


ffirs.indd iiffirs.indd   ii 3/15/2011 1:29:22 PM



DISCOVERING SQL

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

CHAPTER 1 Drowning in Data, Dying of Thirst for Knowledge . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 Breaking and Entering: Structured Information . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 3 A Thing You Can Relate To — Designing a Relational Database  . . . . . 79

CHAPTER 4 Overcoming the Limitations of SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

CHAPTER 5 Grouping and Aggregation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

CHAPTER 6 When One Is Not Enough: A Query Within a Query . . . . . . . . . . . . . . . 155

CHAPTER 7 You Broke It; You Fix It: Combining Data Sets  . . . . . . . . . . . . . . . . . . . . 173

CHAPTER 8 What Else Is There, and Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

CHAPTER 9 Optimizing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

CHAPTER 10 Multiuser Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

CHAPTER 11 Working with Unstructured and Semistructured Data  . . . . . . . . . . . . . 287

CHAPTER 12 Not by SQL Alone  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

APPENDIX A Installing the Library Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

APPENDIX B Installing RDBMSs Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

APPENDIX C Accessing RDBMSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

APPENDIX D Accessing RDBMSs with the SQuirreL Universal SQL Client . . . . . . . . 379

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381

ffirs.indd iffirs.indd   i 3/15/2011 1:29:21 PM3/15/2011   1:29:21 PM



ffirs.indd iiffirs.indd   ii 3/15/2011 1:29:22 PM3/15/2011   1:29:22 PM



Discovering SQL

ffirs.indd iiiffirs.indd   iii 3/15/2011 1:29:22 PM3/15/2011   1:29:22 PM



ffirs.indd ivffirs.indd   iv 3/15/2011 1:29:22 PM3/15/2011   1:29:22 PM



Discovering SQL

A HANDS-ON GUIDE FOR BEGINNERS

Alex Kriegel

ffirs.indd vffirs.indd   v 3/15/2011 1:29:22 PM3/15/2011   1:29:22 PM



Discovering SQL

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-00267-4

ISBN: 978-1-118-09279-8 (ebk)
ISBN: 978-1-118-09277-4 (ebk)
ISBN: 978-1-118-09278-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, 
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization 
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, 
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the 
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ  07030, (201) 748-6011, fax (201) 
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with 
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including 
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or 
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is 
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional 
services. If professional assistance is required, the services of a competent professional person should be sought. Neither 
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is 
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the 
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further, 
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this 
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the 
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available 
in electronic books.

Library of Congress Control Number: 2011922790 

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks 
or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may not 
be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd   vi 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM

http://www.wiley.com
http://www.wiley.com/go/permissions


To Liana

ffirs.indd viiffirs.indd   vii 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



ffirs.indd viiiffirs.indd   viii 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



ABOUT THE AUTHOR

ALEX KRIEGEL is an Enterprise Systems Architect for the Oregon Health 
Authority. He has over 20 years of professional experience designing and 
developing software, implementing and administering enterprise RDBMS, 
as well managing software development processes. Alex graduated from 
National Technical University of Belarus with a Master’s of Science in Physics 
of Metals.  He also holds several industry certifi cations, including PMP from 
Project Management Institute, TOGAF 8 Certifi ed Practitioner from the 
Open Architecture Group, Certifi ed Scrum Master from Scrum Alliance, and 
Microsoft Certifi ed Technology Specialist (MCTS) from Microsoft.

Alex provides online training and consulting services through the www.agilitator.com website.

Alex is author of Microsoft SQL Server 2000 Weekend Crash Course (Wiley, 2001) and a 
co-author on several other tiles: SQL Bible (Wiley, 2003), SQL Functions (Wrox, 2005), 
Introduction to Database Management (Wiley, 2007) and SQL Bible, 2nd Edition (Wiley, 2008). 
His books have been translated into Chinese, Portuguese and Russian.

ABOUT THE TECHNICAL EDITOR

BORIS TRUKHNOV is a Principal Oracle Engineer for NexGen Data Systems, Inc. He has been 
working with relational databases (primarily Oracle) since 1994. Boris is an author of several 
technical books published in US and translated into Portuguese, Chinese, and Russian, including 
SQL Bible (1st and 2nd editions) and Introduction to Database Management.

Boris’s areas of expertise include RAC, ASM, RMAN, performance tuning, database and system 
architecture, platform migrations, and system upgrades.

Boris is an Oracle 11g Database Administrator Certifi ed Professional (OCP) and Oracle Real 
Application Clusters Administrator (OCE).

ffirs.indd ixffirs.indd   ix 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



ffirs.indd xffirs.indd   x 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



EXECUTIVE EDITOR

Robert Elliott

PROJECT EDITOR

Christopher J. Rivera

TECHNICAL EDITOR

Boris Trukhnov

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Nancy Sixsmith

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld 

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP 

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE 

PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Carrie Hunter, Word One New York

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Henry Chaplin / iStockPhoto

CREDITS

ffirs.indd xiffirs.indd   xi 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



ffirs.indd xiiffirs.indd   xii 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



ACKNOWLEDGMENTS

I would like to thank Robert Elliott, executive editor at Wiley Publishing for the wonderful opportunity 
to work on this book, and for the patience with which he helped me to navigate the editorial process. 
His friendly managerial style and valuable insights helped to keep the project on track and on time.

Many thanks to the Wiley Editorial team, especially to my project editor, Christopher Rivera, for 
the patience and meticulousness in preparing the text for publication. His suggestions and guidance 
helped to make this book better.

I would like to thank my technical editor and my friend, Boris M. Trukhnov, for the thorough 
technical editing of the book and his illuminating insights into the subject.

I would like to thank Robert M. Manning for helping with SQuirreL Universal SQL Client introduction 
(Appendix D) and to the entire SQuirreL development project team for the work that went into deliver-
ing this great free open source application.

My thanks go to Dzmitry Aliaksandrau, CCNA, for preparing screenshots for the database products 
used in the book and help in putting together the presentations. I’d like to thank Andrey Pfl iger for 
help with testing SQL scripts in the book and suggestions on how to make the content more accessible 
for the readers.

ffirs.indd xiiiffirs.indd   xiii 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



ffirs.indd xivffirs.indd   xiv 3/15/2011 1:29:25 PM3/15/2011   1:29:25 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xv

CONTENTS

INTRODUCTION xxv

CHAPTER 1: DROWNING IN DATA, DYING 
 OF THIRST FOR KNOWLEDGE 1

Data Deluge and Informational Overload 2

Database Management Systems (DBMSs) 2

Storage Capacity 2

Number of Users 2

Security 2

Performance 3

Scalability 3

Costs 3

Recording Data 3

Oral Records 3

Pictures 4

Written Records 4

Printed Word 4

All of the Above 4

Analog versus Digital Data 4

To Store or Not to Store? 5

Relational Database Management Systems 6

IBM DB2 LUW 6

Oracle 7

Microsoft SQL Server 7

Microsoft Access 7

PostgreSQL 8

MySQL 8

HSQLDB and OpenOffi  ce BASE 9

What Is SQL? 9

The SQL Standard 10

Dialects of SQL 10

Not the Only Game in Town 11

Let There Be Database! 11

Creating a Table 13

Getting the Data In: INSERT Statement 14

Give Me the World: SELECT Statement 16

ftoc.indd xvftoc.indd   xv 3/16/2011 7:05:02 PM3/16/2011   7:05:02 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xvi

xvi

CONTENTS

Good Riddance: the DELETE Statement 22

I Can Fix That: the UPDATE Statement 25

Summary 28

CHAPTER 2: BREAKING AND ENTERING: 
 STRUCTURED INFORMATION 29

A Really Brief Introduction to Data Modeling 29

Conceptual Modeling 30

Logical Modeling 30

Physical Modeling 31

Why Can’t Everything Be Text? 31

Character Data 32

Fixed Length and Variable Strings 32

Binary Strings 34

Character versus Special Files 35

Numeric Data 36

Exact Numbers 36

Approximate Numbers 38

Literals for the Number 39

Once Upon a Time: Date and Time Data Types 40

Binary Data 42

It’s a Bird, It’s a Plane, It’s … a NULL! 43

Much Ado About Nothing 43

None of the Above: More Data Types 46

BOOLEAN 46

BIT 46

XML Data Type 46

DDL, DML, and DQL: Components of SQL 47

Refactoring Database TABLE 47

DROP TABLE 48

CREATE TABLE 48

ALTER TABLE 49

Populating a Table with Diff erent Data Types 52

Implicit and Explicit Data Conversion 53

SELECT Statement Revisited 55

Selecting Literals, Functions, and Calculated Columns 55

Setting Vertical Limits 56

Alias: What’s in a Name? 56

Setting Horizontal Limits 58

DISTINCT 58

ftoc.indd xviftoc.indd   xvi 3/16/2011 7:05:03 PM3/16/2011   7:05:03 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xvii

xvii

CONTENTS

Get Organized: Marching Orders 59

ORDER BY 59

 ASC and DESC 60

TOP and LIMIT 60

INSERT, UPDATE, and DELETE Revisited 61

INSERT  61

SELECT INTO 63

UPDATE 63

DELETE 65

TRUNCATE That Table! 66

SQL Operators: Agents of Change 67

Arithmetic and String Concatenation Operators 67

Comparison Operators 68

Logical Operators 69

ALL 70

ANY | SOME 70

BETWEEN <EXPRESSION> AND <EXPRESSION> 70

IN 71

EXISTS 72

LIKE 72

AND 74

NOT 75

OR 75

Assignment Operator 76

Bitwise Operators 76

Operator Precedence 77

Summary 78

CHAPTER 3: A THING YOU CAN RELATE TO — DESIGNING 
 A RELATIONAL DATABASE 79

Entities and Attributes Revisited 80

Keys to the Kingdom: Primary and Foreign 81

Relationship Patterns 83

Domain Integrity 87

Am I Normal? Basics of Relational Database Design 89

Specifying Constraints 92

Selecting a Flavor For Your Data Model 93

Data Warehouses and Data Marts 93

Star and Snowfl ake Schemas 94

What Could and Does Go Wrong 94

ftoc.indd xviiftoc.indd   xvii 3/16/2011 7:05:03 PM3/16/2011   7:05:03 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xviii

xviii

CONTENTS

Working with Multiple Tables 95

JOIN Syntax 95

UNION Operator 96

Dynamic SQL 97

Ultimate Flexibility, Potential Problems 99

Summary 101

CHAPTER 4: OVERCOMING THE LIMITATIONS OF SQL 103

In Numbers, Strength 104

Building Character 107

“X” Marks the Spot: Finding the Position of a Character in a String 112

CHARINDEX 113

CHAR 113

SUBSTRING 114

LENGTH 114

TRIM, LTRIM, and RTRIM 116

Date and Time Functions 117

What Time Is It? 117

Date Arithmetic 118

A Glimpse of Aggregate Functions 121

Conversion Functions 123

Conversion Between Diff erent Data Types 125

Conversion Between Diff erent Character Sets 125

Miscellaneous Functions 126

Making the CASE 127

SQL Procedural Extensions 129

Happy Parsing: Stored Procedures 131

User-Defi ned Functions (UDFs) 132

Why Use Procedural Extensions? 134

Performance and Network Traffi  c 134

Database Security 134

Code Reusability 135

Summary 135

CHAPTER 5: GROUPING AND AGGREGATION 137

Aggregate SQL Functions Revisited 137

AVG() 137

COUNT() 139

MAX() 140

MIN() 141

SUM() 142

ftoc.indd xviiiftoc.indd   xviii 3/16/2011 7:05:03 PM3/16/2011   7:05:03 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xix

xix

CONTENTS

Eliminating Duplicate Data 143

GROUP BY: Where Your Data Belongs 144

GROUP BY with HAVING Clause 148

ORDER BY Clause: Sorting Query Output 149

Summary 153

CHAPTER 6: WHEN ONE IS NOT ENOUGH: 
 A QUERY WITHIN A QUERY 155

What You Don’t Know Might Help You 155

Subquery in the WHERE Clause 155

EXISTS Operator 156

ANY Operator 157

ALL Operator 157

Subquery in the SELECT List 158

Subquery in the FROM Clause 160

Subquery in the HAVING Clause 161

Subqueries with INSERT  163

Subqueries with UPDATE 165

Subqueries with DELETE 166

Correlated Query 167

How Deep the Rabbit Hole Goes: Nesting Subqueries 169

A Subquery or a JOIN? 170

Summary 171

CHAPTER 7: YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS 173

Joins Revisited 173

INNER JOIN 175

N-way INNER JOIN 179

LEFT OUTER JOIN 182

RIGHT OUTER JOIN 184

FULL JOIN 185

Self JOIN: Looking Inside for an Answer 186

CROSS JOIN (aka Cartesian Product) 187

State of the UNION 189

A Point of VIEW 193

CREATE VIEW 194

ALTER VIEW 198

DROP VIEW 198

Updatable VIEW 198

WITH CHECK OPTION 200

ftoc.indd xixftoc.indd   xix 3/16/2011 7:05:03 PM3/16/2011   7:05:03 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xx

xx

CONTENTS

Hierarchical Views 201

Benefi ts and Drawbacks 202

But Wait; There’s More! 203

INTERSECT 203

EXCEPT and MINUS 204

Summary 205

CHAPTER 8: WHAT ELSE IS THERE, AND WHY? 207

An INDEX for All Seasons 207

UNIQUE Index 209

CLUSTERED Index 209

An INDEX Destroyed 211

TABLE Revisited 211

VIEW Revisited 214

By Any Other Name: Aliases and Synonyms 214

Auto-Incremented Values 216

Identity Columns 217

Microsoft SQL Server 218

IBM DB2  220

PostgreSQL 221

MySQL 221

Microsoft Access 222

OpenOffi  ce BASE with HSQLDB 222

Who Am I: Finding One’s IDENTITY 223

Sequences 224

Comparing Identity Columns and Sequences 227

Triggers 228

One Happy Family: Working in Heterogeneous Environments 229

Summary 229

CHAPTER 9: OPTIMIZING PERFORMANCE 231

Database Performance 231

Performance Benchmarks 231

Order of Optimization 233

Hardware Optimization 234

Operating System Tune-up 234

Optimizing RDBMSs 234

Optimizing Database/Schema 234

Application Optimization 236

SQL Optimization 237

ftoc.indd xxftoc.indd   xx 3/16/2011 7:05:03 PM3/16/2011   7:05:03 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xxi

xxi

CONTENTS

RDBMS-Specifi c Optimization 243

Oracle 10/11g 244

IBM DB2 LUW 9.7 244

Microsoft SQL Server 2008 245

PostgreSQL 245

MySQL  246

Desktop RDBMSs 247

Microsoft Access 247

OpenOffi  ce BASE with HSQLDB Backend 248

Your DBA Is Your Friend 249

Summary 249

CHAPTER 10: MULTIUSER ENVIRONMENT 251

Sessions 251

Orphaned Sessions 254

Transactions 254

Understanding Locks 262

SQL Security 264

Basic Security Mechanisms 265

Defi ning a Database User 266

Managing Security with Privileges 268

Operating System Security Integration 272

INFORMATION_SCHEMA and SQL System Catalogs  279

Oracle Data Dictionary 281

IBM DB2 LUW System Catalogs 282

Microsoft SQL Server 2008 System Catalog 283

Summary 285

CHAPTER 11:  WORKING WITH UNSTRUCTURED 
AND SEMISTRUCTURED DATA 287

SQL and XML 287

A Brief Introduction to XML 289

Formatted XML 290

DTD and Schema 290

Document Type Defi nition (DTD) 291

XML Schema Defi nition (XSD)  291

Namespaces 292

XML as a DataSource 294

Accessing XML Documents in an Application 294

XML Path Language: XPath 294

ftoc.indd xxiftoc.indd   xxi 3/16/2011 7:05:04 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xxii

xxii

CONTENTS

XML Query Language: XQuery 294

Encoding XML 294

Presenting XML Documents 296

XSL and XSLT 296

XML and RDBMSs 296

Implementation Details 299

Oracle 11g XML DB 302

IBM DB 9.7 pureXML 307

Microsoft SQL Server  311

PostgreSQL 9.0 316

MySQL 5.5 317

XML for RDBMS: Best Practices 318

All Bits Considered 320

What Would Google Do? 320

Getting Binary Data In and Out of the RDBMS Table 323

Best Practices for Binary Data 325

SQL and Text Documents 326

Summary 327

CHAPTER 12: NOT BY SQL ALONE 329

The Future Is Cloudy 329
Key/Value Pair 331

What in the World Is Hadoop? 334

Google’s BigTable, Base, and Fusion Tables 334

Amazon SimpleDB 336

MongoDB 337

Microsoft SQL Azure 338

SQL and Business Intelligence 339
OLAP Rules 340

ROLAP, MOLAP, and HOLAP 341

Oracle 11g 342

IBM DB2 342

Microsoft SQL Server 343

XML for Analysis (XMLA) 344

Elementary, My Dear Watson! 344

Column-Oriented DBMS 345

Object Databases 346
Object-Oriented Programming (OOP) Paradigm 346

Objects and Classes 346

ftoc.indd xxiiftoc.indd   xxii 3/16/2011 7:05:04 PM3/16/2011   7:05:04 PM



Kriegel   ftoc.indd V1 - 02/15/2011 Page xxiii

xxiii

CONTENTS

Object-Relational Mapping Frameworks 349
Hibernate/NHibernate 350

Microsoft LINQ and Entity Framework 350

Summary 350

APPENDIX A: INSTALLING THE LIBRARY DATABASE 353

Oracle 10g XE 354

Installing Library Sample Database with SQL*Plus  354

Installing with Oracle Web Interface 356

IBM DB2 9.7 Express-C 360

IBM Command Editor 360

IBM Command Window 362

Microsoft SQL Server 2008 Express 363

SQL Server Management Studio Express 363

PostgreSQL 9.0 365

Installing with pgAdmin III  366

MySQL 5.1 369

Installing with the MySQL CommandA-Line Utility 370

Microsoft Access 2007/2010 371

OpenOffi  ce BASE 3.2 372

APPENDIX B: INSTALLING RDBMSS SOFTWARE 375

APPENDIX C: ACCESSING RDBMSS  377

Oracle 377

IBM DB2 377

Microsoft SQL Server 2008 377

MySQL 378

PostgreSQL 378

Microsoft Access 2007/2010 378

Open Offi  ce BASE with HSQLDB 378

APPENDIX D:  ACCESSING RDBMSS WITH THE 
SQUIRREL UNIVERSAL SQL CLIENT 379

INDEX 381

ftoc.indd xxiiiftoc.indd   xxiii 3/16/2011 7:05:04 PM3/16/2011   7:05:04 PM



flast.indd xxivflast.indd   xxiv 3/15/2011 1:31:34 PM3/15/2011   1:31:34 PM



INTRODUCTION

THE INFORMATIONAL DELUGE shows no signs of abating. We are inundated with data from the 
TV, from the Internet, and from advertisements stuffed in our mail boxes, virtual and otherwise. 
Unfortunately, as the quantity of information increased, its quality declined dramatically: Books 
were replaced by journals; then magazines; then newspapers; then web pages, blogs, and fi nally, 
tweets. The information becomes ever-more voluminous and ever-less trustworthy. Even worse, in 
the age of the Internet data never really disappears; it keeps accumulating, tucked away in fi les, logs, 
and databases. According to Google’s former CEO Eric Schmidt, we create as much data in two 
days as we did from the fi rst written record until 2003 (a date as good as any); this is about fi ve 
exabytes (that is fi ve billion gigabytes!) of data in just two days, and the pace keeps accelerating.  

When electronic data storage became a reality, it brought about its own set of rules: To make sense 
out of the data, one had to learn the language. Relational database theory was so far the most suc-
cessful attempt to bring electronic data under control, and it brought Structured Query Language 
(SQL) to go along with it.

The relational databases and SQL have evolved quite a bit since the 1970s when they made their fi rst 
appearance, and the concepts embedded into the database SQL might appear counterintuitive to the 
uninitiated. By unraveling the SQL story, the reader will understand the rationale behind it and will 
learn to appreciate both the power and the limitations of SQL.

WHO THIS BOOK IS FOR

This books starts at the beginning, and no prior knowledge of SQL or relational databases is 
assumed. Along the way, on a voyage of discovery, you will participate in the creation of the sample 
database, which not only incorporates all SQL concepts taught in the book but also undergoes sev-
eral refactoring iterations to introduce data modeling, query tuning and optimization, and set of 
best practices for everything SQL.

This book is for computer programmers ready to add relational database programming to their skill 
sets, for the business users who want more power over the data locked away in their databases, and 
everybody else who might be interested in learning the powerful language, the lingua franca of the 
relational databases. 

Readers with previous database experience might want to skim through the fi rst couple of chapters 
and delve into more advanced topics, or they might decide to revisit the fi rst principles introduced in 
these chapters; the choice is yours.

flast.indd xxvflast.indd   xxv 3/15/2011 1:31:35 PM3/15/2011   1:31:35 PM



xxvi

INTRODUCTION

WHAT THIS BOOK COVERS

The book covers the current release of the SQL Standard, SQL:2008, but it mostly focuses on the 
practical side of the language, highlighting the differences between particular implementations. It 
provides examples using SQL implementations in the latest versions of the following modern data-
base systems either available for download as free express editions, or as free open source software. 
The most popular desktop database packages, Microsoft Access and OpenOffi ce, are also covered:

 ‰ IBM UDB2 9.7

 ‰ Oracle 10g

 ‰ Microsoft SQL Server 2008/2005/2000

 ‰ MySQL 5.1/5.5

 ‰ PostgreSQL 9.0

 ‰ Microsoft Access 2007/2010

 ‰ OpenOffi ce 3.2 BASE (with embedded HSQLDB)

HOW THIS BOOK IS STRUCTURED

The book takes a holistic approach, introducing the reader to the concepts of the relational data-
bases in general, and SQL in particular, by gradually building an understanding of the subject 
through the iterative process of refactoring the ideas, where each concept introduced at the begin-
ning will be revisited in greater detail later on, illuminating the interconnectedness of the underlying 
principles. 

Chapter 1 introduces the story behind SQL and the relational theory behind it. It is a whirlwind 
tour in which the basic concepts are introduced; all further chapters build upon it. The distinction 
between data and information is illuminated, and foundations are laid for further exploration. 
The chapter gives an overview of the relational database management systems (RDBMSs) used in 
this book. 

We revisit these concepts again in Chapter 2 and add some more. The amorphous data becomes 
structured as it is being analyzed and conformed to the relational model. The “fridge magnets” par-
adigm becomes the “chest drawer” one, and then morphs into a bona fi de relational database table. 

The relational model is further explored in Chapter 3, as we step through the basics of the database 
design and normalization process. The SQL tools for working with normalized data are introduced. 
Dynamic SQL makes it appearance in this chapter.

To highlight both the power and limitations of SQL as a set-based language, some of the most popu-
lar procedural extensions (such as Oracle’s PL/SQL and Microsoft’s Transact-SQL) are discussed in 
Chapter 4. This chapter will also introduce SQL functions as a means of alleviating innate defi cien-
cies of the language when dealing with a record-based logic.

flast.indd xxviflast.indd   xxvi 3/15/2011 1:31:35 PM3/15/2011   1:31:35 PM



xxvii

INTRODUCTION

Aggregate data are explored in Chapter 5, summarizing the power and limitations of the approach. 
The aggregate SQL functions introduced in the previous chapter are taken to the next level to show 
how SQL works with data stripped of its individuality.

Chapter 6 deals with subqueries when data sets are being staggered, and data discovery is based 
upon multilevel data fi ltering, one query providing selection criteria to another. The subqueries are 
precursors to the more SQL attuned JOIN(s), a recurring theme throughout the book.

The power of SQL comes from its ability to deal with data locked in relational tables. Chapter 7 
explores the ways SQL can combine this data into a single data set.

This book introduces basic SQL concepts, opening the door for further exploration, and 
Chapter 8 lays out the next steps of this voyage, with concepts you might consider to explore 
further later on.

Chapter 9 deals with performance optimization, describing general approach and best practices in 
optimizing your queries and database environment. 

Chapter 10 discusses how relational databases work in multiuser environments, and what mecha-
nisms were implemented in SQL to deal with concurrent data access.

SQL is all about structure and order — it is Structured Query Language, after all! But the real data 
comes in every shape and size, and Chapter 11 shows how SQL accommodates semistructured 
(XML documents), unstructured (text fi les), and binary (such as pictures and sounds) data.

Chapter 12 briefl y discusses the latest developments, such as columnar databases, NoSQL data-
bases, object databases, and service oriented architecture (SOA), and how they relate to SQL.

Appendix A describes, step by step, the procedure for installing the sample Library database and 
populating it with an initial set of data with specifi c instructions for each of the seven databases 
discussed in this book. The SQL scripts for this are available for download from the book’s support-
ing websites. 

Appendix B provides step-by-step instructions for installing relational database software packages 
used in this book.

Appendix C describes facilities provided with each of the respective databases to access, create 
database objects, and manipulate data stored in the tables.

Appendix D introduces the open source project SQuirreL Universal SQL client that can be used 
to access every database used in this book via Java Database Connectivity (JDBC) interface. It 
describes, step by step, the process of setting up and confi guring the software.

WHAT YOU NEED TO USE THIS BOOK

To make the most out of this book, we recommend downloading and installing the relational data-
base software used throughout the book. Most of the software is free or available on a free trial 
basis. You’ll fi nd step-by-step instructions in Appendix B.

flast.indd xxviiflast.indd   xxvii 3/15/2011 1:31:35 PM3/15/2011   1:31:35 PM



xxviii

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we used a number of 
conventions throughout the book.

TRY IT OUT 

Try It Out is an exercise you should work through, following the text in the book.

1. It usually consists of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you typed will be explained in detail.

Boxes with a warning icon like this one hold important, not-to-be-forgotten 
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, or asides to the current 
discussion.

As for styles in the text:

 ‰ We highlight new terms and important words when we introduce them.

 ‰ We show keyboard strokes like this: Ctrl+A.

 ‰ We show fi le names, URLs, and code within the text like so: INSERT INTO…SELECT FROM.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present context 

or to show changes from a previous code snippet.

flast.indd xxviiiflast.indd   xxviii 3/15/2011 1:31:35 PM3/15/2011   1:31:35 PM



xxix

INTRODUCTION

SUPPORTING WEBSITES AND CODE

As you work through each chapter, we recommend that you download the SQL scripts to create and 
populate the database. The code is available at www.wrox.com or at www.agilitator.com. You 
can use the search box on the website to locate this title. After you have located this book, click the 
Download Code link to access the fi les that can be downloaded. You can download the fi les via 
HTTP or FTP. All the fi les are stored as ZIP fi les. 

The ISBN for this book is 978-1-118-00267-4. You may fi nd it easier to search 
by the ISBN than by the title of the book.

You can also download the code from the main WROX download page: www.wrox.com/dynamic/
books/download.aspx. Click the link to the Discovering SQL: A Hands-On Guide for Beginners to 
access the fi les that can be downloaded.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one 
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or 
a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may 
save another reader hours of frustration, and at the same time, you will be helping us provide even 
higher quality information. 

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box 
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you 
can view all errata that have been submitted for this book and posted by Wrox editors. You may 
also contact the author via e-mail at discovery@agilitator.com. A complete book list, including links 
to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent 
editions of the book.

P2P.WROX.COM

For author and peer discussions, join the P2P forums at p2p.wrox.com. The forums are a Web-
based system for you to post messages relating to Wrox books and related technologies, and inter-
act with other readers and technology users. The forums offer a subscription feature to e-mail you 

flast.indd xxixflast.indd   xxix 3/15/2011 1:31:36 PM3/15/2011   1:31:36 PM



xxx

INTRODUCTION

topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors, 
other industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as you 
read this book but also as you develop your own applications. To join the forums, just follow these 
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you want to 
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and 
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post 
your own messages, you must join.

Once you join, you can post new messages and respond to messages that other users post. You can 
read messages at any time on the Web. If you want to have new messages from a particular forum 
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works, as well as many common questions specifi c to P2P 
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxflast.indd   xxx 3/15/2011 1:31:36 PM3/15/2011   1:31:36 PM



Discovering SQL

flast.indd xxxiflast.indd   xxxi 3/15/2011 1:31:37 PM3/15/2011   1:31:37 PM



flast.indd xxxiiflast.indd   xxxii 3/15/2011 1:31:37 PM3/15/2011   1:31:37 PM



1
Drowning in Data, Dying 
of Thirst for Knowledge

Information may be the most valuable commodity in the modern world. It can take many dif-
ferent forms: accounting and payroll information, information about customers and orders, 
scientifi c and statistical data, graphics, and multimedia, to mention just a few. We are virtually 
swamped with data, and we cannot (or at least we’d like to think about it this way) afford to 
lose it. As a society, we produce and consume ever increasing amounts of information, and 
database management systems were created to help us cope with informational deluge. These 
days we simply have too much data to keep storing it in fi le cabinets or cardboard boxes, and 
the data might come in all shapes and colors (fi guratively speaking). The need to store large 
collections of persistent data safely, and “slice and dice” it effi ciently, from different angles, by 
multiple users, and update it easily when necessary, is critical for every enterprise. 

Besides storing the information, which is what electronic fi les are for, we need to be able to 
fi nd it when needed and to fi lter out what is unnecessary and redundant. With the informa-
tional deluge brought about by Internet fi ndability, the data formats have exploded, and most 
data comes unstructured: pictures, sounds, text, and so on. The approach that served us for 
decades — shredding data according to some predefi ned taxonomy — gave in to the greater 
fl exibility of unstructured and semistructured data, and all this can still fi t under the umbrella 
of a database (a broader concept than the “data banks” of the 1970s).

The databases evolved to accommodate all this, and their language, which was designed to 
work with characters and numbers, evolved along with it. The concept of gathering and orga-
nizing data in a database replaced with the concept of a data hub (“I might not have it, but I 
know where to fi nd it”) with your data at the core, surrounded with ever less related (and less 
reliable) data at the rim.

When does data transform into information? When it is organized and is given a context. Raw 
data collection does not give you much. For example, the number 110110 could be a decimal 
number 54 in binary representation; November 1, 2010, the date of D. Hamilton Jackson 
Memorial Day commemorating establishment of the fi rst press in the U.S. Virgin Islands; 
House Committee Report #110 for the 110th U.S. Congress (2007–2008), you get the idea. 

c01.indd 1c01.indd   1 3/22/2011 1:45:39 PM3/22/2011   1:45:39 PM



2 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

To transform data into information, you can aggregate the data, add context, cross-reference with 
other data, and so on. This is as far as databases can take you. The next step, transforming informa-
tion into knowledge, normally requires human involvement.

DATA DELUGE AND INFORMATIONAL OVERLOAD

One of the reasons behind building a database of your information is to fi lter the information 
specifi c to your needs, to separate the wheat from the chaff. Anybody who uses Internet search 
engines such as Google or Bing can attest that results brought back are far from being unambiguous 
because the search engine tries to fi nd the best matches in the sea of relevant, tangentially relevant, 
and absolutely irrelevant information. Your database is created to serve your unique needs: to track 
your sales, your employees, and your book collection. In doing so, it might reach out and get some 
additional information (for example, getting a book’s information from Amazon.com), but it will be 
information specifi c to your particular needs.

Another important aspect of the database is security. How secure do you need your data? Can any-
body see it and modify? Does it need to be protected from unauthorized access due to compliance 
requirements and simply common sense?

Database management systems, otherwise known as DBMSs, answer all these questions, and more.

Database Management Systems (DBMSs)

What makes a database management system a system? It’s a package deal: You get managed storage 
for your data, security, scalability, and facilities to get data in and out, and more. These are things 
to keep in mind when selecting a DBMS. The following sections describe a few of the factors that 
you should consider.

Storage Capacity

Will the selected DBMS be suffi cient for current and future needs? If you intend to store your 
favorite recipes or manage your home library, you might decide to use a desktop database such as 
Microsoft Access. When you need to store terabytes of information (for example, New York Stock 
Exchange fi nancial transactions for the last 50 years), you should shop for an enterprise class DBMS 
such as Oracle, Microsoft SQL Server, or IBM DB2.

Number of Users

If you are the only user of your database, you might not need some of the features designed to 
accommodate concurrent data use in your database. The current version of Microsoft Access, for 
instance, supports up to 255 concurrent users (in practice, actual numbers will depend on many 
factors, including network, bandwidths, and processing power). And with advanced clustering tech-
nologies, there is theoretically no limit on the number of users in an enterprise DBMS such as Oracle.

Security

How secure do you want your data to be? You might not be overly concerned if your favorite recipes 
are stolen, but you’d want your banking or health information to be as secure as possible (and there 

c01.indd 2c01.indd   2 3/22/2011 1:45:46 PM3/22/2011   1:45:46 PM



Data Deluge and Informational Overload x 3

are regulations to mandate certain levels of protection for various kinds of data collected). One of 
the major differentiators between enterprise class DBMSs and their desktop counterparts is a robust, 
fi nely grained security implementation. A simple fi le that is a Microsoft Access database is more 
insecure than a server-based IBM DB2 installation with multiple levels of protection.

Performance

How fast does your database need to be? Can you wait minutes for the information to come back, 
or must you have a subsecond response, as in a stock trading platform? The answers tie into the 
question about concurrent users and also scalability. Some DBMSs are inherently slower than 
the others, and should not be deployed in environments they cannot handle.

Scalability

As Yogi Berra used to say, “Predictions are hard, especially about the future.” Databases must be able 
to accommodate changing business needs. While one cannot anticipate all the changes down the road, 
one could make an educated guess based upon likely scenarios and industry trends. Your business will 
change (growths, acquisitions), and your database needs will change with it. You can bet that your 
data will live longer than the database it lives in. The operating system might change (mainframe, 
UNIX/Linux, Windows); the programming environments might change (COBOL, C/C++, Java, .Net); 
regulations might change, but your data must endure, and not entirely for sentimental reasons.

Any of the modern enterprise DBMSs will get a decent score on any of these factors; ultimately, your 
business needs will dictate the technology choice. Expert advice will be needed for large production 
deployment, and qualifi ed database administrators to keep your database in the best shape possible. 
Once you master the language, your data could be transformed into information; it will be up to 
you to take it to the next level: knowledge.

Costs

Of course, it is important to consider costs associated with installing and operating a database. 
Vendors might charge hundreds of thousands of dollars for an enterprise class DBMS or it could be 
had for free as an open source DBMS. Remember: “There ain’t no such thing as a free lunch.” An 
open source DBMS might save you money in upfront costs, but would quickly catch up in expertise, 
time, tools availability, and maintenance costs later on. The total cost of ownership (TCO) must be 
considered for every DBMS installation.

Recording Data

As far as recorded history goes, humans kept, well, records. Some philosophers even argue that one 
of the major differences between humans and animals is the ability to record (and recall) past events.

Oral Records

In all probability, oral records were the fi rst kind of persistent storage that humans mastered. The 
information was transmitted from generation to generation through painstaking memorization; 
mnemonic techniques such as melody and rhyming were developed along the way. Information 
transmitted orally was highly storage-dependent, and could deteriorate (as in a game of Chinese 

c01.indd 3c01.indd   3 3/22/2011 1:45:46 PM3/22/2011   1:45:46 PM



4 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

whispers) or disappear altogether after an unfortunate encounter by the bearer with a lion, a shark, 
or a grizzly bear.

Pictures

Pictures such as petroglyphs or cave paintings were much sturdier and somewhat less dependent on 
vagaries in an individual’s fate. They were recorded on a variety of media: clay, stone, bark, skin; 
and some have survived to the modern age. Unfortunately, much of the context for these pictures 
was lost, and their interpretation became a guessing game for the archeologists.

Written Records

The beginning of written records, fi rst pictographs and then hieroglyphs, dates back to around 3000 
BC, when the Sumerians invented wedge-shaped writing on clay tablets, or cuneiform. This activity 
gradually evolved into a number of alphabets, each with its own writing system, some related, some 
autochthonous. This opened the door to storing textual information in pretty much the same form 
that we use even now. The medium for the writing records also improved over time: clay, papyrus, 
calf skin, silk, and paper.

Printed Word

Recording and disseminating the information was a painstakingly manual process. Each record had 
to be copied by hand, which severely limited access to information. The next step was to automate 
the process with printing. First came woodblock printing, with the earliest surviving example in 
China dating back to 220 AD. This sped up the process dramatically; a single woodblock could 
produce hundreds of copies with relatively little effort. The invention of movable type, fi rst by the 
Chinese and Koreans (1040 and 1230, respectively) and then by Johannes Gutenberg in 15th cen-
tury Europe, led to dramatically increased access to information through automated duplication. 
Still, single storage (book) could only be used by a single user (reader) at a time, and searching was 
a painstaking manual process, even with invention of indexing systems (a list of keywords linked to 
the pages where these keywords were used). 

All of the Above

Technological advances made it possible to accumulate information in a variety of media (text, pic-
tures, and sounds). Not until electronic data storage was developed did it become possible to store them 
all together and cross-reference them for later automated retrieval. The data had to be digitized fi rst.

Analog versus Digital Data

Up until the invention of the fi rst computers, most information was created and stored in human-
readable format. Various mechanical systems were invented to facilitate storage and retrieval of the 
information, but the information itself remained analogous: print, painting, and recorded sound. 
Sounds recorded on LP disks are analog, and sounds recorded on CD are digital. The most dedi-
cated audiophiles claim that a CD is but an approximation of the real sound (and they are correct), 
but most people do not notice the difference. One cannot deny the convenience afforded by a digital 
CD (or, better yet, an audio fi le stored on one’s computer).

c01.indd 4c01.indd   4 3/22/2011 1:45:46 PM3/22/2011   1:45:46 PM



Data Deluge and Informational Overload x 5

The idea to represent data in binary format came independently to several people around the world, 
with MIT engineer Claude Shannon formulating principles of binary computation in 1938, and 
German scientist Konrad Zuse creating a fully functional binary computer in 1941. It turns out that 
a binary system is uniquely suited for the electrical signal processing; it was humans’ turn to adapt 
to a machine.

The familiar letters and punctuation were translated into combinations of ones and zeroes, starting 
with the Extended Binary Coded Decimal Interchange Code (EBCDIC), developed by IBM in the 
early 1950s; through the American Standard Code for Information Interchange (ASCII) character-
encoding scheme introduced in the early 1960s; to the advent of Unicode, which made its debut in 
1991. The latter system was designed to accommodate every writing system on Earth, and can cur-
rently represent 109,000 characters covering 93 distinct scripts.

While initial efforts were focused on representing characters and numbers, the other types of data 
were not far behind. Pictures and then sounds became digitized and eventually made their way into 
databases.

To Store or Not to Store?

In 1956, IBM was selling fi ve megabyte persistent storage drives for a whopping $10,000 per 
megabyte (no wonder it had to make this agonizing decision to store dates as two digits instead of 
four; also known as the Y2K problem); this came down to just under $200 per megabyte in 1981 
(Morrow Designs). In August 2010, a Western Digital 1 terabyte hard drive was selling for $70, 
which translates into 122 megabytes per one cent!

When storage was dear, people had to be very selective about what data they wanted to keep; with 
costs plummeting, we’ve set our sights on capturing and storing everything.

The Holy Grail of the DBMS for years was to structure and organize data in a format that comput-
ers could manipulate; the preferred way was to collect the data and sort it, and then store it in bits 
and pieces into some sort of a database (it was called a data bank in those days, with policies to 
match). You had to own all your data. With the proliferation of the Internet, this is no longer the 
case. Distributed data is now the norm; instead of bringing the data in, you might choose to store 
information about where the data could be found and leave it at that.

Of course, you may need to keep some of your data closer to the vest (fi nancial data and personal 
data, for example). Storing the actual data will give you full control of how this data is accessed and 
modifi ed; this is what databases do best.

With all this dizzying variety of data formats, one needs to make a decision on how this data is 
to be stored. Despite advances in processing unstructured data, organizing it into taxonomies (a 
process called data modeling; see Chapters 2 and 3 for more information) has distinct benefi ts 
both in speed and fl exibility. Breaking your data down into the smallest bits and pieces requires 
a lot of upfront effort, but it gives you an ability to use it in many more ways than when stored 
as monolithic blocks. Compare a Lego bricks castle with a premolded plastic castle. The latter 
stays a castle forever, while the former could be used to build a racing car model, if needed. The 
tradeoffs between structured and unstructured data (and everything in-between) will be dis-
cussed in Chapter 11.

c01.indd 5c01.indd   5 3/22/2011 1:45:46 PM3/22/2011   1:45:46 PM



6 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

Relational Database Management Systems

This book is about SQL, the language of relational databases, or relational database management 
systems (RDBMSs). Since the theoretical foundations was laid down in the 1970s by Dr. Codd, 
quite a few implementations have come into existence, and many more are yet to come.

Many people consider DB2 to be the granddaddy of all databases, given that the very term relational
was introduced by IBM researcher Dr. Edgar Frank Codd in 1969, when he published his paper, 
“Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks” in an IBM 
research report. This assertion is contested by others who point to Oracle’s version 2 commercial 
release in 1979; Multics Relational Data Store sold by Honeywell Information Systems in 1976; or 
the Micro DBMS experimental designs (pioneering some of the principles formulated by Dr. Codd 
two years later) of the University of Michigan from 1968 (the last instance of Micro DBMS in pro-
duction was decommissioned in 1998). The RDBMS road is marked by a multitude of milestones 
(and an occasional gravestone) of other RDBMS products, including IBM PRTV (1976); IBM SQL/DS 
(1980); QBE(1976); Informix (1986); Sybase (1986); Teradata (1979); and Ingres, an open source 
project that gave inspiration to many other successful systems such as PostgreSQL (1996), Nonstop 
SQL (1987), and Microsoft SQL Server (1988) — to mention but a few. These systems used different 
dialects of primordial SQL: SEQUEL, QUEL, Informix-SQL, and so on. It was not until 1987 when 
the fi rst attempt was made to standardize the language; arguably, the battle is still going on.

The current RDBMS market is split among heavyweight proprietary relational databases Oracle 
(48 percent), IBM (25 percent), and Microsoft (18 percent); smaller proprietary systems Teradata 
and Sybase, each with a distant 2 percent; and the other vendors, as well as open source databases, 
comprising about 10 percent of the total market. 

For a sizeable enterprise, selecting a database foundation for their applications is a decision not to 
be taken lightly. Not only does it cost tens of thousands of dollars in upfront licensing fees for the 
software, and hundreds of thousands of dollars in maintenance and support fees, but it is also an 
important factor in determining the overall enterprise architecture that aligns all other investments 
in software, hardware, and human resources. Although migrating from one RDBMS to another 
became easier in recent years, still the mere thought of it might give your CFO nightmares.

IBM DB2 LUW

IBM is a long-term front-runner in the RDBMS arena, from the mainframe world with the MVS 
family of operating systems, to z/OS, and later to UNIX and Windows. The current version is IBM 
DB2 9.7 LUW (Linux, UNIX, and Windows).

The IBM DB2 9.7 keeps the absolute record in transaction processing speed (see Chapter 9 for more 
information) and comes in a variety of editions, from Advanced Server Enterprise to a free (albeit 
limited) DB2 Express-C edition used to run samples provided with this book.

DB2 in its version 9.7 is still only compliant with the ANSI/ISO SQL 92 Entry standard (see later in 
this chapter) and supports some of the more advanced features from other standards organizations 
such as the Open Geospatial Consortium, JDBC, X/Open XA, as well as bits and pieces of the latest 
SQL:2008 Standard. In addition to its own built-in procedural extension language, SQL PL, it also 
provides support for Oracle’s PL/SQL, Java, and even Microsoft’s .NET family languages for creat-
ing stored procedures (see Chapter 4 for more information).

c01.indd 6c01.indd   6 3/22/2011 1:45:46 PM3/22/2011   1:45:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Data Deluge and Informational Overload x 7

Oracle

Oracle traces its roots back to the fi rst release of Oracle version 2 in 1979, initially for older 
VAX/VMS systems, with UNIX support following in 1983. Over the years, it added support 
for most of the features specifi ed in SQL Standard, culminating in the latest release of Oracle 
11g, which claims compliance with the “many features” of the latest release of SQL:2008 
Standard.

Oracle holds second place in the high-performance transaction processing benchmarking and is at 
the center of the company’s ecosystem. It is a secure, robust, scalable, high-performance database 
that has dominated the UNIX market for decades. In addition to SQL support, it comes with a 
built-in procedural language, PL/SQL (see Chapter 4 for more information on procedural exten-
sions), as well as support for general programming languages such as Java.

At of the time of this writing, the latest version is Oracle 11g; the free express edition is available 
only for Oracle 10g, which has some limits on the data storage size and number of processors 
(CPUs) the RDBMS is capable of utilizing. The express edition has full support for all SQL features 
discussed in this book.

Microsoft SQL Server

SQL Server began as partnership between Sybase, Microsoft, and Ashton-Tate, with the initial idea 
to adapt existing UNIX-only Sybase SQL Server to then-new IBM operating system OS/2. Ashton-
Tate later dropped out of the partnership, and the IBM OS/2 operating system faded into oblivion. 
Microsoft and Sybase were to share the world, being careful not to step on each other’s toes. Microsoft 
was to develop and support SQL Server on Windows and OS/2, and Sybase was to take over UNIX 
platforms. The partnership formally ended in 1994, although at its core, Microsoft SQL Server still 
used fair chunks of Sybase technology. In 1998, beginning with the release of Microsoft SQL Server 
7.0, the last traces of Sybase legacy were eliminated, and a brand spanking new RDBMS set out to 
conquer the world (the Windows world, that is). As of today, Microsoft holds about 20 percent of the 
RDBMS market, though on Windows it reigns supreme.

The latest version as of this writing is Microsoft SQL Server 2008 Release 2; a limited Express 
edition available for free that supports all features of SQL covered here.

Microsoft Access

Microsoft Access, known lately as Microsoft Offi ce Access, is a desktop relational database (rela-
tively relational, as some might quip). It purports to be an integrated solution combining elements 
of a relational database engine, application development infrastructure (complete with built-in 
programming language and programming model), and reporting platform. Unlike other RDBMSs 
discussed in the book, this is a fi le-based database and as such has inherent limitations in per-
formance and scalability. For example, while the latest version theoretically allows for up to 255 
concurrent users, in practice anything more than a dozen users slows the performance to a crawl. 
It also supports only a subset of SQL Standard, as well as a number of features available in its 
own environment only.

One of the features is linking in tables from remote databases that allow it to be used as an applica-
tion front end to any ODBC/OLEDB-compliant database.

c01.indd 7c01.indd   7 3/22/2011 1:45:46 PM3/22/2011   1:45:46 PM



8 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

PostgreSQL

PostgreSQL evolved from a project at the University of California at Berkeley lead by Michael 
Stonebraker, one of the pioneers of the relational databases theory. The principles that went into the 
original Ingres project, and its successor PostgreSQL, also found their way into many other RDBMs 
products such as Sybase, Informix, EnterpriseDB, and Greenplum.

The fi rst version of PostgreSQL (with this exact name) came in 1996; it was released in version 6.0 
the next year, and remained an open source project maintained by group of dedicated developers. 
There are numerous commercial versions of PostgreSQL; most notable is EnterpriseDB, a private 
company that offers enterprise support (along with variety of proprietary management tools) for the 
product and has convinced many high-profi le customers such as Sony and Vonage to rely on an open 
source RDBMS for some critical enterprise class applications.

PostgreSQL is arguably the closest in terms of support for the SQL standards in addition to a 
number of features found nowhere else. Unlike its peers (such as MySQL), it provided referential 
integrity and transactional support from the beginning. It also comes with built-in support for the 
PL/pgSQL procedural extension language, as well as the capability to adapt virtually any other 
language to the same purpose.

MySQL

MySQL was fi rst developed by Michael Widenius and David Axmark back in 1994, with its fi rst 
release in 1995. It was initially positioned as a lightweight, fast database to serve as the back end for 
data-driven websites. Even though it was lacking many features of the more mature RDBMS prod-
ucts, it was fast in serving information and “good enough” for many scenarios. (To be really fast, 
MySQL can bypass referential integrity constraints and ditch transactional support; see Chapters 3 
and 10 for additional information.) Plus you could not beat the price; it was free. No wonder it grew 
up to be the most popular relational database among small- and medium-sized users. There were a 
number of other free database products on the market that lacked features, near-commercial polish, 
or both. Not one of the big guys — Oracle, IBM, Microsoft, and Sybase — offered free express ver-
sions of their respective RDBMSs back then. MySQL was acquired by Sun Microsystems in 2008, 
which was subsequently swallowed by Oracle. 

Currently, Oracle offers a commercially supported version of MySQL as well as a Community 
Edition. Following this acquisition, a number of fork versions sprang up, such as MariaDB and 
Percona Server, committed to maintain free status under the General Public License (GPL), one of 
the least restrictive open source licenses.

The latest released version of MySQL is 5.5, with version 6 on the horizon. It is multiplatform 
(Linux/UNIX/Windows), and supports most of the features of SQL:1999; some of the features 
depend on the selected options (for example, a storage engine). 

The storage engine option is a feature unique to MySQL, which allows handling 
of different table types differently. Each engine comes with unique capabilities 
and limitations (transactional support, index clustering, storage limits, and so 
on). A database table could be created with different storage engine options, 
with the default being MyISAM engine. 

c01.indd 8c01.indd   8 3/22/2011 1:45:46 PM3/22/2011   1:45:46 PM



What Is SQL? x 9

HSQLDB and OpenOffi  ce BASE

Hyper Structured Query Language Database (HSQLDB), a relational database management sys-
tem implemented in the Java programming language, is available as open source under the Berkley 
Software Distribution (BSD) license (meaning pretty much free for all).

This is a default RDBMS engine shipped with the OpenOffi ce.org BASE, a desktop database posi-
tioned to compete in the same market as Microsoft Access. It is a relational database, robust, versatile, 
and reasonably fast, and is supported on multiple platforms including Linux, various fl avors of UNIX, 
and Microsoft Windows. It claims to be almost fully compliant with SQL:1992 Standard, which cov-
ers most of the SQL subset discussed in this book. 

An adaptation of HSQLDB serves as an embedded back end to the OpenOffi ce.org suite component 
BASE and became part of the suite starting with version 2.0. Like Microsoft Access, the OpenOffi ce 
BASE can connect to a variety of RDBMSs, provided that there is a suitable driver; a number of Java 
Database Connectivity (JDBC) and ODBC (Open Database Connectivity) drivers are available and 
ship with the product. 

Following Oracle’s acquisition of OpenOffi ce and its uncertain status as an open 
source project under Oracle’s patronage, the OpenOffi ce.org community decided 
to start a new project called LibreOffi ce, with the intent of implementing all the 
functionality of OpenOffi ce as free software under the original BSD license.

Relational databases are not the only game in town. Some of the older technologies, seemingly for-
ever defeated by relational database theory, came back, helped by ever faster/cheaper hardware and 
software innovations. The quest for better performance and ease of creating applications spawned 
research into columnar and object-oriented databases, frameworks that make the “all data in one 
bucket” approach workable, domain-specifi c extensions (such as geodetic data management or mul-
timedia), and various data access mechanisms. We discuss this topic in Chapter 12.

WHAT IS SQL?

Before the advent of commercially available databases, every system in need of persistent storage had 
no choice but to implement its own, usually in some proprietary fi le format (binary or text) that only 
this application could read from and write to. This required every application that used these fi les 
to be intimately familiar with the structure of the fi le, which made switching to a different storage 
all but impossible. Additionally, you had to learn a vendor-specifi c access mechanism to be able to 
use it. Relational model dealt with complexities of data structures, organizing data on logical level, 
but it had nothing to say about the specifi cs of storage and retrieval except that it had to be set-
based and follow relational algebra rules. Left to their own devices, the early RDBMSs implemented 
a number of languages, including SEQUEL, developed by Donald D. Chamberlin and Raymond 
F. Boyce in the early 1970s while working at IBM; and QUEL, the original language of Ingres. 
Eventually these efforts converged into a workable SQL, the Structured Query Language.

SQL is a RDBMS programming language designed to defi ne relational constructs (such as schemas 
and tables) and provide data manipulation capabilities. Unlike many programming languages in 

c01.indd 9c01.indd   9 3/22/2011 1:45:49 PM3/22/2011   1:45:49 PM



10 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

general use, it does not exist outside the relational model. It cannot create stand-alone programs; it 
can only be used inside RDBMSs. This is a declarative type of language. It instructs the database 
about what you want to do, and leaves details of implementation (how to do it) to the RDBMS itself. 
In Chapter 2, we will go over the elements of the language in detail.

From the very beginning there were different dialects bearing the same SQL name, some of them 
quite different from each other. This worked for the vendors, as it assured lock-in to specifi c technol-
ogy, but it also defi ed the purpose of creating SQL in the fi rst place.

The SQL Standard

To bring greater conformity among vendors, the American National Standards Institute (ANSI) pub-
lished its fi rst SQL Standard in 1986 and a second widely adopted standard in 1989. ANSI released 
updates in 1992, known as SQL92 and SQL2, and again in 1999: SQL99 and SQL3. Each time, 
ANSI added new features and incorporated new commands and capabilities into the language. 

The ANSI standards formalized many SQL behaviors and syntax structures across a variety of 
products. These standards become even more important as open source database products (such 
as MySQL, mSQL, and PostgreSQL) grow in popularity and are developed by virtual teams rather 
than large corporations.

The SQL Standard is now maintained by both ANSI and the International Standards Organization 
(ISO) as ISO/IEC 9075 standard. The latest released standard is SQL:2008, and work is underway 
to release the next version of the standard to accommodate new developments in the way RDBMSs 
collect and disseminate data.

Dialects of SQL

Even with a standard in place, the constantly evolving nature of the SQL Standard has given rise to 
a number of SQL dialects among the various vendors and products. These dialects most commonly 
evolved because the user community of a given database vendor required capabilities in the database 
before the ANSI committee created a standard. Occasionally, though, a new feature is introduced 
by the academic or research communities due to competitive pressures from competing technologies. 
For example, many database vendors are augmenting their current programmatic offerings with 
Java (as is the case with Oracle and Sybase) or .Net (Microsoft’s SQL Server Integration Services, 
embedded common language runtime [CLR]). 

Nonetheless, each of these procedural dialects includes conditional processing (such as that controlled 
through IF … THEN statements), control-of-fl ow functions (such as WHILE loops), variables, and 
error handling. Because ANSI had not yet developed a standard for these important features at the 
time, RDBMS developers and vendors were free to create their own commands and syntax. In fact, 
some of the earliest vendors from the 1980s have variances in the most fundamental language ele-
ments, such as SELECT, because their implementations predate the standards. Some popular dialects 
of SQL include the following:

 ‰ PL/SQL — Found in Oracle. PL/SQL, which stands for Procedural Language/SQL and contains 
many similarities to the general programming language Ada; IBM DB2 added (limited) support 
for Oracle’s PL/SQL in version 9.5.

c01.indd 10c01.indd   10 3/22/2011 1:45:49 PM3/22/2011   1:45:49 PM



Let There Be Database! x 11

 ‰ Transact-SQL — Used by both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft and 
Sybase have moved away from the common platform they shared early in the 1990s, their imple-
mentations of Transact-SQL have also diverged, producing two distinct dialects of Transact-SQL.

 ‰ SQL PL — IBM DB2’s procedural extension for SQL, introduced in version 7.0, provides constructs 
necessary for implementing control fl ow logic around traditional SQL queries and operations.

 ‰ PL/pgSQL — The name of the SQL dialect and extensions implemented in PostgreSQL. The 
acronym stands for Procedural Language/postgreSQL.

 ‰ MySQL — MySQL has introduced a procedural language into its database in version 5, but 
there is no offi cial name for it. It is conceivable that with Oracle’s acquiring the RDBMS it 
might introduce PL/SQL as part of the MySQL.

Not the Only Game in Town

Over the years there were many efforts to improve upon SQL and extend it beyond original purpose. 
With the advent of object-oriented programming, there came demand to store objects in the data-
base; proliferation of Internet and multimedia increased demand for storage, indexing and retrieval 
of the binary information and XML data, and so on. While SQL standards were keeping pace with 
these and other demands, some decided to create a better mousetrap and came up with some inge-
nious ideas. For instance, HTSQL is a language that allows you to query data over Internet HTPP 
protocol; Datalog was envisioned as a data equivalent of Prolog, an artifi cial intelligence language; 
and MUMPS (going back to the 1960s!) mixes and matches procedural and data access elements.

The latest entry came from the NoSQL family of databases that depart from conventional relational 
database theory and eerily reminds us of a data bucket with key/value indexed storage. We will have 
a brief discussion about evolution of SQL in the last chapter of this book.

LET THERE BE DATABASE!

There is a bit of groundwork to be performed before we could submit our SQL statements to 
RDBMSs. If you have followed the instructions in Appendix B, complemented by the presentation 
slides on the accompanying book sites (both at www.wrox.com and at www.agilitator.com), you 
should have an up-and-running one (or all) of the RDBMSs used in this book; alternatively, 
you should have Microsoft Access or OpenOffi ce BASE installed. Please refer to Appendix B for 
step by step installation procedures for the RDBMS, and to Appendix A for instructions on how 
to install the Library sample database.

The following, with minor modifi cations, will work in server RDBMSs: Oracle, 
IBM DB2, Microsoft SQL Server, PostgreSQL, and MySQL. In Microsoft 
Access and OpenOffi ce BASE/HSQLDB, you’d need to create a project.

The concept of a database, a logically confi ned data storage (exemplifi ed by the now rarely used 
term data bank), managed by a program is rather intuitive. When using a desktop database such 

c01.indd 11c01.indd   11 3/22/2011 1:45:49 PM3/22/2011   1:45:49 PM



12 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

as Microsoft Access, your database is a fi le that Access creates for every new project you start; the 
server-based RDBMSs use a similar concept, though the details of implementation are much more 
complex. Fortunately, the declarative nature of SQL hides this complexity. It tells what needs to be 
done, not how to do it. 

In the beginning, there was a database. The database we will use throughout the book will contain 
all the books we have on the shelves; a book tracking database that stores titles, ISBN numbers, 
authors, price, and so on — quite helpful in fi guring out what you have.

The following statement creates a database named LIBRARY in your RDBMS (as long as it is Microsoft 
SQL Server, IBM DB2, PostgreSQL and MySQL; things are a bit different with Oracle, which sub-
scribes to a different notion of what is considered a database; see Appendix A for more details).

CREATE DATABASE library;

If you have suffi cient privileges in the RDBMS instance, the preceding statement will create a data-
base, a logical structure to hold your data, along with all supporting structures, fi les, and multitudes 
of other objects necessary for its operations. You need to know nothing about these; all the blanks 
are fi lled with default values. Behold the power of a declarative language! 

Oracle’s syntax would be similar to this: 

CREATE USER library IDENTIFIED BY discover; 

With USER being roughly an equivalent of the DATABASE in other RDBMS. A 
discussion of the similarities and differences between the two are outside scope 
of this book.

Of course, there is much more to creating a database that would adequately perform in a production 
environment; there are a myriad of options and tradeoffs to be considered, but the basic data storage 
will be created and made available to you with these three words. 

Once created, a database can be destroyed just as easily, using SQL’s DROP statement; you cannot 
destroy objects that do not exist (and the RDBMS will warn you about it should you attempt to):

DROP DATABASE library;

In Oracle, of course, you’d be dropping a USER.

Now the database is gone from your server; in Microsoft Access and OpenOffi ce BASE, this is 
equivalent to deleting corresponding fi les.

Due to certain differences in terms of usage across RDBMSs, the concept of 
database is different among various proprietary databases. For example, what 
SQL Server defi nes as a database is in a way similar to both the SCHEMA and 
USER in Oracle, but in the context of this book, these differences are not par-
ticularly important.

c01.indd 12c01.indd   12 3/22/2011 1:45:50 PM3/22/2011   1:45:50 PM



Let There Be Database! x 13

Creating a Table

Now that we have a database, we can use it to create objects in the database, such as a table. 
A table is place where all your data will be stored, and this is where common sense logic and that 
of RDBMS begin to diverge.

If your refrigerator is anything like ours, you will have all kind of things held to its surface by mag-
nets, some goofy keepsakes from a trip to a zoo, a calendar sent to you by your friendly insurance 
agent, your kid’s school menu (and school attendance phone line), a shopping list, photos of your 
dog, photos of your children, the pizza hotline… Think of it as your personal database. You could 
just stick anything to it: text, pictures, calendars, and what not. In contrast, the RDBMS is much 
more particular. It will ask you to sort your data according to data types. A detailed discussion of 
data types will take place later, in Chapter 2. Here, we just stick to the data type most intuitively 
understood and best dealt with by the RDBMS: the text.

Creating a table is just as easy as creating the database in the previous example, with a minor differ-
ence of specifying a name for the table column and its data type:

CREATE TABLE myLibrary (all_my_books VARCHAR(4000));

The column ALL_MY_BOOKS is defi ned as a character data type (see Chapter 2 for more informa-
tion of data types), and it can hold as many as 4,000 characters.

As you might have guessed, there is much more to the CREATE TABLE syntax 
than the preceding example implies. A full syntax listing all options in any given 
RDBMS would span more than one page, and mastering these options requires 
advanced understanding of SQL, for which this book is but a fi rst step.

As you’ll see in Chapter 2, a table, once created, can be modifi ed (altered), or dropped from the 
database altogether. The SQL provides you with full control over the database objects, with power 
to create, change, and destroy.

TRY IT OUT Creating a Database in Microsoft SQL Server 2008

Creating a database is normally a database administrator’s task, especially in a production environ-
ment; there are too many options and tradeoffs to consider to leave everything set to the default. For 
our purposes, we can use the basic syntax, however. There are several ways to create a database in 
Microsoft SQL Server, and using SQL Server Management Studio Express is arguably the easiest one. 
Follow these steps:

1. Make sure that you have your SQL Server instance up and running (refer to Appendix B for instal-
lation instructions).

2. Start SQL Server Management Studio Express by going to the Microsoft SQL Server 2008 menu 
option (this exercise assumes that SQL Server is installed on your local computer so you can con-
nect automatically with Windows Authentication).

c01.indd 13c01.indd   13 3/22/2011 1:45:50 PM3/22/2011   1:45:50 PM



14 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

3. The fi rst screen you see is a prompt to connect to your server. If not already fi lled by default, select 
the server type Database Engine, the server name .\SQLEXPRESS (if you followed the instructions 
in Appendix B; otherwise, select another name from the drop-down box; it only displays instances 
of SQL Server visible from your computer), and authentication set to Windows Authentication.

4. Click the Connect button.

5. SQL Server Management Studio Express will display a win-
dow with several panes; for the purposes of this tutorial, we 
are only interested in the New Query button located in the 
upper-left corner of the window, right under the File menu 
(shown in Figure 1-1). Click the New Query button.

6. A new query window would appear in the middle of the win-
dow; this is where you will enter your SQL commands.

7. Type in the SQL statement for creating a database:

CREATE DATABASE library;

8. Click the Execute button located on the upper 
toolbar, as shown in Figure 1-2.

9. Observe the message “Command(s) completed 
successfully” in the lower pane, Messages tab.

10. Your newly created database will appear on the Databases list in the 
pane on the left, with the title Object Explorer (see Figure 1-3). Click the 
plus sign next to the node Databases node.

How It Works
Microsoft SQL Server takes out much of the complexity from creating the 
database process. Behind the scenes, the SQL Server created several fi les on 
the hard drive of your computer (or on an external storage device), created dozens of entries in the 
Windows registry and the SQL Server–specifi c confi guration fi les, and created additional supporting 
objects for the database operations (you can take a look at these by expanding the node LIBRARY in 
your newly created database).

By omitting all optional confi guration options, your database was created using all the default values: 
storage fi le names, locations, and initial sizes; collation orders; and so on. While this is not a recipe for 
creating an optimally performing database (see Chapter 9 for optimization considerations), it will be 
adequate for the purposes of this book.

Getting the Data In: INSERT Statement

The myLibrary table in our LIBRARY database is now ready to be populated with data, which is 
a task for the INSERT statement. Since the stated purpose of our database is to keep track of the 
books, let’s insert some data using one of the books we do have on our shelf, SQL Bible. Here is 
some data.

FIGURE 1-1

FIGURE 1-2

FIGURE 1-3

c01.indd 14c01.indd   14 3/22/2011 1:45:50 PM3/22/2011   1:45:50 PM



Let There Be Database! x 15

SQL Bible by Alex Kriegel Boris M. Trukhnov Paperback: 888 pages

Publisher: Wiley; 2 edition (April 7, 2008)  Language: English

ISBN-13: 978-0470229064

This is a lot of information and all in one long string of characters. The INSERT statement would 
look like follows:

INSERT INTO myLibrary VALUES (‘SQL Bible by Alex Kriegel Boris M. Trukhnov 

Paperback: 888 pages Publisher: Wiley; 2 edition (April 7,2008) 

Language:English ISBN-13: 978-0470229064’);

The keywords INSERT, INTO, and VALUES are the elements of the SQL language and together 
instruct the RDBMS to place the character data (in the parentheses, surrounded by single quotation 
marks) into the myLibrary table. Note that we did not indicate the column name; fi rst because we 
have but a single column in which to insert, and second because RDBMS is smart enough to fi gure 
out what data goes where by matching a list of values to the implied list of columns. Both parenthe-
ses and quotation marks are absolutely necessary: the former signifi es a list of data to be inserted, 
and the latter tells the RDBMS that it is dealing with text (character data type).

In database parlance, we have created a record in the table. There are many more books on the 
shelf, so how do we enter them? One way would be to add all of them on the same line, creating a 
huge single record. Although that is possible, within limits, it would be impractical, creating a pile 
of data not unlike the refrigerator model we discussed earlier: easy to add and diffi cult to fi nd. Do I 
hear “multiple records”? Absolutely!

The previous statement could be repeated multiple times with different data until all books are 
entered into the table; creating a new record every time. Instead of a refrigerator model with all data 
all in one place, we moved onto “chest drawer model” with every book having a record of  its own.

TRY IT OUT Inserting Data into a Column

Make sure you are at the step where you can enter and execute SQL commands. Repeat Steps 1 through 6 
of the fi rst Try It Out exercise and then run these statements to insert four records in your single table, single 
column database:

1. Type in (or download from a website) the following queries:

USE library;

INSERT INTO myLibrary VALUES (‘SQL Bible by Alex Kriegel Boris M. Trukhnov 

Paperback: 888 pages Publisher: Wiley; 2 edition (April 7,2008) Language:English 

ISBN-13:     978-0470229064’);

INSERT INTO myLibrary VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course by 

Alex Kriegel Paperback: 408 pages Publisher: Wiley (October 15, 2001) 

Language:English ISBN-13: 978-0764548406’);

INSERT INTO myLibrary (all_my_books ) VALUES (‘Letters From The Earth by Mark Twain

Paperback: 52 pages Publisher: Greenbook Publications, LLC (June 7, 2010) 

Language:English ISBN-13: 978-1617430060’);

INSERT INTO myLibrary (all_my_books ) VALUES (‘Mindswap by Robert Sheckley 

Paperback: 224 pages Publisher: Orb Books (May 30, 2006) 

Language:English ISBN-13: 978-0765315601’);

c01.indd 15c01.indd   15 3/22/2011 1:45:51 PM3/22/2011   1:45:51 PM



16 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

2. Click the Execute button located on the upper toolbar, as shown on Figure 1-2.

3. Observe four confi rmations “(1 row(s) affected)” in the Messages tab in the lower window.

How It Works
The INSERT statement populates columns in the table by creating a record, a single row of data. The 
list of columns could be omitted as the list of values corresponds exactly to the list of columns (see later 
in this chapter for more information). If a column is specifi ed, it has to appear in parentheses without 
any quotation marks; and the corresponding data goes into the list after the VALUES keyword, in 
parentheses, with quotation marks around the data to indicate the character nature of the value.

Give Me the World: SELECT Statement

Now that we have our data, we could query it to fi nd out exactly what we have. The SELECT state-
ment will help us to get the data out of the table; all we need is to tell it what table and what column.

SELECT all_my_books FROM myLibrary;

While it did produce a list of the books’ information, it is far cry from being useful. Let’s face it; it 
is a mess of a data, and the only advantage from being stored in a relational database is that it can 
be easily recalled, and possibly printed. What about search? To fi nd out whether you have a specifi c 
book, you’d have to pull all the records and manually go over each and every one of them! Hardly a 
result you would expect from a sophisticated piece of software, which is RDBMS.

We need a way to address specifi c keywords in the records that we store in the table, such as the 
book title or ISBN number. A standard programming answer to this problem is to parse the record: 
chop it into pieces and scroll them in a loop looking for a specifi c one, repeating this process for 
each record in the table. The SQL cannot do any of this without vendor-specifi c procedural exten-
sions. This would defy declarative nature of the language and would require intimate understanding 
of the data structure. Let’s take another look at the fi rst record of data we entered:

SQL Bible by Alex Kriegel Boris M. Trukhnov Paperback: 888 pages

Publisher: Wiley; 2 edition (April 7, 2008)  Language: English

ISBN-13: 978-0470229064

How would you go about chopping the record into chunks? What would be the markers for each, 
and how do you distinguish a book title from an author? Using a blank space for this purpose 
would put “SQL” and “Bible” into different buckets while they logically belong together. How do 
we know that “by” is a preposition, and not part of the author’s name? The answer comes from the 
structured nature of SQL, which is, after all, a structured query language; we need more columns. 
Splitting the one unwieldy string into semantically coherent data chunks would allow us to address 
each of them separately as each chunk becomes a column unto its own. Back to the CREATE 
TABLE (but let’s fi rst drop the existing one):

DROP TABLE myLibrary;

Create a new one according to the epiphany we just had:

c01.indd 16c01.indd   16 3/22/2011 1:45:51 PM3/22/2011   1:45:51 PM



Let There Be Database! x 17

CREATE TABLE myLibrary

(

     title         VARCHAR(100)

   , author        VARCHAR(100)

   , author2       VARCHAR(100)

   , publisher     VARCHAR(100)

   , pages         INTEGER

   , publish_date  VARCHAR(100)

   , isbn          VARCHAR(100)

   , book_language VARCHAR(100)

)

A single column became eight columns with an opportunity to add a ninth by splitting the 
authors’ fi rst and last names into separate columns (this is part of the data modeling process to 
be discussed in Chapter 3). For now, we’ve used the same data type, albeit shortened the number 
of characters, with a single exception: We made the PAGES column a number for reasons to be 
explained later in this chapter. You might also consider changing the data type of the column 
PUBLISH_DATE. Normally, a date behaves differently from a character, and the DBMS offers a 
date– and time–specifi c data type.

Now that we don’t have to dump all data into the same bucket, we can be much more selective 
about data types, and use different types for different columns. It is not recommended that you mix 
up the data types when inserting or updating (see later in this chapter) the columns.

We will revisit data types again later in this chapter, and in more detail in Chapter 2. 

You might have noticed that we have two “author” columns in our table now, 
to accommodate the fact that there are two authors. This raises the question of 
what to do when there is only one author, or when there are six of them. These 
questions will be explored in depth in a data modeling session in Chapters 2 
and 3; here we just note that unused columns are populated automatically with 
default values, and if you fi nd yourself needing to add columns to your table 
often, it might be the time to read about database normalization (see Chapter 3).

Now we need to populate our new table. The process is identical to the one described before, only 
the VALUES list will be longer as it will contain eight members instead of one. All supplied data 
must be in single quotes with the exception of the one going to PAGES column; quotes signify char-
acter data, absence thereof means numbers:

INSERT INTO myLibrary VALUES (

    ‘SQL Bible’

   ,‘Alex Kriegel’

   ,‘Boris M. Trukhnov’ 

   ,‘Wiley’

   ,888 

   ,‘April 7,2008’ 

   ,‘978-0470229064’

   ,‘English’);

c01.indd 17c01.indd   17 3/22/2011 1:45:51 PM3/22/2011   1:45:51 PM



18 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

As long as we keep the order of the values matching the structure of the table exactly, we do not 
need to spell out the columns, which are the placeholder labels for the data, but if the order is differ-
ent or if you insert less than a full record (say, three out of eight columns), you must list the match-
ing columns as well:

INSERT INTO myLibrary (

     title

   , author

   , book_language

   , publisher

   , pages

   , author2

   , publish_date

   , isbn

)VALUES (

    ‘SQL Bible’

   ,‘Alex Kriegel’

   ,‘English’

   ,‘Wiley’

   ,888 

   ,‘Boris M. Trukhnov’ 

   ,‘April 7,2008’ 

   ,‘978-0470229064’);

Repeat the previous statement with different sets of data for each of the books on the shelf. (Yes, 
some data entry clerks hate their jobs, too.) Alternatively, you can just download a ready-to-go script 
from the book’s accompanying website, and install it following the instructions in Appendix A. 
You’ll get all you information you need in a structured format, ready to be queried with SQL:

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,

 isbn) VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course’,’Alex Kriegel’ 

,’English’,’Wiley’,408, ‘October 15, 2001’,’978-0764548406’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,

 isbn) VALUES (‘Mindswap’,’Robert Sheckley’ ,’English’,’Orb Books’,224,’May 30, 

2006’,’978-0765315601’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,

 isbn) VALUES (‘Jonathan Livingston Seagull’,’Richard Bach’ ,’English’,’MacMillan’,

100, ‘1972’,’978-0075119616’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,

 isbn) VALUES (‘A Short History of Nearly Everything’,’Bill Bryson’ 

,’English’,’Broadway’,624, ‘October 5, 2010’,’978-0307885159’);

What happens if you omit both the column name and the value? The columns listed in the statement 
will get populated, but the omitted column would stay empty. To signify this emptiness, the SQL 
marks it as having NULL value. 

In the preceding examples, the values for the AUTHOR2 column will be populated with NULL(s). 
As you will see in Chapter 2, a NULL has a special meaning in the database, and behaves according 
to rather specifi c rules.

c01.indd 18c01.indd   18 3/22/2011 1:45:51 PM3/22/2011   1:45:51 PM



Let There Be Database! x 19

To save yourself some typing, you might want download scripts for this chapter 
from www.wrox.com, or from www.agilitator.com. The installation procedures 
are described in Appendix A.

Here is a SELECT query that returns all the records you’ve entered into the myLibrary table:

SELECT  title

      , author

      , author2

      , publisher

      , pages

      , publish_date

      , isbn

      , book_language

) FROM myLibrary;

Instead of listing all columns, we could have used a handy shortcut provided by SQL, an asterisk 
symbol (*) that instructs the RDBMS to fetch back all columns.

SELECT * FROM myLibrary;

The results of this query eerily resemble what we’ve just discarded for being unstructured, with a 
minor distinction: The data is displayed in separate columns. It makes all the difference! 

First, we can now combine data in any order by just shuffl ing the columns around or asking for spe-
cifi c columns instead. For example, to produce a list of authors and titles only, we could just execute 
this query:

SELECT  title

      , author

      , author2

) FROM myLibrary;

Second, and much more important, is the ability to address these columns by name in a WHERE 
clause. This clause serves as a fi lter, allowing you to select records that match some specifi ed condi-
tion, such as all books written by Alex Kriegel or only these published by Wiley. The syntax of the 
query is very intuitive, and resembles English:

SELECT * FROM myLibrary WHERE publisher = ‘Wiley’;

The results of the query list only records where the value stored in the PUBLISHER column equals 
‘Wiley’ (note that the value is also enclosed in single quotes to notify the database that this is a char-
acter data type we are comparing). 

The WHERE clause allows you to narrow down your search to a specifi c record or a set of records 
matching your criteria, as there might be millions of records in your database. This is where power 
of SQL as a set-based declarative language comes forward. With a simple statement that is not 
unlike a simple English sentence, you can comb through the records returning only a subset of the 

c01.indd 19c01.indd   19 3/22/2011 1:45:51 PM3/22/2011   1:45:51 PM



20 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

result, without worrying how this data is stored, or even where it resides. The previous SELECT 
statements will return identical results when run in Microsoft Access, Oracle, PostgreSQL, MySQL, 
SQL Server or IBM DB2.

Another important component of the WHERE clause is the use of operators. The previous query 
used an equivalence operator, fi ltering only the records in which the publisher’s name equals 
‘Wiley’. You could just as easily ask for books that were not published by Wiley using the non-equal 
operator:

SELECT * FROM myLibrary WHERE publisher <>‘Wiley’;

Several operators could be strung together to provide ever more stringent selection criteria using 
AND and OR logical operators. For instance, to fi nd a book published by Wiley and written by 
Alex Kriegel, you might use the following query:

SELECT * FROM myLibrary 

    WHERE publisher = ‘Wiley’ AND author= ‘Alex Kriegel’;

The query returned only records satisfying both criteria; using the OR operator would bring back 
results satisfying either criterion, and not necessarily together. You need to be careful when using 
operators as they apply Boolean logic to the search conditions, and results might be quite unex-
pected unless you understand the rules. 

The logic of operators will be further explored in Chapter 2, along with syntactical differences 
among the vendors and precedence rules.

TRY IT OUT Exploring the SELECT Statement

Here, we are going to take SELECT statement for a spin using the Microsoft SQL Server 2008 environ-
ment. Repeat Steps 1 through 6 of the fi rst Try It Out exercise to get to the stage where you can enter 
and execute SQL commands.

1. Type in the following statements to insert data into the table:

USE library;

INSERT INTO myLibrary (title, author , book_language , publisher , pages , 

author2 , publish_date , isbn)VALUES (‘SQL Bible’,‘Alex Kriegel’,‘English’,

‘Wiley’,888,‘Boris M. Trukhnov’,‘April 7,2008’ ,‘978-0470229064’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date, 

isbn) VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course’,’Alex Kriegel’ 

,’English’,’Wiley’,408, ‘October 15, 2001’,’978-0764548406’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date, 

isbn) VALUES (‘Mindswap’,’Robert Sheckley’ ,’English’,’Orb Books’,224,’May 30, 

2006’,’978-0765315601’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,

isbn) VALUES (‘Jonathan Livingston Seagull’,’Richard Bach’ ,’English’,’MacMillan’,

100, ‘1972’,’978-0075119616’);

c01.indd 20c01.indd   20 3/22/2011 1:45:52 PM3/22/2011   1:45:52 PM



Let There Be Database! x 21

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,

isbn) VALUES (‘A Short History of Nearly Everything’,’Bill Bryson’ 

,’English’,’Broadway’,624, ‘October 5, 2010’,’978-0307885159’);

2. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1-2.

3. Observe fi ve confi rmations “(1 row(s) affected)” in the Messages tab in the lower pane window.

4. The following statement will select all rows and all columns from the table (the display of the 
actual records in these examples are omitted because of space limitations):

SELECT * FROM myLibrary;

(5 row(s) affected)

5. To narrow the search, add a WHERE clause:

SELECT * FROM myLibrary 

    WHERE publisher = ‘Wiley’;

(2 row(s) affected)

6. To narrow it even further, specify two fi ltering criteria in the WHERE clause: only books published 
by Wiley and only those that have more than 800 pages:

SELECT * FROM myLibrary 

    WHERE publisher = ‘Wiley’ and pages > 800;

(1 row(s) affected)7. To select only specifi c columns, execute the following statement:

SELECT title , author  FROM myLibrary 

title                                            author

----------------------------------------------- -----------------------

SQL Bible                                        Alex Kriegel

Microsoft SQL Server 2000 Weekend Crash Course   Alex Kriegel

Mindswap                                         Robert Sheckley

Jonathan Livingston Seagull                      Richard Bach

A Short History of Nearly Everything             Bill Bryson

(5 row(s) affected)

How It Works
The inserted data is stored in the table, each chunk in a column of its own, together constituting a 
record; this allows for addressing specifi c columns by name when selecting the data. 

Step 4 instructs the database engine to return all available records from the myLibrary table; instead of 
listing all columns in the SELECT list, the query uses the asterisk symbol shortcut.

Steps 5 and 6 progressively narrow the returned result set by adding fi ltering criteria to the query as part 
of the WHERE clause; they use SQL operators to specify the equality and “greater than” conditions.

c01.indd 21c01.indd   21 3/22/2011 1:45:52 PM3/22/2011   1:45:52 PM



22 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

The last step demonstrates the ability to select only specifi c columns for the records returned and 
addressing them by name. They appear in the order specifi ed in the query regardless of how they were 
entered or stored in the table.

Good Riddance: the DELETE Statement

Getting rid of unwanted information is just as important as getting it into the database in the fi rst 
place. In the case of the Library database, a book might be lost or sold, and there is no need to keep 
the data any longer. The SQL provides a DELETE statement to deal with the situation. To delete all 
records from a table, you would use the following statement:

DELETE FROM myLibrary;

There is no need to use FROM keyword in many RDBMS, just a table name would suffi ce, but some 
will insist. Now the records are gone, and you have an empty table in the database that you could 
populate again using the same INSERT scripts found on www.wrox.com or www.agilitator.com.

Can these records be restored? It depends. In order to be able to undo changes 
made to the data in the RDBMS, you need to perform all operations in the con-
text of a transaction that, at the end, would either commit all the changes (mak-
ing them permanent) or roll them back (restoring the data to the original state). 
We will discuss transactional support in Chapter 10.

The DELETE statement could be much more selective in its approach if used together with WHERE 
clause you encountered earlier. To delete a specifi c set of records, you need to specify criteria. The 
following query will indiscriminately delete all records satisfying the WHERE clause condition:

DELETE FROM myLibrary 

    WHERE publisher = ‘Wiley’;

All Wiley titles will be gone from your table, which might not be quite what you wanted. How do 
you pinpoint a single record to be removed from possible thousands sitting in your table? You need 
to specify a set of criteria that uniquely identify this record. Here’s an example:

DELETE FROM myLibrary 

    WHERE publisher = ‘Wiley’ AND pages = 888;

You can’t get any more unique than this, right? Actually, you can: Although improbable, it is not 
impossible for a large database to have more than one record satisfying the previous criteria. The 
better way is to go by ISBN code that is unique:

DELETE FROM myLibrary 

    WHERE isbn=‘978-0470229064’;

What do you do when a record does not contain an easily identifi able unique marker? There are 
several ways to ensure the uniqueness of a record in the table (see Chapters 3 and 8), but here we’ll 

c01.indd 22c01.indd   22 3/22/2011 1:45:52 PM3/22/2011   1:45:52 PM



Let There Be Database! x 23

introduce a concept of a special column which purpose, among the others, will be to uniquely 
identify records in the table (also called PRIMARY KEY by the initiated). Had you numbered the 
records as you entered them into the table, there would be an easy way to refer to a specifi c record; 
and assuming that your special column does not allow duplicate numbers, there would be no 
ambiguity in your deleting a single record. Unfortunately, this would require changing the table 
structure again.

TRY IT OUT Deleting Records from a Table

Let’s delete some records from a table created in Microsoft SQL Server 2008. Repeat Steps 1 through 6 
of the fi rst Try It Out exercise to get to the stage where you can enter and execute SQL commands.

1. The following query blows all records from the myLibrary table:

USE library;

DELETE myLibrary

(5 row(s) affected)

2. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1-2.

3. Insert the records anew:

USE library;

INSERT INTO myLibrary (title, author , book_language , publisher , pages , author2 

, publish_date , isbn)VALUES (‘SQL Bible’,‘Alex Kriegel’,‘English’,‘Wiley’,888,

‘Boris M. Trukhnov’,‘April 7,2008’ ,‘978-0470229064’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,

isbn) VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course’,’Alex Kriegel’ 

,’English’,’Wiley’,408, ‘October 15, 2001’,’978-0764548406’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date, 

isbn) VALUES (‘Mindswap’,’Robert Sheckley’ ,’English’,’Orb Books’,224,’May 30, 

2006’,’978-0765315601’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date, 

isbn) VALUES (‘Jonathan Livingston Seagull’,’Richard Bach’ ,’English’,’MacMillan’,

100, ‘1972’,’978-0075119616’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date, 

isbn) VALUES (‘A Short History of Nearly Everything’,’Bill Bryson’ 

,’English’,’Broadway’,624, ‘October 5, 2010’,’978-0307885159’);

4. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1-2.

5. Delete a more selective group of records: all books with the exception of those published by Wiley. 
Type in the following SQL statement, and click the Execute button:

DELETE myLibrary 

    WHERE publisher <> ‘Wiley’;

(3 row(s) affected)

c01.indd 23c01.indd   23 3/22/2011 1:45:52 PM3/22/2011   1:45:52 PM



24 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

How It Works
The SQL command submitted to the database engine instructs it to delete all records from the myLi-
brary table. Five records disappear from the database. In order to continue, you must reinsert the 
records so you have some data with which to work.

Step 5 demonstrates that the records could be deleted, selectively based upon conditions specifi ed in the 
WHERE clause of the query. Only three of the fi ve satisfi ed the criterion WHERE publisher <> ‘Wiley’
and were deleted.

One way to add a new column to a table would be to drop the entire table and re-create it from 
scratch with a new column; in fact, this was the only way for many RDBMSs for a long time. 
Now, we just alter the table to sneak a column in (or remove it, for that matter). While the com-
plete syntax is rather complex and differs signifi cantly from RDBMS to RDBMS, the basic syntax 
is deceptively simple:

ALTER TABLE myLibrary 

ADD COLUMN book_id INTEGER;

This will add an empty column to the myLibrary table of the numeric data type INTEGER. (When 
it comes to computers, numbers are what they understand best; in fact, the numbers are all they 
understand.) All human-readable characters, sounds, and pictures are internally represented as long 
chains of binary numbers: ones and zeroes. To add data to this new column we would have to use 
the UPDATE statement, the subject of the next section in this chapter.

Some of the DBMSs might have a slightly different syntax for adding columns. For instance, 
Microsoft SQL Server does not need the keyword COLUMN, inferring what needs to be added 
from the statement itself, so that the query for SQL Server would look like this:

ALTER TABLE myLibrary 

ADD book_id INTEGER;

Deleting unwanted columns from the table is just as easy except you have to use DROP statement:

ALTER TABLE myLibrary 

DROP COLUMN book_id;

Removing a column requires you to know only its name and that of the table of which it is a part. 
No data type or any other qualifi ers are needed. There are ramifi cations to be considered when 
modifying table structure, especially when the table is not empty or columns are being used by some 
other table in the database. Please see Chapters 2, 7, and 8 for more information.

Notice the distinction between the DELETE and DROP statements: You use 
DELETE to get rid of the data and you use DROP to destroy database objects 
such as tables, views, procedures, or the database itself. As you’ll learn in 
Chapter 2, these statements belong to different branches of SQL, data manipu-
lation and data defi nition languages, respectively.

c01.indd 24c01.indd   24 3/22/2011 1:45:52 PM3/22/2011   1:45:52 PM



Let There Be Database! x 25

I Can Fix That: the UPDATE Statement

One of the main benefi ts of electronic data storage is its fl exibility, nothing is written in stone, parch-
ment, or even paper. The data can be created, deleted, or modifi ed at will. So far, you’ve learned 
how to get the data in and out, and how to get rid of the data. The UPDATE statement allows you 
to modify data by changing the existing values for the columns. If you have suddenly discovered that 
the page number you’ve entered is wrong, you could fi x it by running the following statement: 

UPDATE myLibrary SET pages = 500;

Because the column data type is number (INTEGER), there is no need to enclose 500 in brackets 
(this is the rule for all numeric data types in all RDBMSs).

The problem with the preceding statement is that the value of 500 will be entered into every record in 
the table, hardly a result we’ve intended. Just as with DELETE, we have to be much more selective when 
modifying the data, updating only the records we want to update, and leaving the rest alone. This is the 
job for the WHERE clause, and again we need some marker that would uniquely identify a record:

UPDATE myLibrary SET pages = 500

    WHERE isbn=‘978-0470229064’;

If you’ve discovered that you have more than one column to update for the record, you could add all 
these to the UPDATE comma-separated list:

UPDATE myLibrary SET 

    pages = 500

  , title = ‘SQL Bible, 2nd Edition’

         WHERE isbn=‘978-0470229064’;

The UPDATE operation is implemented in such a way as to allow for using the existing data to be 
used as a fi ltering criterion. For instance, you could fi nd the book by its title and change the title in 
the same query:

UPDATE myLibrary SET title = ‘SQL Bible, 2nd Edition’

         WHERE title = ‘SQL Bible’;

Of course, after the data is changed, the preceding query won’t be able to fi nd the same record again 
using the same WHERE clause criterion. The same principle could be applied when the new data 
you’re supplying includes the exiting data as a component. To add the ‘2nd Edition’ qualifi er to 
‘SQL Bible’ we do not have to supply the whole string, just the second part of it, and use the concat-
enation operator:

UPDATE myLibrary SET title = title + ‘, 2nd Edition’

         WHERE title = ‘SQL Bible’;

The preceding syntax with the plus sign (‘+’) as concatenation operator is valid in Microsoft SQL 
Server only. Oracle and PostgreSQL use the || operator; Microsoft Access uses the ampersand (&); 
and IBM DB2, MySQL, and HSQLDB prefer to use the SQL function CONCAT. See Chapter 2 for 
information on SQL operators and SQL functions, respectively.

So far it was implied that columns are being updated with the same data type: characters to char-
acters and numbers to numbers. What happens when you mix the data type and try to insert or 

c01.indd 25c01.indd   25 3/22/2011 1:45:53 PM3/22/2011   1:45:53 PM



26 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

update? For example, what would happen if you tried to update a character column with a number? 
The answer is the same dreaded “it depends.” Some RDBMSs will choke on the incompatible data, 
and spit out an error message; others will try their best within compatibility limits to convert the 
data into the data type of the column. The latter modus operandi is known as implicit data type 
conversion, whose uses and misuses will be discussed in Chapter 2.

TRY IT OUT Modifying Table Structure with the ALTER Statement, and Table Data 

with the UPDATE Statement

To explore the scenario mentioned earlier, let’s add a numeric column to our table and populate it with 
data in Microsoft SQL Server 2008. 

First, we need to make sure we are at the step where we can enter and execute SQL commands. Repeat 
Steps 1 through 6 of the fi rst Try It Out exercise, repeat the steps to create and populate the myLibrary 
table as shown in exercises 2 and 3, and then follow these instructions:

1. To add a column to a table, type in the following:

USE library;

ALTER TABLE myLibrary 

ADD book_id INTEGER;

2. Click the Execute button located on the upper toolbar, as shown on Figure 1-2.

3. Observe the message “Command(s) completed successfully” in the lower pane of the Messages tab.

4. Query your table to make sure that the column appears at the end of the data set, and is empty 
(NULL), as shown in Figure 1-4.

FI GURE 1-4

5. Now we need to update the new column because all it contains currently is NULL(s). Delete every 
statement from the query window and type in the following commands:

USE library;

UPDATE myLibrary SET bk_id = 1 WHERE isbn=’978-0470229064’;

UPDATE myLibrary SET bk_id = 2 WHERE isbn=’978-0764548406’;

UPDATE myLibrary SET bk_id = 3 WHERE isbn=’978-0765315601’;

UPDATE myLibrary SET bk_id = 4 WHERE isbn=’978-0075119616’;

c01.indd 26c01.indd   26 3/22/2011 1:45:53 PM3/22/2011   1:45:53 PM



Let There Be Database! x 27

6. Click the Execute button located on the upper toolbar, as shown on Figure 1-2.

7. Observe four confi rmations “(1 row(s) affected)” in the Messages tab in the lower pane window.

8. Verify that the data indeed was inserted by executing a SELECT query against the myLibrary table:

USE library;

SELECT bk_id, isbn FROM myLibrary;

bk_id          isbn

-----------    ---------------

1              978-0470229064

2              978-0764548406

3              978-0765315601

4              978-0075119616

NULL           978-0307885159

9. The following statement updates all columns in a single query, effectively replacing record #1:

USE library;

UPDATE myLibrary SET 

    isbn = ‘978-1617430060’

  , pages = 52

  , title = ‘Letters From The Earth’

  , author = ‘Mark Twain’

  , author2 = NULL

  , publisher = ‘Greenbook Publications, LLC’

  , publish_date = ‘June 7, 2010

WHERE bk_id = 1;

10. Run the SELECT statement from Step 8 to verify the changes:

USE library;

SELECT bk_id, isbn FROM myLibrary;

bk_id          isbn

-----------    ---------------

1              978-1617430060

2              978-0470101865

. . .

NULL           978-0307885159

How It Works
The fi rst statement in the batch indicates that the commands are to be executed in the context of the 
Library database; it only needs to be executed once at the beginning of the session (see Chapter 10 
for more information). The ALTER TABLE command adds a column of INTEGER numeric data 
type to the myLibrary table created in previous exercises; the newly created columns contain only 
NULL(s) at this point, indicating the absence of any data. The UPDATE statements populate this 
column for specifi c records uniquely identifi ed by setting the WHERE clause to fi lter for the ISBN 
column in the same table. Without it, the BK_ID column will be updated with the same value for 
all records.

As you can see from the output produced by the SELECT statement in Step 8, only four records have 
data in the BK_ID column now; for the rest of the records it is empty.

c01.indd 27c01.indd   27 3/22/2011 1:45:53 PM3/22/2011   1:45:53 PM



28 x CHAPTER 1  DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE 

In Step 9 we are using the UPDATE statement to replace the contents of the entire record, column by 
column, ending up with a different book in our database. Because the book does not have a co-author, 
the value is plugged with NULL to indicate absence of any data. Had it been omitted, the column 
would retain the previous value.

In a multiuser environment, the problems with modifying the data are that somebody else might be 
reading or modifying it at the same time. This gives rise to a number of potential data integrity prob-
lems. The RDBMSs solve this problem with various locking mechanisms discussed in Chapter 10. 
The trick here is not to overdo it, as locking could potentially slow the database down. A popular open 
source database (MySQL, for instance) has different storage mechanisms for the databases used mostly 
to serve the information (SELECT) and those in need of data integrity protection.

SUMMARY

We produce and consume ever-increasing amounts of information, and database management sys-
tems were created to help us cope with the informational deluge.

Database management systems (DBMSs) accumulate and manage data in various forms, text, 
images, and sounds, both structured and unstructured. The underlying format for all electroni-
cally stored data is digital. DBMSs built upon the relational model are called RDBMS (Relational 
Database Management Systems).

The RDBMSs manage both data and access to it, applying security policies, and auditing activity. 
There is a multitude of databases on the market, from desktop to enterprise class servers, from pro-
prietary to open source. A variety of factors must be considered for each RDBMS package deploy-
ment: storage capacity, scalability, security, and costs, to name a few. The most popular enterprise 
class RDBMS packages include Oracle, IBM DB2, and Microsoft SQL Server; the popular open 
source contenders are PostgreSQL and MySQL; desktop databases are represented by Microsoft 
Access and OpenOffi ce embedded HSQLDB.

The Structured Query Language (SQL) is lingua franca of the relational database management 
systems (RDBMSs) and has roots in IBM research conducted in the late 1960s. The fi rst attempt to 
standardize SQL was by the American National Standards Institute (ANSI) in 1986, and the cur-
rent standard is SQL:2008, endorsed by the International Standards Organization (ISO). Despite the 
published standard, virtually every RDBMS supports its own dialect of SQL, each being somewhat 
different in syntax and implementation details. In addition, many RDBMSs support procedural 
extensions introducing procedural logic in an otherwise set-based declarative language.

For each RDBMS system discussed in the book, the basic element is the table residing in a data-
base. The table organizes data into rows and columns of specifi c data types; and SQL provides 
language constructs to insert and manipulate the data trough statements such as INSERT, SELECT, 
DELETE, and UPDATE.

RDBMSs provide an inherently multiuser environment and facilities to ensure data integrity as 
different users work with the same data at the same time. 

c01.indd 28c01.indd   28 3/22/2011 1:45:53 PM3/22/2011   1:45:53 PM



2
Breaking and Entering: 
Structured  Information

Let’s take a closer look at the whirlwind of concepts introduced in the fi rst chapter: database, 
database object, table, schema, and instance. Despite being around for a long time, there is 
still a fair amount of confusion regarding what a relational database management system 
(RDBMS) is because each one has somewhat different ideas on the subject. Yet you have to 
have a clear understanding of the concepts behind the terminology. Your data will live inside 
these objects, tucked into tables, and bound by the rules.

In the broadest terms, a database is a logical abstraction that describes a collection of inter-
related objects managed as a unit. This would accommodate Microsoft Access, which for all 
intents and purposes is a fi le; and OpenOffi ce BASE, which is a pass-through to another rela-
tional database with an embedded Hyper Structured Query Language Database (HSQLDB) 
engine as a default. In Microsoft SQL Server, PostgreSQL, and MySQL contexts, a database is 
a collection of objects under common ownership managed by the software instance; whereas 
for Oracle, DB2, and DB2 UDB a database is a bunch of fi les managed by the software. What 
Microsoft calls database, Oracle refers to as schema; both are almost identical to a user in 
Oracle’s context.

This is the bad news, but there is good news, too. On a fundamental level, we are dealing with 
physical fi les and the processes that manage them, and the particulars of them are primarily 
of concern to the database administrators, not Structured Query Language (SQL) users. When 
you get to the point when you can submit a SQL statement to the RDBMS, most of these 
concepts are already implemented, and you are ready to model your data.

A REALLY BRIEF INTRODUCTION TO DATA MODELING

According to Wikipedia, data modeling in software engineering is the process of creating a 
data model by applying formal data model descriptions using data modeling techniques. Well, 
this is all honky dory, but what does it actually mean? Data modeling is the fi rst step where 
software abstraction touches the real world. The time has come to translate your idea into the 
relational system: rows, columns, and relations.

c02.indd 29c02.indd   29 3/15/2011 12:10:34 PM3/15/2011   12:10:34 PM



30 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Relations, which make your database relational, will be discussed in the next 
chapter.

There are three main levels of data modeling: conceptual, logical, and physical. Each layer refers to 
a degree of elaboration culminating with a model that can be translated into SQL statements and 
implemented in RDBMS of your choice. Each of the levels deals with certain steps to be taken when 
defi ning your database objects. Table 2-1 presents a matrix of the steps for each modeling level.

TABLE 2-1: Developing Data Model Stages

STE PS CONCEPTUAL LOGICAL PHYSICAL

Entities YES

Relationships YES YES

Attributes YES

Primary Keys YES YES

Foreign Keys YES YES

Tables/Views YES

Columns YES

Data Types YES

Conceptual Modeling

Conceptual modeling deals with the highest level of abstractions: entities and relationships. Entities
refer to the actual physical objects or abstract concepts in your requirements. If you are modeling 
data for a library, you might think of books, authors, borrowers, and librarians; if you are creating 
a data model for a bank, your entities would be accounts, clients, money, and so on.

Relationships model the way these entities interact. In the preceding example, a book can have 
several authors, and a client can have several accounts. While a librarian could potentially relate to 
an author, it won’t be something that you need to track in your database by establishing a relation-
ship between authors and librarians. The relationships are defi ned through primary and foreign
keys, which we’ll introduce in the next chapter.

Logical Modeling

Logical modeling is the next step in data modeling. Here you begin by thinking of attributes. 
Does an author have a name? A date of birth? Does a book have an identifi cation number? A 
number of pages? The trick is to distinguish between attributes (properties) that you want to track 

c02.indd 30c02.indd   30 3/15/2011 12:10:39 PM3/15/2011   12:10:39 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Why Can’t Everything Be Text? x 31

as opposed to those that are irrelevant. What would be the value of recording information about 
an author’s eye color or dieting habits? If information seems to be superfl uous to the purpose of 
your design, ditch it.

Physical Modeling

Physical modeling is the fi nal modeling stage. This is where your abstract ideas gain concreteness. 
You are getting ready to translate ideas into scripts and implement them in an actual RDBMS of 
your choice. This is the stage when you defi ne the names for your tables (which might be different 
from the entities’ names), names for your columns, and most importantly, data types. What is a data 
type? Glad you asked; it is the subject of the next section.

WHY CAN’T EVERYTHING BE TEXT?

RDBMSs were created to store information, and human readable information comes in letters and 
numbers. You might have heard that computers use nothing but ones and zeroes to represent infor-
mation. These are the numbers, and they are used to represent letters. So far, so good. What about 
dates? The date 10112010 would be October 11, 2010 in the United States. For most of Europe it 
would be November 10, 2010; in China the fi rst four digits might be interpreted as 1011. What 
about pictures? There are massive amounts of ones and zeroes packed according to specifi c fi le 
formats: JPEG, PNG, BMP, and TIFF, to name a few. How about sounds? I am sure you’ve heard 
about WAV and MP3 fi les. Video? AVI, MPEG, and so on.

To computers, they are all ones and zeroes, but humans need more than that. Humans are 
programmed (no pun intended!) to deal with different types of information. We “intuitively” can 
tell an image from a time, a date from text, and sound from a number, so we created computers in 
our own image and programmed them to treat data types differently.

There is an historical reason for introducing data types to SQL: a dearth 
of storage space. Some of you might remember the millennium scare, 
where havoc was to occur because the year was represented by two digits 
instead of four. By the same token, if the numbers were presented as num-
bers in binary system, only 2 bytes (16 bits) would be required. If we were 
to use characters for the same purpose, we would need 6 bytes (3 times as 
many) to accommodate numbers greater than 9999 (including 1 byte for 
the plus/minus signs). It does not sound like much these days, but back in 
the 1970s when the foundations were being laid, it was a huge deal.

Data types also help to tune up database performance. For instance, ubiquitous XML data (see Chapter 11
 for more information) can be represented as text. After all, it is text, but text processing is not opti-
mized for the structured nature of the XML documents. With the exception of desktop RDBMSs, 
every single RDBMS decided to implement a very specifi c XML data type to address the issue.

Another reason for data types’ existence is their role in enforcing domain integrity (discussed in 
detail in the next chapter). This refers to the ability of a specifi c data type to enforce constraints. For 

c02.indd 31c02.indd   31 3/15/2011 12:10:39 PM3/15/2011   12:10:39 PM



32 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

instance, without a DATE data type, it might be possible to enter a date such as October 48. Trying 
to insert invalid data into a data type–constrained fi eld would result in an error, such as Microsoft 
SQL Server’s “out-of-range datetime value” error, for example.

Before we can enter the data into our relational database, we have to break the data into pieces of 
specifi c data types, such as characters, numbers, and pictures. This information is reconstituted by a 
client application later on.

Character Data

It is only logical to start with character data; after all, this is what we normally deal with when 
collecting, transforming, and distributing information. 

Fixed Length and Variable Strings

All character strings in SQL can be of fi xed length or varying length. The difference is rather simple, 
but the devil is in the details.

A character string can be defi ned as a sequence of characters that belong to a predefi ned character
set. A character set is the language your database stores; you might remember specifying collation
order or locale during the RDBMS setup process (not Oracle 10g Express, which makes decisions 
based on your computer settings or when standard installation option was selected). The length of 
the string is the number of characters in the sequence. So far, so good. As long as everybody uses 
English, there is no problem, but this is not the case in the modern world. This is where internal 
representation enters the scene: bits and bytes. A character can be represented by one or more bytes; 
most of the Latin-based languages fall into the former category, and everybody else is in the latter. 
Therein lies the problem. 

Byte is a computer term for a unit of information storage that consists of 8 bits. Each bit can either 
be 1 or 0, and the combination of 8 bits allows us to store 256 distinct values (or 256 different char-
acters represented by numbers from 0 to 255), which form the foundation of the American Standard 
Code for Information Interchange (ASCII) character set. Considering that English contains only 26 
characters, 256 looks like a lot, but it’s not. We’d need separate holders for uppercase and lower-
case letters, punctuation marks, digits, math symbols, unprintable characters for line feed/carriage 
return, and so on. This barely leaves space for the characters used in other languages based on the 
Latin alphabet (French with its accent grave, and German with umlauts, for instance), let alone 
those that aren’t. There are about 3,000 different languages in the world, both dead and living; in 
addition to constructed languages such as J. R. R. Tolkien’s Quenya, Sindarin, and Khuzdul with its 
tengwar and cirth scripts; or Klingon’s plqaD script from the fi ctional Star Trek universe!

While there were attempts to remedy the situation with extended code pages, ultimately the solu-
tion came with the introduction of Unicode. It is a standard double-byte character set that assigns a 
unique number to every single character, so it can represent many more characters than ASCII (the 
latest count is 109,449 characters that cover 93 scripts). The Unicode standard is the result of devel-
opment coordinated by a nonprofi t organization named the Unicode Consortium. The fi rst version 
of Unicode, Unicode 1.0, was introduced in 1991, and since then it has been adopted by such indus-
try leaders as Apple, HP, IBM, Microsoft, Oracle, SAP, Sun, Sybase, Unisys, and many others. (The 
current version, Unicode 6.0, was released in October, 2010.) 

c02.indd 32c02.indd   32 3/15/2011 12:10:40 PM3/15/2011   12:10:40 PM



Why Can’t Everything Be Text? x 33

Unicode is required by modern standards such as XML, Java, JavaScript, 
CORBA, WML, and HTML, and is governed by the ISO/IEC10646 standard. 
It is supported in most operating systems, all modern browsers, major RDBMS 
vendors, and many other products. The emergence of the Unicode standard 
and the availability of tools supporting it are among the most signifi cant recent 
global software technology trends.

SQL “thinks” in characters, but computers count bits and bytes. If you defi ne a string to be of a fi xed 
length, say 10 characters long, the system allocates a certain number of bytes in memory or on a 
computer hard disk. If your character set is Latin-based, a total of 10 bytes will be allocated for the 
string, but if you use a double-byte character set, as in Simplifi ed Chinese, 20 bytes will be allocated. 
It does not matter whether the actual value to be stored in that string is exactly that many bytes, half 
as many, or just one character long; it will occupy the whole allocated space (unused bytes will be 
padded with blank characters), so all strings will have exactly the same length. 

If you defi ne a string variable as a varying length string with a maximum of 10 characters to store, the 
behavior will be different. The actual memory or disk space required to hold the value will be allocated 
dynamically, as needed. Only strings that are 10 characters long will have all 10 characters allocated to 
them, but if you have a string that is only 2 characters, only 2 bytes of storage will be allocated.

As you can imagine, this fl exibility comes with a performance price tag because the RDBMS must 
perform the additional task of dynamic allocation. A standard piece of advice when you need to 
squeeze the last drop of performance out of the database is to profi le your data and allocate fi xed-
length strings for values that always come in predefi ned lengths (for example, Social Security numbers 
or state codes). Just don’t forget to have checks in place for your inserts; an attempt to insert 11 char-
acters into a fi eld defi ned as CHAR(10) would result in an error. Also, when comparing two character 
strings, variable-length strings wouldn’t care much about trailing blanks but fi xed-length strings would.

You might have noticed that in the Library database all string fi elds in the tables 
are defi ned as variable character strings big enough to accommodate most common 
scenarios. This was a conscious choice in the case of a database that does not have 
to perform at its peak, queried by thousands of concurrent users. For example:

CREATE TABLE authors(

 au_id             bigint       NOT NULL

 au_first_name     varchar(50)  NULL

 au_middle_name    varchar](50) NULL

 au_last_name      varchar](50) NULL

 au_notes          xml          NULL

)

Here you see one numeric data type (BIGINT), three variable length strings 
(VARCHARs), and one XML data type. All data types were chosen based on spe-
cifi c business requirements and assumptions about their respective properties. For 
instance, it was assumed that the author’s name would never exceed 50 characters.

c02.indd 33c02.indd   33 3/15/2011 12:10:40 PM3/15/2011   12:10:40 PM



34 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

The MySQL and PostgreSQL have support for the SQL Standard data types, while OpenOffi ce 
BASE/HSQLDB and Microsoft Access dump everything into TEXT, an equivalent of VARCHAR.

Tables 2-2 and 2-3 list the implementation of character data types in selected RDBMSs, including 
some implementation-specifi c varieties. You’d be well advised to stick with the standard whenever 
possible: CHAR and VARCHAR. This will give you some modicum of assurance that your SQL 
code might be portable across different databases.

TABLE 2-2: Selected Character String Data Types: Oracle, DB2, and SQL Server

SQL STANDARD ORACLE 11G DB2 9.7 MS SQL SERVER 2008

CHARACTER CHARACTER CHARACTER CHARACTER

VARYINGVARCHAR VARYING

VARCHAR

VARCHAR2

LONG VARCHAR

VARYING

VARCHAR

LONG VARCHAR

VARYING

VARCHAR

TEXT

CLOB

or

CHARACTER LARGE OBJECT

CLOB CLOB VARCHAR(MAX)

NCHAR NCHAR GRAPHIC NCHAR

NCHAR VARYING(n) NCHAR VARYING

NVARCHAR2

VARGRAPHIC

LONG VARGRAPHIC

NVARCHAR 

NATIONALCHARACTER 

LARGE OBJECT

NCLOB DBCLOB NVARCHAR(MAX)

Unlike every other RDBMS that has implemented the VARCHAR data type, 
Oracle has VARCHAR and VARCHAR2. While currently they are synonymous, 
this behavior will change in the future. Oracle’s documentation recommends 
always using VARCHAR2 for variable length strings, noting that VARCHAR “is 
scheduled to be redefi ned as a separate data type used for variable-length char-
acter strings compared with different comparison semantics.” It is usually wise 
taking the vendor at its word.

Binary Strings

A binary string is a sequence of bytes in the same way that a character string is a sequence of char-
acters, but unlike character strings that usually contain information in the form of text, a binary 
string is used to hold nontraditional data such as images, audio and video fi les, program executa-
bles, and so on. Binary strings can be used for purposes similar to those of character strings (to store 

c02.indd 34c02.indd   34 3/15/2011 12:10:40 PM3/15/2011   12:10:40 PM



Why Can’t Everything Be Text? x 35

documents in Microsoft Word or Adobe PDF format), but the two data types are not compatible. 
The difference is like text and a photo of the same text. To keep things separate, in this book we 
deal only with “real” binary data types, covered later in this chapter. The binary string data types 
are listed in Table 2-3 as CLOB, NCLOB, DBCLOB, and so on.

TABLE 2-3: Selected Character String Data Types: PostgreSQL, MySQL, MS Access, and HSQLDB

SQL STANDARD POSTGRESQL MYSQL MS ACCESS HSQLDB 

(OPENOFFICE 

BASE)

CHARACTER CHARACTER CHAR TEXT CHARACTER

VARYINGVARCHAR VARCHAR TEXT VARCHAR

CLOB

or

CHARACTER LARGE 

OBJECT

TEXT LONGTEXT

MEDIUMTEXT

TINYTEXT

MEMO LONGVARCHAR

OBJECT

NCHAR VARCHAR

TEXT

VARCHAR

LONGTEXT

MEDIUMTEXT

TINYTEXT

TEXT

MEMO

CHARACTER

NCHAR VARYING VARCHAR VARCHAR

LONGTEXT

MEDIUMTEXT

TINYTEXT

TEXT

MEMO

VARCHAR

LONGVARCHAR

NATIONALCHARACTER 

LARGE OBJECT

VARCHAR

TEXT

VARCHAR

LONGTEXT

TEXT

MEMO

LONGVARCHAR

OBJECT

Character versus Special Files

It might be a little bit confusing to learn that plain text documents can be stored as character strings 
and a Word document has to be treated as a binary string. A Word or Adobe PDF fi le is a text docu-
ment from a user’s point of view, but from a computer storage perspective, it is not. In addition to 
plain text characters, it contains many special markers and instructions that only MS Word or Adobe 
Acrobat software can interpret. The same is true for any other special fi les: bitmaps, spreadsheets, audio 
and video fi les, and so forth. You can think of it in this way: a special fi le (for example, .doc, .xls, .bmp, 
or .avi) is like a Blu-ray disc for a DVD player, whereas a program (MS Word, Excel, Paint, or Adobe 
Acrobat) is like a DVD player. You have to have a DVD player to play a disc, and it has to be the right 
disc. If you try to play a Blu-ray disc in a standard DVD player, it won’t work. Just try to open a Word 
or PDF documents with Notepad, and you will see what we are talking about.

c02.indd 35c02.indd   35 3/15/2011 12:10:41 PM3/15/2011   12:10:41 PM



36 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

TRY IT OUT Text or Binary?

Let’s try to open Microsoft Word or Adobe Acrobat documents with the ubiquitous Notepad program 
on a Windows machine. The Word fi les would have a fi le extension (the last three or four characters 
in the name of the fi le, following the dot) of .doc or .docx, depending on the version of software used 
to create it; Adobe Acrobat fi les have an extension of .pdf. The basic text editor, Notepad, which has 
shipped with every Windows computer since time immemorial (Windows 3.1, that is) understands text 
only, and will interpret anything as a character.

Here are the steps to open a binary fi le in Notepad on a Windows-based computer.

1. Locate a .doc, .docx, or .pdf fi le on your computer.

2. Highlight the fi le by clicking it (single click!).

3. Without moving your mouse, right-click to get the pop-up menu.

4. Navigate to the Open With menu and click Choose Program.

5. Scroll the list of programs to fi nd Notepad and select it with a single click.

6. Make sure that the check box at the bottom of the pop-up window with the caption “Always use 
the selected program to open this kind of fi le” is not checked (otherwise, all fi les with this exten-
sion will be opened by Notepad).

7. Click OK.

This is how the fi rst several lines look when a PDF fi le is opened with Notepad on my computer:

%PDF-1.4%

âãÏÓ

2767 0 obj<</Linearized 1/L 448187/O 2770/E 50012/N 58/T 392798/H [ 693 1011]>>

Endobj

xref

2767 19

0000000016 00000 n

How it Works
Because the Adobe Acrobat PDF is a binary fi le, it contains, in addition to the text, information about 
fonts, positioning, coloring, and all other formatting. This information is a set of instructions that 
Adobe Acrobat understands and can interpret to display human readable text and any other objects 
that might be embedded into the document, such as pictures, diagrams, and so on.

Numeric Data

After the characters come numbers. A number is a number is a number, right? Ugh, no. They come 
in all shapes and colors, fi guratively speaking, split into two broad categories: exact numbers and 
approximate ones.

Exact Numbers

Exact numbers can either be whole integers (counting pencils, people, or planets) or have decimal 
points (prices, weights, or percentages). Numbers can be positive and negative; they can have 
precision and scale. And RDBMSs accommodate them all.

c02.indd 36c02.indd   36 3/15/2011 12:10:41 PM3/15/2011   12:10:41 PM



Why Can’t Everything Be Text? x 37

Precision determines the maximum total number of decimal digits that can be stored (both to the 
left and to the right of the decimal point). Scale specifi es the maximum number of decimals allowed. 
Exact numeric data types are summarized in Tables 2-4 and 2-5.

The scale and precision for NUMERIC and DECIMAL values often cause 
confusion. Just remember that precision specifi es the maximum number of all
digits allowed for a value. For example, suppose that a table has these columns:

fi eld1 — NUMERIC(10,4); can hold up to 999,999.9999

fi eld2 — NUMERIC(10,2); can hold up to 99,999,999.99

fi eld3 — NUMERIC(10,0); can hold up to 9,999,999,999

To determine the maximum number of fi gures before the decimal point, subtract 
scale from precision. If you try to insert a value with more fi gures before the 
decimal point than the column allows, you will get an error, but values with 
more decimal points than specifi ed will simply be rounded (the exact behavior 
depends on implementation).

TABLE 2-4: Exact Numeric Data Types: Oracle, DB2, and SQL Server

SQL 

STANDARD

ORACLE 11G DB2 9.5 MS SQL SERVER 

2008

INTEGER NUMBER(38)

INT

INTEGER

BIGINT

INTEGER

BIGINT

SMALLINT SMALLINT

NUMBER(38)

SMALLINT SMALLINT

TINYINT

NUMERIC NUMERIC

DECIMAL

NUMBER

NUMERIC

DECIMAL

NUMERIC

DECIMAL

MONEY

SMALLMONEY

TABLE 2-5: Exact Numeric Data Types: PostgreSQL, MySQL, MS Access, and HSQLDB

SQL STANDARD POSTGRESQL MYSQL MS ACCESS HSQLDB (OPENOFFICE BASE)

INTEGER INTEGER

BIGINT

INTEGER

BIGINT

NUMBER 

(INTEGER, LONG 

INTEGER

INTEGER

BIGINT

SMALLINT SMALLINT SMALLINT

TINYINT

NUMBER 

(INTEGER)

SMALLINT

TINYINT

NUMERIC NUMERIC NUMERIC NUMBER NUMERIC

c02.indd 37c02.indd   37 3/15/2011 12:10:41 PM3/15/2011   12:10:41 PM



38 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Approximate Numbers

Approximate numbers are numbers that can’t be represented with absolute precision (or don’t have 
a precise value). Approximate numeric data types are summarized in Tables 2-6 and 2-7.

TABLE 2-6: Approximate Numeric Data Types: Oracle, DB2, and SQL Server

SQL STANDARD ORACLE 11G DB2 9.5 MS SQL SERVER 2008

FLOAT FLOAT

NUMBER

FLOAT FLOAT

REAL REAL

NUMBER

REAL REAL

DOUBLE PRECISION DOUBLE PRECISION

NUMBER

DOUBLE PRECISION DOUBLE PRECISION

To stand out in the crowd, Oracle offers only one data type, NUMBER, to 
represent all numeric data for its RDBMS. To comply with SQL Standard, 
it also has numerous synonyms for it. Behind the scenes, INTEGER and 
SMALLINT will translate into NUMBER(38); NUMERIC and DECIMAL 
will be substituted with NUMBER. The NUMBER data type stores zero, posi-
tive, and negative fi xed and fl oating-point numbers with magnitudes between 
1.0 � 10–130 and 9.9...9 � 10125 with 38 digits of precision. Oracle insists that 
having one numeric data type for all numeric data does not hurt performance, 
given the fact that “the space is allocated dynamically.”

TABLE 2-7: Approximate Numeric Data Types: PostgreSQL, MySQL, MS Access, and HSQLDB

SQL STANDARD POSTGRESQL MYSQL MS ACCESS HSQLDB 

(OPENOFFICE BASE)

FLOAT FLOAT FLOAT NUMBER (DECIMAL) FLOAT

REAL REAL REAL NUMBER (DECIMAL) REAL

DOUBLE PRECISION DOUBLE DOUBLE NUMBER (DOUBLE) DOUBLE

Each numeric data type has limits, a range of values that it can represent which is pretty 
consistent across the RDBMS. The value ranges for some common numeric types are presented 
in Table 2-8. 

c02.indd 38c02.indd   38 3/15/2011 12:10:41 PM3/15/2011   12:10:41 PM



Why Can’t Everything Be Text? x 39

TABLE 2-8: Value Ranges for the Numeric Data Types

DATA TYPE STORAGE SIZE 

(BYTES)

RANGE NOTES

INTEGER 4 -2,147,483,648 to

+2,147,483,647

Implemented in all 

RDBMSs

TINYINT 1 0 through 255 MS SQL Server only

SMALLINT 2 -32,768 to + 32,768 Implemented in all 

RDBMSs

BIGINT 8 -9,223,372,036,854,775,808 to 

+9,223,372,036,854,775,808

Implemented in all 

RDBMSs

MONEY 8 - 922,337,203,685,477.5808 to + 

922,337,203,685,477.5807

MS SQL Server only

SMALLMONEY 4 - 214,748.3648 to 

+ 214,748.3647

MS SQL Server only

REAL 4 The range is from negative 3.402E 

+ 38 to negative 1.175E – 37, or from 

positive 1.175E – 37 to 3.402E + 38. It 

also includes 0.

Implemented in all 

RDBMSs

FLOAT 4 to 8 The number can be zero or can range 

from –1.79769E + 308 to –2.225E 

– 307, or from 2.225E – 307 to 

1.79769E + 308.

Implemented in all 

RDBMSs (if only as 

synonyms)

DOUBLE 8 The number can be zero or can range 

from –1.79769E + 308 to –2.225E 

– 307, or from 2.225E – 307 to 

1.79769E + 308.

Implemented in all 

RDBMSs

Literals for the Number

Most of the time, the numbers are hidden in the database, neatly tucked away in the bits and bytes 
the RDBMS allocates for them. Once in awhile, you might need to use numbers as a value inserted 
in your query, and databases can be very particular in what format you supply them.

c02.indd 39c02.indd   39 3/15/2011 12:10:42 PM3/15/2011   12:10:42 PM



40 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Literals for numbers are represented as strings, optionally preceded by plus or minus signs, with an 
optional decimal part for NUMERIC and DECIMAL data types separated by a dot (.):

123

-34.58

+89.1018

UPDATE books SET bk_price = 16.99 WHERE bk_id = 8;

Oracle allows the option of enclosing literals in single quotes:

‘123’

‘-888.34’

MS SQL Server has literal formats for MONEY and SMALLMONEY data types represented as 
strings of numbers with an optional decimal point and prefi xed with a currency symbol:

$16

$123456.14

For instance, this syntax will be valid in MS SQL Server and nowhere else:

UPDATE books SET bk_price = $16.99 WHERE bk_id = 8;

Approximate numbers add scientifi c notation to represent the numbers in two parts separated by the 
letter E (either lower- or uppercase). Both parts can include plus or minus; the part number can also 
include a decimal point:

+1.23E2

-8.745e2

-8.44488E+002

The value of the constant is the product of the fi rst number and the power of 10 specifi ed by the sec-
ond number.

Once Upon a Time: Date and Time Data Types

Handling dates and times is probably one of the most confusing and inconsistent topics in SQL. 
Partly this stems from the inconsistency of the human-devised system of tracking day and time. Try 
to explain this to a Martian: 365 days in a year (except when it’s 366) comprising 12 months made 
of alternating 30 or 31 days, and one month of 28 (except when it is 29), each day consisting of 24 
hours, and so on. It’s a daunting task, to be sure! The relational databases model the real world, 
so they had to accommodate this complexity. Accommodate they did, with DATE, TIME and 
DATETIME data types:

 ‰ DATE is a structure that consists of three elements: year, month, and day. The year is a 4-digit 
number that allows values from 0000 through 9999 (that’s right, the year 10,000 problem 
is looming), the month is a 2-digit element with values from 01 through 12, and the day is 
another 2-digit fi gure with a range from 01 through 31. SQL Standard defi nes the seman-
tics of dates and times using the structure described previously, but implementers are not 
required to use that approach, provided the implementation produces the same results. One 
vendor can choose something similar to the preceding structures; others can implement char-
acters, numbers with different scale, and so on.

 ‰ TIME consists of hour, minute, and second components. The hour is a number from 00 to 23, 
the minute is a two-digit number from 00 to 59, and the second is either another integer from 

c02.indd 40c02.indd   40 3/15/2011 12:10:42 PM3/15/2011   12:10:42 PM



Why Can’t Everything Be Text? x 41

00 to 61 or a decimal number with a minimum scale of 5 and minimum precision of 3 that 
can hold values from 00.000 to 61.999.

 ‰ DATETIME combines both DATE and TIME into a single type with date range from 
January 1, 1753, through December 31, 9999, and time range of 00:00:00 through 
23:59:59:997; the allocated storage is 8 bytes. This data type found in Microsoft SQL Server 
beginning from version 2005.

The DATE data type behaves differently from implementation to implementation. IBM DB2, for instance, 
has DATE and TIME data types separately, whereas Oracle and Microsoft SQL Server bundle time into 
the date fi eld; the OpenOffi ce BASE built-in HSQLDB database follows the IBM approach, and so on.

Much of the complexity of the date and time handling is hidden by the RDBMS’s internal represen-
tation; what appears as a familiar string, “October 29, 2010” is stored as a complex data type in 
which each of the components — months, days, and years — is represented by a DECIMAL, and the 
entire structure is rolled up into a DATE data type, leaving the RDBMS to handle the details.

The dates and times get into the database as literals (using explicit or implicit conversion) as a return 
result from a function, or as a conversion. The RDBMSs have implemented a number of SQL func-
tions to help handle this peculiar data type, please refer to Chapter 4 for more information. For 
instance, to insert today’s date into a fi eld defi ned a DATE data type, the Microsoft SQL Server 
might use the GetDate() built-in function (there are equivalents across all RDBMSs. Please refer to 
the Wrox book SQL Functions: Programmers Reference for more information.

INSERT INTO books(

             bk_id

           ,bk_title

           ,bk_ISBN

           ,bk_publisher

           ,bk_published_year

           ,bk_price

           ,bk_page_count

           ,bk_bought_on

           ,bk_hard_cover

           ,bk_cover_pic

           ,bk_notes)

     VALUES

           (1

           ,’SQL Bible’ 

           ,’978-0470229064’

           ,’Wiley’

           ,2008

           ,39.99

           ,888

           ,GetDate()

           ,0

           ,NULL

           ,NULL);

This statement will insert today’s date into the BK_BOUGHT_ON fi eld. Substituting the explicit 
conversion expression CAST(‘10-10-2009’ as SMALLDATETIME) or the implicit conversion 
expression ‘10-10-2009’ would also enter a date into the fi eld. The implicit conversion SQL 
functions are briefl y touched in this chapter and are discussed in greater detail in Chapter 4.

c02.indd 41c02.indd   41 3/15/2011 12:10:42 PM3/15/2011   12:10:42 PM



42 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

As if there were not enough complexity, there is also an issue with time zones. If 
both your client and the RDBMS server are located within the same time zone, 
the date and time will be (in theory, at least) the same, and when your applica-
tion inserts new records and uses one of the built-in SQL functions to stamp it 
with today’s date, the results are as expected: Today is today for both you and 
your server. Now, imagine that your RDBMS server is located halfway around 
the globe. What date will go with your record: yours (8 o’clock in the morning) 
or your server’s (8 o’clock in the afternoon)? The difference might not be only 
hours but also days and even months. To help with this situation, your RDBMS 
might provide TIME ZONE, as Oracle does, which would allow your applica-
tion to use either your SESSION (local time) or the server’s own time, as well as 
specify offsets for both. For information on SESSION, see Chapter 10.

While it might be apparent to humans that some literal strings are veritable dates, computers have 
no such insight and try to treat anything as a date if so instructed, which, of course, would result in 
an error. How do you do date data type validation? Microsoft has implemented the ISDate(<literal 
string>) function that returns either 1 (TRUE) or 0 (FALSE), indicating whether a particular string 
can be converted into a date data type; none of the other RDBMSs has similar functions (though 
custom functions can be created).

Once dates are in the database, you need to take extra care manipulating them. For instance, if 
you compare two dates that have the same day, month, and year component but differ in time they 
will be evaluated as “not equal.” Be sure to compare apples to apples. There are many date- and 
time-related functions to help you compare dates, extract date parts, and even do date arithmetic. 
All this and more is discussed in Chapter 4.

Binary Data

Binary data are for computers to understand and interpret so that humans can understand. Prime 
examples of binary data are pictures, only your image editor knows how to arrange these ones and 
zeroes into a picture of your aunt Sally, Adobe Acrobat documents, the contents of a PDF fi le that 
were pried open earlier in this chapter, and so on.

There is not much you can do with binary data in SQL besides storing it and retrieving it on 
demand. To store binary data, the RDBMSs have introduced a number of binary data types that are 
listed in Chapter 11 (in Table 11-6). Chapter 11 also explains how to get the binary data in and out 
of an RDBMS, which is not a trivial task at all.

Table 2-9 presents selected SQL data types from several RDBMSs.

TABLE 2-9: Most Frequently Used SQL Data Types Combined

SQL SERVER 

2008

ORACLE 

10G

IBM DB2 9.7 POSTGRESQL 

9.0

MYSQL 5.5 MS ACCESS OPENOFFICE 

BASE HSQLDB

char char char char char char char

varchar varchar varchar varchar varchar varchar varchar

c02.indd 42c02.indd   42 3/15/2011 12:10:42 PM3/15/2011   12:10:42 PM



It’s a Bird, It’s a Plane, It’s … a NULL! x 43

SQL SERVER 

2008

ORACLE 

10G

IBM DB2 9.7 POSTGRESQL 

9.0

MYSQL 5.5 MS ACCESS OPENOFFICE 

BASE HSQLDB

integer integer integer integer integer number integer

smallint smallint smallint smallint smallint number smallint

real

fl oat

double

real

fl oat

double

r real

fl oat

double

real

fl oat

double

real

fl oat

double

number real

fl oat

double

decimal decimal decimal decimal decimal number decimal

datetime date date date date date date

datetime date time time time time time

varbinary

binary

image

sql_variant

blob

clob

long

graphic

vargraphic

clob

blob

bytea blob

binary

varbinary

OLE 

Object

binary

varbinary

longvarbinary

XML XMLType XML XML n/a n/a n/a

IT’S A BIRD, IT’S A PLANE, IT’S … A NULL!

True to its nature, computers need to be told not only when there is data, but also when there 
isn’t. Humans can readily understand that “zero books” and “no books” refer to the same thing; 
computers will treat the two as different values. A special marker, NULL, was introduced to 
address the issue.

Much Ado About Nothing

NULL is a special database concept introduced to represent the absence of value, a void. Despite 
what some RDBMSs might have implemented, a NULL is neither a zero nor an empty string; it is 
a special value that can be substituted for an actual value for any data type allowed in the column. 
NULLs are usually used when the value is unknown or meaningless. A NULL value can later be 
updated with some real data; it can even become a zero or an empty string, but by itself it is neither.

For example, when you buy a new book, you might not have a few particulars such as cover picture 
or ISBN number. In such situations, the NULL values are appropriate for these fi elds. 

SQL standards explicitly state that each data type should include a NULL 
value that is neither equal to any other value nor is a data type unto its own, 
but instead stands for an unknown value. NULL has been implemented by all 
RDBMSs.

c02.indd 43c02.indd   43 3/15/2011 12:10:43 PM3/15/2011   12:10:43 PM



44 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Most of the time, NULL behaves according to its nature, hiding away and pretending to be invisible. 
Once in awhile, it surfaces to alter the way you are doing your queries forever.

For instance, comparing NULLs is far from obvious. A NULL is never equal to a NULL!

TRY IT OUT Discovering NULLs 

NULLS are curious animals, and should be approached cautiously. In this exercise, you will see 
how NULLs behave in the wild. 

1. Open an SQL client of your choice and connect to an RDBMS (we will use the Microsoft SQL 
Server 2008 Query Analyzer window).

2. To make sure you have NULL values in your table, insert one:

USE library;

INSERT INTO books (bk_id) VALUES (100);

3. Issue a SELECT statement to verify the presence of NULLs:

SELECT bk_id, bk_title, bk_ISBN from books WHERE bk_id = 100;

bk_id     bk_title  bk_ISBN  

------    --------  -----------

100       NULL      NULL

4. Now, try to fi nd records that contain NULL in the bk_ISBN fi eld:

SELECT bk_id, bk_title, bk_ISBN from books WHERE bk_ISBN = NULL;

(0 row(s) affected)

5. Well, maybe this is the literal; how about records where one NULL fi eld equals another NULL 
fi eld? Admittedly, this is an improbable query, but still…

SELECT bk_id, bk_title, bk_ISBN from books WHERE bk_ISBN = bk_Title;

(0 row(s) affected)

6. A NULL needs a very particular approach; it is not equal, it IS. The following query will do the 
trick:

SELECT bk_id, bk_title, bk_ISBN from books WHERE bk_ISBN IS NULL;

bk_id     bk_title  bk_ISBN  

------    --------  -----------

100       NULL      NULL

How It Works
A NULL value in the database represents an absence of any value and can’t be compared using standard 
comparison operators (see more on operators later in this chapter). A special keyword IS was introduced 
to address the issue (as well as some workarounds, such as MySQL’s NULL-safe comparison operator 
<=>; it is the only reliable way to fi nd NULL values. This behavior is consistent across all RDBMSs.

NULLs can cause you serious troubles if not understood in context of your data. They will play 
tricks with your aggregate functions queries when you get down to counting and grouping your 
records (see Chapter 5 for more details).

c02.indd 44c02.indd   44 3/15/2011 12:10:43 PM3/15/2011   12:10:43 PM



It’s a Bird, It’s a Plane, It’s … a NULL! x 45

NULLs can wreak havoc with your arithmetic. For example, suppose you want to calculate the 
difference between two numeric columns, and one of the columns has a NULL value. The results 
might surprise you: 19.99 + 0 = 19.99 (as expected), but 19.99+ NULL = NULL. The very same is 
true for any other mathematical operator (multiplication, division, or subtraction). Whereas division 
by zero will throw an error, division by NULL will serenely return NULL.

You need to pay attention to NULLs when you manipulate strings. For instance, a simple string 
concatenation (using a concatenation operator; see the next section for more information) will 
suddenly return NULL if any of the components is a NULL:

SELECT ‘aaa’ || ‘BBB’ AS result from dual; -- Oracle, DB2, PosgreSQL syntax

SELECT ‘aaa’ + ‘BBB’ AS result; -- MS SQL Server/Access syntax

result

--------

aaaBBB

The query predictably returns the “aaaBBB” string as the result, but the simple substitution of 
NULL for any of the component strings will bring back NULL: 

SELECT ‘aaa’ + NULL AS result; -- MS SQL Server/Access syntax

result

--------

NULL

This behavior is identical across all RDBMSs, regardless of whether concatenation operators or 
concatenation functions are used (see Chapter 4 for more information on SQL Functions). To check 
whether the value is NULL, some RDBMSs supply functions (for example, ISNULL, introduced by 
SQL Server, or NVL, supplied by Oracle) or the expressions IS NULL and IS NOT NULL.

The NULL swallows anything it contacts, and a special built-in SQL function COALESCE was 
introduced; it returns the fi rst non-NULL expression from the list of arguments passed in. See 
Chapter 4 for more information on this (and other functions).

The inability to compare NULLs using the Equals (=) and Not Equal to (<>) 
comparison operators was not always the default behavior of the SQL. There 
were times when NULL could be compared this way - in fact, it was the only 
allowable behavior.

The SQL-92 standard (yes, the 92 stands for the year when it was introduced) 
required you to use these operators when comparing NULL values. This 
atavistic behavior still lurks under the polished veneer of a respectable RDBMS. 
Microsoft SQL Server allows you to specify the SQL-92–compliant behavior of 
your environment by setting ANSI_NULL parameter ON and return to modern 
times by switching it OFF. (The ANSI prefi x stands for the American National 
Standards Institute.)

SET ANSI_NULLS ON

SET ANSI_NULLS OFF

c02.indd 45c02.indd   45 3/15/2011 12:10:43 PM3/15/2011   12:10:43 PM



46 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

None of the Above: More Data Types

There are quite a few data types that we haven’t mentioned yet; there are a several dozen different 
types out there, and vendors come up with new data types all the time. Some of these data types are 
so RDBMS-specifi c that they have no meaning outside the context, and some require knowledge of 
advanced SQL concepts. Yet there are a few which you ought to be aware of: BOOLEAN, BIT, and 
XML.

BOOLEAN

The staples of binary logic are TRUE and FALSE values. Even though this data type was introduced 
in SQL standard almost since the beginning, very few RDBMSs implemented it as such. The excep-
tions are the user-friendly desktop databases, such as Microsoft Access and OpenOffi ce BASE, 
which offer intuitive (Yes/No) data types. 

MySQL has introduced a BOOLEAN data type that is but a synonym for TINYINT(1), where 
the value of zero is interpreted as FALSE, and any non-zero value evaluates to TRUE. PostgreSQL 
implements this data type natively and allows the literal values to be entered as TRUE/FALSE, YES/
NO, Y/N, and 1/0 to represent TRUE and FALSE, respectively; it also allows for NULL to be used 
as a third state value (as discussed later in this chapter).

Oracle, IBM DB2, and Microsoft SQL Server do not have the BOOLEAN data type (even though 
IBM supports BOOLEAN as the data type for variables declared in custom functions and stored 
procedures).

BIT

The BIT data type can be either 0 or 1, and as the name suggests, it occupies exactly 1 bit of storage. 
This can be the underlying data type for the BOOLEAN data type in Microsoft SQL Server, Oracle, 
and IBM DB2. Using BIT as BOOLEAN requires the interpreting logic to be implemented in the 
client application.

Here are some examples of RDBMS specifi c data types: Microsoft SQL Server’s 
SQL_VARIANT and Oracle’s ROWID.

The former is supposed to be able to accommodate different data types sup-
ported by the SQL Server. Despite this claim to universal data type storage, it 
has quite a few exceptions, including XML, TEXT, IMAGE, and user-defi ned 
data types. The latter, ROWID, is used to store addresses for a physical location 
on the disk where the record lives. These data types have no direct equivalents 
anywhere else.

XML Data Type

XML stands for eXtensible Markup Language and is used to construct structured documents that 
combine both human-readable and machine-readable characteristics. The XML specifi cation is 
maintained and developed by W3C, the main international standards organization for the World 

c02.indd 46c02.indd   46 3/15/2011 12:10:43 PM3/15/2011   12:10:43 PM



Refactoring Database TABLE x 47

Wide Web. The idea is to present information along with instructions on how this data (or data and 
metadata, in computer lingo) are to be interpreted. Here’s an example of an XML document:

<books>

<book>

<title> Discovering SQL</title>

</book>

</books>

Despite its similarity to the more familiar HTML, a markup language used to create web pages, it has a 
different role. The HTML focuses on presenting the data in some layout; XML is dealing with the data.

The XML data type and its implementations in the RDBMS are discussed in greater detail in Chapter 11.

DDL, DML, AND DQL: COMPONENTS OF SQL

While SQL purports to be a single language, it is not. There are subtle distinctions, both within and 
outside of the language. 

By now, it has become abundantly clear that there are several SQL in existence, similar in many 
ways, but distinct enough to pose problems when moving SQL statements between RDBMSs. In 
fact, there are distinct areas within the language itself.

When SQL is used to create, modify, or destroy objects within an RDBMS, it puts on its Data 
Defi nition Language (DDL) hat. Here you have the CREATE, ALTER, and DROP statements, plus 
a couple of others.

The Data Manipulation Language (DML) is the domain of INSERT, UPDATE, and DELETE, 
which you use to manipulate data.

Some bundle the Data Query Language (DQL) into DML, arguing that it also manipulates data. 
There are merits to this argument, not least that there is but a single member in this category: the 
SELECT statement.

Additionally, you might hear about the Transaction Control Language (TCL), which includes 
transaction statements such as COMMIT, ROLLBACK, or SAVEPOINT (see Chapter 10 for 
more information on transactions); and the Data Control Language (DCL), which deals with 
GRANT(ing) and REVOKE(ing) privileges to RDBMS objects.

The formal classifi cation does not affect the way you use the language, but it will help you to be 
better prepared for a discussion with software developers and when taking your SQL mastery to the 
next level. As a Chinese saying has it, wisdom begins with calling things by their true names.

REFACTORING DATABASE TABLE

Now that you know about data types, you need to bring your tables up to standard by identifying 
which columns can be served better with which data type. The refactoring table does not equal refac-
toring database design (this will be the subject of the next chapter), but it will prepare you to take 
this step. All the statements used in this section are DDL statements.

c02.indd 47c02.indd   47 3/15/2011 12:10:44 PM3/15/2011   12:10:44 PM



48 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

How do you alter the past? One way is to drop everything and start anew. The DML statement 
DROP will serve the purpose.

DROP TABLE

Once dropped, the table can’t be restored unless you were careful enough to drop it as part of the 
transaction (see Chapter 10 for details on transactional support). Not every RDBMS has transac-
tional support for DDL statements. Microsoft SQL Server, Oracle, and IBM DB2 have it; MySQL and 
PostgreSQL don’t. Neither Microsoft Access nor HSQLDB embedded into OpenOffi ce BASE has it.

Because a table occupies physical space, it is prudent to remove it. The DROP TABLE statement 
removes logical objects associated with it, such as INDEX (see Chapter 9 for more details on indices), 
constraints, and triggers (see Chapter 4). The syntax is virtually identical across all RDBMSs:

DROP TABLE <table_name>;

Sometimes you need to use a fully qualifi ed name, including the table’s schema, and you need to 
have the privileges assigned to you as a user to do so (see Chapter 10 for more information on data-
base privileges).

If a table has referential constraints (explained in detail in Chapter 3), you can’t drop such a table 
without either disabling or dropping the constraints fi rst.

As fragmented as SQL is — and the situation has improved dramatically with 
SQL Standard’s committee work — there are occasional sparks of consistency. 
CREATE and DROP are two of them; the syntax for creating and destroying all 
database objects is virtually identical across all RDBMSs — a glimpse of things 
to come.

CREATE TABLE

Once the table is successfully dropped, you can re-create it with all the changes that you did not 
put in the fi rst time; you can’t create a table with the same name that already exists in the database 
schema. No overloading here! The basic syntax for creating a table where you supply the table name 
and list of fi elds of particular types can quickly grow hairy, stretching across pages with numerous 
optional clauses. 

Most of the time, you just use CREATE TABLE, list the fi elds (columns), and add constraints 
(DEFAULTS, CHECK, referential constraints, and so on; see Chapters 3 and 8 for more details). 
This is how we will continue doing it throughout this book and we’ll leave the rest to the DBA to 
worry about. Here is an example of how a basic table can be created with minimum effort (it uses 
Microsoft SQL Server data types; you can use other data types suitable for your RDBMS):

CREATE TABLE books(

 bk_id bigint] NOT NULL,

 bk_title varchar(100) NULL,

 bk_ISBN varchar(50) NULL,

c02.indd 48c02.indd   48 3/15/2011 12:10:44 PM3/15/2011   12:10:44 PM



Refactoring Database TABLE x 49

 bk_publisher varchar(100) NULL,

 bk_published_year int NULL,

 bk_price smallmoney NULL,

 bk_page_count int NULL,

 bk_bought_on smalldatetime] NULL,

 bk_hard_cover bit NULL,

 bk_cover_pic varbinary(max) NULL,

 bk_notes xml NULL)

Note that we have not specifi ed where this table is created, how it will be managed, or what 
additional constraints for the table might be. These details can seriously affect performance of your 
database (and will be discussed in Chapter 9).

Important distinctions are the scope and type of table. In many RDBMSs, one is allowed to 
create permanent as well as temporary tables. The permanent tables are those we’ve been using so 
far, while temporary tables, as the name implies, have limited lifespans — usually (but not always) 
limited to that of the client session (see Chapter 10 for information on sessions). The following state-
ment creates a temporary table in Oracle’s syntax (which is representative of most other RDBMSs):

CREATE GLOBAL TEMPORARY TABLE tmp_Intermediate

( field1 INTEGER

, field2 VARCHAR2(20)

);

Microsoft syntax is slightly different:

CREATE #tmp_Intermediate

( field1 INTEGER

, field2 VARCHAR2(20)

);

The hash sign indicates the fl eeting nature of the created table. The table automatically disappears once 
the user disconnects from the database. A double hash (##) gives the temporary table global scope, 
meaning that this table is visible to different users, and will disappear once all users disconnect — a
subtle but important difference.

Once a temporary table is created, you can use it just as any other table for INSERT, UPDATE, and 
DELETE. Temporary tables can be used as intermediate storage or a workbench for your results, 
and are mostly used in stored procedures (see Chapter 4). 

Temporary tables have a number of restrictions that do not apply to permanent tables. Full 
discussion of these nuances is beyond the scope of this book. Temporary tables are defi ned in SQL 
Standard, and all RDBMSs offer an ability to create temporary tables, though there are a lot of 
implementation differences.

ALTER TABLE

Is there a better way to rewrite the past? Indeed, there is: Enter the ALTER statement. Say you’ve 
created a table only to discover that you’ve added a superfl uous fi eld, specifi ed a fi eld (column) of the 
wrong type, or missed the column you need and need to add one. The ALTER statement can take on 
these jobs, and then some.

c02.indd 49c02.indd   49 3/15/2011 12:10:44 PM3/15/2011   12:10:44 PM



50 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

SQL Standard does not allow you to use the ALTER statement to change a data type, 
but it allows you to drop and re-create a fi eld, which amounts to the same thing.

With ALTER, you can change the object by renaming it or changing its RDBMS–specifi c advanced 
characteristics (for example, move it to a different TABLESPACE in Oracle): 

ALTER TABLE books RENAME to new_books;

Before renaming a table, you have to understand all the ramifi cations of the action because other 
objects might depend on the table (we’ll discuss these in subsequent chapters). Once you rename it, 
all these dependencies will be broken. Not all RDBMSs approach the table-renaming task in the 
same fashion. While ALTER...RENAME will work with Oracle, PostgreSQL, and MySQL, it will 
not work in Microsoft products or in BD2 or OpenOffi ce BASE/HSQLDB.

Microsoft SQL Server uses system stored procedures (see Chapter 4) to rename 
objects (including tables and columns). This command will do the trick of 
renaming the BOOKS table into the NEW_BOOKS table:

EXEC sp_rename ‘books’,’new_books’

IBM DB2 employs a separate RENAME statement:

RENAME books TO SYSTEM NAME new_books

All warnings regarding renaming database objects fully apply here; proceed with 
extreme caution!

Adding a new column to a table is rather straightforward. The following statement alters the table 
by adding a column NEW_COLUMN1 of CHAR data type of exactly one character length:

ALTER TABLE books ADD new_column1 CHAR(1);

This basic syntax is virtually identical across all RDBMSs, including the default COLUMN key-
word being optional (with the exception of Microsoft Access and HSQLDB/OpenOffi ce BASE, 
which require the COLUMN keyword to be there).

Adding more than one column at a time is also supported:

ALTER TABLE books ADD 

  new_column1 CHAR(1)

, new_column2 INT

, new_column3 DATETIME;

If the column you are trying to add already exists, the RDBMS will warn you about it by throwing 
an error. 

Some databases, notably IBM DB2, place additional restrictions on altered tables before you can have 
access to them. Only specifi c commands can be issued against the altered table; for example, you can 
drop or rename it, or alter it some more. To bring the table back online, to be accessible, you must 
execute the REORG TABLE command to notify the RDBMS that the modifi cations are all done.

c02.indd 50c02.indd   50 3/15/2011 12:10:44 PM3/15/2011   12:10:44 PM



Refactoring Database TABLE x 51

Modifying an existing column is more convoluted, especially if data are already there. With the 
ALTER statement, you can rename the column, change its data type, or add constraints. For 
instance, the following syntax is used by different RDBMSs to modify columns:

-- Oracle syntax

-- multiple changes are allowed

ALTER TABLE books

  MODIFY new_column1 CHAR(2) NOT NULL

 ,MODIFY new_column2 BIGINT

-- IBM DB2 syntax

-- multiiple changes are allowed

ALTER TABLE books

   ALTER COLUMN new_column1 SET DATA TYPE CHAR(2)

  ,ALTER COLUMN new_column1 SET NOT NULL

  ,ALTER COLUMN new_column2 SET DATA TYPE BIGINT

-- Microsoft SQl Server 2008 and MS Access

-- only one column at the time can be altered

-- cannot be renamed using ALTER statement

ALTER TABLE books

   ALTER COLUMN new_column1 CHAR(2)

ALTER TABLE books 

   ALTER COLUMN new_column2 BIGINT

-- PostgreSQL

ALTER TABLE distributors

    ALTER COLUMN new_column1 TYPE CHAR(2)

   ,ALTER COLUMN new_column2 TYPE BIGINT;

ALTER TABLE books RENAME COLUMN new_colum1 TO old_column1;

-- MySQL

-- only one column at the time can be altered

-- changing data type requires column name to appear twice

-- same syntax used to rename columns, CHANGE could be substituted for MODIFY

ALTER TABLE books CHANGE new_column2new_column2BIGINT;

ALTER TABLE books CHANGE new_column2old_column2INTEGER;

Some RDBMSs such as Microsoft SQL Server 2008 will not allow you to alter columns of TEXT, 
NTEXT, and IMAGE data types. Oracle will prevent you from decreasing the size of a charac-
ter data type (or lower precision, total number of digits, for numeric types) non-empty column, 
HSQLDB does not support renaming columns at all, and so on.

Getting rid of the objects requires the same universal DROP working in conjunction with ALTER 
statements; the syntax is surprisingly consistent across all RDBMSs, with minor differences as 
shown in the following. Some RDBMSs allow you to drop several columns in a single statement; 
some don’t.

-- Oracle syntax

ALTER TABLE books

 DROP (new_column2, new_column1);

-- Microsoft SQL Server 2008 and MS Access

-- IBM DB2, PostgreSQL and MySQL

ALTER TABLE books

 DROP COLUMN new_column2;

c02.indd 51c02.indd   51 3/15/2011 12:10:45 PM3/15/2011   12:10:45 PM



52 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

An RDBMS worth its salt would prevent you from dropping all the columns. An attempt to drop 
the last column would result in a stern warning: “A table must have at least one data column,” or 
something similar.

POPULATING A TABLE WITH DIFFERENT DATA TYPES

Populating a table with different data types is a snap as long as you match the type and supply the 
expected format: Strings need to be enclosed in single quotes (though some RDBMSs allow you to 
mix and match), number literals are provided as-is, and so on. 

Literal in programming context means “hard-coded value,” and you might have heard that this is a 
bad word in software development circles. Yet when SQL statements are constructed, prior to being 
submitted for execution, all the values (with the exception of these supplied by DEFAULT 
constraints) must be properly formatted literals.

Let’s construct an INSERT statement for the BOOKS table:

INSERT INTO books(

             bk_id

           ,bk_title

           ,bk_ISBN

           ,bk_publisher

           ,bk_published_year

           ,bk_price

           ,bk_page_count

           ,bk_bought_on

           ,bk_hard_cover

           ,bk_cover_pic

           ,bk_notes)

     VALUES

           (1

           ,’SQL Bible’ 

           ,’978-0470229064’

           ,’Wiley’

           ,2008

           ,39.99

           ,888

           ,GETDate()

           ,0

           ,NULL

           ,NULL)

A brief examination of the structure should tell you that the only required value you need to 
supply is BK_ID because it has a NOT NULL constraint on it; everything else can be populated 
with default NULLs:

INSERT INTO books (bk_id) VALUES (8)

The preceding statement will insert a new row into the table and leave all fi elds but one empty, fi lled 
with default NULLs signifying absence of any data. Any attempt to insert a new record without involv-
ing BK_ID will fail with an error message informing you that the RDBMS can’t insert the value NULL 
into column ‘bk_id’, table ‘books’ because the column does not allow NULLs. INSERT fails. The actual 

c02.indd 52c02.indd   52 3/15/2011 12:10:45 PM3/15/2011   12:10:45 PM



Populating a Table with Diff erent Data Types x 53

wording will vary from RDBMS to RDBMS, but the message is unmistakable: If a fi eld is defi ned with 
the NOT NULL constraint, it has to be fi lled with some value upon INSERT (it can’t be updated with 
NULL value later on, either). We will discuss the statement in greater length later in this chapter.

Character data, numbers, and even dates can be added to your INSERT statements relatively easily 
as part of your standard SQL. Even XML data, being essentially a string, follows the same rules. 
Getting binary data into your database is much trickier: You can painstakingly resort to typing in 
long sequences of binary or hexadecimal codes representing your binary content. Or you can rely on 
some RDBMS-specifi c mechanism such as the Microsoft SQL Server OPENROWSET keyword (that 
allows importing binary fi les residing on your computer) or FILESTREAM (that allows streaming 
remote content to populate your binary fi elds). So far, these efforts remain proprietary and differ 
greatly among the RDBMSs, even among those supporting this functionality.

The most common way is to use an external client written using some database access mechanism 
(JDBC, ODBC, or OLEDB) that supports binary data inserts, and, of course, requires custom pro-
gramming. It essentially does the “painstaking binary typing,” but being done by a machine makes 
it fast and effi cient. 

One of the optimization techniques for handling binary data is to leave it 
outside the RDBMS altogether and only store information on how to fi nd it 
when requested: a path to a fi le, a URL to a remote image, and so on.

The methods are described in greater detail in Chapter 11, which deals with unstructured and 
semistructured data.

Implicit and Explicit Data Conversion

With so many data types fl ying around, how do we ever get reports out of this thing in normal 
human readable text? Why, by using conversion, of course! 

Conversion is not for humans only; RDBMSs routinely use it when asked to perform tasks where 
intent is either implied or explicitly stated; thus the conversions are either implicit or explicit, 
respectively.

An implicit conversion occurs when the RDBMS tries to guess what the purpose of the command 
was. Suppose that you have decided to concatenate several strings following some of the examples 
we introduced earlier in this chapter, and the fi nal result is an address, complete with the zip/postal 
codes and the house number. The following query would get you the desired result:

SELECT  ‘123’ + ‘-’ + ‘152’ + ‘ Avenue, ‘ + ‘09071’

---------------------

123-152 Avenue, 09071

So far, so good; a decent although non-existent address. Now, what would happen if we accidentally 
dropped the hyphen and “Avenue,” the non-numeric values?

SELECT  ‘123’ + ‘152’ + ‘09071’

-----------

12315209071

c02.indd 53c02.indd   53 3/15/2011 12:10:45 PM3/15/2011   12:10:45 PM



54 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Our intent is still clear. By enclosing every component in single quotes, we convey to the RDBMS 
our intent to get a character string back, even if it would represent numbers. To give the computer 
a hint that we want these strings to be treated as numbers, we need to get rid of quotes, at least 
for one of the components. By making ‘123’ a number by stripping the single quotes around it, the 
result is quite different:

SELECT  123 + ‘152’ + ‘09071’

-----------

9346

Now the SQL engine realizes that we want to add the numbers, even though some of them are 
supplied as literal strings, by virtue of having one noncharacter added in the expression: 123. It 
implicitly converted all the strings into numbers, and added the numbers together.

It gets even more interesting as the RDBMS tries to be even smarter. If we decide to strip it of its 
character identifi ers, the quotes, not from the fi rst or second of the members in the expression but 
from the last one, ‘09071’, the result will be different yet again:

SELECT  ‘123’ + ‘152’ + 09071

-----------

132223

Huh? What happened is the RDBMS engine concatenated the fi rst two members, ‘123’ and ‘152’, 
into a string ‘123152’, and then implicitly converted it into a number and added as a bona fi de 
number to the last member.

There are limits to the RDBMS’ guessing power. In order to be implicitly converted, the data types 
must be of compatible types. The RDBMS can’t convert letters into numbers (the word ‘one’ will 
not be converted to 1); it can’t convert dates into numbers and numbers into binary images, and so 
on. Some RDBMSs are stricter than others in enforcing conversion rules, and some disallow implicit 
conversions altogether.

The point of the story is that you will be well advised never to rely on implicit conversions, even if 
your RDBMS allows you to. Always use explicit conversions.

In case you need more convincing not to use implicit conversion in your code, 
consider the following reasons:

 ‰ Negative performance impact: It takes additional processing cycles to 
second-guess your intentions.

 ‰ Implicit conversions rely on additional confi guration parameters (for example, 
a national character set) and might return inconsistent values as a result.

 ‰ Being proprietary by defi nition, implicit conversion algorithms are not 
guaranteed to work across different versions of the RDBMS or across 
different RDBMSs at all.

 ‰ It is much easier to understand (and maintain) your code when your 
intentions are stated upfront, without the need to guess them.

c02.indd 54c02.indd   54 3/15/2011 12:10:45 PM3/15/2011   12:10:45 PM



SELECT Statement Revisited x 55

Explicit conversion happens when you do not allow the RDBMS to guess your intentions and tell 
it upfront how you want your data types to be treated. Explicit conversion is accomplished with 
the help of generic conversion functions such as CAST and CONVERT, introduced in Chapter 4. 
Both are used to convert one data type to another explicitly, within the bounds of compatibility, 
of course. Many RDBMSs have additional data type–specifi c functions that convert everything to 
characters, numbers, or dates. They are handy shortcuts to a more convoluted (and more powerful) 
syntax provided by the two conversion functions mentioned previously.

SELECT STATEMENT REVISITED

The SELECT statement — along with INSERT, UPDATE, and DELETE — are the four pillars of 
SQL, and you need to master them to be considered a fl uent, if not a native speaker. We discussed 
this statement briefl y in Chapter 1; now let’s take a closer look.

Selecting Literals, Functions, and Calculated Columns

There are many things to select from in a database, and tables are not the only game in town. In 
the examples on implicit data conversion, you’ve already seen how we can perform arithmetic and 
strings concatenation using SELECT and literal values (Microsoft SQL Server syntax):

SELECT 1+2 AS SumOfTwo, ‘one’ + ‘two’ AS TwoStrings;

SumOfTwo     TwoStrings

-----------  ------------

3            onetwo

Note that because we do not refer to a table (well, Oracle would ask for selecting FROM dual, and 
IBM insists that such expressions were selected FROM sysibm.sysdummy1); no FROM statement is 
required.

This also can be expanded to include calculated columns and functions (SQL functions are covered 
in Chapter 4). If, for instance, you’d need to see how much your books would cost in Japanese Yen, 
all you have to do is to multiply its price value by the exchange rate:

SELECT bk_price * 80.6829 AS PriceInYen

FROM books;

PriceInYen

----------- 

3226.50917100          

Adding SQL functions to the mix is just as easy, and you get to alias the resulting columns! Using 
Microsoft SQL Server’s built-in GetDate() function (more about functions in Chapter 4), we can 
get the today’s date as result of our SELECT query:

SELECT GetDate() as Today;

Today

-----------------------

2010-10-31 18:27:34.450

c02.indd 55c02.indd   55 3/15/2011 12:10:46 PM3/15/2011   12:10:46 PM



56 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Setting Vertical Limits

In order to extract data from one or more tables, we use the SELECT statement. We have already 
seen it in its simplest form:

SELECT * FROM <table>

The preceding statement retrieves all the data from a table. What if we don’t want all the data? 
What if you are only interested in the title and the publisher of all the books in our library? 

SELECT allows us to specify what data we want retrieved. Setting vertical limits is easy; just specify 
the columns from which you want to see data and ignore the rest:

SELECT bk_title, bk_publisher FROM dbo.books;

bk_title       bk_publisher

-----------     ---------------

SQL Bible        Wiley

SQL Bible        Wiley

. . .

SQL Functions    Wrox

The preceding statement will produce a result set with only two columns for all records we have 
added to the table.

Alias: What’s in a Name?

Two different types of folks use databases: those who put them together and those who use them, 
and they have vastly different objectives. The former strives to create a database that not only satis-
fi es business requirements but is also easy to program and easy to maintain. They will name objects 
in the database from a developer’s point of view: cryptic notations that make programming easier, 
but might leave the users guessing.

Naming conventions in database programming is a hot topic: Everybody and 
their cousin seem to have some ideas on how it “should be.” Not long ago, it was 
customary to code data types into the column names; the rationale was that it 
would be easy for the programmers to use them if they knew what data type the 
column was just by looking at it. Modern developer tools made this a somewhat 
less pressing issue, and readability became more important. Whatever naming 
convention you’ve decided to adopt, the important thing is to stick with it for 
consistency’s sake.

The SQL alias feature allows you to put user friendly names to otherwise cryptic programmer argot: 

SELECT bk_title as Book, bk_publisher as Publisher FROM dbo.books

Book          Publisher

-----------     ---------------

SQL Bible        Wiley

. . .

SQL Functions  Wiley

c02.indd 56c02.indd   56 3/15/2011 12:10:46 PM3/15/2011   12:10:46 PM



SELECT Statement Revisited x 57

Now, this looks just a little more civilized. It is called aliasing a column name. 

A column is not the only database object that can be aliased in a SELECT statement; we can also 
alias table names. This would not make much sense if we are selecting from a single table, but we’ll 
give it a try all the same:

SELECT bk_title as Book, bk_publisher as Publisher FROM dbo.books b

The benefi ts of this aliasing will become more obvious when we start SELECTing data from a 
bunch of different tables in one fell swoop (in a single SELECT statement).

We will discuss various ways to join tables in Chapter 7, but for now let’s just see how we can add 
the authors to the books and publishers to a single result set.

In our database, there are three tables we will need to interrogate at once in order to achieve 
that:

books

authors

books_authors

We need these separate tables because one book may have several authors, and the same author may 
have written several books. The relational theory behind this will be explained in Chapter 3, but for 
now, just accept that in RDBMS lingo this is called a many-to-many relationship between the books 
and the authors. A separate table is needed to tie together every book to each of its authors and 
every author to each book.

Our query may now look like this, and don’t worry about all the INNER JOINing. Note that we 
need to repeat the names of the tables over and over again (just to make the point, we have even 
added them as qualifi ers to the fi eld names, which is not necessary here, but may be necessary if 
several tables happen to have columns with the same name):

SELECT 

 books.bk_title AS Book

,books.bk_publisher AS Publisher

,authors.au_last_name AS Author

FROM  authors INNER JOIN

books_authors ON authors.au_id = books_authors.au_id INNER JOIN

      books ON books_authors.bk_id = books.bk_id;

To translate the preceding query into plain English: “For each pair of [book, author] as found in the 
BOOKS_AUTHORS table, go fetch the corresponding book and publisher from the BOOKS table 
and the corresponding author from the AUTHORS table.” 

Let’s see how a bit of aliasing will help us to make it more manageable:

SELECT 

 b.bk_title AS Book

,b.bk_publisher AS Publisher

,a.au_last_name AS Author

FROM  authors a INNER JOIN

      books_authors ba ON a.au_id = ba.au_id INNER JOIN

      books b ON ba.bk_id = b.bk_id;

c02.indd 57c02.indd   57 3/15/2011 12:10:46 PM3/15/2011   12:10:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



58 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

It looks a lot more compact, not to mention that it saved you a fair amount of typing. Both the 
column alias and the table alias can (but do not have to) be preceded by AS. In our examples, we 
used AS with the fi eld name aliases, but not with the table name aliases.

Setting Horizontal Limits

So far, with only a few exceptions, we selected everything the table can furnish. It might be okay for 
our little library, but as you can imagine, things grow hairy pretty quickly, and issuing indiscrimi-
nate SELECTs on a table with a million rows might not be quite as feasible. You must narrow down 
your search to what you are looking for (or make your best guess). 

The WHERE clause provides the needed selectivity. Suppose that we want to retrieve all the books 
published by a particular publisher. For this purpose, we can use the WHERE keyword. It works 
like this:

SELECT bk_title as Book, bk_publisher as Publisher FROM dbo.books

WHERE bk_publisher=’Wiley’;

Only books published by Wiley will be retrieved. In fact, you don’t even need the Publisher column 
in our result; it will just be Wiley, Wiley, Wiley all the way down. You’ve successfully fi ltered out all 
other records that you don’t want at the moment.

In case you don’t quite remember the name of the publisher you are interested in, you can use the 
LIKE operator (discussed later in this chapter):

SELECT bk_title as Book, bk_publisher as Publisher FROM dbo.books

WHERE bk_publisher LIKE ‘W%’;

This query concerns itself with the publisher, whose name starts with a W.

The usefulness of the WHERE clause goes much further than limiting results horizontally; it also 
is being used to establish relationships when combining data from two or more tables. It is used to 
JOIN the tables on a set of criteria (as seen a few pages ago, and the full discussion awaits you in 
Chapter 7).

DISTINCT

Here is another way to whittle down the number of records to a meaningful few. Suppose that we 
only want to get the list of all the publishers, without their respective books. We can do this as 
follows:

SELECT bk_publisher as Publisher FROM books;

Unfortunately, we are liable to get more than we have bargained for; if a publisher has published 20 
different books, the name will be repeated in our result 20 times! Ugh. Let’s narrow things down a 
bit, make things more distinct:

SELECT DISTINCT bk_publisher as Publisher FROM books;

Ah, that’s better. Now we get a single row for each publisher, no matter how many times it appears 
in the table books. Note that this time we’ve asked for the BK_PUBLISHER fi eld only because the 

c02.indd 58c02.indd   58 3/15/2011 12:10:46 PM3/15/2011   12:10:46 PM



SELECT Statement Revisited x 59

DISTINCT keyword applies to a combination of the columns; that is, the entire set must be distinct 
in the set, and the combination BK_TITLE, BK_PUBLISHER is unique throughout our database:

bk_title        bk_publisher

--------------  --------

SQL Bible       Wiley

 Selecting a distinct book title alone will bring us the entire collection (unless you happen to keep 
multiple records for multiple copies you may have); selecting only publishers will ensure that each 
publisher appears only once.

What about NULLs? After all, we’ve just been told that a NULL is never equal to another NULL; 
surely they must be distinct! Well, for the DISTINCT fi lter, a NULL is a NULL is a NULL. If you 
have 20 records and half of them are NULLs, the query asking for distinct values from this column 
will return but a single NULL. So in the preceding examples with 20 records and 10 of them being 
NULL, the SELECT DISTINCT will bring 11 distinct records, including one NULL.

Get Organized: Marching Orders

The order in which data is returned to you would most likely refl ect the order in which it is stored in 
the table, and not necessarily the one in which it was entered. Things could get dicey when there was 
a lot of INSERT and DELETE operations on the table, and some RDBMS impose additional rules. 
Fortunately, SQL provides the means by which you can organize the data as it’s being returned to 
you by a query.

ORDER BY

This keyword is used to sort the result of a query. In general, the order of rows in the data set pro-
duced by a query is undetermined. ORDER BY defi nes the desired order. The following query lists all 
the books and their prices, from least to most expensive:

SELECT bk_title as Book, bk_price as Price FROM dbo.books

ORDER BY bk_price

The column that is used to determine the order need not be a part of the result, either. We can rewrite the 
preceding query to show the books only, without the prices, but still in the least-to-most-expensive order:

SELECT bk_title as Book FROM dbo.books

ORDER BY bk_price

One or more fi elds may be specifi ed for the ordering.

SELECT bk_title as Book FROM dbo.books

ORDER BY bk_published_year, bk_price

The preceding query will produce a list of books in which the oldest-published editions will come 
fi rst, followed by the newer books. Within each year, the least expensive books will precede the 
more expensive ones. 

c02.indd 59c02.indd   59 3/15/2011 12:10:46 PM3/15/2011   12:10:46 PM



60 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

 ASC and DESC

By default, the order of the returned records is ascending (from A to Z), but modifi ers ASC and DESC 
may be used to defi ne the sorting explicitly. Let’s reverse the sorting order of the published year:

SELECT bk_title as Book FROM dbo.books

ORDER BY bk_published_year DESC, bk_price

This is identical to...

SELECT bk_title as Book FROM dbo.books

ORDER BY bk_published_year DESC, bk_price ASC

In both cases, the new editions will now precede the old, while the expensive books within each year 
will still appear after the cheaper ones.

TOP and LIMIT

Being able to extract a predefi ned number of records comes in handy. The TOP keyword is used 
to limit the number of rows in the data set that results from a query in Microsoft SQL Server and 
Microsoft Access. Suppose that we are interested only in some recent editions. We can design a 
query thus:

SELECT TOP 5 bk_title as Book FROM dbo.books

ORDER BY bk_published_year DESC;

This query will give us the fi rst 5 rows of the result. Keep in mind that behind the scenes the rows 
are fi rst selected and sorted in descending order, and only then will the fi rst fi ve be returned. 
Ordering the rows in ASC order will bring the fi rst fi ve rows from the top, after they have been 
sorted in ascending order.

This approach is frequently used to fi nd the row with the ultimate value of some sort (the latest date, 
the greatest price, the earliest year…). For example, to fi nd the most expensive book ever published 
by Wiley, we may query as follows:

SELECT TOP 1 bk_title as Book FROM dbo.books

WHERE bk_publisher=’Wiley’

ORDER BY bk_price DESC;

Unfortunately, the syntax across the RDBMSs varies signifi cantly. Every other RDBMS had its own 
ideas about how this functionality needed to be implemented before the SQL Standards committee 
chimed in on the issue in 2008. Here’s how the query would look in different RDBMSs:

 ‰ Oracle:

SELECT bk_title as Book FROM dbo.books 

WHERE ROWNUM <=5

ORDER BY bk_published_year DESC;

 ‰ DB2, PostgreSQL (with some additional keywords):

SELECT bk_title as Book FROM dbo.books 

ORDER BY bk_published_year DESC FETCH FIRST 5 ROWS ONLY;

 ‰ PostgreSQL, MySQL, HSQLDB:

SELECT bk_title as Book FROM dbo.books 

ORDER BY bk_published_year DESC LIMIT 5;

c02.indd 60c02.indd   60 3/15/2011 12:10:46 PM3/15/2011   12:10:46 PM



INSERT, UPDATE, and DELETE Revisited x 61

Used in conjunction with ORDER BY, these statements can return either 
top or bottom records. Other RDBMSs such as PostgreSQL and MySQL 
offer the ability to offset counts (for example, start with the tenth record 
from the top): 

SELECT bk_title as Book FROM dbo.books 

ORDER BY bk_published_year DESC OFFSET 10 FETCH 5 FIRST ROWS ONLY

Incidentally, this corresponds to SQL Standard, introduced in 2008.

INSERT, UPDATE, AND DELETE REVISITED

While the SELECT statement seems to draw all the attention of the end user, developers responsible 
for implementing business logic for the applications hold INSERT, UPDATE, and DELETE state-
ments in equal respect. After all, they are concerned with getting the data in, managing it there as 
long as needed, and retiring it when the need is gone. Proper use of the statements is the hallmarks 
of a well-behaved database.

INSERT 

We used INSERT in Chapter 1 and throughout Chapter 2, but as you have probably guessed, there 
is more to it.

The classic INSERT requires you to list all columns in the table and supply corresponding values for 
each column. For instance, the full insert into the BOOKS table might look like this:

INSERT INTO books

          (bk_id

           ,bk_title

           ,bk_ISBN

           ,bk_publisher

           ,bk_published_year

           ,bk_price

           ,bk_page_count

           ,bk_bought_on

           ,bk_hard_cover

           ,bk_cover_pic

           ,bk_notes)

     VALUES

           ( 1

           ,’SQL Bible’ 

           ,’978-0470229064’

           ,’Wiley’

           ,2008

           ,39.99

           ,888

           ,CAST(‘10-10-2009’ as smalldatetime)

           ,0

           ,NULL

           ,NULL)

c02.indd 61c02.indd   61 3/15/2011 12:10:47 PM3/15/2011   12:10:47 PM



62 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

This is fairly intuitive: a list of columns (in any order), and a matching list of values (in matching 
order), formatted for appropriate data types (string, numbers, dates), and off we go. The shortened 
version of the same statement would get rid of the columns list:

INSERT INTO books

     VALUES

           ( 1

           ,’SQL Bible’ 

           ,’978-0470229064’

           ,’Wiley’

           ,2008

           ,39.99

           ,888

           ,CAST(‘10-10-2009’ as smalldatetime)

           ,0

           ,NULL

           ,NULL)

While handy, this syntax imposes two major restrictions: You must list values for all columns in the 
table and you must supply them in the exact order in which they are listed in the table. Therefore, 
even though there is but a single column in the entire table that is a required value, you must supply 
all values for the statement to execute it successfully. When column names are listed, you can decide 
for yourself which fi elds you want to populate and which can be left to be fi lled with DEFAULT 
values specifi ed in the DDL defi nition of your table:

INSERT INTO books

          (bk_id

           ,bk_title

           ,bk_ISBN)

     VALUES

           ( 1

           ,’SQL Bible’ 

           ,’978-0470229064’);

DEFAULT values are constraints placed upon columns instructing RDBMSs 
to fi ll in a predefi ned value if none was supplied in the INSERT statement. The 
DEFAULT value might be a literal (hard-coded) value or be defi ned by a func-
tion, and is defi ned as part of CREATE TABLE statement or added with an 
ALTER TABLE statement. One of the examples of the DEFAULT value is auto-
increment, wherein the value inserted is generated as an increased sequence of 
numbers (more on auto-increment fi elds in Chapter 8).

You can decide whether reduced readability, reduced fl exibility, and imposed restrictions are worth 
saving keystrokes typing the full list of columns, but with few exceptions it is the best practice to 
state your intentions upfront. We recommend using verbose syntax to avoid potential troubles.

The INSERT statement has no use for the WHERE clause. The inserted row just gets appended to 
the last one in the table, which continues to grow with each insert; you have no control where the 

c02.indd 62c02.indd   62 3/15/2011 12:10:47 PM3/15/2011   12:10:47 PM



INSERT, UPDATE, and DELETE Revisited x 63

new record gets inserted. The workaround for the situation when you need to know the exact logical 
location in the sequence might be to update with a subsequent insert performed as single transaction 
(see Chapter 10 for more information).

SELECT INTO

The SELECT statement has a couple more tricks up its sleeve. For instance, it can be used to clone 
tables. The Microsoft SQL Server SELECT INTO statement allows you to create an exact replica of 
an existing table, complete with data:

SELECT * INTO old_books FROM books;

The preceding syntax is also supported by PostgreSQL, while Oracle and MySQL offer similar 
functionality with somewhat different syntax:

INSERT INTO old_books SELECT * FROM BOOKS;

If the OLD_BOOKS table does not exist, it will be created (and you’ll need suffi cient privileges to do 
so; see Chapter 10 for more on privileges). If it does exist, an error will be generated. 

These statements, whatever the syntax, can be used with all clauses afforded by SQL. You can limit 
them both vertically and horizontally by deploying the arsenal of SQL tools described in this chap-
ter and throughout the book (WHERE clause, LIMIT, operators, and so on), or you can specify an 
impossible condition in the WHERE clause, in which case only the table structure will be copied 
and no data transferred.

An important distinction between the original and the cloned table is that none 
of the constraints (with a few exceptions, such as IDENTITY and NOT NULL) 
will be transferred to the new table. This behavior is RDBMS-dependent and 
will differ widely among the respective RDBMSs.

There are a few scenarios in which using INSERT is impossible because of constraints placed upon 
the table. The primary example is tables with referential integrity constraints. A record in the child 
table can’t be inserted unless there is a corresponding record in the parent table already (see Chapter 
3 for an explanation of terms and underlying concepts). Another example is an IDENTITY column 
(a concept in which the RDBMS is instructed to insert sequentially increasing numbers automati-
cally) and the variants of similar constructs across other database systems.

UPDATE

Once the record is in the tables, it can be modifi ed — within reason. The UPDATE statement can change 
values in the record’s columns, but it can’t do anything else. The updated values have to be replaced with 
the same (or compatible) data type; refer to the section on implicit conversion earlier in this chapter.

The basic syntax is identical across the RDBMSs:

UPDATE books SET bk_publisher = ‘Wiley’;

c02.indd 63c02.indd   63 3/15/2011 12:10:47 PM3/15/2011   12:10:47 PM



64 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Here we are updating the BOOKS table, and setting the value of the BK_PUBLISHER column, 
whatever it might be, to a literal value. There is only one problem with the statement: All records 
will be set to “Wiley,” even those published by other guys. Not quite what we wanted, right? 

To add more selectivity to the query, you need to use the WHERE clause:

UPDATE books SET bk_publisher = ‘Wiley’

WHERE bk_id = 1

Of course, you need to know which BOOK_ID to update. Alternatively, you can use comparison 
operators (covered later in this chapter) to pinpoint the record. Because we know that SQL Bible
was published by Wiley, the following statement will hit the target:

UPDATE books SET bk_publisher = ‘Wiley’

WHERE bk_title= ‘SQL Bible’;

The UPDATE statement enables modifying more than one column at a time; the changes are made 
to the same record (or respective records). Use the previous query as an example with Microsoft 
SQL Server syntax and the SQL GetDate()function to update the fi eld with the current date (for 
more information on SQL functions and their uses, see Chapter 4):

UPDATE books 

 SET bk_publisher = ‘Wiley’, bk_bought_on = GetDate()

WHERE bk_title = ‘SQL Bible’;

To modify the preceding query for the RDBMS of your choice, just replace the 
GetDate() function with the function valid for your particular database: Now() 
for PostgreSQL, MySQL, HSQLDB, and MS Access; SYSDATE for Oracle; and 
the CURRENT DATE special register for IBM DB2.

The values in the table can be updated based upon values from some other table (which would 
require a subquery in the WHERE clause) or it can be calculated on the fl y based upon values from 
the very same one. For instance, if you move from the United States to Canada and want to see the 
prices of the books you’ve collected in Canadian dollars instead of American, you can use 
the SELECT statement to convert them. Multiply each value by the exchange rate (this is the recom-
mended approach because exchange rates fl uctuate over time) as follows (note that this assumes that 
prices are in U.S. dollars to begin with and affects all books in the table):

SELECT bk_title AS Title

    , bk_price * 1.01827 AS CanadianDollarsPrice 

FROM books

If you decide to persist this data into the database, you can issue an UPDATE statement:

UPDATE books SET bk_price = bk_price * 1.01827;

c02.indd 64c02.indd   64 3/15/2011 12:10:48 PM3/15/2011   12:10:48 PM



INSERT, UPDATE, and DELETE Revisited x 65

Now all your books are priced in Canadian dollars (with the exchange rate valid on October 10, 
2010). Note that we are using the very existing value from the fi eld to calculate the new one — no 
need to supply the literal value.

Just as some columns can’t be INSERTed into, some can’t be UPDATEd. These are the usual 
suspects: constrained columns (identity, primary key, and so on); updating these columns would 
generate an error.

DELETE

Getting rid of data is easy, just DELETE it. The only question is what to delete. The following state-
ment wipes out the entire table:

DELETE FROM <table name>;

If you are in a hurry, FROM can also be omitted in some RDBMSs:

DELETE <table name>;

It looks scary, but keep in mind that DELETE is a DML statement and it can’t destroy an object. 
This is what DROP, a DML counterpart, does best. Not every RDBMS supports this shortcut, so 
you’ll be well advised to use a more readable DELETE FROM syntax.

Deleting the records does not have to be an all-or-nothing process. The approach can be more 
nuanced when a WHERE clause is deployed, but you need to know what criteria to specify. To 
delete a specifi c record, you need to know what identifi es it as unique in the entire table (such as 
PRIMARY KEY; see the next chapter for the defi nitions). The following statement inserts and 
deletes a dummy record with ID 1000 and leaves the rest of the values to their defaults:

INSERT INTO books (bk_id) VALUES (1000)

DELETE FROM books WHERE  bk_id = 1000;

But trying to remove a record that has references in other tables (for example, BK_I = 1) results in an 
error. Here is an example of how it might look in Microsoft SQL Server 2008:

DELETE FROM books WHERE  bk_id = 1;

Msg 547, Level 16, State 0, Line 1

The DELETE statement conflicted with the REFERENCE constraint “FK_bk_au_books”. 

The conflict occurred in database “library”, table “dbo.books_authors”

, column ‘bk_id’.

The statement has been terminated.

Had the table been self contained, this statement would have removed the record from the table, 
but in the relational world, it’s a rare table that is an island. Referential constraints make it neces-
sary either to drop the constraint before the deletion or start from “child-most” tables (BOOKS_
AUTHORS, SEARCH_BOOKS, and LOCATION), removing the records referring to the BK_ID 
1 in the BOOKS table. This behavior is consistent throughout every RDBMS that supports refer-
ential integrity constraints (see the next chapter), including all relational databases discussed in 
this book. 

c02.indd 65c02.indd   65 3/15/2011 12:10:48 PM3/15/2011   12:10:48 PM



66 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

Tracking down all references can be a lengthy and tedious procedure, requiring 
an intimate knowledge of the data model. To help with the job, some RDBMSs 
began to offer the ON DELETE CASCADE option as part of their DDL 
defi nitions for the FOREIGN KEY constraints (there is also a corresponding 
ON UPDATE CASCADE option). This functionality is RDBMS-dependent, 
and using it has lots of conditions attached to it. Please check the vendor’s 
documentation.

When pinpointing a single record, you specify a range and you need to use operators (discussed 
later in this chapter). For instance, to remove all records in which the bought-on date is earlier than 
October 29, 2000, you might use the following statement, which also converts a literal string into a 
DATETIME type of Microsoft SQL Server:

DELETE FROM books 

WHERE  bk_bought_on < CAST(‘October 29, 2000’ AS DATETIME);

All operators are fair game and can be used in any combinations; they will be applied according to 
the rules of precedence (see later in this chapter for more details).

DELETE can be used on only a single table at a time; you cannot delete from two or more tables 
in one statement. However, if you ever need to do so, you can use batch grouping to group the 
statements into a transaction to be executed as a single unit (please see Chapter 10 for more 
information).

A record in one table can be deleted based upon a value from another table 
or tables. This requires a subquery to be used in the WHERE clause of the 
DELETE command (discussed in Chapter 6).

TRUNCATE That Table!

Deleting all data from a table is easy and the TRUNCATE statement makes it even easier! The 
difference is subtle but crucial. The DELETE statement is monitored (logged) by the RDBMS, 
and, with a bit of effort, is reversible; the TRUNCATE statement is swift and merciless: The data 
are blown out without chance of redemption (unless you wrapped the statement in a transaction; 
see Chapter 10 for more details). Unlike the DELETE statement, if a table has triggers defi ned 
for it — special programming modules triggered by events in the table (see Chapter 4 for more 
details) — they will not be activated.

The basic syntax valid across all RDBMSs in this book is simple. Here’s how you truncate a table in 
one fell swoop:

TRUNCATE TABLE <table name>;

Depending on a particular RDBMS implementation, it can have many optional RDBMS-specifi c 
qualifi ers that you might have to take into consideration. 

c02.indd 66c02.indd   66 3/15/2011 12:10:48 PM3/15/2011   12:10:48 PM



SQL Operators: Agents of Change x 67

Neither OpenOffi ce BASE’s HSQLDB nor Microsoft Access supports the 
TRUNCATE statement. The trick of using their respective embedded programming 
languages can accomplish a similar functionality, however.

The statement comes with some strings attached, and the options and restrictions vary across 
RDBMS implementations. First, TRUNCATE is a solitary affair. Only a single table can be trun-
cated at a time. Because of its totality, you can’t use the WHERE clause; it won’t do you any good 
when all rows are removed. Furthermore, a table that has FOREIGN KEY constraints (see the next 
chapter) can’t be truncated in Microsoft SQL Server or Oracle; you have to drop the constraint fi rst. 
The same action is perfectly valid in PostgreSQL, however, when you add the CASCADE clause to 
the statement.

SQL OPERATORS: AGENTS OF CHANGE

Operators are fulfi lling an important go-between function, connecting data, comparing data, and 
changing behavior of SQL statements. Operators in SQL are defi ned as symbols and keywords that 
are used to specify an action to be performed on one or more expressions called operands (the parts 
on which the operator operates).

All operators can be split into two broad categories:

 ‰ Unary operators — Applied to only one operand at a time; a typical format is 
<operator><operand>.

 ‰ Binary operators — Applied to two operands at a time; they usually appear in the format 
<operand><operator><operand>.

Arithmetic and String Concatenation Operators

Arithmetic operators, as the name implies, are used for arithmetic computations. The use of the 
arithmetic operators is very intuitive (elementary school stuff), and they can be used in virtually 
every clause of the SQL statement. Table 2-10 provides a selected list of arithmetic operators.

TABLE 2-10: Selected Arithmetic Operators

OPERATOR DESCRIPTION 

+ Addition: Adds two numbers or (in the case of Microsoft SQL Server) concatenates 

strings. With this exception, the usage is identical across all three databases. Valid for 

all RDBMSs.

- Subtraction: Subtracts one numeric value from another. The usage is identical across all 

RDBMSs. It is also used as a sign identity or unary negation operator.

continues

c02.indd 67c02.indd   67 3/15/2011 12:10:49 PM3/15/2011   12:10:49 PM



68 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

OPERATOR DESCRIPTION 

* Multiplication: Multiplies one number by another. The usage is identical across all 

RDBMSs.

/ Division: Divides one number by another. The usage is identical across all RDBMSs.

The string concatenation operator is a binary operator that glues two character strings together (as 
we’ve already seen with NULL examples in the preceding section) and is similar to the addition 
operator that adds two numbers. String concatenation operators are listed in Table 2-11.

TABLE 2-11: String Concatenation Operators

OPERATOR DESCRIPTION 

|| Concatenation operator: Concatenates character strings; valid for Oracle, DB2, 

PostgreSQL, and HSQLDB (OpenOffi  ce BASE).

+ String concatenation operator in Microsoft SQL Server.

CONCAT String concatenation operator (DB2 only): Used as an SQL function in other 

RDBMSs such as MySQL.

While doing arithmetic in SQL is relatively easy, you must pay attention to the data type used in the 
operations; for numeric values, that would mean the precision and scale of the result; for datetime, 
the range of the resulting values; and so on.

Some databases (such as Oracle) will perform implicit conversion (whenever possible) if data types 
are not compatible with the operator (for example, a string value used with the addition operator); 
the others will require explicit conversion into a compatible data type to perform an operation.

Comparison Operators

Comparison operators are used to compare two or more values. They are usually found in the 
WHERE clause of a SELECT statement, although they can be used in any valid SQL expression.

The usage is identical across all three databases except for the nonstandard operators !< and !>.They 
are recognized by DB2 9.7 and Microsoft SQL Server 2008, but are excluded from every other 
RDBMS. The nonstandard not equal to operator, !=, can be used in all three dialects; another not
equal to operator, ^=, is recognized only by Oracle and DB2. 

Table 2-12 lists the comparison operators.

TABLE 2-12: Comparison Operators

OPERATOR DESCRIPTION

= Equals: implemented across all RDBMSs

> Greater than: implemented across all RDBMSs

TABLE 2-10 (continued)

c02.indd 68c02.indd   68 3/15/2011 12:10:49 PM3/15/2011   12:10:49 PM



SQL Operators: Agents of Change x 69

OPERATOR DESCRIPTION

< Less than: implemented across all RDBMSs

>= Greater than or equal to: implemented across all 

RDBMSs

<= Less than or equal to: implemented across all 

RDBMSs

<> Not equal to: implemented across all RDBMSs

!= Not equal to: implemented across all RDBMSs

^= Not equal to: Oracle and DB2 only

!< Not less than: DB2 9.7 and Microsoft SQL Server 

only

!> Not greater than: DB2 9.7 and Microsoft SQL 

Server only

Logical Operators

These operators are used to evaluate some set of conditions, and the returned result is always a value 
of TRUE, FALSE, or “unknown.” Table 2-13 presents full list of SQL logical operators.

Oracle lists logical operators as SQL conditions. It was referred in 
previous versions as comparison operators or logical operators. DB2 uses 
the term predicates instead of operators, and so on. Pick your fl avor.

TABLE 2-13: SQL Logical Operators

OPERATOR ACTION

ALL Evaluates to TRUE if all of a set of comparisons are TRUE.

AND Evaluates to TRUE if both Boolean expressions are TRUE.

Some RDBMSs use && instead of the keyword.

ANY Evaluates to TRUE if any one of a set of comparisons is TRUE.

BETWEEN Evaluates to TRUE if the operand is within a range.

EXISTS Evaluates to TRUE if a subquery contains any rows.

IN Evaluates to TRUE if the operand is equal to one of a list of expressions.

LIKE Evaluates to TRUE if the operand matches a pattern.

continues

c02.indd 69c02.indd   69 3/15/2011 12:10:49 PM3/15/2011   12:10:49 PM



70 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

OPERATOR ACTION

NOT Reverses the value of any other Boolean operator.

OR Evaluates to TRUE if either Boolean expression is TRUE.

SOME Evaluates to TRUE if some of a set of comparisons are TRUE; is not supported by 

HSQLDB (OpenOffi  ce BASE).

ALL

ALL compares a scalar value with a single-column set of values. It is used in conjunction with com-
parison operators and is sometimes classifi ed as a comparison operator. It returns TRUE when a speci-
fi ed condition is TRUE for all pairs; otherwise, it returns FALSE. An example of its usage is given in 
Chapter 6.

ANY | SOME

The ANY | SOME operator compares a scalar value with a single-column set of values. The keywords 
ANY and SOME are completely interchangeable. The operator returns TRUE if a specifi ed condition is 
valid for any pair; otherwise, it returns FALSE. An example of its usage is given in Chapter 6, dealing 
with subqueries.

In Microsoft SQL Server and DB2, operators ANY | SOME can be used with a 
subquery only. Oracle allows them to be used with a list of scalar values. Other 
RDBMSs do not recognize the SOME keyword.

BETWEEN <expression> AND <expression>

The BETWEEN operator allows for “approximate” matching of the selection criteria. It returns TRUE if the 
expression evaluates to be greater or equal to the value of the start expression, and is less than or equal to 
the value of the end expression. Used with negation operator NOT, the expression evaluates to TRUE only 
when its value is less than that of the start expression or greater than the value of the end expression.

The AND keyword used in conjunction with the BETWEEN operator is not the same 
as the AND operator explained later in this chapter.

The following query retrieves data about books, specifi cally book price and book title, from the 
BOOKS table, where the book price is in the range between $35 and $65:

SELECT bk_id,

       bk_title AS Title, 

TABLE 2-13 (continued)

c02.indd 70c02.indd   70 3/15/2011 12:10:49 PM3/15/2011   12:10:49 PM



SQL Operators: Agents of Change x 71

       bk_price AS Price 

FROM   books 

WHERE  bk_price BETWEEN 35 AND 65 

bk_id Title                                               Price

----- --------------------------------------------------- -------------

1     SQL Bible                                           39.99

2     Wiley Pathways: Introduction to Database Management 55.26

10    Jonathan Livingston Seagull                         38.88

Note that the border values are included into the fi nal result set. This operator works identically 
across all RDBMSs and can be used with a number of different data types: dates, numbers, and 
strings. 

Although the rules for evaluating strings are the same, the produced results might not be as straight-
forward as those with the numbers because of alphabetical order of evaluation. 

Another way to accomplish this task is to extract and compare appropriate substrings from the 
product description fi eld using a string function, as explained in Chapter 4.

IN

This operator matches any given value to that on the list, either represented by literals, or returned 
in a subquery. The following query illustrates the usage of the IN operator:

SELECT bk_id,

       bk_title AS Title, 

       bk_price AS Price 

FROM   books 

WHERE  bk_price IN (26.39, 39.99, 50, 40)

bk_id     Title                     Price          

--------- ------------------------  ----- 

      6 SQL Bible                   39.99

      9 SQL Functions               26.39

Because we do not have products priced exactly at $40 or $50, only two matching records were 
returned. 

The values on the IN list can be generated dynamically from a subquery (see Chapter 6 for more 
information).

The data type of the expression evaluated against the list must correspond 
to the data type of the list values. Some RDBMSs would implicitly convert 
between compatible data types. For example, Microsoft SQL Server 2008 and 
Oracle 11g both accept a list similar to 10,15,’18.24’, 16.03, mixing num-
bers with strings; whereas DB2 generates an error SQL0415N, SQLSTATE 42825.
Check your RDBMS on how it handles this situation.

c02.indd 71c02.indd   71 3/15/2011 12:10:50 PM3/15/2011   12:10:50 PM



72 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

The operator IN behavior can be emulated (to a certain extent) by using the OR operator. The 
following query makes the result set identical to that returned by the query using a list of literals:

SELECT bk_id,

       bk_title AS Title, 

       bk_price AS Price 

FROM   books 

WHERE  bk_price = 39.99 OR bk_price = 26.39;

bk_id     Title                     Price          

--------- ------------------------  ----- 

      6 SQL Bible                   39.99

      9 SQL Functions               26.39

Using the NOT operator in conjunction with IN returns all records that are not within the specifi ed 
list of values, either predefi ned or generated from a subquery.

EXISTS

The EXISTS operator checks for the existence of any rows with matched values in the subquery. The 
subquery can query the same table, different table(s), or a combination of both (see Chapter 6). 
The operator acts identically in all three RDBMS implementations.

The EXISTS usage resembles that of the IN operator (normally used with a correlated query; see 
Chapter 6 for details). 

The EXISTS operator will evaluate to TRUE with any non-empty list of values. 
For example, the following query returns all records from the table PRODUCT
because the subquery always evaluates to TRUE.

Using the operator NOT in conjunction with EXISTS brings in records corresponding to the empty 
result set of the subquery.

LIKE

The LIKE operator belongs to the “fuzzy logic” domain. It is used any time criteria in the WHERE
clause of the SELECT query are only partially known. It utilizes a variety of wildcard characters to 
specify the missing parts of the value (see Table 2.14). The pattern must follow the LIKE keyword.

TABLE 2-14: Wildcard Characters Used with the LIKE Operator

CHARACTER DESCRIPTION IMPLEMENTATION

% Matches any string of zero or more characters All RDBMSs 

_ (underscore) Matches any single character within a string All RDBMSs 

c02.indd 72c02.indd   72 3/15/2011 12:10:50 PM3/15/2011   12:10:50 PM



SQL Operators: Agents of Change x 73

CHARACTER DESCRIPTION IMPLEMENTATION

[ ] Matches any single character within the specifi ed 

range or set of characters

Microsoft SQL only

[ ^ ] Matches any single character not within specifi ed 

range or set of characters

Microsoft SQL only

The following query requests information from the BOOKS table of the LIBRARY database, in which 
the book title (fi eld BK_TITLE) starts with SQL:

SELECT bk_id,

       bk_title 

FROM   books

WHERE  bk_title LIKE ‘SQL%’

cust_id_n   cust_name_s                                        

--------- -------------------------------- 

       1  SQL Bible

       4  SQL Functions

Note that blank spaces are considered to be characters for the purpose of the search. 

If, for example, we need to refi ne a search to fi nd a book whose title starts with SQL and has a 
second part sounding like LE (“Puzzle”? “Bible”?), the following query would help:

SELECT bk_id,

       bk_title 

FROM   books

WHERE  bk_title LIKE ‘SQL% _ibl%’

bk_id       bk_title                                        

---------   ------------------------------ 

        1   SQL Bible

In plain English, this query translates as “All records from the BOOKS table where fi eld BK_TITLE
contains the following sequence of characters: The value starts with SQL, followed by an unspecifi ed 
number of characters and then a blank space. The second part of the value starts with some letter 
or number followed by the combination IBL; the rest of the characters are unspecifi ed.”

In Microsoft SQL Server (and Sybase), you also can use a matching pattern that 
specifi es a range of characters. Additionally, some RDBMSs have implemented 
regular expressions for pattern matching, either through custom built-in routines 
or by allowing creating custom functions with external programming languages 
such as C# or Java.

The ESCAPE clause in conjunction with the LIKE operator allows wildcard characters to be included 
in the search string. It allows you to specify an escape character to be used to identify special 
characters within the search string that should be treated as “regular.” Virtually any character 
can be designated as an escape character in a query, although caution must be exercised to not use 

c02.indd 73c02.indd   73 3/15/2011 12:10:50 PM3/15/2011   12:10:50 PM



74 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

characters that might be encountered in the values themselves (for example, the use of the percent
or L as an escape character produces erroneous results). The clause is supported by all three major 
databases and is part of SQL Standard.

The following example uses an underscore sign (_) as one of the search characters; it queries the 
INFORMATION_SCHEMA view (see Chapter 10 for more details) in Microsoft SQL Server 2008:

USE master

SELECT table_name, 

       table_type 

FROM   INFORMATION_SCHEMA.TABLES

WHERE  table_name LIKE ‘SPT%/_F%’ ESCAPE ‘/’

table_name       table_type

---------------  ---------- 

spt_fallback_db  BASE TABLE

spt_fallback_dev BASE TABLE

spt_fallback_usg BASE TABLE

The query requests records from the view where the table name starts with SPT, is followed by an 
unspecifi ed number of characters, has an underscore _ as part of its name, is followed by F, and ends 
with an unspecifi ed number of characters. Because the underscore character has a special meaning 
as a wildcard character, it has to be preceded by the escape character /. As you can see, the set of 
SP_FALLBACK tables uniquely fi ts these requirements.

With a bit of practice, you can construct quite sophisticated pattern-matching queries. Here is an 
example: the query that specifi es exactly two characters preceding 8 in the fi rst part of the name, 
followed by an unspecifi ed number of characters preceding 064 in the second part:

SELECT  bk_id

       ,bk_title

 ,bk_ISBN 

FROM   books

WHERE  bk_ISBN LIKE  ‘__8%064%’

Note that the percent symbol (%) stands for any character, and that includes blank spaces that 
might trail the string; including it in your pattern search might help to avoid some surprises.

AND

AND combines two Boolean expressions and returns TRUE when both expressions are true. The 
following query returns records for the books with price over 20 and which titles start with S:

SELECT bk_id,

       bk_title AS Title, 

       bk_price AS Price 

FROM   books 

WHERE bk_price > 20 AND bk_title LIKE ‘S%’

c02.indd 74c02.indd   74 3/15/2011 12:10:51 PM3/15/2011   12:10:51 PM



SQL Operators: Agents of Change x 75

Only records that answer both criteria are selected, and this explains why no records were found: 
The book has one and only one price, either/or logic. This query will search for the books priced at 
$29.99 and have the word Functions anywhere in the title:

SELECT bk_id,

       bk_title AS Title, 

       bk_price AS Price 

FROM   books 

WHERE  bk_price = 26.39 AND bk_title LIKE  ‘%Functions%’

When more than one logical operator is used in a statement, AND operators are evaluated fi rst. The 
order of evaluation can be changed through the use of parentheses, grouping some expressions together.

NOT

This operator negates a Boolean input. It can be used to reverse output of any other logical operator 
discussed so far in this chapter. The following is a simple example using the IN operator:

SELECT bk_id,

       bk_title AS Title, 

       bk_price AS Price 

FROM   books 

WHERE  bk_price NOT IN (49.99, 26.39, 50, 40)

The query returned information for the books whose price does not match any on the supplied list: 
When the IN operator returns TRUE (a match is found), it becomes FALSE and gets excluded while 
FALSE (records that do not match) is reversed to TRUE, and subsequently gets included into the fi nal 
result set.

OR

The OR operator combines two conditions according to the rules of Boolean logic. 

Even a cursory discussion of the Boolean logic and its applications is outside 
the range of this book, but you can fi nd more at www.wrox.com, in Wiley’s SQL 
Bible, or at www.agilitator.com.

When more than one logical operator is used in a statement, OR operators are evaluated after AND
operators. However, you can change the order of evaluation by using parentheses (an example of the 
usage of the OR operator is given earlier in this chapter in a paragraph discussing the IN operator). 
The following query fi nds records corresponding to either criterion specifi ed in the WHERE clause:

SELECT bk_id,

       bk_title AS Title, 

       bk_price AS Price 

FROM   books 

c02.indd 75c02.indd   75 3/15/2011 12:10:51 PM3/15/2011   12:10:51 PM



76 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

WHERE  bk_price = 39.99 OR bk_price = 26.39;

bk_id     Title                     Price          

--------- ------------------------  ----- 

      6 SQL Bible                   49.99

      9 SQL Functions               26.39

Assignment Operator

The assignment operator is one of the most intuitive to use. It assigns a value to a variable. The only 
confusion in using this operator might stem from its overloading. All RDBMSs overload this opera-
tor with an additional function: comparison. This is in contrast to some programming languages, 
such as Java or C# which use single equals for assignment and double for comparison.

The equals operator (=) is used as an assignment in the following SQL query that updates the price 
(BK_PRICE) column in the table:

UPDATE books

SET    bk_price = 18.88 

WHERE bk_id = 1;

Note that the same operator wearing a different hat (something called overloading in programmer 
parlance) is used for comparing values (in the WHERE clause) and for assignment (the SET statement).

In some SQL procedural languages, there are distinctions between assign-
ment and comparison operators. Oracle PL/SQL uses := for assignment 
and = for comparison. Microsoft SQL Server’s Transact-SQL uses only one 
operator for these purposes, =, as does DB2 SQL PL. See Chapter 4 for more 
information on procedural extensions. 

Bitwise Operators

Bitwise operators perform bit operations on integer data types. To understand the results of the 
bitwise operations, you must understand the basics of Boolean algebra, and this is outside the scope 
of this book.

Only Microsoft SQL Server provides bitwise operators. The DB2 dialect of 
SQL does not have bit operation support built into the language, and Oracle 
11g has a BITAND function that works identically to SQL Server’s bitwise AND.

Bitwise operations are not typical for a high-level, set-based language such as SQL, and one might 
be hard-pressed to come up with a usage example. One use is as a complex bit mask made for color; 
after all, RDBMSs now support more than just text and numeric data. Another use of the XOR 
(exclusive OR) operator is to encrypt data based on some numeric key.

c02.indd 76c02.indd   76 3/15/2011 12:10:51 PM3/15/2011   12:10:51 PM



SQL Operators: Agents of Change x 77

Operator Precedence

Precedence refers to the order in which operators from the same expression are being evaluated. 
When several operators are used together, the operators with higher precedence are evaluated before 
those with the lower precedence. 

In general, the operators’ precedence follow the same rules as in high school math, which might be 
somewhat counterintuitive, and it can further be changed with addition of parentheses.

The order of precedence is indicated in Table 2-15.

TABLE 2-15: Operators Precedence

OPERATOR PRECEDENCE

Unary operators, bitwise NOT (Microsoft SQL 

Server only) 

1

Multiplication and division 2

Addition, subtraction, and concatenation 3

Logical comparison operators 4

Logical NOT 5

Logical AND 6

Everything else: OR, LIKE, IN, BETWEEN 7

The evaluation precedence can dramatically affect results of the query. One of the ways to remember 
the order of operation is this mnemonic: Please Excuse My Dear Aunt Sally (PEMDAS) — parentheses, 
exponents, multiplication, division, addition, and subtraction.

TRY IT OUT Demonstrating Order of Precedence

This simple exercise illustrates the importance of operators’ precedence order. Let’s do some math in SQL:

1. Open your SQL client and establish connection to your RDBMS.

2. Enter the statement (add “FROM dual;” if you use Oracle, or “FROM sysibm.sysdummy1” if you 
use DB2 9.7, at the end of the SELECT statement):

SELECT 10*9-8+7-6/3 AS result

result

-----------

87

3. Try changing the order by introducing brackets:

SELECT 10*(9-8)+(7-6)/3 AS result

result

-----------

10 [Looks like it would be 10 + 1/3? (though could be rounded by the RDBMS).]

c02.indd 77c02.indd   77 3/15/2011 12:10:51 PM3/15/2011   12:10:51 PM



78 x CHAPTER 2  BREAKING AND ENTERING: STRUCTURED INFORMATION

How It Works
The order of operations will affect the results of the query because operators are applied in order of 
precedence. Parentheses break the predefi ned order and introduce one of their own — expressions in 
parentheses are evaluated before anything else. 

If you compare this with results obtained by running the previous expression through the “standard” 
calculator just by typing in the numbers and operators as they come, the expression 10*9-8+7-6/3 
would evaluate to 27.66. The Microsoft Calc utility supplied with every version of Windows demon-
strates this behavior. In Scientifi c mode, it applies the order of operations rules, but in Standard mode it 
won’t (the modes are toggled through the View menu of the program).

SUMMARY

To construct a relational database, a data modeling process is deployed. It goes through several 
elaboration phases wherein a conceptual idea is transformed into logical and then physical 
representations of the data.

The data in the relational database are constrained by data types; each column in the table being 
one and only one data type. This helps to maintain data integrity by disallowing incompatible data 
types from entering into the database. RDBMSs perform both implicit and explicit data type con-
version when one data type is transformed into another. It is best practice to use explicit data type 
conversion. A special case of data type is NULL, which signifi es absence of data and requires special 
handling.

The database structure is defi ned by a subset of the SQL called the Data Defi nition Language 
(DDL), while data operations are the domain of the Data Manipulation Language (DML). There are 
restrictions on the use of each, specifi c to particular RDBMS implementations. The DDL statements 
CREATE, ALTER, and DROP can be used to create, alter, or destroy database objects.

The DML includes INSERT, UPDATE, and DELETE statements; while Data Query Language 
(DQL) includes a single member: SELECT. All these statements can be used with SQL operators, 
and they employ additional clauses/keywords to limit affected records horizontally, and apply verti-
cal limits through specifying columns.

Although not emphasized in SQL, operators serve their important roles by enabling you to manipu-
late output and to specify selection criteria and search conditions. Operators are generally uniform 
across all database vendors, although there are some exceptions. The precedence of operators is an 
established order in which RDBMSs evaluate expressions that contain more than one operator; it is 
very important to take into consideration the precedence order. Using parentheses, you can specify 
custom precedence in an expression (as opposed to the default precedence order).

c02.indd 78c02.indd   78 3/15/2011 12:10:52 PM3/15/2011   12:10:52 PM



3
A Thing You Can Relate 
To — Designing a Relational 
Database

You may have heard the term “database model,” but you most defi nitely have used one. 
How so? Because one of the database models is a fl at fi le familiar to anyone who ever used 
computer.

Flat fi les per se cannot be rightfully called databases as they do not have the properties associ-
ated with databases, as we’ve discussed in Chapter 1, but they are the foundation upon which 
a relational database management system (RDBMS) is built. They are used to persist the infor-
mation — both data and metadata — comprising the physical layer; defi ne conventions and 
structure, add an application that manages these fi les; and you would end up with a skeleton 
of a database. If one is to translate a LIBRARY relational data model into a fl at fi le one, the 
tables could become fi les — books.txt and authors.txt, for example. 

These fi les would contain a number of records, and an application would read the fi le sequen-
tially, sifting through records until it found one that matched the search criteria (for a book, 
for example) and then use information to read through the other fi le to fi nd the author’s 
information. 

Here’s an idea: Why not combine these two fi les into a single fi le, call it library.txt, and search 
only one fi le instead of two? We are back to a bucket of data: one table, one column, one row; 
dumping everything together would make it harder to read and match the information. The 
worst thing of all is that every application that will use this database would have to have an 
intimate knowledge of the fi le structure, and would have to implement logic that allows fi nd-
ing and combining the records into a meaningful result set. This logic would have to be 
rewritten every time you change the fi le structure. Ouch! No wonder fl at fi le databases never 
made it to the enterprise sunlight.

The evolution of the fl at fi les model was the hierarchical model. The fl at fi les were organized 
into a hierarchy, and each fi le in the system became a branch of a specifi c type — a node, in 

c03.indd 79c03.indd   79 3/16/2011 6:26:33 PM3/16/2011   6:26:33 PM



80 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

techspeak — of the hierarchy; the records in these fi les contained a pointer to related records in 
another fi le (node), which in turn had a pointer to another record/fi le, and so on. This model intro-
duced the notion of a one-to-many relationship, in which a parent record (higher in the hierarchy) 
could have none, one, or many child records, but the “child” had one, and only one, “parent.” This 
was a breakthrough concept. Hierarchical databases, and closely related, next-generation 
network databases, made it to the operating rooms of big business corporations and — believe it or 
not — some might be still in use.

Both hierarchical and network models offered performance and relative usability in handling data. 
Now an application that made use of the data did not have to know beforehand all the branches/
nodes/entities/fi les that made up the database; every record either had a pointer to another record, or 
not. One could traverse the entire hierarchy just by knowing how to read these fi les and discovering 
relationships on-the-fl y. Unlike hierarchical databases, the networking database required the rela-
tionship to be named, thus allowing a node to participate in multiple relationships. This provided 
a much greater degree of fl exibility, albeit at the expense of the complexity of choosing your path 
through the database now that there were multiple ones from which to select. Yet it suffered from 
the same problem: a predefi ned number of relationships.

The database technologies really shot up with the advent of the next step in the evolution: the 
relational model. It started with the realization of the simple truth that because no one can predict 
how the data is going to be used in the future, there is no point to try. Let users decide how to 
navigate the model and combine data into sets; the relational model was born.

As you’ll see in Chapter 12, the relational model was not the last word.

The relational model was a new idea because previous models processed records sequentially, one at 
a time. In 1970, Dr. E. F. Codd, an IBM researcher, combined all the ingredients: parent/child 
relationship, multitude of navigational paths, and set theory in his seminal paper titled “A 
Relational Model of Data for Large Shared Data Banks.”

ENTITIES AND ATTRIBUTES REVISITED

The concepts of entities and attributes were briefl y touched earlier in Chapter 2, and the preceding 
paragraph highlighted complexities facing implementations based on relation models.

On the most basic practical level, you could consider entities to be tables and attributes to be columns 
in these tables. One of the fi rst steps taken when creating a data model is analyzing a particular busi-
ness environment in need of a database. In our case, we are building a library to keep track of all 
the books you have, or may have in the future. Therefore, the fi rst entity you’d think of would be 
BOOK. What are the attributes of a book? A title, an author, a publisher, a price tag, to name but a 
few; all these could become columns in your BOOKS table. As you will see later in this chapter, taken 
through a more rigorous normalization process, some of these attributes might become entities of 
their own, and some would disappear all together. There are but two keys to the proper design of a 
relational database: primary and foreign.

c03.indd 80c03.indd   80 3/16/2011 6:26:39 PM3/16/2011   6:26:39 PM



Entities and Attributes Revisited x 81

Keys to the Kingdom: Primary and Foreign

A primary key is a unique identifi er for a row of data in a table. In its most basic form, a primary 
key would be a column in the table, though it could be a unique combination of the columns. The 
concept of a key in the relational database is simple yet powerful: It enforces integrity (see later in 
this chapter), and helps defi ne relationships between the entities in your data model.

A uniquely identifying row in a table is more than a whim, it is absolutely essential for performance 
of the SQL query against this table, and constitutes the fi rst line of defense in a data quality battle. In 
databases of yore, based on hierarchical and network models, the order in which a table was populated 
was of importance — records were added in specifi c sequence, and when this sequence had to be broken 
due to an error or a changing business rule, the whole table had to be reorganized. The relational model 
abolished the requirements, but the need remained; it was addressed with the primary key.

It is considered to be a best practice always to have primary key in a table.

There are several rules that make a column (an attribute, a fi eld) a primary key.

 ‰ A primary key cannot be empty; more specifi cally, it cannot contain a NULL value (explained in 
the previous chapter).

 ‰ A primary key must be unique within the entire table.

 ‰ A new primary key is created when a new row of data is inserted.

 ‰ Once created, a primary key should not be changed.

From these rules, a set of best practices for selecting primary keys for your tables could be created. 

First, make your primary key meaningless. It might be tempting to use some unique identifi er such 
as phone number, e-mail address, or Social Security number (SSN) as a primary key; after all, they 
are guaranteed to be unique and could save some database space! Don’t. Data that has meaning 
could change. A new e-mail address or phone number could be associated with a record representing 
a person; this would violate primary key rules and create a number of problems that would perco-
late through your database. In the database world, such artifi cial keys are known as surrogate keys 
(as opposed to natural primary keys).

Second, make your primary keys compact and (preferably) numeric. Computers are designed 
to manipulate numbers — this is what they are good at; alphanumeric values slow searches 
down. For example, many RDBMS have the equivalent of a global unique identifi er (GUID) 
data type. It might seem to be an ideal candidate for a primary key: It is unique, not only within 
your little table, but globally, and it is absolutely a meaningless combination of numbers (e.g., 
0xff19906f868b11d0b42d70c04fc964ff). But too much of a good thing becomes a problem:

 ‰ This number occupies 16 bytes of storage, increasing space requirements (for instance, an 
INTEGER data type occupies only 4 bytes).

 ‰ It is assigned randomly, without which makes it impossible to produce a meaningful index, 
resulting in signifi cantly slower queries.

c03.indd 81c03.indd   81 3/16/2011 6:26:40 PM3/16/2011   6:26:40 PM



82 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

 ‰ It is not suited for the applications relying on incrementing key values serially (business rules 
violation, performance problems, and so on).

There are two ways to create a primary key: embedding it into a CREATE TABLE statement, or 
altering an existing table with a PRIMARY KEY constraint. The syntax is virtually identical across 
all RDBMS, and is also part of SQL Standard. The CREATE TABLE syntax example is as follows:

CREATE TABLE books

(  bk_id      INTEGER       NOT NULL,

   bk_title   VARCHAR(50)  NOT NULL,

   bk_ISBN    VARCHAR(50),

        CONSTRAINT bk_pk PRIMARY KEY (bk_id)

);

Here’s the ALTER TABLE syntax (which assumes that the table BOOKS is already created and that 
the [bk_id] attribute was defi ned as NOT NULL).

ALTER TABLE books

        ADD CONSTRAINT bk_pk PRIMARY KEY (bk_id);

One of the roles that a primary key plays in relational databases is enforcing entity integrity. The 
rule is rather simple: Every table should have a primary key. All modern databases enforce primary 
key constraint; an attempt to enter duplicate primary key will generate an error.

TRY IT OUT Violating Entity Integrity

In this activity, we create tables with a primary key constraint and see how RDBMS enforces it. 

1. Open the SQL client of your choice (see Appendix D for information on universal SQL clients, or 
Appendix C for accessing RDBMS with built-in facilities).

2. If you have not yet created the database and BOOKS table, now would be a good time to do so 
(refer to Chapter 1 for the syntax or download the scripts from www.agilitator.com).

3. Once the table is created, populate it with data by running the INSERT statement. For this 
exercise, you might leave most of the columns to be populated with defaults (i.e., NULLs).

INSERT INTO books (bk_id, bk_title) VALUES (1, “SQL Bible”)

4. Run the preceding query from step 3 once more, and compare the error message you get with one 
of those listed in Table 3-1. The exact text of the message is RDBMS specifi c but they all convey 
the same message - constraint violation.

How It Works
The integrity constraints in modern RDBMS are enforced on the database level: once defi ned it 
becomes the responsibility of the RDBMS. Any attempts to violate constraint would generate an error 
message similar to one you’ve seen in step 4.

This was not always the case, in early versions RDBMS relied upon client applications to perform the 
necessary checks; having constraints simplifi es application logic, and ensures integrity of the data.

c03.indd 82c03.indd   82 3/16/2011 6:26:40 PM3/16/2011   6:26:40 PM



Entities and Attributes Revisited x 83

The text of the error message will be different for every RDBMS, but the meaning will be unmistakable: 
entity integrity violation. Table 3-1 lists the error messages and their codes for the RDBMS covered in 
this book.

TABLE 3-1: Primary Key Constraint Violation Messages

RDBMS ERROR NUMBER SAMPLE OF AN ERROR MESSAGE

Oracle 10g ORA-00001 Unique constraint (<schema>.BOOK_PK) violated.

IBM DB2 LUW SQLSTATE: 23505 NB: DB2 returns a verbose message spanning 

at least a page, with detailed explanation of the 

error, potential causes and suggestions for how 

to fi x it.

Microsoft SQL 

Server 2008

Server: Msg 2627, Level 14, State 1, Line 1 

Violation of PRIMARY KEY constraint pk_bk_id. 

Cannot insert duplicate key in object [books]. The 

statement has been terminated.

PostgreSQL 9.0 SQLSTATE: 23505 ERROR: duplicate key value violates unique con-

straint “BOOK_pkey”.

MySQL 5.5 ERROR 1062 (23000) Duplicate entry ‘1’ for key 3.

Microsoft Access 

2010

No error code returned to 

built-in SQL Query tool

Will warn you about inability to insert rows due to 

rule violation.

OpenOffi  ce.org 

BASE

No error code returned 

to built-in SQL command 

utility

Violation of unique constraint SYS_PK_48: 

duplicate value(s) for column(s) “bk_id”.

SQLCODE and SQLSTATE are there to help developers diagnose problems 
and provide meaningful message. They provide insight into outcome of the 
most recently completed SQL statement, and are generally consistent with SQL 
Standard. 

Relationship Patterns

Foreign key is all about relationships. It works in tandem with the primary key; most likely it is a 
primary key taken from its parent table and inserted into the child table. To extend the parent/child 
analogy (not to be taken too far, though), the child table carries a FOREIGN KEY as the parent’s 
genetic code.

c03.indd 83c03.indd   83 3/16/2011 6:26:40 PM3/16/2011   6:26:40 PM



84 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

Besides the primary key, the RDBMS also has a concept of the candidate key. 
Such a key also uniquely identifi es a record in a table, and could have been desig-
nated as a primary key. There might be more than one candidate key in the pool 
but only one of them could be selected as primary (for example, there could be 
many princes but only one could be crowned a king).

Unlike the primary key, the foreign key does not have to be unique within a single table nor within 
your relational schema. 

The primary/foreign key pair defi nes several fl avors of relationships: one-to-one, one-to-many, and 
many-to-many. Table 3-2 presents a matrix of the possible combinations.

TABLE 3-2: Relationship Patterns Matrix

ZERO ONE MANY

ZERO N/A N/A N/A

ONE A record in the par-

ent table relates to 

zero or one record in 

the child table.

Notation: 1:0

A record in the parent table relates to 

one and only one record in the child 

table.

Notation: 1:1

A record in the parent 

table relates to one or 

many records in the child 

table.

Notation: 1:N

MANY A record in the par-

ent table relates to 

zero or more records 

in the child table.

Notation: N:0

While theoretically possible (and 

allowed in some RDBMSs), a many-to-

one relationship, wherein a child table 

contains multiple foreign keys from 

multiple parents’ tables, is not recom-

mended because of increased com-

plexity enforcing referential integrity 

(discussed later in this chapter).

Notation: N:1

A many-to-many relation-

ship requires an interme-

diate table that converts 

it to two one-to-many 

relationships.

Notation: N:N

To illustrate the concept, let’s take a look at our library data model, again. Figure 3-1 (Library data 
model) presents a normalized data model for our library database. 

The table (entity) BOOKS is in a 1:1 (one-to-one) relationship with the table LOCATION, which 
means that for each book there will be one and only one location.

The tables BOOKS and AUTHORS are in N:N (many-to-many) relationship that needs to be 
resolved to prevent redundancy through the intermediate table BOOKS_AUTHORS. The many-
to-many relationship means that one book could be written by many authors, but the same person 
could author more than one book. If not for the intermediary table, both tables would have to main-
tain additional redundant information, which would violate normalization rules.

c03.indd 84c03.indd   84 3/16/2011 6:26:41 PM3/16/2011   6:26:41 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Entities and Attributes Revisited x 85

PK,FK1

search_books

bk_id

tag_id

PK

searchTags

tag_id

tag_value

PK

location

loc_id

loc_bookcase

loc_shelf

loc_position_left

PK,FK1

PK,FK2

books_authors

bk_id

au_id
PK

books

bk_id

bk_title

bk_ISBN

bk_publisher

bk_pub_year

bk_bought_on

bk_price

bk_notes

bk_cover_pic

bk_page_count

bk_hard_cover

PK

authors

au_id

au_first_name

au_middle_name

au_last_name

au_notes

FIGURE 3-1

In the SQL syntax the relationships are established with primary and foreign key constraints. A par-
ent table always has to have a primary key that it lends to the child table as its foreign key. As with 
the primary key, there are two ways to establish a relationship with a foreign key in the SQL: the 
CREATE syntax and ALTER syntax.

CREATE TABLE location

(     loc_id            INTEGER        NOT NULL,

fk_bk_id          INTEGER        NOT NULL,

loc_bookcase       VARCHAR(50)   NOT NULL,

loc_shelf          INTEGER       NOT NULL,

loc_position_left  INTEGER,

              CONSTRAINT fk_books FOREIGN KEY (bk_id)

                      REFERENCES books(bk_id)

);

Here’s the ALTER TABLE syntax (which assumes that the table BOOKS is already created and that 
the [bk_id] attribute was defi ned as NOT NULL):

ALTER TABLE location

        ADD CONSTRAINT fk_books FOREIGN KEY (bk_id)

        REFERENCES books(bk_id);

The concept of referential integrity is all about maintaining and enforcing this relationship. In the 
early days of the RDBMS this relationship was purely logical — it was possible to delete a record 
in the parent table and leave the records in the child table orphaned. In the RDBMS world you 
must start with deleting a record from the child table and then proceed to deleting records from 
its parent table. Another important consequence of adding a referential integrity constraint is that 
it works both ways: no records could be added to a child table unless there is a corresponding 

c03.indd 85c03.indd   85 3/16/2011 6:26:41 PM3/16/2011   6:26:41 PM



86 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

parent table, just as no records can be deleted from the parent table as long as there is a child 
record associated with it.

All modern RDBMSs enforce referential integrity to prevent this behavior, and some implement 
sophisticated mechanisms such as CASCADE DELETE to automatically remove child records when 
parent’s records are deleted (the syntax of this feature is beyond the scope of this book).

The desktop relational databases such as Microsoft Access and OpenOffi ce.org BASE provide visual 
tools for defi ning referential (and any other supported) integrity constraints, but behind the scenes 
these respective RDBMS assemble and execute SQL statements.

TRY IT OUT Violating Referential Integrity

In this activity we are going to create tables with primary key constraint and see how RDBMS enforces it. 

1. Open the SQL client of your choice, and connect to an RDBMS.

2. Assuming that you followed all the Try It Outs, you now should have both the BOOKS and 
LOCATION tables populated with data.

3. Type in the following SQL command.

DELETE FROM books;

How It Works
Referential integrity constraint follows exactly the same rules as the entity integrity constraints we’ve 
tried to violate in the previous activity. It is enforced by the RDBMS itself, and an error will be raised 
whenever there is an attempt to violate it. In this case, we’ve tried to delete records from the parent 
table leaving potentially orphaned records in the child tables. The FOREIGN KEY constraint prevented 
the deletion.

The text of the error message will be different for every RDBMS, but the meaning will be unmistak-
able: referential integrity violation. Table 3-3 lists the referential integrity error messages and their 
codes for the RDBMS covered in this book.

TABLE 3-3: Foreign Key Constraint Violation Messages

RDBMS ERROR NUMBERS MESSAGE

Oracle 10g ORA-02292 Integrity constraint (<constraint_name>) violated - child 

record found.

IBM DB2 LUW SQLCODE: -532

SQLSTATE: 23504

SQL0532N A parent row cannot be deleted because 

the relationship <foreign_key constraint name> restricts 

the deletion.

c03.indd 86c03.indd   86 3/16/2011 6:26:41 PM3/16/2011   6:26:41 PM



Entities and Attributes Revisited x 87

RDBMS ERROR NUMBERS MESSAGE

Microsoft SQL 

Server 2008

SQL State: 23503 The DELETE statement confl icted with the REFERENCE 

constraint “<constraint name>.” The confl ict occurred in 

database “library,” table “dbo.BOOK,” column ‘BK_ID.’ 

The statement has been terminated.

PostgreSQL 9.0 SQL State: 23503 ERROR: update or delete on table <table_name> vio-

lates foreign key constraint <constraint_name> on table 

<table_name>.

MySQL 5.5 ERROR 1217 Cannot delete or update a parent row: a foreign key 

constraint fails.

Microsoft Access 

2010

No error code 

returned to built-in 

SQL Query tool

Will warn you about inability to delete rows due to rule 

violation.

OpenOffi  ce.org 

BASE

No error code 

returned to built-in 

SQL Query tool

Violation of refrential integrity constraint SYS_FK_##:.

There are many ways to enforce referential integrity besides the FOREIGN KEY 
constraint. For instance, before it was widely implemented, one could use trig-
gers (a special sort of program executed on INSERT, UPDATE, or DELETE; 
more about these in Chapter 4). All major RDBMSs nowadays support foreign 
key constraints, and they should be used to enforce referential integrity.

Domain Integrity

Domain refers to the range of values that an attribute for an entity (okay, a column for a table) 
would accept. Domain integrity ensures that only valid data gets into the column.

There is no single CONSTRAINT that you can specify for the column. Data type declaration is a 
constraint, albeit an unreliable one if your RDBMS permits implicit data type conversions (see the 
note later in this chapter). 

The length of the data type is another example of a domain integrity constraint. CHAR(10) will not 
accept strings 11 characters in length. Neither column declared as INTEGER will allow entry of 
decimal fractions.

The ability to enter NULL values into the column is a domain constraint: columns created with a 
NOT NULL qualifi er — a requirement for a primary key fi eld — will complain. This also relates 

c03.indd 87c03.indd   87 3/16/2011 6:26:41 PM3/16/2011   6:26:41 PM



88 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

to yet another type of domain constraint: DEFAULT. One could specify that if no value is sup-
plied, a default would be inserted. The default value could be generated by a function, such as the 
GETDATE() function in Microsoft SQL Server, which would plug in the current date and time to 
your newly inserted record. This could come handy for tracing and auditing, and frees you from the 
necessity to supply a value.

A single column could have multiple constraints applied to it, not only those that we’ve discussed so 
far (for example, the declaration bk_d INTEGER NOT NULL implements two constraints: data type 
and NOT NULL) but also through custom rules and functions that some RDBMSs implement. For 
instance, Microsoft SQL Server has the CREATE RULE statement that it made part of its dialect 
of SQL. It allows you to specify expressions (range, patterns) to evaluate data upon insertion, and 
either allow or reject it.

Many RDBMSs allow for implicit data type conversions whereby compatible 
data types will be accepted and converted into required types without you ever 
knowing it. Most of the time this proves to be a very convenient feature, but 
sometimes it might yield unpredictable results. Therefore, it is recommended that 
you always use explicit conversion functions (more on this in Chapter 4) and not 
rely on the RDBMS engine to do the thinking.

 

TRY IT OUT Violating Referential Integrity

In this activity, we are going to try and break domain integrity rules. 

1. Open the SQL client of your choice and connect to an RDBMS.

2. Assuming that you followed all the Try It Outs, you now should have the LOCATION table with 
all columns and constraints defi ned; alternatively, you can run this statement:

CREATE TABLE location

(     loc_id            INTEGER        NOT NULL,

      fk_bk_id          INTEGER        NOT NULL,

      loc_bookcase       VARCHAR(50)   NOT NULL,

      loc_shelf          INTEGER       NOT NULL,

      loc_position_left  INTEGER

);

3. Type in a SQL command:

INSERT INTO location VALUES (1,1,’first on the left’,1,1)

The data will be inserted with a message acknowledging success. 

4. Now let’s try to break the rules:

INSERT INTO location VALUES (NULL,1,’first on the left’,1,1)

It fails with a message that says something similar to “column does not allow NULLs.”

c03.indd 88c03.indd   88 3/16/2011 6:26:42 PM3/16/2011   6:26:42 PM



Am I Normal? Basics of Relational Database Design x 89

5. Let’s try and replace the INTEGER value for the LOC_ID column to a character value ‘2’ — its 
character nature being manifested by single quotes around the character:

INSERT INTO location VALUES (‘2’,1,’first on the left’,1,1)

If your database allows for implicit conversion (as Oracle and Microsoft SQL Server do, for 
instance), this statement will be executed without a single hiccup.

6. Now try something that is also a character but cannot be converted into a number:

INSERT INTO location VALUES (‘A’,1,’first on the left’,1,1)

This time Oracle would complain “ORA-01722: invalid number”, and SQL Server would 
acknowledge limits of its guessing power by stating that “Conversion failed when converting the 
varchar value ‘A’ to data type int.”

How It Works
The constraints put in place when the table was created are enforced by the RDBMS, and a specifi c 
error is returned when there is an attempt to violate a constraint. The NOT NULL constraint has been 
violated in step 4, and the RDBMS has rejected the record, returning a specifi c error message.

Another constraint, INTEGER data type declared for LOC_ID column, was violated in step 6. Some 
RDBMS would allow SQL statement in step 5 because they would implicitly convert character data “2” 
into numeric data 2.

AM I NORMAL? BASICS OF RELATIONAL DATABASE DESIGN

Now that some ground rules have been covered, we can proceed to designing our database. A 
database design still remains more of an art than an exact science, but there are few simple rules to 
follow to organize raw data into a well-behaved relational data model. Traditionally, the process is 
called database normalization, and its steps are measured in forms: fi rst normal form (1NF), second 
normal form (2NF), and so on up to fi fth normal form (5NF).

The rules for the 1NF state that: 

 ‰ Each row has to be unique.

 ‰ There should be no repeating groups of data.

 ‰ All columns have to contain only atomic values.

Atomic value refers to a singular indivisible piece of data. Hint: A column that contains a list of 
comma-separated values won’t be considered atomic. Nothing helps more to achieve uniqueness 
than integrity — entity integrity. Every 1NF table must have a primary key.

The 2NF builds upon the predecessor, the 1NF, and adds an additional rule:

 ‰ No partial functional dependencies are allowed, or only columns with full dependency on the 
primary key are allowed.

c03.indd 89c03.indd   89 3/16/2011 6:26:42 PM3/16/2011   6:26:42 PM



90 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

Now, what is partial functional dependency? It’s when nonkey columns do not have full allegiance 
to the primary key and might be dependent on others. For example, in the data model shown on 
Figure 3-1 the column BK_PUBLISHER in the BOOKS table does not really depend on the primary 
key BK_ID, and ought to be isolated into a table of its own; we leave it in the BOOKS table partially 
to illustrate the concept, partially because we’ve made an assumption that a book could have one 
and only one publisher, and decided not to store any information about publishers. One easy rule is 
to look for the records that have identical values in the columns.

The 3NF includes both 1NF and 2NF, and then imposes a new rule (which might appear to be a 
modifi cation of the 2NF rule, but it is not):

 ‰ All nonkey columns in the table should be mutually independent.

The 2NF form asks whether a nonkey column relies fully on the primary key, and 3NF adds that 
it should also be absolutely independent of its fellow nonkey columns. The question to ask is this: 
What happens to other columns in the table if one of the nonkey columns gets updated? If the 
answer is nothing, the column stays; otherwise, it should be moved to a table of its own.

The other two forms, 4NF and 5NF, are better left alone for the duration of 
this book. In fact, unless you aspire to become a data modeler, the forms are 
better left alone, period. There are advantages as well as disadvantages to the 
highly normalized databases, and one needs to understand the ramifi cations 
fully before proceeding beyond 3NF. The more normalized the data model, 
the more JOIN statements one has to use to compile data (see the UNION 
and JOIN paragraph later in this chapter); in fact, denormalization might 
speed up the data retrieval process at the price of increased data storage 
redundancy.

Designing a database goes through a number of iterations. The same steps get repeated over and 
over again until you’re satisfi ed with the results. There is, however, no such thing as a completely 
normalized database. For one thing, any database that goes beyond third normal form incurs a 
signifi cant performance hit (as it struggles with all the additional joins needed to accommodate data 
stored in separate tables); for another, it can be diffi cult to determine clues for further separation of 
data into the fourth and fi fth normal forms. Use your best judgment about where to stop normal-
izing your database.

With the rules of the game explained, let’s start the normalization process and get to 3NF in 
no time.

First, let’s think about a real-life situation we are trying to model with the LIBRARY database. 
It is all about books and where you keep them. These nouns have a good chance to be converted 
into tables (entities in data modeling parlance). Let’s put them down and think about what 
defi nes these entities and what attributes they have. Table 3-4 summarizes the results of the 
brainstorming.

c03.indd 90c03.indd   90 3/16/2011 6:26:42 PM3/16/2011   6:26:42 PM



Am I Normal? Basics of Relational Database Design x 91

TABLE 3-4: Entities and Attributes Brain Dump

ENTITY ATTRIBUTES NOTES

books Book title, number of pages, cover 

(hard/soft), publisher, author(s), ISBN 

number, cover picture, date of 

purchase, price, and so on.

Book will have but a single title, number of 

pages, and ISBN number. What about authors? 

There are tons of books (and publishers) that 

have more than one.

location Type (bookcase, bookshelf, attic, 

garage), shelf (top, bottom, middle), 

position on the shelf (fi rst, 35th)

The type seems to be a bit generic; all my books 

are ether in bookcases, or on loan to my friends. 

Let’s keep track of books that are in the book-

case. Now, how do I defi ne middle shelf? A 

bookcase on the second fl oor has four… I’d better 

number my shelves, say from bottom to the top.

The preceding analysis has uncovered several potential problems, namely, authors, publishers and 
shelves. Maybe they deserve to be put into an entity of their own? Let’s create three entities (tables), and 
try to sort out attributes (columns) according to the 1NF, 2NF, and 3NF rules, as shown in Table 3.5.

TABLE 3-5: Applying Normalization to Entities and Attributes

BOOKS AUTHORS LOCATION

bk_id (primary key) au_id 

(primary_key)

loc_id (primary 

key)

Book title First name Bookcase

ISBN Last Name Shelf

Page count Middle Name Order/Position on 

the Shelf

Price

The fi rst fi eld/column/attribute that goes into the table is primary key, which will make the entire 
record unique in the table. 

Next, all data has to be atomic (1NF). This means that each identifi ed attribute will have a fi eld of 
its own, and cannot be separated into more attributes. 

Next, what really belongs to the single entity, and what really belongs somewhere else. The most 
contentious attribute would be that of Author(s). Does a book have an author, or it is the author that 
has the book? This ambiguity is a sure indication that these ought to be separate (after all, the same 
cannot be plausibly said about title or page count). Moreover, if there is more than one author, we 
would violate rules of the repeating groups statement in the 1NF and 2NF rules. (The author does 

c03.indd 91c03.indd   91 3/16/2011 6:26:43 PM3/16/2011   6:26:43 PM



92 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

not really depend on the book, nor does the book depend on the author. There could be situations in 
which this weak dependency might be dissolved.)

One might argue that the price or page count could be also modifi ed and that there might be correla-
tion between the price and page count; but it would be a tenuous relationship at best, not a real-world 
common situation. This brings us to an interesting point: the way you apply normalization rules 
depends on the knowledge of the domain to which you’re applying these rules. If you were to design 
a data model where price really depends on the page count, price might be better off belonging to a 
different entity.

Once the logical analysis is completed, you’re ready to deal with the actual creation of the 
conceived database inside some RDBMS package. The process is by no means linear: you’ll 
fi nd yourself traveling back and forth between these two phases as you fi ne-tune your database 
requirements. For example, the decision not to model PUBLISHERS as a separate entity could be 
later revised, and the model would be updated with another table and relationships. This book 
presents the SQL syntax for creating database objects (see Chapters 1 and 2). The design of the 
database objects could be done completely independent of the particular RDBMS software, or it 
could be tied up to it. While one might argue that designing specifi cally for Oracle or Microsoft 
SQL Server would increase performance, sticking with a plain generic approach (when pos-
sible) makes your design more portable and spares you some of the maintenance and upgrading 
headaches.

Specifying Constraints

Once your entities and attributes are defi ned, there are a number of constraints to enforce the integ-
rity of the database and the data it contains. As discussed earlier in this chapter, primary keys and 
foreign keys enforce referential integrity, which means that each record in the child table is linked to 
a record in the parent table (i.e., no orphaned records). 

Primary key and UNIQUE constraints also enforce entity integrity. The concept of entity integrity
refers to making sure that a row in the table is unique within the table; that is, its combination of 
column values is unique throughout the table (even though data might be repeated in some columns). 
The concept could be easily illustrated with real life examples: there might be quite a few people on 
this planet named “Alexander,” there will be signifi cantly fewer named “Alexander Kriegel,” and in 
all probability there will be only one who’s also an author of the Discovering SQL book; the combina-
tion of attributes makes it unique.

The NOT NULL constraint, while enforcing domain integrity, also has an indirect role in enforcing 
entity integrity because it is a prerequisite for every primary key.

Domain integrity refers to the data itself and is enforced by using the appropriate data type (for 
example, RULES and CHECK constraints) as well as DEFAULT constraints. CHECK constraints 
ensure that only specifi c data, in a range of values or formats, is entered into the column; while 
DEFAULT constraints specify default values for the column in case you do not have a value for it 
when inserting new records. 

In addition to these built-in integrity constraints, it is possible to enforce custom constraints through 
the use of triggers, stored procedures, and other RDBMS-specifi c features (see Chapter 4 for more 
information). 

c03.indd 92c03.indd   92 3/16/2011 6:26:43 PM3/16/2011   6:26:43 PM



Am I Normal? Basics of Relational Database Design x 93

Selecting a Flavor For Your Data Model

A data model does not exist in a vacuum, a thing unto its own; it serves some specifi c business 
purpose, which is, naturally, refl ected in its design. General-purpose database types can be divided 
into two broad categories: operational databases and analytical databases. The operational database 
(OLTP, which stands for online transaction processing) handles day-to-day operations: record-
ing data, printing payroll checks, and so on. The data in such a database accumulates quickly and 
changes rather frequently. While you might not be entering a new book into your Library database 
every minute, the overall purpose of the data model makes it suitable for OLTP and, with suffi cient 
modifi cations and optimizations, could be used by a commercial book company.

Analytical databases (OLAP, which stands for online analytical processing) are used to store historical 
data, which is analyzed for reporting purposes, used to generate statistics, and so on. The information in 
such a database is mostly static; new data can be added, but the historic data cannot usually be modifi ed. 
In addition, the information in the OLAP database is often stored in an aggregated, or de-normalized, 
state (see more about normalization earlier in this chapter), and there might be many levels of aggrega-
tion, depending on the particular purpose. Think of these data models when you need to answer 
questions such as this (admittedly convoluted), “What is the correlation between the frequency with 
which the book is being checked out at the local library with its page number and the region in which 
the publisher has its headquarters?” Some of the seemingly outlandish correlations might yield surprising 
insights.

The data model refl ects the purpose for which the database was created. OLTP requires a highly 
normalized database to record every minute detail that the enterprise might require. In other words, 
OLTP is a recording database with a secondary reporting purpose. The very same design that allows 
for fast data capture is less than ideal when it comes to retrieving it. The normalized design might 
require numerous JOIN(s) and aggregation operations to combine the data before it can be displayed 
in a meaningful way. This business need, together with the ascending wave of business intelligence 
applications, implies a completely different database design: a data warehouse.

OLAP is, in theory, a read-only database, at least from the user’s point of view. In order to 
provide fast performance, the data in an OLAP database is usually denormalized and often 
aggregated.

Data Warehouses and Data Marts

Judging by the fact that you are reading a book about SQL, you might have heard about data 
warehousing. A data warehouse is a database made up of a number of smaller, highly specialized, 
denormalized databases: data marts. A data warehouse provides the basis for the decision support. It 
contains data snapshots (mostly static historical data). The father of data warehousing, Bill Inmon, 
defi nes the data warehouse as follows: 

 ‰ Subject oriented — All data contained in the database is organized around/related to some 
object/concept/event.

 ‰ Time variant — The data is tracked along the timelines, so that trends can be discovered.

 ‰ Non-volatile — The data collected into the warehouse should not be modifi ed; it becomes 
essentially read-only.

c03.indd 93c03.indd   93 3/16/2011 6:26:43 PM3/16/2011   6:26:43 PM



94 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

 ‰ Integrated — The warehouse data is self-contained; it gathers data from a variety of sources 
and incorporates all necessary data into single locations.

Data marts are subsets of the data warehouses. The analogy follows the real-life warehousing 
operations in which product (information) is gathered at a single location (warehouse) and then 
distributed to smaller locations such as stores or marts. In a sense, a data warehouse is a generic 
storage whereas data marts are specialized databases, customized for a particular user or group 
of users.

Both data warehouses and data marts are designed around two basic schemas (model types): star 
and snowfl ake.

There is a battle simmering in the data warehousing fi eld between the two para-
digms, one pioneered by Bill Inmon, and another advocated by Ralph Kimball. 
The former considers the data warehouse but a part of the enterprise BI (busi-
ness Intelligence) system; it stores normalized data in 3NF, and data marts are 
specialized subsets of the central data warehouse. The latter uses dimensional 
storage (see Star and Snowfl akes schemas later in this chapter), and the data 
warehouse is the sum of the data marts (i.e. data is distributed, not centralized). 
There is no right or wrong here. Both implementations are found in the enter-
prise, and choosing one over another refl ects competencies, business models and 
overall approach to data in corporate environment.

Star and Snowfl ake Schemas

Both star and snowfl ake schemas utilize the same relational principles upon which every RDBMS is 
built. They introduce the concept of fact tables and dimension tables. The fact table would contain 
some hard, quantifi able data; the dimension table would contain some qualitative, descriptive data. 
The former usually contains large amounts of data (millions of rows), while the latter would be 
much smaller. The designations fact and dimension are not cast in stone, but depend on particular 
circumstances. There is a simple rule of thumb to be applied when differentiating between the two: 
the fact table contains the “what” being analyzed, while the dimensions table contains what the 
fact data is being analyzed “by.” The name star refers to the visualization — a fact table surrounded 
by the dimension tables, all of which are related to this fact table through primary/foreign key 
relationships.

A snowfl ake schema is a variation of the star schema where dimension tables can in turn have 
dimensions of their own. The diagram of the schema resembles a snowfl ake — hence the name. 
Snowfl ake schemas reduce data redundancy of the dimension tables, making the “analyzing by” 
process much more granular. The tradeoff is performance vs. aggregation level.

What Could and Does Go Wrong

As the saying goes: To the man with a hammer, every problem looks like a nail. Nothing could be 
truer with regard to the mistakes that people often make while trying database design.

c03.indd 94c03.indd   94 3/16/2011 6:26:43 PM3/16/2011   6:26:43 PM



Am I Normal? Basics of Relational Database Design x 95

Users with previous experience in nonrelational databases may tend to design databases 
that resemble hierarchical or network databases, or even fl at fi les and spreadsheet designs, 
described earlier. 

If you have the luxury of designing your database from scratch, consider yourself lucky and use 
every technique you can fi nd in the database literature, subject to your project’s schedule and 
resources. More often you will face the task of redesigning a database to fi t new business require-
ments, improve performance, and so on. Whatever you do, don’t try reusing existing database struc-
tures as a basis for a new database. If it is wrong for your particular task because its design cannot 
accommodate the new features you are trying to implement, take a fresh look without the limits 
imposed by the legacy stuff. If you seem to be able to reuse some parts and pieces, maybe there is no 
need for redesign. Maybe you need only to improve upon an existing database. Redesigning data-
bases to preserve legacy data is not a small task and should be approached with caution.

Another common problem arises from the tendency to utilize every single feature offered by a 
particular RDBMS vendor. While improving performance — at least potentially, or most of the 
time — this approach could lock you into that vendor’s product and might cost you dearly both 
in time and money if you move your database to a different vendor. Believe it or not, there were 
times when dBASE, Btrieve, FoxPro, and Clipper ruled the earth. Sticking to a few sound principles 
might not give you the very last drop of performance you could squeeze out of a database, but it will 
serve you well should you decide to go with a different RDBMS vendor down the road.

People spend their entire careers mastering the intricacies of data modeling, and this book will not 
turn you into a database design expert overnight. Instead, it provides you with a solid footing to 
take your next step down the road.

Working with Multiple Tables

Things were pretty straightforward when we only had a single table. Now we have several and still 
have to produce a single set of data. The solution? We could JOIN the UNION.

In a SELECT statement, the JOIN keyword, as the name implies, joins records from two (or more) 
tables, while UNION is used to combine records returned from two or more SELECT statements. 
We will talk about both in more details in Chapter 7; here we are going to restore faith in the sanity 
of the people who designed SQL and put down the normalization rules. Honestly, they did know 
what they were doing!

JOIN Syntax

Let’s take a look at the two tables: BOOKS and 
AUTHORS, presented in Figure 3-2 and Figure 3-3.

Why can’t we just run SQL query?

SELECT * FROM books, authors;

In fact, you can! Try it. See anything unusual? The 
returned data set contains every possible combi-
nation of the records from both tables — highly 

PK

books

bk_id

bk_title

bk_ISBN

bk_publisher

bk_pub_year

bk_bought_on

bk_price

bk_notes

bk_cover_pic

bk_page_count

bk_hard_cover

FIGURE 3-2

PK

authors

au_id

au_first_name

au_middle_name

au_last_name

au_notes

FIGURE 3-3

c03.indd 95c03.indd   95 3/16/2011 6:26:44 PM3/16/2011   6:26:44 PM



96 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

confusing and utterly useless. Additionally, it uses obsolete syntax. The correct syntax for the previ-
ous query is the following: 

SELECT * FROM books CROSS JOIN authors;

This syntax will yield the very same result, but at least you’ll have the satisfaction that it was 
produced intentionally, not because you forgot to specify JOIN criteria. This is where primary and 
foreign keys shine. 

Let’s take a closer look at proper JOIN(s), but fi rst a rule: Never use deprecated 
syntax in your SQL. The unintentional CROSS JOIN (or Cartesian product, 
as it is known) would never escape your attention with proper syntax; it is very 
easy to do with the old one (and things get worse as the number of tables in the 
JOIN increases). So to extract meaningful information from both BOOKS and 
AUTHORS, we should use the intermediary table: BOOKS_AUTHORS created 
to resolve the many-to-many (N:N) relationship (see Figure 3-4).

The SELECT statement that matches authors with the books they wrote using the JOIN syntax 
would look as follows:

SELECT authors.au_last_name, books.bk_title FROM books JOIN books_authors 

ON (books.bk_id = book_authors.bk_id) JOIN authors 

ON (book_authors.au_id = authors.au_id)

This code requires explanation. The purpose is to extract a list of authors’ last names and the books 
they wrote in a single SELECT statement. Because of the potential N:N relationship, an intermedi-
ary table was introduced that matched the book’s ID to the author’s ID. The JOIN produced records 
from the BOOKS table that had matching IDs from the BOOKS_AUTHORS table, and combined 
them with records produced by matching authors’ ID in the intermediary table with them in the 
AUTHORS table. The result was the correct list of authors and their respective masterpieces com-
bined in a single happy data set.

UNION Operator

While JOIN “glues” data sets horizontally, the UNION operator appends data sets vertically. There 
is a catch; because the values combined in the resulting set go into the same column, they have to be 
of the same (or compatible, if implicit conversion is enabled) data type. Here is a query that 
combines BOOKS.bk_title with AUTHORS.au_fi rst_name:

SELECT bk_title FROM books

UNION

SELECT au_first_name FROM authors

Predictably, the results do not have much use because semantically these are different attributes, 
and UNIONizing them produced meaningless albeit valid data; the single column takes whatever 
name is used in the fi rst query of the UNION (yes, there might be more than two queries combined). 
There are cases in which concatenating data sets vertically is important; for instance, if you were 
scattering your books across different geographical regions, by author’s country of residence, and 
needed to produce a combined inventory list. As long as data types in the queries are vertically
compatible, the hypothetical query might just look like this:

PK,FK1

PK,FK2

books_authors

bk_id

au_id

FIGURE 3-4

c03.indd 96c03.indd   96 3/16/2011 6:26:44 PM3/16/2011   6:26:44 PM



Am I Normal? Basics of Relational Database Design x 97

SELECT bk_title FROM books_Europe

UNION

SELECT bk_title FROM books _Asia

UNION

SELECT bk_title FROM books_NorthAmerica

There is much more to JOIN(s) and UNION(s); the UNION operator and JOIN keyword will be 
revisited in Chapter 7 in much greater detail. For now, know that there are means to assemble the 
information into unifi ed data sets even if it was broken into pieces and scattered around the rela-
tional model realm. There is a method to the madness.

Dynamic SQL

As with hierarchical and network database models, you might feel a bit constrained by the SQL 
requirement to spell out all tables and columns (entities and attributes) upfront. Why can’t you 
defi ne these during execution, on-the-fl y, through parameters? It would make code so much more 
versatile. Just substitute a table name for a variable, and the same statement could be reused time 
and again for different tables, columns, or databases.

SELECT <list of fields> FROM <list of tables>

The truth is, you can do all of the above with dynamic SQL. Every time you craft an SQL query manu-
ally, you assemble it from the elements that did not exist before: table names, list of fi elds to be selected, 
and relationships between objects. With a bit of programming, using either external programming 
languages such as Java or C# or built-in procedural extensions such as Transact-SQL (Microsoft SQL 
Server) or PL/SQL (Oracle), you can automate this procedure. The following code in the Java program-
ming language executes but a single statement against the Oracle 10g Express Edition database; the 
SQL statement is passed as a command line argument to the function main() of the QueryOracle class:

public class QueryOracle {

public static void main(String[] args) 

throwsClassNotFoundException, SQLException

  {

// specific information on how to connect to Oracle 10g database

Class.forName(“oracle.jdbc.driver.OracleDriver”);

    String url = “jdbc:oracle:thin:@myhost:1521:xe”;

//open the connection with authorized UserID(“scott”) and Password(“tiger”)

Connection conn =

DriverManager.getConnection(url,”scott”,”tiger”);

// create Java-specific object for submitting SQL to RDBMS

Statement stmt = conn.createStatement();

//args[0] contains the query “SELECT * FROM books” 

// submit SQL query to database

ResultSetrset = stmt.executeQuery(args[0]);

// scroll through collection of records

// returned by Oracle RDBMS

while (rset.next()) {

System.out.println (rset.getString(1));

    }

c03.indd 97c03.indd   97 3/16/2011 6:26:44 PM3/16/2011   6:26:44 PM



98 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

//clean up

stmt.close();

System.out.println (“finished”);

   }

}

This is not a Java programming language book, so the preceding code is but a 
very basic example that sacrifi ces robustness for clarity in illustrating the concept.

It is easy to see how this code can be used to execute almost any type of SQL statement: SELECT, 
INSERT, UPDATE, DELETE; or even (assuming that the user has suffi cient privileges) issue 
commands that would create and drop database objects such as tables and views. 

An external program can be written in any programming language, and (as long as it can connect to 
the database and execute an SQL query), it can be used for dynamic SQL programming. 

Dynamic SQL can also be used from within the RDBMS environment. This requires vendor-specifi c 
commands to be used. Table 3-6 lists the keywords implemented in different RDBMS to execute 
dynamic SQL from within RDBMS (usually as part of stored procedure code).

TABLE 3-6: Dynamic SQL Support across RDBMS

RDBMS DYNAMIC SQL EXECUTION SYNTAX NOTES

ORACLE EXECUTE IMMEDIATE Oracle also off ers a possibility to execute an 

arbitrary SELECT query as part of its OPEN 

cursor PL/SQL statement.

Microsoft 

SQL Server

EXECUTE()

EXEC()

sp_executesql

The built-in system stored procedure takes two 

predefi ned parameters and an unlimited num-

ber of custom ones.

IBM DB2 EXEC SQL

        EXECUTE <statement> USING                      

<parameters>;  END-EXEC

EXECUTE IMMEDIATE

PREPARE and EXECUTE

There are limitations on what SQL statements 

can be used with dynamic queries.

PostgreSQL EXEC SQL

EXECUTE IMMEDIATE

PREPARE and EXECUTE

Unless being reused within the same 

scope, the prepare statement needs to be 

deallocated.

MySQL PREPARE and EXECUTE Unless being reused within the same scope, the 

prepare statement needs to be deallocated.

c03.indd 98c03.indd   98 3/16/2011 6:26:44 PM3/16/2011   6:26:44 PM



Am I Normal? Basics of Relational Database Design x 99

Here is an example of a stored procedure using dynamic SQL that could be executed in a MySQL 
environment.

mysql> delimiter $$

mysql>

mysql> CREATE PROCEDURE getBookByISBN (inISBN VARCHAR(20))

    -> BEGIN

    ->   SET @sql=CONCAT(

    ->       “SELECT *

    “>          FROM books

    “>          WHERE bk_ISBN=”,inISBN);

    ->    PREPARE s1 FROM @sql;

    ->    EXECUTE s1;

    ->    DEALLOCATE PREPARE s1;

    ->END$$

Now the procedure could be called multiple times with different ISBN values; alternatively, the 
entire SQL query could be passed into the stored procedure to be compiled and executed.

There are several common programming libraries for accessing RDBMS: Open 
Database Connectivity (ODBC), Java Database Connectivity (JDBC), Microsoft 
Active Data Objects for .NET( ADO.NET) Providers, and so on. We are going 
to touch briefl y on the subject in Appendix D.

Both Microsoft Access and OpenOffi ce.org BASE allow for executing dynamic SQL from within 
their respective built-in programming environments: Visual Basic for Applications (VBA) and 
BASIC. The particulars of each programming interface are beyond the scope of this book, but 
examples can be found on the book’s support site at www.Wrox.com and at www.agilitator.com.

Ultimate Flexibility, Potential Problems

RDBMSs are there to obey your command as long as the command is issued in syntactically 
correct SQL. The query you submit to the database engine, be it IBM DB2 or Microsoft Access, is 
in a human readable format; it is the engine’s job to translate it into machine language understood 
by computers so that it can be executed and the results returned to you.  

The process begins with parsing the query, a process of analyzing the text to determine its gram-
matical structure (it is a Structured Query Language, after all). Once the database engine recog-
nizes it as a valid SQL (e.g., SELECT * FROM, not FROM SELECT*), it prepares an execution plan: 
which tables in which sequence to access, which fi lters at what state to apply, and so on. The idea 
is to optimize the query for the most effi cient execution (we’ll be discussing query execution plans 
more in Chapter 9). Then the database engine executes the query and returns results to the client 
that submitted the query. 

c03.indd 99c03.indd   99 3/16/2011 6:26:45 PM3/16/2011   6:26:45 PM



100 x CHAPTER 3  A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE

There are signifi cant differences in how the process and its steps are implemented 
across the RDBMS. The details of this are beyond scope of this (and most other) 
books on SQL.

Herein lay the dynamic SQL problems: vulnerability to security attacks and subpar performance. 

First, security. Dynamic SQL is prime target for SQL injection attacks. Once you allow your SQL 
statement to be constructed, there is a real concern that it might not be constructed correctly, or will 
be maliciously mis-constructed. It is one thing for a web page to display results of SELECT * FROM 
books, and it would be quite different if the statement read SELECT * FROM salaries. There might 
not be just a lucky guess. With suffi cient privileges, an intruder could just query INFORMATION_
SCHEMA views to fi nd which objects are in the database. An even scarier scenario might be 
passing a query DROP TABLE books (though you might be saved by the referential integrity 
constraints discussed earlier in this chapter).

Even if you use dynamic SQL in your stored procedures (stored procedures will be discussed in more 
detail in Chapter 4), or validate inputs in your code prior to submitting it to the RDBMS, the abil-
ity to execute an arbitrary SQL statement could potentially reveal sensitive data, modify database 
objects, or destroy data. 

Second, performance. An SQL statement submitted to the database engine has to be compiled prior 
to execution. The compilation process takes human readable statements, such as SELECT, INSERT, 
UPDATE, or DELETE, and translates them into machine codes that your computer can understand. 
Part of the process is optimization, determining the plan on the most effi cient way to fetch data. A 
big part of the optimization relies on specifi c objects and indices assigned to them. If these are only 
known at the execution time, the database engine cannot construct an effi cient access plan; your 
dynamic SQL query could be running by an order of magnitude slower than the one that only 
substitutes parameters.

While details of implementation differ across various RDBMSs, the general idea for speeding up 
query performance is to hash the text query in the cache along with the execution plan while keep-
ing parameters (WHERE clause) separate; thus the same plan could be reused with different param-
eters. With dynamic SQL, this is impossible as the query hash will be different (different tables, 
different columns, different JOINs) every time it is generated. Despite some advanced optimization 
features, dynamic SQL is inherently slower than a “conventional” static one.

Finally, some of the queries that you can use with conventional static SQL 
cannot be used in dynamic SQL. The limitations vary wildly across different 
implementations.

c03.indd 100c03.indd   100 3/16/2011 6:26:45 PM3/16/2011   6:26:45 PM



Summary x 101

SUMMARY

Primary and foreign keys are essential to specifying relationships between tables in a relational 
database. They are used to enforce different types of integrity: entity integrity (primary key) and 
referential integrity (a combination of primary and foreign keys).

Database normalization is an iterative process that takes the data model through several refi nement 
stages called normal forms; each subsequent stage includes the rules of the preceding one and then 
adds more. Usually, 3NF (the third normal form) is the desired outcome of the normalization process.

A normalized database produces data sets assembled from the tables with the help of the JOIN key-
word and UNION operator.

Dynamic SQL allows for execution of SQL statements whose structure and content are not known 
prior to execution. It provides ultimate fl exibility as the statements could be assembled in an ad hoc 
fashion. This fl exibility comes at the price of reduced performance and increased vulnerability to 
security threats, however. 

c03.indd 101c03.indd   101 3/16/2011 6:26:46 PM3/16/2011   6:26:46 PM



c03.indd 102c03.indd   102 3/16/2011 6:26:46 PM3/16/2011   6:26:46 PM



4
Overcoming the Limitations 
of SQL

Structured Query Language (SQL) is a set-based language. As such, it is poorly equipped 
to handle situations in which procedural thinking is required. A SELECT statement, with a 
little help from the database engine, would almost instantaneously comb through millions of 
records, perhaps perform JOIN, UNION and ORDER operations, fi lter the data according 
to precise search criteria, and more. Yet, as software developers have discovered, there would 
come a time when you need to pay closer attention to your data, and manipulate it row by 
row, fi eld by fi eld. This is where SQL functions, and especially procedural extensions, enter 
the scene.

SQL functions exist to make your life easier, and, to some extent, alleviate the procedural defi -
ciency of set-based SQL. While a query is busy retrieving some data for you, the functions used 
within that query are validating, converting, calculating, getting system information, and more. 
Think of them as tools designed to accomplish a single well-defi ned task (calculating a square 
root or converting lowercase letters into uppercase, for example) and doing it for each and 
every row that the query fetches. Just call it by name and pass some arguments (or not), 
and see your data transformed. 

The list of SQL functions available for use within a particular relational database manage-
ment system (RDBMS) implementation grows with every new release, and some vendors are 
allowing users to defi ne their own custom functions to perform nonstandard tasks. One of the 
problems arising from using nonstandard functions (and only a handful are defi ned in SQL 
Standard) is that of portability. Some functions are identical in name and usage, some are 
named differently, and some exist only within a particular RDBMS implementation; the most 
confusing are those that have similarly sounding names but radically different behavior.

Not all of these functions (some would say very few) are part of the SQL Standard — be it 
SQL-89, SQL-92 SQL:1999, SQL:2003, or even SQL:2008. In fact, all these standards specify 
only a handful of functions as a requirement for conformance to a specifi c level (entry, inter-
mediate, or full). The old saying that you cannot program a standard still holds true.

c04.indd 103c04.indd   103 3/15/2011 12:22:27 PM3/15/2011   12:22:27 PM



104 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

A function is generally a named block of executable code that accepts parameters (variables) and 
returns values. Most of the time a function would return only a single value of a specifi c data type (a 
string, a number, a date), but there are also multivalued functions capable of returning collections of 
variables and even tables. A list of parameters passed into a function is called the function’s signature
in programming lingo. 

In addition to functions, either built-in or user-defi ned, most RDBMSs allow the creation of a differ-
ent type of executable code, stored procedures, and triggers. They differ from functions in that they 
do not return values, so they cannot be used in SQL statements. Representing a special type of a 
stored procedure that executes automatically upon the happening of some event, triggers are outside 
the scope of this book (though they will be briefl y touched in Chapter 10 as one of the SQL security 
mechanisms). Only functions can be used in SQL queries.

Now, let’s take a plunge and see what the functions could do for us.

Every vendor has its own classifi cations of the functions supported in its data-
base product. IBM groups its DB2 9.7 functions into column functions, scalar 
functions, row functions, and table functions. Oracle uses terms such as single-
row functions, aggregate functions, analytic functions, and object-reference 
functions. Microsoft sports the most detailed classifi cations of rowset functions, 
aggregate functions, ranking functions, and scalar functions. Other RDBMSs 
follow mix-and-match patterns. 

IN NUMBERS, STRENGTH

Computers are good at keeping up appearances: text, pictures, sounds. Below the surface are elec-
trons fl owing through electronic circuits, participating in billions of calculations per second. In 
short, computers are all about math, and all programming languages were designed to take advan-
tage of it. SQL is no exception. While it might not be as powerful in math as languages specifi cally 
designed for this purpose (for example, language “R” designed specifi cally for statistical calcula-
tions), the built in mathematical functions allow for rather sophisticated mathematical expressions 
to be inserted into your queries.

Let’s take a look at SQL’s most useful numeric functions. To illustrate the functionality we are going 
to use Microsoft SQL Server syntax; to make it work with your RDBMS you might need to make 
some modifi cations. SQL Server, Microsoft Access, and PostgreSQL allow you to execute a SELECT 
statement containing an expression without pointing to an actual table, but Oracle and IBM DB2 
require you to SELECT from something (add “FROM dual;” and “FROM sysibm.sysdummy1” 
at the end of your query, respectively); MySQL would also want you to use DUAL pseudo-table; 
OpenOffi ce.org BASE does not allow free form expressions. Table 4-1 presents a matrix of the 
numeric (mathematical) functions for the RDBMSs discussed in the book.

c04.indd 104c04.indd   104 3/15/2011 12:22:32 PM3/15/2011   12:22:32 PM



In Numbers, Strength x 105

Neither Microsoft Access nor OpenOffi ce implementations of the SQL contain 
all functions described in the chapter, even those considered standard by the 
SQL committee. Please see vendor’s documentation to fi nd out whether a spe-
cifi c function is implemented in your RDBMS.

While it is safe to assume that libraries will only deal with positive numbers, you might cross into a 
negative territory at some point. The SIGN function will tell you where you stand:

SELECT SIGN(5) AS positive, SIGN(-5) AS negative;

positive    negative

----------- -----------

1           -1

Interestingly enough, the sign indicator will change depending on the data type of the numeric 
values you’re passing into the function: Integers will return simple 1,-1, but real numbers (FLOAT, 
DECIMAL, REAL) will display as many zeroes as there are decimal places in the number.

SELECT SIGN(5) AS positive, SIGN(-5.0001) AS negative;

positive    negative

----------- -----------

1           -1.0000

Sometimes you have to be sure that the numbers you deal with are always in positive territory, there-
fore you might need the ABS() function, which returns the absolute value of the number.

SELECT ABS(5) AS former_positive, ABS (-5.0001) AS former_negative;

former_positive    former_negative

------------------ ----------------

5                  5.0001

The other common mathematical functions help calculate the square root and evaluate the expres-
sion to a specifi c power.

SELECT POWER(2,2) as two_squared, POWER(2,3) as two_cubed;

two_squared   two_cubed

------------- -----------

4             8

The SQRT function will extract the square root from a number.

SELECT POWER(2,2) as two_squared, SQRT(POWER(2,2)) as square_root;

two_squared   square_root

------------- -----------

4             2

c04.indd 105c04.indd   105 3/15/2011 12:22:33 PM3/15/2011   12:22:33 PM



106 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

While there is no equivalent CURT function to extract cubic root, you can use fractional values in 
the POWER function to achieve the same result. Even though integer values worked in the previous 
examples, for fractional values we must use decimals (FLOAT).

SELECT CAST(POWER(27.0,1/3.0)AS FLOAT) as 3rd_root

3rd_root

----------------------

3

Generating random numbers could come in handy in many situations. The RAND() functions 
generate a pseudo-random number between 0 and 1. For most practical purposes, it could be con-
sidered “random enough,” but keep in mind that its uniqueness is not guaranteed; sooner or later 
this function is bound to produce identical values. Some RDBMSs have implemented more rigorous 
functions to produce truly unique identifi ers (for example, the SQL Server NEWID() function), but 
this functionality is nonstandard. The RAND() function accepts one optional argument: seed, of 
the INTEGER data type. If the argument is not specifi ed, the MS SQL Server would assign the seed 
randomly, producing different results each time the function is called. With a seed specifi ed, the 
value will always be the same. For example:

SELECT RAND() AS random, RAND(10) as seed10, RAND(10) as seed10more

random                 seed10                 seed10more

---------------------- ---------------------- ----------------------

0.182458908613686      0.713759689954247      0.713759689954247

In addition, many RDBMSs have implemented more sophisticated mathemati-
cal capabilities used in statistical analysis such as STDDEV(), which returns 
standard deviation of a sample; VAR(), which returns the variance of a sample; 
or VARP(), returning variance of a population. These are outside of the scope for 
this book, but give you an idea of the possibilities.

Rounding is an essential math operation. With a little help from the tree of available functions, 
CEIL[ING](), FLOOR(), and ROUND, quite a bit can be accomplished in SQL. For instance, you 
could round up or round down the price of the books in the LIBRARY database while selecting 
records by running this query:

SELECT bk_title

,CEILING(bk_price)

,FLOOR(bk_price)

,ROUND(bk_price, 1)

FROM books;

The output is two integers and a decimal rounded to one decimal place. Note that the calculations 
were performed per row. The CEIL function (short for CEILING; some RDBMSs require full name, 
some are content with the short version) returns an integer value that is closer to positive infi nity; 
FLOOR returns an integer value that is closer to negative infi nity, and ROUND just does what it 
was asked to do: round to the nearest number with one decimal place. Table 4-1 lists selected 
mathematical functions across the RDBMS servers.

c04.indd 106c04.indd   106 3/15/2011 12:22:33 PM3/15/2011   12:22:33 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Building Character x 107

TABLE 4-1: Select Mathematical SQL Functions

SQL FUNCTION DESCRIP TION RDBMS SUPPORT

ABS Returns the absolute value of a numeric 

input argument.

All

POWER Returns the argument X raised to the 

power Y.

Microsoft Access uses ‘^’ operator, 

and SQL Server has both the func-

tion and the operator

SQRT Returns the square root of the argument X. Microsoft Access uses function SQR

RAND Generates some random numbers 

between 0 and 1.

Microsoft Access uses function RND

FLOOR Rounds numeric arguments down to the 

nearest integer value.

All

CEIL Rounds numeric arguments up to the 

nearest integer value.

All; some support also CEILING 

synonym

ROUND Returns the numeric argument rounded 

to the integer number of decimal places.

All

BUILDING CHARACTER

SQL functions excel at manipulating strings; for example, changing letter case, changing alignment, fi nd-
ing ASCII codes, extracting substrings, and so on. Usually, but not always, the output of such functions 
in RDBMS implementations is a string (even though SQL Standard mandates it to be always a string).

What can they do for us? Let’s start with concatenation. The following query would return all 
records from BOOKS table concatenating values in BK_TITLE and BK_ISBN columns.

SELECT CONCAT(bk_title, bk_ISBN) FROM books;

There is a rather serious limitation of the CONCAT function. It can only accept two parameters, 
which means that only two fi elds can be concatenated at a time. To concatenate more strings 
together, you have to use some workarounds, such as staggering the functions or using more intui-
tive concatenation operators. Here is an example using the former trick:

SELECT CONCAT(CONCAT(bk_title, ‘,’),bk_ISBN) FROM books;

The output of the inner CONCAT function serves as input for the outer CONCAT function, and 
the result is the list of titles and ISBN numbers separated by a comma. To alleviate burdens of this 
somewhat unintuitive syntax, the RDBMS came up with an alternative use of the operator, and 
some (such as MySQL) allow more than two arguments into their CONCAT functions. Oracle, IBM 
DB2, and PostgreSQL use || (two vertical lines) as their concatenation operator, while Microsoft 
SQL Server uses a plus sign (+). The following syntax will be valid for Oracle, DB2, PostgresSQL, 
and OpenOffi ce BASE (with some insignifi cant syntactical tweaking):

SELECT bk_title || bk_ISBN FROM books;

c04.indd 107c04.indd   107 3/15/2011 12:22:33 PM3/15/2011   12:22:33 PM



108 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

This one will work in Microsoft products:

SELECT bk_title +  bk_ISBN FROM books;

Most RDBMSs will perform implicit conversion when concatenating strings and, say, numbers. If 
any of the operands is a character data type, the result will always be a string.

SELECT bk_title +  bk_price FROM books;

Table 4-2 lists some of the useful character functions implemented by the RDBMSs discussed in 
this book.

TABLE 4-2: Select Character Functions for Server-Based RDBMD

ORACLE 11G IBM DB2 9.7 MICROSOFT 

SQL SERVER 

2008

POSTGRESQL MYSQL DESCRIPTION

CONCAT 

str1, str2)

operator “||”

CONCAT 

(string1,

string2)

operator +’ operator “||” CONCAT Returns the result 

of concatenation 

of two strings. It 

is overloaded for 

Microsoft SQL 

Server, where it also 

adds up numeric 

values.

HSQLDB supports 

syntax identical to 

Oracle and DB2, 

while Microsoft 

Access uses concat-

enation operator “&”

INSTR 

(string, sub-

string, start 

position, 

occurrence) 

LOCATE 

(string1, 

string2, n)

POSSTR 

(string1, 

string2, n)

CHARINDEX 

(string1,

string2, n)

PATINDEX 

(<pattern>, 

<string>)

POSITION

STRPOS

INSTR

POSITION

Returns the position 

of an occurrence of 

a substring within 

the string.

The POSSTR in 

IBM DB2 test is 

case-sensitive. 

HSQLDB has 

LOCATION function; 

Microsoft Access 

has INSTR and 

INSTRREV functions

c04.indd 108c04.indd   108 3/15/2011 12:22:33 PM3/15/2011   12:22:33 PM



Building Character x 109

ORACLE 11G IBM DB2 9.7 MICROSOFT 

SQL SERVER 

2008

POSTGRESQL MYSQL DESCRIPTION

SUBSTR 

(string,1,n)

LEFT 

(string, n)

LEFT (string, 

n)

SUBSTRING LEFT Returns n number of 

characters starting 

from the left.

HSQLDB has 

SUBSTRING 

function

Microsoft Access 

uses LEFT function

LENGTH 

(string)

LENGTH 

(string)

LEN (string) CHARACTER_

LENGTH

CHAR_

LENGTH

LENGTH

CHAR-

ACTER_

LENGTH

Returns the number 

of characters in a 

string.

HSQLDB uses 

LENGTH function

Microsoft Access 

uses LEN function

LPAD 

(string1,n, 

string2)

REPEAT 

(char 

expression, 

n)

SPACE (n)

REPLICATE 

(char expres-

sion, n)

SPACE(n)

LPAD LPAD

REPEAT

For REPEAT and 

REPLICATE func-

tions, return the fi rst 

argument replicated 

n times.

For Oracle’s LPAD, 

the function returns 

the fi rst argument 

padded on the left 

with the third argu-

ment n times.

The SPACE function 

is used to replicate 

blank spaces n 

times n times.

HSQLDB uses 

REPEAT function

Microsoft Access 

uses SPACE 

function

continues

c04.indd 109c04.indd   109 3/15/2011 12:22:34 PM3/15/2011   12:22:34 PM



110 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

ORACLE 11G IBM DB2 9.7 MICROSOFT 

SQL SERVER 

2008

POSTGRESQL MYSQL DESCRIPTION

LTRIM 

(string, set)

LTRIM 

(string)

LTRIM 

(string)

LTRIM LTRIM Returns the string 

with leading blank 

characters removed.

HSQLDB uses 

LTRIM function

Microsoft Access 

uses LTRIM function

REPLACE 

(string1,

string2, 

string3)

REPLACE 

(string1,

string2, 

string3)

REPLACE 

(string1, 

string2, 

string3)

OVERLAY REPLACE Replaces all occur-

rences of string1 

within string2 with 

string3.

HSQLDB uses 

REPLACE function

Microsoft Access 

uses REPLACE 

function

RTRIM 

(string, set) 

RTRIM 

(string)

RTRIM 

(string)

RTRIM RTRIM Returns string with 

trailing blank char-

acters removed. 

Additionally, the 

optional second 

argument in Oracle’s 

implementation 

allows you to specify 

which characters are 

to be removed. 

HSQLDB uses 

RTRIM function

Microsoft Access 

uses RTRIM function

TO_CHAR 

(expression)

CHAR 

(expression)

STR 

(expression)

CONVERT CHAR Converts the argu-

ment expression into 

a character string.

HSQLDB uses 

CONVER ad CAST 

functions

Microsoft Access 

uses CSTR function

TABLE 4-2 (continued)

c04.indd 110c04.indd   110 3/15/2011 12:22:34 PM3/15/2011   12:22:34 PM



Building Character x 111

ORACLE 11G IBM DB2 9.7 MICROSOFT 

SQL SERVER 

2008

POSTGRESQL MYSQL DESCRIPTION

SUBSTR 

(string, n, m)

SUBSTR 

(string, n, 

m)

SUBSTRING 

(string, n, m)

SUBSTR SUBSTR Returns a part 

of a string start-

ing from the nth 

character for 

the length of m 

characters.

HSQLDB uses 

SUBSTRING 

function

Microsoft Access 

uses combina-

tions of functions 

such as LEFT, 

MID, and RIGHT

TRANSLATE 

(string1, 

string2, 

string3)

TRANSLATE 

(string1, 

string2, 

string3)

INSERT 

(works 

similar to 

STUFF)

STUFF 

(string1, 

start_posi-

tion, length, 

string2) 

TRANSLATE REPLACE Replaces all 

occurrences 

of string1 

within string2 

translated into 

string3. The 

STUFF (Microsoft) 

and INSERT(IBM) 

functions delete 

specifi ed length of 

characters at the 

start_position 

and then insert 

string2 in that 

place.

HSQLDB uses 

REPLACE function

Microsoft Access 

uses REPLACE 

function

continues

c04.indd 111c04.indd   111 3/15/2011 12:22:34 PM3/15/2011   12:22:34 PM



112 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

ORACLE 11G IBM DB2 9.7 MICROSOFT 

SQL SERVER 

2008

POSTGRESQL MYSQL DESCRIPTION

TRIM 

([BOTH|

LEADING|

TRAILING, 

[trim_

charac-

ter]]

,string)

STRIP

(BOTH

|LEADING|

TRAILING, 

string)

TRIM

(BOTH

|LEADING|

TRAILING,

string)

LTRIM 

(RTRIM 

(string))

LTRIM 

(RTRIM 

(string))

BTRIM TRIM Trims leading or 

trailing spaces off  

the string or both.

Oracle’s version 

also allows for trim-

ming any arbitrary 

character off  the 

string.

HSQLDB uses 

combination of 

LTRIM,RTRIM 

functions

Microsoft Access 

uses TRIM function

UPPER 

(string)

UPPER 

(string)

UCASE 

(string)

UPPER 

(string)

UPPER UPPER

UCASE

Converts all charac-

ters of a string into 

uppercase.

HSQLDB uses 

UCASE function

Microsoft Access 

uses UCASE 

function

String functions are arguably the most widely used and the most confusing of the SQL functions. 
Examples of the most common uses are given later on in the chapter.

Because of the inherent capability of the databases to work with different sets of 
languages, almost every RDBMS either has an overloaded function to recognize a 
non-English character set, or separate functions to deal with this situation. Oracle, 
for instance, has NLS_versions of its most popular string functions, with an addi-
tional input parameter to specify locale. Some RDBMSs go by data type passed 
into the function (for example, NVARCHAR as opposed to VARCHAR).

“X” Marks the Spot: Finding the Position of a Character in a String

If you go back to Chapter 1 and revisit the rationale behind separating data into a set of columns, an 
argument could be made for single column design. Functions such as INSTR, LOCATE, POSITION, and 
CHARINDEX are used to determine the position of a specifi c character (or combination of characters) 

TABLE 4-2 (continued)

c04.indd 112c04.indd   112 3/15/2011 12:22:34 PM3/15/2011   12:22:34 PM



Building Character x 113

within a string. Based on this information, you can slice and dice text in a number of ways using 
other functions.

CHARINDEX

The CHARINDEX function will return a number: a position of a string within another string. Let’s 
try to parse some of the strings together to see how this works. We’ll use our initial “fridge” data-
base to provide long unwieldy strings with which to work; for instance, this one:

Microsoft SQL Server 2000 Weekend Crash Course; 978-0764548406; HungryMinds; 

2001;06.20.2002;19.99

If you don’t have it, you could create it now by executing the following statement:

CREATE TABLE myLibrary (all_my_books VARCHAR(4000));

INSERT INTO myLibrary VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course; 

978-0764548406; HungryMinds; 2001;06.20.2002;19.99‘)

The semicolons in the string are there to separate semantically separate chunks of data, and this is 
exactly what we are going to look for with the CHARINDEX function. (CHARINDEX has equiva-
lents in other RDSMSs: INSTR, LOCATION, POSITION, and so on. For an equivalency chart of 
some of the useful functions, please see Appendix C.)

CHAR

The string you will work with has semicolons used as delimiters for the tokens; they mark the spots 
where the SUBSTRING function would chop the string into pieces.

While we could use the actual semicolon character as delimiter, the more reliable way is to use 
ASCII code 59 to specify the semicolon character. With the help of the CHAR function [for instance, 
CHR(59)], such syntax, with minor modifi cations, would be portable across all RDBMSs. The 
CHAR function (and corresponding CHR function in other implementations) returns a character 
while accepting an ASCII code number as an argument.

ASCII stands for the American Standard Code for Information Interchange. It is 
a character-encoding scheme based on the ordering of the English alphabet and 
represents text characters in computers — with each character, including non-
printable characters such as carriage returns — being assigned a specifi c number.

The syntax of the functions in the RDBMS implementation varies wildly. The following example uses 
Microsoft SQL Server to illustrate the concept; most of the arguments for this function are optional.

This query, executed in SQL Server 2008, looks for an occurrence of the semicolon within the string 
starting with the fi rst character:

SELECT CHARINDEX (CHAR(59),‘Microsoft SQL Server 2000 Weekend Crash Course; 978-

0764548406; Hungry Minds’) AS first_token_position;

first_token_position

---------------------

47

c04.indd 113c04.indd   113 3/15/2011 12:22:35 PM3/15/2011   12:22:35 PM



114 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

Now that you know the position, you could request the fi rst token by its length in characters by 
using the SUBSTRING function.

Optional arguments are the arguments that have some default value assumed if 
the argument were not supplied. Because the order of arguments is fi xed, you 
must enter all the arguments prior to the one that you decided to specify. In the 
previous example, we forgo specifying the starting point for our search, and 1 is 
assumed by the function.

SUBSTRING

The SUBSTR (SUBSTRING in Microsoft SQL Server) function returns part of a string passed in as an 
argument, designated by the starting position and the desired length of the substring, expressed in 
characters. Using input from the previous example, we could get our fi rst token now:

SELECT 

SUBSTRING(‘Microsoft SQL Server 2000 Weekend Crash Course; 978-0764548406; 

HungryMinds’,1,46)as first token

first_token

-----------------------------------------------

Microsoft SQL Server 2000 Weekend Crash Course

Note that the length requested was 46 characters, not 47, because the last character would be a 
semicolon.

Before you’ll be ready to tackle the parsing of the entire string, you need to get acquainted with one 
more function: the one that returns the length for the entire string.

LENGTH

In an argument, the function LENGTH (LEN for Microsoft SQL Server) returns a number of characters. 
(Not a number of bytes! See Chapter 3 for more details.) If an argument is not of a character type, 
it will be implicitly converted into a string in all three RDBMSs, and its length will be returned. To 
fi nd the length of the string we’ve been using so far, you might run the following query (we are using 
Microsoft SQL Server syntax throughout this exercise):

SELECT LEN(all_my_books) as total_length

    FROM mylibrary;

total_length

-------------

98

The function returns the number of characters in the string, including blanks and all nonprintables. 
There are different functions to help you determine the number of bytes in a string, which would be 
useful when determining the size of non–character data types such as dates. Refer to Appendix C 
for a comprehensive list of built-in SQL functions.

c04.indd 114c04.indd   114 3/15/2011 12:22:35 PM3/15/2011   12:22:35 PM



Building Character x 115

TRY IT OUT Parsing Text Using SQL Built-in Functions

We will put all these functions together and construct a query that would extract three tokens out of 
the string used to illustrate the string functions CHAR, CHARINDEX, SUBSTRING, and LENGTH. 
At the same time, the query will illustrate why SQL is not the best language for parsing the text, and 
why procedural extensions were introduced.

1. Start with the string, as it was used before:

‘Microsoft SQL Server 2000 Weekend Crash Course; 

978-0764548406; HungryMinds;’

2. Insert it into a table so you do not have to carry it around (skip this step if you already have it in 
the database):

DELETE myLibrary;

INSERT INTO mylibrary VALUES (‘Microsoft SQL Server 2000 Weekend 

Crash Course;978-0764548406;Hungry Minds;’);

3. Run the query to determine the location of the fi rst semicolon:

SELECT CHARINDEX(CHAR(59),book)) as first_token_position 

FROM myLibarary;

The query returns 49.

4. Use this calculated value to extract the fi rst substring:

SELECT SUBSTRING(all_my_books, 1,CHARINDEX(CHAR(59),all_my_books )-1) as 

first_token FROM mylibrary; first_token

-----------------------------------------------

Microsoft SQL Server 2000 Weekend Crash Course 

5. Now, let’s see what it takes to extract a second token in a generic way:

SELECT SUBSTRING(all_my_books, 1,CHARINDEX(CHAR(59),all_my_books )-1) AS first_

token, SUBSTRING(SUBSTRING(all_my_books,(CHARINDEX(CHAR(59),all_my_books)+1),

LEN(all_my_books))

,1,CHARINDEX(CHAR(59),SUBSTRING(all_my_books,(CHARINDEX(CHAR(59),all_my_books)+1)

,LEN(all_my_books)))-1) AS second_token

FROM mylibrary;

first_token                                      second_token

----------------------------------------------- -----------------

Microsoft SQL Server 2000 Weekend Crash Course  978-0764548406

As you can see, things grow very hairy pretty quickly. The preceding code is 
extremely complex and error-prone, and is used only as an illustration of how 
text parsing functions could be used with your SQL queries, and how quickly 
you could get lost.

c04.indd 115c04.indd   115 3/15/2011 12:22:35 PM3/15/2011   12:22:35 PM



116 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

How It Works
Now, let’s fi gure out how it works. The CHARINDEX function is used to fi nd the position of the 
fi rst occurrence of the semicolon delimiter. Using this value in the SUBSTRING function, we can now 
extract the fi rst token from the string by instructing the function to start with the fi rst character and go 
to the position of the delimiter. Because we do not want to include the delimiter, we subtract one from 
the value of the position. 

Next, we need to fi gure how to extract the second token. One way to do it is to start counting with 
the fi rst occurrence of the delimiter’s position, 49, and repeat the same algorithm used to fi nd the fi rst 
token. Again, because we do not want to include the semicolon as the fi rst character of the token, we 
start counting from the next character: the delimiter’s position plus one. The fi rst argument is the com-
bination of functions returning the second part of the string. Then we supply argument: the number 1. 
We are counting from the fi rst character again, only this time the fi rst token chunk is already removed. 
Then comes the delimiter: CHAR(59) and the last argument is again the expression returning the sec-
ond part of the whole string contained in the BOOK column of the MYLIBRARY table. 

As you may have guessed, extracting the third token from the string with the same query will increase 
the complexity even more. The rule of thumb is not to have strings to parse in the fi rst place. This 
is what fi rst normal form is for. When you have to do it, use either built-in procedural extensions or 
general programming languages.

TRIM, LTRIM, and RTRIM

Although it might not be apparent, blank spaces in your data can be a major concern. Usually, blank 
spaces are not shown in the user interface when you type in some character values, which can easily 
cause mistakes. RDBMSs require absolute precision. The string ‘user’ and the string ‘user ’ (with a 
trailing blank space) are never the same.

The functions to use are TRIM, LTRIM, and RTRIM. The fi rst removes trailing spaces from both 
sides of a string, while LTRIM and TRIM remove blank spaces from left and right sides, respectively. 
This might appear to be a bit redundant, having three functions when one would do. The explanation 
is the usual “implementation details”: some RDBMSs implement one and some implement others.

The functions that help trim off blanks (and in some cases, other characters) act similarly in all 
three RDBMSs: they remove leading or trailing characters from a string expression. 

Consider the following example that uses IBM DB2 syntax:

SELECT

LENGTH(LTRIM(‘   three_blanks‘))  ltrimmed,

LENGTH(‘   three_blanks‘)  with_leading_blanks

FROM sysibm.sysdummy1

ltrimmed    with_leading_blanks

----------- -------------------

12          15

This would make all the difference when comparing strings. The syntax for trimming varies among 
the RDBMSs, so it is prudent to check which one is supported by your favorite database.

c04.indd 116c04.indd   116 3/15/2011 12:22:36 PM3/15/2011   12:22:36 PM



Date and Time Functions x 117

DATE AND TIME FUNCTIONS

Date and time functions are some of the most useful yet confusing functions ever provided by the 
RDBMS. The SQL Standard does not mandate which have to be implemented, so the vendors and 
organizations building RDBMSs, left to their own devices, implemented a huge variety of DATE 
and TIME functions. 

What Time Is It?

Keeping a time track of the changes in the database requires access to the system’s date and time set-
tings. Oracle implemented the SYSDATE pseudo-column (which can be considered a function for our 
purposes), which returns the system’s current date and time. Microsoft SQL Server has the GETDATE()
function, and IBM DB2 9.7 consistently uses a CURRENTDATE special register in the SELECT part of the 
query. These functions (with a sample of their respective outputs) are listed in Table 4-3.

TABLE 4-3: Getting the Current Date from RDBMSs

RDBMS SQL SYNTAX OUTPUT

Oracle SELECT SYSDATE

[FROM DUAL];

08-OCT-10 7:47:01 PM

IBM DB2 SELECT CURRENT DATE

[FROM SYSIBM.SYSDUMMY1]

10/8/2010

SQL Server 2008 SELECT GETDATE() 2010-10-08 19:27:11.364

PostgreSQL LOCALTIME(), NOW(), 

CURRENT_TIME()

2010-10-08 19:25:19.264

MySQL NOW(), CURRENT_TIME(), CURENT_

DATE, UTC_DATE

2010-10-08 19:29:10.378

Microsoft Access NOW(), DATE(), TIME() 10/8/2010 7:34:06 PM

OpenOffi  ce BASE CURDATE(), CURTIME() 10/8/2010

The date output can be formatted using various vendor-specifi c masks, arguments, or conversion 
functions; please refer to the RDBMS manual for more information on formatting. Knowing the 
date and time is half the battle; you need the capability to extract date parts, day, year, and months, 
to be able to manipulate them in your queries. One way to do it is to convert the date into a string 
and parse it using string functions, or you can use a shortcut and turn to the functions already 
implemented by the RDBMS.

For instance, the following query extracts DAY, MONTH, and YEAR from the current date 
returned by the Microsoft SQL Server function:

SELECT GETDATE()AS cur_date, DAY(GETDATE()) AS cur_day

, MONTH(GETDATE()) AS cur_month

, YEAR(GETDATE()) AS cur_year

c04.indd 117c04.indd   117 3/15/2011 12:22:36 PM3/15/2011   12:22:36 PM



118 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

cur_date                cur_day     cur_month   cur_year

----------------------- ----------- ----------- -----------

2010-10-08 17:01:25.827 8           10          2010

Substituting Microsoft’s GETDATE in the previous example for equivalents from Table 4-3, your 
query would yield analogous results in IBM DB2, PostgreSQL, and My SQL. Unfortunately, this 
syntax does not work for every RDBMS because vendors have different ideas about how to imple-
ment this functionality. Oracle, for instance, prefers to use this syntax (and PostgreSQL supports it 
in addition to the previous example).

SELECT 

      SYSDATE AS cur_date

, EXTRACT(DAY FROM SYSDATE)AS cur_day

, EXTRACT(MONTH FROM SYSDATE)AS cur_month

, EXTRACT(YEAR FROM SYSDATE)AS cur_year

cur_date                cur_day     cur_month   cur_year

----------------------- ----------- ----------- -----------

08-OCT-10               8           10          2010

As they might say in Lapland, there is more than one way to roast a reindeer. 
The RDBMS implemented a number of different date and time functions trying 
to anticipate every imaginable situation. There are no fewer than 20 date and 
time functions in every RDBMS, and most of them do things in their very own 
way. Please refer to vendor’s documentation for a wider selection of functions 
for your SQL toolbox.

Date Arithmetic

Unlike the orderly world of numbers, dates are maddeningly diffi cult to work with. Think of it — a 
year has 365 days (except when it has 366), divided into 12 months (and don’t forget quarters!). 
Adding insult to injury, each month could have either 30 or 31 days, except on one occasion when it 
has either 28 or 29. Then, we have 24-hour days; each hour contains 60 minutes, each minute con-
tains 60 seconds, but each second contains 1,000 milliseconds. Try to explain this to a Martian!

The databases had to learn to deal with these complexities; no one can confi dently add and subtract 
dates using date and time functions. Before we start manipulating dates, it is important to keep in 
mind that DATE and TIME are structured data types; that is, they have different parts. In case of 
a DATE, you will have MONTH, DAY, and YEAR (see the previous paragraph on how to extract 
these parts from a DATE). With some additional effort, a day of the month could be converted into 
either a day of the week or a day of the year. It goes similarly with TIME, where you have HOUR, 
MINUTE, and SECOND (with some RDBMSs providing ways to deal with milliseconds).

Let’s start with adding months. It should come as no surprise to you that almost all RDBMSs 
implement it differently. Oracle and IBM DB2 use the ADD_MONTHS function and direct date 
arithmetic, while Microsoft decided on a Swiss Army knife approach with the DATEADD func-
tion found both in SQL Server and Access. The MySQL open source RDBMS sports function 

c04.indd 118c04.indd   118 3/15/2011 12:22:36 PM3/15/2011   12:22:36 PM



Date and Time Functions x 119

DATE_ADD, while neither PostgreSQL nor OpenOffi ce provides a single function each to that 
effect. A compendium of the functions used in DATE and TIME math is shown in Table 4-4.

TABLE 4-4: Selected Functions for Manipulating DATE and TIME

RDBMS FUNCTION DESCRIPTION

Oracle DATE_ADD

MONTHS_BETWEEN

Date arithmetic

Used with diff erent parameters; could 

add days, months, or years.

Returns number of months between two 

dates.

IBM DB2 Date arithmetic only Uses arithmetic operators plus/minus 

with qualifi ers.

Microsoft SQL Server DATEADD

DATEDIFF

Used with diff erent parameters; could 

add days, months, or years.

Calculates diff erence between two 

dates.

PostgreSQL AGE

MySQL DATE_ADD

PERIOD_ADD

PERIOD_DIFF

Used with diff erent parameters; could 

add days, months, or years.

Adds time period in years.

Calculates diff erence between two 

dates.

Microsoft Access DATEADD

DATEDIFF

Used with diff erent parameters; could 

add days, months, or years.

Calculates diff erence between two 

dates.

OpenOffi  ce BASE/HSQLDB DATEDIFF Returns diff erence between two dates.

The following example query returns the date that is exactly two months from date 2010-10-10, 
supplied as literal and implicitly converted to a DATE data type:

SELECT DATEADD(month,2,’2010-10-10’) months

months

-----------------------

2010-12-10 00:00:00.000

If no time specifi cs are provided, the function assumes midnight. The DATEADD function can also 
add days, hours, and minutes to a date by supplying an appropriate fi rst parameter to the func-
tion. The very same function could be used to subtract the date: Just change the sign of the second 
parameter.

c04.indd 119c04.indd   119 3/15/2011 12:22:36 PM3/15/2011   12:22:36 PM



120 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

SELECT DATEADD(month,-2,’2010-10-10’) months

months

-----------------------

2010-08-10 00:00:00.000

To fi nd the difference, use the DATEDIFF function.

SELECT DATEDIFF(MONTH,’2010-10-10’,’2010-12-10’)AS months

months

-----------

2

To accomplish the same feat with direct date arithmetic, just add MONTHS. This syntax, for 
instance, will be understood by IBM DB2 and, with slight modifi cations, by Oracle.

SELECT (CURRENT DATE + 2 MONTH) add_months

    FROM sysibm.sysdummy1

add_months

------------

  12/10/2010

SELECT (CURRENT DATE - 2 MONTH) subtract_months

    FROM sysibm.sysdummy1

subtract_months

------------

  08/10/2010

This pretty much illustrates the concept of date arithmetic: To add or subtract hours, minutes, 
and seconds, just use the corresponding expression. You can substitute the date value with that 
from a table in a query, or use a literal. Also, note that DAY/DAYS and MONTH/MONTHS are 
interchangeable.

TRY IT OUT Hunting for Leap Years

Some databases provide a convenient way to fi nd whether a particular year is a leap year by provid-
ing functions that calculate numbers of days; some don’t. Nevertheless, with date functions, you could 
make an educated guess by fi nding whether this particular year has a February 29.

The years 2008 and 2012 show up as leap years on my calendar, whereas 2009 and 2010 do not. Let’s 
see whether my calendar is correct.

SELECT 

    DATEADD(month,-8,’2008-10-29’) AS year2008

   ,DATEADD(month,-8,’2009-10-29’) AS year2009

year2008                year2009

----------------------- -----------------------

2008-02-29 00:00:00.000 2009-02-28 00:00:00.000

c04.indd 120c04.indd   120 3/15/2011 12:22:36 PM3/15/2011   12:22:36 PM



A Glimpse of Aggregate Functions x 121

The function fi nds February 29 in 2008, but for 2009 it comes up with February 28. I think I’ll keep 
my calendar for the time being.

How It Works
The month of February in a leap year contains 29 days; in a regular year it ends with 28. Taking day 
29 of an arbitrary month of the year and using the difference in months between them, we subtract the 
exact number of months from the date to get to the date in February of that year. In a leap year, we 
receive February 29; in a regular year we get only February 28.

This might not be the most effi cient or even most convenient way to fi nd a leap year, but arguably it is 
the most fun.

A GLIMPSE OF AGGREGATE FUNCTIONS

Once you put numeric values into your database there is quite a lot you can do with them besides 
displaying them in reports. Wouldn’t it be nice to fi nd out how many books you have in your 
library? Or how much you’ve spent on them? What is the most or least expensive book you’ve ever 
bought? The SQL aggregate functions are there to help you. Table 4-5 lists some of the most com-
monly used aggregate functions.

Let’s start with counting the books. The syntax is deceptively simple.

SELECT COUNT(*) AS total_count FROM books;

total_count

-----------

12

What we get is the row count in the BOOKS table; assuming that we have no duplicate copies in the 
table, we ought to be all right. The people who designed SQL were pretty smart and foresaw this 
situation, hence the DISTINCT keyword we can use to weed off duplicates. Just run this query and 
we’ll be in business:

SELECT DISTINCT COUNT(*) FROM books; From Boris: Output?

Somehow, results are exactly the same, even though we know we have some duplicates. If you take 
a closer look at the query you’ll see that we apply DISTINCT keyword to the results produced by 
function COUNT(), which, being but a single number, will be distinct by defi nition. We need to 
make sure that we are COUNTing DISTINCT records, but with this syntax we cannot use * for all 
fi elds, we have to spell actual fi elds to perform the count on:

SELECT COUNT(*) AS total_records, COUNT( DISTINCT bk_title)  AS distinct_titles 

FROM books;

total_records distinct_titles

------------- ---------------

12            12

(1 row(s) affected)

c04.indd 121c04.indd   121 3/15/2011 12:22:37 PM3/15/2011   12:22:37 PM



122 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

Finally, we have an exact count of distinct titles and a total number of records.

Now, let’s see how much we’ve spent on books. The function SUM will give us the result:

SELECT SUM(bk_price) AS total  FROM books;

total

---------------------

354.91

The column bk_price has numeric values, and they have been summed to bring us the total. If you 
try to sum values in the fi eld in which the data type is non-numeric (for example, a VARCHAR or 
DATE), an error will be returned.

What was the most money you ever paid for a book? The MAX function can answer the question:

SELECT MAX(bk_price) AS max_price FROM books;

max_price

---------------------

69.26

With numbers it is all self-explanatory, but things get murkier if you try to fi nd out MAX on text 
or date fi elds. Running this query on the DATE fi eld will return the latest date, but evaluating 
VARCHAR might yield surprising results:

SELECT MAX(bk_title) AS max_title  FROM books;

max_title

----------------------------------------------------

Wiley Pathways: Introduction to Database Management

The SQL defi nes MAX for a character fi eld as the last in alphabetical order: If the title begins with 
Z it will be selected as the max from the list, regardless of the case; then it will consider next char-
acter, and ZZ will beat ZA in the race. The evaluation will continue until all characters in the string 
are accounted for. In our case, the ‘W’ is selected as the maximum value.

The function MIN is just the opposite of the function MAX, and the least expensive book in the 
library is the following:

SELECT MIN(bk_price) AS min_price FROM books;

min_price

---------------------

8.89

The last aggregate function we will take a look at in this chapter is AVG(). It stands for average, and 
calculates the average (or mathematical mean) of the values on the list:

SELECT AVG(bk_price) AS average  FROM books;

average

---------------------

29.5758

c04.indd 122c04.indd   122 3/15/2011 12:22:37 PM3/15/2011   12:22:37 PM



Conversion Functions x 123

As with SUM, the AVG() function works only on numeric values and will throw an error if applied 
to an incompatible data type. 

You might wonder how to calculate the median. Surely, there must be a 
MEDIAN() function! Unfortunately, no. There are ways to calculate the median, 
but not a single function, and each RDBMS will have a different answer.

There are many more questions to be asked about aggregate functions. For instance, do aggre-
gate functions always return a single value? (It depends.) Can I use the AVG() function with the 
DISTINCT keyword? (Yes.) And what about NULL(s) in aggregate functions? These questions and 
more will be explored again in greater detail in Chapter 5.

TABLE 4-5: Selected Aggregate SQL Functions

SQL FUNCTION DESCRIPTION RDBMS SUPPORT

AVG Calculates the arithmetic average of the series of 

numbers of its argument.

All

COUNT Returns number of records for the table. All

MAX Returns MAXimum value in a set. All

MIN Returns MINimum value in a set. All

SUM Returns sum of all value in the column. All

CONVERSION FUNCTIONS

Earlier in the book we discussed why all data cannot be just text and proposed specifi c data types 
as a solution. This presents a new problem: conversion between different data types. Sometimes it 
becomes necessary to convert one data type to another. For example, in some RDBMS implemen-
tations, the CONCAT function requires all members to be converted into strings before they can be 
concatenated. The permutations of the different data types need to be converted into each other 
before they can be manipulated: numbers to strings, and strings to numbers, dates to string and 
back, the applications are virtually endless. This is what conversion functions are good at. As it 
becomes clearer that English, while important, is not the only language on Earth, there is an ever-
increasing demand for national character databases. Conversion functions might provide translation 

c04.indd 123c04.indd   123 3/15/2011 12:22:37 PM3/15/2011   12:22:37 PM



124 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

for English character–based data, so it can be correctly represented in the character set of other 
alphabets. Some of the most common conversion functions for three major RDBMSs — Oracle, SQL 
Server, and IBM DB2 — are listed in Table 4-6.

TABLE 4-6: Conversion Functions

ORACLE 11G IBM DB2 9.7 MICROSOFT SQL 

SERVER 2008

DESCRIPTION

CAST (data 

type AS data 

type)

CAST (data type 

AS data type)

CAST (data type AS 

data type)

CONVERT (into data 

type, value, format)

Converts one data type into 

another data type for which a 

meaningful conversion can be 

made.

HSQLDB uses both CAST and 

CONVERT functions.

Microsoft Access uses number 

of type specifi c functions such 

as CINT (convert to integer) or 

CDATE (convert to date) and so 

on.

TO_CHAR 

(expression)

CHAR 

(expression)

CAST [expression as 

VARCHAR/CHAR 

(N)]

Converts an expression of a 

compatible data type into a string 

of characters.

HSQLDB uses CAST/CONVERT 

functions.

Microsoft Access uses CSTR 

function.

TO_DATE 

(expression)

DATE 

(expression)

CAST (expression as 

DATETIME)

Converts an expression of a 

compatible data type/format into 

the DATE/DATETIME data 

type.

HSQLDB uses TO_DATE function.

Microsoft Access uses CDATE 

function.

Sometimes a RDBMS converts data implicitly from one type to another. While 
this feature might be convenient, it is also something to worry about. One exam-
ple is the loss of precision when inserting the FLOAT data type into a column that 
was declared as INTEGER. The number loses all decimal places because it is trun-
cated when converted automatically into INTEGER.

c04.indd 124c04.indd   124 3/15/2011 12:22:37 PM3/15/2011   12:22:37 PM



Conversion Functions x 125

Conversion Between Diff erent Data Types

There are two general SQL functions that perform conversion: CAST and CONVERT. These functions 
convert one data type into another. The CAST function is almost universal and used similarly across 
all RDBMSs. (PostgreSQL allows you to create your own versions of the CAST function. Microsoft 
Access uses the nonstandard FORMAT function.) 

The CAST function syntax is as follows:

CAST (<expression> AS <into datatype>)

There are slight differences in the CAST function’s capabilities among the three implementations: 
IBM DB2 9.7, SQL Server, and Oracle can cast any built-in data type into another built-in data type, 
whereas PostgreSQL and MySQL have some compatibility restrictions. If any of the conversions 
cannot be performed, the database will complain by throwing an error. 

The following example demonstrates casting a string into DATE and a number into a string:

SELECT 

     CAST (‘10/10/2010’ AS DATETIME) string2date

    ,CAST(‘01235’ AS INTEGER) string2number

string2date             string2number

----------------------- -------------

2010-10-10 00:00:00.000 1235

CAST is not the only function to be used, but it is the most generic one you can use with the most 
portability. Many RDBMSs have created shortcuts: conversion functions that perform specifi c data 
type conversions. For instance, Oracle’s TO_CHAR (and its equivalents in other implementations, 
such as CHR and STR) converts any data into character data, and TO_DATE would attempt con-
version to data type (if possible).

Conversion Between Diff erent Character Sets

There are between 3,000 to 8,000 spoken languages in the world, and approximately 100 have a 
unique writing system. Although the single-byte ASCII encoding system served well to store Latin-
based characters, it fails to accommodate non-Latin characters. To address the situation, a new uni-
versal character set standard — Unicode — was introduced. The latest version of Unicode consists of 
more than 107,000 characters covering 90 scripts. 

Of course, RDBMSs must be able to perform translations among different character sets to be con-
sidered international players. 

For instance, Microsoft SQL Server uses the NCHAR and UNICODE functions for converting among 
character sets. The NCHAR function returns the UNICODE character being given an integer code 
(defi ned by the Unicode standard), and the UNICODE function returns a number corresponding to the 
Unicode character.

The following operations take the Scandinavian character Ø to fi nd a UNICODE number for it:

SELECT UNICODE(‘Ø’) uni_code

uni_code 

----------

216

c04.indd 125c04.indd   125 3/15/2011 12:22:38 PM3/15/2011   12:22:38 PM



126 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

We could then display the character again by passing this number into the NCHAR function:

SELECT NCHAR(216) uni_character

uni_char

--------

Ø

Similar functions exist in all other RDBMSs. If you deal with non-Latin scripts, such as Russian, 
Hebrew, Arabic, or Chinese, you’ll need to fi nd out more about these capabilities.

Every RDBMS provides a number of functions used to access information 
about the database. By defi nition, these functions are not part of SQL Standard 
because of fundamental differences in various RDBMS implementations. In fact, 
they are mostly provided for the Database Administrator (DBA) to use. Some of 
these will be discussed in Chapter 8.

MISCELLANEOUS FUNCTIONS

With every classifi cation there are always some functions that do not fi t into a single well-defi ned 
category. Some of the functions implemented by the major commercial RDBMSs are shown in a 
“Miscellaneous” category in Table 4-7.

TABLE 4-7: Miscellaneous Functions

ORACLE 11G IBM DB2 9.7 MICROSOFT SQL 

SERVER 2008

DESCRIPTION

COALESCE (expres-

sion1, expression2, 

expression3...)

COALESCE (expres-

sion1, expression2, 

expression3...)

VALUE

COALESCE 

(expression1, 

expression2, 

expression3...)

Returns fi rst argument on 

the list that is not NULL.

HSQLDB uses COALESCE 

function.

Microsoft Access could 

use combination of IIF and 

IsNULL functions.

CASE (expression) 

WHEN<compare 

value>THEN<substitute 

value>ELSEEND

DECODE (expression, 

compare value, sub-

stitute value...)

CASE (expression) 

WHEN<compare 

value>THEN<substitute 

value>ELSEEND

CASE (expression) 

WHEN<compare 

value>THEN

<substitute 

value>ELSEEND

Compares an input 

expression to some 

predefi ned values and 

outputs a substitute value, 

either hard-coded or 

calculated.

HSQLDB uses CASE 

statement.

Microsoft Access could 

use hierarchy of IIF 

functions.

c04.indd 126c04.indd   126 3/15/2011 12:22:38 PM3/15/2011   12:22:38 PM



Making the CASE x 127

ORACLE 11G IBM DB2 9.7 MICROSOFT SQL 

SERVER 2008

DESCRIPTION

NULLIF (expression1, 

expression2)

NULLIF (expression1, 

expression2)

NULLIF 

(expression1, 

expression2)

Compares two expres-

sions; if they are null, 

returns NULL; otherwise. 

The fi rst expression is 

returned.

HSQLDB uses NULLIF 

function.

Microsoft Access uses 

combination of IIF and 

IsNull functions.

NVL (expression, 

value)

COALESCE (expres-

sion, value)

ISNULL (expres-

sion, value)

Checks whether an 

expression is null; if it is, 

returns a specifi ed value.

HSQLDB uses IFNULL 

function.

Microsoft Access uses 

IsNULL function.

MAKING THE CASE

Conditional execution is not easy in SQL, and some implementations recommend using a custom 
function to format a conditional output of a query. Some rudimentary capabilities were introduced 
to remedy the situation, however. In 1999, the SQL Standards committee introduced the CASE 
statement. 

Not everybody came onboard with it, at least not immediately. Oracle was very fond of its 
own DECODE function that (Oracle claimed) was more versatile and powerful. Without 
disputing the claim, we want to note that it finally relented, and introduced CASE expres-
sions in version 10g (yet its beloved DECODE function is still supported, if only for backward 
compatibility).

Oracle’s DECODE function allows you to modify the output of the SELECT statement depending on 
certain conditions (IF . . . THEN . . . ELSE logic). It compares an expression (usually a column 
value) to each search value one by one. If a match is found, the function returns the corresponding 
result; otherwise, it returns the default value. If no match is found and no default is specifi ed, the 
function returns NULL. In addition to DECODE, Oracle 11g also has a CASE statement that is identical 
in usage to that of the other RDBMSs discussed here.

The CASE statement produces similar results using much less cryptic syntax, and no function is 
involved.

For example, in our LIBRARY database table BOOKS, the column BK_PUB_YEAR could be used to sort 
out “new” and “old” titles.

c04.indd 127c04.indd   127 3/15/2011 12:22:38 PM3/15/2011   12:22:38 PM



128 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

While it is in the eye of the beholder, such a report might require additional information on how to 
interpret the somewhat cryptic Y and N. The query that would resolve the problem in Oracle (using 
DECODE function) is the following:

SELECT

nk_title,

DECODE(BK_PUB_YEAR, ‘2000’, ‘old’,

‘2011’, ‘recent’, ‘undefined’) AS 

FROM books;

In plain English, the DECODE statement in this query means: If the value in the column BK_PUB_
YEAR is 2000, then replace it in the output with the “recent” string; if the value is 2011, then put 
“recent” in its place; if it is neither 2000 nor 2011, replace it with undefined. The maximum num-
ber of components (including expression, search criteria, matches, and defaults) for the function is 
255.

This example produces identical results in SQL which conforms to the standard, now understood by 
virtually every RDBMS:

SELECT

bk_title,

    CASE bk_pub_year

        WHEN < 2000 THEN ‘old’

        WHEN > 2010 THEN ‘recent

        ELSE ‘undefined’

    END

FROM books;

The query becomes much more readable, with an added benefi t of being portable across all three 
RDBMSs. The CASE statement is not limited to the SELECT query only; it can also be used in an 
UPDATE query, in a WHERE clause, and several others.

For every function that substitutes one value for another, it is important to 
specify data of compatible data types: The substitute value must match that of 
the column. 

Some RDBMSs would implicitly convert numeric value into character data 
based on the assumptions they make when analyzing operands. For instance, if 
all operands appear numeric, even when some of them represent years and some 
represent book price, SQL Server would simply add them together because they 
all could be cast as numbers, and the fi rst operand is a number.

SELECT 1 + ‘2009’ + ‘098765432’ AS total

total

-----------

98767442

The result is different if you change the order of the operands or enclose 1 in 
quotes, indicating that you want to treat it as a character, not a number.

c04.indd 128c04.indd   128 3/15/2011 12:22:38 PM3/15/2011   12:22:38 PM



SQL Procedural Extensions x 129

SELECT ‘1’ + ‘2009’ + ‘098765432’ AS total

total

--------------

12009098765432

While automatic conversion makes your life easier, it is also leads to sloppy 
code. Because the behavior differs from RDBMS to RDBMS and is not guaran-
teed to be supported in any future releases, you should not rely on it. 

SQL PROCEDURAL EXTENSIONS

If you are familiar with other programming languages, such as Java, C/C#, Visual Basic, PHP, or 
JavaScript, you will immediately notice the difference among any of these languages and set-based SQL.

The majority of general-purpose programming languages out there are procedural. A procedural
program is essentially a list of step-by-step instructions that tell the computer what to do (for exam-
ple, repeatedly read user’s input, multiply it by some predefi ned constant, and store the result in a 
database table). A procedural program can be instructed to evaluate input and branch into different 
execution paths, depending on the outcome; it can recover from an error or use subroutines. Most 
importantly, it does not need an SQL engine to run. 

The fi rst RDBMS implementations did not have procedural language capabilities. All procedural 
database processing was done using embedded programming. All major procedural languages that 
were popular back then (C, COBOL, Pascal) had (and still have) special extensions (precompilers) 
that allowed the programmer to embed SQL statements directly into programming language code 
to be compiled together. The work of precompilers was to translate SQL into appropriate language 
constructs that could later be compiled into binary code. 

As relational databases became increasingly sophisticated, and more internal control was delegated 
to RDBMSs, the idea arose to store procedural programming modules inside RDBMSs in compiled 
(binary) format. Off-loading most of the processing to a server makes a lot of sense. As a result, 
each vendor implemented its own version of internal RDBMS procedural modules.

Before the introduction of the SQL/PSM (Persistent Storage Module) in the evolving SQL Standard 
there were no facilities in SQL to deal with these issues, so RDBMS vendors fi lled the gap by intro-
ducing hundreds of proprietary functions and whole new languages into their respective databases. 
Virtually every database vendor today provides procedural extensions for use with its database prod-
ucts. Oracle has built-in PL/SQL, Microsoft uses its own dialect of Transact-SQL (which shares its 
roots with Sybase, another RDBMS vendor), and DB2 9.7 uses SQL PL. The open source RDBMS 
PostgreSQL allows for virtually any procedural language to be used with its SQL engine and PL/
pgSQL. MySQL has added limited support for stored procedures in version 5, using its own unnamed 
yet dialect. Both Microsoft Access and OpenOffi ce BASE allow for their respective versions of Basic to 
be used inside the database. Unlike set-based SQL, these procedural extensions allow for creating full-
fl edged programs within their respective host environments. Custom UDFs are usually created using 
one of their procedural languages (more on stored procedures later in the chapter).

c04.indd 129c04.indd   129 3/15/2011 12:22:39 PM3/15/2011   12:22:39 PM



130 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

A special type of stored procedure, a trigger, was mentioned earlier in this chapter. It is associ-
ated with a database object (usually a table, but some RDBMSs allow triggers on databases and 
instances) and executes upon a change event happening to that object, such as an UPDATE, 
INSERT, or DELETE for a table; or an ALTER or DROP event for the objects inside RDBMS. This 
is an advanced topic and is outside the scope of the book.

Some vendors allow for general-purpose languages such as Java or C# to be 
used for procedural programming within their RDBMS. Microsoft SQL Server 
allows for procedures and functions to be created in C#; while Oracle, DB2, and 
PostgreSQL support the Java programming language.

SQL proper lacks procedural constructs. Specifi cally, it lacks the capability to perform operations 
in (optionally named) hierarchical logical blocks that can accept and return values, perform itera-
tions, execute conditional statements, and so on. To some extent this defi ciency is alleviated with 
SQL functions, but to be able to manipulate data on a row by row basis one has to use procedural 
extensions, or, as is the case with Microsoft Access and OpenOffi ce BASE with HSQLDB, some 
variations of a built-in scripting language. Table 4-8 lists the procedural extensions supported by the 
respective RDBMSs.

TABLE 4-8: RDBMS and Procedural Extensions

RDBMS PROCEDURAL LANGUAGES SUPPORTED SUPPORTED TYPES

Microsoft SQL 

Server 

Transact-SQL, .NET languages (C#, 

VB.Net)

Stored procedures, functions, 

triggers

Oracle PL/SQL, Java, .NET languages (C#, 

VB.Net)

Stored procedures, functions, 

triggers

IBM DB2 LUW SQL PL, Oracle’s PL/SQL, Java, .NET lan-

guages (C#, VB.Net)

Stored procedures, functions, 

triggers

PostgreSQL PL/pgSQL, PL/Perl, PL/Python, PL/TCL, 

as well as ability to plug in other proce-

dural languages

Stored procedures, functions, 

triggers

MySQL MySQL Stored Procedure Language Stored procedures and functions 

Microsoft Access Visual Basic For Applications (VBA) Programming modules; queries

OpenOffi  ce 

BASE

OpenOffi  ce BASIC Programming modules; queries

Although the basic syntax elements of these three languages are similar, the advanced features dif-
fer signifi cantly. For simplicity sake, we are going to stick with one fl avor of RDBMS procedural 
language: Transact-SQL implemented by Microsoft SQL Server (also found in Sybase). Versions 

c04.indd 130c04.indd   130 3/15/2011 12:22:39 PM3/15/2011   12:22:39 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



SQL Procedural Extensions x 131

for other RDBMSs are available for download from the book’s site at www.wrox.com and at www
.agilitator.com.

Happy Parsing: Stored Procedures

The mechanics of creating a stored procedure is simple:

CREATE PROCEDURE <procedure name> (procedure arguments>)

<procedure body>

Because stored procedures cannot be used in a SELECT statement, there is no easy way to pass in a 
fi eld name (well, there are ways, like dynamic SQL, or the hitherto unmentioned CURSOR, but they 
do not change the fundamental fact that a stored procedure is an outsider in the set-based world). 

The body could contain declared variables, conditional statements, loops, and error-handling rou-
tines — everything you came to expect from a procedural language. Let’s apply these basic concepts 
to see how a stored procedure can be used to help the situation with the insanely convoluted parsing 
algorithm introduced earlier in the chapter.

TRY IT OUT 

We will create a stored procedure to parse a string into three tokens according to delimiters found in 
the string, and return it to the calling client. We will use Microsoft SQL Server Transact-SQL, but the 
same principles are applicable to every other procedural language implemented in RDBMSs.

1. First, let’s create a table to collect output of the parsing routine. Run the following statement from 
the Query Analyzer window:

CREATE TABLE tokens (id INT IDENTITY(1,1), token_value VARCHAR(max))

The IDENTITY column will automatically insert incremental numbers into the ID column 
to keep track of the tokens.

2. Enter the text of the stored procedure (you can download scripts from the book site); we’ll discuss 
how it works later in this chapter:

CREATE PROCEDURE usp_ParseString(@string2parse VARCHAR(max)

, @delimiter CHAR(1))

AS

BEGIN

DECLARE @remainder VARCHAR(max)

DECLARE @token VARCHAR(100)

DECLARE @position INT

SET @remainder = @string2parse

   WHILE CHARINDEX(@delimiter,@remainder)> 0

   BEGIN

    --- find position of a delimiter in the string

    SET @position = CHARINDEX(@delimiter,@remainder)

    --- extract token from the string

    SET @token = SUBSTRING(@remainder, 1,@position-1)

    --- save the token into [tokens] table

    PRINT @token

    PRINT @remainder

c04.indd 131c04.indd   131 3/15/2011 12:22:40 PM3/15/2011   12:22:40 PM



132 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

    INSERT INTO tokens VALUES(@token)

    --- afterremiving token,

    --- assign new string to the @remainder variable

    SET @remainder = SUBSTRING(@remainder,@position+1, LEN(@remainder))

   END

END

3. Compile the stored procedure by highlighting the entire text and clicking Execute at the top toolbar 
of the Query Analyzer (with the red exclamation mark on the left of the Execute caption).

4. Run the stored procedure while supplying the necessary arguments. The EXEC keyword is used in 
Microsoft SQL Server:

execusp_ParseString ‘Microsoft SQL Server 2000 Weekend Crash Course;

978-0764548406;Hungry Minds;’, ‘;’

Note that the semicolon appears three times in the body of the string; the algorithm of the 
preceding stored procedure relies on this fact (the logic would have been slightly different if 
this semicolon were not present).

5. After the execution completes, run the SELECT query on the TOKENS table:

SELECT * FROM tokens

id        token_value

--        ---------------------------------

1         Microsoft SQL Server 2000 Weekend Crash Course

2         978-0764548406

3         Hungry Minds

(3 row(s) affected)

How It Works
The stored procedure accepts two arguments: the string to parse and a delimiter separating tokens in 
the string. Several variables were declared to hold intermediate values as we proceed at chopping the 
string. The WHILE loop will continue to execute as long as there is a single semicolon in the string. The 
expression (CHARINDEX(@delimiter,@remainder)> 0) evaluates to TRUE. Inside the WHILE loop, 
the steps are as follows: fi rst fi nd the position of the semicolon in the string and chop off the token, 
starting from the fi rst character up to the semicolon position, and then insert it into the TOKENS table; 
the remainder of the string, starting with the second character (excluding the semicolon) until the end, 
is assigned back to the variable @remainder, and the cycle repeats until no semicolons remain. 

Keep in mind that the code of the procedure is used only to illustrate a concept, and as such contains no 
error handling or assumption validations. The code providing this functionality would have to be more 
robust to be considered production quality.

User-Defi ned Functions (UDFs)

The ability to extend built-in functionality is a double-edged sword. It is extremely satisfying to be 
able to step outside limits imposed by people and organizations implementing the RDBMS, but there 
is a price to pay. Besides understanding basic syntax and programming constructs, one also has to 
consider the ramifi cations of using custom functions: portability, security, and performance. Always 
read the RDBMS documentation: There is a good chance that a function you need is already there.

c04.indd 132c04.indd   132 3/15/2011 12:22:40 PM3/15/2011   12:22:40 PM



SQL Procedural Extensions x 133

The syntax is straightforward: 

CREATE FUNCTION <function name> (<arguments>)

RETURN <data type>

<function body>

RETURN <return value>

In this code snippet, the <arguments> are the values that the function takes in, and the return <data 
type> spells out the data type of what the function is supposed to return when execution reaches 
the RETURN statement. The return is what differentiates a UDF from a stored procedure. There is 
another important distinction: A function can be used in a SELECT statement, but a stored proce-
dure cannot.

In addition to the expected discrete data types, such as characters and numbers, some RDBMSs 
allow for returning tables, so you could SELECT from a function. A detailed discussion of UDFs 
is outside the scope of this book, but the reader is encouraged to refer to other titles, such as SQL
Functions or SQL Bible, 2nd Edition, found in the sample data in our Library database, both pub-
lished by Wiley with Alex Kriegel as one of co-authors.  

TRY IT OUT 

We will create a custom function to return the price of the book in pounds sterling and Euros in addi-
tion to the U.S. dollars you’ve entered. This would require us to create a table to hold exchange rates. 
Throughout this example, we will use Microsoft SQL Server Transact-SQL syntax. The data type used 
in the example — SMALLMONEY — is Microsoft-specifi c referring to a numeric data type used to 
store monetary data values from -214,748.3648 through +214,748.3647, with accuracy to a ten-thou-
sandth of a monetary unit.

1. Create an exchange rates table in the LIBRARY database and insert data (the exchange rates will 
have to be updated to refl ect the current status, of course): 

USE library

CREATE TABLE exchange_rates(currency  VARCHAR (15), rate_to_dollar MONEY)

INSERT INTO exchange_rates VALUES (‘euro’,0.728)

INSERT INTO exchange_rates VALUES (‘pound’,0.639 )

2. Create a UDF to convert the rates:

CREATE FUNCTION ufn_Exchange(@price SMALLMONEY, @currency VARCHAR(15))

RETURNS SMALLMONEY

AS

BEGIN

    DECLARE @return SMALLMONEY

    SELECT @return = @bprice/rate_to_dollar

        FROM exchange_rates

          WHERE currency = @currency

 

RETURN (@return)

END;

3. Construct an SQL query listing all titles in the BOOKS table with prices in U.S. dollars, British 
pounds, and Euros.

c04.indd 133c04.indd   133 3/15/2011 12:22:40 PM3/15/2011   12:22:40 PM



134 x CHAPTER 4  OVERCOMING THE LIMITATIONS OF SQL 

SELECT 

bk_title

, bk_price AS dollars

, dbo.ufn_Exchange(bk_price,’pound’) AS pounds

, dbo.ufn_Exchange(bk_price,’euro’) AS euros

FROM books;

How it works
The custom function accepts two parameters: the numeric value to be converted and the currency 
indicator specifying which exchange rate to use. The fi rst value is selected from the BOOKS table; the 
second is hard-coded into the query. The function dbo.ufn_Exchange is executed twice for each row 
returned by the SELECT statement. For the fi ve records contained in our table, this means 20 func-
tion calls, and each call performed a SELECT query of its own. Think about it from a performance 
point of view.

Why Use Procedural Extensions?

Stored procedures, UDFs, and triggers can be used in many different ways and for many different 
reasons, both valid and otherwise. The main benefi ts include performance improvement, network 
traffi c reduction, increased database security, and code reusability. 

These benefi ts of performance improvement, network traffi c reduction, 
increased database security, and code reusability affect the RDBMSs discussed 
in this book differently. For instance, network traffi c is not much concern for 
users of desktop databases such as Microsoft Access and OpenOffi ce BASE.

Performance and Network Traffi  c

Stored routines can be used to improve application performance. By virtue of being compiled — that 
is, translated into machine code stored inside the RDBMS — they generally execute faster than SQL 
statements, which have to be compiled every time they’re submitted to the database. Compilation is 
an expensive process in terms of CPU cycles and memory.

Network traffi c can also be signifi cantly reduced by referring to a stored procedure and passing the 
arguments into it. Such a process is much more concise than sending verbose SQL statements. Each 
individual statement is probably not large enough to improve the overall network performance, but 
in a large system with thousands of users and hundreds of thousands of SQL statements, it can make 
a difference.

Database Security

Stored procedures, functions, and triggers can be used to improve database security. A stored proce-
dure (or function) is a separate database object that could have a separate set of privileges. In theory, 

c04.indd 134c04.indd   134 3/15/2011 12:22:40 PM3/15/2011   12:22:40 PM



Summary x 135

this procedure could be the user’s only gateway to the data in database functionality. A user could 
be only allowed to connect to the RDBMS and execute this procedure. 

Triggers could be even more useful for security implementation. A trigger for a table could validate 
input, preserve modifi ed data, and record changes made to a table by different users for audit pur-
poses; triggers declared on a database level would be able to intercept database-wide events such as 
creating, altering, and dropping database objects.

Code Reusability

Another important benefi t of stored routines is code reusability. Once designed and compiled, a 
stored procedure or UDF can be used over and over again by multiple users (or applications), saving 
time on retyping large SQL statements and reducing the probability of human errors. Also, when a 
persistent module needs to be changed, the change won’t affect the client programs that access the 
module, as long as all the calling parameters (procedure’s signature) remain the same. In contrast, 
such a change would require updating every application that uses this database if it were using 
dynamic or embedded SQL.

It’s not all icing on the cake; there are veritable drawbacks to using procedural 
extensions. First, it affects the portability of your code. Any custom function 
or procedure would have to be translated when you move from one RDBMS 
to another. While some databases such as IBM DB2 would allow you to run 
Oracle’s PL/SQL code, others will not. Second, consider the potential effects 
on database performance. Your custom procedure will never be as optimal as a 
built-in one and is much likely to contain bugs (test your code thoroughly).

SUMMARY

SQL’s built-in functions complement inherent defi ciencies in the nonprocedural language. They per-
form many useful tasks, ranging from rounding numbers to string manipulation to conversion of 
data types to the sophisticated processing logic of substitute functions.

While the number of functions defi ned in SQL92/99 standards is relatively small (although 
expanded in SQL:2003), every RDBMS vendor has added its own set of these useful tools well in 
excess of hundreds. Therefore, it should not come as a surprise that functions differ across the ven-
dors — by capability, implementation details, syntax, or simply by being included or excluded from 
the implementation. Never assume that an SQL function found in one implementation would exist 
in another.

To enhance RDBMS functionality and alleviate some defi ciencies inherent in SQL, the early 
RDBMSs have introduced procedural extensions to the language. These extensions allow for 
creating programs running inside the RDBMS, which implement procedural logic and allow for 
structured programming techniques to be used. They also offer the benefi ts of increased effi ciency, 
enhanced security, and code reusability.

c04.indd 135c04.indd   135 3/15/2011 12:22:40 PM3/15/2011   12:22:40 PM



c04.indd 136c04.indd   136 3/15/2011 12:22:41 PM3/15/2011   12:22:41 PM



5
Grouping and Aggregation

Having your data delivered in minute detail works fi ne until you need to look at the bigger 
picture. How many books have you accumulated in your library? What is the total cost? How 
much do you spend on average? These questions, and more, are addressed in SQL with aggre-
gate functions.

We touched on aggregate functions briefl y in Chapter 4 as part of the discussion of SQL func-
tions in general and promised to answer a few questions about them; now’s the time.

AGGREGATE SQL FUNCTIONS REVISITED

SQL Standard includes a surprising number of advanced statistical functions (more than 20!) 
that you might never encounter solving day-to-day problems, and most enterprise-class RDBMSs 
added a few of their own. A detailed discussion of these SQL functions belongs in an advanced 
book. A list of the most common functions can be found in Table 5-1, later in this chapter.

Aggregate functions return a single value based on a specifi c calculation within a set (group) 
of values. In the most basic case, the group is the entire table data set.

AVG()

There is a line in a humorous essay by Stephen Leacock that describes a particular kind of 
library: “There are, of course, all the new books, the new fi ction, because there is a stand-
ing order with Spentano to send up fi fty pounds of new fi ction by express once a week.” 
Supposing that we maintained our library in the same fashion, how would our accountant 
handle it?

SELECT 

  AVG(bk_price)       AS average_price 

 ,AVG (bk_page_count) AS average_pages

FROM books;

average_price     average_pages

----------------  --------------------

29.5758           597

c05.indd 137c05.indd   137 3/15/2011 12:23:48 PM3/15/2011   12:23:48 PM



138 x CHAPTER 5  GROUPING AND AGGREGATION

This is how much we spent on books on average (depending on your data you might have spent 
more or less, on average, per book), and there are an average of 597 pages per book. Put in context, 
this data might even be useful to track your book spending habits, for instance.

Of course, depending on our needs, we may put conditions on our query to narrow down the data 
set for which the average is being calculated. For instance, to fi nd the average price per book of only 
those books that cost more than $30, we can run this query:

SELECT 

    AVG(bk_price) AS average_price

FROM books

   WHERE bk_price > 30;

average_price 

-------------------

50.4875

The AVG function takes into consideration only records for which data exist. It is a good idea to 
ignore the record and not implicitly convert NULL into zero. 

TRY IT OUT Counting NULL(s) and Zeroes 

In order to explore how AVG function treats NULL, we will update some of our records with NULL 
values and then calculate averages. We will use Microsoft SQL Server 2008 to run the queries, but the 
behavior is identical across all RDBMSs in this book.

1. Open Microsoft SQL Server Management Studio and connect to your database using Windows 
authentication.

2. In the upper-left corner click the New Query button.

3. In the opened query window (the middle pane), enter the following SQL query:

SELECT AVG(bk_price) AS average_price FROM books;

average_price

----------------

29.5758

4. Update the BK_PRICE column for one of the records; for example, record with BK_ID=12 to 
NULL:

UPDATE books SET bk_price = NULL 

WHERE bk_id = 12;

5. Run the query from Step 3 again by pressing the Execute button on the toolbar of SQL Server 
Management Studio:

SELECT AVG(bk_price) AS average_price FROM books;

average_price

----------------

31.3372

c05.indd 138c05.indd   138 3/15/2011 12:23:52 PM3/15/2011   12:23:52 PM



Aggregate SQL Functions Revisited x 139

6. Let’s update the same record (BK_ID=12) with zero value:

UPDATE books SET bk_price = 0 

WHERE bk_id = 12;

7. Run the query from Step 3 again:

SELECT AVG(bk_price) AS average_price FROM books;

average_price

----------------

28.7258

8. Restore the original value for the record 12:

UPDATE books SET bk_price = 10.20

WHERE bk_id = 12;

How It Works
The mathematical average is calculated as the sum of all values, divided by their count. When all 12 
records have numeric values in the BK_PRICE column, the average is 29.5758. 

When the BK_ID � 12 record is updated with NULL value, it gets excluded both from the sum of the 
values (dividend) and from the record count (divisor); only 11 records and their values will be used to 
calculate the average. The result is therefore is bit higher (31.3372) because the price taken out of the 
equation is relatively small ($10.20).

When we update the record with the zero value, both the zero and the record are counted toward the 
averages. The result is different because now this book IS counted. In fact, it is counted as having cost 
nothing, which brings the average down some.

Finally, if we tried to compute the AVG on a column where there were no data in ANY rows (all 
NULLs, all the way down), we would get a NULL as our result. No data means no data!

This behavior is identical across all RDBMSs.

COUNT()

Counting the number of records in your data set is easy with the COUNT function. There are two 
primary ways this function can be used: counting everything or just specifi c columns:

SELECT COUNT(*) AS records_count

FROM location;

record_count

--------------

12

Used in this way, the function allows us to compute the number of rows in the table. The asterisk 
symbol (meaning “all”) can be substituted for a specifi c column name, say, BK_ID:

c05.indd 139c05.indd   139 3/15/2011 12:23:52 PM3/15/2011   12:23:52 PM



140 x CHAPTER 5  GROUPING AND AGGREGATION

SELECT COUNT(bk_d) AS records_count

FROM location;

record_count

--------------

12

The results are identical because every row in the column BK_ID has a value in it. This is not the 
case when the column contains NULL (“no data here”), but if we NULL-out some column value in 
the BOOKS table and run our COUNT on it, the results would be quite different:

UPDATE books SET bk_price = NULL where bk_id = 12;

SELECT COUNT(bk_price)AS counting_prices

FROM books;

counting_prices 

------------------

11

Now we have a different result! What’s the difference? This time we have asked the function to 
compute the number of rows, where there is a value in the given column (bk_price in this case; don’t 
forget to restore the value as in Step 8 of the fi rst Try It Out in this chapter).

Use of aggregate functions is not limited to the SELECT, UPDATE, and 
INSERT lists; they just as successfully can be used in the WHERE clause, 
though additional restrictions apply. (This is discussed later in this chapter.)

Again, we can put conditions on this query: for instance, how many books do we have in the right-
most bookcase in the living room?

SELECT COUNT(*) AS counting_books

FROM books

  WHERE  (bk_price  > 30);

counting_books 

-----------------------

4

Looks like only four out of 12 books cost more than 30 dollars, which might indicate that either we 
do not buy expensive books or we just forgot to enter the prices. Remember that the NULL value is 
not counted.

MAX()

This function returns the highest value in the specifi ed column:

SELECT MAX(bk_price) AS max_price FROM books;

max_price 

------------------

69.26

c05.indd 140c05.indd   140 3/15/2011 12:23:53 PM3/15/2011   12:23:53 PM



Aggregate SQL Functions Revisited x 141

What would happen if there were several books with identical prices? Only one number will be 
returned regardless of how many there might be. When the column is the numeric data type, the 
greatest number will be returned and applied to a text fi eld. It will return the value that sorts last 
in the alphabetical order, and it cannot be applied to either binary or XML data type columns. For 
instance, consider the following query:

SELECT MAX(bk_title) AS max_title FROM books;

max_title 

-------------------------------------------------------

Wiley Pathways: Introduction to Database Management

The title was returned because it is last on the alphabetically sorted titles list.

MIN()

This function returns the lowest value in the specifi ed column:

SELECT MIN(bk_price) AS min_price FROM books;

min_price 

------------------

8.89

Applied to a text fi eld, it will return the value that sorts fi rst in the alphabetical order:

SELECT MIN(bk_title) AS min_title FROM books;

min_title 

-------------------------------

A La Recherche du Temps Perdu

As with every other aggregate function, columns containing NULL values are simply ignored.

Both MAX and MIN functions work on single-value columns, and you cannot ask them to return, 
say, a greatest/least number from a list of numbers; you would have to use a different function. 
Both Oracle and MySQL offer GREATEST and LEAST functions; for instance, the following query 
would be perfectly legal in Oracle (but would not work in IBM DB2, SQL Server, Microsoft Access, 
or PostgreSQL):

SELECT 

    LEAST(1,2,3,4,5,6,7,8)   AS min_num

   ,GREATEST1,2,3,4,5,6,7,8) AS max_num   

FROM dual;

min_num   max_num

--------- ---------

1         8

There are ways to emulate this functionality in other RDBMSs: by creating custom functions or by 
delving into advanced SQL data manipulation, which is outside the scope of this book.

c05.indd 141c05.indd   141 3/15/2011 12:23:53 PM3/15/2011   12:23:53 PM



142 x CHAPTER 5  GROUPING AND AGGREGATION

SUM()

To calculate totals, SQL supplies the SUM function; this function returns the total of all numeric 
values in a column:

SELECTSUM(bk_price) total_costs

FROM  books

total_costs 

------------------

354.91

Similar to AVG, any rows without data in the given column (showing NULL in it) are ignored. An 
attempt to SUM the column that has no data in any row results in NULL. If you try to run SUM on 
a non-numeric (text) column, you will get an error.

Table 5-1 shows common aggregate functions in use.

TABLE 5-1: Commonly Used Aggregate Functions

SQL FUNCTION DESCRIPTION

AVG Returns the calculated average of the list of numbers; NULL values are ignored.

COUNT Returns the number of row s retrieved by the query; NULL values are ignored.

MAX Returns a single maximum value for a given column ; NULL values are ignored.

MIN Returns a single minimum value for a given column ; NULL values are ignored.

SUM Returns the sum of the numeric values in a column; NULL values are ignored.

TRY IT OUT Constructing an AVG Function of Our Own 

The SQL is very fl exible to allow you to combine several functions in a query (SELECT, UPDATE, and 
INSERT) to produce the desired result. Here, we are going to try to reproduce the AVG() function’s 
functionality:

1. Open Microsoft SQL Server Management Studio and connect to your database using Windows 
authentication.

2. In the upper-left corner, click the New Query button.

3. In the query window, enter the following query:

SELECT 

     SUM(bk_price)/COUNT(bk_price) AS average_price

   , SUM(bk_price)                 AS total_price

   , COUNT(bk_price)               AS books_count

FROM books;

average_price    total_price    books_cout

---------------- -------------- --------------

29.5758           354.91         12 

c05.indd 142c05.indd   142 3/15/2011 12:23:53 PM3/15/2011   12:23:53 PM



Eliminating Duplicate Data x 143

How It Works
Calculating averages is simple: get the total of all values and divide it by the number of the values in the 
set. Using the SUM() function to produce the former and COUNT() for the latter, we can instruct the 
database engine to calculate the average from the dynamic values produced by these two functions.

All the rules applied to individual functions fully apply to their quotients (NULLS, zeroes, and so on).

ELIMINATING DUPLICATE DATA

The full syntax for the aggregate functions discussed in this chapter follows the same pattern:

FUNCTION (DISTINCT | ALL)

Here’s an example:

AVG(DISTINCT | ALL)

The default is ALL, meaning that all values in the set will serve as input to the function. Using the 
DISTINCT keyword, the duplicate values will be ignored. For instance, we can count all the books 
published by Wiley:

SELECT 

    COUNT(bk_publisher) AS pub_count

FROM books

WHERE bk_publisher = ‘Wiley’;

pub_count 

------------------

4

The result is 4, which is how many Wiley books are in our library. The results will be quite different 
if we ask for a DISTINCT record count:

SELECT COUNT(DISTINCT bk_publisher)  AS pub_count

FROM books

WHERE bk_publisher = ‘Wiley’;

pub_count 

----------------

1

The four values have collapsed into one because we have exactly one occurrence of the value in the 
data set. Of course, both variants could be used within the same query:

SELECT 

  COUNT(bk_publisher)             AS pub_count

, COUNT(DISTINCT bk_publisher)    AS distinct_count

FROM books;

pub_count   distinct_count

----------- ---------------

12          9

c05.indd 143c05.indd   143 3/15/2011 12:23:53 PM3/15/2011   12:23:53 PM



144 x CHAPTER 5  GROUPING AND AGGREGATION

The preceding results show 9 distinct publishers in our table, out of a total of 12.

It matters where you insert your DISTINCT keyword. Used within an aggregate function, it pro-
duces aggregated results for the set of distinct values; used outside it makes the return result distinct. 
Consider these two queries and their respective outputs:

SELECT 

    DISTINCT COUNT(bk_publisher) AS pub_count

FROM books;

pub_count 

----------------

12

SELECT 

    COUNT(DISTINCT bk_publisher) AS pub_count

FROM books;

pub_count 

----------------

9

The results are different because in the fi rst query the DISTINCT keyword made sure that only 
distinct results of the COUNT function were returned. In this case, it is redundant because an 
aggregate function without the GROUP BY clause (see later in this chapter) always returns only a 
single record. In the second query, it makes sure that only distinct values are counted prior to the 
result being returned.

Even though some aggregate functions can be used with character data (or date 
and time data types), they are really designed for numbers. They accept neither 
XML nor binary data types as input.

GROUP BY: WHERE YOUR DATA BELONGS

By now, you might be wondering how you would go about selecting data based on the aggregated 
values. For instance, how do you fi nd all publishers whose average book price is above $20? Surely, 
you could use the trusty WHERE clause, right? Uh, no. Try executing a query like this:

SELECT bk_publisher 

FROM books 

    WHERE AVG(bk_price) > 20;

You get an error message that in the context of Microsoft SQL Server 2008 reads as follows:

An aggregate cannot appear in the WHERE clause unless it is in subquery contained 

in a HAVING clause or a select list, and the column being aggregated in an outer 

reference.

c05.indd 144c05.indd   144 3/15/2011 12:23:53 PM3/15/2011   12:23:53 PM



GROUP BY: Where Your Data Belongs x 145

Yet there is a way to ask the database engine such a question, and get a result, by using the GROUP 
BY clause (with the HAVING clause not far behind), but let’s get the basics nailed down fi rst.

Aggregating results by rolling them up to a single value is useful, as is having all the data stored in 
the individual records, but sometimes a middle ground is needed. Using the WHERE clause with 
an aggregate function allows us to aggregate a subset of the results. For example, we can count 
books published by a particular publisher. To do the same for all publishers, we would have to run 
as many queries as there are distinct publishers in our table; moreover, we would need to know the 
publishers by name to ask for them, and we may not know the names of all the publishers. If only 
we could ask the database for aggregated information grouped by some criterion without supplying 
hard-coded values. Here’s where the GROUP BY clause comes in.

The GROUP BY clause only works in tandem with aggregate functions and appears after all the 
SELECT, WHERE, and JOIN keywords in the query. To produce an aggregated price list by pub-
lisher (to discover how much you have spent buying books from this particular publisher) without 
ever knowing what publishers are in the table, use the following query:

SELECT 

    bk_publisher

  , SUM(bk_price) AS books_total

FROM books GROUP BY bk_publisher;

bk_publisher               books_total

-------------------------- ---------------------

Ace Trade                  16.29

Broadway                   18.48

Gallimard                  69.26

Greenbook Publications     8.89

MacMillan                  38.88

Microsoft                  24.99

Orb Books                  16.29

Picador                    10.20

Wiley                      151.63

We know that there are exactly nine distinct publishers in our BOOKS table, so nine records were 
returned. Only for one publisher, Wiley, have we multiple books in the table, and the prices of these 
books were summed up and attributed to Wiley — along with other publishers and their summaries, 
respectively. All of this was provided in a single query, without having to spell names of the specifi c 
publishers. This is the beauty of the declarative nature of SQL.

The returned results in the previous query are sorted alphabetically by BK_
PUBLISHER, in descending order; this is the default. To sort it in a different 
order, you would need to use an additional ORDER BY clause, which is covered 
later in this chapter.

Every aggregate function, or combination thereof, could be used with GROUP BY clause. For exam-
ple, to calculate not only SUM, but also AVG, MI, MAX, and COUNT, you could include it all in a 
single query:

c05.indd 145c05.indd   145 3/15/2011 12:23:54 PM3/15/2011   12:23:54 PM



146 x CHAPTER 5  GROUPING AND AGGREGATION

SELECT 

    bk_publisher

    , SUM(bk_price) AS books_total

    , AVG(bk_price) AS avg_price

    , MIN(bk_price) AS min_price

    , MAX(bk_price) AS max_price

    ,COUNT(bk_price) AS book_count

FROM books 

    GROUP BY bk_publisher;

bk_publisher          books_total  avg_price    min_price  max_price    book_count

-------------------   -----------  ------------ ---------  ------------ -----------

Ace Trade             16.29        16.29        16.29      16.29        1

Broadway              18.48        18.48        18.48      18.48        1

Gallimard             69.26        69.26        69.26      69.26        1

GreenbookPublications  8.89         8.89         8.89       8.89        1

MacMillan             38.88        38.88        38.88      38.88        1

Microsoft             24.99        24.99        24.94      24.99        1

Orb Books             16.29        16.29        16.29      16.29        1

Picador               10.20        10.20        10.20      10.20        1

Wiley                151.63        37.9075      26.39      55.26        4

The results are predictable. With the exception of Wiley books, all other publishers are represented 
by a single book (output of the COUNT() function) and their total, min, max, and average prices 
are identical across the board. The differences are shown in Wiley’s case, where the product of the 
aggregate functions over prices for its four books is calculated.

It is possible to GROUP BY more than one column, but you need to understand how the set logic 
works to be able to formulate a question. Adding an additional column to your GROUP BY when 
selecting from a single table would produce a result set requiring additional manual steps to make 
sense of. For example, simply adding BK_TITLE to BK_PUBLISHER in the query asking to sum-
marize BK_PRICE will give you results indistinguishable from a standard SELECT query:

SELECT 

    bk_publisher   AS publisher

  , SUM(bk_price)  AS books_total

FROM books

GROUP BY bk_publisher, bk_title;

publisher               books_total

-------------------------- ---------------------

Gallimard                  69.26

Broadway                   18.48

Microsoft                  24.99

MacMillan                  38.88

Greenbook Publications      8.89

Wiley                      29.99

Orb Books                  16.29

Wiley                      39.99

Wiley                      26.39

Picador                    10.20

Ace Trade                  16.29

Wiley                      55.26

The order appears to be wrong. Should it not be ordered by BK_PUBLISHER? No, by default it 
is ordered by the last column specifi ed in the GROUP BY clause; in this case, by BK_TITLE (even 

c05.indd 146c05.indd   146 3/15/2011 12:23:55 PM3/15/2011   12:23:55 PM



GROUP BY: Where Your Data Belongs x 147

though the column itself is not on the select list). The column BK_TITLE does not have to appear on 
the select list to be included in the GROUP BY clause, but the opposite is not true: all columns listed 
in the GROUP BY clause must be included in the SELECT list (with the exception of the aggregated 
function column).

You won’t be able to use an aggregate SUM() function in the standard SELECT query which 
includes non-aggregated columns on the list because the database engine would get confused by 
being asked to produce both record-level and aggregate results without a GROUP BY, but sum of a 
single value is, by defi nition, this value. 

If your question involves data from another table JOIN(ed) together, the results are much more 
interesting. To fi nd the total price of the books published by a particular publisher per shelf in your 
bookcase, you might use the following query:

SELECT 

    SUM(bk_price) AS books_total

  , bk_publisher AS publisher 

FROM books INNER JOIN location

    ON bk_id = fk_bk_loc

        GROUP BY bk_publisher, loc_shelf;

books_total           publisher

--------------------- -----------------------------------

69.26                 Gallimard

8.89                  Greenbook Publications

10.20                 Picador

16.29                 Ace Trade

38.88                 MacMillan

16.29                 Orb Books

18.48                 Broadway

24.99                 Microsoft Press

151.63                Wiley

(9 row(s) affected)

A total of nine records were returned, a sign that we have grouped the results by nine distinct pub-
lishers. In addition, we can see price distribution by shelf, with all Wiley books being stored on shelf 
#5, totaling $151.63.

GROUP BY could be used all by itself without any aggregate functions to support. A query, such as 
the following, would return a list of publishers grouped by, well, publisher:

SELECT bk_publisher AS publisher

FROM books

GROUP BY bk_publisher

publisher               

-------------------------- 

Ace Trade

Broadway

Gallimard

Greenbook Publications

MacMillan

Microsoft

Orb Books

Picador 

Wiley 

c05.indd 147c05.indd   147 3/15/2011 12:23:55 PM3/15/2011   12:23:55 PM



148 x CHAPTER 5  GROUPING AND AGGREGATION

Each publisher now appears only once on the list, and the result is sorted alphabetically, in 
default ascending order. If you’re saying that the same could be achieved by simply selecting 
BK_PUBLISHER with the DISTINCT keyword, you are absolutely correct. In fact, there is a 
good chance that behind the scenes RDBMSs would treat both statements in the same way, prepar-
ing the same execution plan (see Chapter 9 for more information on execution plans and query 
optimization).

GROUP BY with HAVING Clause

With all the power a GROUP BY clause brings to the table it lacks the selectivity afforded by the 
WHERE clause. When all data is aggregated, how do you select a set with an average greater 
than $20 (a question we had asked at the beginning of the section)? One way is to use a subquery 
(covered in the next chapter), another way is to create a view (see Chapter 7), and then there is the 
HAVING clause. Let’s fi nd the publishers of the books in our library with average book prices 
over $20:

SELECT

    bk_publisher AS publisher

  , AVG(bk_price) AS avg_price

FROM books

   GROUP BY bk_publisher 

      HAVING AVG(bk_price) > 20;

publisher                 avg_price

------------------------- --------------------

Gallimard                69.26

MacMillan                38.88

Microsoft Press          24.99

Wiley                    37.9075

The AVG() function is used both in the SELECT list and in the HAVING clause, but it does not 
have to be. It was included only to show that the average prices were indeed in the specifi ed range. 
At the same time, should you decide to include the BK_PRICE column in the SELECT list, it can 
only appear as an argument for some aggregate function.

Being able to use aggregate functions as a fi ltering criterion certainly adds to the selectivity of the 
query, but, again, you don’t have to. If you decide to select records with simply BK_PRICE > 20, 
you can do that, although you would have to include the BK_PRICE in both the SELECT list and 
GROUP BY clauses, with very little to show up for the effort. The two following queries produce 
almost identical results on our data set:

SELECT 

    bk_publisher

   ,bk_price 

FROM books 

  GROUP BY bk_publisher,bk_price 

    HAVING bk_price > 20;

bk_publisher                     bk_price

-------------------------------- ---------------------

Gallimard                        69.26

MacMillan                        38.88

c05.indd 148c05.indd   148 3/15/2011 12:23:55 PM3/15/2011   12:23:55 PM



GROUP BY: Where Your Data Belongs x 149

Microsoft Press                  24.99

Wiley                            26.39

Wiley                            29.99

Wiley                            39.99

Wiley                            55.26

SELECT 

    bk_price

   ,bk_publisher 

FROM books 

    WHERE bk_price > 20;

bk_price              bk_publisher

--------------------- -----------------------

39.99                 Wiley

55.26                 Wiley

29.99                 Wiley

26.39                 Wiley

69.26                 Gallimard

24.99                 Microsoft Press

38.88                 MacMillan

In both cases, seven records were selected, and the only difference is that with GROUP BY you get 
the result set to be ordered by BK_PRICE. This brings us to the next section: sorting the output. 

ORDER BY Clause: Sorting Query Output

The default order of a query’s results is usually the order in which the records were entered into the 
table; queries with the GROUP BY clause return results in ascending order for the value in the last 
column on the GROUP BY list. There is a way to force the order; we are referring to the ORDER 
BY clause introduced in Chapter 2.

There are two ways to order the result — ascending and descending — and with ordering by mul-
tiple columns you can have both. Consider the following query:

SELECT

     bk_publisher  AS publisher

    ,bk_price      AS price

FROM books 

    ORDER BY bk_publisher ASC;

publisher                                price

---------------------------------------- ---------------------

Ace Trade                                16.29

Broadway                                 18.48

Gallimard                                69.26

Greenbook Publications                    8.89

MacMillan                                38.88

Microsoft Press                          24.99

Orb Books                                16.29

Picador                                  10.20

Wiley                                    39.99

Wiley                                    55.26

Wiley                                    29.99

Wiley                                    26.39

c05.indd 149c05.indd   149 3/15/2011 12:23:55 PM3/15/2011   12:23:55 PM



150 x CHAPTER 5  GROUPING AND AGGREGATION

Predictably, we see results organized by publisher in ascending order (the default in all RDBMSs, 
but the ASC modifi er is added to demonstrate the point). Now, by adding BK_PRICE DESC to the 
ORDER BY clause we instruct the database engine to organize the returned records fi rst in ascending 
order by publisher and then in descending order by price:

SELECT

     bk_publisher  AS publisher

    ,bk_price      AS price

FROM books 

    ORDER BY   bk_publisher ASC

, bk_price DESC;

publisher                                price

---------------------------------------- ----------

Ace Trade                                16.29

Broadway                                 18.48

Gallimard                                69.26

Greenbook Publications                    8.89

MacMillan                                38.88

Microsoft Press                          24.99

Orb Books                                16.29

Picador                                  10.20

Wiley                                    55.26

Wiley                                    39.99

Wiley                                    29.99

Wiley                                    26.39

If you notice familiarity with the results produced by the GROUP BY clause, you are absolutely 
right: the records are grouped by the columns, cascading from the fi rst on the list through the last. 
The use of the ORDER BY clause with GROUP BY is no different, with one important exception: 
in this case, it can be used with aggregate functions. Because it is the last fi lter to be applied after all 
other processing had been done, it must go at the very end of a query.

In Chapter 2, we introduced the TOP and LIMIT keywords as a means to restrict 
the number of records returned by a query (known as the “top N queries” prob-
lem). When using SQL aggregated functions without the GROUP BY clause, 
we naturally receive but a single record; when there is a need to limit output of a 
query that does use the clause, LIMIT and TOP could be used just as you would 
use them in a standard SELECT query.

An important thing to keep in mind is that the more clauses you pile onto your query, the more 
complex interactions become, and the results might not be quite what you might have expected.

Here is the query that reverses the default ascending order by BK_PUBLISHER imposed by the 
GROUP BY clause:

SELECT 

   bk_publisher  AS publisher

  ,AVG(bk_price) AS avg_price

FROM books 

    GROUP BY bk_publisher 

c05.indd 150c05.indd   150 3/15/2011 12:23:55 PM3/15/2011   12:23:55 PM



GROUP BY: Where Your Data Belongs x 151

        ORDER BY bk_publisher DESC;

Publisher                avg_price

----------------------- --------------

Wiley                   37.9075

Picador                 10.20

Orb Books               16.29

Microsoft               24.99

MacMillan               38.88

Broadway                18.48

Greebook Publications    8.89

Gallimard               69.26

Ace Trade               16.29

If we want to order the results by BK_PRICE, which is not on the SELECT list, we’d have to add 
BK_PRICE to GROUP BY clause list. Note that ORDER BY overrides the sort order imposed by 
GROUP BY, and now we have 12 records returned instead of 9, as it was the case in the previous 
example, because now we are GROUP(ing) by the combination of both publisher and price.

SELECT 

   bk_publisher  AS publisher

  ,AVG(bk_price) AS avg_price

FROM books 

    GROUP BY bk_publisher,bk_price

        ORDER BY bk_price DESC;

publisher                              avg_price

-------------------------------------- ---------------------

Gallimard                              69.26

Wiley                                  55.26

Wiley                                  39.99

MacMillan                              38.88

Wiley                                  29.99

Wiley                                  26.39

Microsoft Press                        24.99

Broadway                               18.48

Ace Trade                              16.29

Orb Books                              16.29

Picador                                10.20

Greenbook Publications                  8.89

To use the full power of aggregate functions, we could order the fi nal result set by a product of an 
aggregate function; for example, by average book price for that publisher in descending order:

SELECT 

    bk_publisher  AS publisher

   ,AVG(bk_price) AS avg_price

FROM books 

    GROUP BY bk_publisher 

        ORDER BY AVG(bk_price) DESC

publisher                       avg_price

------------------------------- ---------------------

Gallimard                       69.26

MacMillan                       38.88

c05.indd 151c05.indd   151 3/15/2011 12:23:55 PM3/15/2011   12:23:55 PM



152 x CHAPTER 5  GROUPING AND AGGREGATION

Wiley                           37.9075

Microsoft Press                 24.99

Broadway                        18.48

Ace Trade                       16.29

Orb Books                       16.29

Picador                         10.20

Greenbook Publications           8.89

Comparing the results with the almost identical query used earlier, you can see that ORDER BY 
overwrote the order introduced by the GROUP BY clause; additionally, the GROUP BY collapsed 
BK_PUBLISHER columns into groups (9 versus 12 in the previous example), which did not hap-
pen when both BK_PUBLISHER and BK_PRICE were employed. The reason behind this behavior 
is that grouping by publisher yields 9 distinct groups in our table; grouping by publisher and price 
makes it 12 distinct groups.

TRY IT OUT Bringing It All Together 

You’ve learned about aggregate functions and the GROUP BY, HAVING, and ORDER BY clauses. 
Let’s bring all them together to extract information from our tables, which would require tedious 
manual effort to produce without SQL and relational databases. In this exercise, we will fi nd the 
lowest-priced book on the fourth shelf of our bookcase using Microsoft SQL Server 2008 as our 
RDBMS database engine.

1. Open Microsoft SQL Server Management Studio and connect to your database using Windows 
authentication.

2. In the upper-left corner click the New Query button.

3. In the query window, enter the following query and click the Execute button, located on the same 
toolbar as the New Query button:

SELECT 

   bk_publisher  AS publisher 

 , MIN(bk_price) AS cheapest_book 

FROM BOOKS 

    INNER JOIN location ON bk_id=fk_bk_loc 

        GROUP BY bk_publisher, loc_shelf 

            HAVING loc_shelf = 4 

                ORDER BY MIN(bk_price)

publisher            cheapest_book

--------------------- ---------------------

Microsoft             24.99

Broadway              18.48

How It Works
The task of fi n ding the cheapest book would defi nitely involve an aggregate MIN() function that 
returns the least value found in the column for all records. The additional constraint was to fi nd the 
cheapest book, not in the entire collection, but on the fourth shelf of our bookcase. This means that 

c05.indd 152c05.indd   152 3/15/2011 12:23:56 PM3/15/2011   12:23:56 PM



Summary x 153

we would need data from two tables (BOOKS and LOCATION). The fi nal requirement was to fi nd the 
cheapest book for every publisher whose books are on this shelf.

The records were selected from BOOKS and LOCATION joined on the PRIMARY/FOREIGN key 
relationship, GROUP(ed) BY the two columns BK_PUBLISHER and LOC_SHELF. The results were 
narrowed down to only these on the fourth shelf by imposing HAVING loc_shelf = 4 limit, and ordered 
in default ascending order on the least price with the ORDER BY clause.

While not the only way to produce the desired results, it certainly allowed us to utilize all concepts 
introduced in this chapter.

SUMMARY

Grouping and aggregation in SQL provide a user with a 10,000-foot view of the data, as opposed 
to the minute details of individual records. The aggregated data is returned as a single record, 
regardless of how many individual records there might be in the table. SQL aggregate functions are 
mostly used with numeric data, and some could work with other data types (such as characters and 
dates). Aggregate functions could employ additional DISTINCT keywords to fi lter data prior to 
aggregation.

More than a single record could be returned with aggregate SQL functions when used in conjunc-
tion with the GROUP BY clause, which groups aggregate values based on criteria specifi ed in the 
clause. To allow for an additional selection fi lter based upon aggregated values, a special HAVING 
clause is used, which acts as a WHERE clause for the GROUP BY data sets.

The returned records could be further ordered using the ORDER BY clause, which is the fi nal fi lter 
applied to the records returned by a query.

c05.indd 153c05.indd   153 3/15/2011 12:23:56 PM3/15/2011   12:23:56 PM



c05.indd 154c05.indd   154 3/15/2011 12:23:56 PM3/15/2011   12:23:56 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



6
When One Is Not Enough: 
A Query Within a Query

SQL allows for nesting queries, putting a SQL statement within another SELECT statement. 
Readers familiar with programming concepts might compare it to a nested loop structure, or 
you can visualize a telescopic tube with nested segments. 

WHAT YOU DON’T KNOW MIGHT HELP YOU

A subquery is an answer to several questions rolled up into a single statement. It is a variation 
on the concept “I do not know, but I know someone who does.”

Subquery in the WHERE Clause

The subquery can be used almost anywhere in the SQL statement, but the most common use is 
in the WHERE clause. 

To illustrate the concept, let’s try to fi nd what books we might have on the top (fi fth) shelf in 
the bookcase: “The one in the living room to the right”:

SELECT bk_title, bk_publisher FROM books 

    WHERE bk_id IN (SELECT fk_bk_loc FROM location 

        WHERE loc_shelf = 5) 

bk_title                                             bk_publisher

---------------------------------------------------- -------------------

SQL Bible                                             Wiley

Wiley Pathways: Introduction to Database Management   Wiley

Microsoft SQL Server 2000 Weekend Crash Course        Wiley

SQL Functions: Programmers Reference                  Wiley

All we knew in this case (no pun intended!) was that we wanted books stored on shelf #5, and 
the relation between the BOOKS and LOCATION tables specifi ed by primary/foreign keys, 
respectively. The subquery was executed fi rst; it returned all the values (book ID(s)) associated 

c06.indd 155c06.indd   155 3/15/2011 12:24:59 PM3/15/2011   12:24:59 PM



156 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

with shelf #5 (LOC_SHELF column) in the bookcase with the unwieldy name ‘The one in the living 
room to the right’:

SELECT fk_bk_loc FROM location WHERE loc_shelf = 5

fk_bk_loc

---------------

1

2

3

4

Then the outermost query matched the BK_ID values with the returned list and made the selection 
from BOOKS table.

A subquery is also called an inner query or inner select, while the statement containing a subquery 
is also called an outer query or outer select. The SELECT query of a subquery is always enclosed in 
parentheses.

EXISTS Operator

The IN operator allows for undefi ned search criteria; any of the values on the list returned by the 
subquery would work; the same goes for the EXISTS operator, as well as the opposites NOT IN and 
NOT EXISTS. Additionally, the latter does not require any fi elds to be listed in the WHERE clause; 
it just checks that at least a single record was returned by the subquery:

SELECT bk_title, bk_publisher FROM books 

    WHERE EXISTS (SELECT * FROM location 

        WHERE loc_shelf = 5) 

bk_title                                           bk_publisher

------------------------------------------------- ----------------------------------

SQL Bible                                            Wiley

Wiley Pathways: Introduction to Database Management  Wiley

Microsoft SQL Server 2000 Weekend Crash Course       Wiley

. . .

A Short History of Nearly Everything                 Broadway

Steppenwolf                                          Picador

(12 row(s) affected)

You might expect that the preceding query would return results identical to the query that uses the 
IN operator, but you got all 12 books instead — not just those located on the fi fth shelf. The reason 
is simple: The subquery always returns TRUE because there are four books on the shelf, and the 
outer query returns the records from the BOOKS table WHERE “there is always something on fi fth 
shelf” (which there is). Therefore, all 12 records were returned. In each of these cases, there is no 
practical limit on the number of rows returned by the subquery. 

It is possible to impose exact conditions on the result returned by the subquery with the equal (=) 
operator; this in turn requires limiting the subquery results to exactly one row. This is known as a 
scalar subquery, a subquery that returns only a single value. If we re-run the query after replacing 
the IN operator with =, we’ll get an error saying that the subquery returned more than one value. 

c06.indd 156c06.indd   156 3/15/2011 12:25:03 PM3/15/2011   12:25:03 PM



What You Don’t Know Might Help You x 157

One way to avoid this is to force the query to return exactly one record, as in the following query, 
which uses Microsoft SQL Server syntax (refer to Chapter 2 for RDBMS-specifi c limits):

SELECT bk_title, bk_publisher FROM books 

    WHERE bk_id = (SELECT TOP 1 fk_bk_loc FROM location 

        WHERE loc_shelf = 5) 

bk_title                                             bk_publisher

---------------------------------------------------- -------------------

SQL Bible                                             Wiley

Note that we must specify a column in the subquery to be matched exactly to that in the WHERE 
clause of the outer query; inequality comparison operators (!=,<,<=,>,>=) can be used in the preced-
ing query as well. 

ANY Operator

Using additional operators such as ANY helps to introduce some fl exibility. This query matches 
BK_ID against any value returned by the subquery. Notice that we do not have to limit the number 
of rows, and that the results are identical to the query which uses IN operator:

SELECT bk_title, bk_publisher FROM books 

    WHERE bk_id = ANY (SELECT fk_bk_loc FROM location 

        WHERE loc_shelf = 5) 

bk_title                                             bk_publisher

---------------------------------------------------- -------------------

SQL Bible                                             Wiley

Wiley Pathways: Introduction to Database Management   Wiley

Microsoft SQL Server 2000 Weekend Crash Course        Wiley

SQL Functions: Programmers Reference                  Wiley

ALL Operator

Using the ALL operator requires matching all BK_ID(s) returned from the subquery, which is 
impossible; a single value cannot match more than a single one. Inequality operators such as < and > 
work well here. For instance, to ask for all records where BK_ID is less than all the values on the 
list, we would use the following:

SELECT bk_title, bk_publisher FROM books 

    WHERE bk_id < ALL (SELECT fk_bk_loc FROM location 

        WHERE loc_shelf = 5) 

bk_title                                             bk_publisher

---------------------------------------------------- -------------------

Not a single record. Why? Just recall from Chapter 2 that the ANY operator will evaluate the 
expression to TRUE if any of the values on the list complies with the condition, while ALL requires 
every value on the list to do the same. Since one of the books on the fi fth shelf has BK_ID=1 (SQL
Bible), the outer query has to fi nd something that is less than 1, so the recordset is empty.

Another way to ensure that one and only one record is selected is to use aggregate functions such as 
MAX, COUNT, or AVG.

c06.indd 157c06.indd   157 3/15/2011 12:25:03 PM3/15/2011   12:25:03 PM



158 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

This behavior is consistent across all RDBMSs discussed in the book.

The SELECT query of a subquery is always enclosed in parentheses. It 
cannot include a COMPUTE or FOR BROWSE clause, and may only include 
an ORDER BY clause when a TOP (LIMIT) clause is also specifi ed.

Subquery in the SELECT List

As mentioned before, a subquery can be used virtually anywhere in an SQL statement; the usual 
suspects are components where expressions are used. The following example demonstrates how a 
subquery is being used in a SELECT list of a SELECT query:

SELECT bk_title, bk_publisher, 

(SELECT TOP 1 au_last_name FROM 

    authors a JOIN books_authors ba 

ON (a.au_id=ba.au_id)

      JOIN books b ON(ba.bk_id=b.bk_id))AS author

FROM books ;

bk_title                                      bk_pu                    author

------------------------------------------    ----------------------   -------

SQL Bible                                     Wiley                    Kriegel

Wiley Pathways: Introduction to Database...   Wiley                    Kriegel

Microsoft SQL Server 2000 Weekend...          Wiley                    Kriegel

SQL Functions: Programmers Reference          Wiley                    Kriegel

A La Recherche du Temps Perdu                 Gallimard                Kriegel

After the Gold Rush: Creating...              Microsoft Press          Kriegel

Letters From Earth                            Greenbook Publications   Kriegel

Mindswap                                      Orb Books                Kriegel

Stranger in a Strange Land                    Ace Trade                Kriegel

Jonathan Livingston Seagull                   MacMillan                Kriegel

A Short History of Nearly Everything          Broadway                 Kriegel

Steppenwolf                                   Picador                  Kriegel

A full 12 records are returned, but every single row returned to the client is stamped with the same 
author’s last name — whoever happened to come at the top of the list (it can be changed using the 
ORDER BY clause in the subquery). Not a result we’ve been looking for.

To remedy this situation, you can use correlated query (discussed later in the 
chapter). 

c06.indd 158c06.indd   158 3/15/2011 12:25:04 PM3/15/2011   12:25:04 PM



What You Don’t Know Might Help You x 159

In noncorrelated subqueries, it is more common to use aggregate functions to add the same value to 
all records returned by the outer query. Here is a query demonstrating this concept (at the expense 
of stretching usability limits; the same result can be achieved using just the MAX function, without 
wrapping it in a subquery):

SELECT bk_title, 

    (SELECT MAX(bk_price)FROM books) AS max_price

FROM books;

bk_title                                              max_price

-------------------------------------------------    ---------------

SQL Bible                                             69.26

Wiley Pathways: Introduction to Database Management   69.26

Microsoft SQL Server 2000 Weekend Crash Course        69.26

. . .

A Short History of Nearly Everything                  69.26

Steppenwolf                                           69.26

(12 row(s) affected)

Of course, the same MAX value will be in every row returned by the query (but this is what we 
asked for). The rules for subqueries in the SELECT list are the same as for scalar subqueries used in 
the WHERE clause, and they can be used, with slight modifi cations, across all RDBMSs we’re 
discussing here.

Only a single column can appear in the single subquery on the SELECT list. If you need more than 
one, use separate subqueries or concatenate fi elds:

SELECT bk_title

     , bk_publisher

     , (SELECT MAX(bk_price)FROM books) AS max_price

     , (SELECT MIN(bk_price)FROM books) AS min_price

FROM books;bk_title                                   max_price       min_price

-------------------------------------------------    --------------- ---------

SQL Bible                                             69.26           8.89

Wiley Pathways: Introduction to Database Management   69.26           8.89

Microsoft SQL Server 2000 Weekend Crash Course        69.26           8.89

. . .

A Short History of Nearly Everything                  69.26           8.89

Steppenwolf                                           69.26           8.89

(12 row(s) affected)

TRY IT OUT Finding the Highest-Priced Book on the Shelf

Let’s apply what we’ve learned so far to a practical exercise for fi nding the highest-priced book on the 
fourth shelf of our library’s bookcase.

c06.indd 159c06.indd   159 3/15/2011 12:25:05 PM3/15/2011   12:25:05 PM



160 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

1. Open your favorite SQL client to connect to the RDBMS.

2. Switch the context to the LIBRARY database:

USE library;

3. Execute the following SQL statement:

SELECT TOP 1

    bk_title AS Title

 , bk_price AS max_price 

 FROM books 

    WHERE bk_id IN (SELECT fk_bk_loc FROM location 

       WHERE loc_shelf = 4

          AND loc_bookcase =’The one in the living room to the right’) 

ORDER BY bk_price DESC

Title                                                  max_price

---------------------------------------------------   ----------------

After the Gold Rush: Creating a True Profession....    24.99

How It Works
The subquery in the WHERE clause returns all ID(s) for the books located on the fourth shelf of the 
bookcase with the somewhat unwieldy name ‘The one in the living room to the right,’ and the outer 
query matches these IDs to select records from the BOOKS table.

The fi nal step is sorting these records in descending order by BK_PRICE, ensuring that the highest-priced 
book is on top of the list, and then selecting the TOP 1 record from this list.

Note that this is not the only way to get the desired outcome. A query with the GROUP BY . . . 
HAVING clause might be a better choice.

Subquery in the FROM Clause

A subquery can appear virtually anywhere in the SQL statement. The WHERE and HAVING 
clauses are the most popular examples, but you are not limited to them. A subquery can serve as the 
ad hoc view (see Chapter 7), also called an inline view. For example, the following query allows for 
selecting from an inline view named AdHoc. It ties together AUTHORS, BOOKS, and the inter-
mediate BOOKS_AUTHORS table, joined with a LOCATION table to produce a combined result 
with the AUTHORS table (supplying the author’s fi rst name), the BOOKS table (book title) and 
LOCATION table, and the “name” for the bookcase: 

SELECT 

FirstName

, BookTitle

, BookID

,location.loc_bookcase 

FROM 

(SELECT DISTINCT 

a.au_first_name AS FirstName 

,b.bk_title AS BookTitle

c06.indd 160c06.indd   160 3/15/2011 12:25:05 PM3/15/2011   12:25:05 PM



What You Don’t Know Might Help You x 161

,b.bk_id AS BookID

FROM authors a 

INNER JOIN books_authors ba ON a.au_id = ba.au_id

INNER JOIN books b ON ba.bk_id=b.bk_id ) AdHoc 

INNER JOIN location ON location.fk_bk_loc = AdHoc.BookID;

FirstName     BookTitle                            BookID  loc_bookcase

------------- -------------------------------------------- ------------------------

Alexander     SQL Bible                            1       The one in the living...

Alexander     Introduction to Database Management  2       The one in the living...

Alexander     SQL Server 2000 Weekend Crash Course 3       The one in the living...

Alexander     SQL Functions: Programmers Reference 4       The one in the living...

. . .

We get back 23 records, even though there are only 12 books listed in our BOOKS table. The 
reason is that some books have more than one author, and they all have a row of their own. While 
the query can be easily re-created with a four-way JOIN, it makes the query more readable because 
of logical separation. An important nuance: The inline view must be named (AdHoc, in our case) 
even if you do not intend to JOIN it with any other view or table.

We are using aliasing of the tables because of a possible ambiguity in the table 
names appearing both in outer and inner queries. The SQL engine cannot guess 
our intentions; it must be told exactly what to do.

Subquery in the HAVING Clause

The HAVING clause in GROUP BY implements the same idea as the WHERE clause used in the 
standard SELECT statement: it narrows down selection criteria used for aggregation. 

The books are getting pricier by the year, and if you set an average list price at about $20, it might 
be interesting to fi nd out which of the books you own are above (or below) the average. Let’s narrow 
our search even further — to the top shelf of our bookcase — using one of the previous examples:

SELECT 

    bk_title AS Title

 ,  bk_price

 FROM books 

     WHERE bk_id IN (SELECT fk_bk_loc FROM location 

       WHERE loc_shelf = 5

          AND loc_bookcase =’The one in the living room to the right’) 

GROUP BY bk_price, bk_title 

HAVING bk_price > 20

Title                                                         bk_price

------------------------------------------------------------- ------------

SQL Functions: Programmers Reference                          26.39

c06.indd 161c06.indd   161 3/15/2011 12:25:05 PM3/15/2011   12:25:05 PM



162 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

Microsoft SQL Server 2000 Weekend Crash Course                29.99

SQL Bible                                                     39.99

Wiley Pathways: Introduction to Database Management           55.26

We have four books with list price above average. But guessing the average price, and using it as a hard-
coded value, are not the best coding practices though; it would be much better to be able to 
calculate the average price of all the books you own and compare it to the book prices on the fi fth shelf:

SELECT 

    bk_title AS Title

 ,  bk_price

 FROM books 

     WHERE bk_id IN (SELECT fk_bk_loc FROM location 

       WHERE loc_shelf = 5

          AND loc_bookcase =’The one in the living room to the right’) 

GROUP BY bk_price, bk_title 

HAVING bk_price >(SELECT AVG(bk_price) FROM books);

Title                                                  bk_price

------------------------------------------------------ ---------------------

Microsoft SQL Server 2000 Weekend Crash Course         29.99

SQL Bible                                              39.99

Wiley Pathways: Introduction to Database Management    55.26

Apparently our guess was wrong; the average of all the books we’ve accumulated on the shelf must 
be higher than $20 because we see two books disappearing from the list. Indeed, running a quick 
query confi rms it; our average price is above $28:

SELECT AVG(bk_price) AS AvgPrice

     , MIN(bk_price) AS MinPrice

     , MAX(bk_price) AS MaxPrice

  FROM books;

AvgPrice              MinPrice              MaxPrice

--------------------- --------------------- ---------------------

29.5758               8.89                  69.26

A subquery in the HAVING clause can use aggregate functions on both sides of the expression, with 
all operators (IN, ANY, ALL, and so on) except the EXISTS operator.

TRY IT OUT Using the Subquery in the GROUP BY … HAVING Clause

How do you get a list of titles and publishers located on a bookshelf with the goofy name ‘The one 
in the living room to the right’ containing only books published in 2005 or later? One way is to use a 
GROUP BY with HAVING clause. The following exercise uses Microsoft SQL Server syntax, but it can 
be adjusted to any other RDBMSs discussed in the book.

1. Open your favorite SQL client to connect to the RDBMS.

2. Switch the context to the LIBRARY database:

USE library;

3. Execute the following SQL statement:

SELECT loc_shelf

    , bk_publisher

c06.indd 162c06.indd   162 3/15/2011 12:25:05 PM3/15/2011   12:25:05 PM



What You Don’t Know Might Help You x 163

    , bk_title

    FROM books b JOIN location l ON (b.bk_id=l.fk_bk_loc) 

GROUP BY 

    loc_shelf

  , bk_title

  , bk_publisher

       HAVING loc_shelf IN 

          (SELECT loc_shelf FROM location 

              WHERE fk_bk_loc IN (SELECT bk_id FROM books 

                                       WHERE bk_published_year  >= 2005

                     AND loc_bookcase=‘The one in the living room to the right’))

loc_shelf   bk_title                              bk_publisher

----------- ------------------------------------  -------------------------------

2           A La Recherche du Temps Perdu         Gallimard

2           Letters From Earth                    Greebook Publications

2           Steppenwolf                           Picador

3           Jonathan Livingston Seagull           MacMillan

3           Mindswap                              Orb Books

3           Stranger in a Starnge Land            Ace Trade

4           A Short History of Nearly Everything  Broadway

4           After the Gold Rush                   Microsoft

5           SQL Server 2000 Weekend Crash Course  Wiley

5           SQL Bible                             Wiley

5           SQL Functions: Programmers Reference  Wiley

5           ..Introduction to Database Management Wiley

(12 row(s) affected)

How It Works
As in the examples throughout the chapter, the subquery contained in the HAVING clause executes 
fi rst, replacing the expression with a list of book ID(s) published on or later than the year 2005. Then 
the outer query gets executed, assembling records from values found in both BOOKS and LOCATION, 
and grouping them by the shelf number for all the shelves holding the books with ID(s) found in the 
subquery.

Subqueries with INSERT 

Inserting values into a table returned by a SELECT statement might come in handy when transfer-
ring data between compatible table structures. The data can come from a different table, a view, or 
even from the very same table. For instance, if you just bought a second edition of a book and want 
to transfer most, but not all, values from the fi rst edition, you can run the following query:

INSERT INTO books(

    bk_id

  , bk_title

   ,bk_publisher)

    SELECT 100, bk_title, bk_publisher

WHERE bk_id = 1;

The preceding statement will transfer the book title and the publisher name for a single record, leav-
ing every other column to be fi lled with default values. As you can see, the mix-and-match approach 

c06.indd 163c06.indd   163 3/15/2011 12:25:05 PM3/15/2011   12:25:05 PM



164 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

works here. The hard-coded values can also be used alongside the column names in the SELECT 
statement. 

The requirement is that the number of the values and the respective data types must match the list of 
columns in the INSERT statement. For instance, we can supply hard-coded values only, and can still 
insert values:

INSERT INTO books(

    bk_id

  , bk_title)

    SELECT 100,’Some book title’;

More than one record can be inserted at once — an example of the set-based language 
power — although you cannot get around constraints placed on the table. In the previous example, 
the primary key constraint will prevent you from entering records with duplicate BK_ID, but it will 
work with an empty table.

TRY IT OUT INSERTing Records with a Subquery

To transfer all, or a subset of, records into a table, one can use a subquery with an INSERT statement, 
selecting records from an existing table. If the table were constrained by a UNIQUE or PRIMARY 
KEY constraint, it must be empty to avoid violating the constraint.

Let’s create a separate table and transfer to it only books located on the fi fth shelf of our bookcase.

1. Open your favorite SQL client to connect to the RDBMS.

2. Switch the context to the LIBRARY database:

USE library;

3. Create an empty table with a PRIMARY KEY constraint, with a basic syntax, using all default 
options:

CREATE TABLE MyBooksonFifthShelf(

  bk_id              bigint         NOT NULL

 ,bk_title           varchar(100)   NULL

 ,bk_ISBN            varchar(50)    NULL

 ,bk_publisher       varchar(100)   NULL

 ,bk_published_year  int            NULL

 ,bk_price           smallmoney     NULL

 ,bk_page_count      int            NULL

 ,bk_bought_on       smalldatetime  NULL

 ,bk_hard_cover      bit            NULL

 ,bk_cover_pic       varbinary(max) NULL

 ,bk_note           xml            NULL

 CONSTRAINT PK_MyBooks PRIMARY KEY CLUSTERED 

(

 bk_id ASC

))

4. Transfer all records from BOOKS table to the MyBooks table for the books located on the fi fth 
shelf of the bookcase:

INSERT INTO MyBooksonFifthShelf

    SELECT * FROM books 

c06.indd 164c06.indd   164 3/15/2011 12:25:06 PM3/15/2011   12:25:06 PM



What You Don’t Know Might Help You x 165

WHERE bk_id IN (SELECT fk_bk_loc FROM location 

       WHERE loc_shelf = 5

          AND loc_bookcase =’The one in the living room to the right’)

5. Verify that correct records were transferred:

SELECT bk_id, bk_title from MyBooksonFifthShelf;

bk_id                bk_title

-------------------- ----------------------------------------------------

1                    SQL Bible

2                    Wiley Pathways: Introduction to Database Management

3                    Microsoft SQL Server 2000 Weekend Crash Course

4                    SQL Functions: Programmers Reference

(4 row(s) affected)

How It Works
The SELECT statement takes everything found in the BOOKS table, including the values for the 
BK_ID column, which has a PRIMARY KEY constraint placed on it; it will not accept duplicate values. 
Since we are inserting all unique values into BK_ID column as part of our overall query, there are no 
confl icts, and all rows are transferred successfully.

The restriction can be bypassed if we do not try to insert values into a primary key column, but declare 
it as an IDENTITY column instead (or its equivalent in RDBMSs other than Microsoft SQL Server). 
The IDENTITY constraint will take care of creating unique values for each record inserted. Of course, 
this would allow you to insert rows that would only differ in the BK_ID values.

Subqueries with UPDATE

A subquery can be used as an assignment value in an UPDATE statement as long as the subquery 
returns a single value at a time. If no rows are returned, the NULL value will be assigned to the 
target column in the outer UPDATE statement. Both noncorrelated and correlated subqueries can be 
used (discussed later in the chapter), and the values from different columns can be concatenated.

Getting a little bit ahead of ourselves, we can use a correlated subquery to update the BK_NOTES 
column in the BOOKS table with information based upon the very values already contained in 
the columns in an XML string (see Chapter 11 for more information on XML and semistructured 
data):

UPDATE books SET bk_notes = 

    ( SELECT ‘<books><book><title>’+ bk_title + ‘</title>’

        + ‘<authors><author></author></authors>’

        + ‘<publisher>’ + bk_publisher +’ </publisher>’

        + ‘<price>’ + CAST(bk_price AS VARCHAR(10)) 

        + ‘</price></book></books>’

FROM books sub 

    WHERE sub.bk_id = books.bk_id)

Here we use a correlated subquery (see the next section) because we want to update each record 
with relevant information, specifi c to this particular book, not the same value for all the 
records in the table. The noncorrelated version would simply use the same value for all rows of 
the column.

c06.indd 165c06.indd   165 3/15/2011 12:25:06 PM3/15/2011   12:25:06 PM



166 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

To verify the inserted values, run a SELECT statement on the column (the BK_Notes value wrapped 
to the next line due to constraints of the page):

SELECT bk_id, bk_notes FROM books 

WHERE bk_id= 1;

bk_id   bk_notes

------- ----------------------------------------------------------------------------

1     <books><book><title>SQL Bible</title><authors><author/></authors>

<publisher>Wiley </publisher><price>39.99</price></book></books>

1     <books><book><title>Wiley Pathways: Introduction to Database 

Management</title><authors><author/></authors><publisher>Wiley 

</publisher><price>55.26</price></book></books>

We have a basic XML document that can be further updated and expanded using techniques 
described in Chapter 11 of this book.

The XML string has to be well formed, meaning that each element must have 
an opening tag and a corresponding closing tag in order to be entered into the 
XML data type fi eld as a string (it will be parsed and converted into XML upon 
UPDATE). The Microsoft SQL Server will warn you if your XML string violates 
this rule. For example: removing but one opening tag <author> would result in 
an error.

Msg 9436, Level 16, State 1, Line 1

XML parsing: line 1, character 55, end tag does not match start tag

Subqueries with DELETE

Suppose you removed a book from your collection and now you need to clean up your tables from 
the obsolete records. With relational databases, there is quite a bit of cleaning to do, unraveling all the 
relationships starting with the “childmost” table. In the preceding scenario, you need to remove a 
record from LOCATION, SearchTags, SearchBooks, and BOOKS_AUTHORS; and only then you 
can delete it from the BOOKS and AUTHORS tables. This is quite a bit of work to be performed, and 
most likely you will have to use more than one DELETE statement wrapped inside a transaction (to 
maintain the integrity of the database; see Chapter 3 for more information on integrity and Chapter 10 
for transactions information).

To demonstrate the use of a subquery in a DELETE statement, you will remove a record from 
the LOCATION table based only on a fuzzy recollection that it was on the fi fth shelf and had 
the word “Gold” in its title (After the Gold Rush: Creating a True Profession of Software
Engineering).

Deleting a record based on assumption is never a good idea because you might 
inadvertently delete records you didn’t want to delete. Always make sure that 
precise criteria uniquely identifying the records are specifi ed.

c06.indd 166c06.indd   166 3/15/2011 12:25:06 PM3/15/2011   12:25:06 PM



Correlated Query x 167

The following query will remove BK_ID associated with the book from the LOCATION table:

DELETE location 

    WHERE fk_bk_loc =

        (SELECT bk_id FROM books WHERE bk_title LIKE’%Gold%’) 

Once the query is executed, the record is gone, and the BOOKS table will contain a book without an 
assigned location on the shelf in the bookcase. You can restore it by inserting the data back. 

INSERT INTO location (

    loc_id

   ,fk_bk_loc

   ,loc_bookcase

   ,loc_shelf

   ,loc_position_left)

VALUES(5,6,’The one in the living room to the right’,4,1)

Or if you run it within a transaction, roll back the changes (see Chapter 10 for information on 
transactions). Another option is drop and re-create the entire table from the scripts posted on 
www.wrox.com and www.agilitator.com.

CORRELATED QUERY

Normally, a subquery has no awareness of the outer query of which it is a part. It executes as if 
it were a stand-alone SELECT statement and could not care less what and how it was invoked. 
A correlated subquery changes this. In the case of a “standard” subquery, the statement is evalu-
ated once, and the results are passed on to serve as a fi lter for the outer query. In correlated 
mode, the outer query must be invoked multiple times, once for each record returned by the  
inner query. 

A correlated subquery (one in which the WHERE condition depends on values obtained from the 
rows of the containing query) executes once for each row. A noncorrelated subquery (one in which 
the WHERE condition is independent of the containing query) executes once at the beginning. The 
SQL engine makes this distinction automatically.

The classic use of the correlated subquery is in the WHERE clause. Let’s consider the query we 
created earlier:

SELECT bk_title, bk_publisher FROM books 

    WHERE EXISTS(SELECT * FROM location 

        WHERE location.loc_shelf = 5 and location.fk_bk_loc = books.bk_id ) 

bk_title                                              bk_publisher

---------------------------------------------------------------------------------

SQL Bible                                             Wiley

Wiley Pathways: Introduction to Database Management   Wiley

Microsoft SQL Server 2000 Weekend Crash Course        Wiley

SQL Functions: Programmers Reference                  Wiley

(4 row(s) affected)

c06.indd 167c06.indd   167 3/15/2011 12:25:07 PM3/15/2011   12:25:07 PM



168 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

By using the EXISTS operator, we now do not have to specify BK_ID in the WHERE clause of the 
outer SELECT statement. Even though it might appear counterintuitive, a subquery still executes 
fi rst with values from the LOCATION table; then the outer query (the one that SELECTS data from 
the BOOKS table) gets executed with BK_ID, satisfying the expression with the EXISTS operator. 
This makes a correlated query rather an expensive affair, though not in every case. Some query 
optimization and well-selected indices might improve performance dramatically (see Chapter 9 for 
information on optimization techniques).

TRY IT OUT Listing Book Titles and Corresponding Authors with a Correlated 

Subquery

Previously we wrote a query that returned book titles and authors using a subquery in a SELECT state-
ment SELECT list and it only worked for the fi rst record on the list. Every other record was matched 
with the same author. A correlated query can remedy this situation.

1. Open your favorite SQL client to connect to the RDBMS.

2. Switch the context to the LIBRARY database:

USE library;

3. Execute the following SQL statement (to shorten the list, we added ellipses to signify omitted 
records):

SELECT bk_title, bk_publisher, 

(SELECT TOP 1 au_last_name FROM 

    authors a JOIN books_authors ba 

ON (a.au_id=ba.au_id)

      JOIN books b ON(ba.bk_id=b.bk_id)

WHERE b.bk_id= outer_b.bk_id ORDER BY au_last_name ASC)AS author

FROM books outer_b ;

bk_title                               bk_publisher                 author

---------------------------------     ---------------------------   --------------

SQL Bible                              Wiley                        Kriegel

. . .                                  . . .                        . . . 

SQL Functions: Programmers Reference   Wiley                        Garrett

A La Recherche du Temps Perdu          Gallimard                    Proust

. . .

Letters From Earth                     Greebook Publications        Twain

Mindswap                               Orb Books                    Sheckley

. . .                                  . . .                        . . . 

Steppenwolf                            Picador                      Hesse

(12 row(s) affected)

How It Works
The correlated subquery executes 12 times, once for each record in the outer query, because each time it 
is tied to a specifi c BOOK_ID, the one matching the outer query as requested in the (WHERE b.bk_id= 
outer_b.bk_id) condition. A matching author’s last name is returned by the subquery to be joined to the 
fi nal result set. 

c06.indd 168c06.indd   168 3/15/2011 12:25:07 PM3/15/2011   12:25:07 PM



How Deep the Rabbit Hole Goes: Nesting Subqueries x 169

There is a caveat: this approach will only work with books that have one and only one author. The TOP 
1 will cut off everybody but the topmost on the list of the returned values. The problem of pivoting 
columnar values to represent them as rows is an advanced subject, outside of the current book scope.

The correlated subqueries can be used everywhere noncorrelated subqueries can, with the very same 
restrictions and conditions. As you can imagine, there is a penalty to pay for the selectivity afforded 
by the correlated subquery. In the preceding example, the subquery would have to be executed 12 
times: once for each row in the outer query; noncorrelated subqueries would execute only once.

HOW DEEP THE RABBIT HOLE GOES: NESTING SUBQUERIES

The subquery can host a subquery of its own, the sub-subquery can do the same, and the 
sub-sub-subquery…you get the picture. They are called nested subqueries: a query within a query 
within a query.

The following is an example of a nested query that tries to fi nd information about books that we 
tagged as containing SQL references:

SELECT bk_id, bk_title FROM books 

    WHERE bk_id IN

        (SELECT bk_id FROM search_books 

            WHERE tag_id in 

  (SELECT tag_id FROM searchTags 

                  WHERE tag_value LIKE ‘SQL%’))

bk_id    bk_title

-------- ----------------------------------------------------

1        SQL Bible

2        Wiley Pathways: Introduction to Database Management

3        Microsoft SQL Server 2000 Weekend Crash Course

4        SQL Functions: Programmers Reference

(4 row(s) affected)

Let’s unravel the three queries. A subquery executes fi rst. That is, the innermost query executes fi rst, 
and the statement works up from there. In the previous example, the following query was executed 
fi rst, and it returned a list of tag IDs associated with the books that have a title starting with SQL:

SELECT tag_id FROM searchTags WHERE tag_value LIKE ‘SQL%’

tag_id

--------------------

1

(1 row(s) affected)

There is but one token (out of 28) which has “SQL” as its value. This could be verifi ed by running a 
SELECT query against the SearchTags table. The next-level query now looks like this:

SELECT bk_id FROM search_books WHERE tag_id in (1)

bk_id

--------------------

1

c06.indd 169c06.indd   169 3/15/2011 12:25:07 PM3/15/2011   12:25:07 PM



170 x CHAPTER 6  WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY 

2

3

4

(4 row(s) affected)

The tag ID 1 from the SearchTags table corresponds to four book ID(s) in there, and the result of 
this query is to produce yet another list of values: the BK_IDs from the SEARCH_BOOK table. The 
fi nal query to be executed now looks like this:

SELECT * FROM books WHERE bk_id IN (1,2,3,4)

bk_id    bk_title

-------- ----------------------------------------------------

1        SQL Bible

2        Wiley Pathways: Introduction to Database Management

3        Microsoft SQL Server 2000 Weekend Crash Course

4        SQL Functions: Programmers Reference

This outermost query fi nally returns the results to you (or rather to the client application you 
are using). 

There is no theoretical limit in SQL Standard on the nesting level (the number of times there can be 
a query within a query), but keep in mind that an SQL statement is a string that has a hard physical 
limit of a data type the operating system could handle, and RDBMS vendors might impose limits of 
their own.

The actual nesting level (how many subqueries you can have within one another) and exactly where 
the subquery appears in the statement are limited by the RDBMS capability. Microsoft SQL Server, 
for instance, used to put a hard limit of 32 nesting levels, which was lifted in version 2005, and it is 
unlimited now. Even now, the actual limit is based upon the complexity of the query and hardware 
confi guration, and might be signifi cantly lower (anything is smaller than infi nity).

In its current version, Oracle supports up to 255 levels in the WHERE clause and allows unlimited 
nesting in FROM clause. DB2, PostgreSQL, and MySQL do not impose limits on the number of 
subqueries you can use, though all other restrictions, such as length of a SQL statement, still apply. 
The desktop RDBMSs such as Access and OpenOffi ce BASE do not specify how many levels you 
can go, but you are sure to get “the query is too complex” error once you approach 40 subqueries in 
one statement.

The correlated subqueries (discussed earlier in this chapter) impose additional complexity, and it is 
reasonable to expect that the nesting level would be reduced further.

A SUBQUERY OR A JOIN?

Subqueries in general (and nested subqueries in particular) can be alternatively formulated as JOIN 
statements. Other questions can only be answered with subqueries. Normally, there won’t be any 
performance difference between a statement that includes a subquery and an equivalent JOIN 
version that does not. Nevertheless, in some cases, especially where an EXISTS operator is used, 
a JOIN yields better performance. A correlated subquery will almost always perform worse than a 

c06.indd 170c06.indd   170 3/15/2011 12:25:07 PM3/15/2011   12:25:07 PM



Summary x 171

semantically equivalent JOIN, even though modern RDBMS’s optimizers would likely create 
identical execution plans (see Chapter 9 for more information on query optimization) for either 
query type.

There is another important distinction. Unlike when using a JOIN, you cannot return a value 
retrieved in a subquery to your client; it’s for internal consumption only. 

The next chapter is dedicated to a detailed discussion of JOIN. While the syntax of a JOIN query 
is no less verbose, it can better optimize performance and is more readable than a nested subquery 
(though some RDBMSs internally convert subqueries into JOINs).

SUMMARY

A query within a query is a powerful mechanism to retrieve additional information. The subquery 
can appear in any type of SQL statement, including SELECT, INSERT, UPDATE, and DELETE. 
It can be used in any part of SQL statement clauses, including WHERE, FROM, and SELECT list.

There are two types of subqueries: correlated and noncorrelated. The former refers to a syntax in 
which the subquery references the outer query, and the latter represents a subquery that is indepen-
dent of the outer query. A number of operators can be used to evaluate results returned by the 
subquery to the outer query, such as IN, EXISTS, ANY, SOME, and ALL. Subqueries can be used 
with the GROUP BY… HAVING clause in conjunction with aggregate functions.

Often, a subquery can be replaced with an equivalent JOIN syntax, which might result in perfor-
mance gain. There is no practical limit on the nesting level for the subqueries, either correlated or 
noncorrelated, although some RDBMSs do impose limits.

c06.indd 171c06.indd   171 3/15/2011 12:25:07 PM3/15/2011   12:25:07 PM



c06.indd 172c06.indd   172 3/15/2011 12:25:07 PM3/15/2011   12:25:07 PM



7
You Broke It; You Fix It: 
Combining Data Sets

Let us recall from Chapter 3 that normalization of a relational database is the process of 
arranging the data with maximum precision and minimum duplication. This is largely 
achieved by establishing relationships between several tables that contain data. The relation-
ships are established through the use of special values, called keys, which are unique to every 
record in the entire database.

Formal terminology of the relational theory could be quite confusing. Throughout 
the book I use friendly terms such as table, row, (record) and column, while the 
corresponding formal terms would be relation, tuple, and attribute.

This approach is good for maintaining data and minimizing inconsistencies, but it is not exactly 
user-friendly when it actually comes to using data. A cook would normally have all the ingre-
dients lined up before she embarks on creating a dish, and then combining them according to 
certain rules. A user of the database must do something similar: Figure out the blocks of the data 
she wants to access and then fetch all the necessary data from various tables into one temporary 
structure, or data set. This is a job for the JOIN keyword, briefl y touched on in early chapters.

JOINS REVISITED

The data in RDBMSs reside in tables which are linked via parent-child relationships, and the 
number of such links grows as the data model is taken through the normalization process.

Usually, the tables from which data are fetched (the source tables) are linked, or joined, in 
order to produce related data. In one of the tables, say, table BOOKS from our Library data-
base, every row must have a unique key value (every row must be uniquely identifi ed); in 

c07.indd 173c07.indd   173 3/22/2011 1:48:33 PM3/22/2011   1:48:33 PM



174 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

another table, LOCATION, there is a column where the keys from table BOOKS are stored. This 
column is said to contain the foreign keys for table BOOKS. 

FIGURE 7-1

The diagram in Figure 7-1 is further explored in Figure 7-2, where it presents actual values, and the 
lines point out the relationship between the tables (because no orphaned records are allowed, every 
row in the table LOCATION will have a corresponding row in the table BOOKS. The reverse is not 
true, however, parent tables can have rows without corresponding rows in the child table. According 
to the best practices rule, each table also has a primary key: BK_ID and LOC_ID respectively. Table 
LOCATION also has foreign key: FK_BK_LOC.

FIGURE 7-2

c07.indd 174c07.indd   174 3/22/2011 1:48:38 PM3/22/2011   1:48:38 PM



Joins Revisited x 175

In the preceding example shown in Figure 7-2, the relation is established through BK_ID (the pri-
mary key) and FK_BK_LOC (the corresponding foreign key). There is one to one correspondence 
between the rows in the table BOOKS and the rows in the table LOCATION. This is not always 
the case. One or more rows in LOCATION table may contain the same key value for BOOKS, if we 
have multiple copies of the book, and, of course, there may be some rows in BOOKS for which there 
would be no matching data in LOCATION at all (for example, a new book, not yet assigned perma-
nent location on the bookshelf), so they contain no value in that column (we say they contain NULL 
in that column). It is also worth noting that table LOCATION may contain foreign keys for several 
different tables. 

In the preceding examples we assumed, for simplicity’s sake, that a PRIMARY 
KEY consists of only one column. As mentioned before, this is not always the 
case. There could be composite primary and foreign keys comprising several 
columns. As long as the combination is unique within the table, and none of 
the columns contains NULL values, this would be a perfectly valid primary key 
candidate.

For example, the table BOOKS_AUTHORS from our Library database contains the foreign keys for 
both BOOKS and AUTHORS tables. Table 7-1 shows the resolution of a many-to-many situation 
through an intermediary table.

TABLE 7-1: Resolving a N:N Relationship

BOOK S BOOKS_AUTHORS AUTHORS

bk_title bk_id bk_id au_id au_id au_last_name

SQL Bible 1 1 1 1 Kriegel

… 1 2 2 Trukhnov

In a normalized database, there is a price to be exacted for reducing data redundancy. It was paid in 
increased navigational complexity for the normalized database. In order to associate an author with 
a book, we have to go through an intermediary table, with PRIMARY and FOREIGN keys as our 
only guidance to assemble our data set out of two (or more) tables.

There are several ways in which tables may be joined, discussed in the following section. 

INNER JOIN

This is the most ubiquitous JOIN in the RDBMS world, and the sharpest tool in your toolbox. 
It combines data from several tables, and returns a subset where the data overlaps, as shown in 
Figure 7-3.

c07.indd 175c07.indd   175 3/22/2011 1:48:39 PM3/22/2011   1:48:39 PM



176 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

The tables are represented by the respective circles, 
and the shaded area represents the data set where 
JOIN conditions were satisfi ed. The records from 
either side are “glued” together horizontally (as 
opposed to a UNION operator; see later in this 
chapter, which appends data sets vertically).

In RDBMSs, the data are stored in a format 
understood best by computers, the questions are 
being asked by humans; the SQL is the middle 
ground where both parties meet. 

The Library database is designed so that one loca-
tion (space on a bookshelf) may contain no more than one book, but one book may reside in several 
locations (presumably, different copies or different editions of the same book). Say we need to pro-
duce a list of book titles stored on each shelf of our bookcase. Part of the data can be found in the 
BOOKS table, and part of it is in the LOCATION table. A pair of keys, BK_ID and FK_BK_LOC, 
will join them together. The SQL query to do so could be as follows:

SELECT 

    loc_bookcase       AS bookcase

  , loc_shelf          AS shelf

  , loc_position_left  AS position

  , bk_title            AS title

  FROM location INNER JOIN books 

    ON location.fk_bk_loc = books.bk_id;

The results of the query are presented in Table 7-2.

TABLE 7-2: INNER JOIN Output Results

BOOKCASE SHELF POSITION TITLE

The one in the living room to the right 5 1 SQL Bible

The one in the living room to the right 5 2 Wiley Pathways: Introduction to 
Database Management

The one in the living room to the right 5 4 SQL Functions: Programmers 
Reference

The one in the living room to the right 4 1 After the Gold Rush: Creating 
a True Profession of Software 
Engineering

The one in the living room to the right 3 1 Mindswap

The one in the living room to the right 3 2 Stranger in a Strange Land

The one in the living room to the right 3 3 Jonathan Livingston Seagull

FIGURE 7-3

c07.indd 176c07.indd   176 3/22/2011 1:48:39 PM3/22/2011   1:48:39 PM



Joins Revisited x 177

BOOKCASE SHELF POSITION TITLE

The one in the living room to the right    2   1 A La Recherche du Temps Perdu

The one in the living room to the right 2 2 Letters From Earth

The one in the living room to the right 2 3 Steppenwolf

The INNER JOIN keyword instructs the database engine to prepare the data set based on data from 
both tables, and JOIN them on a specifi c relationship: the primary key BK_ID from table BOOKS 
and foreign key FK_BK_LOC from the LOCATION table, matched against each other in what in 
database terminology is called an equijoin (a JOIN that uses an equality operator to match the key). 

While equijoin is the most-often-used type of JOIN, the logical extrapolation from the existence of 
equijoins would be that non-equijoins must be somewhere in the toolbox, too. Indeed, SQL provides 
it; this type of JOIN(s) would use non-equality operators (greater-than, less-then, not-equal) to 
JOIN records into a single data set. 

Non-equijoins could produce surprising albeit not entirely un-anticipated results. For instance, had 
we replaced equijoin with non-equijoin using the greater-than operator in the preceding query, we 
would get 66 rows back, and using the not-equal operator would yield 132 rows. Close examination 
of the data would reveal the logic behind these results, and it might not be what you were after. This 
type of JOIN could be useful, but most of the time identical results could be achieved with more 
transparent methods, and you’d be well advised to abstain from using them until later, when you 
become more familiar with SQL.

The qualifi er INNER is not a required part; a simple JOIN keyword would be 
suffi cient. At the same time, it is highly recommended for better maintainabil-
ity and readability of your SQL code. As we proceed exploring OUTER joins, 
this will come in handy. Some RDBMSs allow for substituting NATURAL for 
INNER or OUTER (the NATURAL JOIN is a special case of the the equijoin 
when columns from the joined tables have identical names), and some allow 
additional keywords, such as EQUI, to be used. Stick to the most common 
INNER JOIN syntax, and your queries will have a much better chance to be 
executed across different RDBMSs.

The important point in our INNER JOIN example is that, if there are any books in the database that 
have not yet been placed on the shelf, or any unoccupied shelf space, neither those books nor that shelf 
space will appear in the result. 

Let’s take it step by step:

SELECT loc_bookcase, loc_shelf, loc_position_left, bk_title

These are the data items we want delivered: 

FROM location INNER JOIN books ON location.fk_bk_loc = books.bk_id

c07.indd 177c07.indd   177 3/22/2011 1:48:39 PM3/22/2011   1:48:39 PM



178 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

We get the data from two tables, LOCATION and BOOKS, and only from the rows that match. 
The INNER JOIN with an equality operator means “only from the rows that match.” The matching 
rule: Each LOCATION row has to have the same value in FK_BK_LOC column as the BOOKS row 
does in BK_ID column.

TRY IT OUT Extracting JOIN(ed) data from RDBMSs

Let’s try to perform some keyword searches on the books we have in the database. Currently, we have 
the table Search Tags containing all kinds of keywords that we’ve created when books were added to the 
database, and an intermediate table SEARCH_BOOKS to establish relationships between the books and 
the search keywords. A JOIN would help us to fi nd out what books in our database were tagged with the 
“SQL” keyword. We will be using the Microsoft SQL Server database engine for this activity, but it will 
work for any other RDBMSs.

1. Open Microsoft SQL Server Management Studio, and connect to your database using Windows 
authentication.

2. In the upper-left corner, click the New Query button and enter the following SQL query:

    SELECT 

        bk_title AS title

    FROM books bk INNER JOIN search_books sb 

        ON bk.bk_id = sb.bk_id

    INNER JOIN searchTags st

        ON sb.tag_id = st.tag_id

            WHERE st.tag_value = ‘SQL’

3. Click the Execute button on the toolbar and observe the returned results:

title

----------------------------------------------------------

SQL Bible

Wiley Pathways: Introduction to Database Management

Microsoft SQL Server 2000 Weekend Crash Course

SQL Functions: Programmers Reference

(4 row(s) affected)

How It Works
The query has two JOIN statements. One JOIN combines data sets from tables BOOKS and SEARCH_
BOOKS, and the second JOIN combines SEARCH_BOOKS with the SEARCH TAGS table. 

The matching records were pulled from all the table pairs and joined together in a single data set, and 
then the fi ltering on condition tag_value = ‘SQL’ was applied. Then, all qualifi ed records are returned to 
the client.

The same results could be achieved in a variety of ways. Here’s an example using nested subqueries:

SELECT bk_title as title FROM books where bk_id IN 

     (SELECT bk_id FROM search_books WHERE tag_id IN 

            (SELECT tag_id FROM searchTags where tag_value = ‘SQL’));

c07.indd 178c07.indd   178 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM



Joins Revisited x 179

You be the judge as to which code is easier to understand: the code with JOIN(s), or that with subque-
ries. My bet is on the former.

We will come back to this in the next section, and examine the ways to include empty shelves or 
unplaced books in our result, but fi rst, let’s see how we could get more data into our fi nal data set 
following the same basic JOIN rules.

The JOIN syntax is a relatively new phenomenon. While endorsed for years 
by the RDBMS, it was eschewed by the vendors in favor of more “familiar” 
WHERE clause syntax. Any query used in this chapter could be rewritten using 
this syntax, and it could still be understood by the RDBMS. For instance:

SELECT 

    loc_bookcase

  , loc_shelf

  , loc_position_left

  , bk_title 

FROM location 

WHERE location.fk_bk_loc = books.bk_id

Where’s the incentive to use the new syntax? First of all, the new syntax is 
endorsed by the SQL Standards Committee and is now supported by all 
RDBMSs discussed in this book. Second, the old syntax is only supported for 
backward compatibility and might be deprecated in the later releases. Arguably, 
the new syntax increases readability of the code and might even prevent some 
common SQL errors such as unintended Cartesian product queries, discussed 
later in the chapter.

N-way INNER JOIN

What happens when there is no direct relationship between the two tables? Why, you get more 
tables involved! You saw it in action in the exercise included in the preceding section on INNER 
JOIN. 

For instance, we would like to list all the books and their respective authors. Remember that a 
book does not know where in the database its authors are (meaning, there is no information in 
a row in the BOOKS table about the book’s authors), nor does an author know where his books 
are. Rather, there is in the database a table, BOOKS_AUTHORS, which contains the knowledge 
about which book was written by which authors and which author has written which books. 
Each row in that table contains a foreign key for the BOOKS table and a foreign key for the 
AUTHORS table. If a book was written by several authors, there are several rows in that table, 
each containing the same book ID and different author ID(s), and vice versa for any author who 
has written several books.

c07.indd 179c07.indd   179 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM



180 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

Since a BOOKS row has no foreign keys for AUTHORS or an AUTHORS row for BOOKS, we 
have no way of JOIN(ing) those two tables together. Nevertheless, we can JOIN each of them to 
BOOKS_AUTHORS:

SELECT 

books.bk_title AS Book

, authors.au_last_name AS Author

FROM books INNERJOIN books_authors 

ON books.bk_id = books_authors.bk_id

           INNER JOIN authors 

    ON authors.au_id = books_authors.au_id;

The result is shown in Table 7-3. As you might have expected, if a book has more than one author, it 
will be listed as many times as there are authors.

TABLE 7-3: Listing Books and Their Respective Authors

BOOK AUTHOR

SQL Bible Kriegel

SQL Bible Trukhnov

Wiley Pathways: Introduction to Database Management Gillenson

Wiley Pathways: Introduction to Database Management Ponniah

Wiley Pathways: Introduction to Database Management Taylor

Wiley Pathways: Introduction to Database Management Powell

Wiley Pathways: Introduction to Database Management Miller

Microsoft SQL Server 2000 Weekend Crash Course Kriegel

Wiley Pathways: Introduction to Database Management Trukhnov

Wiley Pathways: Introduction to Database Management Kriegel

SQL Functions: Programmers Reference Kriegel

SQL Functions: Programmers Reference Jones

SQL Functions: Programmers Reference Stephens

SQL Functions: Programmers Reference Plew

SQL Functions: Programmers Reference Garrett

Mindswap Sheckley

Stranger in a Strange Land Heinlein

Jonathan Livingston Seagull Bach

c07.indd 180c07.indd   180 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Joins Revisited x 181

BOOK AUTHOR

Steppenwolf Hesse

A Short History of Nearly Everything Bryson

A La Recherche du Temps Perdu Proust

After the Gold Rush: Creating a True Profession of Software Engineering McConnell

Letters From Earth Twain

There may be repeating book titles in the resulting data set, as well as repeating author names, but 
each combination of a book title and an author name appears only once. 

Let us deconstruct the logic behind the data set returned by the query. Here is the fi rst part, the 
SELECT list: 

SELECT 

books.bk_title AS Book

, authors.au_last_name AS Author

Nothing mysterious here; we let the query engine know what data we are interested in, as well as 
asking for some prettier column names than the default (the AS alias). Note that we don’t have to 
request data from each of the tables we are querying. In this case, we want something from the 
BOOKS table and from the AUTHORS table, but nothing from BOOKS_AUTHORS:

FROM books INNER JOIN books_authors 

ON books.bk_id = books_authors.bk_id

This is where we defi ne the fi rst INNER JOIN. We specify which tables are to be joined and how they 
are to be joined. In this case, we match the values of the BK_ID column in one table and BK_ID fi eld 
in the other table (the column names need not be the same, although it is convenient when they are):

INNER JOIN authors ON authors.au_id = books_authors.au_id

Here we defi ne the second INNER JOIN. Note the difference from the fi rst. In the fi rst case, we 
specifi ed two tables, books INNER JOIN books_authors, while here we only specify one table: 
INNER JOIN authors. We don’t need to specify the other table. It’s bound to be one of the two that 
have been mentioned already, and the row-matching rule will defi ne which one (in this case, “match 
the values of the AU_ID column in the AUTHORS table with the values of the AU_ID column in 
the BOOKS_AUTHORS table”).

If we run this query, and if our BOOKS table has some books that are not mentioned in the 
BOOKS_AUTHORS table, no such books will be included in the resulting data set or any authors 
from the AUTHORS table, if no mention of them exists in the BOOKS_AUTHORS table.

TRY IT OUT Using the Four-way JOIN

How do you fi nd which books from which authors you have stored on the top shelf of your bookcase 
with a title beginning with “SQL”? By JOIN(ing) the LOCATION, BOOKS and AUTHORS tables, of 
course. Because there is a many-to-many relationship between the books and their respective authors, 

c07.indd 181c07.indd   181 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM



182 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

we’ll have to include the BOOKS_AUTHORS intermediate table to resolve the complexity. We are 
going to use Microsoft SQL Server to demonstrate this functionality, but the script will run without 
any changes in every other RDBMS discussed in the book. Let’s get started:

1. Open Microsoft SQL Server Management Studio and connect to your database using Windows 
authentication.

2. In the upper-left corner click the New Query button and enter the following SQL query:

    SELECT 

        au_last_name AS author

      , bk_title AS title

    FROM books bk INNER JOIN books_authors ba 

      ON bk.bk_id = ba.bk_id

    INNER JOIN authors au

      ON ba.au_id = au.au_id

    INNER JOIN location loc

      ON bk.bk_id = loc.fk_bk_loc

        WHERE loc.loc_shelf = 5

           AND bk.bk_title LIKE ‘SQL%’

3. Click the Execute button on the toolbar and observe the returned results:

author           title

---------------- ----------------------------------------------

Kriegel          SQL Bible

Trukhnov         SQL Bible

Kriegel          SQL Functions: Programmers Reference

Jones            SQL Functions: Programmers Reference

Stephens         SQL Functions: Programmers Reference

Plew             SQL Functions: Programmers Reference

Garrett          SQL Functions: Programmers Reference

(7 row(s) affected)

How It Works
As in the previous examples, the evaluation of JOIN(s) leads to ever-dwindling choices until the data 
set is fully conformed to the specifi ed criteria. In this case, the database engine matched records from 
all tables’ pairs (BOOKS/BOOKS_AUTHORS, BOOKS_AUTHORS/AUTHORS, and BOOKS/
LOCATIONS) joined on the keys of the JOIN statements. Then fi nal fi ltering was applied, reducing the 
data set to only records that have LOC_SHELF = 5 and BK_TITLE starting with “SQL” (recall that 
pattern matching with the LIKE predicate).

LEFT OUTER JOIN

While it is not stated upfront, there are always two tables to each JOIN and true to our anthropo-
morphizing nature, we visualize them as being either on the LEFT or on the RIGHT, regardless of 
where and how the database keeps them. The idea of an OUTER join is built upon this notion. For 
example, the LEFT OUTER JOIN is used when we want to see the full list of things that interest us 
on the LEFT, along with any additional features that some items on the list may have on the RIGHT 

c07.indd 182c07.indd   182 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM



Joins Revisited x 183

side. If none is present, unmatched rows on the LEFT 
are complemented by the NULL(s) on the right. 
Figure 7-4 presents the concept of the LEFT 
OUTER JOIN. 

Let us, for instance, list all the shelf space we 
have, along with whatever books we may have on 
our bookshelves. Now, we do want all the books,
even those that were not yet placed on the shelf. 
Since all our books have their rightful place in the 
bookcase already, we’ll have to create unmatched 
rows in the BOOKS table. It will becomingly be 
assigned BK_ID = 13:

INSERT INTO books (bk_id, bk_title) 

    VALUES (13,’LEFT JOIN EXAMPLE’)

The rest of the columns will be fi lled in with default NULL.

Now, we can use the book-placement query from a few paragraphs earlier. Only now, we’ll change 
the JOIN type from INNER to LEFT OUTER:

SELECT 

      bk_title

    , loc_shelf

    ,loc_position_left

  FROM books LEFT OUTER JOIN location 

    ON location.fk_bk_loc = books.bk_id

We are asking for all records from the BOOKS table, and everything else, including unmatched rows 
from the LOCATION table. The newly inserted record (the last row in the table) has no correspond-
ing location on the shelf, so it was complemented with NULL(s) for the values. Had we run the 
INNER JOIN operation now, the thirteenth record would be simply excluded as one without match. 
Table 7-4 presents result of the previous query.

TABLE 7-4: Results Returned by LEFT OUTER JOIN Query

TITLE SHELF POSITION

SQL Bible 5 1

Wiley Pathways: Introduction to Database Management 5 2

SQL Functions: Programmers Reference 5 4

After the Gold Rush: Creating a True Profession of Software Engineering 4 1

Mindswap 3 1

Stranger in a Strange Land 3 2

FIGURE 7-4

continues

c07.indd 183c07.indd   183 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM



184 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

TITLE SHELF POSITION

Jonathan Livingston Seagull 3 3

A La Recherche du Temps Perdu 2 1

Letters From Earth 2 2

Steppenwolf 2 3

LEFT JOIN EXAMPLE NULL NULL

At least we know now what books have not been placed yet. Had we used INNER JOIN, this 
“book” would not have showed up. 

RIGHT OUTER JOIN

This is a mirror image of the LEFT OUTER JOIN. 
Now we are after the information supplied by the 
right side of the pair. We still have unmatched 
records in the BOOKS table. By moving the 
table to the right side and deploying the RIGHT 
OUTER JOIN, we could get an identical result. 
Figure 7-5 illustrates the concept.

We get the same result as in the LEFT OUTER 
JOIN example; only this time the records are 
matched with NULL(s) to the right:

SELECT 

loc_shelf

  , loc_position_left

  , bk_title

FROM location RIGHT OUTER JOIN books 

ON location.fk_bk_loc = books.bk_id

The results of the query are displayed in Table 7-5.

TABLE 7-5: Results Returned by the RIGHT OUTER JOIN Query

SHELF POSITION TITLE

5 1 SQL Bible

5 2 Wiley Pathways: Introduction to Database Management

5 4 SQL Functions: Programmers Reference

4 1 After the Gold Rush: Creating a True Profession of Software Engineering

3 1 Mindswap

FIGURE 7-5

TABLE 7-4 (continued)

c07.indd 184c07.indd   184 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM



Joins Revisited x 185

SHELF POSITION TITLE

3 2 Stranger in a Strange Land

3 3 Jonathan Livingston Seagull

2 1 A La Recherche du Temps Perdu

2 2 Letters From Earth

2 3 Steppenwolf

NULL NULL LEFT JOIN EXAMPLE

FULL JOIN

The FULL JOIN is a combination of the LEFT and 
RIGHT OUTER JOINs, as shown in Figure 7-6.

The next query gives us the data set with all our 
books and all our locations, with some of them on 
the same row. The query would be the same, only 
FULL JOIN will be applied:

SELECT 

loc_shelf

  , loc_position_left

  , bk_title

FROM location FULL JOIN books 

ON location.fk_bk_loc = books.bk_id

Since the records are now returned from either side, the position of the tables in the query does not 
matter anymore. Table 7-6 refl ects the change.

TABLE 7-6: Results Returned by FULL JOIN Query

TITLE SHELF POSITION

SQL Bible 5 1

Wiley Pathways: Introduction to Database Management 5 2

SQL Functions: Programmers Reference 5 4

After the Gold Rush: Creating a True Profession of Software Engineering 4 1

Mindswap 3 1

Stranger in a Strange Land 3 2

Jonathan Livingston Seagull 3 3

 FIGURE 7-6

continues

c07.indd 185c07.indd   185 3/22/2011 1:48:40 PM3/22/2011   1:48:40 PM



186 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

TITLE SHELF POSITION

A La Recherche du Temps Perdu 2 1

Letters From Earth 2 2

Steppenwolf 2 3

LEFT JOIN EXAMPLE NULL NULL

In the preceding example, the LOCATION table could not have unmatched records because of the 
referential integrity constraints (see Chapter 3 for more details on referential integrity), so we had 
to switch the tables and apply different types of JOIN(s). There are plenty of situations where the 
JOIN criteria are not the same as the primary/foreign key relationships, and you will have sets with 
matched and unmatched records from both sides. 

If, for instance, you’d JOIN the tables on a column that is neither the primary nor the foreign key (for 
example, BK_ID = LOC_POSITION_LEFT), the result would be lots of NULLS from unmatched 
LOCATION records because we have only four distinct values for the LOC_POSITION_LEFT ver-
sus 13 for the BK_ID (yes, exactly nine NULL(s) will be returned). While a valid SQL operation, this 
query would not make much sense from the logical point of view, but demonstrates the concept of 
the OUTER JOIN rather nicely.

Now that we do not need this superfl uous record, we could safely remove it from our BOOKS table:

DELETE books WHERE bk_id=13;

The keyword OUTER in the preceding JOIN examples is optional. Simply using 
LEFT, RIGHT, or FULL would suffi ce. The same goes for INNER JOIN. The 
RDBMS fi gures out that a JOIN without any qualifi ers is of the INNER type. 
Nevertheless, using these qualifi ers is considered a good practice, as it contributes 
to better maintainability of your SQL code by leaving nothing to be guessed.

Self JOIN: Looking Inside for an Answer

Here’s a novel concept: JOIN(ing) a table to itself. You may wonder why you would want to do that. 
Don’t we have all we need right there? Yes and no. For example, try this: List the books that were 
published in the same year in the order in which they were added to the database.

Here’s a self-join query to answer this question:

SELECT 

    fst.bk_id

  , fst.bk_title

  , snd.bk_id

  , snd.bk_title 

FROM books fst JOIN books snd

    ON fst.bk_published_year = snd.bk_published_year

TABLE 7-6 (continued)

c07.indd 186c07.indd   186 3/22/2011 1:48:41 PM3/22/2011   1:48:41 PM



Joins Revisited x 187

        WHERE fst.bk_id < snd.bk_id;

bk_id     bk_title                     bk_id  bk_title

-------- ----------------------------- ----------------------------------5        A 

La Recherche du Temps Perdu  12    Steppenwolf

7        Letters From Earth             11    A Short History of Nearly…

(2 row(s) affected)

First, you will notice that the tables have to be aliased because otherwise the database engine won’t 
be able to distinguish which table we are referring to in other parts of the statement. It was a good 
practice before; now it is a necessity. Next, we JOIN the table by the year of publishing and then 
indicate that we want different records for the same year (otherwise, we would get the same book 
from each of the tables).

The important thing to remember is that despite JOIN(ing) the table with itself, you are still dealing 
with two instances of the table, separate from each other for all intents and purposes. There is no 
practical limit to how many times the table could refer to itself in a query.

While the above results could potentially be achieved with subqueries and GROUP BY statements, it 
would be diffi cult to list two book titles on the same row.

The self JOIN is not some special type of a JOIN; it is but a demonstration of the fl exibility afforded 
by SQL syntax.

CROSS JOIN (aka Cartesian Product)

Finally, let us take a look at a different sort of JOIN. So different, in fact, that its syntax does not 
even allow for a row-matching condition!

SELECT 

    loc_bookcase

, loc_shelf

, loc_position_left

, bk_title

  FROM location CROSS JOIN books

(144 row(s) affected)

How could this have happened: 144 rows? We only have a dozen records in either of the tables! 
What sort of JOIN is this? It has another name: Cartesian product. Recall the Cartesian coordinate 
system, with two axes at right angles to each other, and numbers going up each axis from the 0 
point at the intersection. One common example of this system is the chess board, except that, along 
one of the axes, the numbers are replaced by letters. 

If we want to name every single square on the chess board, we will use its coordinates: A1, A2, 
E4, E5, and so on. In other words, we match every single value from one axis with every single 
value from the other. This is the Cartesian Product (it’s almost like we “multiply” Ax1, Ax2, and 
so on). 

The CROSS JOIN does the same thing with the tables: it pairs up every row of one table with every 
row of the other table. As you might expect, the result is usually quite big. The output from just two 
tables in the preceding example will result in 144 rows returned (each table has 12 rows), and the 
more tables that are added to the query, the bigger the result gets. 

c07.indd 187c07.indd   187 3/22/2011 1:48:41 PM3/22/2011   1:48:41 PM



188 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

What’s so “join” about it? Not much, really, and old SQL syntax makes this rather obvious. You 
just list the tables to select from without any JOIN criteria:

SELECT 

    loc_bookcase

  , loc_shelf

  , loc_position_left

  , bk_title

FROM location,books

In other words, we dispense with the word JOIN altogether, and just list the tables. Herein lies the 
predicament; omitting the WHERE clause creates a Cartesian product query, and makes it very easy 
to do. Results might be more than you have asked for. Table 7-7 shows the progression of the result-
ing data set from including increasing numbers of the tables contained in the Library database.

TABLE 7-7: Cartesian Products in the Library Database

TABLES LISTED IN FROM CLAUSE RECORDS RETURNED

location, books 144

location, books, authors 2,736

location, books, authors, books_authors 62,928

location, books, authors, books_authors, search_books 3,901,536

location, books, authors, books_authors, search_books, searchTags 109,243,008

Our tiny Library database, with but six tables, none of which contained more than 12 records, pro-
duced truly astronomical results. Imagine what would happen in a production database comprising 
dozens, even hundreds of tables with millions of rows! This is the surest way to grind your database 
to a halt and make your DBA very unhappy.

Using CROSS JOIN with a WHERE clause would limit the number of the 
records returned. For example, the Cartesian product of the following query 

SELECT  loc_bookcase, loc_shelf, loc_position_left, bk_title  

FROM location CROSS JOIN books

WHERE bk_id = 1

would only return 12 records, and not 144 as in the example at the beginning of 
this paragraph.

Fortunately, the new syntax requires that you explicitly declare your intentions upfront, and would 
not allow queries with an accidental Cartesian product. You must use the CROSS JOIN keyword 
or supply join criteria. It pays to head your DBA warning: Using old join syntax might be harmful 
for your database. Mercifully, many RDBMSs stopped supporting the old syntax in their respective 
databases. Unless you need to work with legacy code, you’d be better off never to use this old syntax 
in your queries. 

c07.indd 188c07.indd   188 3/22/2011 1:48:41 PM3/22/2011   1:48:41 PM



State of the UNION x 189

One might wonder, if a CROSS JOIN is a bad thing to be avoided why even bother providing the 
keyword? The truth is that there are legitimate uses for CROSS JOIN. For instance, it offers a fast 
and easy way to produce huge data sets for testing. Another scenario might include joining the data 
set produced by a CROSS JOIN to select rows which neither LEFT nor OUTER JOIN(s) could pro-
duce by themselves such as including customers who had zero total sales for a given product (the 
library scenario might ask for patrons who never borrowed a specifi c book within a year.)

CROSS JOIN could be a very powerful tool, and as such it must be approached with caution. 
Processing huge data sets will consume system resources. One of the best practices in SQL is to be as 
selective as possible, and minimize the amount of data accessed in a query.

Is there a limit on how many JOIN(s) an SQL query could have? There is a 
practical limit after which the complexity of preparing execution plans, let alone 
executing them, brings a server to its knees. The actual number would depend 
on the RDBMS and the hardware on which it is running, but if you fi nd yourself 
using more than a dozen, you might want to recheck your assumptions.

STATE OF THE UNION

The Library database does not offer us much reason to use UNION, but let’s pretend that you want 
the full list of book titles and author names combined. Perhaps you want to create a master direc-
tory, in which you can look up a book either by its title or author, all in one list:

SELECT 

    books.bk_title AS title

FROM books

UNION 

SELECT 

    authors.au_last_name 

FROM authors

UNION does not establish a link, or a connection, between tables; it simply jams them together, one 
atop another. Note that the syntax of a UNION operation is different from that of a JOIN. UNION 
refl ects the fact that tables are not connected, but merely “glued” together, as shown in Table 7-8.

TABLE 7-8: Result of a UNION Query

TITLE

A Short History of Nearly Everything

After the Gold Rush: Creating a True Profession of Software 
Engineering

Bach

Bryson

continues

c07.indd 189c07.indd   189 3/22/2011 1:48:42 PM3/22/2011   1:48:42 PM



190 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

TITLE

Garrett

Gillenson

Heinlein

Hesse

Jonathan Livingston Seagull

Jones

Kriegel

Letters From Earth

McConnell

Microsoft SQL Server 2000 Weekend Crash Course

Miller

Mindswap

Plew

Ponniah

Powell

Proust

A La Recherche du Temps Perdu

Sheckley

SQL Bible

SQL Functions: Programmers Reference

Stephens

Steppenwolf

Stranger in a Strange Land

Taylor

Trukhnov

Twain

Wiley Pathways: Introduction to Database Management

TABLE 7-8 (continued)

c07.indd 190c07.indd   190 3/22/2011 1:48:42 PM3/22/2011   1:48:42 PM



State of the UNION x 191

Note that the book titles and the author names are all in the same single column of the resulting 
data set, and they are ordered alphabetically, without paying attention whence the record came. 
Your results might be different, as not all RDBMSs support this ordering feature. Use ORDER BY 
clause if you need the result set to be in specifi c order. 

If you are using ORDER BY with queries glued together by the UNION operator, keep in mind that 
the ordering is done on the entire set. You can’t use ORDER BY within the queries, only with the 
entire statement.

The important consideration is the data compatibility: We can build a list of book titles and author 
names because each of them is a text string. We can’t combine things of different types, such as 
dates from one table and prices from another. What sort of sense would such a list have? (Of course, 
we can build a query that would put dates in one column of the resulting data set and prices in 
another column, such as quarterly sales results. That would be a fi ne job for a JOIN, but UNION 
combines data from different tables into a single column of the result, so all the data must be of the 
same data type.) The compatibility principle applies not only to the data types but also to the struc-
ture of the data set. The number of columns specifi ed in the SELECT list of each query must be the 
same, and their respective data types must be compatible.

UNION may be useful when there is a need to combine similar data from several different tables. 
Sometimes, the designers of a database may present a single logical data table as several physically 
distinct tables, perhaps for faster access, or easier distribution among separate pieces of hardware. 
In those cases, UNION will help bring the data from the several tables back together into a single 
data set. 

Though our data does not have duplicates, the UNION takes care of eliminating the duplicate 
entries on the list. If there were more than one author with the same surname, only one would make 
it to the list. If your intent is to include all records, you must use the UNION ALL operator.

Let’s add a record for an author: John M. Bryson, author of Strategic Planning for Public and 
Nonprofi t Organizations: A Guide to Strengthening and Sustaining Organizational Achievement
(no relation to Bill Bryson, who is already in our database. As with the superfl uous record added 
to our BOOKS table, we will insert only the absolute minimum data required: AU_ID and 
AU_LAST_NAME:

INSERT INTO authors (au_id, au_last_name)

    VALUES (20, ‘Bryson’)

Now we can run exactly the same query we introduced at the beginning of this section, and see that 
it yields the very same results, with only one Bryson appearing on the list: 

SELECT 

    books.bk_title AS title

FROM books

UNION ALL

SELECT 

    authors.au_last_name 

FROM authors;

The picture is quite different when we run UNION ALL. Not only do we get two authors named 
Bryson on the list but we also lose our ordering. Each piece of the UNION comes back in its 

c07.indd 191c07.indd   191 3/22/2011 1:48:42 PM3/22/2011   1:48:42 PM



192 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

original order from each query (notice the Bryson at the end of the data set), and the results of the 
second query are simply appended to the fi rst, as shown in Table 7-9.

TABLE 7-9: Result of a UNION ALL Query

TITLE

SQL Bible

Wiley Pathways: Introduction to Database Management

Microsoft SQL Server 2000 Weekend Crash Course

SQL Functions: Programmers Reference

A La Recherche du Temps Perdu

After the Gold Rush: Creating a True Profession of Software 
Engineering

Letters From Earth

Mindswap

Stranger in a Strange Land

Jonathan Livingston Seagull

A Short History of Nearly Everything

Steppenwolf

Kriegel

Trukhnov

Gillenson

Ponniah

Taylor

Powell

Miller

Jones

Stephens

Plew

Garrett

c07.indd 192c07.indd   192 3/22/2011 1:48:42 PM3/22/2011   1:48:42 PM



A Point of VIEW x 193

TITLE

Sheckley

Heinlein

Bach

Hesse

Bryson

Proust

McConnell

Twain

Bryson

Sometimes the data are, in fact, different. Yet, there is an aspect of similarity. Imagine organizations 
with many roles for the members to play: a school, where a person may be a teacher, a student, a 
custodian, or the principal; a factory, with workers, managers, support personnel, and sales people. 
You get the idea. Each of these roles will have its own table in the database, yet the master list of 
“people” can be constructed by using the UNION on all those tables and asking only for the last 
name and fi rst name — every member of every role is bound to have them!

Where a JOIN adds more and more relevant details from many connected tables to the result, the 
UNION takes disparate tables, cuts out irrelevancies, and reduces the tables to some narrow, but 
common view.

There is no practical limit to how many UNION(s) a single query can have, 
but there is practical evidence that the number runs into the thousands. The 
actual number depends on hardware (CPU, RAM) and particular RDBMS 
implementation. 

A POINT OF VIEW

As you have seen, the SQL queries could grow quite large, and at some point their complexity could 
become overwhelming. Moreover, after spending hours to get your query, complete with JOIN(s), 
UNION(s), functions and other things afforded by SQL syntax, you might want to save the resulting 
scripts for future use. 

This is where SQL VIEW comes into the picture. To paraphrase Goethe, a VIEW is frozen query.

c07.indd 193c07.indd   193 3/22/2011 1:48:42 PM3/22/2011   1:48:42 PM



194 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

Johann Wolfgang von Goethe, an early nineteenth-century German writer and 
philosopher who is considered by many one of the most important thinkers of 
the Western Civilization, once remarked, “I call architecture frozen music.” 
He might have been paraphrasing his compatriot Friedrich Wilhelm Joseph von 
Schelling, who expressed a similar idea 30 years earlier.

Like every object in the database, a view is created as part of a Data Defi nition Language (DDL) 
statement (see Chapter 2 for discussions on DDL, DML, and DQL). Unlike them, however, the 
CREATE VIEW syntax also contains Data Query Language (DQL), the query to extract data. Most 
of the books introduce VIEW(s) along with TABLE(s) due to the similarity of the CREATE syntax. 
When on the discovery journey, the logical place to fi nd them is in multitable data extraction as a 
means to manage all the complexity. Let’s take a look.

CREATE VIEW

In its most basic form, converting a query into a view is a snap; just add a CREATE VIEW state-
ment, along with the name for the newly created object. For instance:

CREATE VIEW vwBooksONshelves 

AS 

    SELECT 

        loc_bookcase      AS bookcase

      , loc_shelf         AS shelf

      , loc_position_left AS position

      , bk_title          AS title

  FROM location INNER JOIN books 

    ON location.fk_bk_loc = books.bk_id;

The view is created, and now you can query it with simple SELECT * syntax, as demonstrated in 
the following example:

SELECT * FROM vwBooksONshelves;

The results in Table 7-10 are identical to those produced by the query itself.

TABLE 7-10: Results of Two Table JOIN Queries Wrapped in a VIEW

BOOKCASE SHELF POSITION TITLE

The one in the living room 

to the right

5 1 SQL Bible

The one in the living room 

to the right

5 2 Wiley Pathways: Introduction to Database 
Management

The one in the living room 

to the right

5 4 SQL Functions: Programmers Reference

The one in the living room 

to the right

4 1 After the Gold Rush: Creating a True 
Profession of Software Engineering

c07.indd 194c07.indd   194 3/22/2011 1:48:43 PM3/22/2011   1:48:43 PM



A Point of VIEW x 195

BOOKCASE SHELF POSITION TITLE

The one in the living room 

to the right

4 2 A Short History of Nearly Everything

The one in the living room 

to the right

3 1 Mindswap

The one in the living room 

to the right

3 2 Stranger in a Strange Land

The one in the living room 

to the right

3 3 Jonathan Livingston Seagull

The one in the living room 

to the right

2 1 A La Recherche du Temps Perdu

The one in the living room 

to the right

2 2 Letters From Earth

The one in the living room 

to the right

2 3 Steppenwolf

VIEW(s) can be put to many uses, encapsulating complexity, enforcing security, and so on. Some of 
these options will be discussed in greater detail later in the chapter. There are quite a few RDBMS-
specifi c options that might go along with the CREATE VIEW statement, but the preceding syntax is 
universal, and will work identically across every RDBMS we’re discussing in this book.

Almost any SQL query (of the DQL variety) in this book can be converted into a view, but there are a 
few exceptions. In some RDBMSs, a query with the ORDER BY clause cannot be used in a VIEW (but 
a GROUP BY clause can). Consequently, some RDBMSs disallow the use of the keywords that cause 
“ordering” (DISTINCT, FIRST, and so on). Hyper Structured Query Language Database (HSQLDB) 
and MySQL, for instance, allow ORDER BY; Oracle, Microsoft SQL Server, Microsoft Access, 
PostgreSQL, and IBM DB2 do not. None of the RDBMSs allows a view to refer to itself (a circular 
reference) or any transient structures, such as temporary tables (see Chapter 8 for more information).

Being an integrated environment that combines both database and programming 
constructs, Microsoft Access can be used as a front end for other RDBMSs. 
This capability comes with many restrictions. For instance, in the context of 
this chapter, the Microsoft Access database engine does not support the use of 
CREATE VIEW (or any of the DDL statements, for that matter) with non–
Microsoft Access database engine databases.

If a view or a table with the same name already exists in the database, the RDBMS will throw an 
error. Some RDBMSs (Oracle, PostgreSQL, and MySQL) provide alternative REPLACE keyword to 
address the situation (in others, a view must be dropped before another view with the same name 
could be created). For example:

c07.indd 195c07.indd   195 3/22/2011 1:48:43 PM3/22/2011   1:48:43 PM



196 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

CREATE OR REPLACE VIEW vwbooksONshelves 

AS 

    SELECT 

        loc_bookcase      AS bookcase

      , loc_shelf         AS shelf

      , loc_position_left AS position

      , bk_title          AS title

  FROM location INNER JOIN books 

    ON location.fk_bk_loc = books.bk_id;

One could easily construct views limiting the user to a subset of data, either vertical (by restricting 
columns exposed by the view), or horizontal (by limiting the number of records returned). 

It is considered to be a good practice to name your database objects according to 
a naming convention. For instance, you can prefi x views with vw to differentiate 
them from tables.

The following view returns titles of the three most expensive books that could be found on the top 
shelf (#5) of our bookcase. It uses Microsoft SQL Server syntax (which allows for the ORDER BY 
clause to be used in a view):

CREATE VIEW vwTop3booksOn5thShelf 

AS 

    SELECT TOP 3

        loc_position_left AS position

      , bk_title          AS title

      , bk_id

  FROM location INNER JOIN books 

    ON location.fk_bk_loc = books.bk_id

 WHERE loc_shelf = 5 

 ORDER BY bk_price DESC;

Running the SELECT statement on the view returns a subset of data: only two columns, limited to 
only three top records, ordered by BK_PRICE (even though the column BK_PRICE is not accessible 
through the view):

SELECT * FROM vwTop3booksOn5thShelf;

position    title                                                 bk_id

----------- ---------------------------------------------------- -----------

2           Wiley Pathways: Introduction to Database Management   2

1           SQL Bible                                             1

3           SQL Functions: Programmers Reference                  3

(3 row(s) affected)

Abstracting data with views not only makes it more user friendly by hiding the complexity of the 
underlying data model but it also serves as a security mechanism by denying access to the rows and 
columns not explicitly exposed through a view. For example, if your intention was to give the user 
the ability to fi nd the three most expensive books on the fi fth shelf without divulging actual prices, 
the view in the above example would do just that. Even though BK_PRICE exists in the underlying 
table, a person having only privilege to query the view [vwTop3booksOn5thShelf] would never be 
able to see the price, or even fi nd out what would be the fourth most expensive book.

c07.indd 196c07.indd   196 3/22/2011 1:48:43 PM3/22/2011   1:48:43 PM



A Point of VIEW x 197

TRY IT OUT Wrapping Complexity in a VIEW

Let’s try to construct a relatively complex query containing several JOINS and the GROUP BY clause 
to fi nd books tagged with a search tag such as SQL, and group them by the year of publishing. We’ll 
wrap the query into a VIEW afterward to see how the complexity could be hidden from the users. The 
examples are created in Microsoft SQL Server, but should work without any modifi cation on other 
RDBMSs.

1. Connect to the RDBMS, and open New Query window.

2. In the query window type in the following code, and click Execute.

CREATE VIEW vwOneComplexView

AS

SELECT bk_title AS title

    , bk_published_year AS pub_year

    , loc.loc_shelf

FROM books bk INNER JOIN books_authors ba 

    ON bk.bk_id = ba.bk_id

INNER JOIN authors au

    ON ba.au_id = au.au_id

INNER JOIN location loc

    ON bk.bk_id = loc.fk_bk_loc

INNER JOIN search_books sb

    ON sb.bk_id = bk.bk_id

INNER JOIN  searchTags st

    ON st.tag_id = sb.tag_id

WHERE loc.loc_shelf = 5

AND st.tag_value IN (‘SQL’)

GROUP BY 

  bk_published_year

, bk_title

, bk_price

,loc_shelf

3. Confi rm that the command executed successfully, and that the view was indeed created.

4. Delete the code from the query window. Type in and execute a new query.

SELECT * FROM vwOneComplexView 

ORDER BY title;

title                                                pub_year   loc_shelf

--------------------------------------------------- ----------- -----------

Microsoft SQL Server 2000 Weekend Crash Course       2001       5

SQL Bible                                            2008       5

SQL Functions: Programmers Reference                 2005       5

Wiley Pathways: Introduction to Database Management  2007       5

(4 row(s) affected)

How It Works
This view ties together six tables using INNER JOIN syntax. Additionally, it imposes two restric-
tions, searching only for books tagged with “SQL,” and only these located on the top (fi fth) shelf. The 
results are grouped by the BK_PUBLISHED_YEAR column from the BOOKS table (as well as three 

c07.indd 197c07.indd   197 3/22/2011 1:48:44 PM3/22/2011   1:48:44 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



198 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

more columns). By wrapping all this complexity in a single view, we have the ability to simplify queries 
run by business users, imposing certain business and security rules at the same time. If a user only was 
granted SELECT privileges to this view, he or she would never be able to view books outside the speci-
fi ed search criteria. Only books tagged with SQL and only those on the fi fth shelf will appear in the 
result set. The user has control over sorting the records with the ORDER BY clause, referring to aliases 
exposed by the view. In the preceding query the ORDER BY clause ordered records by TITLE, overrid-
ing the default order imposed by GROUP BY used in the view syntax.

ALTER VIEW

When a change you wish to apply to an existing view does not warrant the view’s complete rewrite, 
you could use the ALTER VIEW syntax. There are quite a few differences between RDBMSs in 
regard to what this statement could alter, and some (HSQLDB, MS Access) do not support it at all.

Oracle’s ALTER VIEW statement cannot change the VIEW defi nition (add columns, rename col-
umns, and so on). Instead, it uses this statement to add constraints to the existing DDL defi nitions 
(see Chapter 8 for more information on constraints). Apparently, Oracle fi gures that CREATE OR 
REPLACE would take care of the rest.

IBM DB2 uses ALTER VIEW only to add columns to the existing query defi nition. The rest of the 
RDBMSs use ALTER VIEW as a synonym for REPLACE, with the important distinction that using 
ALTER does not affect security permissions you might have created for this view (see Chapter 10 
for more information on security).

DROP VIEW

Unlike a query, a VIEW is a permanent database object, and must be disposed of as such. It follows 
the very same syntax you might use when destroying other database objects:

DROP VIEW vwBooksONshelves;

Depending on the RDBMS, there might be some additional options that could be specifi ed with the 
statement. The two keywords, CASCADE and RESTRICT, instruct the RDBMS either to drop all 
other objects dependent on this view or prevent the statement from being executed whenever such 
objects exist. Not every database supports these statements, though. Once the VIEW is dropped, all 
other objects depending on this view will be invalidated. Dropping a view does not affect data in the 
underlying objects.

Updatable VIEW

It was not long ago that VIEW(s) were just that: read-only windows into your data. Some RDBMSs 
have loosened the restrictions somewhat, and you can INSERT, UPDATE, or DELETE using 
VIEW(s). Currently, only Oracle, MySQL, Microsoft SQL Server, and IBM DB2 offer this capability. 
Even with them, there are conditions to be satisfi ed before a view could become an updatable one.

The biggest restriction is that an updatable view cannot include more than one table. Other restric-
tions preclude the use of the GROUP BY and ORDER BY clauses, the DISTINCT keyword, no 

c07.indd 198c07.indd   198 3/22/2011 1:48:44 PM3/22/2011   1:48:44 PM



A Point of VIEW x 199

aggregate functions or subqueries, and no calculated columns. The list goes on and on. Some SQL 
statements might require additional specifi c conditions. For example, in order to use the INSERT 
statement on a view, all NOT NULL columns must be included in the SELECT statement used to 
create this view.

TRY IT OUT INSERTing, UPDATEing, and DELETEing through a VIEW

Let’s create a view that allows users to add new records to the database, but restricts them to being able 
to UPDATE only two columns in the underlying table. We are going to use Microsoft SQL Server for 
this activity, but it will work in other RDBMSs supporting updatable views.

1. Open Microsoft SQL Server Management Studio and connect to your database using Windows 
authentication.

2. In the upper-left corner, click the New Query button.

3. In the opened query window (the middle pane), enter the following SQL query:

CREATE VIEW vwBookPrices 

AS SELECT 

   bk_id

 , bk_title

 , bk_price

FROM books;

4. Insert a new record by executing the following query, supplying only BK_ID value:

INSERT INTO vwBookPrices (BK_ID) VALUES (100);

(1 row(s) affected)

5. Verify that the record is indeed inserted into the BOOKS table by running this query:

SELECT 

    bk_id

  , bk_title

  , bk_price 

FROM books;

bk_id   bk_title  bk_price

------  -------   ---------

100     NULL      NULL

6. Update the newly inserted record with the book’s title and price by running the following query:

UPDATE vwBookPrices 

    SET bk_title= ‘Faust’ 

      , bk_price = 11.90

WHERE bk_id = 100

(1 row(s) affected)

7. Verify that the record is indeed inserted into the BOOKS table by running this query:

SELECT 

    bk_id

c07.indd 199c07.indd   199 3/22/2011 1:48:44 PM3/22/2011   1:48:44 PM



200 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

  , bk_title

  , bk_price 

FROM books

WHERE bk_id = 100

;

bk_id   bk_title  bk_price

------  -------   ---------

100     Faust     11.90

8. Finally, delete the record:

DELETE vwBookPrices WHERE bk_id = 100;

(1 row(s) affected)

How It Works
This view is based on a single table (BOOKS) and allows for UPDATE(ing) the columns BK_TITLE 
and BK_PRICE, as well as INSERT(ing) new records, because, with the exception of BK_ID, the pri-
mary key on the column, all other columns allow NULL(s). We are also allowed to delete the record; in 
fact, we would be allowed to DELETE all records from the BOOKS table if not for referential integrity 
constraints that do not allow “orphaned” records in a childmost table.

WITH CHECK OPTION

The ability to add, modify, and delete data through a view opens a whole new can of worms. How 
can you ensure consistency between the data that can be entered through the view and the data that 
can be displayed through it?

Let’s say that in the previous exercise we’ve added additional constraints when creating our view, 
limiting the number of the records displayed to the fi rst 12:

CREATE VIEW vwBookPricesFirst12 

AS SELECT 

   bk_id

 , bk_title

 , bk_price

FROM books

WHERE bk_id <= 12

As it is, nothing prevents us from entering new records following the very same steps outlined in the 
above exercise, inserting a record with BK_ID=100. Seeing the very same records through the view 
is a different story, since the view defi nition only displays records with BK_ID <= 12.

Unless you’ve implemented this behavior intentionally, you’d probably want to see the data going 
into your table or prevent invalid data from going through the view in the fi rst place. Enter CHECK 
OPTION.

Added to the VIEW defi nition, this statement will throw an error whenever data the view won’t be 
able to display is entered. Here’s how Microsoft SQL Server would react:

CREATE VIEW vwBookPricesFirst12 

AS SELECT 

c07.indd 200c07.indd   200 3/22/2011 1:48:44 PM3/22/2011   1:48:44 PM



A Point of VIEW x 201

   bk_id

 , bk_title

 , bk_price

FROM books

WHERE bk_id <= 12

WITH CHECK OPTION;

INSERT INTO vwBookPricesFirst12(bk_id) VALUES (100);

Msg 550, Level 16, State 1, Line 1

The attempted insert or update failed because the target view either 

specifies WITH CHECK OPTION or spans a view that specifies WITH CHECK OPTION

and one or more rows resulting from the operation did not qualify under

the CHECK OPTION constraint.

The statement has been terminated.

Note that there would be no problem updating the BOOKS table directly. Only the view imposes the 
restriction because it cannot display records with BK_ID greater than 12.

Checking data upon entry carries a heavy performance hit price tag and should be used judiciously.

CHECK OPTION is part of the SQL Standard and is supported by all RDBMSs with updatable 
VIEWS capabilities: Oracle, MySQL, Microsoft SQL Server, and IBM DB2. 

Hierarchical Views

For most practical purposes, a view is just another table in the database and therefore could be used 
to serve as a base for another view. In fact, you can JOIN views with other views and tables in the 
same query and then create a view on top of all this.

If we decide to fi gure out who the authors are for the “top three books on the shelf,” we could use a 
view created earlier in the chapter and add data from the AUTHORS table as follows:

CREATE VIEW vwTop3BooksWithAuthors 

AS SELECT 

    vw.bk_id 

   , vw.title

  , au.au_last_name 

FROM vwTop3booksOn5thShelf vw JOIN books_authors ba 

    ON vw.bk_id = ba.bk_id  

        JOIN authors au

    ON ba.au_id = au.au_id;

SELECT * FROM vwTop3BooksWithAuthors;

bk_id    title                                                   au_last_name

-------- -----------------------------------------------------   ----------------

1         SQL Bible                                               Kriegel

1         SQL Bible                                               Trukhnov

2         Wiley Pathways: Introduction to Database Management     Gillenson

2        Wiley Pathways: Introduction to Database Management      Ponniah

2        Wiley Pathways: Introduction to Database Management      Taylor

2        Wiley Pathways: Introduction to Database Management      Powell

2        Wiley Pathways: Introduction to Database Management      Miller

c07.indd 201c07.indd   201 3/22/2011 1:48:44 PM3/22/2011   1:48:44 PM



202 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

2        Wiley Pathways: Introduction to Database Management      Trukhnov

2        Wiley Pathways: Introduction to Database Management      Kriegel

4        SQL Functions: Programmers Reference                     Kriegel

4        SQL Functions: Programmers Reference                     Jones

4        SQL Functions: Programmers Reference                     Stephens

4        SQL Functions: Programmers Reference                     Plew

4        SQL Functions: Programmers Reference                     Garrett

(14 row(s) affected)

In the preceding example, we joined a view (vwTop3booksOn5thShelf) with two tables and cre-
ated another view. Now the data could be extracted with a single SELECT without worrying about 
business rules encapsulated in both views, conditions limiting the data set only to the top shelf (you 
don’t even need to know that the top shelf is #5), and to only three books with the highest price. 

This opens a whole world of possibilities. Imagine building a fi nely tuned hierarchy of views, 
abstracting data ever more from the data model, and giving your data users nothing more than a 
single SELECT to extract information without worrying about underlying complexity! Yet there is a 
price to pay in server performance terms. Being dynamic in nature, VIEW(s) cannot be optimized in 
the same way as tables can, and can never be as fast for data retrieval. Adding yet another level will 
negatively affect performance of your database even more. There are valid business scenarios when 
hierarchical views are indicated, but ramifi cations of this decision should not be taken lightly.

Benefi ts and Drawbacks

When pondering the question whether to use underlying tables or abstract data with views, you 
always are balancing performance against complexity abstraction. You need to understand the rami-
fi cations of going either way and fi nd a perfect balance.

VIEW(s) are good for the following:

 ‰ Abstracting data model complexity — For the end user.

 ‰ Code reuse — An SQL query is a transient thing unless you persist it in the client’s code 
(embedded SQL), in a stored procedure, or in a VIEW.

 ‰ Enhanced security — VIEW can be used to limit users’ access to data.

 ‰ Personalization — Several different VIEW(s) can be based upon the same data set, exposing 
different fi elds, having same fi elds renamed differently for different users, and so on.

The main drawbacks of using VIEW(s) are as follows:

 ‰ Performance hit — A VIEW is only as fast as the query it is based upon; it can never be opti-
mized for data access the same way a table can.

 ‰ Code portability — Implementations differ signifi cantly across RDBMSs.

 ‰ Complexity — Hidden from the end user, but it is still there. It has to be maintained, and 
with source code hidden from the average user it might increase maintainability costs.

c07.indd 202c07.indd   202 3/22/2011 1:48:44 PM3/22/2011   1:48:44 PM



But Wait; There’s More! x 203

You might have wondered what happens to the SQL source code for the view 
after you execute the CREATE VIEW statement. It is stored in the database 
along with other DDL statements, and can be retrieved through RDBMS system 
catalogs, system stored procedures, or INFORMATION_SCHEMA views. For 
more information, see Chapter 10.

BUT WAIT; THERE’S MORE!

So far, we were JOIN(ing) and UNION(ing) our data sets in every way imaginable, but set theory as 
implemented in SQL has a few more tricks up its sleeve: INTERSECT and EXCEPT. Both of these 
were endorsed by the SQL Standard and most RDBMSs.

INTERSECT

The INTERSECT operator is used on the results of two queries to include only the records produced 
by the fi rst query that have the matching records in the second query. If you notice a similarity 
between subqueries and the EXISTS operator discussed in Chapters 2 and 6 you are absolutely cor-
rect. In many ways, they are the same.

For instance, to fi nd out which books have been allocated places on a shelf in our bookcase, we 
could run the following query:

SELECT bk_id FROM  books

    INTERSECT

SELECT fk_bk_loc FROM location;

bk_id

--------------------

1

2

3

4

5

6

7

8

9

10

11

12

(12 row(s) affected)

The result is 12 records: the exact number of books we have in the BOOKS table, all assigned to 
some place in the bookcase. Had we entered a new book into the table and not created a record for 
it in the LOCATION table, this new book would not show up in the tally (in fact, we will try this 
out at the end of this section).

c07.indd 203c07.indd   203 3/22/2011 1:48:45 PM3/22/2011   1:48:45 PM



204 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

The reasons for using INTERSECT is code maintainability. The intent is clearer when using the 
operator as opposed to the subquery. For all we know, RDBMSs might treat them both in exactly 
the same way behind the scenes.

EXCEPT and MINUS

The goal that is the Holy Grail of database programming is to minimize the volume of data transfer 
over the network and eliminate unnecessary processing on the client. This means asking the RDBMS 
for the data you need and leaving everything else untouched. Just as INTERSECT gives us the ability 
to include the matching records from combined query, EXCEPT allows us to exclude them.

The INTERSECT and EXCEPT operators are mere convenience and can be 
replaced with INNER and OUTER JOIN(s), respectively (plus some additional 
tweaking to eliminate duplicate records).

Substituting EXCEPT for INTERSECT in the preceding example would show us BK_ID(s) for all 
books that do not have a place allocated to them in the bookcase (no corresponding record in the 
LOCATION table): 

SELECT bk_id FROM  books

    EXCEPT

SELECT fk_bk_loc FROM location;

bk_id

--------------------

(0 row(s) affected)

Only records from the BOOKS table that do not have corresponding records in the LOCATION 
table will be returned. You will try out these operators along with INTERSECT in the activity sec-
tion at the end of the chapter.

The NOT EXISTS operator with a correlated subquery could be used instead 
of the EXCEPT(MINUS) keyword. While not offi cially endorsed by the SQL 
Standards Committee, this syntax is supported in all RDBMSs (with the excep-
tion of HSQLDB used as embedded RDBMSs in OpenOffi ce).

The keyword EXCEPT is implemented in DB2, Microsoft SQL Server, and PostgreSQL. Whereas 
Oracle uses the MINUS keyword, MySQL, and HSQLDB recognize both EXCEPT and MINUS. 
Microsoft Access does not support either one.

TRY IT OUT Subtracting Data Sets

To take a closer look at the data set operations such as INTERSECT and EXCEPT, we need to intro-
duce some data in our perfectly matched data. We already did this when dis cussing LEFT OUTER 
JOIN earlier in this chapter and we can use the same record again.

c07.indd 204c07.indd   204 3/22/2011 1:48:45 PM3/22/2011   1:48:45 PM



Summary x 205

We will add an unmatched record to the BOOKS table and then take it for a spin applying both 
operators:

1. Open Microsoft SQL Server Management Studio and connect to your database using Windows 
authentication.

2. In the upper-left corner, click the New Query button.

3. In the opened query window (the middle pane), enter the following SQL query:

INSERT INTO books (bk_id, bk_title) 

    VALUES (13,’UNMATCHED RECORD’)

4. Now that we have a book without a corresponding shelf location, let’s see what we can fi nd using 
the INTERSECT and EXCEPT operators. First, execute a query with the INTERSECT operator:

SELECT bk_id FROM  books

    INTERSECT

SELECT fk_bk_loc FROM location;

5. Predictably, it brings in only 12 records — those matched from both tables.

6. Running the EXCEPT query gets us different results:

SELECT bk_id FROM  books

    EXCEPT

SELECT fk_bk_loc FROM location;

bk_id

--------------------

13

(1 row(s) affected)

How It Works
After a new record was inserted into the BOOKS table, it contained 13 rows, but only 12 of them are 
matched by a record in the LOCATION table. This models the situation when you got a new book, 
but haven’t assigned it a place in the bookcase. INTERSECT returns matching records only from both 
tables. As a result, the record with BK_ID = 13 is not included.

When we run the EXCEPT query, the matching records were subtracted from each other, and only 
unmatched records were returned — in this case, the newly inserted “UNMATCHED RECORD.”

SUMMARY

Hosting your data in a relational data model has both benefi ts and drawbacks. Since your data now 
is spread across many tables, the data must be constructed into a data set to be of use. The JOIN 
operator provided by SQL facilitates the process. It allows joining data sets gathered from the tables 
on some meaningful criteria, often primary and foreign keys. 

Each JOIN operator involves two tables, and there is no practical limit on how many JOIN(s) a 
query could contain or how many tables could be JOIN(ed) in a query. The standard JOIN types are 

c07.indd 205c07.indd   205 3/22/2011 1:48:46 PM3/22/2011   1:48:46 PM



206 x CHAPTER 7  YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS

INNER JOIN, LEFT and RIGHT OUTER JOIN, and FULL JOIN. They refer to the way the data 
sets from participating tables are matched.

While JOIN(s) combine data sets horizontally, the UNION operator combines them vertically, pro-
ducing a single list of records from the different queries.

When JOIN and UNION operators are used in a query, in addition to a variety of clauses, the query 
could quickly become complex. This complexity could be abstracted using the VIEW construct; a 
VIEW is a frozen query. In addition to hiding complexity, they also could be used to address data 
security, as well as data access customization.

The concepts introduced and elaborated in this chapter are, by and large, part of the SQL Standard, 
yet there are signifi cant differences between different RDBMS implementations.

c07.indd 206c07.indd   206 3/22/2011 1:48:46 PM3/22/2011   1:48:46 PM



8
What Else Is There, and Why?

The hardest task of trying to put together an introduction to a complex and convoluted 
subject such as SQL is deciding which concepts and features to include and which to leave 
out. The SQL Standard maintained by the International Standards Organization (ISO) lists 
hundreds of features grouped in nine sections, and RDBMS vendors and organizations add 
hundreds more. This chapter introduces some concepts normally left for more advanced books 
because we believe that you need to be aware of their existence even when you are just learn-
ing the ropes.

AN INDEX FOR ALL SEASONS

One of the best ways to improve database performance is through effective indices. Without 
an index, the database engine will search in the dark, methodically scanning each and every 
record in the table until it fi nds the set satisfying the search criteria. With an index, it fi rst 
asks for directions and then gets what’s needed much faster (in most cases). As you will see 
in Chapter 9, indices are very important in helping the RDBMS fi gure out an execution plan 
(how to fi nd and combine the data requested). While speeding up the retrieval, indices are det-
rimental for INSERT and UPDATE queries. It pays to slow down and think about how your 
data will be used before creating an index.

An index is an auxiliary object; it does not exist separate from a table. The basic syntax is 
identical across RDBMSs. Here’s a statement to create an index named IX_BK_ID on column 
BK_ID for the table BOOKS:

CREATE INDEX ix_bk_id

   ON books (bk_id);

An index can be created for an empty table or for one that already contains data. In the latter 
case, some restrictions might apply, as you will see later in the chapter. 

c08.indd 207c08.indd   207 3/22/2011 1:49:34 PM3/22/2011   1:49:34 PM



208 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

The basic CREATE INDEX syntax is deceptively simple, but rest assured that 
as you start digging, the complexity quickly mounts. Oracle’s CREATE INDEX 
statement, for example, taking into consideration attributes, logging, and 
partitions, can span several pages of code and might easily become a subject for a 
book of its own.

If you run a SELECT statement on the BOOKS table before and after executing the previous state-
ment, you’ll notice no difference in performance. There are several reasons for this:

 ‰ Data set is too small — In small tables, a full table scan might be faster than using an index. 
Consider a book analogy: If you are asked to fi nd a certain word in a 400-page book, you’d 
be well advised to use an index to fi nd the numbers of the pages containing this word fi rst. 
But if you have only a single paragraph, going to the index is a waste of time.

 ‰ Not all indices are created equal — If the column for which you’ve created an index is not 
part of your search criteria, the index will be useless at best and detrimental at worst.

A table can have more than one index, and an index can contain more than one column. For 
example, we can add BK_TITLE for an index to be used in queries that search by both fi elds:

CREATE INDEX ix_bk_combined

   ON books (bk_id,bk_title);

The rule of thumb is to create indices on the columns you are using in the WHERE clause of your 
query. For example:

SELECT * FROM books

    WHERE bk_price > 20;

The index on the BK_PRICE column speeds up queries on a suffi ciently large data set; the same goes 
for columns used in the GROUP BY and HAVING clauses. If you fi nd yourself running repeated 
queries in which two or more columns are always used as a group in the search criteria, a composite 
index might be a better choice than several single indices. 

The most effective indices are created on columns with a small percentage of duplicate values. An 
index on a primary key column is an example where there are no duplicate values, and RDBMSs 
automatically create an index on a column declared with PRIMARY KEY constraints. At the same 
time, there can be too much of a good thing. Creating an index on a column containing the global 
unique identifi er (GUID) data type is not recommended, even though GUID values are virtually 
guaranteed to be unique. The reason is the drastically increased storage needs (GUIDs take up 
16 bytes), and larger index sizes as a result.

Indices on numeric columns work much better than on columns that contain character data: after 
all, computers were designed to work with numbers, while character searches, besides needing to 
compare multiple characters (the shorter, the better) involve additional things such as collation 
considerations. 

In the composite indices, one has to pay attention to the order in which the index columns are listed: 
The fi rst column provides the most performance boost, while others are considered in the second 

c08.indd 208c08.indd   208 3/22/2011 1:49:38 PM3/22/2011   1:49:38 PM



An INDEX for All Seasons x 209

and third turn, and so on. If your search is on a column that is a part of composite index and is not 
the fi rst on the list, some RDBMSs will not use this index at all, and will perform a full table scan 
(an expensive operation that indices are supposed to prevent).

UNIQUE Index

An index can be used to ensure the uniqueness of the values in a column, in which case it is created 
with the UNIQUE keyword:

CREATE UNIQUE INDEX ix_bk_id

   ON books (bk_id);

Such an index would be used to enforce the integrity of the table, and is implicitly created for the 
column (or set of columns) declared as PRIMARY KEY; by defi nition a column with UNIQUE 
INDEX cannot contain NULLs.

This feature is being deprecated in many databases in favor of the UNIQUE constraint. This seems 
to be logical development; indices should have no business enforcing integrity.

CLUSTERED Index

The data entered into the table comes in randomly. We don’t buy books in alphabetical order; 
normally we enter them as they come. Consequently, the indices created for these columns are but 
pointers to the records; the actual records can be scattered all over the place; this is the default non-
clustered index. With CLUSTERED index, the data in the table is organized according to the index, 
which results in faster performance. Physical data blocks are “clustered” together just as index 
entries pointing to these blocks are. This signifi cantly speeds retrieving the records as there is no 
need to spin the disk to get to the needed data. In Oracle RDBMSs, clustered indices are known as 
index organized tables (IOTs).

There is only one way data can be physically organized on the disc, so only one clustered index can 
be created per table. In Microsoft SQL Server, creating a column(s) with PRIMARY KEY constraint 
automatically creates a unique clustered index on this column (or set of columns, in the case of a 
composite index). In other RDBMSs, you must specify whether the index is clustered.

Oracle supports IOTs; they are part of the CREATE TABLE defi nition and can grow quite complex. 
The most basic table organized by the index on the primary key might look as follows:

CREATE TABLE books (

    bk_id INTEGER

  , bk-title

  , ...

    PRIMARY KEY (bk_id)

        ORGANIZATION INDEX;

Creating Oracle IOTs with advanced options is beyond the scope of this book.

To create a clustered index on a column other than the primary key in Microsoft SQL Server, you 
must specify the CLUSTERED keyword:

CREATE CLUSTERED INDEX ix_bk_id

   ON books (bk_id);

c08.indd 209c08.indd   209 3/22/2011 1:49:38 PM3/22/2011   1:49:38 PM



210 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

The IBM DB2 syntax falls in between the two. It creates an index and then issues the CLUSTER 
command. For example:

CREATE INDEX ix_bk_id

   ON books (bk_id)

     CLUSTER;

PostgreSQL uses Oracle’s notion of an IOT, which is refl ected in its syntax; it clusters the table, not 
the index. Here’s an example of the syntax:

CLUSTER books USING ix_bk_id;

The index, of course, has to exist before this command will have any effect.

When selecting candidates for a clustered index, it is highly recommended to select columns with 
the most static data. Every change in this column will require reordering the entire table, as the 
RDBMSs will have to move the index entry. It can be an expensive operation and can cause per-
formance problems. This explains that while primary keys are the prime candidates for a clustered 
index, key values are as static as they come.

In MySQL, clustered indices are only supported with the InnoDB storage engine and are created on 
primary key columns only. (MySQL provides several different types of storage, each providing some 
specifi c capability.)

Neither the Hyper Structured Query Language Database (HSQLDB) nor Microsoft Access supports 
clustered indices with its native storage engine. When used as a front end for other RDBMSs, the 
other RDBMS rules apply.

There are several more exotic indices introduced by RDBMSs to address specifi c needs; two of them 
are worth mentioning here: the function-based index and XML index.

We will be discussing XML data types in greater detail in Chapter 11, which deals with unstruc-
tured and semistructured data. The idea behind the index is to speed up queries on the XML data 
type, which takes into consideration its structure. The syntax is complex and proprietary; every 
RDBMS supporting XML data types came up with its own. An XML index can signifi cantly 
improve the search on XML documents stored in the database. Please be sure to check vendors’ 
documentation for specifi cs.

The idea behind a function-based index (FBI) is to speed up queries where the search criterion uses 
a function. Instead of creating an index for the value contained in the column, the FBI contains 
function output values. Let’s say you perform a search for a book title and decide to compare values 
converted into uppercase to make a case-insensitive search. In Oracle, such a query would look as 
follows:

SELECT * FROM books

   WHERE UPPER(bk_title) = ‘SQL BIBLE’;

Now, the presence of the UPPER() function in the WHERE clause will slow the query down because 
RDBMSs cannot use an index defi ned on the BK_TITLE column. The solution is to create an index 
on UPPER(bk_title):

CREATE INDEX ix_bk_title_upper 

    ON books(UPPER(bk_title));

c08.indd 210c08.indd   210 3/22/2011 1:49:38 PM3/22/2011   1:49:38 PM



TABLE Revisited x 211

This is an advanced feature found in Oracle, and it can be emulated in some other databases (for 
example, Microsoft SQL Server supports indices on computed columns — those that use functions 
for values).

An INDEX Destroyed

While basic syntax for creating indices is almost identical across the RDBMSs (this is not true of 
the complete syntax, which includes all optional clauses), it is different when it comes to altering or 
dropping an index. Details of ALTER INDEX are very RDBMS-specifi c and are outside the scope 
of this book. Besides, it is much easier to drop an index and re-create one (although there might be 
situations when you do not want this).

Oracle 11g R2 has a new feature called “invisible indexes” which could be an 
example of when ALTER is preferable to DROP. The syntax “ALTER INDEX 
<index_name> INVISIBLE;” instructs the optimizer (see Chapter 9 for more 
information on query optimization) to ignore the index, so the consequences of 
dropping an index could be tested without impacting the system’s performance 
(and this action can be limited to session scope only).

The Oracle and IBM DB2 syntax is rather straightforward:

DROP INDEX ix_bk_id;

In Microsoft SQL Server, you have to add the table name along with the index name:

DROP INDEX books.ix_bk_id;

In MySQL, dropping an index means altering a table for which this index was created:

ALTER TABLE books 

    DROP INDEX ix_bk_id;

Not to be outdone, Microsoft Access comes up with its own version:

DROP INDEX ix_bk_id ON books;

OpenOffi ce BASE with HSQLDB follows Oracle’s syntax, with an optional clause that prevents an 
error message if you attempt to drop a non-existent index:

DROP INDEX ix_bk_id IF EXISTS;

TABLE REVISITED

A table is the most fundamental concept in a relational database. CREATE TABLE was introduced 
in Chapter 1 and used in every chapter ever since, yet it still holds some tricks up its sleeve.

When you create a table, its permanence is assumed; after all, we are going to store data, right? When 
you need to store data permanently, you create a table; when you need to store temporary data, you 
create a temporary table.

c08.indd 211c08.indd   211 3/22/2011 1:49:39 PM3/22/2011   1:49:39 PM



212 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

If your data processing is too complex to be accomplished in one single sweep, you might want to 
consider a place to store intermediate results to be used further down the line. Once the processes 
using this intermediate data are completed, the temporary storage area, along with the intermediate 
data, simply goes away. This is the idea behind the temporary table.

SQL syntax for creating temporary tables varies across the RDBMSs, and some, like Microsoft 
Access, while supporting the idea in principle, do not include it as part of SQL implementation.

There are lots of gotchas and important details you need to master to count this object type confi -
dently as part of your SQL toolbox, yet some basics will help you to get started.

A temporary table normally has a scope, it can be global or local, and its behavior depends on the 
RDBMS and context. As you might expect, there is some confusion in terms. For example, Oracle 
defi nes all temporary tables as GLOBAL, but they can only be transaction-specifi c or session-
specifi c (see Chapter 10 for more information). Either way, they are visible only to the user who 
creates them. In Microsoft SQL Server, the local temporary table is used in the same way, in con-
text of a session that created them, while the global temporary table will be shared across sessions. 
The important point shared across all RDBMSs is transience, not only of data but also of the table 
structure defi nition.

Here’s the SQL syntax for creating a local temporary table in Microsoft SQL Server:

CREATE TABLE #my_temp_table(

    column1 INT

  , column2 VARCHAR(10)

    );

The hash sign (#) indicates that the table is both temporary and local; it can only be accessed from 
the same session that created it and will disappear once the session (connection) is closed. Things are 
a bit different with a global temporary table, created with a double hash prefi x:

CREATE TABLE ##my_temp_table(

    column1 INT

  , column2 VARCHAR(10)

    );

Now, the table will be visible across the entire instance of your SQL server (for example, if you open 
yet another concurrent connection to your database) and will disappear when the last session refer-
encing this table closes. 

Oracle’s temporary tables are only local (in a Microsoft SQL Server sense). They are not shared 
across different sessions, yet they are created with keyword GLOBAL.

CREATE GLOBAL TEMPORARY TABLE my_temp_table(

    bk_id    INT

  , bk_title VARCHAR(10)

    ) ON COMMIT PRESERVE ROWS;

The difference is in the last clause. If you instruct Oracle to PRESERVE ROWS, the data will be pre-
served for the duration of the session; with ON COMMIT DELETE ROWS, the data will be blown 
away once the transaction (a unit of work (UOW), discussed in Chapter 10) is completed.

c08.indd 212c08.indd   212 3/22/2011 1:49:39 PM3/22/2011   1:49:39 PM



TABLE Revisited x 213

PostgreSQL treats its temporary tables as views, SQL query being part of the CREATE TEMP 
TABLE syntax and the base table from which data are gathered must exist. The query executes only 
once: to fi ll the newly created table with data. From this moment on, any changes to the original 
base tables will not be refl ected in the temporary table: 

CREATE GLOBAL TEMP TABLE my_temp_table ON COMMIT DROP 

    AS SELECT * FROM books;

There are quite a few options that can be specifi ed and are beyond the scope of this book. The basic 
syntax in the preceding example will create a temporary table, MY_TEMP_TABLE, as a snapshot 
of the BOOKS table and will be destroyed automatically once the transaction (see Chapter 10) is 
committed. Other options are similar to those found in Oracle: PRESERVE ROWS and DELETE 
ROWS, with the former being the default option. The keyword GLOBAL (and its opposite LOCAL) 
are optional and are safely ignored by PostgreSQL. The temporary table exists only within context 
of the session. The documentation simply states that they are “ignored for compatibility.” We’ll 
leave it at that.

In order to create an empty temporary table structure in PostgreSQL, you can specify an impossible 
condition that returns an empty data set, for example:

CREATE GLOBAL TEMP TABLE my_temp_table ON COMMIT DROP 

    AS SELECT * FROM books WHERE bk_id < 0;

MySQL supports only session-scoped temporary tables, pretty much along the lines of Microsoft 
SQL Server single-hash prefi xed tables:

CREATE TABLE my_temp_table(

    column1 INT

  , column2 VARCHAR(10)

    );

There is no transaction-controlled behavior in MySQL temporary tables, both data and the table 
will disappear once connection to the database is terminated.

While you can be almost assured that a temporary table will disappear upon 
termination of the database connection (Oracle, for example, preserves tempo-
rary table defi nitions between sessions), it is considered a best practice to use 
DROP TABLE explicitly.

Both DB2 and Open Offi ce BASE/HSQLDB treat temporary tables as variables to be declared 
within a batch with DECLARE keyword. The similarity ends there. For instance:

DECLARE GLOBAL TEMPORARY TABLE my_temp_table

(

    column1 INT

  , column2 VARCHAR(10)

) ON COMMIT DELETE ROWS;

c08.indd 213c08.indd   213 3/22/2011 1:49:39 PM3/22/2011   1:49:39 PM



214 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

Temporary tables are usually created as part of a batch within the session and are not visible to 
other concurrent sessions though some vendors might have implemented different sets of rules. 

There are a number of RDBMS-specifi c details governing the lifecycle of temporary tables. Most 
of them are way beyond scope of this book; please refer to the RDBMS specifi c documentation for 
more information.

VIEW REVISITED

In the previous chapter, we defi ned a VIEW as a frozen query, emphasizing that unlike a table it 
stores no data. Here we introduce views that do just the opposite: materialized views.

The idea behind a materialized view is to combine benefi ts of a VIEW and a TABLE into a single 
database object, usually for performance reasons. An SQL view offers ultimate fl exibility; the data 
can be pulled in from several tables, aggregated, ordered, and otherwise made user-friendly. Yet, 
there is a price to pay; even with advanced RDBMS optimization, a query might be executed once 
for each request, and you cannot index dynamic data. With the table, on the other hand, you have 
all the advantages of index optimization, but to use data from more than one table, you have to run 
an SQL query. 

A materialized view offers you the best of both worlds. As a query it collects the data from 
different tables, and as a table it persists it in the database. The catch? You sacrifi ce concurrency. 
Materialized views have to be updated periodically. The usage scenarios for materialized views are 
those when large amounts of relatively stable data need to be queried by a large number of users, 
and persisting the query would offer an increased performance; the data can be refreshed during 
off-peak hours, along with rebuilding the indices. You get fast and simple SELECT, even though the 
data are as up to date as the last refresh.

Materialized views were introduced by Oracle, and adopted by a number of RDBMS vendors. 
Details of implementation differ widely. Microsoft SQL Server introduced what it calls indexed
views, which allow for creation of an index on a view as you would on an ordinary table. IBM DB2 
provides a Materialized Query Table (MQT), whose defi nition is based upon a query.

Materialized views functionality can be duplicated with a table and a scheduled process, either 
inside or outside the RDBMS. This is the path taken by PostgreSQL and MySQL. Performance gains 
afforded by materialized views concepts would be negligible in desktop databases such as Microsoft 
Access and OpenOffi ce BASE/HSQLDB, even though it can be mimicked with built-in program-
ming facilities.

BY ANY OTHER NAME: ALIASES AND SYNONYMS

People invent different names for the same things all the time. The English word “Sun,” French “le 
Soleil,” and German “die Sonne,” all look and sound distinctly different, yet they still refer to the 
same object. The same concept applied to RDBMSs becomes synonyms and aliases. 

Throughout the book, we have used aliasing to rename columns and tables inside an SQL query 
for convenience reasons, to shorten fully qualifi ed names. These aliases were short-lived, surviving 

c08.indd 214c08.indd   214 3/22/2011 1:49:39 PM3/22/2011   1:49:39 PM



By Any Other Name: Aliases and Synonyms x 215

only for the duration of the query. Other queries could have used the same name or come up with its 
own. Creating synonyms and aliases as database objects allow for creating an alternate reality. 

In its most generic meaning, a SCHEMA in RDBMS context is a way to group 
database objects logically inside a database. The SQL Standard defi nes schema
as a “named group of related objects,” yet different RDBMSs implement it 
differently. In Oracle, for instance, schema is almost identical to user, while 
Microsoft SQL Server and DB2 are both closer to its standard meaning. Like 
other database objects, schemas can be created, altered, and dropped. A detailed 
discussion of schema is beyond the scope of this book.

Consider Oracle RDBMS. An Oracle database concept is quite different from a database notion of 
Microsoft SQL Server, for instance: Each Oracle user has his own set of tables, indices, or views (in 
Oracle, USER and SCHEMA are often interchangeable). To allow one SCHEMA/USER to access 
objects stored in another SCHEMA/USER, assuming that one has suffi cient privileges assigned 
by the database administrator (DBA), a fully qualifi ed name must be specifi ed. For example, for 
USER_1 to query the BOOKS table created in the SCHEMA belonging to USER_2, he might use 
the following query:

SELECT * FROM user2.books;

A two-part name ensures that the data are selected from the correct table, and not from the BOOKS 
table, which might happen to be in the USER_1 schema. For a one-time query it might be okay to 
type the fully qualifi ed name, but if this table is used on regular basis, you might want to shorten it 
a bit. You can do it by creating an Oracle SYNONYM:

CREATE OR REPLACE PUBLIC SYNONYM bks

    FOR USER_2.books;

Better yet, you’ve just hired a French team to work on your database and would like to provide them 
with descriptive names for the database objects in French. Here’s one way to do it:

CREATE OR REPLACE PUBLIC SYNONYM livres

    FOR USER_2.books;

In Oracle, you can create synonyms for virtually any database object: tables, views, functions, 
stored procedures, packages, and so on. You can even create a synonym for another synonym 
already defi ned in the RDBMS!

Once a synonym is created, you can use it as any RDBMS object it represents: SELECT from a table 
or view a synonym, execute a synonym created for a stored procedure, and so on. For example:

SELECT * FROM livres;

A similar principle applies to IBM DB2, except that you’d use ALIAS instead of SYNONYM:

CREATE ALIAS livres

    FOR USER_2.books;

c08.indd 215c08.indd   215 3/22/2011 1:49:39 PM3/22/2011   1:49:39 PM



216 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

Microsoft SQL Server introduced SYNONYMs in its version 2005 as a way to shorten multipart 
names (for instance, if you have several databases defi ned in your SQL Server installation and want 
to run a query that ties together tables from these different databases). Instead of using a three- or 
four-part name, you can create a synonym:

CREATE SYNONYM livres

    FOR library.dbo.books;

The database owner (DBO) schema is the default schema that will be used when none is specifi ed.

You might have noticed a similarity between VIEW and SYNONYM. Both can 
be used to refer to database objects by another name, but the similarity ends 
there. Views cannot be used to replace multipart naming, SCHEMA.TABLE or 
SERVER.DATABASE.SCHEMA.TABLE because a view residing in the data-
base must also be addressed by a multipart name.

MySQL does not support synonyms as database objects; neither does PostgreSQL (though it is on 
the to-do list and is actively discussed in the community). Microsoft Access and OpenOffi ce BASE/
HSQLDB also do not support them, reserving the ALIAS keyword for different purposes altogether.

AUTO-INCREMENTED VALUES

Almost every table in the Library database has a primary key of a numeric data type, and the 
INSERT statements include the actual values for each record. The purpose of the numbers is to 
enforce referential integrity and possibly to keep track of the records because the numbers increase 
with every new book added. These values are not used anywhere else; in fact, it is considered to be 
a best practice to use meaningless (in context of the table’s data) unique values for the primary key 
columns, as have pointed out in Chapter 3. Keeping track of these numbers to know exactly what 
to insert next is a nuisance in small single-user databases and can be a major headache for large 
multiuser systems.

How can you fi nd out what the next number will be? You can query the table for the maximal 
number; this is how it used to be in the days of yore (Microsoft SQL Server syntax):

SELECT @next_value = MAX(book_id)+1 FROM books;

INSERT INTO books (bk_id, bk_title)

    VALUES (@next_value, ‘NEXT BOOK IN SEQUENCE’)

There are several major problems with this approach, though. The fi rst problem arises in multiuser 
environments. However brief the time it takes for the query to get executed, there is no guarantee 
that somebody else’s query would not grab the same value and thus try to insert the same value as 
you. This can be addressed with locking down the table in a transaction (see Chapter 10 for more 
information on transactions), which would negatively affect performance. 

Another problem is a query itself. The insertion of a new value is performed as a batch in two steps, 
which requires additional processing: Declaring the variable NEXT_VALUE (in the earlier example, 

c08.indd 216c08.indd   216 3/22/2011 1:49:40 PM3/22/2011   1:49:40 PM



Auto-Incremented Values x 217

we used Microsoft SQL Server syntax, hence the @ sign, differentiating the declared variable from 
the SQL keyword), assigning the MAX value from the column BK_ID to this variable, incrementing 
it by 1, and then inserting it back into the same table. Add it to the inconsistencies across RDBMSs, 
and it begins to sound like a lot of hassle. Wouldn’t it be nice to offl oad all this business of fi guring 
the next value along with ensuring its uniqueness to the RDBMS? It sure would! The approach taken 
by the relational databases developers is split along two concepts: sequences and identity columns.

Identity Columns

The idea of an IDENTITY column is to let the table alone keep track of the values. It is defi ned 
as part of the Data Defi nition Language (DDL) statements, usually CREATE, and can be added 
later on with the ALTER statement (in those RDBMSs that support IDENTITY columns, that is). 
Unfortunately, the syntax for an IDENTITY column is different for every RDBMS that supports 
such a notion. Table 8-1 presents a matrix of the SQL syntax for creating IDENTITY columns across 
the database.

TABLE 8-1: IDENTITY Column SQL Syntax Across RDBMSs

RDBMS BASIC SQL CREATE SYNTAX NOTES

Microsoft SQL Server CREATE TABLE <table> (

<column>

BIGINT IDENTITY(seed, increment) )

Does not guarantee sequential 

gap-free values

IBM DB2 CREATE TABLE <table> (

<column>   GENERATED ALWAYS 

       AS IDENTITY (START WITH seed, 

INCREMENT BY increment)

Diff erent options available

PostgreSQL CREATE TABLE <table> (

<column>SERIAL);

Merely a shortcut to creating 

sequence

MySQL CREATE TABLE <table> (

<column>

BIGINT NOT NULL AUTO_

INCREMENT=seed )

The seed value is optional; 

omitted defaults to 1

Microsoft Access CREATE TABLE <table> (

<column> COUNTER)

Defaults to seed=1, increment 1

OpenOffi  ce BASE/

HSQLDB

CREATE TABLE <table> (

<column> BIGINT IDENTITY)

Defaults to seed=1, increment 1

Neither Oracle nor PostgreSQL supports IDENTITY columns; instead 
they implement sequences to generate sequential numbers.

c08.indd 217c08.indd   217 3/22/2011 1:49:40 PM3/22/2011   1:49:40 PM



218 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

Microsoft SQL Server

If we chose to create our BOOKS table declaring BK_ID an identity column, the following would be 
a valid SQL syntax in Microsoft SQL Server:

   CREATE TABLE books

   (      

          bk_id BIGINT IDENTITY(1,1)

        , bk_title TEXT

        , . . . 

    )

The IDENTITY establishes the initial value and by how much this value will be incremented; the 
initial value is called seed and the incremental value is called increment. In the preceding example, 
the seed is 1, and the increment is also 1. Here we have chosen seed 100 and increment 50:

   CREATE TABLE books

   (      

          bk_id BIGINT IDENTITY(100,50)

        , bk_title TEXT

        , . . . 

    )

From this moment on, every record inserted into this table will get a unique BK_ID value — unique 
within the table, that is — assigned automatically. The numbers will grow sequentially by the incre-
ment specifi ed in the column defi nition, 100, 150, 200, 250 and so on, for every record INSERT(ed) 
into the table. 

The identity column can be defi ned when a table is initially created or added later on with an 
ALTER statement.

Normally IDENTITY columns can’t be inserted into directly or updated 
through an SQL statement. To override this default behavior, you must modify 
the setting in your session with the SET IDENTITY_INSERT ON statement for 
this specifi c table. It is a good idea to turn it OFF after you do so.

Keep in mind, though, that the SQL Server makes no guarantees about sequential gap-free values 
in identity columns. The gaps in sequence can be introduced intentionally (for example, by deleting 
rows) or unintentionally (a database crash, for instance).

TRY IT OUT Adding Records to a Table with an IDENTITY Column

At the beginning of this book, we created the BOOKS table in our Library database. The inserted data 
had value for each column in the table, including BK_ID, which contains unique sequential numeric 
data. As such, it is a prime candidate to be re-created as an IDENTITY column. Let’s try to implement 
this using Microsoft SQL Server 2008:

1. Open the SQL Client to connect to your RDBMS (please see Appendix C for information on how 
to do this). We will use Management Studio Express.

c08.indd 218c08.indd   218 3/22/2011 1:49:40 PM3/22/2011   1:49:40 PM



Auto-Incremented Values x 219

2. Connect to the Microsoft SQL Server instance (using either Windows Integrated Security or SQL 
Server Security).

3. Type in the following DDL statement to re-create the BOOKS table with a different name and an 
IDENTITY column; this is the most basic syntax:

CREATE TABLE identity_books(

 bk_id                bigint  IDENTITY(1,1) NOT NULL,

 bk_title             varchar(100) NULL,

 bk_ISBN              varchar(50) NULL,

 bk_publisher         varchar(100) NULL,

 bk_published_year    int NULL,

 bk_price             smallmoney NULL,

 bk_page_count        int NULL,

 bk_bought_on         smalldatetime NULL,

 bk_hard_cover        bit NULL,

 bk_cover_pic         varbinary(max) NULL,

 bk_notes             xml NULL,

)

4. The next step would be to insert values. Note that we do not insert anything into the BK_ID 
column; it is not even on the list:

INSERT INTO identity_books

           (bk_title

           ,bk_ISBN

            )

     VALUES

           (‘SQL Bible’

           ,’978-04700229063’

            )

5. Press the Execute button to run the query.

6. Repeat Step 5 (using exactly the same values) several times.

7. Issue the following SELECT statement against the IDENTITY_BOOKS table:

SELECT bk_id, bk_ISBN

   FROM identity_books;

bk_id                bk_ISBN

-------------------- ------------------

1                    978-04700229063

2                    978-04700229063

3                    978-04700229063

4                    978-04700229063

5                    978-04700229063

(5 row(s) affected)

8. Try to add BK_ID onto the insert list and add a value to the VALUES list, as shown in the follow-
ing DDL statement:

INSERT INTO identity_books

           (

c08.indd 219c08.indd   219 3/22/2011 1:49:40 PM3/22/2011   1:49:40 PM



220 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

            bk_id

           ,bk_title

           ,bk_ISBN

            )

     VALUES

           (

            100

           ,‘SQL Bible’

           ,’978-04700229063’

            )

9. Click the Execute button and observe the following error message:

Msg 544, Level 16, State 1, Line 1

Cannot insert explicit value for identity column in table ‘identity_books’ 

when IDENTITY_INSERT is set to OFF.

10. Drop the table so it won’t clutter the database by typing in this SQL query and then pressing the 
Execute button:

DROP TABLE books;

How It Works
We have created a copy of the BOOKS table with IDENTITY for the BK_ID column. The IDENTITY 
was declared with seed 1 and increment 1, meaning that we want the sequence to start with 1 and be 
incremented by 1 for all additional sequential values.

The INSERT statement excluded the BK_ID because even though it has NOT NULL constraint 
defi ned, now it has default value supplied by the IDENTITY.

All other columns that are not on the list and for which no values were supplied will be populated with 
default NULL(s).

Running the same statement fi ve times inserted duplicate values in every column except BK_ID, which 
was populated with a new sequential value for each new record inserted.

An attempt to insert value into the BK_ID column as part of the INSERT statement failed because it 
violated the IDENTITY convention used that, by default, does not allow values to be inserted directly 
by default.

The table was removed from the database at the end of the exercise.

IBM DB2 

DB2 supports both identity columns and sequences. It requires a numeric data type: SMALLINT, 
INTEGER, or DECIMAL (with a scale of zero). 

The following is a basic example of defi ning an identity column on the CREATE TABLE statement:

CREATE TABLE books (

   bk_id INT  NOT NULL 

c08.indd 220c08.indd   220 3/22/2011 1:49:40 PM3/22/2011   1:49:40 PM



Auto-Incremented Values x 221

       GENERATED ALWAYS 

       AS IDENTITY (START WITH 1, INCREMENT BY 1 CACHE 10)

) 

The BK_ID is declared as an IDENTITY column with seed value of 1, incremented by 1. The quali-
fi er GENERATE ALWAYS means that the value will always be generated upon insertion — no 
exceptions. The alternate allowable value GENERATE BY DEFAULT means that the value will be 
generated only if none is supplied. 

By specifying CACHE 10, we are instructing the database to fetch ten values and store them for 
faster retrieval in fast-paced environments. This option “reserves” the next ten values and stores 
them in somewhere in the local cache. This feature might result in unintentional gaps in numbering 
because, if the database crashes, the cache is gone, and a new cache is created. If strictly sequential 
numbering is important, you might specify NO CACHE to avoid this situation.

The identity column in IBM DB2 can be created as part of the table defi nition or by using the 
ALTER statement.

PostgreSQL

There is no support for identity columns in PostgreSQL (it uses sequence objects instead, as dis-
cussed later in the chapter), though there is a shorthand that makes it appear like one. The following 
statement will create a sequence called “book_id_seq” and assign it as default value to the BK_ID 
column of the INTEGER data type:

CREATE TABLE books (bk_id SERIAL);

There is also the BIGSERIAL pseudo–data type, which would create column of the BIGINT data 
type. As with all shortcuts, you trade control for expediency. The autocreated sequence will have all 
the default settings (see the ALTER SEQUENCE statement later in the chapter).

MySQL

The identity column in MySQL is defi ned with the AUTO_INCREMENT keyword, as shown in the 
following code snippet:

CREATE TABLE table_name  ( 

   bk_id INTEGER NOT NULL AUTO_INCREMENT

   , . . .

)

The number sequence by default will start with 1 and will be incremented by 1. To change the 
default seed of 1, you can specify AUTO_INCREMENT = 10 in the table’s DDL or ALTER the 
table’s AUTO_INCREMENT setting later. In the latter case, the increment by 1 still stays, so do the 
previously generated numbers.

The identity column in MySQL can be created as part of the table defi nition or by using the ALTER 
statement.

c08.indd 221c08.indd   221 3/22/2011 1:49:41 PM3/22/2011   1:49:41 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



222 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

Microsoft Access

In Microsoft Access, you normally create an auto-increment column visually, as part of the table 
design, as seen in Figure 8-1 showing MS Access data type for the auto-increment fi eld, and Figure 8-2 
showing fi eld properties for the Auto-Increment data type.

If you need to create an auto-increment column in 
Microsoft Access SQL, the syntax is as follows:

   CREATE TABLE books

   (      

          bk_id COUNTER

        , bk_title TEXT

        , . . .

    )

FIGURE 8-2

Unlike the other RDBMSs supporting auto-increment fi elds, MS Access makes implicit assumptions 
about auto-increment values: start with 1 and increment by 1.

The other built-in data type, a synonym, really is an AUTO-INCREMENT; 
substituting it for COUNTER will work exactly the same way.

When used as a front end for another RDBMS, MS Access will obey the rules imposed by this 
particular RDBMS.

OpenOffi  ce BASE with HSQLDB

The auto-increment columns in the OpenOffi ce BASE are created in essentially the same way as in 
Microsoft Access with the exception of data type. What MS Access defi nes as a LONG INTEGER is 
BIGINT in HSQLDB, as shown Figure 8-3 (creating a column of the auto-increment-compatible data type).

On the graphical interface, this is the only data type that 
allows for the “AutoValue” option to be specifi ed, as shown in 
Figure 8-4 (setting the AutoValue for the HSQLDB column).

The SQL syntax behind it translates it into something like this:

   CREATE TABLE books

   (      

FIGURE 8-1

FIGURE 8-3

c08.indd 222c08.indd   222 3/22/2011 1:49:41 PM3/22/2011   1:49:41 PM



Auto-Incremented Values x 223

          bk_id BIGINT IDENTITY

        , bk_title TEXT

        , . . . 

    )

FIGURE  8-4

As with MS Access, there are assumptions made to start your numbering from 1 and increment-
ing by 1.

HSQLDB supports both sequence and identity columns. When used as a front end for another 
RDBMS, the OpenOffi ce BASE, like MS Access, will obey the rules imposed by this particular 
RDBMS.

Who Am I: Finding One’s IDENTITY

When inserting a record with an identity column, you rely on the RDBMS to come up with the next 
number to fi ll in the identity, but how do you fi nd the value for the identity that had been assigned? 
You can query the table immediately after insertion to fi nd the MAX() value, but it might not work 
in multiuser environments where the table can be inserted into by more than one concurrent user 
(you can lock other users out while performing the operation, but this would hardly be a recipe for a 
high-performance database).

Each RDBMS deals with the problem in its own way, all of them proprietary and nonstandard. 
Table 8-2 lists the SQL functions used to retrieve inserted identity values for each of the RDBMSs.

TABLE 8-2: Retrieving Inserted Identity Values

RDBMS SQL FUNCTION

Microsoft SQL Server SCOPE_IDENTITY

IBM DB2 IDENTITY_VAL_LOCAL

MySQL LAST_INSERT_ID

HSQLDB IDENTITY

Some of the functions might not be accurate in multiuser environments when records in the table 
might be inserted by a number of concurrent users. For instance, Microsoft SQL Server’s function 
operates within a session’s scope and will return values inserted by the processes running within this 
session, even though other sessions might have inserted more records. Others, such as MySQL, do 
not guarantee it because of the global scope of their SQL functions.

c08.indd 223c08.indd   223 3/22/2011 1:49:41 PM3/22/2011   1:49:41 PM



224 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

All tables that use autogenerated sequential numbers for values are susceptible 
to identity gaps. The gaps can be introduced with deletions of the rows, database 
crashes, resetting identity column values, and so on. There is no easy way to deal 
with these gaps other than going back and modifying the data.

SEQUENCES

Unlike identity columns, sequences are independent RDBMS objects, not tied to a specifi c table. 
They have been implemented in Oracle, IBM DB2, PostgreSQL, and HSQLDB/OpenOffi ce BASE. 
More importantly, they have made it into the SQL Standard Committee. 

The basic syntax for creating a sequence is identical across those RDBMSs supporting sequences 
(some might insist on adding the SCHEMA name as the fi rst part of the sequence name). To create a 
generator that begins with 1, and generates sequential values in increments of 1, all you have to do is 
to issue this statement:

CREATE SEQUENCE seq_books;

Of course, there are quite a few optional clauses that can go with this statement: You can specify 
initial value, increment value, max and minimum values, the order (descending or ascending), and 
so on. Once a sequence is created, it can be referenced from an SQL statement by name, and its 
properties provide access to the current, next, and previous values.

Here are some examples of how the sequence created in the previous example can be used:

SELECT seq_books.NEXTVAL as next_value 

FROM dual;

next_value

-----------------

1

SELECT seq_books.CURRVAL as current_value 

FROM dual;

current_value

-----------------

1

SELECT seq_books.NEXTVAL as next_value 

FROM dual;

next_value

-----------------

2

The DUAL table is provided by Oracle to SELECT from when you really do not need any data. IDB 
DB2 is even more forthright; it wants you to select from SYSIBM.SYSDUMMY1 so you’ll never 

c08.indd 224c08.indd   224 3/22/2011 1:49:41 PM3/22/2011   1:49:41 PM



Sequences x 225

forget that you are selecting from nothing at all. All other RDBMSs discussed in this book are not 
as literal and allow you to drop the FROM clause altogether:

SELECT seq_books.NEXTVAL as next_value

    FROM SYSIBM.SYSDUMMY1;

next_value

-----------------

1

The older version of IBM DB2 might require different syntax:

SELECT NEXTVAL FOR seq_books as next_value

    FROM SYSIBM.SYSDUMMY1;

next_value

-----------------

1

PostgreSQL prefers notation of SQL function. To fetch NEXTVAL from a sequence SEQ_BOOKS 
created in PostgreSQL you might use the following syntax:

SELECT nextval(‘seq_books’) AS next_value;

next_value

-----------------

1

CURRVAL and NEXTVAL are standard methods to access the values generated by the sequence. 
Only IBM DB2 also provides PREVVAL, which is one step behind NEXTVAL.

Once the sequence is created, it can be used as part of an SQL statement: INSERT, UPDATE, and 
DELETE, though primarily it is used with INSERT(s). For example, in an IBM DB2 database you 
might have used the following query:

INSERT INTO BOOKS (

    bk_id

  , bk_title)

    VALUES (seq_books.NEXTVAL, ‘NEW BOOK TITLE’);

To replicate identity column behavior, a sequence can be tied to a table’s columns as a DEFAULT 
value constraint (as PostgreSQL does) or through a trigger (in case of Oracle and IBM DB2; see 
more about triggers later in this chapter) that would examine inserted records and add NEXTVAL 
to the list of the values to be inserted.

Let’s take a quick look at some generic useful options that can be specifi ed while creating a 
sequence. The more complete syntax, though not full, would look like the following:

CREATE SEQUENCE seq_books

    START WITH 1

    INCREMENT BY 1

    MAXVALUE 100

    MINVALUE 1

    CYCLE

    CACHE 10;

c08.indd 225c08.indd   225 3/22/2011 1:49:41 PM3/22/2011   1:49:41 PM



226 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

The sequence created in this way would start with 1 and would be incremented sequentially by 1 up 
to a maximum value of 100 (alternatives would be NOMAXVALUE constant). After that, it would 
be CYCLEd and begin from 1 again. (If you do not want your sequence to cycle, specify NOCYCLE 
instead.) The CACHE 10 option would “reserve” the next 10 values and store them somewhere in 
local cache for faster retrieval; this is an optimization technique for fast-paced environments.

Like any other database object, a sequence can be ALTERed. For example, here we are resetting the 
sequence with all new values:

ALTER SEQUENCE seq_books

    RESTART WITH 100 

    INCREMENT BY 5 

    NOMAXVALUE 

    NOCYCLE 

    NOCACHE;

A sequence can be destroyed following the same format as all other RDBMS objects:

DROP SEQUENCE seq_books;

There are optional CASCADE and RESTRICT keywords that can be added at the end to deal with 
potential dependencies. For example, if a sequence is referred to as a default constraint on a column, 
the RESTRICT keyword would prevent the sequence from being dropped.

TRY IT OUT Using Sequence Object-Generated Values

The sequence object in RDBMSs is used to generate sequential numeric values. The object exists within 
the database schema, and (unlike IDENTITY columns) is independent of other objects (unless explicitly 
stated). Here you will see how a sequence object can be used with IBM DB2 LUW 9.7 to generate values 
for the BOOKS table in the Library database.

1. Open your favorite SQL Client to connect to a DB2 Library database. Here we use Squirrel SQL 
Client (for confi guration details, see Appendix D or visit us online at www.agilitator.com).

2. Create a sequence by running the following SQL query: Type it into the SQL tab of the Squirrel 
Client and press the Run button (Ctrl+Enter):

CREATE SEQUENCE seq_books

    START WITH 100

    INCREMENT BY 1

    MAXVALUE 10000

    MINVALUE 1

    NOCYCLE;

3. Next, type in the following INSERT statement:

INSERT INTO identity_books

           (

            bk_id

           ,bk_title

           ,bk_ISBN

            )

     VALUES

           (

            seq_books.NEXTVAL

c08.indd 226c08.indd   226 3/22/2011 1:49:42 PM3/22/2011   1:49:42 PM



Comparing Identity Columns and Sequences x 227

           ,‘SQL Bible’

           ,’978-04700229063’

            )

4. Check the current value of the SEQ_BOOKS sequence by running the following query:

SELECT seq_books.CURRVAL AS current_value

FROM sysibm.sysdummy1;

current_value

-----------------

100

5. Check the previous value of the SEQ_BOOKS sequence by running the following query:

SELECT seq_books.PREVVAL AS previous_value

FROM sysibm.sysdummy1;

current_value

-----------------

100

6. Verify that the newly inserted record indeed contains the value supplied by SEQ_BOOKS sequence 
object in the BK_ID column:

SELECT bk_id, bk_ISBN

   FROM books

WHERE bk_id > 99;

bk_id                bk_ISBN

-------------------- ------------------

100                  978-04700229063

How It Works
We have created a sequence object to generate sequential numbers beginning with 100, running up to a 
maximum value of 1,000 with increments by 1.

We have used the method of the sequence object NEXTVAL to supply a valid value for the INSERT 
statement. Steps 4 through 6 verifi ed that the current value for the SEQ_BOOKS object was incre-
mented by 1 and now contains 101, that the previous value was 100, and that the record inserted into 
the BOOKS table indeed contains the value supplied by the sequence object.

Note that both CURRVAL and PREVVAL hold the same value, while NEXTVAL will acquire a 
value only when called upon. That is, neither CURRVAL not PREVVAL will have any value until 
NEXTVAL is called at least once.

COMPARING IDENTITY COLUMNS AND SEQUENCES

While there are similarities between identity columns and sequences, there are also differences. The 
major difference is that the sequence object is independent of any particular table and can be used 
by multiple tables; another distinction is that a sequence can be used in any SQL statement, includ-
ing SELECT, UPDATE, and DELETE; whereas an identity column cannot.

c08.indd 227c08.indd   227 3/22/2011 1:49:42 PM3/22/2011   1:49:42 PM



228 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

Both sequences and identity columns generate unique numbers within their 
respective scopes, sequence objects, and tables. What if you need to generate a 
sequence of identities that are truly unique globally (the scope of the RDBMS or 
even the world)? Some databases provide built-in facilities; some leave you on 
your own to cobble up a solution. GUID values are represented in a hexadeci-
mal string (for example, {780B9621-F5FB-4C31-8698-C92C9FFC7D37}) and, 
at least in theory, should never be generated twice. There are 3.4 � 10^38 total 
unique keys that can be generated (by comparison, there are only 1.33 � 10^50 
atoms on Earth), which makes it highly unlikely (though not impossible) that the 
same number can be produced more than once. By their very nature, GUIDs 
are not sequential, and therefore are not the best choice for primary keys despite 
their assured uniqueness. The functions to generate GUIDs, also known as 
Universally Unique Identifi ers (UUIDs) are vendor-dependent. Oracle provides 
SYS_GUID(), Microsoft SQL Server provides NEWID, MySQL has UUID(), 
and PostgreSQL has at least fi ve(!) different functions to return GUID values. 
Microsoft Access calls a GUID a ReplicationID data type, which only applied to 
auto-increment fi elds; IBM DB2 or HSQLDB do not have built-in GUID gen-
erators (though one can be created using built-in programming facilities).

Once created, a GUID value can be stored in a specifi c “GUID”-data type or in 
a VARCHAR data type column.

TRIGGERS

We have already mentioned SQL procedural extensions in Chapter 4. Being a set-based language, 
the SQL lacks when it comes to dealing with single records: It has very little support for conditional 
execution, no looping, and complete absence of all other features that are implemented in proce-
dural languages such as Java or C#. The ability to create stored procedures inside the RDBMS pro-
vides the best of both worlds.

Stored procedure is a persistent named module containing procedural code, and trigger is a stored 
procedure that is executed automatically in response to certain events on a particular database 
object. Traditionally, triggers were tied to the database tables and would fi le on events such as 
INSERT, UPDATE, and DELETE. Later on, the concept was extended to include database-wide 
events such as dropping and creating database objects. One of the most obvious uses for a trigger 
in the context of the preceding paragraph would be to use trigger to populate identity values based 
upon a sequence object.

With the exception of Microsoft Access, all RDBMSs discussed in this book support the notion of 
triggers (and a trigger-like functionality can be simulated using MS Access built-in programming 
language). The devil is, of course, in the details. Every vendor and organization had implemented it 
differently. This is a powerful feature; unfortunately, it is beyond scope of this book.

c08.indd 228c08.indd   228 3/22/2011 1:49:42 PM3/22/2011   1:49:42 PM



Summary x 229

ONE HAPPY FAMILY: WORKING IN HETEROGENEOUS 

ENVIRONMENTS

So far, we’ve been working within the confi nes of a single database. All objects were created 
and managed by a specifi c RDBMS, be it Oracle, IBM DB2, Microsoft SQL Server, PostgreSQL, 
MySQL, MS Access, or HSQLDB. What if you have several different RDBMSs in your environment 
and need to use data from all of them?

One way is to transfer data among different RDBMSs in a process called extract, transform, and 
load (ETL) in database parlance. First, the data are extracted from the source database(s); second, 
it is transformed according to some rules; and third, it is loaded to a different RDBMS for query-
ing. This is the bread and butter of a data warehousing operations. Some RDBMS vendors bundle 
ETL capabilities into their products (for example, Microsoft SQL Server); some rely on third-party 
companies, both open source and proprietary, to assist with the process.

Another approach is to use distributed querying capabilities offered by some RDBMSs. For instance, 
Microsoft SQL Server allows you to create a “linked server” from a variety of heterogeneous data 
sources (including Oracle, DB2, and MySQL, among others) that then can be included into an SQL 
query. The complexity of executing queries across these databases and returning a single result set is 
hidden in the layers of functionality built into the software. 

There is a thriving market specializing in software to make distributed heterogeneous queries 
possible. Chances are that if you need such a query there will be a DBA somewhere around to help 
you with the process.

There is a relatively recent phenomenon that turns the traditional ETL model 
upside down. The idea is to bypass the intermediary staging area, load data 
directly into the target database tables, and then transform it there, in-situ, so to 
speak. There are advantages and disadvantages of both approaches, and expert 
advice is highly recommended.

SUMMARY

Learning SQL is easy, mastering it is hard. Every object created in the RDBMS and every query can 
have dozens of different options and clauses. The concepts introduced in this chapter span the entire 
spectrum, from basic to advanced. 

Indices can be used to optimize query performance and, ultimately, the database application. There 
are different types of indices, and signifi cant differences exist between SQL syntaxes implemented 
by various RDBMSs.

Temporary tables are used as workbenches to store and manipulate intermediate results; they can 
differ in scope and different lifecycle options, depending on implementation.

c08.indd 229c08.indd   229 3/22/2011 1:49:42 PM3/22/2011   1:49:42 PM



230 x CHAPTER 8  WHAT ELSE IS THERE, AND WHY?

Materialized view is a concept introduced by several vendors to combine the advantages of views 
and tables into a single SQL object; the primary objective is to speed data retrieval by caching 
output of the query upon which the view is based and refresh it periodically.

The fully qualifi ed names in the RDBMS are used uniquely to identify objects in multiuser, multi-
schema environments; aliases and synonyms allow you to shorten these names for better readability 
and code maintenance.

The abili ty to generate numeric sequences automatically is a very useful feature provided by every 
RDBMS discussed in the book. There are two different approaches: identity columns (implemented 
in Microsoft SQL Server, IBM DB2, Microsoft Access, MySQL and OpenOffi ce BASE HSQLDB), 
and sequences (favored by Oracle and PostgreSQL). Some RDBMSs, such as IBM DB2, support both. 

The sequences can be used with yet another feature of RDBMSs, triggers, to emulate the identity 
columns’ functionality. Other uses of triggers include help in maintaining entity integrity and refer-
ential integrity in legacy applications.

The ability to query data across different RDBMSs is supported both with ETL processes and distributed 
heterogeneous queries. In the former case, the data are being extracted from one RDBMS, transformed, 
and loaded into another for querying; this is standard data warehousing practice. In the latter case, the 
implementation complexity is hidden behind a consistent interface that allows for execution of an SQL 
query without worrying about in which RDBMS the actual data resides. There are numerous concerns 
that need to be addressed with both approaches such as performance,  security, and so on.

c08.indd 230c08.indd   230 3/22/2011 1:49:42 PM3/22/2011   1:49:42 PM



9
Optimizing Performance

If your database lives past infancy, and is deployed into a production environment and starts 
accumulating sizable amounts of data and users, sooner or later you will begin to worry about 
whether it performs at the optimal level. Being able to tell the RDBMS what you need is one 
thing, making sure that your order is executed in the most effi cient way is another. The SQL 
is very good in abstracting your data needs from actual execution; all you need to say is what
and let the RDBMS fi gure out how.

As your comfort level with the language grows, and you gain more knowledge into the rela-
tional databases world, you might begin to question the authority. Why does it take so long? 
Are my queries executing at the “as good as it gets” level, or are there ways to speed them up? 
Does my database perform at optimal level?

These and many more questions are bound to pop up should you stay in SQL land long enough.

DATABASE PERFORMANCE

What is RDBMS optimal performance? How do you defi ne optimal performance? The people 
in the organization responsible for answering these questions are usually database administra-
tors (DBAs), network administrators, or server administrators. At some level, this team might 
include software architects and software developers. It is not uncommon to see one person 
wearing some (or all) these hats, and at some advanced level it is as hard as it sounds (there is a 
reason for the big bucks paid to DBAs!).

Understanding what is involved in optimizing RDBMS performance would allow you to see 
possibilities for improvement and the limitations thereof. The ability to know one from the 
other comes with experience.

Performance Benchmarks

There are a few benchmarks that allow one to make an educated guess about whether your 
database server performs at top speed. Some of them are published by the vendors (and 

c09.indd 231c09.indd   231 3/22/2011 1:50:21 PM3/22/2011   1:50:21 PM



232 x CHAPTER 9  OPTIMIZING PERFORMANCE

understandably should be taken with a grain of salt); some of them can be found on the Internet, 
published by afi cionados of a particular RDBMS under unrepeatable conditions (and also should be 
taken with a pinch of salt); and your DBA can come up with some custom benchmarks, specifi c for 
your database. 

Fortunately, there is an independent organization dedicated to benchmarking RDBMS performance: 
the Transaction Processing Performance Council or TPC for short.

According to the TPC, “the TPC is a non-profi t corporation founded to defi ne 
transaction processing and database benchmarks and to disseminate objective, 
verifi able TPC performance data to the industry.” It was founded in 1998 as 
a nonprofi t organization and is currently a recognized standard for database 
transaction processing performance. The TPC benchmarks are the gold standard 
for high-performance enterprise class RDBMSs. It measures peak performance 
achieved when an RDBMS and all its structures are tuned up for perfection, and 
costs are not an issue.

The TPC benchmarks come in three current fl avors: TPC-C, -E, and -H (with a number of obsolete 
benchmarks such as A, B, D, as you might have guessed).

TPC-C is measured in transactions per minute (tpmC). It was created to test performance of an 
online transaction processing (OLTP) database. The benchmark simulates workload with a mix of 
fi ve concurrent transactions of different types and complexity, either executed online or queued for 
deferred execution, on a database with nine types of tables with a wide range of record and popula-
tion sizes.

Two other benchmarks measure performance under different scenarios: TCP-E, to model a broker-
age fi rm with customers who generate transactions related to trades, account inquiries, and market 
research; and TCP-H for decision support, with its heavy use of ad hoc queries and concurrent data 
modifi cations.

IBM DB2 9.7 leads the roster with an impressive score of 10,366,254 tpmC benchmark (transac-
tions per minute, close to 200,000 transactions per second!), at a cost of $1.38 per transaction; 
followed closely by Oracle 11g with 7,646,486 at a price of $2.36; and Microsoft SQL Server 2005 
(the latest version for which the benchmark results were published) trailing at 1,807,347 tpmC at a 
price of 49 cents.

Keep in mind that such performance comes at a price, requires serious investment into hardware 
and tuning, and is usually an exclusive domain of the big players who need such performance and 
can afford it: large fi nancial institutions, companies, and governments. The numbers give you an 
idea about how much this might cost: Just multiply the benchmark by the cost per transaction. In 
the case of IBM, it comes to a cool $14,000,000 (that’s 14 million). Setting up and optimizing an 
RDBMS for such a performance requires a very advanced level of expertise, for which this book is 
but a tiny step.

c09.indd 232c09.indd   232 3/22/2011 1:50:24 PM3/22/2011   1:50:24 PM



Database Performance x 233

Order of Optimization

While you cannot expect that your database will perform at the levels clocked by the TPC, the good 
news is that you will get a decent performance out of your database with but a minimal tuning and 
optimization because many RDBMSs automated many tasks that previously required DBA interven-
tion. In many small-to-medium-size scenarios, the default options and automatic administration 
features will work adequately; large-scale deployments require advanced professional expertise.

Yet there are steps you can take to ensure that your database, your queries, and your applications 
perform at top levels. Database performance tuning and optimization is notoriously diffi cult because 
there are so many moving parts, a few of which are listed here: 

 ‰ Your application (the one that you use to access your data) — It can be a desktop, mobile, 
or web-based, each environment coming with its own, very specifi c optimization options; 
additionally, your application can be partitioned across different domains, and include third-
party components (such as ODBC/JDBC drivers, the translation layer between general pro-
gramming languages and RDBMSs).

 ‰ The network performance — How fast is your network; what else is going over this wire?

 ‰ The server environment where your RDBMS is installed (might not apply to desktop data-
bases such as Microsoft Access) — Includes the operating system (Windows, UNIX, Linux, 
MacOS, and so on) and OS-specifi c optimization tricks, amount of RAM (the computer 
memory), CPU speed, your hard-drive disk’s speed, and amount of free space.

 ‰ RDBMS confi guration options — Is your database optimized for OLTP or online analytical 
processing (OLAP); are vendor-specifi c options enabled (for example, Java, C# processing); 
are you using proper settings for your database?

 ‰ The database schema — Is your database highly normalized; are your tables properly 
indexed; do they have primary keys; are you using partitioning or triggers on the tables?

 ‰ The SQL queries — Are your queries constructed correctly (for example, overlooked 
Cartesian JOIN); are you using too many JOINs; are you using subqueries, stored proce-
dures, custom functions, and so on? 

Each of the previous components in any combination might affect database performance that would 
translate into poor user experience. Before you rush to optimize every one of these, take a deep 
breath and recall the Pareto Principle.

Vilfredo Pareto was an Italian engineer, sociologist, economist, and philosopher who lived between 
1848 and 1923. After many years working as a civil engineer for the Italian Railway, he became a 
professor of economics at the University of Lausanne, Switzerland. The principle bearing his name 
was formulated in 1906, and came from an observation that 80 percent of Italy’s wealth is owned 
by 20 percent of the population. This observation, also known as the 80/20 rule, applies to virtually 
every aspect of our lives. The very same Pareto noticed that 80 percent of his pea harvest is pro-
duced by 20 percent of the pea pods; the more modern examples include assertions that 80 percent 
of software crashes are caused by 20 percent of the software bugs, and so on.

c09.indd 233c09.indd   233 3/22/2011 1:50:25 PM3/22/2011   1:50:25 PM



234 x CHAPTER 9  OPTIMIZING PERFORMANCE

While the exact ratio is open for discussion (80/20, 90/10 or 99/1), there is no doubt that effort 
efforts to target strategically important areas yield the most overall results. Database optimization 
is no different. Therefore, it would make the most sense to focus on what would bring you the most 
bang for the buck (fi guratively speaking).

Hardware Optimization

The standard sequence for optimization starts with the server on which your RDBMS is running, 
followed closely by network performance optimization. These have to be verifi ed before anything 
else because you need a solid foundation to build upon. Make sure that you get the best CPU you 
can afford, and that your RDBMSs have suffi cient amounts of RAM and free disc space (see the 
recommended requirements for each respective RDBMS discussed in this book). 

Operating System Tune-up

Next is your operating system. Some RDBMSs will run in different operating systems. Oracle, 
IBM DB2, PostgreSQL, MySQL, and HSQLDB can run on either UNIX/Linux or Microsoft 
Windows platforms, while SQL Server and Microsoft Access are Windows-only software. Each 
RDBMS has OS-specifi c confi guration options to include its best performance. Make sure that 
your OS is patched to the level recommended by the RDBMS, no more, no less (we are speaking 
from performance point of view, but there is also a security perspective that needs to be balanced 
for optimal performance).

Optimizing RDBMSs

The RDBMS setup is your next frontier. There are many confi guration parameters that need to be 
set depending on intended use. If you refer to the basic RDBMS installation steps (see Appendix B, 
as well as corresponding decks of slides, PowerPoint, PDF, or ODF formats, available for download 
from www.wrox.com or at www.agilitator.com), there are different options you can select to opti-
mize your database for OLTP or OLAP use during setup. These can have a dramatic effect on your 
database performance, especially as the amount of data stored in your databases increases. Some 
confi guration parameters can be modifi ed after the setup; some require careful planning because 
they can be next to impossible to change.

Optimizing Database/Schema

Once your RDBMS is set up and running, you need to confi gure your application-specifi c data-
base. As mentioned before, there is a fair amount of confusion in the terminology between differ-
ent RDBMSs; schemas, databases and even users can refer to the same thing. Understandably, any 
potential optimization in these areas has to be performed on the vendor’s terms. Please refer to the 
RDBMS-specifi c documentation for information on your particular database confi guration options.

Still, we are getting closer to the subject of this book: SQL. The database and most (if not all,) of the 
objects it contains can be created using a Data Defi nition Language (DDL) statement, and herein lies 
your opportunity to affect performance. Chapter 3 discussed normalization techniques. Taking your 
data model to a fi fth degree of normalization might be a Holy Grail for some applications and a per-
formance hog for the others. Ultimately, it’s your business objectives that will defi ne the type of data 

c09.indd 234c09.indd   234 3/22/2011 1:50:25 PM3/22/2011   1:50:25 PM



Database Performance x 235

model you will use: An analytics database would normally require a lower degree of normalization 
than a transaction processing one. 

Denormalizing your data model might speed one, and slow down the other; it might increase data 
redundancy and add to data maintenance headaches. The primary reason for denormalizing the 
data model is to speed up SELECT queries, as denormalization reduces the number of JOIN(s) 
required to gather the data into a resultset.

For instance, suppose that when creating our LIBRARY data model we decided to keep publishers 
as part of the BOOKS table, and not separate them into a PUBLISHERS entity as normalization 
rules would normally require. There were two reasons behind the decision: We were not interested 
in collecting data about publishers, and we stated a one-to-many relationship between a book entity 
and a publisher entity (one book can be published by one and only one publisher; a publisher can 
publish one or many books). By including the publisher as an attribute into BOOKS table, we cre-
ated a slightly denormalized schema (and increased the amount of data redundancy in the table; 
instead of a numeric key we’ll store full publisher name). At the same time, we eliminated the need 
for a JOIN to fetch a publisher name into the SELECT statement as shown in Figure 9-1. This is the 
tradeoff we made to increase the performance of the query.

PK VS.

BOOKS

bk_id

bk_title

bk_publisher

PK

BOOKS

bk_id

bk_title

bk_pub_id

PK,FK1

PUBLISHERS

pub_id

pub_name

FIGURE 9-1

To produce a result set that includes a book title and corresponding publisher would only take a 
simple SELECT in one case and a JOIN between two tables in the other:

SELECT bk_title, bk_publisher FROM books;

versus:

SELECT bk.bk_title, pub.pub_name FROM books bk INNER JOIN publishers pub ON 

bk.bk_pub_id = pub.pub_id;

The results of both queries will be identical while the query plans (see later in the chapter) prepared 
by the RDBMS will differ signifi cantly. The second query will consume more memory and more 
CPU cycles than the fi rst. While these additional resources might be very small, they might add up if 
the workload on your database, or the amount of data, increases (thousands of concurrent users or 
millions of rows).

c09.indd 235c09.indd   235 3/22/2011 1:50:25 PM3/22/2011   1:50:25 PM



236 x CHAPTER 9  OPTIMIZING PERFORMANCE

Some might argue that because the BK_PUBLISHER column is a character data 
type and not an integer, it might slow down the index search on the column (see 
later in the chapter). Again, this would be something to be verifi ed through an 
examination of your actual RDBMS query plans that estimate costs for each 
step in the query execution and then weigh the cost of a JOIN against the cost of 
an index search.

Other optimizations that can be performed at this level include data storage optimization, spreading 
actual data fi les across several drives to address potential contention issues. 

Managing concurrency is another area where you can look for performance gains by specifying 
appropriate locking granularity level or selecting appropriate transaction isolation level.

In its enterprise incarnation, optimization might be taken to an entirely new 
level: the creation of massive parallel database clusters and the type of search 
engines that Google might be using. On these, queries from different users might 
run on different instances of RDBMSs, or even parts of the same query can be 
farmed out to different servers for processing to be combined into a fi nal result 
set on output.

Application Optimization

This is an often forgotten component of every system that includes RDBMS data storage. Known 
at different times as a graphical user interface (GUI), a front end, an interface, a business layer, or a 
data access layer, these are important components that make the data available to the users, allows 
them to interact with it, and ultimately justifi es the existence of the RDBMS in the fi rst place.

Many Hoops to Go Through

It’s a long way from data stored in your RDBMS to an application such as Microsoft Excel. There 
are layers upon layers of translation that stand between the familiar spreadsheet interface and data 
fi les managed by the RDBMS.

Before a single SQL statement is executed, an application such as Excel needs to establish con-
nection to the RDBMS, the gateway to the data. There are several ways to do so: use the RDBMS 
native interface (the one provided by the vendor), use Open Database Connectivity (ODBC) 
drivers, Microsoft OLE DB Providers, Java Database Connectivity (JDBC) drivers, or a combina-
tion of these. 

Once the connection is established, the application can submit requests to the RDBMS, and hope-
fully get results back. These results need to be interpreted, processed, and presented to the user. 
As the Greek legend of Samian King Anaeus recorded (see a Note later in the chapter), there is 
much between the edge of the cup and the lip, and there is much that can be done along the way: 
Application logic can be streamlined, better drivers can be bought, and so on. Remember the 

c09.indd 236c09.indd   236 3/22/2011 1:50:25 PM3/22/2011   1:50:25 PM



Database Performance x 237

80/20 rule: Check your system performance through the entire system and identify bottlenecks prior 
to any optimization.

Never Underestimate the Power of Perception

A slow query might appear to run fast if it gives a user what he or she needs upfront, while continu-
ing to run in the background fetching the rest of the data. By designing for parallel tasks execution, 
you might win the prize. 

Consider the following scenario: John’s plan for today is to go through sales fi gures for the last 
quarter, line by line. Your application can try to get all the data he would need at once or it can 
fetch it in chunks of one week. If a company has lots of sales, the amount of data accumulated for 
the quarter can be signifi cant. On the other hand, it might take John some time to go record by 
record and check the numbers. Your choice: Make him wait 15 minutes while your query fetches the 
data and your application processes and displays it, or limit the query to a week’s worth of data to 
give John something on which to work right away while pulling the rest of the data into an applica-
tion on a background thread. Which approach is likely to make John happier? Same query; vastly 
different performance perception.

Make sure that your application is tuned up before trying to squeeze out the last bit of performance 
from the RDBMS. This is an iterative process, and one should expect to make adjustments over and 
over until the desired level of performance is achieved.

The Samian King Aneaus planted a vineyard, but a seer warned him that he 
would not live to taste its fruit. The vineyard was grown, the fi rst wine was 
made, and the king was raising the fi rst cup of the young wine. He laughed at the 
words of the prophet, who contented himself with the saying, “There is much 
between the edge of the cup and the lip,” when word came that a wild boar was 
ravaging the royal fi elds (these were the simple times!). King Anaeus set down 
the goblet, untasted, grabbed his boar spear, rushed out, and was subsequently 
killed by the wild boar. The prophecy was fulfi lled.

SQL Optimization

Once you are reasonably sure of the foundations, you can start (or continue) with optimizing SQL queries.

SQL is a declarative language; it tells the RDBMS what needs to be done without going into details 
on how to do it. The syntax of the queries returning the same result can differ signifi cantly because 
of a variety of options available within the language: subqueries, JOIN, and ordering and grouping 
can be used in different combinations.

Yet there is a method to the madness; behind the scenes, RDBMS is procedural at heart and it will 
employ the same bag of tricks that your average C#, Java, or PHP program would (parsing, looping, 
matching, and joining), all while relying on the environmental options available to it. Your set-based 
SQL query is translated into procedural chunks of code, and results are assembled just in time for 
return. The query parsing and rewriting is beyond the scope of this book (and a couple more levels 
beyond this book, frankly), but you can get some valuable insights into how an RDBMS “thinks” 

c09.indd 237c09.indd   237 3/22/2011 1:50:25 PM3/22/2011   1:50:25 PM



238 x CHAPTER 9  OPTIMIZING PERFORMANCE

by examining the SQL query execution plan. The ultimate goal of SQL tuning is to improve the 
execution plan, and this is where you need a tool to understand what’s going on. 

A Peek Under the Hood: Query Optimizers

Assuming that you have the query logic all fi gured out; that is, that you do not ask for more data 
than absolutely needed and you do not have unintended gaffes in your syntax (such as Cartesian 
JOIN(s)), there is one more thing you can do: Rewrite your query to improve the execution plan, min-
imizing database access and data operations as much as possible. To do so, you need to understand 
how your RDBMS prepares your query for execution — how it plans to access the data. This requires 
an advanced understanding of how SQL in general and your RDBMS in particular works (and is, by 
and large, outside our scope). Nevertheless, taking a quick peek into the kitchen might help.

Every RDBMS we’re discussing in this book has implemented an internal optimizer as part of its 
SQL interpretation and execution process, and some are better than others in providing a user-
friendly access to the facility. In general, there are two types of optimizers: rule based optimizers 
(RBOs) and cost based optimizers (CBOs). The former is based on a set of predefi ned rules and 
crafts execution plans inferred from the statement syntax and existence of indices; the latter adheres 
to RBO-style rules, but can modify these rules on the fl y based upon statistics collected from the 
tables’s actual use to create a data access plan uniquely adapted for the query. The statistics (a name 
as good as any) represent volatile data about the table, and is collected in RDBMS system tables. 
Here’s a sampling of what kind of information is collected, to mention but a few:

 ‰ Number of distinct values in the compound index columns

 ‰ Number of rows in a table

 ‰ Number of columns in a table

 ‰ Average length of a column’s data

 ‰ Number of NULLs in a column

 ‰ Percentage of distinct values in a column

 ‰ CPU performance and utilization

 ‰ Input/output (I/O) operations

This information is processed into histograms, detailed information on how values are distributed 
over columns, and the columns are then used to create query execution plans. 

There are a number of graphical tools, both built-in and available from third parties, to analyze the 
results and present them in a hierarchical diagram, with costs assigned to each note. Let’s take a 
look at one example: cost based optimization for Microsoft SQL Server.

TRY IT OUT A Quick Look at Execution Plans in Microsoft SQL Server

Let’s take a look at the execution plan for one of the subquery examples from Chapter 6.

1. Open SQL Server 2008 Management Studio.

2. Connect to your instance of SQL Server, and open a query window by clicking the New Query 
button in the upper-left corner of the program’s window.

c09.indd 238c09.indd   238 3/22/2011 1:50:26 PM3/22/2011   1:50:26 PM



Database Performance x 239

3. Run the following batch query:

use library;

SELECT bk_title, bk_publisher FROM books 

    WHERE bk_id IN (SELECT fk_bk_loc FROM location 

        WHERE loc_shelf = 5);

4. To have the execution plan prepared by the optimizer displayed, click the toolbar button on the 
right of the Execute button, as shown in Figure 9-2.

5. Run the query by clicking the Execute button on 
the toolbar. The execution plan for this query 
in Microsoft SQL Server 2008 will be displayed 
in the Execution plan tab of the output pane, as 
shown in Figure 9-3.

FIGURE 9-3

6. As you can see, the query optimizer ordered scans of two clustered indices on the BOOKS and 
LOCATION tables, with a 42/55 percent cost split, and then joins the records before returning 
the results.

7. Add a nonclustered index on the LOC_SHELF column (a bare-bones syntax):

CREATE INDEX ix_loc_shelf ON location

(

Loc_shelf ASC

);

GO

8. Rewrite the query with a JOIN and run it with the Execute button:

SELECT bk_title, bk_publisher FROM books bk INNER JOIN location loc

    ON bk.bk_id = loc.fk_bk_loc 

        WHERE loc.loc_shelf = 5;

9. The costs of scanning the respective tables is now split 47/53, and there is no cost for merging the 
records. Additionally, the optimizer has decided to use a new index (IX_BK_LOC instead of the 
previously used clustered primary key index PK_LOCATION), as shown in Figure 9-4.

FIGURE 9-2

c09.indd 239c09.indd   239 3/22/2011 1:50:26 PM3/22/2011   1:50:26 PM



240 x CHAPTER 9  OPTIMIZING PERFORMANCE

FIGURE 9-4

10. Create a copy of the LOCATION table by executing the following query:

SELECT * INTO location_copy FROM location;

This statement creates a copy of LOCATION table, albeit no constraints were copied over, just 
the structure and the data. Since the structure of the table is the same, including column names, 
we could can run the same query with only minimal changes

SELECT bk_title, bk_publisher FROM books bk INNER JOIN location_copy lcopy

    ON bk.bk_id = lcopy.fk_bk_loc 

        WHERE lcopy.loc_shelf = 5;

11. As shown in Figure 9-5, the cost of fi nding records in the table LOCATION_COPY increased 
dramatically, to 52 percent, even though it is identical to LOCATION in every respect, with the 
exception of not having a primary key defi ned.

FI GURE 9-5

How It Works
The query optimizer prepares the execution plan based on the least relative costs for a given operation. 
The index scan operation was performed in the subquery example, which was replaced with the index 
seek operation for the second query. It used the JOIN syntax, and a full table scan was performed on a 
LOCATION_COPY table that did not have primary key defi ned.

c09.indd 240c09.indd   240 3/22/2011 1:50:26 PM3/22/2011   1:50:26 PM



Database Performance x 241

The differences between index seek and index scan are subtle. The former is performed when the 
existing index is not selective enough (among other reasons), and the latter is just the opposite, used 
when there is an index on the search column (that is, the one specifi ed in the WHERE clause). A full 
table scan, the third scenario, is performed when there is no index defi ned for the table and the opti-
mizer has no clue where to look for the requested values. The last operation, the full table scan, is the 
most expensive and should be optimized fi rst, with an index added, for example. There is an exception 
to the rule, though. For relatively small tables (100 rows or so), a full table scan might be faster than 
index scan.

Since our LIBRARY tables contain very little data, the difference in query execution times might 
be almost imperceptible among these three scenarios, but it will make a huge difference with large 
amounts of data in more complex queries.

As you can imagine, updating statistics is quite expensive in terms of computer memory and CPU 
cycles. Because of this, the statistics update does not happen automatically but has to be run manu-
ally or scheduled by a DBA familiar with the usage patterns of the database.

Table 9-1 lists information on types of optimizers implemented by the RDBMS, commands for 
obtaining data access plans, and commands for updating statistics used by the query optimizer. 

TABLE 9-1: Query Optimizers

RDBMS OPTIMIZER DATA ACCESS PLAN STATISTIC S UPDATE

IBM DB2 CBO EXPLAIN RUNSTATS 

Microsoft CBO EXPLAIN UPDATE STATISTICS 

MySQL RBO EXPLAIN ANALYZE TABLE 

Oracle CBO EXPLAIN PLAN FOR ANALYZE 

MS Access RBO SHOWPLAN n/a

HSQLDB RBO EXPLAIN PLAN n/a

Optimization Rules of Thumb for SQL Queries

Create your optimization strategy for the database type you have. There is no such thing as one size 
fi ts all. Follow the optimization order, get a better understanding of the query execution plan, and 
apply the 80/20 rule at each step.

The following sections contain lists of optimization tips which might help you speed up query execu-
tion and help overall database performance. Not all of these may apply to your particular situation. 
When in doubt, remember that your DBA is your friend (or drop me a line at www.agilitator
.com). Some of these steps might be rendered obsolete by rapid advances in RDBMS technologies; 
some have been automated and need no manual intervention anymore; and some should be per-
formed by a DBA. Still, there is value in familiarizing yourself with what’s involved.

c09.indd 241c09.indd   241 3/22/2011 1:50:26 PM3/22/2011   1:50:26 PM



242 x CHAPTER 9  OPTIMIZING PERFORMANCE

Indexing

 ‰ Always have a PRIMARY KEY in your table, preferably of the numeric data type.

 ‰ Always have an index on any FOREIGN KEY in your table.

 ‰ Create one clustered index per table (usually on the PRIMARY KEY column; keep in mind 
differences between implementations - the equivalent of clustered index in MS SQL Server or 
PostgreSQL would be index-organized tables (IOT) in Oracle).

 ‰ Create highly selective indices and composite indices with the most restrictive column fi rst.

 ‰ Decide on ASCENDING or DESCENDING order based on the type of data and actual 
business usage pattern.

 ‰ Defi ne indices on all searchable columns in the order they appear in the following part of 
the query:

 ‰ WHERE clause

 ‰ JOIN clause

 ‰ ORDER BY clause

 ‰ SELECT list

 ‰ Do not overdo indices: The wrong indices used by the query optimizer will slow down your 
query. Every index increases time spent on INSERT, UPDATE, and DELETE statements; and 
might speed up the SELECT statement.

 ‰ Indices on small tables might be detrimental to query performance.

 ‰ Indices on numeric data type columns perform better than indices on character data type 
columns.

 ‰ Keep composite indices as narrow as possible,; the fewer columns, the less reading time for 
the RDBMS.

 ‰ Indexing your NULL columns with a function-based index or a composite index including a 
non-null NULL column might speed queries relying on NULL and NOT NULL searches.

 ‰ Rebuild your indices periodically.

 ‰ When in doubt: use, use query execution plans.

 ‰ Update statistics for the tables on regular basis (normally, a DBA task).

Syntax

 ‰ Minimize the use of functions in your query, especially in WHERE clause fi lters.

 ‰ Avoid using custom User Defi ned Functions (UDFs).

 ‰ Avoid using hierarchical views (views based upon views).

c09.indd 242c09.indd   242 3/22/2011 1:50:26 PM3/22/2011   1:50:26 PM



RDBMS-Specifi c Optimization x 243

 ‰ Replace NULL and NOT NULL comparisons with (not)equal operators whenever possible.

 ‰ Replace LIKE and NOT LIKE predicates with equality whenever possible.

 ‰ Use CASE statements for conditional transformation and aggregation.

 ‰ Minimize the use of HAVING clauses in your aggregate queries.

 ‰ Minimize the use of pattern matching in WHERE clauses.

 ‰ Watch out for implicit conversions in fi ltering the data; always use implicit conversions to 
prevent ambiguity about your intentions.

 ‰ Watch out for Cartesian JOIN (also known as cross-join), a situation in which no JOIN crite-
ria is specifi ed. The result is a data set of all possible permutations of the rows in the selected 
tables.

 ‰ Rewrite subqueries as JOIN(s) whenever possible; it usually improves performance.

 ‰ Rewrite EXISTS subqueries using MINUS and EXCEPT operators; as part of the set-based 
logic, they usually perform better. 

 ‰ Minimize number of table and views references in the query.

Miscellaneous

 ‰ Select only what you need; this refers to setting both horizontal and vertical limits for the 
data sets returned (refer to Chapter 2 for more information). Always consider specifying lists 
of columns in the SELECT statement as opposed to using the asterisk (*) for “everything and 
his cousin.”

 ‰ Consider partitioning the data into separate tables horizontally and off-loading less fre-
quently used data to separate tables.

 ‰ Consider denormalizing and pre-aggregating data for some of the most actively used queries.

 ‰ Consider using stored procedures instead of ad hoc queries.

 ‰ Use constraints instead of custom triggers for your tables to enforce the rules.

 ‰ Pay attention to locking in your database and locking escalation rules for your RDBMS.

 ‰ Use RDBMS-specifi c optimization judiciously; the optimization facility and/or RDBMS might 
change without notice.

RDBMS-SPECIFIC OPTIMIZATION

Besides generic optimizations which by and large are applicable to every relational database system, 
there are quite a few vendor-specifi c optimizations which utilize concepts and facilities available 
only in this particular RDBMS. Of course, there is a price to pay in terms of reduced portability of 
the system, but sometimes the tradeoff might be justifi ed.

c09.indd 243c09.indd   243 3/22/2011 1:50:27 PM3/22/2011   1:50:27 PM



244 x CHAPTER 9  OPTIMIZING PERFORMANCE

Oracle 10g/11g

In version 10g, Oracle shipped with SQLAccess advisor (part of the DBMS_ADVISOR package, 
which was replaced with SQL Performance Analyzer in version 11g). The focus of the tool is to scan 
your database schema objects, and come up with recommendations for best indices and materialized 
views (refer to Chapter 8 for more information).

One of the most controversial issues is using Oracle SQL hints in your queries. A hint is not a 
suggestion for the Oracle optimizer to consider; it is a direct order to cease and desist, and just do as 
told. (I would add “if possible” to this sentence; there is a reason why it’s called “hints” – not every hint 
is implementable.) There is a number of hints that can be used with Oracle that deal with JOIN orders 
and operations, access plans and query transformations, index utilization strategy, and more. Here is an 
example of Oracle forcing the query optimizer to use index IX_BK_ISBN created on bk_ISBN column:

SELECT /*+ index(bk ix_bk_ISBN) */ 

    bk_title

   ,bk_publisher

FROMbooksbk;

As you can see, the syntax has nothing to do with SQL proper, has arcane syntax, and makes your 
code Oracle-only and nonportable.

There are justifi able uses for hints in very fast–paced environments when data characteristics change 
so rapidly that statistics for the table become outdated very quickly. Nevertheless, using SQL hints 
requires advanced knowledge of Oracle and should be used as a last resort.

Oracle offers materialized views as a way to speed some SELECT queries (refer to Chapter 8 for 
more information) and table partitioning support. 

With your DBA’s help, look into various caching techniques for query plans and adjustment of vari-
ous Oracle environmental parameters.

IBM DB2 LUW 9.7

IBM offers a number of tools to help with RDBMS performance analysis, including visualizers for 
the EXPLAIN facility (see earlier in the chapter): Visual Explain and command-line utility db2exfmt.

Additional tools include the following:

 ‰ Design Advisor — Generates a set of recommendations for a given set of SQL statements 
and a workload: indices, materialized views, Materialized Query Tables (MQTs in IBM par-
lance), physical tables reshuffl ing, table partitioning advice, and so on.

 ‰ Query Patroller — A tool to manage users, groups, and queries by balancing RDBMS 
resources across the submitted queries: boosting priority for some, and holding back the 
others.

DB2 also allows for SQL hints to be used, wrapped up as an optimization profi le (an XML fi le 
containing instructions to the DB2 query optimizer), and activated for a duration of a session (see 
Chapter 10 for information on sessions) with a SET CURRENT OPTIMIZATION PROFILE (some 
RDBMS initialization parameters need to be set prior to being able to invoke the statement). The 

c09.indd 244c09.indd   244 3/22/2011 1:50:27 PM3/22/2011   1:50:27 PM



RDBMS-Specifi c Optimization x 245

same warnings as with Oracle’s hints apply: Know what you’re doing and understand the ramifi ca-
tions of nonportable code.

Microsoft SQL Server 2008

Besides the execution plan visualizer, the Microsoft SQL Server offers additional tools such as 
Database Tuning Advisor (an updated version of the Index Tuning Wizard that shipped with SQL 
Server 2000). The advisor will consider tradeoffs offered by different options (for example, indices 
or partitioning), with a support for “what-if” scenarios testing, session monitoring facilities and 
more. Talk to your DBA, or refer to the vendor’s documentation. 

Microsoft SQL Server 2008 offers a number of SQL hints that can be used to force the optimizer to 
choose one specifi c query execution plan over another. Unlike Oracle or DB2, the SQL Server hints 
are part of the SQL proper, or rather Transact-SQL dialect. For instance, the following query:

SELECT bk_title, bk_publisher FROM books bk INNER JOIN location loc

    ON bk.bk_id = loc.fk_bk_loc 

        WHERE loc.loc_shelf = 5;

can be rewritten with a hint to use a specifi c JOIN type, say a HASH join, as follows:

SELECT bk_title, bk_publisher FROM books bk INNER HASH JOIN location loc

    ON bk.bk_id = loc.fk_bk_loc 

        WHERE loc.loc_shelf = 5;

In the query execution plan, you’ll see that the preceding query will force the optimizer to perform 
an unnecessary HASH join, consuming a whopping 72 percent of the query execution costs (as 
opposed to 0 percent for the regular INNER JOIN with the least expensive LOOP type, as was 
shown earlier in the chapter).

Materialized views in SQL Server are called indexed views. They come with a few advanced fea-
tures, such as view-specifi c SQL hints and support for .Net family of programming language data 
types. Keep in mind that this is an advanced feature, and there are a lot of limitations and prerequi-
sites for this type of object.

When processing XML (see Chapter 11), it is recommended that you minimize the number of con-
current OPENXML statements and avoid using this statement on large XML fi les altogether.

Setting up server parameters, such as increasing the size of TEMPDB (SQL Server performs most 
of its sorting using this “workbench” database) and adjusting some parameters such as AUTO_
CREATE_STATISTICS or AUTO_SHRINK. Using any of these requires an advanced level of 
understanding and is most likely to be performed by a DBA.

PostgreSQL

Using the EXPLAIN ANALYZE statement, along with other accoutrements, such as setting statis-
tics levels for a column, will give you additional insight into your query optimizer work.

Tuning RDBMS server parameters can yield signifi cant performance gains. Setting up maximum 
database connections, allocating memory to data caching and many other confi guration parameters 
can make a big difference.

c09.indd 245c09.indd   245 3/22/2011 1:50:27 PM3/22/2011   1:50:27 PM



246 x CHAPTER 9  OPTIMIZING PERFORMANCE

Maintain your database tables by running the VACUUM statement (compacting the database tables 
after any DELETEs and UPDATEs). Other useful commands are ANALYZE, for database and 
database objects; and EXPLAIN ANALYZE, for SQL queries.

Materialized views are not supported natively by PostgreSQL, though a number of workarounds have 
been proposed and implemented with PL/pgSQL triggers (see Chapter 4 for information on triggers).

The supported version of PostgreSQL, EnterpriseDB, has additional tools, such as Tuning Wizard, 
to help with optimal confi guration.

MySQL 

MySQL has two different main storage engines: MyISAM and InnoDB, each with its own per-
formance optimization techniques. Usually you would use MyISAM, a default engine, for mostly 
read-type data because it offers no transactional support whatsoever and is optimized for SELECT 
queries.

The InnoDB storage engine takes MySQL one step closer to an enterprise class RDBMS. It adds 
support for referential integrity (refer to Chapter 3), as well as transactional support with COMMIT 
and ROLLBACK (see Chapter 10) to ensure data consistency in multiuser environments and row-
level locking.

The basic syntax for creating MyISAM and InnoDB storage tables is very similar. For instance, the 
following query creates a table with InnoDB storage (and omitting the TYPE clause will default it to 
MyISAM):

CREATE TABLE authors (

    au_id   bigint NOT NULL PRIMARY KEY 

  , au_first_name  varchar(50) NULL

  , au_middle_name varchar(50) NULL

  , au_last_name  varchar(50) NULL

  , au_notes   text NULL

) TYPE=innodb;

Choosing the right table format based on intended table usage will yield real gains, although 
not always performance-related. If you expect the table to be used with INSERT, UPDATE, and 
DELETE statements, InnoDB might be a better option; you sacrifi ce speed for consistency. With 
mostly SELECT queries, MyISAM provides better performance.

Just as with Oracle, you can use SQL hints to override the optimizer’s own plans for query execution, 
and the same caveats apply. Here is an example of a hint instructed MySQL to use a specifi c index

SELECT bk_title

      ,bk_publisher

FROM books USE INDEX (ix_bk_ISBN);

MySQL does not offer materialized views out of the box, but it is relatively easy to simulate with 
tables and triggers, just as in PostgreSQL.

c09.indd 246c09.indd   246 3/22/2011 1:50:27 PM3/22/2011   1:50:27 PM



RDBMS-Specifi c Optimization x 247

Other optimization techniques include fi ne-tuning MySQL startup options, placing tables into mem-
ory, along with proper maintenance of the tables (with commands such as myisamchk, OPTIMIZE 
TABLE), and use of custom extensions (a blessing and curse of open source’s protean nature).

Desktop RDBMSs

The desktop RDBMSs are in a league of their own and should be approached differently. Normally, 
they are designed for a single user and lack most of the advanced features that their full-featured 
RDBMS server-based peers have. In an attempt to capture a bigger market segment and answer a 
need for “something in-between,” the rules were relaxed, and desktop databases were allowed to 
live on a network and be accessed by a number of simultaneous users.

Some of the optimization strategies discussed earlier in this chapter would still apply to the desktop 
databases. Take them on a case-by-case basis. 

Microsoft Access

One of the most popular desktop database management systems, Microsoft Access enjoyed a long 
history of success, all the way from clunky version 1.0 released in November 1992. Being a mix 
of relational engine (Microsoft JET Database Engine, updated to ACE in later versions), GUI, and 
built-in language (Visual Basic for Applications [VBA]) to create applications, it has unique charac-
teristics unknown to full-blown relational database servers.

Microsoft Access was not the fi rst desktop database on the market. For years, the 
desktop market was dominated by Borland’s dBASE and Paradox systems, as 
well as FoxPro and Clipper (which started as a compiler for dBase III). FoxPro 
was bought by Microsoft in 1992, and some of its technologies (especially query 
optimization) made it into Microsoft Access. Another popular desktop database 
management system is FileMaker, a cross-platform RDBMS now owned by 
Apple, evolved from the 1982 version developed originally by Nashoba Systems.

First of all, Microsoft Access database is not a server. It is a fi le — a complex structured fi le — but 
a fi le nevertheless. Even if you host this fi le on the network to enable simultaneous user access, a 
fair chunk of this fi le has to be copied over to a user machine before you can even start. As a result, 
Microsoft Access in a multiuser environment chokes when the number of concurrent users reaches 
a limit of more than a couple dozen (the offi cial limit for concurrent connections is 255). 

The other limitations include limits on the number of tables that can be referenced to in a query 
(32), the number of fi elds in a query (255), the number of JOIN(s) permitted (16), the number of 
AND operators in a WHERE or HAVING clause (99), and so on. Keep in mind that these limits 
might be much lower, depending on actual syntax and combinations. When MS Access reaches its 
limits, you’ll see a message complaining of “too many” this or “too complex” that, which might 
simply be a red herring; do not expect it to diagnose the problem.

c09.indd 247c09.indd   247 3/22/2011 1:50:27 PM3/22/2011   1:50:27 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



248 x CHAPTER 9  OPTIMIZING PERFORMANCE

MS Access shares some optimization techniques with full-fl edged RDBMSs; others are MS Access–
specifi c. The former include the use of indices, return of limited data sets and limited number of 
fi elds, and the preferred use of JOIN(s) over subqueries. The latter include the following:

 ‰ Use of SQL functions over equivalent VBA (for example, use of the IS NULL operator 
instead of the ISNULL function; the function necessitates a call to VBA)

 ‰ Use of subqueries instead of MS Access Domain Aggregated functions (DLookup, DSum)

 ‰ Avoid ORDER BY on computed fi elds

 ‰ Use of FIRST with GROUP BY

 ‰ Use of stacked queries (a saved query used as an input to a query)

Like its grownup counterparts, MS Access JET Engine has a query plan analyzer named ShowPlan. 
It was added to Jet 3.0 (shipped with Microsoft Access 95 and enhanced in the current 2010 ver-
sion). Even with its numerous limitations (for instance, it does not analyze subqueries), it will help 
you to analyze performance of your database and pinpoint bottlenecks. Using this utility goes 
beyond the scope of this book

One of the ways to scale MS Access is to use it as front end for enterprise-level 
RDBMSs such as Microsoft SQL Server or Oracle. This involves creating a GUI 
for using MS Access and linking remote server tables so they appear to be local. 
MS Access then serves as a pass-through, and actual query execution is per-
formed on the linked servers.

OpenOffi  ce BASE with HSQLDB Backend

Unlike Microsoft Access, the OpenOffi ce BASE does not have data storage of its own; instead, it 
ships with embedded open source HyperSQL RDBMS, which is also available in a server version. 
Additionally, it can connect to a number of other full-featured RDBMSs for which there is a suitable 
JDBC/ODBC driver.

When used as a front end to any of these RDBMSs, all optimization tips and techniques discussed 
earlier apply in full. When using HSQLDB, which is “almost” SQL-92 Standard–compliant (plus 
some core features of the SQL:2008 standard) according to the maintainers of the project, the opti-
mization will be that of the HSQLDB (see more at www.HSQLDB.org). Using the SQL rule-of-thumb 
tips (see earlier in the chapter) might help, especially the indexing and syntax-related optimization. 

The embedded version shipped with OpenOffi ce 3.2 is not the latest (2.0, as of the time of this writ-
ing) but the previous 1.8. The older version of HSQLDB has less effi cient optimization schema, and 
lacks several multiuser-specifi c features, including some outdated locking mechanisms that might 
allow “dirty reads” (that is, reading uncommitted data; see Chapter 10 for more information).

c09.indd 248c09.indd   248 3/22/2011 1:50:27 PM3/22/2011   1:50:27 PM



Summary x 249

YOUR DBA IS YOUR FRIEND

In a medium to large enterprise, it is highly likely that you will have a dedicated or part-time DBA. 
The DBA role is particular to each organization; some organizations would give developers and 
power users access to query execution plans; some would put it squarely in DBA domain. Your 
DBA will be your last resort after you checked all your application logic (nested loops, recursive 
functions, memory leaks, and so on), optimized the returned data sets, helped users to clean up 
computers from CPU hogging adware, and checked your SQL code for Cartesian JOIN(s) and 
unnecessary functions.

DBAs worth their salt will have intimate knowledge of the RDBMS your application is using. 
They know what an Oracle extent is and how to use DBCC in SQL Server. They will talk to your 
network guy, discussing things like double hops, DNS confi gurations, and excessive network col-
lisions. They will set up traces on the processes running on the server and will help you fi gure 
out possible culprits. They will adjust database privileges, check query execution plans, resolve 
transaction deadlocks, and, if needed, help you with advanced optimization such as query caching 
and memory pinning.

In short, your DBA is your friend, be nice to her or him, as the case may be.

SUMMARY

Optimizing RDBMS performance requires a holistic approach because it involves many moving 
factors: network performance, server performance, software tune-up, and so on.

Before attempting to optimize logically and syntactically correct SQL statements, make sure that 
other parts of the system are on solid ground: client application, network, server, RDBMS software 
installation, and your database model. Any SQL query tune-up should start with examining the 
query execution plan to pinpoint bottlenecks, and focus on optimizing these fi rst; the 80/20 rule 
will help you to stay focused. 

Proper indexing of the table is absolutely crucial for the SQL performance in your database. Indexes 
can improve some queries and negatively affect others. Selecting an indexing strategy will ultimately 
depend on your business needs and intended usage scenarios.

Each RDBMS comes with a number of proprietary, database-specifi c, optimization tools and tech-
niques. Using them might improve performance; the tradeoff is potential vendor lock-in as it will 
reduce portability of your code.

DBAs perform an important role, being an expert in particular technologies, and having a fi rm 
grasp of the issues surrounding relational database setup and operations. Any optimization quest 
must involve consulting a DBA at some point, the earlier the better.

c09.indd 249c09.indd   249 3/22/2011 1:50:27 PM3/22/2011   1:50:27 PM



c09.indd 250c09.indd   250 3/22/2011 1:50:28 PM3/22/2011   1:50:28 PM



10
Multiuser Environment

No database is an island. It is possible to imagine a scenario where a database is accessed by 
one and only one user, all changes are made and saved in a proper order, and nobody forgets 
to fl oss. Back on Earth, databases are usually created to be shared. Even the desktop data-
bases, Microsoft Access and OpenOffi ce BASE, can potentially be shared on the network, 
and RDBMS servers were specifi cally designed from the ground up to support multiuser 
environments.

When more than one user accesses the same set of data, a new set of problems arises: What 
data should be visible to each of the users? Whose modifi cation should take precedence? 
What is the guarantee that the data changes will not be lost during the execution of a lengthy 
database procedure? The answer to these (and many other problems) comes with the introduc-
tion of sessions, transactions, and locks.

Let’s rephrase the preceding questions in the RDBMS vocabulary:

 ‰ Transactions offer solutions to potential data consistency problems. 

 ‰ Locks deal with data concurrency problems.

 ‰ Sessions represent the context in which transactions and locks live.

SESSIONS

Whatever happens in terms of communication between an RDBMS server and a user access-
ing it happens in the context of a session. Think of it as a unique channel open for you, and 
you only, to access the data; or in the case of desktop databases such as Microsoft Access and 
OpenOffi ce BASE, your very own copy of the data fi le. A session is created for you automati-
cally when you connect to a database and get authenticated.

In a multiuser environment, one of the primary concerns is data integrity. When a client 
application establishes a connection to an RDBMS server, it is said to open a session. The 
session becomes this application’s private communication channel. The user may change some 

c10.indd 251c10.indd   251 3/22/2011 1:51:04 PM3/22/2011   1:51:04 PM



252 x CHAPTER 10  MULTIUSER ENVIRONMENT

preferences within the session (for example, default language or default date format); these settings 
would affect only this particular user environment and would remain valid for the duration of the 
session only. The details of the implementation and default behavior of the sessions might differ 
among the RDBMSs, but these basic principles remain the same.

The tools we used throughout the book are the examples of clients accessing RDBMS servers in 
context of a session. In the case of desktop databases, things are a bit different. Microsoft Access 
fi les, for instance, can be used as just data storage or can contain more objects normally associated 
with an application: forms, reports, and so on (and there are ways to split the functionality into 
front-end and back-end fi les). As such, the “session” becomes a local copy of the open mdb/accdb 
fi le, which would have to be merged back into the “master” fi le (please refer to Microsoft 
Access–specifi c publications for more information on the subject).

OpenBase has different architecture from Microsoft Access. It was designed to 
be essentially a pass-through desktop front end, providing a front end for any 
database supported by Java Database Connectivity (JDBC) drivers; its built-in 
Hyper Structured Query Language Database (HSQLDB) database engine is 
a default choice, and the embedded version was not designed for a multiuser 
environment. 

The command-line utilities provided by the RDBMS for their respective RDBMS servers were 
selected as the least common denominator. All RDBMSs provide a graphical user interface (GUI) in 
addition to numerous third-party utilities. For more information, please refer to Appendices C and D.

The SQL Standard specifi es a number of parameters that can be used to connect to a database and 
also manipulated in a session, and most of them are implemented by the RDBMS, although some 
elements made it into proprietary syntax, ditching the letter, and preserving the spirit.

In Oracle, a user must have a system privilege CREATESESSION in order to establish a database connection 
and an ALTER SESSION privilege to change the session’s parameters. Initially, all the default parameter 
values for the session are loaded from a special Oracle confi guration fi le; the fi le can be modifi ed only by 
a database administrator or someone who has the necessary privileges. Once the connection is established 
(a session is created), a user can alter the session according to his or her preferences and job requirements.

IBM DB2 provides surprisingly little control for the user over the session environment. It has 
a SET SESSION AUTHORIZATION statement (in compliance with SQL Standard) and a SET 
SESSION_USER equivalent that can be used to change a session’s context. 

The closest it comes to providing session control is with the SETPASSTHRU statement, which opens 
and closes a session for submitting SQL data directly to the database. Also, a global temporary table 
created during the session may be qualifi ed with the SESSION component as a schema. (It is used to 
prevent ambiguity in accessing the table when the temporary table name is the same as some persis-
tent table and in some other equally obscure cases.) 

When a client terminates a session — either voluntarily or abnormally — all values set for various 
session parameters disappear. In addition, for all pending transactions, an implicit commit will be 
issued in the case of voluntary termination or rollback when the session has terminated abnormally. 

c10.indd 252c10.indd   252 3/22/2011 1:51:08 PM3/22/2011   1:51:08 PM



Sessions x 253

The session can be killed or disconnected by a database administrator (DBA); syntax for the state-
ments varies among RDBMSs.

TRY IT OUT Modifying a Session Parameter 

Microsoft SQL Server 2008 has a number of statements that you can specify to alter the current 
session. These statements are not part of SQL Standard; instead they are part of the Transact-SQL 
dialect. Here we will change one of the settings, ANSI_NULLS, and see how it affects the outcome. 

1. Bring up Microsoft SQL Server 2008 Management Studio Express, and connect to the Library database.

2. The following statement is supposed to bring all the records from the PHONE table of the LIBRARY 
database when the BK_PRICE fi eld is not NULL:

SET ANSI_NULLS ON

GO

SELECT bk_title

FROM   books 

WHERE  bk_price <> NULL

GO

(0 row(s) affected)

3. The query returns zero records despite the fact that there are supposed to be records satisfying this 
criterion; all books in the Library database have the price value. 

4. Clear the query pane, and enter the new batch of SQL statements as follows:

SET ANSI_NULLS OFF

GO

SELECT bk_title

FROM   books 

WHERE  bk_price<> NULL

GO

BK_TITLE

-------------------- 

SQL Bible

. . .

Steppenwolf

How It Works
Because NULL is not a specifi c value but a “placeholder in absence of thereof,” it has to be treated 
differently. The SQL-92 standard mandates that the comparison operations involving NULL always 
evaluate to FALSE, and turning this parameter ON would force the database to follow this standard. 
Neither Oracle 10/11g nor IBM DB2 9.7 has such a setting as ANSI_NULLS.

This situation can be completely avoided if the more standard ISNULL syntax is used: 

SELECT bk_title

FROM   books 

WHERE  bk_price IS NOT NULL

The preceding query would return correct results in all RDBMSs. 

c10.indd 253c10.indd   253 3/22/2011 1:51:08 PM3/22/2011   1:51:08 PM



254 x CHAPTER 10  MULTIUSER ENVIRONMENT

Orphaned Sessions

Orphaned sessions occur when a client application terminates abruptly without the ability to termi-
nate its open session to the RDBMS server. Usually, it is the responsibility of the operating system to 
detect that the client exited and notify the server. (In some implementations, the server would query 
the client whether it is still present after some period of inactivity.) Certain situations, however, 
might prevent a proper client exit (for example, sudden network failure). If the session were active 
(for example, the RDBMSs were processing some command at the time), it would detect dropped 
connections automatically and terminate the session. On the other hand, if the session were inactive, 
waiting for a command from the client, such a session would remain valid for the server.

Such sessions consume system resources and should be cleaned up. Usually it is done automatically 
after a certain interval confi gured for the server or is resolved manually by a DBA.

Transactions

A transaction is one of the mechanisms provided within SQL to enforce database integrity and 
maintain data consistency. The idea of the transaction is to provide a mechanism for ensuring that 
a multistep operation is performed as a single unit. If any of the steps involved in a transaction fails, 
the whole transaction is rolled back; if all the steps have been completed successfully, the transac-
tion can either be committed (all the changes are saved into the database) or rolled back (all changes 
are undone).

The details of implementation differ among the RDBMS vendors, though the spirit of the SQL 
Standard is generally preserved. The desktop databases handle transactions in the code embedded 
within the database (Visual Basic for Applications (VBA) for Microsoft Access). The rest of the 
RDBMSs — Oracle, IBM DB2, Microsoft SQL Server 2008, and PostgreSQL — have robust trans-
actional support. MySQL has implemented a unique feature, the ability to specify storage engines 
for its tables. InnoDB and IBMDB2I storage engines are capable of supporting transactions natively.

What Is a Transaction?

A transaction complements the concept of the session with additional granularity; it divides every 
operation that occurs within the session into logical units of work. In this way, database opera-
tions — those involving data modifi cations — are performed step by step and can be rolled back at 
any time, or committed if every step is successful. 

Data Defi nition Language (DDL) structure modifi cations involving the creation 
and destruction of the database objects might not be transactional and might not 
be rolled back. This depends on the RDBMS as well as some additional param-
eters (such as isolation levels, discussed later in this chapter).

SQL Standard defi ned transactions at the very beginning and enhanced the concept during subse-
quent iterations. According to the standard, a transaction is started by the RDBMS, and continues 
until a COMMIT or ROLLBACK statement is issued; the details were left for the RDBMSs to implement. 
The SQL Standard transaction management statements are listed in Table 10-1.

c10.indd 254c10.indd   254 3/22/2011 1:51:08 PM3/22/2011   1:51:08 PM



Sessions x 255

TABLE 10-1: SQL Standard Transaction Management SQL Statement

SQL  STATEMENT DESCRIPTION

START (BEGIN) TRANSACTION Starts an SQL transaction and sets its characteristics.

SET TRANSACTION Sets the characteristics of the next SQL transaction for the SQL 

agent.

SET CONSTRAINTS If an SQL transaction is currently active, sets the constraint mode 

for that SQL transaction in the current SQL session. If no SQL 

transaction is currently active, sets the constraint mode for the 

next SQL transaction in the current SQL session for the SQL agent.

SAVEPOINT Establishes a savepoint.

RELEASE SAVEPOINT Destroys a savepoint.

COMMIT Terminates the current SQL transaction with commit.

ROLLBACK Terminates the current SQL transaction with a rollback, or rolls 

back all actions aff ecting SQL data and/or schemas since the 

establishment of a savepoint.

A transaction must pass the ACID test in order to be qualifi ed as such. The acronym stands for the 
following:

 ‰ Atomicity — Either all the changes are made or none. If any of the statements in the batch 
fail, all the changes, if any, must be reversed.

 ‰ Consistency — All the data involved in an operation must be left in a consistent state upon 
completion or rollback of the transaction; database integrity cannot be compromised.

 ‰ Isolation — One transaction should not be aware of the modifi cations made to the data by 
any other transaction unless it was committed to the database. Different isolation levels can 
be set to modify this default behavior.

 ‰ Durability — The results of a transaction that has been successfully committed to the 
database stay in the database.

One of the classic real-life examples of a transaction involves an ATM (bank machine) withdrawal 
operation. Suppose you need money, and you decide to withdraw this money from the nearest bank 
machine. You put in your bank card (user ID) and enter your personal identifi cation number (PIN) 
to initiate the session. Once the bank confi rms your identity, you are allowed to proceed; you can 
ask for a money withdrawal operation for a specifi c amount. That’s where a transaction begins. 
There are several operations involved: The machine will have to check your account to verify that 
you have enough money to cover the transaction, it will subtract the money from your account, and 
then release the bills to you. If any of these steps (and some others, depending on the given bank 
policies) fails, the transaction must be aborted, and everything must revert to a state where it was 
before the transaction even began. This means that you cannot get your cash unless it was sub-
tracted from your balance; the bank cannot subtract the money from your balance unless you have 

c10.indd 255c10.indd   255 3/22/2011 1:51:09 PM3/22/2011   1:51:09 PM



256 x CHAPTER 10  MULTIUSER ENVIRONMENT

enough money to cover the transaction, and you actually got your cash. If any of these steps fails for 
whatever reason (you cancel the operation, the bank machine malfunctions), all changes would be 
rolled back.

The transaction model, as it is defi ned in the ANSI/ISO SQL Standard, utilizes the implicit start of 
a transaction, with an explicit COMMIT, in the case of the successful execution of all the logical units 
of the transaction, or an explicit ROLLBACK, when the noncommitted changes need to be rolled back 
(for example, when the program terminates abnormally); most RDBMSs follow this model.

Explicit and Implicit Transactions

An implicit transaction has been chosen as the default behavior in SQL Standard, which means 
it’s better to err on the side of a caution. Whenever certain DDL and Data Manipulation Language 
(DML) statements are executed within a session, they start (or continue) a transaction. A transac-
tion is terminated by issuing either a COMMIT statement or a ROLLBACK statement.

An explicit transaction is started by the client application with a BEGIN TRANSACTION statement 
and is terminated in a manner similar to the implicit transaction protocol. Such a transaction can 
optionally have a name, which helps with maintaining better code.

Microsoft SQL Server 2008, for example, provides the SETIMPLICIT_
TRANSACTIONS{ON|OFF} statement to confi gure the default behavior of the 
transaction. When the option is ON, the SQL Server automatically starts a trans-
action when one of the following statements is specifi ed: ALTER TABLE, CREATE,
DELETE, DROP, FETCH, GRANT, INSERT, OPEN, REVOKE, SELECT, TRUNCATETABLE,
and UPDATE. The transaction must be explicitly committed or rolled back. A new 
transaction is started once any of the listed statements is executed. Turning the 
IMPLICIT_TRANSACTIONS option OFF returns the transaction to its default auto-
commit transaction mode.

While not required by the SQL Standard, in most RDBMSs COMMIT is issued implicitly before and 
after any DDL statement.

COMMIT and ROLLBACK Transactions

The COMMIT statement ends the current transaction and makes all changes made to the data during 
the transaction permanent. The syntax is virtually identical for all RDBMSs that support transac-
tions natively, as well as for the SQL Standard, and is very straightforward. 

COMMIT [WORK]

The keyword WORK is not required, though it might be added for clarity. A simple COMMIT usually 
does the trick.

c10.indd 256c10.indd   256 3/22/2011 1:51:09 PM3/22/2011   1:51:09 PM



Sessions x 257

Some RDBMSs have crammed tons of additional options into COMMIT. For 
example, a somewhat simplifi ed Oracle 10g/11g syntax looks as follows.

COMMIT [WORK] [COMMENT (<text>)[WRITE]] [FORCE (<text>), [<int>]] ;

Here the COMMENT clause enables you to specify a comment (up to 255 bytes 
long) that is recorded for every pending transaction and can be viewed through 
the DBA2_PC_PENDING dictionary view (see later in this chapter for more infor-
mation on system catalogs). 

The IBM DB2 9.7 syntax for transactional control statements follows SQL Standard. In IBM termi-
nology, a transaction is a unit of work (UOW) that always starts implicitly when the SQL statement 
is issued against the database. No authorization is required to issue the statement; all locks held by 
the transaction are released afterward, and named transactions are not supported.

The following syntax will work for every RDBMS discussed in the book, with the exception of 
Microsoft SQL Server and PostgreSQL. This behavior is possible because a transaction is started 
implicitly with these RDBMSs:

UPDATE books 

SET bk_price = 22.99

WHERE bk_id=1;

COMMIT;

Only COMMIT is required. Everything else is optional. Alternatively, COMMIT WORK can be used; this 
syntax is identical to COMMIT TRANSACTION.

No changes take place until the last COMMIT is executed, thereby allowing you to roll them back. 
There are some signifi cant differences among RDBMSs. For instance, when COMMIT is executed, 
Microsoft SQL Server 2008 must start a transaction either implicitly or explicitly for another COMMIT
to execute successfully; if no transaction is started, issuing this command will result in an error.

Server: Msg 3902, Level 16, State 1, Line 1

The COMMIT TRANSACTION request has no corresponding BEGIN TRANSACTION.

None of the other databases would complain, no matter how many times you execute

COMMIT (though some, like PostgreSQL, might warn you that there are no pending 

transactions to commit).

Microsoft SQL Server 2008 does support the SQL Standard syntax in addition 
to its own. The Microsoft syntax allows for committing named transactions, 
whereas the Standard syntax does not.

COMMIT [ TRAN [ SACTION ] [<transaction name>]]

c10.indd 257c10.indd   257 3/22/2011 1:51:09 PM3/22/2011   1:51:09 PM



258 x CHAPTER 10  MULTIUSER ENVIRONMENT

Nested Transactions

Named transactions are especially handy for nested transactions. The idea behind nested transactions is 
to have a transaction within a transaction within a transaction (each implementation imposing its own 
limits on how many levels one can have), and each “child” transaction is aware of the higher-level 
“parent” transaction. Only two of the RDBMSs discussed, Microsoft SQL Server 2008 and 
PostgreSQL, provide built-in support for nested transactions.

Only explicit transactions can be nested. Nested transactions in Microsoft SQL Server 2008 are for 
readability purposes only. Committing an internal transaction does not really commit anything; 
only the outermost COMMIT actually commits the changes. All other commits just decrement the 
transaction counter, but you can use SAVEPOINT(s) to be able to roll back changes. 

Here is an example illustrating the concept in Microsoft SQL Server, using its built-in function @@
TRANCOUNT to keep track of the number of transactions initiated:

BEGIN TRANSACTION trans1

-- the transaction counter @@TRANCOUNT = 1

INSERT INTO <table> VALUES <values>

BEGIN TRANSACTION trans2

-- the transaction counter @@TRANCOUNT = 2

INSERT INTO <table> VALUES <values>

BEGIN TRANSACTION trans3

-- the transaction counter @@TRANCOUNT = 3

INSERT INTO <table> VALUES <values>

COMMIT TRANSACTION trans3

-- Nothing committed at this point but the transaction 

-- counter is decremented by 1; @@TRANCOUNT = 2

COMMIT TRANSACTION trans2

-- Nothing committed at this point but the transaction counter

-- is decremented by 1; @@TRANCOUNT = 1

COMMIT TRANSACTION trans1

-- All INSERTs are committed to the database

-- the transaction counter is decremented by 1; @@TRANCOUNT =0

In this case, three transactions were initiated to insert three records into a table; only the very last 
COMMIT actually made the changes to the table permanent.

ROLLBACK

When changes made to the data in the databases need to be “undone,” the ROLLBACK should be 
used. It may be issued any time before the last COMMIT and results in the automatic rollback of all 
changes made since the controlling transaction started.

The syntax is identical in all RDBMSs and in the SQL Standard except for user-named transactions 
in Microsoft SQL Server 2008 and some optional clauses. The following statement will attempt 
to update column BK_PRICE in the BOOKS table of the LIBRARY database, but all changes will be 
rolled back:

UPDATE book 

SET    bk_price = 9.99 

WHERE bk_id= 1

ROLLBACK WORK

c10.indd 258c10.indd   258 3/22/2011 1:51:09 PM3/22/2011   1:51:09 PM



Sessions x 259

As with a COMMIT statement, all the locks are released if the ROLLBACK command is issued. Vendor-
specifi c ROLLBACK statements are shown in Table 10-2.

TABLE 10-2: Vendor-Specifi c ROLLBACK Statements

RDBMS ROLLBACK SYNTAX

Oracle 10g/11g ROLLBACK[WORK][TOSAVEPOINT<savepointname>]|[FORCE<text>]

IBM DB2 9.7 ROLLBACK[WORK][TOSAVEPOINT<savepointname>]

Microsoft SQL Server 

2008

ROLLBACK[TRAN[SACTION]][<transactionname>]

[<savepointname>]

PostgreSQL 9.0 ROLLBACK [ WORK | TRANSACTION ]TO [ SAVEPOINT ] 

savepoint_name

MySQL 5.1 ROLLBACK [WORK] TO [SAVEPOINT] savepoint_name

The WORK clause is optional, and the TOSAVEPOINT clause is explained later in this chapter. The 
FORCE clause pertains to distributed transactions, acting very much the same as in the COMMIT trans-
action statement. Microsoft SQL Server has an optional <transaction name> clause.

Because certain statements (such as DDL) automatically issue a COMMIT before 
and after the statement’s execution, every change to data that happened prior to 
the DDL statement would be committed as well.

SAVEPOINT

Usually, a transaction consists of more than one SQL statement that you may want to COMMIT or 
ROLLBACK. To add granularity to the transaction processing, the SAVEPOINT concept was introduced. 
It allows you to specify a named point within the transaction, usually after some important milestone 
in the query. If any error occurs after that, all the changes are rolled back, not to the beginning of the 
transaction, but to that particular SAVEPOINT. An explicit (or implicit — like the one issued after a 
DDL statement) COMMIT releases all SAVEPOINTs declared within a transaction.

Here is an example of using SAVEPOINTS in an SQL batch statement:

UPDATE books 

SET    bk_price = 22.88

WHERE  bk_id = 1;

SAVEPOINT first_update;

DELETE books

WHERE  bk_id = 2;

SAVEPOINT first_delete;

c10.indd 259c10.indd   259 3/22/2011 1:51:10 PM3/22/2011   1:51:10 PM



260 x CHAPTER 10  MULTIUSER ENVIRONMENT

DELETE books

WHERE  bk_id = 10;

ROLLBACK first_update;

COMMIT;

In the preceding example, after the COMMIT statement is issued, only UPDATE gets committed to 
the database, all DELETEs are rolled back, the SAVEPOINTfirst_delete is erased, and all resources 
held by the query get released.

The SAVEPOINT name must be unique within the current transaction. If a new SAVEPOINT is 
declared using the same name, the previous SAVEPOINT will be destroyed.

Microsoft SQL Server 2008 has added the keyword TRAN syntax, when it comes to establishing 
the SAVEPOINTs.

SAVE TRAN[SACTION] <savepoint name>

To make the preceding code work in Microsoft SQL Server, just replace the keyword 
TRANSACTION with SAVE TRANSACTION.

Transactions that involve more than one database are referred to as distributed 
transactions. Such transactions are by their very nature complex and require 
advanced skills and knowledge. Distributed transactions involve the use of the 
two-phase commit, which allows heterogeneous sources to participate in a trans-
action. A distributed transaction must minimize the risk of data loss in case of 
a network failure. The two-phase commit protocol is employed in distributed 
transactions, and while details of the implementation are different among the 
RDBMSs, they generally follow the same phases.

Transaction Isolation Levels

There are different transaction isolation levels. Isolation levels refer to the capability of the transac-
tion to see the world (data) outside its own scope (data modifi ed by any other transaction). The SQL 
Standard isolation levels are listed in Table 10-3.

TABLE 10-3: SQL Standard Isolation Levels

ISOLATION LEVEL RDBMS DESCRIPTION

READ UNCOMMITED DB2 (UR), MySQL, 

PostgreSQL, Microsoft 

SQL Server

This level is the lowest of all isolation levels, 

permitting dirty reads (uncommitted data 

can be seen). No locks are issued, and 

none are honored.

c10.indd 260c10.indd   260 3/22/2011 1:51:10 PM3/22/2011   1:51:10 PM



Sessions x 261

ISOLATION LEVEL RDBMS DESCRIPTION

READ COMMITED Oracle, DB2 (CS), 

PostgreSQL, Microsoft 

SQL Server

This level specifi es that shared locks will 

be held while data are being read. No dirty 
reads (containing uncommitted data) are 

permitted; though phantom reads (when 

row numbers change between the reads) 

may occur.

REPEATABLE READ DB2 (RS), PostgreSQL, 

Microsoft SQL Server

No changes will be allowed for the data 

selected by a query (locked for updates, 

deletes, and so on), but phantom rows may 

appear.

SERIALIZABLE Oracle, DB2 (RR), 

PostgreSQL, Microsoft 

SQL Server

The highest level of transaction isolation; 

places a lock for the whole data set; no 

modifi cations from outside are allowed until 

the end of the transaction.

Oracle 10g/11g has implemented three transaction isolation levels: SERIALIZABLE, READ COMMITED,
and READ ONLY.

There is some terminology confusion in how DB2 9.7 defi nes transaction isolation levels. What 
SQL Standard specifi es as SERIALIZABLE, it names REPEATABLEREAD (RR), which is the highest 
isolation level in DB2 9.7. The SQL Standard’s keyword is supported as a synonym for RR; SQL 
Standard’s REPEATABLEREAD becomes READSTABILITY (RS); and a new level, CURSORSTABILITY, 
is introduced.

The last one, CURSORSTABILITY (CS), is the default for IBM DB2 9.7 and resembles the 
READCOMMITTED level of the SQL Standard (essentially, it guarantees that a row of data will remain 
unchanged).

The UNCOMMITEDREAD (UR) level is the same as it is defi ned by the standard: no locks are acquired, so 
dirty reads are possible. (A dirty read refers to reading data that are being modifi ed, so the results 
are unpredictable.)

Microsoft SQL Server 2008 supports all four levels of isolation plus a SNAPSHOT isolation 
level that guarantees that the data read during the transaction will be consistent with the data at 
the beginning of the transaction. The isolation level is set for the whole session, not just a single 
transaction. 

Table 10-4 lists the four isolation levels and the behavior displayed under each. Dirty read refers to 
the ability to read data still uncommitted to the database; nonrepeatable read means that the data 
might change since your transaction accessed it; and a phantom read relates to a nonrepeatable read, 
and describes a situation in which identical queries executed against the same set of data return 
different results for each query.

c10.indd 261c10.indd   261 3/22/2011 1:51:10 PM3/22/2011   1:51:10 PM



262 x CHAPTER 10  MULTIUSER ENVIRONMENT

TABLE 10-4: Transaction Isolation Levels in SQL

ISOLATION LEVEL DIRTY READ NONREPEATABLE READ PHANTOM READ

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No

Understanding Locks

Concurrency is one of the major concerns in a multiuser environment. When multiple sessions write 
or read data to and from shared resources, data might lose its integrity. To prevent this from 
happening, every RDBMS worth its salt implements concurrency control mechanisms. In the case 
of RDBMS servers, the concurrency is managed through various locking mechanisms. All RDBMSs 
(including Microsoft Access) have implemented sophisticated mechanisms for concurrency manage-
ment. Locking is neither part of SQL nor is it a standard (though it does specify locking for cursors, 
a special construct used for row-by-row access).

Oracle has probably the most evolved and complex locking schema. It follows the rule that reading 
and writing processes cannot block each other, even if working on the same (or close) set(s) of data. 
Each session receives a read-consistent snapshot of the data. Thus, even if some other process has 
begun modifying data in the set, but has not committed the changes, every subsequent session will 
be able to read the data just as it was before; once the changes are committed in the fi rst session, 
every other session is able to see it. The locks are acquired only when the changes are being commit-
ted to the database. Oracle automatically selects the least-restrictive lock. Users can choose to lock 
a resource (a table, for example) manually. In this case, other users still might be able to access the 
data, depending on the type of lock deployed.

IBM DB2 9.7 and Microsoft SQL Server 2008 both employ locks that can enable a reader to block 
a writer, and vice versa. The problem of concurrent access to the data is somewhat alleviated by the 
granularity of the locking (table, page, column, row). There are locks acquired by read-only queries, 
DDL statements, DML queries, and so on. Most of the time, a user does not have to worry about 
locking, as RDBMSs automatically select the most appropriate lock (or locks) for a particular opera-
tion. Only if this programmed logic fails should you attempt to specify the locks manually by using 
the SQL statements.

MySQL does lock data natively only on the table level, and relies on the InnoDB (or IBMDB2I) 
storage engine which support transactions, and add-on for row-level locking and transactional 
support; PostgreSQL has robust table and row-level locking mechanisms, each with fi ne granularity.

Locking Modes

There are two broad categories of concurrency: optimistic and pessimistic. The names are 
self-explanatory. Transactions with optimistic concurrency work on the assumption that 
resource confl icts, when more than one transaction works on the same set of data, are unlikely 
(though possible, leaving to the database to sort out any potential mess). Optimistic transactions 

c10.indd 262c10.indd   262 3/22/2011 1:51:10 PM3/22/2011   1:51:10 PM



Sessions x 263

check for potential confl icts when committing changes to a database, and confl icts are resolved 
by resubmitting data (in this case, the last commit takes precedence). Pessimistic transactions 
expect confl icts from the very beginning and lock all resources they intend to use. While ensur-
ing the highest level of consistency, pessimistic locking is also the most expensive and can bog 
down a database. Usually, RDBMSs employ both optimistic and pessimistic transactions, and 
sometimes users can instruct their transactions to use either; pessimistic mode provides better 
consistency, but you pay a price.

Locking granularity has a signifi cant effect on system performance. Row-level locking increases 
concurrency (it does not block other transactions from accessing a table), but it usually incurs over-
head costs of administration that slows down the database. A full table lock is much less expensive 
in terms of system resources, but comes at the price of concurrency and performance. This is some-
thing to keep in mind when designing database applications.

Locks are used to implement pessimistic transactions, and each RDBMS has its own levels of lock-
ing, though there are some similarities. In general, there are either share locks or exclusive locks, 
which refer to the way a resource is being used.

For example, the following statement locks the books table of the Library database in exclusive 
mode:

LOCK TABLE books IN EXCLUSIVE MODE;

The transaction that issues this statement will attempt to lock the table for its exclusive use, 
although allowing for SELECT; if any other process keeps a lock on the table, the transaction will 
be put in a queue, and the lock will be acquired in priority received. The lock will be in place for the 
duration of the transaction (until COMMIT is executed). The actual syntax might vary with RDBMSs, 
but not by much.

Locking presents a potential issue: A deadlock situation might occur (see the next paragraph) if the 
transaction that already holds a lock on the table attempts to acquire a lock on a resource that the 
second transaction has a lock on. 

Some databases, notably Microsoft SQL Server 2008 and IBM DB2 9.7 
implement something called lock escalation. This term refers to a process of 
converting many fi nely grained locks into “coarser,” higher-level locks, thus 
reducing the system’s overhead. Oracle 10g/11g never escalates its locks, 
preferring better concurrency over system resources. Neither MySQL (with 
InnoDB add-on) nor PostgreSQL use it.

All other locks are at the discretion of the RDBMS (they are not user-confi gurable). Default locking 
is row-level, and a lock can escalate to a table-level lock. The lock escalation may be avoided using 
the previous LOCKTABLE statement. The escalation thresholds are confi gurable by a DBA.

There is a penalty to pay for the high granularity (row-level locking) because it degrades perfor-
mance as SQL Server allocates more resources for row-level locking operations; it also increases the 
possibility of deadlocks occurring.

c10.indd 263c10.indd   263 3/22/2011 1:51:10 PM3/22/2011   1:51:10 PM



264 x CHAPTER 10  MULTIUSER ENVIRONMENT

For a comparative matrix of the different lock types available in the respective RDBMSs, please 
check out the book’s website at www.wrox.com, or go to www.agilitator.com.

Dealing with Deadlocks

The classic deadlock situation arises when two (or more) sessions are waiting to acquire a lock 
on a shared resource, and none of them can proceed because a second session also has a lock on 
some other resource that is required by the fi rst session. Imagine a situation in which Session 1 
holds resource A while trying to access resource B, and Session 2 holds resource B while trying to 
access resource A. 

Usually RDBMSs resolve situations like these automatically by killing one of the processes and 
rolling back all the changes it may have made. 

Oracle implements a sophisticated mechanism enforcing this rule: “Reader and writer processes 
cannot block each other.” The idea behind this rule is to present each process with a consistent 
image of data without noncommitted changes. Nevertheless, deadlocks do occur in Oracle and 
usually are resolved by the RDBMS; in some rare cases, a manual resolution — choosing the dead-
lock “victim” process — is required. The most common deadlock types are ORA-00060 (en queue
deadlocks) and ORA-04020 (library cache deadlocks). It is possible to specify the NOWAIT clause or 
set up session timeouts to avoid deadlocks, while some other techniques involve explicit locking and 
use of the isolation levels within the transaction. A deadlock may also be resolved manually through 
Oracle interfaces.

IBM DB2 runs a background process, Deadlock Detector, to fi nd and resolve the deadlock 
situation. The session chosen as a deadlock victim is rolled back, and a special error is generated 
(SQLCODE-901, SQLSTATE40001). The read-only process is a prime candidate for the deadlock 
victim, and beyond that, DB2 employs “least cost” criteria to select the session to be killed. If 
deadlocks ever become a problem, IBM recommends using system-monitoring tools to collect infor-
mation about the deadlock situations and either optimize the system or redesign any applications 
involved.

Microsoft SQL Server 2008 employs a proprietary algorithm for detecting deadlocks and resolves 
them in a way similar to that implemented by other RDBMSs: Deadlocks are resolved automatically 
or manually through the Enterprise Manager Console. It is possible to volunteer a session to become 
a deadlock victim by setting the DEADLOCK_PRIORITY parameter within that session (refer to the dis-
cussion of sessions earlier in this chapter).

Both PostgreSQL and MySQL try to resolve deadlock situation by aborting one of the competing 
transactions.

In all cases, the best practices call for avoiding deadlock situations in the fi rst place by running 
smaller transactions, running frequent commits, refactoring your logic for accessing tables, using 
less explicit locking directives, and so on.

SQL Security

As a language, SQL provides only limited security mechanisms, relying on the actual RDBMS 
software to implement a more robust security framework. Security starts with the operating 
systems that host the RDBMS. UNIX, Windows, and Linux each implement their own mechanisms 

c10.indd 264c10.indd   264 3/22/2011 1:51:11 PM3/22/2011   1:51:11 PM



Sessions x 265

to protect fi les and communications, and end up with the users safeguarding their user ID(s) and 
passwords. The RDBMS application is subject to the same security rules as every other application 
you may run on the computer, only more so. It runs under some operating system account, and 
while its storage fi les might be encrypted, the operating system also can manage access to these fi les. 
This applies to the simple desktop databases or enterprise class RDBMSs running on “big iron” 
mainframes and computer clusters.

For the user, the security starts with initiating connection to the database, whereas the RDBMS 
verifi es user credentials and grants access. After that, the RDBMS enforces privileges that a specifi c 
user has to the database objects.

Basic Security Mechanisms

Database security is an enormous topic, and exploring the ways in which leading database vendors 
implemented its various aspects is even larger. Security was not invented with the relational data-
base; the password authentication, locks, audit, and other security concepts are as ancient as human 
history, and SQL just added a new twist. Following SQL Standard’s lead (and customers’ demand), 
all RDBMSs comply in establishing the security procedures. There are several levels of security 
common to all RDBMSs; what differs is the way each of these RDBMSs implement these levels.

Identifi cation and Authentication

The fi rst line of defense is authentication. Before you even access an RDBMS, you must submit suffi -
cient information validated either by the RDBMS itself or by the operating system within which this 
database is installed. Once the identity is authenticated, you may proceed with the attempt to access 
the database resources, objects, and data.

Authorization and Access Control

Once the user is authenticated and granted access to the database, the RDBMS employs a complex, 
fi nely grained system of privileges (permissions) for the particular database objects. These privileges 
include permissions to create, access, modify, destroy, or execute relevant database objects; as well 
as add, modify, and delete data.

Encryption

Encryption provides an additional security layer that protects the data from unauthorized view-
ing. Even if access to the database is obtained, it will not be easy to decipher encrypted data into a 
human readable form without the help of a particular software client or a password.

Integrity and Consistency

While security is mostly based on authentication and authorization procedures, data integrity plays a 
certain role in protecting data from unintentional or malicious manipulation. For example, even if a 
user gains access to the database (by stealing a password, for example), he or she still has to follow rela-
tional rules for data manipulation, that, among others, do not allow orphaned records. The user won’t 
be able to delete records from a parent table without understanding database relationships (though 
some RDBMSs had implemented the CASCADE feature that instructs RDBMSs to remove child 
records upon deletion of the parent), won’t be able to insert a duplicate record into a column protected 
by the UNIQUE constraint, or won’t be able to insert invalid data that would violate CHECK constraints.

c10.indd 265c10.indd   265 3/22/2011 1:51:11 PM3/22/2011   1:51:11 PM



266 x CHAPTER 10  MULTIUSER ENVIRONMENT

Auditing

Auditing provides ways to monitor database activity, both legitimate and unauthorized. It preserves 
the trail of database access attempts — either successful or failed — data deletions and inserts (in 
case one has to fi nd out what had happened), and so on. It is a necessary component in order to be 
considered for security certifi cation, discussed later in this chapter.

Defi ning a Database User

The concept of the user, while being plain and simple in an intuitive layman way, is one of the most 
confusing concepts across the RDBMS implementations. SQL Standard does not specify any spe-
cial syntax (or even a way) to create a user in the database). Left to their own devices, the database 
vendors have managed to create some ingenious solutions. For example, Oracle 10g makes very 
little distinction between a user and the database schema, and allows for both RDBMS password, 
and operating system account authentication. IDB DB2 LUW only uses operating system-defi ned 
users (or th ose defi ned by some external security framework); Microsoft SQL Server combines both 
approaches, using Windows accounts and special system procedures for adding users to a database; 
and PostgreSQL and MySQL both favor creating users authenticated directly by the database (with 
PostgreSQL also providing support for OS/network based authentication).

There are additional authentication methods, including LDAP and Kerberos 
protocols; these are intended for network based authentication, and are beyond 
the scope of this book.

Microsoft SQL Server differentiates between LOGIN and USER: the former is used for authenti-
cation (logging into the database), while the latter is used for authorization (assigning privileges to 
database objects).

A user can be an RDBMS user, an operating system user, a role, or an applica-
tion role, defi ned on the database level. To allow for fi ne-grained security, an 
object in the database belongs to a schema and is owned by the user. This also 
addresses the problem of controlling access to the database objects through 
granting or revoking access privileges.

By defi nition, a database user is someone who makes use of the services provided by the RDBMS 
server. It can be an application, a database administrator, or just anyone who happens to access 
the database at any given moment. To facilitate administration, users are often assigned to groups 
or roles; a privilege granted or revoked from a role immediately takes effect for all users who 
belong to this role.

User authentication is the fi rst line of defense when it comes to security issues, and the most basic 
syntax works across almost every RDBMS (with few variations):

CREATE USER LibraryUser

IDENTIFIED BY ‘letmein’;

c10.indd 266c10.indd   266 3/22/2011 1:51:11 PM3/22/2011   1:51:11 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Sessions x 267

In Oracle and DB2 such syntax would leave a lot to defaults, which is hardly a recipe for production 
database security. MySQL requires the user to be tied to the IP address of the database (LibraryUser@
localhost for a default user), and PostgreSQL creates the user WITH PASSWORD “letmein.” 

Microsoft Access also allows for creating users using SQL statements similar to those just 
mentioned. OpenOffi ce BASE and its embedded HSQLDB database do not provide this capability.

Microsoft SQL Server 2008 syntax for creating a user is somewhat different; it requires LOGIN to 
be created fi rst. Here’s the most basic syntax to create both:

CREATE LOGIN libUsers WITH PASSWORD ‘letmein’;

GO;

CREATE USER LibraryUser FOR LOGIN libUsers

GO;

There are many more options for the syntax in every RDBMS, and selecting the right one requires a 
thorough understanding of both business domain and security issues; this is why creating user 
hierarchy is better left to your database administrator.

Once the user is created, it can be ALTERed or DROPped altogether. The basic syntax is virtually 
identical across all RDBMSs, but using ALTER is more database-specifi c:

DROP USER LibraryUser;

Oracle has an additional clause in the DROP USER syntax, CASCADE, which 
specifi es that all objects in the user’s schema should be dropped before dropping 
the user. Oracle does not allow dropping a user whose schema contains any 
objects unless this clause is specifi ed.

The ALTER USER statement specifi es a number of changes for a user, and since changes differ from 
RDBMS to RDBMS, there is no single syntax to be used across all of them. MySQL does not 
support the ALTER keyword, while Oracle lists more than a dozen options available. Microsoft 
SQL Server alters LOGIN and then remaps the USER, and DB2 alters user mapping with optional 
parameters set at the same time. So although it is SQL, it is extremely dialect-specifi c and requires 
advanced knowledge of a particular RDBMS.

IBM DB2 LUW uses a combination of external security services and internal 
access controls. IBM DB2 does not provide authentication services, relying 
instead on external services. This means that a user cannot be created unless 
he or she also has an operating system account: Windows, UNIX, or any other 
operating system (OS). As such, all user authentications are managed outside 
of the DB2 database. Microsoft SQL Server 2005 introduced the CREATE USER
statement; together with ALTER USER and DROP USER, it has become the 
standard user management mechanism. In addition, there is also a mechanism for 
user management through system stored procedures inherited from the previous 
version of SQL Server. Please note that while still supported, user management 
procedures might be deprecated in the future releases of Microsoft SQL Server. 

c10.indd 267c10.indd   267 3/22/2011 1:51:12 PM3/22/2011   1:51:12 PM



268 x CHAPTER 10  MULTIUSER ENVIRONMENT

Managing Security with Privileges

An RDBMS is essentially a collection of objects (schemas, tables, views, procedures, and so on) and 
the processes that manage these objects. Restricting access to these objects is an essential security 
mechanism implemented on the SQL level through the privileges system. 

Privileges represent the rights of a particular user to access, create, manipulate, and destroy vari-
ous objects inside a database; as well as perform administrative tasks. Privileges can be granted to a 
user, role, or both (the concept of ROLE is discussed in the next paragraph).

All the privileges can be divided into two broad categories — system privileges and object
privileges — and they vary widely among different database vendors. For a more detailed look, see 
the section on specifi c RDBMS implementations later in this chapter.

GRANT Statement

The SQL Standard defi nes privileges as the types of actions a user is authorized to perform on the 
objects and in the system to which he or she is granted access. All these privileges are consistent 
across the RDBMSs discussed in this book.

A privilege can be granted either to an individual user or to a role. The GRANT statement can be 
used for granting either system privileges or object privileges. The basic syntax for granting the 
privilege is fairly consistent across all RDBMS packages (though there are signifi cant differences 
in advanced options), and multiple privileges can be granted in a single statement, such as the 
following:

GRANT [ALL [PRIVILEGES]] | <privilege,…>

[ON <object_name>]

TO <user> | <group> | <role>

[WITH GRANT OPTION] 

Granting System-Level Privileges

System privileges allow users to perform some administrative tasks within a given RDBMS (creating 
a database; creating and dropping users; creating, altering, and destroying database objects; and so 
on). You need a suffi ciently high level of authority within the RDBMS to be able to exercise or grant 
system privileges. The features that distinguish these system privileges from object privileges are 
their scope and sometimes the types of activities they allow the user to perform.

System privileges are strictly database-specifi c; each vendor implements its own set of system privi-
leges and some system privileges may have different meanings for different RDBMSs. Some systems, 
Microsoft SQL Server, for instance, do not even defi ne system privileges. They use privileges (permis-
sions) for so-called securables that, on different levels, can be servers, databases, and schemas.

Here are some examples based in the LIBRARY database. The following code creates LibrarayUser, 
then grants the user a privilege to create a table in the database and pass it on to others:

CREATE USER LibraryUser

IDENTIFIED BY letmein;

GRANT CREATE TABLE

c10.indd 268c10.indd   268 3/22/2011 1:51:13 PM3/22/2011   1:51:13 PM



Sessions x 269

TO LibraryUser

WITH ADMIN OPTION;

Assuming that you have suffi cient privileges, the user LibraryUser identifi ed by the password 
LETMEIN will be created, but you cannot use this user ID and password to connect to the Oracle 
database if the user NEW_USER has not been granted the CREATESESSION system privilege, 
which it would need to access the database. The error ORA-01045:user LibraryUser lacks 
CREATESESSION privilege;logon denied  would be generated.

To fi x the situation, you need to grant the newly created user this privilege:

GRANT CREATE SESSION

TO LibraryUser

WITH ADMIN OPTION;

Now you can connect to the database using LibraryUser/letmein credentials, and, because of the 
WITH ADMIN OPTION, grant this privilege to other users; some RDBMSs, notably, Oracle, treat this 
option as more generic WITH GRANT OPTION one.

There are two more system privileges in Oracle that deserve mentioning here: SYSDBA and SYSOPER. 
These privileges act like roles in that they include a number of other system privileges. When connect-
ing to the Oracle database, you can specify to connect ASSYSDBA or ASSYSOPER, assuming that these 
privileges had been granted to the user. SYSDBA is one of the highest privileges that can be granted.

IBM DB2 is somewhat similar in this aspect to Oracle; it has system privileges, and some of the 
privileges are associated with authority levels (see more on this later in this chapter). The hierarchy 
of the privileges places SYSADM authority (System Administrator) at the top, and the next level 
includes DBADM (Database Administrator) and SYSCTRL (System Resource Administrator), fol-
lowed by SYSMAINT (System Maintenance Administrator); at the end of the hierarchy are database 
users. To GRANT the DBADM authority, a user must have SYSADM authority. Both SYSADM and DBADM
can grant the other privileges to users or groups. 

IBM DB2 9.7 provides additional ways to protect data, even from a user with 
SYSADM authority. It is called label-based access control (LBAC). It can be 
used to protect entire rows, columns, or both. Oracle provides similar feature 
called Oracle Label Security.

The Microsoft SQL Server 2008 does not have system privileges (at least, not in the sense that 
Oracle or IBM have them). The privileges are granted to a user (or role) for specifi c SQL statements. 
Once the privilege is granted, users can execute the statement to perform operations that they defi ne. 
The SQL Server 2008 has defi ned a number of securables (database server resources such as login, 
database, role, user, schema, and so on) that can be granted to principals (user, group, role, and 
application role). The principals are defi ned on the Windows operating-system level (domain login, 
local login), SQL Server level (SQL Server login), and database level (database user/role and applica-
tion role). Table 10-5 lists some of the permissions that can be GRANTed to the principals.

c10.indd 269c10.indd   269 3/22/2011 1:51:13 PM3/22/2011   1:51:13 PM



270 x CHAPTER 10  MULTIUSER ENVIRONMENT

TABLE 10-5: Selected Microsoft SQL Server 2008 Permissions

PERMISSION APPLICABLE SECURABLES

SELECT Synonyms, tables, views, columns, table-valued functions

UPDATE Synonyms, tables, views, columns

INSERT Synonyms, tables, views, columns

DELETE Synonyms, tables, views, columns

EXECUTE Procedures, functions (scalar and aggregate), synonyms

RECEIVE Service broker queues

VIEW DEFINITION Synonyms, tables, views, table-valued functions, scalar and aggregate 

functions, procedures

CREATE Procedures, functions (scalar and aggregate), synonyms, service broker 

queues, database

ALTER Procedures, functions (scalar and aggregate), synonyms, service broker 

queues

The system permissions are tied to a database (MS SQL Server also uses this concept; the closest 
Oracle equivalent is schema) and are hierarchical. For example, to GRANT the privilege to execute a 
CREATEDATABASE statement, you must be in the context of the SQL Server master database, as this 
statement produces results affecting the whole instance of SQL Server 2008.

The security account refers to the SQL Server user, SQL Server role, Windows user, or Windows 
group. There is some granularity to the security accounts defi ned by the SQL Server. Privileges 
granted to a user (either on the SQL Server or Windows) affect this user only; privileges granted to a 
role or Windows NT group affect all members of this role or group.

Granting the CREATEDATABASE statement to a user/role while being in context of the LIBRARY 
database produces an error, as follows:

USE library

GRANT CREATE DATABASE

TO PUBLIC;

CREATE DATABASE permission can only be granted in the master database.

Changing the context to the master database resolves the issue. Privileges to the objects within the 
database are granted in a similar manner, either to a role or a user:

USE library

GRANT CREATE TABLE

TO PUBLIC;

c10.indd 270c10.indd   270 3/22/2011 1:51:14 PM3/22/2011   1:51:14 PM



Sessions x 271

These privileges can be revoked — either system-level or object-level — from a database user, role, 
or group with the REVOKE statement. Roles, which are named entities with granted sets of privi-
leges, are revoked in a similar way: 

REVOKE CREATE TABLE

FROM USER PUBLIC;

SQL Standard also specifi es two clauses: RESTRICT and CASCADE. With the fi rst option, the state-
ment succeeds only if there is no abandoned privilege in the database. Such a situation might occur 
when the user, for example, already granted this privilege to some other user. When you are deter-
mined to revoke the privilege no matter what, and propagate this change across all the users who 
have received this privilege from the user, the CASCADE clause must be specifi ed. These clauses are 
optional in all RDBMS implementations which support it, but in the SQL Standard at least one is 
required. As usual, each of the RDBMSs has its own ideas for implementing this statement.

The effects of REVOKE are immediate: If the privilege is revoked from PUBLIC, each user loses that 
privilege if it were granted through PUBLIC; privileges granted to the user directly or through a role 
remain unaffected in this case. The rules for revoking system privileges are complex. For example, 
if a privilege (or role) is revoked from a role, it is revoked from that role only; if the role granted the 
privilege (or role) to another user (or role), the user would continue to exercise the privilege (or role). 

Keep in mind that revoking the privilege from a user has no effect on any object 
the user had already created. When privileges are revoked, all objects created 
with these privileges up to the moment will remain in the database.

Managing Security with Roles

ROLE is an abstract concept introduced in the RDBMSs to facilitate user management tasks by 
grouping users’ privileges according to some criteria, usually a job function. If, for example, your 
accounting staff of 100 people need privileges for the dozens of objects they access daily (in addition 
to some system-level privileges), you have two choices: go through each and every user and individu-
ally grant him or her all the privileges required, or create a group (role), such as ACCOUNTANTS, grant 
all the privileges to the role, and grant this role to all the users in the group. Revoking the privileges 
poses the same choices. It seems fairly obvious which choice is better.

Some RDBMSs provide role-creating capabilities in addition to having a number of predefi ned 
system roles that can be granted to a user. Oracle 10g/11g and Microsoft SQL Server 2008 have this 
feature, while DB2 employs only fi xed, predefi ned roles (authorities).

Oracle roles are collections of privileges that can be granted to (or revoked from) a user or another 
role, thus providing a hierarchy of privileges. A role must be enabled (with a SETROLE statement or 
by the database administrator) before it can pass on all the privileges granted to it.

Oracle 10g/11g has a number of predefi ned roles through which privileges are granted to users. You 
cannot add new privileges to a predefi ned role or revoke any from the role.

c10.indd 271c10.indd   271 3/22/2011 1:51:14 PM3/22/2011   1:51:14 PM



272 x CHAPTER 10  MULTIUSER ENVIRONMENT

A package in Oracle RDBMS is a collection of precompiled routines (usually 
written in PL/SQL) that resides in the RDBMS itself. A user can access data-
base functionality through procedures and functions defi ned in the package. By 
grouping these functional pieces into a package, you could establish security 
policy governing usage of this package on a group level, as opposed to assigning 
privileges on a one by one basis.

Here is an example of a role created for the LIBRARY database with a set of default options in 
virtually any RDBMS:

CREATE ROLE libUsers;

Now you can grant privileges to this role (refer to the GRANT statement discussion earlier in this 
chapter for more information) and later grant the privileges to everyone who needs them by assign-
ing those people to the libUsers role.

You can enable or disable ROLE for the duration of the current database session 
using the SETROLE statement. There might be a limit to the number of concurrent 
roles that can be set by the database administrator.

A custom role can be altered or dropped by using the ALTERROLE or DROPROLE statements, 
respectively:

DROP ROLE libUsers;

Up until version 9.5, IBM DB2 did not support user-defi ned roles, relying instead on the system’s 
predefi ned authorities (fi xed roles) that a user can be a member of, and relies on GROUP, which 
behaves almost the same as roles that are employed in other RDBMSs. This is still supported 
in 9.7, but additional support for roles was added, and is consistent, by and large, with Oracle’s 
implementation. 

Some privileges for the database objects are not relevant for all discussed 
RDBMSs. For example, the PACKAGE object can be found in the DB2 or Oracle 
database, but it is nonexistent in MS SQL Server, PostgreSQL, or MySQL. 
Adding to the confusion, the concept of a package has a different meaning for 
Oracle and IBM. 

Operating System Security Integration

It is important to remember that the OS was there before the fi rst computer database was invented, 
and no RDBMS can operate without some kind of OS. Each OS comes with its own security mecha-
nisms. All the RDBMSs discussed in this book, to some extent, provide security integration with the 

c10.indd 272c10.indd   272 3/22/2011 1:51:14 PM3/22/2011   1:51:14 PM



Sessions x 273

OS they are running on. Essentially, it boils down to using OS accounts and privileges to access the 
database instead of relying on the RDBMS.

Microsoft SQL Server 2008, for example, has tight OS-integrated security, which allows users with 
a valid Windows account to be authenticated based on their Windows NT/2000/XP credentials. 
Instead of supplying a separate user ID and password, a user set up with Windows authentication 
could access SQL Server 2008 automatically as soon as he logs on to the machine that runs the 
RDBMS.

Other RDBMSs extend this functionality to multiple operating systems, and the details of imple-
mentation and usage are just as different as the systems.

RDBMSs running on some operating systems (notably, Windows 9x) do not have OS security inte-
gration, as the OS itself does not provide facilities for this.

Using Views for Security

One of the mechanisms that can be used to implement security is SQL views. Using views, it is pos-
sible to restrict data accessible to a user, the type of operations the user can perform through the 
views, or both.

Consider the following DDL SQL statement, which is generic enough to be acceptable by all 
RDBMS implementations:

CREATE VIEW vw_SingleTable

AS

  SELECT 

     bk_publisher AS Publisher

    ,bk_title AS Title

    ,bk_pub_year AS Year_of_Publication

FROM  books

This view selects only three fi elds from the BOOKS table, which has a total of 11 fi elds. This is called 
vertical restriction because it restricts access to the subset of columns (fi elds). The other fi elds might 
contain confi dential information that you do not want the viewer to see. If you grant SELECT privi-
lege on the view only to some role (for example, the ROLE “friends”), everyone who belongs to that 
role could see customers’ names and statuses, while the rest of the information that the table 
contains remains inaccessible to them.

You can also use horizontal restriction by specifying a subset of rows. For example, you may want 
to grant access to the historical data, something that was entered into the table a year ago or earlier, 
and prevent access to data added after that date. Using the example from the LIBRARY database, 
suppose that you would like a quick and simple access to the books with prices below certain level, 
say, 20 dollars. For the latter example, the SQL syntax for all RDBMSs would be as follows:

CREATE VIEW vw_cheap_books

AS

SELECT *

FROM   books

WHERE  bk_price < 20

Selecting from the following view will bring up only the books whose price is under 20.

c10.indd 273c10.indd   273 3/22/2011 1:51:15 PM3/22/2011   1:51:15 PM



274 x CHAPTER 10  MULTIUSER ENVIRONMENT

Of course, both horizontal and vertical selection can be combined into a single view. 

Additional restrictions that can be implemented in views include WHERE clauses and JOIN conditions. 
They are useful when more than one table is involved in a view. For example, you can restrict your 
view to show only authors whose books sell for less than 20 dollars.

SELECT DISTINCT bk.bk_title, ba.au_last_name

FROM books bk

JOIN 

    books_authors ba

        ON bk.bk_id= ba.bk_id

JOIN

 authors au

  ON   ba.au_id = au.au_id

WHERE 

  Bk.bk_price < 20

Views are used not only for SELECT but also for UPDATE, INSERT, and DELETE statements. Some of 
these operations are governed by the inherent properties of a view object, and some can be specifi ed 
when the view object is created. For example, you cannot update or insert views that were created 
using aggregate functions — attempting to do so will generate an error. This is an inherent behavior. 
On the other hand, for an updateable view, you can create a constraint that can accept or reject data 
modifi cations based on some criteria. 

TRY IT OUT Restricting Data Access with SQL Views

Let’s build a view that would restrict users to see only books added up to the current year. We will use 
Microsoft SQL Server 2008 for this example. Please refer to www.wrox.com or www.agilitator.com
for your RDBMS-specifi c examples:

1. Open Microsoft SQL Server Query Analyzer.

2. In the SQL Query pane, type USE [library] as your very fi rst statement.

3. Enter the following code:

CREATE VIEW vwLastYearBooks AS

SELECT * FROM books where EXTRACT(PublishingDate, YEAR) < EXTRACT (GetDate(), YEAR)

GO

4. Now you need to create a user who has only privileges to SELECT from this view and nothing else; 
the user will be automatically assigned to the PUBLIC role:

CREATE LOGIN LibraryGuest

    WITH PASSWORD = ‘comein”;

USE library;

CREATE USER LibraryGuest FOR LOGIN LibraryGuest;

GO;

Alternatively, you can use the already existing login GUEST.

5. Grant the new user privileges to access your server and run SELECT statements for the view 
vwLastYearBooks:

GRANT SELECT ON library.vwLastYearBooks TO LibraryGuest;

REVOKE SELECT, INSERT, DELETE ON books FROM LibraryGuest;

GO;

c10.indd 274c10.indd   274 3/22/2011 1:51:15 PM3/22/2011   1:51:15 PM



Sessions x 275

6. Disconnect from the RDBMS and reconnect using the new credentials: user ID and password.

7. Run the following:

SELECT * FROM vwLastYearBooks

8. Try running SELECT on the BOOKS table. 

How It Works
The user-created LibraryGuest was granted SELECT privileges on the view vwLastYearBooks and had 
its privileges revoked for selecting data from the BOOKS table. Even though the view displays data 
from that table, the table itself is inaccessible to the LibraryGuest.

Using Constraints for Security 

Constraints often are used to maintain integrity — be it referential integrity, data integrity (also 
called entity integrity), or domain integrity.

Domain integrity constraints, such as the CHECK constraint, validate data for correct format and 
content. For example, in the LIBRARY database, the CHK_ISBN constraint that follows validates 
that ISBN number entered into the database is of specifi c length:

ALTER TABLE books

ADD CONSTRAINT chk_ISBN

CHECK (LEN(bk_isbn) = 10 OR LEN(bk_isbn) = 14)

Now any attempt, legitimate or otherwise, to enter invalid data outside the specifi ed range would 
generate an error; your data are protected against inconsistency. Validating data before they are 
committed to the database table is a very effi cient security practice.

Another mechanism for enforcing domain integrity is the DEFAULT value. When specifi ed, this value 
guarantees that if any data were omitted from the query, a default value will be used instead of 
blank space or NULL.

It is open for discussion whether DEFAULT represents a security breach or a security enforcement 
mechanism. On the one hand, it prevents data inconsistency, which is a good thing; on the other, it 
requires less precision on the data entry end by preventing omission/sloppiness errors and less effort 
for a malicious intruder to insert data.

Entity integrity, which essentially refers to a row of data, is maintained with indices and constraints 
such as the PRIMARYKEY constraint or the UNIQUE constraint. It effectively prevents users from enter-
ing duplicate values. For example, putting these constraints on the Social Security number (SSN) 
column would prevent miscreants from collecting benefi ts more than once using the same SSN and 
different names.

Referential integrity maintains healthy relationships between the tables for which it is declared. It is 
an RDBMS version of the “No Child Left Behind” policy. It mandates that there cannot be a record 
in the child table if a corresponding record in the parent table is missing, and that a record in the 
parent table cannot be deleted as long as it has a corresponding record in the child table. 

Constraints by themselves cater to a very narrow segment of database security and should be 
considered supplemental to the more robust mechanisms provided by the overall RDBMS security.

c10.indd 275c10.indd   275 3/22/2011 1:51:16 PM3/22/2011   1:51:16 PM



276 x CHAPTER 10  MULTIUSER ENVIRONMENT

One of the ways to implement additional security can be stored procedures and 
triggers (discussed in Chapter 4). The former can help to restrict access to the 
database objects and implement input validation; and the latter is a variation of 
a stored procedure that would execute automatically upon INSERT, UPDATE, 
or DELETE operation performed on the table, either validating data or accumu-
lating the audit trail.

SQL Injection 

SQL injection is a technique that exploits vulnerability in the database application that uses dynam-
ically built statements (refer to Chapter 3 for more on dynamic SQL). The idea behind the technique 
is to change the underlying statement, either by supplying broader selection criteria in the WHERE 
clause or appending additional SQL commands to the end of the statement. For example, if the cli-
ent application checks for a specifi c user_ID using statement (admittedly lame), the expectation is 
that if no row is returned, authentication failed:

SELECT * FROM users WHERE user_id = ‘” + <user_ID> + “’” 

Now imagine that the malicious attacker enters ’somebody’ OR ‘a’=’a‘ into the user_ID fi eld. 
This would translate into the following statement: 

SELECT 1 FROM Users WHERE user_ID = ‘somebody’ OR ‘a’ = ‘a’ 

Because there is no user ID “somebody,” the authentication would fail, but the second part, ‘a’ = ‘a’ 
evaluates to TRUE and a row is returned, therefore authenticating the user.

In the preceding example, the attacker also can force the server to execute an unanticipated state-
ment by typing in the <user_ID> ;<another SQL statement>. For instance:

SELECT 1 FROM Users WHERE user_ID = ‘somebody’ ; DELETE FROM books;

If executed, the preceding statement would delete all records from the BOOKS table (this would 
require some knowledge of the database structure or a clever guess on the attacker’s part).

The SQL injection attack can be defended against on many levels. The fi rst line of defense is to 
assign the most restrictive permissions’ set required. In the examples, that would prevent deletion 
of the records because the user would not have DELETE permission on the CUSTOMER table, 
though it still would be useless against the fi rst scenario. To make sure that the RDBMS executes 
only intended statements, one can implement check logic on the application layer or resort to stored 
procedures use (with additional checks implemented inside the stored procedure body); additionally, 
RDBMSs can do a quick parsing to detect any unanticipated Boolean expressions.

Data Encryption

Encryption is a way to convert information from a directly usable format into a format that cannot 
be used without being decrypted. The encrypted data normally can be decrypted using the same 
process (algorithm) that was used to encrypt it. Encryption is not a part of SQL Standard, so each 
RDBMS provides different encryption-related services, usually as a set of built-in functions.

c10.indd 276c10.indd   276 3/22/2011 1:51:16 PM3/22/2011   1:51:16 PM



Sessions x 277

The data inside the RDBMS are stored as plain text (ASCII, Unicode) or binary (BLOBS, IMAGE, and 
similar data types). To prevent this data from being viewed by unauthorized users (who happen to 
be granted access to the table that contains it) or to send a data extract over an unsecured network, 
the data can be encrypted. The data also can be encrypted via some client software before it is 
entered into the database or it can be done inside the RDBMS by using its own facilities.

A lot can be learned from the SQL code used to create database objects, and 
in most databases it is normally stored in open text to be retrieved by querying 
special INFORMATION_SCHEMA view (discussed later in this chapter). To 
prevent this, some RDBMSs allow encrypting source code for the objects (tables, 
views, and stored procedures).

Encryption provides an additional level of security when, in order to view data in human-readable 
format (whether text or pictures, audio fi les, or executable fi les), a user would need a password and 
decrypting facilities, either on the RDBMS or inside his or her client software. 

TRY IT OUT Encrypting and Decrypting Data with IBM DB2 Built-in Functions

IBM DB2 LUW provides ENRYPT and DECRYPT_CHAR built-in functions for data encryption:

1. Open the IBM DB2 command editor or use the command-line utility to connect to the LIBRARY 
database.

2. Execute the following SQL query:

SELECT ENCRYPT(bk_title, ‘PASSWORD’) AS encrypted

FROM   books

The results are encrypted book titles:

ENCRYPTED

--------------------------------------------------

x’00E61AFFE404A6D596757C7CC7AC70467884E127B6A50726’

. . .

x’00DC24FFE404A0D5F736C8A4156922A6709DD5D609EBE762’

To decrypt the seemingly senseless previous string of characters, you can use the DECRYPT_CHAR
function (because we are using character data) with exactly the same password (‘PASSWORD’). 
This will restore the data into their original form. 

How It Works
The built-in ENCRYPT function accepts two parameters: character data retrieved from the table and 
the password with which it encrypts the characters. The result is human-unreadable gibberish that can 
be again converted into book titles using the DECRYPT_CHAR functions with the same password.

c10.indd 277c10.indd   277 3/22/2011 1:51:16 PM3/22/2011   1:51:16 PM



278 x CHAPTER 10  MULTIUSER ENVIRONMENT

There are literally hundreds of data encryption algorithms, both custom and public. To devise and 
implement an encryption algorithm requires familiarity with programming principles, in addition to 
advanced math. Here are some popular algorithms in use today: DES (designed by IBM in 1970 and 
adopted by NIST in 1976 for unclassifi ed data), RC5 (from RSA Data Security), CMEA (developed 
by the Telecommunication Industry Association to encrypt digital cellular phone data), FEAL (devel-
oped by Nippon Telephone & Telegraph), TEA, MD5, Tiger, and CAST, to name just a few.

For quite some time now Oracle had the DBMS_OBFUSCATION_TOOLKIT 
package to encrypt data. Beginning with version 10g, it introduced a new 
DBMS_CRYPTO package which somewhat alleviated the defi ciencies of its 
predecessor. The ultimate answer came in the form of Oracle’s Transparent Data 
Encryption feature, which is based on public/master encryption keys created 
with Oracle Wallet Manager. Please refer to the vendor’s documentation for 
more information.

The data sent between an RDBMS and a client application can also be encrypted using Secure 
Sockets Layer (SSL) or Secure Shell (SSH) encryption over a Transmission Control Protocol/Internet 
Protocol (TCP/IP) communication protocol (usually the case for most networks and Internet connec-
tions). Inside the RDBMS are cryptographic functions implemented to provide an industrial-strength 
encryption that should be used whenever data security is required.

Database Auditing

Auditing provides the ability to trace the information fl ow inside a database, including connection 
attempts; data updates; deletes, inserts, and selects; execute functionality, and such. It is useful both 
for postmortem scenarios and for on-going monitoring to detect unauthorized activity.

Auditing has nothing to do with SQL Standard and is strictly RDBMS-dependent — in capabilities, 
implementation details, and so on.

Security Standards

While not related directly to SQL, security standards defi ne the infrastructure within which SQL is 
employed, so these standards are therefore of interest to SQL users. Usually, RDBMS software 
complies with these standards to a certain degree, either voluntarily or under pressure from the 
government agencies that mandate requirements for the software’s acceptance.

The fi rst nationwide attempt to standardize security procedures for computer systems was undertaken 
in 1985 by the U.S. National Computer Security Center (NCSC). To be considered for a government 
contract, the RDBMSs had to achieve a certain level of security for their products through proctored 
testing. Dozens of RDBMSs went through years (the process has taken three years, on average) of 
testing procedures just to be able to sell their products to government agencies. Vendors such as Sun, 
Oracle, and Novell received their certifi cations (either C1 or B2) in early 1990s, following a directive 
that all computer systems storing sensitive information must be C2-certifi ed.

A number of regulatory compliance acts have been enabled, such as Sarabanes-Oxley and BASEL II 
for fi nancial records, HIPAA for medical information, PCI for credit card information, and so on.

c10.indd 278c10.indd   278 3/22/2011 1:51:17 PM3/22/2011   1:51:17 PM



Sessions x 279

INFORMATION_SCHEMA and SQL System Catalogs 

To keep track of all objects, their relationships, and so on, the RDBMSs use the same technique they are 
advocating: a set of relational tables and views. The SQL Standards committee introduced the concept 
of INFORMATION_SCHEMA views that, with some modifi cations, were implemented across all 
RDBMSs. This schema provides read-only access to information about every database object.

In SQL Standard, a CATALOG is a collection of schemas that contains, among other things, 
INFORMATION_SCHEMA. It comprises the tables and views that provide all the information about all 
the other objects and records defi ned in the database: schemas, tables, privileges, and so on. The 
latest standard also includes structure and integrity constraints information, as well as security 
and authorization specifi cations for the SQL data. The main idea is to provide both users and the 
RDBMSs with a consistent, standardized way of accessing metadata (the data about data: table 
defi nitions, user-defi ned types, and so on) as well as some system information. By defi nition, the 
INFORMATION_SCHEMA tables and views cannot be updated directly, although some RDBMSs allow 
this (for example, IBM DB2). 

SQL Standard lists more than 60 different views that can be used to get information about database 
objects and their usage, and RDBMSs have implemented most of them, plus some of their own. The 
SQL Standard–compliant INFORMATION_SCHEMA views were implemented in Microsoft SQL 
Server (version 7.0 or later), PostgreSQL (version 7.4 or later), and MySQL (version 5.0 or later). IBM 
DB2 has kept its SYSCAT schema that serves as an equivalent, and Oracle uses data dictionary views. 

Microsoft Access does not provide metadata information as a view to be 
queried through SQL, but allows it to be accessed programmatically through 
Visual Basic for Applications (VBA). OpenOffi ce BASE, which is a front end 
for an RDBMS, relies on the underlying database to provide the information 
passing SQL requests to the RDBMS engine (embedded HSQLDB supports a 
subset of INFORMATION_SCHEMA).

At the very least, you can count on the views (or their reincarnations) listed in Table 10-6 to be pres-
ent for you to query.

TABLE 10-6: Selected Standard INFORMATION_SCHEMA Views

INFORMATION_SCHEMA 

VIEW

IMPLEMENTED IN RDBMS DESCRIPTION

COLUMNS Microsoft SQL Server 

PostgreSQL

MySQL 

IBM DB2 (SYSCAT.COLUMNS)

Oracle (*_TAB_COLUMNS view)

Describes columns accessible 

to the current user/role for 

every table in the database, 

one row per column.

continues

c10.indd 279c10.indd   279 3/22/2011 1:51:17 PM3/22/2011   1:51:17 PM



280 x CHAPTER 10  MULTIUSER ENVIRONMENT

INFORMATION_SCHEMA 

VIEW

IMPLEMENTED IN RDBMS DESCRIPTION

ROUTINES Microsoft SQL Server 

PostgreSQL

MySQL 

IBM DB2 (SYSCAT.PROCEDURES)

Oracle (*_PROCEDURES view)

Describes the SQL-invoked 

routines in this catalog that are 

accessible to a given user/role.

SEQUENCES Microsoft SQL Server 

PostgreSQL

MySQL 

IBM DB2 (SYSCAT.SEQUENCES)

Oracle (*_SEQUENCES view)

Describes the external 

sequence generators defi ned 

in this catalog that are acces-

sible to a given user/role.

TABLES Microsoft SQL Server 

PostgreSQL

MySQL 

IBM DB2 (SYSCAT.TABLES)

Oracle (*_TABLES view)

Describes every table acces-

sible to the user/role, one row 

per table/view.

VIEWS Microsoft SQL Server 

PostgreSQL

MySQL 

IBM DB2 (SYSCAT.VIEWS)

Oracle (*_VIEWS view)

Describes every view acces-

sible to the user/role, one row 

per view.

It is important to remember that INFORMATION_SCHEMA views provide standardized access 
to the database metadata and usage information. The information is present in every database dis-
cussed in this book and can be obtained through some other RDBMS-specifi c channels.

TRY IT OUT Querying INFORMATION_SCHEMA

The basics of querying INFORMATION_SCHEMA are essentially the same across all RDBMSs that 
support it, but there are some peculiarities that are database-specifi c. For instance, the following query 
has the identical syntax across Microsoft SQL Server 2008, MySQL 5.1, and PostgreSQL 9.0, yet the 
results it produces might be slightly different. The following step-by-step instructions assume that your 
RDBMS service is up and running.

1. Open Microsoft SQL Server 2008 SQL Server Management Studio.

2. Connect to your instance by supplying all necessary information and clicking the Connect button.

TABLE 10-6 (continued)

c10.indd 280c10.indd   280 3/22/2011 1:51:18 PM3/22/2011   1:51:18 PM



Sessions x 281

3. Click the New Query button in the upper-left corner of the SQL Server Management studio console.

4. Type in the following code:

USE library

SELECT * FROM INFORMATION_SCHEMA.TABLES

5. Observe the results, as shown in Figure 10-1.

How It Works
The fi rst statement sets up context for the 
LIBRARY database. The Microsoft SQL Server 
INFORMATION_SCHEMA view TABLES collects information on every custom table created in the 
current database. These views provide uniform standard access to the information about objects in 
the database and should be used instead of any other proprietary mechanism supported by the RDBMS.

Oracle Data Dictionary

Oracle uses the term data dictionary for its system catalogs. Each Oracle database has its own set of 
system tables and views that store information about physical and logical database structures. The 
data dictionary objects are read-only, meaning that no database user ever manually modifi es them. 
However, the Oracle RDBMS automatically updates data in these objects in response to specifi c 
actions. For example, when a user creates a new object (table, view, or stored procedure), adds a col-
umn or a constraint to a table, and so forth, the appropriate data dictionary tables are updated behind 
the scenes at once, and the corresponding changes are visible through the system views (discussed later 
in this chapter). The Oracle’s predefi ned user SYS owns all base tables and user-accessible views of the 
data dictionary.

There are literally hundreds of different views and tables that provide information about Oracle’s 
database objects and their usage (rumor has it that there are 3,763 views and 956 tables in 
Oracle 11g Release 2), but most of them are only of interest to database administrators and are 
beyond the scope of this book.

The Oracle data dictionary views consist of static and dynamic views. The term static denotes that 
the information in this group of views changes only when a change is made to the data dictionary 
(a column is added to a table, a new database user is created, and so on). The dynamic views are 
constantly updated while a database is in use; their contents relate primarily to performance and are 
used to monitor the health of the database.

The dynamic data dictionary views can be distinguished by the prefi x V_$,
and the public synonyms for these views start with V$.

The static views can be divided into three groups. The views in each group are prefi xed USER_, ALL_,
or DBA_, as shown in Table 10-7.

FIG URE 10-1

c10.indd 281c10.indd   281 3/22/2011 1:51:18 PM3/22/2011   1:51:18 PM



282 x CHAPTER 10  MULTIUSER ENVIRONMENT

TABLE 10-7: Oracle’s Static View Prefi xes

PREF IX SCOPE 

USER User’s  view (objects in the user’s schema)

ALL Expanded  user’s view (all objects that the user can 

access)

DBA Database  administrator’s view (all objects in all 

users’ schemas)

The set of columns is almost identical across views; USER_TABLES, ALL_TABLES, and DBA_TABLES
have the same columns, except USER_TABLES does not have the column OWNER (which is unnecessary 
because that view has information only about tables that belong to the user who queries the view).

The select privilege for USER_ and ALL_ views (as well as for selected V$ views) is granted to PUBLIC
by default; DBA_ views are visible to privileged users only. 

Oracle also has the DBMS_METADATA package that provides interfaces 
for extracting complete defi nitions of database objects. The defi nitions can be 
expressed either as XML or as SQL DDL.

Unlike the SQL Standard INFORMATION_SCHEMA, which prescribes only a handful of views, Oracle’s 
data dictionary contains more than 1,000 objects, with dozens of columns in each. To help users 
fi nd their way around, Oracle provides a subset of this metainformation through a few objects that 
contain the information about the system objects. The two main views are DICTIONARY, which 
contains a description of the data dictionary tables and views, and DICT_COLUMNS, which describes 
these objects’ columns.

You can use the SQL*Plus DESCRIBE command to obtain minimal information 
about the data dictionary views and tables, as well as any other database objects 
to which you have access.

IBM DB2 LUW System Catalogs

IBM DB2 maintains two sets of database information views: one in the SYSCAT schema and a 
subset in the SYSSTAT schema (used by IBM SQL Optimizer to improve query performance). All 
these views are created whenever the CREATEDATABASE command is run; the views comprising the 
catalog cannot be explicitly dropped, altered, or updated (except for some columns in the SYSSTAT

c10.indd 282c10.indd   282 3/22/2011 1:51:18 PM3/22/2011   1:51:18 PM



Sessions x 283

views). The SYSIBM schema has added yet another set of information views that more closely match 
the views of SQL Standard, bridging the gap with the INFORMATION_SCHEMA standards.

The SELECT privilege to views is granted to PUBLIC by default. IBM explicitly states that columns in 
the views might be changed from release to release, and recommends querying these tables using the 
SELECT*FROMSYSCAT.<view> syntax. 

The following query retrieves information about the table CUSTOMER created in the LIBRARY 
database: 

db2 => SELECT TABSCHEMA,

              CREATE_TIME

FROM          SYSIBM.TABLES 

WHERE         TABNAME = ‘books’

TABSCHEMA           CREATE_TIME

------------------- --------------------------

LIBRARY             2010-09-13-16.37.50.89400

For the sake of compatibility with the DB2 Universal Database for OS/390, IBM 
maintains the SYSDUMMY1 catalog table in the SYSCAT schema. This table consists 
of one row and one column (IBMREQ) of the CHAR(1) data type. 

The DESCRIBETABLE<table_name> command can be used to obtain information about the internal 
structure of the INFORMATION_SCHEMA objects in DB2. For example:

db2 =>  describe table syscat.views

Column          Type          Type name  Length  Scale  Nulls

name            schema  

--------------- ------------- ---------  ------- ------ --

VIEWSCHEMA      SYSIBM        VARCHAR        128      0 No

VIEWNAME        SYSIBM        VARCHAR        128      0 No

. . .

QUALIFIER       SYSIBM        VARCHAR        128      0 No

FUNC_PATH       SYSIBM        VARCHAR        254      0 No

TEXT            SYSIBM        CLOB       2097152      0 No

  12 record(s) selected.

Microsoft SQL Server 2008 System Catalog

Microsoft SQL Server 2008 provides two ways of obtaining system information: through 
INFORMATION_SCHEMA views or through system stored procedures and functions. The use of the 
former is encouraged, and the procedures/functions (a Sybase legacy) are de-emphasized to the point 
of deprecation. Any supported functionality in this area is for backward compatibility only.

c10.indd 283c10.indd   283 3/22/2011 1:51:19 PM3/22/2011   1:51:19 PM



284 x CHAPTER 10  MULTIUSER ENVIRONMENT

One of the ways to obtain system information about Microsoft SQL Server 2008 
is direct querying of the system tables, tables, and views that contain informa-
tion about the current database, such as sysobjects, sysindexes, sysusers,
and so on. Those stored in the MASTER database contain information about the 
RDBMS itself. While it is possible for a user with suffi cient privileges to query 
these views and tables, Microsoft strongly discourages such a practice, stating 
that the system tables are for the exclusive use of the SQL Server, and that the 
names and structures might change in future releases. (And they certainly have: 
Each version of SQL Server brings new tables, drops old tables, and changes 
names.) Our advice is to resist the temptation of using this “back door” and 
instead use legitimate interfaces to obtain information: INFORMATION_
SCHEMA, system stored procedures, and functions, in that order.

Microsoft SQL Server System Stored Procedures and Functions

There are many categories of system stored procedures supplied with Microsoft SQL Server 2008, 
depending on the purpose and tasks performed. Only catalog procedures are discussed at some 
length in this chapter.

Microsoft SQL Server 2008 lists dozens of stored procedures that provide information about the 
system. You can use these procedures directly from the command-line interface of SQLCMD, from 
SQL Query Analyzer, or from a client application accessing the SQL Server through any of the 
programming interfaces provided. Initially, the purpose of these procedures was to implement 
ODBC data dictionary functions to isolate ODBC applications from possible changes to the SQL 
Server system tables’ structure.

The use of system stored procedures is unique to Microsoft SQL Server and 
Sybase Adaptive Server because they both have their origins in a joint project 
initiated by Microsoft, Sybase, and Ashton-Tate in 1988. INFORMATION_
SCHEMA views were introduced, starting with version 7.0 of SQL Server.

Getting Help

One of the most useful procedures for obtaining information about any database object is the 
sp_help<> group of stored procedures listed in Table 10-8.

TABLE 10-8: Microsoft SQL Server Help Stored Procedures

STORED PROCEDURE DESCRIPTION

sp_help Returns information about database objects in the current 

database.

sp_helpuser Returns information about database users, database roles, and 

so on.

c10.indd 284c10.indd   284 3/22/2011 1:51:20 PM3/22/2011   1:51:20 PM



Summary x 285

STORED PROCEDURE DESCRIPTION

sp_helptrigger(<tabname>) Returns information about triggers defi ned on the specifi ed table 

for the current database.

sp_helpserver Returns information about remote and/or replication servers.

sp_helprotect Returns information about user permissions in the current 

database.

sp_helpindex Returns information about the indices on a table or view.

SP_HELP is probably the most universal of the lot. If used without any arguments, it will return 
information about every single database object (table, view, stored procedure, index, or default) 
listed in the sysobjects table of the current database; being passed a specifi c object as an argument 
will return information about this object.

Microsoft SQL Server 2008 also provides a number of functions and sys-
tem stored procedures that return information about the RDBMS server and 
contained objects. A comprehensive set of system functions can be found in 
Microsoft’s online documentation. 

SUMMARY

All communications with RDBMSs happen within the context of a session. When a session between 
a client program and RDBMS is established, it possesses certain default properties that determine 
its behavior. Some of these properties can be modifi ed for the duration of the session, and the data-
base administrator can make these modifi cations persistent. The enterprise level RDBMS provide 
transactional support ability to execute SQL statements as a batch, a single logical unit of work. SQL 
Standard stipulates that a SQL statement always runs as a transaction. RDBMS implementations may 
treat it differently: some start an implicit transaction by default, and some do not, requiring explicit 
statements to begin a transaction. Transactions must satisfy certain criteria (the so-called ACID test) 
to comply with these standards, but these details are usually taken care of by the RDBMS.

Transactions accessing shared resources must implement some concurrency control. One of a trans-
action’s properties is its isolation level established for the transaction. The isolation level regulates 
what this transaction may access, and what data it is allowed to access and modify.

Some RDBMSs implement intricate locking systems to address the concurrency issue, though locks 
are not part of SQL Standard. The locks might be of different types. They can be specifi ed within 
the SQL statement or they can be specifi ed as properties for the session. A deadlock situation may 
occur in a high-volume transaction processing systems or improperly designed systems. Deadlocks 
are usually resolved automatically by the RDBMS or may be resolved manually by database 
administrators.

SQL by itself provides only limited security mechanisms. RDBMSs needed more robust security, 
which has been implemented in a variety of nonstandard ways by the RDBMS vendors.

c10.indd 285c10.indd   285 3/22/2011 1:51:21 PM3/22/2011   1:51:21 PM



286 x CHAPTER 10  MULTIUSER ENVIRONMENT

There are several different macro layers of security: authentication, authorization, and audit. There 
are also different techniques used to protect data on the most basic levels.

All RDBMSs consider the notion of a user as some entity that connects to a database and performs 
actions. Further, all RDBMSs discussed in this book implement roles, which manage sets of privi-
leges. Roles can be system-defi ned (fi xed) or user-defi ned.

Additional security can be implemented through various mechanisms supplied by the database: 
constraints, views, stored procedures, and triggers. The lowest level of defense is vested in the data 
via encryption, which renders data unreadable by humans.

There are national and international security standards, which are recommended (but not required); 
some database vendors choose to get certifi ed, while some do not. A number of laws were enacted 
to deal with security issues. The latest versions of the RDBMSs discussed in the book have imple-
mented many features to help the users with regulatory compliance.

INFORMATION_SCHEMA was endorsed by the ISO/ANSI body long after the real RDBMS implementa-
tions moved into the market. As a result, some of the vendors implemented their own versions of the 
metadata repository in a form of system tables. 

The information from these tables can be gathered in a variety of ways, usually through views 
provided by the RDBMS for just this purpose (the idea behind the INFORMATION_SCHEMA), or 
through some RDBMS–supplied stored procedures or functions to that effect.

Most RDBMSs explicitly discourage users from accessing the system tables directly because their 
structure might change without any notice, and the information contained in the table is not guar-
anteed to mean what you think it should. In short, system tables are for the use of the system, and 
views are for the users. The times of having to make your best guess via direct querying of the 
underlying system tables are over.

c10.indd 286c10.indd   286 3/22/2011 1:51:21 PM3/22/2011   1:51:21 PM



11
Working with Unstructured 
and Semistructured Data

Unstructured data is a misleading term, but we are going to use it for the lack of a better one. 
With the exception of absolute chaos, all data should be considered to have a certain degree 
of organization. Consider a paperback novel: It has a table of contents; text is organized into 
chapters with paragraphs; and sentences have commas, hyphens, and periods. The information 
is usually arranged in a logical progression; you can read it cover to cover, select chapters, look 
at the pictures, and so on. Yet in context of relational databases in general, and this book in 
particular, the novel would be an example of unstructured information because it is extremely 
diffi cult to apply information technology to this type of data. The term unstructured, there-
fore, defi nes degrees of suitability of data for computer processing.

We are surrounded by a multitude of unstructured data — for example, books, magazines, 
conversations, pictures, movies, text messages, newspapers, TV shows, and music. Most of it 
passes by and disappears into oblivion — or at least it used to before cheap storage came into 
existence, along with the hardware powerful enough to handle data in a timely manner and 
the software to manage it. In order for the data to be managed under an RDBMS, it has to 
be digitized fi rst; once pictures and texts are stored as long sequences of ones and zeroes, the 
data can be further categorized into character data and binary data. The former deals with 
anything that is constituted of characters (words); the latter could be anything — a music fi le, 
a video, a picture, PDF or Word documents (prior to Microsoft Offi ce 2007), or even com-
pressed archived text fi les.

SQL AND XML

eXtensible Markup Language (XML) falls right in the middle between the rigor of the struc-
tured data and perceived chaos of unstructured data. On one hand, as you will see, it has a 
well-defi ned structure and rules; on the other hand, it mixes in a “free-text” approach.

It is a popular language of information exchange and is well on its way to becoming the 
de facto standard for web services, as well as more traditional software applications. 

c11.indd 287c11.indd   287 3/15/2011 12:42:08 PM3/15/2011   12:42:08 PM



288 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

In recent years, there was a shift by users from proprietary document formats to those that 
are open and not controlled by any commercial entity. The vendors took notice: Starting with 
Microsoft Offi ce 2007, the Offi ce Open XML fi le format (OpenXML or OOXML) has become the 
default Microsoft Offi ce fi le format as well as the international ECMA-376 standard. Several coun-
tries, most notably in Europe, have also announced adoption of the Open Offi ce XML on national 
level. The hugely popular open source OpenOffi ce.org implemented its own, somewhat different, 
XML-based format called Open Document Format (ODF, governed by the OASIS consortium) for 
its fi le (though, beginning with version 3.0 it is also interoperable with OOXML), as did many 
other software vendors around the world. While particulars of the implementations might be 
different, they are all based on XML principles.

The versatility of XML comes from its venerable predecessor: Standard Generalized Markup 
Language (SGML). The original SGML was conceived as a means for representing text documents 
in electronic form. One of its prominent properties was the ability to mark up fragments of text with 
special tags for various purposes. The current XML standard, in version 1.0, is maintained by the 
World Wide Web Consortium (W3C), which is the main international organization for World Wide 
Web standards.

XML still uses tags extensively (more extensively, in fact, than SGML), but it uses them to establish 
structure instead of marking up text between two tags. Furthermore, XML does not confi ne itself 
to any particular predefi ned set of tags, as SGML does; any string, within certain syntactic confi nes, 
may serve as a tag. In XML, a tag must have a matching end tag; otherwise, a piece of XML is said 
to be “not well-formed” and cannot be parsed by an XML parser.

There are several reasons why XML is relevant to relational databases in general and SQL in 
particular. 

One is the ubiquity of the format as means of information exchange. XML documents contain both 
data that could to be extracted and added to the RDBMS in order to be processed and the metadata 
describing it.

Another reason is that an XML document can be considered a database unto itself. The XML docu-
ments are said to be self-describing, meaning that they contain both data and metadata (information 
about the data, which explains the affi nity to databases).

Viewed from this perspective, XML elements and attributes would roughly correspond to tables 
and fi elds in a relational database, and the document structure describes relationships — not unlike 
those found in an RDBMS (though there are distinctive differences as well). As of early 2007, 
Microsoft Offi ce fi les or Open Offi ce fi les are stored in XML format; one can easily see how a MS 
Excel spreadsheet could be a database.

Despite the apparent advantages — self-contained, self-described, and a universally understood for-
mat — there is no rush to convert RDBMSs into XML native databases as yet. On the most basic 
level, an XML database decoupled from its relational host is but a text fi le; in a sense, an XML 
database is a reincarnation of a hierarchical database implemented in a sequential access data fi le, 
with all the advantages and limitations of such an approach. This raises a number of issues for con-
currency, performance, integrity, and security — all the problems that have been addressed over 
the years by RDBMSs. Nowadays, RDBMS databases routinely exceed a terabyte in size; I have 
yet to see an XML database approaching several gigabytes, and still cranking out a half-decent 

c11.indd 288c11.indd   288 3/15/2011 12:42:13 PM3/15/2011   12:42:13 PM



A Brief Introduction to XML x 289

performance. The RDBMSs and XML are complementary technologies; used together they allow 
for a synergy to be achieved in processing structured and semistructured data.

A BRIEF INTRODUCTION TO XML

A well-formed XML document has a tree structure, or forest structure, for more complex composite 
documents. At the branches (or nodes, which is the technical term) of the tree are usually elements
(although there also can be attributes, comments, and such), and there must be a single root element. 
An element is anything enclosed between a tag and the corresponding end tag, including the tags 
themselves:

<tagExample>Element example</tagExample>

As the preceding example demonstrates, a tag is enclosed in a pair of angle brackets (or between the 
“less than” and “greater than” signs), and an end tag is identical to its corresponding tag, except 
that the opening angle bracket is immediately followed by the forward slash (/):

<emptyElementTag></emptyElementTag>

This example shows that an element may contain nothing between the tags. That’s fi ne, too. There 
is even a shorthand expression for this:

<emptyElementTag/>

Okay, these examples are fi ne, as far as they go, but they don’t really go very far. Much more inter-
esting are elements that do contain things, and not just little bits of text, either. Before we consider 
what elements may contain, we should mention the element attributes. An element may have one or 
more attributes attached to it:

<element attribute1=”attr1Value” attribute2=”attr2Value”>contents</element>

Attributes are defi ned within the element tag, as key-value pairs, with the value part placed in the 
quotation marks. They are separated only by whitespace.

What is the difference between the contents of an element and its attributes? Conceptually, it is 
clear: We have little diffi culty distinguishing between the content of a book and characteristics such 
as who wrote it, how much it cost, or whether it is worth the price. In the practice of XML, how-
ever, it is sometimes a matter of style or convenience, whether to defi ne a piece of information as an 
attribute of an element or as part of its content, an element’s content may be more complex than we 
have so far considered. In addition, unlike a child element, an attribute must be unique within the 
parent element.

In fact, an element may contain other elements, as well as text, and that’s where the structure comes in:

<book>

<title>Introduction to Database Management</title>

<authors>

<author>Mark L. Gillenson</author>

c11.indd 289c11.indd   289 3/15/2011 12:42:13 PM3/15/2011   12:42:13 PM



290 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

<author>PaulrajPonniah</author>

<author>Alex Kriegel</author>

<author>Boris Trukhnov</author>

<author>Allen G. Taylor </author>

<author>Davin Powell</author></authors>

<publisher>Wiley Publishing, Inc.</publisher>

<price>$39.99</price>

</book>

In the preceding example, the element “book” contains several elements, including “authors,” which 
contains further elements (that have identical tags, but different values). 

Formatted XML

To make it easier to grasp the structure visually, it is customary to print XML with line breaks and 
indents; usually, however, the true XML, in a case like the preceding section, is all in one line to 
avoid inserting a bunch of whitespace and line breaks into elements:

<book><title>Introduction to Database Management</title><authors>

<author>MarkL.Gillenson</author><author>PaulrajPonniah</author>

<author>AlexKriegel</author><author>Boris Trukhnov</author>

<author>Allen G. Taylor</author><author>DavinPowell</author>

</authors><publisher>Wiley Publishing,Inc.</publisher><price>$39.99</price></book>

This looks very much like the result of a query on a couple of database tables that participate in a 
one-to-many relationship: there’s a record from the Book table, with the columns name, publisher,
price, and a couple of corresponding records from the Authors table.

The structure of XML is hierarchical, and in many cases just like the structure of a relational 
database. An XML document is a tree: for example, in the preceding fragment, <book> is the par-
ent node; <name>, <publisher>, <price>, and <authors> are the children of <book>; and the 
<authors> node has four <author> children.

Because there are six authors, we cannot model them as attributes, at least 
not without bending some rules; attributes must have unique names within an 
element.

DTD and Schema

An XML parser worth its salt accepts only well-formed XML documents. The well-formed XML 
document is one that obeys certain rules, such as having exactly one root element, having a match-
ing end tag for every tag, having all attribute values quoted, and so on.

However, the purpose of XML is to defi ne structure, and a well-formed XML document may still 
have a cock-eyed structure by mistake:

<book>

<name>Discovering SQL</name>

c11.indd 290c11.indd   290 3/15/2011 12:42:13 PM3/15/2011   12:42:13 PM



A Brief Introduction to XML x 291

<authors>

<book>Gone with the wind </book>

<author>Alex Kriegel</author>

</authors><publisher>Wiley Publishing, Inc.</publisher>

<price>$39.99</price>

</book>

The parser will not notice the erroneous placement of a <book> element as a child of the <authors>
element because it is nicely closed with the appropriate end tag and does not violate any syntactic rules.

To guard against such mishaps, a validator must be instructed as to what is considered structur-
ally legitimate. Two ways to defi ne the structure of an XML document are to use a Document Type 
Defi nition (DTD) or an XML Schema Defi nition (XSD).

Document Type Defi nition (DTD)

The DTD is an older convention. It is a special language to defi ne the structure of an XML 
document:

<!DOCTYPE book [

<!ELEMENT book (title,authors,publisher,price)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT authors (author+)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT author (#PCDATA)>

]>

XML Schema Defi nition (XSD) 

The XSD is a more recent development. It is more attractive because it uses XML rather than 
another language; it is also more powerful and allows the defi nition of data types for values and 
other useful validating information:

<?xml version=”1.0”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” 

targetNamespace=”http://www.wiley.com/DiscoveringSQL”

xmlns:sql=“http://www.wiley.com/DiscoveringSQL“ elementFormDefault=“qualified“>

<xsd:include schemaLocation=“Book.xsd“/>

<xs:element name=“book“>

<xs:complexType>

<xs:all>

<xs:element name=“name“ type=“xs:string“/>

<xs:element name=“authors“ type=“sql:authorInfo“/>

<xs:element name=“publisher“ type=“xs:string“/>

<xs:element name=“price“ type=“xs:integer“/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:complexType name=“authorInfo“>

<xs:sequence>

<xs:element ref=“sql:Book“ name=“author“ type=“xs:string“ 

c11.indd 291c11.indd   291 3/15/2011 12:42:13 PM3/15/2011   12:42:13 PM



292 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

minOccurs=“0“ maxOccurs=“unbounded“/</xs:sequence>

</xs:complexType>

</xs:schema>

XML schemas are replacing DTD as a means of enforcing XML structure compliance.

XSD is also more fl exible. In previous examples, both <xs:all> and DTD 
specify that child elements must appear only once, but XSD does not restrict the 
order in which they appear.

Namespaces

The keen reader will have noticed that the preceding example of XSD has a lot of colons in the ele-
ment tags. What’s all that about?

The tags in the example are namespace-prefi xed. If you are familiar with Java or a .NET language, 
you are no stranger to the concept of namespace. In Java, the equivalent notion is the package, and 
.NET even uses the same namespace term.

A namespace is the scope within which a tag uniquely exists. You may have two friends by the 
name of Peter. You will distinguish them with the help of their last names: <Jones:Peter> or 
<Mackenzie:Peter>. Two students with the same name may exist in a school. The principal will 
refer to <Grade3:MarySmith> or <Grade5:MarySmith>.

In XML, namespaces become important when independent pieces of XML are united in the same 
document. The original pieces may have the same tag, which, of course, will have a different iden-
tity in each piece; and that will create an ambiguity, when the pieces are brought together. The 
ambiguity will be resolved by declaring the tags from one piece as belonging to one namespace, and 
the other tags as belonging to a different namespace.

Okay, so let’s say we are bringing together two pieces of XML that already have the namespace 
defi ned: In one of them, the namespace is “MyNamespace,” and in the other, um 
. . .“MyNamespace.” Now what do we do?

To avoid this sort of supercollision, tags in XML do not use the actual namespace, but instead use a 
namespace prefi x. In the two pieces that have just puzzled us, “MyNamespace” is not the name; it’s 
an alias.

The namespace alias, or prefi x, must be resolved. It is defi ned within an element tag, and the defi ni-
tion is valid for the element and all its child elements. For the defi nition of a namespace, the special 
attribute, xmlns, is used:

<MyNamespace:bookxmlns:MyNamespace=”http://www.wiley.com/DiscoveringSQL”>

<MyNamespace:name>Discovering SQL</MyNamespace:name>

<MyNamespace:authors>

<MyNamespace:author>Alex Kriegel</MyNamespace:author>

</MyNamespace:authors>

c11.indd 292c11.indd   292 3/15/2011 12:42:14 PM3/15/2011   12:42:14 PM



A Brief Introduction to XML x 293

<MyNamespace:publisher>Wiley Publishing, Inc.</MyNamespace:publisher>

<MyNamespace:price>$39.99</MyNamespace:price>

</MyNamespace:book>

Two important points must be made here:

 ‰ The URL that is used in the defi nition of a namespace is not addressed by the parser. In fact, 
it does not have to be a valid URL — it is just the means of defi ning a namespace. 

 ‰ Unlike a “real” URL, the string that defi nes a namespace is case-sensitive. The following 
strings all defi ne different namespaces:

 ‰ www.wiley.com/DiscoveringSQL

 ‰ www.wiley.com/DiscoveringSql

 ‰ www.Wiley.com/Discovering SQL

Even the following strings defi ne different namespaces because of the special charac-
ters present:

 ‰ www.wiley.com/Discovering%20SQL

 ‰ www.wiley.com/~DiscoveringSQL

The namespace prefi x does not have to be used within an element. Instead, the default namespace 
can be defi ned like this:

<book xmlns =”http://www.wiley.com/DiscoveringSQL”>

<name>Discovering SQL</name>

<authors>

<author>Alex Kriegel</author>

</authors>

<publisher>Wiley Publishing, Inc.</publisher>

<price>$39.99</price>

</book>

In the preceding example, note the absence of a colon and an alias after xmlns, and the absence of 
the namespace prefi x in the element tags.

A single element may contain more than one namespace:

<book xmlns =http://www.wiley.com/DiscoveringSQL 

xmlns:auth=http://www.wiley.com/authors>

<name>Discovering SQL</name>

<auth:authors>

<auth:author>Alex Kriegel</auth:author>

</auth:authors>

<publisher>Wiley Publishing, Inc.</publisher>

<price>$39.99</price>

</book>

Here, we have two namespaces: the default one and a second one, called auth.

c11.indd 293c11.indd   293 3/15/2011 12:42:14 PM3/15/2011   12:42:14 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



294 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

XML as a DataSource

XML contains both data, and the metadata (information about how the data are formatted). This 
makes it very handy as a standard way to store and share information. There are several models to 
use when extracting information from an XML document. Currently, one of the most popular is the 
Document Object Model (DOM).

Accessing XML Documents in an Application

A programmer has two primary ways of interacting with an XML document: DOM and SAX:

 ‰ Simple API for XML (SAX) is essentially an XML parser: It reads an XML document and 
parses as it goes. As the parsing progresses, events are raised (for example, “start element,” 
“end attribute,” and so on) and it is up to the developer to handle the events. Generally, as 
an event is being processed, at least some of the XML text has not been seen yet.

 ‰ DOM represents a well-formed XML document as a tree of nodes. By the time you have a 
DOM document, all the XML text has been processed and is available.

XML Path Language: XPath

Any node in a DOM document has a path to that node, just as any fi le in your fi le system has a 
unique path to it from the root. A path to an XML node is constructed in yet another language: 
XPath. It may look like this:

/book/author[@name=’Alex Kriegel’]

In this example, we are looking for the author node that is a child of the book node (that in turn 
is a child of the root) and that has the attribute name with the value of Alex Kriegel. Much like 
fi les with the same name may exist in different folders, so the preceding path may return several ele-
ments: in fact, all the books, ever written or co-authored by a chap named Alex Kriegel.

In a DOM tree, not only are elements represented as nodes but also as attributes and other things 
(content values, comments) as well. Each node is addressable by an XPath expression.

XML Query Language: XQuery

An XML document may be queried on its own. The query language for XML is called XQuery and 
is based on XPath. XQuery is to XML what SQL is to databases. XPath 2.0 was developed concur-
rently with XQuery and that compatibility with the syntax and semantics of XPath 1.0 was a pri-
mary goal. There will be a number of examples of XQuery later in the chapter.

Encoding XML

There are a number of characters that have special meaning in XML, such as < or /. If these char-
acters have to be incorporated in an XML document as text, they have to be “escaped,” or encoded
(the parser must be instructed to ignore their special meaning and treat them as regular characters). 
There are two ways to accomplish this (as described in the following sections).

c11.indd 294c11.indd   294 3/15/2011 12:42:14 PM3/15/2011   12:42:14 PM



A Brief Introduction to XML x 295

Working with Entities

In some cases, there are very few special characters to deal with. They may be replaced with character 
references or defi ned as entities, and then replaced with entity references. (An entity reference is the 
short name of the entity, preceded by & and followed by ;.) Table 11-1 lists some predefi ned entities.

TABLE 11-1: XML Predefi ned Entities

ABBREVIATION FULL NAME SYMBOL

Amp Ampersand &

Apos Apostrophe ‘

Gt Right angle bracket >

Lt Left angle bracket <

Quot Quotation mark “

If some text in an XML document is required to have these special characters, the entity references 
may be used, instead:

x&gt; 10 &amp;&amp; x &lt; 15 

That translates into the following: 

x> 10 && x < 15

A character reference is similar to an entity reference, except that instead of a name, the character 
code is used, either in the decimal or hexadecimal representation. For example:

x&#62; 10 &#38;&#38; x &#60; 15

XML Character Data: CDATA

Sometimes these special characters exist in the text in great profusion; for example, in the case 
where a quotation of XML needs to be incorporated in an XML document.

For such an occasion, XML defi nes the CDATA section. A CDATA section is opened with this:

<![CDATA[

and ends with a

]]>

Characters in between are considered regular characters, with no special meaning to the parser. As 
an example, imagine that the page you are reading is XML-encoded (perhaps for transmission as a 
web page). Every example of XML would be enclosed in a CDATA section, like this:

<![CDATA[

<book>

<name>Discovering SQL</name>

c11.indd 295c11.indd   295 3/15/2011 12:42:14 PM3/15/2011   12:42:14 PM



296 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

<authors>

<author>Alex Kriegel</author>

</authors>

<publisher>Wiley Publishing, Inc.</publisher>

<price>$39.99</price>

</book>]]>

Presenting XML Documents

In the early days of the Internet, the information that was passed around included both what to
say and how to say it. The language of the information transfer, HyperText Markup Language 
(HTML), also derived from SGML, was an adaptation of a language that was especially designed 
to describe how to present text. So the text was passed around any which way and decorated with 
some special words (tags) to indicate how it should look when displayed.

Eventually, there was a separation of the what from the how. Enter Cascading Style Sheets (CSS). It 
is yet another language with the purpose of describing, how to present the various components of an 
HTML document (the font, the background color, and so on).

With XML came structured (and semistructured) text. Structure added more power to styling: 
Styling instructions could now be more fi ne-grained.

XSL and XSLT

eXtensible Stylesheet Language (XSL) is a styling language that transforms an XML document into 
visual format (for example, HTML); it uses XML itself to describe how various parts of an XML 
document should be presented. The XSL language uses XPath, mentioned earlier in this chapter, 
to identify specifi c items of an XML document to be rendered. eXtensible Stylesheet Language 
Transformations (XSLT) is yet another XML-based language that describes a transformation of a 
source XML document into another XML document or XHTML.

XSL is also frequently called XSL FO (FO stands for “Formatting Objects”) as 
opposed to XSLT (where T stands for “Transformations”).

You’ll see the SQL/XML functions output and XSLT working in tandem in the “Try It Out” section 
of this chapter.

XML and RDBMSs

There are reasons why XML is relevant to relational databases in general and to SQL in particu-
lar. As a means of information exchange, XML documents contain data that need to be extracted 
and added to the RDBMS in order to be processed. Also, an XML document can be considered 
a database unto itself. An XML document contains both data and metadata that describe data 
structure; this corresponds to one of the basic defi nitions of a database: data and storage. Viewed 
from this perspective, XML elements and attributes roughly correspond to tables and fi elds in a 
relational database, and document structure describes relationships — not unlike those found in 

c11.indd 296c11.indd   296 3/15/2011 12:42:14 PM3/15/2011   12:42:14 PM



A Brief Introduction to XML x 297

RDBMSs (though there are distinctive differences as well). As of early 2007, Microsoft Offi ce fi les 
or Open Offi ce fi les are stored in XML format; one can easily see how an MS Excel spreadsheet 
can be a database.

Yet despite the apparent advantages — self-contained, self-described, universally understood 
format — there is no rush to convert RDBMSs into XML native databases. On the most basic level, 
an XML database decoupled from its relational host is but a text fi le; in a sense, an XML database 
is a reincarnation of hierarchical database implemented in a sequential access data fi le, with all 
the advantages and limitations of it. This raises a number of issues for concurrency, performance, 
integrity, and security — all the problems that have been addressed over the years by RDBMSs. 
Nowadays, RDBMS databases routinely exceed a terabyte in size; I have yet to see an XML data-
base approaching several gigabytes, and still cranking out a half-decent performance.

There are two ways to process XML in relational databases: one is to implement native SQL/XML 
standards, and the other (to provide support for XPath and XQuery) is a generalized technology 
for interpreting, retrieving, and modifying XML data. Some of the RDBMSs covered in this book 
allow for intermixing these — allowing, for instance, XQuery expressions to be invoked directly 
from within SQL. Some provide packages, and others implement only rudimentary support, treating 
XML essentially as a big string.

The SQL/XML standards were fi rst addressed in SQL:2003; a revised and expanded standard was 
published in 2006 and then again in 2008; the next revision of the SQL/XML (along with other 
parts of the standard) is on target to be published in 2011.

XPath and XQuery are standards developed and maintained by W3C and are not SQL- or RDBMS-
specifi c. XQuery supports various expressions for processing XML data, for updating existing XML 
objects such as elements and attributes, and can be used for constructing new XML objects from 
within SQL. The XPath language provides the ability to navigate around the XML document tree 
and compute values for the nodes.

The subset of the language includes XSLT, which can be used to transform XML 
documents into different presentational formats (for example, HTML) to be 
displayed in a browser).

As service-oriented architecture (SOA) becomes the architecture of choice for enterprise-level devel-
opment that uses the XML format for communication between services, and XML becomes the 
foundation for document formats in many popular software tools (Microsoft Word OOXML, Open 
Offi ce ODF, Adobe FrameMaker — to mention a few), the importance of the seamless integration of 
XML into tried, tested, and true traditional data storage (the RDBMS) becomes obvious.  

Storing XML, which is character data, using internal data types such as CHAR, VARCHAR, or even 
CLOB/BLOB proved to be very ineffi cient as it required extracting and parsing the entire docu-
ment just to search, access, or modify a single node. The next approach tried was to disassemble 
(shred) XML documents and map them onto a set of relational tables. This was more effi cient, but 
it still incurred signifi cant overhead and did not address the rapidly growing complexity of XML 
standards, which now can contain recursive structures and other constructs that cannot be easily 

c11.indd 297c11.indd   297 3/15/2011 12:42:15 PM3/15/2011   12:42:15 PM



298 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

mapped onto a relational model. In addition, a shredded XML document ceases to be a document 
and loses its fi delity (which might be important for auditing purposes) and becomes diffi cult to 
change and manipulate.

There was a clearly defi ned need for native XML support from both the RDBMS vendors and the 
SQL Standard committee. The new SQL/XML standard provides the mechanism for incorporat-
ing XML into a relational paradigm and introducing XQuery statements into the SQL domain. The 
vendors have provided some proprietary SQL/XML implementations of their own, along with full 
(or partial) support for standard SQL/XML syntax.

SQL Standard introduced an XML-related specifi cation within ISO/IEC 9075-14:2003, which was 
then superseded by ISO/IEC 9075-14:2006. According to the International Standards Organization 
(ISO) documentation, it defi nes ways of importing and storing XML data in an SQL database, 
manipulating it within the database, and publishing both XML and conventional SQL data in XML 
form. In addition, it provides facilities that permit applications to integrate into their SQL code the 
use of XQuery, the XML Query Language published by the W3C, to access ordinary SQL data and 
XML documents concurrently. Table 11-2 lists the SQL/XML publishing functions.

TABLE 11-2: SQL/XML Standard Functions

SQL/XML FUNCTION DESCRIPTION

Xmlelement Creates a named XML element (node).

Xmlattributes Creates XML attributes.

Xmlroot Specifi es the root node of an XML document.

Xmlcomment Creates a comment for an XML document.

Xmlpi Creates an XML processing instruction.

Xmlparse Parses a character string and returns the parsed XML value. 

Xmlforest Creates a forest of XML values using the values in the columns of a table. 

Xmlconcat Concatenates individual XML values into a single value.

xmlagg() Aggregates rows, containing an XML value, into a forest of XML values.

The following SQL/XML query creates an XML document from the RDBMS table BOOKS (aliased as b):

SELECT

xmlelement(name “book”, 

xmlelement(name “bk_id”,b.bk_id),

xmlelement(name “title”,b.bk_title)) 

FROM books b

The resulting XML document would have the following structure (assuming that the database you 
are executing in the previous statement supports SQL/XML — see later in this chapter):

<book>

<bk_id>1</bk_id>

c11.indd 298c11.indd   298 3/15/2011 12:42:15 PM3/15/2011   12:42:15 PM



A Brief Introduction to XML x 299

<title>DiscoveringSQL</title>

</book>

Using the XMLFOREST function, the preceding query could be more concise, while producing the 
identical result:

SELECT 

xmlelement(name “book”, 

xmlforest(

b.bk_id as ID,

b.bk_title as Title

)

) 

FROM books b

The syntax for these basic queries is identical for IBM DB 9.7, Oracle 11g, and PostgreSQL 9.0, but 
is not supported by Microsoft SQL Server 2008, which opted for its own implementation.

While implementing the same standard, RDBMS vendors have chosen different venues, so there 
is no single approach that guarantees portability of the queries between different RDBMSs. The 
topic of XML in the world of relational databases is vast and clearly deserves a book of its own (for 
example, Querying XML: XQuery, XPath, and SQL/XML in Context, by Jim Melton and Stephen 
Buxton). Here we are going to provide only the basic principles and strongly encourage you to refer 
to vendors’ documentation for in-depth information.

There are a number of new developments in the area. One of these is SPARQL, 
a new query language and data access protocol for the Semantic Web (a runner 
up contender for Web 2.0). The specifi cation is under development by the RDF 
Data Access Working Group (DAWG — no, I am not kidding!) It is defi ned in 
terms of the W3C’s RDF data model and will work for any data source that can 
be mapped into RDF. While it is not a released standard (although it did become 
an offi cial W3C recommendation in January 2008), it deserves attention from 
anyone looking into the next generation of web infrastructure. It follows — to 
a certain extent — the familiar SQL syntax (SELECT statement), and the results 
can be returned as an XML document.

Implementation Details

Meanwhile, vendors and developers were left to their own devices, and a number of barely compat-
ible implementations of the XML support found their ways into the RDBMSs covered in this book. 
The desktop databases, such as OpenOffi ce.org BASE and Microsoft Offi ce Access, require XML 
documents to be shredded into set of relational tables and provide built-in support for importing 
and exporting data from and to XML, though it relates to programmatic support such as Microsoft 
ADO data access library (MS Access VBA) or OpenOffi ce.org Basic’s support for the SAX parser. 

The modern full-fl edged RDBMS servers provide native support for XML through XML data types 
and XML-specifi c features in their respective SQL dialects. Table 11-3 lists XML-related enhance-
ments introduced into the RDBMSs up to date at glance:

c11.indd 299c11.indd   299 3/15/2011 12:42:15 PM3/15/2011   12:42:15 PM



300 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

TABLE 11-3: Support for XML Across RDBMSs

RDBMS XML SUPPORT NOTES

IBM DB2 9.7 XML Data Type Full support for the built-in XML data type. 

For instance:

CREATE TABLE library (books XML);

XMLAGG 

XMLATTRIBUTES 

XMLCOMMENT 

XMLCONCAT 

XMLDOCUMENT 

XMLELEMENT 

XMLFOREST 

XMLGROUP 

XMLNAMESPACES 

XMLPI 

XMLROW 

XMLTEXT 

XSLTRANSFORM

Full support for SQL/XML standard.

Oracle 11g XML Data Type Full support for built-in XML data type.

An entire table can be created as sole storage of 

XML data type:

CREATE TABLE library OF XMLTYPE;

Or a column in a table can be declared:

CREATE TABLE library (books XMLTYPE);

XSU utility An advanced XML SQL utility specifi cally built for 

Java. Oracle Database allows for Java-written code 

to be both stored and executed within an Oracle 

database.

XMLELEMENT 

XMLATTRIBUTES

XMLCONCAT

XMLAGG

XMLCOLATTVAL

XMLFOREST

XMLTRANSFORM

Partial support for SQL/XML standard.

c11.indd 300c11.indd   300 3/15/2011 12:42:17 PM3/15/2011   12:42:17 PM



A Brief Introduction to XML x 301

RDBMS XML SUPPORT NOTES

DBMS_ XMLGEN 

Package

This Oracle DBMS package creates an XML docu-

ment based on an entire query.

SYS_XMLGEN This function creates an XML document for each 

record as retrieved by a query to an Oracle database.

Full support for both XPath and XQuery.

Microsoft SQL 

Server 2008

XML Data Type Full support for built-in XML data type.

XPath/XQuery Support Full support for both XPath and XQuery. 

PostgreSQL 9.0 XML Data Type Native support for XML data type:

CREATE TABLE library (books xml);

XMLCOMMENT 

XMLCONCAT 

XMLELEMENT 

XMLFOREST 

XMLPI 

XMLPARSE

XMLROOT

XMLSERIALIZE 

XMLAGG 

IS DOCUMENT

IS NOT DOCUMENT

Full support for SQL/XML standard.

XPath Support Full support for both XPath; limited support for 

XQuery.

MySQL 5.5 XML Data Type No built-in XML data type.

NB: With MySQL client command line utility one can 

use switch –X (or --xml) to be able to format output of 

a SQL query as XML.

ExtractValue

UpdateXML

No support for SQL/XML standard.

XPath support Only a subset of XPath is supported.

c11.indd 301c11.indd   301 3/15/2011 12:42:18 PM3/15/2011   12:42:18 PM



302 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

The three big RDBMSs vendors — Oracle, IBM, and Microsoft — have implemented full support 
for XML in their respective products. The open source PostgreSQL has arguably the richest features 
set for SQL/XML, while MySQL’s support is rudimentary at best.

Neither Microsoft Access nor OpenOffi ce.org BASE provide built in data types or SQL-specifi c 
support for XML; by virtue of having built-in programming environment (VBA and Basic, respec-
tively) you have DOM to manipulate XML documents.

Oracle 11g XML DB

Oracle responded to the XML invasion by developing Oracle XML DB, which fi rst debuted with its 
fl agship database version 9i R1 (there were also some basic XML handling capabilities in Oracle 8i). 
It was further enhanced in subsequent releases and versions. The latest version, Oracle 11g, provides 
robust XML capabilities, following the hybrid platform paradigm, which incorporates both rela-
tional and native XML data management.

Oracle supports the full range of XML Standard, including support for namespaces, XML Schema, 
SQL/XML, XQuery, XSLT, and DOM. An XML document can be stored in its native format, or 
shredded into a set of relational tables, using mid-tier libraries and built-in PL/SQL packages. The 
storage options for the XML documents include the following:

 ‰ Text-based storage — Ensures absolute fi delity of the document, which might be required to 
satisfy regulatory requirements.

 ‰ Object-based storage — Enables node-level data manipulation; used commonly with static 
XML schemas, and provides near-relational performance in data exchange confi gurations.

 ‰ Binary XML storage — Used for very dynamic documents in which XML structure changes 
frequently.

It is important to realize that any application utilizing XML storage remains 
agnostic of any particular storage mechanism (fi les, RDBMS) or underlying 
operating system. 

Oracle 11g fully supports SQL/XML, but XQuery-based processing offers greater fl exibility and speed. 

Here is the basic syntax to load data into the XML data type column as a character string:

UPDATE books

SET bk_notes= XMLType

(‘ ‘<books>

<book>

<title>SQL Bible</title>

<attributes>

<authors>

<author>Alex Kriegel</author>

<author>Boris Trukhnov</author>

c11.indd 302c11.indd   302 3/15/2011 12:42:18 PM3/15/2011   12:42:18 PM



A Brief Introduction to XML x 303

</authors>

<isbn>0-7645-2584-0</isbn>

<publisher>Wiley</publisher>

<published>2003-01-01</published>

<bought>2003-01-02</bought>

<price>49.99</price>

<note>First Edition</note>

</attributes>

</book>

</books>’)

WHERE bk_id=1;

In addition, an XML document can be loaded from a fi le or even an HTTP stream; please see 
Oracle documentation for a detailed discussion of the topic.

If required, the document can be bound to a schema (refer to the discussion ear-
lier in the chapter). The most common usage of an XML schema is as a mecha-
nism for validating that instance documents conform to a given XML schema. It 
can be used as a constraint when creating tables or columns of XMLType, as well 
as for defi ning how the contents of an XMLType instance should be stored.

Once data are loaded, they can be queried, modifi ed, or deleted. The syntax for these operations is 
rather straightforward. The following example uses the getCLOBVal method of the XMLType (see 
Table 11-4 for the full list of XMLType methods):

SELECT b.bk_notes.getCLOBVal()

FROM books b

WHERE bk_id=1;

The output is an XML string. The XMLType data can be queried using SQL/XML standard func-
tions XMLExists, XMLQuery, XMLTable, and XMLCast; as well as Oracle’s proprietary implementa-
tion of SQL/XML standard existsNode, extract, and extractValue.

TABLE 11-4: Selected Oracle 11g XMLType Methods

XMLTYPE METHOD DESCRIPTION

CREATEXML Static function for creating and returning an XMLType instance. 

EXISTSNODE Takes an XMLType instance and an XPath and returns 1 or 0, indicating 

whether applying the XPath returns a non-empty set of nodes. 

EXTRACT Takes an XMLType instance and an XPath, applies the XPath expression, and 

returns the results as an XMLType. 

GETBLOBVAL Returns the value of the XMLType instance as a BLOB.

continues

c11.indd 303c11.indd   303 3/15/2011 12:42:18 PM3/15/2011   12:42:18 PM



304 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

XMLTYPE METHOD DESCRIPTION

GETCLOBVAL Returns the value of the XMLType instance as a CLOB. 

GETNAMESPACE Returns the namespace for the top-level element in a schema-based 

document. 

GETNUMBERVAL Returns the value of the XMLType instance as a NUMBER. This is only valid if 

the input XMLType instance contains a simple text node and is convertible to 

a number. 

GETROOTELEMENT Returns the root element of the input instance. Returns NULL if the instance is 

a fragment. 

GETSTRINGVAL Returns the value of the XMLType instance as a string. 

ISFRAGMENT Checks whether the input XMLType instance is a fragment or not. A fragment 

is an XML instance, which has more than one root element. 

TOOBJECT Converts the XMLType instance to an object type. 

TRANSFORM Takes an XMLType instance and an associated stylesheet (which is also an 

XMLType instance), applies the stylesheet, and returns the result as XML. 

XMLTYPE Constructs an instance of the XMLType data type. The constructor can take in 

the XML as a CLOB or VARCHAR2, or take in an object type.

The XMLEXISTS SQL function is used to verify the existence of a particular element, attribute, or 
value. For example, to determine whether the XML document stored in the BK_NOTES column con-
tains information for the book with title “SQL Bible”, the following query can be used:

SELECT bk_notes

  FROM books

  WHERE XMLExists(‘/book [title=”SQL Bible”]’)=1

                  PASSING bk_notes);

The EXISTSNODE and EXTRACTVALUE SQL functions are proprietary to Oracle. The fi rst one checks 
whether the given XPath expression targets at least one XML element node or text node, and the 
second one returns a scalar SQL value corresponding to the result of the XPath evaluation for the 
XMLType instance. While not standard features, they come in handy when there is a need to traverse 
the XML document and select only records that have a particular node present:

SELECT 

extractValue(bk_notes, ‘/books/book/title’)       Title

,extractValue(bk_notes, ‘/books/book/publisher)   Publisher

CASE

WHEN existsNode(bk_notes, ‘/books/book/isbn’) = 1

THEN extractValue(bk_notes, ‘/books/book/isbn’)    ISBN

ELSE ‘no ISBN supplied

       END “grade”,

TABLE 11-4 (continued)

c11.indd 304c11.indd   304 3/15/2011 12:42:18 PM3/15/2011   12:42:18 PM



A Brief Introduction to XML x 305

FROM books

ORDER BY extractValue(bk_notes,’/name’) DESC;

The EXTRACT SQL function extracts the element or a set of elements from the document identifi ed 
by the XPath expression:

SELECT extract(bk_notes, ‘/books/book/isbn’) “ISBN”

FROM books

WHERE existsNode(bk_notes, ‘/books/book[title=”SQL Bible”) = 1;

The XMLCAST SQL function casts its fi rst argument to the scalar SQL data type specifi ed by its 
second argument. The fi rst argument is an SQL expression that is evaluated. Data types NUMBER,
VARCHAR2, or any of the date and time data types can be used as the second argument. The follow-
ing query returns only values for the BK_NOTES column XMLType, where the <title> child ele-
ment has the value “SQL Bible”:

SELECT XMLCast(

XMLQuery(‘/books/book[title/’ PASSING bk_notes

RETURNING CONTENT)

AS VARCHAR2(1000)) “TITLE”

FROM books

WHERE XMLExists(‘/books/book[title=”Discovering SQL”]’

                  PASSING bk_notes);

The EXTRACTVALUE SQL function returns values extracted from an XML document stored in the 
XMLType column:

SELECT extractValue(bk_notes, ‘/books/book/title’) “Title”

FROM books

WHERE XMLExists(‘/books/book/title’ PASSING bk_notes);

Updates for non–schema-based XML documents stored as CLOB values (unstructured storage) 
always update the entire XML document (replace the entire document). Updates for the documents 
that are stored as binary XML can be made on more granular levels — the elements and attributes 
themselves. Several SQL functions can be used to update XML data incrementally — to replace, 
insert, or delete XML data without replacing the entire surrounding XML document: 

 ‰ updateXML: Replaces an XML element. The following query returns an XML document 
with the element <grade> replaced with a different value. Of course, underlying data are not 
affected by the operation. Only returned XML was modifi ed:

  SELECT updateXML(bk_notes,

‘books/book’, ‘<isbn>0-7645-2584-9</isbn>’) AS XML

  FROM booksb;

 ‰ insertChildXML: Inserts an XML element or attribute elements as children of a given 
element node:

UPDATE books

SET bk_notes = 

c11.indd 305c11.indd   305 3/15/2011 12:42:19 PM3/15/2011   12:42:19 PM



306 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

insertChildXML(bk_notes, 

/books/book, 

                       ‘bought’, 

XMLType(‘<at>

<store>Powell’s Books</store>

<gift>Yes</gift>

</at>’))

WHERE bk_id=1;

 ‰ insertXMLbefore: Inserts XML elements of any kind immediately before a given element 
(other than an attribute node):

UPDATE books

  SET bk_notes = 

insertXMLbefore(

bk_notes, 

‘/books/book’, XMLType(‘<genre type=”technical”><description>Relational 

databases</description>

</genre>’)

WHERE bk_id=1;

 ‰ appendChildXML: Adds XML elements of any kind as the last child element of a given ele-
ment node. The following query inserts a new node <genre>, together with attributes as a 
child node for <book>:

UPDATE books

  SET bk_notes = 

appendChildXML(bk_notes, 

‘/books/book’, 

XMLType(‘<genre type=”technical”>RDBMS</genre>’))

WHERE bk_id=1;

 ‰ deleteXML: Deletes XML nodes of any kind. For example, the following query deletes the 
<grade> node for the book ID = 1:

UPDATE books

  SET bk_notes = 

deleteXML(bk_notes,  ‘/‘/books/book/genre’)

WHERE bk_id=1;

As with “regular” data type columns, Oracle allows for indexing XML tables and columns. The 
syntax is part of the standard CREATE INDEX statement. XML indices can speed up queries against 
an XML data type, although its proper use requires an understanding of XML in particular and 
indexing in general. All index-related operations, such as ALTER and DROP, are also fully applicable 
to the XML indexes. For more information on this, please refer to Chapter 2.

This chapter presents the very basics of XML support implemented in Oracle 11g; please refer to 
vendor documentation for comprehensive in-depth coverage.

c11.indd 306c11.indd   306 3/15/2011 12:42:19 PM3/15/2011   12:42:19 PM



A Brief Introduction to XML x 307

Database native web services let you expose PL/SQL stored procedures, func-
tions, and packages as web services and also include a web service that supports 
the execution of dynamic SQL queries and XQuery expressions (the database 
HTTP server, provided as part of Oracle XML DB Repository). Because XML 
is the lingua franca of web services, a native XML data type provides unique 
opportunities for designing SOA systems.

SOA is not a new concept. It is yet another incarnation of distributed comput-
ing where a system is assembled from components running on separate hardware 
(such as DCOM and CORBA). Many people confuse SOA with interconnected 
web services. While there is a certain amount of overlap, they are not the same 
thing. One of the metaphors we’ve found especially useful when communicating 
the essence of SOA to the uninitiated is the two mail delivery systems: courier 
and post offi ce.

If you need to deliver a package from point A to point B, a courier service could 
be one option. It is fast, it is secure and reliable. You can even trace the way the 
parcel will be delivered to the recipient. All you need to know is the exact loca-
tion (address) of the point B. Oh, and you need to pay the courier.

The second option could be USPS – the United States Postal Services. It is a lot 
cheaper than private courier. It is reasonably fast, reasonably secure and reliable. 
It also could forward your mail should your intended recipient have moved with-
out notifying you beforehand.

This is, in a nutshell, the difference between stand-alone web services and SOA. 
The latter is all about economies of scale, creating infrastructure with built-in 
fault tolerance (in case your courier company runs out of couriers just when you 
need to send a package) and the ability to orchestrate the deliveries according to 
some business rules. The former is brittle, non-scalable and has a very low fault 
tolerance barrier. It is also orders of magnitude more expensive in the long run 
(admittedly, SOA requires bigger up-front costs).

IBM DB 9.7 pureXML

XML capabilities within IBM DB2 9.7 database are implemented as a pureXML add-on. DB2 
also supports an XML data type natively (as opposed to text or shredded into a set of relational 
data tables) and is fully integrated into the DB2 infrastructure. It provides support for XQuery, 
SQL/XML, or a combination of both; XML validation is supported through an XML Schema 
repository that stores schemas and DTD. A set of SQL/XML functions was added to extend SQL 
support for the XML data type. The basic queries utilizing SQL/XML are endorsed by the SQL 
Standard committee.

c11.indd 307c11.indd   307 3/15/2011 12:42:19 PM3/15/2011   12:42:19 PM



308 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

IBM provides a number of extract, transform, and load (ETL) utilities 
(db2Import, db2Export, and db2Load) that support XML data types, as well as 
an application programming interface (API) for data bulk operations.

The INSERT syntax for the XML data type in the IBM DB2 9.7 database is rather straightforward; 
it does not need any special modifi ers for a character string to be recognized as XML. The only 
requirement is that the XML string must be well formed:

INSERT INTO books (bk_notes) VALUES (

‘<books>

<book>

<attributes>

<title>SQL Bible</title>

<author>Alex  Kriegel</author>

<author>Boris Trukhnov</author>

<isbn>0-7645-2584-0</isbn>

<publisher>Wiley</publisher>

<published>2003-01-01</published>

<bought>2003-01-02</bought>

<price>49.99</price>

<note>First Edition</note>

</attributes>

</book></books>’)

The entire XML document in the row can be updated (replaced with a new one) with the standard 
UPDATE syntax:

UPDATE books SET bk_notes = (‘  

‘<books>

<book>

<attributes>

<title>SQL Bible</title>

<author>Alex  Kriegel</author>

<author>Boris Trukhnov</author>

<isbn></isbn>

<publisher>Wiley</publisher><published></published>

<bought></bought>

<price></price>

<note></note></attributes></book></books>’’)

WHERE bk_id = 1;   

Updating an XML column can be tricky as there are many options to consider: updating with hard-
coded values, updating with parameterized values, updating values with schema validation, and 
updating the very structure of the XML document stored in the column. Here we discuss only the 
most common usage scenarios; please refer to IBM documentation for a more in-depth discussion.

It is a good practice to validate XML documents by using a schema. IBM DB2 9.7 provides a facility 
(built into every SQL syntax) for registering the XSD schema, which then can be used when manipu-
lating XML documents. 

c11.indd 308c11.indd   308 3/15/2011 12:42:19 PM3/15/2011   12:42:19 PM



A Brief Introduction to XML x 309

To update information permanently in the particular node of the column, the following query comes 
in handy:

UPDATE product

SET bk_notes = xmlquery( ‘transform copy $new_doc := $bk_notes

modify do replace value of $new_doc/books/book/title with “SQL Bible”

return  $new_doc’) 

WHERE bk_id=1;

As you can see, the basic element is an XMLQUERY function that allows you to embed the XQuery 
expression. The transformation starts with the optional keyword TRANSFORM followed by COPY,
MODIFY, and RETURN. The operations that follow MODIFY are replace, delete, and insert. Some 
elements of this syntax (for example, the aforementioned TRANSFORM keyword) are in conformance 
with the XQuery developing standard (Update Facility), which stands to be fi nalized in 2008, 
whereas other syntax in this query might not follow it.

Another option is to perform the update/transformation on-the-fl y while selecting the data in the 
query (the original value in the column remains intact):

SELECT xmlquery(‘transform

copy $new_doc:= $bk_notes

modify do replace value of $new_doc/books/book/title with “SQL Bible”

return $new_doc’) 

FROM books

WHERE bk_id=1;

Often, especially in stored procedures and application-specifi c operations, there is a need for param-
eterized values to be passed to update contents of the XML column:

UPDATE books

SET bk_notes = xmlquery( ‘transform 

copy $new_doc:= $bk_notes

modify do replace value of $new_doc/books/book/title with $val

return  $new_doc’ passing cast(? AS VARCHAR(100)) AS “val”) 

WHERE bk_id=1;

It is always a good idea to validate whether the data being updated is compli-
ant with the rules established in the schema associated with this particular 
document. 

Deleting the entire XML document is no different from deleting a value of any other data type, but 
deleting attributes within the document is another story. The following query deletes the attribute 
TYPE from the document:

UPDATE books

SET bk_notes = xmlquery( ‘transform 

copy $new_doc := $bk_notes

modify do delete $new_doc $new_doc/books/book@cover

c11.indd 309c11.indd   309 3/15/2011 12:42:20 PM3/15/2011   12:42:20 PM



310 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

return  $new_doc’) 

WHERE bk_id = 1;

To rename an element node (or an attribute) within the document (in the example that follows: 
pgrade for prod_grade), the following syntax comes in handy:

UPDATE books

SET bk_notes = xmlquery( ‘transform 

copy $new_doc := $bk_notes

modify do rename $new_doc $new_doc/books/book/title as “SQL Bible”

return  $new_doc’) 

WHERE bk_id=1;

Manipulating XML data types extends to the capability to add/remove elements of the document. 
The same syntax works when replacing the entire node structure with a new one:

UPDATE books

SET bk_notes = xmlquery(‘

copy $new_doc := $bk_notes

modify do replace $new_doc $new_doc/books/book/title

with<title>SQL Bible</title>

return  $new_doc’) 

WHERE bk_id=1;

Adding a new node structure requires precise positioning within the document. You can insert an 
element INTO another element, or you can add an element AS FIRST|LAST INTO another element, 
making the new element the fi rst or the last child of the existing element, respectively. 

It is possible to perform multiple operations with a single XQuery expression 
by supplying multiple DO actions within MODIFY, using parentheses to group 
them together.

You can specify before and after insertions to position a new element within the hierarchy. For 
example, the following code inserts the new node <book>, explicitly defi ning the node <books> as 
its parent node:

UPDATE  books

SET bk_notes = xmlquery(‘copy $new_doc := $bk_notes

modify

do insert <cover>paperback</product>

into $new_doc/books/book/

return  $new_doc’ )

WHEREbk_id=2;

It is important to remember when dealing with the XML data type that it requires a well-formed 
document; otherwise, IBM DB2 would throw a barrage of errors, which would hopefully enable you 
to pinpoint the source. 

c11.indd 310c11.indd   310 3/15/2011 12:42:20 PM3/15/2011   12:42:20 PM



A Brief Introduction to XML x 311

Special care must be taken while modifying repeating nodes (this would require FLWOR 
(pronounced “fl ower”) XQuery syntax; FLWOR is the most general expression syntax in XQuery. 
FLWOR stands for For, Let, Where, Order by, and Return.) These keywords enable you to organize 
loops and conditional execution within XQuery.

XSLT can be used to transform an XML document (see the discussion earlier 
in the chapter and in the “Try It Out” section). Because XSLT is expressed in 
XML, it can also be stored in the database in an XML type column.

XML columns in DB2 9.7 can be indexed for improved performance. While similar to a standard 
index created on any other native data type, XML columns require a somewhat different approach. 
Unlike the index on any other data type, an XML column can be indexed on partial data contained 
in the XML document.

To specify which parts of an XML column should be indexed, a form of XPath is used, along with 
an indication of which data type is to be used for the index. Only single XML columns can be 
indexed; there is no support for composite indexes. At the same time, multiple different indexes can 
be created for a single XML column.

Covering the entire XML-related features of IBM DB 9.7 would require a book of its own; this 
chapter, by necessity, is confi ned to the most basic features related directly to SQL Standard. Please 
see IBM’s documentation for more information.

Microsoft SQL Server 

When archeologists excavated the more ancient layers of Microsoft SQL Server, they found some 
indications of early usage of XML, around the year 2000. The initial approach, introduced in 
Microsoft SQL Server 2000, was to map XML data onto a set of relational tables. There were 
several new keywords introduced to Microsoft’s dialect of SQL to facilitate storage and retrieval of 
XML documents in this version: FOR XML, AUTO, EXPLICIT, RAW, XMLDATA, ELEMENTS, ROWSET, and 
OPENXML, along with numerous stored procedures for manipulating XML documents. 

SQL Server 2000

SQL Server 2000 had two keywords defi ned for dealing with XML: FOR XML and OPENXML, which 
are still supported by the latest SQL Server 2008 release, and in all probability will remain there. In 
some cases, these facilities might be more convenient than SQL Server 2008 approach, and therefore 
it pays to learn more about them.

FOR XML was used in a SELECT statement to instruct SQL Server to deliver the results of a query in 
XML format:

SELECT bk_title as “Title”, bk_price as “Price”

FROM books 

FOR XML RAW

<row Title=”SQL Bible” Price=”49.9900” />

<row Title=”SQL Bible” Price=”49.9900” />

c11.indd 311c11.indd   311 3/15/2011 12:42:20 PM3/15/2011   12:42:20 PM



312 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

<row Title=”SQL Server 2000 Weekend Crash Course” Price=”29.9900” />

<row Title=”SQL Functions” Price=”39.9900” />

<row Title=”Introduction to Database Management”  Price=”29.9900” />

SELECT bk_title as “Title”, bk_price as “Price”

FROM books 

FOR XML RAW

<book Title=”SQL Bible” Price=”49.9900” />

<book Title=”SQL Bible” Price=”49.9900” /><book Title=”SQL Server 2000 Weekend Crash

Course”Price=”29.9900” /><book Title=”SQL Functions” Price=”39.9900” 

/><book Title=”Introduction 

to Database Management”Price=”29.9900” />

The modes RAW, AUTO, EXPLICIT, and PATH determine the format of the resulting XML document 
(note that there is no notion of storing an XML document besides external fi les or character strings). 
The RAW mode makes every row as a single element with the table columns defi ned as attributes; this 
holds true regardless of the number of tables joined in the query. The AUTO mode formats documents 
according to a hierarchical structure of the parent/child tables referred to in the query; results for a 
single table are virtually identical to that produced with RAW mode. 

The EXPLICIT mode transforms the rowset that results from the query execution into an XML 
document. In order for EXPLICIT mode to produce the XML document, the rowset must have a 
specifi c format. The PATH mode, together with the nested FOR XML query capability, provide the fl ex-
ibility of the EXPLICIT mode in a simpler manner, but it does require the data set to adhere to strict 
specifi cations. The fi rst column must be named TAG, and can contain only non-negative integers; the 
second column must be named PARENT, and can be either NULL or a non-negative integer; and any 
other column after that must be formatted as TAGNAME!TAGID!ATTRIBUTENAME[!..] with TAGID as 
a positive integer. 

Consider the following query and its output:

SELECT 1    AS Tag,

NULL AS Parent,

bk_title AS  [element!1!Title],

bk_price AS [element!1!Price]

FROM books FOR XML EXPLICIT 

<rowTitle=”SQL Bible” Price=”49.9900” />

<rowTitle=”SQL Bible” Price=”49.9900” />

<rowTitle=”SQL Server 2000 Weekend Crash Course” Price=”29.9900” />

<rowTitle=”SQL Functions” Price=”39.9900” />

<rowTitle=”Introduction to Database Management” Price=”29.9900” />

OPENXML serves the opposite function: It creates a rowset from an XML document that exists in 
the fi le system or assigned to a variable. When an XML document is generated on-the-fl y, the 
function is used with built-in stored procedures sp_xml_preparedocument and sp_xml_remove 
document. The former creates an actual document that can be loaded using the OPENXML
function, and the latter removes the document that is no longer needed. There are numerous 
limitations on the use of these procedures; please refer to the vendor’s documentation for more 
information.

c11.indd 312c11.indd   312 3/15/2011 12:42:21 PM3/15/2011   12:42:21 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



A Brief Introduction to XML x 313

Support for this approach was preserved (presumably for backward compatibility) and extended in 
SQL Server 2005 and 2008, in addition to completely new native XML support. It seems a safer bet 
to go with the more-standards-compliant XPath/XQuery features.

Support for XML is integrated into all the components in SQL Server 2008 and includes the following:

 ‰ Support for the xml data type

 ‰ The ability to use an XQuery expressions against XML data stored in columns and variables 
of the xml type

 ‰ Enhancements to OPENROWSET to allow bulk loading of XML data

 ‰ Enhancements to the FOR XML clause and the OPENXML function

SQL Server 2005 introduced the native XML data type, later enhanced in SQL Server 2008. This 
new data type allows for storage and manipulation of XML documents and fragments; it also imple-
ments a set of methods based on XQuery Standard. SQL Server 2005 and later allows for typed and 
untyped XML usage. As a rule of thumb, untyped XML should be used if there is no schema for the 
XML data or if schema validation is undesirable for some reason (for example, XML data contains 
unsupported components). Typed XML allows for full utilization of schema validation, storage, and 
query optimization based on the data type. Typed XML can contain XML content when used in 
columns, parameters, and variables.

The XML data can be entered into an XML data type column, either from a fi le (BULK import/
export capabilities) or from a character string within a standard SQL query. For example, this query 
inserts an identical string into the VARCHAR and XML columns:

INSERT books(mylib_id, books, books_xml)

VALUES (2

,’<books><book><attributes><title>SQL Bible</title>

<author>Alex Kriegel</author><author>Boris Trukhnov</author>

<isbn>0-7645-2584-</isbn><publisher>Wiley</publisher>

<published>2003-01-01</published><bought>2003--02</bought><price>49.99</price>

<note>First Edition</note>

</attributes></book></books>’

,’<books><book><title>SQL Bible</title><attributes>

<author>Alex Kriegel</author><author>Boris Trukhnov</author>

<isbn>0-7645-2584-0 </isbn><publisher>Wiley</publisher>

<published>2003-01-01</published><bought>2003-01-02/bought><price>49.99</price>

<note>First Edition</note>

</attributes></book></books>’)

While the syntax is identical, further manipulations of the respective fi elds would not be.

The XML document might (and usually should be) validated with the XML 
schema, which is created in the current database with the new CREATE XML SCHEMA 
COLLECTION statement. Once the schema is created, the XML data type can be tied 
to this particular schema. This is a fairly advanced feature for a beginner’s book; 
you may want to refer to other Wiley titles (such as SQL Bible, for example).

c11.indd 313c11.indd   313 3/15/2011 12:42:21 PM3/15/2011   12:42:21 PM



314 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

XML Data Manipulation Language (DML)

Microsoft SQL Server 2008 provides XML DML as a means to manipulate XML documents con-
tained in the XML data type fi elds. The XML DML adds the following case-sensitive keywords to 
XQuery: insert, delete, and replace value of; they work together with the modify() method 
implemented in the XML data type itself (see Table 11-5 for a full list of XML data type methods).

TABLE 11-5: Microsoft SQL Server 2008 XML Data Type Methods

XML DATA TYPE METHOD DESCRIPTION

Query Specifi es an XQuery against an instance of the xml data type. The 

result is of xml type. The method returns an instance of untyped XML.

value Performs an XQuery against the XML and returns a value of SQL type. 

This method returns a scalar value.

Exist Returns a bit that represents one of the following conditions: 1, repre-

senting True, if the XQuery expression in a query returns a nonempty 

result (at least one XML node); 0, representing False, if it returns an 

empty result, and NULL if the xml data type instance against which the 

query was executed contains NULL.

Modify Modifi es the contents of an XML document. Use this method to modify 

the content of an xml type variable or column. This method takes an 

XML DML statement to insert, update, or delete nodes from XML data. 

The modify() method of the xml data type can only be used in the 

SET clause of an UPDATE statement.

Nodes The method is useful when you want to shred an xml data type 

instance into relational data. It allows you to identify nodes that will be 

mapped into a new row.

The syntax for inserting a data/node into an existing XML document stored in an XML data type 
column is straightforward:

INSERT

XQuery Expression|XML Instance 

(

{as first | as last} into | after | before

XQuery Expression|XML Instance

   )

For example, to insert a new element — say, a book cover attribute  — into an XML document 
inserted in this chapter, the following query can be used:

UPDATE books

SET bk_notes.modify(‘insert <cover>1000</cover> as first

into(/books/book/attributes)[1]’)

WHERE mylib_id=2;

c11.indd 314c11.indd   314 3/15/2011 12:42:21 PM3/15/2011   12:42:21 PM



A Brief Introduction to XML x 315

This creates a new element <cover>soft</cover> and places it as the fi rst child of the 
<attributes> parent element. 

The specifi cation at the end of the XQuery expression [1] ensures a single target 
element — the fi rst one, even though multiple elements might be present in the 
document.

Replacing values within an XML document is also very transparent and also done within the 
modify() method of the XML data type. For example, to replace a value of the <name> element, the 
following statement can be used:

UPDATE books

SET bk_notes.modify(

‘replace 

value of (//books/book/title/text())[1]

with  “SQL Bible 2nd Edition”’)

WHERE mylib_id=1;

The insertion/replacement/deletion can be based upon certain conditions speci-
fi ed within an XQuery expression using the IF expression. 

All modifi cations — insertions, updates, and deletions — are performed in similar fashion: using 
the MODIFY method of the XML data type and XQuery expression. To select information from an 
XML document, the query() method of the XML data type instance is used. For instance, the fol-
lowing query extracts just <title> information:

SELECT bk_notes.query(‘/books/book/title’) 

FROM books

WHERE mylib_id=2;

To extract a single value from either an attribute or an element, you use the value() method. The 
following query extracts the value of the fi rst <width> element, and casts it as an integer:

SELECT bk_notes.value

(‘(/books/book/attributes/price)[1]’, ‘float’ )

FROM books

WHERE mylib_id=2;

Casts to an XML data type; a common language runtime (CLR) user-defi ned type; or the image,
text, ntext, or sql_variant data types are not allowed, but you can use any other built-in SQL or 
even user-defi ned data type.

To utilize values contained within the XML document, SQL Server 2008 provides the exist()
method with its XML data type. For example, the following query returns all bk_d(s) for 

c11.indd 315c11.indd   315 3/15/2011 12:42:21 PM3/15/2011   12:42:21 PM



316 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

books that have an “SQL Bible” value in the <title> element contained within the BK_NOTES
document:

SELECT bk_id

FROM books

WHERE bk_notes.exist

(‘//books/book[title=”SQL Bible”]’)=1

XML data type columns within Microsoft SQL Server 2008 can be indexed to increase perfor-
mance. The indexes fall into two broad categories: primary index and secondary index. 

It is possible to create a full-text index on XML columns that indexes the con-
tent of the XML values, but ignores the XML markup. The primary XML index 
indexes all elements, values, and paths within the XML instances in an XML 
data type column. One can query the sys.xml_indexesINFORMATION_SCHEMA
view to retrieve XML index information.

Dropping and modifying the XML indexes is no different from any other type of index supported 
by Microsoft SQL Server 2008.

The presented information and the examples cover only the basics of the XML implementation 
in SQL Server 2008. Please refer to Microsoft’s documentation for an exhaustive discussion on 
the subject.

PostgreSQL 9.0

The open source PostgreSQL database provides arguably the most support for XML storage and 
manipulation. For starters, it adheres to SQL:2006 standards providing SQL/XML facilities and 
XQuery support, as well as native XML data types. (Please refer to Table 11-3 for list of all XML 
functions supported by the RDBMSs.)

PostgreSQL supports SQL/XML functions, and uses XPath expressions to navigate XML docu-
ments. There are no built-in validations for either DTD or XSD type instructions.

XML documents can be created on-the-fl y from the relational data stored in the database or by 
using inline data inside an SQL query using SQL/XML functions. Here’s one of many ways to create 
an XML document out of a relational table:

SELECT XMLElement(name book

XMLConcat(

XMLElement(name author, bk_author),

XMLElement(name title, bk_title) 

) 

)

FROM books WHERE bk_id = 1;

<book>

<author>Alex Kriegel</author>

<author>Boris Trukhnov</author>

c11.indd 316c11.indd   316 3/15/2011 12:42:22 PM3/15/2011   12:42:22 PM



A Brief Introduction to XML x 317

<title>SQL Bible</title>

</book>

PostgreSQL does not currently support XQuery, but the XPath specifi cation is implemented. Here is 
an example of extracting just titles out of an XML document stored in an XML column:

SELECT Xpath(‘/books/book/title/text()’, bk_XML) as Titles

FROM books;

Titles

-----------

{SQL Bible}

{Discovering SQL}

One of the neat features supported by PostgreSQL is the ability to emit programming code with 
XML processing instructions with a bit of help from the XMLPI function. For example, the follow-
ing code produces PHP script as an output:

SELECT xmlpi(name php, ’echo “Discovering SQL”;’);

xmlpi

-----------------------------

<?php echo “ Discovering SQL “;?>

PostgreSQL also has facilities to map a set of relational tables to an XML document with functions 
TABLE_TO_XML, QUERY_TO_XML, and CURSOR_TO_XML. Use of these functions simpli-
fi es extraction of the data in XML format, though you have to be very careful fi ne-tuning the input 
parameters. For instance, the following query transforms the table BOOKS into an XML string:

 SELECT table_to_xml(‘books’, TRUE, TRUE, ‘’);

<booksxmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”><title>Discovering 

SQL</title>

<author>Alex Kriegel</author>

<isbn>123456789</isbn></books>

MySQL 5.5

The open source MySQL database (now Oracle’s trophy following the acquisition of Sun 
Microsystems) provides somewhat limited support for XML. 

First, there is no XML data type, so MySQL recommends use of string data types such as 
VARCHAR and TEXT. As such, it is no different from inserting large character string into a fi eld 
using standard SQL statement.

Second, instead of the SQL/XML functions specifi ed in the standard and implemented by other 
RDBMSs, there are only two: ExtractValue and UpdateXML. Both functions accept the XPath 
expression as a parameter. Here are a few examples of how XML can be used in MySQL 5.5 rela-
tional database:

SELECT EXTRACTVALUE(bk_notes,’/books/book/attributes/title’) 

FROM books

WHERE bk_id = 1;

c11.indd 317c11.indd   317 3/15/2011 12:42:22 PM3/15/2011   12:42:22 PM



318 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

Updating XML document is also straightforward:

SELECTUpdateXML(bk_notes,’/books/book/attributes/isbn’,’978-0-470-22906-4’)

FROM books

WHERE bk_id = 1;

The functions are being used as part of a SELECT query, not as a stand-alone instruction, and can 
be combined in a single query.

XML for RDBMS: Best Practices

While it might be tempting to plunge into the wonderful opportunities offered by XML data type 
fl exibility and power, there are certain ramifi cations to be considered. And its coexistence within 
RDBMSs, and by extension SQL, is but a strategic alliance, and not a marriage made in heaven.

While there might be situations justifying a different approach, it is recommended to limit the use 
of XML for performance reasons and reducing the complexity of your SQL statements; just because 
you can do it does not meant you should. Here are some simple rules of thumb to adhere to when 
considering using XML in your database:

 ‰ Keep your XML documents read-only whenever you decide to store them in the database. 
UPDATE(ing), INSERT(ing) and DELETE(ing) operations on XML documents stored in 
RDBMS could be rather expensive.

 ‰ Keep your XML documents small, as in kilobytes small.

 ‰ When producing XML documents from your relational database tables, keep it simple and 
use built-in facilities (such as SQL/XML functions).

TRY IT OUT Producing and Presenting XML Output as a Web Page

In this activity, you will combine all the elements presented in the chapter to produce visual output of 
the data in XML format. Start by defi ning an XSL stylesheet to assist with the transformation of bare 
bones XML data into something more colorful. Save the following code in a fi le with the .xsl extension: 
DiscoveringSQL.xsl:

1. Download the document titled DiscoveringSQL.Ch11.zip.

2. Unzip the fi le into a folder on your local computer. Among the fi les you will see DiscoveringSQL
.xsl. You may view contents of the fi le in any compatible text editor, such as Notepad, or you can 
open it in your browser. The content should display the following structure:

<?xml version=”1.0”?>

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>

<html>

<body>

<h2>Books</h2>

<table border=”0”>

<trbgcolor=”tan”>

<th align=”left”>Title</th>

c11.indd 318c11.indd   318 3/15/2011 12:42:23 PM3/15/2011   12:42:23 PM



A Brief Introduction to XML x 319

<th align=”left”>Author</th>

<th align=”left”>ISBN</th>

<th align=”left”>Price</th>

</tr>

<xsl:for-each select=”books/book/attributes”>

<tr>

<td><xsl:value-of select=”title”/></td>

<td><xsl:value-of select=”author”/></td>

<td><xsl:value-of select=”isbn”/></td>

<td><xsl:value-of select=”price”/></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

3. Now, let’s extract some data to work with. Assuming that you have data entered into your BK_
NOTES column of XML data type, use your favorite RDBMS syntax to extract the XML string 
from there (refer to the preceding paragraphs). Any statements that produce valid XML will work: 
using SELECT from the books.bk_notes XML column, producing XML from a set of relational 
tables, or aggregating the document on-the-fl y. The following is an example of an output that you 
are after:

<books>

<book>

<attributes>

<title>Discovering SQL</title>

<author>Alex Kriegel</author>

<isbn>0-0000-0000-0</isbn>

<publisher>Wiley</publisher>

<published>0000-00-00</published>

<bought>0000-00-00</bought>

<price>00.00</price>

<note>First Edition</note>

</attributes>

</book>

</books>

4. In order to be transformed with XSL, the XML document must include references to the .xsl fi le. 
Add the following two lines at the very top of the preceding XML document and save it as a fi le 
with extension .xml (for example, DiscoveringSQL.xml) into the same directory where you put 
your .xsl fi le:

<?xml version=”1.0”?>

<?xml-stylesheet type=”text/xsl” href=”DiscoveringSQL.xsl”?>

5. Open your favorite browser and type the URL to your .xml fi le into the navigation bar. 

Normally, the operations to extract the XML documents from the RDBMS and publish them to 
the Internet would be automated with some programming language, including built-in procedural 
extensions such as Oracle’s PL/SQL or Microsoft SQL Server Transact-SQL (and they can be 

c11.indd 319c11.indd   319 3/15/2011 12:42:23 PM3/15/2011   12:42:23 PM



320 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

streamed directly to the client browser without the intermediate step of saving them to a fi le sys-
tem). An example of such code will be posted for download at the book site.

How It Works
A browser attempts to load an XML document and at the second line encounters instructions referring 
to a stylesheet to be applied to the document’s structure. If not for this instruction, all it would display 
is the code you see in Step 3 of this exercise.

But linking the Discovering.xsl stylesheet on the second line instructs the browser to transform the 
XML document into an HTML document — the one that the browser knows how to display. It formats 
it into a table with four fi elds and a header of tan color, and populates with data as a result of placing 
elements found with this instruction into the respective columns: 

<xsl:for-each select=”books/book/attributes”>

If you are familiar with HTML, you may come up with a different way of presenting XML data as 
HTML with an XSL transformation:

All Bits Considered

Not all data surrounding us is text-based, or most of it is not. The information comes to us in 
visual, audible, tactile forms, and the fi rst relational databases were poorly equipped to handle this 
(and some still are). Nontextual data pose considerable challenges for adoption into the SQL world: 
How do you compare pictures or sounds, for instance? Short of implementing image recognition, 
your best bet is comparing fi les. What if I changed the fi le format from .png to .jpeg; would it still be 
considered the same picture? Now, while impressive advances have been made, the RDBMSs are still 
best equipped to handle textual information and can handle “unconventional” data on case-by-case 
basis. Just remember that whether text, image, or MP3 sound fi les are used, for computers they are 
all long sequences of bits — ones and zeroes.

What Would Google Do?

It is an easy guess that search engine giants such as Google or Microsoft Bing use some kind of data-
base to index all the things that appear in the searches: web, images, videos, maps, news, books, 
and so on. And while the exact details are considered top secret by their respective companies, some 
information became public. For instance Google’s main revenue engine, AdWords, initially was run 
on a massively parallelized and customized MySQL open source database (and for all we know, it 
might still be using that database).

But how do you handle data that does not belong to you? After all, most of the information that 
shows up in your search window is not owned by Google, Yahoo, or Microsoft; some of it is copy-
righted, and most of it is stored halfway across the world. The answer is indexing.

It is not necessary to own the data as long as you know where to fi nd it. The search engine crawlers 
are busy day and night indexing web content and aggregating the information in some database, 
relational or otherwise. 

c11.indd 320c11.indd   320 3/15/2011 12:42:23 PM3/15/2011   12:42:23 PM



A Brief Introduction to XML x 321

Nonrelational databases will be discussed in the next chapter.

So, what can you store? Suppose that you’ve decided to upgrade your personal library application 
(and the database that backs it up) to pull data from Amazon.com instead of entering it yourself. 
The reasonably robust and fast Internet connection makes it feasible to rely on remote services being 
there when needed.

This process, SOA (mentioned previously in the chapter), although fascinating, 
is not part of this book. For an example on how you can use Amazon.com web 
services with the library database we’ve been using throughout this book, go to 
the Resources/Books section on http://agilitator.com.

You might decide to store a URL in your database. The obvious choices are a VARCHAR, although 
some RDBMSs might have to introduce a specifi c data type to handle this. (For example, INET type 
in PostgreSQL holds IP addresses and subnet in a single fi eld, Oracle’s UriType data type is designed 
to point to data both inside and outside the database, and MS Access provides the HYPERLINK 
data type.) In its more generic form, by using the VARCHAR data type, the BOOKS table would 
add an additional fi eld, BK_IMAGE_URL, to store the URL pointing to the image of the book 
(SQL Bible, 2nd Edition) on Amazon.com:

ALTER TABLE books

ADD COLUMN bk_image_url VARCHAR(1000);

UPDATE books SET bk_image_url=  ‘http://ecx.images-amazon.com/images/I/51N0-

kIK9BL._BO2,204,203,200_PIsitb-sticker-arrow-click,TopRight,35,-76_AA300_SH20_OU01_

.jpg’WHERE bk_id = 1

Alternatively, you might decide to store all the noncharacter data on your local computer (just in 
case the Internet goes down). In this case, the fi eld would be populated with a link to the fi le loca-
tion on your hard drive (or network if you share data on your intranet; you could download the pic-
ture fi le from Amazon.com at the URL provided in the previous example. Just make sure you save 
the picture as “cover.jpg.”): 

UPDATE books 

SET bk_image_url = ‘C:\DiscoverSQL\images\cover.jpg’

WHERE bk_id = 1

The code sample demonstrating how this hyperlink data are being used — in 
both Java and C# — can be downloaded from the Resources/Books section on 
books support site at www.wrox.com.

c11.indd 321c11.indd   321 3/15/2011 12:42:23 PM3/15/2011   12:42:23 PM



322 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

Storing binary and other unstructured data outside the database frees you from the limitations 
imposed by database storage (though these limits might be generous in the more recent versions of 
the database). Table 11-6 lists binary types supported in RBDMSs.

TABLE 11-6: Binary Data Types Support in RDBMSs

RDBMS DATA TYPE LIMITATIONS

Oracle 11g BLOB Up to 128 terabytes (TB).

CLOB Up to 128 terabytes (TB).

NCLOB Up to 128 terabytes (TB).

BFILE Essentially a pointer to unstructured binary data 

stored in fi les outside database. By defi nition, 

they are read-only and their size is limited only 

by limits of the underlying operating system.

LONG 

LONG RAW

Provided for backward compatibility only.

Numerous restrictions:

A table can only contain one LONG column; 

such columns cannot appear in certain parts of 

the SQL statement (for example, SELECT with 

GROUP BY clause); LONG RAW columns cannot 

be indexed, and so on.

IBM DB2 9.7 GRAPHIC (length) Stores fi xed length graphic string of up to 127 

characters.

VARGRAPHIC (length) Stores varying length graphic string of up to 

16,336 characters.

LONG VARGRAPHIC Provided for backward compatibility only. 

Stores varying length graphic string of up to 

16,350 characters.

DBCLOB/NCLOB A DBCLOB (double-byte character large object) 

value can be up to 1 073 741 823 double-byte 

characters long.

CLOB Up to 2 gigabytes minus 1 byte (2 147 483 647 

bytes) long.

BLOB Up to 2 gigabytes minus 1 byte (2 147 483 647 

bytes) long.

Character strings of the FOR BIT DATA subtype 

may be used.

c11.indd 322c11.indd   322 3/15/2011 12:42:24 PM3/15/2011   12:42:24 PM



A Brief Introduction to XML x 323

RDBMS DATA TYPE LIMITATIONS

Microsoft SQL 

Server 2008

VARBINARY (n|MAX) The n can vary from 1 up to 8,000 bytes; 

when MAX is used, the fi eld can store up to 

2,147,483,647 bytes (2 GB).

BINARY (n) The n can vary from 1 up to 8,000 bytes.

MAGE Provided for backward compatibility only. 

Variable-length binary data storing up to 

2,147,483,647 bytes.

SQL_VARIANT A catch-all data type, although some restrictions 

do apply; for instance, it cannot store an IMAGE 

data type.

PostgreSQL BYTEA Up to 1,073,741,824 bytes (1 GB).

MySQL BLOB Up to 65,535 bytes (65 KB).

MEDIUMBLOB Up to 16,777,215 bytes (16 MB).

LONGBLOB Up to 4,294,967,295 bytes (4 GB).

BINARY Up to 30 bytes.

VARBINARY Up to 65,535 bytes (65 KB).

Microsoft 

Access 2010

OLE Object aka “Long binary 

data” aka LONGBINARY

Up to 1,073,741,824 bytes (1 GB).

BINARY 

VARBINARY

Provided for compatibility with SQL Server; sub-

ject to SQL Server 2008 data type limitations.

OpenOffi  ce.org 

BASE

BINARY Up to 2,147,483,647 bytes (2 GB).

IMAGE (LONGVARBINARY) Up to 2,147,483,647 bytes (2 GB).

Microsoft went out of its way to make its desktop database user-friendly; as a 
result, most of the data types listed in the table will not show up in the data type 
selector in design view. If you are a brave heart who uses SQL to create database 
objects, feel free to use the listed data types in your queries!

Getting Binary Data In and Out of the RDBMS Table

Binary data was never meant for humans ever to be seen, much less understood. The “natural” num-
ber system we are dealing with on a day-by-day basis is decimal (base 10), and the most plausible 

c11.indd 323c11.indd   323 3/15/2011 12:42:24 PM3/15/2011   12:42:24 PM



324 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

reason for adopting it is that 10 is the number of fi ngers we have on both hands. There have been 
other systems used in the past: Babylonians developed a sexagesimal system (base 60), ancient 
Mayans used a vigesimal (base 20) number system, and the more familiar duodecimal system (base 
12) is still being used on some occasions (a dozen eggs, anyone?). 

For a variety of reasons, electronic computers were made to understand the binary system (base 2). 
At the most basic level, you deal with sequences of ones and zeroes, which on a higher level can be 
represented with hexadecimal values (base 16 counted system). To get a taste of what it would be 
like to use either of these, just fi re up the Calc(ulator) application on your Windows machine and 
observe that the number 2010 in the decimal system becomes 11111011010 in binary and 7DA in 
the hexadecimal number system (toggle the values with the Dec and Bin radio buttons). This is an 
idea of what you would see if you manage to open any binary fi le — a picture, an application, or an 
mp3 sound fi le in your favorite text editor.

How do you get a binary fi le into a binary data type column? The answer is this: It depends on the 
particular RDBMS implementation, and — no, there is no standard.

If you have relatively short binary data in character form, say hexadecimal 7DA, the syntax would 
be rather familiar. In Oracle 11g, the following statement would insert the binary value ‘7DA’ into a 
BLOB data type column, performing implicit conversion:

INSERT INTO books VALUES (2,’SQL Bible’,’978-0-470-22906-4’,

‘Wiley’,GETDATE(),49.99,GetDate(),’Second edition’, ‘7DA’)

The same statement for Microsoft SQL Server would be slightly different (note the hexadecimal 
marker at the beginning of the binary value):

INSERT INTO books VALUES (2,’SQL Bible’,’978-0-470-22906-4’,

‘Wiley’,GETDATE(),49.99,GetDate(),’Second edition’, 0x7DA)

IBM DB2 requires explicit conversion from characters representing binary data into an actual BLOB 
data type:

INSERT INTO books VALUES (2,’SQL Bible’,’978-0-470-22906-

4’,’Wiley’,GETDATE(),49.99,GetDate(),’Second edition’, BLOB(x’7DA’))

The MySQL Format would also differ, albeit in a single character:

INSERT INTO books VALUES (2,’SQL Bible’,’978-0-470-22906-

4’,’Wiley’,GETDATE(),49.99,GetDate(),’Second edition’, x7DA)

Now, it would be all hunky dory if you could enter all these binary bytes in character form; but 
hexadecimal 7DA in the preceding examples is only 2 bytes long. Imagine entering all 2,147,483,647 
bytes of your vacation picture. By hand. Ouch.

There are ways to make the process less painful. For a programmer, for instance, loading binary 
fi le into the database using programming language and an RDBMS-specifi c API (such as JDBC or 
ODBC) is nothing out of the ordinary. (Java and C# examples of how to write/read binary data into/
from a database will be available for download at the book’s support site.) 

c11.indd 324c11.indd   324 3/15/2011 12:42:24 PM3/15/2011   12:42:24 PM



A Brief Introduction to XML x 325

Microsoft SQL Server 2008 provides the handy OPENROWSET SQL function that allows for load-
ing a fi le from the fi le system and inserting/updating a binary column:

UPDATE books2

SET bk_cover_image =

(SELECT * FROM 

OPENROWSET(BULK N’C:\DiscoverSQL\images\cover.jpg’,

SINGLE_BLOB)as img)

WHERE bk_id = 1

The rest of the world decided to extend functionality for loading binary data outside of the SQL 
proper domain by supplying utilities — either external or built in to the database engine. Oracle 11g 
provides a DBMS_LOB package to accomplish the task in PL/SQL, and IBM DB2 UDB 9.7 has the 
IMPORT and LOAD utilities. 

Neither PostgreSQL nor MySQL provide built-in mechanisms for direct refer-
encing of the system fi les in an SQL query. They rely on external programmatic 
solutions instead.

Reading the binary data out in a standard SQL statement is rather useless because the returned byte 
stream needs to be processed by an application that “knows” how to interpret it into a picture, PDF 
fi le, or MS Word document. Therefore, a SELECT statement executed on a binary fi eld will return a 
long string of hexadecimal characters. The JPEG image inserted into the database will be displayed 
in your SQL client window as 0xFFD8FFE000104A46494600010100, and continue until all 33,636 
bytes are displayed (for a fi le of 33 KB, that is).

Some RDBMSs’ implemented features integrate SQL data types with fi les 
residing on the system’s hard drive, on the network, or even streamed over the 
Internet, allowing them to be treated just as regular binary data fi elds. Such 
examples include Microsoft SQL Server’s FILESTREAM storage and Oracle’s 
BFILE data type. These are fairly advanced features and are beyond the scope of 
this book.

Best Practices for Binary Data

The decision about where to store binary data is not an easy one, and multiple factors need to be 
considered. Storing binary data inside the RDBMS makes the system more self-contained — no 
worry that the resource your database stores link to will suddenly disappear, change, or be replaced 
with malware with exactly the same name. The data stored inside the database is managed by the 
database — this means security, backup, and recovery, to mention just a few.

There are quite a few advantages of storing binary data outside the database. One — overcoming the 
data type storage limitation — was already mentioned, but there are more. It is easier to put char-
acter data into or get character data out of a database than to put in or get out binary data. Storing 

c11.indd 325c11.indd   325 3/15/2011 12:42:24 PM3/15/2011   12:42:24 PM



326 x CHAPTER 11  WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA 

binary data in the fi le system makes it easier for the applications to use the data. The data fi les can 
be spread across the network, thus reducing load on the database server. This also affects perfor-
mance of your application and might simplify design.

Ultimately, the choice will depend on the particulars of the business use scenario — how data will 
be accessed, used, and manipulated; tradeoffs among security, design complexity, and performance.

W3C is developing standards on how to describe the media content of binary 
data in XML, bridging both formats together.

SQL and Text Documents

The ability to store 2 GB of text into a data fi eld is a neat thing to do. But how do you fi nd what 
you’re looking for inside that CLOB or TEXT data fi eld? RDBMS developers came up with inge-
nious solutions to enhance SQL syntax and provide search functions.

Microsoft SQL Server 2008 has FREETEXT and CONTAINS functions that enable including large 
text fi elds into search criteria. In order to be able to execute a query, though,  a full-text catalog must 
be created, and the fi elds must fi rst be full-text indexed. There is a difference between the SQL oper-
ator LIKE, which works on patterned search, and FREETEXT, which does not require patterns.

Here is an example of how you can search the NOTES fi eld in the BOOKS table in Microsoft SQL 
Server 2008:

USE [library];

GO

CREATE FULLTEXT CATALOG ctFT AS DEFAULT;

GO

CREATE FULLTEXT INDEX ON books(bk_notes) KEY INDEX PK_book;

GO

SELECT * FROM books WHERE FREETEXT(bk_notes, ‘second’ );

GO

The FREETEXT function in the preceding example could have been replaced 
with the CONTAINS function and still yield the same result. Nevertheless, there 
are subtle differences in the usage, and many more clauses in the syntax than 
would be appropriate to cover in a beginner’s book. The vendor’s documenta-
tion is your friend.

Oracle offers similar functionality with the CONTEXT indices and the CONTAINS function (of 
course, a full text index has to be created fi rst):

INDEX ix_full_txt ON books(bk_notes) INDEXTYPE IS CTXSYS.CONTEXT;

EXEC DBMS_STATS.GATHER_TABLE_STATS(USER, books, cascade=>TRUE);

SELECT * FROM books WHERE CONTAINS(bk_notes, ‘second’, 1) > 0;

c11.indd 326c11.indd   326 3/15/2011 12:42:25 PM3/15/2011   12:42:25 PM



Summary x 327

The full-text search setup is somewhat more convoluted in IBM DB2 9.7, but the query uses simi-
lar syntax and the CONTAINS function. Read all about the DB2 db2ts utility (or send me a note) 
before attempting to execute this query:

SELECT * FROM books WHERE CONTAINS(bk_notes,’second’)= 1

PostgreSQL implementation revolves around the tsvector and tsquery functions, along with database 
confi guration parameters. While being very powerful to assist in fuzzy searches, this is an advanced 
feature to be used with the full understanding of benefi ts and drawbacks.

MySQL requires a relatively simple process: First you need to create a full text index; then a query 
can be executed:

ALTER TABLE books ADD FULLTEXT(bk_notes);

SELECT * FROM books WHERE MATCH(notes) AGAINST (‘second’)

Neither Microsoft Access nor OpenOffi ce.org BASE have implemented full-text search facilities 
(though this functionality can be helped with clever programming in VBA and Basic, respectively).

SUMMARY

All fi ve RDBMSs offer at least some support for XML data types and related operations. The enter-
prise class RDBMS such as IBM DB2, Oracle and Microsoft SQL Server have implemented most of 
the features defi ned in SQL:2006 standard. The desktop databases such as Microsoft Access and 
OpenOffi ce.org BASE do not support XML as part of their SQL implementation, but enable manip-
ulating the XML documents using built-in languages: VBA and Basic, respectively. 

Details of implementation differ between various RDBMSs.

XML documents inside RDBMSs can be stored in various formats, including an unstructured char-
acter string, shredding into a set of relational tables, and a native XML data type. 

Storing, retrieving, and manipulating XML information involves understanding XQuery, XPath, 
and SQL/XML concepts because manipulation can be performed on very fi ne-grained 
levels — those of XML elements and attributes.

Columns of the XML data type can be indexed in a similar fashion as other built-in data type columns.

Even by itself, XML is a vast topic, and there are many sources of information about it, including 
the aforementioned www.w3.org, which is the “horse’s mouth” because it is the source of the origi-
nal specifi cation (it is not always easily intelligible, however). Other sources include vendor docu-
mentation, various blogs and pages, and, of course, books.

The full-text search in the text fi elds is made possible with creating special indices and utilizing SQL 
functions implemented by many RDBMS vendors.

The binary data are supported by all RDBMSs — either through specifi c binary data types or via 
linking to external storage. There are a number of limitations to be considered when manipulating 
binary data in SQL queries.

c11.indd 327c11.indd   327 3/15/2011 12:42:26 PM3/15/2011   12:42:26 PM



c11.indd 328c11.indd   328 3/15/2011 12:42:26 PM3/15/2011   12:42:26 PM



12
Not by SQL Alone

SQL is the language of relational databases, and databases, relational or otherwise, are all 
about data. As you have seen, data come in every imaginable shape and size, and need to be 
structured to some degree in order to be queried with SQL. After all, it is Structured Query 
Language. With ever-faster processing speed and ever-cheaper storage, the need for prepro-
cessing the data (conforming it to some data model in order to be queried) diminishes, and in 
some cases goes away. So does the need for SQL.

The latest buzz in the community is the NoSQL database. As with every latest and greatest 
idea, you might have heard about it before. It is a dumping ground for the data. The reinven-
tion of the idea given up for dead in the late 1970s was made possible by the unique combina-
tion of the cheap storage, fast CPU(s), and ubiquitous high-speed infrastructure to glue it 
all together.

There are new usages for SQL, as data are being increasingly distributed across the globe, and 
data consumers adapt to ever less preprocessed data with new computing paradigms.

THE FUTURE IS CLOUDY

Not so long ago, the data that were not already on your computer or on the one to which your 
computer was connected were distributed by sending media via mail (no, that would be regu-
lar mail). First there were fl oppy discs with storage density maxing out at 720KB (yes, kilo-
bytes); then came double density, 3.5-inch fl oppies encased in hard plastic with a whopping 
1.4MB of storage, which were replaced by CD and DVD in a few short years. 

About the same time, Bulletin Board Systems (BBSs) came into existence. Among other things, 
they allowed for downloading data (software, games, pictures) via dial-up connections. Then 
the Internet took off with the release of the fi rst Netscape browser, which opened the small 
universe of academia and technically savvy hobbyists to the entire world, and the data locked 
into the puddles of individual machines joined together to form the ocean of information 
sloshing around the globe 24/7.

c12.indd 329c12.indd   329 3/15/2011 1:27:23 PM3/15/2011   1:27:23 PM



330 x CHAPTER 12  NOT BY SQL ALONE

The data moved ever further from the individual computers. First, data were put on the servers 
to which client computers could have direct access through dedicated cable connections; then the 
dedicated connections were replaced by those provided as part of Internet infrastructure. Finally, 
the servers disappeared into virtual reality. You don’t have to buy hardware anymore to have a dedi-
cated server machine, not even an operating system. Now you can easily procure a virtual server at a 
fraction of the cost that, for all intents and purposes, behaves like the real thing. From there, it was 
only a matter of time before hosting of these virtual servers could be bought from a service provider 
on an as-needed basis. The cloud was born.

In many architectural diagrams, the Internet is represented as a fl uffy cloud, with connectors going 
from desktops, laptops, and server machines into this unknown void where the “magic happens.” 
This is the next database frontier, in which the on-the-premises servers go after the CFO fi nds out 
how much she can save by not owning the infrastructure. The cloud infrastructure still runs on 
some hardware somewhere, but it becomes inconsequential to your goals. As far as you are con-
cerned, you are buying storage and processing power. As the saying goes, “If you only need milk, 
why buy a cow?”

A cloud can be defi ned by the following characteristics:

 ‰ Self-service on demand — Both storage and processing capacity can be procured at a 
moment’s notice, and your application can be designed to do it automatically to meet 
increasing demand.

 ‰ Pay-as-you-go pricing model — You pay only for the resources used at the time when you 
use it.

 ‰ Capacity on demand — Your resources are virtually (pun intended) unlimited; you have all 
the computing power and storage in the world when you need it, and it grows and shrinks as 
you need it.

 ‰ Broadband access — Your cloud resources are not plugged into the Internet infrastructure; 
they are the Internet infrastructure.

The clouds come in all shapes and sizes: private, public, and everything in between. As you can 
imagine, the security concerns are a major considerations with the cloud.

The most prominent providers of the public cloud services are Amazon Web Services (AWS), with its 
SimpleDB platform; Windows Azure, with Azure SQL Server; IBM DB2 Cloud, as well as Google 
and Oracle, each providing services based upon their respective sets of technologies. The private 
clouds can be ether set up (and administered) by the organizations large enough to have such needs 
and capabilities, or outsourced to the cloud providers who would set up your very own private 
cloud — for a price.

Some cloud platforms, both proprietary and open source, are not tied to specifi c 
RDBMS vendors. While the specifi c services might differ, they all allow for on-
demand procurement of a server running an operating system (Linux, Solaris, 
Microsoft Windows) on which you can then install your database software. The 
remote administration capabilities complete the cycle.

c12.indd 330c12.indd   330 3/15/2011 1:27:28 PM3/15/2011   1:27:28 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



The Future Is Cloudy x 331

The data follow the storage, which is increasingly moving into the cloud, and it is only logical that 
the data management facilities go along. The shift is under way, from centralized data management 
to massively parallel distributed management, and most of it happens in the cloud.

Several models of the data in the cloud came into existence: one is a simple extension of the RDBMS 
servers, each running in a virtualized environment, and working in parallel processing the data. 
This is a part of the high-performance clustering capabilities of such RDBMSs as Oracle Real 
Application Clusters (RAC), MySQL Cluster, and DB2 Integrated Cluster Environment. You are 
still using SQL, but your query might be distributed across several databases/CPU for processing, 
and the results might be combined prior to being returned to you. Normally, you would not have to 
modify your SQL code to take advantage of parallel processing, though some RDBMSs allow speci-
fying hints to force parallel execution.

Setting up and administering clusters requires expert knowledge of the RDBMSs and related tech-
nologies, and are far beyond the scope of this book.

The relational databases are holding the ground remarkably well, and many of these implementations 
have RDBMSs behind them, yet nonrelational databases are no longer a thing of the past as new tech-
nologies make the shortcomings of a nonrelational data model (such as the key/value pair) less of an 
impediment. The nonrelational data model dispatched the relational concept altogether and is using 
the data model discarded decades ago but resurrected by cheap computing power and storage.

As with database terms and defi nitions, clustering has different meanings for 
different RDBMSs. In the context of Microsoft SQL Server, clustering refers to 
failover cluster, wherein one SQL Server (called node of the cluster) automati-
cally takes over tasks and responsibilities of a SQL Server that failed for some 
reason, providing uninterrupted data processing. For Oracle or DB2, a cluster 
represents a number of database servers working on tasks in parallel.

Key/Value Pair

The key/value pair (KVP) is a basic fundamental concept in organizing the data storage. As the 
name implies, it organizes data into a table with at least two columns, a key, to fi nd the value by and 
the value to be found. The result is an open-ended structure, not molded into any particular model, 
such as entity-relationship.

This is a concept found in confi guration fi les or lookup tables. The limitations are obvious, and as far 
as the enterprise data are concerned, this model was discarded in favor of relational databases back 
in the 1960s. Yet it made a comeback with advent of NoSQL databases. The term NoSQL was fi rst 
used back in 1998, only to be reinvented in 2009. Some remarked that the NoSQL term is misleading 
because it is not about “not using SQL,” but about ditching the relational model altogether.

We will take a closer look into particular NoSQL implementations such as Amazon SimpleDB, 
MongoDB, and Google BigTable.

A database based upon KVP is fundamentally different from relational databases we’re dealing with 
in this book. Table 12-1 highlights the differences.

c12.indd 331c12.indd   331 3/15/2011 1:27:28 PM3/15/2011   1:27:28 PM



332 x CHAPTER 12  NOT BY SQL ALONE

TABLE 12-1: Diff erences Between RDBMS and KVP

RELATIONAL DATABASE KVP DATA STORE

An RDBMS database is highly structured: sche-

mas, tables, rows; all data in the table belong to 

the same logical schema.

Based on the “domain” concept that is little more 

than a data bucket to store KVP tables; data can 

be organized into diff erent logical schemas on 

demand.

Well-defi ned data model based upon character-

istics of the data, not the application that will be 

using this data.

No data model, just a bunch of data buckets; the 

data can be shuffl  ed around to meet the applica-

tion’s needs.

Relationships are declarative, and are usually 

enforced.

No relationships are defi ned, either between 

domains or within a domain.

Attributes can be of many diff erent types. Heavy use of character strings; in some cases, all 

data are character strings.

Data are organized to model a specifi c entity, 

and its structure is fi xed.

Data item (value) is defi ned by the key, and 

can have diff erent attributes attached to it 

dynamically.

KVP databases are item-oriented, with all data pertaining to the item bundled together. An item 
within a domain can be thought of as a record that contains only two columns: key and value. 
Table 12-2 shows a possible KVP representation of a BOOKS table.

TABLE 12-2: The BOOKS Table Organized into a KVP Domain

KEY VALUE

1 Title: Discovering SQL

ISBN: 978-1118002674

Price: 34.99

Author: Alex Kriegel

2 Title: SQL Bible

ISBN: 978-0470229064

Price: 39.99

Author: Alex Kriegel, Boris M. Trukhnov

3 Title: Mindswap

ISBN: 978-0765315601

Price: 16.29

Author: Robert Sheckley

c12.indd 332c12.indd   332 3/15/2011 1:27:29 PM3/15/2011   1:27:29 PM



The Future Is Cloudy x 333

A domain roughly corresponds to the concept of a table in RDBMS terms, but it can contain any 
kind of data deemed necessary for a specifi c application. For example, books can be mixed with 
authors. This leads to duplication of the data, and is only feasible because of the inexpensive stor-
age availability. At the same time, this redundancy improves performance and scalability because 
no JOIN syntax is required to assemble records; it is all already there. The downside is reduced data 
integrity; duplicated data can quickly get out of sync. 

The data access in RDBMSs requires SQL, a well-defi ned standardized language. Access to data 
in a KVP data store is exclusively through the application programming interface (API) method 
calls that, by defi nition, are proprietary and change from implementation to implementation. Some 
implementations provide SQL-like syntax for search fi ltering criteria using a basic set of (in)equality 
operators (for example: <, >, =, >=, =< and !=). 

The API calls are almost exclusively based upon web services protocols, such as SOAP and REST, 
which run on top of the Internet HTTP protocol. By comparison, RDBMSs require native code 
provided by database drivers such as Java Database Connectivity (JDBC) or Open Database 
Connectivity (ODBC).

The KVP data store is a natural fi t with the cloud architecture (because of built-in web protocols 
support) and the object-oriented programming paradigm because objects can be easily serialized 
and reconstituted on demand. 

If you are not familiar with object oriented programming (OOP), think of an 
actual object, such as a book. It has properties, such as the title, ISBN number, 
price, or even content. It also can have methods, such as Open() or Annotate(), 
which can be used to perform operations on this object programmatically. See 
more on OOP later in the chapter.

All this can be represented in code and manipulated as a single, self-contained 
unit. This unit can be saved as a unit of data (serialized, in programming par-
lance) creating a snapshot, an instance of a book with a specifi c ISBN, price, and 
so on, which further can be associated with a key value to be retrieved by. See 
more information later in the chapter.

The KVP data stores have a number of drawbacks that limit their applicability. The most obvious is a 
complete absence of the integrity constraints, all of them: data integrity, entity integrity, domain integ-
rity, and so on. Since all logic is vested in the application that manipulates the data, there is no mecha-
nism guaranteeing that a proper value will be stored in the KVP data store domain. Because of the data 
redundancy, the synchronization might become a problem. There are no standards governing KVP 
data store implementations. Each will have its own proprietary API(s) and limitations. Furthermore, 
because of inherently multitenanted nature of the cloud, the KVP data store vendors impose additional 
limitations. For example, Amazon SimpleDB does not allow queries that run longer than fi ve seconds; 
with Google AppEngineDatastore, a query cannot retrieve more than 1,000 items at a time.

These drawbacks must be carefully weighed against the benefi ts when considering an application 
with a KVP back-end data store.

c12.indd 333c12.indd   333 3/15/2011 1:27:29 PM3/15/2011   1:27:29 PM



334 x CHAPTER 12  NOT BY SQL ALONE

What in the World Is Hadoop?

Finding and processing data in the distributed environment requires a different approach. The data 
can be anywhere; there might be duplicate sets of data; data can be stored on servers, virtual or oth-
erwise, running different operating systems. Still, they have to be found, processed, and presented 
back to the client as a single data set. Now, there is a hard way to get the data, create an extraction 
process for each data type, bring it over into a staging environment for cleansing and conforming, 
do merging and aggregation — dozens of custom operations for a single query! Then, there is the 
Google way. In case you’ve wondered how Google manages to serve relevant information with intel-
ligent search and lightning speed, all we can say is that we have no idea. The technology and con-
cepts behind the Google’s search engine are closely guarded secrets; yet some pieces do come out, 
such as MapReduce.

MapReduce is a software framework patented by Google that targets distributed computing on 
large data sets on clusters of computers. It has inspired numerous follow ups, such as Hadoop, an 
open source Java framework for processing and querying data on the server clusters.

The idea behind MapReduce is that instead of coding custom extract, transform, and load (ETL) 
processes, we have a standardized approach to fi nding and retrieving data based upon some search 
criteria, regardless of where and how these data are stored, as long as they have been indexed 
through KVPs. The mechanics of the data retrieval is complex, as you have to craft procedural code 
to take advantage of the framework and its distributed capabilities. 

All of this has very little to do with SQL, and even less with relational databases. MapReduce was 
never designed to be used as a database (Google has its distinctly separate distributed database, the 
BigTable, which we will discuss later in the chapter), and it certainly lacks the functionality and 
robustness afforded by RDBMSs. Yet, when comes to single-pass simple data search, it leaves rela-
tional databases far behind.

Not everybody is convinced that MapReduce is the greatest thing since sliced 
bread. Some point out uncanny similarities to earlier technologies (such as 
Oracle’s PL/SQL Table Functions), and some question the very approach itself. 
Nevertheless, the concept is powering most of the data searches on the Internet, 
both at Google and at many vendors running open source Hadoop implementa-
tions (such as Amazon, Yahoo, eBay, Facebook, and Twitter, among others).

Google’s BigTable, Base, and Fusion Tables

The BigTable is a proprietary Google database system built on top of Google’s fi le system, fi rst 
introduced back in 2004. Just like with Amazon SimpleDB, it is delivered as a service to the users of 
the Google’s AppEngine cloud platform. Google is using the BigTable data storage for its own appli-
cations, such as Google Earth and Google Finance.

The logical storage is organized as a “sparse distributed multi-dimensional sorted map,” 
according to the authors, and if you feel a little bit lost at trying to decipher what that means, 

c12.indd 334c12.indd   334 3/15/2011 1:27:29 PM3/15/2011   1:27:29 PM



The Future Is Cloudy x 335

you are not alone. Translated into layman’s language, it actually means a table with rows and 
columns, in which each cell is stamped with a date/time version. The dimensional component 
means that there might be multiple versions of the same cell (not unlike Oracle’s nested tables 
feature). This creates a three-dimensional structure, as opposed to a fl at rows/columns table 
found in RDBMSs. The tables in turn are divided into segments vertically by column groups, 
called tablets, spread across multiple virtual machines, which allows for load balancing: the 
queries can be redirected, or tablets can be moved to another machine, or even split further to 
meet increased workload.

By virtue of supporting MapReduce technology (along with a few other proprietary technologies, 
such as Chubby service), and coupled with (also proprietary) Google API/WebServices and compres-
sion technology, this structure allows for extremely fast data retrieval through SQL-like language 
dubbed GQL (Google Query Language).

GQL provides access to the App Engine data store query engine’s features using a familiar syntax, 
and Google provides support for the applications using its AppEngine service, as long as the applica-
tions are coded in Python programming language.

The learning curve is quite steep, considering the sheer number of concepts one has to master to 
make use of the service. Unless you are willing to climb this ladder, consider BigTable as a “big 
black box where data can be found.”

Google Base is an online database provided by Google that would store any type of data, from text 
to images to documents. It is a web service that likely uses BigTable as back-end storage. Its main 
use for outsiders is a craigslist-like functionality, with extended services for merchants.

The data can be added through so called data feed (a structured text fi le that has required attributes 
such as id, title, link to data, or price), or through Google Base data API (for advanced users, this 
requires programming skills to construct Atom RSS feed).

Google Fusion Tables is an experimental feature most recently (September 2010) posted on the 
Google Labs website; it might or might not have a future. The data are uploaded from either spread-
sheets or comma-separated values text fi les. The data then can be used to visualize the data as a 
map or a chart, and then published in the Internet.

Open source alternatives for the BigTable are Apache Cassandra and Hypertable 
(among the others). The Cassandra was initially developed by the Facebook 
team, and later became a top-level project in the Apache Foundation. It operates 
on modifi ed versions of KVPs, with keys being mapped to multiple values that 
are grouped in so called column families. The values in the column family for the 
key are all stored together which makes Cassandra a hybrid between columnar 
DBMS and the traditional row-based. 

The Hypertable’s inspiration came from the BigTable idea. The Hypertable 
open source database runs on top of a distributed fi le system, such as Hadoop. 
A Chinese language search engine, Baidu, became one of the major project’s 
sponsors in 2009.

c12.indd 335c12.indd   335 3/15/2011 1:27:30 PM3/15/2011   1:27:30 PM



336 x CHAPTER 12  NOT BY SQL ALONE

Amazon SimpleDB

Amazon SimpleDB is a distributed KVP database provided as part of the Amazon AWS cloud plat-
form. It is a subscription service with different pricing tiers, starting with free and offering different 
pricing based on actual usage. 

It is a highly scalable, virtually zero-administration, high availability KVP data store, written in the 
Erlang programming language. It provides web services interface to create and manipulate multiple 
data sets, to query the data and get the results back. 

The data are transferred to SimpleDB and organized using proprietary Web Services API. Amazon 
provides a Software Development Kit (SDK) for all major technologies out there, including Java, 
.Net, PHP, and Python, to name just a few. You would have to sign up with the Amazon SimpleDB 
service to be able to create domains and save/manipulate data in the Amazon AWS cloud; the code 
would be in Java, C#, or whatever technology you’ve decided to use. Here is the basic example of 
creating a domain (an equivalent of an RDBMS table) in Java:

// the credentials assigned by Amazon when the account is open

    String AWSAccessKey = <Amazon access key ID>;

    String AWSSecretKey = <Amazon secret key>

//establish connection to the AWS cloud

   AmazonSimpleDB sdbService = new AmazonSimpleDBClient(accessKeyId

                                                      , secretAccessKey);

// create a new domain “BOOKS”

    String domain = “BOOKS”;

    sdbService.createDomain(new CreateDomainRequest(domain);

//create new item (book)

List<ReplaceableItem> book = new ArrayList<ReplaceableItem>();

book.add(new ReplaceableItem().withName(“book_1”).withAttributes(

   new ReplaceableAttribute().withName(“title”).withValue(“Discovering SQL”),

   new ReplaceableAttribute().withName(“ISBN”).withValue(“978-1118002674”)));

//store the item into the domain BOOKS

    sdbService.batchPutAttributes(new BatchPutAttributesRequest(domain, book));

To query for a book within the BOOKS domain, you use a SQL like syntax, and then scroll through 
the collection of the items retrieved:

// create query

String qry = “select * from ‘BOOKS’ where ISBN = ‘978-1118002674’”;

//create request

SelectRequest selectRequest = new SelectRequest(qry);

//dsplay results in console

    for (Item item : sdbService.select(selectRequest).getItems()) {

         System.out.println(“title: “ + item.getName());

    }

c12.indd 336c12.indd   336 3/15/2011 1:27:30 PM3/15/2011   1:27:30 PM



The Future Is Cloudy x 337

This is rather similar to what you might have found in a regular RDBMS database, as the Amazon 
SDK abstracts the complexity. Yet make no mistake, Amazon SimpleDB is a nonrelational data 
store, meaning that none of the concepts you’ve learned so far would apply. Instead of entities 
locked in primary/foreign key relationships, you need to learn to think in terms of item collections 
organized into domains. The items are but tables containing key/value pairs, and they can be spread 
across multiple domains. Table 12-3 lists current limitations applied to the SimpleDB.

TABLE 12-3: Limitations of Amazon SimpleDB Usage

ATTRIBUTE UPPER LIMIT

Domains 100 active domains

Domain size 10GB

Number of attributes per domain 1,000,000,000

Number of attributes per item 256

Attribute size 1KB

Number of Items returned by a single query 2,500

Time a query is allowed to run 5 seconds

Number of comparison predicates in a query 20

Number of predicated per expression in a query 20

The primary business of Amazon AWS is “infrastructure as a service” that, 
among other things, provides the capability to stand up instances of virtual 
machines running the operating system of your choice: Windows, Linux, Solaris, 
FreeBSD, and so on. Once the server is up and running, you can install a com-
patible RDBMS there and have your very own cloud database. Microsoft SQL 
Azure (see later in the chapter) implements a similar idea, only SQL Server is 
already installed. Instead of creating its own infrastructure, Oracle decided, at 
least for the time being, to offer its 11g database through Amazon Web Services 
Elastic Compute Cloud (EC2).

MongoDB

According to the front page at www.mongodb.org, the MongoDB database is a scalable, high-perfor-
mance, open source database implemented in C++ programming language. It is available for download 
and runs on Windows, Linux, OS X, and Solaris operating systems, both 32- and 64 bits. It is one of the 
best known independent NoSQL data stores in existence, but you have to get it up and running yourself.

c12.indd 337c12.indd   337 3/15/2011 1:27:30 PM3/15/2011   1:27:30 PM



338 x CHAPTER 12  NOT BY SQL ALONE

It provides indexing of the data, executable code, such as JavaScript, to be stored as part of the doc-
ument, and it provides out-of-the-box support for MapReduce to take advantage of parallelization.

At the heart of the MongoDB implementation is a document (an item, in more generic terms) that 
roughly corresponds to a row in the RDBMS world. The documents are organized into collections (that 
are called domains elsewhere) that are the approximate equivalent of a table. The collections, in turn, 
are grouped into databases. A single instance of MongoDB can host several independent databases.

All is glued together with a JavaScript shell. Here is an example of how an INSERT might look 
in a Library database implemented in MongoDB, having PUBLISHED_DATE, ISBN, and TITLE 
defi ned as keys. The fi rst step would be to create a document that we call BOOK:

> book = {

     “title” : “Discovering SQL”

    ,”ISBN” : “978-1118002674 “

    ,”publish_date” : new Date()}

Which translates into something like this:

{

    “title” : “Discovering SQL “,

    “ISBN” : “978-1118002674”

    “publish_date “ : “Sun Dec 18 2010 10:23:21 GMT-0800 (PST)”

}

Now we can insert this object into the BOOKS collection in the Library database by using the 
INSERT method of the collection, at the shell prompt:

> library.books.insert(book)

To fi nd the book we would use a different method such as FIND():

> library.books.find()

Here’s the result we’re getting back:

{

    “_id” : ObjectId(“6a27d8bk2425g7j893f28b4h”)

    “title” : “Discovering SQL “,

    “ISBN” : “978-1118002674”

    “publish_date “ : “Sun Dec 18 2010 10:23:21 GMT-0800 (PST)”

}

Since our collection contained but a single document, this is all we got back because the FIND() 
method returns all documents in the database. We use a different method or specify some search 
conditions passed as parameters into the method. The other methods for data manipulation include 
READ(), UPDATE(), and DELETE().

The organization features quite a few high-profi le customs using MongoDB in production, such as 
Intuit, SourceForge, SugarCRM, and The New York Times.

Microsoft SQL Azure

SQL Azure is part of the Microsoft Azure cloud strategy. It provides SQL Server as a service 
hosted in the cloud. From the RDBMS perspective, nothing changes; you are still accessing SQL 

c12.indd 338c12.indd   338 3/15/2011 1:27:30 PM3/15/2011   1:27:30 PM



SQL and Business Intelligence x 339

Server 2008 relational database using the very same access mechanisms and language (Transact-
SQL) to store and manipulate the data.

In addition to all the usual benefi ts (and drawbacks) you get once your servers and your software are 
virtualized and managed somewhere you cannot quite put your fi nger on, you get built-in scalability 
and availability features. There are limitations, to be sure; one is a hard limit on storage size: 50GB 
per database and therefore limited scalability (though no limit on how many databases you might 
have). Other limitations include a built-in lack for distributed transactions support, the need for cus-
tom data partition logic, and so on.

With the right subscription level, your administration efforts will be off-loaded to Microsoft, your 
storage growth will be accommodated automatically, your data will be partitioned for performance 
and backed-up automatically, your fail-over clusters will be set up, and more. At least, this is the 
promise. Being relatively new to the game (a year or so), it still remains to be seen how Microsoft 
will deliver.

In addition to the SQL Azure, which is SQL Server(s) running up in the cloud, Microsoft offers 
Azure Table Storage which is essentially a key/value pair (KVP) data store along the BigTable lines: 
non-relation, non-SQL, using RESTful API to manipulate data. It provides scalability out of the box 
for up to 100TB and is blazingly fast; otherwise. it shares all limitations of the KVP database: no 
transactional support, no ACID (Atomicity, Consistency, Isolation and Durability, see Chapter 10 
for more information) compliance, limit of up to 1,000 items per query, and so on. Since the pricing 
model is per operation, these charges might add up for high volume systems.

SQL AND BUSINESS INTELLIGENCE

Every deployed RDBMS can be arbitrarily divided into two broad categories: online transaction 
processing (OLTP) databases and online analytical processing (OLAP) databases. Some deployed 
systems may represent a mix of both.

An OLTP system is designed to support transactions; for example, order processing, inventory 
tracking, recording employee data, and so on, in very granular detail. Such systems are designed to 
process large volumes of concurrent transactions as quickly as possible. In short, the main purpose 
of such a system is to accumulate structured information.

An OLAP system works with aggregates and is designed to make sense out of the accumulated 
data, allowing for analyzing data at various levels of abstraction. These systems are used to discover 
trends and analyze critical factors, perform statistical analysis, and so on. While important, speed 
is not the main feature of such systems, as OLAP queries typically process large amounts of data. 
Normally, OLAP databases extract information from several specialized databases called 
data marts.

The foundation of the OLAP is a data warehouse. Unlike OLTP databases, the data warehouses 
are not normalized (at least not to the same degree as OLTP databases). The data model of the data 
warehouse is different from the OLTP database, and there are at least two major fl avors deployed: 
dimensional and relational. The former is advocated by Dr. Ralph Kimball and operates within the 
concept of a specialized data marts comprising a larger data warehouse; the data are organized into 
fact tables and dimensions. The latter, pioneered by Bill Inmon, turns the concept upside down; data 
warehouses feed data to data marts, and the data are organized into a set of relational tables usually 
normalized to third normal form (3NF).

c12.indd 339c12.indd   339 3/15/2011 1:27:31 PM3/15/2011   1:27:31 PM



340 x CHAPTER 12  NOT BY SQL ALONE

The dimensional data warehouse deploys star and snowfl ake data models; the 
latter being extensions of the former. In both models, the base table is called a 
fact table; it contains core information about some business entity, say, sales 
fi gures. Surrounding this table (and related to it through a primary/foreign key 
relationship) are dimension tables, which contain relevant contextual informa-
tion (time, geography, products). The dimensions are selected arbitrarily, based 
upon some business needs, ideas, and available information. The star schema 
stops here, while the snowfl ake schema allows for more complex design where 
dimension tables can in turn also serve as fact tables.

Usually, data are gathered from various data sources (including nonstructured sources, such 
as text fi les or spreadsheets). Before it can be loaded, a data warehouse must be validated and 
cleansed. This is where the extract, transform, and load (ETL) process comes in. Once in the 
warehouse, the data are ready for being shaped into multidimensional cubes using visual tools 
(like Cognos, Brio, MS Analysis Services, and so on) or manually created using the MDX exten-
sion of the SQL (yet another dialect of SQL specifi cally created to address complexities of the 
OLAP “slicing 
and dicing”).

OLAP Rules

The term OLAP was introduced in 1993 by Dr. E. F. Codd, who also was the fi rst to propose the 
relational data model about 20 years earlier. At the heart of an OLAP database lies a cube, a mul-
tidimensional aggregate of information. With its various fl avors (determined by the actual data 
storage type), relational OLAP (ROLAP), multidimensional OLAP (MOLAP), and hybrid OLAP
(HOLAP), it is taking data analysis from a manual, tedious combination of art and science into a 
computer-aided, exact science. (OLAP does not remove the need to program for data analysis, yet 
it is a major improvement over just about any other way of analyzing large amounts of data.) Dr. 
Codd established 12 OLAP rules to follow, and most OLAP products conform to them in one way 
or another:

 ‰ Multidimensional conceptual view — OLAP operates with cubes of data that represent 
multidimensional constructs of data. Even though the name implies 3-D data, the number of 
possible dimensions is practically unlimited.

 ‰ Transparency — OLAP systems should be part of an open system that supports heteroge-
neous data sources.

 ‰ Accessibility — The OLAP should present the user with a single logical schema of the data.

 ‰ Consistent reporting performance — Performance should not degrade as the number of 
dimensions in the model increases.

 ‰ Client/server architecture — The architecture should be based on open, modular systems.

 ‰ Generic dimensionality — Not limited to 3-D and not biased toward any particular 
dimension. A function applied to one dimension should also be applicable to another.

c12.indd 340c12.indd   340 3/15/2011 1:27:31 PM3/15/2011   1:27:31 PM



SQL and Business Intelligence x 341

 ‰ Dynamic sparse-matrix handling — Related both to the idea of nulls in relational 
databases and to the notion of compressing large fi les, a sparse matrix is one in which not 
every cell contains data. OLAP systems should accommodate varying storage and data-han-
dling options.

 ‰ Multiuser support — OLAP systems should support more than one user at a time.

 ‰ Unrestricted cross-dimensional operations — Similar to the rule of generic dimensionality, all 
dimensions are created equal, and operations across data dimensions should not restrict rela-
tionships between cells.

 ‰ Intuitive data manipulation — Ideally, users shouldn’t have to use menus or perform complex 
multiple-step operations when an intuitive drag-and-drop action will do.

 ‰ Flexible reporting — Save a tree. Users should be able to print just what they need, and any 
changes to the underlying fi nancial model should be automatically refl ected in reports.

 ‰ Unlimited dimensional and aggregation levels — The OLAP cube can be built with unlimited 
dimensions, and aggregation of the contained data also does not have practical limits.

Most OLAP tools, either integrated or stand-alone, generally conform to these rules. There are 
many more rules defi ned by theorists, as well as de facto rules established by the heavyweight data-
base market players. Please refer to OLAP-specifi c literature and the vendor’s documentation for 
more information.

What is OLAP used for? Decision support, sales analysis, marketing, data consolidation, the list 
goes on. Once data are accumulated, OLAP steps in to make actual sense out of it by providing 
an ability to traverse data along predefi ned dimensions (Time? Region? Customer’s age?). OLAP 
provides multidimensional representation of data contained in OLTP data warehouses through the 
cube structure, which allows for creating views of data according to different sets of criteria, and 
manipulating them using sophisticated analytic functions.

ROLAP, MOLAP, and HOLAP

All these acronyms refer to the way data for the cube, the primary operational unit for the OLAP 
queries, is stored. The functionality, methods, and principles of OLAP remain identical across all 
three major RDBMSs:

 ‰ MOLAP refers to the situation when relational data for a cube, along with aggregation data, 
are stored in the cube itself. It provides for the fastest response, and is most appropriate for 
frequent use (like on-demand OLAP, without the need for real-time data).

 ‰ ROLAP refers to the situation when relational data for a cube, along with aggregation data, 
are stored in the relational database. This provides for real-time querying, though responses 
might be slower than MOLAP as all the data need to be assembled from scratch.

 ‰ HOLAP refers to the situation when relational data for a cube are stored in a relational data-
base, while the aggregation data are stored in the cube itself. It was designed to get the best 
of both worlds. It is somewhat faster than ROLAP, and the cube structure is much smaller 
than in the MOLAP case.

c12.indd 341c12.indd   341 3/15/2011 1:27:31 PM3/15/2011   1:27:31 PM



342 x CHAPTER 12  NOT BY SQL ALONE

The independent vendors’ market shrank dramatically in the last decade: Oracle acquired Hyperion, 
IBM swallowed Cognos, and SAP got both Business Objects and Sybase. Microsoft continues devel-
oping it own business intelligence platforms: SQL Server Analysis Services (SSAS) and SQL Server 
Integration Services (SSIS). 

Oracle 11g 

Oracle also has incorporated business intelligence capability directly into Oracle 11g Database by 
providing embedded OLAP Server with its Enterprise Edition of RDBMS. It allows OLAP cubes to 
be compiled directly to be executed directly against the OLTP database without transferring it into 
a specialized OLAP-specifi c database. This approach has its pluses and minuses. One plus would 
be that the need for a time-consuming and expensive data transfer (and transformation) process 
is eliminated. On the minus side is the fact that ad hoc cubes still have to be compiled fi rst, and 
running an OLAP query against your production database may slow down your operation with a 
resource-intensive process.

Oracle 11g Database lays the foundation for the Oracle OLAP, providing data storage and manage-
ment capabilities, analytic functions, security, and so on; whereas the OLAP services themselves 
support multidimensional calculations, forecast functions, models, and the like. A number of wiz-
ards are provided to guide users through the maze of choices.

The Oracle cube can be queried directly using SQL and some OLAP-related functions that were 
added to it. Because cubes already include aggregation on many levels, there is no need for the 
GROUP BY clause, and any joins required to access this data are already highly optimized. To use 
the dimensional nature of the cube, applications would utilize the Java OLAP application 
programming interface (API). Oracle’s Discoverer Plus OLAP is an example of such a dimensionally 
aware business intelligence tool that utilizes OLAP API(s). In addition, Oracle provides a set of Java 
OLAP APIs to allow users to program additional rich functionality, which enables building cross-
platform solutions using Java applications, applets, Java Server Pages, and so on. It can be installed 
separately, on middle tier hardware, or integrated with an RDBMS.

IBM DB2

Previous versions of IBM DB2 UDB provided OLAP capabilities through DB2 OLAP Server and 
OLAP Server Analyzer. Both are add-ons developed in collaboration with Hyperion (and its Essbase 
product) for Windows and UNIX customers, and a similar product for iSeries customers in collabo-
ration with SPSS. Then, IBM withdrew from marketing and supporting the DB2 OLAP Server (and 
OEM versions of the products from Hyperion and SPSS that subsequently were acquired by Oracle), 
and introduced DB2 Data Warehouse Edition (DB2 DWE). Later, it had acquired Cognos to be the 
core of its business intelligence (BI) strategy.

IBM supports only ROLAP and MOLAP functionality. IBM DB2 UDB also features OLAP Miner, 
branded by IBM as an “opportunity-discovery” component of the IBM OLAP Server. It applies data 
mining algorithms to the OLAP cubes to pinpoint the “surprise” areas and present them to an 
analyst for further investigation.

c12.indd 342c12.indd   342 3/15/2011 1:27:31 PM3/15/2011   1:27:31 PM



SQL and Business Intelligence x 343

It appears that our ideas about databases are infl uenced by our storage capabili-
ties. We still think in two dimensions, not far ahead of the original sheet of paper 
upon which the fi rst table was drawn. Since every idea of computer persistent 
storage is ultimately based on strings of ones and zeroes arranged on a fl at surface, 
so is our visualization of the data. No matter how you look at it, the access to a 
particular piece of data are by coordinates (x,y), which pretty much defi nes our 
thinking. Once we move to multidimensional storage (for example, holographic), 
the data table can become a sphere, for instance, where data are accessed by 
spherical coordinates, by a position vector. This paradigm shift, in turn, might 
require a different language to access and manipulate such a structure.

Microsoft SQL Server

Microsoft provides OLAP capabilities through SSAS, bundled with SQL Server, and has introduced two 
distinct dialects of SQL specifi cally designed to address the needs of BI based upon SQL Server SSAS.

Multidimensional Expressions (MDX)

The Multidimensional Expressions (MDX) language is used to manipulate the base unit of any 
OLAP analysis: the cube. The language is similar to SQL in many respects, and enables the manipu-
lation of data stored in OLAP cubes. Microsoft also provides external access interfaces like OLE 
DB, ActiveX Data Objects (ADO) ADO/ADO.NET and ASQL-DMO (Data Analysis Management 
Objects) for accessing OLAP functionality within SQL Server 2000–2008.

In addition to its predefi ned functions, MDX permits the creation of custom functions for use in the 
OLAP cubes. While having somewhat similar syntax to SQL, MDX is not an SQL extension; it is a 
different language, designed specifi cally for OLAP. Though it is not an open standard (being intro-
duced by Microsoft), it is one of the most popular OLAP tools, and enjoys solid support from OLAP 
vendors such as IBM, SAP, SAS, Brio Technology, and Microstrategy.

Data Mining Extensions (DMX)

The Data Mining Extensions (DMX) query language, which was introduced for data mining in 
Microsoft SQL Server, is used to create and work with data mining models. In the broadest sense, 
data mining is a process of discovering patterns in the data, “unknown unknowns,” so to speak. It 
usually involves very large sets of data to be sifted through, and requires sophisticated algorithms 
and advanced math techniques to be deployed.

Unlike MDX, it is SQL Server only, and to date hasn’t gathered much support from other vendors. 
The leaders in data mining, SAS and SPSS (recently acquired by IBM), prefer to stick to their own 
technologies, though there is a shift toward cooperation and standardization with advent of new 
technologies such as Predictive Modeling Markup Language (PMML) to represent learned knowl-
edge in XML format.

c12.indd 343c12.indd   343 3/15/2011 1:27:31 PM3/15/2011   1:27:31 PM



344 x CHAPTER 12  NOT BY SQL ALONE

XML for Analysis (XMLA)

XMLA, which stands for XML for Analysis, represents yet another industry standard for data access 
in BI systems. It is specifi cally attuned to the distributed cloud-based data, and incorporates web 
technology standards such as XML, SOAP, and HTTP protocols. The standard is maintained by the 
XMLA Council, with Microsoft, Hyperion (by extension, Oracle), and SAS as founding members.

As a language, it has only two methods executed over SOAP protocol: EXECUTE and DISCOVER. 
Both use MDX as their embedded query language to access data and use SOAP messages to shuffl e 
data back and forth between multidimensional OLAP data sources.

There is a robust open source OLAP market represented by products such as 
Pentaho Mondrian OLAP and Jedox PALO projects.

ELEMENTARY, MY DEAR WATSON!

A new era of was offi cially introduced on February 14, 2011 with an IBM Watson computer tak-
ing on a “uniquely human” activity — playing Jeopardy games. The machine was named after IBM 
founder Thomas J. Watson (should anyone wonder why it was not named after Sherlock Holmes), 
and it represents a next giant step towards something that was dubbed “artifi cial intelligence” in 
1956, and was almost exclusively in the domain of science fi ction ever since. 

For a long time it has been understood that simply to possess information does not equal ability to 
answer questions, let alone provide intelligent answers. A search engine, even the most advanced 
one, relies on keywords to search for information; it is up to humans to come up with clever strings 
of keywords, and it is ultimately a human task to decide whether the information returned con-
stitutes an answer to the question. Watson takes it a step further. It has to fi gure out the question, 
deduce the context, and come up with the statistically most-probable answer. This is very different 
from the Deep Blue computer which beat chess grandmaster Garry Kasparov in 1997. The chess 
game can be reduced to a set of well defi ned mathematical problems in combinatorics, a very large 
set to be sure, but ultimately susceptible to the number-crunching power of the computer — no 
ambiguity, no contextual variations. The IBM Watson had to deal with the uncertainty of human 
language; it had to interpret metaphors; it had to understand the nuances of human language.

The tables had turned again. Instead of humans learning the machine’s language to query for 
answers, it was the machine that learned to understand questions posed with all the ambiguity of 
the human language. With clever programming algorithms, the computer was able to “understand” 
natural language query, and come up with a correct answer — most of the time, that is.

Does Watson use SQL to come up with the answer? The details of implementation are a closely 
guarded secret, at least for now. Given the limitations imposed by the Jeopardy rules, the nar-
rowly focused purpose and relatively modest computing power (around 2,000 CPU “connected in 
a very special way,” according to Dr. Christopher Welty, a member of the IBM artifi cial intelligence 
group; that is a far cry from  the 750,000 cores of the IBM Mira super computer being built for 
DOE’s Argonne National Library), it most probably did not use a relational database to store data. 
Rather, it most likely relied on proprietary data structures and algorithms to search and retrieve the 

c12.indd 344c12.indd   344 3/15/2011 1:27:32 PM3/15/2011   1:27:32 PM



Column-Oriented DBMS x 345

information. Eventually, these advances will make it into the mainstream database technology, and 
the way we transform data into information into knowledge will change, again. The future is near.

COLUMN-ORIENTED DBMS

As the name implies, the column-oriented database stores data in columns as opposed to standard row/
fi elds orientation. This turns the relational model upside down, as it fl ies in the face of the normalization 
rules. The concept can be illustrated with AUTHORS table in our Library database (see Table 12-4).

TABLE 12-4: Columnar Representation of AUTHORS Table

AU_ID AU_FIRST_NAME AU_LAST_NAME

1, 2, 3, 4, 5, 6 Alexander, Boris, Mark, Paulraj, 

Allen, Gavin

Kriegel, Trukhnov, Gillenson, Ponniah, 

Taylor, Powell

One advantage comes from the fact that the data are not stored as a text in these columns, but is 
compressed into binary uniform data type (yes, a columnar database operates with but a single data 
type per column, as opposed to rows, which usually contain different data types); this allows for 
using advanced indexing techniques (bitmap indices, for example). Another advantage comes from 
the fact that the database optimizes physical storage, so all data can be read in one pass, without 
multiple calls to the storage (such as the hard drive). 

Unlike NoSQL options, such as SinpleDB or BigTable, the columnar databases actually do use SQL 
and sometimes even integrate with relational databases (for example, Infobright columnar database 
runs with MySQL, and Sybase IQ runs on top of Sybase ASE).

Most benefi ts are realized in data warehousing applications, which deal with aggregate data com-
puted over a number of data items. At the same time, it slows down insert/update/delete operations, 
making it a really poor choice for an OLTP database.

There are few commercial implementations and just a handful of open source implementations. 
Adoption is rather slow, though. Sybase IQ is at the forefront of enterprise-level, columnar database 
computing, and even it claims just over 3,000 world-wide installations (compare this with hundreds 
of thousands of servers running Oracle, DB2, and Microsoft SQL Server). Another leader in colum-
nar databases is Vertica (its founders include Dr. Michael Stonebraker of Ingres/PostgreSQL fame).

There are quite a few open source columnar databases usually built upon 
RDBMSs, such as MySQL or PostgreSQL, with complementary layers of storage 
and optimization to take advantage of the columnar data storage paradigm. The 
examples include Infi niDB and Infobright (both integrated with MySQL), while 
Greenplum and Aster have chosen PostgreSQL for their columnar extensions.

c12.indd 345c12.indd   345 3/15/2011 1:27:33 PM3/15/2011   1:27:33 PM



346 x CHAPTER 12  NOT BY SQL ALONE

OBJECT DATABASES

The object-oriented (OO) approach, an interesting academic topic in the 1980s, became mainstream 
in the early 1990s and the de facto standard for most of software development efforts thereafter (the 
object-oriented term is explained later in this chapter).

Nearly every modern programming language is (or claims to be) object-oriented; however, even 
though the OO approach proved to be successful in computer programming (in terms of increased 
development speed, increased robustness, and code maintainability), it hadn’t caught on in the data-
base market so far. The objects have structures of their own, and RDBMSs prefer to work with data 
shredded into bits and pieces of a normalized schema.

Translating objects back and forth between an application and set of relational tables makes perfor-
mance less than optimal. An obvious solution would be a system that allows direct storage of the 
objects and the ability to manage them in a fashion similar to data in relational tables. Although 
there are some purely object-oriented databases, their market share is rather insignifi cant. Many 
major RDBMSs vendors, including Oracle, DB2, Microsoft SQL Server, and PostgreSQL, provide 
some kind of objects for use with traditional RDBMSs: the object-oriented RDBMS (OORDBMS)
approach. Even though the object-oriented paradigm is not directly related to the contents of this 
book, we will briefl y introduce it in the database context in this chapter.

In the RDBMS world, OO refers to the ability of the database to store and retrieve instances 
(explained in the following paragraph) of objects in much the same way as XML documents are 
stored and retrieved, either by parsing into text and reconstituting on demand or by saving the 
entire object as-is, be it a Java or .NET object. In addition, some databases sponsor object data 
types, which introduce OOP principles into their procedural SQL programming.

Object-Oriented Programming (OOP) Paradigm

In object-oriented programming (OOP), everything is an object that can be defi ned as a distinct 
programming structure capable of containing data and having some relevant methods. Usually, 
objects are representations of real-life entities, reduced in their complexity to a few well-defi ned 
features and tasks they should be able to perform. A person, a tree, a book — all can be represented 
as objects; the same goes for some abstract objects such as bank account or data access object. 
Consider an object that models, say, a bank account. It might have the attributes “balance” and 
“account ID,” and the methods “withdraw” and “deposit,” all representing some functionality that 
is expected of an object of this type. The main principles of object orientation are encapsulation, 
inheritance, polymorphism, and identity, all of which will be discussed in the next paragraphs.

Objects and Classes

Each object has its own attributes and methods. For example, for the object CAR you can have such 
attributes as engine size, engine type, wheel size, interior color, exterior color, shift type, and so on. 
The methods may include “drive,” “turn(left|right),” and so on. 

The objects are defi ned through the programming concept of classes. An object is an instance of a 
class. The common analogy here is the blueprint of a house and the actual house built based on that 

c12.indd 346c12.indd   346 3/15/2011 1:27:34 PM3/15/2011   1:27:34 PM



Object Databases x 347

blueprint. You can instantiate many objects of the same class in the very same way as many houses can 
be built from the same blueprint, being different only in their attributes, color, or location, for example.

The three main concepts of OOP are encapsulation, inheritance, and polymorphism, as discussed in 
the following sections.

Encapsulation

The main idea of encapsulation is to hide implementation details and make them accessible only 
by explicitly defi ned methods that reduce the impact of changes made to the internals of the objects 
and enforce security. The nonprogrammer’s world analogy would be any programmable electronic 
device you may have at home, such as a VCR or a microwave oven. You normally can manipulate 
them only through buttons devised for this purpose, though it might be possible to open the cover 
and use your best judgment to control its operations through manipulating electronic components.

Security is usually enforced by using public, private, and protected methods. 
Public methods are available for all users of the class, private methods limit the 
internal code access, and protected methods are accessible to objects instantiated 
from classes inherited from the parent class.

Inheritance

Another important concept of OOP is inheritance. Inheritance is a mechanism that allows the pro-
grammer to create a new class based on (or inherited from) the old (existing) class. The new class, 
called (unsurprisingly) the child class, has all the attributes (properties) and methods of the old class 
(parent). Some of them can be ignored or modifi ed, while some new characteristics can be added. For 
example, subclasses Chevrolet, Ford, Honda, Toyota, and Nissan can be derived from class CAR. This 
allows for reuse of the code this class contains and makes the development process more rigorous.

Polymorphism

Polymorphism means that a given method can be applied to different objects. For example, the 
same method can perform logically consistent actions when it gets a different number of arguments 
or arguments of different data types. For example, a hypothetical function ADD can add numbers, 
concatenate strings, and increment a date by the given number of days, depending on the internal 
implementation. For the programmer, that means that as long as he or she calls the method with 
correct arguments, he or she does not have to worry about details of implementation and expect 
correct results.

The term object might cause some confusion when used within common rela-
tional database terminology. From the very beginning, in RDBMS language, 
a database object means a table, a view, an index, and so on. An object within 
your program is different from a database object.

c12.indd 347c12.indd   347 3/15/2011 1:27:34 PM3/15/2011   1:27:34 PM



348 x CHAPTER 12  NOT BY SQL ALONE

The closest the RDBMSs came to OO are user-defi ned types (UDTs), which allow you to create 
complex types out of those defi ned in the RDBMS. Imagine defi ning the data type BOOK that 
would have all the properties such as title and price, and then creating a table with a column of this 
data type. While such constructs are useful in transforming computer-oriented design into human-
oriented design, there are penalties to be paid: numerous limitations on how this custom data type 
can be used, decreased performance, and incompatibilities with SQL Standard and other RDBMSs.

Among the RDBMSs discussed in this book, currently only Oracle, DB2, Microsoft SQL Server, and 
PostgreSQL offer full support for UDTs. 

Compensating for the lack of OOP features, SQL Server 2008 can use .NET 
languages to create database-stored procedures. In addition, the ability to 
invoke legacy provides the ability to invoke and use ActiveX/OLE objects from 
within Transact-SQL code through system-stored procedures. Both Oracle and 
IBM DB2 allow for use of Java programming language in a similar fashion. 
PostgreSQL has a unique ability to use virtually any programming language to 
create stored procedures by registering it with the RDBMS.

With the advent of OOP came the idea of object storage. Relational databases, in spite of all the 
modernization, new data types, and functionality, remain by and large text-based; that is, they parse, 
store, and search textual data. While various new media formats such as video, sound, PowerPoint 
presentations, and Microsoft Word structured storage were accommodated by the inclusion of the 
new data types, essentially it remains the same text-based approach, although somewhat expanded.

As OO languages (C++, Java, C#, Visual Basic.NET, Delphi, Smalltalk, Eiffel) become increasingly 
popular, it began to makes sense to store information in objects as they are defi ned by the classes 
implemented in these languages. Imagine a Java class BOOK, which has its properties (attributes) 
and methods defi ned. When an application creates an instance of this class to add a new book, it 
populates its properties and then saves the instance into a database. In RDBMS context, this would 
mean extracting pieces of data and populating a number of tables. For an OO database, it would 
mean serializing the object as it is — as a binary, byte-code, or text description version — and still 
being able to track this object by, say, BK_ID, without the need to assemble all relevant data from 
the tables. This is what OODBMSs and OORDBMSs are all about.

While pure OO databases try to implement their own “pure OO” method of storing information, 
OORDBMSs rely on relational technology to establish a hierarchy of the objects. Because of a rather 
tight coupling of the OO database with the programming language, the application written for one 
database might be impossible to use with some other products. There are several initiatives to estab-
lish a standard for OODBMS, which so far have resulted in the ODMG 3.0 standard, in addition to 
a number of proprietary ways to do things.

While still a novelty, OODBMS are making it into the mainstream of the academic and corporate 
worlds, fueled mainly by adoption of OO technologies such as Java, Enterprise Java Beans (EJB), 
and Smalltalk.

c12.indd 348c12.indd   348 3/15/2011 1:27:35 PM3/15/2011   1:27:35 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Object-Relational Mapping Frameworks x 349

One of the commercial successes of OO databases is InterSystems Cache 
multiplatform DBMS, which supports both SQL and object interfaces to the 
data (through proprietary Cache ObjectScript), allowing for a mix-and-match 
approach. It has especially strong following in the U.S. healthcare system, being 
adopted as the DBMS of choice by many hospitals, and Electronic Health 
Records (EHR) management systems providers.

There are also open source DBMSs, such as the db4o embeddable database (with 
a corresponding commercial version from Versant) supporting Java and .Net, 
and the Zope Object Database, which supports objects for the Python program-
ming language.

The main advantage of the OODBMSs over OORDBMSs comes from eliminating the mapping of 
the objects from the application (client) to the RDBMS structure, something we will talk about in the 
next section. In the current environment, in which data are still coming as text or numbers, RDBMSs 
are much faster than comparable OODBMSs/OORDBMSs. At the same time, there are situations 
when the object approach might prove to be superior to the “old” relational model. While it seems 
that ORDBMS databases have made the biggest progress in the recent years, the jury is still out.

The SQL Standard ISO/IEC 9075 defi nes extensions of database language SQL to 
support embedding of SQL statements into programs written in the Java program-
ming language, commonly known as SQLJ. An object created with SQLJ has both 
advantages and disadvantages when compared with more traditional applications. 
The main advantage is that SQLJ is strongly typed; that is, if the class compiled, 
there would be no unexpected errors because all embedded SQL statements were 
checked against the database. The second advantage is that SQLJ programs are 
more concise than corresponding JDBC programs because SQLJ operates on a 
higher abstraction level. Disadvantages include an additional step in compilation 
(all SQLJ programs must run through a preprocessor fi rst), and the lack of support 
from many popular frameworks (such as Hibernate).

Because of standardization, SQLJ is uniquely suited for exposing the relational 
nature of a database through the OO front end (for example, object-relational map-
ping). In addition, many databases support invocating external modules as part of 
the RDBMS-defi ned data types. SQLJ seems like a natural candidate for these tasks.

OBJECT-RELATIONAL MAPPING FRAMEWORKS

Object-relational mapping (ORM) is a way to bridge two inherently different world views. The OOP 
languages model their world in terms of objects, properties, and methods, while relational databases 
use entities and relationships, and normalized data models are best suited to store and retrieve scalar 
values (numbers, character strings). To have an OO client software talking to a relational database 
means constant translation between the two; at some point, it became obvious that this translation 
process could be automated, and ORM was born. 

c12.indd 349c12.indd   349 3/15/2011 1:27:35 PM3/15/2011   1:27:35 PM



350 x CHAPTER 12  NOT BY SQL ALONE

There is no shortage of different frameworks created for every technology supporting OO out there, 
Java, .Net, Deplhi, Groovy, Perl, and Python, to name a few. Currently, the most popular by the 
number of users in the Java community is the Hibernate 3.0 ORM, with Microsoft developers using 
NHibernate, LINQ to SQL, and the nascent Microsoft Entity Framework, in no particular order.

Hibernate/NHibernate

Hibernate is an ORM specifi cally designed and implemented for the Java programming language. It 
is released as free open source software under the LGP license. The project was started back in 2001 
out of frustration with the complexity of EJB, then the hottest environment for constructing enter-
prise applications. The current implementation, in version 3, is certifi ed for the +Java Persistence 
API standard. Although being free and open source, it does have an owner, JBossInc, itself owned 
by Red Hat, which retains all intellectual property rights.

Its purpose is to map Java classes to a set of relational tables and provide two-way communications 
between the objects and the database. Once confi gured, it will automatically generate SQL calls 
and marshal data between the application and the database, freeing the developer to concentrate on 
implementing applications logic, not on persistence layer plumbing.

NHibernate is a direct port from the Java-based predecessor Hibernate. It is also free, open source 
software released under the LGPL licensing scheme. The latest version as of the time of writing is 
NHibernate 3.0, released on December 4, 2010; it supports Microsoft .Net framework up to version 3.5.

Microsoft LINQ and Entity Framework

LINQ is a .Net library extending .Net Framework family of languages. It purports to be a unifi ed frame-
work providing query, set, and transform operation abstraction layer to a variety of data sources, includ-
ing RDBMSs. The latter is called LINQ to SQL. The basic relational entities, such as tables, are defi ned 
as classes in the .Net code, and the query is constructed in an SQL-like syntax with the underlying LINQ 
libraries handling all complexities of the database communications, including establishing connections, 
submitting queries, and fetching back the result sets. The classes can be linked together in relationships, 
modeling the underlying RDBMS data model, or creating one dynamically.

Touted as the “fi rst step in much larger vision of an entity-aware data platform,” Entity Framework 
was introduced as evolution of ORM. The latest version as of the time of writing is 4.0, released 
in April 2010. Microsoft provides tools such as Visual Studio Entity Designer to facilitate creating 
of the data maps between .Net objects and entities in the RDBMS. It uses a variant of SQL, aptly 
named Entity SQL, to manipulate the data in the .Net classes inside the application. In order to 
work, an RDBMS-specifi c provider is needed. As of today, with the exception of HSQLDB, such 
providers were created for all databases discussed in the book.

SUMMARY

New developments such as cloud computing, XML, OLAP, NoSQL, and OO technologies continue 
to change the ways we are collecting, storing, and consuming information; the very nature of the 
information keeps changing and often involves new media and new formats. The very fundamentals 
such as rows and columns might go the way of the dodo, being replaced with new paradigms.

c12.indd 350c12.indd   350 3/15/2011 1:27:36 PM3/15/2011   1:27:36 PM



Summary x 351

Cloud computing represents the next step in distributed storage and computing. The main charac-
teristics of it are self-service on demand, resource pooling, capacity on demand, and a pay-as-you go 
approach. Infrastructure as a Service (IaaS) encompassed paradigms of Software as a Service (SaaS) 
and Platform as a Service (PaaS); storage and computing capacity on demand were made possible 
by advances in virtualization technology and ubiquitous connectivity. A variety of different frame-
works, ranging from proprietary to open source made cloud computing a reality. Cloud computing 
allows RDBMSs to be installed, confi gured, and administered on virtual environments, created and 
destroyed on demand. Combined with plummeting storage prices and ubiquitous connectivity, it 
also enabled the NoSQL phenomenon, a reincarnation of the key/value data organization that hear-
kens back to the prerelational era.

XML emerged as the de facto information exchange standard. Not surprisingly, relational databases 
responded by incorporating XML into their cores. The approaches taken by each of the RDBMS 
vendors might be different (XML documents might be mapped and parsed in familiar text-based 
records, or stored as complete documents), but the details of these implementations have become 
increasingly irrelevant to the vast majority of developers and users.

OLAP became the standard for BI. With the enormous amount of data, accumulated since the dawn 
of civilization (structured or otherwise), it was only a matter of time before someone would take 
data comprehension to the next level, which is to discover statistical trends. While not part of the 
RDBMS technology, BI does not make much sense without some kind of a database (relational in 
our case). The main processing unit of this information is a multidimensional cube, which can be 
manipulated using either some general-purpose language (such as Java) or some proprietary lan-
guage (such as Microsoft MDX and DMX). Some vendors bundle BI tools with their RDBMSs, and 
some BI tools are stand-alone tools built by third-party companies.

The OO approach became the de facto application programming standard, and as such made a com-
pelling case for OO databases. As we model the surrounding world in terms of objects, we need a 
place to store these objects. An RDBMS maps the objects to words; an OODBMS will accept them 
as they are. You may compare it with a book, in which images are created by your brain from mere 
words. A movie stores and communicates visual objects directly to your senses, bypassing the ver-
balization step.

OODBMSs may well be the wave of the future, which is notoriously unpredictable. As of today, 
many companies have implemented OO databases, designed to store and retrieve objects created 
within some particular language (Java, C++, Smalltalk, C# (.NET)). Eventually, new standards 
will emerge and performance gaps, if any, will be eliminated, making RDBMSs outdated. For 
now, RDBMSs remain the pillars of the business community, though they do pay lip service to the 
objects, incorporating them as data types but warning against the ineffi ciency of using them.

c12.indd 351c12.indd   351 3/15/2011 1:27:36 PM3/15/2011   1:27:36 PM



c12.indd 352c12.indd   352 3/15/2011 1:27:36 PM3/15/2011   1:27:36 PM



A
Installing the Library Database

The instructions in this appendix assume that all scripts are located in a single directory 
C:\discovery. Table A-1 lists all the scripts available for download from the book’s site 
www.wrox.com and www.agilitator.com. The .sql script fi le contains all Data Defi nition 
Language (DDL) creation code, including one for creating a database. The .dat fi le contains 
data to populate tables.

The examples are given for the most ubiquitous operating system, Microsoft Windows, but 
would run with cosmetic modifi cations on any other operating system for which a particular 
RDBMS installation is available. The SQL scripts will run identically in each environment 
regardless of the underlying operating system.

Before you can use any of the scripts, you must make sure that your RDBMS is 
up and running. For simplicity’s sake, the SQL syntax for creating a database 
does not use any of the options that normally accompany such an important act 
as that of database creation. Everything is left to default, which is not a recipe 
for a production database.

With the exception of PostgreSQL script, all other scripts contain database creation code. 
The PostgreSQL has a separate script for this purpose because it cannot run the CREATE 
DATABASE statement as part of a multi-command string. Additionally, there are two ver-
sions of the Oracle DDL script: one for SQL*Plus and one for new Oracle’s web interface. 
Each script was  specifi cally crafted to take into account respective RDBMS requirements such 
as data types, date formatting and so on. Please make sure that you are using the appropriate 
script for each RDBMS.

Step-by-step instructions for each of the most commonly used interfaces are given in the 
following sections.

bapp01.indd 353bapp01.indd   353 3/22/2011 1:56:49 PM3/22/2011   1:56:49 PM



354 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

TABLE A-1: Sample Library Database SQL Script Files

RDBMS SQL SCRIPT FILE

Oracle DiscoveringSQL.Oracle.Library.sql

DiscoveringSQL.Oracle.Library.4.Web.sql

DiscoveringSQL.Oracle.dat 

IBM DB2 DiscoveringSQL.DB2.UDB.Library.sql

DiscoveringSQL.DB2.UDB.dat

Microsoft SQL Server DiscoveringSQL.MSSQLServer.Library.sql

DiscoveringSQL.MSSQLServer.dat

PostgreSQL DiscoveringSQL.PostgreSQL.CreateDB.sql 

 DiscoveringSQL.PostgreSQL.Library.sql

DiscoveringSQL.PostgreSQL.dat

MySQL DiscoveringSQL.MySQL.Library.sql

DiscoveringSQL.MySQL.dat

Microsoft Access DiscoveringSQL.Access.Library.sql

DiscoveringSQL.Access.dat

OpenOffi  ce.org HSQLDB DiscoveringSQL.OpenOffi  ce.HSQLDB.Library.txt

DiscoveringSQL.OpenOffi  ce.Data.txt

ORACLE 10G XE

We are using Oracle 10g in this book because this is the latest Oracle Express edition freely available 
at the time of this writing; the latest commercial release is Oracle 11g. There is no difference in func-
tionality within the scope of this book, and the installation process described here will be identical 
between these versions.

Installing Library Sample Database with SQL*Plus 

1. Launch Oracle’s SQL*Plus utility; Figure A-1 shows the Windows XP menu location.

FIGURE A-1

2. At the SQL prompt, type the following statement: @C:\discovery\DiscoveringSQL
.Oracle.Library.sql. As shown in Figure A-2, @ instructs SQL*Plus to load and execute 
scripts contained in the fi le.

bapp01.indd 354bapp01.indd   354 3/22/2011 1:56:53 PM3/22/2011   1:56:53 PM



Oracle 10g XE x 355

FIGURE A-2

3. Figure A-3 shows successful execution of the DDL script and the syntax to load yet another 
script to populate tables with data.

FIGURE A-3

4. Load data into the newly created tables by executing the DiscoveringSQL.Oracle.dat fi le 
that contains the INSERT statement. The results are shown in Figure A-4. You can verify that 
your new Library database tables indeed contain data by executing SELECT statements against 
them (BOOKS, AUTHORS, and so on; see the database model in Chapter 2 of the book).

FIGURE A-4

bapp01.indd 355bapp01.indd   355 3/22/2011 1:56:53 PM3/22/2011   1:56:53 PM



356 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

In case SQL*Plus prints out any error message, you can try to troubleshoot the 
issue by looking on the Oracle website for the specifi c error produced or send 
an e-mail to discovery@agilitator.com (make sure to include as many details as 
possible).

Installing with Oracle Web Interface

The web interface provided with Oracle Express installation provides a very nice graphical user 
interface (GUI). It runs in the browser. The link on Programs/All Programs opens the site in a 
default browser. The examples in this appendix use Mozilla Firefox 3.6.13.

1. Launch the application GUI in the default browser and connect to the database as a SYSTEM 
user using the password you’ve created during the installation process (see Appendix B for 
details), as shown in Figure A-5.

FIGURE A-5

2. From the main menu, click the Administration icon and then click Create User task within 
the administration panel. This will take you to the screen displayed in Figure A-6. Make 
sure that the newly created user will have suffi cient privileges to create and query database 
objects. Alternatively, you can grant all these privileges (and more) by assigning the DBA role 
to the user (see Chapter 10 of the book on more information about Oracle privileges).

bapp01.indd 356bapp01.indd   356 3/22/2011 1:56:53 PM3/22/2011   1:56:53 PM



Oracle 10g XE x 357

FIGURE A-6

3. Log out of the system by clicking the Log Out link in the right topmost corner of the 
screen, and log back with the credentials of the just created user. This time, instead of the 
Administration icon, click the SQL icon, as shown in Figure A-7.

FIGURE A-7

4. Upload the script DiscoveringSQL.Oracle.Library.4.Web.sql to the Oracle administra-
tion site using the upload button. This script is slightly different from the one you would 
have used with SQL*Plus; it does not create a user.

You can upload more than one script at a time, as shown in Figure A-8. (While this seems 
like a wonderful idea, in our experience there are some bugs not yet worked out; working 
with only one script at a time tends to be more reliable.)

bapp01.indd 357bapp01.indd   357 3/22/2011 1:56:54 PM3/22/2011   1:56:54 PM



358 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

FIGURE A-8

5. Click the script’s icon to load it in the editor, as shown in Figure A-9, and click Run.

FIGURE A-9

6. Confi rm your command on the following screen (Figure A-10) by clicking Run again.

FIGURE A-10

7. You can check the results of the submitted script by clicking the View Results icon, as shown 
in Figure A-11.

bapp01.indd 358bapp01.indd   358 3/22/2011 1:56:54 PM3/22/2011   1:56:54 PM



Oracle 10g XE x 359

FIGURE A-11

The results of the script that created the Library database objects are displayed in Figure A-12.

FIGURE A-12

Oracle’s web interface offers another possibility to execute scripts through the SQL Command 
interface, as shown on Figure A-13.

FIGURE A-13

bapp01.indd 359bapp01.indd   359 3/22/2011 1:56:55 PM3/22/2011   1:56:55 PM



360 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

The SQL Command (see Figure A-14) allows you to run ad hoc SQL statements against the data-
base. The main drawback of using it for creating Library objects is its built-in limitation: It can only 
run one statement at a time. If you copy and paste, say, the entire contents of DiscoveringSQL
.Oracle.* fi les, it would return an error. In order to create all objects, you would have to run it one 
statement per database object (view, table, constraint). To populate the tables, you have to run one 
INSERT statement at a time.

Nevertheless, this interface comes in handy for the majority of the scripts used throughout the book 
to illustrate SQL concepts.

FIGURE A-14

IBM DB2 9.7 EXPRESS-C

IBM DB2 provides three different utilities to access its database server: the interactive command 
line processor (CLP), the commanA-line db2 utility, and the graphical user application Command 
Editor. Here we will discuss the latter two.

IBM Command Editor

1. Once the database server is up and running, launch the application from the IBM DB2 Í

Command Line Tools Í Command Editor menu option. It takes some time for the applica-
tion to start up. Figure A-15 shows the Command Editor GUI console with some SQL code 
already loaded.

bapp01.indd 360bapp01.indd   360 3/22/2011 1:56:55 PM3/22/2011   1:56:55 PM



IBM DB2 9.7 Express-C x 361

FIGURE A-15

2. Open the DiscoveringSQL.DB2.UDB.Library.sql fi le by clicking the Open Folder icon 
on the toolbar and navigating to the fi le’s location. Once the fi le is loaded into the pane, 
click the Execute button (a green triangle icon on the toolbar). Figure A-16 shows the 
results of the execution: The Library database and all database objects are created. The 
process might take up to several minutes, depending upon your computer’s characteristics.

FIGURE A-16

bapp01.indd 361bapp01.indd   361 3/22/2011 1:56:55 PM3/22/2011   1:56:55 PM



362 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

3. Once the Library database and its objects are created, connect to the Library database by 
clicking the Add button and selecting Library from a pop-up list. Then you can load the code 
contained in DiscoveringSQL.DB2.UDB.dat fi le to populate its tables with data. The pro-
cess and its results are shown in Figure A-17.

FIGURE A-17

4. You can use the very same window to query your database with query examples from the 
book. The results will show up on the Query Results tab.

IBM Command Window

1. The Command Window accessible from the same menu group: IBM DB2 Í Command Line 
Tools. It will open an MS DOS window and set the initial directory to the location of IBM 
utilities, as shown in Figure A-18.

FIGURE A-18

bapp01.indd 362bapp01.indd   362 3/22/2011 1:56:56 PM3/22/2011   1:56:56 PM



Microsoft SQL Server 2008 Express x 363

2. Figure A-18 also shows the commanA-line syntax to run the SQL script to create the Library 
database. The utility db2 accepts the fi le DiscoveringSQL.DB2.UDB.Library.sql from the 
directory C:\discovery. The switch (tvf) gives the DB2 special processing instructions, such 
as specifying commanA-line terminators an echoing command to the output window. Once 
the database and the database object are created, you may run DiscoveringSQL.DB2.UDB
.dat fi le in the very same fashion. The results of the data population script executed against 
the Library database are shown in Figure A-19.

FIGURE A-19

The third member of the command-line tools group is the interactive CLP 
utility. It allows you to execute SQL statements one by one, including SELECT 
statements.

MICROSOFT SQL SERVER 2008 EXPRESS

There is no lack of tools to access the Microsoft SQL Server, from the built-in graphical con-
sole SQL Server Management Studio, to the commanA-line interface SQLCMD, to thirA-party 
utilities such as Quest SQL Server Management Tools and open source SQuirreL introduced in 
Appendix D.

SQL Server Management Studio Express

The Management Studio is an integral part of SQL Server and is available as an adA-on for the 
Express editions. It is the primary tool for administering the SQL Server installation, and we are 
going to use but a small piece of it: the Query Analyzer.

1. Start up the SQL Server Management Studio from Programs Í Microsoft SQL Server 2008 
Í SQL Server Management Studio, and log onto your SQL Server installation, as shown in 
Figure A-20.

bapp01.indd 363bapp01.indd   363 3/22/2011 1:56:56 PM3/22/2011   1:56:56 PM



364 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

FIGURE A-20

2. Once the Management Studio consoler is up, click the 
New Query button at the top-left corner of the con-
sole, as shown in Figure A-21.

3. Load the fi le DiscoveringSQL.MSSQLServer
.Library.sql into the new query window by click-
ing the Open File icon on the Studio Management 
toolbar or by opening the fi le in a text editor and 
copying its contents into the query pane. The loaded (and already executed) script for creat-
ing a new database and all database objects is shown in Figure A-22. Click the Execute but-
ton on the query toolbar.

FIGURE A-22

FIGURE A-21

bapp01.indd 364bapp01.indd   364 3/22/2011 1:56:57 PM3/22/2011   1:56:57 PM



PostgreSQL 9.0 x 365

4. Once the database and all the database objects have been created, you can load the 
data into the tables by executing INSERT statements from the script fi le DiscoveringSQL
.MSSQLServer.dat. Load the fi le in the same fashion, as described in Step 3, and click the 
Execute button, as shown in Figure A-23.

FIGURE A-23

The Messages pane in the query window will display the execution acknowledgment steps, 
as shown in Figures A-22 and A-23. This is also a place for errors to be displayed. If you got 
any errors during the installation process described in this appendix, you may e-mail them 
for troubleshooting to discovery@agilitator.com.

As mentioned before, Microsoft SQL server also supports command-line interface 
to its database: the SQLCMD utility. It is a powerful tool for automating many 
administrative and development tasks. Nevertheless, its arcane syntax might be 
intimidating for someone without much experience with the command line, and 
since Microsoft always put emphasis on visual interfaces there is little reason for 
using it instead of Management Studio Query for the purposes of this book.

POSTGRESQL 9.0

PostgreSQL ships with a rather slick pgAdmin management console that facilitates most of the 
administrative tasks conducted both through the visual point-anA-click interface and the SQL 
queries window. There is also a commanA-line SQL Shell interface that until recently was the only 
native interface to the PostgreSQL RDBMS.

bapp01.indd 365bapp01.indd   365 3/22/2011 1:56:57 PM3/22/2011   1:56:57 PM



366 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

Installing with pgAdmin III 

1. Launch pgAdmin from Programs Í PostgreSQL 9.0 Í pgAdmin III. The initial screen is 
shown in Figure A-24.

FIGURE A-24

2. Connect to the postgres server by selecting the server 
node and selecting the Connect menu option from the 
right-click pop-up menu, as shown in Figure A-25.

3. In the next step, bring up the SQL query console by 
clicking the SQL icon on the pgAdmin toolbar, as 
shown in Figure A-26.

FIGURE A-26

FIGURE A-25

bapp01.indd 366bapp01.indd   366 3/22/2011 1:56:58 PM3/22/2011   1:56:58 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



PostgreSQL 9.0 x 367

4. Load the CREATE DATABASE script by clicking the Open File icon on the toolbar and navi-
gating to the DiscoveringSQL.PostgreSQL.CreateDB.sql fi le, or simply type the state-
ment shown in Figure A-27. Click the Execute button (a green triangle icon). As you can see 
in the Output pane on the same screen, it took 8,687 milliseconds to create a database with 
all the default options.

FIGURE A-27

The SQL syntax in the Figure A-27 query pane has an additional TEMPLATE 
specifi cation (as opposed to a simple CREATE DATABASE statement). This is 
to avoid a potential error message resulting from some PostgreSQL idiosyncra-
sies related to the way it handles default connections. Without this qualifi cation 
you may experience an error complaining about “source database ‘template1’ 
being accessed by other users.”  

5. After the Library database is created, you need to switch to it to run the rest of the DDL 
statements and complete the installation. From the drop-down box on the toolbar (display-
ing the connection to the postgres database), select <New Connection>, and from the pop-up 
window shown in Figure A-28 select Library database on localhost:5432.

FIGURE A-28

bapp01.indd 367bapp01.indd   367 3/22/2011 1:56:58 PM3/22/2011   1:56:58 PM



368 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

6. Load the DDL script contained in the DiscoveringSQL.PostgreSQL.Library.sql fi le in 
the same fashion as described in Step 4 of this tutorial and click the Execute button. The 
results are presented on Figure A-29.

FIGURE A-29

7. Load the DiscoveringSQL.PostgreSQL.dat fi le into the query window and execute the 
scripts. Even though the output window would read “1 rows affected,” as shown in 
Figure A-30, all data will be entered into the database table, and you can run SELECT 
statements to verify this.

bapp01.indd 368bapp01.indd   368 3/22/2011 1:56:59 PM3/22/2011   1:56:59 PM



MySQL 5.1 x 369

FIGURE A-30

MYSQL 5.1

The MySQL Command Line client is the only utility installed with the MySQL community edi-
tion installation, even though dozens of GUI interfaces exist to fi ll in the void, from commercial 
to free and open source, in virtually every programming language out there. This variety attests 
to the popularity of this open source relational database. Here we are going to use the built-in 
Command Line Client (of course, you can always use SQuirreL Universal SQL Client’s GUI to do 
visual installation; check the resources available at the book’s support site, www.wrox.com, and 
www.agilitator.com).

MySQL GUI tools, long-time staples of the MySQL community, are being 
discontinued, and the new MySQL Workbench is currently available for 
download as free Community Edition (CE). This is yet another application to 
be installed and confi gured, and I’ve decided to leave it out for now. Check the 
book’s support website at both www.wrox.com and www.agilitator.com for 
updated tutorials, or go to tool’s website: http://wb.mysql.com/.

bapp01.indd 369bapp01.indd   369 3/22/2011 1:56:59 PM3/22/2011   1:56:59 PM



370 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

Installing with the MySQL CommanA-Line Utility

1. Launch the MySQL Command Line Client from the Programs Í MySQL Í MySQL Server 

5.1 Í MySQL Command Line Client menu option. It will log on as root and will prompt 
you to enter the password. Once logged in, it will display the banner with basic instructions 
on how to use it, as shown in Figure A-31.

FIGURE A-31

2. Execute the database creation script by typing in the following command at the prompt, as 
shown in Figure A-32: source C:\discovery\DiscoveringSQL.MySQL.Library.sql (this 
assumes that you have downloaded all relevant scripts into C:\discovery directory; if this is 
not the case, please specify the full path to the location on your computer).

FIGURE A-32

The alternative execution syntax is to type .\ (dot-backslash) instead of source.
For some of the most commonly used commands, please see Appendix C or the 
vendor’s documentation.

bapp01.indd 370bapp01.indd   370 3/22/2011 1:56:59 PM3/22/2011   1:56:59 PM



Microsoft Access 2007/2010 x 371

3. After the database and all database objects are created in Step 2, you can load the data by 
executing the DiscoveringSQL.MySQL.dat script following the very same syntax rules 
described in Step 2: source C:\discovery\DiscoveringSQL.MySQL.dat. The results are 
presented in Figure A-33.

FIGURE A-33

MICROSOFT ACCESS 2007/2010

The easiest way to get the Microsoft Access version of the sample Library database is to get a ready 
database fi le for your version — Access 2000, Access 2003 (.mdb fi les), Access 2007, or Access 2010 
(.accdb fi les) — from the book’s accompanying websites at www.wrox.com or www.agilitator.com.

Alternatively, you can run Microsoft Access–specifi c SQL scripts available for download from the 
same sites. Unfortunately, Microsoft Access, even in its latest version, operates on the concept of 
named query, which means that you cannot run more than a single statement from the query win-
dow. For those brave souls, the steps would be as follows:

1. Create a blank Library database fi le.

2. From the Create tab, click the Query Design icon on the toolbar.

3. Dismiss the Show Table pop-up window by clicking the Close button.

4. Click the SQL View button in the upper–top-right corner of the application window.

5. Open DiscoveringSQL.Access.Library.sql fi le in a text editor and copy each DDL state-
ment for creating fi le, one by one, pressing the Run (“!”) button every time. Make sure that 
only one DDL statement is present in the query window at a time.

6. Repeat the same for DiscoveringSQL.Access.dat fi le, one INSERT at the time (and there 
are about 150 INSERT statements in this script fi le…!).

True to its all-in-one nature, Microsoft Access provides an opportunity to write 
a Visual Basic for Applications (VBA) script to load the SQL script fi les and 
both create database objects and populate the tables. Programming MS Access is 
outside the scope of this book, but there are many helpful sites available.

bapp01.indd 371bapp01.indd   371 3/22/2011 1:57:00 PM3/22/2011   1:57:00 PM



372 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

OPENOFFICE BASE 3.2

There are several ways to install the Library sample database with the OpenOffi ce BASE desktop 
RDBMS. The easiest one is to download the fully populated database fi le library.odp from the 
book’s support sites at www.wrox.com or www.agilitator.com.

Alternatively, you may want to run scripts to create the database structure and populate it with 
data. Here is a step-by-step procedure to install the Library database through SQL scripts. Keep 
in mind that the purpose of OpenOffi ce is to hide as much complexity as possible from the 
users, so it is not as tuned to manipulating raw SQL as full-fl edged RDBMSs such as Oracle or 
Microsoft SQL Server. Please refer to Appendix C for an overview of the OpenOffi ce.org SQL 
facilities.

1. Launch the OpenOffi ce BASE application from the menu and select the Create New 
Database option, as shown in Figure A-34, and click Next.

FIGURE A-34

2. On the next screen (see Figure A-35), select the registration option (registering it allows other 
components of OpenOffi ce to access it if needed; it is not a registration with the outside of 
your computer), and make sure that the Open Database for Editing checkbox is checked. 
Click the Finish button.

bapp01.indd 372bapp01.indd   372 3/22/2011 1:57:00 PM3/22/2011   1:57:00 PM



OpenOffi  ce BASE 3.2 x 373

FIGURE A-35

3. When prompted, save the database fi le into the directory of your choice or accept the default 
location. It is saved with the default .ODF fi le extension.

4. When the main window of the empty Library 
database is opened, from the Tools menu on 
the toolbar click the SQL option to access the 
Execute SQL Statement window shown in 
Figure A-36.

5. Open the fi le DiscoveringSQL.OpenOffice
.HSQLDB.Library.txt in a text editor of 
your choice (Notepad, TextPad, and so on), 
and copy its content into the Command to 
Execute pane, as shown in Figure A-36. 

6. Click the Execute button and verify the status 
in the lower pane of the window.

7. Open the data fi le DiscoveringSQL
.OpenOffice.Data.txt and copy its contents 
to the Command to Execute pane, replacing 
previous DDL statements, as shown in 
Figure A-37.

FIGURE A-36

bapp01.indd 373bapp01.indd   373 3/22/2011 1:57:00 PM3/22/2011   1:57:00 PM



374 x APPENDIX A  INSTALLING THE LIBRARY DATABASE

You may purge all data from the tables at any time by running an additional 
script provided in the delete.all.tables.txt fi le and then repopulate the 
tables by repeating Step 7. The script will not drop the tables, only empty them. 
To DROP a table, you need to execute the DROP TABLE command from the 
Execute SQL Statement window, or from the right-click menu of a particular 
table. Referential integrity constraints would enforce in which order tables might 
be dropped.

FIGURE A-37

8. Make sure to refresh the tables list using the Refresh Tables menu option (Figure A-38). To 
open the table’s data for viewing/editing you may double-click a table in the Tables pane or 
select an appropriate option from the right-click pop-up menu for a given table.

F IGURE A-38

bapp01.indd 374bapp01.indd   374 3/22/2011 1:57:01 PM3/22/2011   1:57:01 PM



B
Installing RDBMSs Software

In the days of yore, you would start the installation by popping a disk into your computer. 
With the price of bandwidth falling, you can now download the software off the Internet. 
Still, be prepared for a sizeable download (to the tune of 100+ megabytes). 

Over the years, the installation procedures have improved dramatically, and, assuming that you 
go with most of the default options, the installation should be a snap. At the same time, there 
are a few things you need to know. The full version of the Appendix, available for download at 
www.wrox.com, describes the setup of RDBMS servers on a Windows 7 machine. Even if your 
environment is different, this might help you to select options as you proceed with the installa-
tion. For the full text of this Appendix as well as step-by-step PowerPoint/Open Offi ce Impress 
slides describing the installation process, please visit www.wrox.com or www.agilitator.com.

bapp02.indd 375bapp02.indd   375 3/15/2011 1:38:36 PM3/15/2011   1:38:36 PM



bapp02.indd 376bapp02.indd   376 3/15/2011 1:38:39 PM3/15/2011   1:38:39 PM



C
Accessing RDBMSs 

The full Appendix C available for download from the accompanying website at www.wrox.com
has details on how to launch and use built-in utilities to access the RDBMS of your choice, 
and execute SQL commands.

ORACLE

Oracle 10g provides various utilities for communicating with its RDBMS, such as SQL*Plus, 
SQL Developer, Oracle Enterprise Manager, and Application Express. The new tool in the 
box is a rather sleek web interface, a scaled-down version of Oracle’s Application Express 
that allows communications with an Oracle database through a web browser. The full 
Appendix details the use of SQL*Plus Command-Line Tool and Oracle Application Express 
Web Interface.

IBM DB2 

IBM DB2 installs two database access tools grouped under Command Line Tools (plus a 
shortcut to the Microsoft MS-DOS command-line utility), in addition to those used for con-
fi guring and administering DB2 databases. The full Appendix outlines the use of IBM DB2 
Command-Line Processor (CLP) and DB2 Command Editor, a Java-based GUI utility used to 
generate, execute, and edit SQL statements, work with output, and more.

MICROSOFT SQL SERVER 2008

There are two “native” client tools supplied with Microsoft SQL Server 2008 Express: the 
SQLCMD command-line utility, and Management Studio Express — the GUI administration 
console. The use of the SQL Server Management Studio for purposes of installing the Library 
sample database is described in Appendix A. Appendix C will touch briefl y on the SQLCMD 
interface.

bapp03.indd 377bapp03.indd   377 3/15/2011 1:39:15 PM3/15/2011   1:39:15 PM



378 x APPENDIX C  ACCESSING RDBMSS 

MYSQL 

The MySQL Command Line client described in Appendix C is the utility installed with the MySQL 
community edition installation. It has been the default interface to MySQL RDBMS since the begin-
ning. There are several GUI tools available, the latest being MySQL Workbench, available for down-
load from the MySQL site http://wb.mysql.com/.

POSTGRESQL

PostgreSQL provides two built-in mechanisms: the pgAdmin III graphical user interface tool, and 
the original psql command-line tool. The use of pgAdmin is described in detail in Appendix A for 
purposes of installing and populating the Library sample database.

MICROSOFT ACCESS 2007/2010

Microsoft Access is a desktop one-stop solution combining RDBMS capabilities with reporting and 
built-in programming environments to create database solutions. It can act as a pass-through client 
connecting to other RDBMSs, such as Microsoft SQL Server or Oracle, or use its own RDBMS to 
store and retrieve relational data via SQL. The basics of the SQL Design feature are briefl y described 
in Appendix A.

OPEN OFFICE BASE WITH HSQLDB

Just like Microsoft Access, the Open Offi ce BASE offers a “pass-through” interface to connect 
to other RDBMSs, but it also includes an SQL engine of its own based upon open source Hyper 
Structured Query Language Database (HSQLDB) embedded with the application. There are a num-
ber of graphical tools for building database objects and reports, as well as the ability to execute arbi-
trary SQL statements. The latter capability is described in Appendix A of this book in conjunction 
with installing the Library sample database.  

bapp03.indd 378bapp03.indd   378 3/15/2011 1:39:18 PM3/15/2011   1:39:18 PM



D
Accessing RDBMSs with the 
SQuirreL Universal SQL Client

Besides the native RDBMS utilities discussed in Appendix C, which are, by defi nition, 
specifi c to those databases, there are universal clients that, at least in theory, can connect to 
any RDBMS. There are numerous commercial tools, free tools, as well as open source tools 
that span both categories. The open source, free SQuirreL Universal SQL Client represents the 
best of both worlds.

In its current version, 3.2.0, it is a robust versatile application with many advanced features 
suited both for a casual SQL user and a heavy-duty SQL/RDBMS developer. The latest version 
features SQL syntax highlighting (with vendor-specifi c extensions recognition), code comple-
tion (“intellisense” in the Microsoft lingo), which provides a list of the contextual hints based 
upon the SQL code you’re typing into the pane. The advanced features include the ability to 
browse database objects, create visual ERD diagrams representing relationships among the 
tables, localize environment in several languages (including French, German, and Spanish), 
and more. The full version of this Appendix, available for download at www.wrox.com,
explains in detail how to install and confi gure the tool to connect to the RDBMSs covered in 
this book.

bapp04.indd 379bapp04.indd   379 3/15/2011 1:39:45 PM3/15/2011   1:39:45 PM



bapp04.indd 380bapp04.indd   380 3/15/2011 1:39:48 PM3/15/2011   1:39:48 PM



381

INDEX

Symbols and Numbers

# (hash) sign, 212
_ (underscore) in searches, 74
1NF, 89
2NF, 89–90
3NF, 90
80/20 rule, 233

A

ABS( ) function, 105, 107
access control, 265
ACID test, 255
AdWords, 320
AGE function, 119
aggregate functions, 121–123

AVG( ), 137–138
COUNT( ), 139–140
MAX( ), 140–141
MIN( ), 141
SUM( ), 142
syntax, 143

aggregation levels, OLAP, 341
aliases, 56–58, 214–215

as database objects, 215
namespaces, 292

ALL operator, 70
subqueries, 157

ALTER INDEX, 211
ALTER keyword, 267

ALTER statement, 26–28, 49–52
identity columns, 218

ALTER USER statement, 267
ALTER VIEW statement, 198
ALTERROLE statement, 272
Amazon, SimpleDB, 336–337
analog versus digital data, 4–5
analytical databases, 93

OLAP (online analytical processing), 93
AND keyword, 70
AND operator, 74–75
ANSI (American National Standards 

Institute), 10
ANY operator, subqueries, 157
ANY|SOME operators, 70
Apache Cassandra, 335
Apache Hypertable, 335
API (application programming interface), 

333
appendChildXML function, 306
applications

optimization, 236–237
XML document access, 294

approximate numbers, 38–39
architecture, OLAP and, 340
arithmetic operators, 67–68
artifi cial intelligence, Watson computer, 

344–345
ASCII (American Standard Code for 

Information Interchange), 32
assignment operators, 76

bindex.indd 381bindex.indd   381 3/15/2011 9:41:11 PM3/15/2011   9:41:11 PM



382

atomic value – clauses

atomic value, 89
Atomicity (ACID test), 255
attributes, 30–31

elements, 289
normalization, 91

audits, 266, 278
authentication, 265, 266
authorization, 265
auto-incremented columns, OpenOffi ce BASE, 

222–223
auto-incremented values, 216

IDENTITY columns, 217
average, calculating, 139
AVG( ) function, 123, 137–138

reproducing, 142–143
AWS (Amazon Web Services), 330
Axmark, David, 8
Azure, 330, 338–339
Azure SQL Server, 330

B

base 12 system, 324
base 20 system, 324
base 60 system, 324
BASEL II, 278
benchmarks, 231–232

TPC, 232
BETWEEN operator, 70–71
BigTable, 334–335
binary data, 42–43

best practices, 325–326
in/out of tables, 323–325
support, 322–323

binary fi les, opening in Notepad, 36
binary strings, 34–35
BIT data type, 46
bitwise operators, 76
blank spaces, removing, 116

BOOLEAN data type, 46
Boolean logic, 20
BSD (Berkley Software Distribution), 9
bytes, 32

C

calculated columns, 55
Cartesian product, 188
CASCADE clause, 271
CASE statement, 127–129
Cassandra, 335
CAST function, 125
CBOs (cost based optimizers), 238
CDATA (XML Character Data), 295–296
CEIL function, 106–107
CHAR function, 113–114
character data

binary strings, 34–35
character versus special fi les, 35
fi xed length strings, 32–34
variable strings, 32–34

character functions, 108–112
character reference, 295
character sets, 32

conversion between, 125–126
character strings, data types, 34
characters, position in string, 112–116
CHARINDEX function, 113
chess computer, 344
circular references, 195
classes (OOP), 346–349
clauses

CASCADE, 271
GROUP BY, 144–148

HAVING, 148–149
HAVING, 148–149
ORDER BY, 149, 191
RESTRICT, 271

bindex.indd 382bindex.indd   382 3/15/2011 9:41:12 PM3/15/2011   9:41:12 PM



383

cloud characteristics – data modeling

WHERE, 19–20
cloud characteristics, 330
CLUSTER command, 210
CLUSTERED indices, 209–211
CLUSTERED keyword, 209–210
Codd, Edgar Frank, 6, 340
code reusability, procedural extensions, 135
collation order, 32
collections, MongoDB, 338
column-oriented DBMSs, 345
columns

IDENTITY, 217
indices, 208
inserting data, 15–16
populating, 15–16

COLUMNS view, 279
COMMIT statement, 255
COMMIT transactions, 256–257
comparison operators, 68–69
composite indices, 208–209
CONCAT function, 107
concatenation

conversion, implicit, 108
operators, 68
strings, 107

conceptual modeling, 30
concurrency

locks, 251
optimistic, 262–263
pessimistic, 262–263

consistency
OLAP and, 340
security and, 265–266

Consistency (ACID test), 255
constraints

domain integrity, 275
FOREIGN KEY, 86
NOT NULL, 92
primary keys, violations, 83

referential integrity, 86
security, 275–276
specifying, 92
UNIQUE, 92
views, 200–201

CONTAINS function, 326
control-of-fl ow functions, 10
conversion

character sets, 125–126
data types, 125
explicit, 53–55
functions, 123–126
implicit, 53–55, 108

correlated query, 158
correlated subqueries, WHERE clause, 

167–169
COUNT( ) function, 139–140
CREATE INDEX, 208
CREATE TABLE statement, 48–49
CREATE VIEW statement, 194–198

constraints, 200–201
CROSS JOINS, 187–189
cross-dimensional operation, OLAP and, 341
CSS (Cascading Style Sheets), 296
current date, 117–121
CURRVAL, 225

D

data banks, 5
data conversion

explicit, 53–55
implicit, 53–55

data dictionary (Oracle), 281–282
data encryption, 276–277
data feed, 335
data integrity, 275
data marts, 94
data modeling, 5

bindex.indd 383bindex.indd   383 3/15/2011 9:41:12 PM3/15/2011   9:41:12 PM



384

data sets – DDL 

data modeling (continued)
conceptual modeling, 30
logical modeling, 30–31
overview, 29–30
physical modeling, 31

data sets, subtracting, 204–205
data types, 31

binary data, 42–43
support, 322–323

BIT, 46
BOOLEAN, 46
character data

binary strings, 34–35
character versus special fi les, 35
fi xed length strings, 32–34
variable strings, 32–34

character strings, 34
conversion between, 125
date and time, 40–42
domain integrity, 31
implicit conversion, 68
length, domain integrity constraint, 87
numeric data

approximate numbers, 38–39
exact numbers, 36–37
literals, 39–40
value ranges, 39

performance and, 31
populating tables with different, 52–55
storage space and, 31
XML, 46–47

data warehouses, 93–94
database objects

aliases as, 215
synonyms as, 215

databases
analytical, 93
concept, 11–12
creating, 13–14

defi nition, 29
normalization, 89
object databases, 346
operational, 93
optimization, 234–235
relational, 30

datasources, XML as, 294–299
date, current, 117–121
date and time data types, 40–42
date arithmetic, 118–119
DATE functions, 117–121
date/time functions

AGE, 119
DATE_ADD, 119
DATEADD, 119
DATEDIFF, 119
leap years, 120–121
MONTHS_BETWEEN, 119
PERIOD_ADD, 119
PERIOD_DIFF, 119

DATE_ADD function, 119
DATEADD function, 119
DATEDIFF function, 119
DAWG (Data Access Working Group), 

299
DB2, 6
DBAs, 249
DBMSs (database management systems)

column-oriented, 345
costs, 3
performance, 3
scalability, 3
security, 2–3
storage capacity, 2
users, 2

DCL (Data Control Language), 47
DDL (Data Defi nition Language), 47

creation code, 353
transactions and, 254

bindex.indd 384bindex.indd   384 3/15/2011 9:41:12 PM3/15/2011   9:41:12 PM



385

Deadlock Detector – EXCEPT operator

views, 194
Deadlock Detector, 264
deadlocks, 263

en queue, 264
library cache, 264
origins, 264

DECODE function, 127–128
Deep Blue computer, 344
DELETE statement, 22–24, 65–67

subqueries, 166–167
TRUNCATE statement, 66–67
views, 198–201

deleteXML function, 306
denormalizing, 235
deprecated syntax, 96
digital versus analog data, 4–5
dimension tables, 94
dimensional levels, OLAP and, 341
dimensionality, OLAP and, 340
dirty reads, 261
DISTINCT keyword, 58–59, 121, 

143–144
distributed transactions, 260
DML (Data Manipulation Language), 47, 

314–316
DMX (Data Mining Extensions), 343
documents, XML

accessing in application, 294
disassembling, 297
non-schema as CLOB values, 305
presentation, 296
storage, 302
validation, 313
well-formed, 290–291

domain integrity, 87–89, 92
constraints, 275
data type length, 87
data types and, 31

domains, 87

tables, 333
downloads, chapter scripts, 19
DQL (Data Query Language), 47

views, 194
DROP statement, 24
DROP TABLE statement, 48
DROP VIEW statement, 198
DROPROLE statement, 272
DTD (document type defi nition), 291
duodecimal number system, 324
duplicate data, removing, 143–144
Durability (ACID), 255
Dynamic SQL, 97–100

E

EBCDIC (Extended Binary Coded Decimal 
Interchange Code), 5

elements, 289
attributes, 289
nodes, renaming, 308
tags, 289

namespaces, 292
en queue deadlocks, 264
encapsulation (OOP), 347
encoding, XML, 294–295
encryption, 265, 276–277
entities, 30, 90

normalization, 91
XML, 295

Entity Framework, 350
entity integrity, 92, 275
entity references, 295
equijoins, 177
ETL (extract, transform, and load), 229
exact numbers, 36–37
EXCEPT keyword, 204–205
EXCEPT operator, INTERSECT operator and, 

204–205

bindex.indd 385bindex.indd   385 3/15/2011 9:41:12 PM3/15/2011   9:41:12 PM



386

EXISTS operator – functions

EXISTS operator, 72, 168
subqueries, 156–157, 203

EXISTSNODE function, 304
explicit data conversion, 53–55
EXPLICIT mode, 312
explicit transactions, 256
EXTRACT function, 305
EXTRACTVALUE function, 304

F

fact tables, 94
FBI (function-based index), 210
fi ndability, 1
fi xed length strings, 32–34
FLOOR function, 106–107
FLWOR (For, Let, Where, Order by, and 

Return), 311
FOREIGN KEY constraint, 86

violation messages, 86–87
foreign keys, 30, 81–83, 174

relationships, 83–87
forest structure, 289
formatting, XML, 290
free-text, 287
FREETEXT function, 326
FROM clause, subqueries, 160–161
FROM keyword, 22
FULL JOIN, 185–186
function-based index (FBI), 210
functions

aggregate, 121–123 (See aggregate 
functions)

appendChildXML, 306
AVG( ), 123
CAST, 125
CHAR, 113–114
character, 108–112
CHARINDEX, 113
CONTAINS, 326

control-of-fl ow, 10
conversion, 123–126
current date, 117
DATE, 117–121
date/time, 119
DECODE, 127–128
deleteXML, 306
description, 104
EXISTSNODE, 304
EXTRACT, 305
EXTRACTVALUE, 304
FREETEXT, 326
insertChildXML, 305
insertXMLbefore, 306
LENGTH, 114
LTRIM, 116
mathematical, 107
MAX, 122
numeric, 104

ABS( ), 105
CEIL( ), 106
FLOOR( ), 106
RAND( ), 106
ROUND, 106
SIGN, 105
SQRT, 105

OPENROWSET, 325
RTRIM, 116
selecting, 55
signature, 104
SQL/XML, 298
string, 107

CONCAT, 107
SUBSTRING, 114
SUM, 122
text parsing, 115–116
TRIM, 116
UDFs, 132–133
updateXML, 305
XMLCAST, 305

bindex.indd 386bindex.indd   386 3/15/2011 9:41:12 PM3/15/2011   9:41:12 PM



387

Goethe – implicit transactions

XMLEXISTS, 304
XMLFOREST, 299

G

Goethe, Johann Wolfgang, 193–194
Google

AdWords, 320
Big Table, 334–335
GQL (Google Query Language), 335

Google Base, 335
Google Fusion Tables, 335
GPL (General Public License), 8
GQL (Google Query Language), 335
GRANT statement, 268
GROUP BY clause, 144–148

HAVING clause, 148–149
subqueries, 162–163

GUI (graphical user interface), 236
GUID (global unique identifi er), 81

H

Hadoop, 334
hardware optimization, 234
hash sign (#), 212
HAVING clause, 148–149

subqueries, 161–163, 162–163
heterogeneous environments, 229
Hibernate, 350
hierarchical model, 79–80
hierarchical views, 201–202
hierarchicy, XML, 290
HIPAA, 278
history of information transfer, 

329–330
HOLAP (hybrid OLAP), 

340, 341
horizontal limits, 58–59
horizontal restriction, 273

HSQLDB (Hyper Structured Query Language 
Database), 9, 29

clustered indices, 210
OpenOffi ce BASE, 222–223

HTML (HyperText Markup Language), 296
Hypertable, 335

I

IBM DB, OLAP and, 342
IBM DB 9.7, binary data types support, 322
IBM DB 9.7 pureXML, 307
IBM DB2, RDBMS access, 377
IBM DB2 9.7 Express-C, library database, 

installation, 360–363
IBM DB2 LUW, 6

character functions, 108–112
conversion functions, 124
date/time functions, 119
Deadlock Detector, 264
encryption/decryption, 277
IDENTITY columns, 220–221
library database script fi le, 354
miscellaneous functions, 126–127
optimization, 244–245
procedural extensions, 130
system catalogs, 282–283

IDENTITY columns, 217
ALTER statement, 218
IBM DB2, 220–221
Microsoft Access, 222
Microsoft SQL Server, 218
MySQL, 221
PostgreSQL, 221
retrieved values, 223
sequences comparison, 227–228

IF...THEN statements, 10
implicit data conversion, 53–55, 68

string concatenation, 108
implicit transactions, 256

bindex.indd 387bindex.indd   387 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM



388

IN operator – keywords

IN operator, 71–72
increments, 218
index organized tables (IOTs), 209
indexed views, 214
indexing, 320

subqueries, 242
indices, 207

ALTER INDEX, 211
composite, 208–209
destroying, 211
numeric columns, 208
UNIQUE keyword, 209

CLUSTERED indices, 209–211
INFORMATION_SCHEMA

querying, 280–281
views, 279–285

inheritance (OOP), 347
injection attacks, 100
Inmon, Bill, 93–94
INNER JOIN keyword, 177
inner joins, 175–179

N-way, 179–182
output results, 176–177

inner queries, 156
inner selects, 156
InnoDB, 246
INSERT keyword, 15, 61–63, 308
INSERT statement, 14–16

subqueries, 163–164
views, 198–201

insertChildXML function, 305
insertXMLbefore function, 306
integrity

KVP, 333
security and, 265–266

Internet, fi ndability, 1
INTERSECT operator, 203–204

EXCEPT operator and, 204–205
INTO keyword, 15

IOTs (index organized tables), 209
ISO (International Standards Organization), 

10
Isolation (ACID test), 255
isolation levels

SQL, 262
transactions, 260–261

J

JDBC (Java Database Connectivity), 9
Jeopardy Watson computer, 344–345
JOIN keyword, 95–96
joins, 173–175

CROSS JOINS, 187–189
equijoins, 177
FULL JOIN, 185–186
inner joins, 175–179

N-way, 179–182
LEFT OUTER JOIN, 182–184
RIGHT OUTER JOIN, 184–185
self-joins, 186–187
subqueries and, 170–171

K

Kasparow, Garry, 344
keys

foreign, 81–83, 174
primary, 81–83

natural primary keys, 81
surrogate, 81

keywords
ALTER, 267
AND, 70
CASCADE, 198
CLUSTERED, 209–210
DISTINCT, 58–59, 121
EXCEPT, 204–205

bindex.indd 388bindex.indd   388 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM



389

KVP  – MQT 

FROM, 22
INNER JOIN, 177
INSERT, 15, 61–63
INTO, 15
JOIN, 95–96
LIMIT, 60, 150
ORDER BY, 59–61
RESTRICT, 198
TOP, 60, 150
UNION, 95, 96–97
VALUES, 15
WORK, 256–257

KVP (key/value pair), 331–333

L

language, Watson computer and, 
344

leap years, 120–121
LEFT OUTER JOIN, 182–184
LENGTH function, 114
library cache deadlocks, 264
library database

IBM DB2 9.7 Express C, 360–363
Microsoft Access, 371
Microsoft SQL Server 2008 Express, 

363–365
MySQL 5.1, 369–371
OpenOffi ce Base 3.2, 372–374
Oracle 10g XE, SQL*Plus installation, 

354–360
PostgreSQL, 365–369
script fi les, 354

LIKE operator, 72–74
LIMIT keyword, 60, 150
LINQ, 350
literals

numbers, 39–40, 52–55
selecting, 55

locks, 251, 262
deadlocks, 263

en queue, 264
library cache, 264

granularity, 263
modes, 262–263

logical modeling, 30–31
logical operators, 69–70
loops, WHILE, 10
LTRIM function, 116
LUW (Linux, UNIX, and Windows), 6

M

many-to-many relationships, 175
MapReduce, 334
materialized views, 214
mathematical functions, 107
MAX function, 122, 140–141
MDX (Multidimensional Expressions), 343
Microsoft Access, 7

clustered indices, 210
date/time functions, 119
IDENTITY columns, 222
library database, installation, 371
library database script fi le, 354
optimization, 248
procedural extensions, 130
RDBMS access, 378

Microsoft Access 2010, binary data types 
support, 323

Microsoft Azure, 338–339
Microsoft SQL Server. See SQL Server
MIN( ) function, 141
miscellaneous functions, 126–127
MOLAP (multidimensional OLAP), 340, 341
MongoDB, 337–338
MONTHS_BETWEEN function, 119
MQT (Materialized Query Table), 214

bindex.indd 389bindex.indd   389 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM



390

Multics Relational Data Store – OLAP 

Multics Relational Data Store, 6
multidimensional conceptual view, 

OLAP and, 340
multiuser support, OLAP and, 341
MyISAM, 246
MySQL, 8, 11

binary data types support, 323
character functions, 108–112
date/time functions, 119
deadlocks, 264
IDENTITY columns, 221
library database, installation, 369–371
library database script fi le, 354
optimization, 246–247
procedural extensions, 130
RDBMS access, 378
temporary tables, session-scoped, 213
XML, 317–318

N

N-way inner joins, 179–182
namespaces

aliases, 292
element tags, 292
prefi xes, 292–293
XML, 292–293

naming conventions, 56
natural primary keys, 81
negative numbers, 105
nested transactions, 258
nesting subqueries, 169–170
network performance, 233
NEXTVAL, 225
NHibernate, 350
nodes, 289

elements, renaming, 308
normalization, 89

attributes, 91
denormalizing, 235

entities, 91
relationships and, 173

NoSQL, 331
NOT NULL constraint, 92
NOT operator, 75
Notepad, binary fi les, 36
NULLs, 43–44

comparing, 45
counting, 138–139
discovering, 44

numbers
approximate, 38–39
exact, 36–37
negative, 105
precision, 36–37
random, 106

numeric data
approximate numbers, 38–39
exact numbers, 36–37
literals, 39–40
value ranges, 39

numeric functions, 104
ABS( ), 105
CEIL( ), 106
FLOOR( ), 106
RAND( ), 106
ROUND, 106
SIGN, 105
SQRT, 105

O

object databases, 346
object privileges, 268
object-based storage, XML documents, 302
objects (OOP), 346–349
ODBC (Open Database Connectivity), 9
ODF (Open Document Format), 288
OLAP (online analytical processing), 93, 

339–340

bindex.indd 390bindex.indd   390 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



391

OLTP  – optimization

cubes, 340
DMX (Data Mining Extensions), 343
HOLAP, 340, 341
IBM DP, 342
MDX (Multidimensional Expressions), 343
MOLAP, 340, 341
Oracle 11g, 341
relational, 340
ROLAP, 340, 341
rules, 340–341
SQL Server and, 343–344
XMLA (XML for Analysis), 344

OLTP (online transaction processing), 93, 
339–340

one-to-many relationships, 80
OO (object-oriented), 346

languages, 348
OOP (object-oriented programming)

classes, 346–349
encapsulation, 347
inheritance, 347
objects, 346–349
polymorphism, 347–348

OORDBMS (object-oriented RDBMS), 346
Open Document Format (ODF), 288
OpenOffi ce, 9

binary data types support, 323
date/time functions, 119
library database script fi le, 354
procedural extensions, 130

OpenOffi ce BASE
auto-increment columns, 222–223
library database, 372–374
optimization, 248
RDBMS access, 378

OPENROWSET function, 325
operands, 67
operating system

optimization, 234
security integration, 272–275

operational databases, 93
OLTP (online transaction processing), 93

operators
ALL, 70
AND, 74–75
ANY|SOME, 70
arithmetic, 67–68
assignment, 76
BETWEEN, 70–71
bitwise, 76
comparison, 68–69
concatenation, 68
defi nition, 67
EXISTS, 72
IN, 71–72
INTERSECT, 203–204
LIKE, 72–74
logical, 69–70
NOT, 75
operands, 67
OR, 75–76
precedence, 77–78
UNION, 176, 189–193
UNION ALL, 191–192

optimistic concurrency, 262–263
optimization

Access, 247–248
applications, 236–237
CBOs (cost based optimization), 238
database/schema, 234–235
hardware, 234
IBM DB2 LUW, 244–245
MySQL, 246–247
OpenOffi ce BASE, 248
operating system, 234
Oracle 10g/11g, 244
PostgreSQL, 245–246
queries and, 233, 238–242
RBOs (rule based optimization), 238
RDBMS confi guration, 233

bindex.indd 391bindex.indd   391 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM



392

OR operator – pgAdmin III

optimization (continued)
RDBMS-specifi c, 243–244
RDBMSs, 234
schema, 233
server environment, 233
SQL, 237–238
SQL Server 2008, 245

OR operator, 75–76
Oracle, 7

character functions, 108–112
conversion functions, 124
data dictionary, 281–282
date/time functions, 119
deadlocks, 264
library database script fi le, 354
miscellaneous functions, 126–127
procedural extensions, 130
RAC (Real Application Clusters), 331
RDBMS access, 377
schema, 29
temporary tables, 212

Oracle 10g XE, library database, SQL*Plus 
installation, 354–360

Oracle 10g/11g, optimization, 244
Oracle 11g

binary data types support, 322
OLAP, 342

Oracle 11g XML DB, 302–307
columns indexing, 306
table indexing, 306

Oracle 11g XMLType methods, 303–304
oral records, 3–4
ORDER BY clause, 149–153, 191
ORDER BY keyword, 59–61
order of optimization, 233
order of precedence, 77–78
ordering data

ORDER BY keyword, 59–61
sort order, 60

ORM (object-relational mapping), 349–350

Hibernate, 350
NHibernate, 350

orphaned sessions, 254
outer queries, 156
outer selects, 156
output

inner joins, 176–177
sorting, 149

P

parameters, sessions, modifying, 253
Pareto, Vilfredo, 233
parsing

stored procedures and, 131–132
text, 115–116
XML documents, 290–291

partial function dependency, 90
patterns, relationships, 83–87

combinations, 84
PCI, 278
PDF fi les, opening with Notepad, 36
performance, 3

application and, 233
benchmarks, 231–232
data types, 31
network, 233
order of optimization, 233–242
procedural extensions and, 134–135
queries and, 233
RDBMS confi guration, 233
schema, 233
server environment, 233

PERIOD_ADD function, 119
PERIOD_DIFF function, 119
permissions, 270
pessimistic concurrency, 262–263
petroglyphs, 4
pgAdmin III, PostgreSQL library database, 

366–369

bindex.indd 392bindex.indd   392 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM



393

physical modeling – RDBMSs 

physical modeling, 31
pictures as records, 4
PL/pgSQL, 11
PL/SQL, 10, 307
polymorphism (OOP), 347
populating tables, data types, different, 52–55
PostgreSQL, 8

binary data types support, 323
character functions, 108–112
date/time functions, 119
deadlocks, 264
IDENTITY columns, 221
library database, installation, 365–369
library database script fi le, 354
optimization, 245–246
procedural extensions, 130
RDBMS access, 378
sequences, 225
temporary tables, 213
XML, 316–317

POWER function, 107
precedence of operators, 77–78
precision numbers, 36–37
prefi xes, namespaces, 292–293
primary keys, 30, 81–83

constraints, 86
violations, 82–83

creating, 82
natural primary keys, 81

printed word records, 4
privileges, 268

CASCADE clause, 271
GRANT statement, 268
object, 268
permissions, 270
RESTRICT clause, 271
REVOKE statement, 271
revoking, 271
securables, 268–269
system, 268

granting, 268–271
procedural extensions, 130

code reusability, 135
network traffi c and, 134
performance and, 134
security and, 134–135

procedural programs, 129
PSM (Persistent Storage Module), 129

Q

queries. See also subqueries
correlated, 158
INFORMATION_SCHEMA, 280–281
inner/outer, 156
materialized views, 214
output, sorting, 149
performance and, 233
subqueries, 237
VIEW, 193–194
XQuery, 294

query optimizers, 238–242

R

RAC (Real Application Clusters), 331
RAND function, 106, 107
random numbers, 106
RBOs (rule based optimizers), 238
RDBMSs (relational database management 

systems)
access

IBM DB2, 377
Microsoft Access 2007/2008, 378
MySQL, 378
Open Offi ce Base with HSQLDB, 378
Oracle, 377
PostgreSQL, 378
SQL Server 2008, 377
SQuirrel Universal SQL Client, 379

bindex.indd 393bindex.indd   393 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM



394

records – SDK 

RDBMSs (relational database management 
systems) (continued)

desktop
Microsoft Access, 247–248
OpenOffi ce BASE, 248

Dynamic SQL support, 98–99
IBM DB2 LUW, 6
KVP differences, 332
Microsoft Access, 7
Microsoft SQL Server, 7
MySQL, 8
OORDBMS (object-oriented RDBMS), 

346
optimization, 234, 243–244

desktop, 247–248
IBM DB2 LUW 9.7, 244–245
MySQL, 246–247
Oracle 10g/11g, 244
PostgreSQL, 245–246
SQL Server 2008, 245

Oracle, 7
PostgreSQL, 8
relational, 6
software installation, 375

records
adding with IDENTITY column, 218
analog versus digital, 4–5
counting, 139–140
deleting, 23–24, 65–67
inserting, subqueries, 164–165
oral, 3–4
pictures, 4
printed word, 4
written, 4

refactoring tables, 47–48
referential integrity, 275

constraint, 86
violating, 88–89

relational, 6
relational databases, 30

design basics, 89–90
constraint specifi cation, 92

relational model, 80
relational OLAP, 340
relationships, 30

many-to-many, 175
normalization and, 173
one-to-many, 80
patterns, 83–87

combinations, 84
RELEASE SAVEPOINT statement, 255
reporting, OLAP and, 341
RESTRICT clause, 271
RESTRICT keyword, 198, 226
reusing code, procedural extensions, 135
REVOKE statement, 271
RIGHT OUTER JOIN, 184–185
ROLAP (relational OLAP), 340, 341
roles, 271–272
ROLLBACK statement, 255, 258–259
ROUND function, 106, 107
ROUTINES view, 280
RTRIM function, 116

S

Sarabanes-Oxley, 278
SAVEPOINT statement, 255, 259–260

roll backs, 258
scalability, 3
scalar subqueries, 156–157
schema, 29

optimization, 234–235
snowfl ake, 94
star, 94

script fi le
DDL creation code, 353
library database, 354

scripts, chapter downloads, 19
SDK (Software Development Kit), 336–337

bindex.indd 394bindex.indd   394 3/15/2011 9:41:13 PM3/15/2011   9:41:13 PM



395

searches – SQL 

searches
_ (underscore), 74
Boolean logic, 20
data fi elds, 326

securables, 268–269
security, 2–3, 264–265

access control, 265
auditing, 266, 278
authentication, 265, 266
authorization, 265
consistency, 265–266
constraints, 275–276
Dynamic SQL, 100
encryption, 265, 276–277
identifi cation, 265
integrity, 265–266
operating system integration, 272–275
privileges, 268

permissions, 270
procedural extensions and, 134–135
roles, 271–272
SQL injection, 276
standards, 278–279
users, defi ning, 266–267
views, 273–274

seed values, 218
SELECT INTO statement, 63
SELECT list, subqueries, 158–160
SELECT query, subqueries, 156
SELECT statement, 16–22

calculated columns, selecting, 55
functions, selecting, 55
horizontal limits, 58–59
INSERT keyword, 61–63
literals, selecting, 55
ordering data, 59–61
SELECT INTO statement, 63
vertical limits, 56

self-joins, 186–187
sequences, 224

identity columns comparison, 227–228
sequence object-generated values, 226–227

SEQUENCES view, 280
server, environment, 233
session-scoped temporary tables (MySQL), 213
sessions, 251

description, 251
opening, 251–252
orphaned, 254
parameters, modifying, 253
terminated, 252–253
transactions, 254

SET CONSTRAINTS statement, 255
SET TRANSACTION statement, 255
set-based language, 103
SETPASSTHRU statement, 252
sexagesimal number system, 324
SGML (Standard Generalized Markup 

Language), 288
SIGN function, 105
signatures, functions, 104
SimpleDB, 336–337
snowfl ake schemas, 94
SOA (service-oriented architecture), 297, 307
software, RDBMS, 375
sort order, 60
sorting query output, 149
spaces, removing, 116
SPARQL, 299
sparse-matrix handling, OLAP and, 341
special fi les, 35
SQL (Structured Query Language)

Dynamic SQL, 97–100
introduction, 9–10
MySQL, 11
optimization, 237–238
PL/pgSQL, 11
PL/SQL, 10
queries, performance and, 233
security, 264–265

bindex.indd 395bindex.indd   395 3/15/2011 9:41:14 PM3/15/2011   9:41:14 PM



396

SQL Azure – statements

SQL (Structured Query Language) (continued)
set-based language, 103
SQL PL, 11
standards, 10
subqueries, 237
Transact-SQL, 11
transaction isolation levels, 262

SQL Azure, 338–339
SQL injection, 276
SQL PL, 11
SQL Server, 7

date/time functions, 119
DMX (Data Mining Extensions), 343
Help stored procedures, 284–285
IDENTITY columns, 218
library database script fi le, 354
Management Studio Express, library 

database, 363–365
MDX (Multidimensional Expressions), 343
OLAP and, 343–344
procedural extensions, 130
subqueries, 238–241
system stored procedures, 284
XML, 311
XMLA (XML for Analysis), 344

SQL Server 2000, 311–313
SQL Server 2008

binary data types support, 323
character functions, 108–112
conversion functions, 124
database creation, 13–14
deadlock detection, 264
miscellaneous functions, 126–127
optimization, 245
RDBMS access, 377
system catalogs, 283–284

SQL Server 2008 Express, library database, 
installation, 363–365

SQL Server Management Studio Express, 
13–14

SQL Standard, transactions, 254–255
isolation levels, 260–261

SQL*Plus, library database installation, Oracle 
10g XE, 354–360

SQL/XML standards, 297
functions, 298

SQRT function, 105, 107
SQuirrel Universal SQL Client, 379
SSH (Secure Shell), 278
SSL (Secure Sockets Layer), 278
star schemas, 94
START TRANSACTION statement, 255
statements

ALTER, 26–28, 49–52
ALTER USER, 267
ALTER VIEW, 198
ALTERROLE, 272
CASE, 127–129
COMMIT, 255
CREATE TABLE, 48–49
CREATE VIEW, 194–198
DELETE, 22–24, 65–67, 198–201
DROP, 24
DROP TABLE, 48
DROP VIEW, 198
DROPROLE, 272
GRANT, 268
IF...THEN, 10
INSERT, 14–16, 198–201
RELEASE SAVEPOINT, 255
REVOKE, 271
ROLLBACK, 255, 258–259
SAVEPOINT, 255, 259–260
SELECT, 16–22
SET CONSTRAINTS, 255
SET TRANSACTION, 255
SETPASSTHRU, 252
START TRANSACTION, 255
TRANCOUNT, 258
TRUNCATE statement, 66–67

bindex.indd 396bindex.indd   396 3/15/2011 9:41:14 PM3/15/2011   9:41:14 PM



397

Stonebraker – tables

UPDATE, 24, 25–28, 63–65, 198–201
Stonebraker, Michael, 8
storage, 5

capacity, 2
data types and, 31
XML, 297

storage engine option, 8
stored procedures, 228

parsing and, 131–132
system, SQL Server, 284

string concatenation operators, 68
string functions, 107

CONCAT, 107
strings

binary, 34–35
character position, 112–116
concatenation, 107
fi xed length, 32–34
variable, 32–34

structured text, 296
subqueries, 237

ALL operator, 157
ANY operator, 157
correlated, WHERE clause, 167–169
DELETE statement, 166–167
EXISTS operator, 156–157, 203
FROM clause, 160–161
HAVING clause, 161–163
indexing, 242
INSERT statement, 163–164
inserting records, 164–165
joins and, 170–171
nesting, 169–170
scalar, 156–157
SELECT list, 158
SELECT query, 156
SQL Server, 238–241
syntax, 242–243
UPDATE statement, 165–166
WHERE clause, 155–158

SUBSTRING function, 114
SUM function, 122, 142
surrogate keys, 81
Sybase ASE, 345
synonyms, 214–215

as database objects, 215
syntax

aggregate functions, 143
deprecated, 96
sequences, 224
subqueries, 242–243

system catalogs
data dictionary, 281–282
IBM DB2 LUW, 282–283
INFORMATION_SCHEMA views, 

279–285
SQL Server 2008, 283–284

system privileges, 268
granting, 268–271

system stored procedures, SQL Server, 284

T

tables
# (hash) sign, 212
binary data in/out, 323–325
creating, 13–14
data, 26–28
dimension tables, 94
domains, 333
fact tables, 94
multiple, 95–97
ON COMMIT DELETE ROWS, 212
populating, different data types, 52–55
PRESERVE ROWS, 212
records

adding with IDENTITY column, 
218

deleting, 23–24
refactoring, 47–48

bindex.indd 397bindex.indd   397 3/15/2011 9:41:14 PM3/15/2011   9:41:14 PM



398

TABLES view – UUIDs

tables (continued
structure, 26–28
temporary, 212

TABLES view, 280
tablets, 335
tags in elements, 289

namespaces, 292
TCL (Transaction Control Language), 47
TCP/IP (Transmission Control Protocol/Internet 

Protocol), 278
temporary tables, 212

Oracle, 212
PostgreSQL, 213
session-scoped (MySQL), 213

text
parsing, 115–116
search functions, 326
structured, 296

text-based storage, XML documents, 302
TOP keyword, 60, 150
TPC (Transaction Processing Performance 

Council)
benchmarks, 232
TPC-C, 232
TPC-E, 232
TPC-H, 232

tpmC (transactions per minute), 232
traffi ce, procedural extensions and, 

134–135
TRANCOUNT statement, 258
Transact-SQL, 11
transactions, 251, 254

COMMIT, 256–257
concurrency

optimistic, 262–263
pessimistic, 262–263

DDL and, 254
distributed, 260
explicit, 256
implicit, 256

isolation levels, 260–261
SQL, 262

nested, 258
sessions and, 254
SQL Standard, 

254–255
transparency, OLAP and, 340
tree structure, 289
triggers, 228–229
TRIM function, 116
TRUNCATE statement, 66–67

U

UDFs (user-defi ned functions), 
132–133

UDTs (user-defi ned types), 348
underscore (_) in searches, 74
Unicode, 33
UNION ALL operator, 191–192
UNION keyword, 95, 96–97
UNION operator, 176, 189–193
UNIQUE constraint, 92
UNIQUE keyword, indices, 209

CLUSTERED indices, 209–211
unstructured data, 287
UOW (unit of work), 212
UPDATE statement, 24, 25–28, 63–65

subqueries, 165–166
views, 198–201

updateXML function, 305
user-defi ned functions. See UDFs (user-defi ned 

functions)
users

authentication, 266
defi ning, 266–267
number of, 2

USPS (United States Postal Service), 307
UUIDs (Universally Unique Identifi ers), 

228

bindex.indd 398bindex.indd   398 3/15/2011 9:41:14 PM3/15/2011   9:41:14 PM



399

validation – XML 

V

validation, XML documents, 313
values

auto-incremented, 216–224
seed, 218

VALUES keyword, 15
variable strings, 32–34
VBA (Visual Basic for Applications), 254
vertical limits, 56
vertical restriction, 273
VIEW query, 193–194

benefi ts, 202
drawbacks, 202

views
ALTER VIEW statement, 198
constraints, 200–201
CREATE VIEW statement, 194–198
DELETE statement, 198–201
DROP VIEW statement, 198
hierarchical, 201–202
horizontal restriction, 273
indexed, 214
INFORMATION_SCHEMA, 279–285
INSERT statement, 198–201
materialized, 214
security, 273–274
UPDATE statement, 198–201
vertical restriction, 273
VIEW query, 193–194

VIEWS view, 280
vigesimal number system, 324

W

Watson computer, 344–345
well-formed documents (XML), 290–291
WHERE clause, 19–20

correlated subqueries, 167–169
horizontal limits, 58

subqueries, 155–158
WHILE loops, 10
Widenius, Michael, 8
Windows Azure, 330
WORK keyword, 256–257
written records, 4

X

XML (eXtensible Markup Language)

as datasource, 294–299

best practices, 318

CDATA, 295–296

data type, 46–47

database size, 297

DML (Data Manipulation Language), 314
documents

accessing in application, 294
disassembling, 297
non-schema as CLOB values, 305
object-based storage, 302
presentation, 296
text-based storage, 302
validation, 313
well-formed, 290–291

DTD, 291

elements, nodes, 308

encoding, 294–295

entities, 295
forest structure, 289
formatted, 290
free-text, 287
hierarchicy, 290
IBM DB2 9.7 pureXML, 307
MySQL 5.5, 317–318
namespaces, 292–293
nodes, 289
Offi ce Open XML, 288
Oracle 11g XML DB, 302–307

bindex.indd 399bindex.indd   399 3/15/2011 9:41:14 PM3/15/2011   9:41:14 PM



400

XMLA – XSLT 

XML (eXtensible Markup 
Language) (continued)

Oracle 11g XMLType methods, 303–304
output as Web page, 318–320
overview, 289–290
PostgreSQL 9.0, 316–317
processing, 297
SGML and, 288
SQL Server, 311–313
SQL Server 2000, 311–313
storage, 297

object-based, 302
text-based, 302

structured text, 296
support, 300–302
tree structure, 289
versatility, 288
XSD (XML Schema Defi nition), 291–292

XMLA (XML for Analysis), 344

Xmlagg( ) function, 298
Xmlattributes function, 298
XMLCAST function, 305
Xmlcomment function, 298
Xmlconcat function, 298
Xmlelement function, 298
XMLEXISTS function, 304
XMLFOREST function, 299
Xmlforest function, 298
Xmlparse function, 298
Xmlpi function, 298
Xmlroot function, 298
XPath, 294, 297
XQuery, 294, 297
XSD (XML Schema Defi nition), 291–292
XSL (eXtensible Stylesheet Language), 296
XSL FO, 296
XSLT (eXtensible Stylesheet Language 

Transformations), 296

bindex.indd 400bindex.indd   400 3/15/2011 9:41:14 PM3/15/2011   9:41:14 PM



B
Installing the RDBMSs Software

In the days of yore, you would start the installation by popping a CD into your computer; 
with the price of bandwidth falling, you can now download the software off the Internet. Still, 
be prepared for a sizeable downloads, to the tune of 100+ megabytes. Table B-1 lists respec-
tive sites for all vendors and organizations whose SQL implementations were covered in the 
book, along with limitations imposed by the vendors on their free versions of software, as well 
as other relevant information. It is recommended to download the stable versions used in the 
book, even though more recent versions might become available.

Over the years, the installation procedures have improved dramatically, and, assuming that 
you go with most of the default options, the installation should be a snap. At the same time, 
there are a few caveats to be aware of. The following appendix describes the setup of RDBMS 
servers on a Windows 7 machine. Even if your environment is different, this might help you to 
select options as you proceed with the installation. For step-by-step PowerPoint/OpenOffi ce 
Impress slides describing the installation process for Windows and Linux, please visit www
.agilitator.com.

Make sure that you download the correct version of the software for your com-
puter. Consider the operating system (Windows, Linux, Mac OS) it’s running as 
well as either the 64- or 32-bit architecture of your machine.

both01.indd 1both01.indd   1 3/22/2011 1:58:40 PM3/22/2011   1:58:40 PM



2 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

TABLE B-1: Download Links for the RDBMSs

RDBMS LINK TO DOWNLOAD 

RDBMS INSTALLATION 

PACKAGELINK TO 

DOWNLOAD RDBMS 

INSTALLATION PACKAGE

NOTES

IBM DB2 9.7  

Express-C

http://www-01.ibm

.com/software/data/

db2/express/

Registration is required.

Limitations: No limitations on the number of data-

bases, database size, and concurrent connections; 

there is a limit on CPU (2 cores), and RAM (up to 2GB). 

Supported operating systems : Linux, Windows, 

Mac OS, and Solaris.

Oracle 10g 

Express

http://www.oracle

.com/technetwork/

database/express-

edition/downloads/

index.html

Registration is required.

Linux x86 (Debian, Mandriva, Novell, Red Hat, and 

Ubuntu); MS Windows.

Limitations: Can only address 1GB of RAM (computer 

memory); will only use single CPU (even if you’ve got 

Quad processor on your computer); only one data-
base can be installed for the instance; the size of the 

database is limited to 4GB.

Microsoft 

SQL Server 

2008 R2 

Express

http://www

.microsoft.com/

express/database/

Download SQL Server 2008 Express with Advanced 

Services for some of the features discussed in the 

book (Full Text Search, for example).

Limitations: Can only address 1GB of RAM (computer 

memory); will only use single CPU (even if you’ve got 

Quad processor on your computer); only one database 

can be installed for the instance; the size of the database 

is limited to 10GB (the previous version, SQL Server 2005 

Express, only supported 4GB).

MySQL 

Community 

Server 5.1

http://dev.mysql

.com/downloads/

mysql/

Ever since acquisition by Oracle, the free version of 

MySQL RDBMS is available as a “Community Server.” 

Registration is required.

Supported operating systems: Linux, Windows. Mac 

OS, Solaris, HP-UX, FreeBSD, and IBM AIX.

Limitations: There are no limitations on CPU, RAM, 

number of databases, database size, or concurrent 

connections.

both01.indd 2both01.indd   2 3/22/2011 1:58:44 PM3/22/2011   1:58:44 PM



Installing IBM DB2 9.7 LUW x 3

RDBMS LINK TO DOWNLOAD 

RDBMS INSTALLATION 

PACKAGELINK TO 

DOWNLOAD RDBMS 

INSTALLATION PACKAGE

NOTES

PostgreSQL 

8.4.4-1 or 

9.0

http://www

.enterprisedb.com/

products/pgdownload

.do

The development of the RDBMS is under the umbrella 

of EnterpriseDB — commercial distribution of the open 

source database.

Registration is not required.

Limitations: There are no additional limitations on CPU, 

RAM, number of databases, database size, and con-

current connections. Supported operating systems: 

Linux, Windows, Mac OS, Solaris, and FreeBSD.

Microsoft 

Access 2010

http://office

.microsoft.

com/en-us/try/

try-office-

2010-FX101868838

.aspx

There are no free versions of MS Access, but you can 

download a trial version of MS Offi  ce Professional 

2010. Registration is required.

Limitations: The only limitation is that the software is a 

time-limited trial; besides this, all limitations inherent in 

the MS Access apply: the total size is limited to 2GB, 

number concurrent connections (255). Supported 

operating systems: Windows only.

OpenOffi  ce 

BASE 3.2

http://download

.openoffice.org/

other.html

Registration is not required.

Limitations: There are no additional limitations on CPU, 

RAM, number of databases, database size. Supported 

operating systems: Linux, Windows, Mac OS, and 

Solaris.

INSTALLING IBM DB2 9.7 LUW

 ‰ After download, double-click the .exe 
installation package and follow the 
prompt instructions.

 ‰ On the screen shown in Figure B-1, 
click Yes when prompted to allow 
modifi cations to your computer. This 
screen might not show up in all ver-
sions of Microsoft Windows.

FIGURE B-1

both01.indd 3both01.indd   3 3/22/2011 1:58:44 PM3/22/2011   1:58:44 PM



4 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ The installer will uncompress several hundred setup fi les and will ask you to proceed, as 
shown in Figure B-2. Click the setup OK button.

FIGURE B-2

 ‰ On the screen shown in Figure B-3, feel free to read the Welcome and Release information, 
or browse the Prerequisite Requirements information.

FIGURE B-3

both01.indd 4both01.indd   4 3/22/2011 1:58:44 PM3/22/2011   1:58:44 PM



Installing IBM DB2 9.7 LUW x 5

 ‰ Click the Install a Product link, as shown in Figure B-3, and then click the Install New button 
on the screen presented in the Figure B-4.

FIGURE B-4

 ‰ You might get a warning about the username, the account you used to log into your 
Windows machine, not conforming to IBM naming conventions; it refers to the user account 
name under which you’re installing the application. 

For the purposes of this book, feel free to ignore it, or review IBM naming rules 
at: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index
.jsp?topic=/com.ibm.db2.luw.admin.dbobj.doc/doc/c0007248.html

both01.indd 5both01.indd   5 3/22/2011 1:58:45 PM3/22/2011   1:58:45 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



6 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ On the Welcome screen shown in Figure B-5, click Next.

FIGURE B-5

 ‰ Accept the terms of the licensing agreement displayed in Figure B-6 and click Next. 

FIGURE B-6

both01.indd 6both01.indd   6 3/22/2011 1:58:45 PM3/22/2011   1:58:45 PM



Installing IBM DB2 9.7 LUW x 7

 ‰ On the next screen, shown in Figure B-7, select Typical installation type. Click Next.

FIGURE B-7

 ‰ On the screen shown in Figure B-8, select Install DB2 Express-C on this computer 
(alternatively, you may want to save the installation process in a response fi le to automate 
installations on multiple computers). Click Next.

FIGURE B-8

both01.indd 7both01.indd   7 3/22/2011 1:58:46 PM3/22/2011   1:58:46 PM



8 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ On the screen shown in Figure B-9, select the select installation directory or accept the 
default. Click Next.

FIGURE B-9

 ‰ Type in the password for the db2admin account on the next screen shown in Figure B-10 
and check the box to use the same account for the remaining DB2 services. Selecting the 
LocalSystem account option will result in the DB2 database using your Windows login 
account for the database. Click Next.

FIGURE B-10

both01.indd 8both01.indd   8 3/22/2011 1:58:46 PM3/22/2011   1:58:46 PM



Installing IBM DB2 9.7 LUW x 9

 ‰ On the next screen (Figure B-11) accept the default confi guration and click Next.

FIGURE B-11

 ‰ Review the summary of the installation on the screen shown in Figure B-12 and click Finish.

FIGURE B-12

both01.indd 9both01.indd   9 3/22/2011 1:58:46 PM3/22/2011   1:58:46 PM



10 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ Upon successful completion of the setup, the screen shown in Figure B-13 will appear. It will 
inform you that the RDBMS will be listening on default port 50000. Click Finish.

FIGURE B-13

INSTALLING ORACLE 10G EXPRESS

 ‰ After download, double-click the .exe installation package and follow the prompt 
instructions.

 ‰ On the window pop-up shown in on Figure B-14, click Yes when prompted to allow modifi -
cations to your computer.

FIGURE B-14

both01.indd 10both01.indd   10 3/22/2011 1:58:46 PM3/22/2011   1:58:46 PM



Installing Oracle 10g Express x 11

 ‰ Accept the terms in the license agreement on the screen shown in on Figure B-15, and click 
Next.

FIGURE B-15

 ‰ Check the Oracle Database 10g Express Edition checkbox, as shown in Figure B-16. You can 
also change the default installation folder. Click Next.

FIGURE B-16

both01.indd 11both01.indd   11 3/22/2011 1:58:47 PM3/22/2011   1:58:47 PM



12 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ Review the summary of the installation settings, as shown in Figure B-17, and click Install 
button.

FIGURE B-17

 ‰ Enter the password for both SYS and SYSTEM database accounts on the screen shown in the 
Figure B-18. They will be used to log on to the database server and perform administrative 
tasks. Click Next.

FIGURE B-18

 ‰ At the end of the installation, you might select Launch the Database Homepage, as shown 
in Figure B-19, which will launch a web page to connect to the Oracle database you’ve just 
installed. The examples of the usage will be provided in Appendix C.

both01.indd 12both01.indd   12 3/22/2011 1:58:47 PM3/22/2011   1:58:47 PM



Installing Microsoft SQL Server 2008 R2 Express x 13

FIGURE B-19

INSTALLING MICROSOFT SQL SERVER 2008 R2 EXPRESS

 ‰ After download, double-click the installation package and follow the prompt instructions.

 ‰ It will unpack a bunch of installation fi les and will ask you for permission to make changes 
to the computer, as shown in Figure B-20. Click Yes.

 ‰ Select the New Installation option link at the top of the screen as shown in Figure B-21.

FIGURE B-20

both01.indd 13both01.indd   13 3/22/2011 1:58:47 PM3/22/2011   1:58:47 PM



14 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-21

 ‰ After the installer verifi es that your system meets minimum requirements for the installation, 
click OK.

 ‰ Accept License agreement, as shown in Figure B-22. If you are so inclined, you may also 
select to share you usage data with Microsoft. Click Next.

 ‰ On the Feature Selection screen, select Database Engine Services and Management Tools; 
other components are optional. Click Next.

 ‰ On the Instance Confi guration screen, select the Default Instance option. 

both01.indd 14both01.indd   14 3/22/2011 1:58:47 PM3/22/2011   1:58:47 PM



Installing Microsoft SQL Server 2008 R2 Express x 15

FIGURE B-22

 ‰ The next step, shown in Figure B-23, will copy over all the support fi les which the SQL Server 
installer requires for the installation process; after the process is completed, click the Install
button.

FIGURE B-23

both01.indd 15both01.indd   15 3/22/2011 1:58:48 PM3/22/2011   1:58:48 PM



16 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ After the installer verifi es that your system meets the minimum requirements for the installa-
tion, as shown in Figure B-24, click OK.

 FIGURE B-24

 ‰ On the Feature Selection screen shown in the Figure B-25, select Database Engine Services
and Management Tools (other components are optional). Click Next.

FIGURE B-25

both01.indd 16both01.indd   16 3/22/2011 1:58:48 PM3/22/2011   1:58:48 PM



Installing Microsoft SQL Server 2008 R2 Express x 17

 ‰ On the Instance Confi guration screen shown in Figure B-26, select Default Instance option. 
The Named Instance is required when you install more than one instance of the server on 
your computer.

FIGURE B-26

 ‰ While it is the best practice to use separate accounts for each SQL Server service, for the pur-
poses of this book it is easier to use the same account as shown in Figure B-27. Don’t click 
Next yet; you need to set up the default collation for your database.

FIGURE B-27

both01.indd 17both01.indd   17 3/22/2011 1:58:48 PM3/22/2011   1:58:48 PM



18 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ On the very same screen shown in Figure B-27, select Collation tab to access the screen 
shown in Figure B-28. This setting will determine how your database will compare charac-
ters in your queries. The default settings for the server are inherited by every database you 
will create there later. You can use different collations for different database objects, but the 
default collation of the server is a big deal and cannot be easily changed. For the purposes 
of this book, <Latin general> is recommended. The CI_AS suffi x indicates “case insensitive, 
accent sensitive” setting. Click Next.

FIGURE B-28

 ‰ There are two authentication modes (ways to authenticate users connecting to the database) in 
SQL Server 2008: Windows authentication and Mixed authentication. The former uses your 
Windows account to log on, and the latter requires the User ID and Password. There are draw-
backs and benefi ts to either. For now, use Windows authentication. You may also add users on 
the screen shown in Figure B-29 or do it later when administering your database.

both01.indd 18both01.indd   18 3/22/2011 1:58:49 PM3/22/2011   1:58:49 PM



Installing Microsoft SQL Server 2008 R2 Express x 19

FIGURE B-29

 ‰ Another option that can be set here is the location of the data fi les in which SQL Server 
stores information, shown in Figure B-30. You can accept the default or set them up accord-
ing to your choice. The considerations involved in the making of these choices are mostly 
around performance and security. Click Next.

both01.indd 19both01.indd   19 3/22/2011 1:58:49 PM3/22/2011   1:58:49 PM



20 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-30

 ‰ Microsoft collects usage/error information through a confi dential opt-in feature shown in 
Figure B-31. If you feel like it, you may check the box. Click Next.

FIGURE B-31

both01.indd 20both01.indd   20 3/22/2011 1:58:49 PM3/22/2011   1:58:49 PM



Installing MySQL 5.1 x 21

 ‰ Sit back and watch your RDBMS server being installed. Unlike many third-party RDBMSs, 
Microsoft SQL Server will always be installed as a Windows service, a background process 
which could be scheduled to run automatically at startup (among other things which set it 
apart from a “regular” application).

 ‰ Upon completing, the installer will display the screen shown on Figure B-32; besides sum-
mary of installation, it also provides web links to the Microsoft SQL Server site where you 
may fi nd more information.

FIGURE B-32

INSTALLING MYSQL 5.1

 ‰ After download, double-click the MSI installation package (a fi le with MSI extension) and 
follow the prompt instructions.

 ‰ Click Next on the screen shown in Figure B-33.

both01.indd 21both01.indd   21 3/22/2011 1:58:50 PM3/22/2011   1:58:50 PM



22 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-33

 ‰ On the screen presented in Figure B-34, select Typical setup type and click Next.

FIGURE B-34

 ‰ Review the summary as shown in Figure B-35 and click Install. 

both01.indd 22both01.indd   22 3/22/2011 1:58:50 PM3/22/2011   1:58:50 PM



Installing MySQL 5.1 x 23

FIGURE B-35

 ‰ Allow the installation to proceed by clicking Yes on the screen shown in Figure B-36.

FIGURE B-36

 ‰ Click through the next two screens with MySQL Enterprise advertising.

 ‰ Choose the Confi gure the MySQL now option on the screen shown in Figure B-37 and click 
Finish.

both01.indd 23both01.indd   23 3/22/2011 1:58:50 PM3/22/2011   1:58:50 PM



24 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-37

 ‰ Allow MySQLInstanceConfi g.exe to proceed making changes by clicking Yes on the screen 
presented in Figure B-38.

FIGURE B-38

 ‰ Skip the Welcome screen and choose the Standard Confi guration option on the next screen. 
Click Next.

 ‰ Select Server Type as Developer Machine, shown in Figure B-39, which allows you to specify 
some additional confi guration options. Click Next.

both01.indd 24both01.indd   24 3/22/2011 1:58:51 PM3/22/2011   1:58:51 PM



Installing MySQL 5.1 x 25

FIGURE B-39

 ‰ Select Server Type as Developer Machine among the options displayed on Figure B-40. This 
limits MySQL to use minimum resources on your computer. Click Next.

FIGURE B-40

 ‰ Select Multifunctional Database for your usage, as shown in Figure B-41. Click Next.

both01.indd 25both01.indd   25 3/22/2011 1:58:51 PM3/22/2011   1:58:51 PM



26 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-41

 ‰ Transactional support for MySQL is provided with InnoDB components, whose confi gura-
tion wizard will install on your local machine, as shown in Figure B-42.

FIGURE B-42

 ‰ The number of concurrent connections is not important in the context of this book. Accept 
the defaults shown in Figure B-43, and click Next.

both01.indd 26both01.indd   26 3/22/2011 1:58:51 PM3/22/2011   1:58:51 PM



Installing MySQL 5.1 x 27

FIGURE B-43

 ‰ Even if you do not intend for your database to be accessed over the network, write down the 
port number: 3306, displayed in Figure B-44. You will need it to confi gure third-party SQL 
clients when connecting to this server. You may want to enable optional Strict Mode for your 
installation. Click Next.

FIGURE B-44

 ‰ The character set defi nes what languages your database supports natively as well as some 
formatting options. Select whatever makes the best choice for you on the screen presented 
in Figure B-45. Click Next.

both01.indd 27both01.indd   27 3/22/2011 1:58:52 PM3/22/2011   1:58:52 PM



28 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-45

 ‰ On the screen shown in Figure B-46, installing as Windows Service allows the MySQL 
server to be confi gured to start automatically. Check the box to include the Bin directory in 
Windows PATH; this might save you some time later.

FIGURE B-46

 ‰ Set up the root password (Figure B-47) to be the administrative password for the installa-
tion. Write it down; you will need it to connect to the database server later. Simply put, a 
user logged-in with these credentials can do anything. You want to guard this password. For 
security reasons — in the context of this book — it is not recommended to enable root access 
from remote machines or create anonymous accounts on the local computer. Click Next.

both01.indd 28both01.indd   28 3/22/2011 1:58:52 PM3/22/2011   1:58:52 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Installing MySQL 5.1 x 29

FIGURE B-47

 ‰ You will have the chance to review the installation options before hitting the Execute button, 
as shown in Figure B-48.

FIGURE B-48

 ‰ Your database is set up. Follow the instructions on the screen (shown in Figure B-49); you 
might need to reboot your computer.

both01.indd 29both01.indd   29 3/22/2011 1:58:52 PM3/22/2011   1:58:52 PM



30 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-49

INSTALLING POSTGRESQL 9.0

These steps will guide you through the setup of PostgreSQL 9.0, the latest and greatest beta version. 
While it might not be quite ready to be deployed in heavy-duty production environment, it is more 
than suffi cient for the purposes of this book.

 ‰ After download, double-click the EXE installation package and follow the prompt instruc-
tions, beginning with those shown in Figure B-50.

 ‰ Specify the installation directory for the software and click Next.

 ‰ Specify the installation directory where the RDBMS will store data and click Next.

FIGURE B-50

 ‰ On the Welcome Screen shown in Figure B-51, click Next.

both01.indd 30both01.indd   30 3/22/2011 1:58:52 PM3/22/2011   1:58:52 PM



Installing PostgreSQL 9.0 x 31

FIGURE B-51

 ‰ Specify the installation directory for the software on the screen presented in Figure B-52, and 
click Next. 

FIGURE B-52

 ‰ Specify the installation directory in which the RDBMS will store data, shown in Figure B-53, 
and click Next. 

both01.indd 31both01.indd   31 3/22/2011 1:58:53 PM3/22/2011   1:58:53 PM



32 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

FIGURE B-53

 ‰ Enter the password for the postgres super-user account (the main administrator for the 
server — this is a built-in account) on the screen shown in Figure B-54. Click Next.

FIGURE B-54

 ‰ Unless you have compelling reasons for changing it, leave the default port, 5432 as shown in 
Figure B-55, and click Next.

both01.indd 32both01.indd   32 3/22/2011 1:58:53 PM3/22/2011   1:58:53 PM



Installing PostgreSQL 9.0 x 33

FIGURE B-55

 ‰ Accept the Default locale (the locale your computer is set up with) on the screen shown in 
Figure B-56. This will defi ne many characteristics of the PostgreSQL databases: date/time 
format, numbers display and so on. Alternatively, you may change it to a different one. Click 
Next.

FIGURE B-56

both01.indd 33both01.indd   33 3/22/2011 1:58:53 PM3/22/2011   1:58:53 PM



34 x APPENDIX B  INSTALLING THE RDBMSS SOFTWARE

 ‰ At the end of the installation, you will be presented (Figure B-57) with an opportunity to 
install additional applications for your PostgreSQL server, such as pgOLEDB, an OLE 
DB Provider for applications created with Microsoft technologies utilizing a PostgreSQL 
back end; PostGIS, an open source geographical information add-on; and psqlJDBC, Java 
Database Connectivity (JDBC) drivers for developing Java applications. These are not 
required for the purposes of this book.

 FIGURE B-57

While installing the software will not result in production-quality RDBMS 
installation (there is a lot to be said for the benefi ts of a good DBA), the perfor-
mance will be satisfactory to run all the examples in this book, and then some. 
Please keep in mind that your database will need a lot more security hardening 
and performance tune-up to be called a production database.

both01.indd 34both01.indd   34 3/22/2011 1:58:53 PM3/22/2011   1:58:53 PM



C
Accessing RDBMSs 

Each RDBMS we’ve discussed in the book comes with its own arsenal of tools that allow the user 
to communicate with the database, issue SQL commands, perform administrative tasks, and so on. 
The graphical user interface (GUI) so prevalent on today’s computers did not always exist. It evolved 
along with the use of the cathode-ray tube (CRT) monitors and really took off with the advent of 
the pointing device, popularly known as the mouse. Consequently, every database capable of inter-
active access has, in addition to GUI tools, some sort of command-line interface that allows users to 
submit a request (usually an SQL query) and eventually receive some response, be it requested data 
or an error message from the RDBMS in case your request had failed for some reason. 

USING ORACLE XE UTILITIES

Oracle 10g provides various utilities for communicating with its RDBMS, such as SQL*Plus, 
SQL Developer, Oracle Enterprise Manager, and Application Express. The new tool in the 
box is a rather sleek web interface, a scaled-down version of Oracle’s Application Express that 
allows communications with an Oracle database through a web browser.

In addition, there is no shortage of third-party products, both commercial and otherwise, for 
Oracle RDBMSs. The most popular tool on the commercial end of the spectrum is TOAD
for Oracle by Quest Software (the company extended its fl agship product to both DB2 and 
Microsoft SQL Server). SQuirreL Universal SQL Client, described in Appendix D, represents 
the other side of the spectrum, free open source, and works with a wide variety of RDBMSs.

Many other open source SQL clients are available in addition to “lite” 
versions of commercial products such as WinSQL/JaySQL (from Synametrics 
Technologies) or AnySQL (from SQL Maestro Group). The “lite” versions come 
with somewhat limited capabilities, compared with full commercial versions.

SQL*Plus Command-Line Tool

SQL*Plus has been around for ages, and is still going strong — among diehard Oracle 
afi cionados, that is. The nice thing about this command-line tool is that you can count 
on it to be there, beginning with Oracle version 4. It also has the advantage of being 

both02.indd 1both02.indd   1 3/22/2011 2:02:21 PM3/22/2011   2:02:21 PM



2 x APPENDIX C  ACCESSING RDBMSS 

platform-independent; exactly the same commands can be used on Windows, Sun Solaris, Linux, or 
VAX VMS (the SQL itself is platform-independent by defi nition).

Believe it or not, when SQL*Plus fi rst came out in 1984 it was dubbed UFI, 
which stands for User Friendly Interface. The notion of “user friendliness” must 
have changed signifi cantly since then.

SQL*Plus is an interactive query tool to submit SQL commands to the Oracle RDBMS for execution 
and get back results (or an error message should get something wrong). It can also be used for 
performing database administration tasks. 

The SQL*Plus is installed by default, and on computers running Windows it can be started from the 
menu option Programs>Oracle Database 10g Express Edition > Run SQL Command Line. 
Alternatively, it can be started directly from the Microsoft Command Prompt window (found in 
Accessories program group on every recent version of Windows). Other operating systems have 
similar options.

While SQL*Plus can be used to connect to remote machines, for the purposes of 
this book we are assuming that the tool will be running on the same machine on 
which the Oracle RDBMS is installed.

Here is a whirlwind tour of the SQL*Plus command-line utility: 

1. Launch the application from Programs>Oracle Database 10g Express Edition > Run 
SQL Command Line.

2. Connect to the database by typing this command: SQL> connect <username>/<password>
[@<database_sid>].

The example shown in Figure C-1 uses full syntax, including the Oracle system ID, which for the 
express edition defaults to “XE.” 

FIGURE C-1

both02.indd 2both02.indd   2 3/22/2011 2:02:26 PM3/22/2011   2:02:26 PM



Using Oracle XE Utilities x 3

The tool acknowledges the connection; you are ready to run SQL statements. We’ve used a specifi c 
Library account to connect, which is created as part of installing the Library database to Oracle 
RDBMS (see Appendix A). If you haven’t created it yet, you may use the SYSTEM or SYS accounts 
you’ve created while installing the Oracle 10g Express following the instructions in Appendix B.

SQL*Plus passwords are case-sensitive by default (this behavior could be 
changed through confi guration options), beginning with Oracle 11g. An 
“invalid username/password” message would appear should you mistype the 
information.

3. At the prompt, type in an SQL command and hit Enter. A semicolon at the end of the SQL 
statement informs Oracle that the statement is ready to be sent for execution at the press 
of the Enter key on the keyboard. Without it, SQL*Plus will just continue on the new line. 
The results will be displayed in the same window as shown in Figure C-2. Alternatively, they 
could have been redirected to an output fi le (see SPOOL command in Table C-1).

FIGURE C-2

SQL*Plus can run any command you type in, or you can load entire batches from a fi le. The exam-
ples for the latter are included in Appendix A.

A number of parameters can be set to customize the behavior of the tool, the number of lines to be 
displayed, set variables, and so on. The commands are case-insensitive.

SQL*Plus provides built-in help, which can be invoked by typing help at the command prompt (see 
Table C-1 for an example). There are more than 50 commands you can use with SQL*Plus. Table C-1 
lists some of the commonly used commands to fi nd your way around. These are not part of SQL proper; 
they are SQL*Plus specifi c commands.

SQL Developer has become a powerful developer tool. It is no longer part of 
Oracle 10g XE and is available as a separate download. The latest version as of 
the time of this writing is 3.0. 

both02.indd 3both02.indd   3 3/22/2011 2:02:27 PM3/22/2011   2:02:27 PM



4 x APPENDIX C  ACCESSING RDBMSS 

TABLE C-1: Selected SQL*Plus Commands

COMMAND DESCRIPTION EXAMPLE

@ (at sign) Runs the SQL statements in the specifi ed script. 

The script can be called from the local fi le 

system or from a web server.

SQL> @ DiscoveringSQL.

Oracle.Library.sql

@@ (double at 

sign)

Similar to @; often used to call a script from 

another script (nested scripts). 

/ (slash) Executes the contents of the SQL buff er. SQL> /

CLEAR 

SCREEN

Clears your monitor screen. SQL> clear screen

CONN[ECT] Connects a specifi ed Oracle user. SQL> connect library/discover

DESC[RIBE] Lists the column defi nition for the specifi ed 

object (table, view, and so on).

SQL> desc address

DISC[ONNECT] Disconnects current user after committing 

pending changes. 

SQL> disc

EXIT Exits SQL*Plus. All changes will be committed. SQL> exit

HELP Accesses SQL*Plus help. SQL> help get

HOST Executes a host OS command without leaving 

SQL*Plus.

SQL> host dir

PASSW[ORD] Allows you to change a user’s password. SQL> passw acme

QUIT Same as EXIT. SQL> exit

SPOOL Stores query result in an OS fi le. SQL> spool results.out 

SQL> spool off 

SET Sets system variables for current session (auto-

matic commit, the line and page size, and so 

on).

SQL> set autocommit on 

SQL> set linesize 1000

WHENEVER 

SQLERROR

Stops execution of a script and exits SQL*Plus 

(default behavior) if an SQL statement returns 

an error.

SQL> whenever sqlerror 

continue

WHENEVER 

OSERROR

Stops execution of a script and exits SQL*Plus 

(default behavior) if an operating system error 

occurs (connection to the databases is lost).

SQL> whenever oserror exit

both02.indd 4both02.indd   4 3/22/2011 2:02:28 PM3/22/2011   2:02:28 PM



Using Oracle XE Utilities x 5

Oracle Application Express Web Interface

Application express was designed to be an all-in-one solution that provides capabilities ranging 
from database administration to application builder. The startup screen displayed in the Firefox web 
browser is shown in Figure C-3.

FIGURE C-3

Upon a successful login, there are a number of options available to the user. The top-level menu is 
presented in Figure C-4.

FIGURE C-4

both02.indd 5both02.indd   5 3/22/2011 2:02:28 PM3/22/2011   2:02:28 PM



6 x APPENDIX C  ACCESSING RDBMSS 

From the console shown in Figure C-4 you can do the following:

 ‰ Perform a variety of administrative tasks, although rather limited in scope as compared with 
a full-blown database administrator (DBA) tool. 

 ‰ Browse database4 objects, tables, views, and stored procedures.

 ‰ Execute SQL commands, both through script fi les executed as a batch, and interactively. 
Appendix A goes into greater detail, describing the use of this interface for purposes of 
installing the Library sample database.

 ‰ Use the Utilities tab, which offers possibilities to load data from fi les in many different formats 
(text, Excel spreadsheet, XML), generate DDL for existing database objects, and run reports 
on database objects (usage stats, exception reports, and software development metrics).

 ‰ Use the Application Builder tab, which allows for creating data-driven simple web applica-
tions based on the Oracle RDBMS.

USING IBM DB2 UTILITIES

IBM DB2 installs two tools grouped under Command Line Tools (plus a shortcut to the Microsoft 
command-line utility), in addition to the others used for confi guring and administering DB2 databases.

Command-Line Processor (CLP)

CLP is an IBM DB2 command-line utility that allows you to execute SQL statements and invoke 
online help. This appendix provides the basic commands and options you can use with CLP to run 
either interactive commands or scripts against your DB2 database. Akin to Oracle’s SQL*Plus, CLP 
is platform-independent. You can use it in interactive input mode, command mode, or batch mode. 

Interactive Mode

To enter interactive mode, open the Command Line Processor window. Select Programs>IBM 
DB2>DB2COPY1>Command Line Tools>Command Line Processor) as shown in Figure C-5 (assum-
ing the default installation options as described in Appendix B).

FIGURE C-5

both02.indd 6both02.indd   6 3/22/2011 2:02:28 PM3/22/2011   2:02:28 PM



Using IBM DB2 Utilities x 7

Command Mode

To open the Command Line Processor window in command mode, select Programs Í IBM 

DB2 Í DB2COPY1 Í Command Line Tools Í Command Window. This takes you directly to the loca-
tion where the executable resides (see Figure C-6). All commands have to start with db2, as shown in 
Figure C-6. Remember that IBM DB2 users are authenticated through the operating system. Because 
of this, there is no need to type in your user ID and passwords when connecting to the DB2 database.

FIGURE C-6

Appendix A describes in detail how to use this mode to create the Library sample database in the 
IBM DB2 RDBMS. Table C-2 lists some useful CLP Options.

TABLE C-2: Common CLP Options

OPTION EXPLANATION

-c Automatically commits SQL statements. This option is turned on by default; all your 

statements will be automatically committed unless you start your session with the +c 

option (db2 +c).

-f <fi lename> Reads command input from the fi le <fi lename>. You have to specify the full path to 

your fi le unless it is in the current directory: db2 -f /home/btrukhnov/db2/queries/

my_query.sql.

-l <fi lename> Creates a log of commands. For example: db2 -f my_query.sql -l logfi les/my_query.log.

-r <fi lename> Logs the command output to fi le <fi lename>.

-s Stops the execution on error; usually used with the -t option, when script execution 

termination is desirable if a statement fails.

-t Uses semicolon as the statement termination character.

-v Echoes command text to standard output.

-w Displays SQL statement warning messages.

-z <fi lename> Redirects all output to fi le <fi lename>.

both02.indd 7both02.indd   7 3/22/2011 2:02:28 PM3/22/2011   2:02:28 PM



8 x APPENDIX C  ACCESSING RDBMSS 

The Command Line Processor has many commands; most of them are for database administration 
and not relevant to this book. Table C-3 lists some CLP commands that you may fi nd useful.

TABLE C-3: Common CLP commands

CLP COMMAND DESCRIPTION EXAMPLE

! Invokes an operating system command. db2=> !dir

? Invokes online help. db2=> ?

db2=> ? echo

DESCRIBE Describes table columns or indices for 

a table.

db2 describe table 

address

db2 describe indices for 

table customer

ECHO Writes to standard output. db2 echo “what’s up?”

GET CONNECTION STATE Displays the state of the current 

connection.

db2 get connection state

HELP Invokes the Information Center. db2 help

LIST ACTIVE DATABASES Displays the list of databases ready for 

connection.

db2 list active databases

QUIT Exits CLP interactive input mode. db2=> quit

TERMINATE Similar to QUIT, but terminates all back-

ground processes and frees memory.

db2=> terminate

Command Editor

DB2 Command Editor is a Java-based GUI utility used to generate, execute, and edit SQL state-
ments, work with output, and more. It is located in the same group as other tool names, somewhat 
misleadingly: Command Line Tools. Its use is described in detail in Appendix A, where it is used for 
installing the Library sample database.

MICROSOFT SQL SERVER 2008

There are two “native” client tools supplied with Microsoft SQL Server 2008 Express: the 
SQLCMD command-line utility, and Management Studio Express GUI administration console. The 
use of the SQL Server Management Studio for purposes of installing the Library sample database is 
described in Appendix A. Here we are going to touch briefl y on the SQLCMD interface.

SQLCMD Command-Line Utility

SQLCMD is a native command-line utility to run Transact-SQL statements and scripts that is simi-
lar to Oracle’s SQL*Plus or DB2’s CLP. 

both02.indd 8both02.indd   8 3/22/2011 2:02:28 PM3/22/2011   2:02:28 PM



Microsoft SQL Server 2008 x 9

SQLCMD has various command-line options that depend on SQL Server installation options, such 
as authentication mode and database permissions. Microsoft does not provide a shortcut from the 
Programs menu group. You need to open the Microsoft command-prompt utility (usually located in 
Accessories) and type in the SQLCMD command at the prompt, as shown in Figure C-7. Make sure 
that your SQL Server is up and running.

FIGURE C-7

If you have followed instructions and set up your SQL Server with Windows authentication mode, 
the syntax should be as shown in Figure C-7. Otherwise, refer to Table C-4 for the command syntax 
to connect with the user ID and password.

TABLE C-4: SQLCMD Commands

OPTION DESCRIPTION

-U <username> User login ID.

-P <password> User-specifi ed case-sensitive password.

-E Uses trusted connection instead of username and password; this 

corresponds to Windows authentication on local machines.

-S <servername> Server name to connect to.

-d <database_name> Database to connect to.

-i  

[<path>]<fi lename>,...

Input fi le(s) that contain SQL statements to execute.

-o [<path>]<fi lename> Output fi le.

-Q <command_line_

query>

Execute a query and exit. The query body must be enclosed in double 

quotes.

You are ready now to run arbitrary Transact SQL statements (Transact SQL is Microsoft’s dialect of 
SQL). Each SQL statement has to terminate with a command indicating the end of a statement. The 

both02.indd 9both02.indd   9 3/22/2011 2:02:29 PM3/22/2011   2:02:29 PM



10 x APPENDIX C  ACCESSING RDBMSS 

default terminator is GO, without which your SQL statement will just continue on the new line, as 
shown in Figure C-8.

FIGURE C-8

Some of the common SQLCMD commands are listed in Table C-5. The commands are case-insensitive. 
The preceding colon (shown in square brackets) is optional.

TABLE C-5: Selected Query Commands Used With SQLCMD

COMMAND DESCRIPTION

:HELP Lists all SQLCMD commands along with their short descriptions.

[:]!! (double exclamation mark) Executes a command from the Microsoft command prompt.

[:]ED Invokes the default built-in editor. Makes sure a default editor has 

been assigned.

[:]EXIT [<(statement)>] or [:]

QUIT

Exits the SQLCMD utility. EXIT also allows returning a query result.

GO [<count>] Executes cached SQL statements. The optional argument <count> 

gives you the ability to execute SQL statement(s) multiple times.

SQLCMD can be used to load and execute scripts from fi les. An example of such a command is 
installing a Library database with fi les used in the Appendix A SQL Server section:

sqlcmd -S .\SQLEXPRESS -E -i C:\discover\DiscoveringSQL.MSSQLServer.Library.sql -o 

C:\discover\MSSQLlog.txt

both02.indd 10both02.indd   10 3/22/2011 2:02:29 PM3/22/2011   2:02:29 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



MySQL Command Line Client x 11

The script fi le would create Library database and produce output messages in the MSSQLlog.txt
fi le for examination. The data can be inserted following the very same pattern, replacing the Data 
Defi nition Language (DDL) script fi le with one containing INSERT statements DiscoveringSQL
.MSSQLServer.dat.

MYSQL COMMAND LINE CLIENT

The MySQL Command Line client is the utility installed with the MySQL community edition instal-
lation. It has been the default interface to MySQL RDBMS since the beginning. There are several 
GUI tools available, the latest being MySQL Workbench available for download from the MySQL 
site http://wb.mysql.com/.

The command-line utility starts from the menu option Programs Í MySQL Í MySQL Server 5.1 
Í MySQL Command Line Client. While it can be started by navigating to the directory where the 
executable is installed, and invoking it from there, there is a distinct advantage to doing it this way. 
Besides offering a shortcut, it gets the environment initialized. The default user ID when the inter-
face is started this way is root. Type in the password, hit Enter, and you are ready to submit the SQL 
statement to MySQL Server. Normally you would create a new user and grant this user the right to 
the Library database; for purposes of this book, this is not important.

Figure C-9 shows a command-line client connected to a Library database (fi rst issue command 
“use library”; statement and then run SELECT query against the BOOKS table).

FIGURE C-9

If you prefer using GUI tools such as the SQuirreL Universal SQL Client described in Appendix D, 
learning the command-line interface is not required, but it can be rather helpful. Table C-6 lists some 
of the common commands to navigate its environment. Keep in mind that in order to be 
executed every command must end with semicolon “;”. 

both02.indd 11both02.indd   11 3/22/2011 2:02:29 PM3/22/2011   2:02:29 PM



12 x APPENDIX C  ACCESSING RDBMSS 

TABLE C-6: Selected MySQL commands

COMMAND SHORTHAND DESCRIPTION

?             \? Synonym for `help’.

clear    \c Clear command.

connect   \r Reconnects to the server. Optional arguments are db 

and host.

describe <table_name> Displays the table structure.

edit      \e Edits command with $EDITOR.

exit      \q Exits mysql. Same as quit.

go       \g Sends command to mysql server.

help      \h Displays this help.

print     \p Prints current command.

prompt  \R Changes your mysql prompt.

quit    \q Quits mysql.

show <databases>|<tables> Displays list of the databases or tables in a database, 

respectively.

source    \. Executes an SQL script fi le. Takes a fi le name as an 

argument; notice the “dot” after the slash.

use       \u Uses another database. Takes the database name 

as argument.

POSTGRESQL

PostgreSQL provides two built-in mechanisms: the pgAdmin III graphical user interface tool, and 
the original psql command-line one. The use of pgAdmin is described in detail in Appendix A for 
purposes of installing and populating the Library sample database.

SQL Shell (psql)

The PostgreSQL command-line interface is psql. It enables you to type in queries interactively and 
see results returned. Alternatively, the SQL statements can be submitted to the PostgreSQL database 
engine via psql interface as fi les. Table C-7 lists some of the commands that can be used with this 
command-line tool. 

both02.indd 12both02.indd   12 3/22/2011 2:02:29 PM3/22/2011   2:02:29 PM



PostgreSQL x 13

TABLE C-7: Selected PSQL Commands

COMMAND DESCRIPTION

\connect <dbname> Connects to another database.    

\copyright Displays copyright information.

\g or ; Executes statement/command; accepts as argument either fi le or PSQL 

command.

\q Closes all connections and quits the PSQL interface.

\r Clears the window.

\? Displays PSQL help.

\h <subject> Displays SQL help for a given subject.

\i <fi le name> Input from a fi le.

\! <command> Executes host operating system commands (e.g., bash command on Linux or 

korn-shell on Solaris).

\d[object identifi er] Lists database objects. Examples of object identifi ers: “t” for tables, “v” for 

views, “I” for indices, “I” for database, and so on.

The psql command line can be invoked from Programs Í PostgreSQL 9.0 Í SQL Shell(psql). By 
using the shortcut, you have the advantage of the initialized environment, with default values set for 
the server, database, port, and the user postgres (the fi rst four lines in the Figure C-10). In a produc-
tion environment, you would create separate user(s) to connect to the Library sample database; for 
purposes of this book, this is not important.

FIGURE C-10

both02.indd 13both02.indd   13 3/22/2011 2:02:29 PM3/22/2011   2:02:29 PM



14 x APPENDIX C  ACCESSING RDBMSS 

By default, you are connected to Postgres database created automatically with the software instal-
lation. Assuming that you already have installed the sample database following the instructions in 
Appendix A, the sequence of commands shown in Figure C-11 does the following:

 ‰ Changes the context to Library database (\connect library).

 ‰ Issues the SELECT statement against the Library database (the results are returned to the 
same window).

 ‰ Disconnects and quits the interface with the \q command.

FIGURE C-11

MICROSOFT ACCESS 2007/2010

Microsoft Access is a desktop one-stop solution combining RDBMS capabilities with reporting and 
built-in programming environments to create database solutions. It can act as a pass-through client 
connecting to other RDBMSs, such as Microsoft SQL Server or Oracle, or use its own RDBMS to 
store and retrieve relational data via SQL.

A number of design wizards are available to 
assist you with every imaginable database 
task, from creating a database, to designing 
a table, to crafting a query. Then there is the 
hard way through raw SQL, as described in 
Appendix A, through the painstaking 
process of executing DDL and DQL state-
ments in a query window, as shown in 
Figure C-12. 

Microsoft tries to discourage the use of the 
arbitrary SQL in the Access environment, 
trying to steer the user toward GUI tools. 
The query editor capabilities are very FIGURE C-12

both02.indd 14both02.indd   14 3/22/2011 2:02:30 PM3/22/2011   2:02:30 PM



OpenOffi  ce BASE with HSQLDB x 15

basic. There is no syntax highlighting, and susceptibility to choking on nonprintable characters 
is sometimes introduced with copy-and-paste operations.

OPENOFFICE BASE WITH HSQLDB

Just like Microsoft Access, the Open Offi ce BASE offers a “pass-through” interface to connect 
to other RDBMSs, but it also includes an SQL engine of its own based upon open source Hyper 
Structured Query Language Database (HSQLDB) embedded with the application. There are 
a number of graphical tools for building database objects and reports, as well as the ability to 
execute arbitrary SQL statements. The latter capability is described in Appendix A of this book in 
conjunction with installing the Library sample database. Figure C-13 shows a table being designed 
in the Table Design Wizard.

FIGURE C-13

OpenOffi ce BASE’s SQL capabilities are 
rudimentary at best because it is all about being 
user friendly, and competes in the same niche as 
Microsoft Access, an integrated database and 
reporting solution. Yet you can run the DDL 
command using tool, as shown in Figure C-14. 
Unlike with Microsoft Access, this tool allows 
you to run batch commands, grouping several 
statements at once. 

FIGURE C-14

both02.indd 15both02.indd   15 3/22/2011 2:02:30 PM3/22/2011   2:02:30 PM



16 x APPENDIX C  ACCESSING RDBMSS 

The detailed use of this tool for purposes of installing the Library sample database is described in 
Appendix A.

To query tables, you need to switch to a query view, as shown in Figure C-15.

FIGURE C-15

Unlike in Microsoft Access, only SELECT statements are allowed in the OpenOffi ce BASE query 
window: no CREATE, INSERT, UPDATE, or DELETE. To do so in SQL, you would have to open 
to the Execute Statement tool (invoked Tools Í SQL, shown in Figure C-14), shown in Figure C-16.

 FIGURE C-16

both02.indd 16both02.indd   16 3/22/2011 2:02:31 PM3/22/2011   2:02:31 PM



D
Accessing RDBMSs with the 
SQuirreL Universal SQL Client

Besides the native RDBMS utilities discussed in Appendix B which are, by defi nition 
specifi c to those databases, there are universal clients that, at least in theory, can work with 
any RDBMS. There are numerous commercial tools, free tools, and open source tools that 
span both categories. The open source, free SQuirreL Universal SQL Client represents the 
best of both worlds.

In its current version, 3.2.0, it is a robust versatile application with many advanced features 
suited both for a casual SQL user and a heavy-duty SQL/RDBMS developer. The latest 
version features SQL syntax highlighting (with vendor-specifi c extensions recognition), and 
code completion (“intellisense” in the Microsoft lingo), which provides a list of the contextual 
hints based upon the SQL code you’re typing into the pane. Its advanced features include the 
ability to browse database objects, create visual ERD diagrams representing relationships 
among the tables, localize environment in several languages (including French, German and 
Spanish), and more.

The animal charms have been used in the RDBMS world many times: 
PostgreSQL has an elephant for its logo, alluding to the long memory these 
members of the Elephantidae family have, MySQL has a dolphin, one of the 
smartest mammals on the planet. Apparently, a squirrel was chosen because of 
its propensity to store supplies (data), a witty abbreviation emphasized by the 
capitalized letters in SQuirreL, and (taking a wild guess here) its agility. The 
rumors have it that a squirrel can’t always fi nd what it has tucked away, but let’s 
not take analogies too far.

both03.indd 1both03.indd   1 3/22/2011 2:04:19 PM3/22/2011   2:04:19 PM



2 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

INSTALLING SQUIRREL UNIVERSAL SQL CLIENT 3.2.0

To install and run the SQuirreL SQL Client, all you need is Java Virtual Machine (JVM) to be 
installed on the computer (chances are, your computer already has it installed). If not installed, you 
may download it from the Sun Microsystems site (now part of the Oracle Corporation) at www
.java.com/en/download/index.jsp.

Once you have verifi ed (using the tool provided at the Java website) that the suitable version of Java 
is installed on your computer (version 1.6 is needed for SQuirreL 3.0 or later), you can install the 
application by downloading the installation package from the project site: http://squirrel-sql
.sourceforge.net/#installation. The fi le you need is, in its current version, named squirrel-
sql-3.2.0-install.jar as of the time of this writing. This might change as new releases become 
available.

The installation comes packaged as Java Archive (JAR) fi les that can be started by double-clicking 
the fi le (on Microsoft Windows platform, XP or later). Alternatively, you can start the installation 
from command line following the instructions on the project’s site.

To check whether JVM (and which version) is already installed on your com-
puter, visit the Java site: www.java.com/en/download/help/testvm.xml.

Alternatively, you can ask your computer. The steps for checking the Java ver-
sion on your PC computer running Microsoft Windows are as follows:

1. Bring up the command-line prompt, usually located in the Accessories 
folder. On Windows 7, the path is Start Í All Programs Í Accessories Í
Command Prompt. On Windows XP the path is somewhat similar, with 
“All Programs” being replaced with just “Programs”.

2. Once you see the black rectangular Window with the blinking cursor, type 
C>:\java –version and press Enter. Here is how the presence of the latest 
JVM is manifested:

C:\>java -version

java version “1.6.0_22”

Java(TM) SE Runtime Environment (build 1.6.0_22-b04)

Java HotSpot(TM) Client VM (build 17.1-b03, mixed mode, sharing)

Now you have to install the SQuirreL Universal Client software. The installation package can 
be downloaded from the project’s website. Here is the step-by-step procedure for installing the 
software:

1. Launch the installation JAR fi le by double-clicking, or from command line (see preceding 
note) by running this command at the command prompt:

java -jar squirrel-sql-3.2.0-install.jar

The very fi rst splash screen (see Figure D-1) will list the credits for the core developers of the 
SQuirreL Universal SQL Client project.

both03.indd 2both03.indd   2 3/22/2011 2:04:23 PM3/22/2011   2:04:23 PM



Installing SQuirreL Universal SQL Client 3.2.0 x 3

FIGURE D-1

Click Next to continue.

2. The next screen, shown in Figure D-2, provides a brief introduction to SQuirreL, lists prereq-
uisites, and explains options for the installation.

FIGURE D-2

Click Next to continue.

both03.indd 3both03.indd   3 3/22/2011 2:04:23 PM3/22/2011   2:04:23 PM



4 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

3. Select the installation directory (the screen on Figure D-3 displays the default installation path). 
If you type in a directory that does not yet exist on your computer, the installation program 
will create it for you. Click Next to continue.

FIGURE D-3

The SQuirreL Universal SQL Client is built using modular architecture, with additional 
modules being contributed by members of the open source community. You may select 
a variety of the components for your particular environment, such as plug-ins for DB2 
Universal Database or Microsoft SQL Server. Additionally, you can install support for dif-
ferent languages, including Portuguese, Bulgarian, Czech, Chinese, French, German, Italian, 
Korean, Polish, Russian, and Spanish.

Depending on the options selected, the process of unpacking and transferring fi les to your 
computer might take several minutes (see Figure D-4). Once it is completed, the Next button 
becomes enabled.

both03.indd 4both03.indd   4 3/22/2011 2:04:24 PM3/22/2011   2:04:24 PM



Installing SQuirreL Universal SQL Client 3.2.0 x 5

FIGURE D-4

4. The screen presented in Figure D-5 allows you to create shortcuts to launch the applica-
tion, as well as specify whether you’d like to allow all users on your computer access to the 
program.

FIGURE D-5

both03.indd 5both03.indd   5 3/22/2011 2:04:24 PM3/22/2011   2:04:24 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



6 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

5. The fi nal screen (see Figure D-6) contains confi rmation of the installation status, informs you 
where the Uninstaller was created (in case you’d like to remove the application from your 
system later), and offers to create an automatic installation script, something that would be 
handy should you need to install SQuirreL Universal SQL Client on several computers in 
your organization.

FIGURE D-6

6. Click Done. The SQuirreL Universal SQL Client is now installed on your machine.

UNINSTALLING SQUIRREL

To uninstall the SQuirreL Universal SQL Client, you can use the uninstaller created during the 
installation process. The following steps guide you through the process of uninstalling the applica-
tion on a computer running Microsoft Windows. 

1. Using Windows Explorer, navigate to the directory where you’ve installed the application. A 
sample location is shown in Figure D-7.

both03.indd 6both03.indd   6 3/22/2011 2:04:24 PM3/22/2011   2:04:24 PM



Confi guring SQuirreL Universal SQL Client x 7

FIGURE D-7

2. Double-click the uninstaller.jar fi le or run the following script from the command line (the 
following code assumes that the application is installed in the E:\squirrel directory):

C:\ >java -jar E:\squirrel\uninstaller\uninstaller.jar

The uninstaller will ask you (see Figure D-8) whether you 
want to delete the initial installation directory. Deleting it 
would remove all fi les you might have accumulated while run-
ning the application.

3. Click Uninstall. Once the uninstall process is completed, you’ll 
be presented with a message box as shown in Figure D-9; click 
Quit.

FIGURE D-9

To reinstall the application, just repeat all the steps described earlier in this appendix. You can have 
as many instances of the application as you wish; they will not interfere with each other.

CONFIGURING SQUIRREL UNIVERSAL SQL CLIENT

Once the installation is completed; you can use it right away, no need to restart your system. This is 
one of the additional perks of running an application created in the Java programming language.

In order to connect to an RDBMS you need to confi gure your application, and you need Java 
Database Connectivity (JDBC) drivers to do so. A JDBC driver is a piece of software that serves as 

FIGURE D-8

both03.indd 7both03.indd   7 3/22/2011 2:04:24 PM3/22/2011   2:04:24 PM



8 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

an interpreter between the RDBMS and the Java application. On the RDBMS side, it knows how 
to submit SQL queries and commands, and how to interpret the results for the Java application to 
display. 

Java Database Connectivity Drivers

The drivers are packaged as Java archive (JAR) fi les, and installation is usually as easy as copy-
ing these fi les onto your machine (at least with JDBC Type 4 drivers, and it is recommended to use 
only Type 3 or 4 JDBC drivers, preferably the latter). By virtue of being implemented in pure Java, 
which uses native RDBMS protocol, they work on any operating system (Windows, Linux, Mac OS, 
UNIX) for which JVM exists.

There are free and commercial versions of such drivers, and you can fi nd free versions on the 
RDBMS vendors/projects respective sites. Table D-1 lists the sites’ web addresses (URLs), along with 
the fi les I recommend for download.

TABLE D-1: JDBC Drivers Download Information

RDBMS URL

Oracle www.oracle.com/technetwork/database/features/jdbc/

index-091264.html

IBM DB2 www-01.ibm.com/support/docview.wss?rs=4020&uid=swg21385217

Microsoft SQL Server www.microsoft.com/downloads/en/details.aspx?FamilyID=%20

a737000d-68d0-4531-b65d-da0f2a735707&displaylang=en

Microsoft SQL Server 

(open source driver)

Sybase 10-15

http://jtds.sourceforge.net/

PostgreSQL http://jdbc.postgresql.org/download.html

MySQL http://dev.mysql.com/downloads/connector/j/

Once you have the JDBC driver’s JAR fi les on your system, you are ready to confi gure your 
SQuirreL SQL Client and begin to access your RDBMS. You need to make sure that your drivers 
work with the system by registering them within the SQuirreL environment. 

Registering JDBC Drivers with SQuirreL Universal SQL Client

Launch the application using the mechanism for your operating system. On Windows machines, 
click the SQuirreL SQL Client link in the Programs menu. The splash screen shown in Figure D-10 
is displayed.

both03.indd 8both03.indd   8 3/22/2011 2:04:25 PM3/22/2011   2:04:25 PM



Confi guring SQuirreL Universal SQL Client x 9

FIGURE D-10

It takes a few seconds for the application to start and load all necessary confi guration information. 
Figure D-11 shows the initial screen for the application.

FIGURE D-11

both03.indd 9both03.indd   9 3/22/2011 2:04:25 PM3/22/2011   2:04:25 PM



10 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

The two tabs on the left, Drivers and Aliases, allow you to confi gure the client for communication 
with the relational database of your choice. Let’s start with Drivers fi rst.

Here’s a step-by-step procedure to register the JDBC drivers for Oracle, IBM DB2, Microsoft SQL 
Server, PostgreSQL, and MySQL RDBMSs. Connecting to Microsoft Access and Hyper Structured 
Query Language Database (HSQLDB) embedded with OpenOffi ce BASE requires additional steps. 
Make sure to check this book’s accompanying websites for the additional materials.

1. The developers of the application provided a rather comprehensive list of JDBC drivers’ 
templates in lieu of the drivers that they are not allowed to distribute. To shorten the list of 
drivers to display only those loaded, click the last button, as shown in Figure D-12 (the 
adjacent button would display the full list again).

FIGURE D-12

2. As you can see in Figure D-13, there are quite a few drivers that you can use to connect to 
different RDBMSs, with some listing more than one JDBC driver template. Let’s go through 
the process of adding and confi guring JDBC drivers for Microsoft SQL Server 2008.

both03.indd 10both03.indd   10 3/22/2011 2:04:25 PM3/22/2011   2:04:25 PM



Confi guring SQuirreL Universal SQL Client x 11

FIGURE D-13

3. Once you’ve located a driver’s template for your particular RDBMS (Microsoft SQL Server 
2008 in this case), select it and choose the Modify Driver option from the right-click menu, 
as shown in Figure D-14.

FIGURE D-14

both03.indd 11both03.indd   11 3/22/2011 2:04:25 PM3/22/2011   2:04:25 PM



12 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

4. If you are unfamiliar with Java world conventions, here is a basic overview as related to 
JDBC drivers’ functionality. Java classpath is an environmental variable that holds informa-
tion about directories in which JVM will look for Java classes requested by the application. If 
your JDBC JAR fi les were copied to any of the directories listed in the classpath, they would 
have been picked by the application. Alternatively, you can add additional classpath to the 
confi guration by clicking the Extra Class Path tab, shown in Figure D-15.

FIGURE D-15

5. Once on the Extra Class Path tab, click the Add button to navigate to the location of the 
JDBC JAR fi les you’ve just downloaded/installed, as shown in Figure D-16. The Name fi eld 
on the screen shown in Figure D-15 is but a label for your driver, so make sure to add some 
descriptive name.

both03.indd 12both03.indd   12 3/22/2011 2:04:26 PM3/22/2011   2:04:26 PM



Confi guring SQuirreL Universal SQL Client x 13

FIGURE D-16

6. After navigating to the fi le (in our case, it was installed in C:\Discovering SQL\database 
connection\sqljdbc_3.0\enu), select the fi le name sqljdbc4.jar, as shown in Figure D-17, and 
click Open.

FIGURE D-17

7. If the required driver class does not appear in the drop-down box with the label Class 
Name, click the List Drivers button. Successful registration will look like that shown in 
Figure D-18.

both03.indd 13both03.indd   13 3/22/2011 2:04:26 PM3/22/2011   2:04:26 PM



14 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

FIGURE D-18

8. After you click OK, the driver will be registered, and the confi rmation message highlighted in 
green will appear in the bottom pane of the application’s window, as shown in Figure D-19.

FIGURE D-19

both03.indd 14both03.indd   14 3/22/2011 2:04:26 PM3/22/2011   2:04:26 PM



Confi guring SQuirreL Universal SQL Client x 15

The same process should be repeated for every additional JDBC driver you’ve decided to register 
with your SQuirreL Universal SQL Client application. The following several steps show how to 
register drivers for other RDBMSs. Once you’ve added classpath and listed drivers, make sure that 
the driver class has been successfully loaded, which is indicated by the success message highlighted 
in green in the bottom pane of the application. Table D-2 lists the libraries (fi les) which contain the 
drivers along with connection strings (URL) to be used for SQuirreL confi guration.

TABLE D-2: Connection URLs for JDBC 

RDBMS JDBC DRIVER JAR FILE CONNECTION URL

Oracle ojdbc14.jar jdbc:oracle:thin:@localhost:1521:XE

IBM DB2 db2jcc4.jar jdbc:db2://localhost:50000/library

Microsoft SQL 

Server 2008

sqljdbc4.jar jdbc:sqlserver://

localhost:1443;integrated security = SSPI

PostgreSQL postgresql-9.0-801.

jdbc4.jar

jdbc:postgresql://localhost:5432/

template1

MySQL mysql-connector-java-

5.1.13-bin.jar

jdbc:mysql://localhost:3306

Oracle Thin Driver

To register Oracle Thin JDBC driver, add a classpath to point to the ojdbc14.jar fi le downloaded 
from Oracle’s site (refer to Table D-2), or later version. The confi guration is shown in Figure D-20.

FIGURE D-20

both03.indd 15both03.indd   15 3/22/2011 2:04:27 PM3/22/2011   2:04:27 PM



16 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

IBM DB2

IBM supplies JDBC drivers with its installation, as well as makes them available for separate down-
load. In our case, the required driver can be located in the C:\Program Files\IBM\SQLLIB\java 
directory. At least two fi les must be present in the directory for the driver to register successfully: 
db2jcc4.jar and db2jcc_license_cu.jar. The former contains the classes needed to connect to the IBM 
DB2 database (see Figure D-21).

FIGURE D-21

PostgreSQL Driver

The latest, as of the time of writing, the PostgreSQL JDBC driver available for download at the 
URL listed in Table D-1, is contained in a single fi le postgresql-9.0-801.jdbc4.jar. The registration 
example is presented in Figure D-22.

both03.indd 16both03.indd   16 3/22/2011 2:04:27 PM3/22/2011   2:04:27 PM



Confi guring SQuirreL Universal SQL Client x 17

FIGURE D-22

MySQL

The latest MySQL JDBC driver available for download is contained in the mysql-connector-java-
5.1.13-bin.jar fi le. The sample confi guration is shown in Figure D-23.

FIGURE D-23

both03.indd 17both03.indd   17 3/22/2011 2:04:27 PM3/22/2011   2:04:27 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



18 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

Creating Aliases for RDBMS Connections

Once you have all drivers registered within your SQuirreL application, you are ready to connect to 
your RDBMS. The beauty of using a universal client is that you can connect to any RDBMS of your 
choice (that is, for which you have JDBC driver registered) or all of them at once. 

Connections to specifi c instances of RDBMSs are added though the Aliases tab. By creating an alias 
and adding it to the list, you create a connection to a specifi c RDBMS instance based upon one of 
the RDBMS-specifi c JDBC drivers you have just registered. You add an alias by clicking the blue 
plus sign, as shown in Figure D-24.

FIGURE D-24

Nothing prevents you from creating as many alias-connections as you want to as many RDBMSs as 
you need, including multiple connections to the same instance of the database.

Confi guring an Alias for Microsoft SQL Server 2008

1. On the alias confi guration screen shown in Figure D-25, select an appropriate driver for the 
RDBMS you want to connect to (Microsoft SQL Server in this case).

both03.indd 18both03.indd   18 3/22/2011 2:04:27 PM3/22/2011   2:04:27 PM



Confi guring SQuirreL Universal SQL Client x 19

FIGURE D-25

2. The next steps consist of specifying the alias name (a free-form label), URL, the address by 
which the driver will locate your RDBMS server (refer to Table D-2 for list of connection 
string URLs for each respective database), and user ID and password.

The URL specifi ed on the screen pre-
sented in Figure D-26 assumes SQL 
Server is being set up with Windows 
integrated security. For access utilizing 
User ID and password, you’d have to 
supply valid values (and make sure they 
are set in your SQL Server, as well).

If your system is not confi gured cor-
rectly, you might see this error: “This 
driver is not confi gured for integrated 
security authentication.” The fastest 
(albeit not in the spirit of best prac-
tices) way to remedy the situation 
would be to copy the sqljdbc_auth.
dll fi le to the same directory where 
your Microsoft SQL Server JDBC 
driver sqljdbc4.jar is located (refer to 
Figure D-19). The authentication fi le 
sqljdbc_auth.dll is located in directory \auth\x86 (for 32 bit operating system) or \auth\x64 
(for the 64-bit OS) right under the one holding sqljdbc4.jar, as shown in Figure D-27.

FIGURE D-26

both03.indd 19both03.indd   19 3/22/2011 2:04:27 PM3/22/2011   2:04:27 PM



20 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

FIGURE D-27

3. Test your connection by clicking the Test button and 
then the Connect button on the pop-up screen shown in 
Figure D-28.

4. If you have confi gured everything properly, the appli-
cation will report its status by displaying the message 
shown in Figure D-29. Alternatively, a window with an 
error message will be displayed to provide clues about 
what might have gone wrong. In that case, feel free 
to contact us via e-mail at discoveringSQL@
agilitator.com.

FIGURE D-29

Now you are ready to connect to your Microsoft SQL Server 2008 database and begin run-
ning the examples and exercises in the book.

Confi guring an Alias for Oracle 10g XE

The default database (in the Oracle sense; not to be confused with a database term used in any other 
RDBMS context) installed with Oracle Express will be called XE, and the user is almost equivalent 
to what other RDBMSs call a database. The confi guration shown in Figure D-30 creates an alias to 
connect to the Oracle database using the SYSTEM user account specifi ed during installation.

FIGURE D-28

both03.indd 20both03.indd   20 3/22/2011 2:04:28 PM3/22/2011   2:04:28 PM



Confi guring SQuirreL Universal SQL Client x 21

FIGURE D-30

Once connected, you can run SQL commands to create the user LIBRARY; see Appendix C for more 
details.

A word of caution: SQuirreL saves user credentials, both passwords and user ID(s) 
in clear text; the warning is right there. To add an additional level of security, you 
may choose not to store credentials, despite all the convenience, but instead type 
them in when connecting to the RDBMS server (see later in the chapter).

Confi guring an Alias for IBM DB2 LUW 9.7

Keep in mind that users in DB2 are created 
on the operating system level. Therefore, 
your user ID and password would be the 
same as those used for logging onto your 
computer. A sample confi guration is pre-
sented in Figure D-31.

Notice that in order to connect to the DB2 
instance with the SQuirreL Universal SQL 
Client you have to specify a database, which 
means that it has to be there before you can 
connect to the instance to create it. You would 
either have to resort to using the DB2 graphi-
cal admin tool to create the database, or run a 
command-line script (see Appendices A and C 
for examples). Alternatively, you can specify a 
preinstalled SAMPLE database to connect to 
and look around.

FIGURE D-31

both03.indd 21both03.indd   21 3/22/2011 2:04:28 PM3/22/2011   2:04:28 PM



22 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

Confi guring an Alias for PostgreSQL 9

The PostgreSQL RDBMS comes with the 
pgAdmin III utility which is an excellent 
tool to connect and administer PostgreSQL 
database. Still, SQuirreL might come 
in handy; the Figure D-32 shows the con-
fi guration for the PostgreSQL database 
connection alias.

You may have noticed that the connection 
string points to the TEMPLATE1 built-in 
database that serves as a blueprint for every 
other database created in the PostgreSQL 
environment. It is conveniently created dur-
ing the installation process; otherwise, you’d 
have to run the PostgreSQL-specifi c tool 
intdb command (see vendor’s documenta-
tion for more details). We are going to take 
a closer look at this in Appendix A when 
installing our sample Library database.

Confi guring an Alias for MySQL

MySQL comes with a built-in command-line 
tool that many users consider an adequate 
interface, yet you’d appreciate the versatility 
and usefulness of the graphical user interface 
(GUI) provided by SQuirreL SQL Client. 
Figure D-33 represents a confi guration for 
connecting to the MySQL database as the 
ROOT administrative user.

Unlike PostgreSQL or IBM DB2, it allows 
you to connect to a server; no database is 
required.

The aliases can be modifi ed at any time, either through a right-click menu or 
through a graphical toolbar at the top of the pane. Tooltips help you learn the 
environment; just hover the mouse pointer over a button on the toolbar.

You may wonder about the JDBC connection to Microsoft Access. The good news is that there are 
JDBC drivers for Access; the bad news is that they are all commercial. Nevertheless, you still can 

FIGURE D-32

FIGURE D-33

both03.indd 22both03.indd   22 3/22/2011 2:04:29 PM3/22/2011   2:04:29 PM



Confi guring SQuirreL Universal SQL Client x 23

connect to Access .mdb and .accdb fi les through the JDBC.ODBC bridge driver listed on your driv-
ers tab. This would require an additional Open Database Connectivity (ODBC) data source to be 
confi gured on the computer. If you are interested to learn more, check out www.wrox.com and www
.agilitator.com for more resources.

Running SQL Samples Against RDBMSs

With so much effort put into installing and confi guring SQuirreL Universal SQL Client, we are 
ready to reap the rewards. Connecting to the database for which you have already created an alias 
is a snap. Double-click the alias, and click Connect (if you do not store user ID or password as 
alias properties, this would be the time to type them in). As shown in Figure D-34, the connection 
opens a new pane on the right hand, with four tabs: Objects, SQL, Hibernate, and Monitor. For 
the purposes of this book, only the SQL tab is necessary.

FIGURE D-34

As you can see, you can open a connection to several RDBMSs (or several connections to the same 
RDBMS). Figure D-34 shows that both SQL Server and MySQL connections are open, each in its 
own set of tabs, with only one displayed at a time. You can switch between the environments with 
the click of a mouse.

The lower pane displays the status of the executed queries, while the middle will display the data 
sets returned. A query typed into the SQL pane gets executed by clicking the button with a running 
fi gure on the toolbar (alternatively you can use the shortcut Ctrl+Enter).

both03.indd 23both03.indd   23 3/22/2011 2:04:29 PM3/22/2011   2:04:29 PM



24 x APPENDIX D  ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT

Despite being in development for quite some time, the tool might not handle all 
quirks a particular RDBMS might throw at it…yet. For instance, it cannot han-
dle binary data types, and the date data type might be a challenge sometimes. 
Be patient; whenever new updates are released, the tool will notify you and also 
help with installation.

Figure D-35 illustrates all three concepts: It inserts a record into the Library’s BOOKS table, and 
retrieves with a SELECT query (not shown on the screen, but it is part of the batch typed into the 
SQL pane); the results of the execution are displayed in the lower pane.

F IGURE D-35

The SQuirreL Universal SQL Client tool packs a lot of features and certainly deserves a book of its 
own. This appendix is but a brief introduction into how to use this tool to learn SQL using different 
RDBMSs, and not having to learn this RDBMS-specifi c set of tools.

both03.indd 24both03.indd   24 3/22/2011 2:04:29 PM3/22/2011   2:04:29 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>


	WroxBooks
	Discovering SQL
	CONTENTS
	INTRODUCTION
	CHAPTER 1: DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE
	Data Deluge and Informational Overload
	Database Management Systems (DBMSs)
	Storage Capacity
	Number of Users
	Security
	Performance
	Scalability
	Costs

	Recording Data
	Oral Records
	Pictures
	Written Records
	Printed Word
	All of the Above
	Analog versus Digital Data
	To Store or Not to Store?

	Relational Database Management Systems
	IBM DB2 LUW
	Oracle
	Microsoft SQL Server
	Microsoft Access
	PostgreSQL
	MySQL
	HSQLDB and OpenOffice BASE


	What Is SQL?
	The SQL Standard
	Dialects of SQL
	Not the Only Game in Town

	Let There Be Database!
	Creating a Table
	Getting the Data In: INSERT Statement
	Give Me the World: SELECT Statement
	Good Riddance: the DELETE Statement
	I Can Fix That: the UPDATE Statement

	Summary

	CHAPTER 2: BREAKING AND ENTERING: STRUCTURED INFORMATION
	A Really Brief Introduction to Data Modeling
	Conceptual Modeling
	Logical Modeling
	Physical Modeling

	Why Can’t Everything Be Text?
	Character Data
	Fixed Length and Variable Strings
	Binary Strings
	Character versus Special Files

	Numeric Data
	Exact Numbers
	Approximate Numbers

	Literals for the Number
	Once Upon a Time: Date and Time Data Types
	Binary Data

	It’s a Bird, It’s a Plane, It’s … a NULL!
	Much Ado About Nothing
	None of the Above: More Data Types
	BOOLEAN
	BIT
	XML Data Type


	DDL, DML, and DQL: Components of SQL
	Refactoring Database TABLE
	DROP TABLE
	CREATE TABLE
	ALTER TABLE

	Populating a Table with Different Data Types
	Implicit and Explicit Data Conversion

	SELECT Statement Revisited
	Selecting Literals, Functions, and Calculated Columns
	Setting Vertical Limits
	Alias: What’s in a Name?

	Setting Horizontal Limits
	DISTINCT

	Get Organized: Marching Orders
	ORDER BY
	ASC and DESC
	TOP and LIMIT


	INSERT, UPDATE, and DELETE Revisited
	INSERT
	SELECT INTO

	UPDATE
	DELETE
	TRUNCATE That Table!


	SQL Operators: Agents of Change
	Arithmetic and String Concatenation Operators
	Comparison Operators
	Logical Operators
	ALL
	ANY | SOME
	BETWEEN <EXPRESSION> AND <EXPRESSION>
	IN
	EXISTS
	LIKE
	AND
	NOT
	OR

	Assignment Operator
	Bitwise Operators
	Operator Precedence

	Summary

	CHAPTER 3: A THING YOU CAN RELATE TO — DESIGNING A RELATIONAL DATABASE
	Entities and Attributes Revisited
	Keys to the Kingdom: Primary and Foreign
	Relationship Patterns
	Domain Integrity

	Am I Normal? Basics of Relational Database Design
	Specifying Constraints
	Selecting a Flavor For Your Data Model
	Data Warehouses and Data Marts
	Star and Snow flake Schemas
	What Could and Does Go Wrong

	Working with Multiple Tables
	JOIN Syntax
	UNION Operator

	Dynamic SQL
	Ultimate Flexibility, Potential Problems


	Summary

	CHAPTER 4: OVERCOMING THE LIMITATIONS OF SQL
	In Numbers, Strength
	Building Character
	“X” Marks the Spot: Finding the Position of a Character in a String
	CHARINDEX
	CHAR
	SUBSTRING
	LENGTH
	TRIM, LTRIM, and RTRIM


	Date and Time Functions
	What Time Is It?
	Date Arithmetic

	A Glimpse of Aggregate Functions
	Conversion Functions
	Conversion Between Different Data Types
	Conversion Between Different Character Sets

	Miscellaneous Functions
	Making the CASE
	SQL Procedural Extensions
	Happy Parsing: Stored Procedures
	User-Defined Functions (UDFs)
	Why Use Procedural Extensions?
	Performance and Network Traffic
	Database Security
	Code Reusability


	Summary

	CHAPTER 5: GROUPING AND AGGREGATION
	Aggregate SQL Functions Revisited
	AVG()
	COUNT()
	MAX()
	MIN()
	SUM()

	Eliminating Duplicate Data
	GROUP BY: Where Your Data Belongs
	GROUP BY with HAVING Clause
	ORDER BY Clause: Sorting Query Output

	Summary

	CHAPTER 6: WHEN ONE IS NOT ENOUGH: A QUERY WITHIN A QUERY
	What You Don’t Know Might Help You
	Subquery in the WHERE Clause
	EXISTS Operator
	ANY Operator
	ALL Operator

	Subquery in the SELECT List
	Subquery in the FROM Clause
	Subquery in the HAVING Clause
	Subqueries with INSERT
	Subqueries with UPDATE
	Subqueries with DELETE

	Correlated Query
	How Deep the Rabbit Hole Goes: Nesting Subqueries
	A Subquery or a JOIN?
	Summary

	CHAPTER 7: YOU BROKE IT; YOU FIX IT: COMBINING DATA SETS
	Joins Revisited
	INNER JOIN
	N-way INNER JOIN
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL JOIN
	Self JOIN: Looking Inside for an Answer
	CROSS JOIN (aka Cartesian Product)

	State of the UNION
	A Point of VIEW
	CREATE VIEW
	ALTER VIEW
	DROP VIEW
	Updatable VIEW
	WITH CHECK OPTION

	Hierarchical Views
	Benefits and Drawbacks

	But Wait; There’s More!
	INTERSECT
	EXCEPT and MINUS

	Summary

	CHAPTER 8: WHAT ELSE IS THERE, AND WHY?
	An INDEX for All Seasons
	UNIQUE Index
	CLUSTERED Index
	An INDEX Destroyed

	TABLE Revisited
	VIEW Revisited
	By Any Other Name: Aliases and Synonyms
	Auto-Incremented Values
	Identity Columns
	Microsoft SQL Server
	IBM DB2
	PostgreSQL
	MySQL
	Microsoft Access
	OpenOffice BASE with HSQLDB
	Who Am I: Finding One’s IDENTITY

	Sequences
	Comparing Identity Columns and Sequences
	Triggers
	One Happy Family: Working in Heterogeneous Environments
	Summary

	CHAPTER 9: OPTIMIZING PERFORMANCE
	Database Performance
	Performance Benchmarks
	Order of Optimization
	Hardware Optimization
	Operating System Tune-up
	Optimizing RDBMSs
	Optimizing Database/Schema
	Application Optimization
	SQL Optimization


	RDBMS-Specific Optimization
	Oracle 10/11g
	IBM DB2 LUW 9.7
	Microsoft SQL Server 2008
	PostgreSQL
	MySQL
	Desktop RDBMSs
	Microsoft Access
	OpenOffice BASE with HSQLDB Backend


	Your DBA Is Your Friend
	Summary

	CHAPTER 10: MULTIUSER ENVIRONMENT
	Sessions
	Orphaned Sessions
	Transactions
	Understanding Locks

	SQL Security
	Basic Security Mechanisms
	Defining a Database User
	Managing Security with Privileges
	Operating System Security Integration

	INFORMATION_SCHEMA and SQL System Catalogs
	Oracle Data Dictionary
	IBM DB2 LUW System Catalogs
	Microsoft SQL Server 2008 System Catalog

	Summary

	CHAPTER 11: WORKING WITH UNSTRUCTURED AND SEMISTRUCTURED DATA
	SQL and XML
	A Brief Introduction to XML
	Formatted XML
	DTD and Schema
	Document Type Definition (DTD)
	XML Schema Definition (XSD)
	Namespaces

	XML as a DataSource
	Accessing XML Documents in an Application
	XML Path Language: XPath
	XML Query Language: XQuery
	Encoding XML
	Presenting XML Documents
	XSL and XSLT
	XML and RDBMSs

	Implementation Details
	Oracle 11g XML DB
	IBM DB 9.7 pureXML
	Microsoft SQL Server
	PostgreSQL 9.0
	MySQL 5.5
	XML for RDBMS: Best Practices

	All Bits Considered
	What Would Google Do?
	Getting Binary Data In and Out of the RDBMS Table
	Best Practices for Binary Data

	SQL and Text Documents
	Summary


	CHAPTER 12: NOT BY SQL ALONE
	The Future Is Cloudy
	Key/Value Pair
	What in the World Is Hadoop?
	Google’s BigTable, Base, and Fusion Tables
	Amazon SimpleDB
	MongoDB
	Microsoft SQL Azure

	SQL and Business Intelligence
	OLAP Rules
	ROLAP, MOLAP, and HOLAP
	Oracle 11g
	IBM DB2
	Microsoft SQL Server
	XML for Analysis (XMLA)


	Elementary, My Dear Watson!
	Column-Oriented DBMS
	Object Databases
	Object-Oriented Programming (OOP) Paradigm
	Objects and Classes


	Object-Relational Mapping Frameworks
	Hibernate/NHibernate
	Microsoft LINQ and Entity Framework

	Summary

	APPENDIX A: INSTALLING THE LIBRARY DATABASE
	Oracle 10g XE
	Installing Library Sample Database with SQL*Plus
	Installing with Oracle Web Interface

	IBM DB2 9.7 Express-C
	IBM Command Editor
	IBM Command Window

	Microsoft SQL Server 2008 Express
	SQL Server Management Studio Express

	PostgreSQL 9.0
	Installing with pgAdmin III

	MySQL 5.1
	Installing with the MySQL CommandA-Line Utility

	Microsoft Access 2007/2010
	OpenOffice BASE 3.2

	APPENDIX B: INSTALLING RDBMSS SOFTWARE
	APPENDIX C: ACCESSING RDBMSS
	Oracle
	IBM DB2
	Microsoft SQL Server 2008
	MySQL
	PostgreSQL
	Microsoft Access 2007/2010
	Open Office BASE with HSQLDB

	APPENDIX D: ACCESSING RDBMSS WITH THE SQUIRREL UNIVERSAL SQL CLIENT
	INDEX



