refer to it as an “associative entity,” a concept we first
described when discussing data modeling in Chapter 2!

Salesperson 137

Product 19440

473
Units

Intersection
Data

FIGURE 5.9  Intersection data that indicates that salesperson 137 has sold 473 units of product 19440

The Relational Database Concept    107

Additional Many-to-Many Concepts  Before leaving the subject of many-to-
many relationships, there are a few more important points to make. First, will the
combination of the two primary keys representing the two entities in the many-to-
many relationship always serve as a unique identifier or primary key in the additional
relation representing the many-to-many relationship? The answer is that this depends
on the precise nature of the many-to-many relationship. For example, in the situation
of the SALES relation in Figure 5.7e, the combination of the two entity identifier
attributes works perfectly as the primary key, as described above. But, what if General
Hardware decides it wants to keep track of each salesperson’s annual sales of each
product instead of their lifetime sales? Fairly obviously, a new attribute, Year, would
have to be added to the SALES relation, as shown in Figure 5.10. Moreover, as demon-
strated by a few sample rows of that relation, the combination of Salesperson Number
and Product Number is no longer unique. For example, salesperson 137 sold many
units of product 19440 in each of 1999, 2000, and 2001. The first three records of the
relation all have the salesperson number, product number combination of 137, 19440.
Clearly, the way to solve the problem in this instance is to add the Year attribute to the
Salesperson Number and Product Number attributes to form a three-attribute unique
primary key. It is quite common in practice to have to add such a “timestamp” to a
relation storing a many-to-many relationship in order to attain uniqueness and have
a legitimate primary key. Sometimes, as in the example in Figure 5.10, this is accom-
plished with a Year attribute. A Date attribute is required if the data may be stored two
or more times in a year. A Time attribute is required if the data may be stored more
than once in a day.

Next is the question of why an additional relation is necessary to represent a many-
to-many relationship. For example, could the many-to-many relationship between
salespersons and products be represented in either the SALESPERSON or PRODUCT
relations? The answer is no! If, for instance, you tried to represent the many-to-many
relationship in the SALESPERSON relation, you would have to list all of the prod-
ucts (by Product Number) that a particular salesperson has sold in that salesperson’s

SALES relation (modified)

Salesperson
Number

Product
Number Year Quantity

137 19440 1999 132
137 19440 2000 168
137 19440 2001 173
137 24013 2000 52
137 24013 2001 118
137 26722 1999 140
137 26722 2000 203
137 26722 2001 345
186 16386 1998 250
186 16386 1999 245
186 16386 2000 581
186 16386 2001 669

FIGURE 5.10  Modified SALES
relation of the General Hard-
ware Company relational data-
base, including a Year attribute

108   Chapter 5  The Relational Database Model: Introduction

record. Furthermore, you would have to carry the Quantity intersection data along
with it in some way. For example, in the SALESPERSON relation, the row for sales-
person 137 would have to be extended to include products 19440, 24013, and 26722,
plus the associated intersection data, Figure 5.11a. Alternatively, one could envi-
sion a single additional attribute in the SALESPERSON relation into which all the
related product number and intersection data for each salesperson would somehow be
stuffed, Figure 5.11b (although, aside from other problems, this would violate the rule
that every cell in a relation must have only a single value). In either case, it would be
unworkable. Because, in general, each salesperson has been involved in selling differ-
ent numbers of product types, each record of the SALESPERSON relation would be a
different length. Furthermore, additions, deletions, and updates of product/quantity
pairs would be a nightmare. Also, trying to access the related data from the “product
side,” for example, looking for all of the salespersons who have sold a particular prod-
uct, would be very difficult. And, incidentally, trying to make this work by putting
the salesperson data into the PRODUCT relation, instead of putting the product data
into the SALESPERSON relation as in Figure 5.11, would generate an identical set
of problems. No, the only way that’s workable is to create an additional relation to
represent the many-to-many relationship. Each combination of a related salesperson
and product has its own record, making the insertion, deletion, and update of related
items feasible, providing a clear location for intersection data, and avoiding the issue
of variable-length records.

Finally, there is the question of whether an additional relation is required to rep-
resent a many-to-many relationship if there is no intersection data. For example,
suppose that General Hardware wants to track which salespersons have sold which
products, but has no interest in how many units of each product they have sold.

(a) Additional Product and Quantity columns
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire Product Qty Product Qty Product Qty Product Qty

137 Baker 10 1995 19440 473 24013 170 26722 688

186 Adams 15 2001 16386 1745 19440 2529 21765 1962 24013 3071

204 Dickens 10 1998 21765 809 26722 734

361 Carlyle 20 2001 16386 3729 21765 3110 26722 2738

(b) One additional column for Product and Quantity Pairs
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire Product and Quantity Pairs

137 Baker 10 1995 (19440, 473) (24013, 170) (26722, 688)

186 Adams 15 2001 (16386, 1745) (19440, 2529) (21765, 1962) (24013, 3071)

204 Dickens 10 1998 (21765, 809) (26722, 734)

361 Carlyle 20 2001 (16386, 3729) (21765, 3110) (26722, 2738)

FIGURE 5.11  Unacceptable ways of storing a binary many-to-many relationship

The Relational Database Concept    109

The SALES relation of Figure 5.7e would then have only the Salesperson Number and
Product Number attributes, Figure 5.12. Could this information be stored in some way
other than with the additional SALES relation? The answer is that the additional rela-
tion is still required. Note that in the explanation above of why an additional relation
is necessary in general to represent a many-to-many relationship, the intersection data
played only a small role. The issues would still be there, even without intersection data.

One-to-One Binary Relationship  After considering one-to-many and many-to-
many binary relationships in relational databases, the remaining binary relationship
is the one-to-one relationship. Each of General Hardware’s salespersons has exactly
one office and each office is occupied by exactly one salesperson, Figure 5.13.

Salesperson Office

Figure 5.14f shows the addition of the OFFICE relation to the General Hardware
relational database. The SALESPERSON relation has the Office Number attribute as
a foreign key so that the company can look up the record for a salesperson and see
to which office she is assigned. Because this is a one-to-one relationship and each
salesperson has only one office, the company can also scan down the Office Number
column of the SALESPERSON relation, find a particular office number (which can
only appear once, since it’s a one-to-one relationship), and see which salesperson is
assigned to that office. In general, this is the way that one-to-one binary relationships
are built into relational databases. The unique identifier, the primary key, of one of the
two entities in the one-to-one relationship is inserted into the other entity’s relation as
a foreign key. The question of which of the two entities is chosen as the “donor” of its
primary key and which as the “recipient” will be discussed further when we talk about
logical design in Chapter 7.

SALES relation
(without intersection data)

Salesperson
Number

Product
Number

137 19440
137 24013
137 26722
186 16386
186 19440
186 21765
186 24013
204 21765
204 26722
361 16386
361 21765
361 26722

FIGURE 5.12  The many-to-many SALES relation without intersection data

110   Chapter 5  The Relational Database Model: Introduction

But there is another interesting question about this arrangement. Could the
SALESPERSON and OFFICE relations of Figure 5.14 be combined into one rela-
tion? After all, a salesperson has only one office and an office has only one sales-
person assigned to it. So, if an office and its unique identifier, Office Number,
“belongs” to one particular salesperson, so does that office’s Telephone Number and
Size. Indeed, when we want to contact a salesperson, we ask for her phone number,
not for “her office’s phone number!” So, could we combine the SALESPERSON and
OFFICE relations of Figure 5.14 into the single relation of Figure 5.15? The answer
is, it’s possible in some cases, but you have to be very careful about making such a
decision. In the General Hardware case, how would you store an unoccupied office
in the database? The relation of Figure 5.15 allows data about an office to be stored
only if the office is occupied. After all, the primary key of Figure 5.15’s relation is
Salesperson Number! You can’t have a record with office data in it and no sales-
person data. A case where it might work is a database of U.S. states and their gov-
ernors. Every state always has exactly one governor and anyone who is a governor
must be associated with one state. There can’t be a state without a governor or a
governor without a state.

Salesperson 186

Salesperson 204

Salesperson 361

Salesperson 137 Office 1253

Office 1227

Office 1284

Office 1209FIGURE 5.13  A one-to-one binary relationship

The Relational Database Concept    111

FIGURE 5.14  General Hardware
Company relational database
including the OFFICE relation

(a) SALESPERSON relation
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Office
Number

137 Baker 10 1995 1284

186 Adams 15 2001 1253

204 Dickens 10 1998 1209

361 Carlyle 20 2001 1227

(b) CUSTOMER relation
Customer
Number

Customer
Name

Salesperson
Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation
Customer
Number

Employee
Number

Employee
Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(continues)

112   Chapter 5  The Relational Database Model: Introduction

Combined SALESPERSON/OFFICE relation

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Office
Number Telephone

Size (sq.
ft.)

137 Baker 10 1995 1284 901-555-7335 120

186 Adams 15 2001 1253 901-555-4276 120

204 Dickens 10 1998 1209 901-555-3108   95

361 Carlyle 20 2001 1227 901-555-0364 100
FIGURE 5.15  Combining the
SALESPERSON and OFFICE
relations into a single relation

(d) PRODUCT relation
Product
Number

Product
Name

Unit
Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(e) SALES relation
Salesperson
Number

Product
Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1,745

186

186

19440 2,529

21765 1,962

186 24013 3,071

204 21765 809

204 26722 734

361 16386 3,729

361 21765 3,110

361 26722 2,738

(f) OFFICE relation
Office
Number Telephone Size (sq. ft.)
1253 901-555-4276 120

1227 901-555-0364 100

1284 901-555-7335 120

1209 901-555-3108   95

FIGURE 5.14  (Continued)
General Hardware Company
relational database including
the OFFICE relation

Data Retrieval from a Relational Database    113

At any rate, in practice, there are a variety of reasons for keeping the two relations
involved in the one-to-one relationship separate. It may be that because each of the
two entities involved is considered sufficiently important in its own right, this separa-
tion simply adds clarity to the database. It may be because most users at any one time
seek data about only one of the two entities. It may have to do with splitting the data
between different geographic sites. It can even be done for system performance in the
case where the records would be unacceptably long if the data was all contained in one
relation. These issues will be discussed later in this book but it is important to have at
least a basic idea of the intricacies of the one-to-one relationship, at this point.

Data Retrieval from a Relational Database
Extracting Data from a Relation
Thus far, the discussion has concentrated on how a relational database is structured.
But building relations and loading them with data is only half of the story. The other
half is the effort to retrieve the data in a way that is helpful and beneficial to the
business organization that built the database. If the database management system did
not provide any particular help in this effort, then the problem would revert to simply
writing a program in some programming language to retrieve data from the relations,
treating them as if they were simple, linear files. But the crucial point is that a major,
defining feature of a relational DBMS is the ability to accept high-level data retrieval
commands, process them against the database’s relations, and return the desired data.
The data retrieval mechanism is a built-in part of the DBMS and does not have to be
written from scratch by every program that uses the database. As we shall soon see,
this is true even to the extent of matching related records in different relations (inte-
grating data), as in the earlier example of finding the name of the salesperson on a par-
ticular customer account. We shall address what relational retrieval might look like,
first in terms of single relations and then across multiple relations.

Since a relation can be viewed as a tabular or rectangular arrangement of data
values, it would seem to make sense to want to approach data retrieval horizontally,
vertically, or in a combination of the two. Taking a horizontal slice of a relation implies
retrieving one or more rows of the relation. In effect, that’s an expression for retrieving
one or more records or retrieving the data about one or more entities. Taking a vertical

5.1  Entities, Keys, and Relationships
Think about a retail store that sells TVs, computers,
cameras, DVDs, etc. What entities must it keep
track of? What are some of the attributes of those
entities? What about relationships among those
entities? What do you think would be appropri-
ate primary, candidate, and foreign keys in the
relational tables designed to store data about
the entities?

Question:
Specifically consider a chain of retail electronics
stores. List several of the main entities that the chain
must keep track of. What are the relationships
between those entities? What would appropriate
primary, candidate, and foreign keys be in the rela-
tional tables that would store the data about these
entities?

Your Turn

114   Chapter 5  The Relational Database Model: Introduction

slice of a relation means retrieving one or more entire columns of the relation (down
through all of its rows). Taken in combination, we can retrieve one or more columns
of one or more rows, the minimum of which is a single column of a single row, or a
single attribute value of a single record. That’s as fine a sense of retrieval as we would
ever want.

Using terminology from a database formalism called relational algebra and an
informal, hypothetical command style for now, there are two commands called Select
and Project that are capable of the kinds of horizontal and vertical manipulations just
suggested. (Note: The use of the word “Select” here is not the same as its use in the
SQL data retrieval language discussed in Chapter 4.)

The Relational Select Operator
Consider the database of Figure 5.14 and its SALESPERSON relation, Figure 5.14a. To
begin with, suppose that we want to find the row or record for salesperson number
204. In a very straightforward way, the informal command might be:

Select rows from the SALESPERSON relation in which Salesperson Number = 204.
The result would be:

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

204 Dickens 10 1998

Notice that the result of the Select operation is itself a relation, in this case con-
sisting of only one row. The result of a relational operation will always be a relation,
whether it consists of many rows with many columns or one row with one column
(i.e., a single attribute value).

In order to retrieve all of the records with a common value in a particular (non-
unique) attribute, for example, all salespersons with a commission percentage of 10,
the command looks the same as when dealing with a unique attribute:

Select rows from the SALESPERSON relation in which Commission Percentage = 10.
But the result of the operation may include several rows:

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995
204 Dickens 10 1998

If the requirement is to retrieve the entire relation, the command would be:
Select all rows from the SALESPERSON relation.

The Relational Project Operator
To retrieve what we referred to earlier as a vertical slice of the relation requires the
Project operator. For example, the command to retrieve the number and name of
each salesperson in the file might look like:

Data Retrieval from a Relational Database    115

Project the Salesperson Number and Salesperson Name over the SALESPERSON
relation.

The result will be a long narrow relation:

Salesperson
Number

Salesperson
Name

137 Baker
186 Adams
204 Dickens
361 Carlyle

If we project a nonunique attribute, then a decision must be made on whether or
not we want duplicates in the result (although, since the result is itself a relation, tech-
nically there should not be any duplicate rows). For example, whether:

Project the Year of Hire over the SALESPERSON relation
produces

Year of Hire
1995
2001
1998
2001

or (eliminating the duplicates in the identical rows) produces

Year of Hire
1995
2001
1998

would depend on exactly how this hypothetical informal command language was
implemented.

Combination of the Relational Select and
Project Operators
More powerful still is the combination of the Select and Project operators. Suppose we
apply them serially, with the relation that results from one operation being used as the
input to the next operation. For example, to retrieve the numbers and names of the
salespersons working on a 10 % commission, we would issue:

Select rows from the SALESPERSON relation in which Commission Percentage = 10.
Project the Salesperson Number and Salesperson Name over that result.

116   Chapter 5  The Relational Database Model: Introduction

The first command “selects out” the rows for salespersons 137 and 204. Then the
second command “projects” the salesperson numbers and names from those two rows,
resulting in:

Salesperson
Number

Salesperson
Name

137 Baker
204 Dickens

The following combination illustrates the ability to retrieve a single attribute value.
Suppose that there is a need to find the year of hire of salesperson number 204. Since
Salesperson Number is a unique attribute, only one row of the relation can possibly be
involved. Since the goal is to find one attribute value in that row, the result must be just
that: a single attribute value. The command is:

Select rows from the SALESPERSON relation in which Salesperson Number = 204.
Project the Year of Hire over that result.
The result is the single value:

Year of Hire
1998

Extracting Data Across Multiple Relations: Data
Integration
In Chapter 3, the issue of data integration was broached and the concept was defined.
First, the data in the Salesperson and Customer files of Figure 3.7 was shown to be non-
redundant. Then it was shown that integrating data would require extracting data
from one file and using that extracted data as a search argument to find the sought-
after data in the other file. For example, recall that finding the name of the salesperson
who was responsible for customer number 1525 required finding the salesperson
number in customer 1525’s record in the Customer file (i.e., salesperson number 361)
and then using that salesperson number as a search argument in the Salesperson file
to discover that the sought-after name was Carlyle. The alternative was the combined
file of Figure 3.8 that introduced data redundancy.

A fundamental premise of the database approach is that a DBMS must be able
to store data non-redundantly while also providing a data integration facility. But it
seems that we may have a problem here. Since relations appear to be largely similar in
structure to simple, linear files, do the lessons learned from the files of Figures 3.7 and
3.8 lead to the conclusion that it is impossible to have simultaneously non-redundant
data storage and data integration with relations in a relational database? In fact, one
of the elegant features of relational DBMSs is that they automate the cross-relation
data extraction process in such a way that it appears that the data in the relations is
integrated while also remaining non-redundant. The data integration takes place at
the time that a relational query is processed by the relational DBMS for solution. This
is a unique feature of relational databases and is substantially different from the func-
tional equivalents in the older navigational database systems and in some of the newer

Data Retrieval from a Relational Database    117

object-oriented database systems, in both of which the data integration is much more
tightly built into the data structure itself. In relational algebra terms, the integration
function is known as the Join command.

Now, focus on the SALESPERSON and CUSTOMER relations of Figure 5.14, which
outwardly look just like the SALESPERSON and CUSTOMER files of Figure 3.7. Add-
ing the Join operator to our hypothetical, informal command style, consider the
following commands designed to find the name of the salesperson responsible for cus-
tomer number 1525. Again, this was the query that seemed to be so problematic in
Chapter 3.

Join the SALESPERSON relation and the CUSTOMER relation, using the Sales-
person Number of each as the join fields.

Select rows from that result in which Customer Number = 1525.
Project the Salesperson Name over that last result.

Obviously, the first sentence represents the use of the join command. The join
operation will take advantage of the common Salesperson Number attribute, which
for this purpose is called the join field, in both relations. The Salesperson Number
attribute is, of course, the primary key of the SALESPERSON relation and is a foreign
key in the CUSTOMER relation. Remember that the point of the foreign key is to rep-
resent a one-to-many (in this case) relationship between salespersons and customers.
Some rows of the SALESPERSON relation are related to some rows of the CUSTOMER
relation by virtue of having the same salesperson number. The Salesperson Number
attribute serves to identify each salesperson in the SALESPERSON relation, while the
Salesperson Number attribute indicates which salesperson is responsible for a particu-
lar customer in the CUSTOMER relation. Thus, the rows of the two relations that have
identical Salesperson Number values are related. It is these related rows that the join
operation will bring together in order to satisfy the query that was posed.

The join operation tries to find matches between the join field values of the rows in
the two relations. For example, it finds a match between the Salesperson Number value
of 137 in the first row of the SALESPERSON relation and the Salesperson Number
value of 137 in the first, third, fourth, and seventh rows of the CUSTOMER relation.
When it finds such a pair of rows, it takes all the attribute values from both rows and
creates a single new row out of them in the resultant relation. In its most basic form,
as shown here, the join is truly an exhaustive operation, comparing every row of one
relation to every row of the other relation, looking for a match in the join fields. (Com-
paring every possible combination of two sets, in this case rows from the two relations,
is known as taking the “Cartesian product.”) So the result of the join command, the
first of the three commands in the example command sequence we’re executing, is:

SalesPerson
Number

SalesPerson
Name

Commission
Percentage

Year of
Hire

Customer
Number Customer Name

SalesPerson
Number HQ City

137 Baker 10 1995 0121 Main St. Hardware 137 New York
137 Baker 10 1995 0933 ABC Home Stores 137 Los Angeles
137 Baker 10 1995 1047 Acme Hardware Store 137 Los Angeles
137 Baker 10 1995 1826 City Hardware 137 New York
186 Adams 15 2001 0839 Jane’s Stores 186 Chicago
186 Adams 15 2001 2267 Central Stores 186 New York
204 Dickens 10 1998 2198 Western Hardware 204 New York
361 Carlyle 20 2001 1525 Fred’s Tool Stores 361 Atlanta
361 Carlyle 20 2001 1700 XYZ Stores 361 Washington

118   Chapter 5  The Relational Database Model: Introduction

Notice that the first and seventh columns are identical in all of their values, row
by row. They represent the Salesperson Number attributes from the SALESPERSON
and CUSTOMER relations respectively. Remember that two rows from the SALES-
PERSON and CUSTOMER relations would not be combined together to form a row in
the resultant relation unless their two join field values were identical in the first place.
This leads to identical values of the two Salesperson Number attributes within each
of the rows of the resultant relation. This type of join is called an “equijoin.” If, as
seems reasonable, one of the two identical join columns is eliminated in the process,
the result is called a “natural join.”

Continuing with the command sequence to eventually find the name of the
salesperson responsible for customer number 1525, the next part of the command
issued is:

Select rows from that result (the relation that resulted from the join) in which Cus-
tomer Number = 1525.

This produces:

SalesPerson
Number

SalesPerson
Name

Commission
Percentage

Year of
Hire

Customer
Number

Customer
Name

SalesPerson
Number HQ City

361 Carlyle 20 2001 1525 Fred’s Tool
Stores

361 Atlanta

Finally, we issue the third command
Project the Salesperson Name over that last result.
and get:

SalesPerson Name
Carlyle

Notice that the process could have been streamlined considerably if the relational
DBMS had more “intelligence” built into it. The query dealt with only a single cus-
tomer, customer 1525, and there is only one row for each customer in the CUSTOMER
relation, since Customer Number is the unique key attribute. Therefore, the query
needed to look at only one row in the CUSTOMER relation, the one for customer
1525. Since this row references only one salesperson, salesperson 361, it follows that,
in turn, it needed to look at only one row in the SALESPERSON relation, the one for
salesperson 1525. This type of performance issue in relational query processing will be
covered later in this book in Chapter 8.

Example: Good Reading Book Stores
Figure 5.16 shows the relational database for the Good Reading Book Stores example
described earlier. Since publishers are in a one-to-many relationship to books, the pri-
mary key of the PUBLISHER Relation, Publisher Name, is inserted into the BOOK
relation as a foreign key. There are two many-to-many relationships. One, between
books and authors, keeps track of which authors wrote which books. Recall that a
book can have multiple authors and a particular author may have written or partly

Example: Good Reading Book Stores    119

written many books. The other many-to-many relationship, between books and cus-
tomers, records which customers bought which books.

The WRITING relation handles the many-to-many relationship between books
and authors. The primary key is the combination of Book Number and Author
Number. There is no intersection data! Could there be a reason for having inter-
section data in this relation? If, for example, this database belonged to a publisher
instead of a bookstore chain, an intersection data attribute might be Royalty Percent-
age, i.e. the percentage of the royalties to which a particular author is entitled for
a particular book. The SALE relation takes care of the many-to-many relationship
between books and customers. Certainly Book Number and Customer Number are
part of the primary key of the SALE relation, but is the combination of the two the
entire primary key? The answer is that this depends on whether the assumption is
made that a given customer can or cannot buy copies of a given book on different
days. If the assumption is that a customer can only buy copies of a particular book
on one single day, then the combination of Book Number and Customer Number is
fine as the primary key. If the assumption is that a customer may indeed buy copies
of a given book on different days, then the Date attribute must be part of the primary
key to achieve uniqueness.

PUBLISHER relation
Publisher
Name City Country Telephone

Year
Founded

AUTHOR relation
Author
Number

Author
Name

Year
Born

Year
Died

BOOK relation
Book
Number

Book
Name

Publication
Year Pages

Publisher
Name

CUSTOMER relation
Customer
Number

Customer
Name Street City State Country

WRITING relation
Book
Number

Author
Number

SALE relation
Book
Number

Customer
Number Date Price Quantity

FIGURE 5.16  Good Reading
Bookstores relational database

120   Chapter 5  The Relational Database Model: Introduction

Example: World Music Association
Figure 5.17 shows the relational database for the World Music Association example
described earlier. There is a one-to-many relationship from orchestras to musicians
and, in turn, a one-to-many relationship from musicians to degrees. Thus, the primary
key of the ORCHESTRA relation, Orchestra Name, appears in the MUSICIAN rela-
tion as a foreign key. In turn, the primary key of the MUSICIAN relation, Musician
Number, appears in the DEGREE relation as a foreign key. In fact, since the DEGREE
attribute is unique only within a musician, the Musician Number attribute and the
Degree attribute together serve as the compound primary key of the DEGREE rela-
tion. A similar situation exists between composers and compositions. The one-to-
many relationship from composers to compositions requires that the primary key of
the COMPOSER relation, Composer Name, appear as a foreign key in the COMPOSI-
TION relation. Since composition names are unique only within composers, the com-
bination of Composition Name and Composer Name serves as the compound primary
key of the COMPOSITION relation.

ORCHESTRA relation
Orchestra
Name City Country

Music
Director

MUSICIAN relation
Musician
Number Musician Name Instrument

Annual
Salary

Orchestra
Name

DEGREE relation
Musician
Number Degree University Year

COMPOSER relation
Composer
Name Country

Date of
Birth

COMPOSITION relation
Composition
Name

Composer
Name Year

RECORDING relation
Orchestra
Name

Composition
Name

Composer
Name Year Price

FIGURE 5.17  World Music
Association relational database

Example: Lucky Rent-A-Car    121

The many-to-many relationship between orchestras and compositions indicates
which orchestras have recorded which compositions and which compositions have
been recorded by which orchestras. As a many-to-many relationship, it requires that
an additional relation be created. The primary key of this new RECORDING rela-
tion has three attributes: Orchestra Name, Composition Name, and Composer Name.
Orchestra Name is the unique identifier of orchestras. The combination of Composi-
tion Name and Composer Name is the unique identifier of compositions. The combi-
nation of Orchestra Name, Composition Name, and Composer Name is the unique
identifier of the RECORDING relation. The Year and Price attributes are intersection
data in the RECORDING relation. If a particular orchestra could have recorded a par-
ticular composition multiple times in different years (although we assume that this is
limited to once per year), Year must also be part of the primary key of the RECORD-
ING relation to provide uniqueness.

Example: Lucky Rent-A-Car
Figure 5.18 shows the relational database for the Lucky Rent-A-Car example described
earlier. There is a one-to-many relationship from manufacturers to cars and another
one-to-many relationship from cars to maintenance events. The former requires the
manufacturer primary key, Manufacturer Name, to be placed in the CAR relation as a
foreign key. The latter requires the car primary key, Car Serial Number, to be placed in

MANUFACTURER relation
Manufacturer
Name

Manufacturer
Country

Sales Rep
Name

Sales Rep
Telephone

CAR relation
Car Serial
Number Model Year Class

Manufacturer
Name

MAINTENANCE relation
Repair
Number

Car Serial
Number Data Procedure Mileage

Repair
Time

CUSTOMER relation
Customer
Number

Customer
Name

Customer
Address

Customer
Telephone

RENTAL relation
Car Serial
Number

Customer
Number

Rental
Date

Return
Date

Total
Cost

FIGURE 5.18  Lucky Rent-A-Car
relational database

122   Chapter 5  The Relational Database Model: Introduction

the MAINTENANCE relation as a foreign key. The many-to-many relationship among
cars and customers requires the creation of a new relation, the RENTAL relation. Each
record of the RENTAL relation records the rental of a particular car by a particular
customer. Note that the combination of the Car Serial Number and Customer Number
attributes is not sufficient as the primary key of the RENTAL relation. A given cus-
tomer might have rented a given car more than once. Adding Rental Date to the pri-
mary key achieves the needed uniqueness.

Summary
The relational approach to database management is by far the primary database man-
agement approach used in all levels of information systems applications today. The
basic structural component of a relational database is the relation, which appears to
be a simple linear file but has some technical differences.

Every relation has a unique primary key consisting of one or more attributes that
have unique values in that relation. Multiple such unique attributes or combinations
of attributes that have the uniqueness property are called candidate keys. The can-
didate keys that are not chosen to be the one primary key are called alternate keys.
If the primary key of one relation in the database also appears in another relation
of the database, it called a foreign key in that second relation. Foreign keys tie rela-
tions together in the sense that they implement relationships between the entities
represented by the relations. A one-to-many relationship is implemented by adding
the primary key on the “one side” of the relationship to the relation representing the
“many side” of the relationship. Many-to-many relationships are implemented by con-
structing an additional relation that includes the primary keys of the two entities in
the many-to-many relationship. Additional attributes that describe the many-to-many
relationship are called intersection data.

Three basic relational algebra commands permit data retrieval from a relational
database. The Select command retrieves one or more rows of a relation. The Project
command retrieves one or more columns of a relation. The Join command accom-
plishes data integration by tying together relations that have a common primary key/
foreign key pair. These three commands can be used in combination to retrieve the
specific data required in a particular query.

Key Terms
Alternate key
Attribute
Candidate key
Cell
Column
Data retrieval
Domain of values

Entity identifier
Equijoin
Foreign key
Integrating data
Join operator
Natural join
Non-redundant data

Personal computer (PC)
Primary key
Project operator
Relation
Relational algebra
Relational database
Relational model

Row
Select operator
Tuple
Unique attribute

Exercises    123

Questions
  1.	 Why was the commercial introduction of relational da-

tabase delayed during the 1970s? What factors encour-
aged its introduction in the early 1980s?

  2.	 How does a relation differ from an ordinary file?
  3.	 Define the terms “tuple” and “attribute.”
  4.	 What is a relational database?
  5.	 What are the characteristics of a candidate key?
  6.	 What is a primary key? What is an alternate key?
  7.	 Define the term “foreign key.”
  8.	 In your own words, describe how foreign keys are used

to set up one-to-many binary relationships in relational
databases.

  9.	 Describe why an additional relation is needed to
represent a many-to-many relationship in a relation-
al database.

10.	 Describe what intersection data is, what it describes,
and why it does not describe a single entity.

11.	 What is a one-to-one binary relationship?
12.	 Describe the purpose and capabilities of:
	 a.	 The relational Select operator.
	 b.	 The relational Project operator.
	 c.	 The relational Join operator.
13.	 Describe how the join operator works.

Exercises
  1.	 The main relation of a motor vehicle registration

bureau’s relational database includes the following
attributes:

Vehicle
Identifi-
cation
Number

License
Plate
Number

Owner
Serial
Number

Manu-
facturer Model Year Color

The Vehicle Identification Number is a unique num-
ber assigned to the car when it is manufactured. The
License Plate Number is, in effect, a unique number
assigned to the car by the government when it is regis-
tered. The Owner Serial Number is a unique identifier
of each owner. Each owner can own more than one
vehicle. The other attributes are not unique. What
is/are the candidate key(s) of this relation? If there
is more than one candidate key, choose one as the
primary key and indicate which is/are the alternate
key(s).

  2.	 A relation consists of attributes A, B, C, D, E,
F, G, and H.

No single attribute has unique values.
The combination of attributes A and E is unique.
The combination of attributes B and D is unique.
The combination of attributes B and G is unique.
Select a primary key for this relation and indicate and

alternate keys.

  3.	 In the General Hardware Corp. relational database of
Figure 5.14:

	 a.	 How many foreign keys are there in each of the six
relations?

	 b.	 List the foreign keys in each of the six relations.
  4.	 Identify the relations that support many-to-many

relationships, the primary keys of those relations,
and any intersection data in the General Hardware
Corp. database.

  5.	 Consider the General Hardware Corp. relational da-
tabase. Using the informal relational command lan-
guage described in this chapter, write commands to:

	 a.	 List the product name and unit price of all of the
products.

	 b.	 List the employee names and titles of all the
employees of customer 2198.

	 c.	 Retrieve the record for office number 1284.
	 d.	 Retrieve the records for customers headquartered

in Los Angeles.
	 e.	 Find the size of office number 1209.
	 f.	 Find the name of the salesperson assigned to office

number 1209.
	 g.	 List the product name and quantity sold of each

product sold by salesperson 361.
  6.	 Consider the General Hardware Corp. relational data-

base and the data stored in it, as shown in Figure 5.14.
Find the answer to each of the following queries
(written in the informal relational command language
described in this chapter).

	 a.	 Select rows from the CUSTOMER EMPLOYEE
relation in which Customer Number = 2198.

124   Chapter 5  The Relational Database Model: Introduction

	 b.	 Select rows from the CUSTOMER EMPLOYEE
relation in which Customer Number = 2198.
Project Employee Number and Employee Name
over that result.

	 c.	 Select rows from the PRODUCT relation in which
Product Number = 21765.

	 d.	 Select rows from the PRODUCT relation in which
Product Number = 21765. Project Unit Price over
that result.

	 e.	 Join the SALESPERSON and CUSTOMER relations
using the Salesperson Number attribute of each as

the join fields. Select rows from that result in which
Salesperson Name = Baker. Project Customer
Name over that result.

	 f.	 Join the PRODUCT relation and the SALES
relation using the Product Number attribute of
each as the join fields. Select rows in which Product
Name = Pliers. Project Salesperson Number and
Quantity over that result.

  7.	 For each of Exercise 6, describe in words what the
query is trying to accomplish.

  1.	 Consider the following relational database for Happy
Cruise Lines. It keeps track of ships, cruises, ports,
and passengers. A “cruise” is a particular sailing of a
ship on a particular date. For example, the seven-day
journey of the ship Pride of Tampa that leaves on
June 13, 2009, is a cruise. Note the following facts
about this environment.
•	 Both ship number and ship name are unique in

the SHIP Relation.
•	 A ship goes on many cruises over time. A cruise

is associated with a single ship.
•	 A port is identified by the combination of port

name and country.
•	 As indicated by the VISIT Relation, a cruise

includes visits to several ports, and a port is typi-
cally included in several cruises.

•	 Both Passenger Number and Social Security
Number are unique in the PASSENGER Rela-
tion. A particular person has a single Passenger
Number that is used for all of the cruises that
she takes.

•	 The VOYAGE Relation indicates that a person
can take many cruises and a cruise, of course, has
many passengers.

SHIP Relation
Ship Ship Ship Launch Gross
Number Name Builder Date Weight

CRUISE Relation
Cruise Start End Cruise Ship
Number Date Date Director Number

PORT Relation
Port Number Port
Name Country of Docks Manager

VISIT Relation
Cruise Port Arrival Departure
Number Name Country Date Date

PASSENGER Relation
Passenger Passenger Social Security Home Telephone
Number Name Number Address Number

VOYAGE Relation
Passenger Cruise Stateroom
Number Number Number Fare

	 a.	 Identify the candidate keys of each relation.
	 b.	 Identify the primary key and any alternate keys

of each relation.
	 c.	 How many foreign keys does each relation have?

Minicases

Exercises    125

	 d.	 Identify the foreign keys of each relation.
	 e.	 Indicate any instances in which a foreign key

serves as part of the primary key of the relation
in which it is a foreign key. Why does each of
those relations require a multi-attribute
primary key?

	 f.	 Identify the relations that support many-to-
many relationships, the primary keys of those
relations, and any intersection data.

	 g.	 Using the informal relational command
language described in this chapter, write
commands to:

i.	 Retrieve the record for passenger num-
ber 473942.

ii.	 Retrieve the record for the port of Nassau
in the Bahamas.

iii.	 List all of the ships built by General Ship-
building, Inc.

iv.	 List the port name and number of docks of
every port in Mexico.

v.	 List the name and number of every ship.
vi.	 Who was the cruise director on cruise

number 38232?
vii.	 What was the gross weight of the ship used

for cruise number 39482?
viii.	 List the home address of every passenger

on cruise number 17543.
2	 Super Baseball League Consider the following

relational database for the Super Baseball League.
It keeps track of teams in the league, coaches and
players on the teams, work experience of the coach-
es, bats belonging to each team, and which players
have played on which teams. Note the following
facts about this environment:
•	 The database keeps track of the history of all of

the teams that each player has played on and all
of the players who have played on each team.

•	 The database keeps track of only the current
team that a coach works for.

•	 Team Number, Team Name, and Player Number
are each unique attributes across the league.

•	 Coach Name is unique only within a team (and
we assume that a team cannot have two coaches
of the same name).

•	 Serial Number (for bats) is unique only
within a team.

•	 In the AFFILIATION relation, the Years attribute
indicates that number of years that a player
played on a team; the Batting Average is for the
years that a player played on a team.

TEAM Relation
Team Team
Number Name City Manager

COACH Relation
Team Coach Coach
Number Name Telephone

WORK EXPERIENCE Relation
Team Coach Experience Years Of
Number Name Type Experience

BATS Relation
Team Serial
Number Number Manufacturer

PLAYER Relation
Number Name
Player Player Age

AFFILIATION Relation
Player Team Batting
Number Number Years Average

	 a.	 Identify the candidate keys of each relation.
	 b.	 Identify the primary key and any alternate keys

of each relation.
	 c.	 How many foreign keys does each relation have?
	 d.	 Identify the foreign keys of each relation.
	 e.	 Indicate any instances in which a foreign key

serves as part of the primary key of the relation
in which it is a foreign key. Why does each of
those relations require a multi-attribute
primary key?

	 f.	 Identify the relations that support many-to-
many relationships, the primary keys of those
relations, and any intersection data.

126   Chapter 5  The Relational Database Model: Introduction

	 g.	 Assume that we add the following STADIUM
relation to the Super Baseball League relational
database. Each team has one home stadium,
which is what is represented in this relation.
Assume that a stadium can serve as the home
stadium for only one team. Stadium Name is
unique across the league.

STADIUM Relation
Stadium Year Team
Name Built Size Team Number

	� What kind of binary relationship exists between
the STADIUM relation and the TEAM rela-
tion? Could the data from the two relations be
combined into one without introducing data
redundancy? If so, how?

	 h.	 Using the informal relational command
language described in this chapter, write
commands to:

i.	 Retrieve the record for team number 12.
ii.	 Retrieve the record for coach Adams on

team number 12.
iii.	 List the player number and age of

every player.
iv.	 List the work experience of every coach.
v.	 List the work experience of every coach on

team number 25.
vi.	 Find the age of player number 42459.

vii.	 List the serial numbers and manufactur-
ers of all of the Vultures’ (the name of a
team) bats.

viii.	 Find the number of years of college coach-
ing experience that coach Taylor of the
Vultures has.

127

CHAPTER 6

The Relational Database
Model: Additional Concepts

Chapter 5 defined the basic terminology of relational data-
base and then demonstrated some fundamental ideas about
constructing relations in relational databases and manipulating
data in them. The discussion focused on relationships between
two different entity types, i.e. binary relationships. This chapter
will go beyond binary relationships into unary and ternary rela-
tionships. It will then address the important issue of referential
integrity.

Introduction
The previous chapter talked about how binary relationships, i.e. those involving
two entity types, can be constructed in relational databases so that the data can be
integrated while data redundancy is avoided. Unary relationships, with one entity
type, and ternary relationships, with three entity types, while perhaps not quite as
common as binary relationships, are also facts of life in the real world and so must also
be handled properly in relational databases.

Referential integrity addresses a particular issue that can arise between two tables
in a relational database. The issue has to do with a foreign key value in one table being
able to find a matching primary key value in another table during a join operation.
Interestingly, in the older hierarchical and network database management systems,
the equivalents of primary and foreign keys were linked by physical address pointers
and so were always tied together. But, in relational databases, the tables are basically

OBJECTIVES

Describe how unary and ternary relationships are
implemented in a relational database.

Explain the concept of referential integrity.
Describe how the referential integrity restrict, cas-

cade, and set-to-null delete rules operate in a
relational database.

CHAPTER OUTLINE
Introduction
Relational Structures for Unary and

Ternary Relationships
Unary One-to-Many Relationships
Unary Many-to-Many Relationships
Ternary Relationships

Referential Integrity
The Referential Integrity Concept
Three Delete Rules

Summary

128   Chapter 6  The Relational Database Model: Additional Concepts

independent of each other. So, if there are no controls in place, the proper foreign key-
primary key matches can be lost when data is updated or records are deleted.

This chapter will address the issues of unary relationships, ternary relationships,
and referential integrity, all of which will move us much closer to modeling real-world
business environments properly in relational databases.

Relational Structures for Unary and Ternary
Relationships
Unary One-to-Many Relationships
Let’s continue with the General Hardware Co. example of Figure 5.14, reprinted here
for convenience as Figure 6.1. Suppose that General Hardware’s salespersons are orga-
nized in such a way that some of the salespersons, in addition to having their customer
responsibilities, serve as the sales managers of other salespersons, Figure 6.2. A sales-
person reports to exactly one sales manager, but each salesperson who serves as a sales
manager typically has several salespersons reporting to him. Thus, there is a one-to-
many relationship within the set or entity type of salespersons.

Salesperson who is also a sales manager Salesperson

This is known as a unary one-to-many relationship. It is unary because there is only
one entity type involved. It is one-to-many because among the individual entity occur-
rences, i.e. among the salespersons, a particular salesperson reports to one salesperson
who is his sales manager while a salesperson who is a sales manager may have several
salespersons reporting to her. Note that, in general, this arrangement can involve as
few as two levels of entity occurrences or can involve many levels in a hierarchical
arrangement. In general, in a company, an employee can report to a manager who in
turn reports to a higher-level manager, and so on up to the CEO.

Assume that the General Hardware Co. has two levels of sales managers, resulting
in a three-level hierarchy. That is, each salesperson reports to a sales manager (who
is himself a salesperson) and each sales manager reports to one of several chief sales
managers (who is herself a salesperson). Figure 6.3 shows two levels of sales man-
agers plus the salespersons who report to them. For example, salespersons 142, 323,
and 411 all report to salesperson (and sales manager) 137. Salespersons 137 and 439,
both of whom are sales managers, report to salesperson 186 who is a chief sales man-
ager. As you go upward in the hierarchy, each salesperson is associated with exactly
one other salesperson. As you go downward in the hierarchy from any salesperson/
sales manager, each salesperson/sales manager is associated with many salespersons
below, except for the bottom-level salespersons who are not sales managers and thus
have no one reporting to them.

Figure 6.4, which is an expansion of the General Hardware Co. SALESPERSON
relation in Figure 6.1a, demonstrates how this type of relationship is reflected in a
relational database. A one-to-many unary relationship requires the addition of one
column to the relation that represents the single entity involved in the unary relation-
ship. In Figure 6.4, the Sales Manager Number attribute is the new attribute that has
been added to the SALESPERSON relation. The domain of values of the new column is
the same as the domain of values of the relation’s primary key. Thus, the values in the
new Sales Manager Number column will be three-digit whole numbers representing

Relational Structures for Unary and Ternary Relationships    129

(a) SALESPERSON relation

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Office
Number

137 Baker 10 1995 1284
186 Adams 15 2001 1253
204 Dickens 10 1998 1209
361 Carlyle 20 2001 1227

(b) CUSTOMER relation

Customer
Number

Customer
Name

Salesperson
Number HQ City

0121 Main St. Hardware 137 New York
0839 Jane’s Stores 186 Chicago
0933 ABC Home Stores 137 Los Angeles
1047 Acme Hardware Store 137 Los Angeles
1525 Fred’s Tool Stores 361 Atlanta
1700 XYZ Stores 361 Washington
1826 City Hardware 137 New York
2198 Western Hardware 204 New York
2267 Central Stores 186 New York

(c) COUSTOMER EMPLOYEE relation

Customer
Number

Employee
Number

Employee
Name Title

0121 27498 Smith Co-Owner
0121 30441 Garcia Co-Owner
0933 25270 Chen VP Sales
0933 30441 Levy Sales Manager
0933 48285 Morton President
1525 33779 Baker Sales Manager
2198 27470 Smith President
2198 30441 Jones VP Sales
2198 33779 Garcia VP Personnel
2198 35268 Kaplan Senior Accountant

(d) PRODUCT relation

Product
Number

Product
Name

Unit
Price

16386 Wrench 12.95
19440 Hammer 17.50
21765 Drill 32.99
24013 Saw 26.25
26722 Pliers 11.50

FIGURE 6.1  General Hardware
Company relational database

(continues)

130   Chapter 6  The Relational Database Model: Additional Concepts

Salesperson 142 Salesperson 323 Salesperson 411

Sales Manager
Salesperson 137

Reports to

FIGURE 6.2  Salespersons 142, 323, and 411 reporting to salesperson 137 who is their sales manager

(e) SALES relation

Salesperson
Number

Product
Number Quantity

137 19440 473
137 24013 170
137 26722 688
186 16386 1745
186 19440 2529
186 21765 1962
186 24013 3071
204 21765 809
204 26722 734
361 16386 3729
361 21765 3110
361 26722 2738

(f) OFFICE relation

Office
Number Telephone Size (sq. ft.)
1253 901-555-4276 120
1227 901-555-0364 120
1284 901-555-7335 120
1209 901-555-3108   95

FIGURE 6.1  (Continued)
General Hardware Company
relational database

Relational Structures for Unary and Ternary Relationships    131

the unique identifiers for salespersons, just like the values in the Salesperson Number
column. The value in the new column for a particular row represents the value of
the next entity “upward” in the unary one-to-many hierarchy. For example, in the
row for salesperson number 323, the sales manager value is 137 because salesperson
323’s sales manager is salesperson/sales manager 137, as shown in Figure 6.3. Simi-
larly, the row for salesperson 137, who happens also to be a sales manager, shows sales-
person number 186 in its Sales Manager Number column. Salesperson/sales manager
137 reports to chief sales manager 186, also as shown in Figure 6.3. The sales manager
column value for salesperson/chief sales manager 186 is blank because the reporting
structure happens to end with each chief sales manager; i.e. there is nothing “above”
salesperson 186 in Figure 6.3.

Note that a unary one-to-one relationship, for example, one salesperson backing-
up another (see Figure 2.7a) is handled in a manner similar to Figure 6.4. The
difference is that the Sales Manager Number column would be replaced by a Back-Up
Number column and a particular salesperson number would appear at most once in
that column.

137

412
323
411

186

439

170

267

198
204

285

483

361
388
446 FIGURE 6.3  General Hardware Company salesperson

reporting hierarchy

SALESPERSON relation

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Sales Manager
Number

137 Baker 10 1995 186
142 Smith 15 2001 137
170 Taylor 18 1992 439
186 Adams 15 2001
198 Wang 20 1990 267
204 Dickens 10 1998 267
267 Perez 22 2000 285
285 Costello 10 1996
323 McNamara 15 1995 137
361 Carlyle 20 2001 483
388 Goldberg 20 1997 483
411 Davidson 18 1992 137
439 Warren 10 1996 186
446 Albert 10 2001 483
483 Jones 15 1995 285

FIGURE 6.4  General Hardware
Company SALESPERSON
relation including Sales Man-
ager Number attribute

132   Chapter 6  The Relational Database Model: Additional Concepts

Unary Many-to-Many Relationships
The unary many-to-many relationship is a special case that has come to be known as
the “bill of materials” problem. Among the entity occurrences of a single entity type,
which is what makes this “unary,” each particular entity occurrence can be related to
many other occurrences and each of those latter occurrences can, in turn, be related
to many other occurrences. Put another way, every entity occurrence can be related
to many other occurrences, which, if you think about it, makes this a many-to-many
relationship because only one entity type is involved. (Yes, that sounds a little strange,
but keep reading.) The general idea is that in a complex item, say an automobile
engine, small parts are assembled together to make a small component or assembly.
Then some of those small components or assemblies (and maybe some small parts) are
assembled together to make medium-sized components or assemblies, and so on until
the final, top-level “component” is the automobile engine. The key concept here is that
an assembly at any level is considered to be both a part made up of smaller units and a
unit that can be a component of a larger part. Parts and assemblies at all levels are all
considered occurrences of the same entity type and they all have a unique identifier in
a single domain of values.

Certainly, this requires an example! Figure 6.5 illustrates this concept using an
expansion of General Hardware Co.’s product set.

Product Product

The numbers in parentheses are product numbers. Assume, as is quite reasonable, that
General Hardware not only sells individual tools but also sells sets of tools. Both indi-
vidual tools and sets of tools are considered to be “products,” which also makes sense.
As shown in Figure 6.5, General Hardware carries several types (or perhaps sizes) of
wrenches, hammers, and drills. Various combinations of wrenches and hammers are
sold as wrench and hammer sets. Various combinations of these sets and other tools
such as drills are sold as even larger sets. Very importantly, notice the many-to-many
nature of this arrangement. For example, the Master Wrench Set (product number 44),
looking to its left, is comprised of three different wrenches, including Wrench Model A
(#11). Conversely, Wrench Model A, looking to its right, is a component of two different
wrench sets, both the Deluxe Wrench Set (#43) and the Master Wrench Set (#44). This
demonstrates the many-to-many nature of products. Similarly, both the Supreme Tool
Set (#53) and the Grand Tool Set (#56) are, obviously, comprised of several smaller sets
and tools, while the Deluxe Hammer Set (#48) is a component of both the Supreme
Tool Set (#53) and the Grand Tool Set (#56).

Wrench Model A (#11)

Wrench Model B (#14) Deluxe Wrench Set (#43)

Wrench Model C (#17) Supreme Tool Set (#53)

Wrench Model D (#19) Master Wrench Set (#44)

Hammer Model A (#22)

Hammer Model B (#24) Deluxe Hammer Set (#48) Grand Tool Set (#56)

Hammer Model C (#28)

Drill Model A (#31)

Drill Model B (#35)
FIGURE 6.5  General Hardware
Company product bill of materials

Relational Structures for Unary and Ternary Relationships    133

How can this unary many-to-many relationship be represented in a relational data-
base? First of all, note that Figure 6.6 is a modification and expansion of the PROD-
UCT relation in the General Hardware Co. relational database of Figure 6.1d. Note that
the product numbers matching the product numbers in Figure 6.5 have been reduced
to two digits for simplicity in the explanation. Every individual unit item and every set
in Figure 6.5 has its own row in the relation in Figure 6.6 because every item and set in
Figure 6.5 is a product that General Hardware has for sale.

Now, here is the main point. Just as a binary many-to-many relationship requires
the creation of an additional relation in a relational database, so does a unary many-
to-many relationship. The new additional relation is shown in Figure 6.7. It consists
of two attributes. The domain of values of each column is that of the Product Number

PRODUCT relation

Product
Number

Product
Name

Unit
Price

11 Wrench Model A   12.50
14 Wrench Model B   13.75
17 Wrench Model C   11.62
19 Wrench Model D   15.80
22 Hammer Model A   17.50
24 Hammer Model B   18.00
28 Hammer Model C   19.95
31 Drill Model A   31.25
35 Drill Model B   38.50
43 Deluxe Wrench Set   23.95
44 Master Wrench Set   35.00
48 Deluxe Hammer Set   51.00
53 Supreme Tool Set 100.00
56 Grand Tool Set 109.95 FIGURE 6.6  General Hardware Company modified

PRODUCT relation

Assembly Part
43 11
43 14
44 11
44 17
44 19
48 22
48 24
48 28
53 43
53 48
53 31
56 44
56 48
56 35

FIGURE 6.7  General Hardware Company unary many-to-many relation

134   Chapter 6  The Relational Database Model: Additional Concepts

column in the PRODUCT relation of Figure 6.6. The relation of Figure 6.7 represents,
in a tabular format, the way that the assemblies of Figure 6.5 are constructed. The first
two rows of Figure 6.7 literally say that product (assembly) number 43 (the Deluxe
Wrench Set) is comprised of products 11 and 14, as indicated in Figure 6.5. Next, prod-
uct (assembly) 44 is comprised of products 11, 17, and 19. Moving to the last three
rows of the relation, product (assembly) 56 is comprised of products 44 and 48, both
of which happen to be assemblies, and product 35. Again, notice the many-to-many
relationship as it is represented in the relation of Figure 6.7. The first two rows indicate
that assembly 43 is comprised of two parts. Conversely, the first and third rows indicate
that part 11 is a component of two different assemblies.

Ternary Relationships
A ternary relationship is a relationship that involves three different entity types. If the
entity types are A, B, and C, then we might illustrate this as:

B

C

A

To demonstrate this concept in the broadest way using the General Hardware Co.
database, let’s slightly modify part of the General Hardware premise. The assumption
has always been that there is a one-to-many relationship between salespersons and
customers. A salesperson is responsible for several customers, while a customer is in
contact with (is sold to by) exactly one of General Hardware’s salespersons. For the
purposes of describing a general ternary relationship, we change that premise tem-
porarily to a many-to-many relationship between salespersons and customers. That
is, we now assume that any salesperson can make a sale to any customer and any cus-
tomer can buy from any salesperson.

With that change, consider the ternary relationship among salespersons, cus-
tomers, and products. Such a relationship allows us to keep track of which salesperson
sold which product to which customer. This is very significant. In this environment, a
salesperson can sell many products and a salesperson can sell to many customers. A
product can be sold by many salespersons and can be sold to many customers. A cus-
tomer can buy many products and can buy from many salespersons. All of this leads to
a lot of different possibilities for any given sale. So, it is very important to be able to tie
down a particular sale by noting and recording which salesperson sold which product
to which customer. For example, we might store the fact that salesperson 137 sold some
of product number 24013 to customer 0839, Figure 6.8.

Relations a, b, and c of Figure 6.9 show the SALESPERSON, CUSTOMER, and
PRODUCT relations, respectively, from the General Hardware relational database of
Figure 6.1, except for one change. Since there is no longer a one-to-many relation-
ship between salespersons and customers, the Salesperson Number foreign key in the

Relational Structures for Unary and Ternary Relationships    135

Customer 0839

Salesperson 137

Salesperson 137 sold
Product 24013 to
Customer 0839

Product 24013 FIGURE 6.8  A ternary relationship

(a) SALESPERSON relation

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995
186 Adams 15 2001
204 Dickens 10 1998
361 Carlyle 20 2001

(b) CUSTOMER relation

Customer
Number

Customer
Name HQ City

0121 Main St. Hardware New York
0839 Jane’s Stores Chicago
0933 ABC Home Stores Los Angeles
1047 Acme Hardware Store Los Angeles
1525 Fred’s Tool Stores Atlanta
1700 XYZ Stores Washington
1826 City Hardware New York
2198 Western Hardware New York
2267 Central Stores New York

(continues)

FIGURE 6.9  A portion of
General Hardware Company
relational database modi-
fied to demonstrate a ternary
relationship

136   Chapter 6  The Relational Database Model: Additional Concepts

CUSTOMER relation has been removed! The three relations are now all quite inde-
pendent with no foreign keys in any of them.

Figure 6.9d, the SALES relation, shows how this ternary relationship is represented
in a relational database. Similarly to how we created an additional relation to accom-
modate a binary many-to-many relationship, an additional relation has to be created to
accommodate a ternary relationship, and that relation is Figure 6.9d. Clearly, as in the
binary many-to-many case, the primary key of the additional relation will be (at least)
the combination of the primary keys of the entities involved in the relationship. Thus,
in Figure 6.9d, the Salesperson Number, Customer Number, and Product Number
attributes all appear as foreign keys and the combination of the three serves as part of
the primary key. Why just “part of” the primary key? Because in this example, a par-
ticular salesperson may have sold a particular product to a particular customer more
than once on different dates. Thus the Date attribute must also be part of the primary
key. (We assume that this combination of the three could not have happened more
than once on the same date. If it could, then there would also need to be a “time” attri-
bute in the key.) Recall that this need for an additional attribute in the primary key also
came up when we discussed binary many-to-many relationships in the last chapter.
Finally, the Quantity attribute in Figure 6.9d is intersection data, just as it would be in
a binary many-to-many relationship. The quantity of the product that the salesperson
sold to the customer is clearly an attribute of the ternary relationship, not of any one
of the entities.

(c) PRODUCT relation

Product
Number

Product
Name

Unit
Price

16386 Wrench 12.95
19440 Hammer 17.50
21765 Drill 32.99
24013 Saw 26.25
26722 Pliers 11.50

(d) SALES relation

Salesperson
Number

Customer
Number

Product
Number Date Quantity

137 0839 24013 2/21/2002 25
361 1700 16386 2/27/2002 70
137 2267 19440 3/1/2002 40
204 1047 19440 3/1/2002 15
186 0839 26722 3/12/2002 35
137 1700 16386 3/17/2002 65
361 0121 21765 3/21/2002 40
204 2267 19440 4/03/2002 30
204 0839 19440 4/17/2002 20

FIGURE 6.9  (Continued)
A portion of General Hard-
ware Company relational data-
base modified to demonstrate
a ternary relationship

Relational Structures for Unary and Ternary Relationships    137

There is one more important point to make about ternary relationships. In the pro-
cess of describing the ternary relationship, you may have noticed that, taken two at a
time, every pair of the three entities, salespersons, customers, and products, are in a
binary many-to-many relationship. In general, this would be shown as:

A B

B C

A C

The question is: are these three many-to-many relationships the equivalent of the ter-
nary relationship? Do they provide the same information that the ternary relationship
does? The answer is, no!

Again, consider salespersons, customers, and products. You might know that a par-
ticular salesperson has made sales to a particular customer. You might also know that
a particular salesperson has sold certain products at one time or another. And, you
might know that a particular customer has bought certain products. But all of that is
not the same thing as knowing that a particular salesperson sold a particular product to
a particular customer. Still skeptical? Look at Figure 6.10. Parts a, b, and c of the figure
clearly illustrate three many-to-many relationships. They are between (a) salespersons
and customers, (b) customers and products, and (c) salespersons and products. Part
a shows, among other things, that salesperson 137 sold something to customer 0839.
Part b shows that customer 0839 bought product 19440. Does that mean that we can
infer that salesperson 137 sold product 19440 to customer 0839? No! That’s a possibility
and, indeed, part c of the figure shows that salesperson 137 did sell product 19440. But
part c of the figure also shows that salesperson 204 sold product 19440. Is it possible
that salesperson 204 sold it to customer 0839? According to part a, salesperson 204
sold something to customer 0839, but it doesn’t indicate what. You can go around and
around Figure 6.10 and never conclude with certainty that salesperson 137 sold prod-
uct 19440 to customer 0839. That would require a ternary relationship and a relation
like the one in Figure 6.9d. Notice that the last row of Figure 6.9d shows, without a
doubt, that it was salesperson 204 who sold product 19440 to customer 0839.

(a) Salespersons and customers

Salesperson 137 Customer 0839
Salesperson 204 Customer 1826

(b) Customers and products

Customer 0839 Product 19440
Customer 1826 Product 24013

(c) Salespersons and products

Salesperson 137 Product 19440
Salesperson 204 Product 24013

FIGURE 6.10  Ternary relationship counter-example

138   Chapter 6  The Relational Database Model: Additional Concepts

Referential Integrity
The Referential Integrity Concept
Thus far in this chapter and the previous one, we have been concerned with how rela-
tions are constructed and how data can be retrieved from them. Data retrieval is the
operation that clearly provides the ultimate benefit from maintaining a database, but
it is not the only operation needed. Certainly, we should expect that, as with any data
storage scheme, in addition to retrieving data we must be prepared to perform such
data maintenance operations as inserting new records (or rows of a relation), deleting
existing records, and updating existing records. All database management systems
provide the facilities and commands to accomplish these data maintenance opera-
tions. But there are some potential pitfalls in these operations that must be dealt with.

The problem is that the logically related (by foreign keys) but physically independent
nature of the relations in a relational database exposes the database to the possibility
of a particular type of data integrity problem. This problem has come to be known as
a referential integrity problem because it revolves around the circumstance of try-
ing to refer to data in one relation in the database, based on values in another relation.
(Actually, referential integrity is an issue in all of the DBMS approaches, not just the
relational approach. We discuss this issue here because we are focusing on relational
databases and the concept is much easier to explain in the context of an example,
again the General Hardware database.) Also, while referential integrity problems can
surface in any of the three operations that result in changes to the database—insert,
delete, and update records—we will generally use the case of delete to explain the con-
cept while mentioning insert and update where appropriate.

First, consider the situation of record deletion in the two relations of Figure 6.11,
which is a repeat of Figure 5.2. Suppose that salesperson 361, Carlyle, left the com-
pany and his record was deleted from the SALESPERSON relation. The problem
is that there are still two records in the CUSTOMER relation (the records for cus-
tomers 1525 and 1700) that refer to salesperson 361, i.e. that have the value 361 in the
Salesperson Number foreign key attribute. It is as if Carlyle left the company and his
customers have not as yet been reassigned to other salespersons. If a relational join
command was issued to join the two relations in order to (say) find the name of the
salesperson responsible for customer 1525, there would be a problem. The relational
DBMS would pick up the salesperson number value 361 in the record for customer

6.1  Ternary Relationships
Ternary relationships are all around us. Think
about an automobile dealership. Certainly the
dealership management wants to keep track of
which car was sold to which customer by which
salesperson. Certainly this is important for billing,
accounting, and commission purposes. But also,
in that kind of high-priced product environment,
it’s simply good business to keep track of such

information for future marketing and customer
relationship reasons.

Question:
Consider a hospital environment involving patients,
doctors, nurses, procedures, medicines, hospital
rooms, etc. Make a list of five ternary relationships in
this environment. Remember that each one has to
make sense from a business point of view.

Your Turn

Referential Integrity    139

1525 in the CUSTOMER relation, but would not be able to match 361 to a record in
the SALESPERSON relation because there no longer is a record for salesperson 361 in
the SALESPERSON relation—it was deleted! Notice that the problem arose because the
deleted record, a salesperson record, was on the “one side” of a one-to-many relation-
ship. What about the customer records on the “many side” of the one-to-many rela-
tionship? Suppose customer 1047, Acme Hardware Store, is no longer one of General
Hardware’s customers. Deleting the record for customer 1047 in the CUSTOMER rela-
tion has no referential integrity exposure. Nothing else in these two relations refers to
customer 1047.

Similar referential integrity arguments can be made for the record insertion and
update operations, but the issue of whether the exposure is on the “one side” or the
“many side” of the one-to-many relationship changes! Again, in the case of deletion,
the problem occurred when a record was deleted on the “one side” of the one-to-many
relationship. But, for insertion, if a new salesperson record is inserted into the Sales-
person relation, i.e. a new record is inserted into the “one side” of the one-to-many
relationship, there is no problem. All it means is that a new salesperson has joined
the company but, as yet, has no customer responsibility. On the other hand, if a new
customer record is inserted into the CUSTOMER relation, i.e. a new record is inserted
into the “many side” of the one-to-many relationship, and it happens to include a
salesperson number that does not have a match in the SALESPERSON relation, that
would cause the same kind of problem as the deletion example above. Similarly, the
update issue would concern updating a foreign key value, i.e. a salesperson number
in the CUSTOMER relation with a new salesperson number that has no match in the
SALESPERSON relation.

The early relational DBMSs did not provide any control mechanisms for referen-
tial integrity. Programmers and users were on their own to keep track of it and this

(a) SALESPERSON relation

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995
186 Adams 15 2001
204 Dickens 10 1998
361 Carlyle 20 2001

(b) CUSTOMER relation

Customer
Number

Customer
Name

Salesperson
Number HQ City

0121 Main St. Hardware 137 New York
0839 Jane’s Stores 186 Chicago
0933 ABC Home Stores 137 Los Angeles
1047 Acme Hardware Store 137 Los Angeles
1525 Fred’s Tool Stores 361 Atlanta
1700 XYZ Stores 361 Washington
1826 City Hardware 137 New York
2198 Western Hardware 204 New York
2267 Central Stores 186 New York FIGURE 6.11  General Hardware

Company SALESPERSON and
CUSTOMER relations

140   Chapter 6  The Relational Database Model: Additional Concepts

upset many people. This was particularly the case because referential integrity issues
in the older hierarchical and network DBMSs were more naturally controlled by the
nature of the hierarchical and network data structures on which they were based, at
the expense of some flexibility in database design. Modern relational DBMS’s pro-
vide sophisticated control mechanisms for referential integrity with so-called “delete
rules,” “insert rules,” and “update rules.” These rules are specified between pairs
of relations. We will take a look at the three most common delete rules, “restrict,”
“cascade,” and “set-to-null,” to illustrate the problem.

Three Delete Rules
Delete Rule: Restrict  Again, consider the two relations in Figure 6.11. If the delete
rule between the two relations is restrict and an attempt is made to delete a record on
the “one side” of the one-to-many relationship, the system will forbid the delete to
take place if there are any matching foreign key values in the relation on the “many
side.” For example, if an attempt is made to delete the record for salesperson 361 in
the SALESPERSON relation, the system will not permit the deletion to take place
because the CUSTOMER relation records for customers 1525 and 1700 include sales-
person number 361 as a foreign key value, Figure 6.12. This is as if to say, “You can’t
delete a salesperson record as long as there are customers for whom that salesperson
is responsible.” Clearly, this is a reasonable and necessary course of action in many
business situations.

Delete Rule: Cascade  If the delete rule between the two relations is cascade and
an attempt is made to delete a record on the “one side” of the relationship, not only
will that record be deleted but all of the records on the “many side” of the relationship
that have a matching foreign key value will also be deleted. That is, the deletion will
cascade from one relation to the other. For example, if an attempt is made to delete the
record for salesperson 361 in the SALESPERSON relation and the delete rule is cas-
cade, that salesperson record will be deleted and so too, automatically, will the records
for customers 1525 and 1700 in the CUSTOMER relation because they have 361 as a for-
eign key value, Figure 6.13. It is as if the assumption is that when a salesperson leaves
the company, she always takes all of her customers along with her. While that might be
a bit of a stretch in this case, there are many other business situations where it is not a

Customer 1700

Customer 1525

Salesperson 361
Mr. Carlyle

Delete Rule: RestrictFIGURE 6.12  Delete rule: Restrict

Referential Integrity    141

stretch at all. For example, think about a company that has a main employee relation
with name, home address, telephone number, etc., plus a second relation that lists and
describes the several skills of each employee. Certainly, when an employee leaves the
company you would expect to delete both his record in the main employee relation and
all his records in the skills relation.

Delete Rule: Set-to-Null  If the delete rule between the two relations is set-to-
null and an attempt is made to delete a record on the “one side” of the one-to-many
relationship, that record will be deleted and the matching foreign key values in the
records on the “many side” of the relationship will be changed to null. For example,
if an attempt is made to delete the record for salesperson 361 in the SALESPERSON
relation, that record will be deleted, and the Salesperson Number attribute values in
the records for customers 1525 and 1700 in the CUSTOMER relation will be changed
from 361 to null, Figure 6.14. This is as if to say, “You can delete a salesperson
record and, we will indicate that, temporarily at least, their former customers are
without a salesperson.” Obviously this is the appropriate response in many business
situations.

Customer 1700

Customer 1525

Salesperson 361
Mr. Carlyle

Delete Rule: Cascade
FIGURE 6.13  Delete rule: Cascade

Salesperson 361
Mr. Carlyle

Customer 1700

Customer 1525

Delete Rule: Set-to-Null

Temporarily
Without a
Saleperson
Assigned

FIGURE 6.14  Delete rule: Set-to-Null

142   Chapter 6  The Relational Database Model: Additional Concepts

Summary
Relational databases must be capable of handling unary and ternary relationships, as
well as binary relationships. All of these have to promote data integration while avoid-
ing data redundancy. As this chapter demonstrated, the relational database concept is
up to this task.

Referential integrity is an important issue in relational databases. Relational data-
base management systems must be able to allow users to specify referential integrity
controls between related tables. Otherwise, changes to one table that are not coordi-
nated with a related table may cause serious data integrity problems.

Key Terms
Cascade delete rule
Delete rules
Entity occurrence

Insert rules
Record deletion

Referential integrity
Restrict delete rule

Set-to-null delete rule
Update rules

Questions
  1.	 Describe the concept of the unary one-to-many re-

lationship.
  2.	 How is a unary one-to-many relationship constructed

in a relational database?
  3.	 Describe the concept of the unary many-to-many re-

lationship.
  4.	 How is a unary many-to-many relationship constructed

in a relational database?
  5.	 Describe the concept of the ternary relationship.

  6.	 How is a ternary relationship constructed in a relation-
al database?

  7.	 Is a ternary relationship the equivalent of the three
possible binary relationships among the three entities
involved? Explain.

  8.	 Describe the problem of referential integrity.
  9.	 Compare and contrast the three delete rules: restrict,

cascade, and set-to-null.

Exercises
  1.	 Leslie’s Auto Sales has a relational database with which

it maintains data on its salespersons, its customers, and
the automobiles it sells. Each of these three entity types
has a unique attribute identifier. The attributes that it
stores are as follows:
•	 Salesperson Number (unique), Salesperson Name,

Salesperson Telephone, Years with Company
•	 Customer Number (unique), Customer Name, Cus-

tomer Address, Value of Last Purchase from Us
•	 Vehicle Identification Number (unique), Manufac-

turer, Model, Year, Sticker Price. Leslie’s also wants
to keep track of which salesperson sold which car to
which customer, including the date of the sale and
the negotiated price. Construct a relational database
for Leslie’s Auto Sales.

  2.	 The State of New York certifies firefighters throughout
the state and must keep track of all of them, as well as
of the state’s fire departments. Each fire department
has a unique department number, a name that also
identifies its locale (city, county, etc.), the year it was
established, and its main telephone number. Each
certified firefighter has a unique firefighter num-
ber, a name, year of certification, home telephone
number, and a rank (firefighter, fire lieutenant, fire
captain, etc.). The state wants to record the fire depart-
ment for which each firefighter currently works and
each firefighter’s supervisor. Supervisors are always
higher-ranking certified firefighters. Construct a rela-
tional database for New York’s fire departments and
firefighters.

  3.	 The ABC Consulting Corp. contracts for projects that,
depending on their size and skill requirements, can
be assigned to an individual consultant or to a team
of consultants. A consultant or a team can work on
several projects simultaneously. Several employees
can be organized into a team. Larger teams can consist
of a combination of smaller teams, sometimes with
additional individual consultants added. This pattern
can continue to larger and larger teams. ABC wants
to keep track of its consultants, teams, and projects,
including which consultant or team is responsible for
each project. Each consultant has a unique employee
number, plus a name, home address, and telephone
number. Each project has a unique project number,
plus a name, budgeted cost, and due date. Construct a
relational database for ABC Consulting. Hint: You may
want to develop an attribute called “responsible party”
that can be either a team or an individual consultant.
Each project has one responsible party that is respon-
sible for its completion. Or you may want to think of an
individual consultant as a potential “team of one” and
have the responsibility for each project assigned to a
“team” that could then be an individual consultant or a
genuine team.

  4.	 Consider the General Hardware Corp. database of
Figure 6.1. Describe the problem of referential integrity
in terms of the CUSTOMER and CUSTOMER
EMPLOYEE relations if the record for customer 2198 in
the CUSTOMER relation is deleted. (Assume that no
delete rules exist.)

  5.	 In the General Hardware Corp. database of Figure 6.1,
what would happen if:

	 a.	 The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is restrict and
an attempt is made to delete the record for
customer 2198 in the CUSTOMER relation?

	 b.	 The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is cascade and
an attempt is made to delete the record for
customer 2198 in the CUSTOMER relation?

	 c.	 The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is set-to-null
and an attempt is made to delete the record for
customer 2198 in the CUSTOMER
relation?

	 d.	 The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is restrict and
an attempt is made to delete the record for
employee 33779 of customer 2198 in the CUSTOM-
ER EMPLOYEE relation?

	 e.	 The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is cascade and
an attempt is made to delete the record for
employee 33779 of customer 2198 in the CUSTOM-
ER EMPLOYEE relation?

	 f.	 The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is set-to-null
and an attempt is made to delete the record for
employee 33779 of customer 2198 in the CUSTOM-
ER EMPLOYEE relation?

  1.	 Happy Cruise Lines
	 a.	 Look at the Happy Cruise Lines database of

Chapter 5, Minicase 1 but, for this question,
consider only the SHIP, PORT, and PASSENGER
relations. The company wants to keep track of
which passengers visited which ports on which
ships on which dates. Reconstruct these three
relations as necessary and/or add additional
relation(s) as necessary to store this information.

	 b.	 Consider the following data from the SHIP and
CRUISE relations of the Happy Cruise Lines
database of Chapter 5, Minicase 1:

SHIP Relation

Ship
Number

Ship
Name

Ship
Builder

Launch
Date

Gross
Weight

005 Sea Joy Jones 1999 80,000
009 Ocean IV Ajax 2003 75,000
012 Prince Al Ajax 2004 90,000
020 Queen Shirley Master 1999 80,000

Minicases

Exercises    143

144   Chapter 6  The Relational Database Model: Additional Concepts

CRUISE Relation

Cruise
Number

Start
Date

End
Date

Cruise
Director

Ship
Number

21644 7/5/2002 7/12/2002 Smith 009
23007 8/14/2002 8/24/2002 Chen 020
24288 3/28/2003 4/4/2003 Smith 009
26964 7/1/2003 7/11/2003 Gomez 020
27045 7/15/2003 7/22/2003 Adams 012
28532 8/17/2003 8/24/2003 Adams 012
29191 12/20/2003 12/27/2003 Jones 009
29890 1/15/2004 1/22/2004 Levin 020

What would happen if:

i.	 The delete rule between the SHIP and
CRUISE relations is restrict and an attempt
is made to delete the record for ship num-
ber 012 in the SHIP relation?

ii.	 The delete rule between the SHIP and
CRUISE relations is restrict and an attempt
is made to delete the record for ship num-
ber 005 in the SHIP relation?

iii.	 The delete rule between the SHIP and
CRUISE relations is cascade and an attempt
is made to delete the record for ship num-
ber 012 in the SHIP relation?

iv.	 The delete rule between the SHIP and
CRUISE relations is cascade and an attempt
is made to delete the record for ship num-
ber 005 in the SHIP relation?

v.	 The delete rule between the SHIP and
CRUISE relations is set-to-null and an
attempt is made to delete the record for ship
number 012 in the SHIP relation?

vi.	 The delete rule between the SHIP and
CRUISE relations is set-to-null and an
attempt is made to delete the record for ship
number 005 in the SHIP relation?

vii.	 The delete rule between the SHIP and
CRUISE relations is restrict and an attempt
is made to delete the record for cruise num-
ber 26964 in the CRUISE relation?

viii.	 The delete rule between the SHIP and
CRUISE relations is cascade and an attempt

is made to delete the record for cruise num-
ber 26964 in the CRUISE relation?

ix.	 The delete rule between the SHIP
and CRUISE relations is set-to-null
and an attempt is made to delete the
record for cruise number 26964 in the
CRUISE relation?

  2.	 Super Baseball League
	 a.	 In the Super Baseball League database of

Chapter 5, Minicase 2, assume that instead of
having coaches who are different from players,
now some of the players serve as coaches to
other players. A player/coach can have several
players whom he coaches. Each player is
coached by only one player/coach. Reconstruct
the database structure to reflect this change.

	 b.	 In the Super Baseball League database of
Chapter 5, Minicase 2, assume that the TEAM
relation has a record for team number 17 and
that the COACH relation has records for three
coaches on that team. What would happen if:

i.	 The delete rule between the TEAM and
COACH relations is restrict and an attempt
is made to delete the record for team 17 in
the TEAM relation?

ii.	 The delete rule between the TEAM and
COACH relations is cascade and an attempt
is made to delete the record for team 17 in
the TEAM relation?

iii.	 The delete rule between the TEAM and
COACH relations is set-to-null and an
attempt is made to delete the record for
team 17 in the TEAM relation?

iv.	 The delete rule between the TEAM and
COACH relations is restrict and an attempt
is made to delete the record for one of team
17’s coaches in the COACH relation?

v.	 The delete rule between the TEAM and
COACH relations is cascade and an attempt
is made to delete the record for one of team
17’s coaches in the COACH relation?

vi.	 The delete rule between the TEAM and
COACH relations is set-to-null and an
attempt is made to delete the record
for one of team 17’s coaches in the
COACH relation?

145

CHAPTER 7

Logical Database Design

Logical database design is the process of deciding how
to arrange the attributes of the entities in a given business
environment into database structures, such as the tables of
a relational database. The goal of logical database design
is to create well-structured tables that properly reflect the
company’s business environment. The tables will be able to
store data about the company’s entities in a non-redundant
manner and foreign keys will be placed in the tables so that
all the relationships among the entities will be supported.
Physical database design, which will be treated in the next
chapter, is the process of modifying the logical database
design to improve performance.

Introduction
Historically, a number of techniques have been used for logi-
cal database design. In the 1970s, when the hierarchical and
network approaches to database management were the only
ones available, a technique known as data normalization
was developed. While data normalization has some very useful

OBJECTIVES

Describe the concept of logical database design.
Design relational databases by converting entity-

relationship diagrams into relational tables.
Describe the data normalization process.
Perform the data normalization process.
Test tables for irregularities using the data normal-

ization process.
Learn basic SQL commands to build data struc-

tures.
Learn basic SQL commands to manipulate data.

CHAPTER OUTLINE
Introduction
Converting E-R Diagrams into

Relational Tables
Introduction
Converting a Simple Entity
Converting Entities in Binary

Relationships
Converting Entities in Unary Relationships
Converting Entities in Ternary

Relationships
Designing the General Hardware

Co. Database
Designing the Good Reading

Bookstores Database
Designing the World Music

Association Database
Designing the Lucky Rent-A-Car

Database
The Data Normalization Process

Introduction to the Data Normaliza-
tion Technique

Steps in the Data Normalization Process
Example: General Hardware Co.
Example: Good Reading Bookstores
Example: World Music Association
Example: Lucky Rent-A-Car

Testing Tables Converted from E-R
Diagrams with Data Normalization

Building the Data Structure with SQL
Manipulating the Data with SQL
Summary

146   Chapter 7  Logical Database Design

features, it was difficult to apply in that environment. Data normalization can also be
used to design relational databases and, actually, is a better fit for relational databases
than it was for the hierarchical and network databases. But, as the relational approach
to database management and the entity-relationship approach to data modeling both
blossomed in the 1980s, a very natural and pleasing approach to logical database design
evolved in which rules were developed to convert E-R diagrams into relational tables.
Optionally, the result of this process can then be tested with the data normalization
technique. Thus, this chapter on the logical design of relational databases will proceed
in three parts: first, the conversion of E-R diagrams into relational tables, then the data
normalization technique, and finally the use of the data normalization technique to
test the tables resulting from the E-R diagram conversions.

Converting E-R Diagrams into
Relational Tables
Introduction
Converting entity-relationship diagrams to relational tables is surprisingly straight-
forward, with just a few simple rules to follow. Basically, each entity will convert to a
table, plus each many-to-many relationship or associative entity will convert to a table.
The only other issue is that during the conversion, certain rules must be followed to
ensure that foreign keys appear in their proper places in the tables. We will demon-
strate these techniques by methodically converting the E-R diagrams of Chapter 2 into
relational tables.

Converting a Simple Entity
Figure 7.1 repeats the simple entity box in Figure 2.1. Figure 7.2 shows a relational
table that can store the data represented in the entity box. The table simply contains
the attributes that were specified in the entity box. Notice that Salesperson Number is

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

FIGURE 7.1  The entity box from Figure 2.1

SALESPERSON
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of HireFIGURE 7.2  Conversion of an E-R diagram

entity box to a relational table

Converting E-R Diagrams into Relational Tables    147

underlined to indicate that it is the unique identifier of the entity, and the primary key
of the table. Clearly, the more interesting issues and rules come about when, as almost
always happens, entities are involved in relationships with other entities.

Converting Entities in Binary Relationships
One-to-One Binary Relationship  Figure 7.3 repeats the one-to-one binary rela-
tionship of Figure 2.4a. There are three options for designing tables to represent this
data, as shown in Figure 7.4. In Figure 7.4a, the two entities are combined into one
relational table. On the one hand, this is possible because the one-to-one relationship
means that for one salesperson, there can only be one associated office and conversely,
for one office there can be only one salesperson. So a particular salesperson and office
combination can fit together in one record, as shown in Figure 7.4a. On the other
hand, this design is not a good choice for two reasons. One reason is that the very fact
that salesperson and office were drawn in two different entity boxes in the E-R diagram
of Figure 7.3 means that they are thought of separately in this business environment
and thus should be kept separate in the database. The other reason is the modality of
zero at the salesperson in Figure 7.3. Reading that diagram from right to left, it says
that an office might have no one assigned to it. Thus, in the table in Figure 7.4a, there
could be a few or possibly many record occurrences that have values for the office
number, telephone, and size attributes but have the four attributes pertaining to sales-
persons empty or null! This could result in a lot of wasted storage space, but it is worse
than that. If Salesperson Number is declared to be the primary key of the table, this
scenario would mean that there would be records with no primary key values, a situa-
tion which is clearly not allowed.

Figure 7.4b is a better choice. There are separate tables for the salesperson and office
entities. In order to record the relationship, i.e. which salesperson is assigned to which
office, the Office Number attribute is placed as a foreign key in the SALESPERSON
table. This connects the salespersons with the offices to which they are assigned.
Again, look at the modalities in the E-R diagram in Figure 7.3. Reading from left to
right, each salesperson is assigned to exactly one office (indicated by the two “ones”
adjacent to the office entity). That translates directly into each record in the SALES-
PERSON table of Figure 7.4b having a value (and a single value, at that) for its Office
Number foreign key attribute. That’s good! But what about the problem of unassigned
offices mentioned in the previous paragraph? In Figure 7.4b, unassigned offices will
each have a record in the OFFICE table, with Office Number as the primary key, which
is fine. Their office numbers will simply not appear as foreign key values in the SALES-
PERSON table.

OFFICE

PK Office
 Number

Telephone
Size

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Works in

Occupied by

FIGURE 7.3  The one-to-one (1-1) binary relationship
from Figure 2.4a

148   Chapter 7  Logical Database Design

Finally, instead of placing Office Number as a foreign key in the SALESPERSON
table, could you instead place Salesperson Number as a foreign key in the OFFICE
table, Figure 7.4c? Recall that, reading the E-R diagram of Figure 7.3 from right to
left, the modality of zero adjacent to the salesperson entity says that an office might
be empty, i.e. it might not be assigned to any salesperson. But then, some or perhaps
many records of the OFFICE table of Figure 7.4c would have no value or a null in their
Salesperson Number foreign key attribute positions. Why bother having to deal with
this situation when the design in Figure 7.4b avoids it?

Certainly, it follows that if the modalities were reversed, meaning that the zero
modality was adjacent to the office entity box and the one modality was adjacent to the
salesperson entity box, then the design in Figure 7.4c would be the preferable one. This
would mean that every office must have a salesperson assigned to it but a salesperson
may or may not be assigned to an office. Perhaps lots of the salespersons travel most of
the time and don’t need offices. By the way, while we’re in “what if” mode, what if the
modality was zero on both sides? Then there would be a judgment call to make between
the designs of Figure 7.4b and Figure 7.4c. If the goal is to minimize the number of
null values in the foreign key, then you have to decide whether it is more likely that
a salesperson is not assigned to an office (Figure 7.4c is preferable) or that an office is
empty (Figure 7.4b is preferable).

SALESPERSON/OFFICE

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Office
Number Telephone Size

a. One-to-one binary relationship converted to a single relational table.

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Office
Number

OFFICE
Office
Number Telephone Size

b. �One-to-one binary relationship converted to two relational tables, with the foreign key in the SALESPERSON table.

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

OFFICE

Office
Number Telephone

Salesperson
Number Size

c. One-to-one binary relationship converted to two relational tables, with the foreign key in the OFFICE table.

FIGURE 7.4  Conversion of an E-R diagram with two entities in a one-to-one binary relationship into one or
two relational tables

Converting E-R Diagrams into Relational Tables    149

One-to-Many Binary Relationship  Figure 7.5 (copied from Figure 2.4b) shows an
E-R diagram for a one-to-many binary relationship. Figure 7.6 shows the conversion
of this E-R diagram into two relational tables. This is, perhaps, the simplest case of all.
The rule is that the unique identifier of the entity on the “one side” of the one-to-many
relationship is placed as a foreign key in the table representing the entity on the “many
side.” In this case, the Salesperson Number attribute is placed in the CUSTOMER
table as a foreign key. Each salesperson has one record in the SALESPERSON table,
as does each customer in the CUSTOMER table. The Salesperson Number attribute
in the CUSTOMER table links the two and, since the E-R diagram tells us that every
customer must have a salesperson, there are no empty attributes in the CUSTOMER
table records.

Many-to-Many Binary Relationship  Figure 7.7 shows the E-R diagram with the
many-to-many binary relationship from Figure 2.5. The equivalent diagram from
Figure 2.6, using an associative entity, is shown in Figure 7.8. An E-R diagram with two
entities in a many-to-many relationship converts to three relational tables, as shown
in Figure 7.9. Each of the two entities converts to a table with its own attributes but
with no foreign keys (regarding this relationship). The SALESPERSON table and the
PRODUCT table in Figure 7.9 each contain only the attributes shown in the sales-
person and product entity boxes of Figures 7.7 and 7.8.

In addition, there must be a third “many-to-many” table for the many-to-many
relationship, the reasons for which were explained in Chapter 5. The primary key of
this additional table is the combination of the unique identifiers of the two entities in
the many-to-many relationship. Additional attributes consist of the intersection data,
Quantity in this example. Also as explained in Chapter 5, there are circumstances in
which additional attributes, such as date and timestamp attributes, must be added to
the primary key of the many-to-many table to achieve uniqueness.

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells to

Buys from

FIGURE 7.5  The one-to-many (1-M) binary relationship
from Figure 2.4b

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

CUSTOMER
Customer
Number

Customer
Name HQ City

Salesperson
Number

FIGURE 7.6  Conversion of
an E-R diagram with two
entities in a one-to-many
binary relationship into two
relational tables

150   Chapter 7  Logical Database Design

Sold

Sold by

Sold

Sold
Product

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESSALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PK

Quantity

PK Product
 Number

Salesperson
 Number

FIGURE 7.8  The
associative entity
from Figure 2.6

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

PRODUCT

Product
Number

Product
Name Unit Price

SALE

Salesperson
Number

Product
Number Quantity

FIGURE 7.9  Conversion of an
E-R diagram in Figure 7.7
(and Figure 7.8) with two
entities in a many-to-many
binary relationship into three
relational tables

Sells

Sold by

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Quantity
FIGURE 7.7  The many-to-many binary relationship
from Figure 2.5

Converting E-R Diagrams into Relational Tables    151

Converting Entities in Unary Relationships
One-to-One Unary Relationship  Figure 7.10 repeats the E-R diagram with a one-
to-one unary relationship from Figure 2.7a. In this case, with only one entity type
involved and with a one-to-one relationship, the conversion requires only one table, as
shown in Figure 7.11. For a particular salesperson, the Backup Number attribute rep-
resents the salesperson number of his backup person, i.e. the person who handles his
accounts when he is away for any reason.

One-to-Many Unary Relationship  The one-to-many unary relationship situation
is very similar to the one-to-one unary case. Figure 7.12 repeats the E-R diagram from
Figure 2.7b. Figure 7.13 shows the conversion of this diagram into a relational data-
base. Some employees manage other employees. An employee’s manager is recorded
in the Manager Number attribute in the table in Figure 7.13. The manager numbers
are actually salesperson numbers since some salespersons are sales managers who
manage other salespersons. This arrangement works because each employee has only
one manager. For any particular SALESPERSON record, there can only be one value

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Backs-up

Backed-up by FIGURE 7.10  The one-to-one (1-1) unary relationship from Figure 2.7a

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Backup
Number

FIGURE 7.11  Conversion of the E-R
diagram in Figure 7.10 with a one-to-one
unary relationship into a relational table

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Manages

Reports to FIGURE 7.12  The one-to-many (1-M) unary relationship from Figure 2.7b

152   Chapter 7  Logical Database Design

for the Manager Number attribute. However, if you scan down the Manager Number
column, you will see that a particular value may appear several times because a person
can manage several other salespersons.

Many-to-Many Unary Relationship  Figure 7.14 shows the E-R diagram for the
many-to-many unary relationship of Figure 2.7c. As Figure 7.15 indicates, this rela-
tionship requires two tables in the conversion. The PRODUCT table has no foreign
keys. The COMPONENT table indicates which items go into making up which other
items, as was described in the bill-of-materials discussion in Chapter 6. This table also
contains any intersection data that may exist in the many-to-many relationship. In
this example, the Quantity attribute indicates how many of a particular item go into
making up another item.

COMPONENT

PK

Quantity

PK Subassembly
 Number

Product
 Number

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

Part of
Includes

Part of
Includes

FIGURE 7.14  The many-to-many unary relationship from Figure 2.7c

PRODUCT

Product
Number

Product
Name Unit Price

COMPONENT

Product
Number

Subassembly
Number QuantityFIGURE 7.15  Conversion of the E-R diagram in

Figure 7.14 with a many-to-many unary relationship
into two relational tables

SALESPERSON
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Manager
NumberFIGURE 7.13  Conversion of the E-R dia-

gram in Figure 7.12 with a one-to-many
unary relationship into a relational table

Converting E-R Diagrams into Relational Tables    153

The fact that we wind up with two tables in this conversion is really not surprising.
The general rule is that in the conversion of a many-to-many relationship of any degree
(unary, binary, or ternary), the number of tables will be equal to the number of entity
types (one, two, or three, respectively) plus one more table for the many-to-many rela-
tionship. Thus, the conversion of the many-to-many unary relationship required two
tables, the many-to-many binary relationship three tables, and, as will be shown next,
the many-to-many ternary relationship four tables.

Converting Entities in Ternary Relationships
Finally, Figure 7.16 repeats the E-R diagram with the ternary relationship from
Figure 2.8. Figure 7.17 shows the four tables necessary for the conversion to rela-
tional tables. Notice that the primary key of the SALE table, which is the table added
for the many-to-many relationship, is the combination of the unique identifiers of
the three entities involved, plus the Date attribute. In this case, with the premise
being that a particular salesperson can have sold a particular product to a particular
customer on different days, the Date attribute is needed in the primary key to achieve
uniqueness.

Designing the General Hardware Co. Database
Having explored the specific E-R diagram-to-relational database conversion rules, let’s
look at a few examples, beginning with the General Hardware Co. Figure 7.18 is the
General Hardware E-R diagram. It is convenient to begin the database design process

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALE

PK Salesperson
 Number

PK Product
 Number

PK Customer
 Number

Date
Quantity

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

Purchased
Sold to

Sold

Sold
Product

Sold

Sold by

FIGURE 7.16  The
ternary relationship
from Figure 2.8

154   Chapter 7  Logical Database Design

with an important, central E-R diagram entity, such as salesperson, that has relation-
ships with several other entities. Thus, the relational database in Figure 7.19 includes a
SALESPERSON table with the four salesperson attributes shown in Figure 7.18’s sales-
person entity box (plus the Office Number attribute, to which we will return shortly).
To the right of the salesperson entity box in the E-R diagram, there is a one-to-many
relationship (“Sells To”) between salespersons and customers. The database then
includes a CUSTOMER table with the Salesperson Number attribute as a foreign key,
because salesperson is on the “one side” of the one-to-many relationship and customer
is on the “many side” of the one-to-many relationship.

Customer employee is a dependent entity of customer and there is a one-to-many
relationship between them. Because of this relationship, the CUSTOMER EMPLOYEE
table in the database includes the Customer Number attribute as a foreign key. Further-
more, the Customer Number attribute is part of the primary key of the CUSTOMER
EMPLOYEE table because customer employee is a dependent entity and we’re told
that employee numbers are unique only within a customer.

The PRODUCT table contains the three attributes of the product entity. The many-
to-many relationship between the salesperson and product entities is represented by
the SALES table in the database. Notice that the combination of the unique identifiers
(Salesperson Number and Product Number) of the two entities in the many-to-many
relationship is the primary key of the SALES table. Finally, the office entity has its
table in the database with its three attributes, which brings us to the presence of the
Office Number attribute as a foreign key in the SALESPERSON table. This is needed
to maintain the one-to-one binary relationship between salesperson and office. A fair
question is, since the relationship is “one” on both sides, why did we decide to put
the foreign key in the SALESPERSON table rather than in the OFFICE table? The
answer lies in the fact that the modality adjacent to SALESPERSON is zero while the
modality adjacent to OFFICE is one. An office may or may not have a salesperson
assigned to it, but a salesperson must be assigned to an office. The result is that every

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

CUSTOMER

Customer
Number

Customer
Name HQ City

PRODUCT

Product
Number

Product
Name Unit Price

SALE

Salesperson
Number

Customer
Number

Product
Number Date Quantity

FIGURE 7.17  Conversion of the
E-R diagram in Figure 7.16
with three entities in a ternary
relationship into four
relational tables

Converting E-R Diagrams into Relational Tables    155

PK Employee
 Number

Customer
 Number

PK

CUSTOMER
EMPLOYEE

Employee
 Name
Title

Office
 Number

OFFICE

PK

Telephone
Size

Salesperson
 Number

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

Customer
 Number

CUSTOMER

PK

Customer
 Name
HQ City

Product
 Number

PRODUCT

PK

Product
 Name
Unit Price

PK Product
 Number

Salesperson
 Number

SALES

PK

Quantity

Occupied by
Works in

Sells to

Buys from

Sold
Sold by

Sold

Sold
Product

Employs

Employed by

FIGURE 7.18  The General Hardware Company
E-R diagram

156   Chapter 7  Logical Database Design

salesperson must have an associated office number; the Office Number attribute in
the SALESPERSON table can’t be null. If we reversed it and put the Salesperson
Number attribute in the OFFICE table, many of the Salesperson Number attribute
values could be null since the zero modality going from office to salesperson tells us
that an office can be empty.

One last thought: Why did the PRODUCT table end-up without any foreign keys?
Because it is not the “target” (it is not on the “many side”) of any one-to-many binary
relationship. It is also not involved in a one-to-one binary relationship that would
require the presence of a foreign key. Finally, it is not involved in a unary relationship
that would require repeating the primary key in the table.

Designing the Good Reading Bookstores Database
The Good Reading Bookstores’ E-R diagram is repeated in Figure 7.20. Beginning
with the central book entity and looking to its left, we see that there is a one-to-many
relationship between books and publishers. A publisher publishes many books but
a book is published by just one publisher. The Good Reading Bookstores relational

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Office
Number

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number HQ City

CUSTOMER EMPLOYEE

Customer
Number

Employee
Number

Employee
Name Title

PRODUCT

Product
Number

Product
Name Unit Price

SALES

Salesperson
Number

Product
Number Quantity

OFFICE

Office
Number Telephone SizeFIGURE 7.19  The General

Hardware Company
relational database

Converting E-R Diagrams into Relational Tables    157

database of Figure 7.21 shows the BOOK and PUBLISHER tables. Publisher Name is
a foreign key in the BOOK table because publisher is on the “one side” of the one-to-
many relationship and book is on the “many side.” Next is the AUTHOR table, which
is straightforward. The many-to-many binary relationship between books and authors
is reflected in the WRITING table, which has no intersection data. Finally, there is the
customer entity and the many-to-many relationship between books and customers.
Correspondingly, the relational database includes a CUSTOMER table and a SALE
table to handle the many-to-many relationship. Notice the Date, Price, and Quantity
attributes appearing in the SALE table as intersection. Also notice that since a cus-
tomer can buy the same book on more than one day, the Date attribute must be part of
the primary key to achieve uniqueness.

Publisher
 Name

PUBLISHER

PK

City
Country
President
Year Founded

Customer
 Number

Author
 Number

Book
 Number

BOOK

PK

Book Name
Publication
 Year
Pages

PK Author
 Number

Book
 Number

WROTE

PK

PK Customer
 Number

Book
 Number

CUSTOMER

PK

Customer
 Name
Street
City
State
Country

AUTHOR

PK

Author Name
Year Born
Year Died

SALE

PK

Date
Price
Quantity

Published

Published by Wrote

Written by

Wrote
Written by

Bought

Bought by

Sold
In sale

FIGURE 7.20  Good Reading Bookstores entity-relationship diagram

7.1  The E-R Diagram Conversion Logical
Design Technique
In Your Turn in Chapter 2, you created an
entity-relationship diagram for your university
environment.

Question:
Using the logical design techniques just described,
convert your university E-R diagram into a logical
database design.

Your Turn 

158   Chapter 7  Logical Database Design

Designing the World Music Association Database
Looking at the World Music Association E-R diagram in Figure 7.22, it appears that the
orchestra entity would be a good central starting point for the database design process.
Thus, the relational database in Figure 7.23 begins with the ORCHESTRA table. The
Orchestra Name foreign key in the MUSICIAN table reflects the one-to-many relation-
ship from orchestra to musician. Since degree is a dependent entity of musician in a
one-to-many relationship and degrees (e.g. B.A.) are unique only within a musician,
not only does Musician Number appear as a foreign key in the DEGREE table but
also it must be part of that table’s primary key. A similar situation exists between the
composer and composition entities, as shown in the COMPOSER and COMPOSITION
tables in the database. Finally, the many-to-many relationship between orchestra and
composition is converted into the RECORDING table. Notice that the primary key of
the RECORDING table begins with the Orchestra Name attribute and then continues
with both the Composition Name and Composer Name attributes. This is because the
primary key of one of the two entities in the many-to-many relationship, composition,
is the combination of those two latter attributes.

PUBLISHER

Publisher
Name City Country Telephone

Year
Founded

AUTHOR

Author
Number

Author
Name

Year
Born

Year
Died

BOOK

Book
Number

Book
Name

Publication
Year Pages

Publisher
Name

CUSTOMER

Customer
Number

Customer
Name Street City State Country

WRITING
Book
Number

Author
Number

SALE

Book
Number

Customer
Number Date Price QuantityFIGURE 7.21  The Good

Reading Bookstores
relational database

Converting E-R Diagrams into Relational Tables    159

Orchestra
 Name

ORCHESTRA

PK

City
Country
Music
 Director

Orchestra
 Name

Composer
 Name

Musician
 Number

MUSICIAN

PK

Musician
 Name
Instrument
Annual
 Salary

PK Degree

Musician
 Number

DEGREE

PK

University
Year

PK Composer
 Name

Composition
 Name

RECORDING

PK

Composition
 Name

PK

Composer
 Name

PK

Year
Price

COMPOSER

PK

Country
Date of Birth

COMPOSITION

PK

Year

Employs

Employed by Earned by

Earned

Recorded

Contains

Wrote

Written by

Recorded
Recorded by

FIGURE 7.22  World Music Association entity-relationship diagram

ORCHESTRA
Orchestra
Name City Country

Music
Director

MUSICIAN
Musician
Number

Musician
Name Instrument

Annual
Salary

Orchestra
Name

DEGREE
Musician
Number Degree University Year

COMPOSER
Composer
Name Country

Date of
Birth

COMPOSITION
Composition
Name

Composer
Name Year

RECORDING
Orchestra
Name

Composition
Name

Composer
Name Year Price

FIGURE 7.23  The World Music
Association relational database

160   Chapter 7  Logical Database Design

Designing the Lucky Rent-A-Car Database
Figure 7.24 shows the Lucky Rent-A-Car E-R diagram. The conversion to a relational
database structure begins with the car entity and its four attributes, as shown in the
CAR table of the database in Figure 7.25. Because car is on the “many side” of a one-to-
many relationship with the manufacturer entity, the CAR table also has the Manufac-
turer Name attribute as a foreign key. The straightforward one-to-many relationship
from car to maintenance event produces a MAINTENANCE EVENT table with Car
Serial Number as a foreign key. The customer entity converts to the CUSTOMER table
with its four attributes. The many-to-many relationship between car and customer
converts to the RENTAL table. Car Serial Number, the unique identifier of the car

PK Customer
 Number

Car Serial
 Number

RENTAL

PK

Rental Date
Return Date
Total Cost

Manufacturer
 Name

MANUFACTURER

PK

Manufacturer
 Country
Sales Rep
 Name
Sales Rep
 Number

Car Serial
 Number

CAR

PK

Model
Year
Class

Customer
 Number

CUSTOMER

PK

Customer
 Name
Customer
 Address
Customer
 Credit Rating

MAINTENANCE
EVENT

Manufactured
Manufactured by

Rented

Car Rented

Repaired
Car Repaired

Rented
Rented by

Repair
 Number

PK

Date
Procedure
Mileage
Repair Time

FIGURE 7.24  Lucky Rent-A-Car entity-relationship
diagram

The Data Normalization Process    161

entity, and Customer Number, the unique identifier of the customer entity, plus the
Rental Date intersection data attribute form the three-attribute primary key of the
RENTAL table, with Return Date and Total Cost as additional intersection data attrib-
utes. Rental Date has to be part of the primary key to achieve uniqueness because a
particular customer may have rented a particular car on several different dates.

The Data Normalization Process
Data normalization was the earliest formalized database design technique and at one
time was the starting point for logical database design. Today, with the popularity of the
Entity-Relationship model and other such diagramming tools and the ability to con-
vert its diagrams to database structures, data normalization is used more as a check on
database structures produced from E-R diagrams than as a full-scale database design
technique. That’s one of the reasons for learning about data normalization. Another
reason is that the data normalization process is another way of demonstrating and
learning about such important topics as data redundancy, foreign keys, and other ideas
that are so central to a solid understanding of database management.

Data normalization is a methodology for organizing attributes into tables so that
redundancy among the non-key attributes is eliminated. Each of the resultant tables
deals with a single data focus, which is just another way of saying that each resultant
table will describe a single entity type or a single many-to-many relationship. Fur-
thermore, foreign keys will appear exactly where they are needed. In other words, the
output of the data normalization process is a properly structured relational database.

MANUFACTURER
Manufacturer
Name

Manufacturer
Country

Sales
Rep Name

Sales Rep
Telephone

CAR
Car Serial
Number Model Year Class

Manufacturer
Name

MAINTENANCE
Repair
Number

Car Serial
Number Date Procedure Mileage

Repair
Time

CUSTOMER
Customer
Number

Customer
Name

Customer
Address

Customer
Telephone

RENTAL
Car Serial
Number

Customer
Number

Rental
Date

Return
Date

Total
Cost

FIGURE 7.25  The Lucky
Rent-A-Car relational database

162   Chapter 7  Logical Database Design

Introduction to the Data Normalization Technique
The input required by the data normalization process has two parts. One is a list of all
the attributes that must be incorporated into the database: that is, all of the attributes
in all of the entities involved in the business environment under discussion plus all
of the intersection data attributes in all of the many-to-many relationships between
these entities. The other input, informally, is a list of all of the defining associations
among the attributes. Formally, these defining associations are known as functional
dependencies. And what are defining associations or functional dependencies? They
are a means of expressing that the value of one particular attribute is associated with a
specific single value of another attribute. If we know that one of these attributes has a
particular value, then the other attribute must have some other value. For example, for
a particular Salesperson Number, 137, there is exactly one Salesperson Name, Baker,
associated with it. Why is this true? In this example, a Salesperson Number uniquely
identifies a salesperson and, after all, a person can have only one name! And this is
true for every person! Informally, we might say that Salesperson Number defines Sales-
person Name. If I give you a Salesperson Number, you can give me back the one and
only name that goes with it. (It’s a little like the concept of independent and dependent
variables in mathematics. Take a value of the independent variable, plug it into the
formula and you get back the specific value of the dependent variable associated with
that independent variable.) These defining associations are commonly written with a
right-pointing arrow like this:

Salesperson Number Salesperson Name

In the more formal terms of functional dependencies, Salesperson Number, in general
the attribute on the left side, is referred to as the determinant. Why? Because its value
determines the value of the attribute on the right side. Conversely, we also say that the
attribute on the right is functionally dependent on the attribute on the left.

Data normalization is best explained with an example and this is a good place to
start one. In order to demonstrate the main points of the data normalization process,
we will modify part of the General Hardware Co. business environment and focus on
the salesperson and product entities. Let’s assume that salespersons are organized into
departments and each department has a manager who is not herself a salesperson.
Then the list of attributes we will consider is shown in Figure 7.26. The list of defining
associations or functional dependencies is shown in Figure 7.27.

Salesperson Number
Salesperson Name
Commission Percentage
Year of Hire
Department Number
Manager Name
Product Number
Product Name
Unit Price
Quantity

FIGURE 7.26  List of attributes for salespersons and products

The Data Normalization Process    163

Notice a couple of fine points about the list of defining associations in Figure 7.27.
The last association:

Salesperson Number, Product Number Quantity

shows that the combination of two or more attributes may possibly define another
attribute. That is, the combination of a particular Salesperson Number and a particular
Product Number defines or specifies a particular Quantity. Put another way, in this
business context, we know how many units of a particular product a particular sales-
person has sold. Another point, which will be important in demonstrating one step of
the data normalization process, is that Manager Name is defined, independently, by
two different attributes: Salesperson Number and Department Number:

Salesperson Number

Department Number

Manager Name

Manager Name

Both these defining associations are true! If I identify a salesperson by his Salesperson
Number, you can tell me who his manager is. Also, if I state a department number, you
can tell me who the manager of the department is. How did we wind up with two dif-
ferent ways to define the same attribute? Very easily! It simply means that during the
systems analysis process, both these equally true defining associations were discovered
and noted. By the way, the fact that I know the department that a salesperson works in:

Salesperson Number Department Number

(and that each of these two attributes independently define Manager Name) will also
be an issue in the data normalization process. More about this later.

Steps in the Data Normalization Process
The data normalization process is known as a “decomposition process.” Basically,
we are going to line up all the attributes that will be included in the relational data-
base and start subdividing them into groups that will eventually form the database’s
tables. Thus, we are going to “decompose” the original list of all of the attributes into
subgroups. To do this, we are going to step through a number of normal forms. First,
we will demonstrate what unnormalized data looks like. After all, if data can exist in
several different normal forms, then there should be the possibility that data is in none

Salesperson Number Salesperson Name
Salesperson Number Commission Percentage
Salesperson Number Year of Hire
Salesperson Number Department Number
Salesperson Number Manager Name
Product Number Product Name
Product Number Unit Price
Department Number Manager Name
Salesperson Number, Product Number Quantity FIGURE 7.27  List of defining associations (functional

dependencies) for the attributes of salespersons and products

164   Chapter 7  Logical Database Design

of the normal forms, too! Then we will basically work through the three main normal
forms in order:

First Normal Form
Second Normal Form
Third Normal Form

There are certain “exception conditions” that have also been described as normal
forms. These include the Boyce-Codd Normal Form, Fourth Normal Form, and Fifth
Normal Form. They are less common in practice and will not be covered here.

Here are three additional points to remember:

1.	 Once the attributes are arranged in third normal form (and if none of the
exception conditions are present), the group of tables that they comprise is, in
fact, a well-structured relational database with no data redundancy.

2.	 A group of tables is said to be in a particular normal form if every table in the
group is in that normal form.

3.	 The data normalization process is progressive. If a group of tables is in second
normal form it is also in first normal form. If they are in third normal form
they are also in second normal form.

Unnormalized Data  Figure 7.28 shows the salesperson and product-related attrib-
utes listed in Figure 7.26 arranged in a table with sample data. The salesperson and
product data is taken from the General Hardware Co. relational database of Figure 5.14,
with the addition of Department Number and Manager Name data. Note that sales-
persons 137, 204, and 361 are all in department number 73 and their manager is Scott.
Salesperson 186 is in department number 59 and his manager is Lopez.

The table in Figure 7.28 is unnormalized. The table has four records, one for each
salesperson. But, since each salesperson has sold several products and there is only

SALESPERSON/PRODUCT table

Salesperson
Number

Product
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Department
Number

Manager
Name

Product
Name

Unit
Price Quantity

137 19440 Baker 10 1995 73 Scott Hammer 17.50 473
24013 Saw 26.25 170
26722 Pliers 11.50 688

186 16386 Adams 15 2001 59 Lopez Wrench 12.95 1745
19440 Hammer 17.50 2529
21765 Drill 32.99 1962
24013 Saw 26.25 3071

204 21765 Dickens 10 1998 73 Scott Drill 32.99 809
26722 Pliers 11.50 734

361 16386 Carlyle 20 2001 73 Scott Wrench 12.95 3729
21765 Drill 32.99 3110
26722 Pliers 11.50 2738

FIGURE 7.28  The salesperson and product attributes, unnormalized with sample data

The Data Normalization Process    165

one record for each salesperson, several attributes of each record must have multiple
values. For example, the record for salesperson 137 has three product numbers, 19440,
24013, and 26722, in its Product Number attribute, because salesperson 137 has sold all
three of those products. Having such multivalued attributes is not permitted in first
normal form, and so this table is unnormalized.

First Normal Form  The table in Figure 7.29 is the first normal form representation of
the data. The attributes under consideration have been listed out in one table and a pri-
mary key has been established. As the sample data of Figure 7.30 shows, the number
of records has been increased (over the unnormalized representation) so that every
attribute of every record has just one value. The multivalued attributes of Figure 7.28
have been eliminated. Indeed, the definition of first normal form is a table in which
every attribute value is atomic, that is, no attribute is multivalued.

The combination of the Salesperson Number and Product Number attributes con-
stitutes the primary key of this table. What makes this combination of attributes a
legitimate primary key? First of all, the business context tells us that the combination
of the two provides unique identifiers for the records of the table and that there is no
single attribute that will do the job. That, of course, is how we have been approaching
primary keys all along. Secondly, in terms of data normalization, according to the list
of defining associations or functional dependencies of Figure 7.27, every attribute in
the table is either part of the primary key or is defined by one or both attributes of the
primary key. Salesperson Name, Commission Percentage, Year of Hire, Department
Number, and Manager Name are each defined by Salesperson Number. Product Name

SALESPERSON/PRODUCT table

Salesperson
Number

Product
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Department
Number

Manager
Name

Product
Name

Unit
Price Quantity

FIGURE 7.29  The salesperson and product attributes in first normal form

SALESPERSON/PRODUCT table

Salesperson
Number

Product
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Department
Number

Manager
Name

Product
Name

Unit
Price Quantity

137 19440 Baker 10 1995 73 Scott Hammer 17.50 473
137 24013 Baker 10 1995 73 Scott Saw 26.25 170
137 26722 Baker 10 1995 73 Scott Pliers 11.50 688
186 16386 Adams 15 2001 59 Lopez Wrench 12.95 1475
186 19440 Adams 15 2001 59 Lopez Hammer 17.50 2529
186 21765 Adams 15 2001 59 Lopez Drill 32.99 1962
186 24013 Adams 15 2001 59 Lopez Saw 26.25 3071
204 21765 Dickens 10 1998 73 Scott Drill 32.99 809
204 26722 Dickens 10 1998 73 Scott Pliers 11.50 734
361 16386 Carlyle 20 2001 73 Scott Wrench 12.95 3729
361 21765 Carlyle 20 2001 73 Scott Drill 32.99 3110
361 26722 Carlyle 20 2001 73 Scott Pliers 11.50 2738

FIGURE 7.30  The salesperson and product attributes in first normal form with sample data

166   Chapter 7  Logical Database Design

and Unit Price are each defined by Product Number. Quantity is defined by the combi-
nation of Salesperson Number and Product Number.

Are these two different ways of approaching the primary key selection equivalent?
Yes! If the combination of a particular Salesperson Number and a particular Product
Number is unique, then it identifies exactly one record of the table. And, if it identifies
exactly one record of the table, then that record shows the single value of each of the
non-key attributes that is associated with the unique combination of the key attributes.

But that is the same thing as saying that each of the non-key attributes is defined by
or is functionally dependent on the primary key! For example, consider the first record
of the table in Figure 7.30.

Sales-
person
Number

Product
Number

Sales-
person
Name

Commission
Percentage

Year
of

Hire

Depart-
ment

Number
Manager

Name
Product
Name

Unit
Price Quantity

137 19440 Baker 10 1995 73 Scott Hammer 17.50 473

The combination of Salesperson Number 137 and Product Number 19440 is unique.
There is only one record in the table that can have that combination of Salesperson
Number and Product Number values. Therefore, if someone specifies those values, the
only Salesperson Name that can be associated with them is Baker, the only Commission
Percentage is 10, and so forth. But that has the same effect as the concept of func-
tional dependency. Since Salesperson Name is functionally dependent on Salesperson
Number, given a particular Salesperson Number, say 137, there can be only one Sales-
person Name associated with it, Baker. Since Commission Percentage is functionally
dependent on Salesperson Number, given a particular Salesperson Number, say 137,
there can be only one Commission Percentage associated with it, 10. And so forth.

First normal form is merely a starting point in the normalization process. As can
immediately be seen from Figure 7.30, there is a great deal of data redundancy in first
normal form. There are three records involving salesperson 137 (the first three records)
and so there are three places in which his name is listed as Baker, his commission
percentage is listed as 10, and so on. Similarly, there are two records involving product
19440 (the first and fifth records) and this product’s name is listed twice as Hammer
and its unit price is listed twice as 17.50. Intuitively, the reason for this is that attributes
of two different kinds of entities, salespersons and products, have been mixed together
in one table.

Second Normal Form  Since data normalization is a decomposition process, the
next step will be to decompose the table of Figure 7.29 into smaller tables to eliminate
some of its data redundancy. And, since we have established that at least some of
the redundancy is due to mixing together attributes about salespersons and attributes
about products, it seems reasonable to want to separate them out at this stage. Infor-
mally, what we are going to do is to look at each of the non-key attributes of the table in
Figure 7.29 and, on the basis of the defining associations of Figure 7.27, decide which
attributes of the key are really needed to define it. For example, Salesperson Name
really only needs Salesperson Number to define it; it does not need Product Number.
Product Name needs only Product Number to define it; it does not need Salesperson
Number. Quantity indeed needs both attributes, according to the last defining associa-
tion of Figure 7.27.

More formally, second normal form, which is what we are heading for, does not
allow partial functional dependencies. That is, in a table in second normal form, every

The Data Normalization Process    167

non-key attribute must be fully functionally dependent on the entire key of that table.
In plain language, a non-key attribute cannot depend on only part of the key, in the
way that Salesperson Name, Product Name, and most of the other non-key attributes
of Figure 7.29 do.

Figure 7.31 shows the salesperson and product attributes arranged in second nor-
mal form. There is a SALESPERSON Table in which Salesperson Number is the sole
primary key attribute. Every non-key attribute of the table is fully defined just by Sales-
person Number, as can be verified in Figure 7.27. Similarly, the PRODUCT Table has
Product Number as its sole primary key attribute and the non-key attributes of the
table are dependent just on it. The QUANTITY Table has the combination of Sales-
person Number and Product Number as its primary key because its non-key attribute,
Quantity, requires both of them together to define it, as indicated in the last defining
association of Figure 7.27.

Figure 7.32 shows the sample salesperson and product data arranged in the second
normal form structure of Figure 7.31. Indeed, much of the data redundancy visible
in Figure 7.30 has been eliminated. Now, only once is salesperson 137’s name listed
as Baker, his commission percentage listed as 10, and so forth. Only once is product
19440’s name listed as Hammer and its unit price listed as 17.50.

Second normal form is thus a great improvement over first normal form. But, has
all of the redundancy been eliminated? In general, that depends on the particular list
of attributes and defining associations. It is possible, and in practice it is often the case,
that second normal form is completely free of data redundancy. In such a case, the sec-
ond normal form representation is identical to the third normal form representation.

A close look at the sample data of Figure 7.32 reveals that the second normal form
structure of Figure 7.31 has not eliminated all the data redundancy. At the right-hand
end of the SALESPERSON Table, the fact that Scott is the manager of department
73 is repeated three times and this certainly constitutes redundant data. How could
this have happened? Aren’t all the non-key attributes fully functionally dependent on
Salesperson Number? They are, but that is not the nature of the problem. It’s true
that Salesperson Number defines both Department Number and Manager Name and
that’s reasonable. If I’m focusing in on a particular salesperson, I should know what
department she is in and what her manager’s name is. But, as indicated in the next-to-
last defining association of Figure 7.27, one of those two attributes defines the other:
given a department number, I can tell you who the manager of that department is.

SALESPERSON Table

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Department
Number

Manager
Name

PRODUCT Table

Product
Number

Product
Name

Unit
Price

QUANTITY Table

Salesperson
Number

Product
Number Quantity FIGURE 7.31  The salesperson

and product attributes in
second normal form

168   Chapter 7  Logical Database Design

In the SALESPERSON Table, one of the non-key attributes, Department Number,
defines another one of the non-key attributes, Manager Name. This is what is causing
the problem.

Third Normal Form  In third normal form, non-key attributes are not allowed to
define other non-key attributes. Stated more formally, third normal form does not
allow transitive dependencies in which one non-key attribute is functionally dependent
on another.

Again, there is one example of this in the second normal form representation
in Figure 7.31. In the SALESPERSON table, Department Number and Manager

SALESPERSON Table
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Department
Number

Manager
Name

137 Baker 10 1995 73 Scott

186 Adams 15 2001 59 Lopez

204 Dickens 10 1998 73 Scott

361 Carlyle 20 2001 73 Scott

PRODUCT Table
Product
Number

Product
Name

Unit
Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

QUANTITY Table
Salesperson
Number

Product
Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1745

186 19440 2529

186 21765 1962

186 24013 3071

204 21765 809

204 26722 734

361 16386 3729

361 21765 3110

361 26722 2738

FIGURE 7.32  The sales-
person and product attrib-
utes in second normal form
with sample data

The Data Normalization Process    169

Name are both non-key attributes and, as shown in the next-to-last association in
Figure 7.27, Department Number defines Manager Name. Figure 7.33 shows the third
normal form representation of the attributes. Note that the SALESPERSON Table of
Figure 7.31 has been further decomposed into the SALESPERSON and DEPART-
MENT Tables of Figure 7.33. The Department Number and Department Manager
attributes, which were the problem, were split off to form the DEPARTMENT Table,
but a copy of the Department Number attribute (the primary key attribute of the
new DEPARTMENT Table) was left behind in the SALESPERSON Table. If this had
not been done, there no longer would have been a way to indicate which department
each salesperson is in.

The sample data for the third normal form structure of Figure 7.33 is shown in
Figure 7.34. Now, the fact that Scott is the manager of department 73 is shown only
once, in the second record of the DEPARTMENT Table. Notice that the Department
Number attribute in the SALESPERSON Table continues to indicate which depart-
ment a salesperson is in.

There are several important points to note about the third normal form structure
of Figure 7.33:

1.	 It is completely free of data redundancy.
2.	 All foreign keys appear where needed to logically tie together related tables.
3.	 It is the same structure that would have been derived from a properly drawn

entity-relationship diagram of the same business environment.

Finally, there is one exception to the rule that in third normal form, non-key attrib-
utes are not allowed to define other non-key attributes. The rule does not hold if the
defining non-key attribute is a candidate key of the table. Let’s say, just for the sake of
argument here, that the Salesperson Name attribute is unique. That makes Salesperson
Name a candidate key in Figure 7.33’s SALESPERSON Table. But, if Salesperson Name
is unique, then it must define Commission Percentage, Year of Hire, and Department
Number just as the unique Salesperson Number attribute does. Since it was not chosen
to be the primary key of the table, Salesperson Name is technically a non-key attribute

SALESPERSON Table

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Department
Number

DEPARTMENT Table

Department
Number

Manager
Name

PRODUCT Table
Product
Number

Product
Name

Unit
Price

QUANTITY Table
Salesperson
Number

Product
Number Quantity FIGURE 7.33  The salesperson

and product attributes in third
normal form

170   Chapter 7  Logical Database Design

that defines other non-key attributes. Yet it does not appear from the sample data of
Figure 7.34 to be causing any data redundancy problems. Since it was a candidate key,
its defining other non-key attributes is not a problem.

SALESPERSON Table
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Department
Number

137 Baker 10 1995 73

186 Adams 15 2001 59

204 Dickens 10 1998 73

361 Carlyle 20 2001 73

DEPARTMENT Table
Department
Number

Manager
Name

59 Lopez

73 Scott

PRODUCT Table
Product
Number

Product
Name

Unit
Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

QUANTITY Table
Salesperson
Number

Product
Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1745

186 19440 2529

186 21765 1962

186 24013 3071

204 21765 809

204 26722 734

361 16386 3729

361 21765 3110

361 26722 2738FIGURE 7.34  The salesperson
and product attributes in third
normal form with sample data

The Data Normalization Process    171

Example: General Hardware Co.
If the entire General Hardware Co. example, including the newly added Department
Number and Manager Name attributes, were organized for the data normalization
process, the list of defining associations or functional dependencies of Figure 7.27
would be expanded to look like Figure 7.35. Several additional interesting functional
dependencies in this expanded list are worth pointing out. First, although Salesperson
Number is a determinant, defining several other attributes, it is in turn functionally
dependent on another attribute, Customer Number:

Customer Number Salesperson Number

As we have already established, this functional dependency makes perfect sense.
Given a particular customer, I can tell you who the salesperson is who is responsible
for that customer. This is part of the one-to-many relationship between salespersons
and customers. The fact that, in the reverse direction, a particular salesperson has sev-
eral customers associated with him makes no difference in this functional dependency
analysis. Also, the fact that Salesperson Number is itself a determinant, defining sev-
eral other attributes, does not matter. Next:

Customer Number, Employee Number

Customer Number, Employee Number

Employee Name

Title

Remember that in the General Hardware business environment, employee numbers
are unique only within a customer company. Thus, this functional dependency cor-
rectly shows that the combination of the Customer Number and Employee Number
attributes is required to define the Employee Name and Title attributes.

Figure 7.36 shows the General Hardware Co. attributes, including the added Depart-
ment Number and Manager Name attributes, arranged in first normal form. Moving to

Salesperson Number Salesperson Name
Salesperson Number Commission Percentage
Salesperson Number Year of Hire
Salesperson Number Department Number
Salesperson Number Manager Name
Customer Number Customer Name
Customer Number Salesperson Number
Customer Number HQ City
Customer Number, Employee Number Employee Name
Customer Number, Employee Number Title
Product Number Product Name
Product Number Unit Price
Department Number Manager Name
Salesperson Number, Product Number Quantity
Office Number Telephone
Office Number Salesperson Number
Office Number Size

FIGURE 7.35  List of defining associations (functional
dependencies) for the attributes of the General Hardware
Company example

172   Chapter 7  Logical Database Design

second normal form would produce the database structure in Figure 7.19, except that
the Department Number and Manager Name attributes would be split out in moving
from second to third normal form, as previously shown.

Example: Good Reading Bookstores
In the General Hardware Co. example, the reason that the table representing the
many-to-many relationship between salespersons and products

Salesperson
Number

Product
Number Quantity

fell out so easily in the data normalization process was because of the presence of the
functional dependency needed to define the intersection data attribute, Quantity:

Salesperson Number, Product Number Quantity

A new twist in the Good Reading Bookstores example is the presence of the many-
to-many relationship between the book and author entities with no intersection data.
This is shown in the WRITING Table of Figure 7.21. The issue is how to show this in
a functional dependencies list. There are a couple of possibilities. One is to show the
two attributes defining “null”:

Book Number, Author Number null

The other is to show paired “multivalued dependencies” in which the attribute on the
left determines a list of attribute values on the right, instead of the usual single attri-
bute value on the right. A double-headed arrow is used for this purpose:

Book Number

Author Number

Author Number

Book Number

These literally say that given a book number, a list of authors of the book can be pro-
duced and that given an author number, a list of the books that an author has written
or co-written can be produced. In either of the two possibilities shown, the null and

FIGURE 7.36  The General Hardware Company attributes in first normal form

Sale
sp

ers
on N

umber

Custo
mer

Number

O�ce
Number

Employe
e N

umber

Product
Number

Sale
sp

ers
on N

am
e

Commiss
ion Perc

en
tag

e

Yea
r o

f H
ire

Dep
art

men
t N

umber

Man
ag

er
Nam

e

Custo
mer

Nam
e

HQ City

Employe
e N

am
e

Title Product
Nam

e

Unit P
ric

e

Quan
tity

Tele
phone

Size

The Data Normalization Process    173

the paired multivalued dependencies, the notation in the functional dependency list
can be used as a signal to split the attributes off into a separate table in moving from
first to second normal form.

The other interesting point in the Good Reading Bookstores example involves the
many-to-many relationship of the SALE Table in Figure 7.21. Recall that Date and
Price were intersection data attributes that, because of the requirements of the com-
pany, had to be part of the primary key of the table. This would be handled very simply
and naturally with a functional dependency that looks like this:

Book Number, Customer Number, Date, Price Quantity

The complete list of functional dependencies is shown in Figure 7.37. First normal
form for the Good Reading Bookstores example would consist of the list of its attrib-
utes with the following attributes in the primary key:

Publisher Name
Author Number
Book Number
Customer Number
Date

Moving from first to second normal form, including incorporating the rule described
above for the many-to-many relationship with no intersection data, would directly
yield the tables of Figure 7.21. As there are no instances of a non-key attribute defining
another non-key attribute, this arrangement is already in third normal form.

Publisher Name City
Publisher Name Country
Publisher Name Telephone
Publisher Name Year Founded
Author Number Author Name
Author Number Year Born
Author Number Year Died
Book Number Book Name
Book Number Publication Year
Book Number Pages
Book Number Publisher Name
Customer Number Customer Name
Customer Number Street
Customer Number City
Customer Number State
Customer Number Country

Book Number, Author Number null
(or)
Book Number Author Number
Author Number Book Number

Book Number, Customer Number, Date Quantity
Book Number, Customer Number, Date Price

FIGURE 7.37  List of defining associations (functional
dependencies) for the attributes of the Good Reading
Bookstores example

174   Chapter 7  Logical Database Design

Example: World Music Association
The World Music Association example is straightforward in terms of data normali-
zation. The complete list of functional dependencies is shown in Figure 7.38. Since
degree is unique only within a musician and composition name is unique only within
a composer, note that three of the functional dependencies are:

University

Year

Year

Musician Number, Degree

Musician Number, Degree

Composition Name, Composer Name

The primary key attributes in first normal form are:

Orchestra Name
Musician Number
Degree
Composer Name
Composition Name

With this in mind, proceeding from first to second normal form will produce the
tables in Figure 7.23. These are free of data redundancy and are, indeed, also in third
normal form.

Example: Lucky Rent-A-Car
Figure 7.39 lists the Lucky Rent-A-Car functional dependencies. The primary key
attributes in first normal form are:

Manufacturer Name
Car Serial Number
Repair Number
Customer Number
Rental Date

Once again, the conversion from first to second normal form results in a redundancy-
free structure, Figure 7.25, that is already in third normal form.

Orchestra Name City
Orchestra Name Country
Orchestra Name Music Director
Musician Number Musician Name
Musician Number Instrument
Musician Number Annual Salary
Musician Number Orchestra Name
Musician Number, Degree University
Musician Number, Degree Year
Composer Name Country
Composer Name Date of Birth
Composition Name, Composer Name Year (composed)
Orchestra Name, Composition Name, Composer Name Price, Year (recorded)

FIGURE 7.38  List of defining
associations (functional depen-
dencies) for the attributes
of the World Music Associa-
tion example

Testing Tables Converted from E-R Diagrams with Data Normalization    175

Testing Tables Converted from E-R Diagrams
with Data Normalization
As we said earlier, logical database design is generally performed today by converting
entity-relationship diagrams to relational tables and then checking those tables against
the data normalization technique rules. Since we already know that the databases in
Figures 7.19, 7.21, 7.23, and 7.25 (for the four example business environments we’ve
been working) with are in third normal form, there really isn’t much to check. As one
example, consider the General Hardware Co. database of Figure 7.19.

The basic idea in checking the structural worthiness of relational tables with the
data normalization rules is to:

1.	 Check to see if there are any partial functional dependencies. That is, check
whether any non-key attributes are dependent on or are defined by only part of
the table’s primary key.

2.	 Check to see if there are any transitive dependencies. That is, check whether
any non-key attributes are dependent on or are defined by any other non-key
attributes (other than candidate keys).

Manufacturer Name Manufacturer Country
Manufacturer Name Sales Rep Name
Manufacturer Name Sales Rep Telephone
Car Serial Number Model
Car Serial Number Year
Car Serial Number Class
Car Serial Number Manufacturer Name
Repair Number Car Serial Number
Repair Number Date
Repair Number Procedure
Repair Number Mileage
Repair Number Repair Time
Customer Number Customer Name
Customer Number Customer Address
Customer Number Customer Telephone
Car Serial Number, Customer Number, Rental Date Return Date
Car Serial Number, Customer Number, Rental Date Total Cost

FIGURE 7.39  List of defining
associations (functional
dependencies) for the
attributes of the Lucky Rent-A-
Car example

7.2  The Data Normalization Technique
In Your Turn in Chapter 2, you created an
entity-relationship diagram for your university
environment.

Question:
Develop a set of functional dependencies for your
university environment. Then design a database for
your university environment using the data normal-
ization technique.

Your Turn

176   Chapter 7  Logical Database Design

Both of these can be verified by the business environment’s list of defining associa-
tions or functional dependencies.

In the SALESPERSON Table of Figure 7.19, there is only one attribute, Salesperson
Number, in the primary key. Therefore there cannot be any partial functional depen-
dencies. By their very definition, partial functional dependencies require the presence
of more than one attribute in the primary key, so that a non-key attribute can be depen-
dent on only part of the key! As for transitive dependencies, are any non-key attributes
determined by any other non-key attributes? No! And, even if Salesperson Name is
assumed to be a unique attribute and therefore it defines Commission Percentage and
Year of Hire, this would be an allowable exception because Salesperson Name, being
unique, would be a candidate key. The same analysis can be made for the other Gen-
eral Hardware tables with single-attribute primary keys: the CUSTOMER, PRODUCT,
and OFFICE tables of Figure 7.19.

Figure 7.19’s CUSTOMER EMPLOYEE Table has a two-attribute primary key
because Employee Number is unique only within a customer. But then, by the very
same logic, the non-key attributes Employee Name and Title must be dependent on the
entire key, because that is the only way to uniquely identify who we are talking about
when we want to know a person’s name or title. Analyzing this further, Employee
Name cannot be dependent on Employee Number alone because it is not a unique
attribute. Functional dependency requires uniqueness from the determining side.
And, obviously, Employee Name cannot be dependent on Customer Number alone.
A customer company has lots of employees, not just one. Therefore, Employee Name
and Title must be dependent on the entire primary key and the rule about no partial
functional dependencies is satisfied. Since the non-key attributes Employee Name and
Title do not define each other, the rule about no transitive dependencies is also satis-
fied and thus the table is clearly in third normal form.

In the SALES Table of Figure 7.19, there is a two-attribute primary key and only
one non-key attribute. This table exists to represent the many-to-many relationship
between salespersons and products. The non-key attributes, just Quantity in this case,
constitute intersection data. By the definition of intersection data these non-key attrib-
utes must be dependent on the entire primary key. In any case, there would be a line
in the functional dependency list indicating that Quantity is dependent on the com-
bination of the two key attributes. Thus, there are no partial functional dependencies
in this table. Interestingly, since there is only one non-key attribute, transitive depen-
dencies cannot exist. After all, there must be at least two non-key attributes in a table
for one non-key attribute to be dependent on another.

7.3  Checking Your Logical Design with
Normalization
In Your Turn 7-1 (the first Your Turn in this chap-
ter), you designed a database for your university

environment by converting an E-R diagram to a
relational database.

Question:
Check the resulting relational database design
using the data normalization technique.

Your Turn

Building the Data Structure with SQL    177

Building the Data Structure with SQL
SQL has data definition commands that allow you to take the database structure you
just learned how to design with the logical database design techniques and imple-
ment it for use with a relational DBMS. This process begins by the creation of “base
tables.” These are the actual physical tables in which the data will be stored on the disk.
The command that creates base tables and tells the system what attributes will be in
them is called the CREATE TABLE command. Using the CREATE TABLE command,
you can also specify which attribute is the primary key. As an example, here is the
command to create the General Hardware Company SALESPERSON table we have
been working with shown in Figure 7.19. (Note that the syntax of these commands var-
ies somewhat among the various relational DBMS products on the market. The com-
mands shown in this chapter, which are based on the ORACLE DBMS, are designed
to give you a general idea of the command structures. You should check the specific
syntax required by the DBMS you are using.)

CREATE TABLE SALESPERSON
(SPNUM CHAR(3) PRIMARY KEY,
SPNAME CHAR(12)
COMMPERCT DECIMAL(3,0)
YEARHIRE CHAR(4)
OFFNUM CHAR(3));

Notice that the CREATE TABLE command names the table SALESPERSON
and lists the attributes in it (with abbreviated attribute names that we have created
for brevity). Each attribute is given an attribute type and length. So SPNUM, the
Salesperson Number, is specified as CHAR(3). It is three characters long (yes, it’s a
number, but it’s not subject to calculations so it’s more convenient to specify it as a
character attribute). On the other hand, COMMPERCT, the Commission Percentage,
is specified as DECIMAL(3,0), meaning that it is a three-position number with no
decimal positions. Thus it could be a whole number from 0–999, although we know
that it will always be a whole number from 0–100 since it represents a commission
percentage. Finally, the command indicates that SPNUM will be the primary key of
the table.

If a table in the database has to be discarded, the command is the DROP
TABLE command.

DROP TABLE SALESPERSON;

A logical view (sometimes just called a “view”) is derived from one or more base
tables. A view may consist of a subset of the columns of a single table, a subset of
the rows of a single table, or both. It can also be the join of two or more base tables.
The creation of a view in SQL does not entail the physical duplication of data in a
base table into a new table. Instead, the view is a mapping onto the base table(s).
It’s literally a “view” of some part of the physical, stored data. Views are built using
the CREATE VIEW command. Within this command, you specify the base table(s)
on which the view is to be based and the attributes and rows of the table(s) that are
to be included in the view. Interestingly, these specifications are made within the
CREATE VIEW command using the SELECT statement, which is also used for data
retrieval.

178   Chapter 7  Logical Database Design

For example, to give someone access to only the Salesperson Number, Salesperson
Name, and Year of Hire attributes of the SALESPERSON table, you would specify:

CREATE VIEW EMPLOYEE AS
SELECT SPNUM, SPNAME, YEARHIRE
FROM SALESPERSON;

The name of the view is EMPLOYEE, which can then be used in other SQL com-
mands as if it were a table name. People using EMPLOYEE as a table name would
have access to the Salesperson Number, Salesperson Name, and Year of Hire attributes
of the SALESPERSON table but would not have access to the Commission Percentage
or Office Number attributes (in fact, they would not even know that these two attrib-
utes exist!).

Views can be discarded using the DROP VIEW command:

DROP VIEW EMPLOYEE;

Manipulating the Data with SQL
Once the tables have been created, the focus changes to the standard data manipula-
tion operations of updating existing data, inserting new rows in tables, and deleting
existing rows in tables. (Data retrieval is discussed in Chapter 4.) The commands are
UPDATE, INSERT, and DELETE. In the UPDATE command, you have to identify
which row(s) of a table are to be updated based on data values within those rows. Then
you have to specify which columns are to be updated and what the new data values of
those columns in those rows will be. For example, consider the SALESPERSON table
in Figure 7.34. If salesperson 204’s commission percentage has to be changed from the
current 10% to 12%, the command would be:

UPDATE SALESPERSON
SET COMMPERCT = 12
WHERE SPNUM = ‘204’;

Notice that the command first specifies the table to be updated in the UPDATE
clause, then specifies the new data in the SET clause, then specifies the affected row(s)
in the WHERE clause.

7.4  SQL Data Definition and Data
Manipulation Statements
By now, from the previous Your Turns in this chapter,
you have a well-structured relational database
design for your university environment.

Question:
Take one of your university tables and write SQL
commands to create the table, create a view of
the table, and update, insert, and delete records
in the table.

Your Turn

Questions    179

In the INSERT command, you have to specify a row of data to enter into a table.
To add a new salesperson into the SALESPERSON table whose salesperson number
is 489, name is Quinlan, commission percentage is 15, year of hire is 2011, and depart-
ment number is 59, the command would be:

INSERT INTO SALESPERSON
VALUES
(‘489’,‘Quinlan’,15,‘2011’,‘59’);

In the DELETE command you have to specify which row(s) of a table are to be
deleted based on data values within those rows. To delete the row for salesperson 186
the command would be:

DELETE FROM SALESPERSON
WHERE SPNUM = ‘186’;

Summary
Logical database design is the process of creating a database structure that is free of data
redundancy and that promotes data integration. There are two techniques for logical
database design. One technique involves taking the entity-relationship diagram that
describes the business environment and going through a series of steps to convert it to a
well-structured relational database structure. The other technique is the data normali-
zation technique. Furthermore, the data normalization technique can be used to check
the results of the E-R diagram conversion for errors.

SQL is both a data definition language and a data manipulation language.
Included in the basic data definition commands are CREATE TABLE, DROP
TABLE, CREATE VIEW, and DROP VIEW. Included in the basic data manipula-
tion commands are UPDATE, INSERT, and DELETE.

Key Terms
CREATE TABLE
CREATE VIEW
Data normalization
DELETE

DROP TABLE
DROP VIEW
Entity-relationship

diagram conversion

First normal form
INSERT
Logical database design
Second normal form

Third normal form
UPDATE

Questions
  1.	 What is logical database design?
  2.	 What is physical database design and how does it relate

to logical database design?
  3.	 In general terms, describe the main logical database

design techniques and how they relate to one another.
  4.	 Based on an entity-relationship diagram, how can

you determine how many tables there will be in the
corresponding relational database?

  5.	 Describe the process for converting entities in each
of the following relationships into relational database
structures:

	 a.	 One-to-one binary relationship.
	 b.	 One-to-many binary relationship.
	 c.	 Many-to-many binary relationship.
	 d.	 One-to-one unary relationship.
	 e.	 One-to-many unary relationship.

180   Chapter 7  Logical Database Design

	 f.	 Many-to-many unary relationship.
	 g.	 Ternary relationship.
  6.	 Describe the data normalization process including its

specific steps. Why is it referred to as a “decomposi-
tion process?”

  7.	 Explain the following terms:
	 a.	 Functional dependency.
	 b.	 Determinant.
  8.	 What characterizes unnormalized data? Why is such

data problematic?
  9.	 What characterizes tables in first normal form? Why is

such data problematic?
10.	 What is a partial functional dependency? What does the

term “fully functionally dependent” mean?
11.	 What is the rule for converting tables in first normal

form to tables in second normal form?
12.	 What is the definition of data in second normal form?

13.	 What is a transitive dependency?
14.	 What is the rule for converting tables in second normal

form to tables in third normal form?
15.	 What is the definition of data in third normal form?
16.	 What are the characteristics of data in third

normal form?
17.	 How can data normalization be used to check the

results of the E-R diagram-to-relational database con-
version process?

18.	 What SQL command do you use to produce a new table
structure? What SQL command do you use to dis-
card a table?

19.	 What is a view? What SQL commands do you use
to produce a new view and to discard one that is no
longer needed?

20.	 What are the SQL data manipulation commands and
what are their functions?

Exercises
  1.	 Convert the Video Centers of Europe, Ltd., entity-

relationship diagram in Exercise 2.2 into a well-
structured relational database.

  2.	 Convert the Central Hospital entity-relationship dia-
gram on the page 182 into a well-structured relation-
al database.

  3.	 Video Centers of Europe, Ltd., is a chain of movie
DVD rental stores. It must maintain data on the DVDs
it has for rent, the movies recorded on the DVDs, its
customers, and the actual rental. Each DVD for rent
has a unique serial number. Movie titles and customer
numbers are also unique identifiers. Assume that each
movie has exactly one “star.” Note the difference in the
year that the movie was originally filmed and the date
that a DVD—an actual disk—was manufactured. Some
of the attributes and functional dependencies in this
environment are as follows:

Attributes
DVD Number
Manufacture Date
Movie Title
Star
Year Filmed
Length [in minutes]
Customer Number
Customer Name
Customer Address

Rental Date
Return Date
Fee Paid

Functional Dependencies
DVD Number Movie Title
DVD Number Star
DVD Number Manufacture Date
Movie Title Star
Movie Title Length
Movie Title Year Filmed
Customer Number Customer Name
Customer Number Customer Address
DVD Number, Customer Number,

Rental Date Return Date, Fee Paid

For each of the following tables, first write the table’s current
normal form (as 1 NF, 2 NF, or 3 NF). Then, take those tables
that are currently in 1 NF or 2 NF and reconstruct them as
well-structured 3 NF tables. Primary key attributes are under-
lined. Do not assume any functional dependencies other than
those shown.

	 a.	 Movie Title, Star, Length, Year Filmed
	 b.	 DVD Number, Customer Number, Rental Date,

Customer Name, Return Date, Fee Paid
	 c.	 DVD Number, Manufacture Date, Movie Title, Star

	 d.	 Movie Title, Customer Number, Star, Length,
Customer Name, Customer Address

	 e.	 DVD Number, Customer Number, Rental Date,
Return Date, Fee Paid

  4.	 The U.S. government wants to keep track of informa-
tion about states, governors, cities, and mayors. In
addition, it wants to maintain data on the various fed-
eral agencies and the annual grants each agency gives
to the individual states. Each federal agency is headed
by an administrator. Agency names and state names are
unique but city names are unique only within a state.
The attributes and functional dependencies in this envi-
ronment are as follows:

Attributes
State
Governor ID Number
Governor Name
State Flower
City
Mayor ID Number
Mayor Name
City Hall Address
Mayor Telephone
Federal Agency
Administrator
Annual Grant

Functional Dependencies
State Governor ID Number
State Governor Name
State State Flower
State, City Mayor ID Number
State, City Mayor Name
State, City City Hall Address
State, City Mayor Telephone

Mayor ID Number Mayor Name
Mayor ID Number Mayor Telephone
Federal Agency Administrator
State, City, Federal Agency Annual Grant

For each of the following tables, first write the table’s
current normal form (as 1NF, 2NF, or 3NF). Then,
reconstruct those tables that are currently in 1 NF or 2 NF
as well-structured 3 NF tables. Primary key attributes are
underlined. Do not assume any functional dependencies
other than those shown.

	 a.	 State, City, Governor Name, Mayor ID Number,
Mayor Name, Mayor Telephone

	 b.	 State, City, Mayor Name, Mayor Telephone
	 c.	 State, City, Federal Agency, Governor Name,

Administrator, Annual Grant
	 d.	 State, City, Governor Name, State Flower, May-

or Telephone
	 e.	 State, City, City Hall Address, Mayor ID Number,

Mayor Name, Mayor Telephone
  5.	 Consider the General Hardware relational database

shown in Figure 7.19.
	 a.	 Write an SQL command to create the CUSTOMER

table.
	 b.	 Write an SQL command to create a view of the

CUSTOMER table that includes only the Customer
Number and HQ City attributes.

	 c.	 Write an SQL command to discard the
OFFICE table.

	 d.	 Assume that Customer Number 8429 is the
responsibility of Salesperson Number 758. Write an
SQL command to change that responsibility to
Salesperson Number 311.

	 e.	 Write an SQL command to add a new record to the
CUSTOMER table for Customer Number 9442. The
Customer Name is Smith Hardware Stores, the
responsible salesperson is Salesperson Number 577,
and the HQ City is Chicago.

Exercises    181

182   Chapter 7  Logical Database Design

PK Company
 Name

Telephone
City
State
President

INSURANCE
COMPANY

PK Operation
 Name

Duration
Cost

OPERATION
TYPE

CLAIM

PK Claim Number

Company Name
Patient Number
Date
Diagnosis
Amount

PATIENT

PK Patient
 Number

Patient Name
Age
Address
City
State

DEPARTMENT

PK Department
 Number

Office
 Number
Telephone
Administrator

NURSE

PK Nurse
 Number

Nurse
 Name
Certification
Year Hired

OPERATION

PK
PK
PK
PK

Patient Number
Doctor Number
Operation Name
Date

Start Time
End Time
Operating
 Room No

DEGREE

PK

PK

Doctor
 Number
Degree Type

Major
University
Year

DOCTOR

PK Doctor
 Number

Doctor Name
Office
 Number
Telephone

Processes

Processed by

Performed

Performed by

Supervises

Supervised by

Employs

Employed by

Employs

Employed by

Underwent

Underwent by

Type of
Of type

Earned

Earned by

Backs up

Backed up by

Filed by
Files

Central Hospital entity-relationship diagram

  1.	 Happy Cruise Lines. Convert the Happy Cruise
Lines entity-relationship diagram on the next page
into a well-structured relational database.

  2.	 Super Baseball League. The Super Baseball League
wants to keep track of information about its players,
its teams, and the minor league teams (which we will
call minor league “clubs” to avoid using the word
“team” twice). Minor league clubs are not part of the
Super Baseball League but players train in them with
the hope of eventually advancing to a team in the
Super Baseball League. The intent in this problem
is to keep track only of the current team on which a
player plays in the Super Baseball League. However,
the minor league club data must be historic and
include all of the minor league clubs for which a play-
er has played. Team names, minor league club names,
manager names, and stadium names are assumed to
be unique, as, of course, is player number.

Design a well-structured relational database for
this Super Baseball League environment using the
data normalization technique. Progress from first to
second normal form and then from second to third
normal form justifying your design decisions at each
step based on the rules of data normalization. The
attributes and functional dependencies in this envi-
ronment are as follows:

Attributes
Player Number
Player Name

Player Age
Team Name
Manager Name
Stadium Name
Minor League Club Name
Minor League Club City
Minor League Club Owner
Minor League Club Year Founded
Start Date
End Date
Batting Average

Functional Dependencies
Player Number Player Name
Player Number Age
Player Number Team Name
Player Number Manager Name
Player Number Stadium Name
Minor League Club Name City
Minor League Club Name Owner
Minor League Club Name Year Founded
Team Name Manager Name
Team Name Stadium Name
Player Number, Minor League Club Name

Start Date, End Date, Batting Average

Minicases

Exercises    183

184   Chapter 7  Logical Database Design

TOURED

PK
PK

PK

Passenger
 Number
Cruise Number
Tour Number

Date

TOUR

PK Tour Number

Tour Name
Duration
Price

VOYAGE

PK

PK

Passenger
 Number
Cruise Number

Cabin Number
Fare

PASSENGER

PK Passenger
 Number

Passenger
 Name
Home Address
Telephone

PRODUCT

PK Product
 Number

Product Name
Product
 Category
Unit Price

VISIT

PK
PK
PK

Cruise Number
Port Name
Country

Arrival Date
Departure Date

PORT

PK
PK

Port Name
Country

Number of
 Docks
Port Manager

SHIP

PK Ship Number

Ship Name
Ship Builder
Launch Date
Gross Weight

CRUISE

PK Cruise Number

Start Date
End Date
Cruise Director

SUPPLIER

PK Supplier
 Number

Supplier Name
Supplier
 Address
Sales Rep

PROVISION

PK

PK

PK

Supplier
 Number
Product
 Number
Cruise Number

Quantity
Date
Cost

Includes

Included in

Offers

Offered on

Used on
Uses

Supplies

Supplied by

Uses

Used in

Visits

Visited by

Visits
Visited

Uses

Used in

Books

Booked by

Books
Booked by

A

B

Key to passenger unary
 relationship
A: Head of family
B: In family

Happy Cruise Lines entity-relationship diagram

185

CHAPTER 8

Physical Database Design

If computers ran at infinitely fast speeds and data stored on disks
could be found and brought into primary memory for processing
literally instantly, then logical database design would be the
only kind of database design to talk about. Well-structured,
redundancy-free third normal form tables are the ideal relational
database structures and, in a world of infinite speeds, would be
practical, too. But, as fast as computers have become, their
speeds are certainly not infinite and the time necessary to find data
stored on disks and bring it into primary memory for processing
are crucial issues in whether an application runs as fast as it must.
For example, if you telephone your insurance company to ask
about a claim you filed and the customer service agent takes two
minutes to find the relevant records in the company’s informa-
tion system, you might well become frustrated with the company
and question its ability to handle your business competently. Data
storage, retrieval, and processing speeds do matter. Regardless of
how elegant an application and its database structures are, if the
application runs so slowly that it is unacceptable in the business
environment, it will be a failure. This chapter addresses how to
take a well-structured relational database design and modify it
for improved performance.

OBJECTIVES
Describe the principles of file organizations and access

methods.
Describe how disk storage devices work.
Describe the concept of physical database design.
List and describe the inputs to the physical database

design process.
Describe a variety of physical database design tech-

niques ranging from adding indexes to denormaliza-
tion.

CHAPTER OUTLINE
Introduction
Disk Storage

The Need for Disk Storage
How Disk Storage Works

File Organizations and
Access Methods
The Goal: Locating a Record
The Index
Hashed Files

Inputs to Physical Database Design
The Tables Produced by the Logi-

cal Database Design Process
Business Environment Requirements
Data Characteristics
Application Characteristics
Operational Requirements: Data

Security, Backup, and Recovery
Physical Database Design

Techniques
Adding External Features
Reorganizing Stored Data
Splitting a Table into Multiple Tables
Changing Attributes in a Table
Adding Attributes to a Table
Combining Tables
Adding New Tables

Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Summary

186   Chapter 8  Physical Database Design

Introduction
Database performance can be adversely affected by a wide variety of factors, as
shown in Figure 8.1. Some factors are a result of application requirements and often
the most obvious culprit is the need for joins. Joins are an elegant solution to the need
for data integration, but they can be unacceptably slow in many cases. Also, the need
to calculate and retrieve the same totals of numeric data over and over again can cause
performance problems. Another type of factor is very large volumes of data. Data is
the lifeblood of an information system, but when there is a lot of it, care must be taken
to store and retrieve it efficiently to maintain acceptable performance. Certain factors
involving the structure of the data, such as the amount of direct access provided and
the presence of clumsy, multi-attribute primary keys, can certainly affect performance.
If related data in different tables that must be retrieved together is physically dispersed
on rotating disks, retrieval performance will be slower than if the data is stored phys-
ically close together on the disk. Finally, the business environment often presents sig-
nificant performance challenges. We want data to be shared and to be widely used
for the benefit of the business. However, a very large number of access operations to
the same data can cause a bottleneck that can ruin the performance of an application
environment. And giving people access to more data than they need to see can be a
security risk.

Physical database design is the process of modifying a database structure to
improve the performance of the run-time environment. That is, we are going to modify
the third normal form tables produced by the logical database design techniques to
speed up the applications that will use them. A variety of kinds of modifications can be
made, ranging from simply adding indexes to making major changes to the table struc-
tures. Some of the changes, while making some applications run faster, may make
other applications that share the data run slower. Some of the changes may even com-
promise the principle of avoiding data redundancy! We will investigate and explain a
number of physical database design techniques in this chapter, pointing out the advan-
tages and disadvantages of each.

In order to discuss physical database design, we will begin with a review of disk
storage devices, file organizations, and access methods.

Factors Affecting Application and Database Performance
•	 Application Factors

▪▪ Need for Joins
▪▪ Need to Calculate Totals

•	 Data Factors
▪▪ Large Data Volumes

•	 Database Structure Factors
▪▪ Lack of Direct Access
▪▪ Clumsy Primary Keys

•	 Data Storage Factors
▪▪ Related Data Dispersed on Disk

•	 Business Environment Factors
▪▪ Too Many Data Access Operations
▪▪ Overly Liberal Data AccessFIGURE 8.1  Factors affecting application and

database performance

Disk Storage    187

Disk Storage
The Need for Disk Storage
Computers execute programs and process data in their main or primary memory. Pri-
mary memory is very fast and certainly does permit direct access, but it has several
drawbacks:

•	 It is relatively expensive.
•	 It is not transportable (that is, you can’t remove it from the computer and carry it

away with you, as you can an external hard drive).
•	 It is volatile. When you turn the computer off you lose whatever data is stored in it.

Because of these shortcomings, the vast volumes of data and the programs that
process them are held on secondary memory devices. Data is loaded from secondary
memory into primary memory when required for processing (as are programs when
they are to be executed). A loose analogy can be drawn between primary and second-
ary memory in a computer system and a person’s brain and a library, Figure 8.2. The
brain cannot possibly hold all of the information a person might need, but (let’s say)
a large library can. So when a person needs some particular information that’s not in
her brain at the moment, she finds a book in the library that has the information and,
by reading it, transfers the information from the book to her brain. Secondary memory
devices in use today include compact disks and magnetic tape, but by far the predom-
inant secondary memory technology in use today is magnetic disk, or simply “disk.”

Note: At the time of this writing, rotating disks are in the process of largely being
replaced by “solid state disks” (SSDs). Since rotating disks are still in use, we will
continue to describe them and how they affect database performance, while also
pointing out the differences between rotating disk and solid state disk technologies in
this regard.

How Rotating Disk Storage Works
The Structure of Rotating Disk Devices  Rotating disk devices, commonly called
“disk drives,” come in a variety of types and capacities ranging from a single alumi-
num or ceramic disk or “platter” to large multi-platter units that hold many billions
of bytes of data. Some disk devices, like “external hard drives,” are designed to be
removable and transportable from computer to computer; others, such as the “fixed”
or “hard” disk drives in PCs and the disk drives associated with larger computers,
are designed to be non-removable. The platters have a metallic coating that can be

FIGURE 8.2  Primary and secondary memory are like
a brain and a library

188   Chapter 8  Physical Database Design

magnetized and this is how the data is stored, bit by bit. Disks are very fast in storage
and retrieval times (although not nearly as fast as primary memory), provide a direct
access capability to the data, are less expensive than primary memory units on a byte-
by-byte basis, and are non-volatile (when you turn off the computer or unplug the
external drive, you don’t lose the data on the disk).

It is important to see how data is arranged on disks to understand how they pro-
vide a direct access capability. It is also important because certain decisions on how to
arrange file or database storage on a disk can seriously affect the performance of the
applications using the data.

In the large disk devices used with mainframe computers and mid-sized “servers”
(as well as the hard drives or fixed disks in PCs), several disk platters are stacked
together and mounted on a central spindle, with some space between them, Figure 8.3.
In common usage, even a multi-platter arrangement like this is simply referred to as
“the disk.” Each of the two surfaces of a platter is a recording surface on which data
can be stored. (Note: In some of these devices, the upper surface of the topmost platter
and the lower surface of the bottommost platter are not used for storing data. We
will assume this situation in the following text and figures.) The platter arrangement
spins at high speed in the disk drive. The basic disk drive (there are more complex
variations) has an “access-arm mechanism” with arms that can reach in between the
disks, Figure 8.4. At the end of each arm are two “read/write heads,” one for storing
and retrieving data from the recording surface above the arm and the other for the
surface below the arm, as shown in the figure. It is important to understand that the
entire access-arm mechanism always moves as a unit in and out among the disk plat-
ters, so that the read/write heads are always p aligned exactly one above the other in a
straight line. The platters spin at high velocity on the central spindle, all together as a
single unit. The spinning of the platters and the ability of the access-arm mechanism
to move in and out allows the read/write heads to be located over any piece of data on
the entire unit, many times each second, and it is this mechanical system that provides
the direct access capability.

Platters

FIGURE 8.3  The platters of a disk are mounted on a central spindle

Access arm
mechanism

Read/write heads

Platters

Recording surface 1

FIGURE 8.4  A disk drive with its access arm
mechanism and read/write heads

Disk Storage    189

Tracks  On a recording surface, data is stored, serially by bit (bit by bit, byte by byte,
field by field, record by record), in concentric circles known as tracks, Figure 8.5. There
may be fewer than one hundred or several hundred tracks on each recording surface,
depending on the particular device. Typically, each track holds the same amount of
data. The tracks on a recording surface are numbered track 0, track 1, track 2, and so
on. How would you store the records of a large file on a disk? You might assume that
you would fill up the first track on a particular surface, then fill up the next track on
the surface, then the next, and so on until you have filled an entire surface. Then you
would move on to the next surface. At first, this sounds reasonable and perhaps even
obvious. But it turns out it’s problematic. Every time you move from one track to the
next on a surface, the device’s access-arm mechanism has to move. That’s the only way
that the read/write head, which can read or write only one track at a time, can get from
one track to another on a given recording surface. But the access-arm mechanism’s
movement is a slow, mechanical motion compared to the electronic processing speeds
in the computer’s CPU and main memory. There is a better way to store the file!

Cylinders  Figure 8.6 shows the disk’s access-arm mechanism positioned so that the
read/write head for recording surface 0 is positioned at that surface’s track 76. Since
the entire access-arm mechanism moves as a unit and the read/write heads are always
one over the other in a line, the read/write head for recording surface 1 is positioned
at that surface’s track 76, too. In fact, each surface’s read/write head is positioned over
its track 76. If you picture the collection of each surface’s track 76, one above the other,
they seem to take the shape of a cylinder, Figure 8.7. Indeed, each collection of tracks,

Track 0

Track 1

Track 2

Recording
surface

FIGURE 8.5  Tracks on a recording surface

Access arm
mechanism

Read/write heads

Each read/write head
positioned over track 76
of its recording surface

Recording surface 0
Recording surface 1

FIGURE 8.6  Each read/write head positioned over track
76 of its recording surface

190   Chapter 8  Physical Database Design

one from each recording surface, one directly above the other, is known as a cylinder.
Notice that the number of cylinders in a disk is equal to the number of tracks on any
one of its recording surfaces.

If we want to number the cylinders in a disk, which seems like a reasonable thing
to do, it is certainly convenient to give a cylinder the number corresponding to the
track numbers it contains. Thus, the cylinder in Figure 8.7, which is made up of track
76 from each recording surface, will be numbered and called cylinder 76. There is one
more point to make. So far, the numbering we have looked at has been the numbering
of the tracks on the recording surfaces, which also led to the numbering of the cyl-
inders. But, once we have established a cylinder, it is also necessary to number the
tracks within the cylinder, Figure 8.8. Typically, these are numbered 0, 1, . . ., n, which
corresponds to the numbers of the recording surfaces. What will “n” be? That’s the
same question as how many tracks are there in a cylinder, but we’ve already answered
that question. Since each recording surface “contributes” one track to each cylinder,
the number of tracks in a cylinder is the same as the number of recording surfaces in
a disk. The bottom line is to remember that we are going to number the tracks across
a recording surface and then, perpendicular to that, we are also going to number the
tracks in a cylinder.

Why is the concept of the cylinder important? Because in storing or retrieving
data on a disk, you can move from one track of a cylinder to another without having
to move the access-arm mechanism. The operation of turning off one read/write head
and turning on another is an electrical switch that takes almost no time compared
to the time it takes to move the access-arm mechanism. Thus, the ideal way to store
data on a disk is to fill one cylinder and then move on to the next cylinder, and so on.
This speeds up the applications that use the data considerably. Incidentally, it may
seem that this is important only when reading files sequentially, as opposed to when
performing the more important direct access operations. But, we will see later that
in many database situations closely related pieces of data will have to be accessed
together, so that storing them in such a way that they can be retrieved quickly can
be a big advantage.

Track 76 of Recording Surface 2
Track 76 of Recording Surface 1
Track 76 of Recording Surface 0FIGURE 8.7  The collection of each recording surface’s track 76 looks like a cylinder.

This collection of tracks is called cylinder 76

Track 2 of cylinder 76
Track 1 of cylinder 76
Track 0 of cylinder 76

FIGURE 8.8  Cylinder 76’s tracks

File Organizations and Access Methods    191

Steps in Finding and Transferring Data  Summarizing the way these rotating disk
devices work, there are four major steps or timing considerations in the transfer of
data from a disk to primary memory:

1.	 Seek Time: The time it takes to move the access-arm mechanism to the
correct cylinder from its current position.

2.	 Head Switching: Selecting the read/write head to access the required track of
the cylinder.

3.	 Rotational Delay: Waiting for the desired data on the track to arrive under
the read/write head as the disk is spinning. On average, this takes half the time
of one full rotation of the disk. That’s because, as the disk is spinning, at one
extreme the needed data might have just arrived under the read/write head at
the instant the head was turned on, while at the other extreme you might have
just missed it and have to wait for a full rotation. On the average, this works
out to half a rotation.

4.	 Transfer Time: The time to move the data from the disk to primary memory
once steps 1–3 have been completed.

One last point. Another term for a record in a file is a logical record. Since the rate of
processing data in the CPU is much faster than the rate at which data can be brought
in from secondary memory, it is often advisable to transfer several consecutively stored
logical records at a time. Once such a physical record or block of several logical records
has been brought into primary memory from the disk, each logical record can be exam-
ined and processed as necessary by the executing program.

File Organizations and Access Methods
The Goal: Locating a Record
Depending on application requirements, we might want to retrieve the records of a file
on either a sequential or a direct-access basis. Disk devices can store records in some
logical sequence, if we wish, and can access records in the middle of a file. But that’s
still not enough to accomplish direct access. Direct access requires the combination of
a direct access device and the proper accompanying software.

Say that a file consists of many thousands or even a few million records. Further,
say that there is a single record that you want to retrieve and you know the value of its
unique identifier, its key. The question is, how do you know where it is on the disk?
The disk device may be capable of going directly into the middle of a file to pull out a
record, but how does it know where that particular record is? Remember, what we’re
trying to avoid is having it read through the file in sequence until it finds the record
being sought. It’s not magic (nothing in a computer ever is) and it is important to
have a basic understanding of each of the steps in working with simple files, including
this step, before we talk about databases. This brings us to the subject known as “file
organizations and access methods,” which refers to how we store the records of a file
on the disk and how we retrieve them. We refer to the way that we store the data for
subsequent retrieval as the file organization. The way that we retrieve the data, based
on it being stored in a particular file organization, is called the access method. (Note
in passing that the terms “file organization” and “access method” are often used syn-
onymously, but this is technically incorrect.)

192   Chapter 8  Physical Database Design

What we are primarily concerned with is how to achieve direct access to the records
of a file, since this is the predominant mode of file operation, today. In terms of file
organizations and access methods, there are basically two ways of achieving direct
access. One involves the use of a tool known as an “index.” The other is based on a
way of storing and retrieving records known as a “hashing method.” The idea is that
if we know the value of a field of a record we want to retrieve, the index or hashing
method will pinpoint its location in the file and tell the hardware mechanisms of the
disk device where to find it.

The Index
The interesting thing about the concept of an index is that, while we are interested in
it as a tool for direct access to the records in files, the principle involved is exactly the
same as of the index in the back of a book. After all, a book is a storage medium for
information about some subject. And, in both books and files, we want to be able to
find some portion of the contents “directly” without having to scan sequentially from
the beginning of the book or file until we find it. With a book, there are really three
choices for finding a particular portion of the contents. One is a sequential scan of
every page starting from the beginning of the book and continuing until the desired
content is found. The second is using the table of contents. The table of contents in
the front of the book summarizes what is in the book by major topics, and it is written
in the same order as the material in the book. To use the table of contents, you have
to scan through it from the beginning and, because the items it includes are summa-
rized and written at a pretty high level, there is a good chance that you won’t find what
you’re looking for. Even if you do, you will typically be directed to a page in the vicinity
of the topic you’re looking for, not to the exact page. The third choice is to use the index
at the back of the book. The index is arranged alphabetically by item. As humans, we
can do a quick, efficient search through the index, using the fact that the items in it
are in alphabetic order, to quickly home in on the topic of interest. Then what? Next to
the located item in the index appears a page number. Think of the page number as the
address of the item you’re looking for. In fact, it is a “direct pointer” to the page in
the book where the material appears. You proceed directly to that page and find the
material there, Figure 8.9.

214
INDEX

INDEX

 206, 248,
 322-323
Octopus, 214
 383, 401
Olfactory,
92 128

FIGURE 8.9  The index in a book

File Organizations and Access Methods    193

The index in the back of a book has three key elements that are also characteristic
of information systems indexes:

•	 The items of interest are copied over into the index but the original text is not dis-
turbed in any way.

•	 The items copied over into the index are sorted (alphabetized in the index at the
back of a book).

•	 Each item in the index is associated with a “pointer” (in a book index this is a page
number) pointing to the place in the text where the item can be found.

Simple Linear Index  The indexes used in information systems come in a variety of
types and styles. We will start with what is called a “simple linear index,” because it
is relatively easy to understand and is very close in structure to the index in the back
of a book. On the right-hand side of Figure 8.10 is the Salesperson file. As before, it is
in order by the unique Salesperson Number field. It is reasonable to assume that the
records in this file are stored on the disk in the sequence shown in Figure 8.10. (We
note in passing that retrieving the records in physical sequence, as they are stored on
the disk, would also be retrieving them in logical sequence by salesperson number,
since they were ordered on salesperson number when they were stored.) Figure 8.10
also shows that we have numbered the records of the file with a “Record Number” or
a “Relative Record Number” (“relative” because the record number is relative to the
beginning of the file). These record numbers are a handy way of referring to the records
of the file and using such record numbers is considered another way of “physically”
locating a record in a file, just as a cylinder and track address is a physical address.

On the left-hand side of Figure 8.10 is an index built over the Salesperson Name field
of the Salesperson file. Notice that the three rules for building an index in a book were
observed here, too. The indexed items were copied over from the file to the index and
the file was not disturbed in any way. The items in the index were sorted. Finally, each
indexed item was associated with a physical address, in this case the relative record
number (the equivalent of a page number in a book) of the record of the Salesperson
file from which it came. The first “index record” shows Adams 3 because the record
of the Salesperson file with salesperson name Adams is at relative record location 3 in
the Salesperson file. Notice the similarity between this index and the index in the back
of a book. Just as you can quickly find an item you are looking for in a book’s index
because the items are in alphabetic order, a programmed procedure could quickly find
one of the salespersons’ names in the index because they are in sorted order. Then, just
as the item that you found in the book’s index has a page number next to it telling you

Index Salesperson File

Salesperson
Name

Record
Address

Record
Number

Salesperson
Number

Salesperson
Name City

Adams 3 1 119 Taylor New York
Baker 2 2 137 Baker Detroit
Carlyle 6 3 186 Adams Dallas
Dickens 4 4 204 Dickens Dallas
Green 7 5 255 Lincoln Atlanta
Lincoln 5 6 361 Carlyle Detroit
Taylor 1 7 420 Green Tucson

FIGURE 8.10  Salesperson file
on the right with index built
over the Salesperson Name
field, on the left

194   Chapter 8  Physical Database Design

where to look for the detailed information you seek, the index record in the index of
Figure 8.10 has the relative record number of the record of the Salesperson file that has
the information, i.e. the record, that you are looking for.

Figure 8.11, with an index built over the City field, demonstrates another point
about indexes. An index can be built over a field with non-unique values.

Figure 8.12 shows the Salesperson file with an index built over the Salesperson
Number field. This is an important concept known as an “indexed-sequential file.” In
an indexed-sequential file, the file is stored on the disk in order based on a set of field
values (in this case the salesperson numbers) and an index is built over that same field.
This allows both sequential and direct access by the key field, which can be an advantage
when applications with different retrieval requirements share the file. The odd thing
about this index is that since the Salesperson file was already in sequence by the Sales-
person Number field, when the salesperson numbers were copied over into the index
they were already in sorted order! Further, for the same reason, the record addresses are
also in order. In fact, in Figure 8.12, the Salesperson Number field in the Salesperson
file, with the list of relative record numbers next to it, appears to be identical to the
index. But then, why bother having an index built over the Salesperson Number field at
all? In principle, the reason is that when the search algorithm processes the salesperson
numbers, they have to be in primary memory. Again in principle, it would be much
more efficient to bring the smaller index into primary memory for this purpose than to
bring the entire Salesperson file in just to process the Salesperson Number field.

Why, in the last couple of sentences, did we keep using the phrase, “in principle?”
The answer to this is closely tied to the question of whether simple linear indexes are

Index Salesperson File

City
Record
Address

Record
Number

Salesperson
Number

Salesperson
Name City

Atlanta 5 1 119 Taylor New York
Dallas 3 2 137 Baker Detroit
Dallas 4 3 186 Adams Dallas
Detroit 2 4 204 Dickens Dallas
Detroit 6 5 255 Lincoln Atlanta
New York 1 6 361 Carlyle Detroit
Tucson 7 7 420 Green Tucson

FIGURE 8.11  Salesperson file
on the right with index built
over the City field, on the left

Index Salesperson File

Salesperson
Number

Record
Address

Record
Number

Salesperson
Number

Salesperson
Name City

119 1 1 119 Taylor New York
137 2 2 137 Baker Detroit
186 3 3 186 Adams Dallas
204 4 4 204 Dickens Dallas
255 5 5 255 Lincoln Atlanta
361 6 6 361 Carlyle Detroit
420 7 7 420 Green Tucson

FIGURE 8.12  Salesperson file
on the right with index built
over the Salesperson Number
field, on the left

File Organizations and Access Methods    195

practical for use in even moderately sized information systems applications. And the
answer is that they are not. One reason (and here is where the “in principle” in the
last paragraph come in) is that, even if the simple linear index is made up of just two
columns, it would still be clumsy to try to move all or even parts of it into primary
memory to use it in a search. At best, it would require many read operations to the
disk on which the index is located. The second reason has to do with inserting new
disk records. Look once again at the Salesperson file and the index in Figure 8.10. Say
that a new salesperson named French is hired and assigned salesperson number 452.
Her record can be inserted at the end of the Salesperson file, where it would become
record number 8. But the index would have to be updated, too: an index record, French
8, would have to be inserted between the index records for Dickens and Green to main-
tain the crucial alphabetic or sorted sequence of the index, Figure 8.13. The problem is
that there is no obvious way to accomplish that insertion unless we move all the index
records from Green to Taylor down one record position. In even a moderate-size file,
that would clearly be impractical!

Indeed, the simple linear index is not a good solution for indexing the records of a
file. This leads us to another kind of index that is suitable for indexing even very large
files, the B+-tree index.

Index Salesperson File

Salesperson
Name

Record
Address

Record
Number

Salesperson
Number

Salesperson
Name City

Adams 3 1 119 Taylor New York
Baker 2 2 137 Baker Detroit
Carlyle 6 3 186 Adams Dallas
Dickens 4 4 204 Dickens Dallas
Green 7 5 255 Lincoln Atlanta
Lincoln 5 6 361 Carlyle Detroit
Taylor 1 7 420 Green Tucson

8 452 French New York

French 8 ?

FIGURE 8.13  Salesperson file
with the insertion of a record
for #452 French. But how can
you squeeze the index record
into the proper sequence?

8.1  Simple Linear Indexes
When we think of indexes (other than those used
to access data in computers), most people would
agree that those thoughts would be limited to the
indexes in the backs of books. But, if we want to and
it makes sense, we can create indexes to help us find
objects in our world other than items inside books.
(By the way, have you ever seen a directory in a
department store that lists its departments alpha-
betically and then, next to each department name,
indicates the floor it’s on? That’s an index, too!)

Question:
Choose a set of objects in your world and develop
a simple linear index to help you find them when
you need to. For example, you may have CDs or
DVDs on different shelves of a bookcase or in dif-
ferent rooms of your house. In this example, what
would be the identifier in the index for each CD or
DVD? What would be the physical location in the
index? Think of another set of objects and develop
an index for them.

Your Turn

196   Chapter 8  Physical Database Design

B+-Tree Index  The B+-tree index, in its many variations (and there are many,
including one called the B*-tree), is far and away the most common data-indexing
system in use today. Assume that the Salesperson File now includes records for several
hundred salespersons. Figure 8.14 is a variation of how the B+-tree index works. The
figure shows the salesperson records arranged in sequence by the Salesperson Number
field on ten cylinders (numbered 1–10) of a rotating disk. (The B+ tree principles are
the same in a solid state disk as in a rotating disk, but obviously without cylinders and
tracks.) Above the ten cylinders is an arrangement of special index records in what is
known as a “tree.” There is a single index record, known as the “root,” at the top, with
“branches” leading down from it to other “nodes.” Sometimes the lowest-level nodes
are called “leaves.” For the terminology, think of it as a real tree turned upside-down
with the roots clumped into a single point at the top, Figure 8.15. Alternatively, you
can think of it as a family tree, which normally has this same kind of top-to-bottom
orientation.

Notice the following about the index records in the tree:

•	 The index records contain salesperson number key values copied from certain of
the salesperson records.

•	 Each key value in the tree is associated with a pointer that is the address of either a
lower-level index record or a cylinder containing the salesperson records.

477 641253

Records
with

Salesperson
Numbers
081–140

Cylinder 1

Records
with

Salesperson
Numbers
145–192

Cylinder 2

Records
with

Salesperson
Numbers
197–253

Cylinder 3

Records
with

Salesperson
Numbers
260–307

Cylinder 4

Records
with

Salesperson
Numbers
310–368

Cylinder 5

Records
with

Salesperson
Numbers
371–416

Cylinder 6

Records
with

Salesperson
Numbers
422–477

Cylinder 7

Records
with

Salesperson
Numbers
479–529

Cylinder 8

Records
with

Salesperson
Numbers
533–578

Cylinder 9

Records
with

Salesperson
Numbers
582–641

Cylinder 10

To
Cyl
1

192
To
Cyl
2

253
To
Cyl
3

140
To
Cyl
4

368
To
Cyl
5

416
To
Cyl
6

To
Cyl
7

477307
To
Cyl
8

578
To
Cyl
9

641
To
Cyl
10

529

FIGURE 8.14  Salesperson file with a B+-tree index

File Organizations and Access Methods    197

•	 Each index record, at every level of the tree, contains space for the same number
of key value/pointer pairs (four in this example). This index record capacity is
arbitrary, but once it is set, it must be the same for every index record at every level
of the index.

•	 Each index record is at least half full (in this example each record actually contains
at least two key value/pointer pairs).

How are the key values in the index tree constructed and how are the pointers
arranged? The lowest level of the tree contains the highest key value of the salesperson
records on each of the 10 data cylinders. That’s why there are 10 key values in the
lowest level of the index tree. Each of those 10 key values has a pointer to the data cyl-
inder from which it was copied. For example, the leftmost index record on the lowest
level of the tree contains key values 140, 192, and 253, which are the highest key values
on cylinders 1, 2, and 3, respectively. The root index record contains the highest key
value of each of the index records at the next (which happens to be the last in this case)
level down. Looking down from the root index record, notice that 253 is the highest
key value of the first index record at the next level down, and so on for key values 477
and 641 in the root.

Let’s say that you want to perform a direct access for the record for salesperson 361.
A stored search routine would start at the root and scan its key values from left to right,
looking for the first key value greater than or equal to 361, the key value for which you
are searching. Starting from the left, the first key value in the root greater than or equal
to 361 is 477. The routine would then follow the pointer associated with key value 477
to the second of the three index records at the next level. The search would be repeated
in that index record, following the same rules. This time, key value 368 is the first one
from the left that is higher than or equal to 361. The routine would then follow the
pointer associated with key value 368 to cylinder 5. Additional search cues within the
cylinder could then point to the track and possibly even the position on the track at
which the record for salesperson 361 is to be found.

Node

Roots
Ground

Leaf
(“Terminal Node”)

FIGURE 8.15  A real tree, upside down, with the roots clumped together
into a single point

198   Chapter 8  Physical Database Design

There are several additional points to note about this B+-tree arrangement:

•	 The tree index is small and can be kept in main memory indefinitely for a fre-
quently accessed file.

•	 The file and index of Figure 8.14 fit the definition of an indexed-sequential file,
because the file is stored in sequence by salesperson numbers and the index is built
over the Salesperson Number field.

•	 The file can be retrieved in sequence by salesperson number by pointing from the
end of one cylinder to the beginning of the next, as is typically done, without even
using the tree index.

•	 B+-tree indexes can be and are routinely used to also index non-key, non-unique
fields, although the tree can be deeper and/or the structures at the end of the tree
can be more complicated.

•	 In general, the storage unit for groups of records can be (as in the above example)
but need not be the cylinder or any other physical device sub-unit.

The final point to make about B+-tree indexes is that, unlike simple linear indexes,
they are designed to comfortably handle the insertion of new records into the file and
the deletion of records. The principle for this is based on the idea of unit splits and
contractions, both at the record storage level and at the index tree level. For example,
say that a new record with salesperson number 365 must be inserted. Starting from the
root and following the same procedure for a record search, the computer determines
that this record should be located on Cylinder 5 in order to maintain the sequence
of the records based on the salesperson number key. If there is room on the track on
the cylinder that it should go into to maintain the sequence, the other records can be
shifted over and there is no problem. If the track it should go into is full but another
track on the cylinder has been left empty as a reserve, then the set of records on the
full track plus the one for 365 can be “split,” with half of them staying on the original
track and the other half moving to the reserve track. There would also have to be a
mechanism to maintain the proper sequence of tracks within the cylinder, as the split
may have thrown it off.

But suppose that cylinder 5 is completely full. Then the collection of records on the
entire cylinder has to be split between cylinder 5 and an empty reserve cylinder, say
cylinder 11, Figure 8.16. That’s fine, except that the key value of 368 in the tree index’s
lowest level still points to cylinder 5 while the record with key value 368 is now on cyl-
inder 11. Furthermore, there is no key value/pointer pair representing cylinder 11 in the
tree index, at all! If the lowest-level index record containing key value 368 had room, a
pointer to the new cylinder could be added and the keys in the key value/pointer pairs
adjusted. But, as can be seen in Figure 8.14, there is no room in that index record.

Records
with

Salesperson
Numbers
332–368

Cylinder 11

Records
with

Salesperson
Numbers
310–330

Cylinder 5

FIGURE 8.16  The records of cylinder 5 plus the newly added record, divided between
cylinder 5 and an empty reserve cylinder, cylinder 11

File Organizations and Access Methods    199

Figure 8.17 shows how this situation is handled. The index record into which the
key for the new cylinder should go (the middle of the three index records at the lower
level), which happens to be full, is split into two index records. The now five instead
of four key values and their associated pointers are divided, as equally as possible,
between them. But, in Figure 8.14, there were three key values in the record at the next
level up (which happens to be the root), and now there are four index records instead
of the previous three at the lower level. As shown in Figure 8.17, the empty space in
the root index record is used to accommodate the new fourth index record at the lower
level. What would have happened if the root index record had already been full? It
would have been split in half and a new root at the next level up would have been cre-
ated, expanding the index tree from two levels of index records to three levels.

Remember the following about indexes:

•	 An index can be built over any field of a file, whether or not the file is in physical
sequence based on that or any other field. The field need not have unique values.

•	 An index can be built on a single field but it can also be built on a combination of
fields. For example, an index could be built on the combination of City and State
in the Salesperson file.

•	 In addition to its direct access capability, an index can be used to retrieve the
records of a file in logical sequence based on the indexed field. For example, the
index in Figure 8.10 could be used to retrieve the records of the Salesperson file
in sequence by salesperson name. Since the index is in sequence by salesperson
name, a simple scan of the index from beginning to end lists the relative record
numbers of the salesperson records in order by salesperson name.

•	 Many separate indexes into a file can exist simultaneously, each based on a differ-
ent field or combination of fields of the file. The indexes are quite independent of
each other.

•	 When a new record is inserted into a file, an existing record is deleted, or an
indexed field is updated, all of the affected indexes must be updated.

Creating an Index with SQL  Creating an index with SQL entails naming the index,
specifying the table being indexed, and specifying the column on which the index is
being created. So, for example, to create index A in Figure 8.21, which is an index built
on the Salesperson Number attribute of the SALESPERSON table, you would write:

CREATE INDEX A ON SALESPERSON(SPNUM);

368 477253

To
Cyl
1

192
To
Cyl
2

253
To
Cyl
3

140
To
Cyl
4

330
To
Cyl
5

368
To
Cyl
11

307

To
Cyl
6

477
To
Cyl
7

416
To
Cyl
8

578
To
Cyl
9

641
To
Cyl
10

529

641

FIGURE 8.17  The B+-tree index after
the cylinder 5 split

200   Chapter 8  Physical Database Design

Hashed Files
There are many applications in which all file accesses must be done on a direct basis,
speed is of the essence, and there is no particular need for the file to be organized in
sequence by the values of any of its fields. An approach to file organization and access
that fills this bill is the hashed file. The basic ideas include:

•	 The number of records in a file is estimated and enough space is reserved on a disk
to hold them.

•	 Additional space is reserved for additional “overflow” records.
•	 To determine where to insert a particular record of the file, the record’s key value

is converted by a “hashing routine” into one of the reserved record locations
on the disk.

•	 To subsequently find and retrieve the record, the same hashing routine is applied
to the key value during the search.

Say, for example, that our company has 50 salespersons and that we have reserved
enough space on the disk for their 50 records. There are many hashing routines but
the most common is the “division-remainder method.” In the division-remainder
method, we divide the key value of the record that we want to insert or retrieve by
the number of record locations that we have reserved. Remember long division, with
its “quotient” and “remainder?” We perform the division, discard the quotient, and
use the remainder to tell us where to locate the record. Why the remainder? Because
the remainder is tailor-made for pointing to one of the storage locations. If, as in this
example, we have 50 storage locations and divide a key value by that number, 50, we
will get a remainder that is a whole number between 0 and 49. The value of the quo-
tient doesn’t matter. If we number the 50 storage locations 0–49 and store a record
at the location dictated by its “hashed” key value, we have clearly developed a way
to store and then locate the records, and a very fast way, at that! There’s only one
problem. More than one key value can hash to the same location. When this happens,
we say that a “collision” has occurred, and the two key values involved are known as
“synonyms.”

Figure 8.18 shows a storage area that can hold 50 salesperson records plus space
for overflow records. (We will not go into how to map this space onto the cylinders
and tracks of a disk, but it can be done easily.) The main record storage locations are
numbered 0–49; the overflow locations begin at position 50. An additional field for a
“synonym pointer” has been added to every record location. Let’s start by storing the
record for salesperson 186. Dividing 186 by the number of record locations (50) yields
a quotient of 3 (which we don’t care about) and a remainder of 36. So, as shown in the
figure, we store the record for salesperson 186 at record location 36. Next, we want to
store the record for salesperson 361. This time, the hashing routine gives a remainder
of 11 and, as shown in the figure, that’s where the record goes. The next record to be
stored is the record for salesperson 436. The hashing routine produces a remainder of
36. The procedure tries to store the record at location 36, but finds that another record
is already stored there.

To solve this problem, the procedure stores the new record at one of the over-
flow record locations, say number 50. It then indicates this by storing that location
number in the synonym pointer field of record 36. When another collision occurs
with the insertion of salesperson 236, this record is stored at the next overflow loca-
tion and its location is stored at location 50, the location of the last record that
“hashed” to 36.

File Organizations and Access Methods    201

Subsequently, if an attempt is made to retrieve the record for salesperson 186, the
key value hashes to 36 and, indeed, the record for salesperson 186 is found at location
36. If an attempt is made to retrieve the record for salesperson 436, the key hashes to 36
but another record (the one for salesperson 186) is found at location 36. The procedure
then follows the synonym pointer at the end of location 36 to location 50, where it
finds the record for salesperson 436. A search for salesperson 236’s record would follow
the same sequence. Key value 236 would hash to location 36 but another record would
be found there. The synonym pointer in the record at location 36 points to location 50,
but another record, 436, is found there, too. The synonym pointer in the record at loca-
tion 50 points to location 51, where the desired record is found.

There are a few other points to make about hashed files:

•	 It should be clear that the way that the hashing algorithm scatters records within
the storage space disallows any sequential storage based on a set of field values.

•	 A file can only be hashed once, based on the values of a single field or a single
combination of fields. This is because the essence of the hashing concept includes
the physical placement of the records based on the result of the hashing routine. A
record can’t be located in one place based on the hash of one field and at the same
time be placed somewhere else based on the hash of another field. It can’t be in
two places at once!

•	 If a file is hashed on one field, direct access based on another field can be achieved
by building an index on the other field.

•	 Many hashing routines have been developed. The goal is to minimize the number
of collisions and synonyms, since these can obviously slow down retrieval perfor-
mance. In practice, several hashing routines are tested on a file to determine the
best “fit.” Even a relatively simple procedure like the division-remainder method
can be fine-tuned. In this method, experience has shown that once the number
of storage locations has been determined, it is better to choose a slightly higher

361

186

436

236

Carlyle

Adams

James

Stein

50

51

–1

0

Record
Location

Salesperson
Number

Salesperson
Name

Synonym
Pointer

11

36

49

50

51

52

53

54

• • •

• • •

• • •

• • •

• • •

FIGURE 8.18  The Salesperson file stored as a
hashed file

202   Chapter 8  Physical Database Design

number, specifically the next prime number or the next number not evenly divis-
ible by any number less than 20.

•	 A hashed file must occasionally be reorganized after so many collisions have
occurred that performance is degraded to an unacceptable level. A new storage
area with a new number of storage locations is chosen and the process starts all
over again.

•	 Figure 8.18 shows a value of −1 in the synonym pointer field of the record for sales-
person 236 at storage location 51. This is an end-of-chain marker. It is certainly
possible that a search could be conducted for a record, say with key value 386, that
does not exist in the file. 386 would hash to 36 and the chain would be followed
to location 50 and then to location 51. Some signal has to then be set up at the
end of the chain to indicate that there are no more records stored in the file that
hash to 36, so that the search can be declared over and a “not found” condition
indicated. (A negative number is a viable signal because there can’t be a negative
record location!)

Inputs to Physical Database Design
Physical database design starts where logical database design ends. That is, the well-
structured relational tables produced by the conversion from entity-relationship dia-
grams or by the data normalization process form the starting point for physical database
design. But these tables are only part of the story. In order to determine how best to
modify the tables to improve application performance, a wide range of factors must be
considered. The factors will help determine which modification techniques to apply and
how to apply them. And, at that, the process is as much art as science. The choices are so
numerous and the possible combinations of modifications are so complex that even the
experienced designer hopes for a satisfactory but not a perfect solution.

Figure 8.19 lists the inputs to physical database design and thus the factors that are
important to it. These naturally fall into several subgroups. First, we will take a look at

Inputs into the Physical Database Design Process
•	 The Tables Produced by the Logical Database Design Process
•	 Business Environment Requirements

▪▪ Response Time Requirements
▪▪ Throughput Requirements

•	 Data Characteristics
▪▪ Data Volume Assessment
▪▪ Data Volatility

•	 Application Characteristics
▪▪ Application Data Requirements
▪▪ Application Priorities

•	 Operational Requirements
▪▪ Data Security Concerns
▪▪ Backup and Recovery Concerns

•	 Hardware and Software Characteristics
▪▪ DBMS Characteristics
▪▪ Hardware CharacteristicsFIGURE 8.19  Inputs into the physical database

design process

Inputs to Physical Database Design    203

each of these physical design inputs and factors, one by one. Then we will describe a
variety of physical database design techniques, explaining how the various inputs and
factors influence each of these techniques.

The Tables Produced by the Logical Database
Design Process
The tables produced by the logical database design process (which for simplicity
we will refer to as the “logical design”) form the starting point of the physical data-
base design process. These tables are “pure” in that they reflect all of the data in the
business environment, they have no data redundancy, and they have in place all the
foreign keys that are needed to establish all the relationships in the business environ-
ment. Unfortunately, they may present a variety of problems when it comes to perfor-
mance, as we previously described. Again, for example, without indexes or hashing,
there is no support for direct access. Or it is entirely possible that a particular query
may require the join of several tables, which may cause an unacceptably slow response
from the database. So, it is clear that these tables, in their current form, are very likely
to produce unacceptable performance and that is why we must go on modifying them
in physical database design.

Business Environment Requirements
Beyond the logical design, the requirements of the business environment lead the list
of inputs and factors in physical database design. These include response time require-
ments and throughput requirements.

Response Time Requirements  Response time is the delay from the time that
the Enter Key is pressed to execute a query until the result appears on the screen.
One of the main factors in deciding how extensively to modify the logical design is
the establishment of the response time requirements. Do the major applications that
will use the database require two-second response, five-second response, ten-second
response, etc.? That is, how long a delay will a customer telephoning your customer
service representatives tolerate when asking a question about her account? How fast
a response do the managers in your company expect when looking for information
about a customer or the sales results for a particular store or the progress of goods on
an assembly line? Also, different types of applications differ dramatically in response
time requirements. Operational environments, including the customer service exam-
ple, tend to require very fast response. “Decision support” environments, such as the
data warehouse environment discussed in Chapter 13 tend to have relaxed response
time requirements.

Throughput Requirements  Throughput is the measure of how many queries
from simultaneous users must be satisfied in a given period of time by the applica-
tion set and the database that supports it. Clearly, throughput and response time are
linked. The more people who want access to the same data at the same time, the more
pressure on the system to keep the response time from dropping to an unacceptable
level. And the more potential pressure there is on response time, the more important
the physical design task becomes.

204   Chapter 8  Physical Database Design

Data Characteristics
How much data will be stored in the database and how frequently different parts of it
will be updated are important in physical design as well.

Data Volume Assessment  How much data will be in the database? Roughly, how
many records is each table expected to have? Some physical design decisions will hinge
on whether a table is expected to have 300, 30,000, or 3,000,000 records.

Data Volatility  Data volatility describes how often stored data is updated. Some
data, such as active inventory records that reflect the changes in goods constantly
being put into and taken out of inventory, is updated frequently. Some data, such as
historic sales records, is never updated (except for the addition of data from the latest
time period to the end of the table). How frequently data is updated, the volatility of
the data, is an important factor in certain physical design decisions.

Application Characteristics
The nature of the applications that will use the data, which applications are the most
important to the company, and which data will be accessed by each application form
yet another set of inputs and factors in physical design.

Application Data Requirements  Exactly which database tables does each appli-
cation require for its processing? Do the applications require that tables be joined?
How many applications and which specific applications will share particular database
tables? Are the applications that use a particular table run frequently or infrequently?
Questions like these yield one indication of how much demand there will be for access
to each table and its data. More heavily used tables and tables frequently involved in
joins require particular attention in the physical design process.

Application Priorities  Typically, tables in a database will be shared by different
applications. Sometimes, a modification to a table during physical design that’s pro-
posed to help the performance of one application hinders the performance of another
application. When a conflict like that arises, it’s important to know which of the two
applications is the more critical to the company. Sometimes this can be determined on
an increased profit or cost-saving basis. Sometimes it can be based on which applica-
tion’s sponsor has greater political power in the company. But, whatever the basis, it
is important to note the relative priority of the company’s applications for physical
design choice considerations.

Operational Requirements: Data Security, Backup,
and Recovery
Certain physical design decisions can depend on such data management issues as data
security and backup and recovery. Data security, which will be discussed in Chapter 11,
can include such concerns as protecting data from theft or malicious destruction and
making sure that sensitive data is accessible only to those employees of the company
who have a “need to know.” Backup and recovery, which will also be discussed in
Chapter 11, ranges from recovering a table or a database that has been corrupted or lost

Physical Database Design Techniques    205

due to hardware or software failure to recovering an entire information system after
a natural disaster. Sometimes, data security and backup and recovery concerns can
affect physical design decisions.

Hardware and Software Characteristics  Finally, the hardware and software
environments in which the databases will reside have an important bearing on physi-
cal design.

DBMS Characteristics  All relational database management systems are certainly
similar in that they support the basic, even classic at this point, relational model. How-
ever, relational DBMSs may differ in certain details, such as the exact nature of their
indexes, attribute data type options, SQL query features, etc., that must be known and
taken into account during physical database design.

Hardware Characteristics  Certain hardware characteristics, such as processor
speeds and disk data transfer rates, while not directly parts of the physical database
design process, are associated with it. Simply put, the faster the hardware, the more
tolerant the system can be of a physical design that avoids relatively severe changes in
the logical design.

Another issue in this regard is the changing characteristics of secondary storage
devices and options, including the gradual replacement of rotating disks with solid
state disks and the use of server farms.

Physical Database Design Techniques
Figure 8.20 lists several physical database design categories and techniques within
each. The order of the categories is significant. Depending on how we modify the logi-
cal design to try to make performance improvements, we may wind up introducing new
complications or even reintroducing data redundancy. Also, as noted in Figure 8.20,
the first three categories do not change the logical design while the last four cate-
gories do. So, the order of the categories is roughly from least to most disruptive of
the original logical design. And, in this spirit, the only techniques that introduce data
redundancy (storing derived data, denormalization, duplicating tables, and adding
subset tables) appear at the latter part of the list.

8.2  Physical Database Design Inputs
Consider a university information systems environ-
ment or another information systems environment
of your choice. Think about a set of 5–10 applica-
tions that constitute the main applications in this
environment.

Question:
For each of these 5–10 applications, specify the
response time requirements and the throughput
requirements. What would the volumes be of the
database tables needed to support these appli-
cations? How volatile would you expect the data
to be? What concerns would you have about the
security and privacy of the data?

Your Turn

206   Chapter 8  Physical Database Design

Adding External Features
This first category of physical design changes, adding external features, doesn’t change
the logical design at all! Instead, it involves adding features to the logical design, spe-
cifically indexes and views. While certain tradeoffs have to be kept in mind when add-
ing these external features, there is no introduction of data redundancy.

Adding Indexes  Since the name of the game is performance and since today’s
business environment is addicted to finding data on a direct-access basis, the use of
indexes in relational databases is a natural. There are two questions to consider.

The first question is: which attributes or combinations of attributes should you con-
sider indexing in order to have the greatest positive impact on the application environ-
ment? Actually, there are two sorts of possibilities. One category is attributes that are
likely to be prominent in direct searches. These include:

•	 Primary keys.
•	 Search attributes, i.e. attributes whose values you will use to retrieve particu-

lar records. This is true especially when the attribute can take on many different
values. (In fact, there is an argument that says that it is not beneficial to build an
index on an attribute that has only a small number of possible values.)

Physical design categories and techniques that DO NOT
change the logical design

•	 Adding External Features
▪▪ Adding Indexes
▪▪ Adding Views

•	 Reorganizing Stored Data
▪▪ Clustering Files

•	 Splitting a Table into Multiple Tables
▪▪ Horizontal Partitioning
▪▪ Vertical Partitioning
▪▪ Splitting-Off Large Text Attributes

Physical design categories and techniques that Do change
the logical design

•	 Changing Attributes in a Table
▪▪ Substituting Foreign Keys

•	 Adding Attributes to a Table
▪▪ Creating New Primary Keys
▪▪ Storing Derived Data

•	 Combining Tables
▪▪ Combine Tables in One-to-One Relationships
▪▪ Alternatives for Repeating Groups
▪▪ Denormalization

•	 Adding New Tables
▪▪ Duplicating Tables
▪▪ Adding Subset TablesFIGURE 8.20  Physical database design categories

and techniques

Physical Database Design Techniques    207

The other category is attributes that are likely to be major players in operations such
as joins that will require direct searches internally. Such operations also include the
SQL ORDER BY and GROUP BY commands described in Chapter 4. It should be clear
that a particular attribute might fall into both of these categories!

The second question is: what potential problems can be caused by building too
many indexes? If it were not for the fact that building too many indexes can cause prob-
lems in certain kinds of databases, the temptation would be to build a large number of
indexes for maximum direct-access benefit. The issue here is the volatility of the data.
Indexes are wonderful for direct searches. But when the data in a table is updated, the
system must take the time to update the table’s indexes, too. It will do this automati-
cally, but it takes time. If several indexes must be updated, this multiplies the time to
update the table several times over. What’s wrong with that? If there is a lot of update
activity, the time that it takes to make the updates and update all the indexes could slow
down the operations that are just trying to read the data for query applications, degrad-
ing query response time down to an unacceptable level!

One final point about building indexes: if the data volume, the number of records
in a table, is very small, then there is no point in building any indexes on it at all
(although some DBMSs will always require an index on the primary key). The point
is that if the table is small enough, it is more efficient to just read the whole table into
main memory and search by scanning it!

Figure 8.21 repeats the General Hardware Co. relational database, to which we will
add some indexes. We start by building indexes, marked indexes A–F, on the primary
key attribute(s) of each table. Consider the SALESPERSON and CUSTOMER tables.
If the application set requires joins of the SALESPERSON and CUSTOMER tables,
the Salesperson Number attribute of the CUSTOMER table would be a good choice
for an index, index G, because it is the foreign key that connects those two tables in
the join. If we frequently need to find salesperson records on a direct basis by Sales-
person Name, then that attribute should have an index, index H, built on it. Consider
the SALES table. If we have an important, frequently run application that has to find
the total sales for all or a range of the products, then the needed GROUP BY command
would run more efficiently if the Product Number attribute was indexed, index I.

Adding Views  Another external feature that doesn’t change the logical design is the
view. In relational database terminology, a view is what is more generally known in
database management as a “logical view.” It is a mapping onto a physical table that
allows an end user to access only part of the table. The view can include a subset of the
table’s columns, a subset of the table’s rows, or a combination of the two. It can even be
based on the join of two tables No data is physically duplicated when a view is created. It
is literally a way of viewing just part of a table. For example, in the General Hardware
Co. SALESPERSON table, a view can be created that includes only the Salesperson
Number, Salesperson Name, and Office Number attributes. A particular person can be
given access to the view and then sees only these three columns. He is not even aware
of the existence of the other two attributes of the physical table.

A view is an important device in protecting the security and privacy of data, an
issue that we listed among the factors in physical database design. Using views to limit
the access of individuals to only the parts of a table that they really need to do their
work is clearly an important means of protecting a company’s data. As we will see
later, the combination of the view capability and the SQL GRANT command forms a
powerful data protection tool.

208   Chapter 8  Physical Database Design

Reorganizing Stored Data
The next level of change in physical design involves reorganizing the way data is stored
on the disk without changing the logical design at all and thus without introducing
data redundancy. This is particularly true with rotating disk technology but may also
affect solid state disks. We present an example of this type of modification.

Salesperson
Number

SALESPERSON

Salesperson
Name

Commission
Percentage Year of Hire

O�ce
NumberA

H

Customer
Number

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number HQ CityB

G

CUSTOMER EMPLOYEE

Employee
Number

Employee
Name TitleC

Product
Number

PRODUCT

Product
Number

Product
Name Unit PriceD

Salesperson
Number

SALES

QuantityE

I

O�ce
Number

OFFICE

Telephone SizeF

FIGURE 8.21  The General Hardware Company
relational database with some indexes

Physical Database Design Techniques    209

Clustering Files  Suppose that in the General Hardware Co. business environment, it
is important to be able to frequently and quickly retrieve all of the data in a salesperson
record together with all of the records of the customers for which that salesperson is
responsible. Clearly, this requires a join of the SALESPERSON and CUSTOMER ta-
bles. Just for the sake of argument, assume that this retrieval, including the join, does
not work quickly enough to satisfy the response time or throughput requirements.
One solution, assuming that the DBMS in use supports it, might be the use of “clus-
tered files.”

Figure 8.22 shows the General Hardware salesperson and customer data from
Figure 5.14 arranged as clustered files. The logical design has not changed. Logically,
the DBMS considers the SALESPERSON and CUSTOMER tables just as they appear
in Figure 5.14. But physically, they have been arranged on the disk in the interleaved
fashion shown in Figure 8.22. Each salesperson record is followed physically on the
disk by the customer records with which it is associated. That is, each salesperson
record is followed on the disk by the records of the customers for whom that sales-
person is responsible. For example, the salesperson record for salesperson 137, Baker,
is followed on the disk by the customer records for customers 0121, 0933, 1047, and
1826. Note that the salesperson number 137 appears as a foreign key in each of those
four customer records. So, if a query is posed to find a salesperson record, say Baker’s
record, and all his associated customer records, performance will be improved because
all five records are right near each other on the disk, even though logically they come
from two separate tables. Without the clustered files, Baker’s record would be on one
part of the disk with all of the other salesperson records and the four customer records
would be on another part of the disk with the other customer records, resulting in
slower retrieval for this kind of two-table, integrated query.

The downside of this clustering arrangement is that retrieving subsets of only sales-
person records or only customer records is slower than without clustering. Without
clustering, all the salesperson records are near each other on the disk, which helps
when retrieving subsets of them. With clustering, the salesperson records are scat-
tered over a much larger area on the disk because they’re interspersed with all of those
customer records, slowing down the retrieval of subsets of just salesperson records.

0121

0933

1047

1826

Main St. Hardware

ABC Home Stores

Acme Hardware Store

City Hardware

137

137

137

137

New York

Los Angeles

Los Angeles

New York

2198 Western Hardware 204 New York

Carlyle

Dickens

Adams

361

204

186

137 Baker

20

10

15

10

2001

1998

2001

1995

1525

1700

Fred’s Tool Stores

XYZ Stores

361

361

Atlanta

Washington

0839

2267

Jane’s Stores

Central Stores

186

186

Chicago

New York

FIGURE 8.22  Clustering files with the
SALESPERSON and CUSTOMER tables

210   Chapter 8  Physical Database Design

Splitting a Table into Multiple Tables
The three physical design techniques in this category arrange for particular parts of
a table, either groups of particular rows or groups of particular columns, to be stored
separately, on different areas of a disk or on different disks. In Chapter 12, when we
discuss distributed database, we will see that this concept can even be extended to stor-
ing particular parts of a table in different cities.

Horizontal Partitioning  In horizontal partitioning, the rows of a table are divided
into groups and the groups are stored separately, on different areas of a disk or on dif-
ferent disks. This may be done for several reasons. One is to manage the different
groups of records separately for security or backup and recovery purposes. Another
is to improve data retrieval performance when, for example, one group of records is
accessed much more frequently than other records in the table. For example, sup-
pose that the records for sales managers in the CUSTOMER EMPLOYEE table of
Figure 5.14c must be accessed more frequently than the records of other customer
employees. Separating out the frequently accessed group of records, as shown in
Figure 8.23, means that they can be stored near each other in a concentrated space
on the disk, which will speed up their retrieval. The records can also be stored on an
otherwise infrequently used disk, so that the applications that use them don’t have
to compete excessively with other applications that need data on the same disk. The
downside of this horizontal partitioning is that it can make a search of the entire table
or the retrieval of records from more than one partition more complex and slower.

Vertical Partitioning  A table can also be subdivided by columns, producing the
same advantages as horizontal partitioning. In this case, the separate groups, each
made up of different columns of a table, are created because different users or appli-
cations require different columns. For example, as shown in Figure 8.24, it might
be beneficial to split up the columns of the SALESPERSON table of Figure 5.14a so
that the Salesperson Name and Year of Hire columns are stored separately from the
others. But note that in creating these vertical partitions, each partition must have a

Customer
Number

Employee
Number

Employee
Name Title

0933 30441 Levy Sales Manager
1525 33779 Baker Sales Manager

Customer
Number

Employee
Number

Employee
Name Title

0121 27498 Smith Co-Owner
0121 30441 Garcia Co-Owner
0933 25270 Chen VP Sales
0933 48285 Morton President
2198 27470 Smith President
2198 30441 Jones VP Sales
2198 33779 Garcia VP Personnel
2198 35268 Kaplan Senior Accountant

FIGURE 8.23  Horizontal
partitioning of the CUSTOMER
EMPLOYEE table

Physical Database Design Techniques    211

copy of the primary key, Salesperson Number in this example. Otherwise, in verti-
cal partitioning, how would you track which rows in each partition go together to
logically form the rows of the original table? In fact, this point leads to an under-
standing of the downside of vertical partitioning. A query that involves the retrieval
of complete records—i.e. data that is in more than one vertical partition—actually
requires that the vertical partitions be joined to reunite the different parts of the
original records.

Splitting Off Large Text Attributes  A variation on vertical partitioning involves
splitting off large text attributes into separate partitions. Sometimes the records of a
table have several numeric attributes and a long text attribute that provides a descrip-
tion of the data in each record. It might well be that frequent access of the numeric
data is necessary and that the long text attribute is accessed only occasionally. The
problem is that the presence of the long text attribute tends to spread the numeric data
over a larger disk area and thus slows down retrieval of the numeric data. The solution
is to split off the text attribute, together with a copy of the primary key, into a separate
vertical partition and store it elsewhere on the disk.

Changing Attributes in a Table
Up to this point, none of the physical design techniques discussed have changed the
logical design. They have all involved adding external features such as indexes and
views, or physically moving records or columns on the disk as with clustering and par-
titioning. The first physical design technique category that changes the logical design
involves substituting a different attribute for a foreign key.

Substituting Foreign Keys  Consider the SALESPERSON and CUSTOMER ta-
bles of Figure 8.21. We know that Salesperson Number is a unique attribute and
serves as the primary key of the SALESPERSON table. Say, for the sake of argument,
that the Salesperson Name attribute is also unique, meaning that both Salesperson
Number and Salesperson Name are candidate keys of the SALESPERSON table. Sales-
person Number has been chosen to be the primary key and Salesperson Name is an
alternate key.

Salesperson
Number

Salesperson
Name

Year
of Hire

137 Baker 1995
186 Adams 2001
204 Dickens 1998
361 Carlyle 2001

Salesperson
Number

Commission
Percentage

137 10
186 15
204 10
361 20

FIGURE 8.24  Vertical partitioning of the SALESPERSON table

212   Chapter 8  Physical Database Design

Now, assume that there is a frequent need to retrieve data about customers, includ-
ing the name of the salesperson responsible for that customer. The CUSTOMER table
contains the number of the Salesperson who is responsible for a customer but not
the name. By now, we know that solving this problem requires a join of the two ta-
bles, based on the common Salesperson Number attribute. But, if this is a frequent
or critical query that requires high speed, we can improve the performance by sub-
stituting Salesperson Name for Salesperson Number as the foreign key in the CUS-
TOMER table, as shown in Figure 8.25. With Salesperson Name now contained in the
CUSTOMER table, we can retrieve customer data, including the name of the respon-
sible salesperson, without having to do a performance-slowing join. Finally, since Sales-
person Name is a candidate key of the SALESPERSON table, using it as a foreign key
in the CUSTOMER table still retains the ability to join the two tables when this is
required for other queries.

Adding Attributes to a Table
Another means of improving database performance entails modifying the logical
design by adding attributes to tables. Here are two ways to do this.

Creating New Primary Keys  Sometimes a table simply does not have a single
unique attribute that can serve as its primary key. A two-attribute primary key, such
as the combination of state and city names, might be OK. But in some circumstances
the primary key of a table might consist of two, three, or more attributes and the per-
formance implications of this may well be unacceptable. For one thing, indexing a
multi-attribute key would likely be clumsy and slow. For another, having to use the
multi-attribute key as a foreign key in the other tables in which such a foreign key
would be necessary would probably also be unacceptably complex.

The solution is to invent a new primary key for the table that consists of a single
new attribute. The new attribute will be a unique serial number attribute, with an
arbitrary unique value assigned to each record of the table. This new attribute will
then also be used as the foreign key in the other tables in which such a foreign key is
required. In the General Hardware database of Figure 8.21, recall that the two-attribute
primary key of the CUSTOMER EMPLOYEE table, Customer Number and Employee
Number, is necessary because customer numbers are unique only within each cus-
tomer company. Suppose that General Hardware decides to invent a new attribute,
Customer Employee Number, which will be its own set of employee numbers for
these people that will be unique across all of the customer companies. Then, the current
two-attribute primary key of the CUSTOMER EMPLOYEE table can be replaced by
this one new attribute, as shown in Figure 8.26. If the Customer Number, Employee
Number combination had been placed in other tables in the database as a foreign key
(it wasn’t), then the two-attribute combination would be replaced by this new single
attribute, too. Notice that Customer Number is still necessary as a foreign key because
that’s how we know which customer company a person works for. Arguably, the old

CUSOTMER
Customer
Number

Customer
Name

Salesperson
Name HQ City

FIGURE 8.25  Substituting
another candidate key for a
foreign key

Physical Database Design Techniques    213

Employee Number attribute may still be required because that is still their employer’s
internal identifier for them.

Storing Derived Data  Some queries require performing calculations on the data in
the database and returning the calculated values as the answers. If these same values
have to be calculated over and over again, perhaps by one person or perhaps by many
people, then it might make sense to calculate them once and store them in the data-
base. Technically, this is a form of data redundancy, although a rather subtle form. If
the “raw” data is ever updated without the stored, calculated values being updated as
well, the accuracy or integrity of the database will be compromised.

To illustrate this point, let’s add another attribute to General Hardware’s CUS-
TOMER table. This attribute, called Annual Purchases in Figure 8.27a, is the expected
amount of merchandise, in dollars, that a customer will purchase from General Hard-
ware in a year. Remember that there is a one-to-many relationship from salespersons
to customers, with each salesperson being responsible for several (or many) customers.
Suppose that there is a frequent need to quickly find the total amount of merchandise
each salesperson is expected to account for in a year, i.e. the sum of the Annual Pur-
chases attribute for all of the particular salesperson’s customers. This sum could be
recalculated each time it is requested for any particular salesperson, but that might
take too long. The other choice is to calculate the sum for each salesperson and store
it in the database, recognizing that whenever a customer’s Annual Purchases value
changes, the sum for the customer’s salesperson has to be updated, too.

CUSTOMER EMPLOYEE
Customer
Employee
Number

Customer
Number

Employee
Number

Employee
Name Title

FIGURE 8.26  Creating
a new primary key attribute
to replace a multi-attribute
primary key

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number HQ City

Annual
Purchases

a. Annual Purchases attribute added to the CUSTOMER table.

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Office
Number

Total Annual
Customer Purchases

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number HQ City

Annual
Purchases

b. �Total Annual Customer Purchases attribute added to the SALESPERSON table as
derived data. FIGURE 8.27  Adding

derived data

214   Chapter 8  Physical Database Design

The question then becomes, where do we store the summed annual purchases
amount for each salesperson? Since the annual purchases figures are in the CUS-
TOMER table, your instinct might be to store the sums there. But where in the CUS-
TOMER table? You can’t store them in individual customer records, because each sum
involves several customers. You could insert special “sum records” in the CUSTOMER
table but they wouldn’t have the same attributes as the customer records themselves
and that would be very troublesome. Actually, the answer is to store them in the
SALESPERSON table. Why? Because there is one sum for each salesperson—again, it’s
the sum of the annual purchases of all of that salesperson’s customers. So, the way to
do it is to add an additional attribute, the Total Annual Customer Purchases attribute,
to the SALESPERSON table, as shown in Figure 8.27b.

Combining Tables
Three techniques are described below, all of which involve combining two tables into
one. Each technique is used in a different set of circumstances. It should be clear that
all three share the same advantage: if two tables are combined into one, then there
must surely be situations in which the presence of the new single table lets us avoid
joins that would have been necessary when there were two tables. Avoiding joins is
generally a plus for performance. But at what price? Let’s see.

Combine Tables in One-to-One Relationships  Remember the one-to-one rela-
tionship between salespersons and offices in the General Hardware environment?
Figure 8.28 shows the two tables combined into one. After all, if a salesperson can have
only one office and an office can have only one salesperson assigned to it, there can
be nothing wrong with combining the two tables. Since a salesperson can have only
one office, a salesperson can be associated with only one office number, one (office)
telephone, and one (office) size. A like argument can be made from the perspective of
an office. Office data can still be accessed on a direct basis by simply creating an index
on the Office Number attribute in the combined table.

Again, the advantage is that if we ever have to retrieve detailed data about a sales-
person and his office in one query, it can now be done without a join. There are two neg-
atives. One is that the tables are no longer logically, as well as physically, independent.
If we want information just about offices, there is no longer an OFFICE table to go to.
The data is still there, but we have to be aware that it is buried in the SALESPERSON/
OFFICE table. The other negative is that retrievals of salesperson data alone or of
office data alone could be slower than before because the longer combined SALES-
PERSON/OFFICE records spread the combined data over a larger area of the disk.

Alternatives for Repeating Groups  Suppose that we change the business envi-
ronment so that every salesperson has exactly two customers, identified respectively
as their “large” customer and their “small” customer, based on annual purchases.
The structure of Figure 8.21 would still work just fine. But, because these “repeating

SALESPERSON/OFFICE

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Office
Number Telephone Size

FIGURE 8.28  Combined
SALESPERSON/OFFICE table
showing the merger of two
tables in a one-to-one relationship

Physical Database Design Techniques    215

groups” of customer attributes, one “group” of attributes (Customer Number, Cus-
tomer Name, etc.) for each customer are so well controlled they can be folded into the
SALESPERSON table. What makes them so well controlled is that there are exactly
two for each salesperson and they can even be distinguished from each other as “large”
and “small.” This arrangement is shown in Figure 8.29. Note that the foreign key attri-
bute of Salesperson Number from the CUSTOMER table is no longer needed.

Once again, this arrangement avoids joins when salesperson and customer data
must be retrieved together. But, as with the one-to-one relationship case above,
retrievals of salesperson data alone or of customer data alone could be slower than
before because the longer combined SALESPERSON/CUSTOMER records spread the
combined data over a larger area of the disk. And retrieving customer data alone is
now more difficult. In the one-to-one relationship case, we could simply create an
index on the Office Number attribute of the combined table. But in the combined table
of Figure 8.29, there are two customer number attributes in each salesperson record.
Retrieving records about customers alone would clearly take greater skill than before.

Denormalization  In the most serious database performance dilemmas, when
everything else that can be done in terms of physical design has been done, it may be
necessary to take pairs of related third normal form tables, and combine them, intro-
ducing possibly massive data redundancy. Why would anyone in their right mind want
to do this? Because if after everything else has been done to improve performance,
response times and throughput are still unsatisfactory for the business environment,
eliminating run-time joins by recombining tables may mean the difference between a
usable system and a lot of wasted money on a database (and application) development
project that will never see the light of day. Clearly, if the physical designers decide to
go this route, they must put procedures in place to manage the redundant data as they
updated over time.

Figure 8.30 shows the denormalized SALESPERSON and CUSTOMER tables
combined into one. The surviving table of the two in the one-to-many relationship
will always be the table on the “many side” of the relationship. You can attach one set
of salesperson data to a customer record; you cannot attach many sets of customer
data to a single salesperson record without creating an even worse mess. The sam-
ple salesperson and customer data from Figure 5.14 is denormalized in Figure 8.31.
(Figure 8.31 is identical to Figure 3.8. We used it in Chapter 3 to make a point about

SALESPERSON/CUSTOMERS

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Office
Number

Large
Customer
Number

Large
Customer

Name

Large
Customer
HQ City

Small
Customer
Number

Small
Customer

Name

Small
Customer
HQ City

FIGURE 8.29  Merging of repeating groups into another table

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number

HQ
City

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

FIGURE 8.30  The denormalized SALESPERSON and CUSTOMER tables as the new CUSTOMER table

216   Chapter 8  Physical Database Design

data redundancy when we were exploring that subject.) Since a salesperson can have
several customers, a particular salesperson’s data will be repeated for each customer
he has. Thus, the table shows that salesperson number 137’s name is Baker four times,
his commission percentage is 10 four times, and his year of hire was 1995 four times.
The performance improvement had better be worth it, because the integrity exposure
is definitely there.

Adding New Tables
Finally, there is the concept of simply duplicating data. Sometimes the final perfor-
mance issue is that trying to maintain response time and throughput with the number
of applications and users trying to share the same data is beyond the capabilities of
the hardware, the software, and all the other physical design techniques. At the risk
of overt data redundancy (which hopefully you will attempt to manage), the only
recourse is to duplicate the data.

Duplicating Tables  Clearly, the direct approach is to duplicate tables and have dif-
ferent applications access the duplicates. This is exactly the opposite of the central
database management concept of sharing data.

Adding Subset Tables  A somewhat less severe technique is to duplicate only those
portions of a table that are most heavily accessed. These “subset” tables can then be
assigned to different applications to ease the performance crunch. Data redundancy
is still the major drawback, although obviously there is not as much of it as when the
entire table is duplicated.

Example: Good Reading Book Stores
Consider the Good Reading Book Stores database of Figure 5.16. Recall that there
is a one-to-many relationship between the PUBLISHER and BOOK tables. A book
is published by exactly one publisher but a publisher publishes many books. That’s
why the Publisher Name attribute is in the BOOK table as a foreign key. A reasonable

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number HQ City

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

0121 Main St. Hardware 137 New York 137 Baker 10 1995
0839 Jane’s Stores 186 Chicago 186 Adams 15 2001
0933 ABC Home Stores 137 Los Angeles 137 Baker 10 1995
1047 Acme Hardware Store 137 Los Angeles 137 Baker 10 1995
1525 Fred’s Tool Stores 361 Atlanta 361 Carlyle 20 2001
1700 XYZ Stores 361 Washington 361 Carlyle 20 2001
1826 City Hardware 137 New York 137 Baker 10 1995
2198 Western Hardware 204 New York 204 Dickens 10 1998
2267 Central Stores 186 New York 186 Adams 15 2001

FIGURE 8.31  The denormalized salesperson and customer data from Figure 5.12

Example: World Music Association    217

assumption is that there are several hundred publishers and many thousands of dif-
ferent books. If the various stores in the Good Reading chain carry different books to
satisfy their individual clienteles, then there could be thousands of publishers and
hundreds of thousands of different books.

Assume that at Good Reading’s headquarters, there is a frequent need to find very
quickly the details of a book, based on either its book number or its title, together
with details about its publisher. As stated, this would clearly require a join of the
PUBLISHER and BOOK tables. If the join takes too long, resulting in unacceptable
response times, throughput, or both, what are the possibilities in terms of physical
design to improve the situation? Here are several suggestions, although each has its
potential drawbacks, as previously discussed.

•	 The Book Number attribute and the Book Title attributes in the PUBLISHER
table can each have an index built on them to provide direct access, since the
problem says that books are going to be searched for based on one of these two
attributes.

•	 The two join attributes, the Publisher Name attribute of the PUBLISHER table and
the Publisher Name attribute of the BOOK table, can each have an index built on
them to help speed up the joint operation.

•	 If the DBMS permits it, the two tables can be clustered, with the book records asso-
ciated with a particular publisher stored near that publisher’s record on the disk.

•	 The two tables can be denormalized, with the appropriate publisher data being
appended to each book record (and the PUBLISHER table being eliminated), as:

Book
Number

Book
Title

Publication
Year Pages

Publisher
Name City Country Telephone

Year
Founded

What if it’s important to be able to find quickly the number of different books that Good
Reading carries from a particular publisher? This information could be found by using
the SQL COUNT function to count up the number of that publisher’s books when the
query is asked. However, if this proves too slow, as it well might, then the number of
books from each publisher can be calculated and stored as an additional attribute of
“derived data” in the PUBLISHER table as:

Publisher
Name City Country Telephone

Year
Founded

Number
of Books

Example: World Music Association
Consider the World Music Association (WMA) relational database of Figure 5.17.
WMA has a problem: there are many more retrieval requests for information about
recordings by Beethoven and Mozart than for recordings by other composers. Since
those records are scattered throughout the RECORDING table, performance tends to
be slower than desired. A solution is to partition the RECORDING table horizontally
into two partitions, one with the records for recordings by Beethoven and Mozart and
the other with all the other records of the table. These two partitions can be stored on

218   Chapter 8  Physical Database Design

different parts of the same disk or on different disks. Performance will be improved
with the Beethoven and Mozart records separated out and concentrated together on a
restricted disk area.

There is also an application need to frequently and quickly retrieve salary data for
the musicians on an individual and group basis. In the MUSICIAN table, the salary
data is mixed in with other data (potentially much more data in each record than is
shown in this example), which tends to slow down retrieval speeds. A solution is to
create a vertical partition for the Annual Salary attribute, separating it from the rest of
the attributes of the table. Remember that a copy of the primary key, in this case Musi-
cian Number, must accompany the non-key attribute(s) being split off into a separate
vertical partition. Thus, one vertical partition will consist of the Musician Number and
Annual Salary attributes while the other will consist of Musician Number and all of
the non-key attributes except for the Annual Salary attribute. Storing these two vertical
partitions on different parts of a disk or on different disks will enhance performance
under the application circumstances described.

Assume that the COMPOSITION table has an additional attribute called
“Description”:

Composition
Name

Composer
Name Year Description

Description is a long text attribute that allows written descriptions of compositions
to be stored in the database. While this is certainly useful, WMA has several applica-
tions that require frequent fast access to the other attributes of the table. The bulky
description data tends to spread the records over a wider area of the disk than would
otherwise be the case. Again, this is really a special case of the vertical partitioning
scenario. The solution is to break out the description data, together with a copy of the
primary key, and store it elsewhere on the disk or on a different disk.

The next example involves the MUSICIAN table, and for this example we want
to assume that the Musician Name attribute is unique. This means that now both
Musician Number and Musician Name are candidate keys of the table and Musician
Number has been chosen to be the primary key. It seems that there is an important
application that requires the fast and frequent retrieval of musician names together
with their college-degree data, but without their musician numbers. As currently
structured, this would clearly require repeated joins of the MUSICIAN and DEGREE
tables, which might cause unacceptable performance problems. Since the Musician
Name attribute is unique and is a candidate key of the MUSICIAN table, a solution to
this problem is to replace the Musician Number foreign-key attribute in the DEGREE
table with Musician Name:

Musician
Name Degree University Year

With Musician Name already in the DEGREE table, the retrieval situation described
does not require a join. Plus, the DEGREE table can still tie degrees uniquely to musi-
cians, since Musician Name is unique.

Example: Lucky Rent-A-Car    219

Another possible solution to the more general problem of retrieving both detailed
data about musicians and their degrees at the same time involves the concept of
repeating groups. We know that there is a one-to-many relationship between musi-
cians and degrees since a musician can have several degrees but a degree is associated
with only one musician. Suppose we assume that a musician can have at most three
degrees. We can then eliminate the DEGREE table entirely by merging its data into the
MUSICIAN table:

Musician
Number

Musician
Name Instrument

Annual
Salary

Orchestra
Name

Degree
#1

University
#1

Year
#1

Degree
#2

University
#2

Year
#2

Degree
#3

University
#3

Year
#3

This is possible because of the small fixed maximum number of degrees and
because of the ability to distinguish among them, in this case in a time sequence based
on when they were awarded or by level, say bachelor’s degree first, master’s degree
second. Clearly, in this case, there will be null attribute values since not every musi-
cian has three degrees. Further, there may be more programmer involvement since
inserting new degree data or even retrieving degree data may require more informed
and careful operations. But it certainly eliminates the join between the MUSICIAN
table and the now defunct DEGREE table, and may be the modification necessary for
acceptable performance.

Example: Lucky Rent-A-Car
Consider the Lucky Rent-A-Car database of Figure 5.18. One issue with this company
is the privacy of their customers’ data. Some of their employees may need to access the
entire CUSTOMER table, while others may need, for example, customer number and
customer name data but not the more personal data, such as customer address and
customer telephone. A restriction can be set up to accomplish this using views. One
view can be created that includes the entire table; another can be created that includes
only the Customer Number and Customer Name attributes. Using these two views in
the SQL GRANT command (discussed in Chapter 11), different employees or groups
of employees can be given full access to the CUSTOMER table or restricted access to
only part of it.

The RENTAL table represents the many-to-many relationship among cars and cus-
tomers, recording who rented which car on a particular date. The primary key is thus
Car Serial Number, Customer Number, and Rental Date. Recall that Rental Date must
be part of the primary key because a particular customer could have rented a par-
ticular car on more than one occasion. This three-attribute primary key is clumsy. An
index built on it would be long and clumsy too, and if it had to be used as a foreign key
in another table, that would be clumsy, too. A solution is to add a new Rental Number
attribute that will serve as a unique key of the table:

Rental
Number

Car Serial
Number

Customer
Number

Rental
Date

Return
Date

Total
Cost

220   Chapter 8  Physical Database Design

Next, assume that the following table, which has data about the president of each
manufacturer, has been added to the database:

Manufacturer
Name

President
Name

President
Address

President
Telephone

President
email

Since each company has exactly one president, there is a one-to-one relationship
between manufacturers, represented by the existing MANUFACTURER table, and
presidents, represented by the new PRESIDENT table. As is usually the case in such
situations, it makes sense to represent the two different entities in two different tables.
However, if we ever need to retrieve both detailed manufacturer data and detailed
president data, we will have to execute a join. If we have to do this frequently and with
significant speed, it may make sense to combine the two tables together:

Manufacturer
Name

Manufacturer
Country

Sales Rep
Name

Sales Rep
Telephone

President
Name

President
Address

President
Telephone

President
email

After all, since a company has only one president, it also has only one president
name, one president address, and so forth. This arrangement makes for a bulkier table
that will be spread out over a larger disk area than either table alone, possibly slowing
down certain retrievals. But it will avoid the join needed to retrieve manufacturer and
president detailed data together.

Finally, here are examples of the physical design technique of adding new tables.
Lucky Rent-A-Car’s CAR table is accessed very frequently—so frequently, in fact, that it
has become a performance bottleneck. The company has decided to duplicate the table
and put each of the two copies on different disk devices so that some applications can
access one disk and other applications the other disk. This will improve throughput.
However, these two duplicate tables must be kept identical at all times and any changes
made to them must be made to both copies simultaneously. Notice that while the CAR
table may have to be read frequently for Lucky’s rental operations, it has to be updated
only when new cars are added to Lucky’s inventory or existing cars are taken out of
inventory. This makes the duplicate-table technique practical, since frequent changes
that require the updating of both tables simultaneously would slow down the entire
environment significantly.

In the CUSTOMER table, some large corporate customers’ records are accessed
much more frequently than the rest of the customer records. To help ease this perfor-
mance bottleneck and to gather these customer records together in one disk area to
further enhance performance, a subset table of copies of just these records can be cre-
ated and stored elsewhere on the disk or on a different disk. Again, the issue of simul-
taneous updates of the duplicate data must be considered. Note the difference between
creating a subset table and creating a horizontal partition. In the case of subset tables,
a copy of the records is left behind in the original table; in the case of horizontal parti-
tioning, no copy is left behind.

Summary
Data is all around us but we normally don’t think about it unless we have to use it to
keep track of objects that are important to us. The objects and events we come into

Key Terms    221

contact with and their attributes can be noted in structures as simple as lists, which, by
extension, we can think of as files and their records.

Moving on to storing data in computers, four basic operations have to be performed:
retrieving stored data, inserting new data, deleting stored data, and updating stored
data. Applications requiring these operations, in particular the operation of retrieving
stored data, may require data to be accessed sequentially while other applications—
most of the applications we deal with today—may require data to be accessed on a
direct basis.

Disk devices are the predominant secondary memory devices in use today. They are
capable of providing both sequential and direct access to data. Rotating disk devices
consist of one or more platters on which data can be stored magnetically, mounted on
a central spindle. The data is stored on each platter surface in a pattern of concentric
circles called tracks. Tracks located one above another on successive surfaces comprise
a cylinder. These rotating disk devices are gradually being replaced by solid state disks
(SSDs).

The arrangement of data on disks is based on a file organization that in turn allows
data to be retrieved using an access method. Two such methods for direct access are
indexes and hashing. A simple linear index consists of two columns: an ordered list of
the identifiers of the records being indexed, each of which is associated in the second
column with its physical location on the disk. A more practical arrangement and the
one in common use in today’s computers is the B+-tree, in which the index is con-
structed in a hierarchical arrangement. Hashing is a way of arranging the records on
the disk based on a mathematical calculation on each record’s identifier; retrieval is
accomplished using the same mathematical calculation.

Physical database design is the modification of the database structure to improve
performance. A variety of factors involving the database structure or its use can
adversely affect system performance. In addition to the logical design results, inputs to
the physical design process include response time requirements, throughput require-
ments, and a variety of other data and application characteristics and operational
requirements.

Physical database design techniques fall into two categories: techniques that do not
change the logical design and techniques that do change the logical design. The former
include adding external features such as indexes, reorganizing stored data on the disk,
and splitting a table into multiple tables. The latter include adding attributes to a table
or changing attributes in a table, combining tables, and adding new tables.

Key Terms
Access method
B+-tree index
Clustering files
Collision
Cylinder
Data volatility
Data volume
Database performance
Denormalization
Derived data

Disk
Division-remainder

method
File organization
Fixed disk drive
Hashing method
Head switching
Horizontal partitioning
Index
Logical view

Overflow records
Performance
Physical database design
Platter
Repeating groups
Response time
Rotational delay
Search attribute
Seek time
Solid state disks (SSD)

Subset tables
Text attribute
Throughput
Track
Transfer time
Vertical partitioning
View

222   Chapter 8  Physical Database Design

Questions
  1.	 Describe the following disk concepts or components.
	 a.	 Platter and recording surface.
	 b.	 Track.
	 c.	 Cylinder.
	 d.	 Read/write head.
	 e.	 Access-arm mechanism.
  2.	 Why is it important to store files on a cylinder-by-

cylinder basis?
  3.	 Describe the four steps in the transfer of data from disk

to primary memory.
  4.	 What is a file organization? What is an access method?

What do they accomplish?
  5.	 What is an index? Compare the concept of the index in

a book to an index in an information system.
  6.	 Describe the idea of the simple linear index. What are

its shortcomings?
  7.	 What is an indexed-sequential file?
  8.	 Describe the idea of the B+-tree index. What are its

advantages over the simple linear index?
  9.	 Describe how a direct search works using a B+-

tree index.
10.	 Describe what happens to the index tree when you

insert new records into a file with a B+-tree index.
11.	 Answer the following general questions about indexes:
	 a.	 Can an index be built over a non-unique field?
	 b.	 Can an index be built over a field if the file is not

stored in sequence by that field?
	 c.	 Can an index be built over a combination of fields

as well as over a single field?
	 d.	 Is there a limit to the number of indexes that can

be built for a file?
	 e.	 How is an index affected when a change is made to

a file? Does every change to a file affect every one
of its indexes?

	 f.	 Can an index be used to achieve sequential
access? Explain.

12.	 Describe the idea of the hashed file. What are its advan-
tages and disadvantages in comparison to indexes?

13.	 Describe how a direct search works in a hashed file
using the division-remainder method of hashing.

14.	 What is a collision in a hashed file? Why do collisions
occur? Why are they of concern in the application
environment?

15.	 What is physical database design?

16.	 Describe why physical database design is necessary.
17.	 Explain why the need to perform joins is an important

factor affecting application and database performance.
18.	 Why does the degree to which data is dispersed over a

disk affect application and database performance?
19.	 Explain why the volume of data access operations can

adversely affect application and database performance.
20.	 Which “input” is the starting point for physical data-

base design?
21.	 Describe how response time requirements and through-

put requirements determine the overall performance
level of the application and database environment.

22.	 Describe the characteristics of the data in the database
that must be considered as inputs to the physical data-
base design process. Why are they important?

23.	 Describe the characteristics of the applications that
must be considered as inputs to the physical database
design process. Why are they important?

24.	 Why do DBMS and hardware characteristics have to be
taken into account in the physical design process?

25.	 Explain the statement, “Some physical database design
techniques change the logical design and some do not.”

26.	 What attributes should be considered as candidates for
having indexes built on them? What is the potential
problem with building too many indexes?

27.	 What is a “view”? Which factors affecting application
and database performance can be dealt with by using
views? Explain.

28.	 Describe the “clustering files” technique. What ad-
vantage is gained by using it? What is its disadvantage?

29.	 What is the difference between horizontal and vertical
partitioning? What is their common advantage? Are
their disadvantages the same or different? Explain.

30.	 Describe the physical design technique of substitut-
ing foreign keys. Under what circumstances would
you use it?

31.	 Under what circumstances would you want to create
a new single-attribute primary key in a table? What
would it accomplish?

32.	 Under what circumstances would you want to store
derived data in a table? What would it accomplish?

33.	 Combining tables that are in a one-to-one relationship,
combining tables involving well controlled repeating
groups, and denormalization all lead to the same per-
formance advantage. What is it? Why is it important?

34.	 What is denormalization? Denormalization, while
improving performance under certain circumstances,
also leads to a serious problem. How does denormal-
ization improve performance and what is this ma-
jor drawback?

35.	 Duplicating entire tables or parts of tables (“subset
tables”) obviously introduces data redundancy. What is
the advantage of doing this? Do you think it’s worth the
introduction of redundancy? Explain.

Exercises
  1.	 A fixed disk consists of six platters. The upper surface

of the topmost platter and the lower surface of the bot-
tommost platter are not used for recording data. There
are 120 tracks on each recording surface. How many of
each of the following are there in the disk:

	 a.	 Recording surfaces?
	 b.	 Cylinders?
	 c.	 Tracks per cylinder?
  2.	 A fixed disk has 80 cylinders. The tracks in each

cylinder are numbered 0–11. The upper surface of the
topmost platter and the lower surface of the bottom-
most platter are not used for recording data. How many
of each of the following are there in the disk:

	 a.	 Recording surfaces?
	 b.	 Platters?
	 c.	 Tracks per recording surface?

  3.	 Consider the B+-tree index, below:
	 a.	 A record has just been added to Cylinder 6, causing

a cylinder split. The highest key value on Cylinder
6 is now 2156, the highest key value on Cylinder 20,
and the empty reserve cylinder that received half of
Cylinder 6’s records is now 2348. Update the tree
index accordingly.

	 b.	 A record has just been added to Cylinder 10,
causing a cylinder split. The highest key value on
Cylinder 10 is now 3780, the highest key value on
Cylinder 25, and the empty reserve cylinder that
received half of Cylinder 10’s records is now 3900.
Update the tree index accordingly. (Note: This
question is intended to be independent of the
question in part a. Start each of parts a and b from
the figure shown.)

2769 42631644 5283

0709 13180524

To
cylinder

1

To
cylinder

2

To
cylinder

6

To
cylinder

10

1644 2348 27691971 3684 39003326 4263 4904 52834547

• • • • • • • • •

  4.	 A hashed file has space for 70 records. Relative record
numbers of 0–69 label each of the 70 record positions.
In addition, there is space for several overflow (syno-
nym) records. Draw a picture of the file and, using the
division-remainder method, store records with each
of the following four digit keys, taking collisions into
account as necessary:

	 a.	 4000.
	 b.	 5207.
	 c.	 0360.
	 d.	 1410.

  5.	 Consider the following relational database that Best
Airlines uses to keep track of its mechanics, their skills,
and their airport locations. Mechanic number, airport
name, and skill number are all unique fields. Size is an
airport’s size in acres. Skill Category is the type of skill,
such as an engine skill, wing skill, and tire skill. Year
Qualified is the year that a mechanic first qualified in
a particular skill; Proficiency Rating is the mechanic’s
proficiency rating in a particular skill.

Exercises    223

224   Chapter 8  Physical Database Design

MECHANIC Table
Mechanic
Number

Mechanic
Name Telephone Salary

Airport
Name

AIRPORT Table
Airport
Name City State Size

Year
Opened

SKILL Table
Skill Number Skill Name Skill Category

QUALIFICATION Table
Mechanic
Number

Skill
Number

Year
Qualified

Proficiency
Rating

Analyze each of the following situations and, using
the physical database design techniques discussed in this
chapter, state how you would modify the logical design
shown to improve performance or otherwise ac-
commodate it.

	 a.	 There is a high-priority need to quickly find any
particular airport’s data given only the airport’s city
and state.

	 b.	 There is a frequent need to find the total salary of
all of the mechanics at any particular airport.

	 c.	 There is a high-priority need to quickly find any
particular mechanic’s data together with the data
about the airport at which she works.

	 d.	 There is a frequent need to list the names and
telephone numbers of the mechanics who work at
any particular airport, together with the airport’s
city and state.

	 e.	 Assume that there is an additional attribute called
Skill Description in the SKILL table. This attribute
is used to store lengthy descriptions of each skill.
The problem is that its presence in the SKILL table
is slowing down access to the rest of the data in the
table, which is accessed much more frequently.

	 f.	 The need to access data about the ten largest
airports in the country is much more frequent than
the need to access data about the rest of
the airports.

  6.	 Consider the following relational database for the
Quality Appliance Manufacturing Co. The database is
designed to track the major appliances (refrigerators,
washing machines, dishwashers, etc.) that Quality
manufactures. It also records information about Qual-
ity’s suppliers, the parts they supply, the buyers of the
finished appliances, and the finished goods inspectors.
Note the following facts about this environment:

•	 Suppliers are the companies that supply Quality
with its major components, such as electric motors,
for the appliances. Supplier number is a unique
identifier.

•	 Parts are the major components that the suppliers
supply to Quality. Each part comes with a part
number but that part number is unique only within
a supplier. Thus, from Quality’s point of view, the
unique identifier of a part is the combination of part
number and supplier number.

•	 Each appliance that Quality manufactures is given
an appliance number that is unique across all of the
types of appliances that Quality makes.

•	 Buyers are major department stores, home improve-
ment chains, and wholesalers. Buyer numbers are
unique.

•	 An appliance may be inspected by several inspec-
tors. There is clearly a many-to-many relationship
between appliances and inspectors.

•	 There are one-to-many relationships between sup-
pliers and parts (Supplier Number is a foreign key
in the PART table), parts and appliances (Appliance
Number is a foreign key in the PART table), and
appliances and buyers (Buyer Number is a foreign
key in the APPLIANCE table).

SUPPLIER Table
Supplier
Number

Supplier
Name City Country Telephone

PART Table
Part
Number

Supplier
Number Part Type Cost

Appliance
Number

APPLIANCE Table
Appliance
Number

Appliance
Type

Date of
Manufacture

Buyer
Number Price

BUYER Table
Buyer
Number

Buyer
Name City Country

Credit
Rating

INSPECTOR Table
Inspector
Number

Inspector
Name Salary Date of Hire

INSPECTION Table
Appliance
Number

Inspector
Number

Date of
Inspection Score

Analyze each of the following situations and, using
the physical database design techniques discussed in this
chapter, state how you would modify the logical design
shown to improve performance or otherwise ac-
commodate it.

	 a.	 The Appliance Type attribute in the APPLIANCE
table indicates whether an appliance is a refrigera-
tor, washing machine, etc. Refrigerator records are
accessed much more frequently than those for the
other appliance types and there are strict response
time requirements for accessing them.

	 b.	 There is a frequent and very high-priority need to
quickly retrieve detailed data about an appliance
together with detailed data about who bought it.

	 c.	 Because of the large number of people trying to
access the PART table and the fast response time
needed, the PART table has become a bottleneck
and the required response time is not being
achieved.

	 d.	 Assume that the Buyer Name attribute in the
BUYER table is unique. There is a high-priority
need to quickly retrieve the following data about
appliances: appliance number, appliance type, date
of manufacture, and buyer name.

	 e.	 In the APPLIANCE table, there is a much more
frequent need with strict response time require-
ments to access the price data (of course together
with the appliance number) than to access the rest
of the data in the table.

Exercises    225

  1.	 Happy Cruise Lines.
Consider the Happy Cruise Lines Sailor file shown

below. It lists all the sailors on the company’s cruise ships
by their unique sailor identification number, their name,
the unique identification number of the ship they
currently work on, their home country, and their job title.

Sailor file

Sailor
Number

Sailor
Name

Ship
Number

Home
Country Job Title

00536 John Smith 009 USA Purser
00732 Ling Chang 012 China Engineer
06988 Maria

Gonzalez
020 Mexico Purser

16490 Prashant
Kumar

005 India Navigator

18535 Alan Jones 009 UK Cruise
Director

20254 Jane Adams 012 USA Captain
23981 Rene Lopez 020 Philippines Captain
27467 Fred Jones 020 UK Waiter
27941 Alain

DuMont
009 France Captain

28184 Susan
Moore

009 Canada Wine
Steward

31775 James
Collins

012 USA Waiter

32856 Sarah
McLachlan

012 Ireland Cabin
Steward

	 a.	 Create a simple linear index for the Sailor file
based on:

i.	 The Sailor Name field.
ii.	 The Sailor Number field.

iii.	 The Ship Number field.
iv.	 The combination of the Ship Number and

the Job Title fields.
	 b.	 Construct a B+-tree index of the type shown in

this chapter for the Sailor file, assuming now
that there are many more records than are shown
above. The file and the index have the following
characteristics:

	 The file is stored on nine cylinders of the disk.
The highest key values on the nine cylinders, in
order, are:

Cylinder 1: 02653
Cylinder 2: 07784
Cylinder 3: 13957
Cylinder 4: 18002
Cylinder 5: 22529
Cylinder 6: 27486
Cylinder 7: 35800
Cylinder 8: 41633
Cylinder 9: 48374

	 Each index record can hold four key value/
pointer pairs.

	 There are three index records at the lowest level
of the tree index.

Minicases

226   Chapter 8  Physical Database Design

	 c.	 The same as part b above, but now there are
four index records at the lowest level of the
tree index.

	 d.	 The same as part b above, but each index record
can hold two key value/pointer pairs and there
are five index records at the lowest level of the
tree index.

  2.	 The Super Baseball League.
Consider the Super Baseball League Player file

shown below. It lists all of the players in the league by
their unique player identification number, their name,
age, the year they joined the league, and the team on
which they are currently playing.

Player file

Player
Number

Player
Name Age

First
Year

Team
Number

1538 Fred Williams 23 2003 12
1882 Tom Parker 29 2000 35
2071 Juan Gomez 33 1990 12
2364 Steve Smith 24 2002 20
2757 Tim Jones 37 1988 18
3186 Dave Lester 29 1998 18
3200 Rod Smith 25 2002 20
3834 Chico Lopez 24 2003 12
4950 Chris Vernon 26 2003 15
5296 Barry Morton 30 1995 35

	 a.	 Create a simple linear index for the Player file
based on:

i.	 The Team Number field.
ii.	 The Player Name field.

iii.	 The Player Number field.
iv.	 The combination of the Team Number and

the Player Number fields.
	 b.	 Construct a B+-tree index of the type shown in

this chapter for the Player file, assuming that
there are now many more records than are shown
above. The file and the index have the following
characteristics:

	 The file is stored on eight cylinders of the disk.
The highest key values on the eight cylinders, in
order, are:

Cylinder 1: 1427
Cylinder 2: 1965
Cylinder 3: 2848

Cylinder 4: 3721
Cylinder 5: 4508
Cylinder 6: 5396
Cylinder 7: 6530
Cylinder 8: 7442

	 Each index record can hold four key value/
pointer pairs.

	 There are three index records at the lowest level
of the tree index.

	 c.	 The same as part b above, but now there are
four index records at the lowest level of the
tree index.

	 d.	 The same as part b above, but each index record
can hold two key value/pointer pairs and there
are four index records at the lowest level of the
tree index.

  3.	 Consider the following relational database for
Happy Cruise Lines. It keeps track of ships, cruises,
ports, and passengers. A “cruise” is a particular
sailing of a ship on a particular date. For example,
the seven-day journey of the ship Pride of Tampa
that leaves on June 13, 2003, is a cruise. Note the
following facts about this environment:
•	 Both ship number and ship name are unique in

the SHIP Table.
•	 A ship goes on many cruises over time. A cruise

is associated with a single ship.
•	 A port is identified by the combination of port

name and country.
•	 As indicated by the VISIT Table, a cruise includes

visits to several ports and a port is typically
included in several cruises.

•	 Both Passenger Number and Social Security
Number are unique in the PASSENGER Table. A
particular person has a single Passenger Number
that is used for all of the cruises that she takes.

•	 The VOYAGE Table indicates that a person can
take many cruises and a cruise, of course, has
many passengers.

SHIP Table
Ship
Number

Ship
Name

Ship
Builder

Launch
Date

Gross
Weight

CRUISE Table
Cruise
Number

Start
Date

End
Date

Cruise
Director

Ship
Number

Exercises    227

PORT Table
Port
Name Country

Number of
Docks

Port
Manager

VISIT Table
Cruise
Number

Port
Name Country

Arrival
Date

Departure
Date

PASSENGER Table
Passenger
Number

Passenger
Name

Social
Security
Number

Home
Address

Telephone
Number

VOYAGE Table
Passenger
Number

Cruise
Number

Stateroom
Number Fare

Analyze each of the following situations and, using
the physical database design techniques discussed in
this chapter, state how you would modify the logical
design shown to improve performance or otherwise
accommodate it.

	 a.	 There is a need to list cruises by cruise number
but there is also a periodic need to list all of the
cruises in order by start date.

	 b.	 There is a frequent need to quickly retrieve the
data about a cruise together with the data about
the ship used on the cruise.

	 c.	 There is a frequent need to quickly retrieve
cruise data based on departure date.

	 d.	 Data about passengers from California must be
accessed quickly and much more frequently
than data about passengers from anywhere else.

	 e.	 There is a frequent need to quickly retrieve a list
of the port managers of the ports at which the
ship on any particular cruise will stop.

	 f.	 There is a frequent need to quickly find the total
number of passengers who were on any
particular cruise.

	 g.	 There is a frequent need to find the start and end
dates of cruises as quickly as possible.

	 h.	 There is a frequent need to find cruise data
based on ship name. Hint: The Ship Name
attribute is unique.

  4.	 Consider the following relational database for the
Super Baseball League. It keeps track of teams in the

league, coaches and players on the teams, work ex-
perience of the coaches, bats belonging to each team,
and which players have played on which teams. Note
the following facts about this environment:
•	 The database keeps track of the history of all the

teams that each player has played on and all the
players who have played on each team.

•	 The database keeps track of only the current
team that a coach works for.

•	 Team number, team name, and player number
are each unique attributes across the league.

•	 Coach name is unique only within a team (and
we assume that a team cannot have two coaches
of the same name).

•	 Serial number (for bats) is unique only within
a team.

•	 In the Affiliation table, the years attribute indi-
cates the number of years that a player played on
a team; the batting average is for the years that a
player played on a team.

TEAM Table
Team
Number

Team
Name City Manager

COACH Table
Team
Number

Coach
Name

Coach
Telephone

WORK EXPERIENCE Table
Team
Number

Coach
Name

Experience
Type

Years of
Experience

BATS Table
Team
Number

Serial
Number Manufacturer

PLAYER Table
Player
Number

Player
Name Age

AFFILIATION Table
Player
Number

Team
Number Years

Batting
Average

228   Chapter 8  Physical Database Design

Analyze each of the following situations and, using
the physical database design techniques discussed in
this chapter, state how you would modify the logical
design shown to improve performance or otherwise
accommodate it.

	 a.	 There is a frequent need to quickly find the total
number of years that any particular player has
played in the league (i.e. the total number of
years played for all of the teams a player played
for).

	 b.	 There is a need to retrieve AFFILIATION table
records directly based on batting averages.

	 c.	 The three-attribute primary key of the WORK
EXPERIENCE table has been found to be
cumbersome to use in queries and awkward
to index.

	 d.	 There is a frequent very high-priority need to
quickly retrieve player name and age data

together with the teams (identified by team
number) they have played on, the number of
years they played on the teams, and the batting
averages they compiled.

	 e.	 Assume that we add the following Stadium table
to the Super Baseball League relational
database. Each team has one home stadium,
which is what is represented in this table.
Assume that a stadium can serve as the home
stadium for only one team. Stadium name is
unique across the league.

STADIUM Table
Stadium
Name

Year
Built Size

Team
Number

There is a frequent high-priority need to quickly
retrieve detailed team and stadium data together.

229

CHAPTER 9

Object-Oriented Database
Management

Traditional information systems and the applications
within them have always maintained a clear separation
between their programs and their data. Programs and data
structures are designed separately, implemented separately,
and stored separately on disk. Relational databases fit very
well into this arrangement. For a long time the emphasis was
on the programs, with the data structures and ultimately the
data stored in them being a secondary consideration. From
a managerial point of view, the concept of data as a cor-
porate resource has made significant inroads into changing
the IS environment from this program-centric mentality into a
more datacentric one.

On the technical side, an alternative approach to infor-
mation systems and IS development, which comes under
the broad heading of “object orientation,” began during
the 1980s. This approach is, by its nature, more datacentric.
It began with object-oriented programming, then object-
oriented systems analysis and object-oriented systems design,
and finally object-oriented database management, com-
plete with object-oriented database management systems
(OODBMS). A variety of OODBMSs have been developed and
marketed commercially. We will take a brief look at the essen-
tial points of object-oriented database management in this
chapter, but, as we do, it is important to bear in mind that the
commercial OODBMSs vary widely in the OODBMS features
that they support either partially or fully.

CHAPTER OUTLINE
Introduction
Terminology
Complex Relationships

Generalization
Inheritance of Attributes
Operations, Inheritance of

Operations, and Polymorphism
Aggregation
The General Hardware Co.

Class Diagram
The Good Reading Bookstores

Class Diagram
The World Music Association

Class Diagram
The Lucky Rent-A-Vehicle

Class Diagram
Encapsulation
Abstract Data Types
Object/Relational Database
Summary

230   Chapter 9  Object-Oriented Database Management

Introduction
Relational tables certainly seem to do a good job of storing data for information sys-
tems, as we’ve seen in concept and in a variety of examples. So, what’s missing? The
answer to this question is a bit complicated. Many people would say that nothing
is missing from the relational model (or, for that matter, in this context, from the
hierarchical and network models that came before it)! Others would point out that
for certain kinds of complex applications, the relational model lacks support for the
more complex data model features they need. There is even an argument that all
applications could benefit from certain additional features in terms of data integrity.

Let’s take a look at “what’s missing” from the relational model. The answer to this
question will also serve as an introduction to the main features of the object-oriented
database model.

•	 While the relational model is fine for dealing with unary, binary, and ternary rela-
tionships among entities, it does not directly provide support for more complex but
important relationships among different subcategories or specialized categories
of particular entities. This is known as “generalization” or “generalization/spe-
cialization“ in the object-oriented database model. Nor does the relational model
directly provide support for situations in which particular entities are constructed
from other component entities. This is known as “aggregation“ in the object-
oriented database model.

•	 As in all traditional information systems, the separation of programs and data-
bases exposes the data in the databases to being updated by a variety of programs.
Of course, we assume that these programs are thoroughly tested and debugged.
But with many people writing programs that can affect particular data, there is
always the question whether a hidden mistake can pop up unexpectedly and cause
errors in the data. This becomes even more serious as the sharing of data among
different applications increases. What might be desirable is to have a system in
which only a limited, controlled set of program segments is allowed to update
particular data. Application programs would then make requests for the execution
of these program segments to update the data. This could go a long way toward
improving the integrity of the data.

•	 The relational model supports only a limited number of relatively simplistic
numeric and character-oriented data types. These are sufficient for most stan-
dard accounting, inventory, and other traditional business applications. But this
model does not directly support the more complex data types that we increasingly

OBJECTIVES
List several limitations in the relational database model.
Describe the object-oriented database concept.
Model data using such complex relationships as generalization and

aggregation, and such concepts as inheritance and polymorphism.
Describe the benefits of encapsulation.
Describe the value of developing abstract data types.
Explain what an object/relational database is.

Terminology    231

encounter such as graphic images, photo images, video clips, audio clips, long text
documents, and such mathematical constructs as matrices. The object-oriented
database model, with its “abstract data type” feature, allows the creation of all
these data types and any others that are needed.

There are several other features or advantages of the object-oriented database con-
cept. One is that each unit of data or “object” has an object identifier that is perma-
nent and unique among all objects of all types in the system. Another is that some
OODBMSs are implemented as pointer-based systems, meaning that related objects
are “connected” by their storage addresses, as opposed to the foreign key/join arrange-
ment in relational databases. Arguments have been made that this pointer-based
approach provides better performance than the multi-table join approach of relational
databases when related data must be brought together. (Ironically, relational databases
replaced the pointer-based approach of the earlier hierarchical and network DBMSs.)
Finally, it is argued that OODBMSs are the most natural data storage vehicles when
using object-oriented programming languages, such as C++, Smalltalk, and Java.

Terminology
Earlier, we defined an entity as an object or event in our environment that we want
to keep track of. An entity set was defined as a collection of entities of the same type.
Entities have properties that we called attributes. We then defined a data structure
known as a record that contains all of the facts (the attributes) that we know about a
given entity. The records about all of the entities in an entity set were collected together
in a file. Finally, we spoke of a record type as a general description of all of the records
in a file, essentially a list of the kinds of attributes that describe each of the entities.
And we spoke of a record occurrence as a specific set of attribute values that describe
one of the entities.

Object-­oriented data modeling has its own features and its own terminology, but
it still must describe the entities, the objects, and events in the real business environ-
ment. Having said that, the first point to recognize is that in object-oriented modeling,
the term object is used to describe an advanced data structure that includes an entity’s
attributes plus methods or operations or procedures (program code!) that can oper-
ate on and modify the object’s attribute values. This is obviously a major departure
from the strict separation of data and program code that we’re used to. In the same
spirit in which we organized the records that described similar entities into a file, the
objects that describe similar entities are known collectively as an object class or, sim-
ply, a class. Conversely, an instance or an occurrence of a class is an object.

This terminology is in keeping with the standard diagramming notation for object-
oriented systems development known as the Unified Modeling Language (UML).
Introduced in 1997 by the Object Management Group (OMG), UML has nine standard
diagrams that describe such features as the system’s data, its business processes, its
intended results, the components of its program code, and its hardware and soft-
ware architectures. For our purposes, we will focus on the UML Class Diagram,
which describes the system’s data, including attributes of and relationships among
the “objects.” As before, we will demonstrate these OODBMS concepts in the context
of the General Hardware Co. example, as well as the other three running examples
we have used. Some of the details of the examples will have to be changed in order to
demonstrate the object-oriented concepts and we will point out those changes care-
fully as they occur.

232   Chapter 9  Object-Oriented Database Management

Complex Relationships
In our earlier discussion of data modeling using the entity-relationship model that led
to relational database design, we saw the importance of being able to model unary,
binary, and ternary one-to-one, one-to-many, and many-to-many relationships. The
first question, then, is: can we model such relationships in UML class diagrams and
can they be implemented in the OODBMS concept? The answer is definitely yes. It
had better be yes because, as we know by now, those are fundamental relationships
in any business environment. The point, however, is that UML class diagrams and
ultimately OODBMS implementations go beyond those fundamental relationships to
other more specifically targeted kinds of relationships known as generalization and
aggregation.

Generalization
Generalization, also known as “generalization/specialization,” is a relationship that
recognizes that some kinds of entities can be subdivided into smaller, more special-
ized groups. All of the entities may have some common characteristics but each of
the smaller groups may have certain unique characteristics, as well. For example, all
movies have a producer and a director, but only animated movies have animation art-
ists. All boats have hulls, owners, and registration numbers, but only sailboats have
sails. All retail stores have names, addresses, and occupancy licenses, but only restau-
rants have health inspection scores and restaurant critic ratings; only gas stations have
underground storage tanks; only supermarkets have produce departments and meat
departments.

The General Hardware Co. entity-relationship diagram of Figure 2.9 is reproduced
here as Figure 9.1. Remember that General Hardware is a wholesaler that supplies
retail stores such as hardware stores, home improvement chains, etc. Thus far, the
only products that we’ve assumed General Hardware sells its customers are tools.
But now, General Hardware has decided to expand its product line beyond tools to
include light fixtures and lumber. Figure 9.2 shows a generalization diagram that rep-
resents General Hardware’s expanded product line and recognizes that while all of the
products share some common attributes, different kinds of products have additional
unique attributes. Each box in Figure 9.2 represents a class and has three sections sep-
arated by horizontal lines. At the top, in capital letters, is the class name. In the middle
are the class attributes. At the bottom are the class operations (although we’re not
showing any operations yet). The upward-pointing arrows indicate generalizations.
The diagram shows that there are three kinds of products: TOOLs, LIGHT FIXTUREs,
and LUMBER. Furthermore, there are two kinds of tools: POWER TOOLs and NON-
POWER TOOLs.

Inheritance of Attributes
The PRODUCT class indicates that all products have three common attributes: Prod-
uct Number, Product Name, and Unit Price. In fact, we say that all of the classes below
PRODUCT inherit the attributes shown in PRODUCT; that is, they include these

Complex Relationships    233

PK Employee
 Number

Customer
 Number

PK

CUSTOMER
EMPLOYEE

Employee
 Name
Title

Office
 Number

OFFICE

PK

Telephone
Size

Salesperson
 Number

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

Customer
 Number

CUSTOMER

PK

Customer
 Name
HQ City

Product
 Number

PRODUCT

PK

Product
 Name
Unit Price

PK Product
 Number

Salesperson
 Number

SALES

PK

Quantity

Occupied by
Works in

Sells to

Buys from

Sold
Sold by

Sold

Sold
Product

Employs

Employed by

FIGURE 9.1  The General Hardware Company E-R diagram

234   Chapter 9  Object-Oriented Database Management

attributes among their own. In general, attributes are inherited downwards in these
generalization diagrams. So,

•	 the attributes for POWER TOOLs are Product Number, Product Name, Unit Price
(all from PRODUCT), Weight (from TOOL), and Amperes.

•	 the attributes for NON-POWER TOOLs are Product Number, Product Name, Unit
Price, Weight, and Years of Warranty.

•	 the attributes for LIGHT FIXTUREs are Product Number, Product Name, Unit
Price, Number of Bulbs, and Watts Per Bulb.

•	 the attributes for LUMBER are Product Number, Product Name, Unit Price, Type
of Wood, and Dimensions.

Operations, Inheritance of Operations, and Polymorphism
Figure 9.3 shows the addition of some operations to the diagram in Figure 9.2. Actu-
ally, there are three kinds of operations: constructor, query, and update. A constructor
operation creates a new instance of a class, i.e. a new object. An example in Figure 9.3
is Add Lumber, which is an operation that will add a new instance of LUMBER, i.e. a
new object, to the database when General Hardware starts carrying a new type or size
of lumber in its wholesale inventory. A query operation returns data about the values
of an object’s attributes but does not update them. Calculate Discount in the PROD-
UCT class is an example of a query operation. The operation calculates a discount for a
particular customer buying a particular product and returns the result to the user who
issued the query, but does not store the result in the database. An update operation

LIGHT FIXTURE

Number of Bulbs
Watts per Bulb

PRODUCT

Product Number
Product Name
Unit Price

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NON-POWER TOOL

Years of Warranty

POWER TOOL

Amperes

FIGURE 9.2  General Hardware Com-
pany product generalization diagram

Complex Relationships    235

updates an object’s attribute values. Change Unit Price in the PRODUCT class is an
example of an update operation. From time to time a product’s unit price has to be
changed and the result stored in the database as the new unit price.

Notice that Calculate Discount is an operation that applies to all products because
operations are inherited downwards in the same way that attributes are. In fact, since
there is nothing more said about the discount further down the hierarchy, we conclude
that the discount is calculated in the same way for all kinds of products. On the other
hand, the diagram indicates that the Calculate Extended Warranty Price for TOOLs is
performed differently for POWER TOOLs and for NON-POWER TOOLs. The opera-
tion is initially specified in the TOOLs box but operation names in the POWER TOOL
and NON-POWER TOOL boxes indicate that it changes in some way when it is inher-
ited down to those boxes. Perhaps, the presence of an electric motor in the power tools
requires a different kind of calculation. This modification or refinement of operations
as they are inherited downwards is called polymorphism. (Note: Technically, the
operations that are performed differently in the lower-level objects can have the same
name—simply Calculate Extended Warranty Price in this example—even though they
will perform differently for the different kinds of objects.)

Aggregation
Figure 9.4 shows the addition of the FRAME and BULBS classes, connected to the
LIGHT FIXTURE class with a diamond-shaped symbol. This is not further generaliza-
tion but is another type of relationship known as aggregation. In generalization, lower-
level classes are kinds of upper-level classes (e.g. POWER TOOLs and NON-POWER

LIGHT FIXTURE

Number of Bulbs
Watts per Bulb

PRODUCT

Product Number
Product Name
Unit Price

Calculate Discount
Change Unit Price

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NON-POWER TOOL

Years of Warranty

POWER TOOL

Amperes

Calculate Extended
 Warranty Price

Add Lumber

Calculate Extended
 Warranty Price for
 Non-Power Tools

Calculate Extended
 Warranty Price
 for Power Tools

FIGURE 9.3  General Hardware
Company product generalization
diagram with operations

236   Chapter 9  Object-Oriented Database Management

TOOLs are both kinds of TOOLs). In aggregation, a class is shown to be composed of
other classes. FRAMEs and BULBS are not kinds of LIGHT FIXTUREs; rather, each is
a part of a LIGHT FIXTURE. As shown in Figure 9.4, the component classes can each
have their own special attributes and conceivably, operations, too.

The General Hardware Co. Class Diagram
Figure 9.5 shows the complete General Hardware Co. UML Class Diagram. The
upper portion of the diagram is largely the same as the entity-relationship diagram
of Figure 9.1. In converting the entity boxes to class boxes, we added some opera-
tions and changed some of the notation. In terms of one-to-one, one-to-many, and
many-to-many relationships, in this notation “1” means exactly one, “0..1” means
zero or one, “0..*” means zero-to-many, and “1..*” means one-to-many. Also note that
the many-to-many relationship between SALESPERSON and PRODUCT requires
an additional class (similar in concept to an associative entity) to show the nature of
the many-to-many relationship, including any intersection data. This SALE class is
attached to the connective line between the SALESPERSON and PRODUCT classes
with a dashed line.

It is important to stop here for a moment and ask whether an ordinary relational
database together with application programming could be used to implement all the
various kinds of relationships in Figure 9.5. The answer is yes, it could. But the point is
that it would be up to the database designer and especially the application programmer
to manage the various kinds of relationships in the database with the application code.

LIGHT FIXTURE

PRODUCT

Product Number
Product Name
Unit Price

Calculate Discount
Change Unit Price

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NON-POWER TOOL

Years of Warranty

POWER TOOL

Amperes

Calculate Extended
 Warranty Price

Add Lumber

Calculate Extended
 Warranty Price for
 Non-Power Tools

Calculate Extended
 Warranty Price
 for Power Tools

BULBS

Number of Bulbs
Watts per Bulb

FRAME

Weight
Dimensions

FIGURE 9.4  General Hardware Company product diagram with aggregation

Complex Relationships    237

LIGHT FIXTURE

PRODUCT

Product Number
Product Name
Unit Price

Calculate Discount
Change Unit Price

SALE

Quantity

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NON-POWER TOOL

Years of Warranty

POWER TOOL

Amperes

Calculate Extended
 Warranty Price

Add Lumber

CUSTOMER
EMPLOYEE

Employee Number
Employee Name
Title

SALESPERSON

Salesperson Number
Salesperson Name
Commission Percentage
Year of Hire

Calculate Commission
Calculate Bonus

OFFICE

Office Number
Telephone
Size

CUSTOMER

Customer Number
Customer Name
HQ City

Calculate Extended
 Warranty Price for
 Non-Power Tools

Calculate Extended
 Warranty Price
 for Power Tools

BULBS

Number of Bulbs
Watts per Bulb

FRAME

Weight
Dimensions

1 0..*

1

1..*

1

0..1

1..*

1..*

FIGURE 9.5  General Hardware Company class diagram

This is different from an OODBMS, which is designed to handle all of these relation-
ships among its natural features. To stretch a term a bit, in the OODBMS concept, the
database management system “understands” all these kinds of relationships and is
capable of directly managing the data involved in them.

238   Chapter 9  Object-Oriented Database Management

The Good Reading Bookstores Class Diagram
Good Reading Bookstores has decided to expand its product line to include period-
icals (newspapers and magazines), music CDs, and movie videos/DVDs. The upper
portion of Figure 9.6 is the class-diagram version of the entity-relationship diagram
of Figure 2.10, except that several changes have been made to reflect the change in
product line. The BOOK entity type has become the PRODUCT class since there can

PRODUCT

Product Number
Product Name
Year Created

PRODUCING
COMPANY

Company Name
Company Type
City
Country
Telephone
Year Founded

CREATOR

Creator Number
Creator Type
Creator Name
Year Born
Year Died

BOOK

Pages

CUSTOMER

Customer Number
Customer Name
Street
City
State
Country

PERIODICAL

Volume
Number
Pages

CD

Number of Tracks
Length
Chart Rating

Add Book Remove from Shelves Update Chart Ratings

SALE

Date
Price
Quantity

CREATION

0..*

11

1..*

1..*

1 0..* 1..* 1..*

1..*

Percent of
 Responsibility

ARTICLE

Title
Author
Length

SONG

Writer
Year Written

VIDEO/DVD

Length

FIGURE 9.6  Good Reading Bookstores class diagram

Complex Relationships    239

now be several kinds of products, not just books. Similarly, PUBLISHER has become
PRODUCING COMPANY to reflect that we are now dealing with publishers, music
studios, and movie studios, and AUTHOR has become CREATOR to reflect that we are
now dealing with authors, singers, and movie producers and directors.

A generalization hierarchy has been created under PRODUCT indicating that
there are four kinds of products: BOOK, PERIODICAL, CD, and VIDEO/DVD. The
three attributes in the PRODUCT class, Product Number, Product Name, and Year Cre-
ated, are inherited downwards to all four of the subordinate classes. In addition, a book
has a number of pages, a periodical has a volume, a number, and a number of pages,
a CD has a number of tracks, a total length in minutes, and a chart rating (the current
popularity of the CD), and a video/DVD has a length in minutes. The BOOK class has
a constructor-type operation, Add Book, that adds new BOOK instances, i.e. BOOK
objects, as new books are published and added to the store’s inventory. PERIODICAL
has a query-type operation associated with it that calculates the date when each peri-
odical is to be removed from the store shelves if it has not been purchased by then. CD
has an update-type operation associated with it that changes the value of a CD’s Chart
Rating attribute on a weekly basis as new industry-wide popularity charts come out.

Notice that the PERIODICAL class, and only this class, is associated with the ARTICLE
class. Similarly, the CD class, and only this class, is associated with the SONG class.
These are reasonable restrictions since only periodicals have articles and only CDs
have songs. But, this suggests an interesting point about generalization that we have
not seen before. Thus far, the reason for setting up subordinate classes in a general-
ization hierarchy was to allow the subordinate classes to have distinct attributes and
operations that the other subordinate classes don’t have. Now, we see that there is a
second reason for setting up subordinate classes: to be able to associate only selected
subordinate classes with other classes!

The World Music Association Class Diagram
The upper portion of Figure 9.7 is the class diagram version of the World Music Asso-
ciation entity-relationship diagram of Figure 2.11, with one major change. Instead of
considering only symphonies, which were associated with orchestras, we are going
to consider many kinds of compositions. Of course, different kinds of compositions
are performed by different kinds of musical groups. So, the ORCHESTRA entity type
in the E-R diagram of Figure 2.11 has become the GROUP class and a generalization
hierarchy has been constructed with subordinate classes ORCHESTRA, CHAMBER
GROUP, and JAZZ GROUP.

9.1  Generalization/Specialization and
Aggregation
Many objects in the world can be broken down
into subordinate categories, i.e. “specialized,” or,
in the opposite direction, “generalized.” Other
objects can be created from component parts,
i.e. “aggregated.”

Question:
Develop a generalization/specialization diagram
for objects in your university environment or another
business environment of your choice. Develop
an aggregation diagram for objects in the same
business environment. Can you combine the two
diagrams into one in a way that makes sense?

Your Turn

240   Chapter 9  Object-Oriented Database Management

The Lucky Rent-A-Vehicle Class Diagram
Lucky Rent-A-Car has expanded to become Lucky Rent-A-Vehicle! In addition to
renting cars, Lucky is now renting limousines, trucks, airplanes, and helicopters. The
upper part of the Lucky class diagram of Figure 9.8 looks very much like the Lucky
entity-relationship diagram of Figure 2.12. The only difference is the change from the
CAR entity-type to the VEHICLE class.

There is a two-level generalization hierarchy under VEHICLE. At the first level are
the LAND (vehicle) and AIR (vehicle) classes. Then, at the next level down, a LAND
vehicle can be a CAR, LIMOUSINE, or TRUCK, while an AIR vehicle can be an AIR-
PLANE or a HELICOPTER. Each CAR object will have nine attributes: Body Style
and Color, plus four attributes inherited from VEHICLE and another three attributes
inherited from LAND. Similarly, each LIMOUSINE will have nine attributes, each
TRUCK will have eight attributes, each AIRPLANE will have eleven attributes, and
each HELICOPTER will have nine attributes.

There is an update operation for all LAND vehicles to update their mileage attribute
that is calculated in the same way for all three types of LAND vehicles; i.e. there is no
polymorphism associated with this operation. On the other hand, the diagram indi-
cates that there is polymorphism in the way that the Calculate Next Overhaul Date is

MUSICIAN

Musician Number
Musician Name
Instrument
Annual Salary

GROUP

Group Name
City
Country
Music Director

DEGREE

Degree
University
Year

ORCHESTRA

World Ranking

CHAMBER GROUP

Year Founded

0..1* 1..* 1 0..*

0..*

0..*

JAZZ GROUP

Jazz Specialty

RECORDING

Year
Price

COMPOSER

Composer Name
Country
Date of Birth

COMPOSITION

Composition Name
Year

1..* 1

FIGURE 9.7  World Music
Association class diagram

Complex Relationships    241

LIMOUSINE TRUCK

Cargo CapacityNumber of
 Passengers
Equipment

CAR

Body Style
Color

HELICOPTER

Next Overhaul Date

AIRPLANE

Number of Engines
Type of Engine
Next Overhaul Date

Calculate Next
 Overhaul Date
 (Helicopter)

Calculate Next
 Overhaul Date
 (Airplane)

AIR

Flying Time
Number of Crew
Number of
 Passengers
Top Speed

LAND

Number of Wheels
Mileage
Weight

Calculate Next
 Overhaul Date

Update Mileage

BODY

Body Number
Length

ENGINE

Engine Number
Horsepower

VEHICLE

Vehicle Number
Vehicle Type
Model
Year

MAINTENANCE
EVENT

Repair Number
Date
Procedure
Repair Time
Mileage

MANUFACTURER

Manufacturer Name
Manufacturer
 Country
Sales Rep Name
Sales Rep
 Telephone

0..* 1 1..* 1

CUSTOMER

Customer Number
Customer Name
Customer Address
Customer Telephone

RENTAL

Rental Date
Return Date
Total Cost

0..*

1..*

FIGURE 9.8  Lucky Rent-A-Car Vehicle class diagram

242   Chapter 9  Object-Oriented Database Management

inherited downward from the AIR class to the AIRPLANE and HELICOPTER classes.
The operation will be somewhat different for each of those two classes.

The diamond-shaped symbol on the branch under the TRUCK class indicates that
there is an aggregation diagram under it. Indeed, each TRUCK is composed of an
ENGINE and a BODY, each with its own attributes. Notice that the company is inter-
ested in keeping data about engines and bodies for trucks but not for cars or limos.

Encapsulation
Earlier, we introduced the concept that it might, in general, be a good idea to permit
particular data to be updated only by a limited, controlled set of program segments.
This would have the advantage of improving data integrity by eliminating the possibil-
ity of some less-than-fully-debugged or otherwise rogue program updating the data in
some inaccurate way. But how can such a concept be implemented?

A fascinating feature of object-oriented database management that implements
these ideas is called encapsulation. In encapsulation, as illustrated in Figure 9.9, the
attributes of a class’ or even an individual object are “encapsulated,” stored together
on the disk, with the operations that will act upon them. Yes, the program segments
are actually stored within the database, which is a radical departure from the complete
separation of data and programs that we always assumed in the relational database
environment (as well as in the earlier navigational database environment). Further-
more, the OODBMS will permit the attributes of the encapsulated objects to be updated
only by the encapsulated update-type operations. New class instances or objects will
be permitted to be created only by the class’ encapsulated constructor-type operations.
Query-type operations would also be encapsulated but since they do not update data,
the data integrity issue is not a factor.

When an application program requires encapsulated data for any reason, it sends
a message to one of the object’s encapsulated operations to trigger it into action,
Figure 9.9. The application program sends along any input data needed for the
operation (e.g. the number of years that an extended warranty is to be in effect for
the Calculate Extended Warranty Price for Power Tools operation in General Hard-
ware’s POWER TOOL class in Figure 9.5). The encapsulated operation then executes
its program code. Depending on the type of operation, it updates the object’s attri-
bute values, adds a new instance of a class or object, or simply returns data to sat-
isfy a query.

Class or Object

message

Attribute 1
Attribute 2
 •

 •

 •

Attribute n
Operation 1
Operation 2
 •

 •

 •

Operation m

Application Program
FIGURE 9.9  An application program sends a message
that triggers an encapsulated operation in an object

Abstract Data Types    243

Abstract Data Types
Data has traditionally fitted into one of a small number of simple data types consist-
ing of a few variations of character and numeric data. These are adequate to handle
the kinds of attributes that we usually think of as being stored in a database. Names,
addresses, descriptions, and so forth are stored as character data types. Attributes
involving money and other numeric data that includes fractional amounts are stored
as decimal numbers. Serial numbers or quantity attributes that count a number of
items are stored as integers. Furthermore, these simple data types have operations
associated with them in the programming languages that use them. We take it for
granted that we can add, subtract, multiply, and divide data stored in the numeric data
types, but these operations are indeed associated with numeric data types and they are
specifically not associated with character-type data.

Another interesting feature of object-oriented database management is the abil-
ity to create new, abstract data types and operations that are associated with them.
But what kinds of data might require these new and perhaps exotic data types?
Figure 9.10 illustrates some of them. In today’s increasingly rich data environments,
we may want to store static images, line drawings, video clips, and audio clips. For
example, consider adding an attribute called “Picture,” to the TOOL class of General
Hardware’s class diagram in Figure 9.5, so that one of the attributes of each tool is
a photo of it. (This particular data type has been called a “binary large object” or
“BLOB.”) Associated operations might include zoom and rotate. Consider adding
an attribute called “Flight” to the HELICOPTER class of Lucky Rent-A-Vehicle’s
class diagram in Figure 9.8 in order to include a video clip of each helicopter flying.
Associated operations might include pause or fast-forward. Or consider adding an
attribute called “Music” to the CD class of Good Reading Bookstore’s class diagram
in Figure 9.6 to include an audio clip of one of a CD’s songs. An associated opera-
tion might be adjust volume. It is worth emphasizing that part of the beauty of this
concept is that the attributes that use these new data types are treated exactly like
the less exotic attributes that merely use the simple character, decimal, and integer
data types.

Static Image Line Drawing

Video Clip Audio Clip
FIGURE 9.10  Abstract data types

244   Chapter 9  Object-Oriented Database Management

Object/Relational Database
When OODBMSs first became commercially available in the 1980s, they found some
limited use in niche applications like storing an electric power company’s power grid
in a data format that could take advantage of the unique features of the object-oriented
data approach. But, as we know by now, these OODBMSs didn’t overwhelm relational
databases and displace them. For, in spite of their new bells and whistles, the OOD-
BMSs were lacking in several areas, including the superior SQL query capabilities that
everyone had become accustomed to with relational databases. Yet their advanced fea-
tures were too tempting to ignore.

Eventually, perhaps inevitably, relational databases and object-oriented databases
came together in the form of hybrid relational database management systems with
added object-oriented features. At first, these were called “extended relational” data-
base systems, but as they became more formalized they became known as “object/
relational” database systems. Imagine the General Hardware Co. data stored as an
object/relational database. A data structure for storing data about tools would essen-
tially be a relational table that would include columns for Product Number, Product
Name, Unit Price, Weight, and Photo (a photo of the tool), which would be stored as
a static image-type of attribute, Figure 9.11. The attribute Photo could then appear in
SQL statements just like the other attributes and could be processed as such, returning
the photo to the user in a query or even matching a photo against the photos already
in the table.

Summary
The relational database model is certainly powerful and has proven to be highly resil-
ient as the standard for data storage and retrieval. However, for certain kinds of com-
plex applications, the relational model is lacking in support for certain useful data
model features. The object-oriented model fills this gap. The object-oriented model

Product
Number

Product
Name

Unit
Price Photo

16386

19440

21765

24013

26722

Wrench

Hammer

Drill

Saw

Pliers

12.95

17.50

32.99

26.25

11.50

FIGURE 9.11  The TOOL table in an object/relational database

provides support for more complex but important relationships among different sub-
categories or specialized categories of particular entities. This is known as “generaliza-
tion” or “generalization/specialization.” It also supports situations in which particular
entities are constructed from other component entities, known as “aggregation.” Fur-
ther, the object-oriented database model with its “abstract data type” feature supports
graphic images, photo images, video clips, audio clips, long text documents, and such
mathematical constructs as matrices. The object-oriented model also supports “encap-
sulation,” in which a controlled set of program segments is stored with the data and
is the only code allowed to update that particular data. Today, object-oriented data-
base management systems have largely given way to the incorporation of these object-
oriented features rated into mainstream relational database management systems.

Key Terms
Abstract data type
Aggregation
Class
Class diagram
Complex relationships
Encapsulation

Generalization/spe-
cialization
Inheritance
Message
Method
Object

Object class
Object-oriented
data modeling
Object-oriented database
Object/relational ­
database

Operation
Polymorphism
Procedure
Unified Modeling

Language (UML)

Questions
  1.	 Name and briefly describe three deficiencies in the

relational database model.
  2.	 In object-oriented terminology, what is an object? What

is a class?
  3.	 Describe the advanced relationship known as “general-

ization.” What are its benefits?
  4.	 Describe how attributes are inherited in a generaliza-

tion hierarchy.
  5.	 What is an “operation?” Can operations be inherited?

What is polymorphism?

  6.	 Describe the advanced relationship known as “aggrega-
tion.” What are its benefits?

  7.	 What is encapsulation in object-oriented databases?
What are its benefits?

  8.	 What is an abstract data type (ADT)? What is the
significance of a database system that is capable of cre-
ating ADTs?

  9.	 What is an object/relational database management sys-
tem? What are its advantages?

Exercises
  1.	 Draw an object-oriented class diagram, including

traditional unary, binary, and ternary relationships, as
well as generalization and aggregation relationships as
needed, to represent the following business environ-
ment. Include all of the attributes and operations listed
in the description.
The Houston, TX, city government wants to develop an
information system to keep track of all the buildings in
the city for both taxation and fire department dispatch
purposes. The city will track the address, year built, and

owner of record of every building. It will also record the
station number, address, and telephone number of each
fire station. Each fire station has primary responsibility
for a given set of buildings.

There are four types of buildings: single-family homes,
apartment buildings, stores, and office buildings. The
city wants to record the number of apartments in each
apartment building, and the type of goods and an-
nual sales volume of each store. It wants to record the

Exercises    245

246   Chapter 9  Object-Oriented Database Management

number of floors in each office building. It must also
keep track of the companies in each office building. An
office building can have several or many companies
in it; a company can have offices in several buildings.
Each company has a name, telephone number, and
unique tax identification number. The city also wants to
store the number of square feet that a particular com-
pany occupies in a particular office building. Single-
family homes are made up of three parts: the house
itself, a garage, and a shed. The city wants to keep track
of the number of bedrooms, number of baths, and total
floor space in the house, the capacity of the garage in
number of cars, and the capacity of the shed in volume
(cubic feet). There is also a tax calculation formula that
differs for each of the four building types.

  2.	 Draw an object-oriented class diagram, including
traditional unary, binary, and ternary relationships, as
well as generalization and aggregation relationships as
needed, to represent the following business environ-
ment. Include all the attributes and operations listed in
the description.
Reliable Home Warranty Company contracts with
homeowners to repair their major appliances, electri-
cal systems, and plumbing, all for a single annual fee.
When a homeowner needs a repair, he calls Reliable
and speaks to a dispatcher who sends a qualified
technician from a participating repair company. The
participating repair company then charges Reliable for
the repair. Each dispatcher has an employee number,
name, home address, and home telephone number.
Each homeowner has a contract number, name, home
address, home telephone number, and contract renewal
date. Each job has a unique job number, date, and time.

Each job is handled by one dispatcher and (obviously)
involves one homeowner.

There are three kinds of jobs: appliance repair, electri-
cal repair, and plumbing repair. For an appliance repair,
the company wants to record the appliance type, its
model number, its serial number, and the name of
the appliance repair company assigned. In addition,
Reliable wants to keep track of the manufacturer of the
appliance. For each appliance manufacturer it lists the
manufacturer name, headquarters address, and tele-
phone number for parts ordering. There is a calculation
for the charge that the appliance repair company makes
to Reliable based on the type of appliance and the time
spent. For a plumbing repair, Reliable keeps track of the
name of the plumbing company and the length of time
for the repair, but beyond that it makes a distinction
between inside repairs and outside repairs such as to
sewer lines or septic tanks. Charges from the plumbing
company to Reliable are based on a specific plumbing
charge formula, but are calculated differently depend-
ing on whether the repair is an inside or outside repair.
Also, for outside repairs, Reliable must record the dis-
tance from the house to the main sewer line or septic
tank. For an electrical repair, Reliable tracks the length
of time for the repair and the amount and type of wire
used in the repair. There is a formula for calculating
electrical repair charges based on time and the special-
ized materials used. Reliable must also keep certain
information about the electrical contracting company
assigned to the repair. This information includes the
contractor’s license number, name, address, and liabil-
ity insurer. A particular electrical contracting company
can be involved in many repairs.

  1.	 In Minicase 1 of Chapter 2, you were asked to draw
an entity-relationship diagram describing Happy
Cruise Lines’ business environment. We now report
that Happy Cruise Lines has been acquired by Mega-
Ship Lines, Inc., which has a fleet of oil tankers, con-
tainer ships, and automobile transport ships. Thus,
with the addition of Happy’s cruise ships, MegaShip
Lines will have four kinds of ships.

	 a.	 Draw an object-oriented generalization diagram,
including aggregation relationships as needed,
to represent MegaShip’s new business environ-
ment, with the following attributes and

operations. All of MegaShip’s ships have ship
number, ship name, year built, weight, miles
traveled, and next overhaul date attributes. In
addition, cruise ships have passenger capacity
and next health inspection date; oil tankers have
oil capacity, container ships have number of
containers, and automobile transport ships have
number of automobile attributes. An operation
determines the next overhaul date for all of the
ships in the same manner. Another operation
determines the next health inspection date for
cruise ships. An operation calculates the next

Minicases

date for a ship to be refueled. This operation is
the same for oil tankers, container ships, and
automobile transport ships, but is different for
cruise ships because of safety precautions
regarding the passengers. Oil tankers are
composed of a hull, one or more engines, and
one or more oil storage tanks. An attribute of
hull is length, an attribute of engine is horse-
power, and an attribute of oil storage tank is
capacity.

	 b.	 Add the information given about cruise ships,
cruises, etc., in Chapter 2, Exercise 1, to the
diagram in part a, constructing a complete
object-oriented class diagram.

  2.	 In Minicase 2 of Chapter 2, you were asked to draw
an entity-relationship diagram describing the Super
Baseball League’s business environment. We now
report that the Super Baseball League has been ab-
sorbed into the Sensational Sports Federation (SSF).
SSF divides its sports into two categories: team
sports and individual sports. There are three team
sports: baseball, basketball, and football, and two

individual sports: golf and tennis. The central entity
in each of these five sports is a “participant.” In the
team sports a participant is a team; in the individual
sports a participant is an individual player. Every
SSF participant (team or individual) has a partici-
pant number, participant name, sport (e.g. baseball,
golf, etc.), and year affiliated with SSF. In addition,
every team has a number of players, a home
city and state, and a mascot. Every player in the
individual sports has a name, home address, home
telephone number, and annual income. Further-
more, golfers have a handicap; tennis players have a
world ranking.

	 a.	 Draw an object-oriented generalization diagram,
to represent SSF’s business environment.

	 b.	 Add the information given about baseball teams
and associated entities in Exercise 2 of Chap-
ter 2, to the diagram in part a, constructing a
complete object-oriented class diagram.

	 c.	 Add several operations to the class diagram in
part b, demonstrating polymorphism with some
of them.

Exercises    247

248

CHAPTER 10

Data Administration, Database
Administration, and Data Dictionaries

Advanced technologies are only as effective as the people
who guide them. This is true of jet airliners, x-ray imaging devices,
nuclear power plants, and certainly computers! In the late 1960s,
as early navigational database management systems were
starting to come into use, a few forward-looking companies
began to recognize the need for a department whose job it
would be to manage the DBMS and its environment. As the years
went on, some of these groups gained responsibility over data
in non-DBMS files as well. In addition, some of them advanced
from managing data only on an operational basis to performing
in addition strategic planning, policy setting, and other broader-
based duties. This chapter will describe the functions and groups
that companies create to manage their data and their data-
base environment.

CHAPTER OUTLINE
Introduction
The Advantages of Data and Data-

base Administration
Data as a Shared Corporate

Resource
Efficiency in Job Specialization
Operational Management of Data
Managing Externally Acquired

Databases
Managing Data in the Decentral-

ized Environment
The Responsibilities of Data

Administration
Data Coordination
Data Planning
Data Standards
Liaison to Systems Analysts and

Programmers
Training
Arbitration of Disputes and Usage

Authorization
Documentation and Publicity
Data’s Competitive Advantage

The Responsibilities of Database
Administration
DBMS Performance Monitoring
DBMS Troubleshooting

OBJECTIVES
Define and compare data administration and data-

base administration.
List and describe the advantages of data adminis-

tration and database administration.
List and describe the responsibilities of data adminis-

tration and database administration.
Explain the concept of metadata.
List and describe such metadata realizations as passive

and active data dictionaries, relational DBMS cata-
logs, and data repositories.

The Advantages of Data and Database Administration    249

Introduction
The “people side” of database management has two parts: data
administration and database administration. Data adminis-
tration is a planning and analysis function that is responsible
for setting data policy and standards, for promoting the compa-
ny’s data as a competitive resource, for accounting for the use
of data, and for providing liaison support to systems analysts
during application development. The database administra-
tion function is more operationally oriented and is responsible
for the day-to-day monitoring and management of the com-
pany’s various active databases, as well as for providing liaison
support to program designers during application development.
Database administration typically carries out many of the pol-
icies set by data administration. This chapter will also describe
a class of software tools, known generically as “data dictio-
naries,” that the data administration and database administra-
tion functions can use to help manage their company’s data.

The Advantages of Data and Database
Administration
The initial question is, why do companies need these data and database administra-
tion departments? What value do they add? Are they just additional “cost centers” that
don’t produce revenue? Indeed, at one time or another, most companies have struggled
with these questions. But in today’s heavily data-intensive, information-dependent
business environment, these functions are recognized as being more important than
ever. The reasons, as listed in Figure 10.1, are explained next.

Data as a Shared Corporate Resource
Data is a corporate resource that has taken its rightful place alongside money, plant and
equipment, personnel, and other corporate resources. Virtually all aspects of business
have become dependent on their information systems and the data flowing through
them. Today’s organizations could not function without their vast stores of personnel
data, customer data, product data, supplier data, and so forth. Indeed, data may well
be the most important corporate resource because, by its very nature, it describes all of
the others. Furthermore, the effective use of its data can give a company a significant
competitive advantage. Whether it is used for supply chain management, customer

DBMS Usage and Security
Monitoring

Data Dictionary Operations
DBMS Data and Software

Maintenance
Database Design

Data Dictionaries
Introduction
A Simple Example of Metadata
Passive and Active Data

Dictionaries
Relational DBMS Catalogs
Data Repositories

Summary

•	 Data as a shared corporate resource
•	 Efficiency in job specialization
•	 Operational management of data
•	 Managing externally acquired databases
•	 Managing data in the decentralized environment

FIGURE 10.1  The advantages of data and database administration

250   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

service, or advanced marketing applications, a company’s data can have a real impact
on its share of the marketplace and on its bottom-line profitability.

But all resources tend to be scarce (is there ever enough money to go around?) and
there is typically internal competition for them. Data is no exception. As more and
more corporate functions seek the same data for their work, bottlenecks can form and the
speed of accessing the data can slow. Companies have responded to this in a variety
of ways, including bringing in faster computers and making copies of the data for dif-
ferent applications. But the former strategy has its limits and the latter introduces the
kind of multi-file redundancy that we have argued against throughout this book. Also,
some companies have a policy of data “ownership” in which one of several corporate
functions that share some particular data has the primary claim to it and often the abil-
ity to decide who else can use it.

What all of this is leading to is simply this: Any shared corporate resource requires a
dedicated department to manage it. How would a company handle its money without
its finance and accounting departments? It makes little sense to have an important
resource either not managed at all or managed part-time and half-heartedly by some
group that has other responsibilities too. It also makes little sense to have any one of
the groups competing for the shared resource also manage it—the resource manager
must obviously be impartial when a dispute arises. The dedicated departments that
manage the company’s data are the data administration and database administration
departments. And, actually, the parallel between the two corporate resources, money
and data, is reflected in the parallel of having two company functions to manage each.
Finance and data administration, respectively, take a more strategic or tactical-level
view of each resource. Accounting and database administration, respectively, take a
more operational-level view of them.

Efficiency in Job Specialization
Many of the functions involved in the management of data are highly specialized and
require specific expertise. They can range from long-range data planning to working
with the idiosyncrasies of a particular database management system. This argues
for a full-time staff of specialists who do nothing but manage a company’s data and
databases.

A good example, and one on which we have spent considerable time already, is
database design. To do a really good job of both logical and physical database design
requires considerable education and practice. The question then becomes one of who
among the information systems personnel should be responsible for designing the
company’s main, shared databases. The systems analysts? The application program-
mers? Which systems analysts or application programmers? After all, there may be
several or many application development projects, each with different systems ana-
lysts and application programmers assigned, that will share the same databases. It
doesn’t make a lot of sense to have any of these people design the databases, for at
least two reasons. One is that it is unreasonable to expect any of them to be as expert
at designing databases as people who do it on a full-time basis. The other reason is
that if any one application development group designs the shared databases, they will
tend to optimize them for their own applications and not take into account the needs
of the other applications. The solution is to have application-independent, full-time
database specialists, i.e. data and database administration personnel, who are experts
at database design and who will optimize the database designs for the overall good of
the company.

The Advantages of Data and Database Administration    251

Operational Management of Data
It is clear that at the operational level, for the day-to-day management of the com-
pany’s production databases, an independent department must be responsible. The
reasons for this have already been set forth above. Since the data is likely to be shared
among several or many corporate functions and users, it makes sense for the data to
be managed by an independent group whose loyalty is to the overall company and not
to any individual function. There is also the specific example that in the shared data
environment there will always be some applications or users that depend on other
applications or users to collect data and/or update the tables on a regular or irregular
basis. Clearly, it is prudent to have an independent data administration group keep
track of who is responsible for updating which tables, and monitor whether they have
kept to the expected schedule, for the benefit of everyone else who uses these tables.

Also, working with the databases at the operational level requires an in-depth
knowledge of the DBMS in use, of the databases themselves, and of such specific skills
and tasks as physical database design, database security, and backup and recovery. It
is unreasonable to expect application programmers, systems analysts, or anyone else
with their own focused duties to be experts at the techniques of data management. In
short, it requires specialists.

Managing Externally Acquired Databases
In today’s information systems environment, some databases are not designed by a
company’s own personnel but are acquired as part of purchased software packages.
A prominent example of this is Enterprise Resource Planning (ERP) software like
the multifunction integrated software sold by companies such as SAP and Peoplesoft.
These packages consist of application modules that manage a variety of corporate
functions (personnel, accounting, etc.). They typically include a central database that
all the application modules share. When a company decides to go the ERP route, they
are making an important commitment to a shared data resource. Once again, the only
arrangement that makes sense for managing this shared resource is to have an inde-
pendent group that is tasked with managing it for the overall good of the company.

Managing Data in the Decentralized Environment
With the advent in the 1980s of personal computers, local-area networks, and new, user-
friendly software, many companies “decentralized” at least some of their information
systems work. These technologies permitted user departments all over the company to
handle some or all of their information systems needs on their own, without having to
rely on the central information systems organization. There are a variety of advantages
and disadvantages to this arrangement (but a book on database management is not the
place to go into them). While such developments as ERP software with its centralized
database concept have swung the pendulum back toward the centralized IS environ-
ment to some extent, decentralization is a fact of life to a greater or lesser degree in
virtually all companies.

The question is then, in terms of the advantages of data and database administra-
tion: do we need these functions more or less in the decentralized environment
than we do in the centralized environment? Some people might say that we don’t
need them. In fact, when the move towards decentralization began, one of the stated

252   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

reasons was to reduce the “overhead” of the central IS department and that included
database administration. Furthermore, many people are quite content to develop their
own databases on their PCs using MS Access and other such PC-based DBMSs. But a
very strong argument says that data and database administration are even more impor-
tant in a decentralized environment than in a centralized one.

First of all, most large companies do not have totally decentralized IS but rather
a hybrid centralized/decentralized environment. And, if nothing else, the central-
ized portion includes a central shared database, which certainly requires a database
administration function to manage it. But, more than that, with company data present
in a variety of central databases, databases associated with local-area networks, and
even databases on PCs, the coordinating role of data administration is crucial. This
coordinating role is a key element of the responsibilities of data administration, which
is our next topic.

The Responsibilities of Data Administration
Since information systems are used in all aspects of a company’s business, data admin-
istrators find themselves playing key roles in the corporate environment. Those who
understand what data a company possesses, and how it flows both from department
to department within the company and between the company and its customers,
suppliers, and other external entities, are in the best position to understand how the
company really functions. Data administrators often come from the ranks of systems
analysts and, indeed, some companies use the term “data analyst” to describe them.
What are the responsibilities of the data administration function? They are listed in
Figure 10.2 and discussed below.

Data Coordination
With the prominent role of data in the corporate environment, its accuracy is of the
utmost importance. But in the centralized/decentralized environment, with data and
copies of data scattered among mainframe computers, local-area network servers,
and even PCs, the possibilities of inconsistency and error increase. There is nothing
more annoying than two people making important presentations in a meeting and
showing different figures that should be the same. It is up to the data administrators
to keep track of the organization’s data including downloading schedules, updating
schedules and responsibilities, and interchanging data with other companies. This is
not to suggest that data administration should try to control all the databases on all
the employees’ PCs. That would be impossible. But total data anarchy is not desirable

•	 Data coordination
•	 Data planning
•	 Data standards
•	 Liaison to systems analysts and programmers
•	 Training
•	 Arbitration of disputes and usage authorization
•	 Documentation and publicity
•	 Data’s competitive advantage

FIGURE 10.2  The responsibilities of data administration

The Responsibilities of Data Administration    253

either, and it is the job of the data administrators to maintain a reasonable amount of
control over the company’s data.

Data Planning
Data planning begins with the determination of what data will be needed for future
company business efforts and what applications will support them. This may be lim-
ited to data generated and used internally within the company. However, today it often
means coordinating with other companies in a supply chain or acquiring external cus-
tomer data for use in marketing. In either case, there is the need to plan for integrating
the new data with the company’s existing data. A number of methodologies have been
developed to aid in data planning. These methodologies take into account the business
processes that the company performs as part of its normal operations and add the data
needed to support them. While they generally operate at a high “strategic” level and
may not get into the details of individual attributes, they do provide a broad roadmap
to work from.

Related to strategic data planning is the matter of what hardware and software will
be needed to support the company’s information systems operations in the future. The
questions involved range from such relatively straightforward matters as how many
disk drives will be needed to contain the data to broader issues of how much processing
power will be needed to support the overall IS environment. Another data planning
issue is how metadata and the data dictionary concept (discussed later in this chapter)
should be put to use. This involves what data should be stored in the data dictionary,
to what uses the data dictionary should be put, who should interact with the data
dictionary, and how and on what kind of schedule all of this should take place. Yet
another data planning issue that occasionally faces companies is the migration of old,
pre-database data and applications into the company’s database environment. There is
also the problem of migrating data from one DBMS to another as the company’s soft-
ware infrastructure changes.

Data Standards
In order to reduce errors, improve performance, and enhance the ability of one IS
worker to understand the work done by another, it is important for the data adminis-
tration function to set standards regarding data and its use. One example of standards
is controlling the way that attribute names, table names, and other data-related names
are formed. Attribute names must be meaningful and consistent. The company can’t
have its human resources department use Serial Number as the attribute name for
employee numbers while at the same time its manufacturing department uses it for
finished product serial numbers. Similarly, there is a problem if the human resources
department tries to use Serial Number and Employee Number in different tables
to represent the employee number. Another example of standards setting is insisting
on consistency in the way the programs that access the database are written, especially
in regard to the database call instructions. Care here can help to prevent database-
call-related performance problems, as well as to ease maintenance by having standard,
readily understood instructions.

Data standards also come into play in the IS interactions between companies
in supply chains. When data is exchanged using electronic data interchange (EDI)
technology, adjustments have to be made to take into account attribute structures and
other differences in the information systems of the two companies involved.

254   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

Liaison to Systems Analysts and Programmers
In the role of liaison to application developers, data administrators (often called “data
analysts” in this role) are responsible for providing support to the systems analysts
and programmers in all matters concerning the data needed by an application. During
the systems analysis phase of application development, the support may include help
in determining what data is needed for the application and which of the data items
needed for the application already exist in the active database.

Another aspect of such liaison activity, which is really a topic in itself, is the
question of database design. Data analysts are generally involved in database design at
some level, but deciding exactly what that level of involvement should be depends on
a number of factors. In an IS environment in which the data administration organiza-
tion is very strong and in which there is a significant amount of data sharing among
different applications and different functional areas of the company, the data analysts
may do all of the logical database design work themselves. Here again, they can stand
as an impartial group creating the best design for the overall good of all of the users.
The other choice is for the application developers to do the database design with either
active consultation by the data analysts, or approval responsibility after the fact by
the data analysts. In the active consultation role, the data analysts lend their expertise
to the effort, as well as determining how the new data should mesh with data in the
existing database, if there is to be such a merging. In the approval role, the application
developers (usually the lead programmers for this activity) design the database, which
is then shown to the data analysts for discussion and approval.

Training
In some companies, data administration is responsible for training all those in the
company who need to understand the company’s data and, in some cases, the DBMS
environment. Management personnel should understand why the database approach
is good for the company and for their specific individual functions. Users must under-
stand why the shared data is secure and private. Application developers must be given
substantial training in how to work in the database environment, including training
in database concepts, database standards, how to write DBMS calls in their programs,
possibly how to do database design, how to use the data dictionary to their advantage,
and in general, what services they can expect to be provided by data and database
administration.

Arbitration of Disputes and Usage Authorization
To introduce this heading, we should spend a moment on the question of data “own-
ership.” Who in a company “owns” a piece of data or a database? To be technical,
since data is a resource of value to the company, the data “belongs to” the company’s
owners or stockholders. But in practical terms, in many companies data is controlled
by its user or primary user. In this case, data and database administration act as “custo-
dians” of the data in the sense of providing security, backup, performance monitoring,
and other such services. In some companies with extensive data sharing, ownership
responsibility actually falls to data administration itself.

If ownership has been established and a new application requires the use of
existing data, then it is the job of data administration to act as an intermediary and

The Responsibilities of Database Administration    255

approach the owner of the data with the request for data sharing. This can also happen
if someone in the company simply wants to query someone else’s database. If there is
a dispute over such data sharing, then the data administration group acts as an arbitra-
tor between the disagreeing parties. Incidentally, the data administration group may
also find itself acting as arbitrator between two database users who are sharing the
same CPU and vying for better performance.

Documentation and Publicity
Using the data dictionary as its primary tool, the data management function is respon-
sible for documenting the data environment. This documentation includes a descrip-
tion of the data and the databases, plus programs, reports, and which people have
access to these items. A more complete list of such metadata items will be given later
in this chapter in discussing data dictionaries.

As a related issue, the data management group should perform a publicity function,
informing potential users of what data already exists in the database. Knowing what
data exists might encourage employees to think about how they can use the company’s
data to gain competitive advantages that did not previously exist. They may discover
how to automate more of their work and how to integrate their work more directly
with related business processes that are already automated.

Data’s Competitive Advantage
Earlier, we talked about the idea of data providing a competitive advantage for the
company. Another point is that data administrators, through their knowledge of
the company’s data and how it flows from one company function to another, are in
a unique position to understand how the company “works.” This is especially true
since virtually all company functions today are dependent on information systems.
Combining these two concepts, a very important and very high-profile responsibility
of the data administration function is to respond to questions about how the com-
pany’s business procedures can be adjusted or modified to improve its operating effi-
ciency. This can also extend to data administration taking the initiative and making
suggestions for improvement on its own. This capability, which can clearly lead to
decreased costs and improved profits for the company, makes data administration a
particularly important company function.

The Responsibilities of Database
Administration
Database administration is a technical function that is responsible for the day-to-day
operations and maintenance of the DBMS environment, including such related tools
as the data dictionary. This is quite analogous to the role of the systems programmers
who are responsible for maintaining the mainframe operating systems. Like operating
systems, DBMSs tend to include many highly product-specific features that require
thorough training to handle. What are the responsibilities of the database administra-
tion function? They are listed in Figure 10.3 and explained as follows.

256   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

DBMS Performance Monitoring
One of the key functions performed by database administration is performance
monitoring. Using utility programs, the database administrators can gauge the per-
formance of the running DBMS environment. This activity has a number of implica-
tions. It is important to know how fast the various applications are executing as part
of assuring that response time requirements are being met. Also, this type of perfor-
mance information is pertinent to future hardware and software acquisition plans.
Depending on the characteristics of the DBMS and the operating system it is running
under, the performance information may be used to redistribute the database applica-
tion load among different CPUs or among different memory regions within a system.
Finally, performance information can be used to ferret out inefficient applications or
queries that may be candidates for redesign.

An additional note is that the database administrators must interface with the IS
organization’s systems programming staff, which maintains the mainframe operating
systems. The systems programmers will also have performance and troubleshooting
responsibilities that may overlap with those of the database administrators. The net of
this is that it greatly facilitates matters if the two groups get along well with each other
and can work together effectively as need be.

DBMS Troubleshooting
Inevitably, there will be times when a DBMS application fails during execution. The
reason can range from a bug in the application code to a hardware or system soft-
ware failure. The question is, “Whom do the users call when this happens?” In a
strongly controlled environment, the database administrators should be the trouble-
shooting interface. The key to the troubleshooting operation is assessing what went

•	 DBMS performance monitoring
•	 DBMS troubleshooting
•	 DBMS usage and security monitoring
•	 Data dictionary operations
•	 DBMS data and software maintenance
•	 Database design

FIGURE 10.3  The responsibilities of database administration

10.1  The Data Administrator
There is no doubt that both the amount of data
that companies hold and the importance of this
data to the companies’ bottom lines are contin-
ually increasing. This would seem to make data
administrators more and more important within
their companies. Yet data administration is often

seen as a support function that is a cost to a com-
pany with no clearly quantifiable benefit.

Question:
Develop an argument in favor of dedicating more
resources to data administration even if the bene-
fits cannot be directly quantified.

Your Turn

The Responsibilities of Database Administration    257

wrong and coordinating the appropriate personnel needed to fix it. These may include
server administrators, network administrators, application programmers, and the data
administrators themselves.

DBMS Usage and Security Monitoring
Database administrators keep track of which applications are running in the database
environment and can track who is accessing the data in the database at any moment.
There are software utilities that enable them to perform these functions. Monitoring
the users of the database environment is really done from several perspectives. One is
the issue of security: making sure that only authorized personnel access the data. This
includes instructing the system to allow new users to access the database, as ordered
by data administration personnel in conjunction with the data owners. Another per-
spective is the need to maintain records on the amount of use by various users of the
database. This can have implications for future load balancing and performance opti-
mizing work, and may also be used in allocating system costs among the various users
and applications. And a related concern is database auditing. Even assuming that only
authorized users have accessed the database, accounting and error correction require
that a record be kept of who has accessed and who has modified which data items.
Incidentally, if the data auditing function is to be done, the tool that lets it be accom-
plished is a journal or log similar to the one used for backup and recovery. Depending
on the nature of the auditing, this journal or log may have to record all simple data
accesses, as well as all data modifications.

Data Dictionary Operations
The database administration group is responsible for the operational aspects, as
opposed to the planning aspects, of the data dictionary, to be discussed shortly, and any
other metadata tools. It also provides dictionary access to other personnel such as sys-
tems analysts, generates periodic data dictionary reports as required by management,
and answers management’s ad hoc questions about the data and the IS environment.
For example, systems analysts developing a new application may want to find out if
the data that they need in the new application already exists in the company’s data-
bases. IS management will want periodic reports on the company’s databases, includ-
ing a list of the tables and their sizes. An ad hoc query may include which people had
access to certain data that leaked out of the company! We will discuss this more in the
data dictionary section of this chapter below.

DBMS Data and Software Maintenance
Database administration personnel will be involved with a wide range of data and
software maintenance activities, to a greater or lesser degree depending on how the
IS department is organized. These activities include installing new versions of the
DBMS, installing “fixes” or “patches” (corrections) to the DBMS, performing backup
and recovery operations (as discussed in Chapter 11), and any other tasks related to
repairing or upgrading the DBMS or the database. One particular data maintenance
activity is modifying the database structures as new tables and attributes are inevitably
added. This is really also an issue of database design, which we come to next.

258   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

Database Design
In the mix of centralized and decentralized IS environments that exist today, there is a
wide range in database administration responsibilities for database design. For shared
central databases, database administration is responsible for physical database design
and may also either be responsible for or be a participant in logical database design.
Notice that their responsibility for physical database design is consistent with their
expertise in the features (and idiosyncrasies!) of the DBMS in use and with their over-
all responsibility for the performance of the DBMS environment. For decentralized
databases on LAN servers or even on PCs, database administrators’ role in database
design is often more that of consultants who are called in on request.

Data Dictionaries
Introduction
The information systems function (and within it, the data and database administration
functions) is responsible for managing data as a corporate resource. Not only must
the data be stored but, like any other resource, there have to be provisions for input-
ting more of it, outputting it (in the form of reports, query responses, data transmis-
sions to supply chain partners, etc.), and, most certainly, processing it! To accomplish
all this requires people, equipment (i.e. computers, disks, networks, and so forth)
and established procedures, standards, and policies. The question before us now is,
how does IS management keep track of all of this? But then, how does any corporate
function keep track of their resources and other responsibilities? With information
systems, of course! Does that mean that IS management can keep track of its resources
and responsibilities with information systems? The apparent answer should be yes,
perhaps even obviously yes. But this has been a long and at times difficult road. Do
you know the old story about the shoemaker’s children being the last ones to get shoes,
Figure 10.4? The shoemaker was so busy making shoes for the other children of the
town in order to make a living that his own children were the last ones to get shoes.
And the IS function has been so busy developing and running systems to support all
the other corporate functions that it was a long time before it could invest the resources
to develop information systems to support itself.

10.2  The Database Administrator
Many companies have decentralized their
information systems operations. This can involve
different corporate divisions in one country or dif-
ferent divisions spread throughout several or many
countries. Another circumstance in which this can
happen is when a holding company owns a vari-
ety of independent companies that may or may
not involve the same industry.

Question:
Consider one of these decentralized information
systems environments. Are database administrators
more or less important in these environments than
in a centralized information systems environment?
Why? Should database administration be consid-
ered a cost that can be reduced or eliminated in
such an environment or a critical need that should
be enhanced?

Your Turn

Data Dictionaries    259

What we are talking about here comes under the general term metadata, literally
data about data. What data does an IS function need to manage itself and what kinds
of tools can it employ to store and handle the data? For a long time, the term for such
a metadata storage tool has been the data dictionary, literally a database about data.
More recently, the term data repository has come into vogue. Also, the term data
catalog has taken on certain specific meanings. We will discuss all of these terms and
their implications in the rest of this chapter. But, since the metadata concept can be
hard to grasp at first, let’s begin with a simple but concrete example: part of a data
dictionary.

A Simple Example of Metadata
Figure 10.5 once again shows the General Hardware Company’s relational database.
Recall that among the entities that General Hardware has to keep track of are sales-
persons and customers. Each row of the SALESPERSON table describes one entity,
i.e. one salesperson. Each column of the SALESPERSON table describes one kind of
attribute or feature or fact about a salesperson. Similar statements can be made for the
CUSTOMER table. Why are we belaboring these points this late in the book? To con-
trast them with the tables of a data dictionary. We know that the SALESPERSON and
CUSTOMER tables exist to help the company’s sales function conduct its business.
Today, we take this kind of database support of company functions, as provided by
the company’s information systems, almost for granted. But do all company functions
have database support? Sales, personnel, accounting, finance, product development,
manufacturing, and customer support certainly do. But what about information sys-
tems themselves?

Figure 10.6 shows two of the tables of a simple data dictionary, a database designed
to help the IS function manage its own responsibilities. Again, we know that the
sales function wants to keep track of salespersons and customers. So, what does the
IS function want to keep track of? Two entities that IS must manage are the tables
and attributes in the company’s databases and more broadly in its IS environment. IS
must have a complete list of all of the tables in the company’s databases (at least in
its central, shared databases), plus detailed data about the tables. It also has to track
the attributes that are in the tables. Thus, Figure 10.6 shows a TABLES table and an
ATTRIBUTES table. That’s right, a data dictionary table listing the company’s tables
and a data dictionary table listing the attributes in the company’s tables.

Personnel
Dept.

Manufacturing
Dept.

Accounting
Dept.

Finance
Dept.

Information Systems
Dept.

FIGURE 10.4  The shoemaker’s
children are the last ones
to get shoes

260   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

In the SALESPERSON table, each row represents one of the entities: a salesperson.
In the CUSTOMER table, each row represents a customer. The equivalent in the data
dictionary is that each row of the TABLES table represents one of the tables in the
company’s database and each row of the ATTRIBUTES table represents one of attrib-
utes in the tables in the company’s database. Thus, in this example, we see that each
row of the TABLES table in Figure 10.6 represents one of the tables of General Hard-
ware’s database in Figure 10.5. Also, each row of the ATTRIBUTES table in Figure 10.6
represents one of the attributes in Figure 10.5.

If the sales function has decided that Salesperson Number, Salesperson Name,
Commission Percentage, and Year Of Hire are attributes that it must store for each
salesperson, and Customer Number, Customer Name, Salesperson Number, and HQ
City are attributes that it must store for each customer, what are the attributes for
tables and attributes that IS feels it must store in the data dictionary? Figure 10.6a
shows that the attributes for tables are Table Name, Table Length (number of records),
and Disk Number (the disk on which the table is stored). The attributes for attributes
(yes, that’s correct, think about it!) shown in Figure 10.6b are Attribute Name, Attri-
bute Type, and Attribute Length (in bytes).

SALESPERSON
Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

Office
Number

CUSTOMER
Customer
Number

Customer
Name

Salesperson
Number HQ City

CUSTOMER EMPLOYEE
Customer
Number

Employee
Number

Employee
Name Title

PRODUCT
Product
Number

Product
Name Unit price

SALES
Salesperson
Number

Product
Number Quantity

OFFICE
Office
Number Telephone SizeFIGURE 10.5  The General

Hardware Company
relational database

Data Dictionaries    261

As in any database, in addition to keeping track of the basic facts about the rep-
resented entities, a data dictionary must keep track of the relationships between the
entities. The data dictionary table in Figure 10.7 represents the many-to-many rela-
tionship between the tables and attributes in the data dictionary’s TABLES Table and
ATTRIBUTES Table. Demonstrating the nature of the many-to-many relationship
between tables and attributes, first Figure 10.7 obviously shows that each table has
several attributes. But also notice that the Salesperson Number attribute is associated
with two tables, both the SALESPERSON and CUSTOMER tables (because it is the
primary key of the SALESPERSON table and a foreign key in the CUSTOMER table).

Thus, the tables of Figures 10.6 and 10.7 contain metadata, data about the company’s
data. How is the data organized? What are the data structures called? Where is the data
stored? How much data is there? These questions point to the essence of metadata. Now,
let’s see how it has evolved.

(a) TABLES Table

Table
Name

Table
Length

Disk
Number

Salesperson 500 A23
Customer 6,400 A23
Customer Employee 127,000 A23
Product 83,000 A47
Sales 273,000 A47
Office 600 A47

(b) ATTRIBUTES Table

Attribute
Name

Attribute
Type

Attribute
Length

Salesperson Number Numeric   3
Salesperson Name Alphabetic 20
Commission Percentage Numeric   2
Year of Hire Numeric   4
Customer Number Numeric   4
Customer Name Alphabetic 20
HQ City Alphabetic 15 FIGURE 10.6  Two data

dictionary tables

Table
Name

Attribute
Name

Salesperson Salesperson Number
Salesperson Salesperson Name
Salesperson Commission Percentage
Salesperson Year of Hire
Customer Customer Number
Customer Customer Name
Customer Salesperson Number
Customer HQ City FIGURE 10.7  A data dictionary table representing the many-to-many

relationship between the TABLES Table and the ATTRIBUTES Table

262   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

Passive and Active Data Dictionaries
Definitions and Distinctions  Commercially available data dictionaries, which date
from the late 1970s, are passive in nature. Basically a passive data dictionary is one
used just for documentation purposes. Data about the entities in the IS environment
are entered into the dictionary and cross-referenced as one-to-many and many-to-
many relationships. Requests for information in the forms of reports and queries about
the dictionary’s contents are run as needed. The passive data dictionary is simply a
self-contained database used for documenting the IS environment.

In contrast, an active data dictionary is one that interacts with the IS environ-
ment on a real-time basis. The nature of the interaction can involve input into the
data dictionary, output from it, or both. When a data dictionary is active in terms of
input, an event taking place in the IS environment, such as the creation of a new data-
base table, automatically results in new data (about this event) being input into the
data dictionary. When a data dictionary is active in terms of output, responses from
the dictionary are an integral part of the running of the IS environment. For example,
the data dictionary may contain data about who in the company is authorized to access
particular tables. If the data dictionary must be “consulted” for this data every time
someone tries to access a table, then the data dictionary is considered active in the
output sense.

Entities and Attributes  In the earlier example, we discussed tables and attributes
as two possible data dictionary entities. Figure 10.8 shows a broader range of possibil-
ities. This is not intended to be a complete list that fits the needs of all companies. In
fact, one of the principles of the data dictionary concept is to make the data dictionary
expandable and customizable to a company’s particular needs.

There are two classes of attributes for data dictionary entities: those that are of a
general nature and are likely to apply to any of the entities and those that are specific
to particular data dictionary entities. An example of a general attribute is “Name.”
Most data dictionary entities must have a name or some other identifier. By far most
data dictionary attributes, however, are specific to particular entities. Some examples

•	 Data-Related Entities
▪▪ Databases
▪▪ Tables
▪▪ Attributes
▪▪ Web Pages

•	 Software-Related Entities
▪▪ Application Programs
▪▪ Database Management Systems
▪▪ Jobs

•	 Hardware-Related Entities
▪▪ Computers
▪▪ Disks
▪▪ Local Area Networks

•	 Outputs
▪▪ Reports
▪▪ Queries

•	 People
FIGURE 10.8  Data dictionary sample entities

Data Dictionaries    263

include the Value Range of a numeric attribute, the Length of a record or table row, the
Home Address of a person, the Capacity of a disk, and the Language that a program
is written in.

Relationships  The relationship between almost any pair of data dictionary entities
can have value to IS management. Some examples of common data dictionary rela-
tionships and the entities involved are shown in Figure 10.9. With such relationships
between the dictionary entities, data administration personnel can aid in new software
development, data security and privacy, change management, and do a host of other
IS environment tasks.

Uses and Users  Data dictionaries can be of considerable use to a variety of people
in the corporate environment in general, as well as in the IS environment specifically.
Clearly, the heaviest users of the data dictionary will be IS management and the data
administration and database administration functions under them. The data diction-
ary is fundamentally the database used to store the data about the data and computer
resources that these various people are charged with managing. Whether producing
periodic lists of databases or tables in the IS environment or responding to ad hoc
queries about which personnel had access to leaked data, the data dictionary is the
information resource for IS.

Systems analysts and program designers use the data dictionary in two major ways.
One is as a source of information about what entities, attributes, and so forth already
exist in the IS environment that might be needed in a new application development
effort underway. If the data needed for a new system already exists, then the new appli-
cation may be able to use it. If there are existing database structures that the applica-
tion can add on to in order to satisfy its requirements, then that might yield a large cost
saving. In those and related situations, the dictionary is the repository of data to be
searched. The other use of dictionaries for systems analysts and designers is as a docu-
mentation device for the new information that is generated as a result of their applica-
tion development efforts. In this way, application developers have a natural vehicle for
documentation and the data dictionary has a natural way of being populated with data
concerning new applications.

Corporate employees in all functions and at almost all levels can benefit from the
data dictionary by using it to discover the data available in the company. Exploring
new ways to use the data to improve their own responsibilities will help the company
as a whole. Finally, there is the benefit to corporate management. As we said earlier, it
becomes increasingly important for management to understand the nature of the data
in its systems, which mirrors the workings of the organization, in order to have the
best grasp on how the company functions.

•	 Table (or file) Construction: Which attributes (or fields) appear in which tables (or files).
•	 Security: Which people have access to which databases or tables or files.
•	 Impact of Change: Which programs might be affected by changes to which tables or files. (Note:

This has become much less of an issue due to the data independence of relational databases.)
•	 Physical Residence: Which tables or files are on which disks.
•	 Program Data Requirements: Which programs use which table or files.
•	 Responsibility: Which people are responsible for updating which databases or tables or files. FIGURE 10.9  Data dictionary

sample relationships

264   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

Relational DBMS Catalogs
An integral part of every relational DBMS is its catalog. A relational catalog is a
highly active but limited scope data dictionary that is very closely tied to the operations
of the relational DBMS. Not surprisingly, the relational catalog is itself composed of
relational tables and may be queried with standard SQL commands. Typical database
entity data stored in relational catalogs includes databases, tables, attributes, views,
indexes, users, and disks. At the attribute level, the relational catalog will note such
important facts as which attributes in the database are unique. Notice that all of these
entities are very closely tied to the running of the relational DBMS. Unlike general-
purpose data dictionaries, relational catalogs do not include such entities as reports
and non-relational files.

The main purpose of the relational catalog is to accurately support the relational
query optimizer. As we discussed earlier in the book, when a query is posed to the
relational DBMS, the relational query optimizer tries to find an efficient way or “access
path” to satisfy it. In order to accomplish this, the optimizer must have a source of com-
plete and absolutely accurate data about the database. It must know what attributes are
in the tables, which attributes are indexed, which attributes are unique, and whatever
other data will help it to come up with an efficient solution. It finds all of this data in
the relational catalog. In order to keep the relational catalog absolutely accurate, it must
be highly active in data dictionary terms and must be updated in a mechanical and
automated way. The system can’t take the chance that a human inputting data into the
relational catalog might make a mistake. So, input to the relational catalog is accom-
plished programmatically as changes to the database environment occur. For example,
if the relational DBMS is instructed to create a new table, it does two things. It creates
the new table and it automatically inputs data about the new table into the relational
catalog. This is the only way to assure that the relational catalog will be accurate.

Another use of the relational catalog, which we already spoke about generically
when discussing data dictionaries above, is to provide a “roadmap” through the data-
base data for anyone who wants to query the data or explore new ways to use the data.
The relational DBMS checks the user authorization data in the catalog before it allows
a user to retrieve data he is requesting with a SELECT statement or to update, delete,
or insert records in application tables.

Data Repositories
The latest realization of the metadata concept is known as the data repository. A data
repository is, in effect, a large-scale data dictionary that includes entity types generated
and needed by the latest IS technologies. One popular usage of the term data reposi-
tory is associated with CASE (Computer-Aided Software Engineering) software. In the
CASE environment, the data repository holds the same types of data that traditional
data dictionaries hold, plus CASE-specific data such as reusable code modules. The
term data repository has also been associated with object-oriented database environ-
ments in which OODBMS-specific entity types such as objects are included.

Summary
Data administration and database administration are critical information systems
functions in today’s information-dependent corporate environment. The data has to

Questions    265

be managed as any corporate resource would be. Data and database administration
promote the sharing of data as a corporate resource, efficiency in job specialization
related to data functions, efficiency in the operational management of data, and com-
petence in such related issues as the management of externally acquired databases and
the management of data in decentralized environments.

Data administration is the corporate function that is responsible for data coordi-
nation, data planning, data standards, liaison to systems analysts and programmers,
training, arbitration of disputes and usage authorization, documentation and pub-
licity, and the promotion of data’s competitive advantage. Database administration is
the corporate function responsible for DBMS performance monitoring, DBMS trouble-
shooting, DBMS usage and security monitoring, data dictionary operations, DBMS
data and software maintenance, and database design.

Data dictionaries are databases that store metadata or “data about data.” They can
be active or passive. Important implementations of the metadata concept include rela-
tional DBMS catalogs and data repositories.

Key Terms
Active data dictionary
Arbitration
Data administration
Data analyst
Data coordination
Data dictionary

Data ownership
Data planning
Data repository
Data standards
Database administration
Decentralized environment

Documentation
Job specialization
Metadata
Passive data dictionary
Performance monitoring
Relational catalog

Security monitoring
Troubleshooting
Usage and Security

Monitoring

Questions
  1.	 What is data administration?
  2.	 What is database administration?
  3.	 What are the advantages of having data administration

and database administration departments?
  4.	 Explain and defend the following statement: Data is

a corporate resource and should be managed in the
same manner in which other corporate resources
are managed.

  5.	 Why is it important in terms of efficiency in job spe-
cialization to have data and database administration
specialists?

  6.	 What is the importance in terms of externally acquired
databases of data and database administration?

  7.	 Defend the following statement: Data and database ad-
ministration are even more important in the decentral-
ized IS environment than in the centralized one.

  8.	 List and briefly explain five major responsibilities of
data administration.

  9.	 Why is it important that data administrators perform a
data coordination role?

10.	 What kinds of planning do data administrators have to
do regarding data?

11.	 Defend or refute the following statement: Current IS
technologies and practices make having data standards
more important than ever before.

12.	 In general, what are data administration’s responsibil-
ities to the professional and managerial employees of
the company? Concentrate on training, publicity, and
liaison tasks.

13.	 Why might data administration have to serve as the
arbitrator of disputes?

14.	 List and briefly explain five major responsibilities of
database administration.

15.	 Discuss database administration’s role in performance
monitoring and troubleshooting.

16.	 How do database administration’s responsibilities to the
data dictionary differ from data administration’s?

17.	 Describe the role of database administration in data-
base design and explain why that role makes sense.

18.	 What is metadata?

266   Chapter 10  Data Administration, Database Administration, and Data Dictionaries

19.	 What is a data dictionary?
20.	 Explain in your own words why a data dictionary in

a relational DBMS environment would have a “Ta-
bles table.”

21.	 What is the difference between an active and a passive
data dictionary?

22.	 List some typical data dictionary entities.

23.	 List some typical uses of the data dictionary.
24.	 How does a relational catalog differ from a general-

purpose data dictionary? What is its role in the rela-
tional DBMS environment?

25.	 How does a data repository differ from a general-
purpose data dictionary?

Exercises
  1.	 You have just been named Director of Data Adminis-

tration of General Hardware Co. General Hardware
maintains a large central IS organization with several
operational relational databases at its headquarters.
It also has databases on several local-area network
servers, some located at its headquarters and some in
regional offices. Of course, there are many relational
databases on individual employees’ PCs, too. Certain
data is sent from the central databases to the LAN data-
bases nightly.
You have been given a free hand to create a data
administration department and supporting database
administration departments for General Hardware
and its IS environment. Design your data and database
administration functions. Include their responsibil-
ities and explain how they will add value to the corpo-
ration.

  2.	 Good Reading Bookstores Database.
	 a.	 Create a data dictionary TABLES table and an

ATTRIBUTES table and enter data in them for
Good Reading Bookstores database shown in
Figure 7.21. Your answer should be based on the
format shown in Figure 10.6. Use your judgment as
to attribute type values, length values, etc.

	 b.	 Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

  3.	 Best Airlines Mechanics Database.
	 a.	 Create a data dictionary TABLES table and an

ATTRIBUTES table and enter data in them for Best
Airlines’ mechanics database, shown in Exercise
8.5. Your answer should be based on the format
shown in Figure 10.6. Use your judgment as to
attribute type values, length values, etc.

	 b.	 Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

  1.	 Happy Cruise Lines.
	 a.	 You have just been named Director of Data

Administration of Happy Cruise Lines. Happy
Cruise Lines maintains a central IS organization
with several operational relational databases on
several large servers at its headquarters. Each of
its cruise ships has a medium-scale server on
board with its own databases that help manage
the running of the ship. Real-time transmissions
are made via satellite between headquarters and
the ships that keep both the headquarters and
shipboard databases constantly up to date.

You have been given a free hand to create a
data administration department and supporting

database administration departments for Happy
Cruise Lines and its IS environment. Design your
data and database administration functions.
Include their responsibilities and explain how
they will add value to the corporation.

	 b.	 Create a data dictionary TABLES table and an
ATTRIBUTES table and enter data in them for
Happy Cruise Lines’ database, shown in
Minicase 5.1. Your answer should be based on
the format shown in Figure 10.6. Use your
judgment as to attribute type values, length
values, etc.

	 c.	 Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

Minicases

Exercises    267

  2.	 Super Baseball League.
	 a.	 You have just been named Director of Data

Administration of the Super Baseball League.
The Super Baseball League maintains a
substantially decentralized IS organization with
the focus on the individual teams. Each team
has a server at its stadium or offices near the
stadium. The League has a server at its head-
quarters. Data collected at the team locations,
such as player statistics updates and game
attendance figures, is uploaded nightly to the
server at league headquarters.

You have been given a free hand to create a
data administration department and supporting
database administration departments for the

Super Baseball League and its IS environment.
Design your data and database administration
functions. Include their responsibilities and
explain how they will add value to the
corporation.

	 b.	 Create a data dictionary TABLES table and an
ATTRIBUTES table and enter data in them for
the Super Baseball League database (including
the STADIUM table) shown in Minicase 5.2.
Your answer should be based on the format
shown in Figure 10.6. Use your judgment as to
attribute type values, length values, etc.

	 c.	 Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

268

CHAPTER 11

We’ve said that data is a corporate resource and that corpo-
rate resources must be carefully managed. Different corporate
resources have different management requirements. Money must
be protected from theft. Equipment must be secured against
misuse. Buildings may require security guards. Data, too, is a cor-
porate resource and has its own peculiar concerns that we have
termed database control issues. We will discuss the three main
database control issues in this chapter. The first, data security,
involves protecting the data from theft, malicious destruction,
unauthorized updating, and more. The second, backup and
recovery, refers to having procedures in place to recreate data
that has been lost for any reason. The third, concurrency control,
refers to problems that can occur when two or more transactions
or users attempt to update a piece of data simultaneously. Cer-
tainly, these very important issues require well thought out and
standardized solutions. Indeed, entire books have been written
about each one! Our goal in this chapter is to introduce each of
these topics, discuss why they are important, explain what can go
wrong, and highlight several of the main solutions for each.

Database Control Issues: Security,
Backup and Recovery, Concurrency

OBJECTIVES
List the major data control issues handled by data-

base management systems.
List and describe the types of data security breaches.
List and describe the types of data security measures.
Describe the concept of backup and recovery.
Describe the major backup and recovery techniques.
Explain the problem of disaster recovery.
Describe the concept of concurrency control.
Describe such concurrency control issues and measures

as the lost update problem, locks and deadlock,
and versioning.

CHAPTER OUTLINE
Introduction
Data Security

The Importance of Data Security
Types of Data Security Breaches
Methods of Breaching

Data Security
Types of Data Security Measures

Backup and Recovery
The Importance of Backup

and Recovery
Backup Copies and Journals
Forward Recovery
Backward Recovery
Duplicate or “Mirrored” Databases
The Cloud
Disaster Recovery

Concurrency Control
The Importance of Concurrency

Control
The Lost Update Problem
Locks and Deadlock
Versioning

Summary

Data Security    269

Introduction
In today’s world, not a week goes by without a news story involving data being com-
promised in some way. One week a hacker breaks into a company’s computer and
steals credit-card numbers. The next week someone breaks into the trunk of a parked
car and steals a laptop computer that turns out to have confidential data on its hard
drive. The week after that a hurricane or earthquake causes major damage to some
company’s computer center and a great deal of data is lost. And so on.

With industries of every kind as dependent on their data as they are today, it is criti-
cal that they protect their information systems and the data they contain as carefully
as they can. This involves a wide range of technologies and actions ranging from anti-­
virus software to firewalls to employee training to sophisticated backup and recovery
arrangements, and beyond (all of which we will delve into in this chapter). Companies
invest a great deal of money in these because breaches in computer and data security
can lead to loss of profits, loss of the public’s trust, and lawsuits. All of this has really
become a major issue in information systems today.

Data Security
The Importance of Data Security
With data taking its place as a corporate resource and so much of today’s business
dependent on data and the information systems that process it, good data security is
absolutely critical to every company and organization. A data security breach can dra-
matically affect a company’s ability to continue normal functioning. But even beyond
that, companies have a responsibility to protect data that often affects others beyond
the company itself. Customer data, which, for example, can be financial, medical, or
legal in nature, must be carefully guarded. When customers give a company personal
data they expect the company to be very careful to keep it confidential. Banks must be
sure that the money they hold, now in the form of data, cannot be tampered with or
leaked outside of the bank. Individuals want personal information that insurance com-
panies keep about them to remain confidential. Also, when a company has access to a
trading partner’s data in a supply chain arrangement, the partner company expects its
data to remain secure. Governments, charged with protecting their citizens, must pro-
tect sensitive defense data from unauthorized intrusion. And the list goes on and on.

Types of Data Security Breaches
There are several different ways that data and the information systems that store and
process it can be compromised.

Unauthorized Data Access  Perhaps the most basic kind of data security breach
is unauthorized data access. That is, someone obtains data that they are not autho-
rized to see. This can range from seeing, say, a single record of a database table to
obtaining a copy of an entire table or even an entire database. You can imagine an
evil company wanting to steal a competitor’s customer list or new product plans, the
government of one country wanting to get hold of another country’s defense plans, or
even one person simply wanting to snoop on his neighbor’s bank account. Sometimes

270   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

the stolen data consists of computer passwords or security codes so that data or prop-
erty can be stolen at a later time. And a variety of different people can be involved in
the data theft, including a company’s own employees, a trading partner’s employees,
or complete outsiders. In the case of a company’s own employees, the situation can
be considerably more complicated than that of an outsider breaking in and stealing
data. An employee might have legitimate access to some company data but might take
advantage of his access to the company’s information systems to steal data he is not
authorized to see. Or he might remove data from the company that he is authorized to
see (but not to remove).

Unauthorized Data or Program Modification  Another exposure is unautho-
rized data modification. In this situation, someone changes the value of stored data
that they are not entitled to change. Imagine a bank employee increasing her own
bank account balance or that of a friend or relative. Or consider an administrative
employee in a university changing a student’s grade (or, for that matter, the student
breaking into the university computer to change his own grade!). In more sophisti-
cated cases a person might manage to change one of a company’s programs to modify
data now or at a later time.

Malicious Mischief  The field of reference has to be expanded when discussing
malicious mischief as a data security issue. To begin with, someone can corrupt
or even erase some of a company’s data. As with data theft, this can range from a
single record in a table to an entire table or database. But there is even more to mali-
cious mischief. Data can also be made unusable or unavailable by damaging the
hardware on which it is stored or processed! Thus, in terms of malicious mischief,
the hardware as well as the data has to be protected and this is something that we
will address.

Methods of Breaching Data Security
Methods of breaching data security fall into several broad categories, Figure 11.1. Some
of these require being on a company’s premises while others don’t.

Unauthorized Computer Access  One method of stealing data is gaining unau-
thorized access to a company’s computer and its data. This can be accomplished in a
variety of ways. One is by “hacking” or gaining access from outside the company. Some
hackers are software experts who can exploit faults in a company’s software. Others
use stolen identification names and passwords to enter a computer looking like legiti-
mate users. Indeed, as we suggested earlier, some data thieves actually are legitimate
users: company employees who have authorized access to the company’s computer
system but are intent on stealing data they are authorized to see or breaking into data-
bases for which they do not have access. In all these cases, data is “downloaded” or
copied and used illicitly from then on.

Intercepting Data Communications  Intercepting data communications is the
computer version of the old concept of “wiretapping.” While data may be well pro-
tected in a company’s computers, once it is transmitted outside the company it becomes
subject to being stolen during transmission. Some data transmission media are more
subject to interception than others. Tapping a simple “twisted-pair” telephone line or
a coaxial cable takes skill but is feasible. When data is bounced off satellites it is also

Data Security    271

subject to interception. On the other hand, the light pulses going fiber-optic transmis-
sion lines cannot be tapped.

Stealing Disks or Computers  Can disks or even computers (with data on their
hard drives) be stolen? That would have been difficult years ago when all computers
were mainframes and all disks were very large. But today, it is very possible. Flash
disks and CDs have the potential to be stolen from company offices or, for example,
from hotel rooms in which company employees on travel are staying. Laptop com-
puters can be stolen, too, and many have been taken by organized teams of thieves as
the laptops go through airport security stations. Even desktop computers have been
stolen from company offices.

Computer Viruses  A computer virus is a malicious piece of software that is capa-
ble of copying itself and “spreading” from computer to computer on diskettes and
through telecommunications lines. Strictly speaking, a computer virus doesn’t have
to cause harm, but most are designed to do just that. Computer viruses have been
designed to corrupt data, to scramble system and disk directories that locate files and
database tables, and to wipe out entire disks. Some are designed to copy themselves
so many times that the sheer number of copies clogs computers and data communi-
cations lines. Computer viruses that travel along data communications lines are also
called, “worms.”

Ransomware Attacks  In ransomware attacks, hackers gain access to an infor-
mation systems installation and encrypt all of the data in secondary storage, mak-
ing it unusable. They will only release the encryption key to decrypt the data if a
ransom is paid.

Company OfficesSupply Chain
Partner

Computer

Customer
Computer

“Hacker”
Computer

Computer

Damaging
Hardware

Computer
Virus Database

Stealing Disks
or Computers

Intercepted
Communications

“Unauthorized
Access”

FIGURE 11.1  Data security breaches

272   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

Damaging Computer Hardware  All of the previous methods of breaching data
security have something in common: they’re deliberate. However, this last category,
damaging computer hardware, can be deliberate or accidental. Even when accidental,
the issue of damaging hardware has always been considered to fall into the computer
security realm. Computers and disks can and have been damaged in many ways and
it’s not been a matter of anything “high-tech,” either. They have been damaged or
ruined by fires, coffee spills, hurricanes, and disgruntled or newly fired employees
with hammers or any other hard objects handy. We will discuss security measures for
these problems but, in truth, no security measures for them are foolproof. That’s one
of the reasons that backup and recovery procedures, as discussed later in this chapter,
are so very important.

Types of Data Security Measures
With the critical importance of data and all of the possible threats to data security, it
is not surprising that the information systems industry has responded with an array of
data security measures to protect the data and the hardware on which it is stored and
processed, Figure 11.2.

Physical Security of Company Premises  In the 1950s, some progressive com-
panies in New York and other large cities put their mainframe computers on the
ground floor behind big picture windows so that everyone could see how, well, pro-
gressive they were. Those days are long gone. Today, suppose your company is located
in a skyscraper it shares with other companies. Where do you put your mainframe
computer (or your several LAN servers, which are often placed in the same room for

Company OfficesData
Encryption

Supply Chain
Partner

Computer

Customer
Computer

Firewall
or Proxy

Computer

“Hacker”
Computer

Computer

DatabaseAntivirus
Software

Controlled
Access to
Database

Controlled
Access to
Computer
System

Physical Security
of Company Offices

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

Employee
Training

FIGURE 11.2  Data security measures

Data Security    273

precisely the security reasons we’re talking about?). Here are some rules of thumb,
often learned from hard experience.

•	 Don’t put the computer in the basement because of the possibility of floods.
•	 Don’t put the computer on the ground floor because of the possibility of a truck

driving into the building, accidentally or on purpose. (I know of a company that
had its computer center in a low-rise building adjoining an interstate highway.
They eventually put up concrete barriers outside of the building because they were
concerned about just this possibility.)

•	 Don’t put the computer above the eighth floor because that’s as high as firetruck
ladders can reach.

•	 Don’t put the computer on the top floor of the building because it is subject to
helicopter landing and attack.

•	 If you occupy at least three floors of the building, don’t put the computer on your
topmost floor because its ceiling is another company’s floor, and don’t put the
computer on your bottommost floor because its floor is another company’s ceiling.

•	 Whatever floor you put the computer on, keep it in an interior space away from
the windows.

Another issue is personnel access to the computer room. Obviously, such access
should be limited to people with a legitimate need to be in the room. Access to the
room is controlled by one or a combination of:

•	 Something they know, such as a secret code to be punched in.
•	 Something they have, such as a magnetic stripe card, possibly combined with a

secret code.
•	 Some part of them that can be measured or scanned. These “biometric” systems

can be based on fingerprints, the dimensions and positions of facial features, ret-
inal blood vessel patterns, or voice patterns.

There are also “electric-eye” devices that protect against a second person following
right behind an authorized person into the secure room.

Believe it or not, a critical physical security issue involves the company’s offices and
cubicles. These contain PCs and possibly even LAN servers that contain their own data
and provide access to the company’s larger computers and to other PCs and servers.
Such a simple procedure as locking your office door when you leave it, even for a short
period of time, can be critical to data security. Logging off or going into a password-
protected mode, especially when doorless cubicles are involved, is an alternative.

Of course, if data is stored in the cloud, then security of the physical premises
becomes the cloud vendor’s responsibility.

Controlled Access to the Computer System  What if someone has gained
access to a company’s offices and tries to access the computer system and its database
from a PC or terminal from within? For that matter, what if someone tries to access a
company’s computer by dialing into it or otherwise accessing it through telecommuni-
cations lines from the outside? The first line of defense to prevent unauthorized entry
to a computer system is to set up a combined ID tag/password necessary to get into
the system. ID tags are often publicly known (at least within the company), but pass-
words must be kept secret, should be changed periodically, and should not be written
down, to reduce the risk of someone else learning them. Passwords should not appear
on the terminal screen when they are typed in, and the user should create them him-
self to reduce the chance of forgetting them. There are a variety of rules of thumb

274   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

for creating passwords. They should not be too long or too short, say 6–12 characters.
They should not be obvious, like a person’s own name. They should not be so difficult
to remember that the person herself has to write them down, since this is a security
exposure in itself because someone else could see it.

Controlled Access to the Database  An additional layer of data security con-
trols access to the data itself, once a legitimate user or an outsider has successfully
gained entry to the computer system. This layer involves restricting access to specific
data so that only specific people can retrieve or modify it. Some systems have such
controls in the operating system or in other utility software. Basically, these controls
involve a grid that lists users on one axis and data resources, such as databases or
tables, on another axis, to indicate which users are authorized to retrieve or modify
which data resources. Also, an additional layer of passwords associated with the var-
ious data resources can be introduced. Even after a legitimate user has given his system
password to gain entry to the computer system, these additional passwords would be
needed to gain access to specific data resources.

At the DBMS level, a user should not be able simply to access any data he wants to.
Users have to be given explicit authorization to access data. Relational DBMSs have a
very flexible and effective way of authorizing users to access data that at the same time
serves as an excellent data security feature. We are referring to the combination of the
logical view, or simply the “view” concept, and the SQL GRANT command. With this
combination, users, either individually or in groups (e.g. everyone in the Accounting
Department), can be restricted to accessing only certain database tables or only certain
data within a database table. Furthermore, their access to this data can be restricted
to read-only access or can include the ability to update data or even to insert new or
delete existing rows in the table. The GRANT command is supported by several tables
in the relational catalog.

How do these two features work in combination? First, using the CREATE VIEW
statement, a view of a database table, consisting of a subset of the rows and/or col-
umns, is created and named. This is done with an embedded SELECT statement! (Isn’t
that clever?) The desired rows and/or columns are identified just as if they were being
retrieved, but instead of being retrieved they are given a view name. Then, through
the GRANT command, a user or a group of users is given access to the view, not to the
entire table. In fact, they may not even be aware that there is more to the table than
their subset. They simply use the view name in a SELECT statement for data retrieval
as if it were a table name.

But how is a user given the authority to access data through the use of a view (or
directly using a table name?). That’s where the GRANT command comes in. The gen-
eral form of the GRANT command is:

GRANT privileges ON (view or table) TO users [WITH GRANT
OPTION].

Thus, the database administrator grants the ability to read, update, insert, or delete
(the “privileges”) on a view or a table to a person or group of people (the “users”). If
the WITH GRANT OPTION is included, this person or group can in turn grant other
people access to the same data.

So, to allow a person named Glenn to query the SALESPERSON table by executing
SELECT commands on it, you would issue the command:

GRANT SELECT ON SALESPERSON TO GLENN;

Data Security    275

Data Encryption  So far, all of the data security techniques we’ve covered assume
that someone is trying to “break into” the company’s offices, its computer, or its DBMS.
But data can be stolen in other ways, too. One is through wiretapping or otherwise
intercepting some of the huge amounts of data that is transmitted today through tele-
communications between a company and its trading partners or customers. Another
is by stealing a disk or a laptop computer outside a company’s offices, for example, in
an airport. A solution to this problem is data encryption. When data is encrypted, it
is changed, bit by bit or character by character, into a form that looks totally garbled. It
can and must be reconverted, or decrypted, back to its original form to be of use. Data
may be encrypted as it is sent from the company’s computer out onto telecommunica-
tions lines to protect against its being stolen while in transit. Or the data may actually
be stored in an encrypted form on a disk, say on a diskette or on a laptop’s hard drive,
to protect against data theft if the diskette or laptop is stolen while an employee is
traveling. Of course, highly sensitive data can also be encrypted on a company’s disks
within its mainframe computer systems or servers. This adds a further level of security
if someone breaks into the computer system. Why not then simply encrypt all data
wherever it may be? The downside to encryption is that it takes time to decrypt the
data when you want to use it and to encrypt it when you want to store it, which can
become a performance issue.

Data encryption techniques can range from simple to highly complex. The sim-
pler the scheme, the easier it is for a determined person to figure it out and “break
the code.” The more complex it is, the longer it takes to encrypt and decrypt the data,
although this potential performance problem has been at least partially neutralized by
the introduction of high-performance hardware encryption chips. Encryption gener-
ally involves a data conversion algorithm and a secret key. A very simple alphabetic
encryption scheme is as follows. Number the letters of the alphabet from A to Z as 1
to 26. For each letter in the data to be encrypted, add the secret key (some number in
this case) to the letter’s numeric value and change the letter to the letter represented by
the new number. For example, if the key is 4, an A (value 1) becomes an E (since 1+4
= 5 and E is the fifth letter of the alphabet), a B becomes an F, and so on through the
alphabet. W wraps around back to the beginning of the alphabet and becomes an A, X
becomes a B, and so forth. The recipients must know both the algorithm and the secret
key so that they can work the algorithm in reverse and decrypt the data.

Modern encryption techniques typically encrypt data on a bit-by-bit basis using
increasingly long keys and very complex algorithms. Consider the data communi-
cations case. The two major types of data encryption techniques are symmetric or
“private key” and asymmetric or “public key” encryption. Private key techniques
require the same long bit-by-bit key for encrypting and decrypting the data (hence the
term “symmetric”). But this has an inherent problem. How do you inform the receiver
of the data of the private key without the key itself being compromised en route? If the
key itself is stolen, the intercepted data can be converted once the conversion algo-
rithm is identified. There are only a few major conversion algorithms; the security is in
the key, not in having a great many different conversion algorithms.

The key transmission problem is avoided using algorithms that employ the very
clever public-key technique. Here there are two different keys: the public key, which is
used for encrypting the data, and the private key, which is used for decrypting it (hence
the term “asymmetric”). The public key is not capable of decrypting the data. Thus,
the public key can be published for all the world to see. Anyone wanting to send data
does so in complete safety by encrypting the data using the algorithm and the openly
published public key. Only the legitimate receiver can decrypt the data because only

276   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

the legitimate receiver has the private key that can decrypt the data with the published
public key. The downside of the public-key technique is that encrypting and decrypt-
ing tend to be slower than with the private-key technique, resulting in slower applica-
tion transactions when the public-key technique is used.

A particularly interesting combination of private-key and public-key encryption
is used in Secure Socket Layer (SSL) technology on the World Wide Web. Con-
sider a person at home who wants to buy something from an online store on the Web.
Her PC and its WWW browser are the “client” and the online store’s computer is the
“server.” Both sides want to conduct the secure transaction using private-key technol-
ogy because it’s faster, but they have the problem that one side must pick a private key
and get it to the other side securely. Here are the basic steps in SSL:

1.	 The client contacts the server.
2.	 The server sends the client its public key for its public-key algorithm (you’ll

see why in a moment). No one cares if this public key is stolen since it’s,
well, public!

3.	 The client, using a random number generator, creates a “session key,” the key
for the private key algorithm with which the secure transaction (the actual
online shopping) will be conducted once everything is set up. But, as we’ve
described, the problem now is how the client can securely transmit the session
key it generated to the server, since both must have it to use the faster private-
key algorithm for the actual shopping.

4.	 Now, here is the really clever part of the SSL concept. The client is going to
send the session key to the server, securely, using a public-key algorithm and the
server’s public key. The client encrypts the session key using the server’s public
key and transmits the encrypted session key to the server with the public key
algorithm. It doesn’t matter if someone intercepts this transmission, because
the server is the only entity that has the decrypting private key that goes with
its public key!

5.	 Once the session key has been securely transmitted to the server, both the
client and the server have it and the secure transaction can proceed using the
faster private-key algorithm.

Anti-virus Software  Companies (and individuals!) employ anti-virus software to
combat computer viruses. There are two basic methods used by anti-virus software.
One is based on virus “signatures,” portions of the virus code that are considered to
be unique to it. Vendors of anti-virus software have identified and continue to iden-
tify known computer viruses and maintain an ever-growing, comprehensive list of
their signatures. The anti-virus software contains those signatures and on a real-time
basis can check all messages and other traffic coming into the computer to see if any
known viruses are trying to enter. The software can also, on request, scan disks of
all types to check them for viruses. The other anti-virus method is that the software
constantly monitors the computer environment to watch for requests or commands
for any unusual activity, such as, for example, a command to format a disk, therefore
wiping out all the data on it. The software will typically prevent the command from
executing and will ask the person operating the computer whether she really wants
this command to take place. Only if the operator confirms the request will it take place.

Firewalls  In today’s business world, where supply chain partners communicate
via computers over networks and customers communicate with companies’ Web
sites over the Internet, a tremendous amount of data enters and leaves a company’s

Data Security    277

computers every day over data communications lines. This, unfortunately, opens the
possibility of a malicious person trying to break into a company’s computers through
these legitimate channels. Whether they are trying to steal, destroy, or otherwise harm
the company’s data, they must be stopped. Yet, these data communications channels
must be kept open for legitimate business with the company’s supply chain partners
and customers.

One type of protection that companies use to protect against this problem is the
“firewall.” A firewall is software or a combination of hardware and software that pro-
tects a company’s computer and its data against external attack via data communica-
tions lines. There are several types of firewalls. Some that are purely software-based
involve checking the network address of the incoming message or components of the
content of the message. An interesting firewall that is a combination of hardware and
software is the “proxy server,” shown in Figure 11.3. The idea of the proxy server is
that the message coming from an outside computer does not go directly to the com-
pany’s main computer, say a mainframe computer for the sake of argument. Instead,
it goes to a separate computer, the proxy server or firewall computer. The proxy server
has software that takes apart the incoming message, extracts only those legitimate
pieces of data that are supposed to go to the company’s mainframe, reformats the
data in a form the company’s mainframe is expecting, and finally passes on the refor-
matted data to the company’s main computer. In this way, any extraneous parts of
the incoming message, including any malicious code, never reaches the company’s
main computer.

Extracts
Data
From

Message

Firewall
or Proxy

Computer

Outside
Computer

Company
Mainframe
Computer

or Web Server

Message Data

FIGURE 11.3  A firewall protecting a company’s
computer

11.1  Protecting Your Data
What about protecting your own data on your
own PC? (If you don’t have one, think about
someone you know who does.) Think about the
data you have stored on your PC’s hard drive.
Have you stored personal data such as your Social
Security Number or your birth date? Have you writ-
ten personal letters to people and stored them on
your hard drive before sending them? How about
your bank records? Tax records? Personal medical
information?

Question:
What kinds of personal data do you have on your
PC? Describe the methods you currently use to
protect your PC and its data. If it’s a laptop, what
precautions do you take when carrying it with
you outside your home or dorm? Do you think you
should increase the security in and for your PC? If
so, how would you go about doing it?

Your Turn

278   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

Training Employees  A surprisingly important data security measure is training a
company’s employees in good security practices, many of which are very simple and
yet very important. What should the company tell its employees in terms of good data
security practices? Here are a few samples:

•	 Log off your computer, or at least lock your office door, when you leave your office,
even for just a few minutes.

•	 Don’t write your computer password down anywhere.
•	 Don’t respond to any unusual requests for information about the computer system

(or anything else!) from anyone over the telephone. (People posing as employees of
the company have phoned company personnel and said that they need their pass-
word to check out a problem in the computer system. And this trick has worked!)

•	 Don’t leave flash disks or other storage media lying around your office.
•	 Don’t take flash disks or other storage media out of the building.
•	 Don’t assume that a stranger in the building is there legitimately: always check.

(People have posed as telephone repairpersons to tap a company’s data communi-
cations lines.)

Backup and Recovery
The Importance of Backup and Recovery
Regardless of how sophisticated information systems have become, we have to be pre-
pared to handle a variety of events that can affect or even destroy data in a database.
Trouble can come from something as simple as a legitimate user entering an incor-
rect data value or from something as overwhelming as a fire or some other disaster
destroying an entire computer center and everything in it. Thus the results can range
in consequence from a single inaccurate data value to the destruction of all the instal-
lation’s databases, with many other possibilities in between. In the information sys-
tems business, we have to assume that from time to time something will go wrong
with our data and we have to have the tools available to correct or reconstruct it. These
operations come under the heading of backup and recovery. In this section, we will
take a look at some of the basic backup and recovery techniques.

Backup Copies and Journals
The fundamental ideas in backup and recovery are fairly straightforward in concept
and some have been around for a long time. They begin with two basic but very impor-
tant tasks: backing up the database and maintaining a journal. First, there is backup.
On a regularly scheduled basis, say once per week, a company’s databases must be
“backed up” or copied. The backup copy must be put in a safe place, away from the
original in the computer system. (There have been cases of the copy being kept in
the computer room only to have a fire destroy both the original and the copy.) There
are several possibilities for storing the backup copy. For example, it may be kept in a
fire-proof safe in a nearby company building. Or it may be kept in a bank vault. Often,
during the next back-up cycle, the previous backup copy becomes the “grandfather
copy” and is sent even farther away to a distant state or city for additional security.

The other basic backup and recovery task is maintaining a disk log or journal of all
changes that take place in the data. This includes updates to existing records, insertion

Backup and Recovery    279

of new records, and deletion of existing records. Notice that it does not include the
recording of simple read operations that do not change the stored data in any way.
There are two types of database logs. One, which is variously called a “change log”
or a “before and after image log,” literally records the value of a piece of data just
before it is changed and the value just after it is changed. So, if an employee gets a
raise in salary and the salary attribute value of his personnel record is to be changed
from 15.00 (dollars per hour) to 17.50, the change log identifies the record by its unique
identifier (e.g. its employee number) within its table name, the original salary attribute
value of 15.00, and the new salary attribute value of 17.50. The other type of log, gener-
ally called a “transaction log,” keeps a record of the program that changed the data
and all of the inputs that the program used. A very important point about both kinds
of logs is that a new log is started immediately after the data is backed up (i.e. a backup
copy of the data is made). You’ll see why in a moment.

Now, how are backups and logs used in backup and recovery operations? Actually,
it depends on the reason for the backup and recovery operation and, yes, there is more
than one reason or set of circumstances that require some kind of backup and recovery.

Forward Recovery
First let’s consider a calamity that destroys a disk, or an only slightly lesser calamity
that destroys a database or a particular database table. The disk or the database or the
table has to be recreated and the recovery procedure in this case is called “forward
recovery” or “roll-­forward recovery” (the word “roll” in “roll forward” comes from
the earlier use of tapes to record the logs). Let’s look at this by considering a lost table.
To recreate the lost table, you begin by readying the last backup copy of the table that
was made and readying the log with all of the changes made to the table since the last
backup copy was made. The point is that the last backup copy is, well, a copy of the
table that was lost, which is what you want, except that it doesn’t include the changes
to the data that were made since the backup copy was made. To fix this, a “recovery
program” begins by reading the first log entry that was recorded after the last backup
copy was made. In other words, it looks at the first change that was made to the table
right after the backup copy was made. The recovery program updates the backup copy
of the table with this log entry. Then, having gone back to the beginning of the log, it
continues rolling forward, making every update to the backup copy of the table in the
same order in which they were originally made to the database table itself. When this
process is completed, the lost table has been rebuilt or recovered, Figure 11.4! This pro-
cess can be performed with either a change log or a transaction log. Using the change
log, the “after images” are applied to the backup copy of the database. Using the trans-
action log, the actual programs that updated the database are rerun. This tends to be a
simpler but slower process.

One variation of the forward recovery process when a change log is used is based
on the recognition that several changes may have been made to the same piece of data
since the last backup copy of the table was made. If that’s the case, then only the last of
the changes to the particular piece of data, which after all shows the value of this piece
of data at the time the table was destroyed, needs to be used in updating the database
copy in the roll-forward operation.

If the database environment is a volatile one in which changes are made frequently
and it is common for the same piece of data to be updated several times between
backup operations, then the roll-forward operation as we have described it may be
needlessly inefficient. Instead, it may be worthwhile to sort through the log prior to

280   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

the roll-forward operation to find the last change made to each piece of data that was
updated since the last backup copy was made. Then only those final changes need be
applied to the backup copy in the roll-forward operation.

Backward Recovery
Now let’s consider a different situation. Suppose that in the midst of normal opera-
tion an error is discovered that involves a piece of recently updated data. The cause
might be as simple as human error in keying in a value, or as complicated as a pro-
gram ending abnormally and leaving in the database some, but not all, changes to the
database that it was supposed to make. Why not just correct the incorrect data and
not make a big deal out of it? Because in the interim, other programs may have read
the incorrect data and made use of it, thus compounding the error in other places in
the database.

So the discovered error, and in fact all other changes that were made to the database
since the error was discovered, must be “backed out.” The process is called “backward
recovery” or “rollback.” Essentially, the idea is to start with the database in its current
state (note: backup copies of the database have nothing to do with this procedure) and
with the log positioned at its last entry. Then a recovery program proceeds backwards
through the log, resetting each updated data value in the database to its “before” image,
until it reaches the point where the error was made. Thus the program “undoes” each
transaction in the reverse order (last-in, first-out) from which it was made, Figure 11.5.
Once all the data values in the tainted updates are restored to what they were before
the data error occurred, the transactions that updated them must be rerun. This can
be a manual process or, if a transaction log was maintained as well as a change log, a
program can roll forward through the transaction log, automatically rerunning all of
the transactions from the point at which the data error occurred.

Another note about backward recovery: some systems are capable of automatically
initiating a roll-backward operation to undo the changes made to the database by a
partially completed and then halted or failed transaction. This is called “dynamic
backout.” There are situations in which it is helpful to restore the database to the

Log
(starting with
first change

to the database
after the last
backup copy
was made)

Last
database
backup
copy

Recreated
database

Roll
forward
program

FIGURE 11.4  Forward recovery

Backup and Recovery    281

point at which there is confidence that all changes to the database up to that point are
accurate. Some systems are capable of writing a special record to the log, known as a
“checkpoint,” that specifies this kind of stable state.

Duplicate or “Mirrored” Databases
A backup and recovery technique of a very different nature is known as duplicate or
“mirrored” databases. Two copies of the entire database are maintained and both
are updated simultaneously, Figure 11.6. If one is destroyed, the applications that use
the database can just keep on running with the duplicate database. This is a relatively
expensive proposition, but allows continuous operation in the event of a disk failure,
which may justify the cost for some applications. By the way, this arrangement is of
no help in the case of erroneous data entry (see backward recovery above) because the
erroneous data will be entered in both copies of the database!

The greater the “distance” between the two mirrored copies of the database, the
greater the security. If both are on the same disk (not a good idea!) and the disk fails

Log
(starting with

last change to
the database
and prepared

to read
backward)

Current
database

(with
error
in it)

Corrected
database

Roll
backward
program

FIGURE 11.5  Backward recovery

Database
Copy

2

Database
Copy

1

Database
Application

Computer

Physical separation

FIGURE 11.6  Mirrored databases

282   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

11.2  When Disaster Strikes
Disasters can take many forms and can affect indi-
viduals as well as businesses. A disaster can take
the form of a natural disaster such as a hurricane,
earthquake, or tornado, but it can also take the
form of fire, theft of your PC or laptop, or even a
very damaging computer virus.

Question:
What would be the consequences to you if a disas-
ter struck and you lost all your personal data? What
precautions have you taken to back up your impor-
tant personal data? Do you think you should take
further precautions? If so, what might they be?

Your Turn

or is destroyed, both copies of the database are lost. If the two copies are on different
disks but are in the same room and a fire hits the room, both might be destroyed. If
they are on disks in two different buildings in the same city, that’s much better, but
a natural disaster such as a hurricane could affect both. Thus, some companies have
kept duplicate databases hundreds of miles apart to avoid such natural disasters.

The Cloud
The cloud presents another possibility for backup and recovery. First of all, backup
and recovery of the data becomes the cloud vendor’s responsibility in the same way
that data security is their responsibility. Furthermore, if the option of automatic repli-
cation of data in the cloud is exercised, the data is, in effect, automatically backed up
within the cloud. If a server holding particular data goes down, the same data is avail-
able on at least two other servers.

Disaster Recovery
Speaking of natural disasters, the author lived through Hurricane Andrew in Miami,
FL, in August, 1992 and learned about disaster recovery first-hand! The information
systems of two major companies and a host of smaller ones were knocked out of ser-
vice by this hurricane. Miami companies in buildings with major roof and window
damage actually found fish that the hurricane had lifted out of the ocean and depos-
ited in their computers (I’m not kidding!). They also discovered that when the salt
water from the ocean saturated the ceiling tiles in their offices, wet flakes from the tiles
fell down onto their computer equipment, ruining some of it. A company that thought
that it was keeping its database backup copies in a safe place in another part of the city
didn’t take into account that the roof of the backup site would not stand up to a major
hurricane and lost its backup copies.

As its name implies, disaster recovery involves rebuilding an entire information
system or significant parts of one after a catastrophic natural disaster such as a hur-
ricane, tornado, earthquake, building collapse, or even a major fire. There are several
approaches to prepare for such disasters. They tend to be expensive or complex or

Concurrency Control    283

both, but with today’s critical dependence on information systems, companies that
want to be careful and prepared have little choice. The possibilities include:

•	 Maintain totally mirrored systems (not just databases) in different cities.
•	 Contract with a company that maintains hardware similar to yours so that yours

can be up and running again quickly after a disaster. The companies providing
these so-called “hot sites” make money by contracting their services with many
companies, assuming that they will not all suffer a disaster and need the hot site
at the same time.

•	 Maintain space with electrical connections, air conditioning, etc., into which new
hardware can be moved if need be. These so-called “cold sites” are not nearly as
practical as they once were because of the online nature and mission-critical charac-
ter of today’s information systems. They simply take too long to get up and running.

•	 Make a reciprocal arrangement with another company with hardware similar to
yours to aid each other in case one suffers a disaster. Obviously, the two companies
should be in different industries and must not be competitors!

•	 Build a computer center that is relatively disaster proof. After Hurricane Andrew,
one of the large affected companies in Miami rebuilt their computer center in a
building they started referring to as “the bunker.”

Concurrency Control
The Importance of Concurrency Control
Generally speaking, today’s application systems, and especially those running within
the database environment, assume that many people using these systems will require
access to the same data at the same time. Modern hardware and systems software are
certainly capable of supporting such shared data access. One very common example of
this capability is in airline reservations, where several different reservations clerks, as
well as customers on the Web, may have simultaneous requests for seats on the same
flight. Another example is an industrial or retail inventory application in which several
employees on an assembly line or in an order fulfillment role simultaneously seek to
update the same inventory item.

When concurrent access involves only simple retrieval of data, there is no problem.
But when concurrent access requires data modification, the two or more users attempt-
ing to update the data simultaneously have a rather nasty way of interfering with each
other that doesn’t happen if they are merely performing data retrievals. This is cer-
tainly the case in the airline reservations and inventory examples, since selling seats
on flights and using items in inventory require that the number of seats or inventory
items left be revised downwards; i.e. many of the database accesses involve updates.
The result can be inaccurate data stored in the database!

The Lost Update Problem
Using the airline reservations application as an example, here is what can happen with
simultaneous updates, Figure 11.7. And before we begin the example, bear in mind that
we are not talking about simultaneous updates only at the “microsecond” level. As you
are about to see, the problem can occur when the time spans involved are in seconds
or minutes. Suppose that there are 25 seats left on Acme Airlines flight #345 on March

284   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

12. One day, at 1:45 PM, a reservations clerk, Ms. Brown, is phoned by a customer who
is considering booking four seats on that particular flight. Brown retrieves the record
for the flight from the database, notes that there are 25 seats available, and begins to
discuss the price and other details with her customer. At 1:48 PM, another reserva-
tions clerk, Mr. Green receives a call from another customer with a larger family who
is considering booking six seats on the very same flight. Green retrieves the record
for the flight from the database and notes that there are 25 seats available. At 1:52 PM,
Brown’s customer decides to go ahead and book four seats on the flight. Brown com-
pletes the transaction and four seats are deducted from the number of seats available
on the flight, updating the database record to show that there are now 21 seats avail-
able. Then, at 1:56 PM, Green’s customer decides to book six seats on the flight. Green
completes this transaction and six seats are deducted from the number of seats (25)
that Green thought were available on the flight, leaving the database showing that 19
seats are now available.

So, the record for flight #345 on March 12 now shows that there are 19 seats available.
But shouldn’t it show only 15, since a total of 10 seats were sold? Yes, but the point is that
neither of the clerks knew that the other was in the process of selling seats on the flight
at the same time that the other was. Both Brown and Green started off knowing that
there were 25 seats left. When Brown deducted four seats, for a couple of minutes the
record showed that there were 21 seats left. But then when Green deducted his six, he
was deducting them from the original 25 seats that he saw when he originally retrieved
the record from the database, not from the 21 seats that were left after Brown’s sale.

By the way, you might question the likelihood of two clerks going after the same
record simultaneously in a large airline reservations system. Have you ever tried to
book a reservation on a flight from New York to Miami for Christmas week in the week
before Christmas week? The likelihood of this kind of conflict is very real in the airline
reservations application and in countless other applications of every type imaginable.

Locks and Deadlock
The usual solution to this problem is to introduce what are known as software “locks.”
When a user begins an update operation on a piece of data, the DBMS locks that data.
Any attempt to begin another update operation on that same piece of data will be

Ms. BrownTime

Reads the record
Finds 25 seats left

Deducts 4 seats and
 writes updated record
 indicating 21 seats
 left

Mr. Green

But at this point the record
should show 15 seats left!

Reads the record
Finds 25 seats left

Deducts 6 seats and
 writes updated record
 indicating 19 seats
 left

1:45 PM

1:52 PM

1:48 PM

1:56 PM

FIGURE 11.7  The lost update problem

Concurrency Control    285

blocked or “locked out” until the first update operation is completed and its lock on the
data is released. This effectively prevents the lost-update problem. The level or “granu-
larity” of lockout can vary. Lockout at a high level, for instance at the level of an entire
table, unfortunately prevents much more than that one particular piece of data from
being modified while the update operation is going on, but is a low-overhead solution
since only one lock is needed for the entire table. Lockout at a lower level, the record
level for instance, doesn’t prevent access or updates to the rest of the table, but is a com-
paratively high-overhead solution because every record must have a lock that can be set.

Unfortunately, as so often happens, the introduction of this beneficial device
itself causes other problems that did not previously exist. Follow the next scenario,
Figure 11.8: consider an inventory situation in which clerks must find out if sufficient
quantities of each of two parts, say nuts and bolts, are available to satisfy an order.
If there are enough parts, then the clerks want to take the parts from inventory and
update the quantity remaining values in the database. Each clerk can fill the order only
if enough of both parts are available. Each clerk must access and lock the record for
one of the two parts while accessing the record for the other part. Proceeding with this
scenario, suppose two clerks, Mr. White and Ms. Black, each request a quantity of nuts
and bolts. White happens to list the nuts before the bolts in his query. At 10:15 AM, he
accesses and locks the record for nuts. Ms. Black happens to list the bolts before the
nuts in her query. At 10:16 AM, she accesses and locks the record for bolts. Then, at
10:17 AM, White tries to access the record for bolts but finds it locked by Black. And
10:18 AM, Black tries to access the record for nuts but finds it locked by White. Both
queries then wait endlessly for each other to release what they each need to proceed.
This is called “deadlock” or “the deadly embrace.” It actually bears a close relation-
ship to the “gridlock” traffic problem that major cities worry about during rush hour.

Does the prospect of deadlock mean that locks should not be used? No, because
there are two sorts of techniques for handling deadlock: deadlock prevention and
deadlock detection. Outright deadlock prevention sounds desirable but turns out to be
difficult. Basically, a transaction would have to lock all the data it will need, assuming
it can even figure this out at the beginning of the transaction (often the value of one
piece of data that a program retrieves determines what other data it needs). If the
transaction finds that some of the data it will need is unavailable because another
transaction has it locked, all it can do is release whatever data it has already locked
and start all over again.

Mr. WhiteTime

Gets and locks the
 record for nuts

Tries to get (and lock)
 the record for bolts
 but finds it locked by
 Ms. Black

Ms. Black

DEADLOCK!

Gets and locks the
 record for bolts

Tries to get (and lock)
 the record for nuts
 but finds it locked by
 Mr. White

10:15 A.M.

10:17 A.M.

10:16 A.M.

10:18 A.M.

FIGURE 11.8  Deadlock

286   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

So the usual way to handle deadlock is to let it occur, detect it when it does, and then
abort one of the deadlocked transactions, allowing the other to finish. The one that
was backed out can then be run again. One way to detect deadlock is through a time-
out, meaning that a query has been waiting for so long that the assumption is it must
be deadlocked. Another way to detect deadlock is by maintaining a resource usage
matrix that dynamically keeps track of which transactions or users are waiting for
which pieces of data. Software can continuously monitor this matrix and determine
when deadlock has occurred.

Versioning
There is another way to deal with concurrent updates, known as “versioning,” that
does not involve locks at all. Basically, each transaction is given a copy or “version”
of the data it needs for an update operation, regardless of whether any other transac-
tion is using the same data for an update operation at the same time. Each transaction
records its result in its own copy of the data. Then each transaction tries to update the
actual database with its result. At that point, monitoring software checks for conflicts
between two or more transactions that are trying to update the same data at the same
time. If it finds a conflict, it allows one of the transactions to update the database and
makes the other(s) start over again. The hope is that conflicts will not occur often,
allowing the applications to proceed along more efficiently without the need for locks.

Summary
There are three major technological and methodological subfields of database manage-
ment that involve the protection of data: data security, backup and recovery, and con-
currency control. Data security issues include types of data security breaches, methods
of breaching data security, and types of data security measures, such as anti-virus soft-
ware, firewalls, data encryption, and employee training, among others.

Backup and recovery includes creating backup copies of data and maintaining
journals, procedures such as forward recovery, backward recovery, arrangements
such as duplicate or “mirrored” databases, and the separate but related subfield
of disaster recovery. Concurrency control includes issues such as the lost-update
problem and deadlock and fixes that include locks and versioning.

Key Terms
Anti-virus software
Backup and recovery
Backward recovery
Before and after image log
Biometric systems
Change log
Checkpoint
Cold site
Computer virus
Concurrency control

Data encryption
Data security
Database control issues
Deadlock
Disaster recovery
Duplicate database
Dynamic backout
Firewall
Forward recovery
GRANT

Hot site
Locks
Lost update problem
Mirrored database
Password
Physical security
Private key encryption
Proxy server
Public key encryption
Resource usage matrix

Rollback
Roll forward
Secure Socket Layer (SSL)

technology
Signature
Transaction log
Versioning
Wiretapping

Questions
  1.	 Explain why data security is important.
  2.	 Compare unauthorized data access with unauthorized

data modification. Which do you think is the more seri-
ous issue? Explain.

  3.	 Name and briefly describe three methods of breach-
ing data security. Which do you think is potentially the
most serious? Explain.

  4.	 How does the physical security of company premises
affect data security?

  5.	 How do magnetic stripe cards and fingerprints compare
in terms of physical security protection?

  6.	 Describe the rules for creating a good password.
  7.	 Explain how the combination of views and the SQL

GRANT command limits access to a relational
database.

  8.	 What is data encryption and why is it important to
data security?

  9.	 In your own words, describe how Secure Socket Layer
(SSL) technology works.

10.	 In your own words, describe how a proxy server fire-
wall works.

11.	 Explain why backup and recovery is important.
12.	 What is a journal or log? How is one created?
13.	 Describe the two different problems that forward recov-

ery and backward recovery are designed to handle. Do
mirrored databases address one of these two problems
or yet a third one? Explain.

14.	 In your own words, describe how forward recovery works.
15.	 In your own words, describe how backward recovery

works.
16.	 What is disaster recovery? Can the techniques for

backup and recovery be used for disaster recovery?
17.	 Explain why concurrency control is important.
18.	 What is the lost-update problem?
19.	 What are locks and how are they used to prevent the

lost-update problem?
20.	 What is deadlock and how can it occur?

Exercises
  1.	 A large bank has a headquarters location plus sev-

eral branches in each city in a particular region of
the country. As transactions are conducted at each
branch, they are processed online against a relational
database at headquarters. You have been hired as the
bank’s Director of Data Security. Design a compre-
hensive set of data security measures to protect the
bank’s data.

  2.	 The bank in Exercise 1, which it totally dependent on
its relational database, must be able to keep running
in the event of the failure of any one table on one disk
drive, in the event of a major disaster to its head-
quarters computer, or in the event of any catastrophe
between these two extremes. Describe the range of
techniques and technologies that you would implement
to enable the bank to recover from this wide range
of failures.

  3.	 The Tasty Seafood Restaurant is a large restaurant that
specializes in fresh fish and seafood. Because its rep-
utation for freshness is important to Tasty, it brings in
a certain amount of each type of fish daily and, while
trying to satisfy all of its customers, would rather run
out of a type of fish than carry it over to the next day.
After taking a table’s order, a waiter enters the order
into a touch-screen terminal that is connected to a
computer in the kitchen. The order is sent from the

touch-screen terminal to the computer only after all of
it has been entered.

At 8:00 PM there are 10 servings of salmon, 15
servings of flounder, and eight orders of trout left in
the kitchen. At 8:03 PM, waiter Frank starts entering
an order that includes five servings of salmon, six of
flounder, and four of trout. At the same time, on
another touch-screen terminal, waitress Mary starts
entering an order that includes one serving of salmon,
three of flounder, and two of trout. At 8:05 PM, before
the other two have finished entering their orders,
waitress Tina starts entering an order that includes six
servings of salmon, one of flounder, and five of trout.
Frank finishes entering his order at 8:06 PM, Mary
finishes at 8:07 PM, and Tina finishes at 8:09 PM.

	 a.	 What would the result of all of this be in the
absence of locks?

	 b.	 What would the result be with a locking mecha-
nism in place?

	 c.	 What would happen if versioning was in use?

  4.	 Construct examples of the lost update problem, the use
of locks, deadlock, and versioning for the case of a joint
bank account (i.e. two people with access to the same
bank account).

Exercises    287

288   Chapter 11  Database Control Issues: Security, Backup and Recovery, Concurrency

  1.	 Happy Cruise Lines is headquartered in New York
and in addition has regional offices in the cruise
port cities of Miami, Houston, and Los Angeles.
New York has a large server and several LANs. The
other three sites each have a single LAN with a
smaller server. The company’s four offices communi-
cate with each other via land-based telecommunica-
tions lines. The company’s ships, each of which has
a server on board, communicate with the New York
headquarters via satellite. Also located in New York
is the company’s Web site, through which passengers
and travel agents can book cruises.

	 a.	 Devise a data security strategy for Happy Cruise
Lines that incorporates appropriate data
security measures.

	 b.	 Happy Cruise Line’s main relational database
(see Minicase 5.1), located in New York, is
considered critical to the company’s functioning.
It must be kept up and running as consistently
as possible and it must be quickly recoverable if
something goes wrong. Devise backup and
recovery and disaster recovery strategies for
the company.

	 c.	 A particularly popular Christmas-week cruise is
booking up fast. There are only a few cabins left
and the company wants to be careful to not
“overbook” the cruise. With customers, travel
agents, and the company’s own reservations
agents all accessing the database at the same
time, devise a strategy that will avoid
overbooking.

  2.	 The Super Baseball League maintains a substantially
decentralized IS organization with the focus on the

individual teams. Each team has a server with a
LAN at its stadium or offices near the stadium. The
League has a server with a LAN at its Chicago head-
quarters. The league and each of the teams maintain
a Web site at their locations. People can get general
information about the league at the league’s Web
site; they can get information about the individual
teams as well as buy game tickets through each
team’s Web site. Data collected at the team locations,
such as player statistics updates and game atten-
dance figures, is uploaded nightly to the server at
league headquarters via telephone lines.

	 a.	 Devise a data security strategy for the Super
Baseball League, incorporating appropriate data
security measures.

	 b.	 The Super Baseball League’s main relational
database (see Minicase 5.2), located at its
headquarters in Chicago, is for the most part a
repository of data collected from the teams. The
league wants to keep the headquarters database
up and running, but it is more important to keep
the individual team databases in their stadiums
or offices up and running with as little down-
time as possible. Devise backup and recovery
and disaster recovery strategies for the Super
Baseball League.

	 c.	 Fans can order or buy tickets from the individual
teams over the telephone, through the teams’
Web sites, or in person at the teams’ box offices.
All of this activity takes place simultaneously.
Devise a strategy that will avoid selling a
particular seat for a particular game more
than once.

Minicases

289

CHAPTER 12

The Data Warehouse

Traditionally, most data was created to support applications that
involved current corporate operations: accounting, inventory
management, personnel management, and so forth. As people
began to understand to power of information systems and their
use became more pervasive, other options regarding data began
to develop. For example, companies began to perform sales trend
analyses that required historic sales data. The idea was to predict
future sales and inventory requirements based on past sales history.
Applications such as this led to the realization that there is a great
deal of value in historic data, and that it would be worthwhile to
organize it on a very broad basis. This is the data warehouse.

CHAPTER OUTLINE
Introduction
The Data Warehouse Concept

The Data Is Subject Oriented
The Data Is Integrated
The Data Is Non-Volatile
The Data Is Time Variant
The Data Must Be High Quality
The Data May Be Aggregated
The Data Is Often Denormalized
The Data Is Not Necessarily

Absolutely Current
Types of Data Warehouses

The Enterprise Data
Warehouse % (EDW%)

The Data Mart % (DM%)
Which to Choose: The EDW, the

DM, or Both %?
Designing a Data Warehouse

Introduction
General Hardware Co. Data

Warehouse
Good Reading Bookstores

Data Warehouse
Lucky Rent-A-Car Data

Warehouse
What About a World Music

Association Data Warehouse %?

OBJECTIVES
Compare the data needs of transaction processing

systems with those of decision support systems.
Describe the data warehouse concept and list its

main features.
Compare the enterprise data warehouse with the

data mart.
Design a data warehouse.
Build a data warehouse, including the steps of data

extraction, data cleaning, data transformation,
and data loading.

Describe how to use a data warehouse with online
analytic processing and data mining.

List the types of expertise needed to administer a data
warehouse.

List the challenges in data warehousing.

290   Chapter 12  The Data Warehouse

Introduction
Generally, when we think about information systems, we
think about what are known as operational or “transaction
processing systems” (TPS). These are the everyday applica-
tion systems that support banking and insurance operations,
manage the parts inventory on manufacturing assembly lines,
keep track of airline and hotel reservations, support Web-based
sales, and so on. These are the kinds of application systems that
most people quickly associate with the information systems
field and, indeed, these are the kinds of application systems
that we have used as examples in this book. The databases that
support these application systems must have several things
in common, which we ordinarily take for granted. They must
have up-to-the-moment current data, they must be capable of
providing direct access and very rapid response, and they must
be designed for sharing by large numbers of users.

But the business world has other needs of a very different
nature. These needs generally involve management decision

making and typically require analyzing data that has been accumulated over some
period of time. They often don’t even require the latest, up-to-the-second data! An
example occurs in the retail store business, when management has to decide how
much stock of particular items they should carry in their stores during the October–
December period this year. Management is going to want to check the sales volume
for those items during the same three-month period in each of the last five years. If
airline management is considering adding additional flights between two cities (or
dropping existing flights), they are going to want to analyze lots of accumulated data
about the volume of passenger traffic in their existing flights between those two cities.
If a company is considering expanding its operations into a new geographical region,
management will want to study the demographics of the region’s population and the
amount of competition it will have from other companies, very possibly using data
that it doesn’t currently have but must acquire from outside sources.

In response to such management decision-making needs, there is another class of
application systems, known as “decision support systems” (DSS), that are specif-
ically designed to aid managers in these tasks. The issue for us in this book about
database management is: what kind of database is needed to support a DSS? In the
past, files were developed to support individual applications that we would now clas-
sify as DSS applications. For example, the five-year sales trend analysis for retail stores
described above has been a fairly standard application for a long time and was always
supported by files developed for it alone. But, as DSS activity has mushroomed, along
with the rest of information systems, having separate files for each DSS application is
wasteful, expensive, and inefficient, for several reasons:

•	 Different DSS applications often need the same data, causing duplicate files
to be created for each application. As with any set of redundant files, they are
wasteful of storage space and update time, and they create the potential for
data integrity problems (although, as we will see a little later, data redundancy
in dealing with largely historical data is not as great a concern as it is with
transactional data).

Building a Data Warehouse
Introduction
Data Extraction
Data Cleaning
Data Transformation
Data Loading

Using a Data Warehouse
On-Line Analytic Processing
Data Mining

Administering a Data Warehouse
Challenges in Data Warehousing
Summary

The Data Warehouse Concept    291

1 Inmon, W.H., Building the Data Warehouse, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 1996.

•	 While particular files support particular DSS applications, they tend to be inflexible
and do not support closely related applications that require slightly different data.

•	 Individual files tied to specific DSS applications do nothing to encourage other
people and groups in the company to use the company’s accumulated data to gain
a competitive advantage over the competition.

•	 Even if someone in the company is aware of existing DSS application data that
they could use to their own advantage (really, to the company’s advantage), get-
ting access to it can be difficult because it is “owned” by the application for which
it was created.

When we talked about the advantages of data sharing earlier in this book, the
emphasis was on data in transactional systems. But the factors listed above regarding
data for decision support systems, which in their own way largely parallel the argu-
ments for shared transactional databases, inevitably led to the concept of broad-based,
shared databases for decision support. These DSS databases have come to be known
as “data warehouses.” In this chapter, we will discuss the nature, design, and imple-
mentation of data warehouses. Later in the chapter we will briefly touch upon some
of their key uses.

The Data Warehouse Concept
Informally, a data warehouse is a broad-based, shared database for management
decision making that contains data gathered over time. Imagine that at the end of
every week or month, you take all the company’s sales data for that period and you
append it to (add it to the end of) all of the accumulated sales data that is already in
the data warehouse. Keep on doing this and eventually, you will have several years
of company sales data that you can search and query and perform all sorts of calcu-
lations on.

More formally and in more detail, the classic definition of a data warehouse is that
it is “a subject oriented, integrated, non-volatile, and time variant collection of
data in support of management’s decisions.”1 In addition, the data in the warehouse
must be high quality, may be aggregated, is often denormalized, and is not necessar-
ily absolutely current, Figure 12.1. Let’s take a look at each of these data warehouse
characteristics.

•	 The data is subject oriented
•	 The data is integrated
•	 The data is non-volatile
•	 The data is time variant
•	 The data must be high quality
•	 The data may be aggregated
•	 The data is often denormalized
•	 The data is not necessarily absolutely current

FIGURE 12.1  Characteristics of data warehouse data

292   Chapter 12  The Data Warehouse

The Data Is Subject Oriented
The data in transactional databases tends to be organized according to the compa-
ny’s TPS applications. In a bank, this might mean the applications that handle the
processing of accounts; in a manufacturing company it might include the applications
that communicate with suppliers to maintain the necessary raw materials and parts on
the assembly line; in an airline it might involve the applications that support the res-
ervations process. Data warehouses are organized around “subjects,” really the major
entities of concern in the business environment. Thus, subjects may include sales, cus-
tomers, orders, claims, accounts, employees, and other entities that are central to the
particular company’s business.

The Data Is Integrated
Data about each of the subjects in the data warehouse is typically collected from sev-
eral of the company’s transactional databases, each of which supports one or more
applications having something to do with the particular subject. Some of the data,
such as additional demographic data about the company’s customers, may be acquired
from outside sources. All of the data about a subject must be organized or “integrated”
in such a way as to provide a unified overall picture of all the important details about
the subject over time. Furthermore, while being integrated, the data may have to be
“transformed.” For example, one application’s database tables may measure the com-
pany’s finished products in centimeters while another may measure them in inches.
One may identify countries of the world by name while another may identify them by
a numeric code. One may store customer numbers as an integer field while another
may store them as a character field. In all of these and in a wide variety of other such
cases, the data from these disparate application databases must be transformed into
common measurements, codes, data types, and so forth, as they are integrated into the
data warehouse.

The Data Is Non-Volatile
Transactional data is normally updated on a regular, even frequent basis. Bank bal-
ances, raw materials inventories, airline reservations data are all updated as the bal-
ances, inventories, and number of seats remaining respectively change in the normal
course of daily business. We describe this data as “volatile,” subject to constant change.
The data in the data warehouse is non-volatile. Once data is added to the data ware-
house, it doesn’t change. The sales data for October 2010 is whatever it was. It was
totaled up, added to the data warehouse at the end of October 2010, and that’s that.
It will never change. Changing it would be like going back and rewriting history. The
only way in which the data in the data warehouse is updated is when data for the latest
time period, the time period just ended, is appended to the existing data.

The Data Is Time Variant
Most transactional data is, simply, “current.” A bank balance, an amount of raw
materials inventory, the number of seats left on a flight are all the current, up-to-the-
moment figures. If someone wants to make a withdrawal from his bank account, the
bank doesn’t care what the balance was 10 days ago or 10 hours ago. The bank wants

The Data Warehouse Concept    293

to know what the current balance is. There is no need to associate a date or time with
the bank balance; in effect, the data’s date and time is always now. (To be sure, some
transactional data must include timestamps. A health insurance company may keep
six months of claim data online and such data clearly requires timestamps.) On the
other hand, data warehouse data, with its historical nature, always includes some kind
of a timestamp. If we are storing sales data on a weekly or monthly basis and we have
accumulated 10 years of such historic data, each weekly or monthly sales figure obvi-
ously must be accompanied by a timestamp indicating the week or month (and year!)
that it represents.

The Data Must Be High Quality
Transactional data can actually be somewhat forgiving of at least certain kinds of errors.
In the bank record example, the account balance must be accurate but if there is, say,
a one-letter misspelling of the street name in the account holder’s street address, that
probably will not make a difference. It will not affect the account balance and the post
office will probably still deliver the account statements to the right house. But what if
the customer’s street address is actually spelled correctly in other transactional files?
Consider a section of a data warehouse in which the subject is “customer.” It is crucial
to establish an accurate set of customers for the data warehouse data to be of any use.
But with the address misspelling in one transactional file, when the data from that file
is integrated with the data from the other transactional files, there will be some dif-
ficulty in reconciling whether the two different addresses are the same and both rep-
resent one customer, or whether they actually represent two different customers. This
must be investigated and a decision made on whether the records in the different files
represent one customer or two different customers. It is in this sense that the data in
the data warehouse must be of higher quality than the data in the transactional files.

The Data May Be Aggregated
When the data is copied and integrated from the transactional files into the data ware-
house, it is often aggregated or summarized, for at least three reasons. One is that the
type of data that management requires for decision making is generally summarized
data. When trying to decide how much stock to order for a store for next December
based on the sales data from the last five Decembers, the monthly sales figures are
obviously useful but the individual daily sales figures during those last five Decembers
probably don’t matter much. The second reason for having aggregated data in the
data warehouse is that the sheer volume of all of the historical detail data would often
make the data warehouse unacceptably huge (they tend to be large as it is!). And the
third reason is that if the detail data were stored in the data warehouse, the amount
of time needed to summarize the data for management every time a query was posed
would often be unacceptable. Having said all that, the decision support environment
is so broad that some situations within it do call for detail data and, indeed, some data
warehouses do contain at least some detail data.

The Data Is Often Denormalized
One of the fundamental truths about database we have already encountered is that
data redundancy improves the performance of read-only queries but takes up more

294   Chapter 12  The Data Warehouse

disk space, requires more time to update, and introduces possible data integrity prob-
lems when the data has to be updated. But in the case of the data warehouse, we have
already established that the data is non-volatile. The existing data in the data ware-
house never has to be updated. That makes the data warehouse a horse (or a database)
of a different color! If the company is willing to tolerate the substantial additional
space taken up by the redundant data, it can gain the advantage of the improved query
performance that redundancy provides without paying the penalties of increased
update time and potential data integrity problems because the existing data is histor-
ical and never has to be updated!

The Data Is Not Necessarily Absolutely Current
This is really a consequence of the kind of typical time schedule for loading new data
into the data warehouse and was implied in “The Data is Time Variant” item above.
Say that you load the week-just-ended sales data into the data warehouse every Friday.
The following Wednesday, a manager queries the data warehouse for help in making
a decision. The data in the data warehouse is not “current” in the sense that sales data
from last Saturday through today, Wednesday, is not included in the data warehouse.
The question is, does this matter? The answer is, probably not! For example, the man-
ager may have been performing a five-year sales trend analysis. When you’re looking
at the last five years of data, including or omitting the last five days of data will prob-
ably not make a difference.

Types of Data Warehouses
Thus far, we have been using the term “data warehouse” in a generic sense. But,
while there are some further variations and refinements, there are basically two
kinds of data warehouses. One is called an enterprise data warehouse (EDW), the
other is called a data mart (DM), Figure 12.2. They are distinguished by two factors:
their size and the portion of the company that they service (which tend to go hand in
hand), and the manner in which they are created and new data is appended (which
are also related).

The Enterprise Data Warehouse (EDW)
The enterprise data warehouse is a large-scale data warehouse that incorporates
the data of an entire company or of a major division, site, or activity of a company.
Both Smith & Nephew and Hilton Hotels employ such large-scale data warehouses.
Depending on its nature, the data in the EDW is drawn from a variety of the com-
pany’s transactional databases as well as from externally acquired data, requiring a
major data integration effort. In data warehouse terminology, a full-scale EDW is built
around several different subjects. The large mass of integrated data in the EDW is
designed to support a wide variety of DSS applications and to serve as a data resource
with which company managers can explore new ways of using the company’s data to
its advantage. Many EDWs restrict the degree of denormalization because of the sheer
volumes of data that large-scale denormalization would produce.

Types of Data Warehouses    295

The Data Mart (DM)
A data mart is a small-scale data warehouse that is designed to support a small part of
an organization, say a department or a related group of departments. As we saw, Hil-
ton Hotels copies data from its data warehouse into a data mart for marketing query
purposes. A company will often have several DMs. DMs are based on a limited number
of subjects (possibly one) and are constructed from a limited number of transactional
databases. They focus on the business of a department or group of departments and
thus tend to support a limited number and scope of DSS applications. Because of the
DM’s smaller initial size, there is more freedom to denormalize the data. Managerially,
the department manager may feel that she has more control with a local DM and a
greater ability to customize it to the department’s needs.

Which to Choose: The EDW, the DM, or Both?
Should a company have an EDW, multiple DMs, or both? This is the kind of deci-
sion that might result from careful planning, or it might simply evolve as a matter
of management style or even just happenstance. Certainly, there are companies that
have very deliberately and with careful planning decided to invest in developing an
EDW. There are also companies that have made a conscious decision to develop a
series of DMs instead of an EDW. In other situations, there was no careful planning,
at all. There have been situations in managerially decentralized companies in which

Data
Mart

Departments

The Corporation

Accounting

Data
Mart

Finance

Data
Mart

Development

Data
Mart

Production

Enterprise
Data

Warehouse

FIGURE 12.2  The enterprise data warehouse and data marts

296   Chapter 12  The Data Warehouse

individual managers decided to develop DMs in their own departments. At times, DMs
have evolved from the interests of technical people in user departments.

In companies that have both an EDW and DMs, there are the questions of
“Which came first?” and “Were they developed independently or derived from
each other?” This can go either way. In regard to data warehousing, the term, “top-
down development” implies that the EDW was created first and then later data was
extracted from an EDW to create one or more DMs, initially and on an ongoing
basis. Assuming that the company has made the decision to invest in an EDW, this
can make a great deal of sense. For example, once the data has been scrutinized and
its quality improved (see “data cleaning” below) as it was entered into the EDW,
downloading portions of it to DMs retains the high quality without putting the bur-
den for this effort on the department developing the DM. Development in the other
direction is possible, too. A company that has deliberately or as a matter of circum-
stance developed a series of independent DMs may decide, in a “bottom-up devel-
opment” fashion, to build an EDW out of the existing DMs. Clearly, this would have
to involve a round of integration and transformation beyond those that took place
in creating the individual DMs.

Designing a Data Warehouse
Introduction
As data warehousing has become a broad topic with many variations in use, it comes
as no surprise that there are a variety of ways to design data warehouses. Two of the
characteristics of data warehouses are central to any such design: the subject orienta-
tion and the historic nature of the data. That is, the data warehouse (or each major
part of the data warehouse) will be built around a subject and have a temporal (time)
component to it. Data warehouses are often called multidimensional databases
because each occurrence of the subject is referenced by an occurrence of each of sev-
eral dimensions or characteristics of the subject, one of which is time. For example,
in a hospital patient tracking and billing system, the subject might be charges and
dimensions might include patient, date, procedure, and doctor. When there are just
two dimensions, for example, the charges for a particular patient on a particular date,
they can easily be visualized on a flat piece of paper, Figure 12.3. When there are three
dimensions, for example, the charges for a particular procedure performed on a par-
ticular patient on a particular date, they can be represented as a cube and still drawn
on paper, Figure 12.4. When there are four (or more) dimensions, say the charges for a
particular procedure ordered by a particular doctor performed on a particular patient
on a particular date, it takes some imagination (although there are techniques for
combining dimensions that bring the visual representation back down to two or three
dimensions). There are data warehouse products on the market that have special-
purpose data structures to store such multidimensional data. But there is also much
interest in storing such data in relational databases. A way to store multidimensional
data in a relational database structure is with a model known as the star schema.
The name comes from the visual design in which the subject is in the middle and the
dimensions radiate outward like the rays of a star. As noted earlier, Smith & Nephew
employs the star schema design for its data warehouse, as does Hilton Hotels for at
least part of its data warehouse environment.

Designing a Data Warehouse    297

J.
 S

m
ith

$1,230

195

250

F.
 J

on
es

C
. C

ha
se

P.
 A

da
m

s

R
. B

ra
dl

ey

Oct. 10

Oct. 11

Oct. 12

Oct. 13

Oct. 14

Oct. 15

Oct. 16

570

2,450

1,775

5,890

2,300

855

Patient

Total charges
for patient
F. Jones on
Oct. 11

D
at

e

• • •

•
•
•

FIGURE 12.3  Hospital patient tracking and billing
system data with two dimensions

J.
 S

m
ith

F
. J

on
es

C
. C

ha
se

P
. A

da
m

s

R
. B

ra
dl

ey

Oct. 10

Oct. 11

Oct. 12

Oct. 13

Oct. 14

Oct. 15

Oct. 16

$800
X-Ray

Blood

Transfusion

Heart

Transplant

Tonsillectom
y

Patient

D
at

e

Pro
ce

du
re

Charges for patient
F. Jones’ blood transfustion
on Oct. 11

FIGURE 12.4  Hospital patient tracking and
billing system data with three dimensions

298   Chapter 12  The Data Warehouse

General Hardware Co. Data Warehouse
Figure 12.5 repeats the General Hardware relational database and Figure 12.6 shows
a star schema for the General Hardware Co., with SALE as the subject. Star schemas
have a “fact table,” which represents the data warehouse “subject,” and several “dimen-
sion tables.” In Figure 12.6, SALE is the fact table and SALESPERSON, PRODUCT, and
TIME PERIOD are the dimension tables. The dimension tables will let the data in the
fact table be studied from many different points of view. Notice that there is a one-
to-many relationship between each dimension table entity and the fact table entity.
Furthermore, the “one side” of the relationship is always the dimension table and the
“many side” of the relationship is always the fact table. For a particular salesperson
there are many sales records, but each sales record is associated with only one sales-
person. The same is true of products and time periods.

To begin to understand this concept and see it come to life, refer back to the SALES
table in Figure 12.5, in which General Hardware keeps track of how many units of each
product each salesperson has sold in the most recent time period, say in the last week.
But what if we want to record and keep track of the sales for the most recent week,
and the week before that, and the week before that, and so on going back perhaps 5 or
10 years? That is a description of a data warehouse. The SALE table in the star schema

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

Office
Number

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number HQ City

CUSTOMER EMPLOYEE

Customer
Number

Employee
Number

Employee
Name Title

PRODUCT

Product
Number

Product
Name Unit Price

SALES

Salesperson
Number

Product
Number Quantity

OFFICE

Office
Number Telephone SizeFIGURE 12.5  The General

Hardware Company
relational database

Designing a Data Warehouse    299

of Figure 12.6 also reflects General Hardware’s sales by salesperson and product but
with a new element added: time. This table records the quantity of each product that
each salesperson sold in each time period stored.

The SALE table in Figure 12.6 has to have a primary key, like any relational table.
As shown in the figure, its primary key is the combination of the Salesperson Number,
Product Number, and Time Period Number attributes. But each of those attributes
also serves as a foreign key. Each one leads to one of the dimension tables, as shown
in Figure 12.6. Some historic data can be obtained from the fact table alone. Using
the SALE table, alone, for example, we could find the total number of units of a par-
ticular product that a particular salesperson has sold for as long as the historical sales
records have been kept, assuming we know both the product’s product number and
the salesperson’s salesperson number. We would simply add the Quantity values in all
of the SALE records for that salesperson and product. But the dimension tables pro-
vide, well, a whole new dimension! For example, focusing in on the TIME PERIOD’s
Year attribute and taking advantage of this table’s foreign key connection to the SALE
table, we could refine the search to find the total number of units of a particular
product that a particular salesperson sold in a particular single year or in a particu-
lar range of years. Or, focusing on the PRODUCT table’s Unit Price attribute and
the TIME PERIOD table’s Year attribute, we could find the total number of units of
expensive (unit price greater than some amount) products that each salesperson sold
in a particular year. To make this even more concrete, suppose that we want to decide
which of our salespersons who currently are compensated at the 10% commission

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

SALESPERSON

Product
Number

Product
Name

Unit Price

PRODUCT

Salesperson
Number

Product
Number

Time Period
Number

Quantity

SALE

Time Period
Number

Year

Quarter

Month

Week

TIME PERIOD

FIGURE 12.6  General Hardware Company data
warehouse star schema design

300   Chapter 12  The Data Warehouse

level should receive an award based on their sales of expensive products over the last
three years. We could sum the quantity values of the SALE table records by grouping
them based on an attribute value of 10 in the Commission Percentage attribute of the
SALESPERSON table, an attribute value greater than 50 (dollars) in the Unit Price
attribute of the PRODUCT table, and a Year attribute representing each of the last
three years in the TIME PERIOD table. The different combinations and possibilities
are almost endless.

Figure 12.7 shows some sample data for General Hardware’s star schema data ware-
house. The fact table, SALE, is on the left and the three dimension tables are on the
right. The rows shown in the SALE table are numbered on the left just for convenience
in discussion. Look at the TIME PERIOD table in Figure 12.7. First of all, it is clear from
the TIME PERIOD table that a decision was made to store data by the week and not
by any smaller unit, such as the day. In this case, even if the data in the transactional
database is being accumulated daily, it will be aggregated into weekly data in the data
warehouse. Notice that the data warehouse began in the first week of the first month
of the first quarter of 1997 and that this week was given the Time Period Number value
of 001. The week after that was given the Time Period Number value of 002, and so
on to the latest week stored. Now, look at the SALE table. Row 10 indicates that sales-
person 137 sold 59 units of product 24013 during time period 103, which according to
the TIME PERIOD table was the second week of the third month of the fourth quarter
of 1998 (i.e. the second week of December, 1998). Row 17 of the SALE table shows that
salesperson 204 sold 44 units of product 16386 during time period 331, which was the
third week of May, 2003. Overall, as you look at the SALE table from row 1 down to row
20, you can see the historic nature of the data and the steady, forward time progression
as the Time Period Number attribute starts with time period 001 in the first couple of
records and steadily increases to time period 331 in the last batch of records.

Good Reading Bookstores Data Warehouse
Does Good Reading Bookstores need a data warehouse? Actually, this is a very good
question, the answer to which is going to demonstrate a couple of important points
about data warehouses. At first glance, the answer to the question seems to be: maybe
not! After all, the sales data in Good Reading’s transactional database already carries
a date attribute, as shown in the SALE table of Figure 5.16. Thus, it looks like Good
Reading’s transactional database is already historical! But Good Reading does need
a data warehouse for two reasons. One is that, while Good Reading’s transactional
database performs acceptably with perhaps the last couple of months of data in it, its
performance would become unacceptable if we tried to keep 10 years of data in it. The
other reason is that the kinds of management decision making that require long-term
historical sales data do not require daily data. Data aggregated to the week level is just
fine for Good Reading’s decision making purposes and storing the data on a weekly
basis saves a lot of time over retrieving and adding up much more data to answer every
query on data stored at the day level.

Figure 12.8 shows the Good Reading Bookstores data warehouse star schema
design. The fact table is SALE and each of its records indicates how many of a par-
ticular book a particular customer bought in a particular week (here again week is the
lowest-level time period) and the price that the customer paid per book. For this to
make sense, there must be a company rule that the price of a book cannot change in
the middle of a week, since each SALE table row has space to store only one price to

Designing a Data Warehouse    301

SALESPERSON

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year
of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

PRODUCT

Product
Number

Product
Name

Unit
Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

TIME PERIOD

Time
Period
Number Year Quarter Month Week

001 1997 1 1 1

002 1997 1 1 2

003 1997 1 1 3

. . .

101 1998 4 3 1

102 1998 4 3 2

103 1998 4 3 3

104 1998 4 3 4

. . .

329 2003 2 2 1

330 2003 2 2 2

331 2003 2 2 3 FIGURE 12.7  General
Hardware Company data
warehouse sample data

(continues)

302   Chapter 12  The Data Warehouse

SALE

Salesperson
Number

Product
Number

Time Period
Number Quantity

1 137 16386 001   57

2 137 24013 001 129

3 137 16386 002   24

4 137 24013 002   30
. . .

5 137 16386 102   85

6 137 24013 102   36

7 204 16386 102 111

8 204 24013 102   44
. . .

9 137 16386 103   47

10 137 24013 103   59

11 204 16386 103   13

12 204 24013 103 106
. . .

13 137 16386 331   63

14 137 24013 331   30

15 186 16386 331   25

16 186 24013 331   16

17 204 16386 331   44

18 204 24013 331 107

19 361 16386 331   18

20 361 24013 331   59

go with the total quantity of that book purchased by that customer during that week.
The design in Figure 12.8 also has a feature that makes it a “snowflake” design: one
of the dimension tables, BOOK, leads to yet another dimension table, PUBLISHER.
Consistent with the rest of the star schema, the snowflake relationship is one-to-many,
“inward” toward the center of the star. A publisher publishes many books but a book
is associated with only one publisher.

To help in deciding how many copies of Moby Dick to order for its stores in Florida
during the upcoming Christmas season, Good Reading could check how many copies
of Moby Dick were purchased in Florida during each of the last five Decembers. This
query would require the Book Name attribute of the BOOK table, the State and Coun-
try attributes of the CUSTOMER table, and the Year and Month attributes of the TIME
PERIOD table. To help in deciding whether to open more stores in Dallas, TX, Good

FIGURE 12.7  (Continued)
General Hardware Company
data warehouse sample data

Designing a Data Warehouse    303

Reading could sum the total number of all books purchased in all their existing Dal-
las stores during each of the last five years. The snowflake feature expands the range
of query possibilities even further. Using the Country attribute of the PUBLISHER
table, the State and Country attributes of the CUSTOMER table, and the Quarter and
Year attributes of the TIME PERIOD table, they could find the total number of books
published in Brazil that were purchased by customers in California during the second
quarter of 2009.

Lucky Rent-A-Car Data Warehouse
Like Good Reading Bookstores’ transactional database, Lucky Rent-A-Car’s transactional
database (Figure 5.18) already carries a date attribute (two, in fact) in its RENTAL table.
The reasoning for creating a data warehouse for Lucky is based on the same argument
that we examined for Good Reading, that its transactional database would bog down
under the weight of all the data if we tried to store 10 years or more of rental history
data in it. Interestingly, in the Lucky case, the data warehouse should still store the

Publisher
Name

City

Country

Telephone

Year Founded

PUBLISHER

Book
Number

Book
Name

Publication
Year

Pages

Publisher
Name

BOOK

Book
Number

Customer
Number

Time Period
Number

Price

Quantity

SALE

Time Period
Number

Year

Quarter

Month

Week

TIME PERIOD

Customer
Number

Customer
Name

Street

City

State

Country

CUSTOMER

FIGURE 12.8  Good Reading Bookstores data warehouse star schema design with snowflake feature

304   Chapter 12  The Data Warehouse

data down to the day level (resulting in a huge data warehouse). Why? In the rental car
business, it is important to be able to check historically whether, for example, more
cars were rented on Saturdays over a given time period than on Tuesdays.

Figure 12.9 shows the Lucky Rent-A-Car data warehouse star schema design. The
fact table is RENTAL. In this case, as implied above, the fact table does not contain
aggregated data. Every car rental transaction is recorded for posterity in the data
warehouse. Notice that this data warehouse has a snowflake feature since the CAR
dimension table is connected outwards to the MANUFACTURER table. The query
possibilities in this data warehouse are very rich. Lucky could ask how many mid-size
(the CAR table’s Class attribute) General Motors cars were rented on July weekends
in each of the last five years. To find who some of their most valuable customers are
for marketing purposes, Lucky could identify the customers (and create a name and
address list for them) who rented full-size cars at least three times for at least a week
each time during the winter months of each of the last three years. Or, using the Man-
ufacturer Country attribute of the MANUFACTURER table in the snowflake, they
could find the amount of revenue (based on the RENTAL table’s Cost attribute) that
they generated by renting Japanese cars during the summer vacation period in each of
the last eight years.

Manufacturer
Name

Manufacturer
Country

Sales Rep
Name

Sales Rep
Telephone

MANUFACTURER

Car Serial
Number

Model

Year

Class

Manufacturer
Name

CAR

Car Serial
Number

Customer
Number

Rental Date
(Time Period
Number)

Return Date
(Time Period
Number)

Cost

RENTAL

Time Period
Number

Year

Quarter

Month

Week

Day

TIME PERIOD

Customer
Number

Customer
Name

Customer
Address

Customer
Telephone

CUSTOMER

FIGURE 12.9  Lucky Rent-A-Car data warehouse star schema design with snowflake feature

Building a Data Warehouse    305

What About a World Music Association Data Warehouse?
Did you notice that we haven’t talked about a data warehouse for the World Music
Association (WMA), whose transactional database is shown in Figure 5.17? If there
were to be such a data warehouse, its most likely subject would be RECORDING, as
the essence of WMA’s business is to keep track of different recordings made of different
compositions by various orchestras. There is already a Year attribute in the RECORD-
ING table of Figure 5.17. In this sense, the main data of the World Music Association’s
transactional database is already “timestamped,” just like Good Reading Bookstores’
and Lucky Rent-A-Car’s data. We gave reasons for creating data warehouses for Good
Reading and for Lucky, so what about WMA? First, the essence of the WMA data is
historical. We might be just as interested in a recording made 50 years ago as one
made last year. Second, by its nature, the amount of data in a WMA-type transactional
database is much smaller than the amount of data in a Good Reading or Lucky-type
transactional database. The latter two transactional databases contain daily sales
records in high-volume businesses. Even on a worldwide basis, the number of record-
ings orchestras make is much smaller in comparison. So, the conclusion is that, since
the nature of the WMA transactional database blurs with what a WMA data ware-
house would look like and the amount of (historical) data in the WMA transactional
database is manageable, there is no need for a WMA data warehouse.

Building a Data Warehouse
Introduction
Once the data warehouse has been designed, there are four steps in actually building
it. As shown in Figure 12.10, these are:

•	 Data Extraction
•	 Data Cleaning
•	 Data Transformation
•	 Data Loading

Let’s take a look at each of these steps.

12.1  Designing a University Data Warehouse
Universities create a great deal of data. There is
data about students, data about professors, data
about courses, data about administrative units
such as academic department, data about the
physical plant, and accounting data, just as in any
business operation. Some of the data is current,
such as the students enrolled in particular courses

in the current semester. But it may be useful to
maintain some of the data on a historical basis.

Question:
Think about what data a university might want to
maintain on a historical basis. Design a data ware-
house for this historical data. You may focus on stu-
dents as the subject of the data warehouse or any
other entity that you wish.

Your Turn

306   Chapter 12  The Data Warehouse

Data Extraction
Data extraction is the process of copying data from the transactional databases in prep-
aration for loading it into the data warehouse. There are several important points to
remember about this. One is that it is not a one-time event. Obviously, there must
be an initial extraction of data from the transactional databases when the data ware-
house is first built, but after that it will be an ongoing process, performed at regular
intervals, perhaps daily, weekly, or monthly, when the latest day’s, week’s, or month’s
transactional data is added to the data warehouse. Another point is that the data is
likely to come from several transactional databases. Specific data (that means not nec-
essarily all of the data) in each transactional database is copied and merged to form
the data warehouse. There are pitfalls along the way that must be dealt with, such
as, for example, that the employee serial number attribute may be called, “Employee
Number” in one transactional database and “Serial Number” in another. Or, looking
at it another way, the attribute name “Serial Number” may mean “Employee Serial
Number” in one database and “Finished Goods Serial Number” in another.

Some of the data entering into this process may come from outside of the com-
pany. For example, there are companies whose business is to sell demographic data
about people to companies that want to use it for marketing purposes. This process
is known as data enrichment. Figure 12.11 shows enrichment data added to Lucky

Transactional
Databases

Data Loading

Data Extraction

Data Warehouse Data Transformation

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

Data Cleaning

FIGURE 12.10  The four steps in building a data
warehouse

Building a Data Warehouse    307

Rent-A-Car’s data warehouse CUSTOMER dimension table from Figure 12.9. Notice
that in the data enrichment process, age, income, and education data are added, pre-
sumably from some outside data source. Lucky might use this data to try to market the
rental of particular kinds of cars to customers who fall into certain demographic cate-
gories. We will talk more about this later in the section on data mining.

Data Cleaning
Transactional data can contain all kinds of errors that may or may not affect the appli-
cations that use it. For example, if a customer’s name is misspelled but the Post Office
can correctly figure out to whom to deliver something, no one may ever bother to fix

Manufacturer
Name

Manufacturer
Country

Sales Rep
Name

Sales Rep
Telephone

MANUFACTURER

Car Serial
Number

Model

Year

Class

Manufacturer
Name

CAR

Car Serial
Number

Customer
Number

Rental Date
(Time Period
Number)

Return Date
(Time Period
Number)

Cost

RENTAL

Time Period
Number

Year

Quarter

Month

Week

Day

TIME PERIOD

Customer
Number

Customer
Name

Customer
Address

Customer
Telephone

Age

Income

Education

CUSTOMER

FIGURE 12.11  Lucky Rent-A-Car data warehouse design with enrichment data added to the CUSTOMER table

308   Chapter 12  The Data Warehouse

the error in the company’s customer table. On the other hand, if a billing amount is
much too high, the assumption is that the customer will notice it and demand that it be
corrected. Data warehouses are very sensitive to data errors and as many such errors as
possible must be “cleaned” (the process is also referred to as “cleansed” or “scrubbed”)
as the data is loaded into the data warehouse. The point is that if data errors make it
into the data warehouse, they can throw off the totals and statistics generated by the
queries that are designed to support management decision making, compromising the
value of the data warehouse.

There are two steps to cleaning transactional data in preparation for loading it into a
data warehouse. The first step is to identify the problem data and the second step is to
fix it. Identifying the problem data is generally a job for a program, since having people
scrutinize the large volumes of data typical today would simply take too long. Fix-
ing the identified problems can be handled by sophisticated artificial intelligence pro-
grams or by creating exception reports for employees to scrutinize. Figure 12.12 shows
sample data from two of Good Reading Bookstores’ transactional database tables (see
Figure 5.16). (The row numbers on the left are solely for reference purposes in this
discussion.) Each table has several errors that would have to be corrected as the data
is copied, integrated, and aggregated into a data warehouse. Some of the errors shown
may be less likely than others actually to turn up in today’s more sophisticated applica-
tion environment, but as a group they make the point that there are lots of potential
data hazards out there.

There are four errors or possible errors in the CUSTOMER table, Figure 12.12a:

•	 Missing Data: In row 1, the City attribute is blank. It’s possible that a program
could check an online “white pages” listing of Tennessee (State=“TN” in row 1),
look for a Mervis at 123 Oak St., and in that way discover the city and automatically
insert it as the City value in row 1. But it should also be clear that this type of error
could occur in data for which there is no online source of data for cross checking.
In that case, the error may have to be printed in an error report for an employee
to look at.

•	 Questionable Data: Rows 2 and 6, each of which has a different customer
number, both involve customers named Gomez who live at 345 Main Ave., Colum-
bus, USA. But one city is Columbus, Ohio (“OH”) and the other is Columbus,
Georgia (“GA”), each of which is a valid city/state combination. So the question is
whether these are really two different people who happen to have the same name
and street address in two different cities named Columbus, or whether they are the
same person (if so, one of the state designations is wrong and there should only be
one customer number).

•	 Possible Misspelling: Rows 3 and 8 have different customer numbers but are
otherwise identical except for a one-letter difference in the customer name,
“Taylor” vs. “Tailor.” Do both rows refer to the same person? For the sake of
argument, say that an online white pages is not available but a real estate list-
ing indicating which addresses are single-family houses and which are apartment
buildings is. A program could be designed to assume that if the address is a single-
family house, there is a misspelling and the two records refer to the same person.
On the other hand, if the address is an apartment building, they may, indeed, be
two different people.

•	 Impossible Data: Row 10 has a state value of “RP.” There is no such state abbre-
viation in the United States. This must be flagged and corrected either automati-
cally or manually.

Building a Data Warehouse    309

There are also four errors or possible errors in the SALE table in Figure 12.12b. The
data in this table is more numeric in nature than the CUSTOMER table data:

•	 Questionable Data: In row 2, the quantity of a particular book purchased in a
single transaction is 21. This is possible, but generally unlikely. A program may be
designed to decide whether to leave it alone or to report it as an exception depend-
ing on whether the type of book it is makes it more or less likely that the quantity
is legitimate.

(a) CUSTOMER table
Customer
Number

Customer
Name Street City State Country

1 02847 Mervis 123 Oak St. TN USA

2 03185 Gomez 345 Main Ave. Columbus OH USA

3 03480 Taylor 50 Elm Rd. San Diego CA USA

4 06837 Stevens 876 Leslie Ln. Raleigh NC USA

5 08362 Adams 1200 Wallaby St. Brisbane Australia

6 12739 Gomez 345 Main Ave. Columbus GA USA

7 13848 Lucas 742 Ave. Louise Brussels Belgium

8 15367 Taylor 50 Elm Rd. San Diego CA USA

9 15933 Chang 48 Maple Ave. Toronto ON Canada

10 18575 Smith 390 Martin Dr. Columbus RP USA

11 21359 Sanchez 666 Ave. Bolivar Santiago Chile

(b) SALE table
Book

Number
Customer
Number Date Price Quantity

  1 426478 03480 May 19, 2003 32.99 1

  2 077656 18575 May 19, 2003 19.95 21

  3 365905 06837 May 19, 2003 24.99 3

  4 645688 21359 May 20, 2003 49.50 1

  5 474640 15367 May 34, 2003 3,200.99 1

  6 426478 08362 June 03, 2003 32.99 2

  7 276432 03480 June 04, 2003 30.00 1

  8 365905 12738 June 04, 2003 24.99 1

  9 276432 06837 June 05, 2003 30.00 5

10 327467 18575 June 12, 2003 −32.99 2

11 426478 06837 June 15, 2003 32.99 1

FIGURE 12.12  Good Reading Bookstores sample data prior to data cleaning

310   Chapter 12  The Data Warehouse

•	 Impossible/Out-of-Range Data: Row 5 indicates that a single book cost
$3,200.99. This is out of the possible range for book prices and must either be
corrected, if the system knows the correct price for that book (based on the book
number), or reported as an exception.

•	 Apparently Incorrect Data: The Customer Number in row 8 is invalid. We don’t
have a customer with customer number 12738. But we do have a customer with
customer number 12739 (see row 6 of the CUSTOMER table in part a of the figure).
A person would have to look into this one.

•	 Impossible Data: Row 10 shows a negative price for a book, which is impossible.

Data Transformation
As the data is extracted from the transactional databases, it must go through several
kinds of transformations on its way to the data warehouse:

•	 We have already talked about the concept of merging data from different
transactional databases to form the data warehouse tables. This is indeed one of
the major data transformation steps.

•	 In many cases, the data will be aggregated as it is being extracted from the
transactional databases and prepared for the data warehouse. Daily transactional
data may be summed to form weekly or monthly data as the lowest level of data
storage in the data warehouse.

•	 Units of measure used for attributes in different transactional databases must be
reconciled as they are merged into common data warehouse tables. This is espe-
cially common if one transactional database uses the metric system and another
uses the English system. Miles and kilometers, pounds and kilograms, gallons and
liters all have to go through a conversion process in order to wind up in a unified
way in the data warehouse.

•	 Coding schemes used for attributes in different transactional databases must be
reconciled as they are merged into common data warehouse tables. For example,
states of the United States could be represented in different databases by their full
names, two-letter postal abbreviations, or a numeric code from 1 to 50. Countries
of the world could be represented by their full names, standard abbreviations used
on vehicles, or a numeric code. Another major issue along these lines is the differ-
ent ways that dates can be stored.

•	 Sometimes values from different attributes in transactional databases are combined
into a single attribute in the data warehouse or the opposite occurs: a multipart
attribute is split apart. Consider the first name and last name of employees or cus-
tomers as an example of this.

Data Loading
Finally, after all of the extracting, cleaning, and transforming, the data is ready to be
loaded into the data warehouse. We would only repeat here that after the initial load, a
schedule for regularly updating the data warehouse must be put in place, whether it is
done on a daily, weekly, monthly, or some other designated time period basis. Remem-
ber, too, that data marts that use the data warehouse as their source of data must also
be scheduled for regular updates.

Using a Data Warehouse    311

Using a Data Warehouse
We have said that the purpose of a data warehouse is to support management decision-
making. Indeed, such “decision support” and the tools of its trade are major topics by
themselves and not something we want to go into in great detail here. Still, it would
be unsatisfying to leave the topic of data warehouses without considering at all how
they are used. We will briefly discuss two major data warehouse usage areas: on-line
analytic processing and data mining.

On-Line Analytic Processing
On-Line Analytic Processing (OLAP) is a decision support methodology based on
viewing data in multiple dimensions. Actually, we alluded to this topic earlier in
this chapter when we described the two-, three-, and four-dimensional scenarios for
recording hospital patient tracking and billing data. There are many OLAP systems on
the market today. As we said before, some employ special purpose database structures
designed specifically for multidimensional OLAP-type data. Others, known as rela-
tional OLAP or “ROLAP” systems, store multidimensional data in relational databases
using the star schema design that we have already covered!

How can OLAP data be used? The OLAP environment’s multidimensional data is
very well suited for querying and for multi-time period trend analyses, as we saw in the
star schema discussion. In addition, several other data search concepts are commonly
associated with OLAP:

•	 Drill-Down: This refers to going back to the database and retrieving finer levels of
data detail than you have already retrieved. If you begin with monthly aggregated
data, you may want to go back and look at the weekly or daily data, if the data
warehouse supports it.

•	 Slice: A slice of multidimensional data is a subset of the data that focuses on a
single value of one of the dimensions. Figure 12.13 is a slice of the patient data
“cube” of Figure 12.4, in which a single value of the patient attribute, F. Jones, is
nailed down and the data in the other dimensions is displayed.

•	 Pivot or Rotation: While helpful in terms of visualization, this is merely a matter
of interchanging the data dimensions, for example, interchanging the data on the
horizontal and vertical axes in a two-dimensional view.

Data Mining
As huge data warehouses are built and data is increasingly considered a true corpo-
rate resource, a natural movement toward squeezing a greater and greater competitive
advantage out of the company’s data has taken place. This is especially true when it
comes to the data warehouse, which, after all, is intended not to support daily opera-
tions but to help management improve the company’s competitive position in any way
it can. Certainly, one major kind of use of the data warehouse is the highly flexible
data search and retrieval capability represented by OLAP-type tools and techniques.
Another major kind of use involves “data mining.”

Data mining is the searching out of hidden knowledge in a company’s data that can
give the company a competitive advantage in its marketplace. This would be impossible

312   Chapter 12  The Data Warehouse

for people to do manually because they would immediately be overwhelmed by the
sheer amount of data in the company’s data warehouse. It must be done by software.
In fact, very sophisticated data mining software has been developed that uses several
advanced statistical and artificial intelligence techniques such as:

•	 Case-based learning
•	 Decision trees
•	 Neural networks
•	 Genetic algorithms

These techniques will be described further in Chapter 16. But it’s worth taking a
quick look at a couple of the possibilities from an application or user’s point of view.

One type of data mining application is known as “market basket analysis.” For
example, consider the data collected by a supermarket as it checks out its customers by
scanning the bar codes on the products they’re purchasing. The company might have
software study the collected “market baskets,” each of which is literally the goods that
a particular customer bought in one trip to the store. The software might try to dis-
cover if certain items “fall into” the same market basket more frequently than would
otherwise be expected. That last phrase is important because some combinations of
items in the same market basket are too obvious or common to be of any value. For
example, finding eggs and milk being bought together frequently is not news. On the
other hand, a piece of data mining folklore has it that one such study was done and dis-
covered that people who bought disposable diapers also frequently bought beer (you
can draw your own conclusions on why this might be the case). The company could
use this to advantage by stacking some beer near the diapers in its stores so that when

F.
 J

on
es

Oct. 10

Oct. 11

Oct. 12

Oct. 13

Oct. 14

Oct. 15

Oct. 16

X-Ray

Blood

Transfusion

Heart

Transplant
Tonsillectom

y

D
at

e

Proce
dure

450

0

625

0

0

0

0

2,450

0

$12
0

0

1,15
0

FIGURE 12.13  A “slice” of the hospital patient tracking and billing system data

Using a Data Warehouse    313

someone comes in to buy diapers, they might make an impulse decision to buy the
beer sitting next to it, too. Another use of market basket data is part of the developing
marketing discipline of “customer relationship management.” If, through data min-
ing, a supermarket determines that a particular customer who spends a lot of money
in the store often buys a particular product, they might offer her discount coupons for
that product as a way of rewarding her and developing “customer loyalty” so that she
will keep coming back to the store.

Another type of data mining application looks for patterns in the data. Earlier, we
suggested that Lucky Rent-A-Car might buy demographic data about its customers to
“enrich” the data about them in its data warehouse. Once again, consider Figure 12.11
with its enriched (Age, Income, and Education attributes added) CUSTOMER dimen-
sion table. Suppose, and this is quite realistic, that Lucky joined its RENTAL fact table

CAR/RENTAL/CUSTOMER

Class
Manufacture

Name Cost
Customer
Number Age Income Education

1 Compact Ford 320 884730 54 58,000 B.A.

2 Luxury Lincoln 850 528262 45 158,000 M.B.A.

3 Full-Size General Motors 489 109565 48 62,000 B.S.

4 Sub-Compact Toyota 159 532277 25 34,000 High School

5 Luxury Lincoln 675 155434 42 125,000 Ph.D.

6 Compact Chrysler 360 965578 64 47,500 High School

7 Mid-Size Nissan 429 688632 31 43,000 M.B.A.

8 Luxury Lincoln 925 342786 47 95,000 M.A.

9 Full-Size General Motors 480 385633 51 72,000 B.S.

10 Compact Toyota 230 464367 64 200,000 M.A.

11 Luxury Jaguar 1,170 528262 45 158,000 M.B.A.

12 Sub-Compact Nissan 89 759930 29 28,000 B.A.

13 Full-Size Ford 335 478432 57 53,500 B.S.

14 Full-Size Chrysler 328 207867 29 162,000 Ph.D.

FIGURE 12.14  Lucky Rent-A-Car enriched data, integrated for data mining

12.2  Using a University Data
Warehouse
Consider the university data warehouse that
you designed in the Your Turn exercise earlier in
this chapter.

Question:
Develop a plan for using your university data ware-
house. What benefits can you think of to que-
rying the data warehouse? What kinds of new
knowledge might you discover by using data mining
techniques on the data warehouse?

Your Turn

314   Chapter 12  The Data Warehouse

with its CAR and CUSTOMER dimension tables, including only such attributes in the
result as would help it identify its most valuable customers, for example those who
spend a lot of money renting “luxury” class cars. Figure 12.14 shows the resulting table,
with the rows numbered on the left for convenience here. The Class and Manufacturer
Name attributes came from the CAR table, the Cost attribute (the revenue for a par-
ticular rental transaction) came from the RENTAL table, and the Customer Number,
Age, Income, and Education attributes came from the CUSTOMER table. While it
would take much more data than this to really find statistically significant data pat-
terns, the sample data in the figure gives a rough idea of what a pattern might look
like. Rows 2, 5, 8, and 11 all involve rentals of luxury-class cars with high cost (revenue
to the company) figures. As you look across these rows to the customer demographics,
you find “clusters” in age, income, and education. These expensive, luxury car rental
transactions all involved people in their mid-40s with high income and education
levels. On the other hand, rows 10 and 14 involved people who also had high income
and education levels. But these people were not in their mid-40s and they did not rent
luxury cars and run up as big a bill. With enough such data, Lucky might conclude that
it could make more money by heavily promoting its luxury cars to customers in their
mid-40s with high income and education levels. If its competitors have not thought of
this, then Lucky has gained a competitive advantage by “mining” its data warehouse.

Administering a Data Warehouse
In Chapter 10, we discussed the issues of managing corporate data and databases with peo-
ple called data administrators and database administrators. As a huge database, the data
warehouse certainly requires a serious level of management. Further, its unique character
requires a strong degree of personnel specialization in its management (some have even
given the role its own name of “data warehouse administrator”). In fact, managing the
data warehouse requires three kinds of heavily overlapping employee expertise:

•	 Business Expertise
•	 An understanding of the company’s business processes underlying an under-

standing of the company’s transactional data and databases.
•	 An understanding of the company’s business goals to help in determining what

data should be stored in the data warehouse for eventual OLAP and data min-
ing purposes.

•	 Data Expertise
•	 An understanding of the company’s transactional data and databases for selec-

tion and integration into the data warehouse.
•	 An understanding of the company’s transactional data and databases to design

and manage data cleaning and data transformation as necessary.
•	 Familiarity with outside data sources for the acquisition of enrichment data.

•	 Technical Expertise
•	 An understanding of data warehouse design principles for the initial design.
•	 An understanding of OLAP and data mining techniques so that the data ware-

house design will properly support these processes.
•	 An understanding of the company’s transactional databases in order to man-

age or coordinate the regularly scheduled appending of new data to the data
warehouse.

Summary    315

•	 An understanding of handling very large databases in general (as the data ware-
house will inevitably be) with their unique requirements for security, backup
and recovery, being split across multiple disk devices, and so forth.

The other issue in administering a data warehouse is metadata; i.e. the data ware-
house must have a data dictionary to go along with it. The data warehouse is a huge
data resource for the company and has great potential to give the company a compet-
itive advantage. But, for this to happen, the company’s employees have to understand
what data is in it! And for two reasons. One is to think about how to use the data to the
company’s advantage, through OLAP and data mining. The other is actually to access
the data for processing with those techniques.

Challenges in Data Warehousing
Data warehousing presents a distinct set of challenges. Many companies have jumped
into data warehousing with both feet, only to find that they had bitten off more than
they could chew and had to back off. Often, they try again with a more gradual approach
and eventually succeed. Many of the pitfalls of data warehousing have already been
mentioned at one point or another in this chapter. These include the technical chal-
lenges of data cleaning and finding more “dirty” data than expected, problems asso-
ciated with coordinating the regular appending of new data from the transactional
databases to the data warehouse, and difficulties in managing very large databases,
which, as we have said, the data warehouse will inevitably be. There is also the sepa-
rate challenge of building and maintaining the data dictionary and making sure that
everyone who needs it understands what’s in it and has access to it.

Another major challenge of a different kind is trying to satisfy the user community.
In concept, the idea is to build such a broad, general data warehouse that it will satisfy
all user demands. In practice, decisions have to be made about what and how much
data it is practical to incorporate in the data warehouse at a given time and at a given
point in the development of the data warehouse. Unfortunately, it is almost inevitable
that some users will not be satisfied in general with the data at their disposal and
others will want the data warehouse data to be modified in some way to produce better
or different results. And that’s not a bad thing! It means that people in the company
understand or are gaining an appreciation for the great potential value of the data
warehouse and are impatient to have it set up the way that will help them help the
company the most—even if that means that the design of the data warehouse and the
data in it are perpetually moving targets.

Summary
A data warehouse is a historical database used for applications that require the analysis
of data collected over a period of time. A data warehouse is a database whose data is
subject oriented, integrated, non-volatile, time variant, high quality, aggregated, pos-
sibly denormalized, and not necessarily absolutely current. There are two types of data
warehouses: the enterprise data warehouse and the data mart. Some companies main-
tain one type, some the other, and some both.

316   Chapter 12  The Data Warehouse

Data warehouses are multidimensional databases. They are often designed
around the star schema concept. Building a data warehouse is a multi-step pro-
cess that includes data extraction, data cleaning, data transformation, and data
loading. There are several methodologies for using a data warehouse, including
on-line analytic processing and data mining. Data warehouses have become so
large and so important that it takes special skills to administer them.

Key Terms
Aggregated data
Data cleaning
Data enrichment
Data extraction
Data loading
Data mart
Data mining
Data transformation
Data warehouse

Data warehouse
administrator

Decision support system
(DSS)

Dimension
Drill-down
Enterprise data

warehouse
Historic data

Integrated data
Market basket analysis
Multidimensional

database
Non-volatile data
On-line analytic

processing (OLAP)
Pivot or rotation
Slice

Snowflake design
Star schema
Subject oriented data
Time variant data
Transaction processing

system (TPS)

Questions
  1.	 What is the difference between transactional processing

systems and decision support systems?
  2.	 Decision support applications have been around for

many years, typically using captive files that belong
to each individual application. What factors led to the
movement from this environment toward the data
warehouse?

  3.	 What is a data warehouse? What is a data ware-
house used for?

  4.	 Explain each of the following concepts. The data in a
data warehouse:

	 a.	 Is subject oriented.
	 b.	 Is integrated.
	 c.	 Is non-volatile.
	 d.	 Is time variant.
	 e.	 Must be high quality.
	 f.	 May be aggregated.
	 g.	 Is often denormalized.
	 h.	 Is not necessarily absolutely current.
  5.	 What is the difference between an enterprise data ware-

house and a data mart?
  6.	 Under what circumstances would a company build data

marts from an enterprise data warehouse? Build an
enterprise data warehouse from data marts?

  7.	 What is a multidimensional database?
  8.	 What is a star schema? What are fact tables? What are

dimension tables?
  9.	 What is a snowflake feature in a star schema?
10.	 After a data warehouse is designed, what are the four

steps in building it?
11.	 Name and describe three possible problems in

transactional data that would require “data cleaning”
before the data can be used in a data warehouse.

12.	 Name and describe three kinds of data transforma-
tions that might be necessary as transactional data is
integrated and copied into a data warehouse.

13.	 What is online analytic processing (OLAP?) What does
OLAP have to do with data warehouses?

14.	 What do the following OLAP terms mean?
	 a.	 Drill-down.
	 b.	 Slice.
	 c.	 Pivot or rotation.
15.	 What is data mining? What does data mining have to do

with data warehouses?
16.	 Describe the ideal background for an employee who is

going to manage the data warehouse.
17.	 Describe the challenges involved in satisfying a data

warehouse’s user community.

Exercises
  1.	 Video Centers of Europe, Ltd. data warehouse:
	 a.	 Design a multidimensional database using a star

schema for a data warehouse for the Video Centers
of Europe, Ltd. business environment described in
the diagram associated with Exercise 2.2. The
subject will be “rental,” which represents a
particular tape or DVD being rented by a particular
customer. As stated in Exercise 2.2, be sure to keep
track of the rental date and the price paid. Include
a snowflake feature based on the actor, movie, and
tape/DVD entities.

	 b.	 Describe three OLAP uses of this data warehouse.
	 c.	 Describe one data mining use of this data

warehouse.
  2.	 Best Airlines, Inc., data warehouse:

In the exercises in Chapter 8, we saw the following
relational database, which Best Airlines uses to keep
track of its mechanics, their skills, and their airport
locations. Mechanic number, airport name, and skill
number are all unique fields. Size is an airport’s size
in acres. Skill Category is a skill’s category, such as an
engine skill, wing skill, tire skill, etc. Year Qualified is
the year that a mechanic first qualified in a particular
skill; Proficiency Rating is the mechanic’s proficiency
rating in a particular skill.

MECHANIC Table
Mechanic
Number

Mechanic
Name Telephone Salary

Airport
Name

AIRPORT Table
Airport
Name City State Size

Year
Opened

SKILL Table
Skill
Number

Skill
Name

Skill
Category

QUALIFICATION Table
Mechanic
Number

Skill
Number

Year
Qualified

Proficiency
Rating

We now add the following tables to the database
that record data about airplanes and maintenance
performed on them. A maintenance event is a
specific maintenance activity performed on an
airplane.

AIRPLANE Table
Airplane
Number

Airplane
Model

Year
Manufactured

Passenger
Capacity

MAINTENANCE ACTIVITY Table
Activity
Number

Activity
Name

Expected
Duration

Required
Frequency

MAINTENANCE EVENT Table
Airplane
Number

Activity
Number Date

Mechanic
Number

	 a.	 Design a multidimensional database using a star
schema for a data warehouse for the Best Airlines,
Inc., airplane maintenance environment described
by the complete seven-table relational database
above. The subject will be maintenance event.
Include snowflake features as appropriate.

	 b.	 Describe three OLAP uses of this data warehouse.
	 c.	 Describe one data mining use of this data

warehouse.

Exercises    317

318   Chapter 12  The Data Warehouse

  1.	 Happy Cruise Lines data warehouse:
	 a.	 Design a multidimensional database using a star

schema for a data warehouse for the Happy
Cruise Lines business environment described in
Minicase 2.1. The subject will be “passage,”
which represents a particular passenger booking
on a particular cruise. As stated in Minicase 2.1,
be sure to keep track of the fare that the
passenger paid for the cruise and the passenger’s
satisfaction rating of the cruise.

	 b.	 Describe three OLAP uses of this data
warehouse.

	 c.	 Describe one data mining use of this data
warehouse.

  2.	 Super Baseball League data warehouse:
	 a.	 Design a multidimensional database using a star

schema for a data warehouse for the Super
Baseball League business environment described
in Minicase 2.2. The subject will be “affiliation,”
which represents a particular player having
played on a particular team. As stated in
Minicase 2.2, be sure to keep track of the
number of years that the player played on the
team and the batting average he compiled on it.

	 b.	 Describe three OLAP uses of this data
warehouse.

	 c.	 Describe one data mining use of this data
warehouse.

Minicases

319

CHAPTER 13

NoSQL Database
Management

As productive as relational database management has been
for some 40 years at this point, it does have limitations. Rela-
tional database was not designed for “big data” such as
video or audio clips, or for high velocity data coming from sen-
sors or for clickstream data from the Web. Furthermore, rela-
tional database has certain design limitations. All of this has
encouraged the development of new database paradigms
including key-value database, document database, column
family database, and graph database, which are the subjects
of this chapter.

Introduction
The Lead-Up to NoSQL Database Management
Relational database came on the scene in about 1980. As with any new and different
technology, companies took a cautious approach to using it, especially for their critical
applications. What they typically did was “try it out” on some non-critical applications

OBJECTIVES

•	Recognize the limitations of relational database
management.

•	Explain the meaning of “big data.”
•	Describe the fundamental concepts of NoSQL

database management.
•	Describe key-value database, document database,

column family database, and graph database.
•	Explain the basis for querying NoSQL database.

CHAPTER OUTLINE
Introduction

The Lead-Up to NoSQL Database
Management

Limitations of Relational Database
Advanced Database Manage-

ment System Concepts
NoSQL Database Management

Systems
Key-Value Database

The Key-Value Database Concept
Hadoop
The Hadoop Environment

Document Database
Column Family Database
Graph Database
Querying NoSQL Databases and the

Rise of NewSQL
NoSQL Query Languages
NewSQL

Summary

320   Chapter 13  NoSQL Database Management

to learn about it and understand its pros and cons relative to the earlier navigational
(hierarchical and network) database systems that they were using, if they were using
any database systems at all! It took some time, typically several years, before most
companies were willing to move forward with relational database in a substantial way.

As they began working with relational database, IT personnel appreciated its
straightforward tabular structure, its relative data independence, and the SQL lan-
guage that came with it. Still, there were issues that caused its acceptance to be gradual.
Chief among these was its performance: retrieving data, especially when the retrieval
involved a join operation, could be painfully slow, compared to equivalent operations
in the navigational systems which were based on direct address pointers. Plus, there
were other structural issues. For example, the early relational database management
systems had no referential integrity controls.

Over time, some of the drawbacks to relational database were overcome by the rela-
tional database system vendors. Data retrieval performance was progressively improved
with enhancements to relational query optimizer software and with improved hard-
ware such as increasingly faster disk drives. Referential integrity controls were intro-
duced, as were other improvements in such areas as data security and concurrency
control. It is very important to note that relational database is still an excellent choice
for applications requiring straightforward, numeric and alphabetic data in a tabular
format and relational database management systems are expected to be in use for a
very long time to come.

But, the world is changing and information systems are changing with it. Today, we
speak of “big data” with its three Vs: volume, variety, and velocity. Volume refers
to the massive amounts of data we are increasingly dealing with and bringing into our
information systems. Huge amounts of data can be collected from the Internet, from
sensors on vehicles of all kinds, and from every facet of business. Variety refers to
the different kinds of data that we have to deal with today. In fact, the very nature of
data has advanced beyond simple tabular numeric and alphabetic data to include large
blocks of text, audio clips, video clips, complex graphics and photographs, and even
data representing solid objects (e.g. a vase) in the form of data designed to be fed into
3-D printers, Figure 13.1. Velocity refers to the greatly increased speed with which data
enters the information systems, for example, from vehicle sensors that accumulate
data while the vehicle is in motion.

It’s really interesting and important that at the same time that the interest in big
data has come about, there have been major changes in the hardware that stores and
processes the data. Mechanical, rotating disk drives are gradually being replaced by
more efficient and reliable “solid state disks” (SSD). This solid state memory with
no moving parts has become very cheap and serves very well as secondary memory.
Also, mainframe computers are being replaced in many instances by massive server
farms: large numbers of small computers or servers, often referred to as “blades”
stored in racks, Figure 13.2, that can be linked to form a huge data storage and comput-
ing resource.

But, at the same time that all of these changes are taking place, we must recognize
that relational database management systems do have limitations.

Limitations of Relational Database
Relational databases were designed to accommodate numeric and alphanumeric
data stored in tabular formats. This works well for traditional applications such as
accounting, banking, and inventory. Relational database was never designed for

Introduction    321

advanced data types. Another limitation is that the decisions of how to structure the
relational tables, such as which attributes must go in which tables, and where foreign
keys have to be placed, must be made in advance, when the databases are designed.
Some design changes, such as adding new columns to a table, can be made in the
future, but large-scale redesign of tables is problematic. Also, the assumption is that
every row of a table will have a value in every one of its columns. If not, then it’s a
“sparse table” with a lot of wasted space.

Audio Clip Video Clip

FIGURE 13.1  A variety of data types

icon Stocker / Adobe Stock; avaicon /
Adobe Stock; Vertigo3d / Getty Images;
DenisProduction.com / Shutterstock;
Natalia Davidovich / Shutterstock

C
yb

ra
in

 /
A

do
be

 S
to

ck

FIGURE 13.2  A server farm

322   Chapter 13  NoSQL Database Management

Advanced Database Management System Concepts
So, what features should an advanced database management system have? Certainly,
it has to be able to manage big data volume, variety, and velocity, while utilizing the
capabilities of server farms and solid state disks. Thus it must be able to handle every
kind of data, ranging from simple, numeric tabular data to the most exotic 3-D printer
data. It should be very flexible and have the ability to add fields to its structures at any
time. It also should be able to have records in a file that have some fields in common
but other fields that are specific to only some of its records, without creating a sparse
data situation.

But, there is much more that advanced database management systems must be
capable of, in partnership with advanced hardware options, such as large-scale server
farms. We say that these systems must be scalable, meaning that they must be able to
accommodate more and more data. Today, this often means adding more servers to a
server farm. Also, there must be 24/7 data availability, which is typically accomplished
by deliberately replicating data on different servers (generally at least three servers) in
the server farm, Figure 13.3. If a server with particular data goes down, other copies
of the same data can be retrieved from the other servers it was stored on. This data
replication capability also, in principle, allows for the use of cheap, commodity servers
which may fail more frequently than expensive ones. Again, because the data is repli-
cated on several servers, there is less concern about a server failure.

Finally, it is desirable for these advanced database management systems to have
what is known as the ACID property. ACID is an acronym for atomicity, consistency,
isolation, and durability. The idea is that all of the actions of a transaction should be
completed or none of them should be. For example, if you are taking an equal number
of nuts and bolts out of inventory in one operation, reflected in a single computer
transaction to update the inventory records, you would want both the record for nuts
and the record for bolts to be updated. You would not want only one of the two records
to be updated due to some kind of error taking place in the process. If an error did
occur in the process, you would want the entire transaction to fail and be run again.
Furthermore, you would not want another transaction to “see” only some of a transac-
tion’s results before all of them are completed. That’s the idea of the ACID property.

853792

853792

853792

FIGURE 13.3  Data replicated across servers in a
server farm

Cybrain / Adobe Stock; cyberneticimages / Adobe Stock

Key-Value Database    323

NoSQL Database Management Systems
All of the changes in data requirements and hardware advances have led to a new
class of database management systems known as NoSQL Database Management Sys-
tems. It is generally accepted that NoSQL is an acronym for “Not Only SQL,” which is
not really an accurate description, but that’s what has developed. It is also generally
accepted that there are four paradigms or frameworks under the NoSQL label:

•	 Key-value database
•	 Document database
•	 Column family database (also known as Big table database or Wide column

database)
•	 Graph database

As we will see, key-value database is the most basic of the four frameworks. Doc-
ument database and column family database, while structured differently, have sev-
eral capabilities in common. Graph database is substantially different from the other
three but has enough in common with them that it qualifies as a fourth NoSQL
framework.

Key-Value Database
The Key-Value Database Concept
The simplest of the four NoSQL frameworks is the Key-Value Database. Let’s start by
thinking about the nature of a “key” and the nature of a “value” and how we might put
the two together in a helpful way.

Whenever you search for data describing a particular entity in a relational database,
you need an identifier, a unique key, to be able to find it. For example, to look for the
data in a bank account you need a unique primary key account number. In a typical
relational database, the keys are typically numeric, like a customer number, or in some
cases they may be alphabetic, like a customer name, if customer names are unique.

Now, what if we both generalize and simplify all of this to say that the identifier that
we’re searching on is called the “key” and the associated data that we’re retrieving
is called the “value.” Furthermore, the key doesn’t have to be a simple numeric or
alphabetic value, it can be anything. And, the value doesn’t have to be one or more
records or selected attributes of records, the value can be anything that can be dig-
itized. In particular, the value can be a number, a small or large block of text or an
audio clip or a video clip or a graphic or the input to a 3-D printer or, for that matter,
a single numeric value or even something that looks like a record in a file. In fact, the
value can be anything that can be digitized, Figure 13.4. This is the essence of a key-
value database.

Let’s take a closer look at the nature of the key. For comparison sake, consider the
Employee Table in a relational database where Employee Number is the primary key.
A particular employee number might be 483274. How do we know that 483274 is an
employee number and not, say the dollar value of someone’s house? We know it’s
an employee number because it’s in the Employee Number column of the relational
table! That is, the structure of the relational table tells you what the different values
represent. In a key-value database, there is no structure like that. The key should be
“intelligent,” carrying its own meaning. Here is an example.

324   Chapter 13  NoSQL Database Management

Grand Airlines wants to keep a historical record of the number of passengers who
flew on each of its flights, every day for the last five years and it wants to do this with
a key-value database. As is normal for airlines, the same flight number is used every
day for a particular route, meaning for a flight that starts at a particular airport and
ends at another particular airport. So, to begin, an intelligent key might consist of a
combination of a flight number, say flight number 345, and a date, say 4/23/2021, so
that the key is:

345:4/23/2021

Now, let’s add a meaningful label, Passengers, meaning the number of passengers
on a flight. The intelligent key now looks like

345:4/23/2021:passengers

Let’s say that there were 87 passengers on flight 345 on 4/23/2021, which is the
“value.” Then, the key-value pair is

345:4/23/2021:passengers=87

To generalize this, we might write it as:

flight number:date:”passengers”=value.

This key-value pair can be stored anywhere is some data storage space (via hash-
ing, as described below), independently, among many other such key-value pairs. The
point is that it doesn’t need to be in a structure like a relational table. Knowing that the

FIGURE 13.4  Examples of key-value data with the key to the left of the colon and the
value to the right

icon Stocker / Adobe Stock; avaicon / Adobe Stock; Vertigo3d / Getty Images;
DenisProduction.com / Shutterstock; Natalia Davidovich / Shutterstock

Key-Value Database    325

key is a flight number followed by a date is all the “structure” that is needed to store
and retrieve the data, i.e. the number of passengers on that flight.

So, what’s the point of this? In addition to the ability to store any kind of data, again,
a value can be any digitized string, there are other advantages. One advantage is the
speed of retrieval using hashing, which was discussed earlier in this book. In rela-
tional database, retrieval is accomplished with indexes. In key-value database, hashing
is used. But, since a key can be anything, including alphabetic characters, how can you
hash any key? The answer is that in a computer, everything, including alphabetic char-
acters, are boiled down internally to bits! Any string of bits can be treated as a number
in the “base 2” or “binary” number system and can be hashed.

So, with key-value database, we can achieve very fast data retrieval in application
situations that do not require the kind of structure provided by tables in a relational
database. But, there is still more to this, which involves using server farms such as are
found in the cloud. To explore this further, let’s talk about Hadoop.

Hadoop
Hadoop is a data storage and retrieval system that was created by Yahoo. Hadoop is
not considered to be a NoSQL database system. We include it here because certain
aspects of it have a key-value orientation. Hadoop can be used to store large amounts
of data for certain purposes such as data analytics applications. Also, its data storage
model, Hadoop Distributed File System (HDFS), can form the basis for certain
NoSQL database systems such as HBase (to be mentioned later in this chapter). HDFS
is based on a master/slave, also known as a name node/data node storage arrange-
ment. To simplify this a bit (ok, to simplify this a lot), think of the data nodes as servers
in a large server farm, Figure 13.5. Hadoop stores data in the data nodes. Hadoop auto-
matically makes replicated copies of the data in a key-value format, stored on different
servers, which provides backup and availability of the data in case a server goes down.
Once stored, the data cannot be updated or deleted. The name node manages the data
nodes and keeps track of the data in this arrangement.

Continuing the Grand Airlines example, now suppose that the company wants to
store 10 years of number-of-passengers-on-a-flight data using the key-value arrange-
ment described above:

flight number:date:”passengers”=value

The data will be stored across a set of servers, i.e. a set of data nodes, in a server
farm. An interesting feature of Hadoop, known as MapReduce, takes advantage of
this data storage arrangement to increase the efficiency of retrieving the number-of-
passengers data.

Name Node

Data Nodes

FIGURE 13.5  The Hadoop name node/data node
arrangement

cyberneticimages / Adobe Stock

326   Chapter 13  NoSQL Database Management

The idea of MapReduce is to employ a process known as “parallel processing.”
Parallel processing is the simultaneous use of many computers to solve a computing
problem. Of course, every server in a server farm is a complete computer, with its own
central processing unit, primary storage, and disk secondary storage (which may be
rotating disks but are more likely to be solid state disks). So, it’s natural to want the
servers in a server farm to work on an application problem simultaneously, which
would be an example of parallel processing.

Now, imagine that the 10 years of Grand Airlines number-of-passengers-on-a-
flight data is spread across the servers in a server farm. One day, the president of the
company wants to know the average number of passengers on Grand Airlines flights
from New York to Los Angeles during the six-month period January 1, 2019 to June 30,
2019. To answer this question, a query representing the president’s question is sent,
simultaneously, to all of the servers that have portions of the Grand Airlines data. All
of these servers simultaneously search their disks for any data that should be included
in the answer to the president’s question (which is an aspect of parallel processing).
They send their results in to a central server that is tasked with accumulating the
results from all of the servers and coming up with an answer to the question. This is
the MapReduce process. The “Map” part of the process is sending the query to all of
the servers and the “Reduce” part of the process is accumulating the results to come
up with the answer to the question.

The Hadoop Environment
An entire software environment has developed around Hadoop to greatly increase its
functionality. Here are some of the Hadoop environment tools that are available.

Hive is a Hadoop data warehousing framework that was originally developed by
Facebook. It has an SQL-like language called HiveQL that allows queries to automat-
ically take advantage of MapReduce. Hive is designed to interface with a variety of
business intelligence and visualization application products.

Pig, originally developed at Yahoo, is a high-level platform, with a language called
Pig Latin, which is designed for analyzing large data sets through parallel processing
using MapReduce. (It was named “Pig” because it is designed to work on any kind of
data, just as pigs have the reputation for eating anything!)

Flume is an application that is designed to efficiently input large amounts of data
(like log data or sensor data) into Hadoop.

Oozie is a workflow scheduling system that is used to manage Hadoop jobs.
Ambari is a web-based application for administering and managing a Hadoop clus-

ter, i.e. a group of networked servers containing Hadoop data. (An ambari is a saddle
or canopied seat on an elephant in India.)

Avro is a “data serialization” application for Hadoop that takes data stored in a
structured schema and converts it to a simplified stream for transfer among different
hardware and software environments.

Mahout is a data mining library that implements machine learning algorithms in
the Hadoop/MapReduce environment. (A mahout is a driver or trainer of an elephant
in India.)

Sqoop is an application that translates data from the relational database format to
Hadoop, and vice versa. As IT personnel have considered moving operations from rela-
tional database into Hadoop, Sqoop certainly makes that job a lot easier.

Spark, like Hadoop, is a broad-based data storage and processing platform. How-
ever Spark, which came later, extends the Hadoop and MapReduce concepts in several

Document Database    327

important ways. Hadoop is designed for batch processing but Spark is designed to also
handle real-time data needs and process data interactively. While Hadoop is totally
oriented toward storing and retrieving its data from secondary disk storage, Spark is
designed to hold some of its data in main memory, greatly increasing its processing
speed. Spark also has facilities to simplify and enhance its use from a programming
standpoint.

YARN (Yet Another Resource Negotiator) is a resource manager that allows a wider
variety of application types to take advantage of the Hadoop and MapReduce facil-
ities and capabilities. It also permits processing types other than MapReduce to take
advantage of Hadoop’s HDFS data storage platform. YARN also acts as a job scheduler
within the Hadoop framework.

Document Database
Consider the following classic problem in relational database. A city wants to create a
relational database to keep track of its “first responder” employees. The city has three
types of first responder employees: police officers, firefighters, and emergency med-
ical technicians (EMT). As shown in Figure 13.6, the city wants to maintain certain
attributes for all of its first responders. These attributes include their unique employee
number, name, street (of home address), state, and age. In addition, for police officers,
the city wants to keep track of their rank and years on the police force; for firefighters,
their height, weight, and maximum weightlifting capability (MWC) in pounds; for
EMTs, the year of their first EMT certification and their cardiopulmonary resuscita-
tion (CPR) rating.

There are two ways to design a relational database to handle this data. One,
Figure 13.7, is to create four relational tables: one for the data common to all of the first
responders and one for each of the three specific types of first responders. Of course,
all four of the tables would have to include the unique identifier employee number.
Here’s what the tables would look like with some sample data. Note that we have added
a Type attribute to the Employee table with values PO for Police Officer, FF for Fire-
fighter, and EMT for EMTs. This is to permit someone looking only at the EMPLOYEE
table to know which type of first responder is represented in a row of the table.

The other way, to design a relational database to handle this data, Figure 13.8, is to put
it all in one big table. Here is what that table would look like with the same sample data:

Now, here is the problem. In the four-table arrangement, if you want to find all of
the data about one employee, you have to join two tables (the Employee Table and
whichever of the other three tables involves that employee). If you want all of the data
about all of the employees, you have to join all four tables. As we know, joins make
the queries more complex and decrease the speed of data retrieval. In the one-table
arrangement, we have eliminated the need for joins, but look at all of the empty space

Employee Police Officer Firefighter EMT
Emp Num Rank Height Year First Cert
Name Years on Force Weight CPR Rating
Street MWC
State
Age

FIGURE 13.6  Attributes for all
employees and additional
attributes for selected first
responders

328   Chapter 13  NoSQL Database Management

Emp Num Name Street State Age Type
17483 Baker Oak OH 35 FF

18420 Taylor Elm NY 24 EMT

21667 Chen Oak OH 41 PO

24158 Adams Maple TN 36 FF

26993 Roberts Main CA 45 EMT

28210 Kumar Main FL 22 FF

30623 Harris Elm NY 31 PO

EMPLOYEE TABLE

Emp Num Rank Years
21667 Sergeant 5

30623 Captain 20

POLICE OFFICER TABLE

Emp Num Height Weight MWC
17483 6ʹ 0ʺ 180 150

24158 5ʹ 10ʺ 175 200

28210 6ʹ 1ʺ 210 170

FIREFIGHTER TABLE

Emp Num Year Cert CPR
18420 2010 9

26993 2021 5

EMT TABLE
FIGURE 13.7  Four relational table solution

Em
p N

um

N
am

e

Street

State

A
ge

Type

R
ank

Years

H
eight

W
eight

M
W

C

Year C
ert

C
PR

17483 Baker Oak OH 35 FF 6’ 0” 180 150

18420 Taylor Elm NY 24 EMT 2010 9

21667 Chen Oak OH 41 PO Sergeant   5

24158 Adams Maple TN 36 FF 5’ 10” 175 200

26993 Roberts Main CA 45 EMT 2021 5

28210 Kumar Main FL 22 FF 6’ 1” 210 170

30623 Harris Elm NY 31 PO Captain 10

FIGURE 13.8  Single relational table solution

EMPLOYEE TABLE

Document Database    329

there is. The rank attribute is only needed for police officers; height is only needed
for firefighters; and so on. This situation is known as “sparse data” and creates other
storage and performance issues. So, what is the solution to this problem? The docu-
ment database framework, with products such as MongoDB, solves this as well as
other data management problems.

The first thing to recognize about document database is that the word “document,”
in this context, does not mean a traditional textual document, like a newspaper article,
an email, or a book, written in a natural language such as English. As we will soon
find out, a document in this context serves a similar function to a record or tuple in a
relational table, but with much more flexibility in its structure. It’s also true that, in
common with key value database, document database stores data as key-value pairs,
but with a structure that key value database does not have. In fact, in document data-
base, related attributes, like a person’s name, street, and state, can be stored together,
while in key value database they would be stored independently. Let’s take a look at an
example, Figure 13.9, continuing to use the city first responder data.

Figure 13.9 shows three “documents” (in a notational style known as JSON for JavaS-
cript Object Notation). The first document represents the data of employee number
17483 who happens to be a firefighter. In addition to the attributes that all employees
have: employee number, name, street, state, and age, it also has the attributes specific
to firefighters: height, weight, and MWC. The second document, for an EMT, includes
the EMT-specific attributes year of first EMT certification and cardiopulmonary resus-
citation (CPR) rating. The third document, for a police officer, includes the police
officer-specific attributes rank and years on the police force. Of course, if we wanted

{ {
“Emp_Num”: 17483,
“Name”: “Baker”,
“Street”: “Oak”,
“State”: “OH”,
“Age”: 35,
“Height”: “6’ 0”,
“Weight”: 180,
“MWC”: 150 },
{
“Emp_Num”: 18420,
“Name”: “Taylor”,
“Street”: “Elm”,
“State”: “NY”,
“Age”: 24,
“Year_Cert”: 2010,
“CPR”: 9 },
{
“Emp_Num”: 21667,
“Name”: “Chen”,
“Street”: “Oak”,
“State”: “OH”,
“Age”: 41,
“Rank”: “Sergeant”,
“Years”: 5 }
}

FIGURE 13.9  Three documents in a collection

330   Chapter 13  NoSQL Database Management

to model all of the original employee data, we would need seven documents, one for
each employee in the example.

A set of documents is called a “collection.” It should be clear that a document is
functionally similar to a row in a relational table and a collection is functionally similar
to a relational table. But look at the difference!! In a relational table all of the rows have
the same set of attributes. This can create the kind of problem that we described using
Figures 13.7 and 13.8. On the other hand, in a collection in a document database, the dif-
ferent documents can have some of the same attributes (employee number, name, street,
state, age, in our example), but they can also have different attributes (the first document
has height, weight, and MWC; the second document has year_cert and CPR; the third
document has rank and years). This eliminates the kind of problem in relational data-
base, either excessive joins or sparse data, that we described using Figures 13.7 and 13.8!!
You can even add additional attributes to documents after they were initially created.

Now, let’s say that instead of having a single name attribute, the relational table has
three attributes that involve a person’s name. This would be First Name, Middle Initial,
and Last Name, as shown in Figure 13.10.

Using SQL, you can separately retrieve a person’s first name or middle initial, or
last name. But you can’t say, “Name,” and expect to retrieve a person’s complete name,
including their first name, middle initial, and last name. To accomplish that, you
would have to separately specify all three attributes. Now, let’s look at the equivalent
situation in a document in document database. Figure 13.11 shows the first document
(the document for employee 17483) in Figure 13.9, modified to include first name, mid-
dle initial, and last name.

Emp
Num

First
Name

Middle
Initial

Last
Name Street State Age

17483 John L Baker Oak OH 35

18420 Mary G Taylor Elm NY 24

21667 Fred Q Chen Oak OH 41

24158 Jane A Adams Maple TN 36

26993 Allen R Roberts Main CA 45

28210 John A Kumar Main FL 22

30623 Jane G Harris Elm NY 31FIGURE 13.10  Three attributes
composing the name

{
“Emp_Num”: 17483,
“Name”: {
 “First_Name”: “John”,
 “Middle_Initial”: “L”,
 “Last_Name”: “Baker”
 },
“Street”: “Oak”,
“State”: “OH”,
“Age”: 35,
“Height”: “6’ 0^”,
“Weight”: 180,
“MWC”: 150 },

FIGURE 13.11  An embedded document

Column Family Database    331

In Figure 13.11, Name is known as an “embedded document.” It has all of the charac-
teristics of a document but, clearly, it is inside of the Employee document. So, another
advantage of document database is that you have the choice of referring to the com-
plete name as “Name” (the label on the embedded document in the figure) or you can
refer to each of the three individual parts of the name by “First_Name,” “Middle_Ini-
tial,” or “Last_Name.” There is no equivalent of referring to the complete name with a
single attribute name, i.e. “Name” in this example, in the relational model.

Column Family Database
Another NoSQL paradigm is known by several different names. We will call it column
family database, but it is also known by other names such as wide-column database
and big table database. Simply put, column family database has many of the same
characteristics as document database, but is designed to have more of a table-like feel
to it, which is obvious from its various names, using words like “table” and “column.”

A column family is, simply, a group of related columns. Actually, a better way to
think of it is a group of related attributes, which are then stored as columns. If a person’s
first name, middle name, and last name are each considered to be separate attributes,
then those three attributes taken together might be called the Name column family.
Similarly, if street address, city, state, country, and postal codes are each considered to
be separate attributes, then together they might be called the Address column family.

Now, let’s take another look at the EMPLOYEE TABLE from Figure 13.7, repeated
here as Figure 13.12.

One of the most important elements of document
database is its ability to handle supertype/subtype
situations without having multiple tables or a single
table with many nulls as would be the case in a
relational database.

Question:
Choose any industry and think about groups of
personnel that have some of the same characteris-
tics and some different characteristics. How would
a document database help you efficiently store
the data about such personnel?

Your Turn

Emp Num Name Street State Age
17483 Baker Oak OH 35

18420 Taylor Elm NY 24

21667 Chen Oak OH 41

24158 Adams Maple TN 36

26993 Roberts Main CA 45

28210 Kumar Main FL 22

30623 Harris Elm NY 31

EMPLOYEE TABLE
FIGURE 13.12  The Employee table

332   Chapter 13  NoSQL Database Management

First, we will give each row a unique sequence number or id, Figure 13.13.
Next, we’ll divide the columns into column families. Let’s create the Identification

Column Family and assign the Emp Num and Name attributes to it. Similarly, we’ll
create the Location Column Family and assign the Street and State attributes to it.
Finally, we’ll create the Description (Desc) Column Family and assign the Age attri-
bute to it, Figure 13.14.

As noted earlier, column family database has many of the same characteristics as
document database. The way that attribute values were tagged with attribute names in
document database also applies in column family database, Figure 13.15.

Notice that only the Column Family Names are above the table now; the attribute
names are no longer at the tops of the columns. Also notice, very importantly, that we
have returned to the concept of key-value pairs! Every value can be expressed as:

Row id:Column Family Name:Attribute Name:Value

where Row id:Column Family Name:Attribute Name is the unique key. For example:

3:Location:Street:Oak

where the key 3:Location:Street leads to the value Oak.
An advantage of this arrangement is that we can retrieve data at the attribute level

or at the column family level. For example, for row id 4, we can retrieve just the Name
Adams or the entire Identification column family.

24158, Adams.

Row id Emp Num Name Street State Age
1 17483 Baker Oak OH 35

2 18420 Taylor Elm NY 24

3 21667 Chen Oak OH 41

4 24158 Adams Maple TN 36

5 26993 Roberts Main CA 45

6 28210 Kumar Main FL 22

7 30623 Harris Elm NY 31

EMPLOYEE TABLEFIGURE 13.13  The Employee table with
row ids

Identification Location Desc
Row id Emp Num Name Street State Age

1 17483 Baker Oak OH 35

2 18420 Taylor Elm NY 24

3 21667 Chen Oak OH 41

4 24158 Adams Maple TN 36

5 26993 Roberts Main CA 45

6 28210 Kumar Main FL 22

7 30623 Harris Elm NY 31FIGURE 13.14  The Employee table with
column families

Column Family Database    333

When we looked at document database, we saw that different documents in a col-
lection could have different attributes. This was one of the interesting and useful fea-
tures of document database. A similar capability holds for column family database!
Consider, again, the attributes and values specific to police officers, firefighters, and
EMTs in Figure 13.7 and how they were inserted into some of the sample documents in
Figure 13.9. We can do essentially the same thing in column family database by relying
on the concept of different column families being associated with different row ids,
Figure 13.16.

Row id Identification Location Desc
1 Emp Num:

17483
Name:
Baker

Street:
Oak

State:
OH

Age:
35

2 Emp Num:
18420

Name:
Taylor

Street:
Elm

State:
NY

Age:
24

3 Emp Num:
21667

Name:
Chen

Street:
Oak

State:
OH

Age:
41

4 Emp Num:
24158

Name:
Adams

Street:
Maple

State:
TN

Age:
36

5 Emp Num:
26993

Name:
Roberts

Street:
Main

State:
CA

Age:
45

6 Emp Num:
28210

Name:
Kumar

Street:
Main

State:
FL

Age:
22

7 Emp Num:
30623

Name:
Harris

Street:
Elm

State:
NY

Age:
31 FIGURE 13.15  The Employee table

with attribute names

Police Officer

Emp Num Rank Years
21667 Sergeant 5

30623 Captain 20

Firefighter

Emp Num Height Weight MWC
17483 6ʹ 0ʺ 180 150

24158 5ʹ 10ʺ 175 200

28210 6ʹ 1ʺ 210 170

EMT

Emp Num Year Cert CPR
18420 2010 9

26993 2021 5
FIGURE 13.16  Specific column families

334   Chapter 13  NoSQL Database Management

For example, we know that employee 17483, now identified by row id 1, in Figure 13.15
includes data from the Firefighter column family. In fact, the column family database
equivalent of the document database example in Figure 13.9 would be Figure 13.17.

Another interesting feature of column family database is that the data is time-
stamped when it is inserted into the database. The timestamps can be different for
different attributes within the same row id. And, very interestingly, the timestamped
data is saved, keeping a historical record of the data as it is updated. When the data is
retrieved, the default is to return the latest data, but requests can be made to retrieve
previous attribute values. This is very different from traditional data storage. Usually,
when data is updated to a new value, the old value is simply lost.

For example, consider the Identification column family of Row id 1 in Figure 13.17.
Let’s say that both the Emp Num and Name were inserted on June 2, 2022 at 2:00PM.
Then the data would look like Figure 13.18:

Then, if the employee’s name changed (for whatever reason) to Jones on July 21,
2022 at 11:00AM, the column family data would look like Figure 13.19:

Row id Identification Location Desc Firefighter
1 Emp Num:

17483
Name:
Baker

Street:
Oak

State:
OH

Age:
35

Height:
6ʹ 0ʺ

Weight:
180

MWC:
150

Row id Identification Location Desc EMT
2 Emp Num:

18420
Name:
Taylor

Street:
Elm

State:
NY

Age:
24

Year Cert:
6ʹ 0ʺ

CPR:
9

Row id Identification Location Desc Police Officer
3 Emp Num:

21667
Name:
Chen

Street:
Oak

State:
OH

Age:
41

Rank:
Sergeant

Years:
5

FIGURE 13.17  Three records shown as column families

Row id Identification
1 Emp Num:

17483
06/02/2022
2:00PM

Name:
Baker
06/02/2022
2:00PMFIGURE 13.18  The Identification column family with

timestamps

Row id Identification
1 Emp Num:

17483
06/02/2022
2:00PM

Name:
Baker
06/02/2022
2:00PM
Jones
07/21/2022
11:00AMFIGURE 13.19  The Identification column family with new

data inserted and timestamped

Graph Database    335

The value Jones with its timestamp is recorded and the original value Baker, with its
timestamp, is also kept in the database and can be retrieved if needed.

Graph Database
The fourth and last NoSQL framework is graph database. While it is noticeably differ-
ent from the other three NoSQL frameworks, it does have key-value elements that put
it in the NoSQL class. Graph database is all about relationships. The relationships can
be between different occurrences of the same entity type or can be between the occur-
rences of different entity types.

A simple example of what graph database is all about is a graph database model
of how employees in a company relate to each other, Figure 13.20. Each circle or
“node” of the graph represents an entity occurrence. In Figure 13.20, all of the nodes
are labelled “Employee,” meaning that each node is an occurrence of the Employee
entity type, or, simply put, each node represents an employee. Notice that nodes
can have properties, represented as key-value pairs. In this example, each employee
node has three properties, employee serial number, name, and age. The lines or links
connecting the nodes represent relationships between the nodes and, although not
shown in this example, relationships can have properties, too. Some relationships are
singular in nature: Lopez was the recruiter of Jones. Some are reciprocal: Smith and
Kumar are friends of each other. Notice that the relationship links have arrowheads
indicating a direction. Based on the arrowhead, we see that Smith is a protégé of
Adams, not the other way around.

FIGURE 13.20  The Employee
graph with all nodes of the
same entity type

336   Chapter 13  NoSQL Database Management

Figure 13.21 is a graph in which the nodes represent different entity types: books,
authors, and publishers. In fact, these entity types are taken from the Good Reading
Bookstores example in Figure 2.10 in Chapter 2. But, Figure 2.10 shows an associa-
tive entity, Wrote, recognizing the many-to-many relationship between books and
authors (a book can have multiple authors and an author can write or cowrite many
books). Although not shown in Figure 2.10, we know that a many-to-many rela-
tionship can carry intersection data, such as, in this example, the payment that an
author received for writing a book. Figure 13.21 shows that John Taylor was a coau-
thor of the book Geography. Since relationship links in Graph Database can have
properties, the Wrote link between the John Taylor and Geography nodes can have
a property called Payment and that is where the intersection data would go in this
graph database!!

FIGURE 13.21  The Publisher graph with nodes of different entity types

Querying NoSQL Databases and the Rise of NewSQL    337

An interesting question is, How can we store a graph database in a computer? We
can’t just somehow “show” a picture of a graph to a computer and expect it to under-
stand what it means. While it is beyond the scope of this book to go into detail on this
point, we will mention, in passing, that a graph can actually be described in a few ta-
bles, very much like relations in a relational database. There can be a table of nodes, a
table of links, and a table of properties, and these tables can be designed in such a way
that, for example, a node can be associated with the links connected to it.

Querying NoSQL Databases
and the Rise of NewSQL
NoSQL Query Languages
So far in this chapter we have been looking at the structures and special features of the
four NoSQL frameworks. Of course, if we store data in these frameworks, we have to
be able to retrieve the data, which brings up the issue of the query languages that can
be used for this purpose. And, we would expect the query languages to be designed to
take advantage of the unique features of the NoSQL systems. Here are a few samples.

MongoDB is a popular document database. Suppose you have a collection of docu-
ments called “users” and you want to find all of the documents in the collection (i.e. all
of the people) that have an “age” attribute with the value 27, you would write:

db.users.find({“age” : 27})

“find” is the key word in MongoDB that triggers this kind of data retrieval.
To retrieve all of the documents for users between 18 and 30 years old you

would write:

db.users.find({“age” : {“$gte”: 18, $lte” : 30}})

where $gte is greater than or equal to, $lte is less than or equal to, and the comma
between them indicates an AND condition.

HBase is a popular column family database. The basic data retrieval command
in HBase is:

Get(byte[] row)

which is based on the column family database concept of identifying rows by their row
id, indicated in the command by “row.”

Graph database is especially useful for storing
data about entities that have relationships with
each other.

Question:
Consider a set of cities. Construct a graph data-
base model that shows several cities and the

highways that connect them. Include several prop-
erties of each city and several properties of each
highway.

Your Turn

338   Chapter 13  NoSQL Database Management

To retrieve multiple rows from a database you would write:

Scan(byte[] startRow, byte[] stopRow)

which indicates the range of row ids that you’re looking for.
And you can retrieve an entire column family with:

Get addFamily(byte[] family).

Furthermore, there is syntax in the column family database retrieval languages for
taking advantage of the timestamp feature, too.

Neo4j is a common graph database and it has a data retrieval language called
Cypher. In order to take advantage of the graph structures, Cypher has to be able to
not only retrieve the data (the properties) in a node, but also must be able to traverse
the graph and find nodes attached to other nodes. For example, in Figure 13.21, Cypher
would have to be able to retrieve the properties in the publisher node for publisher
number 375 (i.e. PubNum 375, PubName Ace, PubCity New York) but also be able
to find all of the books it has published and all of the properties of those books. The
syntax is fairly complicated, but it is capable of accomplishing tasks like these. The key
command is MATCH.

For example, if you want to retrieve the node for publisher number 375, you
would write:

MATCH (publisher: Publisher {PubNum: ‘375’}
RETURN (publisher)

As you read the previous passages about data retrieval in the NoSQL frameworks, it
may have occurred to you that the thirty or more years in which people became skilled
in SQL as a data retrieval language seem to have gotten lost in the NoSQL frame-
works. You’re right!! In fact, as people began experimenting with and using the NoSQL
frameworks, they began seeking a solution that would allow them to use the standard
SQL data retrieval language with data storage frameworks that included the advanced
NoSQL features. Nature (and business) hates a vacuum and the database product ven-
dors responded with a new class of database management systems known, informally,
as NewSQL database management systems.

NewSQL
Database management systems generally classified as NewSQL include such products
as ClustrixDB, NuoDB, MemSQL, VoltDB, and a variety of others. In the very compet-
itive world in which these products exist, their features are a constantly moving target.
They tend to be relational or tabular in structure, use SQL as their query language, and
are ACID compliant.

Another common feature of NewSQL systems is that they are “in memory systems.”
This means that as primary memories have become progressively faster, cheaper, and
larger, these systems are designed to keep entire databases or large parts of them in
main memory. This allows them to run at much faster speeds, although the data must
periodically be copied to secondary memory for non-volatile storage. Regarding non-
volatile storage, these systems are designed for use with server farms and many have
automatic data replication capabilities which promotes a high level of data availability.
These systems can replicate data to multiple servers and keep track of where the cop-
ies of the data reside. If a server with one copy of a piece of data goes down, another
copy of the data is available on another server. Furthermore, with the ability of server

farms to add more servers for a system when needed, they also have the property of
scalability.

Other features that can be found in some of these NewSQL systems include data
encryption, data compression, parallel processing (in the server farms), and stored
procedures. Some of them state that they can be used either “on premises” in a com-
pany’s own computers or in the cloud. Some emphasize that they are designed for both
transactional processing and analytical processing. Some have the capability to store
data across multiple data centers.

Summary
While relational database management has many advantages and has certainly proven
itself for many applications over many years, it does have several shortcomings. This
fact, plus the advent of such new hardware technologies and arrangements including
faster main memory, solid state disks, and server farms, has led to several new database
management technologies that solve some of the problems of relational database and
take advantage of the new hardware capabilities. Thus, we now have the NoSQL para-
digms of key-value database, document database, column-family database, and graph
database. Further, the combination of these new database paradigms plus the desire to
continue to use SQL as a query language, have led to NewSQL database.

Key Terms
ACID property
Big data
Column family database
Cypher
Document database
Graph database

Hadoop
Hadoop Distributed File

System (HDFS)
Hashing
Key-value database
MapReduce

MongoDB
Neo4j
NewSQL
NoSQL database
Parallel processing
Server farm

Solid state disks
Spark
Volume, variety, velocity
YARN

Questions
  1.	 What are the shortcomings of relational database man-

agement that led to NoSQL database management?
  2.	 In general, what are the advantages of NoSQL database

management?
  3.	 What is “big data”? Explain the three “Vs” of big data.
  4.	 What is the ACID property and why is it important?
  5.	 What advances in hardware have enabled the transi-

tion to NoSQL database management? Why are they
important?

  6.	 Describe the concept of key-value database.
  7.	 How do the keys and values in a key-value database

differ from the equivalent concepts in a relation-
al database?

  8.	 What data storage and retrieval technique allows key-
value database to have fast performance?

  9.	 What is HDFS and what are its major structural
constructs?

10.	 What is MapReduce and how does it work?
11.	 Describe the concept of document database.
12.	 What are the equivalent constructs in document

database to attribute, row, and table in a relation-
al database?

13.	 If documents in a document database are roughly the
equivalent of rows in a relational database, what are the
comparative advantages of documents?

Questions    339

340   Chapter 13  NoSQL Database Management

14.	 How would a program processing documents have to
operate differently compared to how it would have to
operate if processing rows in a relational database?

15.	 Describe the concept of column family database. What
is a column family?

16.	 In what ways are document databases similar to col-
umn family databases?

17.	 What is the timestamp property in column family data-
base management?

18.	 Describe the concept of graph database.

19.	 What kinds of applications is graph database manage-
ment good for and why?

20.	 Why is graph database considered a NoSQL data-
base paradigm?

21.	 How can a graph database graph be described to
a computer?

22.	 Generally speaking, what is the nature of query lan-
guages for NoSQL database management systems?

23.	 What is the premise for NewSQL database?

Exercises
  1.	 You are the data administrator of a mid-sized manufac-

turing company. As your company begins to realize the
potential of big data for product design and marketing,
you realize that the limits of relational database could
impede the company’s progress. Make an argument for
introducing one or more NoSQL databases specifically
to aid product design and marketing.

  2.	 Consider the Central Hospital entity-relationship dia-
gram of Exercise 7.2. Focus on just the Nurse, Depart-
ment, Doctor, and Degree entities and create a database
schema design for a:

	 a.	 Key-value database.
	 b.	 Document database.

	 c.	 Column family database.
	 d.	 Graph database.
  3.	 Consider the Central Hospital entity-relationship

diagram of Exercise 7.2. Focus on just the Insurance
Company, Claim, Patient, Operation, and Operation
Type entities and create a database schema design for a:

	 a.	 Key-value database.
	 b.	 Document database.
	 c.	 Column family database.
	 d.	 Graph database.

  1.	 Consider the Happy Cruise Lines entity-relationship
diagram of Minicase 7.1. Focus on just the Ship,
Cruise, Visit, and Port entities and create a database
schema design for a:

	 a.	 Key-value database.
	 b.	 Document database.
	 c.	 Column family database.
	 d.	 Graph database.

  2.	 Consider the Super Baseball League relational
database of Minicase 4.2. Create a database schema
design for a:

	 a.	 Key-value database.
	 b.	 Document database.
	 c.	 Column family database.
	 d.	 Graph database.

Minicases

341

CHAPTER 14

Blockchain

With the advent of cryptocurrencies, its underlying foundation,
blockchain, has become a topic of concern to the data man-
agement profession. In fact, blockchain technology is being
employed in an increasingly wide range of applications well
beyond financial applications. While blockchain is not, strictly
speaking, “database management” as we have come to under-
stand this term, it is nonetheless a method of storing and retrieving
data and so should be understood as an option in the context of
data management.

Introduction
It seems like cryptocurrencies, such as Bitcoin and its competitors, are in the news
a lot. Cryptocurrencies represent a new form of money that is not backed by govern-
ments or gold and is not held in traditional banks. So, why should we be interested
in such financial instruments in a book about data and database? The answer is that
cryptocurrencies are based on an information systems concept known as “blockchain”
which, in effect, is a very specialized way of storing and manipulating data. And cryp-
tocurrencies are not the only application of blockchain. Other prominent applications
of blockchain include managing electronic medical records, tracking fruits and vege-
tables from farm to table, managing insurance policies, and enabling voting systems,
among many others.

OBJECTIVES

•	Explain the blockchain concept.
•	Describe how cryptographic hashing is used in

blockchain.
•	Describe how public-key encryption is used to

create digital signatures in blockchain.
•	Describe additional blockchain concepts including

Merkle trees, consensus, and smart contracts.

CHAPTER OUTLINE
Introduction
What Is a Blockchain?
Hashing

Cryptographic Hashing
Cryptographic Hashing in the

Blockchain
Public-Key Encryption

Public-Key Encryption Revisited
Public-Key Encryption in the

Blockchain
Additional Blockchain Topics

Merkle Trees
Consensus
Smart Contracts

Summary

342   Chapter 14  Blockchain

The basic concept of blockchain is that it is a peer-­to-­peer system that is not under
the control of any central authority. In cryptocurrencies, for example, there are no
banks or governments involved. The “peers,” and there can be any number of them,
are individual people or companies with their computers that communicate with
each other via the Internet. The data stored in the blockchain can be anything that
can be digitized, including forms of money, records like medical records, and even
the ownership records of digital objects such as photos or works of art, referred to
as non-­fungible tokens or NFTs. The idea, in general, is that these digital objects
of value in the form of data can be owned, bought, sold, and traded between peers
without the need or cost of an intermediary or “middle man.” The term for this is
“disintermediation.”

But there is a reason, that we sometimes take for granted, that we have always dealt
with central authorities, or intermediaries such as banks. After all, we trust them to
keep track of who owns what instruments of value, such as money, and to do so in a
secure manner. Without them, in a purely peer-to-peer environment, how could we be
certain of who owns what items of value, whether the transfer of such items from one
owner to anther is legitimate and whether or not the whole system has been hacked?
There are also benefits to storing transaction history and to allowing access to the his-
tory to all who legitimately need to see it. Accomplishing all of this is where the con-
cept of blockchain comes in.

Blockchain is a fairly complicated topic. There are public blockchains that anyone
can participate in and there are private blockchains that are limited to invited par-
ticipants. There are different blockchain platforms with different data structures and
rules. Our goal in this chapter is not to cover every blockchain variation in detail, but
rather to explain some of the basic, universal concepts that make blockchains, in gen-
eral, work.

What Is a Blockchain?
Figure 14.1 shows a single block. Think of it simply as some data that represents a
transaction with the details of that transaction. Figure 14.1 shows that Johnson bought
a house on 3/5/2008 for $100,000. Figure 14.2 shows two more related transactions.
Adams bought the house from Johnson on 12/15/2015 and paid $150,000 for it, creating
a blockchain, literally a chain of blocks. Then, on 8/3/2022, Williams bought the house
from Adams and paid $200,000 for it, extending the blockchain further.

Johnson
3/5/2008
$100,000

FIGURE 14.1  A single block

Johnson
3/5/2008
$100,000

Adams
12/15/2015
$150,000

Williams
8/3/2022
$200,000

FIGURE 14.2  A simple blockchain

Hashing    343

Remember that there is no central authority keeping track of these transactions.
How do we know who the current owner of the house is? What if it’s important to
maintain a record of the sales history of the house? Part of the answer, as shown in
Figure 14.3, is that everyone participating in the blockchain, that is, every node, in
the network keeps its own history or “ledger” of all of the transactions that have
taken place.

But remember, there is no central authority to maintain the security of the data in
the blockchain or even to verify that the person who claims ownership of the data or
who transfers ownership of the data is legitimate! How do we know that Adams really
bought the house in 2015 or that she authorized the sale of the house to Williams in
2022? Without a trusted central authority to verify and keep track of all of this, anyone
who has access to the blockchain, or an outside hacker, for that matter, could illegally
modify the blockchain to make it reflect what they want it to.

Two technologies are used in blockchain to overcome these concerns and make the
blockchain safe to use. The two technologies are hashing and public-­key encryption.

Hashing
Cryptographic Hashing
We first looked at hashing in Chapter 8 on physical database design, as a method for
storing and retrieving data. Recall that the basic idea in hashing is to feed some number
into an algorithm that will produce another, smaller number. In Figure 8.18, we fed
salesperson numbers into a hashing algorithm that produced numbers that indicated
the storage slots in which to store the salespersons’ records. What would this look like
if we tried to hash the data in a block in a blockchain? Figure 14.4 illustrates a block

FIGURE 14.3  A copy of the ledger at
every blockchain participant’s node

iblist / Shutterstock

344   Chapter 14  Blockchain

of data being hashed to a single number. We will see the use for this later when, by the
way, we will be hashing both the data in the block and its location.

You might look at Figure 14.4 and wonder how the data in this block can be hashed.
Hashing is the conversion of one number to another, as in Figure 8.18. And “Johnson
3/5/2008 $100,000” isn’t exactly a number. Or is it? It is important to remember that
all data in a computer, whether it is a number, text, a photo, etc., is stored in bits. Each
bit, at any one time, can be either 0 or 1 and any data, including “Johnson 3/5/2008
$100,000” amounts to a (long) string of 0s and 1s. That means that any data of any
kind eventually boils down to a binary number, possibly a very long binary number.
So, any data of any kind in a computer can be hashed based on the binary, or base 2,
number system.

We pointed out in Chapter 8 that there can be many different hashing algorithms.
The Division-Remainder Method described in Chapter 8 is one of the simplest hash-
ing algorithms. On the other hand, blockchain requires a very complex hashing algo-
rithm that has certain specific properties. In Chapter 8, we described the concept of a
collision in which two different input numbers hashed to the same output value and
we described a way to handle that situation. The way we will use hashing in block-
chain will not tolerate collisions. The hashing algorithm must be so complex that, for
all practical purposes, collisions will not happen. Another property of a hashing algo-
rithm used in blockchain is that it must not be possible to figure out what the input
data was based on knowing the output data. In other words, you cannot go backward.
You must not be able to figure out what the original data was just by knowing the
output of the hashing algorithm. To accomplish all of this, blockchain uses complex
hashing algorithms known as cryptographic hashing algorithms.

Cryptographic Hashing in the Blockchain
Figure 14.5 illustrates the use of cryptographic hashing in the blockchain. Again, Johnson
bought a house on 3/5/2008 for $100,000 and sold it to Adams on 12/15/2015 for
$150,000. At the time of that sale, a new block is created for Adams, as shown in
the diagram. But there is more to it and here is where hashing comes in. HP1 (hash
pointer 1) is a hash value that results from a combination of the data in Johnson’s block
and its location in the computer. As shown in the diagram, HP1 is stored in Adams’
block. This creates a “chain” from Adams’ block to Johnson’s block. Similarly, When
Williams buys the house from Adams in 2022, Adams’ block and its location are
hashed and the resulting hash value is stored in Williams’ block as HP2. Williams still
owns the house, but her block will be hashed and the hash value, HP3, will be stored
in a secure location.

All of this hashing accomplishes a couple of things. First, since the hash values
incorporate the locations of the blocks, it creates a chain. Starting from HP3, you can
trace the entire history of the ownership of the house, all the way back to Johnson. The
entire history will be stored in the ledger at every node participating in the blockchain
(refer back to Figure 14.3).

Johnson
3/5/2008
$100,000

492740
Hashes to

FIGURE 14.4  Hashing the data in a block to a single number

Public-Key Encryption    345

But there is another really interesting purpose for going to all of the trouble of
hashing the data in the blocks. Let’s say that for some reason a hacker goes in and
changes the price that Adams paid for the house to $125,000. If you run the hashing
algorithm through the data in Adams’ block again, the resulting hash value will not
match HP2 in Williams’ block and therefore you know that the blockchain has been
hacked!!! Even if the hacker is clever enough to replace HP2 in Williams’ block with
the new hash value, he would also have to update HP3 because that, in turn, will
not match. But the concept is that HP3 is stored in a secure location that the hacker
cannot reach. Thus, all of this hashing not only creates the chain, but it also provides
an important layer of security.

Public-Key Encryption
Public-Key Encryption Revisited
We first looked at the subject of data encryption in the Data Security section of
Chapter 11. Recall that Private-­Key Encryption entails the use of the same key to
encrypt and decrypt data. Public-Key Encryption requires a pair of companion keys:
a public key and a corresponding private key. When a public key is used to encrypt
data, only its companion private key can decrypt it. The public key that was used to
encrypt the data cannot decrypt it. And, it turns out that the process also works in
reverse: if the data is encrypted with the private key, only the companion public key
can decrypt it.

When data is encrypted with the public key and decrypted with the private key,
the concept is that since everyone has the public key, it is, after all, public, anyone can
send an encrypted message to the owner of the private key who is the only one who
can decrypt it, Figure 14.6.

Johnson
3/5/2008
$100,000

HP1

Adams
12/15/2015
$150,000

Williams
8/3/2022
$200,000

HP2
HP3

FIGURE 14.5  Blockchain with hash pointers

In public-key encryption, anyone can encrypt a message
with John Smith’s public key and send it knowing that
John Smith, who is the only one who has the
corresponding private key, is the only one who can
decrypt and read it.

John Smith

FIGURE 14.6  Encrypting a message with a public key in public-key
encryption

346   Chapter 14  Blockchain

But what if John Smith encrypts a message with his private key for later decryption
with his corresponding public key, Figure 14.7? This is known as a “digital signa-
ture.” If a message supposedly sent by John Smith is received by anyone he sends the
message to, and they can successfully decrypt it with his public key, they know that
the message really came from him and not from an impostor. Why? Because if they
could decrypt the message with his public key and the message made sense, they would
know it really came from him. If they tried to decrypt the message with his public key
and the result was incomprehensible garbage, they would know that it came from an
impostor, that is from someone who did not have his private key.

In Chapter 11, we pointed out that Public-Key Encryption, with the data being
encrypted with the public key, has an important use in electronic commerce. We will
see in the next section of this chapter that Public-Key Encryption has important uses
in blockchain with blockchain data being encrypted with the public key for certain
uses and with the private key for certain other uses.

Public-Key Encryption in the Blockchain
Throughout this book, we have emphasized the need for unique keys to establish
“ownership” of the related data that belongs to it. Think of a unique key in a record
of a relational table as establishing “ownership” of the rest of the data in that record.
The same must be true of the data in blockchain blocks. In fact, public-key encryption
in blockchain is used to establish ownership of the data in the blocks. A public key/
private key pair is created for every block. Figure 14.8 shows the User Account (UA)
number in every block. Of course, every block has to have some identifier of the owner
of the data in that block. In fact, the public key of the public key/private key pair cre-
ated for that block servers as its user account number.

In Figure 14.8, UA1 is a public key that belongs to Johnson. Only Johnson possesses
the corresponding private key. To verify that Johnson really owned the house (in 2008)
anyone can encrypt a message with UA1 and send him a message asking for him to
respond to it. If Johnson can read the message (by decrypting it with his private key,
which only he possesses) then he can respond and ownership of the data in the block
can be established.

In public-key encryption, if John Smith encrypts a
message with his private key and sends it to someone,
they will know that it really came from him if they can
decrypt it with his public key and what they get is a
message that makes sense and is not garbage. His
private key is his digital signature.

John Smith

FIGURE 14.7  Encrypting a message with a private key in public-key encryption

Johnson
3/5/2008
$100,000

HP1

Adams
12/15/2015
$150,000

Williams
8/3/2022
$200,000

HP2
HP3

UA1 UA2 UA3

FIGURE 14.8  Blockchain showing user account
numbers (UAx)

Public-Key Encryption    347

Now that we’ve considered verifying ownership of the data in a block, we have
to consider securely transferring ownership of the data from one person to another.
How can we be sure that Johnson really wanted to sell the house to Adams and on the
date and at the price shown in the blockchain? We’re going accomplish this by using
the reverse of the public-key encryption process and begin by using the private key.
Suppose that Johnson creates a message describing the transaction he wants to take
place. The message says, “I want to sell the house to Adams for $150,000.” First, the
message is hashed into a single number to make the process more manageable. Then,
the hashed result is encrypted with Johnson’s private key. Next both the original mes-
sage and the encrypted hash result are sent, together, to everyone participating in the
blockchain, Figure 14.9.

I want to sell the house
to Adams for $150,000.

Original Message

I want to sell the house
to Adams for $150,000. 839108804

Original Message
Result of hashing

the original
message.

I want to sell the house
to Adams for $150,000.

Original Message

I want to sell the house
to Adams for $150,000.

Message sent to all
nodes in the network.

839108804 75965

75965

75965

Result of hashing
the original
message.

Encrypted hash
of the original

message using
Johnson’s private

key.

I want to sell the house
to Adams for $150,000.

Message received.

839108804

Match? Yes!
Legitimate Message

839108804

Recipient hashes
original message
and gets this result.

Recipient decrypts the
encrypted hash using
Johnson’s public key and gets
this result.

FIGURE 14.9  Starting with the private key of public-key encryption to verify a message

348   Chapter 14  Blockchain

If someone wants to verify that the message is legitimate, that is that it really is from
Johnson, here is how they would proceed. Remember that they have received both the
original message and the encrypted (with Johnson’s private key) hash of the message.
So, first they would hash the original message. The way the cryptographic hashing
algorithm works, the result of the hash will be the same result that Johnson got. Then
they would decrypt the encrypted hash with Johnson’s public key (which everyone
has, because it’s public). Then, they can compare the decrypted hash value with new
hash result that they just generated. If the two hash values match, they know that the
message is legitimate, Figure 14.9. If they don’t match, they know that the message
is a fraud.

Additional Blockchain Topics
Blockchain is a complex technology and there is still more to it than we have already
covered. To complete this chapter and at least make you aware of some of the other
topics within blockchain, we will briefly describe some of them.

Merkle Trees
In principle, blockchains can become very, very long, recording huge numbers of
transactions. Trying to navigate through such a long blockchain can become a slow,
laborious exercise. To improve this process, there is the Merkle tree, Figure 14.10.
Notice that in a Merkle tree the transactions are arranged in a tree structure with only
the root of the tree being an actual block in the blockchain. The hash pointers are
grouped, and the groups are hashed, as shown in the diagram, until they reach the
root. The root itself does not contain any transaction data.

Consensus
Take another look at Figure 14.3 and imagine hundreds or thousands of people or
nodes on the network that can access the blockchain. Also, remember that every node
in the network contains a complete copy of the ledger that comprises the transaction
history. If a new transaction takes place, like Johnson selling the house to Adams in
Figure 14.8, how are the ledgers at all of those nodes updated? After the ledger at one

Consider some authority that wants to keep track
of the history of ownership of pieces of artwork.
This will include buyers and sellers of the pieces of
artwork and the prices paid for them.

Question:
Construct a blockchain to handle this task. Indicate
how it can be assured that it is secure from hacking
and how ownership and the transfer of ownership
can be secure.

Your Turn

Summary    349

node is updated, messages have to be sent to update the ledgers at all of the other
nodes. That can take a lot of time. What if during the time it takes to update all of the
copies of the ledger, another transaction is initiated that involves the data that was just
updated? Some of the copies of the ledger will reflect that last update but others will
not because the message to perform the update has not reached them yet. A number
of procedures to solve this problem have been developed. Going into detail on them
is beyond the scope of this book. We will simply say that they involve inspecting the
ledgers at all of the nodes and coming to a decision about the correct state of the trans-
action history based on what is found in the ledgers.

Smart Contracts
Some blockchain technologies permit the use of “smart contracts.” In their basic
form, smart contracts are executable transactions that are more flexible and have more
options than the simple ownership transferring transactions that we discussed in this
chapter. But, smart contracts are, in fact, computer programs written in a language
that is compatible with the blockchain technology that it works with. This fact opens
up a range of new possibilities of what the blockchain can accomplish and is an impor-
tant feature to watch for in the future.

Summary
Blockchain is an exciting technology that has the potential to lower the costs and speed
the performance of many types of business processes. Eliminating the middleman,
the concept of disintermediation, is certainly desirable but not without cautions. For
blockchain to be successful it must be secure, it must guarantee accurate ownership of

Johnson
3/5/2008
$100,000

Block in the
Blockchain

Adams
12/15/2015
$150,000

Williams
8/3/2022
$200,000

UA1 UA2 UA3 UA4

HP1

HP12 HP34

HP2 HP3 HP4

FIGURE 14.10  A Merkle tree

350   Chapter 14  Blockchain

property, and must be able to guarantee legitimate transfer of ownership. While most
of the publicity about blockchain has been in the area of cryptocurrency and other
financial transactions, many people are predicting that blockchain will come into use
for a wide variety of applications in the future.

Key Terms
Bitcoin
Block
Blockchain
Central authority
Consensus

Cryptocurrency
Cryptographic hashing
Digital Signature
Disintermediation
Hashing

Ledger
Merkle Tree
Non-fungible token
Peer-­to-­peer
Private-key encryption

Public-key encryption
Smart contracts

Questions
  1.	 What is a block and what is a blockchain?
  2.	 Why is blockchain called a “peer-to-peer” system?
  3.	 What is disintermediation and why does this term

apply to blockchain?
  4.	 What is a ledger in blockchain? Where are the led-

gers stored?
  5.	 What is hashing and, specifically, what is crypto-

graphic hashing?
  6.	 How is hashing used in creating a blockchain?
  7.	 How does hashing prevent the hacking of a blockchain?
  8.	 What is public-key encryption?
  9.	 How does public-key encryption normally work?

10.	 What is a digital signature?
11.	 How does the idea of a digital signature work with

public-key encryption?
12.	 What is a digital signature used for in blockchain?
13.	 How and why do hashing and digital signatures work

together in blockchain?
14.	 What is a Merkle tree in blockchain and what is

it used for?
15.	 What is consensus in blockchain?
16.	 Why is consensus important in blockchain?
17.	 What is a smart contract?
18.	 What is the difference between a public blockchain and

a private blockchain?

Exercises
  1.	 The government has decided that, for safety reasons, it

wants to track every automobile made from the factory
to the dealership, to the first owner and then to each
successive owner.

	 a.	 Explain how this can be accomplished with a
blockchain and hashing.

	 b.	 Draw a diagram of a blockchain illustrating this.
	 c.	 Explain how when someone wants to buy a used

car that is advertised for sale, they can be sure that
they are dealing with the rightful owner of the car.

  2.	 A bank has decided to maintain its depositor accounts
using a blockchain.

	 a.	 Since there can be many transactions for each
account, the bank feels that it needs to incorporate
Merkle trees into the blockchain. Draw a diagram
illustrating this, specifically for the
bank’s accounts.

	 b.	 Explain what it would mean to the blockchain if a
person with an account in this bank wants to make
a withdrawal.

	 c.	 Explain what it would mean to the blockchain if a
person with an account in this bank wants to
transfer money to another account in this bank.

Exercises    351

  1.	 Happy Cruise Lines has decided to build a block-
chain of its passenger bookings (a particular pas-
senger traveling on a particular ship on a particular
date). Its purpose is to facilitate contact tracing if any
illnesses occurs during a voyage. Think about how a
blockchain might be designed for this purpose and
how it would operate when needed.

  2.	 The Super Baseball League wants to create a block-
chain that records which players currently and in
the past have played on which teams in the league.

In addition, each team in the league has a set of
“minor league” teams at different levels of profi-
ciency that serve as “farm teams” for training players
to eventually play in the Super Baseball League. The
blockchain must include these minor league teams.
Players are frequently traded between teams at both
the Super League and minor league levels. Also,
players are promoted and demoted among each
Super League team’s farm system. Describe how all
of this would operate in a blockchain environment.

Minicases

352

CHAPTER 15

The term “the cloud” as used in information systems seems to be
everywhere today. It’s almost impossible to have a discussion
about information systems anymore without the cloud being a
part of it. Indeed, the concept of turning over all or part of an
information systems environment to a third party that guaran-
tees to manage it on their remote systems appears to have many
advantages. But, there are also a number of cautions to take into
consideration. In any case, a key aspect of the cloud is its use for
data storage and retrieval, which is the subject of this chapter.

Introduction
When electronic computers first came on the scene in the mid-1950s, they were big,
expensive, slow machines that took up a whole room and could only run one applica-
tion at a time. In the 1960s, more companies and individuals wanted to use computers,
but the costs of owning one were prohibitively expensive. In addition, companies that
did have computers began to realize that the time that their computers were idle, for
example, as they switched between applications, was a huge waste of money. The result
of these problems was the development of a technology and business model known as

Database in the Cloud

OBJECTIVES

•	Explain the concept of the cloud.
•	Describe cloud usage and pricing models.
•	Understand the advantages of using the cloud.
•	Describe the advantages and disadvantages of

storing data in the cloud.
•	Compare the cloud to the distributed data

concept.

CHAPTER OUTLINE
Introduction
The Cloud: What, Why, How?

New Technologies
Cloud Usage Models
Cloud Pricing Models
Advantages of the Cloud

Data and Database in the Cloud
Where Should the Data Be Stored?
The Pros and Cons of Storing Data

in the Cloud
From Distributed Database

to the Cloud
Introduction to Distrib-

uted Database
Distributed Database Architecture
The Cloud and Distrib-

uted Database
Summary

The Cloud: What, Why, How?    353

“timesharing.” The idea was, basically, that a company that owned a computer could
rent time on it to companies or individuals that needed computer power but didn’t
have the resources to own one themselves. Some of the companies that provided such
services were known as “service bureaus.”

But remember, that we’re talking about a time well before the existence of the
Internet. In order to make timesharing work, companies that wanted to rent time on
another company’s computer had to have a “leased line” connection to it, literally
a dedicated communications line that they leased from the telephone company. As
the technology kept developing, another option for connecting to someone else’s com-
puter was to “dial up” a connection through the telephone system when computer
access was needed. At the same time that people were dealing with these connection
issues, the companies that provided the timesharing services were developing systems
software that improved the ways that they could switch their computers between cus-
tomers and even run multiple programs simultaneously with terms such as “multipro-
gramming” and “virtual machines.”

Nature hates a vacuum and so do tech entrepreneurs. As early as the 1960s, we
saw the advent of “minicomputers” that allowed smaller companies to own their own
computer, in effect competing with timesharing services. Then in about 1980, the per-
sonal computer came on the scene, permitting individuals to have computer power
on their desks. Throughout these decades, large companies built their own large
computer centers. The net effect of all of these advances and innovations, plus the
networking challenges of timesharing, was that the market for timesharing services
effectively disappeared.

Then came the cloud, Figure 15.1.

The Cloud: What, Why, How?
New Technologies
Several advances in technology changed the picture again and renewed interest in
the idea of “renting” time and resources on computers “in the cloud” maintained

FIGURE 15.1  The cloud

354   Chapter 15  Database in the Cloud

by companies in business to provide such services. In its simplest terms, the cloud
refers to server farms accessible through browsers and the Internet. Public clouds
are designed for anyone to lease resources on them; private clouds are proprietary and
restricted. The introduction of the Internet as we know it today in about 1995 allows
universal access to the cloud. The further development of personal computers and
servers, and the technology that permits them to be linked together to form large-scale
“server farms,” Figure 15.2, allows cloud providers to offer virtually unlimited com-
puter power. And the introduction of “solid state disks” (SSD), solid state second-
ary memory that replaces rotating disks in the servers in the server farms, makes the
server farms more reliable.

From the point of view of the data itself, the use of the data and therefore the amount
of the data to be stored added an additional dimension from transactional databases to
informational databases such as the data warehouses that we discussed in Chapter 12.
In other words, the amount of data to be stored and used increased tremendously.

Cloud Usage Models
There are several models of cloud usage but there are three that are the most common.
In Infrastructure-as-a-Service (IaaS) customers simply rent time on the cloud
vendor’s computer system. Platform-as-a-Service (PaaS) is a model in which the
cloud vendor provides both the hardware and software necessary for the customer to
develop their applications. The term Software-as-a-Service (SaaS) means that cus-
tomers use software applications provided by the cloud vendor. If you have ever filed
your income taxes using a program provided by a vendor that is run on the vendor’s
computer, you have experienced SaaS.

Cloud Pricing Models
There are two main pricing models for the cloud. In the simpler of the two models, the
customer specifies an amount of cloud resources (hardware, systems software, pos-
sibly application usage) that the customer wants and pays a periodic fixed fee for it.

C
yb

ra
in

 /
A

do
be

 S
to

ck

FIGURE 15.2  A server farm

Data and Database in the Cloud    355

Then, there is a more complicated variable pricing model but one that takes advantage
of the flexibility and more or less unlimited resources of the cloud. In this pricing
model, if on a given day or week or month you need more of the cloud’s resources, the
cloud management system gives it to you (and charges you more). Conversely, if in a
given time period you need less of the cloud’s resources, the system takes resources
away from you (and charges you less). Clearly, there can be many variations on this
theme, but this is the general idea. This pricing model would certainly be considered
an advantage of using the cloud and there are other advantages as we go on to the
next section.

Advantages of the Cloud
There are several advantages to use the cloud model and most of them are pretty obvi-
ous. To begin with, if you go with the cloud for all of your information systems work
you don’t have to have your own computer center. That means you don’t have to ded-
icate space for a computer center, install computers in it, deal with such necessities
as air conditioning and fire suppression systems, maintain the systems software it
requires, and hire people to run it. And, you know exactly how much you’re paying for
information systems services: it’s whatever the monthly bill from the cloud provider
amounts to. Of course, all of this will vary depending on the cloud usage model you
adopt, and everyone will still want their own personal computer on their desk, but
overall, it still simplifies your information systems expense cost analysis.

But, if there are advantages, are there also disadvantages? Yes there potentially are,
but let’s consider these in the context of cloud data issues in the next section.

Data and Database in the Cloud
So far in this chapter we’ve set the stage for the cloud by looking at hardware, systems
software, applications, and related issues. But this book is about data and database so
let’s turn our attention to data and database in the cloud, Figure 15.3.

FIGURE 15.3  Data in the cloud

356   Chapter 15  Database in the Cloud

Where Should the Data Be Stored?
Should an organization’s data be stored in a database in its own computers, in its own
buildings (on premises or “on prem” as the current terminology goes) or in a database
in the cloud? This is a question that many organizations struggle with. We will look at
the pros and cons in a moment, but first let’s consider the possibilities. Certainly, an
organization can decide to store all of its data on prem. This does not necessarily mean
that it has decided not to use the cloud at all. It is possible that it can execute an appli-
cation in the cloud by transferring data from its own computers to the cloud as needed
for the application, Figure 15.4. Swinging the pendulum all the way to the other side,
the organization can decide to store all of its data in the cloud, which most likely
means that it will run all of its applications in the cloud, although it could transfer
some of it to its on prem computers as needed.

Another option, which many organizations are trying, is a hybrid approach which
some people refer to as the “hybrid cloud.” In this approach, an organization decides
to keep some of its data on prem and some in the cloud. For the reasons for this split
and for the decisions of which data to keep in which of the two places, we have to go
on to the pros and cons of storing data in the cloud.

The Pros and Cons of Storing Data in the Cloud
Data Security  Let’s begin with data security, which is a huge issue today. The
question comes down to: “Who do you trust more to keep your data secure?” Cloud
providers can afford to hire the best data security specialists and many of them. In
addition to monitoring the data security in the server farms, they can make sure that
all patches to the systems software, some of which may fix security exposures that
have been discovered, are installed promptly. That sounds good, but the fact remains
that the data is no longer on your computers on your premises and so there may be
a sense of loss of control. Also, your data is stored in the same server farm as that
of other companies and so there may be a fear of other companies gaining access to
your data. On the other hand, how many data security experts can your company
afford to have on your own computers? And how promptly can your people install
security patches on the system software? Some very large, data-oriented companies,
like large banks, may be able to compete with the cloud providers in this regard, but
they are the exceptions. The proof that this is a real problem is in the many reported
and unreported data hacks, data thefts, ransomware attacks, and so forth, that com-
panies have experienced in recent years. Companies struggle with the decision of
which direction to go in storing their data. Some split the difference and keep some

FIGURE 15.4  Transferring data
between an on prem computer
and the cloud

Data and Database in the Cloud    357

of their data on prem and put some of it in the cloud. There is no one right answer
and no “one size fits all” solution.

Data Availability  What about data availability? In today’s world of Internet-based,
worldwide competition, a company’s data has to be available on a 24/7 basis. Do you
trust your own information systems operations more in this regard than the cloud pro-
vider’s systems? One deciding factor is the number of copies of the data being stored
and where it is being stored. Many companies have only one immediately available set
of data, with backup copies that are not immediately available stored when needed
for recovery. Some companies have had their own “mirrored data storage” in which
identical copies of their databases are stored on two different computers in two dif-
ferent locations. If one of the computers goes down, the data is available on the other
one. This is expensive and requires a certain level of personnel sophistication to work.
But, the fact is that the data is on the company’s computers. If the data is in the cloud,
for a fee, the cloud provider can arrange to have multiple copies of the data stored on
different servers in its server farm. Typically, there is an odd number of copies of the
data in this arrangement, most commonly three copies. This is certainly an important
advantage of the cloud since any computer, including servers in the server farm, can
occasionally go down. But it still means that the organization depends on either the
Internet or a leased line network for the company to reach and access its data in the
cloud. If the network fails, the data is not accessible.

Data Scalability  As business grows or contracts, the amount of data that a com-
pany has to store and process can also change. Here the cloud model clearly has advan-
tages. As its business grows, a company can buy more space for its data in the cloud
provider’s server farm. As its business contracts, it can reduce the amount it pays the
cloud provider for less space. Whether needing more storage space in the cloud or
less, these changes can be made quickly. Clearly, if the company is keeping its data on
prem, it is not practical or feasible to buy or sell data storage space as quickly or effi-
ciently as it can if using the cloud.

Data Backup and Recovery  We discussed the subject of data backup and recov-
ery in Chapter 11. At that point in this book, we assumed the data was on prem. If the
data is on prem, then, simply, the cloud can be used for backup.

On the other hand, if the data is in the cloud and the replicated data model is being
used with at least three copies of every data element being stored in the cloud provid-
er’s server farm, the operation of data backup is simply a byproduct of data replication.
If there are three copies of every data element in the server farm, then, in a sense, it has
been backed up. This, of course, assumes that the cloud is secure. A further argument
is that different copies of the same data should be stored in different physical locations
within the overall cloud environment.

Data and Database Administration  Chapter 10 covered the topic of database
administration, which can be an expensive proposition. To run a database on prem,
an organization has to pay for the database software itself plus the personnel to man-
age it. But, what if the organization stores its data in a database provided by the cloud
provider in its server farm? In that case the cloud provider is responsible for installing
and maintaining the database. The cloud provider becomes responsible for at least
some aspects of performance in terms of the speed with which the data can be stored
and accessed, which should be part of a service level agreement between the user

358   Chapter 15  Database in the Cloud

organization and the cloud provider. Referring back to the terminology in Chapter 10,
the user organization still needs data administration, but if the data is in the cloud, it is
the cloud provider’s responsibility to provide many of the services of database admin-
istration. Finally, if the cloud provider runs several different database management
systems, it gives its customers, the user organizations, the opportunity to try out these
different database systems for managing their data.

From Distributed Database to the Cloud
Introduction to Distributed Database
Before the arrival of the cloud, there was (and still may be for some companies) the
concept of distributed database. It is certainly possible for a company to concentrate
all of its databases at one mainframe computer site with worldwide access to this site
provided by telecommunications networks, including the Internet. While the man-
agement of such a centralized system and its databases can be controlled in a well
contained manner and this can be advantageous, it has potential drawbacks as well.
For example, if the single site goes down, then everyone is blocked from accessing the
databases until the site comes back up again. Also, the communications costs from the
many far-flung PCs and terminals to the central site can be high. One solution to such
problems, and an alternative design to the centralized database concept, is known as
distributed database.

The idea is that instead of having one centralized database, we are going to spread
the data out among the cities on the distributed network, each of which has its own
computer and data storage facilities. All this distributed data is still considered to be
a single logical database. When a person or process anywhere on the distributed net-
work queries the database, they do not have to know where on the network the data
that they are seeking is located. They just issue the query, and the result is returned to
them. This feature is known as “location transparency.” This arrangement can quickly
become rather complex and must be managed by sophisticated software known as a
distributed database management system or distributed DBMS.

Distributed Database Architecture
Consider a large multinational company with major sites in Los Angeles, Memphis,
New York (which is corporate headquarters), Paris, and Tokyo. Let’s say that the com-
pany has a very important transactional relational database that is used actively at all

Imagine that you are the CIO of a large hospital.
The data that you must store includes patient
medical data, patient billing data, supplies inven-
tory data, and employee data, among others.

1.	 Question: Make and defend an argument for
storing the data on site, in the hospital. Then
reverse it and make an argument for moving the
data to the cloud.

Your Turn

From Distributed Database to the Cloud    359

five sites. The database consists of six large tables, A, B, C, D, E, and F, and response
time to queries made to the database is an important factor. There are a variety of ways
of distributing the data. The most practical way is illustrated by Figure 15.5. Notice that
some of the tables have been duplicated at multiple sites. There are several concepts
involved in the data distribution decisions.

First, if particular tables are used at some sites more frequently than at others, it
would make sense to locate the tables at the sites at which they are most frequently
used. Doing this, employees at a particular site can exercise “local autonomy” over the
data at their site, taking responsibility for its security, backup and recovery, and con-
currency control.

Notice that in Figure 15.5 several tables have copies at more than one site on the
distributed network. This has several pros and cons. One benefit of this arrangement
is data availability. If a database table is stored at only one site in the distributed net-
work and that site goes down, the data in that table is unavailable. But, with the tables
replicated at multiple sites, if, for example, the site at Tokyo goes down, Table A is still
available at the site in New York. Another advantage of having replicated tables is that
if more than one site requires frequent access to a particular table, those sites can each
have a copy of the table, speeding data access. Also having multiple copies of tables at
different sites can help when tables have to be joined in a query. If the tables that have
to be joined are located together at a site, the join process will be much more efficient
than if data has to move across the network to accomplish a join.

UNITED STATES

Memphis

Paris

Tokyo

Los Angeles

New York

NORTH AMERICA

SOUTH AMERICA

ASIA

EUROPE

AFRICACANADA

U.K.GREENLAND
(DEN.)

MEXICO

PACIFIC
OCEAN

ARCTIC
OCEAN

ATLANTIC
OCEAN

Gulf of
Mexico

Caribbean
Sea

B ED

C D

A F

ED

A B F

FIGURE 15.5  A distributed database

360   Chapter 15  Database in the Cloud

Unfortunately, having tables replicated at different sites brings up the issue of con-
currency control. In Chapter 11, we discussed concurrency control in terms of the
problems involved in multiple people or processes trying to update a record at the same
time. When we allow replicated tables to be dispersed all over the country or the world
in a distributed database, the problems of concurrent update expand, too. The original
possibility of the “lost update” is still there. If two people attempt to update a par-
ticular record of Table B in New York at the same time, everything we said about the
problem of concurrent update earlier remains true. But now, in addition, look at what
happens when geographically dispersed, replicated files are involved. In Figure 15.5, if
one person updates a particular value in a record of Table B in New York at the same
time that someone else updates the very same value in the very same record of Table
B in Paris, clearly the results are going to be wrong. Or if one person updates a par-
ticular record of Table B in New York and then right after that a second person reads
the same record of Table B in Paris, that second person is not going to get the latest,
most up-to-date data. The protections discussed earlier that can be set up to handle
the problem of concurrent update in a single table are not adequate to handle the new,
expanded problem.

If the nature of the data and of the applications that use it can tolerate retrieved
data not necessarily being up-to-the-minute accurate, then several “asynchronous”
approaches to updating replicated data can be used. For example, the site at which the
data was updated, New York in the above example involving Table B, can simply send
a message to the other sites that contain a copy of the same table (in this case Paris)
in the hope that the update will reach Paris reasonably quickly and that the computer
in Paris will update that record in Table B right away. But if the nature of the data and
of the applications that use it require all of the data in the replicated tables worldwide
always to be consistent, accurate, and up-to-date, then a more complex “synchronous”
procedure must be put in place.

The Cloud and Distributed Database
Think about everything we’ve said about the cloud and consider whether we still need
the distributed database concept. Data in the cloud can be accessed from anywhere.
Data in the cloud can be replicated by the cloud vendor with copies stored in multiple
locations, making it constantly available. The cloud vendor becomes responsible for
providing the access speed specified in a service level agreement and for concurrency
control. The server farms that the major cloud vendors have consist of hundreds of
thousands of servers spread across the globe. Thus cloud technology largely replaces
the need for distributed database.

Summary
The cloud is coming into increasingly heavy use. Its substantial advantages are proving
to be very popular with industry, non-profits, and government agencies across the globe.
Organizations like the idea of not having to maintain their own computer centers and
instead treating data and its processing as a service to be paid for like any other service.
While many organizations were initially skeptical about the ability of the cloud pro-
viders to safely and efficiently handle their data, the level of trust of the cloud providers
has improved dramatically as experience with them has advanced. It will be interesting
to follow the progression of database in the cloud as time goes on.

Key Terms
Cloud
Cloud vendor
Data availability
Data backup and recovery
Data scalability

Data security
Distributed database
Hybrid cloud
Infrastructure-as-a-

service (IaaS)

On prem
Platform-as-a-

service (PaaS)
Server farm

Software-as-a-service
(SaaS)

Solid state disk
Timesharing

Questions
  1.	 What was timesharing and why wasn’t it successful?
  2.	 What advances in technology enabled the cloud?
  3.	 Describe Infrastructure-as-a-Service.
  4.	 Describe Platform-as-a-Service.
  5.	 Describe Software-as-a-Service.
  6.	 What are the two main cloud pricing models and how

do they work?

  7.	 What are the advantages of the cloud?
  8.	 Describe the hybrid cloud model.
  9.	 Compare and contrast the pros and cons of storing

databases in the cloud.
10.	 Describe the concept of distributed database.
11.	 What are the drawbacks of distributed database?
12.	 Does cloud technology largely replace the need for

distributed database? Explain.

Exercises
  1.	 You are the data administration manager in a:

a.	 small
b.	 mid-size
c.	 large
restaurant chain that has always run its own
applications on its own hardware. Your chief
information officer comes to you and asks you to
consider moving some or all of the company’s data to
the cloud. Do you recommend making the move or
not? State and defend your answer to this question
for each of the three different sized chains.

  2.	 A large, multinational appliance (refrigerators, washing
machines, etc.) manufacturing company has designed

its information systems around the distributed database
concept and has been working in that environment for
several years. It is considering abandoning its distrib-
uted database and switching to a cloud-based environ-
ment. You are the company’s data administration man-
ager and you have been asked to make an assessment of
this possible change. Do you think it’s a good idea or a
bad idea? Defend your answer.

  3.	 Consider data security, data availability, data scalability,
and backup and recovery as they relate to a large bank
with global operations. Rank order them in order of
importance and defend your answer.

Exercises    361

362   Chapter 15  Database in the Cloud

  1.	 Similar to Exercise 1, above, Happy Cruise Lines
been running its own, centralized data center for
many years at its headquarters. This has worked
reasonably well for its central, corporate operations,
but connectivity to its other offices and to its cruise
ships at sea has been limited and the company is
dissatisfied with this arrangement. So, the company
is considering changing to a cloud-based model. Ex-
plain how this might help the company in terms of
its headquarters, its other offices, and its ships at sea.

  2.	 Each team in the Super Baseball League has been
collecting increasing amounts of statistical data
about its own players (batting, fielding, etc.) and
about the other teams in the league in order to
develop advantages when playing against them. The
teams want to use this data both to plan their next
game against a given team and to make decisions in
real time during games. Explain how the cloud can
aid in this effort.

Minicases

363

CHAPTER 16

Database Applications

Data is the foundation upon which all information systems are
built. In the early days of electronic data processing, the appli-
cations were primarily of an accounting nature and needed
relatively straightforward accounting-type data. But, as organi-
zations gradually discovered the competitive advantages that
they could gain from cleverly using many types of data, both the
nature of the data and the applications have exploded in many
directions. Today, the use of enterprise resource planning (ERP),
customer relationship management (CRM), and supply chain
management (SCM) systems are standard practice. And the
interest in data analytics and artificial intelligence applications
has really taken off! The purpose of this chapter is to survey these
critically important applications and the data they utilize.

Introduction
When people think about information systems they often think first of computers,
networks, and programs. But, by the time you’ve reached this chapter in this book,
you know that none of these have any meaning without the data to be processed. The
data is the corporate resource that reflects the organization’s business. Without the

OBJECTIVES

•	Describe the use of data in business intelligence and
data analytics.

•	List and explain the various categories of data mining.
•	Describe text and web mining.
•	Explain how data can be used in artificial

intelligence applications.
•	Describe Enterprise Resource Planning (ERP).
•	Customer Relationship Management (CRM).
•	Supply Chain Management (SCM).

CHAPTER OUTLINE
Introduction
Business Intelligence and

Data Analytics
Data Mining
Text Mining and Web Mining

Artificial Intelligence
Artificial Intelligence Applications
Artificial Intelligence Techniques

Enterprise Resource Planning (ERP)
Customer Relationship Man-

agement (CRM)
Supply Chain Management (SCM)
Summary

364   Chapter 16  Database Applications

data that describes the state of the business, there would be no need for computers,
networks, or programs.

In this chapter, we turn our attention from the techniques of storing and retrieving
data, which have been the essence of this book, to several key technologies focused on
the use of the data that are used in industries of all kinds, Figure 16.1. The first two
such technologies, business intelligence, including data analytics, and artificial intel-
ligence, are broad methodologies that are capable of producing sophisticated results in
a wide variety of applications. The third technology, enterprise resource planning, is
based on the concept of having a single, central data store from which all applications
can access the organization’s data. The last two technologies, customer relationship
management and supply chain management, are major, broad-based applications that
are very heavily used in industry, today.

Business Intelligence and Data Analytics
For many years, business people have been trying to design methods for using data to
help them make decisions. There is a huge range in the types of decisions that can be
considered. At one end of the spectrum are simple operational decisions, for exam-
ple, how many of a particular part to keep in inventory this week in a manufacturing
setting. At the other end of the spectrum are complex strategic decisions such as where
to locate a new assembly plant. The systems that were developed for these purposes
were originally known as Decision Support Systems (DSS). More recently, the term
Business Intelligence (BI) has replaced DSS. There are two major aspects of business
intelligence. One is the activity of posing ad hoc queries to a database to answer spe-
cific questions that come up from time to time, which is exactly what we talked about

FIGURE 16.1  Data is used for competitive
advantage in all industries

Fuse / Getty Images; ©06photo/Shutterstock;
GoodLifeStudio / Getty Images; sharply_done /
Getty Images

Business Intelligence and Data Analytics    365

with SQL queries in Chapter 4 of this book. The other aspect of business intelligence is
what is broadly known as Data Analytics and that is the topic of this part of the chap-
ter. A common approach to talk about data analytics is to break it down between data
mining and other types of “mining.”

Data Mining
Data mining refers to a variety of techniques that are designed to process data to pro-
vide organizations with a competitive edge. There are three types of data mining:
descriptive analytics, predictive analytics, and prescriptive analytics.

Descriptive Analytics  Descriptive analytics refers to methods that can show the
current state of the various components and operations of a company or organization.
The most common way to do this is through data visualization. Techniques of data
visualization can range from simple line graphs, bar charts, and pie charts, Figure 16.2,
to complex maps with multiple overlays, Figure 16.3.

Predictive Analytics  Predictive analytics refers to methods that can predict the
outcome of a business scenario based on existing data collected by the organization.
There are three main categories of predictive analytics, classification, clustering,
and association, and each of them is designed to solve a different business problem.
It is important to understand that the predictions must be novel and useful. For exam-
ple, in a market basket analysis (see “association” below) it is not helpful to discover
that when shoppers go to a supermarket, they often buy milk and bread in the same
shopping trip. That is obvious and so is not helpful.

Classification refers to examining some new data and deciding that it belongs in
one of a set of existing groups. The new data can be compared to historical sets of data
for which we know the outcome. A very simple but classic example is looking at the
credit history and other data about a person applying for a loan. Over many years, we

FIGURE 16.2  Data visualization using graphs

Henrik5000 / Getty Images

366   Chapter 16  Database Applications

have many sets of data of people applying for loans and, for each of them, we know
whether they turned out to be a good risk (paid off the loan on time) or a bad risk
(defaulted on the loan). Based on this history, we can look at the new applicant’s data,
compare it to the data of those who have come before them, and classify them as a
good risk (give them the loan) or a bad risk (deny them the loan).

One of the common techniques for classification is neural networks. The name
comes from the idea that this technique is supposed to simulate the way the brain
works with components that simulate neurons. A neural network has to be “trained”
before it can be used, much like a person has to learn something before it is useful to
him. Let’s continue to use the example of loan applications. Figure 16.4 shows a simple
neural network. Data is fed in on the left, then it’s processed by the nodes (simulating
neurons) in the middle, which then lead to one of the results on the right. The nodes
in the middle have adjustable values. If a set of values associated with a known good
credit risk is fed into the neural network and it correctly leads to “loan approved” on
the right, then the values in the middle nodes are adjusted to strengthen such a result

FIGURE 16.3  Data visualization using maps

Carbon brief.org

Income

Savings

Employment

Approve

Reject

Credit
Rating

FIGURE 16.4  A neural network for loan applications

Business Intelligence and Data Analytics    367

for future data sets. However, if the set of values leads to the wrong result, in this case
deny the loan, then the values in the middle nodes are adjusted to try to result in loan
approval for similar inputs in the future. After enough of these training sets are run
through the neural network, a set of test data sets, also with known results, are run
through it to see what percentage it gets correct. If the percentage is high enough, then
the neural network is ready for use, otherwise it needs further training.

Clustering refers to examining many sets of data and forming them into groups
with similar data characteristics. This can be very useful for marketing purposes, as
an example. A classic example of clustering used for marketing is in magazine adver-
tising. Suppose that you have a large pool of people and you know the demographics
of (i.e. the personal data about) each person. Then, using clustering techniques, you
divide them into groups based on similar demographics. From there, you can decide
which magazines to advertise to each group, based on which magazines you think
each group might be interested in. Furthermore, you decide where and how to adver-
tise to each group, again based on their clustered characteristics.

Association refers to discovering relationships between different entities based on
data history. This is another case in which data mining can be used for marketing pur-
poses. In a classic example of association, a supermarket keeps historical data on what
each person bought in a single shopping trip (also known as market basket analysis).
If the historical data shows that two products were often bought in the same shopping
trip, it might be advantageous to start locating the two products next to each other in
the stores. That way, if a person comes into a store looking for one of the products, they
might make a snap decision to buy the other one when they see it right there, next to
one they came to buy.

Sometimes, prediction is also considered to be a data mining technique. For exam-
ple, if a home improvement store keeps track of its customers’ purchases over time
(historical data!), it may notice that after several customers bought materials to build a
fence, they followed-up by buying a doghouse. Then, going forward, after a customer
buys materials to build a fence, the store can start marketing doghouses to them. In
that sense, prediction can be considered a subcategory of association.

Prescriptive Analytics  Prescriptive analytics refers to methods that optimize or
try to come as close to optimal as possible, in making business decisions. Suboptimal
methods are known as heuristics (from the Greek “eureka”: I have found it!). Opti-
mization methods generally come from a field known as operations research and are
beyond the scope of this book.

Text Mining and Web Mining
Since text is simply another type of data, it’s not surprising that another type of ana-
lytics is text mining. A computer can process text in a variety of helpful ways. One
example is known as sentiment analysis. By searching through a large number of
customer comments that have come in by email or that have been transcribed from
call center conversations, a program can look for keywords that will indicate how cus-
tomers feel about a particular product. This is far more efficient and effective than if
people simply try to read the comments and come to a conclusion.

There are a variety of other examples of text mining. Documents can be clustered
into similar groupings based on their content. If you know what documents a user
has historically been interested in, a text mining program may be able to predict what
other documents she might be interested in. Sophisticated programs may be able to

368   Chapter 16  Database Applications

summarize documents. Programs may even be able to answer questions automatically
by scanning relevant documents.

Web mining is essentially a variant of text mining, except that the text consists of
websites and web pages. The challenge is that the material in websites is arranged in
hierarchies of varying complexity.

Artificial Intelligence
As humans, we make decisions based on the knowledge that we have accumulated
in our lifetimes. Whether it’s a major decision such as whether to take a particular
job or an almost automatic decision such as when to turn left at an intersection when
we’re driving, our decisions are based on our knowledge. And how did we acquire
that knowledge? Ultimately, it was through data that we accumulated and processed,
sometimes consciously and sometimes unconsciously. If all of this can be called “intel-
ligence,” then what is artificial intelligence?

Artificial intelligence refers to a computer performing a task that we would consider
to be an act of intelligence if performed by a person. A person can add two plus two,
and so can a computer, but we would ordinarily not associate this with the word intel-
ligence. On the other hand, everyone would agree that playing chess requires a high
degree of intelligence in a person and so a chess playing program could certainly be
considered an example of artificial intelligence. Does a chess playing program require
data? At a minimum it requires knowing where the chess pieces are on the chess board
at any given point in the game and that is data! Furthermore, the history of what chess
moves worked well in the past is also data.

Artificial Intelligence Applications
There are several examples of systems and applications that are considered to fall
under the heading of artificial intelligence. The major ones include expert systems,
natural language processing, pattern recognition, robotics, and intelligent agents.

Expert Systems  An expert system is an application that performs a task that would
take an “expert” to perform if done by a person. A good example of an expert system
is a program that can perform medical diagnosis. The program accepts various data,
including body temperature, blood pressure, pulse, etc. as inputs and generates a

Some novels are more successful than others.
There are a number of factors that go into the
potential success of a novel. One such factor, for
example, might be its genre (mystery, humor, etc.).
It is reasonable to assume that the success of the
novel can be judged by its number of sales or how
much money it makes.

Question:
Design a neural network to determine the potential
success of a novel. Specify a set of inputs and a set
of outputs.

Your Turn

Artificial Intelligence    369

diagnosis as its output. Some of these systems are designed to output several different
possible diagnoses with a probability associated with each. In narrow areas of medi-
cine, some of these systems have been shown to produce results that are quite good.

Another example of an expert system is the system that we used as an example
of data mining: deciding whether to give someone a loan. This makes the point that
there is considerable overlap in what today is considered artificial intelligence and
what is considered data mining! Yet another example of an expert system is a program
designed to figure out exactly what is wrong with a defective product coming off of an
assembly line. Such a system can save money by indicating what part of the product
has to be replaced rather than discarding the entire unit.

Natural Language Processing  Natural language processing (often written as
NLP) is a process by which a computer can understand the real meaning of often
unclear or ambiguous natural language statements and act upon them. A good and
very common example of this today is processing requests typed into search engines
such as Google.

Pattern Recognition  Pattern recognition tries to emulate human vision and act
on it. This can include such applications as face recognition, processing a landscape
for a robot to traverse, helping to control autonomous vehicles with cameras pointing
ahead, and industrial applications such as automatically inspecting products coming
off an assembly line.

Robotics  When most people think of robots, they think of machines that look like
and act like people. While this is still largely a matter of science fiction, there are
machines today that are capable of moving through an environment such as a restau-
rant or a hospital to deliver needed items. With a variety of sensors such as cameras,
radar, and sonar, they can avoid collisions while a computer guides them to their des-
tination. But, most robots today are stationary devices with movable arms that are
designed to perform repetitive and often dangerous tasks on assembly lines, such as
welding or painting cars, Figure 16.5.

FIGURE 16.5  Stationary robots

Jenson / Shutterstock

370   Chapter 16  Database Applications

Intelligent Agents  Intelligent agents are programs that exhibit “intelligence” by,
for example, searching across the Internet for specific, targeted information in web-
site pages.

Artificial Intelligence Techniques
A variety of techniques have been developed to make the kinds of applications listed
above work. These include rule-based processors, neural networks, and genetic
algorithms.

Rule-Based Processors  Rule-based processors are the underlying technology that
make expert systems work. Figure 16.6 shows a hierarchy of if-then-else rules that
drive an expert system. In this example, the expert system is another approach to
whether or not to approve a loan application. General purpose expert systems, often
called expert system shells, have been developed with an “inference engine” that can
take any set of hierarchical if-then-else rules and process them. This means that any-
one who can create a set of if-then-else rules for their application can create an expert
system without having to do any programming!

Neural Networks  We have already looked at neural networks as a predictive analyt-
ics technique, but neural networks are also considered an important artificial intel-
ligence technique in, for example, pattern recognition. Figure 16.7 shows a so-called

Income>
50,000?

Savings>=
20,000?

Full-Time
Employed?

Full-Time
Employed?

Credit
Rating
Good?

No

Yes

Yes

Yes No

Yes

No

No No

Yes

REJECT

REJECT

REJECT

ACCEPT

ACCEPTFIGURE 16.6  A hierarchy of if-then-else rules for an expert system

Enterprise Resource Planning (ERP)    371

“deep learning neural network” with several internal or hidden layers of neurons,
designed to solve more complex machine learning problems.

Genetic Algorithms  Genetic algorithms find solutions to problems by starting with
some proposed solutions and then gradually modifying and testing them. Solutions
that are not helping to solve the problem are discarded while solutions that appear to
be helpful are further modified to achieve even better solutions.

Enterprise Resource Planning (ERP)
Earlier in this book we considered the dangers of uncontrolled duplicate data. We
talked about application developers creating new databases for each application they
develop, with the result being the same data being stored in many different databases.
As the data is updated, it becomes impossible to update it correctly in every database
in which it is stored, even if anyone is trying to keep track of every place it is stored,
which is very doubtful to begin with!

Eventually, information systems professionals and their business partners realized
that if the data was stored in only one central database and every application that
needed the data accessed it from that one database, then this data integrity issue could
be solved. Every application would be looking at the one, accurate, set of data.

However, this arrangement comes with several cautions. Obviously, the data in the
one central database must be accurate. Also, if too many transactions from too many
applications try to access the one central database at the same time, it can become a
performance bottleneck. Furthermore, if there is only one central source of data, then
activities such as data security, concurrency control, and backup and recovery must be
practiced at the highest possible level.

A system of one central database with a collection of applications utilizing it has
come to be known as an enterprise resource planning (ERP) system, Figure 16.8. His-
torically, the first applications to use ERP systems were accounting and financial
applications. But, of course, data used by the accounting and financial operations of a
company is also used by other operations. For example, in a manufacturing company,
the parts used in the manufacturing process may have to be ordered from supplier
firms and then paid for by the company’s accounting department. Thus, inventory data
and accounting data have to flow among the company’s various inventory control pro-
grams and accounting programs such as accounts payable. When finished goods are
sold, the data has to flow among the company’s various manufacturing programs and

Income

Savings

Employment

Approve

Reject

Credit
Rating

FIGURE 16.7  A deep learning neural network

372   Chapter 16  Database Applications

accounting programs such as accounts receivable. And all of the accounting programs
have to feed data to the company’s financial accounting programs.

ERP vendors, such as SAP and Oracle, having recognized the value of data in the
common, central database, being used by different parts of a company, have developed
application suites that they sell as part of their ERP products on a “mix and match”
basis. So, for example, you can buy an ERP system with a suite of accounting applica-
tion programs. Or, you can buy an ERP system with suites of accounting, financial,
and manufacturing control programs. And, you don’t have to buy all of the application
program suites at once. You can buy an initial set and then add more later on.

Customer Relationship Management (CRM)
Customer Relationship Management (CRM) is an umbrella term for a variety of data-
intensive applications that can help organizations improve their activities and build
better relationships with their customers, employees, business partners, and other con-
stituencies. Thus, we have Customer Relationship Management (CRM) in the narrow
sense, Employee Relationship Management, Partner Relationship Management, etc.
(The author of this book once did a project for the US Navy entitled “Sailor Relation-
ship Management.”) The idea is to collect data about the people or companies that you
want to engage with and then use the data to great effect. Such data can be collected
by a company’s own employees or can be purchased from companies that collect and
sell individual and corporate data as a business, such as the Acxiom company. The data
on individuals can include any type of contact and demographic data plus records of
past purchases. The data about companies can include sales history plus personal data
about the company’s employees.

For example, the Kroger supermarket chain, which operates under several super-
market brand names, tracks the purchases that each of its customers makes. When
checking out, a customer gives the clerk their unique Kroger bar code or enters their
phone number and the system records their purchases. Then, periodically, Kroger mails
the customer discount coupons for future purchases, based on what the customer has

Accounting
Applications

Sales
Applications

Personnel
Applications

Manufacturing
Applications

Marketing
Applications

Finance
Applications

Central
Database

FIGURE 16.8  An Enterprise Resource Planning (ERP) system

Supply Chain Management (SCM)    373

bought in the past. This “one-to-one marketing” keeps the customer coming back to
use the discount coupons on items that Kroger knows the customer regularly buys. It
is worth it to Kroger to do this to retain the customer over the long term.

Salesforce.com is a company that, among other things, allows companies to main-
tain data about companies with which they do business and their employees. A com-
pany’s salespeople can keep track of the previous purchases its customers made and
use it in future marketing efforts. It can even collect such personal data as the birthdates
of its counterparts in its customer companies so that they can send them birthday
greetings once a year. It’s all about relationships and companies like Salesforce.com
collect data that allow their customers to excel at maintaining such relationships. By
the way, Salesforce.com has a major presence in the cloud as one way of making its
applications highly useful.

Companies have been devising increasingly sophisticated ways of using the data
that they collect about their customers. Much of what we have described above falls
under the heading Operational CRM. Yet another example of this is using the collected
data about a person or company to aid in customer service support when a person or
company representative reaches out to, for example, a company’s call center. In Ana-
lytical CRM, companies can use the data they have collected about their customers in
machine learning techniques, such as data mining, to enhance their marketing efforts.
CRM data can even be collected from social media and combined with the data col-
lected by traditional means.

Finally, CRM data can be stored in an ERP system’s common central database. CRM
applications can form one of the optional application suites in an ERP environment.
Other ERP application suites can use the CRM data and the CRM application suite can
take advantage of other ERP data as needed.

Supply Chain Management (SCM)
Consider a manufacturing company such as an automobile manufacturer as a good
example. Let’s call it Major Motors. There are many parts that go into manufacturing
a car. Major Motors may make some of the parts itself, but generally buys most of the
parts that go into its cars from other, supplier, companies. These suppliers typically
buy raw materials that they need to manufacture the parts from companies that deal
in the raw materials. Major Motors sells its cars to dealerships, which in turn sell the
cars to its customers, like you or me, Figure 16.9. Given this progression, you might
think that the arrows in Figure 16.9 should only flow from left to right. That’s true of
the physical materials, parts, and cars. But, as you are about to learn, for all of this
to work efficiently in today’s world, there has to be a significant flow of data in both
directions.

Let’s focus for a moment on a supplier, let’s call it General Transmissions, that
makes automobile transmissions. General Transmissions wants to always have the
raw materials in stock that it needs to make its transmissions, but it does not want to
have more than it needs sitting in its parts inventory. That would be a waste of money
since it had to pay its raw materials suppliers for the raw materials and the excess is
just sitting on its shelves. It can’t recover the money for the raw materials until it uses
them in making transmissions that it then sells to Major Motors. On the other hand,
it does not want to be a position of not having transmissions to sell to Major Motors
when Major Motors needs them because it did not have enough raw materials to make
them. That loss of business is also costly.

374   Chapter 16  Database Applications

On the retail end of the business, Major Motors sells its finished automobiles to
dealers that then sell them to consumers. The situation on the retail side is similar to
the situation on the supply side. Dealers want to have enough cars on their lots to sell
to consumers when they want to buy cars, but they don’t want to have too many unsold
cars sitting on their lots for too long of a time.

To try to optimize all of this, we have the concept of supply chain management. You
won’t be surprised at this point to realize that this kind of optimization can only work
in today’s world with a heavy dose of data and information systems utilization. Major
Motors’ computers connect “upstream” to General Transmission’s computers via the
Internet. General Transmission’s computers, in turn, connect to the computers of the
raw materials companies that it buys from. On the other end of the business, Major
Motors’ computers connect “downstream” to its dealers’ computers. Through this net-
work, a dealer can order cars from Major Motors, which then sends an order for trans-
missions to General Transmissions, which then sends orders for raw materials to its raw
material suppliers. The term “just-in-time manufacturing” is also used in this context.

Supply chain management software comes in two parts known as supply chain
planning software and supply chain execution software. Based on continuously evolv-
ing experience, the planning software can forecast the amount of raw materials that
General Transmissions should keep in its inventory and the number of transmissions
that Major Motors should keep in its inventory. Similarly, it can help the dealers decide
how many new cars to keep on its lots. The execution software manages the actual
flow of goods between each of the appropriate companies. One classic problem in this
arena that the software can help control is the “bullwhip effect.” If customers want to
buy more cars and the dealers increase their orders to Major Motors, Major Motors can
overreact, sending excessive orders to General Transmissions which can overreact and
send excessive orders to its raw materials suppliers. By the time this reaches the raw
materials suppliers, they may think they have to produce far more of the raw materi-
als than is necessary. This can be managed and limited by the supply chain manage-
ment software.

Finally, with the complexity of how companies interact with each other, you may
see the term “supply web” instead of supply chain. This can mean, for example, that
General Transmissions has several raw materials suppliers for the same raw material

Raw
Material
Supplier

Raw
Material
Supplier

Parts
Supplier

Dealership

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Dealership

Dealership

Major
Motors

Parts
Supplier

Parts
Supplier

Raw
Material
Supplier

Raw
Material
Supplier FIGURE 16.9  Major Motors’

supply chain

and sources the raw material from companies in the group rather than from a sin-
gle supplier.

At this point in this book, is it even necessary to say that all of supply chain manage-
ment is based on the flow of data from one company to another? That’s what supply
chain management is all about. When the software sends a message from one com-
pany to another, the orders for raw materials or parts or finished goods are all in the
form of data. How many of this or how much of that are needed and being ordered. Or
how many or how much has actually been delivered. And, yes, supply chain manage-
ment software can pass data from one company’s ERP system database to another’s.
It’s always all about data and database!!

Summary
The fact is that data forms the basis of everything that we do with information systems.
Whether it is ERP, CRM, SCM, analytics, artificial intelligence, or any other informa-
tion systems application, data is the fundamental corporate resource that must be pro-
cessed to generate the desired results. And all of that data must be carefully managed,
which makes the subject of this book, database management, a critical subject in
today’s world.

Key Terms
Ad hoc queries
Artificial intelligence
Association
Business intelligence
Classification
Clustering
Customer Relationship

Management (CRM)
Data Analytics

Data mining
Data visualization
Decision Support

Systems (DSS)
Deep learning

neural network
Descriptive analytics
Enterprise Resource

Planning (ERP)

Expert systems
Genetic algorithms
If-then-else rules
Neural networks
One-to-one marketing
Pattern recognition
Predictive analytics
Prescriptive analytics
Robotics

Rule-based processors
Sentiment analysis
Supply Chain

Management (SCM)
Text mining
Web mining

Questions
  1.	 What term replaced the term decision support systems

and what are its two main components?
  2.	 What are the three types of analytics that comprise

data mining?
  3.	 Which type of analytics uses data visualization?
  4.	 What are the different types of predictive analytics?
  5.	 Briefly describe association.
  6.	 Briefly describe clustering.
  7.	 Briefly describe classification.
  8.	 How does a neural network work?
  9.	 Briefly describe web mining.
10.	 What is an expert system and how do they use if-then-

else rules?

11.	 How do robots make use of data?
12.	 What is a deep learning neural network?
13.	 How do genetic algorithms work?
14.	 What is the main database principle behind enterprise

resource planning systems?
15.	 Describe the purpose of customer relationship manage-

ment systems.
16.	 How do customer relationship management sys-

tems use data?
17.	 Describe the purpose of supply chain manage-

ment systems.
18.	 How do supply chain management systems use data?

Questions    375

376   Chapter 16  Database Applications

Exercises
  1.	 Consider a large, national chain of retail clothing

stores. Describe ways that it can use:
	 a.	 Classification.
	 b.	 Clustering.
	 c.	 Association.
	 d.	 Text mining.
  2.	 Describe how an expert system based on neural net-

work technology might be used for medical diagnosis.

  3.	 Consider a large, national supermarket chain that sells
toiletry items as well as food. The food comes from a
variety of sources. Some of it comes directly from local
farms, some from food processors that can or bottle the
food, and some from meatpackers or fishermen. It also
sells paper products such as tissues and paper towels.
Describe a supply chain that fits this supermarket
model and describe how the flow of data helps make
this model more efficient.

  1.	 Happy Cruise Lines wants to attract passengers
from a variety of different demographic categories,
to make its passengers happy, and to encourage
return business.

	 a.	 How can Happy Cruise Lines use classification
and clustering to enhance its advertising to attract
passengers of different demographic categories?

	 b.	 Happy Cruise Lines asks it passengers to write
reviews of the cruises they have taken. How can
it use text mining and web mining to determine
how its passengers feel about the cruises they
have taken?

	 c.	 How can Happy Cruise Lines use customer
relationship management to encourage
return business?

  2.	 The Tigers is a team in the Super Baseball League.
	 a.	 The Tigers’ management wants to predict the

success of players that it is considering hiring.

The League is willing to provide the Tigers
with the history of past and present players
including their characteristics (height, weight,
running speed, etc.) and how successful they
have been. Explain how the team can use this
data to create a neural network to predict the
success of players it is considering hiring and
describe what the neural network would
look like.

	 b.	 How can the Tigers use classification and
clustering to enhance its advertising to attract
fans of different demographic categories to come
to its games and even to buy season tickets?

	 c.	 Describe some of the information systems
applications that the Tigers (or a team in any
sport of your choice) would need to operate and
explain how they would benefit from being part
of an ERP system.

Minicases

I-1

A
abstract data types, 243
access-arm mechanism, 188
accessing data, problems in, 11–12
access methods, 191–202. See also index

file organizations and, 191–202
sequential, 40–41, 191, 201

access path plan, 60
ACID property, 322
active data dictionaries, 262–263. See

also passive data dictionaries
attributes, 262–263
definitions, 262
distinctions, 262
entities, 262–263
relationships, 263
uses and users, 263

ad hoc queries, 364
aggregated data, 293
aggregation, 230, 235–236
alternate key, 99
Analytical Engine, 6
AND operator, 66
anomalies data, 48
anti-virus software, 276
application characteristics, 202, 204
arbitration, 265
artificial intelligence, 368–371

applications, 368–370
techniques, 370–371

association, 365
associative entity, in M–M binary

relationship, 21–22
asymmetric data encryption, 275
attribute, 16, 38, 96

columns, 96
creating uniqueness with, 23
data normalization and, 145–146, 161
data normalization examples, 171–175
domain of values, 100, 128, 133

E-R diagrams, 146–147
inheritance of, 232, 234
keys and, 97
physical database design, 88, 185–221
unique, 17

attribute names, 63, 76
ATTRIBUTES table (in data

dictionary), 259–261
AVG operator, 72

B
Babbage, Charles, 7
backup, 268, 278–283

backup copies and journals,
278–279

importance, 278
and recovery issues, 52

backward recovery, 280–281
balance sheet, 5
bartering, 4
base table, 61
before and after image log, 279
BETWEEN operator, 68
big data, 319
bill of materials, 24, 132, 152
binary large objects (BLOBs), 243
binary relationships, 17–23

cardinality, 18–19
converting entities in, 147–150
data modeling in, 16–33
E-R diagram, 18
many-to-many (M–M) binary rela-

tionship, 18–23
modality, 19–20
one-to-many (1–M) binary relation-

ship, 18–20
one-to-one (1–1) binary relationship,

18–20
biometric systems, 273
bitcoin, 341

blades, 320
block, 342
blockchain, 341–351

consensus, 348–349
hashing, 343–345
Merkle trees, 348
public-key encryption, 345–348
smart contracts, 349

block of logical records, 191
Boolean AND operator, 66
Boolean OR operator, 66–67
breaches, data security, 269–270

methods of, 270–272
types, 269–270

B+-tree index, 195–199
information from, 196–197

built-in functions, 72–73
business intelligence, 364–368

data mining, 365–367
text mining, 367–368
web mining, 367–368

C
calculating devices, 5–6
candidate keys, 98–99
cardinality, in binary relationships,

18–19
Cartesian product, 89, 117
cascade delete rule, 140–141
case-based learning, 312
catalogs, 89, 264, 274
cell, 97
Census, 6
central authority, 342
change log, 279
checkpoint, 281
class, 231
class diagram, 231
classification, 365
cloud, 352

INDEX

I-2   Index

cloud database, 352–362
advantages of, 355
data and database administration,

357–358
data availability, 357
data backup and recovery, 357
data scalability, 357
data security, 356–357
data storing, 356
distributed database, 358–360
new technologies, 353–354
pricing models, 354–355
usage models, 354

cloud vendor’s, 354
clustering, 365
clustering files, 209
Codd, Edgar F. “Ted”, 95
cold sites, 283
collision, 200
column (field), 96
column family database, 319, 331–335
compact disk (CD), 10
comparisons, 89
competitive advantage, 10
complex relationships, 232–242

aggregation, 235–236
class diagrams, 231, 236–242
generalization, 232
inheritance of attributes, 232, 234
inheritance of operations, 234–235
operations, 234–235
polymorphism, 234–235

Computer-Aided Software Engineering
(CASE), 264

computer security issue, 52
computer viruses, 52, 271, 276, 282
concurrency control, 268, 283–286

deadlock, 284–286
importance of, 283
locks, 284–286
lost update problem, 283–284
resource usage matrix, 286
versioning, 286

concurrency control issues, 52
concurrency problem, 52
consensus, 348–349
controlled access (passwords and privi-

leges), 273–274
corporate resource, 12–13, 42, 43

data as, 1–14, 43
data mining, 311–314

COUNT operator, 73
CREATE TABLE command, 177
CREATE VIEW command, 177
cryptocurrencies, 341
cryptographic hashing, 343–344

in blockchain, 344–345
Cullinane Systems, 54
Customer Relationship Management

(CRM), 372–373
cylinders, 189–190
Cypher, 338

D
data, 2

access, unauthorized, 269–270
development of, 8
origins of. see origins of data
through the ages, 4–5

data administration, 248–267
advantages, 249–252
decentralized environment,

managing data in, 251–252
externally acquired databases,

managing, 251
operational management

of data, 251
responsibilities of, 252–255

data analyst, 252
data analytics, 364–368

data mining, 365–367
text mining, 367–368
web mining, 367–368

data availability, 357
data backup and recovery, 357
database, 2

environment, 2, 13–14
database administration,

248–267
advantages, 249–252
responsibilities of, 255–258

database administrator, 258
database applications, 363–376

artificial intelligence, 368–371
business intelligence and data

analytics, 364–368
Customer Relationship Manage-

ment (CRM), 372–373
Enterprise Resource Planning

(ERP), 371–372
Supply chain Management (SCM),

373–375

database concept, 41–53. See also data-
base management system (DBMS)
datacentric environment, 41
data integration, 41
data redundancy, 42
multiple relationships, 49–51
principles of, 41–42

database control issues, 268–288. See
also backup; concurrency con-
trol; data security; disaster recov-
ery; recovery

database design, 258
database management system (DBMS),

2, 13–14, 41–55
DBMS approaches, 53–54
definition of, 2, 49
externally acquired databases, 251
primary defining feature of, 49
relational catalogs, 89, 264, 274

database performance, 186
factors affecting, 186

data before database management,
37–41
attribute, 38
entity, 38
entity set, 38
field, 39
files, 38–39
records, 38–39
storing and retrieving data, basic

concepts in, 40–41
datacentric environments, 41
data characteristics, 204
data cleaning, 305, 307–310, 314

apparently incorrect data, 310
impossible data, 308, 310
impossible/out-of-range data, 310
missing data, 308
possible misspelling, 308
questionable data, 308, 309

data communications, intercepting,
270–271

data control issues, 52–53
computer security, 52
concurrency control issue, 52
concurrency problem, 52

data coordination, 252–253, 265
data definition language (DDL), 60
data dependence, 53
data dictionaries. See dictionaries, data
data encryption, 275–276

Index   I-3

data enrichment, 306
data extraction, 305–307
data independence, 53
data integration, 41, 43–49, 116–118

among many files, 44–45
within one file, 45–49

data integrity, 43–45, 230, 242
problems, 43

data loading, 305, 310
data maintenance, 138, 257
data management. See also Structured

Query Language (SQL)
data definition, 60, 177, 178
data manipulation, 60, 178–179
in decentralized environment,

251–252, 265
documenting data environment, 255
responsibility for, 251

data manipulation languages
(DMLs), 60

data mart (DM), 294, 295
data mining, 311–314, 365–367

case-based learning, 312
decision trees, 312
descriptive analytics, 365
genetic algorithm, 312
neural networks, 312
predictive analytics, 365–367
prescriptive analytics, 367

data modeling, 16–35
aggregation, 235–236, 239
attribute, 16
entity, 16
examples, 27–32
generalization/specialization,

230, 232, 239
inheritance, 232, 234
object-oriented, 231
polymorphism, 234–235
relationships, 17. See also binary

relationships; ternary relation-
ships; unary relationships

unique identifier, 17
data normalization, 145–146
data normalization process, 161–175

Boyce-Codd normal form, 164
examples, 171–175
fifth normal form, 164
first normal form, 165–166
fourth normal form, 164
General Hardware Co., 171–172

Good Reading Bookstores, 172–173
Lucky Rent-A-Car, 174–175
second normal form, 164, 166–168
steps in, 163–170
third normal form, 164, 168–170
unnormalized data, 164–165
World Music Association, 174

data ownership, 254
data planning, 253
data redundancy, 42–49

among many files, 44–45
data integration and, 43–49
eliminating, 49, 215
non-redundant data, 47–49, 116
within one file, 45–49
physical design techniques and,

202–220
data repository, 259, 264
data retrieval, 113–118. See also under

relational database model
DBMS and, 49, 53–54, 88, 113
disk storage considerations, 187–191
query, 49

data scalability, 357
data security, 52, 268–278, 356–357

breaches, 270–272. See also breaches,
data security

importance of, 269
measures, types of, 272–278
as operational requirement, 204–205

data standards, 253
data storage, 6

clustering files, 206, 209
data relationships, 49–51, 99–113
data repositories, 264
DBMS and, 13–14, 49, 53–54, 96,

116, 202, 205
derived, 205
hashed files and, 201
problems with, 11–12
storage media, 8–10, 278

data structure building with SQL,
145, 177–178

data theft, 270, 275
data transformation, 305, 310
data visualization, 365
data volatility, 204
data volume, 207
data warehouse, 289–318

administering, 314–315
building, 305–310

challenges in, 315
concept(s), 291–294
data cleaning, 305, 307–310, 314
designing, 296–305
General Hardware Co., 298–300
Good Reading Bookstores,

300–303
Lucky Rent-A-Car, 303–304
types of, 294–296
using, 311–314
utilizing, 311–314
World Music Association,

question of, 305
data warehouse administrator, 314
deadlock, 284–286
decentralized environment, managing

data in, 251–252
Decision Support Systems (DSS), 364
decision support systems (DSS), 290
decision trees, 312
declarative SQL SELECT

statement, 60
deep learning neural network, 371
defining associations, 162–163, 165–167,

171, 173–176
DELETE command, 178, 179
delete rules, 140–141

cascade, 140–141
restrict, 140
set-to-null, 141

deletion anomaly, 48
denormalization, 205, 215–216
dependent entities, 27, 30, 154, 158
derived data, 205

storing, 213–214
descriptive analytics, 365
designing databases. See database

design
determinant, 162, 171
development of data, 8
dictionaries, data, 259–264. See also

active data dictionaries; passive data
dictionaries
active, 262–263
ATTRIBUTES table, 259–261
metadata, 259–261
operations, 257
passive, 262–263
relational DBMS catalogs, 264
TABLES table, 259–261

digital signature, 346

I-4   Index

dimensions, 296
dimension tables, 298–300, 302, 313
direct access, 40, 41

disk storage and, 11, 187–191
examples of, 216–220
hashed files, 200–202
indexes, 88, 192–199

directories, 271
disaster recovery, 282–283

cold sites, 283
hot sites, 283

disintermediation, 342
disk/disk devices, 186, 191

disk drives, 10
disk-pack philosophy, 9
disk storage, 187–191. See also under

physical database design
structure of, 187–188

disk drives, 10
disk-pack philosophy, 9
DISTINCT operator, 70
distributed database, 358–360

architecture, 358–360
cloud and, 360

division-remainder method, 200
documentation, 255
document database, 319, 327–331
domain of values, 100
double-entry bookkeeping, 5
Drill-Down, 311
DROP TABLE command, 177
DROP VIEW command, 178
duplicate databases, 281–282
duplicating tables, 216
dynamic backout, 280

E
early data problems spawn calculating

devices, 5–6
electric-eye devices, 273
electromechanical equipment, 7
electronic computers, 7
embedded mode, 61
encapsulation, 242
enriched data, 313
enterprise data warehouse (EDW),

294–296
Enterprise Resource Planning (ERP),

43, 371–372
entity, 16, 38
entity identifier, 107

entity occurrences, 128
entity-relationship (E-R) diagram. See

E-R diagram
entity-relationship (E-R) model, 16, 17
entity set, 38
equijoin, 118
E-R diagram, 17, 18, 20–23, 27–31

conversions, 146
with data normalization, testing

tables converted from, 175–176
expert system, 368–369
external features, adding, 206–208
externally acquired databases,

managing, 251

F
facts, 39, 45
fields, 39
file organizations, 191–202. See also

hashed files
files, 38–39

clustered, 209, 217
data redundancy and integration,

43–49
hashed, 200–202
indexed-sequential, 194, 198
loss or corruption of, 52
terminology of, 96, 231
well integrated, 47

filtering, 70
firewalls, 276–277
first normal form, 165–166
fixed disk drives, 10, 187
flash drive, 10
foreign keys, 99–100

substituting, 211–212
forward recovery, 279–280
FROM clause, 63
functional dependencies, 162, 163, 176

G
generalization, 230, 232
genetic algorithm, 312
genetic algorithms, 371
GRANT command, 274
graph database, 319, 335–337
GROUP BY clause, 74–75, 207

H
hacking, 270
Hadoop, 319, 325–326

Hadoop Distributed File System
(HDFS), 325

Hadoop environment, 326–327
hard disk drives, 187
hardware, 11–13, 24, 27, 283
hashed files, 200–202
hashing, 324, 343

in blockchain, 344–345
cryptographic hashing, 343–344

hashing method, 192
HAVING clause, 75–76
head switching, 191
hierarchical DBMS approach, 53, 54
historic data, 293
history of data, 2–10
Hollerith, Herman, 6–7
horizontal partitioning, 210
hot sites, 283
hybrid cloud, 356

I
if-then-else rules, 370
IMAGE data type, 279
importance of data, 1–14

as a competitive weapon, 10
as new corporate resource, 12–13

index, 192–199
B+-tree index, 195–199
creating an index with SQL, 199
indexed-sequential file, 194
salesperson file, 193–194
simple linear index, 193–195

Information Management System
(IMS), 54

information processing, 6
information systems environment,

today’s data in, 10–14
accessing data, problems in, 11–12
challenging factors, 11
data for competitive advantage, 10
storing data, problems in, 11–12

information theft, 11, 37, 52, 204
Infrastructure-as-a-Service

(IaaS), 354
inheritance

of attributes, 232, 234
of operations, 234–235

IN operator, 69
INSERT command, 178, 179
insertion anomaly, 48
insert rules, 140

Index   I-5

integrated, data as, 291
Integrated Data Management Store

(IDMS), 54
integrated queries, 209
integrated software, 251
integrating data, 116–118
intelligent agents, 370
International Business Machines

Corporation (IBM), 7
Internet, 2, 11, 276, 320, 342, 353, 354,

357, 358, 374
intersection data, 106

in binary relationships, 20–21
data normalization and, 145–146
in M–M binary relationship, 20–21
non-key attributes and, 161, 166
in ternary relationships, 26
in unary relationships, 24–26

J
Jacquard, Joseph Marie, 6
job specialization, 250
Join operator, 117
join operation, 76
join work, in SQL, 76–78

K
key fields, 39
keys. See candidate keys; foreign keys;

primary keys
key-value database, 319

concept, 323–325
Hadoop, 325–326
Hadoop environment, 326–327

L
ledger, 343
LIKE operator, 69–70
location transparency, 358
locks, 284–286
logical database design, 145–184

converting E-R diagrams into rela-
tional tables, 146–161

data manipulation with
SQL, 178–179

data normalization process,
161–175

E-R diagram conversion logical
design technique, 157

General Hardware Co. Database,
designing, 153–156

Good Reading Bookstores database,
designing, 156–158

Lucky Rent-A-Car Database,
designing, 160–161

testing tables converted from E-R
diagrams, 175–176

World Music Association database,
designing, 158–159

logical design technique, for E-R dia-
gram conversion, 157

logical records, 191
logical sequential access, 40
logical sequential retrieval, 41
logical view, 207
logs, database, 279

change log, 279
transaction log, 279

lost update problem, 283–284

M
magnetic disk, 8
magnetic drum, 8
magnetic tape concept, 8
malicious mischief, 270
manageable resource, data as,

42–43
corporate resource, 42, 43
software utility, 42

manipulating data, 40
many-to-many (M–M) binary relation-

ship, 18–23, 102–113, 149–150
associative entity, 21–22
associative entity SALES, 22
associative entity with intersection

data, 22
E-R diagram conversion, 149–150
intersection data, 20–21
primary keys and, 102–103
record deletion and, 138
relations and, 102–109
ternary, 26, 134–138
unary, 24–26, 132–134, 152–153
unique identifiers in, 23, 102

MapReduce, 325
market basket analysis, 312
MAX operator, 72–73
memory, primary and secondary,

187, 191
merge-scan join algorithm, 89
Merkle trees, 348
message, 242

metadata, 259
data catalogs, 259, 264
data dictionaries, 259–261
data planning issues, 253
data repositories, 264
documentation of, 255
example of, 259–261

MIN operator, 72–73
mirrored databases, 281–282
modality, in binary relationships,

19–20
modern data storage media, 8–10
MongoDB, 319, 329
multidimensional databases, 296
multiple relationships, 49–51
multiple tables, 206, 210–211

N
natural join, 118
natural language processing (NLP), 369
navigational DBMSs, 54
Neo4j, 338
Neolithic means of record keeping, 4
nested-loop join, 89
network DBMS approach, 53, 54, 146
neural networks, 312, 370–371
NewSQL, 338–339
non-fungible tokens (NFTs), 342
non-redundant data, 116
non-volatile, data as, 291
normal forms, 164–170
NoSQL, 53
NoSQL database, 319–340

advanced database management
system, 322

column family database, 331–335
document database, 327–331
graph database, 335–337
key-value database, 323–327
lead-up, 319–320
limitations of relational database,

320–321
management systems, 323
NewSQL, 338–339
NoSQL query languages, 337–338

NoSQL query languages, 337–338

O
object, 231
object class, 231
Object Management Group (OMG), 231

I-6   Index

object-oriented database management
systems (OODBMS), 53, 54, 229–247.
See also complex relationships;
encapsulation
abstract data types, 243
encapsulation, 242
object-oriented data modeling, 231
object/relational database, 244
relational databases vs., 244
terminology, 231

object/relational database, 244
objects, 39, 231, 264
occurrence vs. type, 39
one-to-many (1–M) binary relation-

ships, 100–102, 149
binary relationship, 18–20
E-R diagram conversion, 149
primary keys and, 100–102
record deletion and, 139
unary, 24, 128–131, 151–152

one-to-one (1–1) binary relationship,
18–19, 109–113, 147–148, 151
combining tables in, 206, 214
E-R diagram conversion, 18, 147–148
unary relationship, 24, 25, 151

one-to-one marketing, 373
on-line analytic processing (OLAP), 311

drill-down, 311
pivot or rotation, 311
slice, 311

on prem computers, 356
operational management of data, 251
operations, 234–235
optical disk, 14
ORDER BY clause, 70–72
origins of data, 2–4

ancient Middle East, 2
clay tokens or counters, 3
Neolithic means of record keeping, 4
Susa culture, 4

OR operator, 66–67
overflow records, 200

P
Pacioli, Luca, 5
parallel processing, 326
Pascal, Blaise, 5
passive data dictionaries, 262–263. See

also active data dictionaries
attributes, 262–263
definitions, 262

distinctions, 262
entities, 262–263
relationships, 263
uses and users, 263

passwords, 274
pattern recognition, 369
peer-to-peer system, 342
PeopleSoft, 251
performance, 185
performance monitoring, 256
personal computer (PC), 96
physical database design, 185–228. See

also file organizations
disk storage, 187–191
examples, 216–220
finding and transferring data,

steps in, 191
inputs to, 202–205
techniques, 205–216
techniques that DO change the logi-

cal design, 206, 211–216
techniques that DO NOT change the

logical design, 206–211
physical sequential access, 40
pivot or rotation, 311
Platform-as-a-Service (PaaS), 354
‘platter,’ 187
polymorphism, 234–235
Powers, James, 7
Powers Tabulating Machine

Company, 7
predictive analytics, 365–367
prescriptive analytics, 367
primary keys, 97–98

creating, 212–213
data normalization and, 206

primary memory, 187
priorities, application, 202, 204
private key encryption, 275, 345
privileges, 274
procedures, 231
program modification, unauthorized,

270
proxy server, 277
publicity, 255
public-key encryption, 275, 343

in blockchain, 346–348
revisited, 345–346

punched cards, 6
punched paper tape, 8
pure tables, 203

Q
queries

filtering results of, 70
integrated, 49, 209, 291
multiple limiting conditions

in, 66, 81
non-unique search argument, 64
optimizers and indexes, 88, 89
subqueries, 77–80
using COUNT, 73, 86

query mode, 61

R
Random Access Memory Accounting

Machine (RAMAC), 8, 9
read/write heads, 188–190
reciprocal agreement, 283
record deletion, 138
record keeping, 4
records, 38–39
recovery, 268, 278–283

backward recovery, 280–281
forward recovery, 279–280
importance, 278

redundant data. See data redundancy
reengineering, 43
referential integrity, 127, 138–141
referential integrity concept,

138–140
relational algebra, 114
relational catalogs, 89, 264, 274
relational database model, 95–126

candidate keys, 98–99
concept, 96–113
data integration, 116–118
data retrieval from, 113–118
delete rules, 140–141
examples, 118–122
foreign keys, 99–100
many-to-many binary relation-

ship, 102–113
one-to-many binary relation-

ship, 100–102
primary keys, 97–98
referential integrity, 138–141
relational terminology, 96–97

relational data retrieval, 59–94. See also
Structured Query Language (SQL)

relational DBMS approach, 53, 54, 264
relational DBMS performance, 88
relational model, 95

Index   I-7

relational OLAP (ROLAP), 311
relational Project operator, 114–116
relational query optimizer, 88

comparisons, 89
concepts, 88–89
merge-scan join algorithm, 89
nested-loop join, 89
relational DBMS performance, 88

relational query processing, stream-
lining, 118

relational Select operator, 114–116
relational tables, E-R diagrams conver-

sion into, 146–161
relational terminology, 96–97
relations, 96
relationships, 17

adding, 117, 206–208
combining, 214–216
extracting data from, 113–114
primary keys, 122, 136, 165, 166
splitting tables, 206, 210–211
tables or files as, 96, 97

reorganizing stored data, 208–209
repeating groups, 214–215
resource usage matrix, 286
response time, 203
restrict delete rule, 140
retrieving data, 40

direct access, 41
sequential access, 40

robotics, 369
rollback, 280
roll-forward recovery, 279
root index record, 197, 199
rotating disk devices, structure of,

187–188
rotational delay, 191
rotation or pivot, 311
row (record), 96
rule-based processors, 370

S
SAP, 251
search argument, 64
search attributes, 206
secondary memory, 187, 191
second normal form, 166–168
Secure Socket Layer (SSL) technology,

276
security monitoring, 257, 265
seek time, 191

SELECT clause, 63. See also Structured
Query Language (SQL)
access privileges, 274
basic format, 61
BETWEEN, IN, and LIKE, 68–70
built-in functions, 72–73
command writing strategy, 80–81
comparisons, 65–66, 89
examples, 81–87
filtering results, 70
grouping rows, 74–76
joins with, 76–77
AND / OR functions, 66–68
subqueries, 77–80

sentiment analysis, 367
sequential access, 40–41

logical sequential access, 40
physical sequential access, 40

server farms, 320, 354
service bureaus, 353
set-to-null delete rule, 141
shared corporate resource, data as,

249–250
signatures, 276
simple entity, 146–147
simple linear file, 39
simple linear index, 193–195
slice, 311
smart contracts, 349
Smith & Nephew, 294
‘snowflake’ design, 302
Software-as-a-Service (SaaS), 354
software maintenance, 257
software utility, 42
solid state disks (SSDs), 187, 320, 354
Spark, 326
splitting off large text attributes, 211
star schema, 296
storage media, 8–10
stored data, reorganizing,

208–209
storing data, problems in, 11–12
Structured Query Language (SQL),

59–94
basic functions, 61–72
built-in functions, 72–73
data structure building with,

177–178
examples, 80–87
grouping rows, 74–76
index creation with, 199

join work, 76–77
operators, 66–67
SQL query, filtering the results

of, 70
SQL select command, data retrieval

with, 60–81
SQL SELECT commands, writing

strategies, 80–81
subqueries, 77–80

subject oriented, data as, 292
subqueries, in SQL, 77–80

as alternatives to joins, 78
requirement, 79–80

subset tables, 205, 216
SUM operator, 72
supply chain management (SCM),

373–375
symmetric data encryption, 275
synonym pointer, 201
‘synonyms,’ 200

T
table splitting into multiple tables,

210–211
TABLES table (in data dictionary)
terminology, relational vs. file,

96–97
ternary relationships, 26

converting entities in, 153, 154
relational structures for, 134–138

testing tables converted from E-R dia-
grams with data normalization,
175–176

text attributes, 211
text mining, 367–368
third normal form, 168–170
throughput, 203, 217, 220, 221
timesharing, 353
time variant data, 291
tokens, 3
tracks, 189
training personnel, 53
transaction log, 279
transaction processing systems

(TPS), 290
transfer time, 191
transitive dependencies, 168, 175, 176
transmitted data theft, 52
troubleshooting, 256–257
tuple, 96
type vs. occurrence, 39

I-8   Index

U
unary relationships, 24–26, 127

converting entities in, 151–153
E-R diagram conversion, 146, 179
many-to-many, 24–26
one-to-many, 24
one-to-one, 24, 25
relational structures for, 128–138

unauthorized computer access, 270
unauthorized data access, 269–270
unauthorized data or program modifi-

cation, 270
Unified Modeling Language (UML),

231

unique attribute, 102
unique identifier, 17
Unisys Corporation, 7
unnormalized data, 164–165
update anomalies, 48
UPDATE command, 178
update rules, 140
usage and security monitoring,

257, 265

V
variety, 320
velocity, 320
versioning, 286

vertical partitioning, 210–211
view, 207
viruses (computer), 52, 271, 276, 282
volume, 11–13, 186, 207, 320

W
web mining, 367–368
well integrated file, 47
WHERE clause, 63
wiretapping, 270

Y
YARN (Yet Another Resource

Negotiator), 327

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Brief Contents
	Contents
	Preface
	About The Author
	Chapter 1 Data: The New Corporate Resource
	Introduction
	The History of Data
	The Origins of Data
	Data Through the Ages
	Early Data Problems Spawn Calculating Devices
	Swamped with Data
	Modern Data Storage Media

	Data in Today’s Information Systems Environment
	Using Data for Competitive Advantage
	Problems in Storing and Accessing Data
	Data as a Corporate Resource
	The Database Environment

	Summary

	Chapter 2 Data Modeling
	Introduction
	Binary Relationships
	What Is a Binary Relationship?
	Cardinality
	Modality
	More About Many-to-Many Relationships

	Unary Relationships
	One-to-One Unary Relationship
	One-to-Many Unary Relationship
	Many-to-Many Unary Relationship

	Ternary Relationships
	Example: The General Hardware Company
	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Summary

	Chapter 3 The Database Management System Concept
	Introduction
	Data Before Database Management
	Records and Files
	Basic Concepts in Storing and Retrieving Data

	The Database Concept
	Data as a Manageable Resource
	Data Integration and Data Redundancy
	Multiple Relationships
	Data Control Issues
	Data Independence

	DBMS Approaches
	Summary

	Chapter 4 Relational Data Retrieval: SQL
	Introduction
	Data Retrieval with the SQL SELECT Command
	Introduction to the SQL SELECT Command
	Basic Functions
	Built-In Functions
	Grouping Rows
	The Join
	Subqueries
	A Strategy for Writing SQL SELECT Commands

	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Relational Query Optimizer
	Relational DBMS Performance
	Relational Query Optimizer Concepts

	Summary

	Chapter 5 The Relational Database Model: Introduction
	Introduction
	The Relational Database Concept
	Relational Terminology
	Primary and Candidate Keys
	Foreign Keys and Binary Relationships
	Many-to-Many Binary Relationship

	Data Retrieval from a Relational Database
	Extracting Data from a Relation
	The Relational Select Operator
	The Relational Project Operator
	Combination of the Relational Select and Project Operators
	Extracting Data Across Multiple Relations: Data Integration

	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Summary

	Chapter 6 The Relational Database Model: Additional Concepts
	Introduction
	Relational Structures for Unary and Ternary Relationships
	Unary One-to-Many Relationships
	Unary Many-to-Many Relationships
	Ternary Relationships

	Referential Integrity
	The Referential Integrity Concept
	Three Delete Rules

	Summary

	Chapter 7 Logical Database Design
	Introduction
	Converting E-R Diagrams into Relational Tables
	Introduction
	Converting a Simple Entity
	Converting Entities in Binary Relationships
	Converting Entities in Unary Relationships
	Converting Entities in Ternary Relationships
	Designing the General Hardware Co. Database
	Designing the Good Reading Bookstores Database
	Designing the World Music Association Database
	Designing the Lucky Rent-A-Car Database

	The Data Normalization Process
	Introduction to the Data Normalization Technique
	Steps in the Data Normalization Process
	Example: General Hardware Co.
	Example: Good Reading Bookstores
	Example: World Music Association
	Example: Lucky Rent-A-Car

	Testing Tables Converted from E-R Diagrams with Data Normalization
	Building the Data Structure with SQL
	Manipulating the Data with SQL
	Summary

	Chapter 8 Physical Database Design
	Introduction
	Disk Storage
	The Need for Disk Storage
	How Rotating Disk Storage Works

	File Organizations and Access Methods
	The Goal: Locating a Record
	The Index
	Hashed Files

	Inputs to Physical Database Design
	The Tables Produced by the Logical Database Design Process
	Business Environment Requirements
	Data Characteristics
	Application Characteristics
	Operational Requirements: Data Security, Backup, and Recovery

	Physical Database Design Techniques
	Adding External Features
	Reorganizing Stored Data
	Splitting a Table into Multiple Tables
	Changing Attributes in a Table
	Adding Attributes to a Table
	Combining Tables
	Adding New Tables

	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Summary

	Chapter 9 Object-Oriented Database Management
	Introduction
	Terminology
	Complex Relationships
	Generalization
	Inheritance of Attributes
	Operations, Inheritance of Operations, and Polymorphism
	Aggregation
	The General Hardware Co. Class Diagram
	The Good Reading Bookstores Class Diagram
	The World Music Association Class Diagram
	The Lucky Rent-A-Vehicle Class Diagram

	Encapsulation
	Abstract Data Types
	Object/Relational Database
	Summary

	Chapter 10 Data Administration, Database Administration, and Data Dictionaries
	Introduction
	The Advantages of Data and Database Administration
	Data as a Shared Corporate Resource
	Efficiency in Job Specialization
	Operational Management of Data
	Managing Externally Acquired Databases
	Managing Data in the Decentralized Environment

	The Responsibilities of Data Administration
	Data Coordination
	Data Planning
	Data Standards
	Liaison to Systems Analysts and Programmers
	Training
	Arbitration of Disputes and Usage Authorization
	Documentation and Publicity
	Data’s Competitive Advantage

	The Responsibilities of Database Administration
	DBMS Performance Monitoring
	DBMS Troubleshooting
	DBMS Usage and Security Monitoring
	Data Dictionary Operations
	DBMS Data and Software Maintenance
	Database Design

	Data Dictionaries
	Introduction
	A Simple Example of Metadata
	Passive and Active Data Dictionaries
	Relational DBMS Catalogs
	Data Repositories

	Summary

	Chapter 11 Database Control Issues: Security, Backup and Recovery, Concurrency
	Introduction
	Data Security
	The Importance of Data Security
	Types of Data Security Breaches
	Methods of Breaching Data Security
	Types of Data Security Measures

	Backup and Recovery
	The Importance of Backup and Recovery
	Backup Copies and Journals
	Forward Recovery
	Backward Recovery
	Duplicate or “Mirrored” Databases
	The Cloud
	Disaster Recovery

	Concurrency Control
	The Importance of Concurrency Control
	The Lost Update Problem
	Locks and Deadlock
	Versioning

	Summary

	Chapter 12 The Data Warehouse
	Introduction
	The Data Warehouse Concept
	The Data Is Subject Oriented
	The Data Is Integrated
	The Data Is Non-Volatile
	The Data Is Time Variant
	The Data Must Be High Quality
	The Data May Be Aggregated
	The Data Is Often Denormalized
	The Data Is Not Necessarily Absolutely Current

	Types of Data Warehouses
	The Enterprise Data Warehouse (EDW)
	The Data Mart (DM)
	Which to Choose: The EDW, the DM, or Both?

	Designing a Data Warehouse
	Introduction
	General Hardware Co. Data Warehouse
	Good Reading Bookstores Data Warehouse
	Lucky Rent-A-Car Data Warehouse
	What About a World Music Association Data Warehouse?

	Building a Data Warehouse
	Introduction
	Data Extraction
	Data Cleaning
	Data Transformation
	Data Loading

	Using a Data Warehouse
	On-Line Analytic Processing
	Data Mining

	Administering a Data Warehouse
	Challenges in Data Warehousing
	Summary

	Chapter 13 NoSQL Database Management
	Introduction
	The Lead-Up to NoSQL Database Management
	Limitations of Relational Database
	Advanced Database Management System Concepts

	NoSQL Database Management Systems
	Key-Value Database
	The Key-Value Database Concept
	Hadoop
	The Hadoop Environment

	Document Database
	Column Family Database
	Graph Database
	Querying NoSQL Databases and the Rise of NewSQL
	NoSQL Query Languages
	NewSQL

	Summary

	Chapter 14 Blockchain
	Introduction
	What Is a Blockchain?
	Hashing
	Cryptographic Hashing
	Cryptographic Hashing in the Blockchain

	Public-Key Encryption
	Public-Key Encryption Revisited
	Public-Key Encryption in the Blockchain

	Additional Blockchain Topics
	Merkle Trees
	Consensus
	Smart Contracts

	Summary

	Chapter 15 Database in the Cloud
	Introduction
	The Cloud: What, Why, How?
	New Technologies
	Cloud Usage Models
	Cloud Pricing Models
	Advantages of the Cloud

	Data and Database in the Cloud
	Where Should the Data Be Stored?
	The Pros and Cons of Storing Data in the Cloud

	From Distributed Database to the Cloud
	Introduction to Distributed Database
	Distributed Database Architecture
	The Cloud and Distributed Database

	Summary

	Chapter 16 Database Applications
	Introduction
	Business Intelligence and Data Analytics
	Data Mining
	Text Mining and Web Mining

	Artificial Intelligence
	Artificial Intelligence Applications
	Artificial Intelligence Techniques

	Enterprise Resource Planning (ERP)
	Customer Relationship Management (CRM)
	Supply Chain Management (SCM)
	Summary

	Index
	EULA

