Build Your Own

Database
From Scratch

https://bulld-your-own.org

Build Your Own
Database
From Scratch

Persistence, Indexing,
Concurrency

James Smith

build-your-own.org

2023-08-24

Contents

00. Introduction 1
Part I. Simple KV Store ... 4
01. Files vs. Databasesooiiiiiiiiiiiiiie i, 5
02. Indexing ...ttt 9
03.B-Tree: TheIdeas i ... 12
04. B-Tree: The Practice (Part I) ..., 15
05. B-Tree: The Practice (Part IT)......................ooiiiiiiiiii... 25
06. Persist to Disk 33
07. Free List: Reusing Pages i, 44
Part II. Mini Relational DB...................................... 53
08.Rowsand Columnsoooiiiiiiiiiii .., 54
09. Range QUery ... 63
10. Secondary Indexooo i 71
11. Atomic Transactionsoouininininenerinnneaaanannnn. 82
12. Concurrent Readers and Writers 87
13. Query Language: Parser i, 97
14. Query Language: Executiono.oiLL. 110

00. Introduction

0.1 What is This Book About?

Databases are not black boxes. Understand them by building your own from scratch!

This book contains a walk-through of a minimal persistent database implementation. The
implementation is incremental. We start with a B-Tree, then a simple KV store, and

eventually end with a mini relational DB.

The book focuses on important ideas rather than implementation details. Real-world
databases are complex and harder to grasp. We can learn faster and easier from a stripped-

down version of a database. And the “from scratch” method forces you to learn deeper.

Although the book is short and the implementation is minimal, it aims to cover three

important topics:

1. Persistence. How not to lose or corrupt your data. Recovering from a crash.
2. Indexing. Efficiently querying and manipulating your data. (B-tree).

3. Concurrency. How to handle multiple (large number of) clients. And transactions.

If you have only vague ideas like “databases store my data” or “indexes are fast”, this book

is for you.

0.2 How to Use This Book?

This book takes a step-by-step approach. Each step builds on the previous one and adds a
new concept. The book uses Golang for sample code, but the topics are language agnostic.

Readers are advised to code their own version of a database rather than just read the text.
The draft chapters can be accessed at the official website:

https://build-your-own.org

0.3 Topic One: Persistence

Why do we need databases? Why not dump the data directly into files? Our first topic is

persistence.

https://build-your-own.org

2023-08-24 00. Introduction

Let’s say your process crashed middle-way while writing to a file, or you lost power, what’s
the state of the file?

* Does the file just lose the last write?
* Or ends up with a half-written file?

* Or ends up in an even more corrupted state?

Any outcome is possible. Your data is not guaranteed to persist on a disk when you simply
write to files. This is a concern of databases. And a database will recover to a usable state

when started after an unexpected shutdown.

Can we achieve persistence without using a database? There is a way:

1. Write the whole updated dataset to a new file.

2. Call fsync on the new file.

3. Overwrite the old file by renaming the new file to the old file, which is guaranteed
by the file systems to be atomic.

This is only acceptable when the dataset is tiny. A database like SQLite can do incremental
updates.

0.4 Topic Two: Indexing

There are two distinct types of database queries: analytical (OLAP) and transactional
(OLTP).

* Analytical (OLAP) queries typically involve a large amount of data, with aggregation,
grouping, or join operations.

* In contrast, transactional (OLTP) queries usually only touch a small amount of
indexed data. The most common types of queries are indexed point queries and

indexed range queries.

Note that the word “transactional” is not related to database transactions as you may know.
Computer jargon is often overloaded with different meanings. This book focuses only on
OLTP techniques.

While many applications are not real-time systems, most user-facing software should
respond in a reasonable (small) amount of time, using a reasonable amount of resources
(memory, I0). This falls into the OLTP category. How do we find the data quickly (in
0(log(n))), even if the dataset is large? This is why we need indexes.

build-your-own.org 2

https://build-your-own.org

2023-08-24 00. Introduction

If we ignore the persistence aspect and assume that the dataset fits in memory, finding the
data quickly is the problem of data structures. Data structures that persist on a disk to look
up data are called “indexes” in database systems. And database indexes can be larger than

memory. There is a saying: if your problem fits in memory, it’s an easy problem.

Common data structures for indexing include B-Trees and LSM-Trees.

0.5 Topic Three: Concurrency

Modern applications do not just do everything sequentially, nor do databases. There are

different levels of concurrency:

* Concurrency between readers.
* Concurrency between readers and writers, do writers need exclusive access to the
database?

Even the file-based SQLite supports some concurrency. But concurrency is easier within

a process, which is why most database systems can only be accessed via a “server”.

With the addition of concurrency, applications often need to do things atomically, such as

the read-modify-write operation. This adds a new concept to databases: transactions.

build-your-own.org 3

https://build-your-own.org

PART 1. SIMPLE KV STORE

Build a simple persistent key-value store using the B-tree.

01. Files vs. Databases

This chapter shows the limitations of simply dumping data to files and the problems that

databases solve.

1.1 Persisting Data to Files

Let’s say you have some data that needs to be persisted to a file; this is a typical way to do
it:

func SaveDatal(path string, data []byte) error {
fp, err := 0s.0penFile(path, o0s.0_WRONLY|os.0_CREATE|os.0_TRUNC, 0664)
if err !'= nil {
return err

}
defer fp.Close()

_, err = fp.Write(data)

return err

This naive approach has some drawbacks:

1. It truncates the file before updating it. What if the file needs to be read concurrently?

2. Writing data to files may not be atomic, depending on the size of the write. Con-
current readers might get incomplete data.

3. When is the data actually persisted to the disk? The data is probably still in the
operating system’s page cache after the write syscall returns. What’s the state of the

file when the system crashes and reboots?

1.2 Atomic Renaming

To address some of these problems, let’s propose a better approach:

2023-08-24 01. Files vs. Databases

func SaveData2(path string, data []byte) error {
tmp := fmt.Sprintf("%s.tmp.%d", path, randomInt())
fp, err := os.OpenFile(tmp, o0s.0_WRONLY|os.0_CREATE|os.0_EXCL, 0664)
if err = nil {
return err

}
defer fp.Close()

_, err = fp.Write(data)
if err !'= nil {
os.Remove(tmp)

return err

return os.Rename(tmp, path)

This approach is slightly more sophisticated, it first dumps the data to a temporary file,
then rename the temporary file to the target file. This seems to be free of the non-atomic
problem of updating a file directly — the rename operation is atomic. If the system crashed
before renaming, the original file remains intact, and applications have no problem reading

the file concurrently.

However, this is still problematic because it doesn’t control when the data is persisted to
the disk, and the metadata (the size of the file) may be persisted to the disk before the data,
potentially corrupting the file after when the system crash. (You may have noticed that

some log files have zeros in them after a power failure, that’s a sign of file corruption.)

1.3 fsync

To fix the problem, we must flush the data to the disk before renaming it. The Linux
syscall for this is “fsync”.

func SaveData3(path string, data []byte) error {
// code omitted. ..

_, err = fp.Write(data)
if err !'= nil {

build-your-own.org 5)

https://build-your-own.org

2023-08-24 01. Files vs. Databases

os.Remove (tmp)
return err

err = fp.Sync() // fsync

if err !'= nil {
os.Remove(tmp)
return err

return os.Rename(tmp, path)

Are we done yet? The answer is no. We have flushed the data to the disk, but what about

the metadata? Should we also call the fsync on the directory containing the file?

This rabbit hole is quite deep and that’s why databases are preferred over files for persisting
data to the disk.

1.4 Append-Only Logs

In some use cases, it makes sense to persist data using an append-only log.

func LogCreate(path string) (*xos.File, error) {
return os.OpenFile(path, o0s.0_RDWR|os.0_CREATE, 0664)

func LogAppend(fp *0s.File, line string) error {
buf := []byte(line)
buf = append(buf, '\n')
_, err := fp.Write(buf)
if err = nil {
return err
}
return fp.Sync() // fsync

The nice thing about the append-only log is that it does not modify the existing data, nor

build-your-own.org 7

https://build-your-own.org

2023-08-24 01. Files vs. Databases

does it deal with the rename operation, making it more resistant to corruption. But logs

alone are not enough to build a database.

1. A database uses additional “indexes” to query the data efficiently. There are only
brute-force ways to query a bunch of records of arbitrary order.

2. How do logs handle deleted data? They cannot grow forever.

We have already seen some of the problems we must handle. Let’s start with indexing first

in the next chapter.

build-your-own.org 8

https://build-your-own.org

02. Indexing

2.1 Key-Value Store and Relational DB

Although a relational DB supports many types of queries, almost all queries can be broken

down into three types of disk operations:

1. Scan the whole data set. (No index is used).
2. Point query: Query the index by a specific key.
3. Range query: Query the index by a range. (The index is sorted).

Database indexes are mostly about range queries and point queries, and it’s easy to see
that a range query is just a superset of point queries. If we extract the functionality of the
database indexes, it is trivial to make a key-value store. But the point is that a database

system can be built on top of a KV store.

We’ll build a KV store before attempting the relational DB, but let’s explore our options
first.

2.2 Hashtables

Hashtables are the first to be ruled out when designing a general-purpose KV store. The

main reason is sorting — many real-world applications do require sorting and ordering.

However, it is possible to use hashtables in specialized applications. A headache of using
hashtables is the resizing operation. Naive resizing is 0(n) and causes a sudden increase in
disk space and IO. It’s possible to resize a hashtable incrementally, but this adds complexity.
Another problem with hashtables is when to resize down; hashtables generally don’t shrink

automatically to avoid frequent and costly resizing, at the cost of wasted disk space.

2.3 B-Trees

Balanced binary trees can be queried and updated in 0(leg(n)) and can be range-queried.
A B-tree is roughly a balanced n-ary tree. Why use an n-ary tree instead of a binary tree?

There are several reasons:

1. Less space overhead.

2023-08-24 02. Indexing

Every leaf node in a binary tree is reached via a pointer from a parent node, and
the parent node may also have a parent. On average, each leaf node requires 1~2

pointers.

This is in contrast to B-trees, where multiple data in a leaf node share one parent.

And n-ary trees are also shorter. Less space is wasted on pointers.

2. Less disk IO.

e B-trees are shorter, which means fewer disk seeks.

* The minimum size of disk IOs is usually the size of the memory page (probably
4K). The operating system will fill the whole 4K page even if you read a smaller
size. It’s optimal if we make use of all the information in a 4K page (by choosing

the node size of at least one page).

3. Faster in memory.

Even when the data is cached in memory and disk IO is out of the equation, due
to modern CPU memory caching and other factors, n-ary trees can be faster than

binary trees even if their big-O complexity is the same.

We’ll use B-trees in this book. But B-trees are not the only option.

2.4 LSM-Trees

Log-structured merge-tree. Here is a high-level overview of how LSM-Tree works.

Let’s start with 2 files: a small file holding the recent updates and a big file holding the rest
of the data. Updates go to the smaller file first, but the file cannot grow forever, it has to
be merged with the big file at some point to create a new, bigger file. Compare this to the
dumb approach of overwriting the whole database when you update something, this is an
improvement because it reduces writes.

writes => | new updates | => | accumulated data |
file 1 file 2

And how do you query the database? You have to query both files, and the newer (smaller)
file has higher priority. For point queries, you can query the small file first, and query the
big file if it misses. For range queries, both files are queried simultaneously and the results
are merged. Deletion is usually done by putting a mark in the small file to indicate that a

key has been deleted. The actual deletion takes place when the files are merged.

build-your-own.org 10

https://build-your-own.org

2023-08-24 02. Indexing

Both files contain indexing data structures for queries. The advantage is that you can use
simpler data structures because the files aren’t updated in place, since the update operations
are replaced by the merge operation. Each file can simply be a list of sorted KVs indexed

by an array of pointers — easier and less error-prone to implement than B-trees.

Having 2 files is still not optimal regarding the amount of writes when merging files since
the data in the big file is written to disk over and over again. Luckily, this idea can be
generalized to more than 2 files, and each “file” is usually called a “level”. Data goes into
the 1st level first, and when the 1st level gets too big, the 1st level is merged into the 2nd
level, and the 2nd level is now bigger. Each level is merged into the next bigger and older

level when it gets too big.

| level 1]

N
\/

Why does this scheme writes less than the 2-level scheme? Levels grow exponentially,
the multiplier of excess disk write (called write amplification) is 0(log(n)) to the data
size. For example, you can think of a list of files with exponentially increasing size by the
power of two, then you double the size of the 1st file, now the size if the same as the 2nd
file, merge it with the 2nd file and then merge it with the 3rd file and etc.

Real databases don’t use the power of two ratio between levels because it creates too many
levels, which hurts query performance. The size ratio between levels is usually tunable to

allow tradeoffs between write amplification and query performance.

Also, real databases usually implement levels as multiple sorted and non-overlapping files
instead of one big sorted file. Merges are performed in small parts, which allows for
smoother operation. This also reduces the disk space requirements, otherwise, merging

the last level would double the disk space usage.

Readers can try to use LSM-trees instead of B-trees after finishing this book. And compare

the cons and pros between B-trees and LSM-trees.

build-your-own.org 11

https://build-your-own.org

03. B-Tree: The Ideas

3.1 The Intuitions of the B-Tree and BST

Our first intuition comes from balanced binary trees (BST). Binary trees are popular data
structures for sorted data. Keeping a tree in good shape after inserting or removing keys
is what “balancing” means. As stated in a previous chapter, n-ary trees should be used

instead of binary trees to make use of the “page” (minimum unit of IO).

B-trees can be generalized from BSTs. Each node of a B-tree contains multiple keys and
multiple links to its children. When looking up a key in a node, all keys are used to decide
the next child node.

[1, 4, 9]

/ | \

v v v

(1, 2, 31 [4, 6] [9, 11, 12]
The balancing of a B-tree is different from a BST, popular BSTs like RB trees or AVL
trees are balanced on the height of sub-trees (by rotation). While the height of all B-tree

leaf nodes is the same, a B-tree is balanced by the size of the nodes:

* If'a node is too large to fit on one page, it is split into two nodes. This will increase
the size of the parent node and possibly increase the height of the tree if the root
node was split.

* If a node is too small, try merging it with a sibling.

If you are familiar with RB trees, you may also be aware of 2-3 trees that can be easily

generalized as B-trees.

3.2 B-tree and Nested Arrays

Even if you are not familiar with the 2-3 tree, you can still gain some intuition using nested

arrays.

Let’s start with a sorted array. Queries can be done by bisection. But, updating the array
is 0(n) which we need to tackle. Updating a big array is bad so we split it into smaller
arrays. Let’s say we split the array into sqrt(n) parts, and each part contains sqrt(n) keys

on average.

12

2023-08-24 03. B-Tree: The Ideas

(r1,2,31, [4,6], [9,11,12]]

To query a key, we must first determine which part contains the key, bisecting on the
sqrt(n) parts is 0(log(n)). After that, bisecting the key on the part is again 0(log(n)) —

it’s no worse than before. And updating is improved to 0(sqrt(n)).

This is a 2-level sorted nested array, what if we add more levels? This is another intuition

of the B-tree.

3.3 B-Tree Operations

Querying a B-tree is the same as querying a BST.

Updating a B-tree is more complicated. From now on we’ll use a variant of B-tree called
“B+ tree”, the B+ tree stores values only in leaf nodes, and internal nodes contain only

keys.

Key insertion starts at a leaf. A leaf is just a sorted list of keys. Inserting the key into the
leaf is trivial. But, the insertion may cause the node size to exceed the page size. In this
case, we need to split the leaf node into 2 nodes, each containing half of the keys, so that

both leaf nodes fit into one page.

An internal node consists of:

1. A list of pointers to its children.
2. A list of keys paired with the pointer list. Each of the keys is the first key of the

corresponding child.

After splitting a leaf node into 2 nodes. The parent node replaces the old pointer and key
with the new pointers and keys. And the size of the node increases, which may trigger
further splitting.

parent parent

/ |\ => /N
L1 L2 L6 L1 L3 L4 L6

After the root node is split, a new root node is added. This is how a B-tree grows.

new_root
/ \
root N1 N2
/1 N\ => /11N
L1 L2 L6 L1 L3 L4 L6

build-your-own.org 13

https://build-your-own.org

2023-08-24 03. B-Tree: The Ideas

Key deletion is the opposite of insertion. A node is never empty because a small node will

be merged into either its left sibling or its right sibling.

And when a non-leaf root is reduced to a single key, the root can be replaced by its sole
child. This is how a B-tree shrinks.

3.4 Immutable Data Structures

Immutable means never updating data in place. Some similar jargons are “append-only”,
“copy-on-write”, and “persistent data structures” (the word “persistent” has nothing to do

with the “persistence” we talked about ealier).

For example, when inserting a key into a leaf node, do not modify the node in place,
instead, create a new node with all the keys from the to-be-updated node and the new

key. Now the parent node must also be updated to point to the new node.

Likewise, the parent node is duplicated with the new pointer. Until we reach the root
node, the entire path has been duplicated. This effectively creates a new version of the tree
that coexists with the old version. The LSM-tree we mentioned before is also considered

immutable.

There are several advantages of immutable data structures:

1. Avoid data corruption. Immutable data structures do not modify the existing data,
they merely add new data, so the old version of data remains intact even if the update
is interrupted.

2. Easy concurrency. Readers can operate concurrently with writers since readers can

work on older versions unaffected.

Persistence and concurrency are covered in later chapters. For now, we’ll code an im-

mutable B+ tree first.

build-your-own.org 14

https://build-your-own.org

04. B-Tree: The Practice (Part I)

This chapter implements an immutable B+ tree in Golang. The implementation is minimal

and thus is easy to follow.

4.1 The Node Format

Our B-tree will be persisted to the disk eventually, so we need to design the wire format
for the B-tree nodes first. Without the format, we won’t know the size of a node and

when to split a node.

A node consists of:

1. A fixed-sized header containing the type of the node (leaf node or internal node)
and the number of keys.

2. Alist of pointers to the child nodes. (Used by internal nodes).

3. Alist of offsets pointing to each key-value pair.

4. Packed KV pairs.

| type | nkeys | pointers | offsets | key-values
| 2B | 2B | nkeys * 8B | nkeys * 2B |

This is the format of the KV pair. Lengths followed by data.

| klen | vlen | key | val |
| 2B | 2B | ... | ... |

To keep things simple, both leaf nodes and internal nodes use the same format.

4.2 Data Types

Since we’re going to dump our B-tree to the disk eventually, why not use an array of

bytes as our in-memory data structure as well?

type BNode struct {
data []lbyte // can be dumped to the disk

const (

15

2023-08-24 04. B-Tree: The Practice (Part I)

BNODE_NODE
BNODE_LEAF

1 // internal nodes without values
2 // leaf nodes with values

And we can’t use the in-memory pointers, the pointers are 64-bit integers referencing
disk pages instead of in-memory nodes. We’ll add some callbacks to abstract away this

aspect so that our data structure code remains pure data structure code.

type BTree struct {
// pointer (a nonzero page number)
root uint64
// callbacks for managing on-disk pages
get func(uint64) BNode // dereference a pointer
new func(BNode) uint64 // allocate a new page
del func(uint64) // deallocate a page

The page size is defined to be 4K bytes. A larger page size such as 8K or 16K also works.

We also add some constraints on the size of the keys and values. So that a node with a
single KV pair always fits on a single page. If you need to support bigger keys or bigger

values, you have to allocate extra pages for them and that adds complexity.
const HEADER = 4
const BTREE_PAGE_SIZE = 4096

const BTREE_MAX_KEY_SIZE 1000
const BTREE_MAX_VAL_SIZE = 3000

func init() {
nodelmax := HEADER + 8 + 2 + 4 + BTREE_MAX_KEY_SIZE + BTREE_MAX_VAL_SIZE
assert(nodelmax <= BTREE_PAGE_SIZE)

4.3 Decoding the B-tree Node

Since a node is just an array of bytes, we’ll add some helper functions to access its content.

build-your-own.org 16

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

// header

func (node BNode) btype() uintl6 {
return binary.LittleEndian.Uint16(node.data)

}

func (node BNode) nkeys() uintl6 {
return binary.LittleEndian.Uintl6(node.data[2:4])

}

func (node BNode) setHeader(btype uintl6, nkeys uintl6) {
binary.LittleEndian.PutUintl6(node.data[0:2], btype)
binary.LittleEndian.PutUintl6(node.data[2:4], nkeys)

// pointers
func (node BNode) getPtr(idx uintl6) uint64 {
assert(idx < node.nkeys())
pos := HEADER + 8xidx
return binary.LittleEndian.Uint64(node.data[pos:])
}
func (node BNode) setPtr(idx uintl6, val uint64) {
assert(idx < node.nkeys())
pos := HEADER + 8xidx
binary.LittleEndian.PutUint64(node.datal[pos:], val)

Some details about the offset list:

* The offset is relative to the position of the first KV pair.
* The offset of the first KV pair is always zero, so it is not stored in the list.
» We store the offset to the end of the last KV pair in the offset list, which is used to

determine the size of the node.

// offset list

func offsetPos(node BNode, idx uintl6) uintl6 {
assert(l <= idx && idx <= node.nkeys())
return HEADER + 8xnode.nkeys() + 2*(idx-1)

}

func (node BNode) getOffset(idx uintl6) uintl6 {

build-your-own.org 17

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

if idx == 0 {
return 0
}
return binary.LittleEndian.Uintl6(node.data[offsetPos(node, idx):])
}
func (node BNode) setOffset(idx uintl6, offset uintl6) {
binary.LittleEndian.PutUintl6(node.datal[offsetPos(node, idx):], offset)

The offset list is used to locate the nth KV pair quickly.

// key-values
func (node BNode) kvPos(idx uintl6) uintl6 {
assert(idx <= node.nkeys())
return HEADER + 8xnode.nkeys() + 2*node.nkeys() + node.getOffset(idx)
}
func (node BNode) getKey(idx uintl6) []byte {
assert(idx < node.nkeys())
pos := node.kvPos(idx)
klen := binary.LittleEndian.Uintl6(node.datal[pos:])
return node.datal[pos+4:][:klen]
}
func (node BNode) getVal(idx uintl6) []lbyte {
assert(idx < node.nkeys())
pos := node.kvPos(idx)
klen :
vlen :

binary.LittleEndian.Uintl6(node.data[pos+0:])

binary.LittleEndian.Uint1l6(node.data[pos+2:])
return node.data[pos+4+klen:][:vlen]

And to determine the size of the node.

// node size in bytes
func (node BNode) nbytes() uintl6 {
return node.kvPos(node.nkeys())

build-your-own.org 18

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

4.4 The B-Tree Insertion

The code is broken down into small steps.

Step 1: Look Up the Key

To insert a key into a leaf node, we need to look up its position in the sorted KV list.

// returns the first kid node whose range intersects the key. (kid[i] <= key)
// TODO: bisect
func nodelLookupLE(node BNode, key []byte) uintl6 {
nkeys := node.nkeys()
uintl6(0)
// the first key is a copy from the parent node,

found :

// thus it's always less than or equal to the key.
for i := uintl6(1l); i < nkeys; i++ {
cmp := bytes.Compare(node.getKey(i), key)
if cmp <= 0 {
found = i

}
if cmp >= 0 {
break

}

return found

The lookup works for both leaf nodes and internal nodes. Note that the first key is skipped

for comparison, since it has already been compared from the parent node.

Step 2: Update Leaf Nodes

After looking up the position to insert, we need to create a copy of the node with the new

key in it.

// add a new key to a leaf node
func leafInsert(
new BNode, old BNode, idx uintl6,

build-your-own.org 19

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

key [lbyte, val []byte,

) {
new.setHeader (BNODE_LEAF, old.nkeys()+1)
nodeAppendRange(new, old, 0, 0, idx)
nodeAppendKV(new, idx, 0, key, val)
nodeAppendRange(new, old, idx+1l, idx, old.nkeys()-idx)

The nodeAppendRange function copies keys from an old node to a new node.

// copy multiple KVs into the position
func nodeAppendRange (

new BNode, old BNode,

dstNew uintl6, srcOld uintl6, n uintl6,
) {

assert(srcOld+n <= old.nkeys())

assert(dstNew+n <= new.nkeys())

if n == 0 {

return

// pointers

for i := uintl6(0); i < n; i++ {
new.setPtr(dstNew+i, old.getPtr(srcOld+i))

}

// offsets

dstBegin := new.getOffset(dstNew)

old.getOffset(srcOld)

for i := uintl6(1l); i <= n; i++ { // NOTE: the range is [1, n]
offset := dstBegin + old.getOffset(srcOld+i) - srcBegin
new.setOffset(dstNew+i, offset)

srcBegin :

}

// KVs

begin := old.kvPos(src0Old)

end := old.kvPos(srcOld + n)
copy(new.data[new.kvPos(dstNew):], old.datal[begin:end])

The nodeAppendKV function copies a KV pair to the new node.

build-your-own.org 20

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

// copy a KV into the position
func nodeAppendKV(new BNode, idx uintl6, ptr uint64, key []lbyte, val []lbyte) {

// ptrs
new.setPtr(idx, ptr)
// KVs
pos := new.kvPos(idx)

binary.LittleEndian.PutUintl6(new.data[pos+0:], uintl6(len(key)))
binary.LittleEndian.PutUintl6(new.data[pos+2:], uintl6(len(val)))
copy(new.data[pos+4:], key)

copy(new.data[pos+4+uintl6(len(key)):1, val)

// the offset of the next key

new.setOffset(idx+1, new.getOffset(idx)+4+uintl6((len(key)+len(val))))

Step 3: Recursive Insertion

The main function for inserting a key.

// insert a KV into a node, the result might be split into 2 nodes.

// the caller is responsible for deallocating the input node

// and splitting and allocating result nodes.

func treelnsert(tree #*BTree, node BNode, key []byte, val []lbyte) BNode {
// the result node.
// it's allowed to be bigger than 1 page and will be split if so
new := BNode{data: make([]byte, 2*xBTREE_PAGE_SIZE)}

// where to insert the key?
idx := nodelLookupLE(node, key)
// act depending on the node type
switch node.btype() {
case BNODE_LEAF:
// leaf, node.getKey(idx) <= key
if bytes.Equal(key, node.getKey(idx)) {
// found the key, update it.
leafUpdate(new, node, idx, key, val)
} else {
// insert it after the position.

build-your-own.org 21

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

leafInsert(new, node, idx+1l, key, val)
}
case BNODE_NODE:
// internal node, insert it to a kid node.
nodeInsert(tree, new, node, idx, key, val)
default:
panic("bad node!")
}

return new

The leafUpdate function is similar to the leafInsert function.

Step 4: Handle Internal Nodes

Now comes the code for handling internal nodes.

// part of the treelnsert(): KV insertion to an internal node
func nodeInsert(

tree *BTree, new BNode, node BNode, idx uintl6,

key [lbyte, val []byte,
) {

// get and deallocate the kid node

kptr := node.getPtr(idx)

knode := tree.get(kptr)

tree.del(kptr)

// recursive insertion to the kid node

knode = treelnsert(tree, knode, key, val)

// split the result

nsplit, splited := nodeSplit3(knode)

// update the kid links

nodeReplaceKidN(tree, new, node, idx, splited[:nsplit]...)

build-your-own.org 22

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

Step 5: Split Big Nodes

Inserting keys into a node increases its size, causing it to exceed the page size. In this case,

the node is split into multiple smaller nodes.

The maximum allowed key size and value size only guarantee that a single KV pair always

fits on one page. In the worst case, the fat node is split into 3 nodes (one large KV pair in

the middle).

// split a bigger-than-allowed node into two.

// the second node always fits on a page.

func nodeSplit2(left BNode, right BNode, old BNode) {
// code omitted. ..

// split a node if it's too big. the results are 1~3 nodes.
func nodeSplit3(old BNode) (uintl6, [3]BNode) {
if old.nbytes() <= BTREE_PAGE_SIZE {
old.data = old.data[:BTREE_PAGE_SIZE]
return 1, [3]1BNode{old}
}
left := BNode{make([]lbyte, 2+«*BTREE_PAGE_SIZE)} // might be split later
right := BNode{make([]lbyte, BTREE_PAGE_SIZE)}
nodeSplit2(left, right, old)
if left.nbytes() <= BTREE_PAGE_SIZE {
left.data = left.data[:BTREE_PAGE_SIZE]
return 2, [3]BNode{left, right}
}
// the left node is still too large
leftleft := BNode{make([]byte, BTREE_PAGE_SIZE)}
middle := BNode{make([]byte, BTREE_PAGE_SIZE)}
nodeSplit2(leftleft, middle, left)
assert(leftleft.nbytes() <= BTREE_PAGE_SIZE)
return 3, [3]BNode{leftleft, middle, right}

build-your-own.org 23

https://build-your-own.org

2023-08-24 04. B-Tree: The Practice (Part I)

Step 6: Update Internal Nodes

Inserting a key into a node can result in either 1, 2 or 3 nodes. The parent node must

update itself accordingly. The code for updating an internal node is similar to that for

updating a leaf node.

// replace a link with multiple links

func nodeReplaceKidN(

) {

tree *BTree, new BNode, old BNode, idx uintl6,
kids ...BNode,

inc := uintl6(len(kids))
new.setHeader (BNODE_NODE, old.nkeys()+inc-1)
nodeAppendRange(new, old, 0, 0, idx)
for i, node := range kids {
nodeAppendKV(new, idx+uintl6(i), tree.new(node), node.getKey(0), nil)
}

nodeAppendRange(new, old, idx+inc, idx+1l, old.nkeys()-(idx+1))

We have finished the B-tree insertion. Deletion and the rest of the code will be introduced

in the next chapter.

build-your-own.org 24

https://build-your-own.org

05. B-Tree: The Practice (Part II)

Following the previous chapter on B-tree implementation.

5.1 The B-Tree Deletion
Step 1: Delete From Leaf Nodes

The code for deleting a key from a leaf node is just like other nodeReplacex functions.

// remove a key from a leaf node

func leafDelete(new BNode, old BNode, idx uintl6) {
new.setHeader (BNODE_LEAF, old.nkeys()-1)
nodeAppendRange(new, old, 0, 0, idx)
nodeAppendRange(new, old, idx, idx+1l, old.nkeys()-(idx+1))

Step 2: Recursive Deletion

The structure is similar to the insertion.

// delete a key from the tree
func treeDelete(tree *BTree, node BNode, key []byte) BNode {
// where to find the key?
idx := nodeLookupLE(node, key)
// act depending on the node type
switch node.btype() {
case BNODE_LEAF:
if !'bytes.Equal(key, node.getKey(idx)) {
return BNode{} // not found
}
// delete the key in the leaf
new := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
leafDelete(new, node, idx)

return new

25

2023-08-24 05. B-Tree: The Practice (Part Il)

case BNODE_NODE:

return nodeDelete(tree, node, idx, key)
default:

panic("bad node!")

Step 3: Handle Internal Nodes

The difference is that we need to merge nodes instead of splitting nodes. A node may be

merged into one of its left or right siblings. The nodeReplacex functions are for updating

links.

// part of the treeDelete()
func nodeDelete(tree *BTree, node BNode, idx uintl6, key []byte) BNode {
// recurse into the kid
kptr := node.getPtr(idx)
updated := treeDelete(tree, tree.get(kptr), key)
if len(updated.data) == 0 {
return BNode{} // not found
}
tree.del(kptr)

new := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
// check for merging
mergeDir, sibling := shouldMerge(tree, node, idx, updated)
switch {
case mergeDir < 0: // left
merged := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
nodeMerge(merged, sibling, updated)
tree.del(node.getPtr(idx - 1))
nodeReplace2Kid(new, node, idx-1, tree.new(merged), merged.getKey(0))
case mergeDir > 0: // right
merged := BNode{data: make([]lbyte, BTREE_PAGE_SIZE)}
nodeMerge(merged, updated, sibling)
tree.del(node.getPtr(idx + 1))

nodeReplace2Kid(new, node, idx, tree.new(merged), merged.getKey(0))

build-your-own.org 26

https://build-your-own.org

2023-08-24 05. B-Tree: The Practice (Part Il)

case mergeDir ==

if updated.nkeys() == 0 {
// kid is empty after deletion and has no sibling to merge with.
// this happens when its parent has only one kid.
// discard the empty kid and return the parent as an empty node.
assert(node.nkeys() == 1 && idx == 0)
new.setHeader (BNODE_NODE, 0)
// the empty node will be eliminated before reaching root.

} else {
nodeReplaceKidN(tree, new, node, idx, updated)

}

return new

Extra care regarding empty nodes: If a node has no siblings, it cannot be merged, even
it all its keys are deleted. In this case, we need to remove the empty node, this will also
cause its parent to become an empty node, the empty node will propagate upwords until

eventually merged.

// merge 2 nodes into 1

func nodeMerge(new BNode, left BNode, right BNode) {
new.setHeader(left.btype(), left.nkeys()+right.nkeys())
nodeAppendRange(new, left, 0, 0, left.nkeys())
nodeAppendRange(new, right, left.nkeys(), 0, right.nkeys())

Step 4: The Conditions for Merging

The conditions for merging are:

1. The node is smaller than 1/4 of a page (this is arbitrary).

2. Has a sibling and the merged result does not exceed one page.

build-your-own.org 27

https://build-your-own.org

2023-08-24 05. B-Tree: The Practice (Part Il)

// should the updated kid be merged with a sibling?
func shouldMerge(
tree *BTree, node BNode,
idx uintl6, updated BNode,
) (int, BNode) {
if updated.nbytes() > BTREE_PAGE_SIZE/4 {
return 0, BNode{}

}
if idx > 0 {
sibling := tree.get(node.getPtr(idx - 1))
merged := sibling.nbytes() + updated.nbytes() - HEADER
if merged <= BTREE_PAGE_SIZE {
return -1, sibling
}
}

if idx+1 < node.nkeys() {
sibling := tree.get(node.getPtr(idx + 1))
merged := sibling.nbytes() + updated.nbytes() - HEADER
if merged <= BTREE_PAGE_SIZE {
return +1, sibling

}
return 0, BNode{}

The deletion code is done.

5.2 The Root Node

We need to keep track of the root node as the tree grows and shrinks. Let’s start with

deletion.

This is the final interface for B-tree deletion. The height of the tree will be reduced by

one when:

1. The root node is not a leaf.

2. The root node has only one child.

build-your-own.org 28

https://build-your-own.org

2023-08-24 05. B-Tree: The Practice (Part Il)

func (tree *BTree) Delete(key []byte) bool {
assert(len(key) != 0)
assert(len(key) <= BTREE_MAX_KEY_SIZE)
if tree.root == 0 {
return false

updated := treeDelete(tree, tree.get(tree.root), key)
if len(updated.data) == 0 {
return false // not found

tree.del(tree.root)

if updated.btype() == BNODE_NODE && updated.nkeys() == 1 {
// remove a level
tree.root = updated.getPtr(0)

} else {
tree.root = tree.new(updated)

}

return true

And below is the final interface for insertion:

// the interface

func (tree *BTree) Insert(key [lbyte, val []lbyte) {
assert(len(key) != 0)
assert(len(key) <= BTREE_MAX_KEY_SIZE)
assert(len(val) <= BTREE_MAX_VAL_SIZE)

if tree.root == 0 {
// create the first node
root := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
root.setHeader (BNODE_LEAF, 2)
// a dummy key, this makes the tree cover the whole key space.
// thus a lookup can always find a containing node.
nodeAppendKV(root, 0, 0, nil, nil)
nodeAppendKV(root, 1, 0, key, val)
tree.root = tree.new(root)

return

build-your-own.org 29

https://build-your-own.org

2023-08-24 05. B-Tree: The Practice (Part Il)

node := tree.get(tree.root)
tree.del(tree.root)

node = treelnsert(tree, node, key, val)
nsplit, splitted := nodeSplit3(node)
if nsplit > 1 {
// the root was split, add a new level.
root := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
root.setHeader (BNODE_NODE, nsplit)
for i, knode := range splitted[:nsplit] {

ptr, key := tree.new(knode), knode.getKey(0)
nodeAppendKV(root, uintl6(i), ptr, key, nil)
}
tree.root = tree.new(root)
} else {

tree.root = tree.new(splitted[0])

It does two things:

1. A new root node is created when the old root is split into multiple nodes.

2. When inserting the first key, create the first leaf node as the root.

There is a little trick here. We insert an empty key into the tree when we create the first
node. The empty key is the lowest possible key by sorting order, it makes the lookup
function nodeLookupLE always successful, eliminating the case of failing to find a node that

contains the input key.

5.3 Testing the B-Tree

Since our data structure code is pure data structure code (without IO), the page allocation
code is isolated via 3 callbacks. Below is the container code for testing our B-tree, it keeps
pages in an in-memory hashmap without persisting them to disk. In the next chapter,

we’ll implement persistence without modifying the B-tree code.

build-your-own.org 30

https://build-your-own.org

2023-08-24 05. B-Tree: The Practice (Part Il)

type C struct {
tree BTree
ref map[string]lstring
pages map[uint64]BNode

func newC() *C {
pages := mapl[uint64]BNode{}
return &C{
tree: BTree{
get: func(ptr uint64) BNode {
node, ok := pages[ptr]
assert(ok)
return node
b
new: func(node BNode) uint64 {
assert(node.nbytes() <= BTREE_PAGE_SIZE)
key := uint64(uintptr(unsafe.Pointer(&node.data[0])))
assert(pages[key].data == nil)
pages[key] = node
return key
b
del: func(ptr uint64) {
_, ok := pages|[ptr]
assert(ok)
delete(pages, ptr)
b
b
ref: map[string]lstring{},
pages: pages,

We use a reference map to record each B-tree update, so that we can verify the correctness

of a B-tree later.

func (c *C) add(key string, val string) {
c.tree.Insert([]byte(key), [lbyte(val))
c.ref[key] = val

build-your-own.org 31

https://build-your-own.org

2023-08-24 05. B-Tree: The Practice (Part Il)

func (c *C) del(key string) bool {
delete(c.ref, key)
return c.tree.Delete([]byte(key))

Test cases are left to the reader as an exercise.

5.4 Closing Remarks

This B-tree implementation is pretty minimal, but minimal is good for the purpose
of learning. Real-world implementations can be much more complicated and contain

practical optimizations.

There are some easy improvements to our B-tree implementation:

1. Use different formats for leaf nodes and internal nodes. Leaf nodes do not need
pointers and internal nodes do not need values. This saves some space.

2. One of the lengths of the key or value is redundant — the length of the KV pair can
be inferred from the offset of the next key.

3. The first key of a node is not needed because it’s inherited from a link of its parent.

4. Add a checksum to detect data corruption.

The next step in building a KV store is to persist our B-tree to the disk, which is the topic
of the next chapter.

build-your-own.org 32

https://build-your-own.org

06. Persist to Disk

The B-tree data structure from the previous chapter can be dumped to disk easily. Let’s
build a simple KV store on top of it. Since our B-tree implementation is immutable, we’ll
allocate disk space in an append-only manner, reusing disk space is deferred to the next

chapter.

6.1 The Method for Persisting Data

As mentioned in previous chapters, persisting data to disk is more than just dumping data

into files. There are a couple of considerations:

1. Crash recovery: This includes database process crashes, OS crashes, and power
failures. The database must be in a usable state after a reboot.

2. Durability: After a successful response from the database, the data involved is
guaranteed to persist, even after a crash. In other words, persistence occurs before

responding to the client.

There are many materials describing databases using the ACID jargon (atomicity, consis-
tency, isolation, durability), but these concepts are not orthogonal and hard to explain, so

let’s focus on our practical example instead.

1. The immutable aspect of our B-tree: Updating the B-tree does not touch the
previous version of the B-tree, which makes crash recovery easy — should the
update goes wrong, we can simply recover to the previous version.

2. Durability is achieved via the fsync Linux syscall. Normal file IO via write or mmap
goes to the page cache first, the system has to flush the page cache to the disk later.
The fsync syscall blocks until all dirty pages are flushed.

How do we recover to the previous version if an update goes wrong? We can split the

update into two phases:

1. An update creates new nodes; write them to the disk.
2. Each update creates a new root node, we need to store the pointer to the root node

somewhere.

The first phase may involve writing multiple pages to the disk, this is generally not atomic.

But the second phase involves only a single pointer and can be done in an atomic single

33

2023-08-24 06. Persist to Disk

page write. This makes the whole operation atomic — the update will simply not happen

if the database crashes.

The first phase must be persisted before the second phase, otherwise, the root pointer
could point to a corrupted (partly persisted) version of the tree after a crash. There should

be an fsync between the two phases (to serve as a barrier).

And the second phase should also be fsync’d before responding to the client.

6.2 mmap-Based 10

The contents of a disk file can be mapped from a virtual address using the mmap syscall.
Reading from this address initiates transparent disk IO, which is the same as reading the
file via the read syscall, but without the need for a user-space buffer and the overhead of a
syscall. The mapped address is a proxy to the page cache, modifying data via it is the same

as the write syscall.

mmap is convenient, and we’ll use it for our KV store. However, the use of mmap is not

essential.

// create the initial mmap that covers the whole file.
func mmapInit(fp *os.File) (int, [lbyte, error) {
fi, err := fp.Stat()
if err !'= nil {
return 0, nil, fmt.Errorf("stat: %w", err)

if fi.Size()%BTREE_PAGE_SIZE != 0 {
return 0, nil, errors.New("File size is not a multiple of page size.")

mmapSize := 64 << 20

assert(mmapSize%sBTREE_PAGE_SIZE == 0)

for mmapSize < int(fi.Size()) {
mmapSize *= 2

}

// mmapSize can be larger than the file

chunk, err := syscall.Mmap(
int(fp.Fd()), 0, mmapSize,

build-your-own.org 34

https://build-your-own.org

2023-08-24 06. Persist to Disk

syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_SHARED,
)
if err !'= nil {

return 0, nil, fmt.Errorf("mmap: %w", err)

return int(fi.Size()), chunk, nil

The above function creates the initial mapping at least the size of the file. The size of
the mapping can be larger than the file size, and the range past the end of the file is not
accessible (SIGBUS), but the file can be extended later.

We may have to extend the range of the mapping as the file grows. The syscall for extending
a mmap range is mremap. Unfortunately, we may not be able to keep the starting address
when extending a range by remapping. Our approach to extending mappings is to use

multiple mappings — create a new mapping for the overflow file range.

type KV struct {

Path string

// internals

fp *0s.File

tree BTree

mmap struct {
file int // file size, can be larger than the database size
total int // mmap size, can be larger than the file size
chunks [1[]lbyte // multiple mmaps, can be non-continuous

}

page struct {
flushed uint64 // database size in number of pages

temp [1[1byte // newly allocated pages

// extend the mmap by adding new mappings.
func extendMmap(db *KV, npages int) error {
if db.mmap.total >= npages*BTREE_PAGE_SIZE {

build-your-own.org 35

https://build-your-own.org

2023-08-24

06. Persist to Disk

return nil

// double the address space
chunk, err := syscall.Mmap(
int(db.fp.Fd()), int64(db.mmap.total), db.mmap.total,

syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_SHARED,

)
if err = nil {
return fmt.Errorf("mmap: %w", err)

db.mmap.total += db.mmap.total
db.mmap.chunks = append(db.mmap.chunks, chunk)
return nil

The size of the new mapping increases exponentially so that we don’t have to call mmap

frequently.

Below is how we access a page from the mapped address.

// callback for BTree, dereference a pointer.
func (db *KV) pageGet(ptr uint64) BNode {
start := uint64(0)
for _, chunk := range db.mmap.chunks {
end := start + uint64(len(chunk))/BTREE_PAGE_SIZE
if ptr < end {
offset := BTREE_PAGE_SIZE * (ptr - start)

return BNode{chunk[offset : offset+BTREE_PAGE_SIZE]}

}

start = end

}
panic("bad ptr")

build-your-own.org

36

https://build-your-own.org

2023-08-24 06. Persist to Disk

6.3 The Master Page

The first page of the file is used to store the pointer to the root, let’s call it the “master
page”. The total number of pages is needed for allocating new nodes, thus it is also stored
there.

| the_master_page | pages... | tree_root | pages...
| btree_root | page_used | ” ”

=+

1

1

1

1

1

I

1
+

1

1

1

1

1

1

1

1

1

1

1

I
+

The function below reads the master page when initializing a database:

const DB_SIG = "BuildYourOwnDB0O6"

// the master page format.

// 1t contains the pointer to the root and other important bits.

// | sig | btree_root | page_used |

// | 16B | 8B | 8B |

func masterLoad(db *KV) error {

if db.mmap.file == 0 {

// empty file, the master page will be created on the first write.
db.page.flushed = 1 // reserved for the master page
return nil

}

data := db.mmap.chunks[0]

root := binary.LittleEndian.Uint64(data[16:])
used := binary.LittleEndian.Uint64(data[24:1])

// verify the page
if !bytes.Equal([]byte(DB_SIG), datal[:16]) {
return errors.New("Bad signature.")

}
bad := ! (1 <= used && used <= uint64(db.mmap.file/BTREE_PAGE_SIZE))
bad = bad || (0 <= root && root < used)
if bad {
return errors.New("Bad master page.")
}

build-your-own.org 37

https://build-your-own.org

2023-08-24 06. Persist to Disk

db.tree.root = root
db.page.flushed = used

return nil

Below is the function for updating the master page. Unlike the code for reading, it doesn’t
use the mapped address for writing. This is because modifying a page via mmap is not
atomic. The kernel could flush the page midway and corrupt the disk file, while a small

write that doesn’t cross the page boundary is guaranteed to be atomic.

// update the master page. it must be atomic.

func masterStore(db *KV) error {
var data [32]byte
copy(datal:16]1, [1byte(DB_SIG))
binary.LittleEndian.PutUint64(data[16:], db.tree.root)
binary.LittleEndian.PutUint64(datal24:], db.page.flushed)
// NOTE: Updating the page via mmap is not atomic.

// Use the ‘“pwrite()’ syscall instead.
_, err := db.fp.WriteAt(datal[:], 0)
if err !'= nil {

return fmt.Errorf("write master page: %w", err)

}

return nil

6.4 Allocating Disk Pages

We’ll simply append new pages to the end of the database until we add a free list in the

next chapter.

And new pages are kept temporarily in memory until copied to the file later (after possibly
extending the file).

type KV struct {
// omitted. ..
page struct {

build-your-own.org 38

https://build-your-own.org

2023-08-24 06. Persist to Disk

flushed uint64 // database size in number of pages
temp [1[1byte // newly allocated pages

// callback for BTree, allocate a new page.

func (db *KV) pageNew(node BNode) uint64 {
// TODO: reuse deallocated pages
assert(len(node.data) <= BTREE_PAGE_SIZE)
ptr := db.page.flushed + uint64(len(db.page.temp))
db.page.temp = append(db.page.temp, node.data)
return ptr

// callback for BTree, deallocate a page.
func (db *KV) pageDel(uint64) {
// TODO: implement this

Before writing the pending pages, we may need to extend the file first. The corresponding

syscall is fallocate.

// extend the file to at least ‘“npages .
func extendFile(db *KV, npages int) error {
filePages := db.mmap.file / BTREE_PAGE_SIZE
if filePages >= npages {
return nil

for filePages < npages {
// the file size is increased exponentially,
// so that we don't have to extend the file for every update.
inc := filePages / 8
if inc < 1 {
inc =1
}

filePages += inc

build-your-own.org 39

https://build-your-own.org

2023-08-24 06. Persist to Disk

fileSize := filePages * BTREE_PAGE_SIZE
err := syscall.Fallocate(int(db.fp.Fd()), 0, 0, int64(fileSize))
if err = nil {

return fmt.Errorf("fallocate: %w", err)

db.mmap.file = fileSize
return nil

6.5 Initializing the Database

Putting together what we have done.

func (db *KV) Open() error {
// open or create the DB file
fp, err := o0s.0penFile(db.Path, o0s.0_RDWR|os.0_CREATE, 0644)
if err != nil {
return fmt.Errorf("OpenFile: %w", err)

}
db.fp = fp

// create the initial mmap
sz, chunk, err := mmapInit(db.fp)
if err = nil {
goto fail
}
db.mmap.file = sz
db.mmap.total = len(chunk)
db.mmap.chunks = [][]byte{chunk}

// btree callbacks

db.tree.get = db.pageGet
db.tree.new = db.pageNew
db.tree.del = db.pageDel

build-your-own.org

40

https://build-your-own.org

2023-08-24 06. Persist to Disk

// read the master page
err = masterLoad(db)
if err = nil {

goto fail

// done
return nil

fail:
db.Close()
return fmt.Errorf("KV.Open: %w", err)

// cleanups
func (db *KV) Close() {

for _, chunk := range db.mmap.chunks {
err := syscall.Munmap(chunk)
assert(err == nil)
}
_ = db.fp.Close()
}
6.6 Update Operations

Unlike queries, update operations must persist the data before returning.

// read the db
func (db *KV) Get(key [lbyte) ([lbyte, bool) {
return db.tree.Get(key)

// update the db

build-your-own.org 41

https://build-your-own.org

2023-08-24

06. Persist to Disk

func (db *KV) Set(key []byte, val []lbyte) error {
db.tree.Insert(key, val)
return flushPages(db)

func (db *KV) Del(key []byte) (bool, error) {
deleted := db.tree.Delete(key)
return deleted, flushPages(db)

The flushPages is the function for persisting new pages.

// persist the newly allocated pages after updates
func flushPages(db *KV) error {
if err := writePages(db); err != nil {
return err

}
return syncPages(db)
It is split into two phases as mentioned earlier.

func writePages(db *KV) error {
// extend the file & mmap if needed

npages := int(db.page.flushed) + len(db.page.temp)

if err := extendFile(db, npages); err != nil {
return err

}

if err := extendMmap(db, npages); err != nil {
return err

}

// copy data to the file

for i, page := range db.page.temp {
ptr := db.page.flushed + uint64(1i)
copy(db.pageGet(ptr).data, page)

}

return nil

build-your-own.org

42

https://build-your-own.org

2023-08-24 06. Persist to Disk

And the fsync is in between and after them.

func syncPages(db *KV) error {
// flush data to the disk. must be done before updating the master page.
if err := db.fp.Sync(); err != nil {
return fmt.Errorf("fsync: Ssw", err)
}
db.page.flushed += uint64(len(db.page.temp))
db.page.temp = db.page.temp[:0]

// update & flush the master page

if err := masterStore(db); err != nil {
return err

}

if err := db.fp.Sync(); err != nil {
return fmt.Errorf("fsync: %w", err)

}

return nil

Our KV store is functional, but the file can’t grow forever as we update the database, we’ll

finish our KV store by reusing disk pages in the next chapter.

build-your-own.org 43

https://build-your-own.org

07. Free List: Reusing Pages

Since our B-tree is immutable, every update to the KV store creates new nodes in the path
instead of updating current nodes, leaving some nodes unreachable from the latest version.
We need to reuse these unreachable nodes from old versions, otherwise, the database file

will grow indefinitely.

7.1 Design the Free List

To reuse these pages, we’ll add a persistent free list to keep track of unused pages. Update
operations reuse pages from the list before appending new pages, and unused pages from

the current version are added to the list.

The list is used as a stack (first-in-last-out), each update operation can both remove from

and add to the top of the list.

// number of items in the list

func (fl *FreelList) Total() int

// get the nth pointer

func (fl *FreelList) Get(topn int) uint64

// remove °“popn’ pointers and add some new pointers
func (fl *FreelList) Update(popn int, freed [Juint64)

The free list is also immutable like our B-tree. Each node contains:

1. Multiple pointers to unused pages.
2. The link to the next node.
3. The total number of items in the list. This only applies to the head node.

| nodel | | node2 | | node3 |
R + tommm - + R +
| total=xxx | | | | |
| next=yyy | ==> | next=qqq | ==> | next=eee | ==> ...
| size=zzz | | size=ppp | | size=rrr |
| pointers | | pointers | | pointers |

The node format:

| type | size | total | next | pointers |
| 2B | 2B | 88 | 8B | size x 8B |

44

2023-08-24

07. Free List: Reusing Pages

cons

cons

cons

t BNODE_FREE_LIST = 3
t FREE_LIST_HEADER = 4 + 8 + 8
t FREE_LIST_CAP = (BTREE_PAGE_SIZE - FREE_LIST_HEADER) / 8

Functions for accessing the list node:

func
func
func
func
func
func

7.2

flnSize(node BNode) int

flnNext(node BNode) uint64

flnPtr(node BNode, idx int)

flnSetPtr(node BNode, idx int, ptr uint64)
flnSetHeader(node BNode, size uintl6, next uint64)
flnSetTotal(node BNode, total uint64)

The Free List Datatype

The FreeList type consists of the pointer to the head node and callbacks for managing

disk

type

pages.

FreeList struct {
head uint64
// callbacks for managing on-disk pages
get func(uint64) BNode // dereference a pointer
new func(BNode) uint64 // append a new page
use func(uint64, BNode) // reuse a page

These callbacks are different from the B-tree because the pages used by the list are managed
by the list itself.

* The new callback is only for appending new pages since the free list must reuse pages

* There is no del callback because the free list adds unused pages to itself.

from itself.

* The use callback registers a pending update to a reused page.

build

-your-own.org

45

https://build-your-own.org

2023-08-24 07. Free List: Reusing Pages

type BTree struct {
// pointer (a nonzero page number)
root uint64
// callbacks for managing on-disk pages
get func(uint64) BNode // dereference a pointer
new func(BNode) uint64 // allocate a new page
del func(uint64) // deallocate a page

7.3 The Free List Implementation

Getting the nth item from the list is just a simple list traversal.

func (fl *FreeList) Get(topn int) uint64 {

assert(0 <= topn && topn < fl.Total())
node := fl.get(fl.head)
for flnSize(node) <= topn {

topn -= flnSize(node)

next := flnNext(node)

assert(next != 0)

node = fl.get(next)

}
return flnPtr(node, flnSize(node)-topn-1)

Updating the list is tricky. It first removes popn items from the list, then adds the freed to
the list, which can be divided into 3 phases:

1. If the head node is larger than popn, remove it. The node itself will be added to the
list later. Repeat this step until it is not longer possible.

2. We may need to remove some items from the list and possibly add some new items
to the list. Updating the list head requires new pages, and new pages should be
reused from the items of the list itself. Pop some items from the list one by one until
there are enough pages to reuse for the next phase.

3. Modity the list by adding new nodes.

build-your-own.org 46

https://build-your-own.org

2023-08-24 07. Free List: Reusing Pages

// remove °“popn° pointers and add some new pointers
func (fl xFreelList) Update(popn int, freed [Juint64) {
assert(popn <= fl.Total())
if popn == 0 && len(freed) == 0 {
return // nothing to do

// prepare to construct the new list
total := fl.Totall()
reuse := [Juint64{}
for fl.head '= 0 && len(reuse)*FREE_LIST_CAP < len(freed) {
fl.get(fl.head)
append(freed, fl.head) // recyle the node itself
if popn >= flnSize(node) {
// phase 1
// remove all pointers in this node

node :

freed

popn -= flnSize(node)

} else {
// phase 2:
// remove some pointers
remain := flnSize(node) - popn
popn = 0

// reuse pointers from the free list itself

for remain > 0 && len(reuse)+*FREE_LIST_CAP < len(freed)+remain {
remain--
reuse = append(reuse, flnPtr(node, remain))

}

// move the node into the “freed" list

for i := 0; i < remain; i++ {

freed = append(freed, flnPtr(node, 1))

}
// discard the node and move to the next node
total -= flnSize(node)
fl.head = flnNext(node)
}
assert(len(reuse)+*FREE_LIST _CAP >= len(freed) || fl.head == 0)

// phase 3: prepend new nodes
flPush(fl, freed, reuse)

build-your-own.org 47

https://build-your-own.org

2023-08-24 07. Free List: Reusing Pages

// done
flnSetTotal(fl.get(fl.head), uint64(total+len(freed)))

func flPush(fl *FreeList, freed [luint64, reuse [Juint64) {
for len(freed) > 0 {
new := BNode{make([]byte, BTREE_PAGE_SIZE)}

// construct a new node

size := len(freed)

if size > FREE_LIST_CAP {
size = FREE_LIST_CAP

}

flnSetHeader(new, uintl6(size), fl.head)

for i, ptr := range freed[:size] {
flnSetPtr(new, i, ptr)

}

freed = freed[size:]

if len(reuse) > 0 {
// reuse a pointer from the list
fl.head, reuse = reuse[0], reuse[l:]
fl.use(fl.head, new)

} else {
// or append a page to house the new node
fl.head = fl.new(new)

}

assert(len(reuse) == 0)

build-your-own.org 48

https://build-your-own.org

2023-08-24 07. Free List: Reusing Pages

7.4 Manage Disk Pages

Step 1: Modify the Data Structure

The data structure is modified. Temporary pages are kept in a map keyed by their assigned

page numbers. And removed page numbers are also there.

type KV struct {
// omitted. ..
page struct {
flushed uint64 // database size in number of pages
nfree int // number of pages taken from the free list
nappend int // number of pages to be appended

// newly allocated or deallocated pages keyed by the pointer.

// nil value denotes a deallocated page.
updates map[uint64][]byte

Step 2: Page Management for B-Tree

The pageGet function is modified to also return temporary pages because the free list code

depends on this behavior.

// callback for BTree & FreelList, dereference a pointer.
func (db *KV) pageGet(ptr uint64) BNode {
if page, ok := db.page.updates[ptr]; ok {
assert(page != nil)
return BNode{page} // for new pages

}
return pageGetMapped(db, ptr) // for written pages

func pageGetMapped(db *KV, ptr uint64) BNode {
start := uint64(0)
for _, chunk := range db.mmap.chunks {
end := start + uint64(len(chunk))/BTREE_PAGE_SIZE

build-your-own.org

49

https://build-your-own.org

2023-08-24 07. Free List: Reusing Pages

if ptr < end {

offset := BTREE_PAGE_SIZE * (ptr - start)

return BNode{chunk[offset : offset+BTREE_PAGE_SIZE]}
}
start = end

}
panic("bad ptr")

The function for allocating a B-tree page is changed to reuse pages from the free list first.

// callback for BTree, allocate a new page.
func (db *KV) pageNew(node BNode) uint64 {
assert(len(node.data) <= BTREE_PAGE_SIZE)
ptr := uint64(0)
if db.page.nfree < db.free.Total() {
// reuse a deallocated page
ptr = db.free.Get(db.page.nfree)
db.page.nfree++
} else {
// append a new page
ptr = db.page.flushed + uint64(db.page.nappend)
db.page.nappend++
}
db.page.updates[ptr] = node.data

return ptr

Removed pages are marked for the free list update later.
// callback for BTree, deallocate a page.

func (db *KV) pageDel(ptr uint64) {
db.page.updates[ptr] = nil

Step 3: Page Management for the Free List

Callbacks for appending a new page and reusing a page for the free list:

build-your-own.org 50

https://build-your-own.org

2023-08-24

07. Free List: Reusing Pages

// callback for FreeList, allocate a new page.

func (db *KV) pageAppend(node BNode) uint64 {
assert(len(node.data) <= BTREE_PAGE_SIZE)
ptr := db.page.flushed + uint64(db.page.nappend)
db.page.nappend++
db.page.updates[ptr] = node.data
return ptr

// callback for FreelList, reuse a page.
func (db *KV) pageUse(ptr uint64, node BNode) {
db.page.updates[ptr] = node.data

Step 4: Update the Free List

Before extending the file and writing pages to disk, we must update the free list first since

it also creates pending writes.

func writePages(db *KV) error {
// update the free list
freed := [Juint64{}
for ptr, page := range db.page.updates {
if page == nil {
freed = append(freed, ptr)

}
db.free.Update(db.page.nfree, freed)

// extend the file & mmap if needed
// omitted...

// copy pages to the file
for ptr, page := range db.page.updates {
if page !'= nil {
copy (pageGetMapped(db, ptr).data, page)

build-your-own.org

51

https://build-your-own.org

2023-08-24 07. Free List: Reusing Pages

}

return nil

The pointer to the list head is added to the master page:

| sig | btree_root | page_used | free_list |
| 16B | 8B | 8B | 8B |

Step 5: Done

The KV store is finished. It is persistent and crash resistant, although it can only be accessed

sequentially.

There is more to learn in part II of the book:

» Relational DB on the KV store.

» Concurrent access to the database and transactions.

build-your-own.org 52

https://build-your-own.org

PART II. MINI RELATIONAL DB

Build a mini relational DB on top of the KV store.

53

08. Rows and Columns

8.1 Introduction

The first step in building a relational DB on top of a KV store is to add tables. A table is just
a bunch of rows and columns. A subset of the columns is defined as the “primary key”;
primary keys are unique, so they can be used to refer to a row (in queries and secondary

indexes).

How does a table fit into a KV store? We can split a row into two parts:

1. Primary key columns go into the “key” part of the KV store.

2. Non-primary key columns go into the “value” part.

This allows us to do both point queries and range queries on the primary key. For now,
we’ll only consider queries on the primary key, the use of secondary indexes is deferred to

a later chapter.

8.2 Data Structures

Below is the definition of rows and cells. For now, we only support two data types (int64

and bytes).

const (
TYPE_ERROR = 0
TYPE_BYTES = 1
TYPE_INT64 = 2

// table cell

type Value struct {
Type uint32
I64 int64
Str []byte

// table row
type Record struct {

54

2023-08-24 08. Rows and Columns

Cols []string
Vals []Value

func (rec xRecord) AddStr(key string, val []byte) *Record
func (rec *Record) AddInt64(key string, val int64) *Record
func (rec *Record) Get(key string) =*Value

The definition for the DB and tables:

type DB struct {
Path string
// internals
kv KV
tables map[string]+TableDef // cached table definition

// table definition
type TableDef struct {
// user defined
Name string
Types [luint32 // column types
Cols [1string // column names
PKeys int // the first ‘PKeys' columns are the primary key
// auto-assigned B-tree key prefixes for different tables
Prefix uint32

To support multiple tables, the keys in the KV store are prefixed with a unique 32-bit

number.

Table definitions have to be stored somewhere, we’ll use an internal table to store them.

And we’ll also add an internal table to store the metadata used by the DB itself.

// internal table: metadata
var TDEF_META = &TableDef{
Prefix: 1,
Name: "@meta",
Types: [luint32{TYPE_BYTES, TYPE_BYTES},

build-your-own.org 55

https://build-your-own.org

2023-08-24 08. Rows and Columns

Cols: [1string{"key", "val'},
PKeys: 1,

// internal table: table schemas
var TDEF_TABLE = &TableDef{
Prefix: 2,
Name: "@table",
Types: [luint32{TYPE_BYTES, TYPE_BYTES},
Cols: [1string{"name", "def"},
PKeys: 1,

8.3 Point Query

Let’s implement the point query by the primary key, range queries will be added in the

next chapter.

// get a single row by the primary key

func dbGet(db *DB, tdef *TableDef, rec *Record) (bool, error) {
values, err := checkRecord(tdef, *rec, tdef.PKeys)
if err !'= nil {

return false, err

key := encodeKey(nil, tdef.Prefix, values[:tdef.PKeys])
val, ok := db.kv.Get(key)
if lok {

return false, nil

for i := tdef.PKeys; i < len(tdef.Cols); i++ {
values[i].Type = tdef.Types[il]

}

decodeValues(val, values[tdef.PKeys:])

rec.Cols = append(rec.Cols, tdef.Cols[tdef.PKeys:]...)

build-your-own.org 56

https://build-your-own.org

2023-08-24 08. Rows and Columns

rec.Vals = append(rec.Vals, values[tdef.PKeys:]...)
return true, nil

The procedure is:

1. Verify that the input is a complete primary key. (checkRecord)
2. Encode the primary key. (encodeKey)

3. Query the KV store. (db.kv.Get)

4. Decode the value. (decodeValues)

// reorder a record and check for missing columns.

// n == tdef.PKeys: record is exactly a primary key

// n == len(tdef.Cols): record contains all columns

func checkRecord(tdef *TableDef, rec Record, n int) ([]Value, error) {
// omitted...

}

The method for encoding data into bytes and decoding from bytes will be explained in

the next chapter. For now, any serialization scheme will do for this chapter.

func encodeValues(out []byte, vals []Value) []byte
func decodeValues(in []byte, out []Value)

// for primary keys
func encodeKey(out []byte, prefix uint32, vals []Value) []byte {
var buf [4]byte
binary.BigEndian.PutUint32(buf[:], prefix)
out = append(out, buf[:]...)
out = encodeValues(out, vals)
return out

To query a table we must get its definition first.

build-your-own.org 57

https://build-your-own.org

2023-08-24

08. Rows and Columns

// get a single row by the primary key
func (db *DB) Get(table string, rec *Record) (bool, error) {
tdef := getTableDef(db, table)
if tdef == nil {
return false, fmt.Errorf("table not found: %s", table)

}
return dbGet(db, tdef, rec)

The definition is stored as a JSON in the internal table TDEF_TABLE.

// get the table definition by name
func getTableDef(db *DB, name string) *TableDef {
tdef, ok := db.tables[name]
if lok {
if db.tables == nil {
db.tables = map[string]*TableDef{}
}
tdef = getTableDefDB(db, name)
if tdef != nil {
db.tables[name] = tdef

}

return tdef

func getTableDefDB(db *DB, name string) *TableDef {
rec := (&Record{}).AddStr("name", [lbyte(name))
ok, err := dbGet(db, TDEF_TABLE, rec)

assert(err == nil)
if lok {

return nil
}

tdef := &TableDef{}

err = json.Unmarshal(rec.Get("def").Str, tdef)
assert(err == nil)

return tdef

build-your-own.org

58

https://build-your-own.org

2023-08-24 08. Rows and Columns

8.4 Updates

An update can be either insert a new row or replace an existing row. The B-tree interface

is modified to support different update modes.

// modes of the updates
const (
MODE_UPSERT
MODE_UPDATE_ONLY
MODE_INSERT_ONLY

0 // insert or replace

1 // update existing keys

2 // only add new keys

type InsertReq struct {
tree *BTree
// out
Added bool // added a new key
// in
Key []byte
Val [lbyte
Mode int

func (tree *BTree) InsertEx(req *InsertReq)
func (db *KV) Update(key []byte, val []byte, mode int) (bool, error)

The function for updating a record via the primary key:

// add a row to the table
func dbUpdate(db *DB, tdef *TableDef, rec Record, mode int) (bool, error) {
values, err := checkRecord(tdef, rec, len(tdef.Cols))
if err = nil {
return false, err

}
key := encodeKey(nil, tdef.Prefix, values[:tdef.PKeys])
val := encodeValues(nil, values[tdef.PKeys:])

return db.kv.Update(key, val, mode)

Different update modes:

build-your-own.org 59

https://build-your-own.org

2023-08-24 08. Rows and Columns

// add a record

func (db *DB) Set(table string, rec Record, mode int) (bool, error) {
tdef := getTableDef(db, table)
if tdef == nil {

return false, fmt.Errorf("table not found: %s", table)

}
return dbUpdate(db, tdef, rec, mode)

}

func (db *DB) Insert(table string, rec Record) (bool, error) {
return db.Set(table, rec, MODE_INSERT_ONLY)

}

func (db *DB) Update(table string, rec Record) (bool, error) {
return db.Set(table, rec, MODE_UPDATE_ONLY)

}

func (db *DB) Upsert(table string, rec Record) (bool, error) {
return db.Set(table, rec, MODE_UPSERT)

Deleting a row is similar:

// delete a record by its primary key

func dbDelete(db *DB, tdef *TableDef, rec Record) (bool, error) {
values, err := checkRecord(tdef, rec, tdef.PKeys)
if err = nil {

return false, err

key := encodeKey(nil, tdef.Prefix, values[:tdef.PKeys])
return db.kv.Del(key)

func (db *DB) Delete(table string, rec Record) (bool, error) {
tdef := getTableDef(db, table)
if tdef == nil {
return false, fmt.Errorf("table not found: %s", table)
}
return dbDelete(db, tdef, rec)

build-your-own.org 60

https://build-your-own.org

2023-08-24 08. Rows and Columns

8.5 Create New Tables

Three steps:

1. Check the table definition.
2. Allocate the table key prefix.
3. Store the next table prefix and the table definitions.

func (db *DB) TableNew(tdef *TableDef) error {
if err := tableDefCheck(tdef); err !'= nil {
return err

// check the existing table
table := (&Record{}).AddStr("name", []lbyte(tdef.Name))
ok, err := dbGet(db, TDEF_TABLE, table)
assert(err == nil)
if ok {
return fmt.Errorf("table exists: %s", tdef.Name)

// allocate a new prefix
assert(tdef.Prefix == 0)
tdef.Prefix = TABLE_PREFIX_MIN
meta := (&Record{}).AddStr("key", [lbyte("next_prefix"))
ok, err = dbGet(db, TDEF_META, meta)
assert(err == nil)
if ok {
tdef.Prefix = binary.LittleEndian.Uint32(meta.Get("val").Str)
assert(tdef.Prefix > TABLE_PREFIX_MIN)
} else {
meta.AddStr("val", make([]lbyte, 4))

// update the next prefix
binary.LittleEndian.PutUint32(meta.Get("val").Str, tdef.Prefix+1)
_, err = dbUpdate(db, TDEF_META, *meta, 0)
if err = nil {

return err

build-your-own.org 61l

https://build-your-own.org

2023-08-24 08. Rows and Columns

// store the definition

val, err := json.Marshal(tdef)

assert(err == nil)

table.AddStr("def", val)

_, err = dbUpdate(db, TDEF_TABLE, *xtable, 0)
return err

The prefix numbers are allocated incrementally from the next_prefix key of the TDEF_META
internal table. The table definitions are stored as a JSON in the TDEF_TABLE table.

Although we have added table structures, the result is still pretty much a KV store. Some

important aspects are missing:

1. Range queries in the next chapter.

2. Secondary indexes in the next next chapter.

build-your-own.org 62

https://build-your-own.org

09. Range Query

We have implemented table structures on top of a KV store and we’re able to retrieve
records by primary key. In this chapter, we’ll add the capacity to retrieve a range of records

in sorted order.

9.1 B-Tree Iterator

The first step is to add the range query to the B-tree. The BIter type allows us to traverse

a B-tree iteratively.

// B-tree iterator

type BIter struct {
tree *BTree
path [IBNode // from root to leaf
pos [Juintl6 // indexes into nodes

// get the current KV pair

func (iter *BIter) Deref() ([lbyte, [lbyte)
// precondition of the Deref()

func (iter *BIter) Valid() bool

// moving backward and forward

func (iter *BIter) Prev()

func (iter *BIter) Next()

The BIter is a path from the root node to the KV pair in a leaf node. Moving the iterator

is simply moving the positions or nodes to a sibling.

func iterPrev(iter *BIter, level int) {
if iter.pos[level] > 0 {
iter.pos[level]l-- // move within this node
1 else if level > 0 {
iterPrev(iter, level-1) // move to a slibing node
} else {
return // dummy key

63

2023-08-24 09. Range Query

if level+l < len(iter.pos) {
// update the kid node
node := iter.path[level]
kid := iter.tree.get(node.getPtr(iter.pos[levell))
iter.path[level+1] = kid
iter.pos[level+l] = kid.nkeys() - 1

func (iter *BIter) Prev() {
iterPrev(iter, len(iter.path)-1)

BTree.SeekLE is the function for finding the initial position in a range query. It is just a

normal B-tree lookup with the path recorded.

// find the closest position that is less or equal to the input key
func (tree *BTree) SeekLE(key []byte) *BIter {
iter := &BIter{tree: tree}
for ptr := tree.root; ptr != 0; {
node := tree.get(ptr)
idx := nodeLookupLE(node, key)
iter.path = append(iter.path, node)
iter.pos = append(iter.pos, idx)
if node.btype() == BNODE_NODE {
ptr = node.getPtr(idx)
} else {
ptr = 0

}

return iter

The nodeLookupLE function only works for the “less than or equal” operator in range
queries, for the other 3 operators (less than; greater than; greater than or equal), the result

may be off by one. We’ll fix this with the BTree.Seek function.

build-your-own.org 04

https://build-your-own.org

2023-08-24 09. Range Query

const (
CMP_GE = +3 // >=
CMP_GT = +2 // >
CMP_LT = -2 // <
CMP_LE = -3 // <=

// find the closest position to a key with respect to the “cmp" relation
func (tree *BTree) Seek(key []byte, cmp int) *BIter {
iter := tree.SeekLE(key)
if cmp != CMP_LE && iter.Valid() {
cur, _ := iter.Deref()
if !'cmpOK(cur, cmp, key) {
// off by one

if cmp > 0 {
iter.Next()
} else {

iter.Prev()

}

return iter

// key cmp ref
func cmpOK(key [lbyte, cmp int, ref []byte) bool {
r := bytes.Compare(key, ref)
switch cmp {
case CMP_GE:
return r >= 0
case CMP_GT:
return r > 0
case CMP_LT:
return r < 0
case CMP_LE:
return r <= 0
default:
panic("what?")

build-your-own.org 65

https://build-your-own.org

2023-08-24 09. Range Query

9.2 Data Serialization

To support range queries, the serialized primary key must be correctly compared in the
KV store. One way to do this is to deserialize the primary key and compare it column by
column. What we’ll use is another way, to let the serialized key bytes reflect their lexico-
graphic order, that is to say, keys can be compared correctly by bytes.Compare or memcmp
without deserializing them first. Let’s call this technique “order-preserving encoding”,
it can be used without controlling the key comparison function of the underlying KV

store.

For integers, you can easily see that unsigned big-endian integers are order-preserving —
the most significant bits come first in big-endian format. And null-terminated strings are

also order-preserving.

For signed integers, the problem is that negative numbers have the most significant bit (sign
bit) set. We need to flip the sign bit before big-endian encoding them to make negative

numbers lower.

// order-preserving encoding
func encodeValues(out []byte, vals []Value) []byte {
for _, v := range vals {
switch v.Type {
case TYPE_INT64:
var buf [8]byte
u := uint64(v.I64) + (1 << 63)
binary.BigEndian.PutUint64(buf[:], u)
out = append(out, buf[:]...)
case TYPE_BYTES:
out = append(out, escapeString(v.Str)...)
out = append(out, 0) // null-terminated
default:

panic("what?")
}

return out

func decodeValues(in []byte, out []Value) {
// omitted. ..

build-your-own.org 66

https://build-your-own.org

2023-08-24 09. Range Query

The problem with null-terminated strings is that they cannot contain the null byte. We’ll
fix this by “escaping” the null byte. "\x00" is replaced by "\xe1\xe1", the escaping byte
"\x01" itself is replaced by "\x01\x02", this still preserves the sort order.

// Strings are encoded as nul terminated strings,
// escape the nul byte so that strings contain no nul byte.
func escapeString(in []byte) []lbyte {

zeros := bytes.Count(in, []byte{0})

ones := bytes.Count(in, []byte{l})

if zeros+ones == 0 {
return in
}
out := make([]lbyte, len(in)+zeros+ones)
pos := 0
for _, ch := range in {
if ch <=1 {
out[pos+0] = 0x01
out[pos+1l] = ch + 1
pos += 2
} else {
out[pos] = ch
pos += 1
}
}
return out
}
9.3 Range Query

To wrap things up, we’ll add the Scanner type, which allows us to iterate through a range

of records in sorted order.

// the iterator for range queries
type Scanner struct {
// the range, from Keyl to Key2
Cmpl int // CMP_77

build-your-own.org 67

https://build-your-own.org

2023-08-24

09. Range Query

Cmp2
Keyl
Key2

int
Record
Record

// internal

tdef
iter

*TableDef
*BIter // the underlying B-tree iterator

keyEnd []byte // the encoded Key2

// within the range or not?

func (sc

*Scanner) Valid() bool

// move the underlying B-tree iterator

func (sc
// fetch
func (sc

func (db
tdef

*Scanner) Next()
the current row
*Scanner) Deref(rec *Record)

*DB) Scan(table string, req *Scanner) error {
:= getTableDef(db, table)

if tdef == nil {

}

return fmt.Errorf("table not found: %s", table)

return dbScan(db, tdef, req)

Initialize the iterator:

func dbScan(db *DB, tdef *TableDef, req *Scanner) error {

// sanity checks

switch {

case

case

req.Cmpl > 0 & req.Cmp2 < 0:
regq.Cmp2 > 0 && req.Cmpl < O:

default:

return fmt.Errorf("bad range")

valuesl, err := checkRecord(tdef, req.Keyl, tdef.PKeys)

if err = nil {

}

return err

values2, err := checkRecord(tdef, req.Key2, tdef.PKeys)

build-your-own.org

68

https://build-your-own.org

2023-08-24 09. Range Query

if err = nil {

return err

req.tdef = tdef

// seek to the start key

keyStart := encodeKey(nil, tdef.Prefix, valuesl[:tdef.PKeys])
req.keyEnd = encodeKey(nil, tdef.Prefix, values2[:tdef.PKeys])
req.iter = db.kv.tree.Seek(keyStart, req.Cmpl)

return nil

Moving the iterator:

// within the range or not?
func (sc *Scanner) Valid() bool {
if !sc.iter.Valid() {
return false
}
key, _ := sc.iter.Deref()
return cmpOK(key, sc.Cmp2, sc.keyEnd)

// move the underlying B-tree iterator
func (sc *Scanner) Next() {
assert(sc.valid())
if sc.Cmpl > 0 {
sc.iter.Next()
} else {
sc.iter.Prev()

Point queries are just special cases of range queries, so why not get rid of them?

// get a single row by the primary key
func dbGet(db *DB, tdef *TableDef, rec *Record) (bool, error) {
// just a shortcut for the scan operation

build-your-own.org 69

https://build-your-own.org

2023-08-24 09. Range Query

sc := Scanner{
Cmpl: CMP_GE,
Cmp2: CMP_LE,
Keyl: =*rec,
Key2: *rec,
}

if err := dbScan(db, tdef, &sc); err !'= nil {
return false, err

}
if sc.Valid() {

sc.Deref(rec)

return true, nil
} else {

return false, nil

We only allow range queries on the full primary key, but range queries on a prefix of the
primary key are also legitimate. We’ll fix this in the next chapter, along with secondary

indexes.

build-your-own.org 70

https://build-your-own.org

10. Secondary Index

In this chapter, we’ll add extra indexes (also known as secondary indexes) to our database.

Queries will no longer be restricted to the primary key.

10.1 Index Definitions

The Indexes and IndexPrefixes fields are added to the table definition. Like the table
itself, each index is assigned a key prefix in the KV store.

// table definition
type TableDef struct {
// user defined
Name string
Types [Juint32 // column types
Cols [1string // column names
PKeys int // the first °PKeys™ columns are the primary key
Indexes []1[]lstring
// auto-assigned B-tree key prefixes for different tables/indexes
Prefix uint32
IndexPrefixes [Juint32

To find a row via an index, the index must contain a copy of the primary key. We’ll
accomplish this by appending primary key columns to the index; this also makes the index

key unique, which is assumed by the B-tree lookup code.

func checkIndexKeys(tdef *TableDef, index []string) ([]lstring, error) {
icols := map[string]lbool{}
for _, ¢ := range index {
// check the index columns
// omitted...
icols[c] = true
}
// add the primary key to the index
for _, ¢ := range tdef.Cols[:tdef.PKeys] {
if 'icols[c] {

71

2023-08-24

10. Secondary Index

index = append(index, c)
}

assert(len(index) < len(tdef.Cols))
return index, nil

func colIndex(tdef *TableDef, col string) int {

for i, ¢ := range tdef.Cols {
if ¢ == col {
return i
}
}
return -1

Indexes are checked and have the primary key appended before creating a new table.

func tableDefCheck(tdef *TableDef) error {
// verify the table definition
// omitted. ..

// verify the indexes

for i, index := range tdef.Indexes {
index, err := checkIndexKeys(tdef, index)
if err !'= nil {
return err
}
tdef.Indexes[i] = index
}
return nil

Multiple key prefixes are allocated when creating a new table.

// create a new table
func (db *DB) TableNew(tdef *TableDef) error {
if err := tableDefCheck(tdef); err !'= nil {

return err

build-your-own.org

72

https://build-your-own.org

2023-08-24 10. Secondary Index

// check the existing table
// omited. ..

// allocate new prefixes

tdef.Prefix = /* omited... */

for i := range tdef.Indexes {
prefix := tdef.Prefix + 1 + uint32(1i)
tdef.IndexPrefixes = append(tdef.IndexPrefixes, prefix)

// update the next prefix
ntree := 1 + uint32(len(tdef.Indexes))
binary.LittleEndian.PutUint32(meta.Get("val").Str, tdef.Prefix+ntree)
_, err = dbUpdate(db, TDEF_META, *meta, 0)
if err = nil {

return err

// store the definition
// omited. ..

10.2 Maintaining Indexes

After updating a row, we need to remove the old row from the indexes. The B-tree

interface is modified to return the previous value of an update.

type InsertReq struct {
tree *BTree
// out
Added bool // added a new key
Updated bool // added a new key or an old key was changed

old [1byte // the value before the update
// 1in
Key []byte

build-your-own.org 73

https://build-your-own.org

2023-08-24 10. Secondary Index

Val

[1byte

Mode int

type DeleteReq struct {

tree *BTree
// in
Key [lbyte
// out

0ld

[Ibyte

func (tree *BTree) InsertEx(req *InsertReq)

func (tree *BTree) DeleteEx(req *DeleteReq)

Below is the function for adding or removing a record from the indexes. Here we encounter

a problem: updating a table with secondary indexes involves multiple keys in the KV store,

which should be done atomically. We’ll fix that in a later chapter.

const (

INDEX_ADD
INDEX_DEL

n
=

// maintain indexes after a record is added or removed
func indexOp(db *DB, tdef *TableDef, rec Record, op int) {

key := make([]byte, 0, 256)
irec := make([]Value, len(tdef.Cols))
for i, index := range tdef.Indexes {

// the indexed key
for j, ¢ := range index {
irec[j] = *rec.Get(c)
}
// update the KV store
key = encodeKey(key[:0], tdef.IndexPrefixes[i], irec[:len(index)])
done, err := false, error(nil)
switch op {
case INDEX_ADD:
done, err = db.kv.Update(&InsertReq{Key: key})
case INDEX_DEL:

build-your-own.org 74

https://build-your-own.org

2023-08-24 10. Secondary Index

done, err = db.kv.Del(&DeleteReq{Key: key})
default:
panic("what?")
}
assert(err == nil) // XXX: will fix this in later chapters
assert(done)

Maintaining indexes after updating or deleting a row:

// add a row to the table
func dbUpdate(db *DB, tdef *TableDef, rec Record, mode int) (bool, error) {
// omitted. ..

req := InsertReq{Key: key, Val: val, Mode: mode}

added, err := db.kv.Update(&req)

if err = nil || !'req.Updated || len(tdef.Indexes) == 0 {
return added, err

// maintain indexes

if req.Updated && !req.Added {
decodeValues(req.0ld, values[tdef.PKeys:1) // get the old row
indexOp(db, tdef, Record{tdef.Cols, values}, INDEX_DEL)

}

if req.Updated {
indexOp(db, tdef, rec, INDEX_ADD)

}

return added, nil

// delete a record by its primary key
func dbDelete(db *DB, tdef *TableDef, rec Record) (bool, error) {
// omitted. ..

deleted, err := db.kv.Del(&req)

build-your-own.org 75

https://build-your-own.org

2023-08-24

10. Secondary Index

if err != nil || !deleted || len(tdef.Indexes) == 0 {
return deleted, err

// maintain indexes
if deleted {
// likewise...

}

return true, nil

10.3 Using Secondary Indexes

Step 1: Select an Index

We’ll also implement range queries using a prefix of an index. For example, we can do x

< a AND a < y on the index [a, b, c], which contains the prefix [a]. Selecting an index

is simply matching columns by the input prefix. The primary key is considered before

secondary indexes.

func findIndex(tdef *TableDef, keys [lstring) (int, error) {
pk := tdef.Cols[:tdef.PKeys]
if isPrefix(pk, keys) {
// use the primary key.
// also works for full table scans without a key.

return -1, nil

// find a suitable index

winner := -2

for i, index := range tdef.Indexes {
if lisPrefix(index, keys) {

continue

}

if winner == -2 || len(index) < len(tdef.Indexes[winner]) {
winner = 1

}

build-your-own.org

76

https://build-your-own.org

2023-08-24 10. Secondary Index

}
if winner == -2 {

return -2, fmt.Errorf("no index found")
}

return winner, nil

func isPrefix(long []lstring, short []lstring) bool {
if len(long) < len(short) {
return false

}
for i, ¢ := range short {
if long[i] '= c {
return false
}
}

return true

Step 2: Encode Index Prefix

We may have to encode extra columns if the input key uses a prefix of an index instead of
the full index. For example, for a query vl < a with the index [a, b, we cannot use [v1]
< key as the underlying B-tree query, because any key [v1, v2] satisfies [v1] < [v1, v2]

while violating v1 < a.

Instead, we can use [vl, MAX] < key in this case where the MAX is the maximum possible
value for column b. Below is the function for encoding a partial query key with additional

columns.

// The range key can be a prefix of the index key,
// we may have to encode missing columns to make the comparison work.
func encodeKeyPartial(
out [lbyte, prefix uint32, values []Value,
tdef #TableDef, keys []string, cmp int,
) [Ibyte {
out = encodeKey(out, prefix, values)

build-your-own.org 77

https://build-your-own.org

2023-08-24 10. Secondary Index

// Encode the missing columns as either minimum or maximum values,
// depending on the comparison operator.

// 1. The empty string is lower than all possible value encodings,
// thus we don't need to add anything for CMP_LT and CMP_GE.

// 2. The maximum encodings are all Oxff bytes.

max := cmp == CMP_GT || cmp == CMP_LE

loop:
for i := len(values); max && i < len(keys); i++ {
switch tdef.Types[colIndex(tdef, keys[i])] {
case TYPE_BYTES:
out = append(out, Oxff)
break loop // stops here since no string encoding starts with Oxff
case TYPE_INT64:
out = append(out, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff)
default:
panic("what?")
}
}
return out
}

For the int64 type, the maximum value is encoded as all oxff bytes. The problem is that
there is no maximum value for strings. What we can do is use the "\xff" as the encoding
of the “pseudo maximum string value”, and change the normal string encoding to not
startk with the "\xff".

The first byte of a string is escaped by the "\xfe" byte if it’s "\xff" or "\xfe". Thus all

string encodings are lower than "\xff".

// 1. strings are encoded as null-terminated strings,
// escape the null byte so that strings contain no null byte.
// 2. "\Xff" represents the highest order in key comparisons,
// also escape the first byte if it's Oxff.
func escapeString(in []byte) [lbyte {
// omitted. ..

pos := 0
if len(in) > 0 && in[0] >= Oxfe {
out[0] = Oxfe

build-your-own.org 78

https://build-your-own.org

2023-08-24

10. Secondary Index

out[1]

pos +=

= in[0]
2

in = in[1:]

// omitted.
return out

Step 3: Fetch Rows via Indexes

The index key contains all primary key columns so that we can find the full row. The

Scanner type is now aware of the selected index.

// the iterator for range queries

type Scanner struct {

// omitted. ..
db *DB
tdef «TableDef

indexNo int

iter *BIter // the underlying B-tree iterator
keyEnd []byte // the encoded Key2

// fetch the cu

func (sc *xScanner) Deref(rec *Record) {

assert(sc.V

tdef := sc.
rec.Cols =
rec.Vals =
key, val :=

if sc.index

// primary key, decode the KV pair

// -1: use the primary key; >= 0:

rrent row

alid())

tdef

tdef.Cols

rec.Vals[:0]
sc.iter.Deref()

No < 0 {

use an index

build-your-own.org

79

https://build-your-own.org

2023-08-24 10. Secondary Index

// omitted...
} else {
// secondary index
// The "value" part of the KV store is not used by indexes
assert(len(val) == 0)

// decode the primary key first

index := tdef.Indexes[sc.indexNo]
ival := make([1Value, len(index))
for i, ¢ := range index {

ival[i].Type = tdef.Types[colIndex(tdef, c)]

}
decodeValues(key[4:], ival)
icol := Record{index, ival}

// fetch the row by the primary key
rec.Cols = tdef.Cols[:tdef.PKeys]
for _, ¢ := range rec.Cols {
rec.Vals = append(rec.Vals, *icol.Get(c))

}

// TODO: skip this if the index contains all the columns
ok, err := dbGet(sc.db, tdef, rec)
assert(ok && err == nil)

Step 4: Put All Pieces Together

The dbScan function is modified to use secondary indexes. And range queries by index
prefixes also work now. And it can also scan the whole table without any key at all. (The

primary key is selected if no columns are present).

func dbScan(db *DB, tdef *TableDef, req *Scanner) error {
// sanity checks
// omitted. ..

// select an index

build-your-own.org 80

https://build-your-own.org

2023-08-24 10. Secondary Index

indexNo, err := findIndex(tdef, req.Keyl.Cols)
if err !'= nil {
return err
}
index, prefix := tdef.Cols[:tdef.PKeys], tdef.Prefix
if indexNo >= 0 {

index, prefix = tdef.Indexes[indexNo], tdef.IndexPrefixes[indexNo]

req.db = db
req.tdef = tdef
req.indexNo = indexNo

// seek to the start key
keyStart := encodeKeyPartial(

nil, prefix, req.Keyl.Vals, tdef, index, req.Cmpl)
req.keyEnd = encodeKeyPartial(

nil, prefix, req.Key2.Vals, tdef, index, req.Cmp2)
req.iter = db.kv.tree.Seek(keyStart, req.Cmpl)

return nil

Step 5: Congratulations

We have implemented some major features of our relational DB: tables, range queries, and
secondary indexes. We can start adding more features and a query language to our DB.
However, some major aspects are still missing: transactions and concurrency, which will

be explored in later chapters.

build-your-own.org 81

https://build-your-own.org

11. Atomic Transactions

A transaction allows multiple updates to be performed atomically (all or nothing). In the
last chapter, updating a row can result in multiple KV updates (due to secondary indexes),
which are not atomic and can lead to corruption if interrupted (not crash-resistant).

Implementing transactions fixes this.

For now, we’ll only consider sequential execution, and leave concurrency for the next

chapter.

11.1 KV Transaction Interfaces

The first step is to add the KV transaction type.

// KV transaction
type KVTX struct {
// later...

There are 2 ways to end a transaction:

1. By committing the transaction to persist changes.

2. Or by aborting the transaction to rollback.

// begin a transaction

func (kv *KV) Begin(tx *KVTX)

// end a transaction: commit updates
func (kv *KV) Commit(tx *KVTX) error
// end a transaction: rollback

func (kv *KV) Abort(tx *KVTX)

The methods for reading and updating the KV store are moved to the transaction type.
Note that these methods can no longer fail because they do not perform IOs, IO operations

are performed by committing the transaction, which can fail instead.

82

2023-08-24

11. Atomic Transactions

// KV operations

func (tx *KVTX) Get(key [lbyte) ([lbyte, bool) {
return tx.db.tree.Get(key)

}

func (tx *KVTX) Seek(key []lbyte, cmp int) *BIter {
return tx.db.tree.Seek(key, cmp)

}

func (tx *KVTX) Update(req *InsertReq) bool {
tx.db.tree.InsertEx(req)
return req.Added

}

func (tx *KVTX) Del(req *DeleteReq) bool {
return tx.db.tree.DeleteEx(req)

11.2 DB Transaction Interfaces

Similarly, we’ll also add the transaction type for bB, which is a wrapper around the KV

transaction type.

// DB transaction
type DBTX struct {
kv KVTX
db *DB

func (db *DB) Begin(tx *DBTX) {
tx.db = db
db.kv.Begin(&tx.kv)

}

func (db *DB) Commit(tx *DBTX) error {
return db.kv.Commit(&tx.kv)

}

func (db *DB) Abort(tx *DBTX) {
db.kv.Abort (&tx.kv)

build-your-own.org

83

https://build-your-own.org

2023-08-24 11. Atomic Transactions

And the read and update methods are also moved to the transaction type.

func (tx *DBTX) TableNew(tdef *TableDef) error

func (tx *DBTX) Get(table string, rec *Record) (bool, error)

func (tx *DBTX) Set(table string, rec Record, mode int) (bool, error)
func (tx *DBTX) Delete(table string, rec Record) (bool, error)

func (tx *DBTX) Scan(table string, req *Scanner) error

Modifications to the DB code are mostly changing the arguments of functions, which will

be omitted in the code listing.

11.3 Implementing the KV Transaction

The transaction type saves a copy of the in-memory data structure: the pointer to the tree

root and the pointer to the free list head.

// KV transaction
type KVTX struct {
db *KV
// for the rollback
tree struct {
root uint64
}
free struct {
head uint64

This is used for rollbacks. Rolling back a transaction is simply pointing to the previous tree

root, which can be done trivially even if there is an IO error while writing B-tree data.

// begin a transaction

func (kv *KV) Begin(tx *KVTX) {
tx.db = kv
tx.tree.root = kv.tree.root

tx.free.head kv.free.head

build-your-own.org 84

https://build-your-own.org

2023-08-24 11. Atomic Transactions

// rollback the tree and other in-memory data structures.
func rollbackTX(tx *KVTX) {

kv := tx.db

kv.tree.root = tx.tree.root

kv.free.head tx.free.head
kv.page.nfree = 0
0

map[uint64][]byte{}

kv.page.nappend

kv.page.updates

// end a transaction: rollback
func (kv *KV) Abort(tx *KVTX) {
rollbackTX(tx)

Committing a transaction is not much different from how we persisted data before, except

that we have to roll back on errors in the first phase of a commit.

// end a transaction: commit updates
func (kv *KV) Commit(tx *KVTX) error {
if kv.tree.root == tx.tree.root {
return nil // no updates?

// phase 1: persist the page data to disk.

if err := writePages(kv); err != nil {
rollbackTX(tx)
return err

}

// the page data must reach disk before the master page.
// the “fsync® serves as a barrier here.
if err := kv.fp.Sync(); err != nil {

rollbackTX(tx)

return fmt.Errorf("fsync: %w", err)

// the transaction is visible at this point.
kv.page.flushed += uint64(kv.page.nappend)

build-your-own.org 85

https://build-your-own.org

2023-08-24 11. Atomic Transactions

kv.page.nfree = 0
0
map[uint64][]1byte{}

kv.page.nappend

kv.page.updates

// phase 2: update the master page to point to the new tree.
// NOTE: Cannot rollback the tree to the old version if phase 2 fails.

// Because there is no way to know the state of the master page.
// Updating from an old root can cause corruption.
if err := masterStore(kv); err !'= nil {
return err
}

if err := kv.fp.Sync(); err != nil {
return fmt.Errorf("fsync: %w", err)

}

return nil

There are not many changes in this chapter, because we have left out an important aspect

— concurrency — which will be explored in the next chapter.

build-your-own.org 86

https://build-your-own.org

12. Concurrent Readers and Writers

12.1 The Readers-Writer Problem

To support concurrent requests, we can first separate transactions into read—only trans-
actions and read-write transactions. Readers alone can always run concurrently as they
do not modify the data. While writers have to modify the tree and must be serialized (at

least partially).

There are various degrees of concurrency that we can support. We can use a readers-writer
lock (RW_Lock). It allows the execution of either:

* Multiple concurrent readers.

* A single writer.

The RWLock is a practical technique and is easy to add. However, thanks to the use of

immutable data structures, we can easily implement a greater degree of concurrency.

With a RWLock, readers can be blocked by a writer and vice versa. But with immutable
data structures, a writer creates a new version of data instead of overwriting the current
version, this allows concurrency between readers and a writer, which is superior to the
RWLock. This is what we’ll implement.

Our database will support:

* Multiple concurrent readers.
* Concurrency between multiple readers and a single writer.

» Writers are fully serialized.

Note that it’s possible to implement a greater degree of concurrency by only serializing
writers partially. For example, if a read-write transaction reads a subset of data and then
uses that data to determine what to write, we might be able to perform read operations
concurrently and serialize only the final commit operation. However, this introduces
new problems: even if the commit operation is serialized, writers may submit conflicting
commits, so we need extra mechanisms to prevent or detect conflicts. We won’t do that

in this book.

87

2023-08-24 12. Concurrent Readers and Writers

12.2 Analysing the Implementation

3 major changes:

First, we’ll split the transaction type into two, for both read-only and read-write transac-
tions respectively. The B-tree type is moved to the transaction type (a snapshot). Reads

from one transaction won’t be affected by other transactions.

type KVReader struct {
// later...

}

func (kv *KV) BeginRead(tx *KVReader)

func (kv *KV) EndRead(tx *KVReader)

func (tx *KVReader) Get(key [lbyte) ([Ibyte, bool)
func (tx *KVReader) Seek(key []byte, cmp int) *BIter

Next, we’ll consider the use of mutexes. Writers are fully serialized, so a single mutex
for writers would do. Some fields are updated by writers and read by readers, such as the

latest tree root and the mmap chunks. These fields need another mutex to protect them.

type KV struct {
// omitted...
mu sync.Mutex
writer sync.Mutex
// omitted. ..

Lastly, the free list needs a redesign because we cannot reuse a page that is still reachable by
areader. Our solution is to assign an auto-incrementing version number to each version of
the B-tree, and the free list stores the version number along with the page number when a
page is freed. Only the free page with a version number smaller than all current readers

can be reused.

// the in-memory data structure that is updated and committed by transactions
type FreelListData struct {

head uint64

// later..

build-your-own.org 88

https://build-your-own.org

2023-08-24 12. Concurrent Readers and Writers

type FreelList struct {
FreeListData
// for each transaction
version uint64 // current version
minReader uint64 // minimum reader version
// later...

// try to remove an item from the tail. returns 0 on failure.

// the removed pointer must not be reachable by the minimum version reader.

func (fl *FreeList) Pop() uint64
// add some new pointers to the head and finalize the update
func (fl *FreelList) Add(freed [Juint64)

12.3 Concurrent Transactions

Part 1: Modify the kv type

1. The B-tree type is moved to the transaction type and only a root pointer remains

here. Likewise, the free list is also moved.

2. The data structure and code for managing disk pages are also moved to the transaction

type.

3. Added mutexes. The writer mutex is for serializing writers and the mu mutex is for

protecting data fields.

4. Added version numbers. And a list of ongoing readers for tracking the minimum

active version (for the free list). The reader list is maintained as a heap data structure

so that the minimum version is the first element.

type KV struct {
Path string
// internals
fp *o0s.File
// mod 1: moved the B-tree and the free list
tree struct {
root uint64

build-your-own.org

89

https://build-your-own.org

2023-08-24 12. Concurrent Readers and Writers

}

free FreeListData
mmap struct {
// same; omitted. ..
}
// mod 2: moved the page management
page struct {
flushed uint64 // database size in number of pages
}
// mod 3: mutexes
mu sync.Mutex
writer sync.Mutex
// mod 4: version number and the reader list
version uint64
readers ReaderList // heap, for tracking the minimum reader version

// implements heap.Interface
type ReaderList []*KVReader

Part 2: Add the Read-Only Transaction Type

// read-only KV transactions
type KVReader struct {
// the snapshot
version uint64
tree BTree
mmap struct {
chunks [][lbyte // copied from struct KV. read-only.
}
// for removing from the heap
index int

The B-tree type is moved into KVReader, and so is the page management function
pageGetMapped. The version and index fields are for the ReaderList heap. We also take a

copy of the mmap chunks because it’s modified by writers.

build-your-own.org 90

https://build-your-own.org

2023-08-24

12. Concurrent Readers and Writers

func (kv #*KV) BeginRead(tx *KVReader) {
kv.mu.Lock()
tx.mmap.chunks = kv.mmap.chunks
tx.tree.root = kv.tree.root
tx.tree.get = tx.pageGetMapped
tx.version = kv.version
heap.Push(&kv.readers, tx)
kv.mu.Unlock()

func (kv *KV) EndRead(tx *KVReader) {
kv.mu.Lock()
heap.Remove(&kv.readers, tx.index)
kv.mu.Unlock()

// callback for BTree & FreelList, dereference a pointer.

func (tx *KVReader) pageGetMapped(ptr uint64) BNode

Part 3: Add the Read-Write Transaction Type

The KvTX extends the KVReader so that it gets all the read methods. And like the B-tree

type, the free list and the page management data structure are also moved from the Kv

type.

// KV transaction
type KVTX struct {
KVReader
db *KV
free FreelList
page struct {

nappend int // number of pages to be appended

// newly allocated or deallocated pages keyed by the pointer.

// nil value denotes a deallocated page.

updates map[uint64][]byte

build-your-own.org

91

https://build-your-own.org

2023-08-24

12. Concurrent Readers and Writers

To start a read-write transaction, the writer lock must be acquired. Then we can initialize

the B-tree type and the free list type. No additional locks are needed to access fields from

the KV type because the writer is the only thread that can modify anything. Except for the

reader list (which is modified by readers).

The tx.pagex functions are simply moved out of the Kv type.

// begin a transaction
func (kv *KV) Begin(tx *KVTX) {

tx.
tx.
tx.

kv

//

tx.
tx.
tx.
tx.

//

tx.
tx.
tx.
tx.
tx.

tx

if

kv.

db = kv

page.updates = map[uint64][]byte{}

mmap.chunks = kv.mmap.chunks

.writer.Lock()
tx.

version = kv.version

btree
tree.root = kv.tree.root

tree.get = tx.pageGet
tree.new = tx.pageNew
tree.del = tx.pageDel
freelist

free.FreeListData = kv.free

free.version = kv.version

free.get = tx.pageGet
free.new = tx.pageAppend
free.use = tx.pageUse

.free.minReader = kv.version
kv.

mu.Lock()
len(kv.readers) > 0 {

tx.free.minReader = kv.readers[0].version

mu.Unlock()

Rolling back a transaction is now a no-op, because nothing in the Kv type is modified until

commit.

build-your-own.org

92

https://build-your-own.org

2023-08-24 12. Concurrent Readers and Writers

// end a transaction: rollback
func (kv *KV) Abort(tx *KVTX) {
kv.writer.Unlock()

The Kv type is only modified a transaction is committed (for the tree root and the free list

head).

// end a transaction: commit updates
func (kv *KV) Commit(tx *KVTX) error {
defer kv.writer.Unlock()

// phase 1: persist the page data to disk.
// omitted...

// the transaction is visible at this point.

// save the new version of in-memory data structures.
kv.page.flushed += uint64(tx.page.nappend)

kv.free = tx.free.FreeListData

kv.mu.Lock()

kv.tree.root = tx.tree.root

kv.version++

kv.mu.Unlock()

// phase 2: update the master page to point to the new tree.
// omitted...

Both functions release the writer lock in the end, obviously.

12.4 The Free List

The free list is changed from a FILO (first-in-last-out) to a FIFO (first-in-first-out); pages
freed by newer versions are added to the list head, and reused pages are removed from the

list tail. This keeps the free list in sorted order (by version number).

To avoid reusing a page that a reader is still reading, reused pages must be from a version
no newer than any reader. That’s why we design the free list to be sorted by version

number.

build-your-own.org 03

https://build-your-own.org

2023-08-24 12. Concurrent Readers and Writers

Unfortunately, switching to FIFO introduces some complications. We have to traverse
the list to access the other end of the list (the tail). We’ll keep a reference to each node in

memory so that we only have to traverse the list once.

// the in-memory data structure that is updated and committed by transactions
type FreelListData struct {

head uint64

// cached pointers to list nodes for accessing both ends.

nodes [Juint64 // from the tail to the head

// cached total number of items; stored in the head node.

total int

// cached number of discarded items in the tail node.

offset int

type FreelList struct {
FreeListData
// for each transaction
version uint64 // current version
minReader uint64 // minimum reader version
freed [Tuint64 // pages that will be added to the free list
// callbacks for managing on-disk pages
get func(uint64) BNode // dereference a pointer
new func(BNode) uint64 // append a new page
use func(uint64, BNode) // reuse a page

Version numbers are added to free list nodes and to the master page:

| type | size | total | next | pointer-version-pairs |
| 2B | 2B | 88 | 8B | size * 16B |

The master page format:

| sig | btree_root | page_used | free_list | version |
| 16B | 8B | 8B | 8B | 8B |

The oldest version of all readers was obtained at the beginning of a transaction.

// begin a transaction
func (kv *KV) Begin(tx *KVTX) {

build-your-own.org 94

https://build-your-own.org

2023-08-24 12. Concurrent Readers and Writers

// omitted...

tx.free.minReader = kv.version
kv.mu.Lock()
if len(kv.readers) > 0 {
tx.free.minReader = kv.readers[0].version
}
kv.mu.Unlock()

It is checked when reusing pages from the list tail.

// try to remove an item from the tail. returns 0 on failure.
// the removed pointer must not be reachable by the minimum version reader.
func (fl *FreelList) Pop() uint64 {

fl.loadCache()

return flPopl(fl)

func flPopl(fl *FreelList) uint64 {
if fl.total == 0 {
return 0

// remove one item from the tail

assert(fl.offset < flnSize(fl.get(fl.nodes[0])))

ptr, ver := flnItem(fl.get(fl.nodes[0]), fl.offset)

if versionBefore(fl.minReader, ver) {
// cannot use; possibly reachable by the minimum version reader.
return 0

}

fl.offset++

fl.total--

// discard the empty node and move to the next node
// omitted. ..

return ptr

build-your-own.org

95

https://build-your-own.org

2023-08-24 12. Concurrent Readers and Writers

// a<»>b
func versionBefore(a, b uint64) bool {
return int64(a-b) < 0

Adding things to the list head is more complicated than before, but nothing special is
required. We’ll skip the code listing.

// add some new pointers to the head and finalize the update
func (fl #*FreeList) Add(freed [Juint64)

12.5 Closing Remarks

We have shown a great advantage of immutable data structures, which is easy concurrency
between readers and a writer. Read-only transactions can run as long as needed, the
only downside is that long-running readers prevent page reuse. However, read-write
transactions are expected to be short, because writers are fully serialized. This degree of

concurrency may be sufficient for some use cases.

We have explored 3 major topics in this book: persistence, indexing, and concurrency.
Now it’s time to add a user interface to our database — a query language — which is the

topic of the next chapter.

build-your-own.org 96

https://build-your-own.org

13. Query Language: Parser

The last thing to add to our database is a query language. A query language exposes all

the functionality we have implemented as a human interface.

13.1 The Grammar
13.1.1 Statements

The grammar is designed to look like SQL, which looks like English.

create table table_name (
a typel,
b type2,

index (c, b, a),

index (d, e, f),

primary key (a, b),
)i

select expr... from table_name conditions limit x, y;

insert into table_name (cols...) values (a, b, c)...;

delete from table_name conditions limit x, y;

update table_name set a = expr, b = expr, ... conditions limit x, vy;

13.1.2 Conditions

However, the conditions in our language differ from SQL. Unlike SQL, which uses the
WHERE clause to select rows, we separate conditions into indexing conditions and non-indexing

conditions.

1. The INDEX BY clause explicitly selects the index for the query. It represents an indexed
point query or an indexed range query, and the range can be either open-ended or

closed. It also controls the order of the rows.

97

2023-08-24 13. Query Language: Parser

select expr... from table_name index by a = 1;
select expr... from table_name index by a > 1;
select expr... from table_name index by a > 1 and a < 5;

2. The FILTER clause selects rows without using indexes. Both the INDEX BY and the

FILTER clauses are optional.

select expr... from table_name index by conditionl filter condition2;
select expr... from table_name filter condition2;

13.1.3 Expressions

The language also contains arbitrary expressions in the SELECT statement, FILTER conditions,

and the UPDATE statement. Expressions are just recursive binary or unary operations.

Below is a list of operators in our language ordered by operator precedence.

-a

axb,a/b

a+b,a-»>b

a=b,a<b, ... -- all comparisons
NOT a

a AND b

a OR b

(a, b, ¢, ...) -- tuple

13.2 Operator Precedence and Recursion

Let’s start by parsing expressions. Expressions are just trees, so let’s define the tree structure
first.

// syntax tree
type QLNode struct {

build-your-own.org 08

https://build-your-own.org

2023-08-24

13. Query Language: Parser

Value // Type, 164, Str
Kids []QLNode

// syntax tree node types
const (
QL_UNINIT = 0
// scalar
QL_STR = TYPE_BYTES
QL_I64 = TYPE_INT64
// binary ops
QL_CMP_GE 10 // >=
QL_CMP_GT 11 // >
// more operators; omitted...

// unary ops

QL_NOT = 50

QL_NEG = 51

// others

QL_SYM = 100 // column

QL_TUP = 101 // tuple

QL_ERR = 200 // error; from parsing or evaluation

Like the structure itself, the process for parsing an expression is also recursive. Let’s start

with simple examples.

Consider a subset of the language consisting only of additions and column names:

a+b
a+b+c+ ...

The pseudo-code for parsing the language looks like this:

def parse_add():
node = parse_column()
while parse('+'):
right = parse_column()
node = QLNode(type='+', kids=[node, right])

return node

build-your-own.org

99

https://build-your-own.org

2023-08-24 13. Query Language: Parser

Now we add the multiplication operator, which has a different precedence. Let’s revise
the expression a + b, the subexpression a or b could be a multiplication, which should be

applied before the addition. (e.g.: when the bis ¢ * d). We’ll add a level of recursion to
handle this:

def parse_add():
node = parse_mul()
while parse('+'):
right = parse_mul()
node = QLNode(type='+', kids=[node, rightl])
return node

def parse_mul():
node = parse_column()
while parse('x'):
right = parse_column()
node = QLNode(type='*', kids=[node, right])
return node

Notice that the parse_add recurses into the parse_mul for subexpressions, which recurses

into the parse_column. From there we can see the pattern:

1. Each operator precedence is parsed by a level of recursion.

2. Operators that were applied first are parsed at the bottom of the recursion.

13.3 Parsing Expressions

Let’s translate the pseudo-code above into some real code.

The Parser structure stores the current position in the input when parsing. Every parsing

function takes it as an argument.

type Parser struct {
input []byte
idx int

err error

build-your-own.org 100

https://build-your-own.org

2023-08-24

13. Query Language: Parser

The highest level of parsing is the tuple expression (e.g.: (a, b, ¢,
OR operator, then followed by the AND operator, etc.

func pExprTuple(p *Parser, node *QLNode) {
kids := []QLNode{{}}
pExprOr(p, &kids[len(kids)-1])
for pKeyword(p, ",") {
kids = append(kids, QLNode{})
pExprOr(p, &kids[len(kids)-11)
}
if len(kids) > 1 {
node.Type = QL_TUP
node.Kids = kids
} else {
*node = kids[Q] // not a tuple

13.3.1 Parsing Keywords

...)), followed by the

The pKeyword function matches one or more words from the input and advances the

position.

// match multiple keywords sequentially
func pKeyword(p *Parser, kwds ...string) bool {
save := p.idx
for _, kw := range kwds {
skipSpace(p)
end := p.idx + len(kw)
if end > len(p.input) {
p.idx = save
return false

// case insensitive matach

ok := strings.EqualFold(string(p.input[p.idx:end]), kw)

// token is terminated

build-your-own.org

101

https://build-your-own.org

2023-08-24 13. Query Language: Parser

if ok && isSym(kw[len(kw)-1]) && end < len(p.input) {
ok = !isSym(p.input[end])

}
if lok {
p.idx = save
return false
}

p.idx += len(kw)
}

return true

The skipSpace function does what its name says. The isSym thing is explained later.

13.3.2 Generalization

The pExpror should recurse into the AND operator (pExprAnd) according to the precedence

list. But there are many precedences, so let’s generalize this.

func pExprOr(p *Parser, node *QLNode) {
pExprBinop(p, node, [Istring{"or"}, [Juint32{QL_OR}, pExprAnd)

func pExprBinop(

p *Parser, node *QLNode,

ops [lstring, types [luint32, next func(xParser, *QLNode),
) {

assert(len(ops) == len(types))

left := QLNode{}

next(p, &left)

for more := true; more; {
more = false
for i := range ops {
if pKeyword(p, ops[i]) {
new := QLNode{Value: Value{Type: types[i]}}
new.Kids = []QLNode{left, {}}
next(p, &new.Kids[1])

build-your-own.org 102

https://build-your-own.org

2023-08-24 13. Query Language: Parser

left

more = true

new

break

*node = left

The pExprBinop is the generalized function for parsing binary operators. It takes a list of
operators of equal precedence and tries to parse with each of them. The parser for the

next precedence is parameterized via the next argument.

List of binary parsers ordered by precedence:

func pExprOr(p *Parser, node *QLNode) {

pExprBinop(p, node, [lstring{"or"}, [Juint32{QL_OR}, pExprAnd)
}
func pExprAnd(p *Parser, node *QLNode) {

pExprBinop(p, node, [Istring{"and"}, [Juint32{QL_AND}, pExprNot)
}
func pExprNot(p *Parser, node *QLNode) // NOT a
func pExprCmp(p *Parser, node *QLNode) // a < b,
func pExprAdd(p *Parser, node *QLNode) // a + b, a - b
func pExprMul(p *Parser, node *QLNode) {

pExprBinop(p, node,

[Istring{"x", "/", "%"}, [Juint32{QL_MUL, QL_DIV, QL_MOD}, pExprUnop)

}
func pExprUnop(p *Parser, node *QLNode)

The pExprNot and pExprUnop are unary operators. They are much easier than binary

oper ators.

func pExprUnop(p *Parser, node *QLNode) {
switch {
case pKeyword(p, "-"):
node.Type = QL_NEG
node.Kids = []QLNode{{}}

build-your-own.org 103

https://build-your-own.org

2023-08-24 13. Query Language: Parser

pExprAtom(p, &node.Kids[0O])
default:
pExprAtom(p, node)

13.3.3 Parsing Names

The pExprAtom function is the deepest level. It parses either a column name, an integer,
a string, or a pair of parentheses, which recurses back into the highest level function

pExprTuple.

func pExprAtom(p *Parser, node *QLNode) {
switch {
case pKeyword(p, "("):
pExprTuple(p, node)
if !pKeyword(p, ")") {
pErr(p, node, "unclosed parenthesis")
}
case pSym(p, node):
case pNum(p, node):
case pStr(p, node):
default:
pErr(p, node, "expect symbol, number or string")

The pErr function stores an error in the Parser structure. To keep the code concise, the
parser continues execution even after an error. That’s why you don’t see any error handling

here.

The pSym function is for parsing a column name. It’s just matching characters against a

rule. This can also be done with a regular expression.

build-your-own.org 104

https://build-your-own.org

2023-08-24

13. Query Language: Parser

func pSym(p *Parser, node *QLNode) bool {
skipSpace(p)

end := p.idx

if !(end < len(p.input) && isSymStart(p.input[end])) {

return false

}

end++

for end < len(p.input) && isSym(p.input[end]) {
end++

}

if pKeywordSet[strings.TolLower(string(p.input[p.idx:end]))] {

return false // not allowed

node.Type = QL_SYM

node.Str = p.input[p.idx:end]
p.idx = end

return true

Help functions for the pSym:

var pKeywordSet = map[string]lbool{
"from": true,
"index": true,
"filter": true,

"Timit": true,

func isSym(ch byte) bool {
r := rune(ch)
return unicode.IslLetter(r) || unicode.IsNumber(r)

func isSymStart(ch byte) bool {

return unicode.IslLetter(rune(ch)) || ch == '"_" || ¢

r=="'_

== '@’

build-your-own.org

105

https://build-your-own.org

2023-08-24 13. Query Language: Parser

13.4 Parsing Statements

Below is the structure for the SELECT statement.

// common structure for queries: ‘INDEX BY*, “FILTER®, °"LIMIT"
type QLScan struct {
Table string
// INDEX BY xxx
Keyl QLNode // comparison, optional
Key2 QLNode // comparison, optional
// FILTER xxx
Filter QLNode // boolean, optional
// LIMIT x, y
Offset int64
Limit int64

// stmt: select

type QLSelect struct {
QLScan
Names [lstring // expr AS name
Output []QLNode // expression list

And all other statements:

// stmt: update

type QLUpdate struct {
QLScan
Names []string
Values []1QLNode

// stmt: insert

type QLInsert struct {
Table string
Mode int
Names []string
Values []1[1QLNode

build-your-own.org 106

https://build-your-own.org

2023-08-24 13. Query Language: Parser

// stmt: delete
type QLDelete struct {
QLScan

// stmt: create table
type QLCreateTable struct {
Def TableDef

Statements can be distinguished by a few starting words.

func pStmt(p *Parser) interface{} {

switch {

case pKeyword(p, "create", "table"):
return pCreateTable(p)

case pKeyword(p, "select"):
return pSelect(p)

case pKeyword(p, "insert", "into"):
return pInsert(p, MODE_INSERT_ONLY)

case pKeyword(p, "replace", "into"):
return pInsert(p, MODE_UPDATE_ONLY)

case pKeyword(p, "upsert", "into"):
return pInsert(p, MODE_UPSERT)

case pKeyword(p, "delete", "from"):
return pDelete(p)

case pKeyword(p, "update"):
return pUpdate(p)

default:
pErr(p, nil, "unknown stmt")
return nil

We’ll use the SELECT statement as the only example. The parser is divided into several

components.

build-your-own.org 107

https://build-your-own.org

2023-08-24 13. Query Language: Parser

func pSelect(p *Parser) =QLSelect {
stmt := QLSelect{}

// SELECT Xxxx
pSelectExprList(p, &stmt)

// FROM table
if !pKeyword(p, "from") {
pErr(p, nil, "expect “FROM™ table")
}
stmt.Table = pMustSym(p)

// INDEX BY xxx FILTER yyy LIMIT zzz
pScan(p, &stmt.QLScan)

if p.err !'= nil {
return nil

}

return &stmt

Let’s zoom into the pSelectExprList function, which consists of finer and finer compo-

nents.

func pSelectExprList(p *Parser, node *QLSelect) {
pSelectExpr(p, node)
for pKeyword(p, ",") {
pSelectExpr(p, node)

func pSelectExpr(p *Parser, node *QLSelect) {
expr := QLNode{}
pExprOr(p, &expr)

name := ""

if pKeyword(p, "as") {

name = pMustSym(p)

node.Names = append(node.Names, name)

build-your-own.org 108

https://build-your-own.org

2023-08-24 13. Query Language: Parser

node.Output = append(node.Output, expr)

The rest of the code should be trivial at this point. We’ll learn how to execute the parsed

statements in the next chapter.

build-your-own.org 109

https://build-your-own.org

14. Query Language: Execution

14.1 Introduction

To execute a statement, the statement is translated into function calls to the existing DB
interfaces. For example, the CREATE TABLE statement is translated into a simple function

call:

func qlCreateTable(req *QLCreateTable, tx *DBTX) error {
return tx.TableNew(&req.Def)

Other statements are not as simple, but they are still glue code that does not have much

functionality on its own. Executing a SELECT statement is more complicated:

func qlSelect(req *QLSelect, tx *DBReader, out []Record) ([]Record, error) {
// records
records, err := glScan(&req.QLScan, tx, out)
if err = nil {
return nil, err

}
// output
for _, irec := range records {
orec := Record{Cols: req.Names}
for _, node := range req.Output {
ctx := QLEvalContex{env: irec}
glEval(&ctx, node)
if ctx.err !'= nil {
return nil, ctx.err
}
orec.Vals = append(orec.Vals, ctx.out)
}
out = append(out, orec)
}

return out, nil

110

2023-08-24 14. Query Language: Execution

It does 2 things:

1. Fetching rows based on some conditions (qlScan).

2. Transforming rows into output by evaluating expressions (qlLEval).

Both of these things are also part of some other statements. We’ll look at expression

evaluation first.

14.2 Expression Evaluation

There are 3 places where we need to evaluate expressions against a row. They are the
expression list of the SELECT statement, the conditions in the FILTER clause, and the values

of the UPDATE statement.

The qlEval function is for such tasks. To keep the code concise, the result of an evalu-
ation (either a scalar value or an error) and the current row are put in the QLEvalContex

structure.

// for evaluating expressions

type QLEvalContex struct {
env Record // optional row values
out Value
err error

// evaluate an expression recursively
func glEval(ctx *QLEvalContex, node QLNode)

The qlEval function evaluates subexpressions recursively and then performs the calculation

of the operator. Column names and literal values (integers and strings) are obvious to

handle.

func glEval(ctx *QLEvalContex, node QLNode) {
if ctx.err !'= nil {

return

switch node.Type {
// refer to a column

build-your-own.org 111

https://build-your-own.org

2023-08-24 14. Query Language: Execution

case QL_SYM:
if v := ctx.env.Get(string(node.Str)); v != nil {
ctx.out = *v
} else {
glErr(ctx, "unknown column: %s", node.Str)
}
// a literal value
case QL_I64, QL_STR:
ctx.out = node.Value
// more; omitted...
default:
panic("not implemented")

Operators are also easy to handle. We also do type checking when evaluating an expression.

Listing the QL_NEG operator as an example:

// unary ops
case QL_NEG:
glEval(ctx, node.Kids[0])
if ctx.out.Type == TYPE_INT64 {
ctx.out.I64 = -ctx.out.I64
} else {
glErr(ctx, "QL_NEG type error")

The qlErr function saves an error in the QLEvalContex.

14.3 Fetching Rows

Fetching rows is another thing a query needs to do.

// execute a query
func qlScan(req *QLScan, tx *DBReader, out []Record) ([]Record, error) {

sc := Scanner{}
err := glScanInit(req, &sc)
if err !'= nil {

build-your-own.org 112

https://build-your-own.org

2023-08-24

14. Query Language: Execution

return nil, err

err = tx.Scan(req.Table, &sc)
if err = nil {
return nil, err

return glScanRun(req, &sc, out)

// create the ‘Scanner from the ‘INDEX BY = clause
func qlScanInit(req *QLScan, sc *Scanner) error
// fetch all rows from a “Scanner’

func qlScanRun(req *QLScan, sc *Scanner, out []Record) ([]Record, error)

14.3.1 Initializing the Iterator

First, we need to translate the INDEX BY clause into the Record type, which is used by the

Scanner iterator. An INDEX BY clause is either:

1. A point query.
2. An open-ended range (a single comparison).

3. A closed range (two comparisons of different directions).

Corresponding examples:

select expr... from table_name index by a = 1;
select expr... from table_name index by a > 1;
select expr... from table_name index by a > 1 and a < 5;

The clause goes to the Keyl and Key2 fields of QLScan.

type QLScan struct {
Table string
Keyl QLNode // first range or a point query

build-your-own.org

113

https://build-your-own.org

2023-08-24 14. Query Language: Execution

Key2 QLNode // second range
Filter QLNode
Offset int64
Limit int64

The translation is just some type checkings and type conversions.

// create the “Scanner” from the ‘INDEX BY' clause
func qlScanInit(req *QLScan, sc *Scanner) error {
if req.Keyl.Type == 0 {
// no "INDEX BY'; scan by the primary key
sc.Cmpl, sc.Cmp2 = CMP_GE, CMP_LE
return nil

var err error
sc.Keyl, sc.Cmpl, err = glEvalScanKey(req.Keyl)
if err = nil {

return err

if req.Key2.Type != 0 {
sc.Key2, sc.Cmp2, err = qlEvalScanKey(req.Keyl)
if err !'= nil {
return err

if req.Keyl.Type == QL_CMP_EQ && req.Key2.Type != 0 {
return errors.New("bad “INDEX BY™ ")

}

if req.Keyl.Type == QL_CMP_EQ {
sc.Key2 = sc.Keyl
sc.Cmpl, sc.Cmp2 = CMP_GE, CMP_LE

}

return nil

The qlEvalScanKey function is for converting a comparison operator to the Record type

build-your-own.org

114

https://build-your-own.org

2023-08-24 14. Query Language: Execution

and the cMP_?7 enumeration. Nothing interesting there either.

func qlEvalScanKey(node QLNode) (Record, int, error)

14.3.2 Iterating Rows

We need to deal with the LIMIT and the FILTER clauses when iterating rows.

// fetch all rows from a ‘Scanner’
func qlScanRun(req *QLScan, sc *Scanner, out []Record) ([]Record, error) {
for i := int64(0); sc.Valid(); i++ {
// "LIMIT:
ok := req.0ffset <= i && i < req.Limit

rec := Record{}
if ok {
sc.Deref(&rec)
}
// "FILTER"
if ok && req.Filter.Type != 0 {
ctx := QLEvalContex{env: rec}
glEval(&ctx, req.Filter)
if ctx.err !'= nil {
return nil, ctx.err
}
if ctx.out.Type != TYPE_INT64 {
return nil, errors.New("filter is not of boolean type")
}
ok = (ctx.out.I64 != 0)
}
if ok {
out = append(out, rec)
}
sc.Next()

build-your-own.org 115

https://build-your-own.org

2023-08-24 14. Query Language: Execution

return out, nil

14.4 Executing Statements

The code for the SELECT statement is already listed. Let’s add the DELETE statement, which

is not much different.

func qlDelete(req *QLDelete, tx *DBTX) (uint64, error) {
records, err := qlScan(&req.QLScan, &tx.DBReader, nil)
if err !'= nil {

return 0, err

tdef := getTableDef (&tx.DBReader, req.Table)
pk := tdef.Cols[:tdef.PKeys]
for _, rec := range records {
key := Record{Cols: pk}
for _, col := range pk {
key.Vals = append(key.Vals, *xrec.Get(col))

}
deleted, err := tx.Delete(req.Table, key)
assert(err == nil && deleted) // deleting an existing row

}

return uint64(len(records)), nil

Other statements should be obvious at this point.

14.5 Further Steps

As you can see, this chapter does not add much. The implementation of our query language
is mostly glue code for what we have already implemented. Before reaching this point, it

may have been a mystery to you how a database turns SQL into rows. Now that you have

build-your-own.org 116

https://build-your-own.org

2023-08-24 14. Query Language: Execution

a better understanding of databases, there are some other aspects that you may want to

explore.

You can try to add more features to our database, such as joins, group bys, and aggregations,
which are common in analytical queries. Getting these things to work should not be

difficult at this point.

You can also build a client API and a server for our database. A server process is needed
anyway for managing concurrent access. To do this, you’ll need to learn network pro-
gramming. Although networking in Golang is fairly easy and high-level, there is also the
“from scratch” method if you are willing to learn more. My other book “Build Your Own
Redis From Scratch” is for learning network programming from scratch and some data

structures, which can be found on the official website.

This book is part of the “Build Your Own X” book series. You can find more books on the
official website, such as the Redis book and the compiler book “From Source Code To
Machine Code”.

https://build-your-own.org/

build-your-own.org 117

https://build-your-own.org/
https://build-your-own.org

	Cover
	Contents
	00. Introduction
	0.1 What is This Book About?
	0.2 How to Use This Book?
	0.3 Topic One: Persistence
	0.4 Topic Two: Indexing
	0.5 Topic Three: Concurrency

	01. Files vs. Databases
	1.1 Persisting Data to Files
	1.2 Atomic Renaming
	1.3 fsync
	1.4 Append-Only Logs

	02. Indexing
	2.1 Key-Value Store and Relational DB
	2.2 Hashtables
	2.3 B-Trees
	2.4 LSM-Trees

	03. B-Tree: The Ideas
	3.1 The Intuitions of the B-Tree and BST
	3.2 B-tree and Nested Arrays
	3.3 B-Tree Operations
	3.4 Immutable Data Structures

	04. B-Tree: The Practice (Part I)
	4.1 The Node Format
	4.2 Data Types
	4.3 Decoding the B-tree Node
	4.4 The B-Tree Insertion
	Step 1: Look Up the Key
	Step 2: Update Leaf Nodes
	Step 3: Recursive Insertion
	Step 4: Handle Internal Nodes
	Step 5: Split Big Nodes
	Step 6: Update Internal Nodes

	05. B-Tree: The Practice (Part II)
	5.1 The B-Tree Deletion
	Step 1: Delete From Leaf Nodes
	Step 2: Recursive Deletion
	Step 3: Handle Internal Nodes
	Step 4: The Conditions for Merging

	5.2 The Root Node
	5.3 Testing the B-Tree
	5.4 Closing Remarks

	06. Persist to Disk
	6.1 The Method for Persisting Data
	6.2 mmap-Based IO
	6.3 The Master Page
	6.4 Allocating Disk Pages
	6.5 Initializing the Database
	6.6 Update Operations

	07. Free List: Reusing Pages
	7.1 Design the Free List
	7.2 The Free List Datatype
	7.3 The Free List Implementation
	7.4 Manage Disk Pages
	Step 1: Modify the Data Structure
	Step 2: Page Management for B-Tree
	Step 3: Page Management for the Free List
	Step 4: Update the Free List
	Step 5: Done

	08. Rows and Columns
	8.1 Introduction
	8.2 Data Structures
	8.3 Point Query
	8.4 Updates
	8.5 Create New Tables

	09. Range Query
	9.1 B-Tree Iterator
	9.2 Data Serialization
	9.3 Range Query

	10. Secondary Index
	10.1 Index Definitions
	10.2 Maintaining Indexes
	10.3 Using Secondary Indexes
	Step 1: Select an Index
	Step 2: Encode Index Prefix
	Step 3: Fetch Rows via Indexes
	Step 4: Put All Pieces Together
	Step 5: Congratulations

	11. Atomic Transactions
	11.1 KV Transaction Interfaces
	11.2 DB Transaction Interfaces
	11.3 Implementing the KV Transaction

	12. Concurrent Readers and Writers
	12.1 The Readers-Writer Problem
	12.2 Analysing the Implementation
	12.3 Concurrent Transactions
	Part 1: Modify the KV type
	Part 2: Add the Read-Only Transaction Type
	Part 3: Add the Read-Write Transaction Type

	12.4 The Free List
	12.5 Closing Remarks

	13. Query Language: Parser
	13.1 The Grammar
	13.1.1 Statements
	13.1.2 Conditions
	13.1.3 Expressions

	13.2 Operator Precedence and Recursion
	13.3 Parsing Expressions
	13.3.1 Parsing Keywords
	13.3.2 Generalization
	13.3.3 Parsing Names

	13.4 Parsing Statements

	14. Query Language: Execution
	14.1 Introduction
	14.2 Expression Evaluation
	14.3 Fetching Rows
	14.3.1 Initializing the Iterator
	14.3.2 Iterating Rows

	14.4 Executing Statements
	14.5 Further Steps

